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Abstract 

The mechanical behaviour of AISI 1340 and 4340 steel under high strain-rate loading in 

compression and in torsion were investigated using direct impact Hopkinson bar and 

torsion split Hopkinson bars. Both alloys contained 0.40 wt. % C, but different amounts 

and types of alloying additions. The materials are commonly used in high performance 

structural applications, where they could be subjected to dynamic shock loading. The 

objective of this study was to study the effects of microstructure, strain rates and 

specimen geometry on the occurrence and failure of adiabatic shear bands in these 

alloys under dynamic shock loading.  

Cylindrical specimens of the AISI 1340 alloys were heat treated to produce martensitic, 

dual-phase or pearlitic structure and subjected to impact loading at strain rates ranging 

between 1000 and 8000 /s. The martensitic test specimens were tempered at 205, 315 

and 425 ºC to determine the effects of tempered condition on the adiabatic shear failure 

of the alloy. The effects of geometry on strain localization and adiabatic shear banding 

in both alloys were investigated by subjecting cylindrical-, cubical-, and truncated 

conical-shaped specimens to high velocity impact. The dynamic torsion test involved 

rapidly twisting of heat-treated thin-walled tubular specimens of the alloys and 

determining the damage evolution during the high strain torsional loading. Both optical 

and scanning electron microscopes were used to evaluate the damage evolution in the 

specimens after high strain rate loading. 

The types of shear band formed in the alloys depended on the microstructure and strain 

rate. Deformed bands were formed at low strain rates and there was a minimum strain 

rate required for formation of transformed band in both alloys. This minimum strain rate 

was highest in the specimens with pearlitic structure and lowest in the specimen with 

martensitic structure. The susceptibility of the martensitic specimens to the occurrence 

of transformed shear band decreased with increasing tempering temperature. Cracks 

were initiated and propagated along transformed bands leading to fragmentation under 

the impact loading. The susceptibility of the adiabatic shear bands to cracking was 

markedly influenced by strain-rates, initial microstructure and the specimens  geometry. 

The geometry of the impacted specimen determined the shape of the adiabatic shear 
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band and the topography of the fracture surface of fragmented specimens. Fractographic 

investigation of fragmented specimens showed ductile shear failure and knobby fracture 

mode along the transformed band. Investigations of the transformed band using X-ray 

Photo Emission Electron Microscopy and Near Edge X-ray Absorption Fine structure 

Spectroscopy showed more nickel and less chromium inside the transformed bands in 

impacted AISI 4340 steel than in the region outside the shear band.  
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CHAPER ONE 

 INTRODUCTION 

1.1. Overview  

Dynamic shock loading at high strain-rates (10
3 

s
-1

) leads to local plastic deformation 

along narrow bands. This deformation differs from low strain-rate or quasi-static loading 

conditions where plastic deformation is relatively homogeneous. An example of 

dynamic shock loading is deformation of materials under high impact velocity, and the 

narrow bands of extreme shear strain localization are called adiabatic shear bands 

(ASBs). Heat generated during impact loading as a result of conversion of kinetic 

energy of the impacting object to heat energy during deformation, leads to thermal 

softening which occurs simultaneously with the strain hardening effect of plastic 

deformation. A near adiabatic condition usually arises in which heat generated along 

some narrow paths are not conducted away. This causes local thermal softening and 

thermo-viscous instabilities that lead to strain localization and occurrence of adiabatic 

shear bands. Adiabatic shear bands are of two types: Deformed and Transformed bands. 

Deformed bands appear as greatly distorted regions demonstrating extensive shear 

deformation of the grains. Transformed bands appear as white narrow bands in the 

impacted materials. Transformed bands are also called white etching adiabatic shear 

bands because of their characteristic white colour when observed under an optical 

microscope. The microstructure inside the transformed bands cannot be resolved under 

optical or Scanning Electron Microscope (SEM). However, observations of transformed 

adiabatic shear bands using Transmission Electron Microscope (TEM) in many 

materials indicated that they consist of very fine grains of sub-micron size.  

The excessive thermal softening and highly localized strain inside adiabatic shear band 

can cause fragmentation of even ductile metals under dynamic mechanical loading. 

During high strain-rate deformation, tensile stresses are generated inside shear bands as 
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a result of the lower flow stress inside the adiabatic shear bands compared to the outside. 

The tensile stresses generated inside the shear band eventually become sufficiently high 

enough to open up micro-pores inside these bands. By coalescence of the micro-pores, 

voids are formed which elongate and rotate to elliptical shapes. These are finally 

connected, initiating microcracks which propagate along the shear band leading 

ultimately to fracture. Adiabatic shear bands’ hardness values are usually higher than 

that of the bulk material due to the high density of dislocations and very fine nature of 

the grains inside the bands. Consequently, they are also very brittle and materials 

containing adiabatic shear bands are more susceptible to fracture along shear bands 

during subsequent loading. Therefore, fundamental understanding of the mechanism of 

formation and failure of adiabatic shear bands, as influenced by materials or process 

variables such as composition, strain-rate, microstructure, geometry, etc., is very 

important for controlling adiabatic shear failure of engineering components under 

dynamic shock loading.     

1.2. Motivation  

The materials investigated as part of this study were AISI 1340 and AISI 4340 alloy 

steels, with both containing 0.40 % C and varying degrees of alloying additions. AISI 

4340 steel is one of the most popular High-Strength Low Alloy (HSLA) steels which are 

commonly used in high strength applications such as in the automotive industry, 

pressure vessels, and gas pipelines. It has considerable amounts of alloying additions, 

such as manganese (Mn), chromium (Cr), nickel (Ni), and molybdenum (Mo). Mn, Cr, 

Ni and Mo in steels increase the steel hardenability. Moreover, Cr and Mo form carbides 

which consequently increase matrix strength. Meanwhile, Mn helps in refining the grain 

size. AISI 1340 steel is a low carbon manganese steel that is mostly used in the 

automotive body construction. The low amount of carbon and high amount of 

manganese make AISI 1340 steel appropriate for formation of steel with a dual-phase 

structure, which consist of hard martensite in a soft ferrite matrix. The manganese 

addition expand the ferrite + austenite phase region in the iron-iron carbide equilibrium 

phase diagram, while the low carbon content, enhances the ability to intercritically 

anneal the steel in the ferrite+austenite phase region of the iron-iron carbide equilibrium 

phase diagram (shown in Fig. 3.3 on page 37). Moreover, the high amount of manganese 
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and carbon content of the austenite at the intercritical annealing temperature provides 

enough hardenability for the austenite within the AISI 1340 steel to form martensite 

during quenching. As a result of the unique properties of dual-phase steels, which 

include high strength and remarkable ductility, they are widely used in automotive body 

construction to save weight and consequently improve fuel consumption efficiency.  

Knowledge of the formation and failure of adiabatic shear bands inside AISI 1340 and 

4340 steels under dynamic shock loading as influenced by such factors such as heat-

treated condition is a leading point for a fundamental understanding of high strain rate 

behaviour of these alloys. The fragmentation of pressure vessel or steel pipe due to 

excessive pressure or failure of automobile parts from a car crash can be traced to high 

strain-rate loading and adiabatic shear failure of the AISI 4340 and 1340 steels used in 

these applications, respectively.  

1.3. Research objectives 

The research objectives of this study were to: 

1. Investigate the effects of microstructure and strain rates on plastic deformation and 

failure of AISI 1340 and AISI 4340 steels under dynamic shock loading, 

2. Investigate the effect of specimen geometry on the formation of adiabatic shear band 

in AISI 1340 and AISI 4340 steels under dynamic impact loading, and  

3. Investigate the chemical and bonding changes associated with the occurrence of 

transformed bands in alloy steel. 

1.4. Methodology  

In order to achieve the research objectives, cylindrical, cubical, conical (truncated) and 

thin-walled tubular specimens were machined from AISI 1340 and AISI 4340 steels. 

These thin-walled tubular and cylindrical specimens were heat-treated to obtain 

pearlitic, martensitic or dual phase structures in order to investigate the effects of 

microstructure on formation and failure of adiabatic shear band in the alloys under 

dynamic shock loading. Another set of cylindrical, cubical and conical specimens of the 

alloys were heat treated to obtain martensitic microstructure and used to investigate the 
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effects of specimen geometry on the characteristic of adiabatic shear bands. All the 

specimens were subjected to dynamic shock loadings using instrumented direct impact 

Hopkinson bar or Torsional Kolsky Bar. The stress-strain curves obtained were 

discussed in relation to the sequence of plastic deformation leading to adiabatic shear 

failure of the specimens. The effects of strain-rates on deformation behaviour and 

microstructural evolution inside the materials were investigated. The characteristics of 

adiabatic shear bands observed in the impacted alloys were investigated in relation to 

the pre-impact microstructure of the steel specimens. Fractographic studies of the 

fractured specimen were undertaken to understand the failure mechanisms in the alloy 

under the impact loading and high strain-rate loading in torsion. Synchrotron light 

radiation at the Canadian Light Source (CLS) was used to investigate the compositional 

changes associated with the occurrence of transformed bands in the AISI 4340 alloy. 

This provided further insight into microstructural evolution associated with the 

occurrence of transformed bands in this high strength steel and support the design effort 

of tailoring materials microstructure in order to make them more resistant to adiabatic 

shear failure during dynamic shock loading. 

1.5. Thesis arrangement 

The current chapter of the thesis introduces the focus, motivation and objective of this 

M.Sc. research project. Chapter two consists of a literature review of previous research 

investigations on the behaviour of materials under dynamic shock loadings. Relevant 

information on materials investigated and experimental techniques are outlined in 

chapter three, while chapter four contains results, their analyses and discussion. A 

summary of this study and the conclusions drawn from the research investigations are 

presented in chapter five. 
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CHAPTER TWO 

LITERATURE REVIEW 

The behaviour of materials under dynamic shock loading as reported in previous studies 

is reviewed in this chapter. The concept of shear strain localization along adiabatic shear 

bands at high strain rates is discussed. The general definition of adiabatic shear band, 

types of adiabatic shear bands, mechanisms of formation and failure of adiabatic shear 

bands, as well as properties and microstructure of adiabatic shear bands in a variety of 

materials are summarized in this chapter.    

2.1. Adiabatic shear bands 

Plastic deformation at low strain-rates or under quasi-static loadings is relatively 

homogeneous.  Therefore, the heat generated inside the material dissipates and the 

material strain hardens as the shear strain increases. It is governed by slip and twinning 

mechanisms [1]. However, at strain rate greater than 10
3
s

-1
, such as impact loading, 

deformation becomes localized along narrow bands which are called adiabatic shear 

bands (ASBs) [2,3] . Heat generated during impact loading leads to thermal softening 

which occurs simultaneously with the strain hardening effect associated with plastic 

deformation. A near adiabatic condition usually arises in which heat generated along 

narrow paths are not conducted away, leading to excessive thermal softening and 

thermo-viscous instability that leads to the strain localization along the adiabatic shear 

bands [2,3]. Adiabatic shear band concepts have been studied experimentally [2-4] and 

analytically [5-9]. The concept of an adiabatic shear band was first proposed by Zener 

and Holloman [3]. They suggested that extensive shear strain inside the shear band 

causes temperature rise within shear band. Staker [10] suggested that a true shear strain 

at which onset of adiabatic shear band instability begins is measured experimentally by: 

    
   

       
                                                                                                                  (2.1) 
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where C is volume specific heat, n is strain hardening exponent, and δτ/δT is the slope of 

temperature dependence of flow stress. This relationship is applicable for any material 

whose stress-strain curve’s first part is parabolic. 

Temperature rise within adiabatic shear band depend on the material, composition, and 

strain rate. Odeshi and Bassim [11] suggested the heat generated inside the adiabatic 

shear band of AISI 4340 steel specimens during high velocity impact caused the 

temperature rise within adiabatic shear band close to melting point of the alloy in some 

regions. Duffy and Chi [12] measured the local temperature within adiabatic shear band 

by small high speed infrared detectors as a function of time and position for a low 

carbon cold-rolled steel and three quench-hardened steels (HY-100 and two tempers of 

AISI 4340 VAR steel of varying hardness) which were subjected to high strain-rate 

deformation using torsional Kolsky bars. The temperature was estimated to reach about 

600  C along the adiabatic shear band propagation path [13].  Local temperature within 

adiabatic shear band of SS400 steel deformed by a fine blanking process was calculated 

to be in the neighbourhood of 600  C [14]. The calculated temperature inside the shear 

band of tantalum specimens subjected to high strain rate deformation was determined to 

be about 800  C, and onset of recrystallization was observed at high microscopic strains 

in isolated areas [15]. Hartley et al. [16] determined the temperature rise within the 

adiabatic shear bands of cold rolled AISI 1018 steel and hot rolled AISI 1020 steel to be 

450  C based on calculations from the emitted infrared radiation from the surface of the 

metals.  

The temperature rise within AISI 4340 VAR steel, with the hardness value 44 on the 

Rockwell C scale, subjected to dynamic shock loading by Torsional Kolsky Bar testing 

was calculated to be 460  C using infra-red detectors [17].The highest temperature rise 

inside the adiabatic shear band of C-300 steel (maraging steel) was calculated to be 1400 

 C (90% of melting point), while that for Ti-6Al-4V was about 450  C [18]. For 

polycrystalline zirconium alloy (Zircadine 702, containing 0.7% Hf) which was 

subjected to impact loading using a Split Hopkinson Pressure Bar for hat-shaped 

specimens, temperature rise within shear band was calculated to be 930K for 100 shear 

strain using the Zerilli-Armstrong equation [19]. For low-carbon steel plates with 
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chemical composition of 0.15%C–0.25%Si–1.1%Mn– Fe (wt.%) which were subjected 

to high strain-rate torsional loading, the temperature rise within adiabatic shear band 

was found to be 540  C with the high temperature reported to promote spheroidization of 

cementite inside the shear band. The temperature rise within adiabatic shear band was 

calculated by: 

    
  

  
                                                                                                                 (2.2)            

where, ρ is density, Cp is heat capacity, and β is a work to heat conversion factor which 

is taken as 0.9. Modeling of temperature history inside the shear bands shows that heat 

generation inside the shear band occurs at less that 200μs, while the shear band is at 

maximum temperature for 19μs [20]. 

The higher amount of plastic deformation and strain hardening make the shear band 

material harder than the bulk material. As a result of high temperature and excessive 

thermal softening inside the shear band, the materials inside the shear band are subjected 

to more extensive shear strain than those outside shear band region. Therefore, adiabatic 

shear bands are usually brittle and their presence in a material makes it more susceptible 

to fracture than the material without ASBs. Fragmentation of materials which was 

deformed under high velocity impact were observed to be preceded by the formation of 

adiabatic shear bands [21, 22]. Adiabatic shear bands have been observed in practical 

applications such as high speed machining, explosive fragmentation [2, 13, 23], machine 

chips [24, 25], metal forging, and ballistic impact [26]. 

 

2.1.1. Types of adiabatic shear bands 

There are two types of Adiabatic Shear Bands: deformed and transformed bands [27]. 

Deformed bands appear as greatly distorted areas demonstrating extensive shear 

deformation of the grains. They are commonly observed in non-ferrous materials such 

as aluminum and copper alloys. They have also been observed in commercially pure 

niobium subjected to dynamic impact loading at low temperature [28].  Transformed 

bands appear as white narrow bands in the impacted materials. They are also called 

white etching bands, because of the white color within ASBs after etching with nital. 

White etching bands are commonly observed in hardened steels [1, 13, 21, 26, 29- 32]. 
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Timothy et al. [27] proposed that transformed bands are generally observed in metals 

with low thermal diffusivity and low resistance to adiabatic shear localization. These 

metals can transform to other phases at high temperatures and then generate a 

metastable phase by rapid cooling to room temperature, the quenching medium being 

the materials surrounding the shear band. White shear bands have also been reported in 

some aluminum alloys [33], tantalum [34], copper [35, 36], and zirconium alloys [37]. 

Adiabatic shear bands generally have been reported in varieties of engineering materials 

including rolled homogenous armour (RHA) [9], RDX/DOS composition 

(cyclotrimethylene trinitramine (RDX) to which was added various percentages of the 

binder dioctyl sebacate (DOS)) [28], titanium [38], commercially pure niobium [39], 

commercially pure vanadium [40], and densified silicon carbide powders [41].  

There are different explanations for the white colour of the transformed adiabatic shear 

bands. It has been suggested that it is due to the phase transformation occurring during 

dynamic shock loading. Zener and Holloman [3], Cho et al. [13], Glenn and Leslie [29], 

and Rogers [42] suggested that during adiabatic heating the temperature rise inside the 

adiabatic shear band is high enough to cause transformation to austenite in steel along 

adiabatic heated path. The austenite region is quenched by the surrounding matrix to 

form untempered martensite. Moreover, the hardness of transformed bands in steel has 

been found to be close to that of untempered martensite [20]. 

The theory that phase transformation, leading to the formation of untempered 

martensite, occur inside adiabatic shear band during high strain-rate loading, has not 

been adequately substantiated in the literature.  Meanwhile, high strain-rate deformation 

happens in less than 100μs. Therefore, the formation of untempered martensite as a 

result of quenching of the austenite inside the white etching band is doubtful in this 

short space of time. Cho et al. [13] calculated the temperature reached inside the 

transformed shear band of HY-100 steel specimens during a high strain-rate deformation 

to be 600  C. This is below the temperature at which austenitization will occur, thereby 

ruling out the possibility of martensitic transformation. 

White etching bands are difficult to resolve under optical and scanning electron 

microscopes. Transmission electron microscopic observation indicates that they consist 
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of very fine grains of sub-micron size. It has been suggested that during massive and 

swift deformation, the martensite, and carbides laths break apart into sub-grains with a 

few hundreds of nanometer size [1, 13]. Li et al. [44] observed equi-axed nano-sized 

grains in adiabatic shear bands which are proposed to form as a result of dynamic 

recrystalization. Equi-axed nano-sized structure inside the shear band has been observed 

by Meyers et al. [15] for tantalum, Xue et al. [33] for aluminum alloy, Hines and 

Vecchio [35] , and Andradea et al.[36] for copper, Li et al.[43] for Monel alloy, Rittel et 

al. [45], and Me-Bar and Shechtman[46] for titanium. 

The nanosized grains of transformed shear bands offer another explanation for the white 

colour and featureless nature of these bands under an optical microscope. Wittman et al. 

[20] suggested that the white colour of the adiabatic shear bands is due to the limit of 

optical microscopes in resolving the extremely tiny particles making up the shear band.  

The white colour of the white etching band after etching with nital on the polished 

surface was also attributed to carbide dissolution, which changed the microstructure and 

consequently the etching properties of the shear band [20].  

Although, white etching bands are commonly observed in hardened steel, depending on 

the heat treatment procedure, microstructure and deformation conditions, both types of 

shear bands can form in steels [11].  

2.1.2. Multiple adiabatic shear bands 

A single adiabatic shear band may be formed inside a material under dynamic shock 

loading causing fracture of the specimen into two pieces. Multiple adiabatic shear bands 

can also form leading to fragmentation into several pieces. The study of multiple 

adiabatic shear bands by Xue et al. [40] for thick-walled cylinder (TWC) of AISI 304 

stainless steel subjected to explosive loading showed that initiation and propagation of 

multiple adiabatic shear bands changed with changes in initial loading condition. 

However, these effects did not change the spacing of the shear bands. Average length of 

shear bands, as well as the spacing between them was the same in different sections, 

while highest shear band length varied in different sections. The middle section with 

highest propagating shear band speed had the maximum length. The phenomenon of 

multiple adiabatic shear bands formation has been investigated by Xue et al. [47] for 
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pure titanium and Ti-6Al-4V alloy which were deformed under explosive loading of 

thick-walled cylinders at a strain-rate of 10
4
s

-1
. Multiple adiabatic shear bands initiated 

at the internal boundary of the tested thick wall cylindrical specimens and exhibited 

periodic distribution from early stages of formation.  The adiabatic shear band pattern 

showed a self-organization property [47, 48]. The propagation velocity of shear band 

was higher for Ti-6Al-4V alloy than pure Ti alloy. However, the numbers of adiabatic 

shear bands were higher for pure Ti alloy than Ti-6Al-4V. Adiabatic shear bands 

showed bifurcation (splitting into two or more bands) when they formed in a spiral 

pattern or when the distance between them increased [47]. Loading factors and the type 

of material have a significant effect on adiabatic shear band spacing [47]. Spacing of the 

multiple adiabatic shear bands also depends on microstructural inhomogeneities which 

offer the adiabatic shear band initiation sites [48]. 

2.3. Adiabatic shear band initiation 

The susceptibility to the occurrence of adiabatic shear bands depends on material 

properties. Materials with high strain rate sensitivity and low temperature sensitivity of 

flow stress are less likely to form adiabatic shear bands [42]. The tendency of a material 

to form adiabatic shear bands depends on its original microstructure and its 

thermodynamic stability [13]. Materials with high strength and low strain hardening are 

more susceptible to adiabatic shear localization [49]. Lee et al. [50] suggested that 

metals with higher strength (yield strength and fracture toughness) are more inclined to 

form adiabatic shear bands under dynamic mechanical loadings than those with lower 

yield strength. 

Feng and Bassim [24] suggested that local material defects or any inhomogeneities 

inside the material cause adiabatic shear band initiations. These materials defects are 

called the initial perturbations. Wright [51] suggested that parametric solutions for the 

formation of adiabatic shear bands show that total effective perturbation of the tested 

samples can be calculated by simply adding the initial perturbation in strength, 

temperature, and wall thickness. Molinari and Clifton [52] suggested that the critical 

strain at which the stress collapse happens depends logarithmically on the size of the 

initial perturbation.  As the size of initial perturbation increases, the collapse strain 
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decreases logarithmically. Investigation by Duffy and Chi [12] on the torsional Kolsky 

Bar testing of low carbon cold-rolled steel and three quench-hardened steels (HY-100 

and two tempers of AISI 4340 VAR steel of varying hardness) also showed that the 

critical strain at which adiabatic shear bands are formed depends on the initial defects.  

Mataya et al. [53] suggested that γ' precipitates in the size of 10 nm increases the 

susceptibility of γ' strengthened austenitic stainless steel JBK-75 to form shear 

localization. It has been suggested that at high strain-rate, localized flow occurs along 

high angle grain boundaries in precipitates free zone in the form of recrystallized grains 

[53].  

Bassim [34] suggested that differences in properties and microstructure cause the 

material to form adiabatic shear bands. Local defects and inhomogeneities inside the 

material act as preferential sites for shear band initiation. It has been also suggested that 

specimen geometry and dimensions affected the formation of adiabatic shear band. 

Nesterenko et al. [6] suggested that shear localization initiates along the grains which 

are favourably orientated. They also suggested that uneven distribution of grain size can 

act as perturbations. Larger grains show lower yield strength, while smaller grains 

shows higher yield strength. Therefore, larger grains deform initially and can act as 

preferential sites for shear localization. They also proposed that crystallographic 

peculiarities have a very important role in shear band initiation in the way that 

decreasing the grain size under 100μm increases the number of shear bands [6]. Meyers 

et al. [54] investigated the effect of grain size on the high strain rate behaviour of copper 

and suggested that localization of plastic deformation is observed for the coarse-grain 

sample while the copper sample with smaller grain size exhibited homogenous plastic 

deformation. 

Figure 2.1 shows the possible mechanisms for shear band initiation suggested as by 

Nesterenko et al. [6] which includes: 1) Grain size inhomogeneity, 2) Geometrical 

softening, 3) Peirce-Asaro-Neddleman textural localization and 4) Dislocation pile-up 

release. 
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Figure 2.1. Schematic views of possible mechanisms of adiabatic shear band initiation, 

adapted from [6]. 

 

The experimental and numerical study of the effects of notch length and notch root 

radius on AM50 and Ti6Al4V alloys showed that adiabatic shear band failure is more 

sensitive to the sharpness of the imperfections than the size of them. Numerical 

simulation of energy distribution showed a high energy concentration near the notch. 

The high amount of energy near the notch motivates nucleation of localized ASBs [45]. 

Specimen’s geometry can also influence the occurrence of ASBs in an alloy. For 

example, a previous study by Li et al. [55] showed that shear strain localization did not 

happen for cylindrical tungsten heavy alloy (WHA), while truncated-conic specimens 

showed adiabatic shear band formation, which initiated from the upper-right corner to 

the centre of the opposite surface with the angle of 45   to the upper surface of the 

specimen. It was suggested that adiabatic shearing in the truncated-conic specimens 

formed as a result of an uneven stress condition along the specimen as well as shear 
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instability at the critical maximum shear stress. Surface friction was reported to 

introduce a higher shear stress in the upper-right corner, which suggests that initiation of 

adiabatic shear bands can be influenced by surface friction. 

Several mathematical models including Graddy-Kipp (GP) [56] and Wright Ockendon 

(OW) models [57] have been proposed for initiation and propagation of adiabatic shear 

bands. Nesterenko et al. [6], in comparing these two models, observed that the 

experimental results were in a good agreement with theoretical results. They also 

suggested that initiation of shear band is mostly better represented by the Wright-

Ockendon model which is based on the perturbation analysis, while propagation of the 

shear band is better represented by the Graddy-Kipp model theory which is based on 

momentum diffusion. They suggested that there is no evidence of diffusion of 

momentum before shear localization initiation. Diffusion momentum only plays a role 

during shear localization propagation.  

Deformation under dynamic shock loading occurs in stages. Marchand and Duffy [37] 

suggested that plastic deformation at high strain-rates consists of three stages: 

homogenous strain hardening, inhomogeneous strain hardening, and deformation 

localization along narrow adiabatic shear bands. Feng and Bassim [24] and Bassim [34] 

also suggested the adiabatic shear band formation in AISI 4340 steel occurs in three 

stages: (1) homogenous elastic deformation, (2) simultaneous occurrence of strain 

hardening and thermal softening, in which strain hardening is dominant, and (3) thermal 

softening dominated deformation. Nesterenko et al. [38] suggested that localization of 

deformation occurs once the critical strain for stress collapse is exceeded, which is 

accompanied by heterogeneous plastic deformation inside the shear band. 

 

2.4. Mechanisms of formation of adiabatic shear bands 

There are numerous uncertainties with regards to the mechanism of formation and 

development of microstructure within adiabatic shear bands. However, several theories 

have been suggested to explain the mechanism of formation of adiabatic shear bands. 

These include phase transformation [3, 13, 12, 29, 42], dynamic recovery [32, 38, 58], 
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dynamic recrystallization [15, 32, 35, 38, 53, 58], and progressive subgrain 

misorientation [12, 47, 53, 60].  

2.4.1. Phase transformation 

Phase transformation is one of the earliest theories proposed to explain the occurrence of 

transformed bands in steels. Zener and Holloman [3] believed that formation of white 

etching adiabatic shear bands occurs by phase transformation of the room temperature 

structure to austenite and its subsequent transformation to untempered martensite as a 

result of quenching by the surrounding materials.  Cho et al. [61] also considered the 

white etching bands that form in AISI 4340 steels to be a product of phase 

transformations leading to the formation of untempered martensite. Chen et al. [62] 

suggested that, for steels which are deformed under dynamic shock loadings, the 

temperature within adiabatic shear bands can reach up to 1500˚C. At this temperature, 

phase transformation of ferrite to austenite will occur. Therefore, white etching bands in 

high strength steels can form as a result of phase transformation from austenite to un-

tempered martensite. The measured hardness values of the transformed bands have been 

observed to be within the range of that for un-tempered martensite [3]. This gives 

credence to the theory that the constituent of transformed bands is untempered 

martensite.   

The theory of phase transformation accompanying formation of transformed bands is in 

dispute. Cho et al. [13] observed that, at a strain rate around 10
3
 s

-1
, the temperature 

reaches 600  C inside the transformed band, formed in HY-100 steel during a high strain-

rate deformation. They concluded that, since the temperature inside the shear band did 

not reach the austenite phase region, the formation of untempered martensite as a result 

of quenching the austenite inside the white etching band is therefore very unlikely. 

Zurek [1] observed ultra-fine equi-axed grains inside transformed bands in high strength 

low alloy steel and suggested that the higher hardness inside the shear band is due to the 

fine grain size of the transformed band rather than phase transformation. TEM 

investigation of adiabatic shear bands that form in a Monel alloy under dynamic shock 

loading by Li et al. [43] showed that the shear band has the same structure as the matrix 
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(FCC), indicating no phase transformation occurred inside the shear band under 

dynamic shock loading. 

2.4.2. Dynamic recovery 

Dynamic recovery is one of the suggested mechanisms for the formation of transformed 

adiabatic shear bands in steels. Chen et al. [14] proposed this mechanism for the 

formation of transformed bands in steel during the fine blanking process, as shown in 

Fig. 2.2. The mechanism involves elongation and reorientation of grains (ferrite and 

pearlite) along the applied shear stress flow direction. A dislocation interaction in the 

elongated grains leads to partitioning into very fine grains through formation of cell 

walls. The final stage of the dynamic recovery process involves spheroidization 

resulting in densely packed very fine subgrains inside shear band [14]. Kad et al. [19] 

explained dynamic recovery leading to formation of transformed bands in a zirconium 

alloy (Zircadine 702) somewhat differently and proposed it to occur in three stages: 1) 

elongation of cells and subgrains, 2) development of misorientation between 

neighbouring grains and fragmentation of subgrains to smaller parts, and finally 3) grain 

rotation due to rotation of grain boundaries resulting in evolution of a fine equi-axed 

grain microstructure. 

 

 

Figure 2.2. Schematic view of dynamic recovery mechanism, adapted from [14]. 

2.4.3. Dynamic recrystallization 

Another mechanism used to explain the grain refinement inside transformed bands is 

dynamic recrystallization. As a result of the transient nature of the adiabatic shear 
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banding process, static recrystallization can not justifiably explain the formation of the 

fine  equi-axed grains found in transformed bands.  Static recrystallization is diffusion 

controlled and needs more time to occur than the period of formation of ASB which is 

of the order of a few hundred microseconds. Meyers et al. [15], Barry and Byrne [32], 

Hines and Vecchio [35], Nesterenko and Meyers [38], Mataya et al. [53], and Hwang et 

al. [58] have suggested  dynamic recrystallization as the mechanism of formation of 

transformed bands in metallic alloys. A dynamic recrystallization model, which involves 

grain boundary diffusion has been suggested by Meyers et al. [63]. This model was 

called Rotational Dynamic Recrystallization and suggested to be much faster than bulk 

diffusion. 

The rotational recrystallization mechanism proposed by Lins et al. [60] consists of 

dislocation multiplication and patterning to form an elongated cell structure, 

transformation of these cells into elongated subgrains surrounded by lamellar boundaries 

with high angles (misorientation), and, finally, division of elongated subgrains by 

formation of boundaries accompanied by local crystal rotation. This sequence of events 

in dynamic recrystallization was also reported by Li et al. [43] and Nesterenko et al. 

[38].  Formation and growth of recrystallized grains under dynamic shock loading inside 

the shear band depends on the strain-rate and density of dislocations. Atomic thermal 

migration also controls recrystallized grain growth if the temperature rise within the 

adiabatic shear band is high enough to allow this [43]. Nesterenko et al. [38] 

summarised the mechanism for dynamic recrystallization, as shown in Fig. 2.3, to occur 

in 4 stages as follows:  

1. Multiplication of dislocations, which are dispersed randomly,  

2. Arrangement of dislocations in the form of elongated dislocation cells,  

3. Generation of subgrains by dislocation pattering as the deformation progresses, and  

4. Break-down of subgrains into equi-axed submicron size grains. As the deformation 

increases, grain rotation occurs. 

Xu et al. [33] suggested that the temperature at which recrystallization occurs in metals 

is about 0.4-0.5 Tm. Andradea et al. [36] also observed that temperature rises inside the 

shear band of the copper specimens were in the range of 500-800K, which is the 
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temperature range at which recrystallization can occur [36]. However, the calculated 

temperature inside the shear bands of tantalum subjected to the high strain-rate 

deformation was about 800  C, which is lower than the recrystallization temperature. 

Nevertheless, at high microscopic strains in isolated areas, the onset of recrystallization 

was observed [15].    

 

 

Figure 2.3. Schematic view of dynamic recrystallization mechanism, (a) dislocation 

multiplication, (b) dislocation patterning forming elongated cells. (c) & (d) formation  

of subgrains, and (e) breakdown of elongated cells into very fine subgrains.  

Adapted from [38]. 
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2.4.4. Progressive subgrain misorientation (PriSM) 

Progressive Subgrain missorientation (PriSM) has also been suggested for the formation 

of transformed bands. This involves dynamic recrystallization of grains, which occur by 

the formation and mechanical rotation of subgrains, followed by boundary refinement 

during shear band cooling after deformation. Boundary refinement occurs by decreasing 

the surplus dislocation poles developed mainly by dislocation climb during shear band 

cooling.  During the short period time of deformation, there is not enough time for 

dislocation annihilation and boundary refinement for the material inside the adiabatic 

shear band. However, the cooling period, during which the temperature within the 

adiabatic shear band is still perfectly high, is longer than the deformation period. 

Therefore, dislocation annihilation and boundary refinement is kinetically possible 

during the cooling of the transformed band after dynamic shock loading [60].  Hines et 

al. [64] also proposed that the progressive subgrain misorientation recrystallization 

model accounts for evolution of subgrain misorientation inside the adiabatic shear band. 

This model is based on a bicrystal approach. Evolution of microstructure inside the 

shear band is proposed to proceed in two stages: firstly, recrystallization as a result of 

formation and mechanical rotation of subgrains during the deformation, and secondly, 

boundary refinement due to the diffusion after deformation and during shear band 

cooling. 

Perezprado et al. [65] observed no evidence of dynamic recrystallization within the 

shear band in hat shaped specimens of Ta and Ta-W alloys that were subjected to 

dynamic impact loading. They suggested that the temperature rise inside the shear band 

was not high enough to cause dynamic recrystallization. The Progressive subgrain 

misorientation (PriSM) mechanism, which is based on the mechanical subgrain rotation, 

is considered to be a more suitable mechanism to explain the microstructure evolution 

inside the shear band. Under tested conditions of time and temperature, dynamic 

recrystallization occurrence is doubtful for this material.  

2.5. Microstructure and properties of adiabatic shear bands 

Transformed adiabatic shear bands contain very fine, sub-micron size grains with an 

average size of tenths of micrometers [42].  It is suggested that carbide lamellae inside 
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the shear bands formed in pearlitic SS400 steel, which was deformed by a fine blanking 

process, became elongated as a result of intense shear strain inside the shear bands. The 

elongated carbide lath eventually fragmented into smaller grains which underwent 

spheroidization forming equi-axed grains. The formation of very fine ferrite subgrains 

inside the adiabatic shear band was due to the fragmentation of carbide particles as well 

as compression of carbon and iron diffusion paths under hydrostatic pressure and at high 

temperatures within the shear band. The hydrostatic pressure inside the adiabatic shear 

band of the pearlitic SS400 was suggested to hinder the formation of microcracks inside 

the shear band, although the material inside the shear band is subjected to large shear 

stresses [14]. 

TEM investigations of adiabatic shear bands in AISI 4340 steel by Wittman et al. [20] 

showed highly deformed carbide particles with the same structure as the surrounding 

matrix. They also suggested that partial spheroidization occurs inside the shear band due 

to the fragmentation of carbide laths, as well as carbon and iron diffusion, which is 

associated with the nucleation of fine ferrite subgrains. High temperature, as well as 

shear strain inside the band, cause the fragmentation of carbide particles and accelerate 

the shear band formation [1]. The adiabatic shear band investigation in tempered 

martensitic structure of HY-100 steel by Cho et al. [13] showed that ASB consisted of 

two distinctive regions: the highly elongated grains along adiabatic shear bands, and fine 

equi-axed cells. Derep [67] observed that the microstructure inside the adiabatic shear 

band in an armour steel after deformation under dynamic shock loading contained a fine 

grain equi-axed structure of delta ferrite, mixed with narrow laths of martensite. Lesuer 

et al. [68] studied the occurrence of adiabatic shear bands in an ultra-high carbon steel 

(UHCS) containing 1.3% C, 3.0% Si, 0.5% Mn, 0.99% Cr and observed a mixture of 

nano-sized carbides and ultra-fine grains of ferrite (70μm size) inside the adiabatic shear 

band. They suggested that temperature rise inside the shear band caused transformation 

to austenite followed by rapid cooling, which resulted in divorced eutectoid 

transformation (DET) after severe plastic deformation (SPD) occurrence inside the shear 

band. The microstructure inside adiabatic shear bands consisted of nano-sized carbides 

in super fine grain ferrites (70 μm). They also observed higher hardness in the shear 

band, compared with other parts of the specimen [68]. 
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Li et al. [43] observed fine equi-axed subgrains with the average diameter of 150 nm, as 

well as low density of dislocations at the center of adiabatic shear bands of a Monel 

alloy which was subjected to dynamic shock loading using a Split Hopkinson Pressure 

Bar. TEM observation of 8090 Al–Li alloy subjected to dynamic impact loading showed 

that the material inside the adiabatic shear band consisted of deformed cells with a high 

dislocation density, while the deformed region between the matrix and shear band 

consisted of highly elongated cells with well defined boundaries. On the other hand, the 

structure at the center of the shear band consisted of very fine equi-axed subgrains with 

low density of dislocations with the size of about 0.2μm. It is suggested that these equi-

axed subgrains were formed as a result of dynamic recrystallization [33].  

TEM investigation inside the shear band of 304L stainless steels, which were subjected 

to dynamic impact loading, indicated the nucleation of ά martensite (ά martensite forms 

in metastable austenitic stainless-steel by plastic deformation [69]) and the existence of 

a high density of dislocations inside the shear band. As the strain-rate and stress rate 

increased, the density of dislocations as well as the fraction of ά martensite inside the 

shear band increased. Therefore, the density of dislocations and ά martensite formation 

inside the shear band are sensitive to strain-intensity and strain-rate [70, 71]. Meyers et 

al. [63] also observed the microstructure of adiabatic shear bands in AISI 304L stainless 

steel (Fe–18%Cr–8%Ni) specimens using Electron Backscatter Diffraction (EBSD) and 

Transmission Electron Microscopy (TEM). The Electron Backscatter Diffraction 

(EBSD) results indicated that regions close to the adiabatic shear band experience grain 

subdivision (size 30μm) with angular rotation up to 20  . The microstructure inside the 

shear band could not be detected by EBSD. TEM observation of the microstructure 

inside the shear band by Meyers et al. [63] revealed two regions: 1) a region with grains 

having an average size of 0.1-0.2 μm, which have low dislocation density and well 

defined grain boundaries, and 2) a glassy structure region that is formed by a solid-state 

amorphization process. This was the first time that an amorphous structure has been 

observed inside a shear band. Stacking faults, twinning, martensitic transformation at 

twin band intersection and highly plastic deformation were observed outside the shear 

band. Therefore, it was suggested that plastic deformation and high temperature inside 

the shear band changes the microstructure from a dislocated and twinned structure to a 
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submicron size equi-axed structure with well-defined grain boundaries. For the fine 

grains of an average size of 0.2 µm, grain boundary rotation with the rotation angle of 

about 30   with respect to the estimated deformation time of approximately 10-50 μs has 

been reported [66].  

TEM observations of AISI 316L stainless steel specimens by Xue and Gray[23] showed 

well-defined adiabatic shear bands with a mixture of equi-axed, rectangular or elliptical, 

and elongated subgrains. They observed elongated subgrain laths and a high density of 

dislocation at the peripheral region of the transformed band, while fine equi-axed 

subgrains with the average size of 100 nm were observed inside the core of the shear 

band. The fine equi-axed grains were proposed to form as a result of fragmentation of 

elongated laths or subcells reconstruction by patterning of the high density of 

dislocations generated inside the shear bands. As the deformation increased, the 

adiabatic shear band core width increased and consequently the width of region with 

elongated subgrains decreased [23].  

TEM observations by Hwang et al. [58] on low-carbon steel plates that were subjected 

to dynamic shock loadings using torsional Kolsky bar, showed elongated ferrite and 

very fine equi-axed ferrite inside the shear band. Realignment of dislocations inside the 

elongated ferrites by dynamic recovery generated cell structures with very fine equi-

axed grains with the average size of 0.05-0.2 μm. The dynamic recrystallization 

mechanism was suggested as a possible mechanism which developed these high- angle 

sub-grains with relatively low density of dislocations. It was suggested that cementite 

particles inside the shear band were fragmented into smaller particles and spheroidized. 

Spheroidized cementite particles pinned down ferrite grain boundaries and hindered 

ferrite grain growth. Therefore, ferrite particles inside pearlite inside the adiabatic shear 

band were finer than those outside the pearlite [58]. The investigation of the effects of 

deformation temperature, strain rate, and preshocking condition on the formation of 

adiabatic shear bands by Chen et al. [66] in tantalum specimens that were subjected to 

dynamic shock loadings showed that as the deformation temperature decreased, shear 

localization increased due to the lower heat capacity . It also has been observed that as 

the strain rate increased, shear localization increased due to the higher heat generation 



 

22 
 

inside the material. As the temperature decreased and strain rate increased, the width of 

the shear band decreased. They also observed that specimens in preshock conditionings 

were more incline to form shear localization [66]. 

TEM investigation of the white etching bands in a Ti–6Al–4V alloy also showed the 

existence of equi-axed grains with the diameter of 50 nm inside the shear band [44]. 

Optical and transmission electron microscopy of adiabatic shear band in Ti-6Al-4V by 

Me-Bar and Shechtman [46] showed that the temperature rise inside the adiabatic shear 

band as a result of plastic deformation caused melting of the alloy in some regions 

besides the transformation from α phase to β phase that is followed by swift cooling at a 

rate of 170  Cs
-1

. The regions, where melting of the alloys occurred, were totally 

distorted, while the regions with β phase were elongated along the shear flow direction 

[46]. As a result of temperature rise inside adiabatic shear band of Ti-6Al-4V, and 

intense localized plastic deformation, completely distorted regions were observed inside 

the shear bands which had an entirely different microstructure from the parent alloy. 

This microstructure was suggested to be a tempered form of ά parental microstructure 

[72]. Small grains with an average size of 0.3-0.5 μm were observed inside the shear 

band of titanium, while the regions close to the shear band showed a high density of 

dislocations and deformation twinning. The boundary region between matrix and shear 

band of commercially pure titanium subjected to dynamic shock loadings consisted of 

slip bands and their intersections. Fine equi-axed submicron size grains were observed 

inside the shear band [30].  

Submicron size grains with the average size of 0.1 μm were observed inside adiabatic 

shear bands formed in copper that was rapidly deformed; the fine grain structure of the 

shear bands were proposed to form as a result of dynamic recrystallization [36]. Hines 

and Vecchio [35] investigated the adiabatic shear bands in copper and observed small 

grains with the average size of 0.1-0.2μm inside the adiabatic shear band. Copper 

samples that were deformed in liquid nitrogen at sub zero degree temperature exhibited 

no temperature-dependence of recrystallization [35]. 

Lee et al. [70] observed dislocation and twinning deformation inside the adiabatic shear 

band of inconel 690 superalloy specimens subjected to dynamic impact loading. They 
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observed that dislocations were arranged in a form of dislocation tangle and caused the 

formation of dislocation cell walls. It was observed that, as the test temperature 

increased, dislocation annihilation occurred, and the density of dislocation decreased. 

On the other hand, increasing strain-rate led to an increase in dislocation and twinning 

densities. Therefore, under high strain-rate loading and at low temperature, smaller 

dislocation cell size with thicker walls were formed which hindered the dislocation 

motion. Lee and his colleagues observed that, as the temperature increased at a constant 

strain rate, the flow stress, strain-rate sensitivity, and work hardening coefficient 

decreased, while activation volume and temperature sensitivity increased. However, as 

the strain-rate increased at a constant temperature, the flow stress and strain-rate 

sensitivity increased, while the activation volume and work hardening coefficient 

decreased [70].  

Nesterenko et al. [38] observed four kinds of microstructure in a deformed specimen of 

tantalum: (1) at effective strain values of less than 1 and a calculated temperature less 

than 600K, dislocations and elongated dislocation cells were observed, (2) at effective 

strain values of between 1 and 2 and a calculated temperature of 600-800 K, subgrain 

formation occurred by dynamic recovery, (3) dynamically recrystallized micrograins 

were observed for the effective strain between 2 and 2.5 and a calculated temperature of 

between 800 and 900K, and they were proposed to form by dynamic recrystallization, 

and  (4) at effective strains higher than 2.5 and a temperature higher than 1000K post-

deformation recrystallized grains were observed which were suggested to form by static 

recrystallization. It has also been suggested that static recrystallization involves an 

atomic migrational mechanism, while dynamic recrystallization involves subgrain 

rotation and dislocation annihilation. Microscopic analysis of tantalum samples that 

were deformed at high strain-rates by Meyers et al. [15] showed subgrains at the centre 

of adiabatic shear bands where the shear strain was 5.5. Elongated cells were observed 

in the boundary region between the shear band and the bulk material. Under 

transmission electron microscope, twinning deformation has been observed inside the 

adiabatic shear band of a low carbon steel with pearlite particles of 18 μm. However, 

there was no twinning deformation inside the adiabatic shear band of medium and high 
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carbon steel with the pearlite particle size of 25 and 35 μm, respectively. It has been 

suggested that grain boundaries restrict twinning deformation [71].  

TEM observation of adiabatic shear bands in AISI 4340 VAR steel with hardness of 44 

HRC showed highly elongated subgrains with well defined boundaries and varied 

dislocation densities, as well as dislocation cells. There was no evidence of phase 

transformation inside the adiabatic shear band. The preferred orientation of these 

subgrains was calculated at 110 planes which were parallel to the shear direction [17]. 

Meyers and Wittman [26] reported that hardness of transformed bands observed in 

quench-hardened and tempered low-carbon steels (AISI 1018 and 8620) were 

significantly higher than that of untransformed matrix. It has been suggested that this 

higher hardness of ASB is due to the fine microstructure with supersaturated carbon.  It 

has been suggested that hardness inside the transformed band of steels depends on the 

carbon concentration [61].  

Lee et al. [50] studied microstructural evolution inside adiabatic shear bands for three 

aluminum alloys: AA 2090 Al-Li alloy, a weldalite 049TM alloy and AA 7039 Al. They 

observed that the microstructure of the adiabatic shear band was totally different in the 

2090 Al-Li alloy. It contained highly elongated grains and coarse grain boundary 

particles. The cracks propagated along the grain boundaries with coarse particles 

(intergranular cracking). These intergranular cracks may prevent adiabatic shear band 

formation.  

Hat shape specimens of a polycrystalline zirconium alloy (Zircadine 702, containing 

0.7% Hf), which were impacted under dynamic shock loadings by Split Hopkinson Bar, 

exhibited well-defined adiabatic shear bands with the average width of 9-24μm in all 

tested specimens. The equi-axed grains with the average size of 200 nm were observed 

inside the shear band. Grains near the adiabatic shear band were subjected to moderate 

deformation and aligned themselves along the shear direction [19].   

Shear localization occurred for granular materials such as silicon carbide powders under 

high strain rate deformation. Comminution and rearrangement of particles were the 

suggested deformation mechanism of adiabatic shear bands in granular ceramic 
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materials. Plastic deformation of SiC particles caused the temperature to rise inside the 

shear band which melted SiC particles inside the shear band and fused them together 

[41]. Nesterenko et al. [73] investigated the effect of particle size of densified granular 

alumina specimens which were subjected to dynamic shock loadings by thick-walled 

cylinders on the adiabatic shear band characteristics. They observed that adiabatic shear 

band width was independent of initial particle size and was approximately 10-20μm. 

However, the microstructure of adiabatic shear bands significantly depended on the 

initial particle size. Specimens with the initial particle size of 4μm, experienced 

comminution (break-up) and particle softening, while observations of those with particle 

size of 0.4 μm showed a network of cracks parallel and perpendicular to the shear band.  

Initial particle size significantly affected displacement, magnitudes and distribution of 

adiabatic shear bands due to the different softening mechanism. Hardness of adiabatic 

shear bands increased in both specimens with small and big granular particle sizes. They 

suggested that specimens with large grain size had higher hardness due to an occurrence 

of microfracture, followed by repacking of particles with different sizes. Meanwhile, 

small size initial particles just underwent classic repacking and not particle fracturing. 

Meyers et al. [63] observed the adiabatic shear bands in metals (Ti, Ta, Ti-6Al-4V, and 

stainless steel), granular and pre-fractured ceramics (Al2O3and SiC), a polymer (teflon), 

and a metallic glass (Co58Ni10Fe5Si11B16). They suggested that the microstructure 

evolution mechanisms for each group were as follows:   

1. Metals: The first stage of deformation is associated with thermal softening following 

by dynamic recovery and dynamic recrystallization. It was proposed that, during the 

high strain-rate deformation, subgrain fragmentation and grain boundary rotation can 

occur. 

2. Ceramics: Shear localization depends on the particle size. If the particle size is 

greater than a critical value ac, comminution and particle break-up will occur. 

However, if the particle size is smaller than critical value, a significant amount of 

heat that is generated by plastic deformation and particle repacking will cause the 

fusion of the particles and bonding.   
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3. Non-crystalline metals and polymers:  Local inelastic transformations initiated the 

highly localized regions which organized themselves into shear band zones. 

The width of the region in which the grain distortions are clear, in comparison with 

other parts of the specimen, is called the width of the shear band. The width of the shear 

band depends on the materials, chemical compositions and strain rate [71]. Xue-bin [74] 

suggested that wide transformed adiabatic shear bands, as well as high local plastic 

deformation between deformed and transformed ASB, are formed as a result of a high 

heat conversion factor, low density, low heat capacity and high melting temperature. 

High local plastic deformation in deformed adiabatic shear band forms when there is a 

high work to heat conversion factor, low density, low heat capacity and low melting 

point. They also suggested that difference in materials investigated, loading methods, 

conditions, and different definitions of the ASB width are three reasons responsible for 

the scatter in experimental results on the width of the shear bands [74]. It has been 

observed that the width of the shear band in steels decreased as the carbon content and 

strain rate increased [71].  

The local shear strain within an adiabatic shear band is defined as γ = tanθ where θ is the 

distortion angle [33]. As the distance from the centre of the shear band increases, the 

distortion angle decreases. Therefore, the maximum local shear strain occurs at the 

centre of the adiabatic shear band. The angle of distortion and local shear strains depend 

on the material, chemical composition and strain rate. It has been observed that for 

steels, as the amount of carbon and strain rate increased, the local shear strain increased 

[71]. Engineering strain can be calculated from the true strain using Equation 2.7 [33]: 

                                                                                                        (2.7) 

2.6. Adiabatic shear band failure 

Materials fail along the adiabatic shear bands under dynamic impact loadings. Adiabatic 

shear bands are preferential sites for crack initiation and propagation [47, 75]. As the 

loading rate increased, the temperature inside of the shear band increased, which has 

significant effects on material yielding and plasticity. The optical and scanning electron 

microscopic observations of roll homogeneous armour (RHA) plate by Raftenberg and 
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Krause [31], perforated by a pointed projectile, showed the existence of some cracks 

along the transformed shear bands blended with deformed adiabatic shear bands along 

the indentation cavity of the plates. Zurek [1] also observed a ductile fracture mode 

inside the white etching adiabatic shear band of pearlitic AISI 4340 steel. Mataya et al. 

[53] observed macroscopic, transgranular cracks inside the shear band of γ' strengthened 

austenitic stainless steel, JBK-75. Cho et al. [61] suggested that crack formation along 

the adiabatic shear band of AISI 1018 cold-rolled steel occurred in three stages: (1) 

formation and coalescence of micro-voids and separation along ferrite boundaries, (2) 

separation between pearlite and ferrite particles, and (3) breaking apart of pearlite 

lamellae. They also observed that, for HY-100 steel, voids initiated at MnS inclusions 

inside the adiabatic shear band. 

The schematic view of the crack formation and propagation mechanism inside adiabatic 

shear band, as proposed by Bassim and Odeshi [76] for quench-hardened and tempered 

AISI 4340 steel is shown in Fig. 2.4. It was suggested that the formation of cracks along 

adiabatic shear bands starts with the formation of micro-pores inside the adiabatic shear 

bands (Fig. 2.4a). These micro-pores cluster together, forming voids, which act as crack 

nuclei. The micro-cracks, nucleated at adjacent voids interconnect leading to formation 

of crack, as shown in Fig. 2.4(d) [76]. Rittel et al. [45] suggested that voids’ nucleation 

occurs because of 1) vacancy coalescence at high strain-rate regions, 2) formation of 

micro-voids because of grain boundary sliding, and 3) void nucleation at secondary-

phase particles and ahead of dislocation pile-ups. It has been reported that the existence 

of precipitates are not a necessary factor for void nucleation [45].   
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Fig. 2.4. Schematic view of crack formation inside adiabatic shear band, adapted from 

[76]. 

 

Xue et al. [77] studied the failure of adiabatic shear bands in Ti–6Al–4V alloys. They 

proposed a model for the evolution of a crack inside shear bands as shown schematically 

in Fig. 2.5. They suggested that voids nucleate inside the shear band. Odeshi et al. [78] 

suggested that micro-voids nucleate inside adiabatic shear bands as result of tensile 

stress generation due to the difference between the flow stress inside and outside the 

shear bands. These voids grow until they reach the shear band boundary where the 

material is harder due to the lower temperature. Xue et al. [77] proposed that these voids 

grow along the shear bands, and finally coalesce, causing fragmentation. The schematic 

views of the mechanisms proposed by Xue and  his colleagues [77] in the absence and 
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presence of shear stress are presented in Fig. 2.5. In the presence of shear stress, the 

voids are elongated and rotated as shown in Fig 2.5(b) [77].  

 

 

Figure 2.5. Schematic view of voids nucleation inside the shear band, (a) in the absence 

of shear stress, (b) in the presence of shear stress, adapted from [77]. 

 

A ductile fracture mode has been observed inside and outside the shear band. Ductile 

fracture inside the shear band occurred as a result of thermal softening which created 

tensile stress and opened up micro-voids inside the adiabatic shear band. On the other 

hand, ductile fracture outside the shear band occurred as a result of precipitates, which 

act as crack nuclei [45]. Nesterenko et al. [38] suggested that ductile fracture along the 

adiabatic shear band of deformed tantalum was due to the residual tensile tangential 

stresses upon loading. Cho et al. [61] observed elongated dimples and knobby features 

on the fracture surface of an AISI 1018 cold-rolled steel (CRS), a structural steel (HY-

100), and an AISI 4340 vacuum arc remelted (VAR) steel tempered to either of two 

hardnesses RHC 44 or 55. They observed elongated dimples, indicating ductile shear 

fracture mode. They also observed knobby features on the fracture surface, suggesting 

melting of alloy in these regions. The fracture surface of the specimen could melt as a 

result of heat generation inside the adiabatic shear band as the two fracture surfaces are 

rubbed against one another [42, 61].  
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Odeshi and Bassim [11] observed ductile fracture with the evidence of precipitates at 

voids’ origin in bulk material of AISI 4340 steel, which was deformed under dynamic 

shock loadings. However, both ductile and cleavage fracture were reported to occur 

outside the shear band of AISI 4340 steel. Elongated dimples as a result of ductile 

fracture mode were observed in the deformed zone between the bulk material and 

transformed band. Fracture along transformed bands showed highly elongated dimples 

indicating shear ductile fracture and knobby fracture mode. The dimples were deeper 

and narrower inside the transformed shear band than dimples formed in deformed bands 

in the region adjacent to the transformed band [11]. Lee et al. [70] also observed 

dimples on the fracture path through adiabatic shear band in inconel 690 superalloy 

subjected to dynamic impact loading. 

Lee and Lin [71] also observed both elongated dimples and knobby features on the 

fracture surface of adiabatic shear band in low, medium, and high carbon steels. It has 

been observed that as the strain-rate increased, the depth of the dimples increased and 

the shear band exhibited more ductile fracture. This indicated that as the strain-rate 

increased, the temperature within adiabatic shear band increased. Moreover, the 

proportion of knobby features increased as strain rate and carbon content increased, and  

the size of dimples decreased with increasing strain rate and carbon content [71].  

Ryttberg et al. [79] proposed three damage subzones to form below the fracture surface 

of 100Cr6 steel that fractured under impact shock loadings: 1) white etching band, 2) 

equiaxed grains, and 3) elongated subgrains (The preferred orientation of subgrains was 

110 planes parallel to the shear direction). It was also observed that the region below the 

fracture surface of tool steel 100CrMn6 was divided into three zone: 1) right under the 

fracture surface, white etching adiabatic shear band containing equi-axed ferrite 

particles (size. 50-150 nm); 2) within a distance less than 50 μm under the fracture 

surface, lamellae cementite and carbide particles within ferrite matrix, and 3) within the 

range of 50-100 μm distance under the fracture surface, elongated grains, distorted 

carbide lamellae with small lamellar spacing which align themselves parallel to the 

shearing direction. Evidence of deformation twinning of each region was reported [79]. 
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2.7. Adiabatic shear band recovery 

The susceptibility of the material to fracture under subsequent loading can be reduced 

by the annealing shear band that developed in the previous dynamic shock loading. 

Odeshi et al. [21] investigated the effects of post-impact heat treatment on the adiabatic 

shear band in AISI 4340, which were formed under dynamic impact loading.  It was 

observed that annealing the white etching band at 315  C for 2h did not affect the 

microstructure inside the shear band. However, hardness value of the shear band 

decreased by soaking the specimen band at 650  C for 20 minutes. By soaking the 

specimen at 650  C for 20 minutes the hardness value of the shear band decreased to the 

same value as that of the material outside the shear band. By extending the soaking time 

at 650 C to 2h, the white ASB changed to a gray colour of the ductile deformed band. 

Coarsening of nano-sized particles inside the adiabatic shear band was observed to 

occur, which accounted for the reduced hardness of the shear band when soaked at 650 

C for 20 minutes. 

2.8. Summary  

At strain rate greater than 10
3
s

-1
, deformation become localized along narrow bands in 

materials. The narrow paths of intense strain localizations are called Adiabatic Shear 

Bands (ASBs). Materials fragmentation under high strain-rate is usually preceded with 

the occurrence of adiabatic shear bands, especially transformed bands which contained 

nano-sized subgrains and offer preferential sites for crack initiation and propagation. 

Therefore, fundamental understanding of the mechanisms of formation these bands and 

their failure is very important to prevent adiabatic shear failure of engineering 

components under dynamic shock loadings. It is very important to investigate and 

document the dynamic impact response of various engineering materials in relation to 

adiabatic shear banding as influenced by microstructure, strain rates and geometry. 

Although mechanical properties of most engineering alloys under static loading are 

readily available in the literature, the same cannot be said for the case of dynamic shock 

loading. The need to generate property data sheets for all materials and make them 

readily available for the use of design engineers in materials selection for high strain-

rate applications cannot be overemphasized. 
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The current study was conducted to document the dynamic mechanical response and 

adiabatic shear banding in AISI 1340 steel as influenced by strain rates, microstructure 

and specimen’s geometry. The dynamic mechanical behaviour of the alloy specimens 

heat-treated to have martensitic, pearlitic and dual-phase structure will be investigated. 

Such a detailed investigation of AISI 1340 steel under dynamic impact loading has not 

been previously conducted. The results to be obtained from this investigation will 

contribute to knowledge on dynamic impact behaviour of this alloy and to generation of 

materials database for dynamic mechanical behaviour of the material.  Although AISI 

4340, the second alloy intended for investigation in this research study, have been 

investigated by a number of researchers [1, 11,12, 20,21], the effects of geometry of the 

on the occurrence and trajectory of adiabatic shear bands in the steel has not been 

investigated as planned in this research study. 

In order to provide further insight to the microstructural evolution that culminates in the 

occurrence of transformed bands in steel, chemical analyses of the regions inside and 

outside these bands are planned for investigation using the synchrotron light radiations 

at the Canadian Light Source (CLS) in Saskatoon. The investigation will be carried out 

at the soft x-ray spectromicroscopic (SM) beamline of the CLS using X-ray 

Photoemission electron microscopy (XPEEM) and Near edge X-ray absorption Fine 

Structure (NEXAFS). Such an in-depth chemical analysis of the nano-grains inside 

transformed bands in metallic materials has not been previously undertaken as planned. 

Data to be generated from synchrotron study of transformed band will likely open a new 

line of discourse on the microstructural evolution associated with the occurrence of 

transformed bands in steel in particular and metallic alloys in general.    
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CHAPTER THREE 

MATERIALS AND EXPERIMENTAL PROCEDURE 

The materials used in this investigation, the geometry of the specimens, heat treatment 

procedure, high strain-rate deformation tests (Direct impact Hopkinson Bar test, 

Torsional Kolsky Bar test) are explained in this chapter. Metallographic preparation and 

procedures for microstructure analysis using Optical Microscopy (OM), Scanning 

Electron Microscopy (SEM), X-ray Photoemission electron Microscopy (XPEEM), and 

microhardness testing are also provided in this chapter. 

3.1. Materials 

The chemical compositions of AISI 1340 and 4340 steel used in this investigation are 

shown in Table 3.1. The AISI 1340 steel was supplied by Stelco Inc. in Hamilton 

Ontario (now called US steel Canada), which also provided the chemical composition of 

the steel. AISI 4340 steel was purchased from steel vendor by mechanical engineering 

workshop in college of engineering at University of Saskatchewan. The chemical 

composition range of AISI 4340 was looked up in ASM handbook volume 1 [82]. They 

both contain 0.40 wt. % C. whereas AISI 1340 steel is manganese steel containing 1.54 

wt. % Mn and 0.14 wt. % V, the AISI 4340 steel is a low alloy steel containing 

substantial amounts of Mn, Cr and Mo. AISI 4340 steel is one of the most popular High-

Strength Low Alloy (HSLA) steels, and is commonly used in high strength applications 

in automobiles and trucks, gas pipelines, pressure vessels, etc. The low carbon content 

and high manganese content of AISI 1340 steel makes it suitable for processing into 

dual-phase structure. The manganese expands the ferrite + austenite phase region in the 

iron-iron carbide equilibrium phase diagram and the low carbon content enhances the 

ability to partially austenitize the steel in the ferrite + austenite phase region. On 

quenching the steel after intercritical annealing in the ferrite + austenite phase region, 

the austenite will transform, leaving a microstructure that consists of hard martensite 

embedded in a continuous soft ferrite matrix. The high manganese content and high 

carbon content of the austenite in the intercritical temperature range provides enough 
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hardenability for the transforming austenite [82]. As a result of the unique combination 

of good strength and ductility in dual-phase steel, it can be rolled into high strength thin 

plates suitable for automobile bodywork. Thus, AISI 1340 steel is widely used in 

automotive body construction to enable cars to save weight and consume less fuel [82]. 

 

Table 3.1. Chemical compositions of AISI 1340 and 4340 carbon steels 

Elements AISI 1340 steel (wt%)  AISI 4340 steel (wt%) 

C .40 .40 

Mn 1.54 0.60-0.80 

P .022 0.035 

S .015 0.04 

Si .27 0.15-0.30 

Cu .009 - 

Ni .012 1.65−2.00 

Cr .050 0.70-0.90 

Mo .002 0.20-0.30 

V .14 - 

Cb .068 - 

Ti .002 - 

Ni .012 1.65-2.00 

 

3.1.1. Specimens 

The geometry of the test samples are shown in Figs. 3.1 and 3.2. Samples for torsional 

tests were machined from hot-rolled AISI 1340 and 4340 steel rods into thin-walled 

tubular specimens with a gage length of 3.8 mm and wall thickness of 0.4 mm (Fig. 3.1). 

The compression specimens investigated with direct impact Hopkinson, which were 

machined from the hot-rolled rods of AISI 1340 and 4340 steels, were in three shapes: 

cylinder, cube, and truncated cone as shown in Fig. 3.2.  The cylindrical specimens had 

a diameter and length of 9.5 mm and 10.5mm, respectively. The cubical-shape 

specimens had dimensions 9.00 mm × 9.00 mm × 10.00 mm. The specimens machined 
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into the shape of a truncated cone had radii of 9.5 mm and 8.5 mm, and a height of 10.5 

mm.  

 

 

Figure 3.1. Thin-walled tubular specimens for torsion test. 

 

Figure 3.2. Specimens  shape (a) cylinder, (b) cone, (c) cube. 
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3.2. Experimental Procedure 

3.2.1. Heat treatment Procedure 

In order to determine the effects of microstructure on the dynamic impact response of 

the alloys, machined specimens were heat-treated to obtain pearlitic, martensitic or dual 

phase structures. The heat treatment procedures with respect to temperature, time and 

quench medium is summarized in Table 3.2. The heat treatment temperature was 

designed using the iron-iron carbide equilibrium phase diagram shown in Fig. 3.3. To 

obtain martensitic structure, steel specimens having 0.4 wt. % C were austenitized at 

850  C for 30 minutes using Linderg blue Furnace located in College of Engineering 

(Room 2C24), University of Saskatchewan and then quenched in water, in the case of 

AISI 1340 steel or oil in the case of AISI 4340 steel to obtain martensitic structure. The 

cylindrical martensitic AISI 1340 steel specimens were divided into three groups, 

tempered at 205  C, 315  C or 425  C, respectively, for one hour. AISI 4340 steel 

specimens were tempered at only 315  C for one hour. The effect of tempering 

temperature on the AISI 4340 has been investigated in a previous study [11, 21, 83]. To 

obtain pearlitic structure, specimens were austenitized at 850  C for 30 minutes and then 

cooled down to the room temperature in air. The microstructure at room temperature 

consisted of ferrite and pearlite. Dual-phase structure was obtained by austenitizing the 

specimens at 740  C in the ferrite + austenite phase region (Fig. 3.3) for 20 minutes and 

then quenching in water in the case of AISI 1340 steel or oil in the case of AISI 4340 

steel.  These specimens were then tempered at 315  C for one hour. 
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Figure 3.3. Iron-iron carbide phase diagram.  

Table. 3.2. Summary of heat treatment procedure 

AISI 1340 Steel 

Microstructure Austenitizing 

Temperature 

(˚C) 

Time 

(min) 

Quench Tempering 

Temperature 

(˚C) 

Number of Specimens 

Impact 

Test 

Torsion 

Test 

Martensitic 850 30 In Water 205 (1 hr) Cylinder  10  - 

 850 30 In Water 315(1 hr) Cylinder  10 3 

Cube        6 

Cone        6 

 850 30 In Water 425(1 hr) Cylinder  10   - 

DP Structure 740 20 In Water 315(1 hr) Cylinder  10  3 

Pearlitic 850 30 In air - Cylinder 10  3 

AISI 4340 Steel 

Microstructure Austenitizing 

Temperature 

(˚C) 

Time 

(min) 

Quench Tempering 

Temperature 

(˚C) 

Number of Specimens 

Impact 

Test 

Impact 

Test 

Martensitic 850 30 In oil 315(1 hr) Cylinder   4 3 

Cube         6 

Cone         6 

DP Structure 740 20 In oil 315(1 hr) Cylinder   4 3 

Pearlitic 850 30 In air - Cylinder   4 3 
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3.2.2. High strain-rate tests 

3.2.2.1. Compression test 

The dynamic mechanical behaviour of the materials under compressive loading at high 

strain rate was investigated using an instrumented Direct Impact Hopkinson Bar. Figure 

3.4 shows a schematic view of the direct impact Hopkinson Bar and a photograph of the 

direct impact Hopkinson Bar used in this investigation, which is located in Department 

of Manufacturing and Mechanical Engineering at University of Manitoba, is shown in 

Fig. 3.5. The projectile, which is fired by the light gun, travels through the gun barrel 

and strikes the sample at high impact velocity. The projectile was fired at varying firing 

pressure to produce projectile velocities that ranged between 20 and 32 m/s at the time it 

struck the specimen. The projectile was made of quench-hardened AISI 4340 steel and 

weighed 1.905 kg. As the specimen was impacted by the projectile, elastic waves were 

produced, which transmitted through the specimen to the output bar. The transmitted 

elastic wave signals were captured by a strain gage attached to the output bar. The 

captured strain waves were conditioned and amplified by the attached strain pulse 

amplifier. The amplified strain pulse data were recorded using a mixed signal digital 

oscilloscope.  

 

Figure 3.4. Schematic view of the direct impact Hopkinson bar. 
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Figure 3.5. Photograph of direct impact Hopkinson bar used in this study. 

The elastic waves are captured by the oscilloscope as time (s) vs. voltage (V) data. The 

voltage can be converted to the impacted load (N) by calibrating the strain gage on the 

out-put bar. In order to calibrate the gage, the output bar was subjected to quasi-static 

compressive loads of 1 kN to 7 kN in increments of 1 kN. The voltage corresponding to 

each applied load (N) was measured and a plot of load (N) vs. voltage (V) was made, as 

shown in Fig. 3.6. The slope of load (N) vs. voltage (V) relationship was found to be 

21798 N/V, which gave the conversion factor for voltage measured by the oscilloscope 

into the corresponding force in N. 
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Figure 3.6. Direct impact test calibration result. 

If it is assumed that specimens have constant volume and a linear variation of 

displacement with time, as well as constant strain rate, the true stress and true strain 

values can be calculated from the following equations:  

     
    

  
 
           

 
    

  
                                                                                       (3.1) 

       
  

           
 
    

                                                                                           (3.2) 

where, Li and Lf are initial and final length, respectively. The data for the dynamic 

stress-strain curves for the materials under impact loading were computed using 

Equations 3.1 and 3.2. The strain rate corresponding to each impact velocity is directly 

proportional to the maximum strain and inversely proportional to the length of the 

striker bar (l), which was 0.223 m in this case, as shown in Equation 3.3. The strain-rate 

was calculated using this equation: 

   
  

  
                                                                                                                         (3.3) 

where, C0 is the longitudinal wave propagation velocity in the transmitter bar. 
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3.2.2.2. Torsion test 

A torsional Kolsky Bar was used in conducting the high strain rate test in torsion on the 

test specimens. A schematic view of the Torsional Kolsky Bar is shown in Fig. 3.7, 

while a photograph of the bar used in this study which is located in Department of 

Mechanical and Manufacturing Engineering at University of Manitoba, is shown in Fig. 

3.8. The system consists of two collinear bars. The incident one can rotate easily within 

the support of bearings. The short, thin-walled specimen is loaded between the two bars. 

The torsional wave, which is produced by a sudden release of a stored torque in the 

loading end of the incident bar, travels through the incident bar and is captured by the 

strain gage attached to the incident bar. On reaching the specimen, it loads and deforms 

the specimen rapidly. The incident wave is partially transmitted to the transmitter bar 

and partially reflected back to the incident bar. The transmitted wave is captured by the 

strain gage attached to the transmitter bar while the reflected wave is captured by the 

strain gage attached to the incident bar. The amplifier amplifies the detected strain data 

and sends them to an oscilloscope, which collects and stores the data. The stress, strain, 

and strain-rate can be calculated from the incident, transmitted and reflected wave data. 

 

Figure 3.7. Schematic view of torsional Kolsky bar testing. 
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Figure 3.8. Photograph of torsional Kolsky bar used in this study. 

The corresponding shear strain for the elastic wave data in the form of voltage recorded 

by the oscilloscope was determined by loading a connected incident and transmitter bar 

in torsion at incremental angles of twist while reading the voltage generated by the strain 

gages on the bars. A plot of shear strain against voltage is shown in Figs. 3.9 and 3.10, 

which gives the conversion factor for obtaining the shear strain that corresponds to 

voltage output from the strain gages on the incident and transmitter bars. By using the 

slopes of the lines in Figs. 3.9 and 3.10, the incident strain (I), transmitted strains (T) 

and reflected strains (R) were computed from the voltage data from the strain gages. 

The shear strain vs. voltage relationships were calculated as follows: 

Incident bar.        I=1.323x10
-4

 
      

           
x Voltage (V)                                             (3.4) 

                            R=1.323x10
-4

 
      

           
x Voltage (V)                                             (3.5) 
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Torque Pulley 
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Transmitted bar.  T=1.314x10
-4

 
      

           
x Voltage (V)                                            (3.6) 

 

 

Figure 3.9. Torsional Kolsky bar calibration result for incident and reflected waves. 

 

Figure 3.10. Torsional Kolsky bar calibration result for transmitted waves. 
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The strain-rates were calculated as follows [84]: 

       
  

  
 
  

  
                                                                                                   (3.7) 

where rs is the mean radius of the thin-wall specimen, Ls is the length of the specimen, c 

is the wave speed propagation velocity in bar, and rb is the radius of the bar. The shear 

strain in the specimen was calculated by integrating the strain rate, as shown in Equation 

3.5 [84]: 

          
 

 
                                                                                                       (3.8) 

The shear stress was determined using Equation 3.6 as follows [84]: 

       
   

 

   
   

                                                                                              (3.9) 

where G is the shear modulus [84]. 

 

3.2.4. Microstructural Investigations 

Deformed specimens that had been subjected to dynamic shock loadings were mounted 

in phenolic resin using the pneumatic mounting press shown in Fig. 3.11. The mounted 

specimens were pre-grinded with water on SiC-220 grit paper mounted on a rotating 

polishing wheel for 1 minute. Then, they were grinded on the MD-largo disc on a low 

speed polishing wheel with MD-Largo polishing liquid for 5 minutes.  The grinded 

specimens were then polished in two polishing stages. In stage one, specimens were 

polished on a MD-Dac polishing cloth with MD-Dac liquid on a low speed polishing 

wheel for 4 minutes. In the final stage, they were polished on MD-Nap polishing cloth 

with MD-Nap liquid on low speed polishing wheel for 1 minute. The polished samples 

were then etched with 2% nital for about 16 seconds. 
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Figure 3.11. Photograph of pneumatic mounting press used for specimen mounting. 

 Prepared specimens were observed under optical microscope (Nikon ECLIPSE 

MA100) using four different magnifications: 50X, 100X, 500X, and 1000X located in 

Room ENG 2C25 in the Department of Mechanical Engineering at University of 

Saskatchewan. Specimens with well formed white shear bands were then cut along the 

longitudinal cross-section, polished and etched in 2% nital for 16 seconds. The 

specimens were then observed under the optical microscope to give the geometry of the 

shear bands along longitudinal cross-section of the impacted specimen. Figure 3.12 

shows the Nikon Eclipse MA 100. Fractographic investigation of fragmented specimens 

was done using a Scanning Electron Microscope (SEM). Figure 3.13 shows the Joel 

JSM 6010L V Scanning Electron Microscope used in this research study which is 

located in Department of Mechanical Engineering at University of Saskatchewan. The 

SEM was operated using accelerated voltage of 15KV and a secondary electron imaging 

technique. X-ray photoemission electron microscope (XPEEM) with Near Edge X-Ray 

Absorption Fine Structure (NEXAFS) spectroscopy was used to investigate the chemical 

and electronics structure of material inside and outside of the adiabatic shear band for 
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AISI 4340 alloy steel using synchrotron light radiations at the Canadian Light Source 

(CLS) in Saskatoon. 

 

 

Figure 3.12. Photograph of the Nikon Eclipse MA 100 optical microscope used in this 

study. 
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Figure 3.13. Joel Scanning Electron Microscope (SEM). 

3.2.5. Microhardness Measurements 

Vickers microhardness tests were conducted on the material, inside and outside of the 

shear bands for specimens with well-formed adiabatic shear bands. Figure 3.14 shows 

the Vickers microhardness tester used in this research which is located in Mechanical 

Engineering Department at University of Saskatchewan (Room ENG 2C25). 
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Figure 3.14. Vickers microhardness tester. 

Polished specimens were mounted on the Microhardness tester and indented using a 

diamond indenter. The Vickers hardness number is obtained by the ratio of F/A, where F 

is the force applied to the square-based pyramid diamond indenter, which was 500gf for 

this work. A is the surface area of the resulting indentation in square micrometers, which 

can be calculated by the following equation: 

  
  

            
 

  

      
                                                                                      (3.10) 

where, d is the average length of the indentation diagonal D1 and D2. The Vickers 

hardness number was calculated using the following equation [59]: 
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                                                                                             (3.11) 

Figure 3.15 shows optical micrographs of Vickers microhardness test indentations 

located inside and outside of the shear band of a quench-hardened AISI 1340 steel 

specimen tempered at 425  C, and impacted at 39.1 kg.m/s. 

  

Figure 3.15. Optical micrographs showing Vickers hardness indentations on quench-

hardened AISI 1340, tempered at 425  C, impacted at 39.1 kg.m/s, (a) inside the shear 

band, (b) outside the shear band. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Indentations 
Indentations 



 

50 
 

 

 

CHAPTER FOUR 

 RESULTS AND DISSCUSSION 

Stress-strain curve results from the dynamic impact and torsional tests are outlined in 

this chapter.  The effects of strain rate and microstructure on the dynamic stress-strain 

curves are discussed. Results of metallographic and microhardness tests of heat-treated 

specimens before and after impact are presented in this chapter. The effects of strain 

rate, microstructure, alloying elements, and geometry of the specimen on adiabatic shear 

band behaviour of AISI 1340 and 4340 steel are discussed. 

4.1. Stress-strain curve 

 4.1.1. Overview 

Figure 4.1 shows a typical stress-strain curve obtained from high strain-rate loading of a 

cylindrical steel specimen. After a clear yield point, which shows the onset of plastic 

deformation, strain hardening as a result of plastic deformation and thermal softening 

due to the heat generated inside the material, occur simultaneously [3]. At the beginning, 

strain hardening dominates the plastic deformation until a maximum flow stress is 

reached. After the maximum flow stress, thermal softening dominates the deformation 

process. Hence, as the strain increases, the flow stress decreases. The sharp stress 

collapse due to mechanical instability is a consequence of intense adiabatic heating 

along a narrow path leading to strain localization. This point is the critical strain for the 

occurrence of an adiabatic shear band ( crit) [3]. It should be noted that assumptions 

which has been made to produce dynamic stress-strain curves may not be valid after the 

onset of strain localization. 
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Figure 4.1. Typical stress-strain curve for specimen subjected to dynamic shock loading 

[martensitic AISI 1340 steel, tempered at 425  C, cylindrical specimen and subjected to 

impact loading at 33.2 kg.m/s (  =1146 s
-1

)]. 

 

4.1.2. The effect of impact momentum 

The effects of impact momentum on the dynamic impact response of the martensitic 

AISI 1340 steel specimens that were tempered at 315˚C are shown in Figs. 4.2 and 4.3. 

The strain-rate generated in each specimen is directly correlated to the applied impact 

momentum. As the impact momentum increases, the critical strain and time at which 

thermo-mechanical instability occur increases. The increase in critical strain for 

instability is due to increasing thermal softening and plastic strain in the specimens as 

impact momentum increases. Also, as the impact momentum increases, the specimens 

become more work-hardened before thermal softening begins to dominate the 

deformation process. The increased plasticity with increase in strain-rates is due to an 

increased thermal softening effect during the deformation process. This result agrees 

with the submission of Kalthoff and Burgel [75] that the temperature inside shear bands 
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increased as the loading rate increased, leading to significant effects of material yielding 

and plasticity. The same behaviour has been observed for the other microstructures 

which were impacted at different impact momentums (Figs. 4.2 - 4.6). Lee and Lin [71] 

suggested that as the strain-rate increases, the stress increases at any specific strain. 

Also, as the strain rate increases, the rate of work hardening decreases due to increased 

heat generation during plastic deformation. Increasing the strain rate has dual effects on 

plastic deformation. On one hand it increases strain hardening because of the dislocation 

multiplication. On the other hand, it increases thermal softening due to the heat 

generation during plastic deformation. 

It has also been observed that as the impact momentum or strain-rate increases, 

maximum flow stress increases. However, for AISI 1340 steels specimens with 

martensitic structure, as the impact momentum increases, the maximum flow stress 

initially increases, but begins to decrease with increasing impact momentum at high 

values of impact momentum. From Table 4.1, this impact momentum beyond which 

maximum flow stress begins to decrease with increasing impact momentum is that 

momentum above which transformed bands are formed, as shown in the experimental 

data presented in Table 4.1. The temperature inside the shear band increases as the strain 

rate increases. The impact momentums at which maximum flow stresses begin to 

decrease increases with increasing tempering temperature. This indicates that 

martensitic specimens that were tempered at a lower tempering temperature are more 

inclined to form transformed bands at lower strain-rates. On the other hand, for steel 

specimens with pearlitic structure, as the strain-rate increases, the maximum flow stress 

increases and there is no evidence of decrease in maximum flow stress, within the range 

of applied impact momentum (strain-rate). It can also been seen from Table 4.1 that no 

transformed adiabatic shear band was observed in the specimen at highest applied 

impact momentum. 
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Figure 4.2. Dynamic impact stress-strain curves for martensitic AISI 1340 steel 

specimens (tempered at 315˚C) as a function of the impact momentum and strain rates. 

 

Figure 4.3. Stress vs. deformation time curves for martensitic AISI 1340 steel specimens 

(tempered at 315˚C) as a function of the impact momentum and strain rates. 
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Figure 4.4. Dynamic impact stress-strain curves for martensitic AISI 1340 steel 

specimens (tempered at 205˚C) as a function of the impact momentum and strain rates. 

 

Figure 4.5. Dynamic impact stress-strain curves for martensitic AISI 1340 steel 

specimens (tempered at 425˚C) as a function of the impact momentum and strain rates. 
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 Figure 4.6. Dynamic impact stress-strain curves for pearlitic AISI 1340 steel specimens 

as a function of the impact momentum and strain rates. 
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Table 4.1. Experimental data sheet for the impact test 

a. AISI 1340 steel 

Impact 

pressure 

(kPa) 

Impact 

Momentum 

(kg.m/s) 

Total 

Strain 

Strain rate 

(s
-1

) 

ASB 

Martensitic Structure ( Temper at 205  C) 

60 30.2 0.035 468 Slightly Deformed 

80 32.2 0.052 705 Deformed 

100 34.2 0.071 965 Slightly Transformed 

100 34.2 0.102 1396 Slightly Transformed 

120 36.1 0.105 1452 Transformed 

140 38.1 Fractured Fractured Transformed 

150 39.1 Fractured Fractured Transformed 

Martensitic Structure  (Temper at 315  C) 

60 30.2 0.060 811 Deformed 

80 32.2 0.066 892 Deformed 

90 33.2 0.106 1467 Deformed 

100 34.2 0.108 1493 Intense Deformed 

120 36.1 0.129 1811 Deformed and 

Transformed 

140 38.1 0.156 2224 Transformed 

150 39.1 0.176 2534 Transformed 

180 42.1 Fractured Fractured Transformed 

Martensitic Structure  (Temper at 425  C) 

60 30.2 0.047 627 None 

80 32.2 0.146 2064 None 

100 34.2 0.193 2354 Deformed 

120 36.1 0.188 2720 Deformed 

140 38.1 0.202 2952 Deformed 

150 39.1 0.229 3405 Deformed and 

Transformed 

180 42.1 Fractured Fractured Transformed 

Pearlitic Microstructure 
60 30.2 0.010 1376 None 

60 30.2 0.104 1436 None 

80 32.2 0.145 2047 None 

100 34.2 0.225 3348 Slightly Deformed 

120 36.1 0.247 3728 Deformed 

140 38.1 0.305 4769 Deformed 

150 39.1 0.310 4868 Deformed 

180 42.1 0.341 5469 Deformed  

200 44.1 0.393 6550 Deformed 

250 49.1 0.452 7889 Deformed 
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Impact 

pressure 

(kPa) 

Impact 

Momentum 

(kg.m/s) 

Total 

Strain 

Strain rate 

(s
-1

) 

ASB 

Dual-Phase Microstructure 

60 30.2 0.057 776 None 

80 32.2 0.099 1371 Deformed 

100 34.2 0.116 1622 Intense Deformed 

120 36.1 0.136 1910 Deformed 

140 38.1 0.168 2409 Deformed 

160 40.1 0.187 2722 Deformed and 

Transformed 

180 42.1 Fractured Fractured Transformed 

200 44.1 Fractured Fractured Transformed 

 

b. AISI 4340 steel 

Martensitic Structure (Temper at 315  C) 

100 34.2 0.120 1677 Intense Deformed 

120 36.1 0.138 1943 Intense Deformed 

140 38.1 Fractured Fractured Transformed 

Pearlitic Microstructure 
120 36.1 0.110 1528 None 

140 38.1 0.144 1999 None 

150 39.1 0.140 1872 Slightly Transformed 

180 42.1 Fractured Fractured Transformed 

Dual-Phase Microstructure 
80 32.2 0.089 1228 Slightly Deformed 

80 32.2 0.091 1819 Slightly Deformed 

100 34.2 0.095 1310 Deformed 

100 34.2 0.094 1293 Deformed 

120 36.1 0.118 1646 Intense Deformed 

120 36.1 0.136 1916 Intense Deformed 

140 38.1 Fractured Fractured Transformed 

160 40.1 Fractured Fractured Transformed 
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4.1.3. The effect of microstructure 

Figure 4.7 shows the effect of microstructure on stress-strain curves for AISI 1340 steel 

specimens that were impacted at the same impact momentum of 36.1 kg.m/s. The 

corresponding strain-rates generated in each specimen are also indicated in this figure. 

The total strains as well as critical strains for the onset of thermo-mechanical instability 

are higher for the martensitic AISI 1340 steel specimens that were tempered at 425  C 

compared to those that were tempered at 315  C and 205  C. Meanwhile, the AISI 1340 

steel specimens with pearlitic structure have the highest total strain and critical strain for 

thermo-mechanical instability. The steel with dual-phase structure has intermediate 

properties between those with martensitic and pearlitic microstructures. As the 

tempering temperature increases for martensitic steel specimens, the initial resistance to 

plastic deformation under the impact loading decreases. The strain and the time at, 

which thermal softening begins to dominate the deformation process increases, as shown 

in Figs. 4.7 and 4.8. The critical strain and time for the onset of adiabatic heating and the 

associated thermo-mechanical instability, which triggers shear strain localization, also 

increases with increasing tempering temperature. This suggests that the susceptibility of 

the martensitic specimens to the adiabatic shear banding will decrease with increasing 

tempering temperature.  

The amount of strain the specimens can withstand after yielding and before thermal 

softening dominate the strain hardening tends to increase with increasing tempering 

temperature. This suggests that increasing tempering temperature will result in lower 

tendency for the occurrence of adiabatic shear band in quenched and tempered AISI 

1340 steel specimens. Hwang et al. [58] investigated the effect of tempering on stress-

strain curves for low-carbon steel plate that was subjected to torsional loading at high 

strain rate using Torsional Kolsky Bar. They also observed that as the annealing time 

increased, fracture shear strain increased, while the maximum shear stress beyond which 

thermal softening plays a major role decreased. As the annealing time increased the 

width of the shear band increased.  

Tempering temperature and time both have the same effect on the steel microstructure. 

By increasing either time or temperature, the internal stresses inside the material are 
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relieved and the material become relaxed. Zhang et al. [8] suggested that tempering 

temperature of impacted low alloy steel (40Cr and 40CrNiMo) specimens had a great 

effect on the formation of adiabatic shear bands. They observed that at low to medium 

tempering temperatures, transformed adiabatic shear bands were formed, while at higher 

tempering temperatures, deformed adiabatic shear band were formed. 

 

 

Figure 4.7. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 36.1 kg.m/s).  
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Figure 4.8. Stress vs. deformation time curves for martensitic AISI 1340 steel specimens 

(tempered at 315˚C), as a function of heat-treatment condition. 

Since the AISI 1340 steel specimen with pearlitic structure has the highest ductility, it 

experiences the greatest work hardening before thermal softening and has the highest 

critical and total strain. The AISI 1340 steel specimens with dual-phase structure have 

intermediate properties between the specimens with martensitic and pearlitic structure. 

The dual-phase structure contains a soft ductile ferrite matrix that is reinforced with hard 

and strong martensite.  Therefore, it demonstrates a good mixture of ductility and 

strength. Hence, the amount of strain hardening of specimens with dual-phase structure 

before thermal softening and critical strain at which they show thermo-mechanical 

instability and strain localization are significantly lower than for the steel specimens 

with pearlitic structure. On the other hand, it reaches the point at which thermal 

softening is the dominant deformation mechanism at a much lower stress level than that 

for the martensitic structure. The same behaviour has been observed for the other 

martensitic, pearlitic and dual-phase structure specimens impacted at different 

momentums [Figs. 4.9- 4.13] or subjected to dynamic torsional loading [Fig. 4.14]. 

Figure 4.14 shows the effect of microstructure on stress-strain curves for AISI 1340 
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applied torque of 1619 N.m. The maximum flow stress above which thermal softening 

becomes dominant is highest in specimens with martensitic structure and lowest in that 

with pearlitic structure. The results are in line with those obtained from the impact test.  

 

Figure 4.9. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 32.2 kg.m/s).  

 

Figure 4.10. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 33.2 kg.m/s).  
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Figure 4.11. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 34.2 kg.m/s).  

 

Figure 4.12. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 38.1 kg.m/s).  
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Figure 4.13. Dynamic impact stress-strain curves for AISI 1340 steel as a function of the 

heat-treatment condition (impacted at 39.1 kg.m/s).  

 

Figure 4.14. Torsional stress-strain curves for AISI 1340 steel as a function of the heat-

treatment condition (1619 N.m torque). 
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4.1.4. The effect of alloying elements 

Figures 4.15 and 4.16 show the effects of alloying elements on the stress-strain curves 

for quench-hardened AISI 1340 and AISI 4340 steel specimens subjected to impact 

momentums of 34.2 and 36.1 kg.m/s, respectively. At the higher impact momentum, 

both martensitic AISI 1340 and AISI 4340 alloy steel specimens show the same general 

behaviour (Fig. 4.16) although AISI 4340 steel had a higher strength under quasi-static 

loading. For the lower impact momentum of 34.2 kg.m/s, it is observed that martensitic 

AISI 1340 steel specimens undergo more strain hardening, before thermal softening 

dominates, than martensitic AISI 4340 steel specimens. Thus, AISI 1340 steel 

specimens have higher flow stress than AISI 4340 steel at this impact momentum (Fig. 

4.15).  This suggests that thermal softening has a more significant role in the impact 

response of martensitic AISI 4340 steel than martensitic AISI 1340 steel. Therefore, 

martensitic AISI 4340 steel specimens will be more inclined to form adiabatic shear 

bands than martensitic AISI 1340 steel specimens.  

Figs. 4.17 and 4.18 show the effects of alloying elements on stress-strain curves for 

pearlitic AISI 1340 and AISI 4340 steel specimens. The AISI 4340 steel specimen has 

significantly higher yield strength than the AISI 1340 steel specimen impacted at the 

same momentum. This shows that pearlitic AISI 4340 steel specimens are more resistant 

to plastic deformation at high strain-rate deformation than AISI 1340 steel specimens. 

Moreover, pearlitic AISI 1340 steel specimens are significantly more hardened before 

thermal softening than AISI 4340 alloy steel. In addition, the maximum stress above 

which thermal softening is dominant is much higher for the AISI 4340 alloy steel than 

for the AISI 1340 alloy steel. These observations shows that, although the stress-strain 

curves of both alloys in the martensitic heat treatment condition are very close, a 

significant difference is noticed in their high strain-rate response when heat treated to 

form pearlitic structure. 

 Both AISI 1340 and AISI 4340 steel contain 0.4% C. However, AISI 4340 has 

considerable amounts of alloying addition such as Mn, Cr, Ni and Mo, while AISI 1340 

is manganese steel containing 0.14 wt% V. Mn, Cr, Ni and Mo in steels increase the 

steel hardenability. Moreover, addition of vanadium, in the case of austenitizing at high 
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temperatures for a long time, provides secondary hardening during tempering [82]. 

Menzemera et al. [85] suggested that chromium, molybdenum, and manganese assist the 

formation of carbides which consequently increase matrix strength. Meanwhile 

Molybdenum helps refining the grain size.  Moreover, Feng and Bassim [24] suggested 

that local materials defects cause adiabatic shear band initiations which are called initial 

perturbations. Bassim [34] suggested that any inhomogeneities inside the material 

increases the materials’ susceptibility to form adiabatic shear bands. Consequently, AISI 

4340 alloy steel with higher amount of overall Cr, Mo, Ni and Mn is more likely to form 

carbides which can act as initial perturbations and promote adiabatic shear band 

formation. These carbides also increase the internal stresses inside the material which 

causes higher temperature rise within adiabatic shear bands during high strain-rate 

deformation. Therefore, AISI 4340 steel specimens are more inclined to experience 

more intensive adiabatic heating and form adiabatic shear bands than AISI 1340 steel 

specimens.  

 

Figure 4.15. Stress-strain curves for martensitic steels, tempered at 315˚C, cylindrical 

specimens, impacted at 34.2 kg.m/s. 
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Figure 4.16. Stress-strain curves for martensitic steels, tempered at 315˚C, cylindrical 

specimens, impacted at 36.1 kg.m/s. 

 

Figure 4.17. Stress-strain curves for steel pearlitic structure steels, cylindrical specimen, 

impacted at 38.1 kg.m/s. 
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Figure 4.18. Stress-strain curves for pearlitic structure steels, cylindrical specimen, 

impacted at 39.1 kg.m/s. 

4.2.2. Metallographic analysis 

4.2.2.1. Overview 

Figure 4.19 shows the optical micrographs of the original AISI 1340 steel after the 

various heat treatment conditions before the dynamic impact test. The quenched and 

tempered steel specimens consist of martensitic plates and retained austenite (Fig. 

4.19a). The white phase in the microstructure of the quenched and tempered steel is 

untransformed austenite. The normalised steel specimen consists of pearlite and ferrite 

(Fig. 4.19b). Phase analysis of the microstructure using Pax-it software shows that the 

pearlitic specimen contains 11 vol. % pearlite and 89 vol. % ferrite. The steel subjected 

to inter-critical annealing at 740  C before quenching shows the dual-phase 

microstructure consisting of 20 vol. % ferrite (bright) and 80 vol. % martensite (dark 

phase) as shown in Fig. 4.19c. 
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Figure 4.19. Optical micrographs of AISI 1340 steel specimens before impact test: (a) 

austenitized at 850 C, water- quenched and tempered at 315 C – martensitic structure, 

(b) austenitized at 850 C and air-cooled – pearlitic structure, (c) austenitized at 740 C, 

water-quenched and tempered at 315 C - dual-phase structure. 
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Figure 4.20 shows the optical micrographs of the original AISI 4340 steel after the 

various heat treatment procedures before impact test. The quenched and tempered steel 

consists of martensitic plates and retained austenite (Fig. 4.20a). The normalised steel 

specimen consists of pearlite and ferrite (Fig. 4.20b). Phase analysis of the 

microstructure using Pax-it software shows that the pearlitic specimen contains 35 vol. 

% pearlite and 65 vol. % ferrite. The steel subjected to inter-critical annealing at 740  C 

before quenching also shows martensitic structure (Fig. 4.20c). Unlike AISI 1340 

manganese steel, a dual-phase microstructure could not be formed in AISI 4340 steel at 

740  C. The significant amount of manganese in AISI 1340 steel widens the ferrite + 

austenite region in the iron-iron carbide equilibrium phase diagram. Therefore, by 

austenitizing AISI 1340 specimens inside this region at 740  C mixture of austenite and 

ferrite are formed which are then converted to martensite + ferrite on quenching in 

water. However, AISI 4340 steel does not have a sufficient amount of manganese, 

which can expand ferrite-austenite region in the iron-iron carbide phase diagram. 

Moreover, the presence of nickel could expand the austenite phase region [82] to 740  C. 

Thereby, complete austenitization can occur at 740  C. This explains why quenching the 

AISI 4340 steels from 740  C produced an entirely martensitic microstructure.  
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Figure 4.20. Optical micrographs of AISI 4340 steel specimens before impact test: (a) 

austenitized at 850 C, oil- quenched and tempered at 315 C – martensitic structure, (b) 

austenitized at 850 C and air-cooled – pearlitic structure, (c) austenitized at 740 C, oil- 

quenched and tempered at 315 C - martensitic structure. 
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4.2.2.2. The effect of impact momentum 

During high velocity impact, a high proportion of the kinetic energy of the impacting 

projectile is converted to heat inside the material. Since the deformation occurs very 

quickly, this heat generated inside the material cannot be conducted away along a 

narrow path inside the material. Therefore, the temperature of this localized area 

increases, which causes intense plastic deformation, high shear strains and strain-rates 

along this narrow path called the Adiabatic Shear Band (ASB). Figure 4.21 shows 

optical micrographs of martensitic AISI 1340 steel (tempered at 315  C) impacted at 

different impact momentums. At the impact momentum of 34.2 kg.m/s (Fig. 4.21a), the 

strain rate inside the adiabatic shear band is just enough to slightly align the martensite 

and carbide particles along the adiabatic shear band propagation path and form a light 

deformed shear band observed in the specimen. As the impact momentum, and 

consequently the strain rate, increases, the intense strain inside the shear band becomes 

sufficiently high to break martensite plates and carbide laths into sub-micron size 

particles, forming a transformed shear band along which cracking occurs, as shown in 

Fig. 4.21d. Figure 4.22 shows the process of crack formation along a transformed 

adiabatic shear band in a martensitic AISI 1340 steel specimen impacted at 42.1 kg.m/s. 

As the impact momentum reaches 42.1 kg.m/s, the strain-rate and temperature rise 

within the adiabatic shear band are high enough to generate tensile stress inside the 

shear band and open up micro-voids, which cause crack to form along the adiabatic 

shear band propagating path [78].  
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Figure 4.21. Optical micrographs of martensitic AISI 1340 steel, tempered at 315˚C, 

impacted at: (a) 34.2 kg.m/s, (b) 36.1 kg.m/s, (c) 39.1 kg.m/s, (d) 42.1 kg.m/s. 
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Figure 4.22. Optical micrographs of fractured cylindrical specimen martensitic AISI 

1340 steel, tempered at 315  C, impacted at 42.1 kg.m/s. 
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Figure 4.23 shows optical micrographs of pearlitic AISI 1340 steel specimens impacted 

at different impact momentums. It is observed that only deformed adiabatic shear bands 

form in steel specimens with pearlitic structure for all the impact momentums 

investigated. However, the morphology of the deformed shear bands is somewhat 

different from what has been observed in other steels, such as AISI 4340 steel, in which 

shearing on the grains was inclined to specimen’s diameter [83]. It is observed in the 

current study on AISI 1340 steel that the pearlite and ferrite are aligned radially along 

the diameter of circular transverse cross-sectional area. As the impact momentum 

increased, the thickness of deformed shear band increased, but a transformed shear band 

was not formed. No fracture was observed for pearlitic specimens even at impact 

momentums at which fracture occurred for martensitic and dual-phase structure 

specimens. At high impact momentums, pearlite and ferrite particles are closely packed 

together and form a thick deformed shear band. However, at a low impact momentum of 

34.2 kg.m/s, there was no evidence of adiabatic shear band formation in the pearlitic 

specimen. 

SEM micrographs showing the microstructure of pearlitic AISI 1340 steel within the 

regions inside and outside the adiabatic shear band are presented in Fig. 4.24. It is 

obvious that pearlite and ferrite grains are smaller inside the deformed band than 

outside. This is attributed to the high strain-intensity inside the shear band, which is high 

enough to fragment the large pearlite and ferrite grains in this region. 
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Figure 4.23. Optical micrographs showing deformed bands in the pearlitic AISI 1340 

steel, Impacted at: (a) 34.2 kg.m/s, (b) 36.1 kg.m/s, (c) 39.1 kg.m/s, (d) 42.1 kg.m/s, (e) 

44.1 kg.m/s, (f) 49.1 kg.m/s. 
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Figure 4.24. SEM micrographs of pearlitic AISI 1340 steel showing microstructure 

inside and outside the shear band (impacted at 44.1 kg.m/s). 
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Figure 4.25 shows optical micrographs for AISI 1340 steel specimens with the dual-

phase structure impacted at different momentums. At 36.1 kg.m/s impact momentum, a 

deform shear band is formed. As the impact momentum increased, an intense white 

etching band, also called transformed adiabatic shear bands, formed. As the impact 

momentum increased, shear strain became more intensely localised in the shear bands. 

Finally, at an impact momentum of 42.1 kg.m/s, fracture occurred in the dual-phase 

structure specimen along the transformed shear band propagation path. As mentioned 

above, at a lower impact momentum, the strain rate is just enough to align martensite 

and ferrite particles along the shear stress direction. As the impact momentum and 

consequently the strain-rate increased, the intensity of shear strain inside the shear band 

became intense and caused fragmentation of martensite laths and ferrite particles along 

the shear band propagation path.  
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Figure 4.25. Optical micrographs for dual-phase AISI 1340 steel (tempered at 315˚C), 

impacted at: (a) 36.1 kg.m/s, (b) 38.1 kg.m/s, (c) 39.1 kg.m/s, (d) 42.1 kg.m/s. 
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SEM micrographs showing the microstructure of the dual-phase structure AISI 1340 

steel within regions inside and outside the adiabatic shear band are presented in Fig. 

4.26. The shear band imaged here is not a fully formed transformed band that will 

normally appear featureless under an optical (Fig. 4.25d) and SEM. It is observed that 

materials inside the shear band have less martensite and more ferrite than outside. It is 

not very clear at this stage why more ferrite is observed inside the shear band. However, 

it has been suggested that the combined action of hydrostatic pressure on the shear band 

and high temperature of the shear band can promote a carbon and iron diffusion path 

that can lead to the formation of ferrite [42]. Wittman et al. [20] also reported carbon 

diffusion aided by dislocation in AISI 4340 steel. Derep [67] observed that the 

microstructure of adiabatic shear band in armour steel consists of fine grain equi-axed 

structure of delta ferrite, mixed with narrow laths of martensite. 

Figure 4.27 shows the optical micrographs for cracks in the dual-phase structure AISI 

1340 steel specimens which fractured at 42.1 kg.m/s impact momentum. The crack 

formed along the transformed adiabatic shear band.  At 42.1 kg.m/s impact momentum, 

the strain rate inside the adiabatic shear band of the dual-phase structure AISI 1340 steel 

specimen is high enough to generate micro-voids inside the shear band. These micro-

voids interconnect and form cracks. 
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Figure 4.26. Optical and SEM micrographs of regions inside and outside the shear band 

for dual-phase AISI 1340 steel, tempered at 315  C, impacted at 39.1 kg.m/s. 
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Figure 4.27. Optical micrographs showing adiabatic shear failure of dual-phase steel 

(AISI 1340), impacted at 42.1 kg.m/s. 
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4.2.2.3. The effect of microstructure 

Optical micrographs showing the effects of tempering temperature on plastic 

deformation of martensitic AISI 1340 steel impacted at 34.1 kg.m/s are represented in 

Fig. 4.28. A thin intense white etching band was formed in the specimen that was 

tempered at 205  C, while a thicker light deformed band was formed in the specimen 

which was tempered at 425  C. The shear band for the specimen that was tempered at 

315  C had intermediate properties between the other two specimens. It is a more 

diffused form of white etching band. 

 

Figure 4.28. Optical micrographs of martensitic AISI 1340 steel, impacted at 34.1 

kg.m/s, cylindrical specimens: (a) tempered at 205  C, (b) tempered at 315  C, (c) 

tempered at 425  C. 
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It has been suggested by Rittel et al. [45], that the existence of defects such as abrasive 

particles and precipitates or any inhomogeneities inside the microstructure of metallic 

materials increases the susceptibility of materials to strain localization and formation of 

an adiabatic shear band [45]. These defects and inhomogeneities within the 

microstructure of materials are called initial perturbations. The internal stresses and 

therefore perturbations are more pronounced in the specimen that was tempered at 

205 C. This promotes the intense strain localization and formation of a transformed 

adiabatic shear band. As the tempering temperature increases, the stress that may be 

introduced during quenching is more relieved and the initial perturbations will decrease. 

The uniform dispersion of precipitates, as well as relieved internal strains, decrease the 

susceptibility of the material to strain localization. Therefore, the martensite laths are 

just capable of aligning themselves and forming a wide deformed band. 

The optical micrographs in Fig. 4.29 show the effect of microstructure, as a result of 

different heat-treatment procedure, on the plastic deformation of AISI 1340 steel 

impacted at 38.1 kg.m/s. Thin intense white etching band is observed for the specimen 

with a martensitic structure, while a thick light deform band was formed for specimens 

having a pearlitic structure. The specimens with dual-phase structure have intermediate 

properties between those having martensitic and pearlitic structures [Fig. 4.29(c)]. A 

clear deformed shear band with brighter color than the matrix has been observed for the 

dual-phase structure specimen. Stresses that are introduced during quenching into 

martensitic microstructure act as an initial perturbation and increase the susceptibility of 

the material to shear strain localization. For the pearlitic microstructure specimen, which 

was air-cooled to room temperature, no stress is introduced inside the material, which 

reduces the susceptibility of the material to shear strain localization along the shear 

band. Therefore, shear strain inside the shear band is just high enough to align the 

pearlite and ferrite grains along the shear flow direction, causing formation of a 

deformed adiabatic shear band. The dual-phase structure has intermediate properties 

between transformed band observed in the martensitic specimen and deformed band in 

the specimens with pearlitic structure. Dual-phase structure is a mixture of strong 

martensite and ductile ferrite. The martensite with internal stresses, as a result of 

quenching, increases the susceptibility of the material to shear strain localization. On the 
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other hand, ductile ferrite particles facilitate plastic deformation. Therefore, maximum 

temperature rise inside the adiabatic shear band is less for the dual-phase steel than for 

the martensitic steel.  

 

Figure 4.29. Optical micrographs of AISI 1340 steel, impacted at 38.1 kg. m/s, 

cylindrical specimen. (a) martensitic- tempered at 315  C, (b) Pearlitic, (c) Dual-phase 

structure. 
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Figure 4.30 shows the optical micrographs of martensitic AISI 1340 and 4340 steels that 

were tempered at 315  C and impacted at 34.2 kg.m/s. Figure 4.30 (a) shows the 

micrograph for AISI 1340 alloy steel while Fig. 4.34 (b) is for AISI 4340 alloy steel. 

Figure 4.31 shows optical micrographs for cylindrical specimens that were austenitized 

at 740  C, quenched-hardened and then tempered at 315  C after impact at a momentum 

of 36.1 kg.m/s. Figure 4.31a and 4.31b show the micrographs for AISI 1340 steel and 

AISI 4340 steel, respectively. It is evident from both Figs. 4.30 and 4.31 that AISI 4340 

steel is more inclined to form an adiabatic shear band than AISI 1340 steel when 

subjected to the same heat treat treatment condition. The presence of additional alloying 

elements such as Mo, Cr, Ni, and Mn increases the ability of material to form carbide 

particles which can act as initial perturbations and increases the susceptibility of the 

material to shear localization and the occurrence of adiabatic shear bands. Therefore, 

AISI 4340 alloy steel is more inclined to form an adiabatic shear band than AISI 1340 

alloy steel. The same results have been observed from stress-strain curves of AISI 1340 

and AISI 4340 steels. It should be mentioned that at 740  C, AISI 4340 steel was not able 

to form dual-phase structure entirely, as previously explained.  

 

Figure 4.30. Optical micrographs of cylindrical specimen of martensitic steel, (tempered 

at 315  C), impacted at 34.2 kg. m/s. (a)AISI 1340 steel, (b) AISI 4340 steel. 



 

86 
 

 

Figure 4.31. Optical micrographs of steel specimens partially austenitized at 740  C, 

quenched-hardened and tempered at 315  C - impacted at 36.1 kg. m/s: (a)AISI 1340 

steel, (b) AISI 4340 steel. 

 

4.2.2.4. The effect of geometry 

Optical micrographs of the transverse cross-section of impacted martensitic AISI 1340 

steel and AISI 4340 steel specimens showing the effects of specimen shape on the 

geometry of adiabatic shear band on the transverse section of the specimen are presented 

in Figs. 4.32 and 4.33, respectively. The specimens shown in these figures were 

impacted at a momentum of 36.1 kg.m/s. It is observed that the geometry of adiabatic 

shear band depends on the geometry of the specimen. The shear band in the cylindrical 

specimen appears as a circle on the transverse cross-sectional area [Figs. 4.32 (c), and 

4.33 (a)], while in cubic specimens, it appears as a square on the transverse cross-

sectional area [Figs. 4.32 (a), 4.32 (b), and 4.33 (b)]. The shear bands form a circular 

path on the transverse section close to the diametrical surface with smaller radius in the 

specimens having the shape of truncated cone [Fig. 4.33 (c)], while no shear band was 

observed on the transverse section close to the base of the truncated cone with the larger 

cross sectional area [Fig. 4.33(d)]. It should be noted that the conical specimen was 

impacted on the diametrical surface with the smaller radius. In comparison to the 

cylindrical martensitic specimen tempered at the same temperature and impacted at the 

same momentum, the cubic samples and the region of the conical specimen with smaller 
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transverse cross sectional area have more intense shear localization. This is attributed to 

the higher stress concentration within the sharp corners for the cubic specimen and the 

uneven transverse cross sectional area in the conical sample, which could act as the 

initial source of perturbation that promotes the occurrence of the intense white etching 

bands. The optical macrographs showing the effects of specimen geometry on the 

geometry of adiabatic shear bands along the longitudinal cross-section of impacted 

specimens are presented in Fig. 4.34. 

 

 

Figure 4.32. Optical micrographs of martensitic AISI 1340 steel, tempered at 315  C, 

impacted at 36.1 kg.m/s: (a) cubic sample corner, (b) cubic sample close to the edge, (c) 

cylinder. 
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Figure 4.33. Optical micrographs of martensitic AISI 4340 steel, tempered at 315  C, 

impacted at 34.2 kg.m/s: (a) cubic, (b) cylinder, (c) truncated cone(small cross-section), 

(d) truncated cone(large cross-section). 
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Figure 4.34. Optical macrographs for martensitic AISI 4340 steel, tempered at 315  C, 

34.2 kg.m/s: (a) cylindrical, (b) conical, (c) cubical specimen. 

 

 

 

 

(a) 

(b) 

(c) 
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From the optical micrographs of adiabatic shear bands on both transverse and 

longitudinal sections of the steel, geometrical models of adiabatic shear bands in three 

dimensions are proposed as presented in Fig. 4.35. For cylindrical specimens, shear 

bands form two cones that are mirror images of one another. Two pyramidal shape shear 

bands are formed in cubical specimens, which are also mirror images of one another.  

For the truncated conical specimen, the adiabatic shear band appears as just one cone 

protruding from the smaller transverse cross-sectional area of the specimen. 

 

   

Figure 4.35. Schematic view of adiabatic shear band in (a) cylindrical, (b) cubical, (c) 

conical specimens. 
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4.3. Fracture of impacted specimens 

Figure 4.36 shows the optical micrograph of a crack along transformed adiabatic shear 

bands for different specimens with different chemical composition, microstructure, and 

geometry. It is observed that failure and fracture occur along the transformed band, 

independent of chemical composition, microstructure, and geometry of the specimen. It 

should be noted that for pearlitic structure specimens, which were impacted in the strain-

rate range of between 1376 s
-1

 to 7889 s
-1

, only deformed bands are observed. Therefore, 

no transformed shear band and consequently no failure occur for pearlitic specimens in 

this strain-rate range.   

Figures 4.37 and 4.38 and show the optical and SEM micrographs of transformed 

adiabatic shear bands in martensitic AISI 1340 steel specimen that was tempered at 315 

 C and was impacted at 42.1 kg.m/s. The existence of elliptical shape holes along the 

crack are evidence of the micro-void formation along the transformed adiabatic shear 

band. At this impact momentum, the stress flow difference inside and outside of the 

white etching adiabatic shear band is high enough to produce tensile stress inside the 

shear band [78]. This tensile stress opens up micro-pores along the white shear band. 

These micro-pores connect to one another and form cracks along the transformed 

adiabatic shear band [76].  
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Figure 4.36. Optical micrograph showing cracks along a white etching band: (a) 

martensitic AISI 1340 steel, tempered at 425  C, cylindrical specimen, impacted at 42.1 

kg.m/s, (b) martensitic AISI 1340 steel, tempered at 315  C, cylindrical specimen, 

impacted at 42.1 kg.m/s, (c) dual-phase structure AISI 1340 steel, tempered at 315  C, 

cylindrical specimen, impacted at 44.1 kg.m/s, (d) martensitic AISI 1340 steel, tempered 

at 315  C, cubic specimen, longitudinal cross-sectional area, (e) martensitic AISI 4340 

steel, tempered at 315  C, cylindrical specimen, impacted at 38.1 kg.m/s. 
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Although the microstructural features of a transformed adiabatic shear band can not be 

resolved using optical microscope, SEM micrographs of the transformed adiabatic shear 

band suggest fragmentation of martensite laths into submicron size particles, as shown 

in Fig. 4.38. The development of cracks from voids nucleated by tensile stress generated 

inside the shear band is also evident in the SEM micrograph shown in Fig. 4.38. At high 

impact momentum, the strain-rate inside the shear band is high enough to break apart 

martensite laths into very small carbide particles which cannot be detected by optical 

microscope. 

 

 

Figure 4.37. Optical micrograph of martensitic AISI 1340 steel, tempered at 315  C, 

cylindrical specimen, impacted at 42.1 kg.m/s. 
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Figure 4.38. SEM micrographs of martensitic AISI 1340 steel, tempered at 315  C, 

cylindrical specimen, impacted at 42.1 kg.m/s. 

Figure 4.39 shows SEM micrographs of the fracture surface for AISI 1340 steel 

specimen with dual-phase structure that fractured under impact loading at a momentum 

of 44.1 kg.m/s. Highly elongated dimples and knobby features are observed on the 

fracture surface of the adiabatic shear band. Dimples are also observed outside the shear 

band, which are thicker and have lower aspect ratio than the dimples inside the shear 

bands. The dimples outside the shear band are shallow, unlike the very deep ones 

observed inside the shear bands. The highly elongated dimples inside the shear band and 

adjacent to the shear band region indicate a ductile shear fracture mode along the 

transformed band and in the adjacent deformed band region. Xue et al. [77] studied 
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adiabatic shear bands in Ti–6Al–4V alloys and proposed a schematic plot for void 

evolution inside the adiabatic shear bands, as presented in Fig. 2.5. In this schematic 

view, the voids nucleate inside the shear band as result of tensile stress generated inside 

the shear band. They grow until they reach the shear band boundary, where the material 

is harder due to the lower temperature. They proposed that, in the absence of shear 

stress, these voids grow in an elliptical shape and finally coalescence and generate 

complete separation. However, in the presence of shear stress, these voids are elongated 

and rotated [77]. These elongated and rotated dimples are observed as highly elongated 

dimples on the fracture surface of adiabatic shear band. Odeshi and Bassim [11] also 

observed dimples on the fracture surface of a high strength low alloy steel specimen that 

fractured under impact loading. They observed ductile fracture outside the shear band 

and reported that dimples were nucleated at the surface of the hard particles in the 

microstructure of bulk material. As shown in Fig. 4.39, a knobby fracture mode was 

observed on the fracture surface along the adiabatic shear bands, indicating melting of 

steel in these regions. Therefore, it could be concluded that the temperature rise inside 

the transformed adiabatic shear bands reach the melting temperature of the alloy in some 

regions during the dynamic impact loading. 
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Figure 4.39. SEM micrographs showing the fracture surface of AISI 1340 steel with 

dual-phase structure (cylindrical specimen). 

Lee et al. [70] observed dimples on the fracture surface of shear bands of inconel 690 

superalloy. They also suggested that these intense dimples show ductile failure. 

Elongated dimples have been observed in adiabatic bands of other tested materials such 

as armour steel [31]. They also suggested that knobby features within adiabatic shear 

bands indicate the melting of an alloy in these regions. Rogers [42] suggested that the 

knobby features observed on the surface of an adiabatic shear band of a fractured sample 

is due to frictional heat generated as a result of fracture surfaces rubbing against one 

another, which causes thermal alteration. Cho et al. [13] observed both knobby features 

and elongated dimples on the fracture surface of an AISI 1018 cold-rolled steel (CRS), a 

structural steel (HY-100), and an AISI 4340 vacuum arc remelted (VAR) steel tempered 

to either of two hardnesses RHC 44 or 55. They suggested that the elongated dimples 
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show a ductile shear fracture mode, while knobby features exhibit melting of the alloy in 

these regions as a result of heat generation inside the adiabatic shear band as the two 

fracture surfaces are rubbing against one another.   

Both elongated dimples indicating ductile shear failure and a knobby fracture mode 

were also observed in martensitic AISI 1340 steel that fragmented during impact, 

irrespective of specimen geometry. For example, Fig 4.40 shows the fracture surface in 

the shear band region in a fragmented cubical shaped specimen, showing the elongated 

dimples and knobby features. SEM micrographs of a fractured conical specimen [Fig. 

4.41] also show smaller dimples on the fracture surface of the bulk material than 

dimples on the adiabatic shear band, indicating ductile fracture. Cleavage fracture can 

also be observed on the fracture surface of the bulk material. Odeshi and Bassim [11] 

observed both ductile and cleavage fracture on the fracture surface of the bulk material 

for AISI 4340 steel specimens. They suggested that precipitates open up voids outside 

the shear band and cause ductile fracture. Therefore, the features of fracture surface of 

specimens are independent of chemical composition and geometry of the impacted steel 

specimens. The only difference is in the aspect ratios of the dimples, which are 

influenced by the extent of thermal softening or degree of plasticity inside the shear 

band and adjoining regions. 
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Figure 4.40. SEM micrographs showing the fracture surface of martensitic AISI 1340 

steel (cubic specimen), impacted at 38.1 kg.m/s, (a) elongated dimples, (b) knobby 

features. 

 

 

Figure 4.41. SEM micrographs showing fracture surface of martensitic AISI 1340 steel, 

(conical specimen) impacted at 36.1 kg.m/s. 
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Figure 4.42 shows the SEM micrographs of the fractured surface of torsional specimens 

of AISI 4340 steel. Only elongated dimples are observed on the fracture surface. This 

shows that the temperature rise within the torsional specimen due to adiabatic heating 

was not high enough to cause melting of the alloy at any point during the high strain-rate 

torsional loading of the alloy. Evidence of cleavage fracture was also observed on the 

fracture surface of the torsion specimen, suggesting a combination of ductile shear and 

cleavage fracture in the alloy under high strain-rate torsional loading. 

 

 

 

Figure 4.42. SEM micrographs showing fracture surface of martensitic AISI 4340 steel, 

under high strain-rate torsion loading. 
 

Figure 4.43 shows the optical micrograph of a longitudinal section of a martensitic AISI 

1340 cubic specimen that fragmented under impact loading. The specimen was 

sectioned perpendicularly across the fracture surface.  Three separate regions can be 

recognised under the fracture surface: white etching adiabatic shear band (transformed 

adiabatic shear band) on the fracture surface, deformed band showing alignment of 

martensite plates and laths along shear direction below the white band layer and the bulk 
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materials outside the shear band region. The high intensity of shear strain inside the 

white etching adiabatic shear band caused the martensite to fragment into submicron 

size grains which could not be detected by optical microscopy (Region1).  

The thermal softening and shear stress in the second region cause the alignment of 

martensite plates in shear flow direction indicated by the two arrows in Fig. 4.43 just 

below the transformed band on the fracture surface. In region 3 which comprises the 

region outside the shear band, i.e. the bulk material, the material just underwent normal 

strain hardening and there was no change in microstructure compared to that of the 

specimen before impact. This shows that the shear band region consists of a transformed 

band surrounded by a deformed band having a lamellar structure. 

 

Figure 4.43. Optical micrograph showing longitudinal section of fracture cubical 

specimen of martensitic AISI 1340 steel. 

Li et al. [43] also observed fine equi-axed subgrains with an average diameter of 150 

nm, as well as low density of dislocations at the centre of the adiabatic shear band as a 

result of dynamic recrystallization They also observed the lamellae structure with 

elongated grains in a transition region between the centre of the shear band and the 

matrix. TEM investigation of  dynamic deformation in 8090 Al–Li alloy by Xu et al. 

[33] showed that the material outside the adiabatic shear band consists of deformed cells 
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with a high density of dislocations, while the deformed region between the matrix and 

shear band consists of highly elongated cells with well defined boundaries. On the other 

hand, the structure inside the shear band consists of very fine equi-axed subgrains with a 

low density of dislocations with a size of about 0.2 μm. They suggested that these equi-

axed subgrains are formed as a result of dynamic recrystallization. 

Figures 4.44 - 4.46 show the optical macrographs of fractured cylindrical, cubical, and 

conical AISI 4340 steel specimens. These pictures were taken using a stereomicroscope. 

Based on the geometry of these fractured specimens and the three dimensional model 

for geometry of the adiabatic shear band in the various impacted specimen shown earlier 

(Fig. 4.35) , a schematic representation of crack propagation leading to fragmentation is 

proposed as shown in Fig. 4.47.  Cracks initiate inside the shear bands and propagate 

into the bulk materials and connect with the second conical or pyramidal shape adiabatic 

shear band for cylindrical and cubical shaped specimens, respectively. The specimens 

eventually fragment into two symmetrical parts, as shown in Fig. 4.44 and 4.45. For the 

conical specimen, the crack initiates from the corner of the cone formed on the smaller 

side of the cone. It propagates along the adiabatic shear band to the lower point of the 

cone and then through bulk material in the shear band free zone into the other end of the 

truncated cone with bigger diameter, as shown in Fig. 4.46.  

  

Figure 4.44. Optical macrographs of fractured cylindrical specimen of martensitic AISI 

4340 steel. 

(a) (b) 
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Figure 4.45. Optical macrographs of fractured cubical specimen of martensitic AISI 

4340 steel. 

  

Figure 4.46. Optical macrographs of fractured conical specimen of martensitic AISI 

4340 alloy steel. 

(a) (b) 

(a) (b) 

(a) 
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Figure 4.47. Schematic view of crack propagation path, (a) cylindrical, (b) cubical, (c) 

conical Specimens. 

4.4. X-ray photoemission electron microscopy (XPEEM) 

The results of the investigation of the transformed band in AISI 4340 steel using X-ray 

photoemission electron microscopy (XPEEM) and Near Edge X-Ray Absorption Fine 

Structure (NEXAFS) spectroscopy (Fig. 4.48-4.50) suggest redistribution of alloying 

elements promoted by the intense adiabatic heating and large strain in the shear band 

region during impact. Whereas more Nickel was observed inside the shear bands than 

outside, less chromium was observed inside the shear bands than in the adjacent region. 

Figure 4.49 shows the PEEM images of the adiabatic shear band in an AISI 4340 steel 

specimen while Fig. 4.50 shows the Ni map inside and outside of the adiabatic shear 

band in the specimen. It is evident that there is more nickel inside the shear band than 

outside. During high strain rate deformation, the temperature rises inside the material. 

This temperature rise inside the material depends on the chemical composition, 

microstructure, and strain rate. Chen et al. [62] suggested that, depending on the 

thickness of a target material, the temperature can rise up to 1527  C inside the adiabatic 

shear band of the target material. This high temperature inside the shear band, coupled 

with high strain, may promote the atomic diffusion of Ni and Cr inside the shear band. 

The reason for the observed direction of atom migration across the shear band boundary 
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is not very clear at the moment. The XPEEM and NEXAFS were conducted at the Soft 

X-ray Spectromicroscopy (SM) beamline at the Canadian Light Source (CLS) using 

synchrotron light radiations.  

 

Figure 4.48. (a) Cr 2p-3d NEXAFS spectra from inside and outside the shear band, (b) 

Ni 2p-3d NEXAFS spectra from inside and outside the shear band. 

 

Figure 4.49. PEEM imaging using Hg lamp, 150μm FOV. 
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Figure 4.50. XPEEM Image showing nickel map using synchrotron light radiation. 
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4.3. Microhardness results 

4.3.1. Hardness values across the shear band 

Figure 4.51 shows the Vickers hardness values across the shear band of a martensitic 

AISI 1340 alloy steel specimen that was tempered at 315  C and then impacted at the 

impact momentum of 39.1 kg.m/s. The error bars indicate confidence intervals with the 

confidence level of 90%. The hardness value increases from the edge of the specimen 

and reaches the maximum value at the centre of the shear band. Then it decreases and 

become relatively constant. The higher hardness inside shear bands can be attributed to 

the change in microstructure inside the shear band, especially grain refinement and 

increased dislocation density as outlined in some previous studies [13, 26, 42, 67, 70]. 

Increased dislocation density inside the shear bands can be one of the contributing 

factors to the higher hardness of shear bands compared with the rest of the material. Lee 

et al. [70] observed dislocation and twinning deformation inside the shear band. Their 

TEM investigation exhibited the nucleation of ά martensite and existence of a high 

proportion of dislocations inside the shear band of the deformed 304L stainless steel. 

Dislocations are arranged in a form of dislocation tangle which causes dislocation cell 

wall formation. Meyers and Wittman [26] suggested that higher hardness of ASB in 

low-carbon steels (AISI 1018 and 8620) is due to the fine microstructure with 

supersaturated carbon and not a phase transformation. Chen et al. [14] suggested that 

carbide lamellae spheroidization occurs inside the adiabatic shear band as a result of the 

fragmentation of carbide laths. Moreover, very fine ferrite subgrains form inside the 

shear band due to the iron diffusion path under hydrostatic pressure and high 

temperatures [14]. Rogers [42] observed that the adiabatic shear band consists of 

submicron size grains with the average size of tens of micrometers. TEM investigation 

of the white etching band in a TC4 alloy showed the existence of equi-axed grains with 

the diameter of 50 nm inside the shear band [44]. Li et al. [43] observed fine equi-axed 

subgrains with the average diameter of 150 nm, in the adiabatic shear band for Monel 

alloy. Meyers and Pak [30] observed small grains with the average size of 0.3-0.5 μm 

inside the shear band of titanium. There have been also fine equi-axed submicron size 

grains inside the shear band of tantalum [15]. For Copper samples that were deformed 
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under dynamic shock loadings, the submicron size grains with the average size of 0.1μm 

were observed inside the adiabatic shear band [35, 36]. Therefore finer grain size as well 

as formation of microstructure containing supersaturated carbon account for the 

observed higher hardness values inside the shear band of the investigated steel. 

 

 

Figure 4.51. Vickers hardness value across adiabatic shear band of martensitic AISI 

1340 steel, tempered at 315  C, cylindrical specimen, impacted at 39.1 kg.m/s. 
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4.3.2. The effect of microstructure on hardness values 

The Vickers hardness values for the original heat treated specimens before the impact 

test are shown in Fig. 4.52. The error bars show confidence intervals with the 

confidence level of 90%. For martensitic specimens, as the tempering temperature 

increases, more of the stress which may be introduced inside the steel during rapid 

cooling is relieved. Therefore, hardness value of the pre-impact martensitic specimen 

which was tempered at 205  C is 4.5 % higher than that for pre-impact martensitic 

specimen which was tempered at 315  C. The hardness values of martensitic specimens 

and the dual-phase structure specimen are close to each other. Both were tempered at the 

same temperature and the one with the dual-phase structure contains a low fraction of 

ferrite (20 % vol.). Therefore, the probability that the micro indentation will be located 

on the martensitic structure during the hardness test is about four out of five. This 

explains why the hardness of the AISI 1340 steel heat-treated to have dual-phase 

structure has the same range of hardness with those that have martensitic structure. The 

steel specimens with pearlitic structure have the lowest hardness. Pre-impact hardness 

value of the pearlitic specimen is approximately half of that for martensitic specimen 

tempered at 315  C. The martensitic structure is formed when the austenitized steel 

specimens are rapidly quenched to room temperature. The cooling rate is high enough to 

prevent carbon diffusion. These carbon atoms stay in martensitic structure as interstitial 

impurities, which effectively hinder dislocation motions. Moreover, martensitic 

structure has body-centered tetragonal (BCT) structure. BCT structure has relatively low 

slip systems along which dislocations can move [89].  
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Figure 4.52. Vickers hardness values for AISI 1340 steel before impact loading, (A) 

martensitic, tempered at 205  C (B) martensitic, tempered at 315  C, (C) dual-phase 

structure, tempered at 315  C, (D) pearlitic structure. 

 

Figure 4.53 shows the results of hardness measurement inside and outside the shear 

bands for various AISI 1340 steel specimens (with different microstructures) impacted 

at a momentum of 36.1 kg.m/s. The error bars are showing confidence intervals with the 

confidence level of 90%. The hardness value inside the shear band of the martensitic 

specimen tempered at 205  C is 28% higher than that for the pre-impact specimen, while 

the hardness value inside the shear band of the martensitic specimen tempered at 315  C 

is 17% higher than that for pre-impact specimen. The higher amount of initial 

perturbation for the specimen tempered at 205  C motivates higher a intensity of shear 

strain localization in this specimen, which can lead to a higher density of dislocations 

and finer microstructure inside the shear band. The hardness value outside of the shear 

band for the specimen which was tempered at 205  C is 18% higher than the pre-impact 
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hardness value for the same specimen, while the hardness value outside of the specimen 

that was tempered at 315  C is 16% higher than the pre-impact hardness value. Materials 

outside the shear band undergo strain hardening as a result of high strain-rate 

deformation. Therefore, hardness outside the shear band is greater than hardness values 

for the pre-impact specimens.  

For the pearlitic steel specimens, the hardness value inside the shear band is 34% higher 

than that for the pre-impact specimen. The hardness value outside the shear band of the 

pearlitic specimen is 25% higher than that for the pre-impact specimen. This 

demonstrated that materials inside and outside the shear band undergo significant 

amounts of plastic deformation. The SEM micrographs of the impacted pearlitic 

specimen show that pearlite and ferrite grains are smaller inside the shear band than 

outside. Therefore, a higher hardness value inside the shear band than outside is due to 

the finer nature of pearlite and ferrite grains inside the shear band and to higher strain 

hardening inside the bands. 
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Figure 4.53. Vickers Hardness values for AISI 1340 steel, Impacted at 36.1 kg.m/s, (A) 

martensitic, tempered at 205  C, (B) martensitic, tempered at 315  C, (C) dual-phase 

structure-tempered at 315  C, (D) pearlitic structure. 
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4.3.3. The effect of impact momentum on hardness value 

Figure 4.54 shows the effect of an increase in impact momentum on the hardness 

measurements inside and outside shear bands in martensitic AISI 1340 steel specimens 

that were tempered at 315  C. The error bars show confidence intervals with the 

confidence level of 90%. As the impact momentum was increased from 34.2 kg.m/s to 

39.1 kg.m/s, the hardness values both inside and outside of the shear bands also 

increased. However, while only a marginal increase of 2% in the hardness was recorded 

for the region outside the shear band, the hardness increase for the shear band region 

was higher (5%). The hardness values inside and outside of the shear band for the 

martensitic specimen that was impacted at 34.2 kg.m/s are respectively 15% and 4% 

higher than the original hardness of the specimens before impact test. On the other hand, 

the hardness value inside the shear band for the martensitic specimen that was impacted 

at 39.1 kg.m/s was 19% higher than that for pre-impact specimens, while the hardness 

value outside the shear band is 6% higher than that for the pre-impact specimen.  As the 

impact momentum increases, the material outside the shear band undergoes an increased 

amount of work hardening. As the impact momentum increases, the amount of heat 

generated inside the shear band increases. Therefore, the temperature rise within the 

adiabatic shear band increases as the impact momentum increases. This will translate 

into a more intense thermal softening and localised deformation at higher impact 

momentum. 
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Figure 4.54. Vickers hardness values for martensitic AISI 1340 steel as a function of 

impact momentum (IM). 
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CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

The effects of microstructure, strain rates and geometry on plastic deformation and 

failure of AISI 4340 and 1340 steel under high strain-rate loading both in torsion and in 

compression were investigated. The results of this study show that:  

1. Failure of both alloys under dynamic loading in torsion and compression was 

initiated by intense shear strain localization along adiabatic shear bands. Both 

deformed and transformed bands were observed in the alloys depending on the 

microstructure and impact momentum or strain rate.  

2. Formation of deformed and transformed adiabatic shear bands occurred in different 

stages of deformation. A deformed band formed at low strain rates when the 

localized shear strains were only high enough to align grains along the shear flow 

direction. As the strain rate increased, transformed adiabatic shear bands formed 

which contained fine equi-axed grains of submicron size.  

3. The specimens with a martensitic structure were more inclined to form transformed 

shear bands that those having a pearlitic structure. The higher the tempering 

temperature of the martensitic steel, the lower its tendency to form an adiabatic 

shear band under dynamic shock loading.  

4. AISI 4340 steel was more susceptible to adiabatic shear failure than AISI 1340 steel 

and there was a noticeable correlation between the dynamic stress-strain curves of 

both alloys and the microstructural evolution associated with adiabatic shear 

banding in the alloys. 

5. The trajectory of the shear bands along the transverse section of impacted 

cylindrical-, cubical-, and conical-shaped specimens followed the shape of the 
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cross-section. While circular-shape shear bands were observed in cylindrical 

specimens, the shear bands in cubic-shape specimens formed a rectangular path. 

The impacted conical-shaped specimens showed circular-shape shear bands on the 

smaller transverse-cross sectional area, and no evidence of a shear band on the 

larger transverse cross-sectional area at the base of the cone. 

6. The overall shape of the adiabatic shear bands in cylindrical-shape specimens was 

two cones which were mirror images of one another, while in cubic-shape 

specimens, two pyramids that were also mirror images of one another formed. The 

shear band in conical-shaped specimens was a cone facing the smaller diametrical 

surface of the specimen. 

7. The alloys fragmented by ductile shear failure along the adiabatic shear bands. 

Fractographic investigations of the fragmented specimens showed both ductile 

shear and knobby fracture modes along the transformed shear band region. The 

presence of a knobby fracture mode indicates that the temperature rise inside the 

shear band during impact was close to the melting point of the steel inside the 

transformed band. All the fracture surfaces of fragmented cylindrical-, cubical-, and 

conical-shaped specimens showed both ductile shear failure and knobby fracture 

modes. 

8. The deformed band adjacent to the transformed band also failed by ductile shear 

failure. The elongated dimples in the transformed band region were much deeper 

than those in the adjacent deformed band.  This confirms a higher level of plasticity 

in the transformed band. 

9. Hardness values of the transformed adiabatic shear bands were higher than that of 

the bulk materials outside the shear band region due to the extremely fine structure 

of these bands. The proportion of hardness increase inside the shear band over the 

hardness of the bulk materials outside the shear band depended on the pre-impact 

microstructure. 

10. X-ray Photoemission electron microscopic (XPEEM) investigation of the 

transformed band in AISI 4340 steel suggests the occurrence of strain-enhanced 
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atomic diffusion inside the bands as a result in the intense localised adiabatic 

heating and high strain intensity. More nickel and less chromium were recorded 

inside the transformed shear band than in the region outside the transformed band.  

5.2. Limitations and strength of thesis 

To study the effects of microstructure, AISI 1340 and AISI 4340 cylindrical and thin-

walled tubular steel specimens were heat treated to provide martensitic, pearlitic, and 

dual-phase structures. The number of specimens in each category was limited. In order 

to investigate the effect of strain rate on the behaviour of AISI 1340 and 4340, 

specimens have to be subjected to different strain rates. Therefore, each test with 

specific conditions was conducted once, which is a limitation on the stress strain values 

reported. However, at this stage of the research, the primary interest was in the general 

trends of the dynamic stress-strain curves as affected by impact momentums and 

microstructure. 

The transformed band observed in AISI 1340 steel could not be investigated using X-ray 

Photoemission Electron Microscopy (XPEEM) and Near Edge X-ray Absorption Fine 

structure (NEXAFS) spectroscopy because of a prolonged equipment breakdown. At the 

time of writing this thesis, the PEEM beamline is still not fully operational at the CLS. 

The effects of geometry of the specimen on the morphology and properties of the 

adiabatic shear band has been also studied in this research for AISI 1340 and 4340 steel, 

which is a new subject of study. There has been no such previous work on chemical 

analysis of the transformed band in these alloys. The chemical analysis of the material 

inside and outside the shear band using X-ray Photoemission Electron Microscope 

(XPEEM) and Near Edge X-ray Absorption Fine structure (NEXAFS) spectroscopy is a 

new approach to understanding the microstructure evolution associated with the 

occurrence of transformed bands in steel. The new results of XPEEM and NEXAFS 

were presented at the 7
th

 International workshop in LEEM-PEEM on August 8-13, 2010 

in New York, and also at Pipeline Materials Reliability Workshop for a NSERC 

Strategic Network on April 8, 2011 in Calgary.                                                                                                           

 



 

116 
 

5.3. Recommendation for future works 

The recommendations for future works are as follows: 

1. Transmission Electron Microscopy (TEM) investigations to provide more detailed 

information on the evolution of microstructure in transformed bands formed in the 

two alloys as a function of the investigated heat treatment condition, 

2. X-ray Photoemission microscopic (XPEEM) investigation of transformed band in 

AISI 1340 steel specimen, and 

3. In-situ investigation of composition changes inside adiabatic shear band with 

increasing temperature using synchrotron light radiation (XPEEM, and NEXAFS) 

at the Canadian Light Source.  
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