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Abstract

Segmentation algorithms perform different on differernt datasets. Sometimes we want to learn which seg-

mentation algoirithm is the best for a specific task, therefore we need to rank the performance of segmentation

algorithms and determine which one is most suitable to that task.

The performance of segmentation algorithms can be characterized from many aspects, such as accuracy

and reproducibility. In many situations, the mean of the accuracies of individual segmentations is regarded as

the accuracy of the segmentation algorithm which generated these segmentations. Sometimes a new algorithm

is proposed and argued to be best based on mean accuracy of segmentations only, but the distribution of

accuracies of segmentations generated by the new segmentation algorithm may not be really better than that

of other exist segmentation algorithms. There are some cases where two groups of segmentations have the

same mean of accuracies but have different distributions. This indicates that even if the mean accuracies

of two group of segmentations are the same, the corresponding segmentations may have different accuracy

performances. In addition, the reproducibility of segmentation algorithms are measured by many different

metrics. But few works compared the properties of reproducibility measures basing on real segmentation

data.

In this thesis, we illustrate how to evaluate and compare the accuracy performances of segmentation

algorithms using a distribution-based method, as well as how to use the proposed extensive method to rank

multiple segmentation algorithms according to their accuracy performances. Different from the standard

method, our extensive method combines the distribution information with the mean accuracy to evaluate,

compare, and rank the accuracy performance of segmentation algorithms, instead of using mean accuracy

alone. In addition, we used two sets of real segmentation data to demonstrate that generalized Tanimoto

coefficient is a superior reproducibility measure which is insensitive to segmentation group size (number of

raters), while other popular measures of reproducibility exhibit sensitivity to group size.
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1. Introduction

Image segmentation is an essential issue in the field of computer vision, which provides a delineation of

one or more regions of interest (ROI) of the input image. The goal of image segmentation is to partition the

ROI from the given image. An example is shown in Figure 1.1. Figure 1.1(a) is an image in the Berkeley

segmentation dataset and benchmark 500 (BSDS500 dataset) [51], where the kangaroo is the ROI. In Figure

1.1(b), the kangaroo is segmented and outlined in green.

(a) An image with a kangaroo as ROI. (b) The ROI is segmented and outlined.

Figure 1.1: Example images in the BSDS500 dataset.

The quality of segmentations can significantly affect the result of other operations such as image repre-

sentation and image recognition. Therefore, the segmentation algorithms which have superior performance

should be selected to perform the segmentation work. They can be selected by applying some measuring and

ranking methodology.

The performance of segmentation algorithms can be evaluated in different ways. The most often used

performance metric is the accuracy of segmentations. In most papers, e.g. [21, 26, 32, 33, 41, 52, 53, 55, 60,

61, 66, 68, 71, 85], the performance of segmentation algorithms are characterized by the means of accuracies of

the segmentations of individual test images. In [85], the percentage of correctly classified pixels, which is also

known as classification accuracy (CA), was calculated to represent the performance of the proposed Bayesian
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network model. Top et al. [78] used mean Dice similarity coefficient (DSC) to measure the performance of

their method. By averaging all the individual accuracy values, such as DSCs, the effect of accidental error

in accuracy measure will be reduced. Generally speaking, the higher the mean value of accuracy, the better

the performance of an image segmentation algorithm.

Standard deviation of accuracies can provide auxiliary information for ranking different image segmen-

tation algorithms. A lower standard deviation indicates that the values of data points are closer to the

mean value of all accuracy measure values. While a higher standard deviation indicates that the values of

data points are farther away from the mean value or, in other words, are spread out over a wider range of

values. Therefore, the algorithm which has a lower standard deviation is generally preferred when the means

are close. In [33, 41, 71, 75], both the mean and the standard deviation of accuracy are used to show the

performance of segmentation algorithms of segmentation algorithms.

Sometimes the mean and standard deviation of accuracies of segmentations generated by different algo-

rithms are similar. In such a scenario, some statistical methods, such as hypothesis test, may be adopted

to determine which algorithm is the best. For instance, given two sets of accuracy data, the non-parametric

Wilconxon rank-sum test (Mann-Whitney U test) can be used to test the hypothesis that the accuracy

samples of segmentations generated by two image segmentation algorithms come from the same distribution

[32, 35]. If the hypothesis is rejected, it means the accuracy samples are from different distributions. In other

word, the two algorithms have different performance of segmentation algorithms at a statistically significant

level and the one which has a higher mean value of accuracy is considered superior to the other. If the

hypothesis can’t be rejected, it means more evidence is needed to make a decision. In this thesis, the method

of using mean, standard deviation, and hypothesis test to rank segmentation algorithms will be referred to

as the standard method.

There are problems when using mean and standard deviation of accuracy to measure the performance

of segmentation algorithms. The most significant one is that using the mean and standard deviation makes

the implicit assumption that the accuracies of different segmentations are distributed normally. It may be

unsuitable to use mean and standard deviation of accuracy to characterize the performance of segmentation

algorithms without determining the distribution type of the accuracies of segmentations, especially when the

accuracies don’t follow normal distribution.

It is easy to imagine two very different distributions that have the same mean and the same standard devi-

ation. Figure 1.2 shows the distributions of two groups of synthetic data. The means and standard deviations

of both of these two groups of data are 0.0263 and 0.0152 respectively, but their shapes differ a lot. When

using the means and standard deviations of these two groups of data to determine the performance of the

corresponding segmentation algorithms, the conclusion would be that these two algorithms have comparable

performance of segmentation algorithms, which is obviously incorrect. Therefore, sometimes it may be inap-

propriate to compare segmentation algorithms just using mean and standard deviation without considering

the distribution of the accuracies of their segmentations. In this thesis, a proposed new methodology that

2



Figure 1.2: Two different distributions have the same mean and the same standard deviation.

can evaluate the accuracy of segmentation algorithm is based on the cumulative distribution function of the

segmentation generated by the segmentation algorithm.

Apart from the accuracy, other metrics such as reproducibility [18, 21, 26, 53, 55, 59, 61, 66, 68], and

efficiency [26, 53, 55, 59, 60, 85] can also characterize the performance of segmentation algorithms of segmen-

tation algorithms. Reproducibility is a measure of the mutual similarity of a group of segmentations. It is

also referred to as reliability in [19, 63, 86]. Using synthesized data, Eramian demonstrated that generalized

Tanimoto coefficient (GTC) is the only measure among joint Dice similarity coefficient, joint Tanimoto coef-

ficient, coefficient of variation and intra-class correlation coefficient that is not significantly affected by group

size of segmentations [22]. But it is not known whether these findings remain true for real data. The term

of ”efficiency” has been used to refer to different characteristics. For example, in [55], McInerney noted that

the efficiency of segmentation algorithms can be measured by the total time to perform the segmentations, or

the quantity and quality of user interaction. Since the computation time of the same segmentation algorithm

may be different on different machines and for different types of interactions, such as making annotations

on images and setting parameters of segmentation algorithms, the measure of efficiency of segmentation

algorithms is not discussed in this thesis.

This thesis focuses on how to determine the segmentation algorithm with the best accuracy and repro-

ducibility when more than one segmentation algorithm is available. An extensive method is proposed to

characterize the accuracies of segmentation algorithms. As for the reproducibility, the values of several met-

rics mentioned in [22] are applied to several groups of segmentations in order to verify that the generalized

Tanimoto coefficient (GTC) is the best metric to evaluate reproducibility of semi-automatic segmentation

algorithms in practice.

The rest of the paper is organized as follow. Chapter 2 introduces the background of image segmentation,

which consists of datasets, operating modes, types of segmentation algorithms, and measures for segmentation

algorithms. Research objectives are introduced in chapter 3. In chapter 4, the new evaluation method,

CDF (θ), is proposed basing on the distribution of accuracies of segmentations. Two examples are used

3



to show its validity by evaluating and comparing the accuracy performance of segmentation algorithms of

the Morphological Snakes algorithm [2], the Random Walkers algorithm [25], and the U-Net algorithm [1].

Chapter 5 presents how to develop an extensive method to evaluate and rank the accuracy performance

of segmentation algorithms. Chapter 6 verifies the GTC is the best metric to measure the reproducibility

of semi-automatic segmentation algorithms using some real segmentation data. The experiment result is

compared with Eramian’s result which is generated using synthetic data [22]. The contributions of this thesis

and future works are discussed in Chapter 7.

4



2. Background and Literature Review

In order to evaluate segmentation algorithms, three components are necessary: the dataset, which contains

the images that need to be segmented, the implementations of image segmentation algorithms, and the

methodology of evaluation.

2.1 Dataset

(a) Color image (top) and its ground truth (bottom). (b) Gray scale image (top) and its ground truth (bottom).

Figure 2.1: Examples of original images and their corresponding ground truths.
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In general, datasets which can be used to test the performances of segmentation algorithms consist of two

kinds of images. First, there are original images, which will be segmented by segmentation algorithms. The

original image can be a color image such as images in the BSDS500 dataset [3], or a gray scale image such as

images in the digital database for screening mammography (DDSM) [30, 31]. Examples are shown in Figure

2.1. Second, there are ground truths. The ground truths usually binary images. Typically, the black parts

of them represent the background region, and the white parts of them represent the foreground region. The

ground truth images are usually used to compare with the segmentations to calculate the accuracies of the

segmentations.

2.2 Segmentation Algorithms

2.2.1 Operating Modes of Segmentation Algorithms

Segmentation algorithms can be classified into three categories depending on whether there is participation of

human users. Algorithms which operate without the guidance of humans are called automatic segmentations.

Segmentations are generated without the help of segmentation algorithms and only by human operators are

called manual segmentations. In some situations, human users are required to provide expert knowledge or

some guidance to initialize or refine segmentations. This is called semi-automatic segmentation or interactive

segmentation.

Automatic segmentation is preferable to semi-automatic or manual segmentation, since it doesn’t require

the assistance of human. So the automatic segmentation is time-saving and efficient in many situations.

However, some segmentation problems are still difficult to solve by automatic segmentation algorithms,

especially when the number, the size and the shape of foreground regions are variable or the boundary of

foreground regions are indistinct.

Manual segmentations are usually used as ground truth images of many datasets to test the performances

of segmentation algorithms. The human users who do the manual segmentation work usually have expert

knowledge of the segmentation problem. However, manual segmentation is time-consuming and laborious.

That’s why the manual segmentations are not preferred in practice, except as a means of validating (semi-)

automatic segmentation algorithms.

Semi-automatic segmentation is a trade off between the accuracies of segmentations and the time and

effort required of human users. Human users provide high-level contextual knowledge to initialize the segmen-

tations and sometimes give some feedbacks to improve the segmentation results. Thus the semi-automatic

segmentation can save a lot of time for human operators compared to manual segmentation, while improving

the accuracies of segmentations significantly compared with automatic segmentations.
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2.2.2 Types of Segmentation Algorithms

Segmentation algorithms can be classified into different groups basing on different classification criteria. In

this section, several segmentation algorithms will be introduced according to the type of their theories. In

the recent twenty years, the most common image segmentation algorithms are graph-based segmentation

algorithms, learning-based segmentation algorithms and functional-based segmentation algorithms.

Graph-Based Segmentation Algorithms

Graph-based segmentation algorithms always adopt graph theory and related knowledge to segment images.

In general, the input image is represented as an undirected graph with a pixel for each node and edges

representing the relationship between neighboring pixels. Then, some mathematical methods are used to

partition the graph and thus segment the image.

Graph theory was first adopted to analyze images in [83] and [84]. However, it didn’t draw people’s

attention until the emergence of the Normalized Cuts [69] algorithm. Normalized Cuts is a typical graph-

based algorithm. It maps the input image into a weighted graph, where the nodes of the graph represent the

pixels in the input image. The weight on each edge represent the similarity of two pixels, which is related

to the locations and intensities of these two pixels. When segmenting the input images, some of the edges

in the corresponding graph will be removed, which is called a cut in graph theoretic language. In order to

find the optimal segmentations, the minimum cut of the graph should be calculated. This can be achieved

by calculating the eigenvalues and eigenvectors of a cost function [69]. It is an NP-hard problem to find

the minimum of the Normalized Cuts, but approximate solutions are available, such as [12]. However, the

approximate solutions can be arbitrarily far from the optimal solution. Because of this, the segmentation

results generated by the Normalized Cut algorithm are barely satisfactory.

Graph Cuts [5, 9, 36, 46, 48, 49, 56, 77], a classical graph-based algorithm, is an improvement of Normalized

Cuts. Similar to the Normalized Cuts, Graph Cuts map pixels of an image into a weighted graph and employ

min-cut methods to divide the images into foreground and background. First, the Graph Cuts algorithm will

convert the input image into a undirected graph. Each pixel of the input image is a node of the graph and

the connection of two adjacent pixels is an edge of the graph, which are called n-links. There are another two

special nodes (node S and node T ), which are called terminals in the graph. S is the object terminal and T

is the background terminal. Both of these two terminals connect with all other nodes. Second, users need

to provide annotations on the input image as hard constraints. In this step, users identify foreground and

background of the input image by marking pixels in different ways, such as drawing strokes or seed points on

the input images. Third, the cut operations are conducted to partition the nodes in the graph. The min-cut

[13] will generate a segmentation that satisfies the hard constraints and at the same time optimize the cost

of cuts. Although the Graph Cuts algorithms are widely used in many fields, there are some minor problems.

For instance, when the amount of the provided seeds are small, it is very likely that only a small part of the
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foreground is segmented, which is called the ”small cuts” mis-segmentation problem in [26]. This is because

the Graph Cuts algorithm always makes a minimum cut to separate the seeds from the rest of the input

image. Therefore, users may have to set seeds on the input image continually to improve the segmentation

result and overcome the ”small cuts” problem.

Later, the GrabCuts method was proposed by Rother et al. [64]. The GrabCuts method is developed

from the Graph Cuts algorithm. The ”iterative estimation” and ”incomplete labeling” mechanism can reduce

the interaction work of users considerably. When using GrabCuts, users just need to draw a box around a

foreground region, instead of placing seed points liberally and evenly. Using iterated Graph Cuts, the Grab-

Cuts algorithm can also reduce the blur and mixed background pixels on foreground boundaries. Although

the GrabCuts works well when segmenting color images, its iterative nature consumes a lot of computation

resource. In addition, the box-based interaction is not efficient sometimes, as the further editing of interaction

is required in many situations when users are not satisfied with the segmentation results.

The Random Walkers algorithm [25] is also a well known graph-based segmentation algorithm. It can

segment images in the following 3 steps. Similar to Normalized Cuts, the Random Walker algorithm maps

the input image to a graph at first. Second, the probability that a random walker starting at a pixel and first

reaches a particular seed point label are calculated by solving the linear equations of a Dirichlet problem.

Since the random walker has the same solution as the Dirichlet problem [10], the result of the Dirichlet

problem can be used to indicate the foreground boundaries. Third, each unlabeled pixel will be labeled

according to the higher probability calculated in the second step. Thus the input image can be segmented.

For many graph-based segmentation algorithms, seeds are necessary to initialize the segmentation process

or refine the segmentation result. The seeds may be automatically determined or come from users’ annotation.

Thus, most of semi-automatic segmentation algorithms are graph-based segmentation algorithms.

Learning-Based Segmentation Algorithms

Learning-based algorithms refers to those which use the machine learning theory to perform the segmentation.

They employ classifiers, which can classify the pixels or voxels in an image into different groups and therefore

segment the input images. Learning-based segmentation algorithms can be classified into two categories

depending on whether labeled images are used to train classifiers. The algorithms which can segment images

without users providing samples are unsupervised learning-based segmentation algorithms. Others which

use labeled images to train their models and segment images are supervised-learning-based segmentation

algorithms. When taking an input image, the corresponding label can be used to train a model, which can

generate a prediction, or more specific, a segmentation. But in unsupervised learning, no labels are available,

which makes the prediction more difficult. Therefore, supervised-learning-based segmentation is preferred

when the labeled images are sufficient for training the segmentation model.

The unsupervised learning-based segmentation algorithms refer to those algorithms which applied un-

supervised machine learning methods to help segmenting images. The unsupervised neural network and
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k-means clustering are often-used unsupervised learning-based segmentation algorithms.

Unsupervised neural networks can be used for preprocessing, feature extraction, segmentation etc. [20].

The images that need to be segmented are the same as those used to train the neural network [65]. The input

images are firstly used to determine the weights of neurons of the unsupervised neural network according

to some specific learning rules. Then the well-trained model is used to classify pixels in the input images

into different categories. Hopfield neural networks [34] and Kohonen self-organizing map (SOM) [42], which

are also called Kohonen feature maps, are the most often used unsupervised neural networks for image

segmentation.

The k-means clustering methods are usually combined with the features of input images, such as scale-

invariant feature transform (SIFT), histogram of oriented gradient (HOG), local binary pattern (LBP) and

so on, to segment images [4, 16, 74]. Those pixels whose features are close to each other in some measures

are gathered and classified into the same category. Different categories will be illustrated as different kinds

of regions. If there are only two categories, the input images can be segmented into the foreground and the

background. One disadvantage of the segmentation algorithms that applied k-means clustering methods is

that the number of clusters should be pre-defined [15]. For example, for semantic segmentation, there may

be more than two categories in one image. In such a scenario, the number of the clusters centers should

be defined to be the same as the total number of foreground regions and background regions before the

segmentation. In addition, it may be difficult to select suitable features for different kinds of images to

implement high accurate segmentation [15].

Some algorithms used both the unsupervised neural network and clustering to segment images. For

example, in [6], Mohamad Awad used SOM [42] to map the input images from three-dimensional space to

two-dimensional space. The new data in the two-dimensional space is used as the input of the proposed

T-Cluster technique to determine the cluster centers. In this way, the features in the two-dimensional space

will be classified into different groups, which indicate the pixels of the input images belong to foreground

regions or background regions.

Traditional machine learning methods are mostly based on statistical methods and can not feedback the

learning results to the inputs, which may lead to the fact that in a real-world environment, the unsupervised

segmentation algorithms are not very effective and adaptable.

For supervised-learning-based segmentation, the training set which contains images and their labels,

namely the corresponding segmentations, is necessary for extracting the common information of the images

to be segmented. There are many supervised-learning-based segmentation algorithms, such as k-nearest

neighbors (kNN), supervised artificial neural networks (ANN), support vector machines (SVM), and so on

[50]. In the following part of this section, the theories of the aforementioned supervised machine learning

methods will be introduced.

kNN is easy to tune, since the number of neighbors, i.e. k, is the only parameter. In the training phase

of a k-nearest neighbor classifier, the feature vectors and labels of training samples are stored. In the testing
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phase, the distance between the feature vectors of unlabeled input image and all other samples in feature

space will be calculated. The unlabeled points will be classified according to the votes of the k nearest

samples’ labels. The example application of segmentation algorithm using kNN classifier can be seen in [81].

Different from the kNNs, the ANNs consist of many parameters which are used to characterize the weights

of neurons and the complex structures of the networks. Artificial neural network is inspired by biological

neural network in human brain, and it is the most often used algorithm for driving deep leaning. A typical

example of ANN is the convolutional neural network (CNN). CNN is one of the most often used model for

deep learing and it is developed from ANN. For ANN, each neuron can generate an output when applying

weights and biases on the input values. As there are usually hundreds of neurons in each layer and several

layers in ANN, the number of parameters may be extremely great, which make the training of the ANN to

be difficult. For CNN, the vector of weights and biases is called a filter. The shapes of filters are usually

squares, such as 3 by 3. The dot product of an input layer and a filter is the output of that input layer, which

contains some specific features. The goal of the training of CNN is to learn the values of these filters, so that

the each layer can extract some useful information from its corresponding input. The most special feature

of CNN is that neurons in the same layer share the same filter, which can reduce the number of parameters

and the complexity of the network. Therefore, CNN could be deeper (contains more layers). In the training

phase, all samples are used to update these parameters to minimize the loss functions, which indicate the

difference between the outputs and the ground truths. Then the well-trained model can be used to classify

the pixels in an input image into different categories and thus segment the input image. The advantages

of ANN is that all features that used for classification are learned from the training phase, instead of those

pre-defined features, such as SIFT, HOG, LBP etc.. However, it takes a long time and requires thousands

of labeled data to train the model of ANN. The U-Net [1], an implementation that is used in chapter 4 and

chapter 5, is a modification of traditional ANN for automatic segmentation.

The goal of SVM is to find a hyper-plane to separate data points in a high-dimensional feature space

[82]. SVM can map data points which are not linearly separable in the original low-dimensional space onto

a higher-dimensional feature space (Hilbert space) where the transformed data points are linearly separable.

In the training phase, two parallel hyper-planes are contrasted to separate data points into two parts and at

the same time the distance of these two hyper-planes are maximized. Between these two hyper-planes, a new

hyper-plane, which has the same distance to the existing two parallel hyper-planes, will be constructed to

classify the testing data. It is believed that the greater the distance of the parallel hyper-planes, the smaller

the overall classification error. Combined with extracted features, the SVM can be used to segment images.

Functional-Based Segmentation Algorithms

The basic idea of functional-based algorithms is defining an energy function whose independent variables

contain the information of the closed boundary curves of the foreground. As the defined energy function

has minimum energy along the foreground region’s boundary, the segmentation problem will be transformed
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into the problem of finding the minimum of the defined energy function. This minimum can be obtained

by solving the corresponding Euler-Lagrange function. In general, this class of algorithms mainly contains

the active contour model and derivative algorithms. It can be classified into two sub-categories, namely the

parametric active contour model and the geometric active contour model. The difference of these two kinds

of functional-based segmentation algorithms is that the parametric active contour model uses parameters

to characterize the shape of the foreground boundary explicitly, while the geometric active contour model

represents the foreground boundary implicitly with the level sets of a 3D function.

In [39], Kass et al. proposed a parametric active contour model, Snakes, which used several control

points on the foreground contour to form the basic curves and deformed the curves by changing the values

of their parameters. The energy function of the Snakes model consists of two kinds of energy, namely the

internal energy and the external energy. The internal energy can control the elastic deformation and keep the

smoothness and continuity of the curve. The external energy is also called image energy, which indicates the

degree of similarity between the form of the curve and the local feature, such as gradient, intensity, or texture

feature. Snakes is a semi-automatic segmentation algorithm and users can impose constraint forces to guide

the deformation of the contours near the features of interest. However, the segmentation results strongly

depend on the original contours determined by the control points. The Snake model can not represent some

boundaries well when the topologies of boundaries changed [54], such as the breaking and merging. Figure

2.2 and figure 2.3 show the situations where Snake model can’t handle.

The level set methods [23, 44, 67, 70] is a geometric active contour model. It determines the contours

of the foreground region by converting the 2D images to a 3D surface basing on gradient value of intensity

of pixels in images. The 3D surface is evolved until its energy function is minimized. At first, a 2D image

is usually converted to a 3D surface basing on gradient values of pixels’ intensity. The projection of the 3D

surface on the zero-level set represents the contour of the foreground region of the original 2D image. Suppose

C(x, y) is a 2D contour curve and C(t) is its position at time t, which is implicitly defined as the zero-level

set of the 3D surface ψ(C(t), t), namely ψ(C(t), t) = 0. The evolution of the 3D surface can be describe by

equation 2.1,

∂ψ (C (t) , t)

∂t
+ F (C (t)) · |∇ψ (C (t) , t)| = 0, (2.1)

where F (C (t)) is a speed function. Given the value of ψ (C (t) , t = 0), the value of ψ (C (t) , t) can be

iteratively calculated according to equation 2.1 and thus the contour of the foreground region of the 2D

image can be evolved. As the level set methods don’t depend on the parameters of curves to describe their

shape, they can deal with the problems that the topologies of curves may change in the process of curve

evolution, such as breaking and merging [66, 80]. The disadvantage is that it is computationally expensive

to find the minimum of the energy function iteratively, which limits the speed of the level set algorithm.
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(a) (b)

(c) (d)

Figure 2.2: An example of the change in topology: breaking. (a) The original closed curve (the red
curve). (b) The original curve breaks into two curves. (c) The two curves break into three curves. (d)
The red curves stop on the boundaries of the foreground regions.

2.3 Evaluation Methods of Segmentation Algorithms

The performance of segmentation algorithms can be evaluated in different ways. Accuracy is the most often

used metric compared to others, such as reproducibility, efficiency, computation time, and etc. Reproducibil-

ity is only used for semi-automatic segmentation algorithms or other types of algorithms which need users’

interaction or intervention. Computation time [8, 26, 29, 38, 53, 58, 82] is reported to show the speed of

segmentation algorithms. In some papers, ”efficiency” refers to some measure of the amount of annotation

[60, 73].
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(a) (b)

(c) (d)

Figure 2.3: An example of the change in topology: merging. (a) The original closed curves (the red
curves). (b) The original two curves merge into one curves. (c) The merged curve keeps evolving. (d)
The red curve stops on the boundary of the foreground region.

2.3.1 Accuracy

Accuracy is the measure of the similarity of a segmentation to its ground truth. There are many ways to

measure that similarity. Accuracy measures can be roughly categorized as the boundary-based accuracy

measures and the region-based accuracy measures.

Boundary-Based Accuracy Measures

Boundary-based accuracy measures always use the distance between the boundary of foreground region of

the segmentations and the boundary of foreground region of the ground truth to quantify segmentation

accuracy. Let B = {b1, b2, ..., bM} be a finite pixel set, in which the bi (i ∈ {1, 2, ...,M}) is a pixel on the

segmented boundary and T = {t1, t2, ..., tN} be a finite pixel set, in which the tj (j ∈ {1, 2, ..., N}) is a
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pixel on the ground truth boundary. Define d(bi, tj) as the distance between bi and tj , where the distance

may be Euclidean distance, Chebyshev distance, Manhattan distance or other metric of spatial distance. The

theories of boundary-based accuracy measures are illustrated in this section, including mean squared distance

(MSD), mean absolute distance (MAD), root mean squared distance (RMSD) and root mean absolute distance

(RMAD), maximum difference (MaxD) and Hausdorff distance (HD).

• Mean squared distance and mean absolute distance

The mean squared distance and the mean absolute distance are defined in equation 2.2 and equation

2.3,

MSD(B, T ) =

∑
b∈B(mint∈T d2(b, t))

M
, (2.2)

MAD(B, T ) =

∑
b∈B(mint∈T |d(b, t)|)

M
, (2.3)

where B and T are the set of pixels in the segmented boundary and the set of pixels in the ground

truth boundary. MSD is also referred to as mean squared difference or mean squared error. It is used to

measure the average minimum deviation of the segmented boundary from the ground truth boundary.

MAD also refers to mean absolute error in [14]. It can measure the average minimum absolute distance

between the segmented boundary and the ground truth boundary too.

• Root mean squared distance

RMSD is the square root average minimum distance between the segmented boundary and the ground

truth boundary. The definition of RMSD is given in equation 2.4.

RMSD(B, T ) =
√

MSD =

√∑
b∈B(mint∈T d2(b, t))

M
(2.4)

It is easy to know that MAD and RMSD have the same unit with the spatial distance. But that doesn’t

mean only one of them should be used to represent the performances of segmentation algorithms. Chai

and Draxler [14] demonstrated that when the error distribution is expected to be Gaussian, RMSD is

more appropriate to characterize the model performance than the MAD. Instead, the combination of

different metrics should be used to assess the performances of segmentation algorithms.

• Maximum difference

MaxD provides a measure of the maximum error in segmentations [37]. In order to calculate MaxD,

the center of gravity of the ground truth boundary is determined at first, which is the average of the

weighted position of the intensity of pixels in the ground truth boundary. Then, l, the distance between

the segmented boundary and the ground truth boundary can be calculated as a function of angle of θi,

where i = 1, 2, ..., N and N is the number of radial angles. At last, the maximum of the distance of the

segmented boundary and the ground truth boundary will be determined. The definition of MaxD is in

equation 2.5:

MaxD(B, T ) = max {|l(θi)|} (2.5)
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Figure 2.4: Local difference between the ground truth boundary and the segmented boundary.

Figure 2.4 shows the local difference between the two different boundaries and l(θi) = OAi−OBi, where

O is the center of gravity of the ground truth boundary, Ai is a pixel on the segmented boundary, Bi

is a pixel on the ground truth boundary.

• Hausdorff distance

The Hausdorff distance (HD) can be applied on two sets of boundary pixels extracted from the seg-

mented boundary and the ground truth boundary. It measures the maximum distance between the

pixels in the segmented boundary set and the pixels in the ground truth boundary set. The HD is

defined in equation 2.6:

HD(B, T ) = max

{
max
b∈B

min
t∈T

d(b, t), max
t∈T

min
b∈B

d(t, b)

}
(2.6)

HD has the same unit with MaxD. Both of them measure the max difference between the segmentation

boundary and the ground truth boundary. However, no related work was done to analyze which measure

is more suitable to measure the accuracies of segmentations. Therefore, it is recommended to use both

of them to characterize the accuracies of segmentations.

This metric can be used to evaluate the performance of both 2D images and 3D images. In many

situations, HD is used together with MSD as a complementary measure, since the MSD measures the

mean error and the HD measures the maximum error.
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Figure 2.5: The illustration of TP, TN, FP, and FN. The two color ellipses are the foreground regions
in the segmentation and the corresponding ground truth, respectively.

Region-Based Accuracy Measures

Region-based accuracy measures characterize the accuracy of segmentation algorithms basing on the over-

lapped region of the ground truths and the segmentations rather than only considering the boundaries.

The pixels in the segmentations and their corresponding ground truth can be classified into four categories:

true positive pixels (TP), false positive pixels (FP), true negative pixels (TN) and false negative pixels (FN).

An example is used to illustrated the relationship of these four kinds of pixels in figure 2.5. Suppose cnt(·)

means the count of pixels which belong to a category or a region of an image.

• Sensitivity and specificity

Sensitivity, which is also called true positive fraction (TPF), is defined in equation 2.7. It is the

proportion of the pixels in the foreground region are correctly classified as foreground.

sensitivity = TPF =
cnt(TP)

cnt(TP) + cnt(FN )
(2.7)

The specificity has some relation with false positive fraction (FPF) and is defined in equation 2.8:

specificity = 1− FPF = 1− cnt(FP)

cnt(FP) + cnt(TN )
=

cnt(TN )

cnt(FP) + cnt(TN )
(2.8)

It is the proportion of the pixels in the background are classified into the background region.
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• Classification accuracy

The classification accuracy (CA) is the proportion of the number of correctly classified pixels to the

total number of pixels in the segmented image. CA can be calculated using the following equation:

CA =
cnt(TP) + cnt(TN )

cnt(TP) + cnt(FP) + cnt(FN ) + cnt(TN )
(2.9)

All of sensitivity, specificity and classification accuracy are usually used in medical diagnosis. However,

it may be not appropriate to use these three metrics to evaluate the performance of segmentation

algorithms, because they will inflate the performance rating when cnt (TN ) is far greater or far smaller

than cnt (TP).

• Dice similarity coefficient

Dice similarity coefficient is a statistic used for comparing the similarity of samples in two sets. The

DSC, defined in equation 2.10, is the ratio of the area of the overlapped region of the segmentation and

the ground truth to the average area of the segmentation and the ground truth.

DSC =
2cnt(TP)

2cnt(TP) + cnt(FP) + cnt(FN )
(2.10)

DSC takes values from 0 to 1. It means the segmentation and the ground truth are perfectly matched

when DSC = 1 and the segmentation and the ground truth are completely separated from each other

when DSC = 0.

• Tanimoto coefficient

The Tanimoto coefficient (TC), also referred to as Intersection over Union, Jaccard Similarity, and

Jaccard Index, is the size of the intersection divided by the size of the union of the sample sets:

TC =
S ∩G

S ∪G
=

cnt(TP)

cnt(TP) + cnt(FP) + cnt(FN )
(2.11)

where S is the set of pixels in the foreground of segmentation and G is the set of pixels in the ground

truth. TC also takes values from 0 to 1, where 1 means the segmentation and the ground truth matched

perfectly and 0 means they are mismatched completely.

2.3.2 Reproducibility

The reproducibility of an image segmentation algorithm refers to the consistency of the segmentations that

are generated by the implementation of the image segmentation algorithm using different annotations of users.

It is only used for the semi-automatic or manual segmentations where the users’ interactions are necessary.

In addition, the reproducibility of a segmentation algorithm is evaluated without the use of ground truths.

Therefore, the reproducibility does not include the comparisons against the ground truths, only between

different users’ segmentations.
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To measure the algorithms thoroughly, both the inter-observer reproducibility and the intra-observer

reproducibility should be evaluated. The inter-observer reproducibility is used to represent the similarity of

segmentations generated by using the interactions of different users. The intra-observer reproducibility is

used to represent the similarity of segmentations generated by using the interactions of the same user.

As the reproducibility measures the similarity of several groups of segmentations, the metrics that used to

evaluate accuracy can also be used to access reproducibility, as long as these metrics can be operated on several

segmentations of an image and don’t depend on the ground truths or accuracies of them. In this section, the

theories of several reproducibility measures are illustrated, such as joint Dice coefficient (JDC), joint Tanimoto

coefficient (JTC), coefficient of variation (CV), intra-class correlation coefficient (ICC), generalized Tanimoto

coefficient (GTC).

• Joint Dice coefficient and joint Tanimoto coefficient

JDC and JTC are the generalization of DSC and TC to assess reproducibility. It is not necessary

to use ground truths to calculate JDC and JTC, which is different from DSC and TC. However, to

determine the JDC and JTC, a group of segmentations are necessary. Suppose n is the number of the

segmentations and S = {S1, S2, ..., Sn} is a group of segmentations of the same image. JDC and JTC

can be expressed by equation 2.12 and equation 2.13.

JDC =
n · cnt (∩ni=1Si)∑n

i=1 cnt (Si)
, (2.12)

JTC =
cnt(∩ni=1Si)

cnt(∪ni=1Si)
, (2.13)

JDC is the fraction of the size of the overlapped region of several segmentations to the average size of

all these segmentations. JTC is the proportion of the overlap area of all segmentations in the set S to

the area of their union.

• Coefficient of variation and intra-class correlation coefficient

Both coefficient of variation (CV) and intra-class correlation coefficient (ICC) are statistical metrics.

They can not only be used to measure the reproducibility of segmentation algorithms, but also be used

in other fields for reliability studies.

CV is also referred to as coefficient of dispersion or relative standard deviation, which measures the

variability of a group of samples. As for image segmentation, CV is often used to measure the re-

producibility of area or volume measurements of medical images, especially for computed tomography

(CT) and magnetic resonance imaging (MRI). CV can be defined as:

CV =
σ

µ
, (2.14)

where σ and µ are the standard deviation and mean of the area (the number of pixels for 2D images)

or volume (the number of voxels for 3D images) of foreground parts of segmentations.

18



ICC is widely used in reliability analysis. For image segmentation, ICC can measure the reproducibility

of both the inter-observers segmentations and the intra-observer segmentations [18, 40].It describes

how similar the value of samples in the same group are to each other and how different they are from

samples in other groups. The sample in a group is a segmentation of an input image. Many forms

of ICC are summarized by Koo and Li in [43] to help clinical researchers to choose the correct form

of ICC. According to them, the reproducibility of a segmentation algorithm can be interpreted as

poor, moderate, good, and excellent when the values of ICCs are in the intervals of [0, 0.5], (0.5, 0.75),

(0.75, 0.9], and [0.9, 1], respectively, based on the 95% confidential interval of ICC estimate. But

it remains unclear whether this interpretation of ICC is reasonable for the reproducibility of semi-

automatic segmentation algorithms.

• Generalized Tanimoto coefficient

Several different forms of GTC are defined in [17] to characterize the consistency of multiple segmen-

tations. Suppose S = {S1, S2, ..., Sn} is the set of all segmentations of the same image. One form of

GTC, which is suitable for measuring the reproducibility of binary segmentation algorithms, is defined

in the following equation:

GTC =

∑n
i=1

∑n
j=i+1

∑
k min(Sik, Sjk)∑n

i=1

∑n
j=i+1

∑
k max(Sik, Sjk)

, (2.15)

where Sik is the label value (foreground: 1, background: 0) of the kth pixel in the ith segmentation.

GTC takes on values from 0 to 1.0, where GTC = 0 represents entirely disjoint segmentations and

GTC = 1.0 represents all Si ∈ S are identical.

To get a statistically significant measurement of the reproducibility of a segmentation algorithm, a large

number of segmentations are required. However, it may be difficult to collect enough segmentations in practice

because of the limitation of funding, the number of well-trained operators who can perform annotations or

labeling, and so on. In [22], Eramian used synthetic data to demonstrate that CV, GTC and ICC are not

sensitive at all to the group size of segmentations when the group size is greater than 10. However, JDC, as

well as JTC, varies a lot. But when the group size of segmentations is smaller than 5, only GTC is stable. It

means in the situation where the group size of segmentations is between 2 and 5, only GTC is suitable for

measuring the reproducibility of segmentation algorithms. In practice, the group size is always smaller than

5 due to the limitations such as funding issue and logistic support. So it is very likely that only GTC is not

sensitive to the group size of segmentations.
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3. Research Objectives

3.1 Research Statement

As is mentioned in chapter 1 and 2, there are some problems when evaluating and ranking segmentation

algorithms. The first one is what aspects of performance of a segmentation algorithm should be evaluated. In

most papers, only the accuracy performance of their proposed segmentation algorithm is reported. However,

accuracy itself can’t tell the total story of a segmentation algorithm. Efficiency is also important, especially for

those algorithms which are designed for real-time segmentation problems. In particular, the reproducibility

of semi-automatic segmentation algorithms should be evaluated, too. The second problem is what metrics

should be applied. For example, many metrics can measure reproducibility, such as CV, GTC, ICC, JDC

and JTC. Which one, or any combination of them, should be used to evaluate the reproducibility of a semi-

automatic segmentation? The third one is how to interpret the values of these measures. For example,

when the accuracies of several segmentations are calculated, sometimes it’s not a good idea to use the mean

and standard deviation of accuracies to characterize the accuracy performance of a segmentation algorithms.

Different segmentation algorithms may have the same mean and standard deviation of accuracies, while

their distributions differ a lot. In this situation, mean and standard deviation are unfavorable for ranking

segmentation algorithms.

3.2 General Objectives

This study focuses on how to evaluate and rank segmentation algorithms on the basis of their accuracies,

as well as which measure should be used to evaluate the reproducibility of semi-automatic segmentation

algorithms.
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3.3 Specific Objectives

• To illustrate how to use a distribution-based methodology to evaluate and compare the accuracy of

segmentation algorithms.

• To develop an extensive method for ranking the accuracies of segmentation algorithms that is richer

than simply comparing mean accuracy measures.

• To demonstrate generalized Tanimoto coefficient (GTC) is more stable than JDC, JTC, CV and ICC

for measuring the reproducibility of segmentation algorithms when the group size varies.
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4. CDF (θ): A Distribution-based Function

4.1 Research Problem

Many image segmentation algorithms had been reported to have excellent performances. However, most

of these results are based on the mean value of accuracy measures, which ignore the distributions of the

accuracies of segmentation algorithms. When using mean and standard deviation to characterize a group of

data points, an assumption is made that these data points are normally-distributed. If the distribution is

highly non-normal, it may be inappropriate to use mean value of accuracy measures to evaluate and rank

segmentation algorithms. Because of this, the accuracy of segmentation algorithms should be evaluated in

other ways that account for these properties. In this chapter, a distribution-based function, CDF (θ), is

introduced to analyze and compare the accuracy performances of segmentation algorithms.

4.2 Data Analysis Methodology

4.2.1 The Standard Method

The standard method is using the mean, and standard deviation of accuracy of segmentations to characterize

the accuracy performance of the implementations of segmentation algorithms. When comparing different

segmentation algorithms, hypothesis tests may also be necessary to find whether the means of accuracies of

the segmentations generated by these segmentation algorithms are significantly different.

As is introduced in the introduction section, the mean of accuracies is widely used to characterize the

performances of segmentation algorithms. When the mean accuracies are calculated, the performances of

segmentation algorithms can be ranked. The segmentation algorithm with a higher mean accuracy is con-

sidered to have a better accuracy performance. This may be a good characterization when the accuracy of

segmentations generated by different segmentation algorithms have very different mean accuracies. Other-

wise, it is more convincing to use hypothesis tests to determine whether those accuracies are from the same

distribution. If those accuracies are not from the same distribution, the segmentation algorithm which has
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higher mean accuracy is better. If not, it means there is insufficient evidence to rank one over the other.

The Mann-Whitney U test, a non-parametric hypothesis test, might be used to see whether two groups

of data are from the same distribution. Given two sets of data, the null hypothesis of Mann-Whitney U test

is that the randomly selected sample from a set of data is equally likely greater or smaller than the randomly

selected sample from the other set of data. It can also be illustrated as whether the randomly selected two

samples are from the same distribution.

4.2.2 The Explanation of CDF (θ)

It is easy to imagine that a probability density function (PDF) can be used to characterize the accuracy

performance of a segmentation algorithm. When measuring the accuracy performance of a segmentation

algorithm, the independent variable of a PDF is the accuracy of segmentations generated by the segmentation

algorithm and it takes values in the continuous interval of [0, 1].

However, we can’t get the PDF of an algorithm directly. What we can do is to sample it. We can

generate a finite number of segmentations and a finite number of accuracy values. Then we can estimate

the underlying PDF of a segmentation algorithm using histograms. A histogram is a representation of the

distribution of numerical data. In this thesis, the histogram estimation of a probability density function is

denoted by HPDF.

The method of calculating HPDF is as follow. First, we use an algorithm to segment N images and

calculate the accuracies of these N segmentations. Second, we divide the interval of [0, 1] into M intervals

equally, so that each interval has the same width of 1
M . The ith interval is

[
i−1
M , i

M

)
, where i ∈ {1, 2, ...,M}.

Third, for each interval (bin), the number of accuracy values which fall into it is counted. Fourth, the counts

of accuracy values of each bin are divided by N . In these N segmentations, if there is a segmentation whose

accuracy is x , x will fall into the binbx/ 1
M c

( b·c is the floor fuction), which is the bx/ 1
M cth bin of the

constructed histogram. So the HPDF of an algorithm can be expressed as

HPDF (x) =
cnt
(

binbx/ 1
M c

)
N

=
cnt
(
binbx·Mc

)
N

, (4.1)

where x ∈ [0, 1] and cnt (·) is the count of accuracies that fall into a bin. Figure 4.1 shows the relationship of

the HPDF, the underlying PDF of a group of Gaussian-distributed data, as well as one bin of HPDF (colored

in gray).

It should be noted that the number of bins of the constructed histogram can affect the shape of the HPDF

curve. The examples are shown in Figure 4.2. If there are too many bins, there may be some bins in which

few or no accuracy samples fall, resulting in erroneous probability estimates. But if there are too few bins,

the width of each bin will be very large, which makes it difficult to learn the shape of the underlying PDF.

There are different ways to decide the number of bins, such as the square-root choice, or using Sturges’

formula. For the square-root choice, the number of bins is equal to the square-root of the number of samples,
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Figure 4.1: The HPDF and the underlying PDF of a group of synthetic Gaussian-distributed data
(number of samples is 10000, µ = 0.5, σ = 0.1, number of bins is 30). One bin of the HPDF is colored
in gray.

namely

M =
√
N. (4.2)

In [72], Sturges suggested the number of bins can be calculated with

M = dlog2Ne+ 1, (4.3)

where d·e indicate the ceiling function. However, when we try these methods, the number of bins is too

few and does not capture the shape of the underlying PDF well, as is shown in Figure 4.2. Therefore, it is

recommended to try different number of bins and find a trade-off about the effects of bins’ number.

HPDF can be used to estimate the underlying PDF of a group of data generated by a segmentation

algorithm, but it is not a wise choice to use HPDF to compare two or more groups of data directly. If we

use HPDFs to compare two groups of data generated by different segmentation algorithms, the values of all

bins of these two HPDFs should be compared. However, the values of some bins of these two HPDFs could

be 0. This may happen when there are too many bins in the constructed histogram, or there are too few

segmentations and therefore too few accuracies. In this situation, we can’t decide which algorithm is better.

Since we are not sure whether it is because both these two algorithms can’t generate segmentations with

these specific accuracies, or we don’t observe these accuracies over the finite number of segmentations used
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Figure 4.2: The HPDFs of a group of Gaussian-distributed data (number of samples is 1000, µ = 0.5,
σ = 0.1) with different numbers of bins. (a) Too many bins. (b) Too few bins. (c) Proper number of
bins.

to generate the HPDF.

In order to avoid the problem that the counts of some bins of HPDFs are 0, we consider to use cumu-

lative density function (CDF) of accuracies of segmentations to characterize the accuracy performances of

segmentation algorithms. CDF can be expressed as

CDF (x) =

bx/ 1
M c∑

i=0

HPDF (
i

M
) =

bx·Mc∑
i=0

HPDF (
i

M
), (4.4)

which is the summation of values of the first bx ·Mc bins of the HPDF. It represents the probability that

the accuracy of a segmentation generated by an algorithm will take a value less than or equal to x, where

x ∈ [0, 1]. CDF (x) is a monotone increasing function.

CDF can be used to characterize and compare the accuracy performances of two segmentation algorithms.

Suppose the CDFs of segmentations generated by algorithm A and algorithm B are CDFA(x) and CDFB(x),

where x is accuracy level. If CDFA(x) > CDFB(x), it means algorithm A is more likely to generate

segmentations whose accuracies are no greater than x.
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In practice, we are more interested in the likelihood of an accuracy of x or higher, which is not consistent

with the implication of CDF. Because of this, CDF (θ), which is defined in equation 4.5, is used to characterize

the accuracy performances of segmentation algorithms in this paper, instead of CDF (x).

CDF (θ) = 1− CDF (θ) = 1−
bθ·Mc∑
i=0

HPDF (
i

M
), (4.5)

where θ ∈ [0, 1] is the accuracy level. Note that the x in equation 4.4 has the same meaning with the θ in

equation 4.5. The reason why we used different parameters to indicate accuracy is that we want to distinguish

the CDF and CDF . CDF (θ) is the estimated probability of that the algorithm will generate segmentations

with accuracies of θ or higher. We thought it would be easier to interpret the metric in the context of

segmentation algorithm performance, so we use CDF (θ) instead of CDF (θ). As the CDF (θ) is a monotone

increasing function and ranging from 0 to 1.0, CDF (θ) is monotonically decreasing with increasing θ. A

superior segmentation algorithm’s CDF (θ) equals to 1 when θ < 1.0 and sharply decreases when θ ≈ 1.0.

CDF (θ) is not only a probability, but also a metric for characterizing the performance of segmentation

algorithms. We can use CDF (θ) to characterize the accuracy performance of a segmentation algorithm in

three steps. First, we use the segmentation algorithm to segment images and calculate the accuracies of the

segmentations. Second, the CDF (θ) of these accuracies is calculated using equation 4.5. Third, check the

values of CDF (θ)s when θ takes different accuracy values that we are concerned about and see how likely the

segmentation algorithm is to generate segmentations with accuracies of θs or higher. For example, suppose

we are concerned about the probability that an algorithm can generate segmentations with accuracies of

0.9 or higher. First, we need to use this algorithm to segment several images and calculate the accuracies

of these segmentations. Then, we can draw the CDF (θ) of these accuracies values. Next, the value of

CDF (0.9) should be calculated. The greater the value of CDF (0.9), the better the accuracy performance of

this segmentation algorithm.

We can also use the area under the CDF (θ) curve (AUC) to characterize the overall accuracy performance

of a segmentation algorithm. The AUC refers to the area of the region that above the x-axis, on the right of

the y-axis and under the CDF (θ) curve. As the accuracy θ ∈ [0, 1.0] and CDF (θ) ∈ [0, 1.0], AUC ∈ [0, 1.0].

According to equation 4.5, CDF (θ) is the probability that an algorithm can generate segmentations with

accuracies of θ or higher. Therefore, when θ < 1.0, the CDF (θ) of a superior segmentation algorithm equals

to 1.0 and when θ ≈ 1.0, CDF (θ) of a superior segmentation algorithm decreases sharply from 1.0 to 0.

So the AUC of a superior segmentation algorithm is close to 1.0. The greater the AUC , the better the

performance of a segmentation algorithm. Therefore, the AUC can also be used to compare the overall

accuracy performances of two segmentation algorithms.

CDF (θ) can not only be used to characterize the accuracy performance of one segmentation algorithm,

it can also be used to compare the accuracy performances of two segmentation algorithms. The difference of

two CDF (θ)s can be expressed as

CDF diff (θ) = CDF 1(θ)− CDF 2(θ), (4.6)

26



where CDF 1(θ), CDF 2(θ) are the CDF (θ)s of segmentation algorithm 1 and segmentation algorithm 2.

According to equation 4.6, given an accuracy level θ, the possibility that the algorithm 1 can segment images

with accuracy of θ or higher is greater than that of algorithm 2 if CDF diff (θ) > 0, and less otherwise.

Therefore, given a θ, the accuracy performances of two algorithms can be compared using the value of

CDF diff (θ) directly.

In fact, CDF diff (θ), which is defined in equation 4.7, can also be used to compare accuracy performances

of segmentation algorithms.

CDF diff (θ) = CDF 1(θ)− CDF 2(θ), (4.7)

However,if the value of CDF diff (θ) is greater than 0, it means algorithm 2 has a better accuracy performance

than the algorithm 1. If the value of CDF diff (θ) is smaller than 0, it means algorithm 1 has a better accuracy

performance than the algorithm 2. Comparing equation 4.6 and equation 4.7, we can see that the CDF diff (θ)

is easier to interpret.

4.3 Examples of Using CDF (θ) to Characterize and Compare the

Accuracy Performances of Segmentation Algorithms

4.3.1 Example 1: the Leafsnap Dataset

The Leafsnap dataset [45] contains the photos of 85 kinds of trees’ leaves as well as their binary ground truths.

For the original images of this dataset, the backgrounds are white papers and the foregrounds are leaves.

7717 photos of leaves of different kinds of trees in the Leafsnap dataset were adopted in total. These images

were taken by mobile devices (iPhones mostly) in outdoor environments. They contain varying amounts of

blur, noise, illumination patterns, shadows, etc. The example images are shown in Figure 4.3. For the ground

truths, foreground regions (leaves) are marked in white and background regions are in black. As leaf is the

only foreground object in the image in the Leafsnap dataset, the accuracy of segmentations will be high in

general, even in the presence of blur, noise and etc.
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Figure 4.3: Example images in the Leafsnap dataset. Top: original images, bottom: ground truths.

The implementations used to do the segmentation work are based on three algorithms: the Morphological

Snakes [2], the Random Walker [25], and the U-Net algorithms [1]. The theories of these three algorithms

can be found in the background and literature review section.

For all of the segmentations generated by these three segmentation algorithms, the accuracies are measured

with Dice similarity coefficient (DSC), which was introduced in section 2.3.1.

Then we plot the CDF (θ)s of these three algorithms and they are shown in Figure 4.4 . The HPDF (θ)s of

these algorithms are also shown in Figure 4.4 in order to reveal the underlying probability density functions

of these three algorithms. Note that for this example, the number of bins of HPDF (θ)s and CDF (θ)s are

200, therefore the width of each bin is 0.005.

D’Agostino-Pearson normality tests are applied on accuracy data of these three groups of segmentations

separately. As the statistics of the data of the Morphological Snakes, the Random Walkers and the U-Net

algorithms are 4805.37, 5763.48, and 3825.55 and all of their p values are 0.000, the null hypothesis that these

data are from normal distributions can be rejected. In other words, the accuracies of segmentations from all

three algorithms do not follow normal distribution. In addition, it can be seen that the accuracies of most

non-zero data points are in the interval of (0.8, 1].
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Figure 4.4: The HPDF (θ)s (left) and CDF (θ)s (right) of three segmentation algorithms (for Leafsnap

dataset).

As is shown in Figure 4.4, the aforementioned three algorithms have similarly shaped HPDF (θ)s and

CDF (θ)s. Starting from the point of (0, 1), these three CDF (θ) curves decrease slowly in the interval of

[0, 0.8] and decrease sharply in the interval of (0.8, 1]. All of these three curves end at the point (1.0, 0).

According to equation 4.4, in an interval I, the steeper the curve is, the greater the possibility that the

segmentation algorithm can segment images with accuracies fall in the interval of I. Because of this, it can

be easily known that the accuracies of most of segmentations generated by these three algorithms are in the

interval of (0.8, 1].
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We also calculated the AUCs of these three algorithms. The AUCs of the Morphological Snakes algorithm,

the U-Net algorithm, and the Random-Walkers algorithm are 0.884, 0.850, and 0.923. Therefore, the AUCs

show that the Random Walkers has the best accuracy performance on the Leafsnap dataset and followed by

the Morphological Snakes. The U-Net has the worst accuracy performance among these three segmentation

algorithms.

Figure 4.5 shows the pairwise comparisons of the Morphological Snakes algorithm, the U-Net algorithm,

and the Random Walkers algorithm basing on their CDF (θ)s. The red dotted lines mean that the pairwise

differences of CDF (θ)s equals to 0, namely CDF diff (θ) = 0.
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Figure 4.5: The pairwise CDF diff (θ)s of three segmentation algorithms (for Leafsnap dataset).

White regions: the two algorithms have the same accuracy performance. Light gray regions: the latter

algorithm has better accuracy performance than the former algorithm. Dark gray regions: the latter

algorithm has worse accuracy performance than the former algorithm.

According to equation 4.6, the accuracy performances of two algorithms (algorithm 1 and algorithm 2)

can be compared using the value of CDF diff (θ) directly. If CDF diff (θ) > 0, the possibility that the algorithm

1 can segment images with accuracy of θ or higher is greater than that of the algorithm 2. Therefore, the

following results of the comparisons of these algorithms are obtained. We also show the results in Figure 4.5.

• The comparison of the Morphological Snakes algorithm and the Random Walkers algo-
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rithm.

The CDF diff (θ) of Morphological Snakes and Random Walkers is below the red dotted line. In other

words, when θ ∈ [0, 1], CDF diff (θ) < 0. Therefore, for any θ ∈ [0, 1], the possibility that the Random

Walkers algorithm can segment images with accuracy of θ or higher is greater than that of the Mor-

phological Snakes algorithm. In other words, the Random Walkers algorithm is better. Because the

Random Walkers algorithm is more likely to generate segmentations with high accuracies and it has

lower chance of total failure.

• The comparison of the Morphological Snakes algorithm and the U-Net algorithm.

The CDF diff (θ) of Morphological Snakes and U-Net is under the red dotted line when θ ∈ [0, 0.55] and

it is above the red dotted line when θ ∈ (0.55, 1]. In other words, when θ ∈ [0, 0.55], CDF diff (θ) < 0

and when θ ∈ (0.55, 1], CDF diff (θ) > 0. Therefore, for any θ ∈ [0, 0.55], the possibility that the U-Net

algorithm can segment images with accuracy of θ or higher is greater than that of the Morphological

Snakes algorithm. But for any θ ∈ [0.55, 1], the possibility that the Morphological Snakes algorithm

can segment images with accuracy of θ or higher is greater than that of the U-Net algorithm. That is to

say, the Morphological Snakes algorithm is more likely to generate segmentations with high accuracies,

but it has slightly higher chance to generate segmentations with low accuracies.

• The comparison of the U-Net algorithm and the Random Walkers algorithm.

The CDF diff (θ) of U-Net and Random Walkers, is overlapped with the red dotted line when θ ∈

[0, 0.065] and it is under the red dotted line when θ ∈ (0.065, 1]. In other words, when θ ∈ [0, 0.065],

CDF diff (θ) = 0 and when θ ∈ (0.065, 1], CDF diff (θ) < 0. Therefore, for any θ ∈ [0, 0.065], the

possibility that the U-Net algorithm can segment images with accuracy of θ or higher is the same as

that of the Random Walkers algorithm. But for any θ ∈ [0.065, 1], the possibility that the Random

Walkers algorithm can segment images with accuracy of θ or higher is greater than that of the U-Net

algorithm. In other words, the Random Walkers algorithms is more likely to generate segmentations

with high accuracies and these two algorithm have about the same chance to generate totally wrong

segmentations.

According to the values of CDF diff (θ)s of these three algorithms, we prefer the Random Walkers algorithm.

In addition, comparing with the U-Net algorithm, we prefer the Morphological Snakes algorithm, even if it

has slightly higher chance (< 0.05) to generate segmentations with low accuracies than the U-Net algorithm,

but at least we know this, which would be not possible with the standard method.

We can also use the standard method to analyze the accuracy performances of these three segmentation

algorithms. The mean and standard deviation of the accuracies of segmentations generated by the Morpho-

logical Snakes algorithm, the U-Net algorithm, and the Random Walkers algorithm are calculated and the

results are shown in Table 4.1.
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Table 4.1: The means, standard deviations of DSCs of the Leafsnap segmentations generated by

three algorithm.

Algorithms Morphological Snakes U-Net Random Walkers

Mean 0.891 0.857 0.930

Standard deviation 0.188 0.162 0.121

For the Leafsnap dataset, when applying Mann-Whitney U tests on these three groups of accuracy data,

the results show that there are statistically significant differences in accuracy between the Morphological

Snakes and the Random Walkers (U = 22624202.5 and p = 0.000), the Morphological Snakes and the U-Net

(U = 15245953.5 and p = 0.000), and the Random Walkers and the U-Net (U = 12125822.5 and p = 0.000).

From Table 4.1, we can see that the Random Walkers has the greatest mean and followed by the Morphological

Snakes and the U-Net. So we can draw a conclusion using the standard method that the Random Walkers

has the best accuracy performance on the Leafsnap dataset and followed by the Morphological Snakes. The

U-Net has the worst accuracy performance among these three segmentation algorithms. This conclusion is

the same as what we got using AUCs.

We can see the result of the standard method and result of using CDF (θ)s to analyze the accuracy

performances of three segmentation algorithms are similar, except for some nuances. For example, the second

plot of Figure 4.5 shows that the Morphological Snakes algorithm has a slightly higher chance of generating

segmentations with low accuracies than the U-Net algorithm. The CDF diff (θ) of the Morphological Snakes

algorithm and the U-Net algorithm is smaller than 0, which means for any θ ∈ [0, 0.55], the possibility that the

U-Net algorithm can segment images with accuracy of θ or higher is greater than that of the Morphological

Snakes algorithm. In short, the CDF (θ)s tell us that when θ ∈ [0, 0.55], the U-Net algorithm is better. But

the Table 4.1 tells the different result that the Morphological Snakes algorithm is better than the U-Net

algorithm, because the mean accuracy of the Morphological Snakes algorithm is greater than that of the

U-Net algorithm. The Mann-Whitney U test also proves that there are statistically significant differences

between these two algorithms.

The reason why the conclusions obtained by using standard method and by comparing CDF (θ)s of three

algorithms are similar may be that the three CDF (θ) curves have similar shapes on the Leafsnap dataset. But

when the shapes of the curves of CDF (θ)s differ a lot, it is unclear whether we can draw similar conclusions

using the standard method and comparing CDF (θ)s. So we tried on the another dataset. The process is

shown in Example 2.

4.3.2 Example 2: the Shadow Dataset

The shadow detection and texture segmentation dataset for mobile robots (SDMR dataset) [57] contains

some natural images and artificial images, as well as their binary ground truths. The backgrounds of the
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images in the SDMR dataset have textures or objects, such as tarmac and bricks. The foregrounds of the

images in the SDMR dataset are shadows. Figure 4.6 gives some examples.

(a) Artificial image. (b) Kondo image.

(c) Active image. (d) Static image.

Figure 4.6: Example images in the SDMR dataset.

The SDMR dataset consists of 4 kinds of images: the artificial images, kondo images, active images,

and static images. The artificial images contain many geometric shapes with different colors and their

backgrounds are white. So they are easily segmented. The active images are generated from footage using an

active camera, which is carried by a person walking or panning across the ground. The camera takes photos

of the passing scenery. Similar to the active images, kondo images are captured from a webcam attached to a

robot. The quality of the kondo images are very low, and the noise levels are considerable. Thus, the active

images and kondo images are not suitable for this experiment. The static images are generated from footage

using a static camera. The sequence of scenes that a person’s shadow passing in front of a textured surface

are captured as static images.

For this example, we selected 1282 static images from the SDMR dataset. All of these static images have

unambiguous foregrounds. The example images are shown in Figure 4.7. In the ground truths, foreground

(shadow) regions are marked in black and the background regions are in white. For simplicity, we refer to

the selected static images and their ground truths as the shadow dataset.
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Figure 4.7: Example images and their ground truths in the shadow dataset. Top: original images,

bottom: ground truths.

Similar to example 1, the same implementations of the the Morphological Snakes [2], the Random Walker

[25], and the U-Net algorithms [1] are used to segment the original images in the shadow dataset. The

accuracies of segmentations are also measured with the Dice similarity coefficient (DSC).

The HPDF (θ)s and CDF (θ)s of the Morphological Snakes algorithm, the U-Net algorithm, and the

Random Walkers algorithm are shown in Figure 4.8. Their difference CDF diff (θ)s are shown in Figure

4.9. The mean DSCs of the segmentations generated by the implementations of the Morphological Snakes

algorithm, the U-Net algorithm, and the Random Walkers algorithm are shown in table 4.3. Note that the

number of bins of HPDF (θ)s and CDF (θ)s are 100, therefore the width of each bin is 0.01.

As is shown in Figure 4.8, the accuracies of most segmentations are in the interval of [0.9, 1], but the shapes

of these three HPDF (θ)s curves have no other obvious common features. D’Agostino-Pearson normality tests

are applied on accuracy data of these three groups of segmentations separately. As the statistics of the data

of the Morphological Snakes, the Random Walkers and the U-Net algorithms are 506.11, 1007.05, and 548.50

and their p values are all smaller than 0.001, the null hypothesis that these data are from normal distributions

is rejected. In other words, the accuracies of all these three groups of segmentations do not follow normal

distribution.
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Figure 4.8: The HPDF (θ)s (left) and CDF (θ)s (right) of three segmentation algorithms (for the

shadow dataset).

The CDF (θ) curves of segmentations generated by U-Net and Random Walkers have the similar shapes.

In the interval of [0, 0.7], the CDF (θ)s of these two algorithms are equal to 1, which means the accuracies of

all the segmentations generated by these two algorithms are greater than 0.7. As these two curves decrease

sharply in the interval of [0.9, 1], the accuracies of most of the segmentations generated by these two algorithms

are in the interval of [0.9, 1].

When it comes to the Morphological Snakes algorithm, it’s a little different. As the value of CDF (θ)

doesn’t always equal to 1 in the interval of [0, 0.8], the accuracies of some segmentations are smaller than
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0.8. In the interval of [0.9, 1], the curve decreases sharply as θ increases, meaning the accuracies of many

segmentations generated by the Morphological Snakes algorithm fall in the interval of [0.8, 1].

Figure 4.9 shows the pairwise comparisons of the Morphological Snakes algorithm, the U-Net algorithm,

and the Random Walkers algorithm basing on their CDF (θ)s. The red dotted lines mean that the pairwise

differences of CDF (θ)s equals to 0, namely CDF diff (θ) = 0.
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Figure 4.9: The pairwise CDF diff (θ)s of three segmentation algorithms (for the shadow dataset).

White regions: the two algorithms have the same accuracy performance. Light gray regions: the latter

algorithm has better accuracy performance than the former algorithm. Dark gray regions: the latter

algorithm has worse accuracy performance than the former algorithm.

As the results of comparisons are based on the values of CDF diff (θ)s, for different θ, we may get different

results. All the possible results are summarized in Table 4.2. We also marked the results of comparisons on

Figure 4.9.
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Table 4.2: The pairwise comparisons of the accuracy performances of three segmentation algorithms

(MS: Morphological Snakes algorithm, RW: Random Walkers algorithm, UN: U-Net algorithm).

Algorithms MS and RW MS and UN UN and RW

θ [0, 0.01] [0, 0.01] [0, 0.73]

CDF diff (θ) =0 =0 =0

Conclusion same performance same performance same performance

θ (0.01, 0.97] (0.01, 0.94] (0.73, 0.98]

CDF diff (θ) <0 <0 <0

Conclusion Random Walkers better U-Net better Random Walkers better

θ (0.97, 1] (0.94, 1] (0.98, 1]

CDF diff (θ) >0 >0 >0

Conclusion Morphological Snakes better Morphological Snakes better U-Net better

According to Table 4.2, for each pair of algorithms (denote them as algorithm A and algorithm B),

there are three situations: 1. The accuracy performances of two algorithms are the same. 2. The accuracy

performance of algorithm A is better than the accuracy performance of algorithm B. 3. The accuracy

performance of algorithm B is better than the accuracy performance of algorithm A. The only difference is

the ranges of accuracy intervals that we used to draw the conclusions.

Take the comparison of the accuracy performances of the Morphological Snakes and the Random Walkers

algorithms for instance. The comparison result is shown in the second column of Table 4.2 and the first plot

of Figure 4.9).

• For any accuracy θ ∈ [0, 0.01], the possibility that the Morphological Snakes algorithm can segment

images with accuracy of θ or higher is the same as that of the Random Walkers algorithm. In other

words, the two algorithms have the same chance of total failure.

• For any accuracy θ ∈ (0.01, 0.97], the possibility that the Random Walkers algorithm can segment

images with accuracy of θ or higher is greater that of the Morphological Snakes algorithm.

• For any accuracy θ ∈ (0.97, 1], the possibility that the Morphological Snakes algorithm can segment

images with accuracy of θ or higher is greater that of the Random Walkers algorithm. In other words,

the Morphological Snakes algorithm is more likely to generate perfect segmentations.

When it comes to choosing an algorithm from the Morphological Snakes algorithm, the Random Walkers

algorithm, and the U-Net algorithm basing on CDF diff (θ)s, the results may vary. According to top-left sub-

figure of Figure 4.9, the Morphological Snakes algorithm has 0.18 higher chance than the Random Walkers

algorithm to generate segmentations with really high accuracy (> 0.98). Meanwhile, we have to suffer

from the fact that the Morphological Snakes algorithm is less likely to generate segmentations which are
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not perfect, but acceptable. Especially, the Morphological Snakes algorithm has 0.43 lower chance than

the Random Walkers algorithm to generate segmentations with accuracies of 0.95 or higher. Therefore,

we have to make tradeoffs when choosing an algorithm from the Morphological Snakes algorithm and the

Random Walkers algorithm. The part of CDF diff (θ) of segmentation algorithms which is smaller than 0.8

also matters, because it indicates which algorihtm is more likely to give catastrophic fialure. Morphological

Snakes algorithm might appear to be better, but it is more likely to be really bad at the expense of having

fewer really good segmentations. And it is similar when we need to choose one from the Morphological Snakes

algorithm and the U-Net algorithm, or the U-Net algorithm and the Random Walkers algorithm.

Similar to example 1, for the shadow dataset, we apply the standard method on the accuracy data

generated by the Morphological Snakes algorithm, the U-Net algorithm, and the Random Walkers algorithm.

The means and standard deviations of these three algorithms are shown in Table 4.3.

Table 4.3: The means, standard deviations and ranks of DSCs of the segmentations generated by

three algorithm (for the shadow dataset).

Algorithms Morphological Snakes U-Net Random Walkers

Mean 0.858 0.959 0.978

Standard deviation 0.275 0.029 0.020

For the shadow dataset, the means and standard deviations of the segmentations generated by the im-

plementations of three segmentation algorithms differ a lot. When applying Mann-Whitney U tests on these

three groups of accuracy data, the results show that there are statistically significant differences between the

Morphological Snakes and the Random Walkers (U = 783708.0 and p = 0.021), the Morphological Snakes

and the U-Net (U = 771049.0 and p = 0.003), and the Random Walkers and the U-Net (U = 458640.0 and

p = 0.000). According to Table 4.3, the mean accuracy of Random Walkers is the greatest and then the

U-Net. The mean accuracy of the Morphological Snakes algorithm is the smallest. Therefore, the standard

method shows that the Random Walkers has the best accuracy performance on the shadow dataset and

followed by the U-Net. The Morphological Snakes algorithm has the worst accuracy performance among

these three segmentation algorithms.

In example 1, the three CDF (θ) curves have similar shapes. But In this example, the shapes of the three

CDF (θ) curves are different. This might be the reason why we get similar results in example 1 and we get

different results in this example when using the standard method and the differences of CDF (θ)s to analyze

the accuracy performances of the Morphological Snakes algorithm, the U-Net algorithm and the Random

Walkers algorithms.
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4.4 Summary

CDF (θ) can be used to characterize the accuracy performances of segmentation algorithms and the dif-

ferences of the CDF (θ)s of segmentation algorithms can be used to compare their accuracy performances.

Different from the standard method that using mean and standard deviation of accuracies of segmentations

to evaluate and compare the overall accuracy performances of segmentation algorithms, the CDF (θ) focuses

on the detailed accuracy performance, namely the possibility that the segmentation algorithm can gener-

ate segmentations with specific accuracies or higher. In addition, CDF (θ) can characterize and compare

segmentation algorithms no matter whether the accuracies of segmentations are normal-distributed or not.

The drawback of the proposed distribution-based method is that the θs should be chosen manually when

comparing segmentation algorithms, which may lead to different conclusions and thus make the result to be

very complex.

From example 1 and example 2, we can see that the distribution of these three segmentation algorithms

are different. As the HPDFs are sampled from the underlying CDFs of the segmentation algorithm, we may

see that HPDF and CDF of the same segmentation algorithm my be different when we use them to segment

images in different dataset, which means that the same segmentation algorithm will behave differently. In

other word, when we use other datasets to analyze the acccuracy performance of the aforementioned three

segmentation algorithms, we may get different decision on which algorithm to be used to do the segmentation

work for that specific dataset.

In the following chapter, an extensive method for ranking the accuracies of segmentation algorithms

will be illustrated basing on the CDF (θ) of segmentation algorithms. Taking the distribution factors into

account, the extensive method to be proposed can give an overall measurement of the accuracy performances

of segmentation algorithms. At the same time, it can avoid the drawbacks of the needs of choosing θs

manually and corresponding different results.
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5. An Extensive Method for Ranking the Accuracy Per-

formance of Segmentation Algorithms

According to chapter 4, although CDF diff (θ) can be used to compare the accuracy performances of

image segmentation algorithms, the testing result may vary because of the situations where we need to make

trade-offs. In order to simplify the evaluation process, as well as making the result more convincing, some

modifications should be done. In this chapter, an extensive method is proposed for ranking the accuracy

performances of different segmentation algorithms basing on CDF (θ).

5.1 Comprehensive Method

People usually rank segmentation algorithms based on their mean accuracies. Similar to the comparison of

two segmentation algorithms, when using the mean accuracies, an assumption is made that these accuracies

are normally distributed. Therefore it may be unreasonable to rank segmentation algorithms using mean

accuracies alone without learning the distribution of these accuracies. We claim that segmentation algorithms

should be ranked using mean accuracy, the area under the CDF (θ) curve (AUC), and accuracy thresholds

θδs.

The CDF (θ) and AUC were introduced in section 4, the details of θδs are as follow. If CDF (θ) = δ, we

can interpret it as ” The probability that an algorithm can generate segmentations with accuracies of θ or

higher is δ”. Given a specific δ, we would like to find the largest θ for which CDF (θ) ≥ δ, and denote this as

θδ. Therefore, the threshold θδ can be expressed as

θδ = max
{
θ|CDF (θ) ≥ δ

}
. (5.1)

Figure 5.1 shows an example of how to find the threshold θδ giving a specific likelihood δ = 15% and

the CDF (θ) of a group of synthetic data. At first, we can draw a horizontal line, which means δ = 15%.

Therefore, at the intersection of the horizontal line and the CDF (θ) curve, CDF (θ) = δ = 15%. Then we can

draw a vertical line crossing the intersection of the line of δ = 15% and the CDF (θ) curve. The x-coordinate
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of the intersection of the vertical line and the x-axis is the θδ we are looking for.
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Figure 5.1: The illustration of how to find θδ when given a specific likelihood δ and a CDF (θ) curve.

The blue solid curve is the CDF (θ) of a group of Gaussian-distributed data (number of samples is

1000, µ = 0.5, σ = 0.1). The black solid line is the likelihood δ = 15%. The red dotted line is the

threshold θ15%.

Given a likelihood δ, we can rank the accuracy performances of segmentation algorithms according to

their respective θδs. Suppose there are two segmentation algorithms and we denote them as algorithm A

and algorithm B. If the likelihood δ takes a specific value, such as δ = 15%, we can calculate the θδs of

algorithm A and algorithm B according to equation 5.1. So we get θδA = max
{
θ|CDFA(θ) ≥ 15%

}
and

θδB = max
{
θ|CDFB(θ) ≥ 15%

}
. It can be interpreted as that the algorithm A is 15% likely to generate

segmentations with accuracies of θδA or higher and algorithm B is 15% likely to generate segmentations with

accuracies of θδB or higher. If θδA > θδB , the algorithm A is better than algorithm B. Because if the likelihood

(δ) that an segmentation algorithm can generate some segmentations whose accuracies are no smaller than

a specific accuracy threshold (θδ), we hope this threshold to be as big as possible.

In order to characterize the detailed information of the distribution of the segmentations generated by a

segmentation algorithm, we need to calculate θδs using different δs. In this thesis, the δs we are going to use

are from the set of {5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%}.

The extensive method can be used to rank segmentation algorithms in three steps. First, the ranks of

all segmentations will be calculated using different evaluation metrics, including the mean of DSCs, the area

under the CDF (θ) curve (AUC), the thresholds θδs (δ takes different values). A superior algorithm will have
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a greater mean DSC, a greater AUC, greater θδs. The better the accuracy performance of an algorithm,

the smaller the rank of this algorithm. Second, for each segmentation algorithm, the ranks calculated with

different metrics each will be summed up. Third, the summations of the ranks calculated in the second

step will be re-ranked. The smaller the summation, the smaller the new rank, and therefore the accuracy

performance of the corresponding segmentation algorithm is better.

5.2 An Example of Ranking Segmentation Algorithms Using the

Comprehensive Method

5.2.1 Dataset

Figure 5.2: Example images in the HOF dataset. Top: original images, bottom: ground truths.

The dataset used in this chapter is from Haque [28]. Haque used the image dataset of R. Pierson et al.

[7] to develop simulated interactive models, which contains human ovarian follicles (HOF) images. Example

images and their corresponding ground truths are shown in Figure 5.2.

The HOF dataset contains 32 ultrasound images. The size of each image is 640 × 480 pixels and the

maximum number of follicles in any image is 14. The diameters of all the follicles shown in the ground truth

images are larger than 2.5mm. There may be some follicles whose diameters are smaller than 2.5mm, but

they are not shown in the ground truth segmentations, because it is difficult for humans to identify follicles

smaller than 2.5mm. Manually delineated ground truth segmentations of these follicles are provided by a

highly experienced human operator.

5.2.2 Image Segmentation Algorithms

Eight semi-automatic segmentation algorithms are used in [28]. These semi-automatic segmentation algo-

rithms are representative of different segmentation theories and three types of interaction modes. The detail

information is shown in Table 5.1.
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Table 5.1: List of the algorithms and interaction modes used in [28].

Name of the algorithm Interaction mode Acronym

Graphcut with Star Shape Prior [79] brush stroke GCBS

Geodesic Star Convexity [27] brush stroke GSC

Sequential Geodesic Star Convexity [27] brush stroke GSCSeq

Trust Region Convexity [24] brush stroke TRC

Onecut [76] brush stroke Onecut

Distance Regularized Level Set Evolution [47] closed contour DRLSE

Distance Regularized Level Set Evolution [47] closed iso-contour DRLSEIC

Graphcut without Star Shape Prior [12] seed point GCnoSP

These semi-automatic segmentation algorithms are based on five kinds of segmentation theories, namely

the Graph Cut [12] theory, the Level Set [47] theory, the Geodesic Star Convexity [27] theory, the Onecut

[76] theory, and the Trust Region Convexity [24] theory.

5.2.3 Interaction Modes

Hanque synthetically generated several kinds of interactions including brush stroke, closed contour, closed

iso-contour and seed point and used these synthetic interactions to segment the images in the HOF dataset.

These synthetic interactions can be classified as peripheral, intermediate and central according to the distance

of the interactions from the centroid of the follicle. These three groups of interactions and images in the

HOF dataset are used as input of the 8 segmentation algorithm mentioned in Table 5.1. The definitions of

different kinds of interactions as well as the classification of their locations are as follow.

The seed point interactions can be classified into three groups basing on a and b, which represent the

distance between the seed point and the nearest boundary point of the follicle, and the distance between the

seed point and the centroid of the follicle. According to equation 5.2, the classes of all interactions can be

determined.

location =


peripheral, a

a+b ≤
1
3

intermediate, 1
3 <

a
a+b ≤

2
3

central, a
a+b >

2
3

(5.2)

The curved brush strokes are segments of iso-contours of the distance transform of the foreground regions

and roughly parallel to the foreground boundaries. Their widths vary from 3 to 5 pixels are most often

observed in published works. The curved brush stroke interactions can be classified into two or three groups

basing on the diameter of follicles. For those follicles whose diameters are greater than 3.75mm, the curved

brush strokes are classified into the peripheral group, the intermediate group and the central group according
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to the distance between the strokes and the central of follicles. For those follicles whose diameters are between

2.5mm and 3.75mm, the curved brush strokes are classified into the central group and the peripheral group.

The straight brush stroke interactions are randomly generated in the foreground regions. They are

segments of straight lines, whose widths vary between 3 and 5 pixels and lengths vary in a range, which is

related to the size of foreground regions. It can be classified into two or three groups basing on the diameter

of follicles. The categories of all pixel of a straight brush stroke will be determined using equation 5.2 at

first. Then the majority votes of the categories will be seemed as the category of this straight brush stroke

interaction.

The closed contour interactions have two kinds of shapes. One is elliptical, whose shape is independent

to the foreground regions. The other one is iso-contours, whose shape is roughly parallel to the foreground

boundaries. The location of closed contour interactions can be classified using the same method as brush

strokes. For the iso-contour interactions, the mean distance of all pixels of the curve from the boundary of

the follicles is calculated. The location class of the iso-contour interactions can be determined using equation

5.2.

5.2.4 Experiment Design

We are going to rank different segmentation algorithms using the proposed extensive method. The accuracy

data generated by different segmentation algorithms is from Haque [28]. In [28], Haque segmented the HOF

images using synthetic interactions, which have different shapes and different locations. In this experiment,

we only rank the accuracy performances of the GCBS, GSC, GSCSeq, Onecut, and the TRC algorithm. This

is because the all these algorithms used the brush stroke interactions to segment the HOF images. When

the interactions have the same location, the only factor which affect the accuracies of segmentations is the

segmentation algorithm.

In order to control the variables that affect the accuracies of segmentations, we classified the accuracy

data into 4 groups according to the locations of interactions (the peripheral group, the intermediate group,

the central group, and the group which contain the interactions at all kinds of locations). For each group of

accuracies, we apply the proposed extensive method and rank the accuracy performance of the GCBS, GSC,

GSCSeq, Onecut, and the TRC algorithm.

People usually ranks segmentation algorithms with their mean accuracies and it is believed that the

algorithms which have higher mean accuracies are better. Therefore, we also ranks the aforementioned five

segmentation algorithms with the mean accuracies (DSCs) alone and compare it with the result that we

obtain using the proposed extensive method.

5.2.5 Experiment Results

In order to reveal the underlying probability density functions of the GCBS, GSC, GSCSeq, Onecut, and

the TRC algorithm, we first calculate the HPDF (θ)s of DSCs of the segmentations generated by the 5 semi-

44



automatic segmentation algorithms using different interactions. The results are shown in Figure 5.3, Figure

5.4, Figure 5.5, and Figure 5.6. For each algorithm, there are about 1000 segmentations generated using

interactions at different locations, the bin numbers of HPDF (θ) are 100, therefore the width of each bin is

0.01.
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Figure 5.3: The HPDF (θ)s of DSCs of the segmentations generated by 5 semi-automatic segmenta-
tion algorithms using central interactions.
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Figure 5.4: The HPDF (θ)s of DSCs of the segmentations generated by 5 semi-automatic segmenta-

tion algorithms using intermediate interactions.
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Figure 5.5: The HPDF (θ)s of DSCs of the segmentations generated by 5 semi-automatic segmenta-

tion algorithms using peripheral interactions.
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Figure 5.6: The HPDF (θ)s of DSCs of the segmentations generated by 5 semi-automatic segmenta-

tion algorithms using interactions at all kinds of locations.

From Figure 5.3 to Figure 5.6, we can see for each semi-automatic segmentation algorithm, the HPDF (θ)s

of DSCs generated with different kinds of interactions have similar shapes. So we can refer to the Figure 5.6

when analyzing the shapes of HPDF (θ)s of these segmentation algorithms.

In general, these five algorithms can be classified into 3 groups basing on the shapes of their HPDF (θ)s.

The first group of algorithm is the GCBS algorithm. Its HPDF (θ) spreads over the interval [0, 1]. The second

group of algorithms are the GSC, the GSCSeq, and the Onecut algorithm. As θ increases from 0 to 1, the
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increment speeds of HPDF (θ)s of these three algorithms are getting faster and faster. In addition, most of

the DSCs of the segmentations generated by the GSC, the GSCSeq, and the Onecut algorithm are greater

than 0.8. The third group of algorithm is the TRC algorithm. The DSCs of the segmentations generated by

the TRC algorithm are mostly in the interval of [0.4, 0.85]. Intuitively, the second group of algorithms have

better accuracy performances than the others, because most of their segmentations’ DSC values are close to

1.

For each pair of algorithms, we applied Mann-Whitney U Tests on the accuracies of their segmentations

and the results are shown in Table 5.2. Then, the mean of DSCs, the AUC of the CDF(θ)s, the θδs, and

the final ranks of the summation of mean DSC, AUC, and θδs of these semi-automatic segmentations are

calculated. It should be noted that we also ranked these algorithms basing on the summation of θδs. The

results are shown in Table 5.3, Table 5.4, Table 5.5 and Table 5.6.

Table 5.2: The p-values of pairwise Mann-Whitney U Tests on the segmentation data generated

by the GCBS, GSC, GSCSeq, Onecut, and TRC algorithm using different interactions. For each

pair of algorithms, four p-values are calculated using the interactions at all locations (top-left), central

interactions (top-right), intermediate interactions (bottom-left), peripheral interactions (bottom right).

The p-values which are greater than 0.01 are marked in red.

GCBS GSC GSCSeq Onecut TRC

0.0 7.1× 10−260 0.0 9.4× 10−269 4.8× 10−193 4.2× 10−196 1.7× 10−6 0.123
GCBS

0.0 0.0 0.0 0.0 2.2× 10−196 6.8× 10−191 1.2× 10−11 6.9× 10−9

0.0 7.1× 10−260 0.168 0.311 1.1× 10−8 0.283 5.9× 10−232 1.5× 10−184

GSC
0.0 0.0 0.120 0.091 3.2× 10−11 3.9× 10−24 2.6× 10−278 3.9× 10−253

0.0 9.4× 10−269 0.168 0.311 3.1× 10−8 0.295 6.0× 10−233 1.9× 10−190

GSCSeq
0.0 0.0 0.120 0.091 1.9× 10−9 1.8× 10−23 4.9× 10−273 1.3× 10−249

4.8× 10−193 4.2× 10−196 1.1× 10−8 0.283 3.1× 10−8 0.295 8.8× 10−128 3.5× 10−145

Onecut
2.2× 10−196 6.8× 10−191 3.2× 10−11 3.9× 10−24 1.9× 10−9 1.8× 10−23 4.1× 10−122 5.4× 10−121

1.7× 10−6 0.123 5.9× 10−232 1.5× 10−184 6.0× 10−233 1.9× 10−190 8.8× 10−128 3.5× 10−145

TRC
1.2× 10−11 6.9× 10−9 2.6× 10−278 3.9× 10−253 4.9× 10−273 1.3× 10−249 4.1× 10−122 5.4× 10−121

For each segmentation algorithm, its ranks in the Table 5.3, Table 5.4, Table 5.5 and Table 5.6 are the

similar, except for the GSC algorithm and the GSCSeq algorithm. According to Table 5.2, when applying

Mann-Whitney U tests on the segmentation data generated by the GSC algorithm and the GSCSeq algorithm,

the results show that there are no statistical significant differences between the accuracies of segmentations

generated with central interactions (p = 0.311). We can get the similar result when we test the GSC

algorithm and the GSCSeq algorithm using the intermediate interactions (p = 0.120), peripheral interactions

(p = 0.091) and the interactions at all locations (p = 0.168). Therefore, we can conclude that there are no

significant difference between the accuracy performance of the GSC algorithm and the accuracy performance

of the GSCSeq algorithm. Thus, we can attribute the reason why the ranks of the GSC algorithm and

the GSCSeq algorithm in different tables are different to that it is so hard to rank these two segmentation

algorithms because of their similar accuracies performances.
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Table 5.3: The rank of the accuracy performances of 5 semi-automatic segmentation algorithms

(using central interactions).

algorithm GCBS GSC GSCSeq Onecut TRC

mean DSC 0.5722 0.8394 0.8413 0.8118 0.6024

rank 5 2 1 3 4

AUC 0.5616 0.8249 0.8283 0.7988 0.591

rank 5 2 1 3 4

θ5% 0.85 0.96 0.97 0.98 0.81

rank 4 3 2 1 5

θ15% 0.8 0.95 0.95 0.98 0.75

rank 4 2 2 1 5

θ25% 0.76 0.94 0.94 0.97 0.71

rank 4 2 2 1 5

θ35% 0.71 0.93 0.93 0.91 0.65

rank 4 1 1 3 5

θ45% 0.64 0.91 0.91 0.87 0.63

rank 4 1 1 3 5

θ55% 0.54 0.88 0.88 0.83 0.58

rank 5 1 1 3 4

θ65% 0.5 0.84 0.85 0.79 0.52

rank 5 2 1 3 4

θ75% 0.41 0.78 0.79 0.73 0.46

rank 5 2 1 3 4

θ85% 0.31 0.7 0.71 0.59 0.45

rank 5 2 1 3 4

θ95% 0.13 0.47 0.48 0.47 0.45

rank 5 2 1 2 4

summation

(mean DSC, AUC, and θδs)
55 22 15 29 53

rank 5 2 1 3 4

summation

(θδs only)
45 18 13 23 45

rank 4 2 1 3 4
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Table 5.4: The rank of the accuracy performances of 5 semi-automatic segmentation algorithms

(using intermediate interactions).

algorithm GCBS GSC GSCSeq Onecut TRC

mean DSC 0.5702 0.8954 0.8928 0.8075 0.6348

rank 5 1 2 3 4

AUC 0.5596 0.8803 0.8796 0.7947 0.6234

rank 5 1 2 3 4

θ5% 0.84 0.96 0.97 0.98 0.81

rank 4 3 2 1 5

θ15% 0.8 0.95 0.95 0.98 0.76

rank 4 2 2 1 5

θ25% 0.76 0.94 0.94 0.97 0.75

rank 4 2 2 1 5

θ35% 0.7 0.93 0.93 0.91 0.71

rank 5 1 1 3 4

θ45% 0.6 0.92 0.91 0.87 0.67

rank 5 1 2 3 4

θ55% 0.54 0.91 0.9 0.82 0.63

rank 5 1 2 3 4

θ65% 0.49 0.88 0.88 0.78 0.57

rank 5 1 1 3 4

θ75% 0.41 0.86 0.86 0.75 0.49

rank 5 1 1 3 4

θ85% 0.32 0.83 0.83 0.57 0.46

rank 5 1 1 3 4

θ95% 0.17 0.74 0.74 0.44 0.45

rank 5 1 1 4 3

summation

(mean DSC, AUC, and θδs)
57 16 19 31 50

rank 5 1 2 3 4

summation

(θδs only)
47 14 15 25 42

rank 5 1 2 3 4
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Table 5.5: The rank of the accuracy performances of 5 semi-automatic segmentation algorithms

(using peripheral interactions).

algorithm GCBS GSC GSCSeq Onecut TRC

mean DSC 0.5768 0.8887 0.8858 0.8063 0.6334

rank 5 1 2 3 4

AUC 0.5662 0.8742 0.8721 0.7934 0.6225

rank 5 1 2 3 4

θ5% 0.86 0.96 0.96 0.98 0.83

rank 4 2 2 1 5

θ15% 0.81 0.96 0.95 0.97 0.79

rank 4 2 3 1 5

θ25% 0.77 0.95 0.94 0.94 0.76

rank 4 1 2 2 5

θ35% 0.71 0.93 0.93 0.9 0.71

rank 4 1 1 3 4

θ45% 0.62 0.92 0.91 0.86 0.66

rank 5 1 2 3 4

θ55% 0.54 0.91 0.9 0.83 0.62

rank 5 1 2 3 4

θ65% 0.49 0.88 0.88 0.79 0.56

rank 5 1 1 3 4

θ75% 0.4 0.86 0.87 0.76 0.47

rank 5 2 1 3 4

θ85% 0.32 0.84 0.84 0.6 0.46

rank 5 1 1 3 4

θ95% 0.19 0.72 0.68 0.48 0.45

rank 5 1 2 3 4

summation

(mean DSC, AUC, and θδs)
56 15 21 31 51

rank 5 1 2 3 4

summation

(θδs only)
46 13 17 25 43

rank 5 1 2 3 4
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Table 5.6: The rank of the accuracy performances of 5 semi-automatic segmentation algorithms

(using interactions at all kinds of locations).

algorithm GCBS GSC GSCSeq Onecut TRC

mean DSC 0.5733 0.8739 0.8731 0.8075 0.624

rank 5 1 2 3 4

AUC 0.5627 0.8592 0.8598 0.7946 0.6128

rank 5 2 1 3 4

θ5% 0.85 0.96 0.97 0.98 0.81

rank 4 3 2 1 5

θ15% 0.8 0.96 0.95 0.98 0.77

rank 4 2 3 1 5

θ25% 0.77 0.94 0.94 0.97 0.75

rank 4 2 2 1 5

θ35% 0.71 0.93 0.93 0.91 0.69

rank 4 1 1 3 5

θ45% 0.62 0.92 0.91 0.87 0.65

rank 5 1 2 3 4

θ55% 0.54 0.9 0.89 0.83 0.61

rank 5 1 2 3 4

θ65% 0.49 0.87 0.87 0.78 0.55

rank 5 1 1 3 4

θ75% 0.41 0.84 0.86 0.73 0.47

rank 5 2 1 3 4

θ85% 0.32 0.79 0.79 0.59 0.46

rank 5 1 1 3 4

θ95% 0.17 0.6 0.61 0.44 0.45

rank 5 2 1 4 3

summation

(mean DSC, AUC, and θδs)
56 19 19 31 51

rank 5 1 1 3 4

summation

(θδs only)
46 16 16 25 43

rank 5 1 1 3 4

For each table of Table 5.3, Table 5.4, Table 5.5, we can see that the ranks of mean DSCs of these segmen-
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tation algorithms are the same as the ranks that we re-rank the summations of the ranks calculated with mean

DSCs, AUCs and θδs. This is because both of these two methods use the summation operations. If we just re-

rank the summations of the ranks calculated with θδs, we can get the similar results as that we use the mean

DSCs. In order to calculate the mean DSCs, we need sum up all of the DSCs and then divide it by the total

number of segmentations. For the extensive method it sums up the ranks of calculated with mean DSCs, AUC,

and θδs. When calculating the AUC of an algorithm, we need to sum up the area of all bins of the CDF (θ).

Besides the ranks calculated with mean DSCs and AUCs, the extensive method also sums up all the ranks

calculated with θδ = max
{
θ|CDF (θ) ≥ δ

}
, where δ ∈ {5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85%, 95%}.

After the summation operations, the local properties of the distributions of DSCs are lost.

The extensive method can show more detailed information of the accuracy performances of segmentation

algorithms than the method of using mean DSCs alone. Take Table 5.3 for example. When using mean DSCs

to rank these algorithms, the rank of the DSCSeq algorithm is 1 and the rank of the Onecut algorithm is 3.

We can get the same result when using the summation of different metrics to rank the DSCSeq algorithm

and the Onecut algorithm. But when we use the extensive method to rank these algorithms, we can find

that the GSCSeq algorithm is 25% likely to generate segmentations with accuracies of 0.94 or higher, and

the Onecut algorithm is 25% likely to generate segmentations with accuracies of 0.97 or higher. Therefore,

when using θ25% to rank these algorithms, the rank of the Onecut algorithm is smaller than that of the

DSCSeq algorithm (1 < 2), which means the accuracy performance of the Onecut algorithm is better than

the accuracy performance of the DSCSeq algorithm.

In practice, people may have different preferences when ranking segmentation algorithms. For example,

those who prefer the segmentation algorithms which are more likely to generate high accuracy segmentations

may be more concerned about the threshold that an algorithm is 5% likely to generate segmentations with

this accuracies or higher, namely θ5%. Those who can’t tolerate segmentation algorithms to generate low

accuracy segmentations may be more concerned about the threshold that the algorithms are 95% likely to

generate segmentations with this accuracies or higher, namely θ95%. Therefore, when summing up the ranks

of different evaluation metrics, it is recommended that the weights of the ranks of mean DSC, AUC, and θδs

should be different.

In summary, the extensive method can be used to rank the accuracy performances of segmentations. Com-

paring with the method that using mean accuracy alone to rank the accuracy performances of segmentation

algorithms, the extensive method can show more detailed information. As the extensive method takes the

distribution factors into account, it is more reasonable to use this method to rank segmentation algorithms

whose accuracies of segmentations are not normal-distributed. At the same time, it can avoid the drawbacks

of using CDF (θ) to compare segmentation algorithms mentioned in chapter 4, such as the need of choosing

θs manually.
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6. Stability of Segmentation Reproducibility Measures

In chapter 4 and chapter 5, we illustrate how to evaluate, compare, and rank the accuracy performance

of segmentation algorithms. Apart from accuracy, reproducibility of segmentation algorithms is also an

important measure to characterize the performance of segmentation algorithms. This chapter focuses on what

measures are suitable for characterizing the reproducibility of segmentation algorithms. As is mentioned in

section 3.3, one objective of this thesis is to demonstrate GTC is the most insensitive measure among GTC,

JTC, JDC, CV and ICC to the variation of segmentation group size. In this chapter, we will demonstrate it

using real segmentation data.

6.1 Research Problem

Many measures were used to characterize the reproducibility of segmentation algorithms. However, only a

few papers analyzed the properties of reproducibility measures. One major problem is that it is unclear

when these measures are valid for characterizing the reproducibility of segmentation algorithms. It is known

that the reproducibility of a segmentation algorithm can be calculated using the average of reproducibilities

measured for a group of segmentations of each image in the dataset several groups of segmentations of a set

of images. The group size of the segmentations may affect the value of reproducibility measures. However,

few papers analyzed how the group size of segmentations would affect the values of reproducibility measures.

In [22], Eramian demonstrated that the group size of segmentations may affect the values of reproducibil-

ity measures and generalized Tanimoto coefficient (GTC) is the only measure which are insensitive to the

variation of group size of segmentations among GTC, joint Dice coefficient (JDC), joint Tanimoto coefficient

(JTC), coefficient of variation (CV), and intra-class correlation coefficient (ICC). The definition of GTC,

JDC, JTC, CV, and ICC appear in section 2.3.2. The measures are often generalized from measures for

pairs of images. However, as the existance of the built-in penalty, the generalization of these measures may

contribute to some side effects, such as that the values of reproducibility measures may be affected by the

number of segmentations. Intuitively GTC is fairer than other measures, because for each pair of segmen-

tations, GTC is calculated by comparing the values of all pairs of pixels at the same location of that pair
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of segmentations. At first, he showed several images of segmentation groups of synthetic data and their

reproducibility measures and compared the values of reproducibility measures and qualitative assessments.

It is found that GTC and CV seems agree with the qualitative assessments. Then Eramian calculated the

values of these reproducibility measures under different group size of synthetic segmentations. The result

showed that GTC is the only measure which is stable under variations in segmentation group size, especially

when the group size is less than five.

However, it is still unknown if the group size of segmentations will affect the reproducibility measures

when applying real data. In [22], the parameters which are used to generate synthetic segmentations have a

specific distribution. So the reproducibility measures are assumed to be affected by the group size of segmen-

tations only. In practice, the segmentations are generated by different users, which means the reproducibility

measures may be affected not only the group size, but also the difference between users.

The real segmentations may have different shape instead of the synthetic segmentations used in 6.3, which

are all ellipsoids with different sizes and different positions. In this chapter, the effect of group size on the

values of reproducibility measures will be studied using some real segmentation data.

6.2 Materials and Data collection

The material that used in this chapter is from Rau’s project [62]. 25 images are selected from the BSDS500

dataset and were used as the trial images of Rau’s experiment. All these images have only one foreground

object. The foreground regions may be animals, humans, plants or vehicles. Example images and their

corresponding ground-truth segmentations are shown in Figure 6.1.

Figure 6.1: Example images of Rau’s experiment. Top: original images, bottom: ground truths.

Rau used Boykov and Kolmogorov’s Graph Cut algorithm [11] to segment images selected from the

BSDS500 dataset. The theory of the Graph Cut algorithm can be found in the chapter 2. The implementation

requires users to provide annotations on the images to be segmented.

Thirteen users participated in Rau’s experiment. Each of them was asked to use two interaction methods

to annotate these 25 images. One method is point-based interaction, which requires users to place seed
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points on images in different color to indicate foreground and background. The other method is stroke-based

interaction, which requires users to draw strokes as in outlines on the images to be segmented. As a result,

the semi-automatic implementation generated 650 images in total (375 segmentations using point-based

interaction, and 375 segmentations using stroke-based interaction).

6.3 Data Analysis Methodology

In this chapter, the properties of GTC, JDC, JTC, CV, and ICC are analyzed using Rau’s segmentations

data. The results are compared with Eramian’s results which were calculated using synthetic data [22].

At least 2 segmentations of an image are needed to calculate the reproducibility of an image. As there are

13 users in Rau’s experiment, there are 13 segmentations generated by different users. Thus the maximum

group size that can be considered with this data is 13.

The reproducibility of an algorithm can be characterized by the mean of the values of reproducibility of

the different images. In section 6.1, it was mentioned that when applying real segmentation data generated

by different users, the reproducibility measures may be affected by both the group size of segmentations

and the difference between users. In order to minimize the effect of difference between users, we used all

possible subsets of the 13 segmentations of each image from Rau’s segmentations to calculate the mean

reproducibility. Suppose we are going to use GTC to measure the reproducibility of the graph cut algorithm.

When the group size of segmentation N is fixed, we can get different values of the same reproducibility

measure if we use different combinations of segmentations. Because there may be more than one way to

choose N segmentations from 13 segmentations of an image. For example, if the group size is 3, namely

N = 3, there are
(
13
3

)
= 13!

3!×(13−3)! = 286 ways to select 3 segmentations from the 13 segmentations of an

image randomly, and thus we can calculate 286 different GTCs. As there are 25 images in Rau’s experiment,

we can calculate 25× 286 = 7150 GTCs. The mean of these 7150 GTCs can be regarded as the GTC of the

graph cut segmentation algorithm when the group size is 3. In this thesis, N takes values from 2 to 13 and

in general, we consider
(
13
N

)
subsets of group size N .

6.4 Result and Discussion

Using different group sizes of segmentations, the reproducibility of the segmentation algorithm with point-

based interaction and stroke-based interaction are evaluated with GTC, JDC, JTC, CV and ICC, which were

introduced in chapter 2. The mean reproducibility measures averaged over N observations of them are shown

in Figure 6.2. Each data point on those graphs is an average of many GTCs calculated from group size n.

For the point-based segmentations, the value of JDC, GTC, and JTC decrease with the increase of

segmentation group size, and the value of ICC and CV increase with the increase of segmentation group size.

The absolute values of the gradients of all these measures get smaller and smaller, which means when the

segmentation group size is large enough, the values of these reproducibility measures are almost not affected
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by the variations of segmentation group size. It indicates that the group size of segmentations should be as

large as possible in order to get an accurate measure of the reproducibility of segmentation algorithms.

Among these five kinds of reproducibility measures, GTC is the most stable one. When the group size

increased from 2 to 13, the value of GTC changed from 0.569 to 0.525. JDC changed from 0.684 to 0.386.

JTC changed from 0.569 to 0.198. CV changed from 0.220 to 0.499. ICC changed from 0.625 to 0.912. The

value of GTC changed less than 0.05, while all of the others changed greater than 0.2. Therefore GTC is the

only measure which is insensitive to group size.
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Figure 6.2: Mean reproducibility measures of the segmentations using point-based interaction (top)

and using stroke-based interaction (bottom).

For stroke-based segmentations, all these reproducibility measures have behavior similar with that of the
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point-based segmentation. Under the condition of the same segmentation group size, all the values of the

reproducibility measures of the stroke-based segmentations are greater than the values of the reproducibility

measures of the point-based segmentations, except for the values of CV.

Basing on Figure 6.2, we can draw a conclusion that GTC is most insensitive to the segmentation group

size. JTC, ICC, JDC and CV are sensitive to the group size of segmentations. In addition, the stroke-based

segmentations have better reproducibility than the point-based segmentations.
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Figure 6.3: Mean reproducibility measures vs segmentation group size (Eramian’s result basing on

synthetic data [22], segmentation group size is in {2, 3, 5, 10, 20, 30, 40, 50, 75, 100} ).

Eramian’s result is shown in Figure 6.3. According to Figure 6.3, CV, ICC and GTC are insensitive to

segmentation group size, while JTC and JDC are not. When the group size is no greater than 5, all of the

reproducibility measures show some variation except GTC. If we focus on the interval N ∈ [2, 13], the trends

of these reproducibility measures of the synthetic data in Figure 6.3 are similar to the trends of real data in

Figure 6.2.

It can be seen in Figure 6.3 that the GTC curve is very stable with the increase of segmentation group

size, but in Figure 6.2, the GTC curves decline slowly. This is because the effect of the difference between

users still exists. In [22], the synthetic data points are independent identically distributed, but in practical,

the real data are not. Therefore, even though we choose the different combinations of segmentations of an

image to calculate the GTCs and regard the mean of GTCs to be the reproducibility of the segmentation

algorithm for that group size, the effect of difference between users can not be eliminated.

In summary, when the segmentation group size is small (≤ 10), GTC is most stable under the variations

of segmentation group size. Therefore, GTC is better than JDC, JTC, CV and ICC for measuring the
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reproducibility of segmentation algorithms with small segmentation group size. In addition, in order to avoid

the impact of segmentation group size on reproducibility measures, it is recommended that the group size of

segmentations should be as large as possible.
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7. Conclusion

This thesis has introduced a new method to evaluate and rank segmentation algorithms basing on their

accuracy performances. At the mean time, the properties of five usually used reproducibility measures are

analyzed. In this chapter, the contributions and future works are summarized.

7.1 Contributions

The goal of this thesis is to propose a methodology to evaluate, compare and rank segmentation algorithms

basing on their accuracy performances. In addition, some suggestions are given for the evaluation of the

reproducibility of semi-automatic segmentation algorithms. The details go as follow.

First, we illustrated how to use CDF (θ) to evaluate the accuracy performances of segmentation algorithms

and how to use CDF diff (θ) to compare segmentation algorithms basing on their accuracies. CDF (θ) is a

measure basing on the distribution of the accuracies of segmentations. It is the percentage of segmentations

whose accuracies are no smaller than the given accuracy level θ. Therefore CDF (θ) can provide local estimates

of accuracy performances of segmentation algorithms at any accuracy level. Basing on CDF (θ), CDF diff (θ)

is proposed to compare two segmentation algorithms. It characterizes the difference of the CDF (θ)s of two

segmentation algorithms. In other words, CDF diff (θ) measures the difference of probilities of segmentations

whose accuracies are no smaller than the given accuracy level θ. Although CDF diff (θ) can be used to rank

the accuracies of multiple segmentation algorithms, it is very complicated to choose accuracy levels θs to

compare these algorithms pairwise and accordingly choosing the algorithm that we prefer.

Second, we developed an extensive method to rank the performance accuracy of segmentation algorithms.

To begin with, the ranks, which are calculated using the mean of DSC, the AUC of the CDF (θ), and the

θδs of an algorithm, are summed up. Then the values of the summations of all segmentation algorithms

are re-ranked. The new ranks are seemed as the ranks of these segmentation algorithms. Comparing with

the method that using CDF diff (θ) to compare segmentation algorithms, this extensive method is concise

and easy to operate. In addition, it can be used to rank segmentation algorithms no matter whether the

accuracies of segmentations generated by these segmentation algorithms are normal-distributed or not.

62



Third, we demonstrated GTC is better than JDC, JTC, CV and ICC as a measure of reproducibility

of segmentation algorithms. We calculated the JDCs, JTCs, CVs, ICCs and GTCs using real segmentation

data. The result is consistent with Eramian’s conclusion [22] that GTC is the only measure which is not

sensitive to segmentation group size.

7.2 Future Work

There is still some work needed to be done. For example, the CDF (θ) will be affected by the number of bins

if we use equation 4.5. As the limitation of research time, we only used equation 4.5 to calculate CDF (θ). It

would be a better choice if we use the following equation to calculate CDF (θ),

CDF (θ) = 1− cnt ({x ∈ X|x < θ})
N

, (7.1)

where X is the finite set of accuracies and N is the number of these accuracies. In this way, we don’t have

to worry how the number of bins will affect the shape of CDF (θ). In addition, even though the proposed

extensive method for ranking segmentation algorithms can be easily operated, more work should be done to

find reasonable weights when summing up the ranks calculated with mean DSCs, AUC, and θδs.
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