
The Packing Landscapes of Quasi–One Dimensional

Hard Sphere Systems

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Chemistry

University of Saskatchewan

Saskatoon

By

Mahdi Zaeifi Yamchi

c©Mahdi Zaeifi Yamchi,Oct/2014. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Chemistry

165 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i



Abstract

Packing Landscapes of Constrained Hard Sphere Fluids

By

Mahdi Zaeifi Yamchi

When a liquid is cooled below its equilibrium freezing temperature, it becomes supercooled

and the molecular motions slow down until the system becomes kinetically arrested, forming

a glass, at the glass transition temperature. These amorphous materials have the mechanical

properties of a solid while retaining the structural properties of a liquid, but do not exhibit

the usual features of a thermodynamic phase transition. As such, they present a number of

important challenges to our understanding of the dynamics and thermodynamics of condensed

phases. For example, supercooled liquids are classified on the basis of the temperature

dependence of their transport properties and structural relaxations times. Strong liquids

display an Arrhenius behavior, with the logarithm of their viscosity growing linearly with

inverse temperature. Fragile liquids behave in a super–Arrhenius manner, where the viscosity

appears to diverge at temperatures above absolute zero, suggesting the possibility of an

underlying thermodynamic origin to the glass transition. Some complex, network forming

liquids, such as water and silica have also been shown to have a dynamical crossover from

fragile to strong liquid behavior as the temperature is decreased.

The potential energy landscape paradigm, combined with inherent structure formalism,

provide a framework for connecting the way particles pack together with the thermody-

namics and dynamics of the liquid and glassy phases. However, the complexity of this

multi–dimensional surface makes it difficult to fully characterize, and find rigorous relation-

ships between the nature of particle packings and glass forming properties have not been

established.

The goal of this thesis is to study some of the general features of the glass transition and

find the connection between the dynamics and the thermodynamics of glass forming liquids.

To this end, the packing landscapes of quasi–one–dimensional hard discs and hard spheres

are studied.

A two dimensional system of hard discs with diameter σ, confined between two hard walls

(lines) of length L, separated by a distance 1 < Hd/σ < 1 +
√

3/4, is studied by using the
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Transfer Matrix (TM) method and Molecular Dynamics (MD) simulations. The complete

packing landscape is characterized in terms of the density distribution of inherent structures

and the number of local defect states. It is shown that this model exhibits a dynamic fragile–

strong liquid crossover at the maximum in the constant pressure heat capacity (Cp) for the

system, similar to that observed in anomalous network forming liquids such as water and

silica. Furthermore, we find that rescaling the relaxation times of systems with different

channel widths by the relaxation time at the Cp maximum causes all the data to collapse on

a single master curve. The Cp maximum occurs at a critical value of the defect concentration.

At high defect concentrations, where the defects interact, the fluid is fragile. When the defect

concentration is low, relaxation appears to occur through the hopping of isolated defects,

leading to Arrhenius dynamics. This suggests the thermodynamics associated with the Cp

maximum is intimately related to the dynamic crossover.

A system of three dimensional hard spheres confined in a narrow channel was used to study

the effect of a more complicated landscape on the dynamics of the system. For this system,

the thermodynamic and dynamic properties of the system were studied for two different

channel diameters, the 1 < Hd/σ < 1 +
√

3/4 case, which only allows first neighbors contact

for the spheres and, 1 +
√

3/4 < Hd/σ < 1.98, which allows second neighbor contacts to

exist. For the first case, the TM method was implemented to obtain the thermodynamic

properties and MD simulation was used to measure the dynamics. For the case that second

neighbors contact is allowed 1 +
√

3/4 < Hd/σ < 1.98. The thermodynamic and dynamic

properties were obtained using MD simulations. In this channel diameter range, the system

creates chiral helical jammed packings and defect states appear where sections of helices with

different local chiralities come into contact. The equation of state (EOS) shows the presence

of two heat capacity maximum. The high density Cp maximum is linked to fragile strong

crossover. Finite size scaling analysis shows that the low density Cp maximum is related

to an orientational order transition stabilized by the presence of the defects. This type of

transition has been shown to exist in bulk two dimensional systems but this work is the

first study that provides strong evidence of the existence of this transition in a quasi–one

dimensional system in a system with short–range interactions.
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Chapter 1

Background

1.1 Introduction

A glass (or vitreous solid) is defined as an amorphous solid (Fig. 1.1) formed by quenching the

liquid very quickly [1]. Today, the glassy state plays a key role in both nature and technology.

For example, some insects employ glassy materials as protection against extreme cold or dry

conditions [2], while the food industry uses the glassy state to stabilize fragile biochemical

products [2]. Window glass, optical fibers, most engineered plastics and silicon are the best

known examples of engineered amorphous solids [3]. However, despite the extensive use of

glasses and glass technology, these materials are not well understood from a fundamental

perspective and they present a number of important challenges to our understanding of the

dynamics and thermodynamics of condensed phases.

This chapter is organized as follows: Section 1.2 describes the glass in terms of dynamics,

thermodynamics and structure. Section 1.3 gives a brief introduction about the theories

introduced to study the glass transition. Section 1.4 focuses on hard sphere systems and

(a) (b)

Figure 1.1: Cartoon representation of a) crystal and b) glassy structures.
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describes the phase diagram associated with them. Section 1.5 briefly introduces the particle

packing in three dimensions and summarizes the jamming in the context of more general

terms using jamming phase diagram. Section 1.6 explains the fragile–strong crossover in

different systems. Finally, section 1.7 overviews the materials that will be covered in the rest

of the thesis.

1.2 What is a Glass?

1.2.1 Dynamics

If the cooling of the liquid is fast in comparison to the time of crystallization then freezing

is avoided and molecular motion below the freezing point Tm, becomes slow. Finally, with

decreasing temperature, molecules rearrange so slowly that they cannot adequately sample

configuration space in the available time allowed by the cooling rate (viscosity reaches 1013

Poise: experimental definition of Tg) and instead of forming a crystalline structure, the

disordered atomic configuration of the supercooled liquid is frozen into the solid state at the

glass transition temperature Tg [4]. A glass exists as a metastable state with respect to its

crystalline form, although in certain conditions, for example in atactic polymers, there is no

crystalline state.

Glassy materials behave like a solid below their glass transition temperature on short time

scale. However, the glass on extremely long time scales, beyond the experimental time scale,

behaves like a liquid. Recently, the pitch drop experiment demonstrates the high viscosity or

low fluidity of pitch–also known as bitumen or asphalt–a material that appears to be solid

at room temperature, but is in fact flowing, albeit extremely slowly. A drop formation takes

about 13 years with estimated viscosity of 20 billion times the viscosity of water [5]. Despite

the stability of most glasses, in some cases it can nucleate and go through first order phase

transition and become a crystal.

The most common method of measuring structural relaxation time is the self (–incoherent)

part of the intermediate scattering function (ISF). This quantity can be obtained experimen-

tally using inelastic neutron scattering [6,7]. First, the structure factor of the system has to

be defined. The structure factor (SF), which is a mathematical description of how a material

scatters incident radiation, is the Fourier transform of the radial distribution function and
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can be defined as [8],

S (k) =
1

N
〈ρkρ−k〉 , (1.1)

where, N is the number of particles and,

ρk =
N∑
j=1

exp [−ik · rj(t)] , (1.2)

rj is the position of particle j at time t, and the angular brackets denote an equilibrium

ensemble average over multiple configurations at different t. The wave vector k is defined as

multiples of k = 2π/L and L is the system length. This means L is the largest vector length

and 2π/L is the shortest vector length. Small k vectors are looking at long length scales,

and large vectors, are probing very short scales. The first peak in the static structure factor

of the system is associated with freezing or the glass transition of a supercooled liquid [9].

The intermediate scattering function (ISF) is then defined as the Fourier transform of the

Van Hove function G (r, t):

F (k, t) =

∫
G (r, t) exp (−ik · r) dr. (1.3)

The van Hove Function for a spatially uniform system containing N point particles is defined

as:

G (r, t) =
1

ρ
〈ρ(r, t)ρ(0, 0)〉 . (1.4)

The van Hove function therefore describes the probability of observing a particle at r at a

time t, given that a particle was at the origin at time t = 0. The van Hove function separates

into two terms, the “self” (s) and “distinct” (d) parts. The self part of the intermediate

scattering function is defined as:

Fs (k, t) =
1

N
〈ρk(t)ρ−k(0)〉 =

1

N

〈∑
j

exp [ik · (rj(t)− rj(0))]

〉
. (1.5)

The ISF is usually measured at the maximum of the first peak (|k| = kmax) at low k in

order to capture the long range structural relaxation of the system and to maximize the

signal to noise ratio. Figure 1.2 shows the self–ISF for a system of simple equilibrium liquid

(red line) and a supercooled liquid (blue line). At higher temperatures, the system shows a

simple exponential function of time, while supercooled liquids behave differently. At short

times, the microscopic regime is governed by collisional events, which is common in both
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Figure 1.2: Typical relaxation behavior of intermediate scattering function for normal liquids and
supercooled liquids. Single exponential decay in case of normal liquids (red line) and supercooled
liquids show two steps relaxation (blue line) [10].

systems. In supercooled liquids, this regime is followed by a decay called β relaxation, which

is associated with caging effects where the particles are trapped by their neighbors. At longer

times, the particles are able to escape their cages, which leads to the α relaxation times that

can be fitted with a stretched exponential function. As Tg is approached from above, the β

relaxation plateau becomes longer as it becomes harder for the particles to escape the cages

and below Tg no α relaxation is possible.

The temperature dependence of the transport properties is characterized by strong and

fragile terminology which was defined by Angell [11]. The strong liquids follow the Arrhenius

expression,

τ (T ) = τ0 exp

(
E

kBT

)
, (1.6)

where τ0 and E are temperature–independent parameters and kB is Boltzmann’s constant.

Strong liquids follow Arrhenius law above Tg and show a high resistance to structural changes.

In these type of materials, the vibrational spectra and radial distribution functions show

little reorganization over a wide range of temperatures with a small increase of specific heat

(exception of where hydrogen bonds play a major role). Examples of these materials are

silica, germanium dioxide (GeO2) and open network liquids such as boron trioxide (B2O3).

In contrast, there are many examples of materials, including OTP(o–terphenyl), that ex-
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Figure 1.3: Reprinted with permission from Nature Publishing group from [4]. Tg scaled Arrhenius
representation of liquid viscosities showing Angell’s strong–fragile pattern.

hibit a super Arrhenius behavior, where their viscosity increases rapidly over a very short

temperature range [4]. To express the relationship between transport properties and temper-

ature, the most widely used function is the Vogel–Fulcher–Tammann (VFT) equation given

by [12–14]:

τ (T ) = A exp

(
B

T − TV FT

)
, (1.7)

where A and B are temperature–independent constants and TV FT is the VFT divergence

temperature. This suggests that there is a divergence in the relaxation time at a finite tem-

perature TV FT , which is often used to argue for the existence of an underlying thermodynamic

transition at TV FT . The microscopic amorphous structure of a fragile glass can be made to

collapse easily and they are able to reorganize their structure with different particle orien-

tations and coordination states with little thermal excitation. The fragile (or strong) term

does not refer to a particular brittleness of the material. Rather, the word qualifies how eas-

ily (respective difficulties) the system changes from one glassy state to another energetically

degenerate glassy state. Figure 1.3 shows these two behaviors for experimental measurement

of liquid viscosities. Strong liquids show a linear Arrhenius law behavior and fragile liquids
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show a large deviation from the Arrhenius law.

To quantify the fragile behavior, there is another popular fitting function that is known

as the Avramov equation [15,16]:

τ (T ) = τ◦ exp

(
B

T n

)
, (1.8)

where, n is a fitting parameter.

Like the VFT equation, the Avramov equation has two parameters in addition to the

prefactor τ0, but it has no dynamic divergence. Recently a quadratic equation, in reciprocal

temperature [17], was introduced to fit relaxation data,

log (τ/τ◦) '
(
J

T◦

)2(
T◦

T − 1

)2

, (1.9)

where J is an energy determining the growth rate of relaxation time as temperature decreased

from a reference temperature, T◦. This temperature, T◦, is called the onset temperature,

where the liquid dynamics crosses over from that of a simple liquid to that of a strongly

correlated material like a glass former.

Finally, the power law [18],

τ = τ0

[
T − T×
T×

]−γ
, (1.10)

has been used in the same way to fit data in the fragile region [19]. Here γ is a non–universal

exponent and T× is defined as a temperature where the dynamics of the fluid is expected to

crossover from the fragile regime to become a strong liquid. Fitting viscosity or relaxation

data by using the power law equation is not very informative. The exponent γ strongly

depends on the initial value chosen for T× and T× depends on the temperature range chosen

for fitting. As T → T× or at low temperatures the power law becomes invalid and additional

information is needed to eliminate arbitrariness [20].

1.2.2 Thermodynamics

Figure 1.4 contrasts the equilibrium freezing behavior of a liquid with that of glass formation.

When a liquid is cooled to its equilibrium freezing transition point, it freezes through a first

order transition where the volume, enthalpy and entropy all decrease discontinuously. As the

crystal is cooled to the absolute zero temperature, the entropy also goes to zero for the perfect

crystal according to the third law of thermodynamics. If crystallization is avoided, during
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cooling at a given rate, the thermodynamic properties of the system vary continuously until

the system falls out of metastable equilibrium, forming glass “a”. The intersection of the

liquid and vitreous lines provides one definition of Tg, which usually occurs around 2/3 of the

melting temperature, Tm. This behavior is not a first order phase transition because there is

no discontinuous change in any physical property and no release of latent heat. If the liquid is

cooled slower, at each temperature, there is more time available for configurational sampling,

and hence the colder it can become before falling out of the liquid–state equilibrium and

Tg decreases, forming glass “b”. Glasses are non–equilibrium states because their properties

depend on their history, i.e. the rate at which they were cooled.

The excess entropy ∆cS, of the supercooled liquid or glass, relative to the stable crystal,

is calculated from,

∆cS(T ) = ∆cS(Tm) +

∫ T

Tm

∆cCpd lnT, (1.11)

where ∆cS(Tm) is the melting entropy at equilibrium and ∆cCp is the differences between heat

capacity of supercooled liquid or glass relative to the stable crystal (excess heat capacity).

∆cS calculated from the above equation varies continuously through the glass transition,

but there is a discontinuity in the slope (∆cCp/T ). Based on the thermodynamic rules, for

calculating ∆cS, the path should be a reversible path but this may not be the case around

the glass transition temperature [21]. Calculating the thermodynamic entropy of a glass at

T = 0K leads a nonzero value known as the residual entropy.

The entropy of a supercooled liquid decreases more rapidly as a function of temperature

than that of the crystal. Kauzmann [22] pointed out that if the kinetic glass transition did

not intervene then the entropy of the liquid would extrapolate to that of the crystal at a

positive temperature. This temperature has been named the Kauzmann temperature, TK .

If a liquid could be supercooled below its Kauzmann temperature and it did indeed display

a lower entropy than the crystal phase, the consequences would be paradoxical as T → 0K.

This has lead to the suggestion that there is an underlying thermodynamic phase transition

to an ideal glass at TK which avoids the violation of the third law of thermodynamics. This

suggestion has lead to considerable debate and a search for the ideal glass state [23].
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Figure 1.4: Temperature dependence of a liquids volume V or enthalpy H at constant pressure.

1.2.3 Structure

Glass, below its glass transition temperature behaves like a solid, but its atomic structure

shares the characteristics structure of a supercooled liquid (for example, the radial distribu-

tion functions of a glass and a liquid are similar. [24]). The atomic structure of a glass has no

long–range translational periodicity. However, due to chemical bonding and packing char-

acteristics, glasses do possess a high degree of short–range order. Short–range order results

in the formation of cages that slow down the dynamics of the particle. Therefore packing

structures can be used to describe these cages. In glasses and in crystals, the rotational and

translational motion is arrested and only the vibrational degrees of freedom remain active.

This helps to explain why both crystalline and non–crystalline solids exhibit rigidity on most

experimental time scales.

1.3 Theories of the Glass Transition

This section summarizes some of the main theories that are used to describe the underlying

physics of the glass transition. The potential energy landscape, Adam–Gibbs theory, mode

coupling theory, random first order theory, and facilitated dynamics will be highlighted here.
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1.3.1 The Potential Energy Landscape

The potential energy landscape (PEL), which was originally introduced by Goldstein [25] and

formalized and developed by Stillinger [26] in terms of inherent structure (IS), is a very useful

way to study supercooled liquids, glasses and crystals. In this approach every configuration

of the liquid can be mapped to the closest mechanically stable packing or potential energy

minima (also called inherent structures). In a system with potential energy, any configuration

can be mapped to its inherent structure by quenching the system using a steepest descent

or conjugate gradient energy minimization. In a hard particle system, a configuration is

ideally mapped to its inherent structure by continually expanding the particles, moving them

apart on contact, until they become collectively jammed [27] in a local density maximum.

Configurations that map to the same inherent structure are grouped together into basins

(see Fig. 1.5). The dynamics and thermodynamics of the liquid can be described in terms of

motion between basins on the landscape.

The PEL is a surface in 3N–dimensional configurational space, where N is the number of

particles, and can only be characterized on the statistical basis. The partition function Z of

a system of N particles interacting via a two–body spherical potential is [25]

Z (T, V ) =
1

N !Λ3N
Q (V, T ) , (1.12)

with

Q (V, T ) =

∫
V

e−βU(r3N)drN , (1.13)

where V is the volume and Λ is the de Broglie wavelength h/
√

2πmkBT , β = 1/kBT , kB is

the Boltzmann constant and U is the total potential energy of the system.

The idea that the configuration space can be partitioned into basins allows to write the

partition function as a sum over the partition functions of the individual distinct basins Qi:

Q (T, V ) =
∑́
i

Qi (T, V ) . (1.14)

To model the thermodynamics of the supercooled state the sum has to exclude (and the sign

´ in
∑

has this role) all basins which include a significant fraction of crystalline order [28].

Indicating by eIS the value of the energy in the local minimum and with ∆U
(
rN
)

= U
(
rN
)
−

eIS,

Qi (T, V ) = e−βeISi
∫

basin i

e−β∆U(r3N)drN . (1.15)
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Figure 1.5: Reprinted with permission from Nature Publishing group from [4]. Schematic illustration
for an energy landscape. The x−axis represents all configurational coordinates.

Next a partition function is defined averaged over all distinct basins with the same eIS value

as

Q (eIS, T, V ) =

∑
i δeISi ,eISQi (T, V )∑

i δeISi ,eIS
, (1.16)

and the associated average basin free energy as

− βfbasin (eIS, T, V ) = ln
Qi (T, V )

Λ3N
. (1.17)

The system partition function can be written as

Z (T, V ) =
∑
eIS

Ω (eIS) e−βfbasin(eIS ,T,V ), (1.18)

where Ω (eIS) =
∑

i δeISi ,eIS counts the number of basins of depth eIS. Note that the N ! term

disappears since the sum is now over all distinct basins (i.e. an IS is invariant for permutation

of identical particles). The configurational entropy, Sc is associated with the total number of

inherent structures which the system samples.

The topological properties of the landscape can be related to the dynamics of a liquid.

The potential energy landscape of strong glasses has few minima with high barriers whereas

fragile ones had a high number of well–separated metabasins. In the context of the landscape

description, the configuration entropy, Sc, of a system is the number of basins accessible to

the supercooled liquid. The ideal glass transition would represent the point where Sc → 0,

and the system becomes trapped in a unique single basin.
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The curvature of the energy landscape can be obtained from the second derivatives of

the energy function. These second derivatives create a Hessian matrix and can be used to

obtain the saddle points in the landscape. Saddle points are stationary points in a system

with potential energy and can be classified on the basis of the number of negative eigenvalues

(unstable directions) in the Hessian matrix of the potential energy of the configuration. When

there are no negative eigenvalues, the saddle point is a stable inherent structure, otherwise

the system contains one or more unstable, “soft” modes. At higher energies, the number of

negative eigenvalues increases and on average more saddle points will exist. Similarly, in a

system with a hard potential at lower densities saddle points are more abundant.

1.3.2 Adam–Gibbs Theory

One of the initial attempts to theoretically study the glass transition goes back to about 50

years ago, when Adam and Gibbs [29] proposed a theory of the glass transition. According

to their proposal, supercooled liquids relax structurally through a sequence of individual

events in which a subregion of a liquid relaxes to a new local minima. This structural

relaxation occurs in “cooperatively rearranging regions” (CRRs), which grow larger in size

as the temperature decreases. Adam–Gibbs (AG) suggested that by lowering the temperature

the energy of the system decreases so that larger and larger regions have to act cooperatively

in order for the liquid to relax. Eventually, at the Kauzmann temperature, TK , the CRR

becomes equivalent to the system size, which would require all the particles to cooperate.

Adam–Gibbs proposed the following equation as the connection between the structural

relaxation time and the configurational entropy:

τ ∝ exp

(
A

TSc

)
, (1.19)

where A is a system dependent parameter related to the barrier to rearrangement. In the

context of the PEL, the Adam–Gibbs relation suggests that the dynamics becomes slow as

the system has access to fewer and fewer basins at low temperatures. If, Sc goes to zero, the

relaxation time would diverge. This has been connected to the ideal glass transition and is

expected to occur at TK .

This theory provides a good connection between dynamics and thermodynamics of the

glass transition and has been tested in both experimental [30,31] (where Sc is estimated from

specific heat measurements) and numerical [32–38] (where Sc can be formally evaluated from
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an energy landscape approach) studies and the general picture proved in most of the cases,

if not all systems studied.

One weakness regarding the AG theory is the fact that the size of CRRs is not known

and this theory treats CRRs as indistinguishable especially in terms of heterogeneity that

provides the stretched exponential behavior. In addition, recently in a study by Sengupta et

al. they provided evidence that AG theory is not valid for 2D systems [39].

1.3.3 Mode–Coupling Theory

One of the well known attempts to theoretically study the glass transition is the Mode–

Coupling Theory (MCT) introduced by Götze and collaborators [6,20]. This method requires

the static structure factor, S(k), as an input parameter and gives a correct quantitative

description of the dynamics of dense simple liquids. In particular, the theoretical output of

MCT captures the slow down of the structural relaxation caused by “caging” effects where

particles are temporarily trapped by their neighbors. MCT predicts a critical temperature

TMCT (or density φMCT ) which represents a transition from an ergodic to a non–ergodic state

without any sign of a singularity in the thermodynamics of the system. This is modeled by:

τ ∝ 1

(T − TMCT )γ
, (1.20)

where, τ is the relaxation time. This equation shows a singularity in the dynamics at TMCT ,

and the relaxation time diverges. From this point of view, MCT is able to predict a glass

transition at a nonzero temperature. Debennedetti, Stillinger and coworkers have hypothe-

sized that this crossover corresponds to a crossover from diffusion–dominated dynamics to

energy–landscape–dominated dynamics [4, 40]. Moreover, MCT predicts a plateau and two

scaling laws in time for relaxation time. The first scaling law describes the dynamics close

to plateau and the second scaling shows the decay from plateau value to zero which obeys

stretched relaxation function.

Despite the successful prediction of MCT about the general behavior of the systems it

does not give any physical insight about these phenomena. An additional drawback of MCT,

is that TMCT always falls above the true glass transition temperature TMCT > Tg [10]. It

should also be noted that the advanced theories of MCT suggest the possibility of an avoided

transition [41].
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1.3.4 Random First Order Transition Theory

Kirkpatrick, Thirumalai and Wolynes [42, 43] first used the concept of a random first order

transition (RFOT) to describe glass formation in 1987, and since there has been many devel-

opments [6,44–46]. RFOT is based upon the study of energy landscape of supercooled liquids

and the rapid growth of relaxation time on cooling. As discussed in PEL section (1.3.1), un-

derstanding the energy landscape of a system is beneficial to understanding the behavior of

the supercooled liquids, however it is too difficult to calculate for real systems. Therefore,

RFOT was first studied for a simple system of the p–spin model [47–49]. Based on this

theory, the configuration space of a supercooled liquid is decomposed into metastable regions

called “entropic droplets”, or “mosaics” with a characteristic size ξ, so the “configurational

entropy” or “complexity” Sc (T ) can be defined:

Sc (T ) =
1

N
logN (f) , (1.21)

where N(f) is the number of free–energy minima with a given free–energy density f (per

unit of free-energy density).

According to RFOT, the driving force to reach equilibrium comes from the large number

of regions with a specific length. Increasing the size of the regions means that the number

of particles inside of each region will increase which provides an entropic energy favoring the

the bigger regions. The energy gain from this is,

∆FG = −TSc (T )Rd, (1.22)

where, d is the dimensionality of the system and R is the linear size of the regions. Here,

the minus sign shows that this is an energy gain. However, dividing the system into different

regions introduces an interface between the mosaics that is characterized by a surface tension.

The surface tension is the free energy cost, per unit area, of creating the interface. Generally,

for a region of size L, it requires an energy cost of Ld−1 (d is the dimensionality). In the case

of supercooled liquids the energy cost is usually defined as:

∆FC = Υ (T )Rγ, (1.23)

where Υ (T ) is the generalized surface tension and γ turns out to be much smaller than d−1.

This is the cost that the system has to pay to create such regions.
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The situation here is very similar to a nucleation process and there is a critical size for the

regions, beyond which, the entropic term dominates so the net thermodynamic driving force

favors the growth of the droplet. Balance of Eqs. 1.22 and 1.23 yields the size of rearranging

region as:

ξM =

(
Υ (T )

TSc (T )

) 1
d−γ

, (1.24)

where, ξM is a Mosaic correlation length. Notably, the Adam–Gibbs equation (Eq. 1.19) can

be recovered from this equation.

Based on the analysis of RFOT, the configurational entropy of the system decreases by

decreasing temperature and finally vanishes below TK . This temperature is linked with

the Kauzmann catastrophe discussed above. As T approaches TK , the complexity, Sc (T ),

behaves as

Sc (T ) ∼ (T − TK)α where α = 1. (1.25)

RFOT does give a clear connection to the thermodynamics, but it is difficult to observe

mosaics in the system directly.

1.3.5 Kinetically Constrained Models and Dynamic Facilitation

Another glass transition model that has got a great deal of attention is kinetically constrained

models (KCMs). The core KCMs are the elementary spin–facilitated models such as East

[50] and Fredrickson–Andersen [51] (FA) models and kinetically constrained lattice gases,

Kob–Andersen [52] (KA) models.

The spin–facilitated models consist of chain states with occupations numbers, ni = 0, 1

(i = 1, ..., N), with simple Hamiltonian H [{ni}] = J
∑

i ni where J is an energy scale for

creation of mobility. The dynamics of these models is subjected to local constraints. In case

of FA model, a spin can flip if either of its neighbors is in the up state and in the East model,

a spin can flip only if its nearest neighbor to the right is up. Whereas, for lattice gas model,

Hamiltonian is H [{ni}] = 0 and a particle can jump to a neighboring site only if both in the

initial and final positions, at least m of its nearest neighboring sites are empty.

For a system of Kob–Andersen (80:20) binary Lennard–Jones mixture (BLJM), excitation

defined as clusters of mobile particles. These crystals create string–like motions by motions

of neighboring particles in local groups [53–55]. However, Chandler and Garrahan [56–60]
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define an excitation as a directional correlations between successive displacement events, of

feasible particle displacements consistent with non–overlap constraints [57].

For all of these models, the thermodynamics plays a limited role, however, their dynamical

behavior is a very powerful tool in capturing the glass transition fundamentals [60, 61]. The

spatial constraints present in these models creates structural defects or empty space locally,

and thus “facilitates” the subsequent motion of nearby particles. The relaxation time for

these type of models follows the parabolic law (eq. 1.10) and the onset temperature, T◦, is

the temperature below which the assumptions of facilitated dynamics hold.

Real glass forming liquids crystallize when cooled down sufficiently slowly through their

melting point, however, KCMs can not capture this transition.

1.4 Hard Sphere Systems

The thermodynamic properties of hard–particle systems are solely a function of the den-

sity (occupied volume fraction). This represents the simplest model that can recreate the

properties of a liquid, glass and crystal states.
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Figure 1.6: The pressure of hard spheres versus density near the transition region adopted from [62].

Figure 1.6 shows the schematic phase diagram of the three dimensional hard sphere system

that is expected in the presence of a glass transition and plots the pressure as a function of

the occupied free volume, φ = (Nπσ3)/(6V ), where N , σ and V are the total number of
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particles, diameter of the spheres and total volume of the system respectively.

At φ = 0, the hard sphere system is a set of points contained in a volume V , consistent with

the ideal gas. As the system is compressed, by expanding the diameters of the particles, the

pressure increases as the particles begin to exclude volume. Molecular dynamics simulations

by Alder and Wainwright showed that the equilibrium system freezes to the face centered

crystal (FCC) at φ = 0.4911 [63, 64] before the pressure finally diverges at the close packed

density φ = 0.74.

However, if the fluid phase is compressed rapidly enough to avoid freezing, system enters

a metastable state and by increasing the density, based on the compression rate the system

goes through a glass transition and is stuck in one glassy state. In this figure, the compression

rate for glass “a” is higher than glass “b”. By very slow compression rate, the system may

go through a transition to produce the ideal glass.

The pressure in the glass diverges as the particles become jammed in a mechanically

stable packing at a density φJ . Different glasses may have different φJ so Speedy [32] argued

that the partition function for the fluid could be constructed using the inherent structure

formalism developed by Stillinger and Weber [26]. As expressed, the partition function of

hard spheres as:

Q(φ, φJ) =
∑
φJ

Ω(φJ)Qφ(φ, φJ), (1.26)

where Ω is the number of basins and Qφ(φ, φJ) involve evaluating the mean vibrational

partition function for basins as a function of their depth. The number of inherent structures

for a hard potential system is expected to be given by [65],

Ω(φJ) = exp [Nsc(φJ)] , (1.27)

where N is the number of particles and sc is the configurational entropy per particle. This

suggests that the thermodynamics of the system can be understood in terms of the properties

of the the basins and how fluid explores the inherent structure landscape. In equation 1.26,

the Qi(φ, φJ) term is an increasing function of φJ , at fixed φ, which means higher density

basins have more vibrational free volume, but Ω is decreasing function of φJ , i.e., at high

densities the number of available basin is less than at low densities. The maximization in Q,

results from the competition between these two parameters.
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1.5 Particle Packing and Jamming Phase Transition

Studies of particle packing begin with Kepler [66] who in 1611 suggest the densest packing of

identical spheres could be achieved by two common examples being the face–centered–cubic

lattice (FCC) and the hexagonal–closed–packed (HCP) arrangements, with packing fraction

of φ = π√
18

= 0.74. This is known as Kepler’s conjecture and was recently proved by Hales

[67] with aid of computer programming. This class of dense layered packings are known as

Barlow packings [68,69].

Bernal [70] used random packings of ball bearings to study the structure of liquids and

coined the term random close packing (RCP) to describe the most dense random arrangement

of spheres. When spherical grains are randomly thrown into a box and shaken, they form an

amorphous arrangement with random close packing, which has significantly lower packing

fraction than the densest crystalline packings. The packing fraction associated with RCP in

hard sphere system is φRCP ≈ 0.64 and this value is a highly reproducible value.

Torquato and Stillinger [27] classified jammed packings into hierarchical categories of

locally, collectively and strictly jammed configurations.

1. “Locally jammed configuration: Each particle in the system is locally trapped by its

neighbors, i.e., it cannot be translated while fixing the positions of all other particles.”

2. “Collectively jammed configuration: Any locally jammed configuration in which no sub-

set of particles can simultaneously be continuously displaced so that its members move

out of contact with one another and with the remainder set.”

3. “Strictly jammed configuration: Any collectively jammed configuration that disallows

all globally uniform volume–nonincreasing deformations of the system boundary.”

Locally jammed condition requires at least d + 1 (d is dimensionality of the system)

contacting particles, not all in the same hemisphere.

Computer simulation has been used extensively to study packing, but different protocols

often lead to different conclusions regarding the density distribution of inherent structures

for both hard disc mixtures [71–73] and hard spheres [74]. A recent study [75] of jammed

packings also raised questions concerning the relationship between the structure of a packing

and its density. Lubachevsky and Stillinger [76] introduced an algorithm (LS scheme) for
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producing jammed packing. In this algorithm the particles start with random positions

and velocities. As the particles move during the event driven molecular dynamics (EDMD)

simulation, the density is increased by expanding the diameters of particles at a constant

rate, while keeping the volume of the system fixed. The system eventually becomes jammed

as the pressure diverges and the particle diameters can no longer expand without causing

overlap. It should be noted that this method does not map a starting configuration to its

local inherent structure because the MD allows the system to relax and explore configuration

space as the system is compressed. Simulations show that packing of different densities can

be formed by compressing the system at different rates. However, if the system is compressed

slow enough, it will follow the equilibrium equations of state and allow the particles to freeze

at high densities.

This algorithm is the most frequent algorithm to produce hard sphere packing, which is

collision–driven molecular dynamics (EDMD). Donev et.al., have modified the collision driven

MD algorithm to use for non–spherical hard particle system [77] and also, they described a

practical algorithm to assess whether a hard sphere packing in two and three dimensions is

jammed or not [78]. Meanwhile, they demonstrate jamming at ellipsoid packings [79], and

studied disordered jammed hard sphere packing in four and five dimensions [80]. Recently,

Anikeenko et.al. [74,81] used Delaunay simplexes decomposition to analyze amorphous pack-

ings of hard sphere systems and proposed “quasiperfect tetrahedra” as unit cells.

The number of collectively jammed states grows rapidly with number of particles. Bowles

and Speedy [82] for five mono–disperse discs in a box, analytically found one crystalline and

four amorphous inherent structures. Xu et.al. [72] used simulation to find all of the jammed

structures for systems containing 10 or less bi–disperse particles. More recently Arkus et

al. [83–85] used graph theory and geometry to enumerate all of the jammed configurations

for a system of mono–disperse hard spheres with short–ranged attraction in a system of

N 6 10. In other work, Bowles and Saika-Voivod [86] enumerated the inherent structures of

a confined hard disc system with channel to sphere diameter ratio Hd/σ < 1 +
√

3/4 using

a combinatorial approach. Ashwin and Bowles [87] developed a tiling approach to counting

inherent structures in jammed systems and they provide exact description of the complete

jamming landscape for hard discs confined between two lines of Hd/σ = 1.95 by using the

transfer matrix method [88].
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1.5.1 Jamming Phase Diagram

Many different types of systems exhibit jamming phenomena, where the particles locked in

place and can sustain an external stress or strain without flowing. Athermal systems, such

as foams and emulsions jam as the shear stress decreases, and colloidal glasses jam as their

packing density increases. Granular systems, including grains and sand exhibit jamming

when vibrated. Many of these systems also share similar dynamic properties as the jamming

transition is approached. This led Liu and Nagel [89] to propose a diagram that combines

all jamming behaviors of these materials into a single graph. Figure 1.7 shows the jamming

phase diagram (JPD) proposed by Liu and Nagel for granular material (figure on the left).

The axes in this figure describes the parameters that control the transition to jamming for

each of the three systems, namely temperature, density, and shear stress. For liquids, the

temperature and density are the parameters that control the transition to jamming into

a glass. Loose grains, bubbles, droplets etc. jam under shear stress or an increase with

density. For systems with thermal motion temperature and load are the control parameters.

Trappe et.al. [90] verified the general features of this unified concept experimentally for three

different types of attractive colloidal systems (Fig. 1.7 figure on the right), but suggested

different curvatures to the boundary lines.

(a)

jammed

unjammed

Temperature

Shear stress

1/Density

J

(b)

Figure 1.7: Reprinted with permission from Nature Publishing group from [89]. Jamming phase
diagrams proposed by Liu and Nagel [89] (a), and diagram obtained for attractive colloidal systems [90]
(b).

Despite the success of the JPD, some fundamental questions remain. The “J–Point”
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represents the boundary between the jammed and unjammed states along the density axis

at zero T . At lower densities, there are no jammed configurations and at higher densities,

there are not meant to be any unjammed configurations. Many studies have argued that

the RCP density of φJ = 0.64 is the “J–Point”, but simulations of hard sphere packings

suggest there are many different jamming densities [91–94], leading to the suggestion there

is a jamming line (“J–line”). Furthermore, it is not clear how crystalline, or poly–crystalline

configurations, fit into the jamming phase diagram. Since the crystal density is much higher

than the RCP density, there must be unjammed configurations related to the vibrational

modes of the crystal that exist beyond the J–point. Similarly, glasses are not truly jammed

states and have vibrational degrees of freedom.

One of the theoretical approaches dedicated to phase diagram of glasses is replica mean

field theory (RMFT). Following has some basic description regarding this theory.

1.5.2 Replica Mean Field Theory

Recent developments of the replica mean field theory (RMFT) [95–101], building on an earlier

theory of the thermodynamic glass transition [102, 103], have made significant advances in

the understanding of the jamming phase diagram by studying a class of jammed matter that

can be approximated as the infinite pressure glassy states of a liquid. By focusing on a

region of the metastable liquid where the caging of the particles by their neighbors localizes

their dynamics, RMFT employs a replica version of equilibrium liquid methodologies as a

starting point and has been shown to successfully describe thermodynamics of this class

of jammed states. Most importantly, the theory predicts that jamming, in some idealized

models [94, 104] and hard spheres [96,105], does not occur at a single transition J–Point, as

originally suggested, but occurs over a set of points constituting a segment on the density

axis referred to as the J–line. The existence of the J–line in the hard sphere model has been

subsequently verified by simulations [106,107].

Within RMFT, the mean field relations describing the metastable state with volume frac-

tion, φ, are mapped to relations describing the mechanically jammed states with volume

fraction, φJ , by considering a cage that momentarily traps the particles. The cage size is

then systematically taken to zero under the mean field constraints. Physically, this amounts

to an artificial quench, that renders the particles immobile due to their local neighborhood.
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The long lived glassy states first appear in the fluid at φd and artificially quenching these

states locates the lowest density bound of the J–line as φth. For hard spheres in three dimen-

sions [101], φd = 0.58, which coincides with the mode–coupling density for the system, and

φth = 0.64. The upper bound of the J–line, which occurs at the glass close packed density,

φGCP , is obtained by artificially quenching the fluid at the Kauzmann density, φK , where the

number of fluid states becomes subexponential and the system is expected to go through an

ideal glass transition [4, 108]. Again, for 3d hard spheres, RMFT finds φK and φGCP to be

approximately 0.62 and 0.68, respectively. However, despite the success of RMFT, it does

not capture the complete picture of jamming because the glassy states of the metastable

fluid only represent a subset of all possible inherent structures [26,32,71,109,110], which are

the mechanically stable packings formed from infinitely fast quenches of any equilibrium fluid

configuration, at any φ. The density of the J–point, φ∗J , is defined as the φJ of inherent struc-

tures obtained from ideal gas configurations, and while many jamming protocols [75,111–113]

do find φ∗J ∼ φth, such quenches are not accessible within RMFT. Other protocols [107,114]

produce packing at much lower densities than 0.64 in hard spheres suggesting the existence

of a wider range of packing densities than that predicted by RMFT.

1.6 Fragile–Strong Crossover

According to Goldstein’s picture of the potential energy landscape [25], at high tempera-

tures, where average thermal energy of the system is comparable to the heights of potential

barriers, the system has access to a large portion of the landscape and can move between

the basins easily. With decreasing temperature (or increasing the density in case of hard

potential systems), diffusion becomes hindered and less phase space will be accessible. At

low temperatures, but above the glass transition temperature, the system has two different

types of diffusion processes: the thermal relaxation inside the basins (intra–basin relaxation,

τintra) and the hopping between different basins in the potential–energy landscape by passing

the barriers between basins (inter–basin relaxation, τinter). τintra corresponds to the time re-

quired for thermalization inside the minimum and τinter corresponds to the time for hopping

among different minima.

At low T the two relaxation times (τintra and τinter) become well separated and τinter �

τintra [115]. Goldstein suggested there is a crossover temperature, T×, when the diffusivity of
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the system changes from a simple diffusive mode to a “solid”–like behavior as the temperature

is decreased. T× is in general higher than the glass transition temperature Tg. At tempera-

tures below T×, barrier hopping dynamics will be dominant process. Above T×, the system

is no longer spending most of the time vibrating around a single minima. Instead, it spends

more time moving between basins, and is located in the saddle point regions of the landscape.

These points are described as the connecting states between stable minima in the landscape

and system visits these states more often at higher temperatures. The effect of saddles in

the dynamics of glassy systems has been described using mean field theory [116–118].

The dynamics of fragile and strong liquids has been linked to these different regions of

the landscape. The super–Arrhenius relaxation of a fragile liquid occurs when the system is

in the saddle regions, where the particles move cooperatively. When the system is moving

between basins through activated dynamics, it behaves like a strong liquid. This suggest T×

is the temperature of a fragile–strong crossover.

Remarkably, experimental and simulation results for silica [119, 120], silicon [121] and

supercooled water [122–125] show evidence of dynamical crossover from fragile liquid to a

strong liquid. The crossover temperature for these systems coincides with the Widom line

which is marked by the heat capacity maximum of the system. A fragile–strong crossover

has also been observed in a simple binary Lenard Jones system [126].

1.7 Thesis Overview

The primary goal of the current thesis is to study simple model systems for which the complete

distribution of inherent structures can be calculated and explore the relationships between

the properties of resulting landscape and the thermodynamics and dynamics of the fluid. To

this end, hard disks and hard sphere systems in confined quasi–one–dimensional geometries

are studied. The preliminary results of the analysis of the hard discs system described in

Chapter 3 have been published in references [127–129] and here more details and new work

are included. The coauthors of these papers have agreed to the inclusion of this material in

the current thesis.

Chapter 2 introduces the concept of the packing landscape using a simple non–additive

hard rod system. It provides an analytical description highlighting the connection between

the equilibrium fluid and the inherent structures sampled by fluid and how the system moves
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between different basins on the landscape as the density is varied.

In chapter 3, the thermodynamics properties of a system of hard discs confined into a

narrow channel is obtained using Transfer Matrix (TM) method. The equilibrium fluid then

is mapped to its jammed state using a triangular mapping technique and the jamming phase

diagram is developed as a result. The dynamics of the fluid is studied by measuring the

relaxation time of the system. This is achieved using two independent methods, the survival

probability method and the intermediate scattering function (ISF) method. The results

obtained from these dynamics measurements show that fluid exhibits a fragile to strong

dynamic crossover. The analysis shows that the crossover is located at the maximum of the

isobaric heat capacity, which suggests an underlying connection between the thermodynamics

of a fluid and its dynamics. This connection is explored in terms of the way particles pack

together and the resulting inherent structure landscape.

In Chapter 4, a system of hard spheres confined in a narrow pore will be discussed.

This chapter is divided into two sections: one examining pore diameters that only allows

first neighbors contact and the second covers pores with diameters that also allow second

neighbors contact.

By confining hard sphere in a channel with a diameter 1 < Hd/σ < 1 +
√

3/4, the system

only allow contacts between first nearest neighbor. As a result, there is only one inherent

structure consisting of a linear, zig–zag chain of particles. The exact thermodynamics of the

system are calculated using the TM method and the dynamics is measured using the ISF

method. For the case 1 +
√

3/4 < Hd/σ < 1.98, the spheres can contact their second nearest

neighbors as well, leading to a more complex packing landscape involving the formation of

chiral helical packings. The thermodynamics and dynamics of the system are studied using

molecular dynamics simulations. These reveal the existence of an orientational phase transi-

tion from a disordered fluid at low densities, to an orientationally ordered, but translationally

disordered, fluid at high densities. The existence of the transition is confirmed through a

finite system size analysis. The properties of the packing landscape are studied in relation

to the phase transition.

In chapter 5, molecular dynamic simulation is used to study the dynamics of two–dimensional

hard discs, confined to long, narrow, structureless channels with hard walls. This chapter

shows that the value of the diffusion coefficient as a function of density in a quasi–one di-
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mensional system can be rescaled to fit diffusion in a purely one dimensional system, using

the exact equation of state. In addition, this study suggests that the self–diffusivity data of

the quasi–1d system can be collapsed onto a single curve with the 1d data using an effective

packing density.

The concluding remarks and proposals for future studies are presented in Chapter 6.
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Chapter 2

A Binary Mixture of Non-Additive One-dimensional

Hard Rods

2.1 Overview

In this Chapter, the theoretical description of the packing landscape will be introduced using

a simple system of binary non–additive hard rods. In particular, the results will focus on

exploring the connection between the thermodynamics of the fluid and how it samples the

inherent structure landscape. The results of this Chapter will provide a basis for comparison

of the more complex systems discussed in later chapters. Section 2.2 gives a brief introduction

to the importance of the study of the hard rod systems. Section 2.3 describes the binary non–

additive hard rod model. Section 2.4 focuses on the form of the distribution of the glasses

obtained by analytical approach. Section 2.5 briefly introduces the formalism of heat capacity

measurements for the system. Section 2.6 introduces the inherent structure and vibrational

pressures. Finally, section 2.7 summarizes the results in the context of the jamming phase

diagram.

2.2 Introduction

Despite the simplicity and lack of certain thermodynamic properties, the availability of exact

results for the one–dimensional hard rod makes this system a valuable tool for the analysis

of phenomena observed in more complex systems. Prigogine [130] introduced the general

derivation of the thermodynamic properties of a one–dimensional mixture and Percus ob-

tained the analytical free energy functional for both pure [131] and binary [132] systems.

The non–additive hard rod system has been a subject of studies from a number of different

aspects [133–135]. A detailed investigation of the inherent structure and glass transition was
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performed [136], but still some key points in relation to the jamming phase diagram and how

the fluid samples the landscape have yet to be explored.

Formulating the inherent structure paradigm for a system of one dimensional hard rods

on a line is straight forward because the particles are unable to pass each other and they only

interact with their immediate neighbors. Compressing the system will map a fluid configu-

ration to its inherent structure where all the particles contact their two nearest neighbors to

satisfy the local jamming criteria. Since the particles cannot pass, there are also no collective

motions that can lead to unjamming, so the structures are collectively jammed. The partition

function for a glass is then given by all the configurations of the particles in a fixed order and

the full partition function of the fluid is formed summing over all the possible arrangements

of the particles. For a single component system of additive hard rods, there is just a single

inherent structure with jammed occupied volume, φJ = 1. The thermodynamic properties

are the result of free volume only and can be calculated exactly [137]. For example, the

isobaric heat capacity (Cp) of an additive one dimensional system is a constant value and has

no Cp maximum. The additive binary mixture has many different inherent structures arising

from the distinguishable particle arrangements, but they all have the same φJ and the same

free volume as a function of density, so the inherent structure landscape plays no role in the

thermodynamics. However, when the rods in the binary mixture become non–additive, the

density of the jammed structure becomes dependent on the arrangement of the rods and the

inherent structures with a distribution of jamming densities can be seen. This gives rise to

a more interesting landscape that can still be studied exactly.

2.3 Model Description

The one dimensional, binary mixture of non–additive hard rods has been previously described

in Ref. [136], but here will include its main features here for the sake of completeness as well

as introducing some new analysis. The model consists of NA rods of component A that

interact with each other with a particle diameter of σAA, and NB rods of component B that

interact with each other with a particle diameter σBB. The total number of particles is then

N = NA + NB and the occupied volume is φ = N (xAσAA + xBσBB) /L, where xA and xB

are the fraction of each component and L is the one dimensional volume of the system. This

study focuses on the equimolar system with xA = xB. The interaction diameter between
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Figure 2.1: Cartoon representation of the non–additive hard rod system. Top graph: positive
non–additivity depicted using left–tilted rhombi. The small species (A) interact with σAA and large
species (B) interact with length σBB with their own type and the length σAB is the interaction length
between type A and B. Bottom: A similar situation for negative non–additivity illustrated using wedges
(adapted from [135]).

particles of component A and B is defined as,

σAB = (1/2) (σAA + σBB) + ∆, (2.1)

where ∆ is the non–additivity parameter. It should be noted that there is a limit to the

value of ∆. If it is too negative, it allows second nearest neighbors to interact. The idea of

non–additivity in one dimension is shown in the Fig. 2.1 using rhombi and wedge systems.

When ∆ = 0, one recovers the additive binary mixture of hard rod system where all possible

arrangements of the rods yield the same jamming density φJ = 1 . However, when ∆ 6= 0,

φJ depends on the arrangements of the particles and is given by,

φJ = [1 + 2∆xAB/ (σAA + σBB)]−1 , (2.2)

where xAB is the mole fraction of AB interactions. This gives rise to inherent structures with

a range of jamming densities. When ∆ > 0, which is the focus of the current discussion, the

most dense jammed state, φJ max, is achieved when the system is completely phase separated

so xAB = 0 (Fig. 2.2 top sketch). The least dense jammed state, φJ min, occurs when the A

and B rods alternate so that xAB = 1 (Fig. 2.2 bottom sketch). The situation is reversed

with ∆ < 0.

27



φ
J min

φ
J max

Figure 2.2: Most dense (φJ max top) and least dense (φJ min bottom) structures for the binary hard
rods systems with positive non–additivity.

2.4 Distribution of Glasses

The number of jammed states, NJ , with the density φJ can be obtained by considering the

number of different ways the particles can be arranged on the line such that there are xAB

interactions [130, 136]. Then the entropy of the jammed states can be defined as SJ/NkB =

lnNJ , which is given by

SJ(φJ)

NkB

= − (1− xAB) ln (1− xAA) + xAB lnxAB. (2.3)

Within the inherent structure paradigm the vibrational (free volume) entropy of a single

glass, relative to the ideal gas at the same temperature and density, ∆igSg (φ, φJ), can be

obtained from the partition function of the rods constrained to remain in the same order on

the line. A fluid can sample all possible inherent structures but at a given φ, it will generally

sample the set of basins with the φJ that maximize its total entropy, ∆igSf (φ). This gives,

∆igSf (φ) = SJ (φJ) + ∆igSg (φ, φJ) , (2.4)

where the equilibrium φJ is found using the condition (∂∆igSf (φ)/∂φJ)φ = 0 and the con-

figurational entropy of the fluid Sc (φ) = SJ (φJ).

Figure 2.3 shows the distribution of inherent structures in terms of SJ (φJ) for different

values of the non–additivity parameter. The width of the distribution as a function of ∆

decreases and in the limit of ∆→ 0 the system becomes additive with a single jammed state.

Figure 2.4 shows how the equilibrium liquid samples the basins in the landscape. It can be

seen that the system samples the deeper basins as the fluid quenches from higher densities.

By considering Figs. 2.3 and 2.4 together, it reveals some insight about the entire landscape
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Figure 2.3: The distribution of glasses with
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0 0.2 0.4 0.6 0.8 1
Density (φ)

0.6

0.7

0.8

0.9

1

φ
J

∆ = 0.1
∆ = 0.2
∆ = 0.3
∆ = 0.4
∆ = 0.5
∆ = 0.6
∆ = 0.7
∆= 0.8
∆ = 0.9
∆ = 1.0

Figure 2.4: The jammed state densities that
the equilibrium fluid samples as a function of
density, for different values of the non–additivity
parameter, ∆.

of the system. Figure 2.5 combines these two figures and shows the connection between them

more explicitly. There is only one configuration at φJ max (SJ = 0) and at φJ min, while

the distribution goes through a maximum at an intermediate density, φ∗J , when xAB = 0.5

(Fig. 2.5a). There are inherent structures all the way down to φJ min, but it be can seen from

Fig. 2.5b that the equilibrium fluid only samples inherent structure basins above φ∗J . This

implies that any compression of an ideal gas configuration, that does not allow the system to

escape its local basin, would end up jamming at φ∗J . The equilibrium properties of the fluid

are determined by the competition between free volume entropy and configurational entropy.

Basins with denser inherent structures have more free volume, but there are fewer of them,

so the equilibrium fluid samples deeper basins on the landscape as it is compressed until the

system eventually becomes unavoidably jammed as φ → φJ max. At densities below φJ min,

there are no configurations of the particles that are jammed.

Figure 2.6 shows Sc as a function of φ for the systems with different values of non–

additivity. Here, it can be seen that the ideal gas samples the inherent structures at the

maximum of the distribution, φ∗J , then the fluid moves to basins with a higher φJ with

increasing density. The basins with φJ < φ∗J are never sampled by the equilibrium fluid.

At low φ, the configurational entropy of the fluid decreases slowly before it begins a rapid

decrease at intermediate occupied volume fractions. An extrapolation of the Sc to higher

φ, based on its behavior in this intermediate regime, would suggest the system exhibits a
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Kauzmann catastrophe where the configurational entropy goes to zero at a φ well below

φJ max. However, Sc plateaus at high φ and only approaches zero in the limit φ → 1. As a

result, there is no ideal glass transition in this system.

2.5 Heat Capacity

This model also can be used to study how features of the landscape influence the thermody-

namic properties of the system, such as the heat capacity and the equation of state (EOS).

The isobaric heat capacity, Cp = (∂H/∂T )p, where for the hard rods model, the enthalpy

is H = (1/2)NkBT + PL, with the compressibility factor PL/NkBT = 1 + φ/ (φJ − φ).

Note that here, P is the 1d pressure and the equivalent to the pressure to the bulk systems

and φJ is the jammed density that the equilibrium fluid samples and not the most dense

configuration’s density, φJ max. Therefore, the heat capacity is given by

Cp/NkB = 1/2+

(PL/NkBT )2

(PL/NkBT + (PL/NkBT − 1) {1 + (PL/NkBT − 1) (1− dφJ/dφ)})
.

(2.5)

Figure 2.7 represents the inverse of compressibility factor as a function of density for different

non–additivities. Figure 2.8 shows that Cp as a function of (φPL/NkBT )−1 goes through

a maximum as a result of the maximum in the term dφJ/dφ (See Fig. 2.5). The peak also

sharpens and moves to lower temperatures as ∆→ 0, in a manner that is somewhat similar

to a system approaching a critical point. This coincides with the narrowing of the inherent

structure distribution which collapses to a single state at ∆ = 0. It is also interesting to

note that the density of the fluid at the CP maximum is equal to φ∗J as this seems to connect

the properties of the fluid at high densities to the ideal gas, through the inherent structure

landscape.

2.6 Inherent Structure Pressure

Shell and Debenedetti [23] showed that the properties of the EOS of a fluid could be related

to the inherent structure landscape by separating the equilibrium pressure into contributions

from the inherent structure pressure, PIS, and vibrational pressure, Pvib, so that,

P = (PIS + Pvib) . (2.6)
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Making use of the general relation P = T (∂S/∂V )U , the inherent structure pressure can be

calculated as

βPIS = −φ2

(
∂Sc/NkB

∂φ

)
U

, (2.7)

and then obtain Pvib from Eq. 2.6. Both contributions to the pressure are shown in Figs. 2.9

and 2.10. The vibrational pressure increases monotonically as a function of φ while PIS

exhibits a maximum at densities that are slightly higher than where the Cp maximum appears.

2.7 Jamming Phase Diagram

The key elements of this model can be summarized in the form of the jamming phase diagram

(see Fig. 2.11). φJ max = 1 for all ∆. The jammed packings above φ∗J are all accessible in the

sense they can be reached by compressing the fluid from an equilibrium configuration at the

appropriate density. The jammed states below φ∗J are inaccessible and there are no jammed

configurations below φJ min. The figure also identifies the density of fluid at the maxima in

Cp and PIS, highlighting the connection between the inherent structure landscape and the

thermodynamic properties of the fluid.
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2.8 Concluding Remarks

The properties of liquids, glasses and jamming phenomena have always been an interesting

and challenging topics in the field of soft and condensed matter, and after decades of research,

many of their features are still not well understood. The potential energy landscape, or its

hard particle equivalent, was introduced to provide a framework for describing the properties

of these systems. However, the complexity of landscape and the challenges associated with

mapping configurations to their local inherent structures make it difficult to determine exactly

how the thermodynamics and dynamics are related to the features of the landscape. In this

Chapter, a system of binary non–additive hard rods was studied to give some insight into

the relationships between these quantities. The distribution of jammed states was calculated

and the equilibrium fluids were mapped to their inherent structures by taking an analytical

approach. This allowed the connections between the thermodynamic properties of fluid and

the inherent structure landscape to be explored.

The materials in this Chapter provide the guideline for the rest of the thesis and the next

two Chapters will follow the same terminology. The inherent structure landscape and the

connection of the dynamics and thermodynamics will be discussed in quasi–one dimensional

confined hard discs and hard sphere systems in Chapters 3 and 4 respectively.

mo
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Chapter 3

2d Hard Discs in Confined Geometry

3.1 Overview

This chapter examines the jamming phase diagram in a two dimensional system of hard discs

confined to a narrow, quasi–one–dimensional, channel. The complete distribution of inherent

structures is calculated and the relationships between the properties of resulting landscape

and the thermodynamics and dynamics of the fluid will be discussed. In addition, the role

of defects and soft modes on the dynamics of the fluid will be explored. The chapter is

organized as follows: Section 3.2 gives a brief introduction to hard discs in confined geome-

tries. Section 3.3 introduces the model. Section 3.4 describes the analysis of the inherent

structure landscape and Section 3.5 discuss the thermodynamics of the model obtained using

the transfer matrix method. Section 3.6 describes the molecular dynamics simulations used

to confirm the analytical results and study the dynamics. Finally the discussion is contained

in Section 3.7.

3.2 Introduction

Recent advances in technology, especially at the nano scale, have lead to an increased interest

in confined systems. For example, porous media such as zeolites [138–142], micro– and nano–

fluidic devices [143,144], transport in narrow tubes such as carbon nano tubes (CNT) [145–

148], biological ion–channels [149] and pores in biological membranes [150] are just a few

of the applications of these systems. To understand the properties of confined fluids, it has

been useful to study simple model systems such as hard discs and hard spheres confined to

narrow channels. If the channel is quasi–one–dimensional and sufficiently narrow that the

particles can only interact with their first nearest neighbors, then the transfer matrix method

(TMM) can be used to analytically study the equilibrium properties of the system. Kofke
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and Post [151] used TMM to calculate the equation of state for the hard discs and spheres

confined in narrow tubes and showed these systems exhibits a continuous transformation

from a one–dimensional gas–like behavior, at low densities, to a zigzag solid–like structure

at high densities [152]. The effect of the longitudinal and the transverse pressure on the

structural correlation function has also been studied using transfer matrix method [153].

The confined hard disc model provides a simple system that can be used to study the

inherent structure landscape. In this regard, combinatorial approach [86] and tiling [87,

88] approaches were taken to study the packing landscapes in these confined systems. In

particular, the hard discs systems allows the study of the dynamics as the particles can

move between different inherent structure basins. This was not possible in the purely one–

dimensional system studied in Chapter 2. For example, Godfrey and Moore [154] recently

developed a transition state theory to described the dynamics of the fluid at high densities.

The dynamic properties of this confined system, such as hopping time [155–161] and mean

squared displacements [162] have been studied. Furthermore, a knowledge of the ensemble

of jammed states is of considerable interest to the development of a granular statistical

mechanics [163] and the confined hard disc model has been used to test ideas relating to

temperature–like thermodynamic quantities such as the compactivity [164,165] and the effects

of a gravitational field on packings [166].

Despite the diverse studies on this model, still there is a lack of knowledge in some of the

key areas for the system. In the following, the complete packing landscape of this model

will be discussed using the TMM. How the equilibrium fluid samples the landscape will be

examined and how the features of this landscape influence the dynamic properties of the

system will be studied.

3.3 Model Description

The model consists of N two–dimensional (2d) hard discs, with diameter σ, confined between

two hard walls (lines) of length L separated by a distance 1 < Hd/σ < 1 +
√

3/4, where Hd

is the channel width. The particle–particle and particle–wall interaction potentials are given

by,

U(rij) =

 0 rij ≥ σ

∞ rij < σ
, (3.1)
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and

Uw(ri) =

 0 ry ≤ |h0/2|

∞ otherwise
, (3.2)

respectively, where rij = |rj − ri| is the distance between particles, ry is the component of

the position vector for a particle perpendicular to the wall and h0 = Hd − σ is the reduced

channel diameter. The two dimensional volume accessible to the particle centers is then h0L

and the occupied volume is φ = Nπσ2/ (4LHd).

3.4 Transfer Matrix Method

3.4.1 The Inherent Structure Landscape (ISL)

Hard discs in two–dimensions are locally jammed if they have at least three contacts that are

not all in the same semicircle [27]. By confining the discs to a channel widthHd/σ < 1+
√

3/4,

the particles can only contact their nearest neighbors on each side and the wall. As a result,

there are only four local particle configurations that can be combined to form to configurations

that satisfy the local jamming constraints in 2d, two dense configurations (denoted 1 and 3),

and two open defect type configurations (denoted 2 and 4). Configurations 1 and 3 are mirror

images of each other, with the mirror plane located along the central axis of the channel.

Similarly, configurations 2 and 4 are also mirror images of each other (see Fig. 3.1). These

configurations can be combined to create locally jammed configuration of N particles that

can be described by an ordered list of the bond types joining particle centers. However,

not all bond arrangements result in a jammed state because some of the local environments

are incompatible with each other. Neighboring −1 − 1− and −3 − 3− configurations are

incompatible because they start and finish on opposite side of the channel and need to be

bridged by a −3− or −1− respectively to join particle centers. Configurations of neighboring

defects (−2 − 2− and −4 − 4−) are also incompatible as they result in local configurations

where the central disc has three contacts all in the same hemisphere, allowing it to move

laterally and unjam. For example, see the grey disc in the −4− 4− arrangement pictured in

Fig. 3.1. If all the particles in a configuration satisfy the local jamming conditions, then the

configuration is also collectively jammed because the particles are unable to pass each other.

The quasi–one dimensional nature of this system makes it possible to use the transfer

matrix method to construct the ensemble of inherent structures [88]. The length added to

37



1 3 2 1 3 1 4 4 3

Figure 3.1: Local packing arrangements of discs. Dashed lines connect the centers of neighboring
discs in contact, and the numbers identify different “bonds”. Bonds 1 and 3 are the locally most dense
states. Bonds 2 and 4 represent the defect states. The −4− 4− arrangement results in an unjammed
particle (dash filled).

the system along the axis of the channel when a bond of type j follows a bond of type i is

lij, with li,1 = li,3 = [Hd (2σ −Hd)]
1/2 and li,2 = li,4 = σ. For fixed N , the volume of the

system will fluctuate depending on the number of type 2 and 4 bonds in the configuration

so the longitudinal pressure PL, is introduced as a conjugate variable to the volume and the

system is fixed at a constant temperature, T . The transfer matrix then takes the form:

M =


0 0 M1,3 M1,4

M2,1 0 0 0

M3,1 M3,2 0 0

0 0 M4,3 0

 , (3.3)

where Mi,j = Ci,j exp (−βPLh0li,j). The exponential term is the Gibbs measure appropriate

for the N,PL, T ensemble and Ci,j is zero when the two bonds are incompatible and one

otherwise. In the thermodynamic limit, the partition function for the system is given by,

∆ (N,PL, T ) = (λ)N , (3.4)

where λ is the largest eigenvalue of M . The jamming density, φJ , is then given by,

φJ =
Nπσ2

4HdLJ
= − πσ2

4kBTHd∂ (lnλ) /∂PL
, (3.5)

where LJ is the length of the system in the jammed state. The entropy of jammed states

SJ = kB lnNJ , where NJ is the number of jammed configurations with φJ , can be written as,

SJ/NkB = lnλ+ T∂ (lnλ) /∂T . (3.6)

The resulting eigenvalues are necessarily functions of N,PL and T . The factors associated

with N were dealt with by considering the system in the thermodynamic limit and calculating
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quantities on a per particle basis. T plays no direct role in the hard particle system, except

to provide the velocity distribution of the particles. Here the system just deals with jammed

structures where there is no free volume and the particles are unable to move, which implies

that T = 0. The equilibrium fluid, including free volume, is described in Section 3.5. In

the absence of temperature, there is no internal pressure caused by the collision between

particles. However, it is still necessary for the system to do work against the pressure PL

when it expands so the equation of state for the ensemble of jammed configurations results

from the connection between the work required to expand the volume of the system and SJ .

The full distribution of states can be obtained by varying the pressure from −∞→∞.

Figure 3.2 shows that the distribution of jammed states has a similar form to that obtained

for the 1d model (Fig. 2.3 and ref. [136]), but with a lower entropy because of the need to

eliminate states with neighboring defects. The results obtained using the transfer matrix

method are identical to those obtained using a combinatorial approach [86].

Using the combinatorial method, the number of jammed states, NJ (φJ), can be defined

as [86]:

NJ (φJ) =
(N −M)!

M ! (N − 2M)!
, (3.7)

where N is the total number of bonds and M counts the number of defect type bonds (2 and

4). By defining the fraction of defect bonds as θ = M/N , the configurational entropy will be

(SJ = kB lnNJ (φJ)):

SJ/NkB = (1/N) ln (NJ (φJ)) = (1− θ) ln (1− θ)− θ ln θ − (1− 2θ) ln (1− 2θ) , (3.8)

and the density of jammed states is given by:

φJ =
π

4Hd

(
θ + (1− θ)

√
Hd (2σ −Hd)

) . (3.9)

The most dense and least dense states occur when θ = 0 and θ = 0.5 respectively, and both

have SJ = 0. The most dense state is obtained in the limit PL → ∞ and the least dense

state is obtained as PL → −∞. Figure 3.3 shows the configurations representing these two

jammed states. The density distribution of inherent structures goes through a maximum at

an intermediate density, φ∗J , when θ = 1/2−
√

5/10 and PL = 0. The jamming phase diagram

for the model (Fig. 3.4) shows that while the functional form of the distribution of inherent

structures remains the same over the range of channel diameters 1 < Hd/σ ≤ 1 +
√

3/4, the
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width of the distribution collapses to a single state, in the limit Hd/σ → 1, when the system

effectively becomes one–dimensional. The distribution broadens as Hd increases, but φJ max

and φJ min go through minima due to the varying lengths li1 and li3. The range of jammed

states from φJ max − φJ min represents the J–line.

φ
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φ
Jmin

Figure 3.3: Top: most dense (φJ max) Bottom: least dense (φJ min) structures for the system.
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3.5 Thermodynamics of the Equilibrium Liquids

The goal of this section is to investigate how the thermodynamics of the equilibrium fluid

are related to the underlying inherent structure landscape.

3.5.1 Transfer Matrix Method

Barker [167] originally provided an exact solution for the partition function of quasi–one

dimensional systems. Kofke et al. [151] then developed a transfer matrix method for solving

the partition function of a system of hard particles in a channel, where second nearest neigh-

bor interactions are excluded. In this approach, the y positions of the particles are fixed so

the system becomes a 1d mixture of additive hard rods with different contact lengths. This

allows the integration over the x coordinates of the particles to be performed independently

of the integration of the y coordinates. The solution to the partition function can then be

represented as an eigenvalue problem where the largest eigenvalue is used in the thermody-

namic limit. The partition function in the N,PL, T ensemble can be written as a transfer

integral,

Z =
1

ΛdN (βPL)N+1

∫
dyKN (y1, y2) . (3.10)
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Here, Λ is the thermal wavelength, PL is the longitudinal pressure and the kernel K is defined

as:

K (y1, y2) = exp [−PLh0Lx (y1, y2)] , (3.11)

with y1 and y2 being the y–coordinates of two adjacent discs in contact. Lx is the projection

of the distance between the two contacting discs along the x–axis and is a function of y1,

y2. In principal, K (y1, y2) is an indefinite matrix because y1 and y2 are continuous variables

but at the thermodynamics limit it is only the largest eigenvalue, λ, which is important and

satisfies, ∫
dyK (y1, y)ψ (y) = λψ (y1) , (3.12)

where ψ is an eigenfunction. This is solved numerically by constructing a mesh in the y–

coordinate with unit size δ = (Hd − σ) /Nd where Nd = 500 is the number of divisions used

in this analysis. Eq. 3.12 then becomes,

K (yi, yj) = exp [−βPLLx (yi, yj)] , (3.13)

where Lx (yi, yj) =
√

[σ2 − Ly (yi, yj)
2] and Ly (yi, yj) = (i− j) δ. The Gibbs free energy, g,

is then given by,

βg = ln Λ + ln (βPL)− ln (λ) , (3.14)

and for a given pressure, the volume of the system can be obtained from,

V = (∂g/∂PL)N,T , (3.15)

where it should be noted that the eigenvalue is a function of PL. Figure 3.5 shows the results

obtained using this method for different values of channel widths. The EOS obtained from

this method shows a very good agreement with simulated results.

3.5.2 Mapping Configurations to Inherent Structures

The information contained within the matrix K regarding the geometry of adjacent tangent

discs can be used to determine which inherent structures are sampled by the equilibrium fluid

as a function of density. Starting from an equilibrium configuration, the discs needed to be

translated along the x axis, keeping the y–coordinate fixed, so that the discs are in contact

with their nearest neighbors. Figure 3.6 shows that the type of bond formed between the two

central discs (mn) as the result of further compression can be determined from the sign of the
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Figure 3.5: The EOS for different values of channel diameters Hd/σ.

product of areas made from the triangles created by particles i,m, n and m,n, j. The geome-

try of the four discs is contained in the chain product matrix K (yi, ym)K (ym, yn)K (yn, yj).

The product area–vector–product rule, for triangles
−→
∆ imn and

−→
∆mnj, that determine the

nature of the bonds is

−→
∆ imn ·

−→
∆mnj > 0 bond mn ∆x

ij (mn) = lk,1
−→
∆ imn ·

−→
∆mnj < 0 bond mn ∆x

ij (mn) = σ
. (3.16)

The four particle transfer matrix can be defined then as,

G4 (i1, i4) =
∑

i=i2,i3
K (i1, i2)K (i2, i3)K (i3, i4) exp

[
γ∆ij

x (mn)
]
, (3.17)

whose elements are weighted by the bonds they would form when jammed. In this equation,

γ is the thermodynamics conjugate variable for ∆ij
x . For a system with periodic bound-

ary conditions and N − 2 particles, the volume of the inherent structure formed when the

equilibrium fluid is at PL, is given by,

V inh
N−2 = limγ→0 ∂ log [Tr (G4)] /∂γ. (3.18)

The same approach can be used to obtain the fraction of defects in the inherent structure

sampled by the fluid, θ(φ), by setting ∆x
ij (mn) equal to 1 and 0 for the defect states and

dense states respectively and then using Eq. 3.18. Figure 3.7 shows θ as a function of φ for a

system with Hd/σ = 1 +
√

3/4. The analytical results matche perfectly with the simulation
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which is described later in section 3.6.1. Figure 3.8 shows θ for different channel diameters.

The configurational entropy of the equilibrium fluid, Sc(φ), is then obtained by using θ(φ)

in Eq. 3.8. Figure 3.9 shows the Sc as a function of φ for different values of Hd/σ. In

particular, it can be seen that the ideal gas samples the inherent structures at the maximum

of the distribution, φ∗J , then the fluid moves to basins with a higher φJ with increasing

density. The basins with φJ < φ∗J are never sampled by the equilibrium fluid. At low φ,

the configurational entropy of the fluid decreases slowly before it begins a rapid decrease

at intermediate occupied volume fractions. An extrapolation of the Sc to higher φ, based

on its behavior in this intermediate regime, would suggest the system exhibits a Kauzmann

catastrophe where the configurational entropy goes to zero at a φ well below φJ max. However,

Sc plateaus at high φ and only approaches zero in the limit φ→ φJ max. As a result, there is

no ideal glass transition in this system.

3.5.3 Defect–Defect Interactions

There is considerable evidence to suggest that the higher order saddle points, connecting

the basins of the stable states, also play an important role in the dynamics and structural

relaxation of the supercooled fluids [168, 169]. In a system with potential energy, saddle

points can be classified on the basis of the number of negative eigenvalues in the Hessian

matrix of the potential energy of the configuration. When there are no negative eigenvalues,

the saddle point is a stable inherent structure, otherwise the system contains one or more

unstable, “soft” modes. A statistical measure of these saddle points is captured by the saddle

point index, which is the average number of negative eigenvalues in the liquid [170,171]. The

saddle point index has been shown to decrease with temperature below the onset temperature

for the Kob–Andersen binary Lennard–Jones mixture (KA BLJM) [172], and go to zero at

a finite temperature, Td, very close to the mode coupling critical temperature. A crossover

from fragile to strong liquid behavior also occurs at Td [126] in the KA BMLJ model.

The Hessian matrix cannot be calculated in a hard particle system. However, the local

unstable modes in this models can be identified as those associated with neighboring defects,

i.e. with −1− 4− 4− 3− and −3− 2− 2− 1− bond configurations. Building on the method

for mapping configurations to their local inherent structures, one can use the transfer matrix

approach to map clusters of five discs to their local structure and calculate the probability
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of finding the unstable states. A configuration of five discs is initially compressed along the

x–axis, with y–coordinates held fixed, until all the discs are in contact with their neighbors.

The unstable states are then can identified using the triangle rules for neighboring particles

to define ∆5 as

~∆123 · ~∆234 < 0 ~∆234 · ~∆345 < 0 ⇒ ∆5 = 1,

~∆123 · ~∆234 > 0 ~∆234 · ~∆345 < 0 ⇒ ∆5 = 0,

~∆123 · ~∆234 < 0 ~∆234 · ~∆345 > 0 ⇒ ∆5 = 0,

~∆123 · ~∆234 > 0 ~∆234 · ~∆345 > 0 ⇒ ∆5 = 0.

(3.19)

Once the five particle transfer matrix is defined,

G5(y1, y5) =
∑

y2,y3,y4

K (y1, y2)K (y2, y3)K (y3, y4)K (y4, y5) exp [ω∆5] , (3.20)

the fraction of configuration space associated with the unstable states (∆5 = 1) is given by,

η = lim
ω→0

∂ [log Tr(G5] /∂ω. (3.21)

Here, ω is the thermodynamics conjugate variable for ∆5. RMFT identifies φd as the occupied

volume fraction where long lasting glassy states first appear, causing the dynamics to become

activated. In the bulk, three dimensional hard sphere system, φd ∼ 0.58, which coincides

with the mode coupling transition. Godfrey and Moore [154] found the correlation length

for the confined discs model increased rapidly at intermediate φ and would appear to diverge

near φ = φd ∼ 0.48 based on an extrapolation. However, the transition is avoided and the

growth of the correlation length slows down at higher φ. Figure 3.10 shows that the analysis

of η essentially follows that of the inverse correlation length obtained by Godfrey and Moore,

decreasing rapidly before plateauing at very low values (η ∼ 0). A linear extrapolation

from lower φ would locate φd ∼ 0.5. This suggests a change in the nature of the dynamics

may occur when defects becomes rare, such they do not interact to produce soft modes.

In principle, the analysis of higher order saddle point that include states −2 − 2 − 2−,

−2− 2− 2− 2− and etc should be included, but these are even more rare and their inclusion

would not change the qualitative features described here.
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3.5.4 Heat Capacity

The isobaric heat capacity is Cp = (∂H/∂T )P . For hard discs, the enthalpy is H = NkBT +

PV and,

Cp/NkB = 1 + (PV/NkBT ) / (1 + d ln {PV/NkBT} /d ln {φ}) , (3.22)

where V is the thermodynamic volume accessible to the centers of the particles. Figure 3.11

shows that the fluid exhibits a maximum in the heat capacity that sharpens and moves

to lower T as the distribution of inherent structures narrows with decreasing Hd, before

collapsing to a single structure at Hd/σ = 1. For the system with Hd/σ = 1 +
√

3/4, the

maximum is located at φ = 0.534, which is only just above φd. If Cp is replotted as a function

of equilibrium number of defects in the fluid (see Fig. 3.12), it can be seen that the maximum

occurs at the same value, θ = 0.044±0.002 for all Hd, suggesting the concentration of defects

is the key feature controlling the behavior of the heat capacity maximum.

3.5.5 Inherent Structure Pressure

Shell and Debenedetti [173] showed that the properties of the EOS of a fluid could be related

to the inherent structure landscape by separating the equilibrium pressure into contributions
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Figure 3.12: Cp/NkB as a function of defect
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from the inherent structure pressure, PIS, and vibrational pressure, Pvib, so that,

P = (PIS + Pvib) . (3.23)

Making use of the general relation P = T (∂S/∂V )U , the inherent structure pressure can be

calculated as,

βPISh0σ
2 = −4Hdφ

2

π

(
∂Sc/NkB

∂φ

)
U

, (3.24)

and then Pvib can be obtained from Eq. 3.23. The vibrational and inherent structure contri-

butions to the pressure are shown in Figs. 3.13 and 3.14 respectively. The vibrational pressure

increases monotonically as a function of φ while PIS exhibits a maximum at densities that

are slightly higher than the where the Cp maximum appears. The location of the maxima

in the heat capacity and the inherent structure pressure have been included on the jamming

phase diagram for the model (Fig. 3.4).

3.6 Molecular Dynamics Simulations

In this section, a series of event driven molecular dynamics simulations carried out in the

canonical (N, V, T ) ensemble will be described. They help verify the transfer matrix analysis

and provide measurements of the dynamic properties of the system. N = 104 particles were

initially placed in a linear lattice at φ = 0.01, and were assigned random velocities that were

then scaled to ensure kBT = 1. The units of time in the simulation are σ
√
m/kBT , where m
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is the mass of the particles, which was taken to be unity. At each density studied, the system

was equilibrated for 200N − 106N collisions before sampling over the next 400N − 107N

collisions, with the longer run times being used at high densities. A modified version of the

Lubachevsky and Stillinger [76] (LS) algorithm that ensures Hd/σ remains constant as the

diameter of the discs is changed (L fixed) was used to compress the system to higher occupied

volume fractions, with a compression rate of dσ/dt = 0.001.

3.6.1 Exploring the Packing Landscape

The EOS obtained from the simulations matches the exact result within simulation error up

to very high occupied volume fractions where finally the system falls out of equilibrium at

the longest time scales used in the simulations. This occurred near φ ∼ 0.8 with Hd/σ =

1 +
√

3/4.

To follow how the equilibrium liquid moves through the packing landscape as a function

of φ and compare the simulations with the transfer matrix inherent structure mapping, the

defect concentration in the fluid was measured using the triangular method introduced by

Speedy [71]. In this method, the position of each disc is considered relative to its two

neighbors. If the central disc is located below the line connecting its two neighbors, it will

pack at the bottom of the channel, otherwise it will pack at the top. The configuration is

then assigned bond numbers, equivalent to those described in Fig. 3.1, allowing to identify
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defects in liquid state without having to compress the system to a jammed state. Figure 3.7

shows that the defect concentration obtained from simulations is the same as that obtained

using the transfer matrix inherent structure mapping.

MD simulations are used to explore how the fluid falls out of equilibrium by following the

non–equilibrium EOS of the fluid as it is continually compressed. The simulations started at

φ = 0.05 and the system was compressed to its jammed configuration using the LS method,

with different compression rates in the range dσ/dt = 0.0005−0.3. The non–equilibrium pres-

sure, at a given density, was obtained by measuring the disc–disc and disc–wall momentum

transfer over 10N collisions, as the system was still being compressed. Figure 3.15 shows the

non–equilibrium pressures and the equilibrium pressure obtained from the transfer matrix

method for the case with Hd/σ = 1 +
√

3/4. Figure 3.16 shows the difference between the

non–equilibrium EOS and the equilibrium EOS, dotted lines and black solid line in Fig. 3.15

respectively. At low φ, the non–equilibrium EOS essentially follows that of the equilibrium

system because the motion of the particles allows it to move between basins and relax as

the fluid is compressed. The small positive differences result from the continual increase in

φ as the pressure measurement is made, and this occurs more rapidly at faster compression
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rates. At the fastest compression rates considered here, the system falls out of equilibrium

at φ ∼ 0.5, as the non–equilibrium EOS begins to diverge, leading to a jammed state with

φJ ∼ 0.72 (see Fig. 3.17). It is interesting to note that the system first shows signs of falling

out of equilibrium at a φ close to the φd identified using the saddle point index. As the

compression rate is decreased, the fluid remains in equilibrium longer and becomes trapped

in a glass with a higher φJ . In principle, if the system was compressed infinitely slowly,

it would remain in equilibrium and become jammed at φJ max. Godfrey and Moore [154]

were able to predict the compression rate dependence of φJ on the basis of a transition state

theory that estimates the time for two defects to diffuse together and annihilate each other

through one of the unstable saddle points. Once the rate of compression is faster than than

of the rate of annihilation, the total number of defects becomes fixed and system falls out

of equilibrium. The transition state theory was also able to predict the time associated with

particles hopping in defects obtained from molecular dynamics simulations [86].

Based on the transition state picture by Godfrey and Moore [154], in this system the defect

state is stable and there is a barrier which system has to pass to go into different configuration

(Fig. 3.18). In this figure, the defect can move when one disc crosses the channel by squeezing

between its neighbors: the system passes through the transition state shown in the middle

diagram to reach the defect state shown in the bottom diagram.
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(a)

(b)

(c)

Figure 3.18: The transition state for motion of a defect: a disc in a stable defect state (a) moves
through a transition state (b) as it hops to another stable state (c) (adapted from [154]).

3.6.2 Free Volume Equation of State

Near the jamming density, the particles are caged by neighbors and remain trapped in local

inherent structure basins. As a result, the EOS of the glass should be described by a free

volume equation of state [174] that diverges at the φJ of the inherent structure. This can be

tested and the free volume EOS can be used to obtain φJ .

This is especially important for those jammed states below φ∗J , since the system is not

able to sample them from equilibrium fluid. The free volume EOS is defined as:

p =
PV

NkBT
=

1

δ
=

d

1− φ/φJ
, (3.25)

where d is the dimensionality of the system and φJ is the density of the inherent structure

which the system samples. This equation can be used to give an estimate of φJ ' φ/ (1− d/p)

of the jamming density. Configurations were prepared in their jammed state with a known

number of defects randomly distributed throughout the configuration, but such that there are

no defect pairs. The φJ for these configurations is then known from equation 3.9. Figure 3.19

shows relation 3.25 for some of the jammed configurations were obtained while the systems

decompressed slowly from the densities below their actual jammed point until an unjamming

particle rearrangement occurs. The slope of the lines reproduces the dimensionality of the

system.
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3.6.3 Relaxation Times

To study the relationship between the packing landscape and the dynamics of the fluid, the

structural relaxation time was calculated for the system over a range of φ, using two different

methods. All simulations used N = 2000 particles. Starting from φ = 0.01, between 400N −

106N collisions were used to reach equilibrium, then the relaxation times were measured with

simulation lengths that varied from 200N up to 106N , depending on the occupied volume

fraction. 8× 104 equally spaced configurations were sampled at each φ.

First the measurement of the relaxation time defined in terms of the intermediate scat-

tering function will be explained. The longitudinal structure factor for the system can be

defined as,

S (k) =
1

N
〈ρkρ−k〉 , (3.26)

where

ρk =
N∑
j=1

exp [−ik · rxj(t)] , (3.27)

rxj is the position of particle j along the x–coordinate, at time t, and the angular brackets

denotes an equilibrium ensemble average over multiple configurations at different t. The wave

vectors k were defined along the x–axis, as k = 2πn/Lx and the integers n were chosen in the

54



0 10 20 30 40 50 60

k(σ
−1

)

0

20

40

60

80

S
(k

)

Figure 3.20: Structure factor S(k) for all φ investigated with Hd/σ = 1 +
√

3/4. For clarity the
individual curves have been displaced vertically by 1 with increasing φ. The red curve highlights the
data for φ = 0.534, corresponding to the φ of the Cp maximum.

range 1−60. Figure 3.20 shows the evolution of S(k) as a function of φ. The emergence of the

first peak, at small k, reflects the growth in real space of the regular zig–zag arrangements

of the particles associated with the most dense packing. In particular, a rapid but still

continuous, shift of the peak to larger k can be seen at φ near the Cp maximum. Significant

structural changes from a fluid–like to a solid–like structure have also been observed in the

pair correlation function at these φ [152,153].

The structural relaxation time for the system was then obtained by measuring the self

part of the intermediate scattering function,

Fs (k, t) =
1

N
〈ρk(t)ρ−k(0)〉 , (3.28)

at the wave vector, kmax, corresponding to the peak of the first maximum in S(k). Figure 3.21

shows that the decay of F (kmax, t) is missing the shoulder characteristic of supercooled liquids,

and the decay of this quantity to zero suggests the system behaves like an equilibrium fluid

for all φ studied. The structural relaxation time, τF , was then defined as the time required for

F (kmax, t) to fall to e−1 of its initial value. For a hard particle system, φPV is a constant along

an isobar and the Arrhenius law would predict that ln τF varies linearly with φPV/NkBT .

Figure 3.22 shows τF is linear in 1/T , at high φ, which is the behavior expected for a strong

fluid, but at lower φ, the temperature dependence becomes less clear. In particular, with
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Hd/σ = 1 +
√

3/4, an unusual decrease in the relaxation times can be seen. This may be

caused by the rapid structural evolution of the system at these φ and is complicated by the

corresponding variation of kmax.

As an alternative, a relaxation time was also measured based on the the survival prob-

ability of the bond types used to describe the local packing in the inherent structures. At

t = 0, Speedy’s triangular method, described earlier, was used to identify the local bond

types throughout the configuration. The fluid remains within the basin of a single inherent

structure for a short time before a local rearrangement of the discs changes the identity of

some of the bonds and moves the system to a new inherent structure. R (t), the fraction of

bonds that have not changed at least once in time t as a function of t was measured. The

relaxation time was then defined as,

τ =

∫ ∞
0

R (t) dt. (3.29)

R (t) decays the same fashion as F (kmax, t) (see Fig. 3.23), but τ now is well behaved over

the full range of φ studied (see Fig. 3.24). The linear behavior in 1/T at high φ remains, but

it can be seen the fluid exhibits a super–Arrhenius behavior at low φ, suggesting the system

has a fragile–strong fluid crossover. It is also shows fits of the data from the fragile region

to the Vogel–Fulcher–Tammann (VFT) equation [12–14], which predicts a divergence of the

relaxation times at a temperature TV FT > 0 K, along with the parabolic law developed by
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Elmatad, Chandler, and Garrahan [17, 175], which predicts no singularity and is derived on

the basis of the facilitated dynamics model [57]. Both equations fit well when restricted to

the fragile fluid data (as shown), but the fits become worse when extended over full range of

data. The Arrhenius equation provides the best fit for τ above the crossover. Good fits of the

VFT equation to a wide range of experimental and simulation data for supercooled liquids

have been used as evidence for the presence of a thermodynamic singularity underlying the

experimentally observed glass transition. However, its been already shown that this model

does not exhibit an ideal glass transition, which suggests that TV FT is simply a fit parameter

with no physical significance.

To further confirm the existence of the fragile–strong crossover, the fragility parameter [11]

is also calculated,

mf =

(
d log τ

d
(

1
T

) ) , (3.30)

where the derivatives were obtained directly from the data points, without any curve fitting,

using a centered differences scheme. Figure 3.25 shows mf increases linearly at high temper-

atures but then plateaus to a constant value when the fluid becomes strong. The crossover

point occurs at the Cp maximum.
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Figure 3.26 shows the relaxation time measured for different channel diameters. A com-

parison of the glass forming properties of different systems is usually achieved by the rescaling

of the temperature of the system by the glass transition temperature, Tg, which is defined

as the temperature where the relaxation time of the system reaches a given value, τg. To

compare the relaxation times of systems with different channel diameters, τg = 40.2 was

defined, by choosing the longest relaxation time accessible to all the systems studied, then

the temperature of each system is rescaled by the corresponding Tg (Figure 3.27). With

such a scaling, all the systems appear to have different fragilities. However, the FS crossover

occurs at the same value of φ as the maximum in the Cp, for all channel diameters, which

suggests there is an alternative scaling temperature. For each Hd/σ, the temperature of

the Cp maximum was located, Tmax, using the thermodynamic analysis, and defining τ0 as

the relaxation time at Tmax. By rescaling the temperatures and relaxation times by Tmax

and τ0 respectively, it is found that all the data now collapses onto a single master curve

(see Fig. 3.28). This suggests that the temperature at the Cp maximum provides a more

meaningful, and physically motivated, scaling temperature for this model than an arbitrarily

selected glass transition transition temperature.

The FD model suggests that the fragile–strong crossover should be related to the con-

centration of excited regions. In this system, these excited regions can be identified as the

58



0 10 20 30
φPV/Nk

B
T

-2

0

2

4

6

8
ln

 (
τ)

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.86

Figure 3.26: Structural relaxations time for different Hd/σ as a function of φPV/NkBT .

0 0.2 0.4 0.6 0.8 1
T

g
/T

-5

-4

-3

-2

-1

0

ln
(τ

/τ
g
)

1.50
1.60
1.70
1.80
1.86

Figure 3.27: Structural relaxations time for
different Hd/σ rescaled by the “glass transition”
time and temperature (see text for definition).

0.0 0.4 0.8 1.2 1.6
T

max
/ T

-4

-2

0

2

4

ln
(τ

/τ
0
)

1.50
1.60
1.70
1.80
1.86

Figure 3.28: Structural relaxations time for
different Hd/σ rescaled by the time and tem-
perature of the Cp maximum

59



0 1 2 3 4 5
ln(θ

∞
/θ)

10
0

10
1

10
2

10
3

10
4

τ

1.50
1.60
1.70
1.80
1.86

Figure 3.29: Structural relaxations times for
different Hd/σ as a function of the defect con-
centration relative to the defect concentration
in the ideal gas, θ∞.The solid black lines are the
Arrhenius fit.

0 1 2 3 4 5
ln(θ

∞
/θ)

-4

-2

0

2

4

ln
(τ

/τ
0
)

1.50
1.60
1.70
1.80
1.86

Figure 3.30: Structural relaxations times for
different Hd/σ rescaled by the time and defect
concentration of the Cp maximum as a function
of the defect concentration relative to the defect
concentration in the ideal gas, θ∞. The solid
black line is the Arrhenius fit.

defects because discs in the dense fluid regime can only move by hopping into the “vacancy”

associated with a type 2 or type 4 local packing arrangements. At low φ, there is a high

concentration of defects that can interact. When two defects are located next to each other,

in a −1− 4− 4− 3− or −3− 2− 2− 1− arrangement, the local packing becomes unstable,

which leads to directed, spontaneous and irreversible particle motions that annihilate the

defects to form the stable −1 − 3 − 1 − 3− arrangement. This cooperative particle mo-

tion is characteristic of a fragile fluid. Once the defect concentration drops below a critical

concentration, structural relaxation occurs through the directionally independent, activated

hopping of particles located in isolated defects, which is characteristic of a strong fluid. In the

strong fluid regime ln τ ∼ ln θ which is confirmed in Fig. 3.29, at φ, above the Cp maximum.

Figure 3.30 shows the rescaling the data by the Cp maximum makes them to collapse into

single line.

3.6.4 Adam–Gibbs Relation

Having been able to calculate the configurational entropy for the system exactly and measure

the relaxation times, the Adam–Gibbs relation can be checked for this model. A recent

analysis [39, 176] of the Adam–Gibbs relation, in terms of the random first order transition
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theory [44,177], suggests it has the general form,

ln τ ∼
(
φPV

TSc

)α
, (3.31)

where the value of α is dependent on the dimensionality of the system. The usual form of

the Adam–Gibbs relation for three dimensions is recovered with α = 1. Unfortunately, the

Eq. 3.31 was not able to fit to the data, over any region, and Fig. 3.31 shows the results for the

standard Adam–Gibbs relation. This is consistent with the work of Sengupta et al. [39,176]

who also found that the Adams–Gibbs relation did not work in two dimensions.

3.7 Discussion

The potential energy landscape, and its hard particle equivalent, provide one of the main

paradigms used to understand the properties of liquids, glasses and jamming phenomena.

However, the complexity of the landscape and the challenges associated with mapping con-

figurations to their local inherent structures make it difficult to determine exactly how the

thermodynamics and dynamics are related to the features of the landscape. The current

work develops a comprehensive picture of these relationships for a model where both the

landscape and the inherent structure mapping can be determined exactly.

A distribution of jammed states implies the existence of a J–line, as suggested by RMFT,

rather than a particular J–point, but there are a number of interesting features in the land-
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scape that can be connected to thermodynamic and dynamic properties of the fluid. In

RMFT, φd represents the occupied volume fraction where the fluid begins to be trapped in

the basins of long lasting glassy states. Configurations at φd map to φth, which terminates the

J–line in the low φJ limit. In this quasi–one dimensional hard disc model, φd was identified

as the φ were the saddle point index becomes very low and the dynamics becomes activated.

Dynamically, this is consistent with RMFT and MCT. However, the current work finds that

the J–line extends well below φth. The ideal gas maps to the jammed states with φ∗J , at the

maximum of SJ , which marks the lowest φJ accessible to the equilibrium fluid. If the fluid

did sample states below φ∗J it would be unable to satisfy the maximum entropy condition for

equilibrium because ∂SJ/∂φJ > 0 [128]. The inherent structure pressure would also become

negative. From an operational perspective, the J–point was originally defined as the φJ of

jammed structures quenched from the ideal gas configurations, which in the current system

is φ∗J . While the jammed states below φ∗J are inaccessible from a thermodynamic stand point,

they may be formed through different compression protocols. Fluctuations in small systems

will also allow these states to be observed. In general, the jamming phase diagram identified

here looks similar to that proposed by Ciamarra et al. [105, 178] for a granular system, but

here, a clear connection between the landscape and the equilibrium fluid was established.

The thermodynamic functions, Cp and PIS both exhibit maxima as a function of φ that

primarily result from the inflection in the Sc as the fluid moves toward the most dense state.

The actual location of the maxima, and the inherent structure basins they are sampling,

differ for each because the various thermodynamic functions are effected differently by the

competition between the configurational and free volume contributions to the partition func-

tion. In particular, the coincidence between the location of the PIS maximum and the φJ min

appears fortuitous, rather than an indicator of a general thermodynamic relationship. For

example, a binary system of non–additive hard rods exhibits a similar inherent structure

landscape (see Chapter 2 and ref. [136]), but the maxima in the Cp and PIS both occur at

φ well above φJ min (Chapter 2), while the ideal gas configurations still maps to maximum in

the distribution of the SJ .

Silica [119,120], silicon [121] and water [122–125] exhibit fragile–strong dynamical crossovers

located at the Cp maximum associated with the Widom line while the KA BLJM system has

also been shown to exhibit an FS crossover at the mode coupling temperature [126]. Mallance
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et al. [19] recently suggested an FS crossover temperature occurred in a broad range of glass

forming liquids at temperatures below Tg. However, a subsequent analysis of some of the

experimental data used in the Mallance et al. study showed that this was not the case [179].

This model clearly exhibits an FS crossover located at the Cp maximum as highlighted by

both the curve fitting of a variety of different fragile behavior equations and by the derivative

analysis shown in Fig. 3.25. Furthermore, it is been noted that the temperature of the Cp

maximum provides a better, physically motivated, rescaling of the structural relaxation times

for the various channel diameters than does an arbitrarily defined Tg.

Defects play an integral role in the dynamics of this quasi–one dimensional model and

appear to establish a link between the dynamics and the thermodynamics, through the Cp

maximum. In particular, neighboring defects are unstable and result in an irreversible local

rearrangement of the particles, which appears to give rise to the super–Arrhenius dynamics

of a fragile fluid. Once the defect concentration is low (the saddle point index is also low)

the dynamics crosses over to the reversible hopping of defects between locally stable envi-

ronments. Simulations of bulk materials have also shown that local soft modes are spatially

correlated with the highly mobile particles connected to dynamic heterogeneities [180–182].

The particle rearrangements associated with defects provide a comprehensive picture for

the structural relaxation dynamics of the current quasi–one dimensional hard disc model, but

how important are defects to the question of structural relaxation in amorphous materials

in general? Some systems with strong directional bonding interactions, like silica and water,

are capable of forming random tetrahedral networks (RTN) of bonds. Recent simulation

studies [125] of the ST2 model of water [183] have shown that the FS crossover can be

described in terms of the concentration of defects in the network, while similar results have

been obtained for network forming colloids [184] and nanoparticles [185]. The structural

relaxation of a two dimensional random tiling model has also been described in terms of

defect motion [186]. These studies suggest that understanding how defects effect structural

relaxation may provide insight to the dynamics of amorphous systems.

As the local environments of the particles become less well defined, it becomes increasingly

difficult to identify defects. For example, in the hard discs model considered here, the extreme

confinement induces structure and ensures there are only four local packing environments.

When the channel diameter increases beyond Hd/σ = 1 +
√

3/4, the discs can also contact
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their second nearest neighbors which increases the number of local environments to 32 [88].

Nevertheless, the concept of incompatibility between local environments remains. Some local

particles arrangements cannot be combined to form a stable jammed structure and it would

be expected the particles to spontaneously rearrange to form a more stable state.

3.8 Jamming Phase Diagram

The idea of jamming phase diagram was introduced with Liu and Nagel [89] and discussed

in chapter 2 in section 2.7. Here, this idea will be extended to the system studied in this

chapter. Figure 3.32 shows how the equilibrium fluid samples inherent structure landscape.

Similar to granular systems, in systems with hard potential there is no internal pressure from

the particles, but it is still necessary for it to do work against PL if the system expands

to sample less dense states. However, there are more low density basins than high density

basins, so the balance between these two competing elements results in the “equilibrium”

condition for the granular system. In the limit that PLh0 →∞, Sc/NkB → 0 as the system

moves toward the most dense state with φJ = 0.842, while as PLh0 → 0, the system samples

the jammed states associated with the maximum in Sc where φJ = 0.659. If the pressures

below zero would used, less dense packings would be found and the system enters the least

dense jammed state with φJ = 0.561, and Sc/NkB → 0, as PLh0 → −∞. However, there is

no attraction between hard particles that could sustain a negative pressure, suggesting the

packings below the Sc maximum are thermodynamically inaccessible.

Figure 3.4 combines the jamming parameters for different channel diameters. The green

area is the accessible jammed structures and the yellow region is the jammed states below φ∗J

which are not accessible from the equilibrium fluid. The data for the heat capacity maximum

as well as the maximum of the inherent structure pressure are included in the graph. Unlike

the 1d model, here, the Cpmax line does not coincide with the data of φ∗J but instead PISmax

coincides with the line of φJ min.

3.9 Conclusion

In conclusion, a quasi–one dimensional system of hard discs confined between hard lines was

studied to explore the relationship between the inherent structure landscape, the thermo-
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Figure 3.32: Distribution of inherent structures (top) and how the equilibrium fluid samples the
inherent structures (bottom).

dynamics and the dynamics of the fluid. The transfer matrix method is used to obtain an

exact description of the landscape, equation of state and provide a rigorous mapping of con-

figurations of the equilibrium fluid to their local jammed structures. This allows to follow

how the system samples the landscape as a function of occupied volume fraction, φ. Con-

figurations of the ideal gas map to the maximum in the distribution of inherent structures,

with a jamming volume fraction φ∗J and sample more dense basins with increasing φ. This

suggests low density jammed states are inaccessible from the equilibrium fluid. The config-

urational entropy decreases rapidly at intermediate φ before plateauing and going to zero

as the most dense packing is approached. This leads to the appearance of a maximum in

both the isobaric heat capacity and the inherent structure pressure. It is also shown that the

system exhibits a crossover from fragile to strong fluid behavior, located at the heat capacity

maximum. Structural relaxation in the fragile fluid are controlled by the presence of high

order saddle points caused by neighboring defects that are unstable with respect to jamming

and spontaneously rearrange to form a stable local environment. In the strong fluid, the

defect concentration is low so defects do not interact and the relaxation occurs through the

hopping of isolated defects between stable local packing environments.

The universal behavior of the transport properties of the supercooled liquids with respect
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to temperature is a well–studied subject, and considerable amount of research shows this

universality, but all of the previous works were dependent on the fitting functions. In this

work this universal behavior was proved by purely analytical approach. For water in confined

geometry was proven that FS crossover happens at the point which Cp gets it maximum

magnitude, in this confined system the same behavior was noticed. Based on the findings,

the FS crossover temperature is an important property of the liquids and can be used instead

of Tg in the well–known Angell plot to obtain universal behavior for the supercooled liquids.
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Chapter 4

3d Hard Spheres in Confined Geometry

4.1 Overview

The previous chapter demonstrated the usefulness of using the inherent structure distribution

to describe the thermodynamics of the fluid. It also highlighted the important role the defects

play in determining the fragile and strong behavior of the dynamics. This chapter extends the

approach to the study of a quasi–one–dimensional system of hard spheres, which is the three

dimensional equivalent of the two dimensional hard disc system. The study is conducted

over two channel diameter ranges. With Hd/σ less than 1 +
√

3/4, there is just a single

inherent structure corresponding to the most dense jammed state and no stable defects. In

the range, 1 +
√

3/4 > Hd/σ > 1.98, the system has a helical chiral most dense packing and

can form defects that result in the change of the chirality. The three dimensional geometry

makes it difficult to obtain a complete analytical description of the landscape and the packing

properties are examined in terms of defect crystals that consist of regularly spaced defects

throughout the structure and for which some results can be developed. These analytical

jammed packings are compared to the properties of the random amorphous packing formed

in simulations. Finally, the fluid is shown to exhibit an orientational phase transition at

intermediate densities that is driven by the collective packing properties of the spheres.

The chapter is organized as follows: Section 4.2 gives a brief introduction to hard spheres in

confined geometries and the effect of defect in dynamics and thermodynamics. Section 4.2.1

introduces the model. Section 4.3 describes the analysis for fluid thermodynamics and dy-

namics when the channel diameter, Hd/σ, is less than 1 +
√

3/4 and Section 4.4 discuss the

thermodynamics and dynamics when 1 +
√

3/4 > Hd/σ > 1.98. Section 4.5 contains the

discussion and the conclusions are described in Section 4.6.
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4.2 Introduction

Studies of hard sphere packings in cylinders have focused on identifying the most dense

configuration. Pickett et al. [187] used a simulated annealing method that included moves

that allowed particle overlaps at high temperatures to search for the most dense packing over

a range of channel diameters, 1 < Hd/σ < 2.15. They found that with Hd/σ < 1 +
√

3/4,

the most dense packing is an achiral zig–zag configuration that is the same as the most dense

packing of hard discs, for the same range of channel diameters. In the range 1 +
√

3/4 <

Hd/σ < 1 + 4
√

3/7, the most dense structure consists of a single helix, which then becomes a

packing of two staggered helices in the range 1+4
√

3/7 < Hd/σ < 2. AtHd/σ = 2 the packing

consists of an achiral stacking of pairs of spheres. Mughal and Chan [188–190] developed

an analytical approach that involved using a phyllotactic mapping of the particle positions

in the cylinder onto packings of discs in two dimensions. This allowed them to examine the

effect of introducing different types of particle translations in two dimensions, such as an

affine transformation, on the types of possible structures in three dimensions. In all cases,

they showed that the symmetrical packing structures were the most dense packing. Recent

simulations studies using a sequential deposition approach also identified a new packing for

wide channel diameters that involved a mixing of two staggered helices with another distinct

helix instead of the three identical staggered helices [191]. Experimental studies have also

observed the existence of such packing of spheres in microchannels, nanoparticles in block

copolymer microdomains and fullerenes in nanotubes [192–199].

The most dense packing is only one of the inherent structures in the landscape paradigm

and does not provide much information about the system’s liquid state and the glassy struc-

tures associated with them. The complete landscape for hard discs confined in narrow channel

with Hd/σ < 1 +
√

3/4 was calculated in Chapter 3 and [128] and for slightly wider channel

in [88] where the packings were constructed by identifying different local structures, such as

defects in the most dense configuration, that could be combined to form collectively jammed

packings. As the channel becomes wider, the landscape becomes more complex because

more disc–disc contacts are allowed. There appears to be no study of amorphous packings

or defects in the quasi–one–dimensional hard sphere system.

The importance of the defects role on the dynamics in supercooled liquids was originally
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suggested by Glarum [200]. According to this view, the relaxation of an amorphous material

occurs via excitation of defects. Since then, others have explored the role of defects on the

properties of glass forming liquids [201,202], but it remains a significant challenge to identify

what a defect is in an amorphous system. Many have focused on the role of icosahedral

structures in liquids because these do not pack to fill space and may lead to packing frus-

tration [203, 204], but other structures may also be important. For example, a dodecagonal

random square–triangle structure appears to play a role in the defect motion and structural

relaxation of a two–dimensional binary mixture [186] while a variety of structural clusters

have been observed in colloidal mixtures [205, 206]. The facilitated dynamic (FD) mod-

els [51, 56, 57, 207] introduce the idea that the dynamics in supercooled liquids occurs when

excited regions induce mobility in neighboring regions but again, little is known about the

identity of these excited regions. In these defect based approaches, the Adam–Gibbs model is

irrelevant and dynamics of the system is not fully determined by the thermodynamics [208].

Defects also play an important role in the thermodynamics of hard particle systems and

are a key ingredient in the KTHNY theory [209–211] that describes the phase behavior and

melting in two dimensions. The two dimensional crystal is a close packed triangular packing

with quasi–long range translational and long–range orientational order. At high densities,

topological defects appear in the form of dislocations, consisting of pairs of 5– and 7–fold

defects i.e. a 5–7–5–7 defect quartet. These become unbound, forming isolated 5–7 pairs

as the crystal melts to a hexatic phase with short range translational order and quasi–long–

order orientational order, via a continuous, second order transition. KTHNY theory then

suggests that the hexatic phase should melt to the liquid by the unbinding of the dislocations

in another continuous transition. However, there is strong evidence to suggests the hexatic

to liquid transition is first order [212]. These transitions have been found to be valid in a

wide range of 2d systems including hard discs [213, 214], melting in 2d active particles [215]

and melting in quasi–2d [216].

The goal of this work is to explore the role of defects in the dynamics and thermodynam-

ics in the quasi–one–dimensional hard sphere system by understanding the distribution of

inherent structures.
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4.2.1 Model Description

The model studied here consists of N three–dimensional (3d) hard spheres, with diameter

σ, confined in a cylindrical narrow channel of length L with diameter of 1 < Hd/σ < 1.98,

where Hd is channel diameter (Fig. 4.1). The particle–particle and particle–wall interaction

potentials are given by,

U(rij) =

 0 rij > σ

∞ rij < σ
, (4.1)

Uw(ri) =

 0 rxy 6 |H0/2|

∞ otherwise
, (4.2)

respectively, where rij = |rj − ri| is the distance between particles, rxy is the component of

the position vector for a particle perpendicular to the wall and H0 is defined as (Hd − σ).

The volume accessible to the particles centers is πL(H0/2)2 and the occupied volume is

φ = 2Nσ3/ [3LH2
d ]. The center of the cylinder is located at x = y = 0 and extends in the

z direction. The periodic boundary condition is applied to the z coordinate. The system is

studied in two different ranges of channel diameters. In the range of 1 < Hd/σ < 1 +
√

3/4,

where only the first neighbors contact for the spheres and then in the range 1 +
√

3/4 <

Hd/σ < 1.98, where second neighbors contacts also exist.

σ

H
d

z

x

y

Figure 4.1: Schematic of spheres inside a narrow channel. x and y define the transverse directions and
z describes the longitudinal direction along the channel axis. The central axis is taken as x = y = 0.

4.3 1.0 < Hd/σ < 1 +
√

3/4

In d dimensions, a spherical particle is locally jammed if it has at least d + 1 rigid contacts

arranged such that they are not all within the same hemisphere. However, the local jamming

of all the particles in a structure is a necessary, but not sufficient, condition to ensure collective

jamming because the concerted motion of a group of particles may allow the structure to

collapse [27, 217]. The confinement of the present model prevents the spheres from passing
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each other, which eliminates the possibility of collective motions of particles unjamming the

packings. With 1.0 < Hd/σ < 1 +
√

3/4, each sphere can only interact with its nearest

neighbors and the wall. This means each sphere can obtain a maximum of three contacts

which is less that the required contacts for locally jammed structures. As a result, the

system should only be able to form a single jammed structure corresponding to the most

dense zig–zag structure, (see Fig. 4.2) with a maximum occupied volume fraction of:

φJ =
2

3H2
d

√
Hd (2σ −Hd)

. (4.3)

Figure 4.2: Single jammed state for Hd/σ < 1 +
√

3/4 (Hd/σ = 1.80). Two different colors are used
to show the nature of the packings.

4.3.1 Thermodynamics of the Equilibrium Liquids

In this range of channel diameters only the nearest neighbors contacts are allowed, which

makes it possible to take an analytical approach to the calculation of the thermodynamics

properties of the system using the transfer matrix method. A detailed description of the

transfer matrix method is given in Chapter 3 and refs [127,151,154], and here only the main

features concerning its application to 3d will be included. When the x and y positions of the

particles are fixed, the system can be represented as 1d mixture of rods with different contact

lengths. This allows the integration over the z coordinates of the particles to be performed

independently of the integration of the xy coordinates when solving the partition function. As

a result, the solution to the partition function can be represented as an eigenvalues problem

where the largest eigenvalue is used, since, at the thermodynamic limit (N →∞) the largest

eigenvalue dominates. The partition function in the N,PL, T ensemble is given in Eq. 3.10

and the kernel, K for this system is defined as:

K (y1, y2) = 2

∫ π

0

dα exp [−βPLdσ (y1, y2, α)] , (4.4)
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with y1 and y2 being the y–coordinates of two adjacent spheres in contact. α is the angular

separation between spheres centers in cylindrical coordinate space and σ (y1, y2, α) is the

(dimensionless) projection of distances for adjacent spheres along the z–axis and it is a

function of y1, y2 and α:

σ (y1, y2, α) =
{

1−H2
d

[
y1 + y2 − 2(y1y2)1/2 cosα

]}1/2
. (4.5)

In the thermodynamic limit the largest eigenvalue dominates, which gives,∫
dyK (y1, y)ψ (y) = λψ (y1) , (4.6)

where ψ is an eigenfunction. This is solved numerically by constructing a mesh in the

y–coordinate with unit size δy = (Hd − σ) /Nd and angular separation, α, with unit size

δα = π/Nd where Nd is the number of divisions. Here, Nd = 500 was used. Eq. 4.6 then

becomes,

K (yi, yj) = exp [−βPLLz (yi, yj)] , (4.7)

where Lz (yi, yj) =
√

[σ2 − Lyα (yi, yj)
2] and Lyα (yi, yj) = σ (yi, yj, α) δα. The molar Gibbs

free energy, g, is now given by,

βg = ln Λ + ln (βPL)− ln (λ) , (4.8)

and for a given pressure, the volume of the system can be obtained from,

V = (∂g/∂PL)N,T . (4.9)

Fig. 4.3 shows the EOS obtained from this method for different channel widths as a function

of occupied volume along with the simulation results. The figure shows a very good agreement

between simulated and analytical results.

Isobaric Heat Capacity

The isobaric heat capacity is Cp = (∂H/∂T )P . For hard spheres the enthalpy is H =

(3/2)NkBT + PV and

Cp/NkB = 1.5 + PV/NkBT/ (1 + d ln {PV/NkBT} /d ln {φ}) , (4.10)

Since the exact equation of state for our system is available, the heat capacity can be cal-

culated. Fig. 4.4 shows the heat capacity for different values of the channel width. Similar

72



0.0 0.1 0.2 0.3 0.4 0.5 0.6
φ

0

10

20

30

P
V

/N
k

B
T

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.866

Symbols are simulation results
 for N = 5000

Figure 4.3: EOS for different values of channel
widths as a function of density, φ.
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Figure 4.4: Cp/NkB as a function of
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for different values of channel
widths.

to 2d system of hard discs confined in a narrow channel, the system exhibits a maximum in

the heat capacity. However, unlike the 2d case, where there was a number of different inher-

ent structures, this system has only a single inherent structure. For the hard discs system,

Chapter 3 provided a connection between the dynamics and the heat capacity maximum in

the context of the distribution of inherent structures. This might suggest there is a different

origin of the Cp maximum in the present system.

4.3.2 Simulation Methods

The model is characterized as having N identical particles and the event–driven molecular

dynamics (EDMD) simulations [218] have used the canonical (N, V, T ) ensemble, where V is

the total volume of system and T is the temperature. All lengths will be in units of σ and

the units of time in the simulation are σ
√
m/kBT , where kB is Boltzmann’s constant and m

is the mass of the particles, which taken to be equal to unity.

To compare the results obtained from the exact method described above with the simula-

tion, a system with N = 104 was used. At the start of each run, N particles are placed in a

linear lattice with φ = 0.01 and were assigned a random distribution of velocities that were

scaled to give kBT = 1. Depending on the φ studied, 200N − 106N collisions were used to

reach equilibrium and the equilibrium properties, like pressure and the dynamics properties,

were measured over the next 400N − 107N collisions.
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After collecting data for each density, the system was compressed to a higher density using

a modified version of the Lubachevsky and Stillinger [76] (LS) algorithm that ensures Hd/σ

remains constant as the diameter of the spheres are changed (L fixed). A compression rate

of ds = dσ/dt = 0.001 was used. The EOS obtained from simulation matched exactly with

the results from analytical approach (Fig. 4.3).

4.3.3 Relaxation Time

The dynamic properties of the system were measured in a system of hard spheres containing

N = 104 particles starting from φ = 0.01. Depending on the density, 400N − 106N collisions

were used to reach equilibrium. Simulation lengths varied from 200N collisions at low den-

sities up to 107N collisions at high densities, and 8.0× 104 configurations were used at each

φ to calculate the time averages.

The survival probability method used to study the dynamics of the hard discs model

cannot be used here because there is only a single local environment. Therefore, the self–ISF

will be used to measure the structural relaxation time for the system. The self–ISF measures

the translational degrees of freedom for the system using,

Fs (k, t) =
1

N

〈∑
j

exp [ik · (rzj(t)− rzj(0))]

〉
, (4.11)

where rzj(t) denotes the z coordinates of the particle j and the angular brackets denotes

an equilibrium ensemble average. The bracketed term is proportional to the probability of

finding a particle at a distance r from the origin 0 at time t, given that a particle sits at

the origin at time 0. The wave vectors k were defined along the z axis, as k = 2πn/Lz and

integers n were chosen in the range 1− 60.

The self–ISF was calculated at the peak of the first maximum in the structure factor, S(k)

for each density. Figure 4.5 shows the structure factor for different densities as a function of k.

The first sharp peak of S(k) reflects the existence of a dominant nearly regular arrangement

of the particles in real space. Figure 4.6 shows that the F (kmax,t) decays to zero suggesting

the system behaves like an equilibrium fluid for all densities studied.

The relaxation time, τF , is defined via the condition,

F (kmax, τ) = 1/e, (4.12)
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where kmax corresponds to the maximum of the structure factor, and it is the time that it

takes the correlation function to decay to e−1 of its initial value (horizontal dashed line in

Fig. 4.6). Figure 4.7 shows the Arrhenius plot for τF for the case of Hd/σ = 1.80. There is

clearly a change in the dynamics of the system and this occurs at the heat capacity maximum

of the system but the exact behavior is not clear.

In particular, τF does not exhibit a clear linear type behavior after the Cp maximum

making it difficult to determine if the system exhibits a true fragile–strong crossover.

4.4 1 +
√

3/4 < Hd/σ < 1.98

When the channel diameter becomes wider, the spheres are able to contact their second

neighbors. As a result, a particle can have up to five contacts, including four particle–

particle contacts and one particle–wall contact. This is more than the number of contacts

required for local jamming which opens up the possibility that there are different local packing

environments that can be combined to form a range of inherent structures.

It is known that for 1 +
√

3/4 < Hd/σ < 1.98, the most dense jammed structure is a

single chiral helix [187–190]. Figure 4.8 shows the two possible enantiomers with the helix
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Figure 4.7: Arrhenius plot for the relaxation times obtained from self–intermediate scattering func-
tion for Hd = 1.80.

twisting in opposite directions. For the present purposes, the R– and S–enantiomers can be

defined as relative assignments simply to name the two different structures.

4.4.1 Inherent Structure Landscape Description

In the following, a geometrical approach is developed to examine the nature of the jammed

configurations and determine the distribution of the jammed states. The analysis will be

carried out using a channel diameter of Hd/σ = 1.95, but the results are general for channel

widths in the range of 1 +
√

3/4 < Hd/σ < 1.98.

Perfect Helix

Figure 4.9 shows the geometric construction used in two and three dimensional projections.

The first particle is considered to be positioned at a fixed point in contact with the wall.

The addition of the second sphere adds three unknown variables associated with the x, y, z

position of the sphere center. There are two constraint equations, one requires particle one

and two to be in contact at a distance σ and a second that requires particle two be in contact

with the wall. Adding the third sphere will again add three unknowns but in this case there

are also three equations because the particle contacts both particle one and two and the wall.

As a result, there is always one equation less than the number of unknowns and the system

of equations can’t be solved analytically. To overcome this problem, a conditional approach
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Figure 4.8: Two different enantiomers created because of the chiral nature of the structures. Two
different colors are used to show the nature of the packings.

is taken to solve the position of the spheres as a function of the cylindrical angle between the

first and the second spheres, α1. The remaining geometric parameters are then functions of

α1 and the challenge becomes identifying the value of this angle that produces stable jammed

states.

By considering that sphere one is in contact with sphere two and three and also sphere two

is touching sphere three, the following sets of equations can be obtained from Pythagorean

relation and trigonometric relations between parameters which are depicted in the sketch in

Fig. 4.9,

σ2 = a2 + Z2
1 , (4.13)

σ2 = b2 + Z2
2 , (4.14)

σ2 = c2 + (Z1 + Z2)2, (4.15)

a = H0 sin(α1/2), (4.16)

b = H0 sin(α2/2), (4.17)

c = H0 sin(α3/2). (4.18)

Here, a, b and c form the projected triangle that is horizontal to the channel axis, Z1 and Z2

are the vertical lengths that separate particles one and two, and two and three, respectively.

α1, α2 and α3 are the cylindrical angular separations between spheres. Expressions for Z1

and Z2 can be obtained by using Eqs. 4.16 and 4.17 in Eqs. 4.13 and 4.14 respectively.
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Figure 4.9: 3d and 2d illustration of three particles in contact with each other inside a cylinder.

Substituting the results into Eq. 4.15 and using the constraint, α1 +α2 +α3 = 2π in Eq. 4.18

gives,

σ2 =

(√
σ2 − H2

0

2
+
H2

0

2
cos
[α1

2

]
+

√
σ2 − H2

0

2
+
H2

0

2
cos
[α2

2

])2

− H2
0

2
(cos [α1 + α2]− 1) .

(4.19)

This equation could not be solved analytically, therefore, it was solved numerically. Fig-

ure 4.10 shows the contour plot of the solutions. Among all of the contours shown, only the

contour with σ2 = 1 (shown in red) is relevant to the current problem. α1 can take on values

in the range 2.09564–4.18755. There are then two possible values of α2 for a given value of α1

and the smaller value was taken as the physically relevant solution by comparing the results

with the geometries observed in the computer generated packings, which are described in

detail later.

The solutions for α1, and α2 depend on the values of Hd/σ. As Hd/σ → 1 +
√

3/4 the

oval solution contour shrinks to a point with α1 → π so that when Hd/σ = 1 +
√

3/4 there is

a single solution and the system recovers the zig–zag jammed configuration by α1 = α2 = π

(see section 4.3).

As noted eariler, the longitudinal lengths become functions of α1 and α2 and are given by,

Z2
1 +

H2
0

2
[1− cosα1] = σ2, (4.20)
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Z2
2 +

H2
0

2
[1− cosα2] = σ2. (4.21)

Figure 4.11 shows Z1 and Z2 as a function of α1, where physical value of α2 has been used.

The three particle system considered here only resembles a small section of the helix. With

α1 and α2 fixed, the position of the next (fourth) particle is fully determined and is equal to

α1 which then requires the fifth particle to be located at α2. As a result, a complete helix,

with all particles maintaing four particle–particle contacts and one wall contact is formed by

alternating spheres with increments of α1, Z1 and α2, Z2 in cylindrical coordinates. However,

while all the particles satisfy the local jamming condition, they are not necessarily collectively

jammed as α1 can be freely varied. To find the most dense jammed structure it is necessary

to minimize the total length of the jammed structure, or minimize the length per particle,

L

N
=

1

2
(Z1 + Z2) . (4.22)

The solid line in Fig. 4.12 shows that L/N goes through a minimum when α1 = 2.53784, which

is the symmetrical structure with α1 = α2. This suggests all the unsymmetrical configurations

that satisfy the local jamming criteria are unstable with respect to a compression that causes

a collective twisting of the helix until the symmetrical structure is obtained. The most dense

perfect packing of the helix obtained here has a φJ = 0.416404, which is consistent with the

simulations results obtained by Pickett, Mughal and Chan [187–190] .
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Defects and Defect Crystals

To generate new jammed structures, it is necessary to introduce topological defects into the

perfect helix that change the local chirality of the structure by switching the direction of the

twist. The geometric construction for the defect is described in Fig. 4.13. With particles one

and two fixed as before (i.e. separated by α1, Z1), the third particle is placed at angle π and

a distance Zd. Particles two and three do not actually contact and they only become locally

jammed once the fourth particle is added with an angle α1, rotating in the opposite direction

so that it establishes a contact with particle two. The defect particles, two and three, have

three sphere–sphere contacts and one sphere–wall contact, while the remaining particles have

the same structure associated with the perfect helix. The defect angle π replaces α2 in the

structure and Fig. 4.14 shows a comparison of the perfect and defect configurations. If the

R and S notation is used to describe the chirality of local sections of the helix in a jammed

structure, then a jammed structure containing defects can be described as a linear sequence

of R and S where the defects form the interface between the different sections. In a system

with periodic boundaries, defects must necessarily appear in pairs so that the chiralities at

the boundary match. Figure 4.15 shows a section of a jammed packing containing a single

defect in the center.

If it is assumed that the angle α1 is the same on both sides of the defects, then it is
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Figure 4.15: The defect type structures will be created when two jammed states with different local
chiralities come into contact.

81



possible to show that,

Zd =

√
σ2 − 1

2
H2

0 (1 + cosα1)− Z1. (4.23)

Figure 4.11 shows that the defect length is longer that Z2 so that the density of the structure

decreases with the inclusion of defects. However, at α1 = 2.09564, Zd = Z2 and the two

defect particles come into contact. It is not possible to move to lower values of α1 without

causing particle overlap.

The effect that the defects have on the global structure of the packing and on the packing

density, φJ , can be explored by constructing defect crystals that consist of alternating sections

of R and S helices of the same length. By requiring the defects to be equally spaced, each

section of helix can be expected to be identical in structure, except for its chirality, so that

all the values of α1 will be the same, which satisfies the assumptions of Eq. 4.23. Since Zd

simply replaces Z2 when a defect is introduced, the length per particle in a defect crystal is

given by,
L

N
=

1

2
(Z1 + Z2) + θ (Zd − Z2) , (4.24)

where θ is the fraction of defects. Figure 4.16 shows L/N as a function of α1 for defects

crystals with different θ. With θ = 0, the structure is the perfect helix and the minimum

appears at α1 = 2.53784 as expected. However, as θ increases, the value of α1 that minimizes

L/N moves to lower values. This means that the jammed structures containing defects are no

longer symmetrical so that α1 6= α2. It also suggests that the angles in the helical structure

are determined by how far the defects are apart. This should be compared with the two

dimensional case, where the presence of the defect had no influence on the properties of the

most dense local packing environment (See Fig. 4.11 for the vertical lines that shows different

defect fractions).

The packing density can be obtained using the following equation:

φJ =
2Nσ3

3H2
dL

, (4.25)

where L/N is given from eq. 4.24. The packing fraction for ordered defects is dependent on

the fraction of defects, θ, and the angular separation, α1. Figure 4.17 shows a contour plot

of packing fraction dependency on θ and α1. At each defect fraction, the system finds the

maximum packing fraction and samples that configuration at jammed packing (black line in

the figure). When the defect fraction is above θ = 0.303 the length of the defect state no
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longer changes and all of the crystal configurations containing a defect fraction above that

point will have the same density. Figure 4.18 shows φJ for the ordered defect states as a

function of defect fraction, θ.

Distribution of Jammed States

As described, the defect can replace any Z2 in the structure. If there are N particles and M

defects, it becomes a simple combinatorial problem of finding the number of ways of putting

the M defects amongst the N/2 sites. Therefore, to count the number of jammed packings

with a given defect fraction, the following equation can be used:

NJ (φj) =
(N/2)!

M ! (N/2−M)!
. (4.26)

As a result, the entropy of the jammed configurations is given by:

SJ/NkB = (1/N) lnNJ (φj) = (1/2) ln (1/2)− θ ln θ − (1/2− θ) ln (1/2− θ) . (4.27)

Here, SJ count the number of jammed packings at a given defect fraction. To calculate the

maximum of the jammed structure entropy, derivative of the SJ/NkB calculated as,
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∂SJ/NkB

∂θ
= ln

[
1

2
− θ
]
− ln [θ] , (4.28)

and equating this to zero gives θ = 0.25. Figure 4.19 shows SJ/NkB as a function of θ.

This shows that the number of jammed packings go through a maximum at θ = 0.25 and

there are only single jammed structures at θ = 0 and θ = 0.5 as the most dense and least

dense structures respectively. The configurations associated to these structures are depicted

in Fig. 4.20. In this figure, “a” is the most dense packing with θ = 0 which is the symmetric

helical packing and “b” is the least jammed state with θ = 0.5.

Molecular Dynamics Simulations of Jammed States

To confirm the analytical results described above, a series of MD simulations were also

performed. A series of defect crystals, with a given θ were created by placing particles

in increments of α1, Z1 and α2, Z2 and defects with π, Zd ensuring the defects are equally

spaced. Periodic boundaries were also used. These configurations were then decompressed

slowly using MD until the particle rearrangements began.

Free volume equation of state [174,219] is given by,

p =
PV

NkBT
=

1

δ
=

d

1− φ/φJ
, (4.29)

requires that the system stays at a single inherent structure and the particles vibrate around

84



0 0.1 0.2 0.3 0.4 0.5

θ

0

0.1

0.2

0.3

0.4

S
J
/N

k
B

Figure 4.19: Distribution of jammed packings as a function of defect fraction.

(a) (b)

Figure 4.20: Configuration with θ = 0 (a) and configuration with θ = 0.5.
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Figure 4.21: The Free Volume EOS for the systems of jammed states.

the lattice point associated with their position in the inherent structure.

The equation can be used to give an estimate of φJ ' φ/ (1− d/p) of the jamming density.

Figure 4.21 confirms the validity of the free volume EOS for the jammed packings that were

created using the geometrical approach for different ordered defect configurations in normal

and log–log scale. The slope of the lines are consistent with dimensionality of the system

and the jammed densities, φJ , are consistent with the calculations.

To check the geometrical properties of the jammed configurations, a similar method was

used. However, the configuration decompressed to lower densities was stopped before the

system collapsed. The configurations were then compressed back to their jammed density

until the pressure diverge. The final jammed configurations from MD simulations were used

to measure the geometrical properties of the particles. Figure 4.22 shows the results obtained

from geometrical approach and simulation. The solid lines show the results of the geometrical

approach. The lengths are shown as a function of number of particles in the defect gaps,

NPDG. The small value of NPDG means high defect fraction and vice versa. As described

above, when the defect fraction is θ ≥ 0.303, the length of the defect can not increase and as

a result Z1, Z2 and Zd stay the same. The results from the simulation of ordered defects are
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Figure 4.22: Length analysis for Z1, Z2 and Zd as a function of number of particles in the gaps
between defects, NPDG. The solid lines are the results from geometrical approach, big symbols are
the values from simulation of ordered jammed configurations and small symbols show the values for
amorphous packings from simulations.

shown with big symbols in this figure and they matched with the geometrical results.

To study how the system explores the landscape and generates random packings, MD

simulation was used to compress low density configurations to their jamming point, with

different compression rates. The MD simulations started with N = 104 particles at low

density, φ = 0.01, and the system was compressed to its jammed configuration using the

LS method with different compression rates in the range dσ/dt = 0.0005 − 0.3. At high

compression rates the system falls out of equilibrium quickly and became jammed at lower

densities. The process was repeated using 20 different initial starting configurations. It is

should be noted that at very fast compression rates the LS method is not able to create

jammed configurations. The free volume EOS method was used to check the stability of the

jammed states. As the compression rate is decreased, the fluid remains in equilibrium longer

and becomes trapped in a glass with a higher φJ and if the system compressed infinitely slow

φJ → φJ max. The jammed configurations obtained from this method are amorphous jammed

packings and they do not contain any order in the position of the defects.

As discussed above, three different types of structures exist in the jammed states for

87



0.39

0.40

0.41

0.42

 φ
J

10
0

10
2

10
4

10
6

(dσ/dt)
-1

0.00

0.10

0.20

 θ

Figure 4.23: Jammed density of the system at different compression rates (top figure) and the defect
fraction of the jammed states at different compression rates (bottom figure). The dashed lines are
guides to the eye.

this system, locally R, S and the defect states. The main difference between these three

configurations is their local chirality. R and S have opposite local chiralities and the defect

state is achiral. The identity of the local configuration can be determined by considering

the volume of the tetrahedron, ∆imnj, formed by four consecutive particle centers along the

channel, for atoms i,m, n, j, calculated using the position vectors relative to particle i. The

planar geometry of the defect located between m and n means that ∆imnj = 0. On either

side of the defect, the volumes take on opposite signs.

The fraction of defects at different compression rates is shown in Fig. 4.23 (bottom figure).

As expected, at fast compression rates the system does not have enough time to eliminate

defects and a high fraction of defects get trapped in the configuration. At low compression

rates the system eliminates the defects to become jammed with higher density. The φJ and

θ for different compression rates are shown as black symbols in Fig. 4.18.

The length analysis for Z1, Z2 and Zd can be obtained for these amorphous packings

as a function of different defect separations. The results are shawn in Fig. 4.22 with small

symbols. The values of Z1 and Z2 generally follow the ordered defect packings, but the values
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of Z1 from amorphous packings are slightly higher than the ordered packings and in case of

Z2 are smaller than the ordered defects. The Zd has higher values comparing to the ordered

defects. This is not a surprise, since in the amorphous packings the two sides of the defect

state are different. In the ordered defect structures, the defect separations are always the

same.

Even though the analytical approach requires the number particles for separating defects to

be even, in the amorphous jammed packings exhibit odd values ofNPDG at higher separations.

This could be a sign of the limitation of the MD in generating perfect jammed states, or an

indication of the existence of a new set of solutions for the jammed structures using odd

NPDGs.

4.4.2 The Equilibrium Fluid

The transfer matrix method can not be used for this range of channel diameters because

of the second neighbor contacts. However, molecular dynamics simulations can be used to

obtain the thermodynamics and dynamics properties of the system. In the following, a series

of event driven MD simulations will be discussed.

Thermodynamics of the Equilibrium Fluid

The event driven MD simulations are carried out in the canonical ensemble (N, V, T ), using

N = 104. Simulations were started from a dilute configuration with φ = 0.01. At each density,

(200− 106)N number of collisions were used to reach equilibrium and (400− 107)N number

of collisions were used to collect data. Then the system compressed using the LS scheme to

the next density. The process was repeated using 20 different initial starting configurations.

Figure 4.24 shows that the EOS obtained for the case of Hd/σ = 1.95 varies continuously

and there is no signs of a first order phase transition for the system. Figure 4.25 shows the

results obtained for Cp/NkB calculated using Eq. 4.10. The Cp exhibits two maxima. The

first maximum, which is a broad peak, occurs at intermediate densities, is then followed by

another sharp peak at higher densities, or lower temperatures.
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Mapping Configurations to Inherent Structures

A method of identifying different chiralities in a configuration is described in Section 4.4.1.

A similar method was used to map the equilibrium fluid configurations to their inherent

structures. However, in the fluid state the defects do not necessarily adopt a perfect planar

arrangement so that ∆imnj 6= 0. To overcome this, the product of two successive tetrahedron

volumes, ∆imnj ·∆mnjk < 0 indicates the presence of a defect since the volumes must change

sign as the helix changes chirality. Tetrahedra with the same chirality give ∆imnj ·∆mnjk > 0.

Figure 4.26 shows θ as a function of φ for a system with Hd/σ = 1.95. The red symbols in

this figure shows the measurements of the defect fraction in case of including unstable soft

modes caused by neighboring defect, which are unstable into consideration. However, the

local unstable modes associated with neighboring defects cannot be represented in the true

inherent structures and should be eliminated. The results for the defect fractions without

the soft modes are shown with black symbols in the figure. The ideal gas state of the system

samples the inherent structures with defect fractions equal to the maximum of the inherent

structure distribution (θ = 0.25). θ initially remains constant at low densities before it

decays to another plateau at intermediate densities. Finally, θ decays rapidly to zero at

high densities.The system falls out of equilibrium at a density and becomes trapped at a

glassy state with a fixed number of defects. The saddle point index, η, is shown at different

densities in Fig. 4.27. The concentration of the saddles decreases and shows a plateau at
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intermediate densities and finally vanishes at high densities. The linear extrapolation at high

density would locate the position of φd ∼ 0.38. After this density, the defects become rare.

After φd the defects get isolated and the dynamics of the system will be dependent on the

activated processes in the system. Figure 4.28 shows the space–time plots for the system at

six different densities. The red and blue colors correspond to the local R and S chiralities

respectively and the black color is the defect state. At low densities the two different local

chiralities are mixed randomly. The defects move freely and constantly interact causing

the color of a given particle to change rapidly with time as it moves from R to S helix

configurations. At intermediate densities, where the first heat capacity maximum occurs, the

the R and S sections increase in length but still the defects are not isolated. However, at the

second Cp maximum, the system rapidly eliminate the defects, which leads to stable sections

of R and S. After the Cp maximum, the defects are isolated and it takes long times for the

defects to annihilate or create. When the system is trapped in a glassy structure the defects

are almost stable.

4.4.3 Relaxation Time

To study the relationship between the packing landscape and the dynamics of the fluid,

the structural relaxation times for the system were calculated over a range of φ, using two

different methods. All simulations used N = 104 particles. Starting from φ = 0.01, between
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Figure 4.28: Representative trajectories in the system. The vertical axis is space measured in particle
number, the horizontal one time. The six trajectories are for very low density, φ = 0.01, before first
heat capacity maximum, φ = 0.24, after first heat capacity maximum, φ = 0.25, before the second
heat capacity maximum, φ = 0.37, after the second heat capacity maximum, φ = 0.38 and at glassy
configuration, φ = 0.39. Configurations with R local chirality are red, and configurations with S local
chirality are blue and the defects are black.
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400N − 107N collisions were used to reach equilibrium, then relaxation times were measured

with simulation lengths that varied from 200N up to 107N , depending on the occupied

volume fraction. 8× 104 equally spaced configurations were sampled at each φ.

Self–Intermediate Scattering Function

The details of the relaxation time measurement using self–ISF are given in section 3.6.3 and

4.3.3. For this channel diameter range the same approach was taken. Figure 4.29 shows the

evolution of structure factor, S(k), for the system at different densities. For the 2d narrow

channels, the relaxation time of the system was related to the fragile–strong crossover which

occurred at the heat capacity maximum. Therefore, the two densities of the heat capacity

maximum are shown in red in the figure. The emergence of the first peak, at small k,

which corresponds to longer ranges reflects the growth in real space of the regular helical

arrangements of the particles associated with the most dense packing. In particular, a rapid,

but still continuous, shift of the peak to larger k at φ near the first Cp maximum.

The structural relaxation time for the system then was measured using the self–ISF method

at the first maximum in S (k) (refer to section 4.3.3 for more details). The structural relax-

ation time, τF was measured when the self–ISF decays to e−1. Figure 4.30 shows the τF for

Hd/σ = 1.95 as a function of φPV/NkBT . At high φ (equivalent to low temperatures) the

system shows a linear increase in the relaxation time as 1/T which is characteristic behavior

of the Arrhenius and “Strong” supercooled liquids. This dynamics behavior change happens

at the Cp maximum. At low densities, however, because of the structural evolution of the

system a decrease in the relaxation time occurs and the behavior is less clear. It is worthwhile

to mention that this strange behavior corresponds to the first heat capacity maxima.

Survival Probability

Furthermore, the relaxation time was measured using the survival probability of the local

environment of the particles in the inherent structure. The volume of tetrahedrons described

earlier was used to identify the local environments in the configurations. The survival prob-

ability is an integrated relaxation time and defined as following [220]:

τ =

∫ ∞
0

R (t) dt. (4.30)
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Here, R (t) is the fraction of unchanged configurations at time t with respect to their initial

configurations at time t = 0. R (t) decays in the same way as F (k, t), except in this case

the behavior of the relaxation at different densities is more evident and does not contain the

strange behavior.

Figure 4.31 shows the relaxation time measured using this method along with Arrhenius

and parabolic [17,175] fits to the data. The Arrhenius equation fits the data at high densities

and parabolic equation fits well when restricted to the data between two Cp maximum and

gets worse when the whole data range used. This suggests the high density Cp maximum

corresponds to the fragile–strong fluid crossover [127]. The fragility parameter [11] for the

data was measured by applying the centered differences scheme to the relaxation data and

Fig. 4.32 shows the results. At low densities, the fragility parameter, mf , initially increases

rapidly, before crossing over at the first Cp maximum to a linear increase that finally ends by

a plateau at high densities, confirming the crossover to Arrhenius behavior. The crossover

from super–Arrhenius behavior to Arrhenius behavior occurs at the second Cp maximum.

4.4.4 Orientational Order Parameter

The origin of the second heat capacity maximum for this system was determined to be

the fragile–strong crossover, but the origin of the first heat capacity maxima still remains

unsolved. The defect fraction as a function of density does not show a significant change by

94



0 5 10 15 20
φPV/Nk

B
T

-2

0

2

4

6

8

ln
 (

 τ
)

H
d
/σ = 1.95

Parabolic fit
Parabolic fit
Arrhenius fit

0 0.5 1 1.5
-1.5

-1

-0.5

Figure 4.31: Arrhenius plot for the relaxation
times for Hd = 1.95. The dashed lines represent
parabolic equation fits to the data in the fragile
region. The solid line is the Arrhenius fit to the
strong fluid region.

0 5 10 15
 φ PV/Nk

B
T

-0.2

0.0

0.2

0.4

0.6

0.8

d
ln

( 
τ)

/d
(φ

P
V

/N
k

B
T

)

H
d
/σ = 1.95

Linear fit

Figure 4.32: The derivation of the logarithmic
relaxation time τ is plotted against 1/T for
Hd = 1.95.

passing the first Cp maximum, even though it plateaus. Therefore, since the system creates

helical packing at the jammed density, the orientational order for the system is measured.

Using the local orientational bond order ψ6. This quantity was first introduced by Nelson

and Halperin [221] to study the order of 2d systems. For this range of channel diameters,

the helical structures are created by equilateral triangle that are wrapped into the cylinder

which represents the hexagonal packings of the jammed configurations in 2d hard discs and

makes it possible to use ψ6. It is given by [213,222],

ψ6j = exp [6iθijk] , (4.31)

where θijk is the angle of the bond between particle i and its neighbors j and k . ψ6 = 〈ψ6j〉,

where the average is over all the particles configurations. Figure 4.33 shows that the local

orientational order around a particle increases as a function of φ for different system sizes.

The subsystem analysis method [223,224] was applied to obtain the data for different system

sizes. ψ6 has a finite value less than unity at low densities and increases as the densities

increases toward the jammed packing.

To characterize the long range orientational order, the correlation function,

g6 (r) =
〈
ψ∗6jψ6k

〉
, (4.32)

was measured, where r = |zj − zk| is the separation between particle j and k in the z–
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coordinate. Figure 4.34 shows that the orientational correlation function g6 (z) persists over

long ranges and exhibits a long–range order, however, at low densities this decays rapidly.

Bond orientational order susceptibility [225] is calculated to characterize the fluctuations

in orientational order,

χ6 (L) = V
〈
|ψ6|2

〉
− 〈|ψ6|〉2 , (4.33)

where 〈.〉 represents the time average. This equation gives the value of the susceptibility in

a finite system size, L, but the susceptibility in the thermodynamic limit χ6 (∞) has more

importance. However, an estimate of χ6 (∞) can be obtained using finite size scaling and

measuring the χ6 (L) at different system sizes and extrapolating L → ∞ [223]. Figure 4.35

shows the χ6 (L) as a function of density for different system sizes. It can be seen that

χ6 (L) increases with increasing subsystem sizes. The data for the largest subsystem size is

subject to a considerable scatter because the statistics deteriorate as the subsystems become

larger [226]. Therefore, these data will not be included in the extrapolation procedure. The

susceptibility divergence has been used previously to identify 2d melting phase transitions in

simulations [226–229] and experiments [230]. The orientational crossover is consistent with

recent experimental study [192] on the thermoresponsive microgel particles.

The finite size scaling [223,231–235] can be used to obtain an estimate of the susceptibility

χ6 (∞) in the thermodynamic limit. This can be done by extrapolating the peak heights

χ6(max) of the distributions shown in Fig. 4.35 with respect to the system size. The power
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law fit to the peak heights [112,236] using,

χ6(max) (L) = cLz, (4.34)

where, χ6(max) (L) is the maximum value of the susceptibility for different subsystem sizes

and c is a constant value and z is the correlation length critical exponent. Figure 4.36 shows

data obtained along with the power law fit and demonstrates that the peak height approaches

its limiting asymptotic value as a power law in L.

To find the transition density, the power law fit to the position of the susceptibility maxima

is obtained using the following equation,

φc (L) = φc (∞)− cL−1/ν , (4.35)

where φc (L) is the critical (transition) density at subsystem size L and φc (∞) is the critical

density at thermodynamics limit (L→∞) and c and ν are constant parameters. Figure 4.37

shows the result of density at the peaks positions as a function of subsystems length. Equa-

tion 4.35 fits the data well and the critical density is calculated to be φ = 0.24(0). Figure 4.38

shows the linear fit for the data in Fig. 4.37.

This analysis suggests the existence of a higher order orientational transition in the system

at a density which is consistent with the first heat capacity maximum.
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4.5 Discussion

The physical picture that arises from the current work is very similar to that of the 2d hard

discs confined in a narrow channel. However, in this model the orientational order transition

arises from the helical nature of the jammed structures. The defect states are playing a major

role in the dynamics and thermodynamics of the current model.

The melting mechanism of a bulk two–dimensional hard disc system involves two steps:

first at high densities, the system undergoes a continuous phase transition from a crystal with

quasi–long–range positional order and long–range orientational order, to the hexatic phase

with quasi long range orientational order and positional disorder; the second phase transition

happens from hexatic phase to liquid phase with no order in their position and orientation.

However, it has been shown that in one-dimensional equilibrium system with short range

interaction, phase transitions do not occur. Because the thermal fluctuation in the 1d system

destroys any long range order [237, 238]. If a system has long range interactions it can

have phase transition [239–248]. For example, the Ising model with long–range Hamiltonian

decaying with distance as J (r) ∼ r−1−σ has been well studied and it has been demonstrated

that the system orders at low temperatures [242,246].

The question then arises: How does a quasi–one–dimensional hard sphere system exhibit

a phase transition? As shown in Fig. 4.22, it is the distance that separates the two defects
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at the end of a section of helix that determines the distances, Z1, Z2, Zd and angles α1, α2

for that section, in the jammed configurations. In the fluid, particles in a section of helix

vibrate around these positions until the defect moves causing them to adopt the new inherent

structure positions associated with the new defect separation. This results in an effective long

range interaction between the defects that arise out of the collective properties of the system.

Since this interaction is long ranged, the restrictions of van Hove and Landau no longer apply,

which means this quasi–one dimensional model can exhibit a phase transition, even though

pair interaction is short ranged. This is the same entropic driving force [249] that causes the

bulk hard sphere system to freeze [63]. However, the entropic advantage to having defects

in the quasi–one–dimensional system prevents the formation of a solid phase. As a result,

the system forms an orientationally ordered fluid containing defects, similar in nature to the

hexatic phase except that the defects are never bound.

The system at low densities contains a high concentration of defects and shows a super–

Arrhenius behavior, which suggest it is a fragile fluid. After the phase transition, the ori-

entationally ordered fluid remains fragile while there are a large number of defects. At high

densities, the concentration of defects decreases the the fluid exhibits strong fluid, Arrhe-

nius behavior. Different systems [119–125, 127] have been shown to exhibit a fragile–strong

crossover located at the Cp maximum and the current model also provides another example.

To construct the full jamming phase diagram for the system, the compression study is

carried out over the range of channel diameters 1 < Hd/σ < 1.98. When the system is

compressed slowly, it stays in equilibrium longer and samples deeper basins before becoming

jammed at a density that is close to φJ max, but when the system is compressed rapidly, it

falls out of equilibrium quickly and the jammed density is lower. As stated above, when the

system is restricted below Hd/σ < 1 +
√

3/4 there is only a single inherent structure for

the system and regardless of how fast or slow the system is compressed, it ends up with the

same jammed density. However, above Hd/σ > 1 +
√

3/4, the system has multiple inherent

structures with a distribution of jammed densities and depending on the compression rate

the system ends up being in a different basins having a different density.

The positions of the Cp maxima are also shown in the Fig. 4.39 for different values of

the channel diameter. At very narrow channels (Hd/σ < 1 +
√

3/4 ) there is only a single

maximum but at wider channels, the second maximum appears. The Cp maximum at higher
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densities and wider channels corresponds to the fragile–strong crossover that results from the

existence of multiple inherent structures and the effect defects have only dynamics. How-

ever, the first heat capacity maximum in the system corresponds to the orientational order

transition in the system. The heat capacity maximum in the narrow channels appears to be

a correlated to the orientational order transition in the wider channels since they terminate

at the same point.

4.6 Conclusion

In Chapter 3, a complete inherent structure landscape for system of hard discs confined in

a narrow channel was introduced and the connection between the dynamics and the ther-

modynamics explored. This section included an extension of this idea to 3d and a more

complicated system. Two different cases were studied and the connection of thermodynam-

ics and dynamics explored.

The complete inherent structure landscape of the system was studied analytically and

numerically, and the connection of it to the fluid phase explored. The helix pitch and the

packing density of the jammed structures varies with the number and distribution of the

defects. It was shown that the system exhibits a continuous phase transition from an isotropic

fluid to a translationally disordered, but orientationally ordered helical fluid at intermediate

densities.

The system exhibits heat capacity maxima and the origin of them were connected to the

continuous phase transition and fragile–strong crossover phenomena.
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Chapter 5

Diffusion in confined geometry

5.1 Overview

In Chapter 3 the detailed description of the thermodynamics of hard discs confined in narrow

channel was discussed and the relaxation time of the system was measured. In this chapter,

the dynamics of the same system will be studied using the mean squared displacement and

the diffusion coefficient will be calculated. A connection between the dynamics and ther-

modynamics in context of the diffusion coefficient will be explored. In addition, scaling of

the dynamics behavior of the system will be highlighted using an effective diameter concept.

Section 5.2 gives a brief introduction to the diffusion in confined geometries. Section 5.3

describes the simulation techniques used to measure the diffusion coefficient. Section 5.4 dis-

cusses the transport properties in one dimensional systems and highlights the excess entropy

scaling approach. Finally, Section 5.5 describes the conclusions.

5.2 Introduction

With recent advances in nanotechnology and the ability to produce nano–materials, there is

considerable interest in understanding the transport of fluids inside them. Fluids in highly

confined systems such as carbon nanotubes, zeolites and ion channels in biological membranes

often follow single–file diffusion (SFD) in which particles cannot pass each other and the

diffusion is constrained in one dimension. The transport coefficients (D) of a fluid can be

calculated from the long time behavior of the mean squared displacement (MSD) which is

generally given by the Einstein relation:

〈
(x(t)− x(0))2〉

SFD
∝ αl(Dt)γ, (5.1)
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where α depends upon the distribution of jumps in the basic motion, and l is the “free volume”

along the x axis per particle and γ is a variable [250]. In bulk fluids and single file systems

exhibiting deterministic dynamics (normal SFD), γ is equal to 2 in short time limits due to

ballistic motion. In the long time limit, γ becomes equal to 1 and 〈∆x2 (t)〉 = 2Dxt. In a

single file system experiencing Brownian motion (anomalous SFD), the MSD increase is linear

in t for very short times γ = 1 and in the long time limit the MSD becomes proportional

to the square root of time, 〈∆x2 (t)〉 = 2Fxt
1/2, where the mobility factor F replaces the

diffusion coefficient. The current study focuses on case of normal diffusion.

One of the challenging tasks in the field of condensed matter is to find a relationship

between the transport coefficients of a fluid and its equilibrium thermodynamics properties.

Rosenfeld [251] proposed a relation between the transport coefficient of dense fluids and the

internal excess entropy (sex) that was later expanded to consider dilute fluids [252]. Dzugutov

[253] used molecular dynamics simulations to suggest a relationship between the structure

of a fluid and the equilibrium rate of atomic diffusion. He proposed that the normalized

diffusion coefficient D∗ (which is defined as D∗ = DΓ−1
E σ2, where ΓE is an effective Enskog

inter–particle frequency) is proportional to the exponential of the excess entropy. Bretonnet

[254] has tried to expand Dzugutov’s work by proposing a semi–empirical expression for the

D of simple fluids over a large range of density. Mittal et.al. [255] have tested a relationship

between the structure, entropy and diffusivity for two dimensional (2d) and one dimensional

channels and have studied the effect of confinement on dynamics. Also, Truskett et al.

[256–261] introduced an excess entropy scaling by considering the spatial density distribution

for confined systems.

Based on the previous studies, wider channels and bulk systems exhibit, a one–to–one

relationship between the diffusivity and the excess entropy over a broad range of thermo-

dynamic conditions, but highly confined channels exhibit noticeable deviation from bulk

behavior [262]. Instead of mapping the behaviors of narrow channels into bulk systems, the

strategy employed in this study is to use the purely one dimensional system as a reference

where the exact analytical solution for the diffusivity is known.
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5.3 Simulation Methods

Here a system of two-dimensional hard discs of diameter, σ, confined between parallel hard

lines separated by a distance Hd is considered. The channel length in the longitudinal di-

rection is L and the two ends obey periodic boundary conditions. All lengths will be in

units of σ. The model is characterized as having N = 30000 identical particles and we have

used event–driven molecular dynamics (EDMD) simulations [218] in the canonical (N, V, T )

ensemble where V is the total volume of system and T is the temperature. Units of time in

the simulation are σ
√
m/kBT , where kB is the Boltzmann constant and m is the mass of a

particle which is set to unity.

At the start of each run, N particles were placed in a linear lattice with a packing fraction

φ = 0.1 (φ = Nπσ2/4V ) and were assigned a random distribution of velocities that were

scaled to give kBT = 1. At each φ studied, 200N collisions were used to reach equilibrium

and the diffusion coefficient, D, was measured in the next 400N collisions. During this time,

the particles coordinates were saved 80 times, separated by 5N collisions. After collecting

data for each density, the system was compressed to a higher density using a modified version

of the Lubachevsky and Stillinger [76] (LS) algorithm that ensures Hd/σ remains constant

as the diameter of the discs is changed (L fixed). A compression rate of ds = dσ/dt = 0.001

was used.

5.4 Results and Discussion

5.4.1 Transport in One Dimensional Systems

The self–diffusivity of the fluid was obtained by fitting the long–time behavior of the average

mean–squared displacement (MSD) in the longitudinal direction of the channel (z axis) for

the particles into the Einstein equation (eq. 5.1). Figure 5.1 shows MSD as a function of time

for the case in which Hd/σ = 1.1 at different densities (starting from φ = 0.1 up to φ = 0.5

with steps of 0.02). One of the difficulties associated with finding D in narrow channel is

finding the correct place to extract it from the MSD plot. As it is clear from figure 5.2, γ

changes as a function of time. It is essential to find a place in which the slope is equal to

unity. Here, channel widths of 1.1 < Hd/σ < 1 +
√

3/4 were studied to ensure that only
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nearest neighbor can interact. This also prevents the particles from passing each other.

One of the challenging features associated with dynamics is how it is connected into

thermodynamics. Figure 5.3 shows the diffusion coefficient for the system at different values of

the channel width. In general, as the system increases pressure and becomes more dense and

the diffusion coefficient decreases. Necessarily, D → 0 as PV/NkBT →∞. But interestingly,

the plateau in the EOS (see Fig. 3.5), which signifies a continuous structural transition from

a linear to more zig–zag fluid structure, is mirrored in the plots of the diffusion coefficient.

This suggest a strong connection between thermodynamics, structure and dynamics.

The exact equation for diffusion of particles in a purely one dimensional (1d) systems has

been solved by Jepsen [263] and is given by:

D

σ
=

(1− φ)

φ (2πβm)1/2
, (5.2)

where β is [kBT ]−1. Here φ = Nσ/L (V = L) in purely 1d.

For purely 1d systems, the exact EOS is PV/NkBT = φ/ (1− φ), so the pressure diverges

as close packed at φ = 1 is approached. A similar scaling in quasi 1d would be

D

σ
=

(φJ − φ)

φ (2πβm)1/2
, (5.3)

where φJ is the jammed density that system samples at each density, which is given based
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on the defect mole fraction as,

φJ =
π

4Hd

(
θ + (1− θ)

√
Hd (2σ −Hd)

) . (5.4)

Figure 5.4 shows the predictions of Eq. 5.3, by where Eq. 5.4 has been used and the values

of θ were obtained from the theory and simulations described in sections 3.5.1 and 3.6.1.

The exact EOS for the quasi–1d system was solved by Kofke and Post [151] using a

transition matrix approach and was described in section 3.5.1 of this thesis.

In a sense, this is equivalent to projecting system to on 1d and finding the average diameter

σN that maximize the entropy at a given density of the fluid (Fig. 5.5). Therefore, σN can

be extracted from EOS and used instead of σ in Eq. 5.2:

σN =
1

N

N∑
i

σi, (5.5)

and the effective occupied volume fraction can be defined as:

φeff =
NσN

L
. (5.6)

To obtain an expression for φeff, it is assumed that the 1d EOS will hold, giving,

PV/NkBT =
1

1− φeff

, (5.7)

then φeff can be written as:

φeff =
PV/NkBT − 1

PV/NkBT
, (5.8)
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by substituting eq. 5.6 into 5.2, the diffusion coefficient can be obtained:

D

σN

=
(1− φeff)

φeff(2πβm)1/2
. (5.9)

This final equation can be used to calculate the diffusion coefficient at different values of

channel width. Figure 5.6 shows eq. 5.9 by using simulated data for the diffusion coefficient

at different values of channel width compared to exact analytical results for 1d system. The

plot shows that the collapse of the data is very good at high densities but it is not perfect

at lower densities. This suggests φeff provides a good thermodynamic connection through

the equation of state, to 1d diffusion. The deviation at low densities may be related to a

broad distribution of effective diameters at low densities, which the average effective diameter

extracted from EOS is not accurate.

5.4.2 Excess Entropy Scaling

As discussed before, earlier studies provided evidence that the scaling laws could indeed ad-

equately describe the behavior of the dense, equilibrium fluid. Rosenfeld scaling predicts

an approximate relationship, DR ≈ 0.58 exp(Asex), between the reduced diffusion coeffi-

cient, DR = DT−1/2ρ1/3 (ρ is number density), and the excess entropy per particle, sex, for

dense equilibrium fluid. The parameter A is a constant number for different model fluids.

Dzugutov’s scaling is given by DD ≈ 0.078 exp(sex), and it relates a slightly different reduced
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self–diffusivity, DD = Dρ2/3Γ−1
E , to the excess entropy per particle.

The excess entropy calculated for each channel diameter from it’s equation of state using,

sex =

∫ φJ

0

PV/NkBT − 1

φ
dφ. (5.10)

In addition, for a purely one dimensional system, the excess entropy with respect to the ideal

gas can be obtained from:

sex = ln(1− φ), (5.11)

and from Eqs. 5.9 and 5.11, the diffusion coefficient based on the excess entropy for quasi

one dimensional system can be express as:

D = (σN/φeff) (2πβm)−1/2exp (sex) . (5.12)

This gives an equation connecting excess entropy to the diffusion coefficient. Figures 5.7 and

5.8 illustrate the variation of diffusion coefficients for different values of channel widths as

a function of the excess entropy obtained from the two different methods calculated from

Eqs. 5.10 and 5.11 respectively.

5.5 Conclusion

Simulations for dimensionless transport coefficients of fluids have a proven relationship with

excess entropy, for bulk and wide channels. This study has presented evidence that the
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diffusion coefficient of highly confined systems (quasi–one dimensional) can be mapped onto

the exact expression for a purely 1d through a scaling approach of the particle size that is

obtained from the EOS. It has been found that the diffusivity of highly confined hard sphere

systems as a function of effective diameter can collapse onto single line for a wide range of

densities. The results shows the connection between dynamic behavior of this system into

thermodynamic over a wide range of systems conditions.
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Chapter 6

Conclusions and Outlook

6.1 Discussion

Bernal’s [70] construction of random close packing (RCP) using ball bearing hard spheres

highlighted the role particle packing may play in understanding the structure of liquids.

Subsequent work on jamming phenomena [105,217,264,265] has shown that the ways particles

pack together to form mechanically stable structures has important implications for the

properties of fluids, glasses and athermal granular materials. In particular, the jamming phase

diagram [89,111,112,266] was introduced to establish a connection between the jamming in

thermal and athermal systems. Packing problems have also found applications in computer

science [267] and information theory [268].

Inherent structures [26, 110] provide an ideal framework that connects the properties of

the equilibrium fluid with packings of particles by mapping every configuration of the equilib-

rium fluid to a mechanically stable structure. In a system with potential energy, an inherent

structure is a local potential energy minimum obtained by quenching the system using a

steepest descent or conjugate gradient energy minimization. In a hard particle system, a

configuration is ideally mapped to its inherent structure by continually expanding the par-

ticles, moving them apart on contact, until they becomes collectively jammed [27] in a local

maximum density maximum. Configurations that map to the same inherent structure are

then grouped together in basins of attraction to form the jamming or packing landscape

consisting of local density maxima separated by saddle points.

The thermodynamics and dynamics of the system are then described in terms of how the

system moves around this high dimensionality landscape [4, 23]. For example, the Adam–

Gibbs relation [29] suggests the slow down observed in the dynamics of supercooled fluids is

related to the decrease in the number of accessible of inherent structure basins, NJ , through
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the configurational entropy, Sc/NkB = lnNJ . The landscape approach accounts for the possi-

bility of an ideal glass transition to occur if NJ becomes sub–exponential so that Sc/NkB → 0.

Unfortunately, the inherent structure mapping process for hard particles is difficult to im-

plement for even small numbers of particles [110]. Computer simulation has been used

extensively to investigate the distribution of inherent structures, but different compression

protocols often lead to different conclusions for both hard disc mixtures [71–73] and hard

spheres [74, 111]. While the density of RCP is highly reproducible, relationships between

structure and the density of jammed packing suggest randomness is ill defined and it has

been proposed that it should be replaced by the concept of a maximally jammed state [75].

Similarly, the existence of a continuous distribution of jammed states, from disordered pack-

ings through to the ordered crystal, in a model of hard discs mixtures appears to rule out

the possibility of an ideal glass transition [73].

Replica mean field theory [95,96] (RMFT) provides a theoretical approach to understand-

ing jamming in hard particles. Configurations of the fluid at φ are mapped to a jammed

occupied volume fraction φJ by considering a local cage–size parameter that momentarily

traps the particle and is systematically taken to zero size under a series of mean field con-

straints. This effectively models the immobilization of a particle due to caging by its local

neighbors and suggests there is a very narrow distribution of jammed structures in three

dimensional hard spheres, which is consistent with recent simulations [106,107].

RMFT introduced the distribution of jammed densities instead of single jammed point a

(J–point) to the JPD by suggesting the existence of J–line. Also, it provided some interest-

ing features that connect the thermodynamics of the systems to its dynamics. φd represents

a density where the fluids begins to fall out of equilibrium and gets trapped in a inherent

structure with density of φth. Despite the success of RMFT in predicting the existence of J–

line, however, using quasi–one–dimensional systems in 2d and 3d, the current work suggests a

more comprehensive picture regarding the inherent structure landscape. The complete distri-

bution of inherent structures calculated for non–additive hard rods in Chapter 2, and for hard

discs and hard spheres confined in narrow channel in Chapters 3 and 4 respectively. Based

on the mapping techniques used, equilibrium liquids mapped to their inherent structures and

finds that the equilibrium fluid cannot sample the entire inherent structure description and

provides evidence of the extension of a J–line well below φth. For all of the systems studied,
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it is found that the ideal gas maps to the inherent structure with φ∗J at the maximum of

configurational entropy. The jammed states below this point exist, however, the equilibrium

fluid cannot map to these structures due to maximum entropy condition. All of the inherent

structures above φ∗J are accessible from equilibrium fluid and depending on the compression

rate system will map to one of the basins. At an infinitely slow compression rate, system

maps to the inherent structure with the maximum density available, φJ max. In addition, the

inherent structure with the lowest density is located in the inaccessible region with φJ min.

The dynamics of these systems is also of great interest. The dynamics of supercooled

liquids is usually classified as being fragile or strong, depending on the temperature depen-

dence of the structural relaxation time, or viscosity. However, in some systems, such as silica,

silicon and water a dynamical crossover from fragile to strong behavior has been observed at

a finite temperature. The crossover in these systems is located at the Widom line, which is

characterized by a maximum in the response functions such as the heat capacity. There is

considerable debate concerning the thermodynamic origin of the Widom line in the network

forming systems. In particular, there is strong evidence to suggest some models of water

exhibit a liquid–liquid phase transition between high and low density liquids. This would

imply the existence of a critical point that could give rise to the thermodynamic behavior

associated with the Widom line. However, the existence of a critical point is not a thermo-

dynamic necessity for the existence of the heat capacity maximum. There is no underlying

critical point associated with the fragile–strong crossover observed in the systems studied

here. Furthermore, the simplicity of the hard sphere models suggest FS crossovers is more

common that previously thought.

The facilitated dynamics paradigm suggests that relaxation and particle motion is driven

by local microscopic dynamical rules rather than any underlying thermodynamics [57]. A key

ingredient of FD is the presence of kinetically mobile regions that are able to influence the

motion of neighboring regions, leading to the formation of chains of mobile particles in space–

time. In addition, the theory argues that directed particle motion plays an important role.

If a kinetically mobile region can activate or deactivate a neighboring region independent

of any previous motion, it is considered to be directionally independent. Then the system

behaves like a strong fluid and ln τ ≈ − lnCFD , where CFD is the concentration of kinetically

excited regions. The expectation that structural relaxation in a fragile fluid is cooperative
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is captured by having directional correlation between the successive movement of particles

in the kinetically excited regions. A FS crossover is predicted to occur when elements of

both mechanisms are present in the system. While FD models have been parametrized to

fit experimental data, only recently have there been efforts to identify the kinetically excited

regions at a microscopic level [269,270], and most studies of FD have focused on spin models

where the dynamic rules are included by construction.

The current thesis suggest that the local packing environments of particles, along with the

way they interact, may serve as the important microscopic ingredients in the FD paradigm

and points to a new analysis that can be explored in higher dimensions. In the case of

hard particles, it may be useful to identify local packing structures or local tilings in the

jammed inherent structures [88] as defects. In particular, if neighboring defects are unstable

the resulting irreversible local rearrangement of the particles could give rise to the direction

motion thought to be responsible for the super–Arrhenius dynamics of a fragile fluid. Once

the defect concentration is low (the saddle point index is also low) the dynamics crosses

over to the reversible hopping of defects between locally stable environments. Simulations of

bulk materials have also shown that local soft modes are spatially correlated with the highly

mobile particles connected to dynamic heterogeneities [180–182].

The melting transition of two dimensional systems is described using KTHNY theory

and it is consist of two–stage scenario. First the solid undergoes a continuous transition

into a hexatic phase with quasi–long–range orientational order, then another continuous

transition drives hexatic phase to disordered liquid phase. The dissociation of dislocation

pairs (defects) plays a critical role in these transitions. It is generally accepted that quasi–

one–dimensional systems with short range interactions cannot exhibit a phase transition.

However, the work of this thesis shows that the system of hard spheres confined in a channel

with 1 +
√

3/4 < Hd/σ < 1.98 exhibits a high order continuous transition from a disordered

fluid to a translationally disordered, but orientationally ordered fluid with increasing density.

The phase transition is entropically driven as system increases its vibrational entropy by

sampling basins on the inherent structure landscape with a larger φJ which, in this model, also

results in increasing the orientational correlation. This is the same entropic driving force [249]

that causes the bulk hard sphere system to freeze [63]. However, the configurational entropic

advantage to having defects in the quasi–one–dimensional system prevents the formation of a
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solid phase. As a result, the system forms an orientationally ordered fluid containing defects,

similar in nature to the hexatic phase except that the defects are never bound.

However, it is important to note that this work does not invalidate the results of van

Hove and Landau. Their work is valid for systems with short range interactions. While the

particle–particle interactions of the hard sphere system are short ranged, it is the collective

entropic interactions that control the angles of rotation in the helix are determined on length

scales associated with the separation of the defects, which can be long. This suggests that

arguments of van Hove and Landau are not applicable in this case.

6.2 Conclusions

This thesis explored many unique aspects related to the dynamics and thermodynamics

of confined geometries. Systems of two– and three–dimensional hard particles under an

extreme confinement were studied. These systems were confined such that the first–order

phase transition was avoided and can be used to study the fluid and glassy behavior of

the systems. Thermodynamics and dynamics of these quasi–one dimensional systems were

studied extensively using both analytical and numerical approaches and the following are

some of the key findings.

6.2.1 Inherent Structure Landscape

The phase behavior of amorphous solid matter (jammed matter) is much less understood

than its liquid and crystalline counterparts. Recently big advances in understanding jammed

matter comes from the so called replica mean field theory (RMFT) of glasses postulated by

Giorgio Parisi and co–workers [46,62,96,100,271]. Using a quasi one dimensional glass former,

in this thesis, it is proposed that RMFT predicts only a partial phase diagram of jammed

matter. A method of mapping a configuration of the equilibrium fluid to its inherent structure

was developed and the distribution of jammed structure obtained. The full phase diagram

of a system of hard discs and hard spheres was calculated in Chapters 3 and 4, respectively,

and shows that large parts of the phase diagram are thermodynamically inaccessible or out

of the purview of RMFT approximations. This work has shown the limitations of RMFT

and the need for a more general theory of jammed matter. In addition, the important parts

of this phase behavior, with its replica counterpart, was identified which clarify the various
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regimes predicted by replica theory and mode coupling theory in this exact model. However,

the findings show that some predictions of RMFT, such as the glass closed pack structure do

not exist in this exact model. In addition, this work leads to the surprising conclusion that

the J–point is thermodynamically related, through inherent structure landscape, to the ideal

gas rather than the glass transition.

6.2.2 Fragile–Strong Crossover

For over a decade now, fragility has been identified as a crucial issue regarding the glass

forming ability of a liquid. This has resulted in a large body of research work focussing on

the unclear origin and mechanism underlying fragility. For the systems studied in this thesis,

dynamical properties were also measured using numerical methods. Chapter 3 demonstrates

that in a system containing two–dimensional hard discs confined in a narrow channel, two

distinct dynamical regimes are observed. At low densities, the system shows fragile behavior

and at higher densities the dynamics of the system follows strong glass former behavior.

Therefore, this change in dynamics of the system is identified as a fragile–strong crossover.

Chapter 4 studied the dynamics in a hard sphere system confined in a narrow tube, for a

tube with diameter range 1 +
√

3/4 < Hd/σ < 1.98, a similar crossover was identified. The

crossover density was determined to be associated with the isobaric heat capacity maximum.

Using both computational and analytic methods it can be concluded that the dynamical

crossover has a geometric origin, namely unstable dynamical modes arising out of defect

dynamics. This work suggests that the local packing environments of particles, along with

the way they interact, may serve as the important microscopic ingredients in the FD paradigm

and points to a new analysis that can be explored in higher dimensions. These findings along

with some other studies [125,183–185] strongly suggest local packing and particle geometries

may play an important role in the dynamics of fluids in general.

6.2.3 Orientational Order Phase Transition

In hard spheres confined in a narrow channel system the fluid exhibits a phase transition

from an isotropic fluid to an orientationally ordered fluid. Topological defects disrupt the

translational order, but not the orientational order. The global packing constraints determine

the helical angle of the inherent structures sampled by the fluid.
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6.3 Future Outlook

The findings from this thesis have given rise to many new questions that should be addressed

through future study. With all these predictions, further investigation is required to make

a reliable comparison with the properties of bulk systems. The confined systems studied

in this thesis were restricted in such a way that avoids a first–order phase transition in the

system and were able to study the fluid and glassy phases. However, in bulk systems the true

first–order phase transition exists and they go through a transition from a fluid to a crystal

phase. The following addresses some of the future work that relates to the materials covered

here.

6.3.1 Inherent Structure Landscape in Wider Channels

Extending the area of study to a wider channel will be interesting and can provide solutions to

some of the unsolved problems in the field of soft and condensed matter. At wider channels,

the landscape of the system is not just limited to the glassy materials and also the crystal

state(s) exist, which make this model more similar to the bulk system.

Figure 6.1 shows the EOS of the system with Hd/σ = 2.4. As can be seen from this figure,

the system goes shows a sign of a first order phase transition at φ ∼ 0.45. However, the

heat capacity of the system (Fig. 6.2), apart from the discontinuity at this transition point,

also includes two additional peaks. Understanding the origin of these peaks could provide

informations about a more general phenomena at bulk systems.

Numerical simulations and experiments by Anikeenko and coworkers [74, 81] for equal–

sized hard spheres inside a box have found that at the random close packing limit the system

undergoes a structural reorganization and most of the particles are arranged in “quasiregular

tetrahedra”. Aste [272] also proposed tracking tetrahedra as a method for understanding

particle pickings. It may be possible to use the tetrahedra formed by jammed particles in the

confined channels, in combination with the transfer matrix method, to develop a complete

description of the inherent structure distribution in these quasi–one–dimensional systems. By

finding tile sets it will allow to use the transfer matrix method to construct the exact partition

function for all the jammed states, and derive thermodynamics properties for glassy structure.

Once the complete description of the inherent structure is known, molecular dynamics can be
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used to explore the landscape for the system, which is related to the dynamics of the dense

fluid.
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Figure 6.1: EOS for channel with Hd/σ = 2.4 as a function of density.
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Figure 6.2: Cp for channel with Hd/σ = 2.4 as a function of density.

6.3.2 Theoretical Studies in Confined Geometry

Theoretical approaches to glass transition and jamming transition is described in Section 1.3.

One of the successful theoretical approaches is MCT, which has been used extensively to study

the slow complex dynamics of bulk systems [6, 10, 20] as well as confined systems [273, 274].

Many aspects of MCT have been confirmed by experiments and numerical studies, however
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many details regarding the rearranging of the local cages and CRR are not obvious. The

models that have been described in this thesis, provide a reliable system to apply these

theoretical approaches and test the validity of the approach and may discover some new

features as well. The single input to MCT is the structure factor of the system, which for

these models, is available analytically [153].
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