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Abstract 

Background: West Nile virus (WNv) continues to be one of the most destructive 

mosquito borne diseases in the world, and Saskatchewan has experienced the highest incidence 

rates for WNv in North America. Its primary transmitters are mosquitoes, with Culex tarsalis 

serving as the main vector in Saskatchewan. For this reason, mosquito population dynamics is an 

important determinant of WNv risk. Weather factors, in turn, exert a pronounced impact on 

mosquito populations. It is important to understand the environmental factors playing a crucial 

role in oscillations of the mosquito population. It is also important to construct a model or create 

a method which can monitor and accurately estimate the overall dynamics of the mosquito 

population. 

Methods: In this study, a Probability Generating model is developed to simulate the 

mosquito observation counts, making use of a pre-existing System Dynamics Model to simulate 

a mosquito population. A MCMC method was further used to draw samples from a posterior 

distribution for Bayesian inference and analyse how frequency of observation of mosquito trap 

counts can improve performance of our model or method. 

Purpose of study: This study mainly focuses on investigating the feasibility of 

estimating the regression coefficients of the logistic regression model for the parameters (β) by 

using the proposed computational method. Meanwhile, we consider comparing the performance 

of this method with analysis under different sampling frequencies. 

Results: The results of the Probability Generating model depicts the distribution of the 

simulated observation data (𝑦𝑖) over our study region (city of Saskatoon) seasonally, which 

suggests the environmental variables have a significant effect in driving variations in mosquito 

populations under the simulation experiments; the results of the three different sampling 

frequencies suggest that the current frequency (weekly) of measuring counts of trapped 

mosquitos is insufficient for reliable estimation of the parameters (β) for the durations examined. 

Conclusion:  In this study, we formulated a probabilistic model from a combination of a 

reasonably complex dynamic model and a probabilistic generating model.  Additionally, we have 
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investigated the frequency of collecting real-world data associated with the accuracy of the 

model and revealed the importance of sampling mosquito population every day for reliably 

estimating parameter values, rather than pursuing the standard of sampling mosquito population 

every week. 

Keywords: West Nile virus (WNv); System Dynamics Model (SDM); Probability 

Generating model; Markov Chain Monte Carlo (MCMC); Environmental Variables; Highest 

Posterior Density (HPD)Interval. 
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Chapter 1   Introduction 

1.1 Why Estimate the Mosquito Population? 

1.1.1 Background  

Definition: West Nile virus (WNv) is an arbovirus belonging to the genus Flavivirus in 

the family Flaviviridae. Symptoms of WNv infection include skin rash, fever with muscle ache, 

and sometimes encephalitis or meningitis [1]. WNv is spread especially from birds to humans by 

mosquitoes. 

History: In 1937, the first patient with West Nile virus was identified in the West Nile 

district of Northern Uganda in Africa
 
[2].  Since that time, WNv has spread rapidly throughout 

Africa and regions of the Middle East, the prevalence of WNv in children was as high as 8%. 

WNv has become an endemic disease in these countries and regions [3]. Since the mid-1990s, 

numerous epidemics have also occurred in Europe. In 1999, the first North American case of 

WNv was reported in Queens, New York City in the United States. After this time, many serious 

cases of encephalitis were found surrounding the borough of Queens. In the fall of 1999, WNv 

was declared an endemic disease in the United States [4]. 

Canada had its first confirmed infection in a bird in 2001. In September 2002, the first 

confirmed human cases of WNv were reported in parts of Quebec and Ontario. In 2003, WNv 

cases were reported in four-fifths of the provinces (British Columbia, Alberta, Saskatchewan, 

Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia) and one-third of the territories 

(Yukon Territory) in Canada [5]. Since 2003, there have been WNv cases each year in Canada. 

From Table 1.1 below, we can see that WNv is still active in Canada. 

Table 1.1: West Nile virus cases in Canada 

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

No. of case 414 1481 25 225 151 2215 36 13 5 101 428 115 21 78 

Source [6]: from http://healthycanadians.gc.ca 

http://healthycanadians.gc.ca/
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In 2003, the first case was found with WNv infection in a person from Saskatchewan. 

Table 1.2 below demonstrates the major outbreaks of WNv occurred in 2003 and in 2007 in 

Saskatchewan, resulting in serious adverse health outcomes.  

Table 1.2: Saskatchewan Human WNv neuro invasive cases and deaths 2003 – 2014 

Year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Neuro invasive Cases 63 0 6 3 76 1 0 0 0 0 7 1 

Deaths 7 0 3 0 6 0 0 0 0 0 1 0 

     Source [7] : from West Nile Virus (WNv) Surveillance Results and Transmission Risk 2015 by the Ministry of Health. 

Risk in Saskatchewan: Saskatchewan had an endemic of WNv in 2003, constituting the 

most cases in Canada in that year. The provincial health department had received reports of 1080 

cases of WNv, in which human cases accounted for 947 cases, accompanying 133 equine cases 

[8]. Seven patients died because of the infection (see Table 1.2). In 2006, the Five Hills Health 

Region of Saskatchewan reported human seroprevalence of WNv at 9.98%, the highest record in 

North America [9]. In 2007, a serious outbreak of WNv occurred in Canada. In this outbreak, the 

cases reported by Saskatchewan were 58.01% of Canada (1285 out of 2215) [10], six 

Saskatchewan persons were killed by WNv. This suggests that there is a large potential risk to 

Saskatchewan people. There have been 157 severe neurological cases and 17 deaths in 

Saskatchewan from 2003 to 2014 (see Table 1.2). 

 Figure 1.1 below on the WNv transmission cycle [11] suggests that mosquitoes are the 

primary transmitters of WNv, transmitting the virus between birds and humans. The beginning 

point of the cycle starts in birds with WNv which can serve as a reservoir for WNv. Because 

infected birds reach high viral loads, when mosquitoes, such as 

 

 

 

Figure 1.1 (Taken from [11]): WNv transmission cycle 
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Culex tarsalis, bite the infected birds and suck blood, the mosquitoes can become a vector for 

WNv. When the infected mosquito bites uninfected birds, the virus enters the bloodstream of 

those birds. This leads to infection of some birds. Therefore, there is a bidirectional transmission 

between the birds and the mosquitoes. By contrast, there is one direction between the infected 

mosquitoes and humans or horses, and the humans and horses are “dead end hosts” representing 

the end point of the cycle. 

In terms of spreading WNv, mosquitoes act as a “bridge” between birds and humans. 

Therefore, mosquitoes serve as a key factor for controlling WNv.   However, not all species of 

mosquitoes are likely to carry WNv. 

1.1.2 Importance of Estimating the Mosquito Population  

Mosquitoes as vectors: The mosquito is a member of the family Culicid. Thousands of 

species of mosquitoes consume the blood of various kinds of animal hosts, including humans. 

Many species of mosquito can transmit diseases from host to host, where diseases are spread by 

the bite of an infected mosquito. A mosquito can become infected when it sucks blood from 

infected animals such as birds and can then spread the pathogen to humans and other animals 

when it bites. Some mosquito-borne diseases and infections are extremely harmful to humans, 

such as malaria, yellow fever, dengue fever, West Nile virus, Zika virus, etc. 

Mosquitoes as disease vectors have the ability to infect and lead to the death of more 

humans than any other organism on the Earth – thousands of people die from mosquito borne 

diseases each year. Mosquitoes carry diseases that affect humans and also transmit many 

diseases and parasites that affect other animals such as dogs and horses [12]. Mosquitoes spread 

the diseases which have killed more persons than all the wars in human history [13]. Despite 

advances in medicine, even just malaria infects tens of thousands of people each year [13]. 

Therefore, many species of mosquitoes act as “virus super vectors” of diseases. Based on the 

background and purpose of this study, we are focusing on Culex tarsalis, as this species is the 

principle vector for WNv in Saskatchewan. This mosquito species prefers to breed in newly 

created freshwater sources, i.e., ditches, standing water pools, etc. During the daytime, adult 
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Culex tarsalis prefer to seek out shaded areas; however, they are most active in the early 

morning and dusk and tend to bite birds and mammals. 

The size of the vector population is important in mosquito control. The size of the 

vector population is one of the primary indicators and risk factors with respect to epidemics of 

mosquito borne diseases. The distribution and amount of the principal vector are central factors 

in controlling the epidemic of vector-borne pathogens [14]. The size of the mosquito population 

determines the endemic range and epidemic severity. Measured abundance of the vector provides 

an indicator of the relative number of mosquitoes in an area during a particular sampling period 

and can be useful for comparing to thresholds in vector management and in monitoring the 

outcome of mosquito control efforts. However, greater abundance of mosquitoes does not mean 

a higher prevalence of WNv. In practice, an epidemic of WNv will follow if these three 

conditions are met: the amount of mosquitoes is low, percentage of adult mosquitoes over total 

population is higher and the prevalence of infection among such mosquitoes is high [15]. For 

example, in 2003, summers in Saskatchewan were very hot and very dry, therefore, many 

residents thought mosquitoes were very rare. However, approximately 90 percent of mosquito 

populations were Culex tarsalis (the main vector of WNv) and there existed a high proportion of 

mosquitoes which were infected with the virus (infection rate), so there was an outbreak of 

WNv. Seven patients were killed by WNv in that year [16]. 

1.1.3 Value of Relatively Precise and Timely Estimation of Mosquito Population 

In Saskatchewan, historical events involving WNv and physiological characteristics of 

Culex tarsalis have shown that it is the primary vector of WNv in Saskatchewan. In order to 

effectively control WNv in Saskatchewan, WNv monitoring is reported on a weekly basis 

through the summer. A relatively precise and timely estimation of the Culex tarsalis’ population 

is valuable. The reasons are as follows. 

(1) The distribution and amount of mosquitoes exerts a strong influence on the epidemic 

spread of WNv [14]; 
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(2) In order to achieve effective control of WNv vectors in a specific district, predicting 

the amount of mosquitoes across the district based on sampling from a restricted area is 

necessary [14]; 

(3) Precise population prediction of Culex tarsalis could provide sufficient time for 

predicting WNv occurrences, to initiate disease control and start public health interventions. 

Therefore, the prediction of mosquito population is important in assessing the risks of WNv. 

(4) Predicting and tracking the abundance of Culex tarsalis is a primary task for 

surveillance and control programs in a health region [17]; 

(5) Accurate evaluation of the size of the vector population is a critical factor for 

understanding the ecology of the vector, and also to plan effective vector control activities [18]. 

Better estimation of the size of mosquito population can provide valuable information for 

decision making for government and health authorities. For example, making a reasonable 

financial budget for WNv disease and creating an optimal medical inventory for disease control 

could provide enough warning time to prevent an epidemic occurrence and timely control of the 

further development of WNv disease outbreaks. 

1.2 Existing Methods for Estimating the Mosquito Population Size  

 As mentioned previously in 1.1.3, estimating population size is an important task for any 

epidemic areas of vector-borne pathogens. The literature offers several methods to address it, 

which include the following: 

Mark-Release-Recapture (MRR) experiment [18]: MRR is a method frequently used 

to estimate the population size (N) of a certain species in ecology. The stages of the experiment 

are (1) a portion of the natural population is captured (M) and marked in some method; (2) the 

captured population is then released into the natural population; (3) Another portion is captured 

(n) and the number of marked individuals within the second portion is counted (m). 
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Finally, a solution is given based on a simple equation (m/n=M/N) under some 

assumptions which lie beyond the scope of our research. This solution provides an estimate of 

population size as follows: 

𝑁̂ = 𝑛 ∗
𝑀

𝑚
 ……………………………….…(Eq 1.1) 

where, N, M, n and m are as described above [18]. 

The Fisher-Ford Method [19]: Fisher and Ford (1947) gave detailed information 

regarding this method, which has been used in MRR experiments and determines population size 

using ratios of marked to unmarked individuals. This method has been further developed by 

Dowdeswell (1959) and Parr (1965). The method has been replaced by modern methods and is 

now hardly used.  

Logistic Regression Model based on MRR. Cianci et al. (2013) applied statistical tools, 

such as a logistic regression model, with Mark-Release-Recapture experiments to estimate size 

of mosquito population and assessed the performance and accuracy of this model by using 

simulated data from known population sizes [18]. 

Bayesian Hierarchical Model based on MRR. Villela et al. (2015) constructed a 

hierarchical probabilistic model and performed a Bayesian analysis using this model to estimate 

the mosquito population using data from MRR experiments. Using the Bayesian analysis by 

Markov Chain Monte Carlo method, an inference concerning the size of mosquito population 

was obtained. To get a precise estimation of mosquito population abundance, the researchers 

implemented multiple runs of MCMC via the Gibbs sampling algorithm, and then the results 

were given with properties of statistical measures. In the process of applying the model, authors 

used the JAGS model and WinBUGS tool in order to get the estimates [20]. 

 The Bayesian Hierarchical Model has a high accuracy for estimating mosquito 

populations compared with the Fisher-Ford method [20].   

There are some other models or methods for estimating population size that don’t use the 

data from the MRR experiment: 
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Dynamic Hydrology Model. Shaman et al. (2002) used a dynamic hydrology model 

with time series regression analysis, making it possible to predict different species of 

mosquitoes’ population sizes in a temporal and spatial status. This model was driven by 

environment variables, including the air temperature, precipitation, relative humidity, wind 

speed, surface pressure, etc. These environmental factors were treated as influencing the 

probability of reporting a mosquito in the model. The authors provided a basic path toward a 

dynamic mosquito prediction system [21]. 

System Dynamics Model. During the past decade, many researchers have built system 

dynamics models (SDM) based on life cycles of mosquitoes which were applied in field of 

diffusion and control of disease transmitted by the mosquito.  Brailsford et al. (2008)
 
applied 

SDM to assess risk of mosquito borne diseases. In their assessment procedure of risks, the 

mosquito population was estimated indirectly [22]. There were also course projects that used 

SDM to estimate mosquito populations [23]. 

For much of the literature review, the principal methods or tools that have been applied in 

estimating mosquito population include logistic regression, time series analysis, and the Markov 

chain Monte Carlo (MCMC) method.  

1.3 Overview of Proposed Method  

1.3.1 Brief Data Description 

Weather data: Our time period for weather data extended from 2010 to 2013 in the city 

of Saskatoon. The data sets were downloaded from the National Climate Data and Information 

Archive and Environment Canada. From the weather data sets, environment variables such as 

temperature, humidity, wind speed and precipitation were selected and used to generate three 

different scenarios by processing the standardized data. The scenarios are one day means, three 

days means and seven day means, respectively. The procedure created a time series. To 

understand the time series effects of the above environment variables on subsequent mosquito 

population size, a lag of means of environment variables could be created. 



 

 

8 
 

Although there is missing data for some weather variables, they are below the 5% 

threshold. On the whole, the weather data satisfies our frequency, availability and accuracy 

requirements. 

Simulation data: Based on the problems with collecting data sets about empirical 

mosquito counts, we sought to employ a simulation experiment, in which “pseudo empirical” 

(synthetic empirical) data was generated and used for analysis. In order to generate the pseudo 

observation data set (𝑦𝑖), there are three stages: 1) simulate the total (synthetic) mosquito 

population (𝑁𝑖) using the System Dynamics Model; 2) calculate the (synthetic) probability of 

capturing a mosquito (𝑝𝑖) by using a logistic regression model on the empirical weather data; 3) 

generate the pseudo number of captured mosquitoes (𝑦𝑖) by using the Binomial distribution 

model using probability (𝑝𝑖). 

There are two main advantages to this method: first, it does not affect the purpose of this 

study, which is to investigate the feasibility of estimating the regression coefficients for the 

parameters (𝛽) using different frequency of data; secondly, use of the pseudo data sets can avoid 

the problems with model misspecification and with the empirical data. 

1.3.2 Construction of Study Methods 

Constructing our model consisted of two stages: looking for a statistical theoretical 

foundation and proposed applied models. Here, the reference to the term foundation of statistical 

theory refers to statistical knowledge and principles. For instance, this includes various statistical 

definitions, theorems and distributions of different kinds. Finding the appropriate foundation of 

statistical theory was based on the procedure of our experiments. And proposed applied models 

are built on this foundation of statistical theory under the background of our experiment. 

In our experiment, the procedure of captured mosquitoes (a dichotomous outcome) 

suggested use of a binomial distribution and logistic regression. Here, we assumed that the 

number of captured mosquitoes follows a binomial distribution, and that the logit of the 

probability of capturing of a given mosquito can be characterized as a linear function of the 

environmental variables. We will give a further discussion in later chapters.  Based on the first 
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stage and the background of our experiment, the MCMC method is attractive to apply in this 

study. 

1.3.3 Advantages of SDM and Markov Chain Monte Carlo (MCMC) 

Based on the literature review, there are several advantages of using a dynamic model in 

a simulation experiment: 1) offering continuous real-time estimation of mosquito populations 

which are currently impossible to measure in practice; 2) expanding the application range of its 

methods by adjusting the model for different health regions by accounting for environment 

conditions; 3) providing a powerful tool to public health departments with flexible methods for 

the estimation of current and future vector population size. 

There are also several advantages of using the MCMC method: 1) Probabilistic 

estimation sample values of parameter estimates from a posterior distribution instead of 

estimating a single point estimate. The results can specify statistical measures that include 

means, medians, standard deviations and credibility intervals; 2) Applying the MCMC method in 

a temporal-spatial modeling can produce more precise estimation [20]; 3) In general, the MCMC 

method makes our computations easier than the traditional MLE method in handling estimation 

parameters of our interest when the procedure of estimation involves a complex integral or 

cannot be integrated. 

  



 

 

10 
 

Chapter 2 System Dynamics Models and Markov Chain Monte Carlo  

 

In order to understand this study, this chapter focuses on the following three aspects: 

introducing the models which were involved in this study (Anylogic and generative models); 

describing the MCMC simulation method which is applied in this study; and lastly, proposing 

the Bayesian logistic regression model and its assumptions. Some issues in the model are 

illustrated. 

2.1 Anylogic 

2.1.1 Definition of Anylogic 

 Anylogic is software for simulation. It is a powerful and useful tool which supports 

modeling languages and development tool for Discrete Event Modeling, System Dynamics 

Modeling and Agent Based Modeling simulation methodologies [24]. 

2.1.2 Anylogic Terminology 

The Anylogic simulation language mainly consists of the following constructs [25]: 

1). Stock & Flow Diagrams: used for System Dynamics model; 

Here, we depict the relationship between a stock and its flows using simple mosquito 

population model, and reveal mathematical meaning behind the relationships. In relation to a 

given stock, there are two types of flow: inflow and outflow. An example stock and flow 

diagram for a simple mosquito population model is given in the below: 
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Figure 2.1 Stock and Flows for a simple mosquito population model 

In the above figure, the MosquitoPopulation (N) is a stock, which is an accumulation of 

mosquitos associated with time. The mosquito births and mosquito deaths represent an inflow 

and outflow to that stock, respectively. From the figure, the values associated with the inflow and 

outflow are the rates at which given mosquito quantity is increased to or decreased from the 

stock associated with time, respectively. And the MosquitoBirthRate (BR) and 

MosquitoDeathRate (DR) are the parameters of this model. These quantities are linked via the 

following equations (Eq 2.1) and (Eq 2.2). 

𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜 𝑏𝑖𝑟𝑡ℎ𝑠 = 𝐵𝑅 × 𝑁 ……………………….…(Eq 2.1) 

𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜 𝑑𝑒𝑎𝑡ℎ𝑠 = 𝐷𝑅 × 𝑁 ……………...……….…(Eq 2.2) 

Based on the mathematical definition of the derivative, the relationship between the stock 

variable (MosquitoPopulation (N)) and the flow variables (mosquito births and mosquito deaths) 

is as approximated in the following equations. 

𝑁𝑡+𝛥𝑡 = 𝑁𝑡 + (𝐵𝑅 − 𝐷𝑅) × 𝑁𝑡 × 𝛥𝑡      (0 ≤ 𝛥𝑡 ≤ 1)  ……….…(Eq 2.3) 

Where the 𝛥𝑡 denotes the time step, which can assume a positive value between zero and 

one. 

Equation (Eq 2.3) can be rewritten as following, 

                         
𝑁𝑡+𝛥𝑡−𝑁𝑡

𝛥𝑡
= (𝐵𝑅 − 𝐷𝑅) × 𝑁𝑡 ………………….…(Eq 2.4) 
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When letting 𝛥𝑡 → 0, we obtain the following equation:  

                                     
𝑑𝑁𝑡

𝑑𝑡
= lim𝛥𝑡→0 ( 

𝑁𝑡+𝛥𝑡−𝑁𝑡

𝛥𝑡
)  = (𝐵𝑅 − 𝐷𝑅) × 𝑁𝑡  ………………(Eq 2.5) 

The equation (Eq 2.5) is a first-order ordinary differential equation corresponding to the 

system of the simple mosquito population model. 

In general, we can write the relationship between stock and flow as follows: 

                𝑆𝑡𝑜𝑐𝑘(𝑡) = ∫ (𝑖𝑛𝑓𝑙𝑜𝑤(𝑥) − 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑥))𝑑𝑥
𝑡

0
+ 𝑆0 ……………...… (Eq 2.6) 

Where 𝑆0 is the stock at the initial time when 𝑡 = 0. 

2). State charts: mainly used in Agent Based model to define agent behaviors, and also 

sometimes used in Discrete Event models as well; 

3). Action charts: are used to define algorithms, primarily in Discrete Event models and 

in Agent Based models; 

4). Process flowcharts: which are the basic construction used to define processes (e.g., 

defined workflows) in Discrete Event models. 

The language also includes other useful objects, including, but not limited to, low level 

model constructs (variables, equations, parameters, events etc.), presentation shapes (lines, 

polylines, ovals, etc.), analysis facilities (datasets, histograms, plots), connectivity tools, standard 

images, and experiments (scenarios). 

2.2 Generative Model 

 In this section, we will introduce the basic ideas behind generating the simulation data 

that drives the mosquito population (𝑁𝑖) and observed mosquito number (𝑦𝑖) through a 

probability generating model. Within probability and statistics, a generative model is a model 

which provides a method to randomly generate a set of observed samples. 
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2.2.1 Introduction of SDM 

A System Dynamics model is defined as an approach to build a dynamic model to 

characterize, simulate, explain, analyze dynamically and manage complex problems or systems 

in real world applications [26]. At the end of the1950s, Jay W. Forrester invented this approach 

and in the 1960s this approach obtained further improvements and applications in many fields 

[26].    

 The procedure of creating a System Dynamics model mainly includes the following four 

stages: conceptualization, formulation, testing and implementation. In building System 

Dynamics Model, modellers use stocks (accumulations) and flows (rates of change), time delays 

and feedbacks to understand the behaviour of complex systems over time [27]. 

Why should we choose SDM for generating mosquito counts in this study? The choice of 

approach should be based on the following two factors: 1) the system being modeled; 2) the 

purpose of the modeling. 

An important background element for this study is the ecosystem of mosquitoes which 

includes environmental factors, food chains, vegetation, etc. These factors can directly or 

indirectly affect the temporal and spatial distribution of the mosquito population. The effects of 

all factors on the abundance of mosquitoes as well as interactions among them form a dynamic 

system. The mosquito life cycle also is a continually moving process of reproduction, 

maturation, diapause and death. The purpose of this study is to investigate the problem of 

estimating of the relationship between environment variables and probability of measuring a 

mosquito, as would be useful to estimate the size of the mosquito population. In the real world, 

the size of mosquito population is difficult to accurately measure, which would pose problems 

for evaluating the accuracy of the estimation procedure and accompanying scenarios examined in 

this study. But the System Dynamics Model can generate synthetic mosquito populations of 

known size, which can then serve as reference “ground truth” to assess the accuracy of 

estimation across different scenarios. It is believed that the relevant mosquito population 

dynamics characterized by the System Dynamics Model approximately matches those from the 

real world system in which a mosquito survives, and is thus valuable for this study. 



 

 

14 
 

2.2.2 Generating Simulation Data through Generative Model 

From the figure below, the mosquito population (𝑁𝑖) cannot be readily measured in the 

real world. Moreover, a continuous and complete observation set of data, which are the actual 

numbers of captured mosquitoes in each period, cannot be obtained from respective health 

regions because there is an absence of availability and consistency regarding the data. 

Figure 2.2: Generative Model 
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In order to realize the goal of this project, we need to simulate these data by constructing 

a generative model. The use of simulation studies can let us avoid the complications stemming 

from uncertainties regarding the real-word relationships between the observed number of 

captured mosquitoes and the population of mosquitoes. In detail, inputting environment data, 

temperature, precipitation and sunlight, etc., into a System Dynamics Model, the outputs from 

that model are the pseudo (synthetic) underlying mosquito population (𝑁𝑖) in each time period. 

In the approach used here, we then input the environment data and the pseudo mosquito 

population (𝑁𝑖) into the probabilistic generative model which was built to generate probabilities 

of capturing mosquitoes by application of logistic regression. Finally, we obtain the synthetic 

observed (captured) mosquito count  (𝑦𝑖) in each time period.  Our purpose is to test how 

realistically accurate we can estimate parameters (𝛽) with these synthetic mosquito count under 

different sampling frequencies (e.g., daily, every three days and every seven days). Here, by 

representing a known “ground truth” concerning the underlying mosquito population the 

generative model allows for model evaluation under different sampling regimes. 

2.3 Methodology: Markov Chain Monte Carlo (MCMC) 

2.3.1 Introduction of MCMC 

 What is Markov Chain Monte Carlo (MCMC)? The MCMC method is a set of 

algorithms for drawing samples for a probability distribution based on creating a Markov chain 

with a desired (target) distribution as its equilibrium distribution [28]. MCMC methods are often 

applied to solve integration and optimisation problems in high-dimensional spaces. 

The foundational theorems and tools behind MCMC are Markov Chains, Monte Carlo 

integration and algorithms which are tools for constructing a Markov Chain. We describe these 

basic ideas as follows: 

What is a Markov Chain? Suppose that we have a stochastic process {𝑆𝑡}, where 𝑡 

denotes time. The state space associated with  𝑆𝑡 can be a finite set or an infinite set. When 𝑆𝑡 =

𝑛𝑡, it indicates the process at time t to be in the 𝑛𝑡
𝑡ℎ state. A Markov Chain can be defined as 

below: 



 

 

16 
 

If a state sequence is 𝑛0, … , 𝑛𝑡−1, 𝑛𝑡 , 𝑛𝑡+1, and 𝑡 ≥ 0 , the stochastic process {𝑆𝑡} 

satisfies the following requirement, 

𝑃{𝑆𝑡+1 = 𝑛𝑡+1|𝑆0 = 𝑛0, … 𝑆𝑡−1 = 𝑛𝑡−1, 𝑆𝑡 = 𝑛𝑡  } = 𝑃{𝑆𝑡+1 = 𝑛𝑡+1|𝑆𝑡 = 𝑛𝑡} …(Eq 2.7) 

Then the stochastic process {𝑆𝑡} is called a Markov chain. In fact, a Markov Chain is a special 

kind of stochastic process [29]. 

What is Monte Carlo? The Monte Carlo method is a random sampling numerical 

method based on probabilistic statistical theory. Its basic ideas are: first, linking the problem 

which will be solved with a certain probability distribution; second, creating a mathematical or 

statistical model based on the problem; third, repeating a random sampling trial based on the 

model by using computer simulation technology; and fourth, applying the Law of Large numbers 

to approximately estimate the solutions of the problem.  The procedure of the Monte Carlo 

method can be seen as a method to calculate integrals by using random sampling trials. For 

example, suppose a problem for figuring out a complex integration can link to solving an 

expected value of a random variable 𝑝(𝑥) with a probability distribution density function 𝑞(𝑥). 

This can be written down as below. 

𝐸[𝑝(𝑥)] = ∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥
∞

0
≈

1

𝐾
 ∑ 𝑝(𝑥𝑖)𝐾

𝑖=1 .…………...…(Eq 2.8) 

Then, this problem can be solved with following steps: 

1) Creating a model which is based on the problem; 

2) Repeating a random sampling trial based on running the model, obtaining 𝐾 simulation 

values 𝑥1, 𝑥2, … , 𝑥𝐾 which are drawn randomly 𝐾 samples from 𝑞(𝑥). 

3) Calculating the average value of 𝐾 random variables’ value 𝑝(𝑥1), 𝑝(𝑥2), … , 𝑝(𝑥𝐾). 

Applying the Law of Large Numbers, we obtain the approximate value of the integral as follows, 

𝐸[𝑝(𝑥)] = ∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥
∞

0
≈

1

𝐾
 ∑ 𝑝(𝑥𝑖)𝐾

𝑖=1 ………….…(Eq 2.9) 

When the number of sample 𝐾 → ∞,  the estimated value is the actual value of the integral. 
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2.3.2 Algorithms of MCMC 

 There are two MCMC algorithms that are easy to implement and broadly applicable. One 

is the Metropolis-Hasting Algorithm, another one is Gibbs Sampling. 

Metropolis-Hasting Algorithm:  The Metropolis-Hasting algorithm is one of the most 

popular MCMC methods and is widely applied in various fields today [30]. It is mainly applied 

to simulate the samples from troublesome distributions. The algorithm implicitly implements a 

Markov chain. It follows the stages below: 

Suppose our goal is to sample from a target distribution 𝑝(𝑥) which is difficult to 

achieve, but we are given 𝑞(𝑥) as a proposal distribution, from which it should be easy to 

sample. 

 1). Choose a starting value 𝑥(0) which is drawn at random from proposal 

distribution 𝑞(𝑥), with 𝑝(𝑥(0)) > 0. 

2). At iteration 𝑛, draw a candidate 𝑥∗  from the proposal distribution 𝑞(𝑥∗|𝑥(𝑛−1)); 

3). Compute the Metropolis-Hasting ratio R (𝑥(𝑛−1), 𝑥∗), where 

R (𝑥(𝑛−1), 𝑥∗) =
𝑝(𝑥∗)𝑞(𝑥(𝑛−1)|𝑥∗)

𝑝(𝑥(𝑛−1))𝑞(𝑥∗|𝑥(𝑛−1))
 …………….…(Eq 2.10) 

4). Sample a value for 𝑥(𝑛)according to the following steps: 

 (a) Independently draw a randomly value 𝑢 from Uniform distribution(0,1); 

  (b) If  𝑢 ≤ 𝑚𝑖𝑛{ 𝑅 (𝑥(𝑛−1), 𝑥∗),1}, then accept 𝑥∗ and set 𝑥(𝑛) = 𝑥∗, otherwise, 

set 𝑥(𝑛) = 𝑥(𝑛−1) (i.e., repeat the previous sample). 

5). Increase 𝑛 𝑏𝑦 1 and repeat stages 2-4 𝑚 times to get 𝑚 samples from 𝑝(𝑥), with 

optional burn-in periods and discarding samples to achieve a desired thinning ratio. 

The terms burn-in period (burn-in) and thinning in step 5 refer to an output of MCMC. A 

sample description is as follows. 
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Burn-in: At the beginning of an MCMC simulation, often can see the performance in 

initial iterations is poor because of the following two reasons: 1) irregular fluctuations due to the 

initial iterations, which were influenced strongly by starting value 𝑥(0); 2) they don’t provide 

much more useful information on the target distribution. Based on the above reasons, this initial 

part of the iterations often offers little value for any inference. So we discard them as a “burn-in 

period”. 

Thinning: Thinning is a technique applied if significant autocorrelation obtains between 

the observed output samples such as could be determined via the use of autocorrelation plots. 

Significant autocorrelation is not what we want, as it lowers the effective sample size, which can 

be deleterious for certain tasks. In order to decrease the autocorrelation associated with samples, 

a useful method is to thin the Markov chain by holding every 𝑖𝑡ℎ (𝑖 ≥ 1) sample from each 

sequence and discarding the others. This procedure is called thinning. 

Gibbs sampling: In statistics, Gibbs sampling is a special case of the Metropolis–

Hastings algorithm that is another popular MCMC algorithm for obtaining a sequence of 

observations which are approximated from a specified multivariate probability distribution, when 

direct sampling is difficult. We can consider the problem as follows: assume a distribution of 

interest (target distribution) is p(x), where x is a vector = (x1, x2, … , xk)T, and denote x−i =

(x1, … , xi−1, xi+1 … , xk)T. Also consider a case where the full conditional distributions pi(xi) =

p(xi|x−i) are available, and easily sample for 𝑖 = 1,2, … , 𝑘. In general, the procedure of Gibbs 

Sampling follows these stages: 

1) Select initial value 𝑥(0), and set 𝑛 = 0. 

2) Obtain updated value 𝑥(𝑛+1) = (𝑥1
(𝑛+1)

, … … , 𝑥𝑘
(𝑛+1)

)𝑇 from 𝑥𝑛 through successive 

generation of values via sampling from the following distributions: 

𝑥1
(𝑛+1)

~ 𝑝(𝑥1|𝑥2
𝑛, … , 𝑥𝑘

𝑛)                   

𝑥2
(𝑛+1)

~𝑝(𝑥2|𝑥1
(𝑛+1)

, 𝑥3
(𝑛)

, … , 𝑥𝑘
(𝑛)

) 

https://en.wikipedia.org/wiki/Multivariate_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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… …     ……..(Eq 2.11) 

                  𝑥𝑘−1
(𝑛+1)

~ 𝑝(𝑥𝑘−1|𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑘−2
(𝑛+1)

, 𝑥𝑘
𝑛) 

     𝑥𝑘
(𝑛+1)

~ 𝑝(𝑥𝑘|𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑘−1
(𝑛+1)

) 

 

3) Increment  𝑛 𝑏𝑦 1 and repeat stage 2). 

From the above Gibbs sampling, we can see that Gibbs updates the variable 𝑋 from the 

conditional distribution 𝑝(𝑥𝑖|𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖−1
(𝑛+1)

, 𝑥𝑖+1
(𝑛)

… , 𝑥𝑘
(𝑛)

). Each Gibbs cycle, 

which is the completion of step 2 for all components of 𝑋, consists of 𝑘 Metropolis-Hasting 

steps [31]. To recognize this, one should realize that the i
th

 Gibbs step in a cycle effectively 

puts forward the candidate vector 𝑋∗ = (𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖
∗, 𝑥𝑖+1

(𝑛)
, … , 𝑥𝑘

(𝑛)
) for the current 

state of the Markov chain (𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖
(𝑛)

, 𝑥𝑖+1
(𝑛)

, … , 𝑥𝑘
(𝑛)

)[31]. Therefore, the i
th 

Gibbs 

updates can be seen as a Metropolis-Hasting step sampling 

𝑋∗|(𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖
(𝑛)

, 𝑥𝑖+1
(𝑛)

, … , 𝑥𝑘
(𝑛)

)~𝑞𝑖(𝑥∗|𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖
(𝑛)

, 𝑥𝑖+1
(𝑛)

, … , 𝑥𝑘
(𝑛)

) ...(Eq 2.12) 

Where, 𝑞𝑖(𝑥∗|𝑥1
(𝑛+1)

, 𝑥2
(𝑛+1)

, … , 𝑥𝑖
(𝑛)

, 𝑥𝑖+1
(𝑛)

, … , 𝑥𝑘
(𝑛)

) = {
𝑝(𝑥𝑖

∗|𝑥−𝑖
(𝑛)

)    𝑖𝑓  𝑋−𝑖
∗ = 𝑥−𝑖

(𝑛)

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

The Metropolis-Hasting ratio under the above condition is  

𝑅(𝑥𝑖
(𝑛)

, 𝑥𝑖
∗) =

𝑝(𝑥𝑖
∗, 𝑥−𝑖

(𝑛)
)𝑞𝑖(𝑥𝑖

(𝑛)
|𝑥𝑖

∗)

𝑝(𝑥𝑖
(𝑛)

, 𝑥−𝑖
(𝑛)

)𝑞𝑖(𝑥𝑖
∗|𝑥𝑖

(𝑛)
)
 

   =
𝑝(𝑥𝑖

∗, 𝑥−𝑖
(𝑛)

)𝑝(𝑥𝑖
(𝑛)

|𝑥−𝑖
(𝑛)

)

𝑝(𝑥𝑖
(𝑛)

, 𝑥−𝑖
(𝑛)

)𝑝(𝑥𝑖
∗|𝑥−𝑖

(𝑛)
)
 

                                                         =
𝑝(𝑥𝑖

∗|𝑥−𝑖
(𝑛)

)∗𝑝(𝑥−𝑖
(𝑛)

)∗𝑝(𝑥𝑖
(𝑛)

|𝑥−𝑖
(𝑛)

)

𝑝(𝑥
𝑖
(𝑛)

|𝑥
−𝑖
(𝑛)

)∗𝑝(𝑥
−𝑖
(𝑛)

)∗𝑝(𝑥𝑖
∗|𝑥

−𝑖
(𝑛)

)
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= 1                                                           ……………...(Eq 2.13) 

In the above derivation, we applied the following two facts: the proposal distributions 

𝑞𝑖(𝑥𝑖
(𝑛)

|𝑥𝑖
∗) for Gibbs sampling are the posterior conditions 𝑝(𝑥𝑖

(𝑛)
|𝑥−𝑖

(𝑛)
) and Bayesian chain 

rule, the full join distribution equals the product of two terms(𝑒. 𝑔. , 𝑝(𝑥𝑖
∗, 𝑥−𝑖

(𝑛)
) = 𝑝(𝑥𝑖

∗|𝑥−𝑖
(𝑛)

) ∗

𝑝(𝑥−𝑖
(𝑛)

)). This indicates that the candidate 𝑥𝑖
∗ always accepted. Therefore, the Metropolis-

Hasting algorithm does the exact same thing as a Gibbs update. 

2.3.3 Why Bayesian MCMC? 

Bayesian MCMC methods are powerful and useful computational tool for drawing 

samples from a posterior distribution in Bayesian analysis. The posterior distribution can be 

expressed as  

Posterior distribution ∝ likelihood ×prior distribution........................................(Eq 2.14) 

From this expression, we can note that when parameters (𝛽) of our interest are treated as 

a random variables. The Bayesian MCMC methods provide a set of samples from the posterior 

distribution which allow us to derive different inferential statistics (e.g. point estimation, 

percentile estimation, interval estimation) in a transparent way. Prior distribution allows us to 

incorporate additional information beyond the observed data (either historical information or 

information from similar studies). On the other hand, in frequentist statistics, the Maximum 

Likelihood Estimate (MLE) is a method of arriving at a point estimate for our parameter in 

interest to find a ‘best’ value for the parameter so that it maximizes the likelihood function.  

In short, the Bayesian MCMC sampling methods provide the samples from the posterior 

distribution which certainly gives more information than just a single point and interval 

estimation. This is the main motivation for the use of the Bayesian MCMC method for this work. 
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Chapter 3 Proposed Method 

 

3.1 Assumptions 

Our study area covers the city of Saskatoon. We worked with data collected by capturing 

adult mosquitoes at seven sites located in this region. 

 1) We assume that whether or not a given mosquito within the simulated zone is captured 

is independent (conditional on the value of the covariates) of whether or not another mosquito in 

that zone will be captured. This assumption is important in the distributional assumptions of our 

model. 

 2) Building on the above, we further assume that the process of capturing a single 

mosquito follows a Bernoulli distribution, and the total number of mosquitoes caught is well-

characterized as a Binomial distribution. This assumption indicates that the counts of captured 

mosquitoes follow a Binomial distribution. 

3) The final assumption is that the effects of weather variables on the probability of 

capturing mosquitoes are independent of each other. This assumption positions that there are not 

statistical interactions amongst the weather variables in as much as they determine the 

probability of capturing a given mosquito. 

3.2 Definitions and Formulas: 

1) Binomial Distribution 𝐵𝑖𝑛(𝑁, 𝑝): We assume that the process of capturing mosquitoes 

is a binomial experiment involving the total size of the mosquito population(𝑁) and the 

probability of capturing each mosquito  (𝑝). 

2) The probability of capturing a mosquito (𝑝): We assume that the probability of 

capturing each mosquito is well-characterized by a logistic regression model denoted as 

logit (𝑝) = 𝑙𝑛 (
𝑝

1−𝑝
)  = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + 𝛽4 ∗ 𝑥4  ...(Eq 3.1) 
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Where 𝑥𝑖 (i=1,2,3,4) denote the weather variables for temperature, humidity, windspeed 

and precipitation respectively; 𝛽0 is a  intercept term and 𝛽𝑖(𝑖 = 1,2,3,4) are coefficient of the 

logistic regression. We can rewrite them as vectors: 𝑋 = (1, 𝑥1, … , 𝑥4)  and 𝛽 = (𝛽0, 𝛽1, … , 𝛽4)𝑇, 

and express the logistic regression model as follows, 

logit (𝑝) = 𝑙𝑛 (
𝑝

1−𝑝
)  = 𝑋𝛽 ……………………...(Eq 3.2) 

3) Rjags: Rjags is a software package that has been introduced in recent years to connect 

R functions and the Jags library for Bayesian data Analysis [32].  

3.3 Concerns in the model 

Beta values: as previous mentioned, 𝛽 is a parameter’s vector, and forms a key point of 

interest in this study. It consists of the intercept term 𝛽0 and the relationships between the 

weather variables(𝑥𝑖 ) and probability of capturing mosquitoes. Its elements consist of 𝛽0, 𝛽1,

𝛽2, 𝛽3 𝑎𝑛𝑑 𝛽4. We use a Normal prior for each beta parameter, that is 𝑁(0,10000). Estimators 

of these elements will come from sequence samples of its posterior by using the MCMC 

methods.  

The choices of their initial values for 𝛽  at the beginning of MCMC in simulation studies 

are flexible. The initial value assumed is important for performance of the model. A better but 

reasonable selection of their initial values can increase the convergence speed of the Markov 

Chain. 

 Link function: as mentioned in previous assumptions, the process of capturing a 

mosquito is viewed here as equivalent to a Bernoulli experiment. It can repeat again and again. 

Bernoulli experiment only has possible two outcomes: one is successfully capturing a mosquito; 

another is failing to capture a mosquito. We sum the individual dependent variables and the sum 

follows a Binomial distribution. The probability distribution of a Binomial distribution is 𝑝(𝑌 =

𝑦) = (𝑁
𝑦

) 𝑝𝑦(1 − 𝑝)𝑁−𝑦. Because there is a non-linear relationship between 𝑝(𝑌 = 𝑦) and the 

number of captured mosquitoes (𝑦), we need to look for a link function to generate probability 

𝑝(𝑌 = 𝑦) in our generative model. Logistic regression models are commonly used for binary 

response variables. The link function is as follows: 
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𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔
𝑝

1−𝑝
= 𝜂(𝑥) ……………………..(Eq 3.3) 

Therefore, our logistic regression model is, 

𝑙𝑜𝑔
𝑝

1−𝑝
= 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + 𝛽4 ∗ 𝑥4 .……..(Eq 3.4) 

We can then derive the inverse logit link function: 

𝑝(𝑏𝑒𝑖𝑛𝑔 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑|𝑋, 𝛽) =
𝑒𝛽0+𝛽1∗𝑥1+𝛽2∗𝑥2+𝛽3∗𝑥3+𝛽4∗𝑥4

1+𝑒𝛽0+𝛽1∗𝑥1+𝛽2∗𝑥2+𝛽3∗𝑥3+𝛽4∗𝑥4
 ….…..(Eq 3.5) 

  Standardized data: We use the standardized weather data instead of raw weather data in 

the MCMC model. That is we transform environment variables (𝑥) into the form of standardized 

data by using the 𝑧 transformation formula below. 

𝑧𝑥 =
𝑥−𝜇𝑥

𝜎𝑥
 …………………………………....(Eq 3.6) 

Where 𝜇𝑥 denotes the sample mean of the environment variable values and 𝜎𝑥 denotes the 

sample standard deviation of the environment variable values. Using the standardized weather 

data instead of the raw weather data in MCMC model could help speed up the mixing 

performance of the MCMC and improve the efficiency of the MCMC sampling. In fact, using 

the raw weather data is reasonable in statistical theory. But with such data, obtaining a good 

result from running the MCMC model often requires more iterations than with standardized data. 
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Chapter 4 Experimental Design and Results 

 

What are the effects of environmental variables on number of captured mosquitoes? 

Identification of a precise and reliable means of measuring these effects is an important goal of 

this study. The design is based on the study goal and uses several models to support it. 

4.1 Experimental Variables and Parameters 

4.1.1 Dependent Variables 

In this study, the dependent variables which are simulated by using different models and 

software tools include the following: 

● Size of the estimated mosquito population (𝑁) 

● The number of captured mosquitoes (𝑦) 

Accurate and reasonable simulated values for mosquito population (𝑁) and number of 

captured mosquitoes (𝑦) will serve as an important enabler for achieving the goal of this study. 

4.1.2 Independent Variables 

The independent variables in the experiment involve environment variables (weather 

variables) which have a direct influence on the abundance of mosquitoes or their probability of 

being captured. For example, studies have shown that temperature is significantly positively 

associated with the observed mosquito population, while precipitation is negatively correlated 

with the observed mosquito population [33]. Our original data about weather variables came 

from Environment Canada [34]. Considering the availability and accuracy of data and other 

factors, the following variables were selected: 

● Temperature: Average daily temperature, measured in degrees Celsius (°C), denoted 

by 𝑥1. 
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● Humidity: Average daily relative humidity. It is a percentage (%) giving the measured 

partial pressure of water vapor divided by the equilibrium vapor pressure of water 

under a given temperature condition, denoted by 𝑥2. 

● Windspeed: Average daily windspeed. Its unit of measurement is kilometer per hour 

(km/h), denoted by 𝑥3. 

● Precipitation: Average daily precipitation in millimetres (mm), denoted by 𝑥4. 

Time series of these four independent variables used by the thesis was sourced from 

Environment Canada, with the raw data containing temperature, humidity and precipitation data 

on a daily basis, while windspeed data is partially daily and partially hourly. We aggregated 

hourly windspeed data into daily means to unify time series units for all independent variables. 

The daily data of these independent variables were transformed by the standardization 

technique explained in Chapter 3. Following transformation, the transformed values of the 

independent variables were brought into the analysis. 

4.1.3 Parameters 

As mentioned above, we had characterized the parameters in a simple way. The 

parameters consist of an intercept and coefficients of weather variables, which include daily 

average temperature, daily average relative humidity, daily average windspeed, and daily 

average precipitation in a logit function 𝜂(𝑥). The formulation assumes that there are no 

interactions among the weather variables and that there is a linear relationship between 𝜂(𝑥) and 

weather variables. If we denote the intercept constant (or the bias term) as 𝛽0, along with 

parameters  𝛽1, 𝛽2, 𝛽3 𝑎𝑛𝑑 𝛽4 (as defined in 4.1.2), respectively, parameter vector 𝛽 can be 

written as a vector = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4)𝑇. In Chapter 3, we assumed that the prior distribution for 

each of the  𝛽𝑖 (𝑖 = 0,1,2,3,4) follows a Normal distribution with mean 𝜇𝑖 and variance 𝜎𝑖
2. For 

the sake of simulation experiments, we assume a prior for 𝛽𝑖 consisting of a Normal distribution 

with mean 𝜇𝑖 = 0 and variance 𝜎𝑖
2 = 1002. We also mentioned that these parameters are 

estimated by drawing a sequence of samples from the posterior distribution as discussed in 

Chapter 3. The following hypotheses are made with respect to the parameters: 1) The probability 

of capturing a mosquito will increase when the temperature increases within a certain range of 
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changes; 2) The probability of capturing a mosquito will increase when the relative humidity 

increases within a certain range of changes; 3) The probability of capturing a mosquito will 

decrease when the windspeed increases; 4) The probability of capturing a mosquito will decrease 

when precipitation (or rainfall) increases within a certain range of changes. These general 

knowledges provide criteria for selecting the sign of the initial values or imposed values of 

parameters when running the MCMC sampling. 

4.2 Experimental Statistic Distribution Framework 

To characterize the process of capturing mosquitoes, the framework made use of the 

following probabilistic and System Dynamics models. 

4.2.1 Binomial Distribution 

We start by considering a scenario involving capture of a single mosquito; this situation 

is similar to a coin toss experiment. We assume that capturing a single mosquito follows a 

Bernoulli distribution 𝐵𝑒𝑟(𝑝), where 𝑝 represents the probability of successfully capturing a 

mosquito. 𝑍𝑗 denotes the outcome of capturing a single mosquito in trial j and is a dichotomous 

random variable, with a value of either success (capturing one mosquito) or failure (capturing 

zero mosquitoes). The probability mass function 𝑓(𝑧𝑗 , 𝑝) of the Bernoulli distribution, based on 

the above outcomes for 𝑍𝑗 , is 

𝑓(𝑧𝑗  , p) = {
𝑝          𝑖𝑓 𝑧𝑗 = 1

1 − 𝑝  𝑖𝑓 𝑧𝑗 = 0
 ………………………....(Eq 4.1) 

Assume that the process of capturing each mosquito is independent and identical. Then 

the  𝑍1, 𝑍2, … , 𝑍𝑁 are independent identical random variables, all following the Bernoulli 

distribution with probability 𝑝. Then we can infer that 𝑌𝑖 = ∑ 𝑍𝑗
𝑁
𝑗=1  follows a Binomial 

distribution 𝐵𝑖𝑛(𝑁, 𝑝). Its probability mass function can be denoted as follows, 

𝑓(𝑦𝑖, 𝑁, 𝑝) = (𝑁
𝑦𝑖

) 𝑝𝑦𝑖(1 − 𝑝)𝑁−𝑦𝑖 ………………….....(Eq 4.2) 

4.2.2 Logistic Regression Model 

 The above probability mass function is used to produce synthetic (pseudo) data about 𝑦𝑖 

in the probability generating model. In order to do this, we need the size of mosquito population 
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(N) and the probability of capturing mosquitoes (p). So the Mosquito Population Model is 

applied to simulate the size of the mosquito population (N) across a time period. The 𝑝 is defined 

as a cumulative distribution function for a logistic distribution of 𝜂(𝑥), which is derived from the 

following link function, 

Step1                        𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑜𝑔 (
𝑝

1−𝑝
)  = 𝜂(𝑥) 

Step2                        
𝑝

1−𝑝
= 𝑒𝑥𝑝 (𝜂(𝑥)) 

Final step                 𝑝 =
𝑒𝑥𝑝 (𝜂(𝑥))

1+𝑒𝑥𝑝 (𝜂(𝑥))
 

Where 𝜂(𝑥) is a linear function of weather variables under the five dimensional space as 

mentioned above. Its form is as below, 

𝜂(𝑥) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + 𝛽4 ∗ 𝑥4 ………..... (Eq 4.3) 

Where 𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4 denote the weather variables: average temperature, average 

relative humidity, average windspeed and average precipitation, respectively. 

4.2.3 Normal Distribution 

In the linear function, we assumed a prior for the intercept (𝛽0) and coefficients of 

weather variables (𝛽𝑖, 𝑖 = 1,2,3,4) given by a normal distribution 𝑁(𝜇𝑖 = 0, 𝜏𝑖 =
1

𝜎𝑖
2 = 0.0001). 

Linking all statistical distributions pertaining to this experiment, we designed a statistical 

framework for this experiment. It is depicted in the following figure: 
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Figure 4.1: Experimental statistical framework 
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4.3 Experimental Strategy and Procedure 

4.3.1 Experimental Strategy 

In the last section, we explored the statistical theories which are assumed to characterize 

the process of capturing mosquitoes, and discussed their role with details in the experiment. In 

the current section, we will focus on an experimental strategy which must be closer to the goal of 

the experiment. A reasonable and feasible experimental strategy and logic are a guide or core of 

the experimental procedure.  The below graph is a strategy diagram for this study. 

 



  
 

Figure 4.2: Experimental strategy 
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4.3.2 Experimental Procedure 

Based on the above strategy diagram, this experimental procedure follows the below 

steps, which start with collecting data and finish with parameter estimates. 

Step 1: Collect data pertaining to daily weather variables. 

Step 2: Handle data, including cleaning data, dealing with missing data, and standardization of  

data under the following three scenarios: one day, three days and seven days’ sampling intervals. 

Step 3: Simulate the size of the mosquito population(𝑁𝑖) on a daily basis: Enter environmental 

variable data into the Mosquito Population Model (a System Dynamics model in AnyLogic). 

Data includes daily temperature data, precipitation data, sunlight data, etc. Run the Mosquito 

Population Model, recording model output. Transform the results into a suitable file structure. It 

bears emphasis here, that the Mosquito Population Model (a SDM) is quite complex and 

grounded model characterizing the life cycle of mosquitoes (see Figure 4.3) and its dependence 

on environmental factors, where the stocks represent state variables, and the flows define rate of 

change for the stocks in time, in other word, the flows collectively represent the derivatives to 

those state variables. Therefore, the mathematics underlying the Mosquito Population Model is 

first-order ordinary differential equations (see Eq 2.5) characterizing how various mosquito 

subpopulations (as well as the entire such population) change with time. In fact, the SDM is 

actually characterizing a nonlinear system of first-order ordinary differential equation. The 

Mosquito Population Model stock–and–flow diagram is as follows:



  
 

 

Figure 4.3: Stock and Flow Structure of the Mosquito Population Model [23]
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Step 4: Simulate the probability of capturing a mosquito: enter the weather data and 𝑁𝑖 into the 

logistic-regression based probability generating model with the aim of simulating a synthetic 

(pseudo) probability. The environmental variables consist of temperature, relative humidity, 

windspeed and precipitation. The mosquito data is the N which came from step 3.  

Step 5. Generate synthetic counts of captured mosquitoes based on daily information and then 

aggregate them for different observation frequencies. This step first generates numbers of daily 

captured mosquitoes with a random seed and results of step 3 and step 4, and then aggregates the 

counts of daily captured mosquitoes generated with the same random seed using different 

frequencies (daily, every three days, or every seven days). These time series of the sum of 

captured mosquitoes with different aggregation frequencies were used as synthetic (pseudo) 

observations of captured mosquitoes (𝑦𝑖), with one particular frequency being used for each 

experiment. 

In this process of step 4 and step 5, the statistical models (logistic regression model and 

Binomial distribution) seem to be so simple, but there are reasons for this. First of all, the process 

of capturing a mosquito imply the statistical meaning of logistic regression which is a reasonable 

and useful statistical tool to calculate the probability of capturing a single mosquito in step 4; 

Second, one of the reasons that the statistical model can be simpler is that a large subcomponent 

of the process of generating synthetic counts of captured mosquitoes (𝑦𝑖) namely, the dynamics 

associated with the mosquito population (𝑁𝑖) and its dependence upon several environmental 

factors was captured within the SDM descried in step 3, thereby, allowing the statistical model to 

focus simply on characterizing the probability that a given mosquito within the general 

population will be caught by a trap.  

Step 6. Set up the initial value for parameters: 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4.  

Step 7. Estimate parameters: import necessary data which come from step 2, step 3 and step 6 

into the MCMC model and then draw samples for β from its posterior distribution by running the 

model under different sampling frequencies. 

Step 8. Compare and analyze the posterior samples of 𝛽 under the three scenarios. 
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4.4 Experimental Results 

4.4.1 Experimental Results of the Generative model 

In Chapter 2, we discussed the Generative model. The main purpose of creating the 

Generative model is to simulate the numbers of captured mosquitoes(𝑦𝑖). Figure 4.4 depicts the  

 

 

 

 

 

 

 

 

Figure 4.4: The output of running the Generative model 

output of running the Generative model on a daily basis. The horizontal axis denotes the daily 

time from January 1, 2010 to December 31, 2013. The vertical axis indicates the number of 

captured mosquitoes. There are four major peaks which correspond to the summer season of 

each year. This suggests that there is a relationship between the simulated numbers of captured 

mosquitoes and environment variables which are reflective of the actual relationship. This helps 

build face plausibility for the hope that the Generative model is reliable and useful. 
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4.4.2 Experimental Results of MCMC 

Carrying out the experiment according to the above experimental procedure yields the 

following outputs for the posterior samples of parameters (𝛽) based on the daily sampling 

scenario: 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Density plots 

Explanation: the above curves are posterior density curves, which are estimated from the 

posterior samples. By showing the posterior density curve, we seek to compare different chains 

with respect to whether they converge to the same target distribution over time. In this output, 

there are two overlapped density curves, each associated with a different initial value, which is 

indicated by a different colour. 

Comments: The above density plots for each parameter 𝛽𝑖(𝑖 = 0,1,2,3,4) indicate that 

the two different chains converge to the same target distribution. Their shapes are similar to a 

bell with a single symmetric peak (unimodal), which suggests that target distribution for the 
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posterior distribution of parameters (𝛽) may be characterized by a normal distribution. One 

should also note that the estimated mean of the distributions exhibits a slight deviation from the 

true value of the betas (shown via red dotted lines), especially for 𝛽4 ( corresponding to the 

average of precipitation). 

 

Figure 4.6: Trace plots 

Explanation: The trace plot shows the trajectory of the chain, and is applied to check 

whether the chains converge to same target distribution. In Figure 4.6, after a burn-in period, 

there are not extreme outlier values for each chain. 
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Comments: From the above trace plots, we can see that there are two differently 

coloured lines, which represent two different chains. The two chains didn’t get “stuck” at any 

points or regions in each parameter 𝛽𝑖 state space. These plots demonstrate smooth, stable, well-

balanced graphs. Although they have some volatility in the initial phase, as the time series extend 

they show a common trend which converges to the target distribution. However, we need to 

point out that the two chains didn’t mix as well for parameter 𝛽0 𝑎𝑛𝑑 𝛽1when compared with 

other parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Autocorrelation plots 

Explanation: Autocorrelation is a measurement which indicates the degree of 

dependence of the successive samples drawn from the posterior distribution within each chain. 

The higher the autocorrelation, the more dependent the samples. 

Comments: From the autocorrelation plots, there are higher autocorrelations in the 

Markov chains about parameters 𝛽0 𝑎𝑛𝑑 𝛽1 than other parameters; this indicates that the Markov 



 

 

38 
 

chains about parameters 𝛽0 𝑎𝑛𝑑 𝛽1 contain some dependent samples which didn’t provide us 

meaningful information from the posterior distribution. Therefore, these samples reduced the 

efficiency of these chains and their convergence speed. Meanwhile, we also noted that the 

autocorrelations exhibited a smooth decrease with some slight vibrations and approached zero as 

the time and length of chains were extended. 

However, Markov chains under other parameters exhibit a relatively small 

autocorrelation. They quickly get close to zero as the time goes on since the index sample 

increases. This reveals that these chains are sampling much more efficiently.  

Figure 4.7, the autocorrelation plot suggests that the MCMC model is appropriate for this 

study. 

  

 

 

 

 

 

 

Figure 4.8: Running Mean 

Explanation: Figure 4.8 depicts a time series of the running mean; the red dashed lines 

denote the true values of the parameters (𝛽). Its functions are: 1) checking whether the speed of 

convergences to a target distribution is slow; 2) comparing if all chains exhibit the same mean 

when estimating the same parameter. 

 Comments: The above output clearly shows that the means of two chains are different 

for parameter 𝛽0. They are all bigger than the true value (−9.9) and they have a vibration around 
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their mean line on the initial time interval. This indicates that the two chains do not have the 

exact same mean and that their convergence speeds are both slow. 

The mean lines of the two chains for 𝛽1 are on a same mean line and all means are as 

same as the true value (0.05) with increased iterations; they also exhibit a vibration around their 

mean line in the initial time interval. This also indicates that the two chains have the exact same 

mean but their convergence speeds are both slow. 

For parameter𝛽2, the mean lines of the two chains are lying on the same mean line and 

are smaller than the true value (0.05). It is also of note that the two chains have no obvious 

vibration around their mean line on the initial time interval. This suggests that the two chains 

have the same mean and their convergence speeds are both fast. 

The case of the parameter 𝛽3 is an interesting one. The mean lines of the two chains 

almost lie on the same mean line and higher than the line of the true value (-1.5). There are 

distinctions between the two chains: chain one has a slight vibration around its mean line in the 

initial time interval, while chain two has an obvious vibration around its mean line. This 

indicates that the two chains have approximately the same mean, and that the second chain 

converges more slowly than the first one. 

Concerning parameter 𝛽4, the mean lines of the two chains lie on the same mean line, 

itself higher than the line of the true value (-0.03). Also we noted that there are very slight 

vibrations for all two chains around their mean lines in the initial iterations. All of these factors 

imply that the two chains converge to the same mean line and their convergence speeds are 

approximately the same. 

Overall, the four graphs for each of the chains appear to have consistent traits for each 

parameter. These consistent traits include converging to the same target distribution for different 

chains and (with the exception of 𝛽3) convergence speed. 
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The above comments based on the output graphs reflect certain perceptual judgments. In 

order to give the performance of the Markov chains a more objective judgement, we analyzed its 

behaviour using the Heidelberger-Welch diagnostic method (depicted in Figure 4.9). 

 

 

 

 

 

 

 

Figure 4.9: Diagnostic tests 

Explanation: From the output of the Heidelberger and Welch diagnostic, we note that 

this output includes two tests; a stationarity test and a half-width test. The stationarity test 

evaluates the stable state of the two Markov chains by testing the null hypothesis that the created 

two Markov chains have stabilized; the other test assesses if each Markov chain drawing with its 

associated sample size from the posterior is sufficient to meet the required accuracy for 

estimating the mean of parameters (β). On the whole, if the Heidelberger and Welch diagnostic 

test fails, it may imply the Markov chain needs to run for a longer period or highlight some 

problematic issues with MCMC convergence. 

Comments: checking the above output, both Markov chains passed the two tests. Such 

results suggest that the two Markov chains are stationary and smooth processes. And all chains 

passed the half-width test. These reflect the fact that drawing the given count of samples from 

the posterior is enough to reach a pre-specified accuracy for the mean estimate. 

  In the first Markov chain, we should note that although the chain for parameter  𝛽4, 

which is the coefficient associated with the precipitation variable, passed the stationarity test 
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after first iteration, its  p − value is only 5.73%. This means that the p-value is close to the 

significance cut-off (a threshold α = 5%). If the p-value is less than the significance cut-off (for 

example 𝛼 = 5%), then we should reject the null hypothesis that the chain is a stationary 

distribution which is a probability distribution that remains unchanged in the Markov chain as 

time progress. 

4.4.3 Experimental Results from a Sensitivity Analysis  

Sensitivity: The above results come from executing our model, which is constituted by 

many different components. Each component has some effect on the results. But the effects 

cannot be quantized precisely. Therefore, the outputs/results should be analyzed for sensitivity 

empirically by observing the results of changing our model elements. In our sensitivity analysis, 

we changed the sampling frequency of the observed data in MCMC and mainly focus on how the 

statistical inference results would be affected by different frequencies of the observed data. 

Highest Posterior Density (HPD) interval: In contemporary work, a 100(1-α)% HPD 

interval is a popular method to summarize some important statistical features of posterior 

distribution for the parameters of interest in Bayesian inference. Observations of samples’ 

posterior distribution with our case study suggest that the distributions are unimodal. We 

therefore confine our discussion in the following to unimodal posterior density functions. In this 

context, a simple definition of Highest Posterior Density (HPD) interval is given by following 

[35]: 

A 100(1-α)% HPD interval for β is simply defined by  𝑅(𝜋𝛼) = {𝛽: 𝜋(𝛽|𝐷) ≥ 𝜋𝛼}, 

Where, 𝜋(𝛽|𝐷) is the posterior distribution density function of the parameters (β) of interest, 

given data set D, 𝜋𝛼  is the largest constant such that 𝑃(𝛽 ∈ 𝑅(𝜋𝛼)) ≥ 1 − 𝛼. 

From the above definition, we can see that an 100(1-α)% HPD must satisfy the following 

three requirements [35][36]: (1) the posterior probability of the region is 100(1-α)%; (2) inside 

the interval, the posterior density for every point is greater than every point outside the interval; 

(3) the interval is the shortest length for a given probability 1-α. 
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The definition of Highest Posterior Density of the multi-modal distribution is beyond our 

research. Readers interested in a more detailed definition can consult (Fadallah, A. 2011). 

Results of Sensitivity analysis: This sensitivity analysis is based on changing the 

sampling period for the time series to observe the reaction of the synthetic numbers of captured 

mosquitoes 𝑦𝑖 and the estimated parameters (β) under the three different sampling period 

scenarios: 1-day, 3-days and 7-days. The 𝑦𝑖 are the results output from the Generative model; the 

parameters (β) are the results sampled from the posterior distribution 𝜋(𝛽|𝐷). These results are 

analyzed by visual inspection and quantitative analysis, and using the HPD interval diagnostic 

method. 

1. Results from the Generating model under three different scenarios  

Figure 4.10 depicts results showing mosquito counts over time from performing the 

Generative model under the three scenarios: scenario 1 = 1-day sampling period, scenario 2 = 3-

day sampling period and scenario 3 = 7-day sampling period. For scenarios 2 and 3, the relative 

mosquito counts 𝑦𝑖  𝑖s the daily average. 

 



  
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Mosquito counts in three scenarios 
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When observing scenario 1, we can see that the points on the graph are very tightly knit. 

This indicates a continuous stream of information. However, in scenario 3, we can see that there 

are more frequent breaks and longer distances separating the points; this can be caused by the 

following reasons: (1) an immediate, abrupt change in mosquito population or other environment 

variables; (2) the sampling period associated with the mosquito time series increases from 1 day 

to 3 days and 7 days; this indicates that there is some loss of information in the mosquito 

population. Due to the fact that we observe related variables which affect the size of the 

mosquito population once a day under scenario 1, the quantity of information is large and of high 

frequency. However, under scenario 3, we observe these variables once per seven days; the 

quantity of information is small compared with scenario 1.  The loss of information may or may 

not be very important for this study. 

 We also can observe the four peaks in scenario 1 are higher than the four peaks in 

scenario 3. This is because the related data pertaining to the population size is essentially 

averaged over 7 days rather than varying on a per day basis. 

2. Results from performing MCMC under the three different scenarios 

Intuitive image contrast: The below three graphs, one for each scenario where 

observations for captured mosquitoes are collected every (1, 3, 7) days. For each scenario, its 

results are obtained from using the MCMC sampling method with two chains to sample for each 

of the 109 repeatedly generated datasets (indexed from 0 to 108), results in 218 (109x2) chains in 

total. These chains are indexed from 0 to 217 such that a pair of chains with indices (i, i + 1), i =

0,1, … , 108 correspond to the output of MCMC sampling for generated dataset with index (i). 

Then for each estimated parameter in each chain, a bar was drawn to depict its HPD interval 

under three different scenarios. The horizontal axis denotes the parameter value (𝛽) and the 

vertical axis denotes the index of a model run. The vertical red line denotes the true values for 

the parameters (𝛽). 
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Figure 4.11: Scenario 1 sampling period based on 1 day 
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Figure 4.12: Scenario 2 sampling period based on 3days 

Figure 4.13: Scenario 3 sampling period based on 7 days 
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Comparing the above graphs, based on the same number of seeds under three different 

scenarios, we notice that the highest posterior density (HPD) intervals for all parameters except 

𝛽3 became wider as the sampling period for the mosquito population increased from 1 day to 3 

days to 7 days. 

Overall, we can see that all of the true values are almost completely covered by the HPD 

intervals under scenario 1; however, the true values for β0 and β3 are almost completely 

uncovered by the HPD intervals under scenarios 2 and 3. 

Quantitative analysis: The Table 4.1 is a simple statistical analysis of the number of 

runs from the coverage rate, which is the count of times that the HPD intervals (𝛼 = 5%) cover 

the true value of parameters 𝛽 divided by total count of 109 runs, under three scenarios. The 

results of these analyzes are consistent to those of the visual images. 

Table 4.1: Coverage rate of the HPD intervals under three scenarios 

Parameters 

true value  

Ratio for 1-day Ratio for 3-day Ratio for 7-day Explanation for 𝜷 

𝜷𝟎 = −𝟗. 𝟗 93.58% 2.75% 7.34% Intercept  

𝜷𝟏 = 𝟎. 𝟎𝟓 90.83%  88.99%  89.91% Coefficient of Tem. 

𝜷𝟐 = 𝟎. 𝟎𝟓 96.33% 92.66% 42.20% Coefficient  of  R.H 

𝜷𝟑 = −𝟏. 𝟓 95.41% 0.00% 0.00% Coefficient  of  W.S 

𝜷𝟒 = −𝟎. 𝟎𝟑 91.74% 90.83% 50.46% Coefficient of Pre. 

 

The explanations of the results: (posterior distribution: 𝜋(𝛽|𝐷)) 

(1) Under 1-day sampling, the coverage rates for all parameters exhibit a satisfactory 

performance of over 90.00%. This may indicate that the information for the environment 
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variables which is more realistically reflecting actual state is continuous and smooth. In other 

words, the distortion of the information is relatively small. 

(2) Under the 3-day and 7-day sampling regimes, we have noticed that the coverage rates 

decreased for β2, β3 and β4 as the sampling period for the mosquito population increased from 1 

day to 3 days to 7 days. We have also noticed that the coverage rates for β0 and β3 are very low, 

with the coverage rate for  β3 notably being zero. This phenomenon may be caused by the 

following reasons: 

a) We use the average of the information of environmental variables. This average of 

information may lead to serious distortion relative to the actual information of a particular day. 

For example, suppose that under 3-day scenario the windspeed of first day and second day are 

1mph and 3mph, respectively. At that windspeed, mosquitoes are more active and conductive to 

their reproduction. This means that there is more chance to capture mosquitoes under this 

condition. But suppose further that on the third day the mean windspeed reaches 20mph, and that 

mosquitoes cannot function at this windspeed. Right now the average of the windspeed across 

the three days is 8mph. At this windspeed, the activities of mosquitoes completely differ from 

the first day and second day condition because mosquitoes cannot tolerate windspeed higher than 

7mph [37]. This means that the really useful information about first day and second day is highly 

distorted by using the average value. This distortion will cause an increased error. 

b).The probability of capturing a mosquito is very sensitive to change of windspeed, as is 

known from common sense. A fluctuation can in some cases lead to a big change in the 

probability of capturing a mosquito.  

(3) At the same time, we have also noticed that the coverage rates of 𝛽2 and 𝛽4 are 

decreasing as the sampling period for the mosquito population is increasing from 1 day to 3 days 

to 7 days. 

As discussed above with respect to average of windspeed, use of the average of 

precipitation (rainfall) over multiple days can also lead to a distortion of the actual information 

about real rainfall with this distortion being in either a positive or negative direction. This may 

create significant effects on the estimated probability of capturing a mosquito.  Especially for 7 

days, this ratio appears to be significantly reduced from 91.74% daily to 50.46% for 7 days. 
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(4) Another key issue, which may affect the above results, relates to is nonlinearity in our 

logistic regression model. There are two functions involved in this; one is the logistic function, 

another is the link function, characterized below in Eq4.4 and Eq4.5, respectively: 

𝑝 =
𝑒𝜂(𝑥)

1+𝑒𝜂(𝑥)  …………………………..……....(Eq 4.4) 

and 

𝜂(𝑥) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + 𝛽4 ∗ 𝑥4 ……………..(Eq 4.5) 

where 𝑥𝑖(𝑖 = 1,2,3,4) denote the environmental variables. Under scenario 2 and scenario 3, we 

apply the average of information of environmental variables in the right side of link function (Eq 

4.5). Due to the nonlinearity of the logistic function, after the transformation of  𝜂(𝑥) given in 

(Eq 4.4), the results differ from the corresponding average of the probabilities resulting from 

considering each day independently. This reflects the more general fact that in the case of a non-

linear function, function applied to the average of a distribution is not the same as the average of 

the function applied to samples from the distribution. In other words, that is, the fitted model is 

not the same as the data generating model for 3-day and 7-day data. 

Overall, the distortion of information is hypothesized to cause the above phenomena. 

Finally, the sensitivity analysis suggests that the result of scenario 1 is better than results of 

scenario 2 and scenario 3. 
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Chapter 5 Discussion and Conclusion 

5.1 Discussion 

The main purposes of this study are to investigate how the proposed computational 

method (combining System Dynamics modeling and MCMC) works and to evaluate the 

performance of this method when it is applied at three different sampling frequencies of  

observed data (1-day, 3-day and 7-day). Based on these goals, we designed the following 

simulation experiments: we applied System Dynamics modeling and a Logistic Regression 

model to generate synthetic observations of the number of captured mosquitoes under a daily 

scenario, and applied Bayesian inference to analyze the simulated data. After investigating the 

results of the generative model based on daily weather information, we have found that the 

amount of the synthetic captured mosquitoes (𝑦𝑖) changed with the change in weather variables 

(empirical data), which offers confidence that the results are reflective of the known actual 

situation assumed in the simulation experiment. Figure 5.1 shows the change of number of 

generated mosquitoes (𝑦𝑖) in a time series running from 2010 to 2013. 

 

 

 

 

 

Figure 5.1 The change of number of generated mosquitoes (yi) from 2010 to 2013 

The number of mosquitoes fluctuates with changes in environmental variables; especially 

for the summer months, the amount of mosquito population has an obvious increase which 

causes a peak in captured mosquitoes each summer. 
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In order to make an inference(s) about the parameters (𝛽), consisting of the intercept and 

the coefficients of the link function in the logistic regression model (see chapter 4 section 4.2.2) 

and exploring how changes in information about the environmental variable impact on the 

parameters (𝛽), we constructed a Bayesian Analysis model by using the Rjags framework for 

MCMC. From a statistical point of view, the results of the MCMC suggested that the distribution 

of these parameters (𝛽), which is a posterior distribution, follows a normal distribution based on 

the density plots. Also note that Markov chains sampling from the posterior distribution for the 

parameters (𝛽) converge to a target distribution based on the trace plots.  These results suggest 

that the performance of this proposed computational method is satisfactory. 

 We also carried out a sensitivity analysis in Chapter 4 based on changing the sampling 

period for the mosquito population (1-day, 3-day and 7-day). We applied the Highest Posterior 

Density (HPD) interval method to summarize some important statistical features of the posterior 

distribution for parameters 𝛽𝑖(𝑖 = 0,1,2,3,4) under three different frequencies. The results of 

HPD interval diagnosis have shown that the HPD interval (at level 𝛼 = 5%) covers the true 

values for all 𝛽 over 90% (see Chapter 4, table 4.1) based on the everyday sampling scenario. 

Considering the results of experiments under 3-day and 7-day sampling compared with the 

results of 1-day sampling in table 4.1, it appears to suggest that higher frequency of sampling the 

mosquito population yields a higher accuracy of our model. Also the fraction of the true values 

𝛽 covered by the HPD interval decreased as the frequency of sampling drops. This result seems 

to be somewhat unsatisfactory from its appearance alone. However, in reality, the result truly 

reflects the following facts. We know that the data generating system is based on daily 

information and thus the “plus-in” average values of independent variables (environmental 

variables) are not the true covariates in the model. In fact, if we plug in the average values of 

environment variables on the right hand side of logistic regression model, the left hand side 

should be the average values of logit (probability of capturing mosquitoes). But when we fit the 

logistic model to average values of environmental variables, we are implicitly assuming the left 

hand side to be logit (average values of the probabilities over three days or seven days). 

Therefore, the fitted model is not the same as the true data generating system. 
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Based on the rationality and feasibility (operability) of the proposed computational 

method (combining System Dynamics modeling and MCMC), the output results, which depend 

on different frequencies (1-day, 3-day and 7-day) into the models, are compared and analyzed. In 

the process, we note that as the input frequency increases, the accuracy of the model output 

results is improved. This means that the accuracy of output results of the model rises with the 

frequency of the input data. 

The results with inputting of the high frequency data are better than the results based on 

the low frequency data input. This raises a practical challenge in the real world. Generating a 

high frequency sample is simple in simulation experiments. But in the real world, the generation 

of a high frequency data sample involves many aspects, the most important of which is the cost. 

In the real world, improving the accuracy of the model means that the measurement cost 

will be increasing. Therefore, a higher accuracy of the model does not necessarily mean a better 

scenario. An ideal accuracy of the model should meet the following two principles: (1) 

“sufficient principle”, which is the accuracy of the model satisfies the requirements of practical 

operation; (2) a minimum cost principle. The key here is to find a balance point, which is an 

ideal (or practical) frequency, to balance the two principles mentioned above. Determination of 

the optimal sampling frequency of the observed data in practice lies beyond the scope of this 

study.  

5.2 Potential Future Work 

5.2.1 Important Variables 

Our result section has showed that the generated model assumed that environmental 

variables have a significant impact on both of the size of mosquito population and probability of 

capturing a mosquito (see chapter 4 section 4.1.3). Due to the purpose of this study, this thesis 

does not primarily focus on exploring both of such sides of the impact of the following 

environmental variables. 

Temperature: In this study, temperature is noted to have a significant impact on both the 

size of the mosquito population as well as on the probability of capturing mosquitoes. Studies 
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have shown that in reality, within a certain temperature range, there is a positive relation between 

amounts of mosquito population and temperature. However, when temperature rises beyond this 

range, there is a negative relation [38]. Both the System Dynamics model and Probability 

Generating model are conditioned on the temperature range where the amount of mosquito 

population and temperature are positively correlated in our study. 

We need to emphasize that the temperature which is selected by this study refers to the 

air temperature. Most of the researchers used air temperature or soil temperature in their research 

to explore the influence of temperature on dynamic change of the mosquito population. But 

water temperatures seem to be associated more closely with early aspects of the mosquito's 

ecosystem cycle (e.g., larval and pupal stages) in our research area. In particular the water 

temperatures in surrounding area of the capture mosquito sites could help complement the 

information available for air temperatures. Due to the existence of a non-linear relationship 

(generally a big change in air temperature will lead to a small change in water temperature) 

between air temperature and water temperature, considering water temperature rather than air 

temperature would lead to the immature development stage of some mosquitoes species being 

shortened by 4-11 days [39]. Analyzing and comparing the differences on mosquito population 

under the two temperatures regimes could be an important priority for future study. 

Relative Humidity: Relative humidity plays a crucial role in affecting the mosquito 

population [39]. As common sense would suggest, low of levels of relative humidity will shorten 

the lifespan of mosquitoes. However, this study did not explore the potential indication of 

relative humidity on availability of breeding pools, which may reveal indirective impacts of 

relative humidity on mosquito egg and larvae develop to adult mosquito population. It could also 

be considered for further study.    

Precipitation: Precipitation is a key fact in creating and maintaining suitable larval 

habitats; excess precipitation will destroy the development environment of larva and 

significantly affects the size of mosquito population, as well as affecting the probability to 

capture a mosquito. Therefore, there is also an influence relative to both sides (increasing or 

decreasing) of the probability of capturing a mosquito. 
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Wind speed: Wind speed has an important impact on the probability of capturing a 

mosquito. In this study, we assumed an identical wind speed for the study area. However, a wind 

speed near capture sites seems more important than regional wind speed. So we suggest using the 

wind speed near capture sites in future studies. 

Missing important environmental variables: In addition to the above environmental 

variables that we have mentioned and which were included in our model, our model also neglects 

some important environmental factors which have a significant influence on the size of the 

mosquito population. For example, the following environmental factors should be considered for 

inclusion: 

(1) The number of sunlight hours available has been identified as playing an important 

role in each stage of mosquito development [23]. 

 (2) The evaporation rate, which directly impacts the moisture content of the soil surface 

which is a key factor for egg, larva and pupa stages of mosquito development [40]. 

Finally, our study leaves above suggestions and environmental factors for future 

consideration. 

5.2.2 Interactions of Independent Variables 

Temperature, Relative humidity, Windspeed and Precipitation were selected as 

environmental factors which have a significant effect on mosquito population and probability of 

capturing a mosquito. In our model, we only consider these factors’ main effects on the dynamic 

change of mosquito population and probability of capturing a mosquito, and neglect the complex 

interactions among these environmental variables. For instance, high temperatures and 

windspeed often lead to decreases the relative humidity and precipitation; interaction factors 

reflecting such dependencies could serve to offset the positive effects of temperature on the size 

of mosquito population. The effects of these interactions on the size of mosquito population and 

probability of capturing a mosquito have yet to be incorporated into our model, but we should 

aware that these could be important to fully understanding the reasons of dynamic changes of 

mosquito population. This task is reserved for future research work. 
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5.3 Conclusion 

 In this thesis, we have investigated a good estimate of mosquito population with the 

combination of real-world data (environmental variables) and synthetic data. We have found that 

insights from real-world data (environmental variables) can be secured via MCMC of a simpler, 

well-structured probability generating model when securing findings from a combination of a 

reasonably complex system dynamics model and probability generating model. Additionally we 

have revealed the importance of sampling the mosquito population every day for reliably 

estimating parameter values, rather than pursuing the standard approach of sampling the 

mosquito population every week. Such work offers to inform prediction and control of mosquito-

borne diseases in future transmission. 

In the future, we should focus on the following : (1) including some new environmental 

variables in our model which have significant impact on the abundance of mosquito population 

and probability of capturing a mosquito; (2) instead of air temperature and regional windspeed, 

consider water temperature and windspeed nearby capture (trap) sites; (3) considering the 

interaction effect of environmental variables on the mosquito population size and probability of 

capturing a mosquito in the model; (4) extending the time span of data about the environmental 

variables from a current 4 years to 10 years. 

While these ideas have received little attention to date, the process of assessing and 

quantifying not only enables us to better verify the explanatory power of our models, but also to 

produce more reliable forecasts of future spatiotemporal patterns of WNv transmission. 

Both statistical and computer models have important roles to play in simulation synthesis 

of observed mosquito (𝑐𝑜𝑢𝑛𝑡𝑠 𝑦𝑖). In Bayesian inference, we used the MCMC method as 

implemented via the Rjags tool to draw samples for parameter values from the posterior 

distribution: this approach exempts us from formulating and solving problems in closed form. As 

a result, it broadens the scope of problem-solving in the study field. It is hoped that the MCMC 

method provides a basis for future modelling efforts within the field. 
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In spite of the fact that it has long been understood that a range of environmental 

variables, including temperature, relative humidity, windspeed and precipitation, etc., have a 

significant impact on abundance of mosquito population and on probability of capturing a 

mosquito, there has been little work offering an analysis to this effect. By developing some 

mechanistic models which incorporate the effects of average temperature, average relative 

humidity, average windspeed and average precipitation on abundance of mosquito population 

and on the probability of capturing a mosquito, we have taken important assumptions in which 

average temperature and average relative humidity are associated with a positive relation with 

the probability of capturing a mosquito, and average windspeed and average precipitation exhibit 

a negative relation with the probability of capturing a mosquito. We tested these assumptions on 

synthetic data by using MCMC (as implemented in Rjags) and HPD diagnostic with an accuracy 

rate over 90% (at α=5%) under daily situation; and quantitatively analyzed these relations, which 

appear to be well-characterized by normal distributions. This study helps to provide a framework 

for possible future analysis of empirical data, and raises concerns about the inadequacy of 

existing data to sufficiently resolve the relationships involving environmental variables. 

In view of the fact that the complexity of the factors affects the mosquito population and 

probability of capturing a mosquito in the real world, as a result, our model is both simplified 

and lopsided compared to a real world scenario. The simplicity and one-sidedness are due to the 

fact that our data sets only cover four years and only consider a limited number of environmental 

factors (temperature, relative humidity, windspeed and precipitation) in our model. Therefore, it 

is hard to say how accurately our model truly reflects a real world scenario. It is also difficult to 

assess the significance of the results and conclusions from running this model; but in any case, 

the meaning and purpose of this study is to provide foundational ideas and a framework for 

future endeavors in this field. 
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