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Abstract

Large-scale, in vitro vaccine screening is an expensive and slow process, while rational vaccine design

is faster and cheaper. As opposed to the emperical ways to design vaccines in biology laboratories,

rational vaccine design models the structure of vaccines with computational approaches. Building

an effective predictive computer model requires extensive knowledge of the process or phenomenon

being modelled. Given current knowledge about the steps involved in immune system responses,

computer models are currently focused on one or two of the most important and best known steps;

for example: presentation of antigens by major histo-compatibility complex (MHC) molecules. In

this step, the MHC molecule selectively binds to some peptides derived from antigens and then

presents them to the T-cell. One current focus in rational vaccine design is prediction of peptides

that can be bound by MHC.

Theoretically, predicting which peptides bind to a particular MHC molecule involves discovering

patterns in known MHC-binding peptides and then searching for peptides which conform to these

patterns in some new antigenic protein sequences. According to some previous work, Hidden

Markov models (HMMs), a machine learning technique, is one of the most effective approaches

for this task. Unfortunately, for computer models like HMMs, the number of the parameters to

be determined is larger than the number which can be estimated from available training data.

Thus, heuristic approaches have to be developed to determine the parameters. In this research,

two heuristic approaches are proposed. The first initializes the HMM transition and emission

probability matrices by assigning biological meanings to the states. The second approach tailors

the structure of a fully connected HMM (fcHMM) to increase specificity. The effectiveness of these

two approaches is tested on two human leukocyte antigens(HLA) alleles, HLA-A*0201 and HLA-

B*3501. The results indicate that these approaches can improve predictive accuracy. Further, the

HMM implementation incorporating the above heuristics can outperform a popular profile HMM

(pHMM) program, HMMER, in terms of predictive accuracy.
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Chapter 1

Introduction

Technological breakthroughs in molecular biology in the past decade have led to the generation

of immense amounts of data and research at the genomic or proteomic level. This has given

rise to an increase in the popularity of computational research methods, which are often faster

than biological experiments. Rational vaccine design, for example, uses computers for large scale

screening of potential vaccines based solely on genomic and proteomic information.

Rational vaccine design has only been developed in the past decade, but in that time it has

become a routine research method in some immunology laboratories [2] and a key goal of im-

munoinformatics [3]. As in many other computer-aided research areas, computational methods for

vaccine design sometimes generate results that are disproved by biological experiments [2]. Thus

predictions of rational vaccine design should always be confirmed by biological experiments before

any conclusions are drawn. Fortunately, the predictive accuracies of these prediction methods in-

crease as more data and knowledge about the mechanisms of immune response become available.

Therefore, rational vaccine design can be expected to become a common approach in immunology

laboratories in the future. Another limitation of rational vaccine design is that it models only

short biological sequences, which often does not work so effectively as vaccine prepared from an

integrated organism.

An immune response is the result of a series of biochemical reactions whose end goal is to protect

the body from foreign material. These reactions act, in part, to produce and select particular

epitopes from antigenic material. An epitope is a peptide that can be recognized by a T-cell and

elicit an immune response against the foreign body [4, 5, 6]. Immunological experiments show that

only peptides which bind to MHC with high affinity are recognized as T-cell epitopes and thus

can elicit an immune response [7]. In other words, T-cell epitopes are the subset of peptides that

bind to MHC and thus are potential vaccines[8]. Experiments also show that usually only 5% of

the peptides from a protein are able to bind to a MHC. This means that MHC-binding peptide

prediction can significantly reduce the number of peptides to be tested for vaccine development.

In this sense, MHC-binding peptide prediction makes it possible to do large scale screening for

vaccines, and thus it is a popular topic in computational vaccine design [9].

A broad spectrum of MHC-binding peptide prediction methods is currently available, e.g. motif-
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based methods, matrix-based methods, molecular modeling, and machine learning techniques [9].

The performance of these computational methods relies heavily on quality and quantity of known

MHC-binding peptides. Generally, as the number of known MHC-binding peptides (training data)

increases, the predictive performance of all the methods increases. However, as the number of

training data increases further, the performance of sophisticated methods, like the machine learn-

ing techniques, will eventually outperform the simple methods, e.g. matrix-based and motif-based

methods [10]. Therefore sophisticated methods have enormous potential for future vaccine devel-

opment.

MHC-binding prediction is primarily complicated by the amount of training data available.

Since MHC molecules are highly polymorphic, i.e. many different forms of the molecules exist, a

separate computer model must be developed for each MHC. Further the number of peptides known

to bind to a particular MHC molecule varies from none to hundreds. For species other than humans

and mice, e.g. cattle, the number of known binding peptides for an MHC is never more than 30.

Consequently, complicated computer models can only be studied with data from humans and mice.

Theoretically, the computer models should be adaptable to data from other species.

A machine learning model can be so complicated that even hundreds of examples of training

data are not enough to determine all the parameters of that model. In such a case the only solution

is to use heuristic approaches. This thesis is designed to investigate two approaches to improve the

performance of a Hidden Markov model (HMM). One approach aims to improve the initialization

of emission and transition matrices using knowledge of biological sequences. The other approach

is to reduce the model’s connectivities so that the model parameters can be better estimated with

the small amount of the training data available.

This thesis is composed of six chapters and an appendix. Chapter one is the “Introduction”.

Chapter two, “Background”, covers some immunological knowledge and various computational

methods used for rational vaccine design. Chapter three, “Research goal”, describes the goal to

achieve and the problems to solve. Chapter four, “Data and Methodology ”, proposes solutions

to the problems raised and describes data used to do model training and testing. Chapter five

“Results”, shows the performance (predictive accuracy and computational time) of the proposed

solutions. And last chapter, chapter six “Discussion and future work” discusses how effective the

proposed solutions worked, based on the results shown in Chapter five and then proposes some

future work. The appendix shows a single-letter amino acid code, the training data (peptides

which bind to allele HLA-A*0201 and peptides that do not bind to HLA-A*0201, the same for

HLA-B*3501) used to train models and the emission and transition matrices developed from the

various heuristic approaches.

This thesis assumes the reader has some basic knowledge of amino acids, proteins, immune

response, etc. and knowledge of some bioinformatics concepts, e.g. substitution matrix, position
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specific scoring matrix and multiple sequence alignment. HMM is the method being investigated

in this work but readers are not expected to already know how an HMM works, as it is explained

in some details in chapter 2.

This work uses specificity when evaluating the predictive accuracy of computational programs.

It is defined as the ratio between true negatives and the sum of true negatives and false positives

[11]. This is what most of the researchers use, but note that some researchers defined it as true

positives over the sum of true positives and false positives [12].
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Chapter 2

Background

2.1 Immune response

Animals have various defense mechanisms against pathogens. For example, for humans, the first

line of defense is the skin and mucosa. When an invader breaches these outer defenses, it is the

immune system which is ultimately responsible for disposing of the pathogen. To fulfill its role, the

immune system must be sophisticated, with many components, processes, and interactions.

An immune response is the reaction of the body to the presence of antigens (foreign molecules).

An immune response is a sequence of reactions which involve many biological components. These

reactions are continuous, but for convenience they can be divided into four major stages: antigen

detection, antigenic protein processing, antigenic peptide presentation to T-cells, and protection

mechanism activation.

The immune response begins with an Antigen Presenting Cell (APC) engulfing an antigen and

cleaving it into small pieces (peptides) using proteasomes. This is done in the cytosol of the APC.

Of the resulting peptides, those which are 3-40 amino acids long are translocated by transporters

into the endoplasmic reticulum (ER) where they interact with major histo-compatibility complexes

(MHCs). MHCs are surface glycoproteins responsible for presenting peptides to T-cells. There are

various kinds of MHC, differing in the set of peptides they prefer to bind. Typically, one peptide

is bound (recognized) by only a subset of the MHCs, or none at all. An MHC-peptide complex

may then be recognized by a T-cell if the peptide matches the T-cell receptor [4]. These complexes

are also called T-cell epitopes. T-cell recognition is required for subsequent cell lyses/antibody

induction to occur. Thus, to elicit an immune response a peptide has to go through several major

filtrations: proteasome slicing, intra-cellular transportation, and recognition by MHC and then by

a T-cell receptor.

A peptide which successfully elicits an immune response can be artificially synthesized and used

to immunize an animal. Such a peptide is a type of vaccine. Currently, research in rational vaccine

design focuses on investigation of MHC recognition of peptides. This is because MHCs are highly

selective and the properties of MHC-peptide complexes are easier to study than the other two

filtering steps in the formation of an immune response [8, 10].
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HLA I # of alleles HLA II # of alleles

classical HLA-A 291 HLA-DP 126

HLA-B 555 HLA-DQ 81

HLA-C 140 HLA-DR 435

Table 2.1: Polymorphism of Human MHC

2.2 Major histo-compatibility complex (MHC)

2.2.1 Polymorphism and functional diversity of MHCs

There are three classes of MHCs: MHC I, MHC II, and MHC III. MHC I and MHC II are more

important in the immune response and thus have been investigated more than MHC III [13]. In

the following context, “MHCs” will refer to MHC I and MHC II only. There are three1 gene loci

for MHC I and three for MHC II. A diploid organism will therefore have a maximum of 6 different

MHC I alleles and 6 different MHC II alleles. However, in a population of animals the number

of possible alleles for each loci is in the scope of hundreds. The following example illustrates the

polymorphic nature of MHCs in humans. Human MHC molecules are referred to as “HLA” (human

leukocyte antigens). Table 2.1 shows the number of genes encoding HLA class I (HLA I) and HLA

class II (HLA II) alleles. Data in this table was collected from the IMGT/HLA sequence database

[14].

The term “allele” generally refers to the variations of a single gene locus; for instance, HLA-A1

and HLA-A2 are HLA-A alleles. However, for convenience and from this point onward, “alleles”

also refers to variations across gene loci within one type of MHC; e.g. HLA-A1 and HLA-B7 are

both HLA I alleles, but HLA-A1 and HLA-DR3 are not because one is a HLA I gene and the other

is a HLA II gene.

MHCs have been investigated in other animals besides humans and mice, including cattle, cats,

dogs, wolves, apes and monkeys. Because cattle are important as a food resource for humans,

research work on bovine MHCs is worthwhile. The special term for MHC in cattle (Bos taurus) is

“BoLA”, which stands for bovine lymphocyte antigen. To date, 28 BoLA class I (BoLA I) alleles,

103 BoLA class II (BoLA II) DR alleles, and 97 BoLA class II DQ alleles have been identified [15].

Compared to HLA, BoLA and its interaction with antigenic peptides are not as clearly understood.

Each MHC I molecule is distinct in its structure and binding affinity to different antigenic pep-

tides. Nevertheless, some peptides bind to multiple MHC I molecules and are called “promiscuous

1There are actually three “classical” and three “non-classical” MHC I loci. For MHC II, there are three “classical”
and two “non-classical” loci. In this paper, only the classical loci are considered.
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peptides”. These properties of MHC I also hold for MHC II. The polymorphism and functional

diversity of MHCs make some individuals less vulnerable than others to a certain pathogenic anti-

gen. As a consequence, members of a population can mount better or worse immune responses to

some pathogen but it also makes MHCs hard to study.

2.2.2 MHC-peptide binding complex

Despite various functional differences between MHC I and MHC II, they bind antigenic peptides in

a similar fashion to form a complex in the endoplasmic reticulum. A peptide binding to an MHC

molecule does so in a groove in the molecule. In Figure 2.1, the grooves are the spaces where the

peptides (colored red in images a and b) are located. Whether the groove is open or closed at

the ends determines the length of the binding peptides. The groove in MHC I has closed ends, so

peptides binding to MHC I are usually fixed in length, about 7-12 amino acids (or “mers”) long

[16] (Figure 2.1a, 2.1c). Alternately, the groove in MHC II has open ends, so this molecule binds

peptides of variable lengths, 10-30 mers [17] (Figure 2.1b, 2.1d). Most of the functional allelic

variations in MHC are located in the domains that form the peptide-binding groove. The PDB

protein database [18] has crystal structures for a modest number of HLA (or HLA complexes with

a binding peptide).

The binding affinity between a peptide and an MHC can be evaluated in various ways, including

half-time disassociation rate and a pair-wise potential table (a way of calculating the binding

energy).

MHC pocket structures A groove is usually composed of 6 “pockets”, labelled A to F (Fig-

ure 2.2). Each pocket is formed by several amino acids in close physical proximity in the three-

dimensional structure of the MHC. Each pocket is responsible for interacting with one or several

amino acids on the binding peptide. The interaction is affected not only by many physical and

chemical effects in the environment – for instance, ion concentration, temperature and pH – but

also affected by adjacent amino acids or chemical groups on the peptides or in MHC groove.

A quantitative representation of the interaction of all 20 amino acid residues with a particular

pocket forms a “pocket profile”. MHC alleles are believed to share pockets and there exist databases

of pocket profiles [19]. This makes it possible to characterize the binding of new MHC alleles.

Position and neighboring effects of the peptide Although all positions on a binding peptide

are involved in the MHC-peptide interaction, there is also a positional effect to consider. It is well

established that a few – about 2 to 4 – positions in a peptide are critical in mediating its binding to

a specific MHC. These positions are termed “anchor” positions and the amino acids that occur more

frequently than others at these anchor positions are called “anchor residues”. Anchor residues are
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Figure 2.1: Structures of an MHC I-peptide complex (a and c) and an MHC
II-peptide complex (b and d)
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Figure 2.2: Pockets of an MHC and amino acids (P1-P9) that protrude into the
pockets

P1 P2 P3 P4 P5 P6 P7 P8 P9

Peptide 1 H K G A G K R Y V

Peptide 2 N K Y M C V S T V

Peptide 3 M K C W S G A F V

Table 2.2: Binding motifs in three HLA-A*0201-binding peptides

responsible for fixing the peptide to the groove. As mentioned earlier, the MHC-peptide complex

waits to be recognized by a receptor on a T-cell. The rest of the positions on the peptide are

recognized and bound by the T-cell receptor (TCR).

The anchor positions and anchor residues form a pattern called a “binding motif”. Anchor

positions are further divided into primary anchor positions and secondary anchor positions, ac-

cording to their contributions to the binding affinity. Different MHCs have different patterns of

primary and secondary anchor positions. Information about anchor positions and anchor residues

for various MHC alleles are derived from the alignment of multiple peptides known to bind to each

allele. For example, the peptides binding to the human MHC molecule HLA-A*0201 are often 9

amino acids long and frequently have two anchor residues, a Lysine (K) at position 2 and a Valine

(V) in position 9 (see Table 2.2) [20]. P1 to P9 the table refer to the 9 positions of the binding

peptide.

2.2.3 MHC-binding peptide databases

Sequences of peptides that bind to specific MHCs have been collected in MHC-binding peptide

databases. MHCPEP [21] is by far the largest and most widely referenced database. As of today,

it contains 13424 entries, among which are 10,012 entries for human, 3359 entries for mouse and

53 for four other mammals. Each entry contains information about source protein (if known),

an estimated binding affinity, anchor residues (if identified), and references. The large number of
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database entries in MHCPEP presents the possibility of automated data processing. However, this

possibility is limited to research on the human and mouse.

To use data from human and mouse in the context of other organisms, researchers have been

searching for evidence of commonalities between humans and other mammals. Evolutionary study

of MHC molecules indicates that many orthologous loci of MHC II are shared by many mammals.

Takahashi [22] provides a phylogenetic map that shows orthologous relationships among MHC II

genes in several mammals. With this knowledge, data from human MHC can be adapted to other

mammals. However, non-mammalian class II genes are not orthologous to mammalian class II

genes [22], which means it is not valid to adapt data from human to these species. Also, MHC

I loci undergo evolution faster than MHC II loci and thus it is difficult to establish orthologous

relationships among MHC I in different mammals [23, 24, 25, 22]. Thus, borrowing data from

human MHC may be helpful only in limited situations.

2.3 Vaccine and vaccine design strategies

Generally speaking, a vaccine is an antigen that primes the immune system against some pathogen

without causing severe symptoms. Thus, vaccines can take various forms: an organism (bacteria

or virus), a protein (or peptide), or nucleic acid sequence. In the context of this work, a vaccine

is an 8-22mer peptide. Such a small piece of protein is not capable of acting as a pathogen, but is

still sufficient to elicit an immune response.

The traditional vaccine design approach is to derive all the possible vaccines from a protein

sequence and test each of them for an immune response experimentally. Unfortunately, this brute-

force approach is also very expensive and time-consuming.

Luckily, the brute-force approach can be simulated easily by computers. Once a computational

model “learns” how to identify a vaccine, a job that could take months or years of manual labor,

could be finished in days or hours by computer. However, in order to do this a computer has to learn

to identity the characteristics of peptides that have already been confirmed to elicit an immune

response. This means that the performance of some of the computational methods is limited by

the availability of such peptides. Vaccine identification is a kind of pattern recognition and the

computational methods used for pattern recognition are applicable here.

2.4 Pattern recognition in sequential data analysis

According to Kiran [26], a pattern in biological sequence analysis is any type of sub-sequence that

fits a certain regular expression, which is a string that describes or matches a set of strings, according

to certain syntax rules. For example, M-[PST]-X(1,3) is a sequence pattern matching any sequence

containing a sub-string starting with M, followed by either a P or a S or a T, followed by one,
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two or three arbitrary (X means “any”) symbols. This example is a deterministic pattern. If the

occurrence of a character is associated with a probability, then the pattern turns into a probabilistic

pattern. Pattern can be used to characterize protein families. Motifs are short patterns that occur

frequently within a given set of protein sequences. Motifs usually have some biochemical functions

which represent information conserved through evolution. Thus a motif is a pattern associated

with some biological function, while a pattern is more of a statistical presence than a biological

one. Also, all motifs are patterns but not all patterns are motifs.

The detection of underlying patterns in a collection of peptides is called pattern recognition.

Pattern recognition is a basic task in many applications, e.g. internet searching for document

classification, printed circuit board inspection in industrial automation, personal identification in

biometric recognition, and biological sequence analysis. No matter what application uses pattern

recognition, there needs to be a substantial amount of known data (information for which the

presence or absence of patterns is known) available. When such data is available, a computer is a

good tool for performing the pattern recognition.

Jain [27] classified the pattern recognition techniques used today into four major categories.

These categories are: template matching approach, statistical approach, syntactic approach, and

neural networks. Techniques from each of these categories have been applied to biological sequence

analysis. To explore them, it is necessary to first describe the languages of biological sequences.

2.4.1 Language of biological sequences

Like human language, biology employs its own sets of language rules. Proteins and nucleic acids

(made from nucleotides) are the two most important components of an organism. Nucleic acids

are carriers of genetic information. Proteins are not only the building blocks of the organism but

also important in catalyzing metabolic reactions. Protein and nucleic acid sequences follow certain

rules like the grammars of human language which is the system of rules by which words are formed

and put together to make sentences. For example, a gene is usually composed of a promoter, a

transcription-start site, an LTR (left transcription region), a translation start site, several exons

intermixed with several introns, a RTR (right transcription region), and a transcription-stopping

signal. With such a structure a gene is laid out like a sentence, which has a subject, a verb and

some objects. The structures of genes exhibit patterns.

2.5 Pattern recognition methods for MHC-binding peptide

prediction

MHC-binding peptide prediction methods are usually categorized into five groups. Although meth-

ods of some groups are theoretically more sophisticated than those of other groups, no single group
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of methods dominates the area. In the following subsections, details about methods in each category

are discussed, followed by a comparison of these methods.

2.5.1 Motif-based method

In the late 1980s, x-ray crystallography allowed researchers to visualize the structure of MHC-

peptide complexes. They found that MHCs had clefts on their surfaces that could hold peptides.

The earliest MHC-binding peptide prediction methods came independently from the work of Ram-

mensee and of Sette [2]. First, both groups compiled a database of sequences of natural epitopes

(peptides recognized by TCRs) by washing the peptides off of different MHC class I and class II

proteins. Using the sequences of the peptides, their models extracted (learned) the binding motifs.

Thus the computer models Rammensee and Sette developed belong to the motif-based class of

methods.

As mentioned earlier, there are 2 - 4 anchor positions in a peptide binding to MHC. The pattern

of amino acids at these positions is called a “motif”. Since peptides binding to MHC I are uniform

in length, in some cases motif identification is possible even “by eye”. Motif identification for MHC

II-binding peptides is more difficult because their lengths vary. In this case, motif identification

software is needed. Many general purpose motif-finding packages are available – e.g. BLOCK

MAKER, ITERALIGN, MATCH-BOX, PIMA, MEME and SAM [28] – and can be used for this

application.

More recent motif identification approaches use the concept of a profile to evaluate the binding

affinity of a peptide. A profile records a value for each amino acid at each position of the peptide.

A preferred amino acid at an anchor position receives a higher score than a preferred amino acid at

other positions, and amino acids regarded as unfavorable are assigned negative scores. The binding

affinity of a peptide is calculated as the sum of scores of amino acids at each position of the peptide.

A characteristic of this method is that the pattern being sought is very specific, i.e. the motif is

either present or not. Because of this, this method can work with a small set of training data, as

few as ten peptides. SYFPEITHI [29] is an example of a binding motif-based application that uses

profiles and is still in common use today.

However, very few applications besides SYFPEITHI use this technique. This is likely because

motif-based methods do not perform well when true binding peptides do not conform to the pattern

or motif structure. This shortcoming can be addressed by many other prediction methods, as

described in the next subsection.

2.5.2 Matrix-based methods

Matrix-based methods work by assigning a probability score to each of the 20 possible amino acids

at each position of the peptide. This score is based on either half-time disassociation rate data [10]
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or an MSA (multiple sequence alignment) of known binders.

Matrix-based methods evaluate the positional effect of amino acids, i.e. the same amino acid

contributes differently to various positions in the peptide. However, they do not capture the

neighborhood effect of amino acids at adjacent positions. Instead, it assumes that each amino

acid contributes independently to the whole peptide’s binding affinity. In the biological world,

neighborhood effects usually exist and may be important in some cases.

Different matrices result from using different underlying algorithms to calculate the score for

each amino acid at each position of a peptide. For example, YK0201 matrix developed by Yu

[10], was generated using logarithmic equations based on the frequency of amino acids at specific

positions of the peptides in the training set using the following two formulae [10]:

SAK = log2(
FAKb−FAKn

FAKb+FAKn
+ 1) ifFAKb > FAKn

SAK = − log2(
FAKn−FAKb

FAKb+FAKn
+ 1) ifFAKb < FAKn

where SAK is the matrix coefficient for amino acid A at position K of the peptide; FAKb refers to

the proportion of amino acid A at the observed position K within binders, and FAKn refers to the

proportion of amino acid A at the observed position K within non-binders. In a similar fashion to

the motif-based method, the binding affinity of a peptide is calculated as the sum of position scores

from the YK0201 matrix. That is, given a peptide P , let P [n] be the nth amino acid in P and |P |
be the length of P , then the affinity score of P , S(P ) =

∑|P |
k=1 SP [k]k, where SP [k]k is the matrix

score for amino acid P [k] at position k.

There are two differences between this method and methods based on binding motifs. The

matrix-based techniques do not explicitly identify anchor positions nor do they require specific

amino acid at certain anchor positions. Thus matrix-based methods predict some binding peptides

that do not conform to the rules of binding motifs. Ten or more peptides are usually necessary to

form the matrix. Of course, the more data used, the more accurate the result can be. Interestingly,

for matrix-based methods, after a certain amount of training data, any further increase in the

amount of data has little effect on the accuracy of the method [10].

The matrix-based methods are more popular than other MHC-binding prediction methods.

Several software tools employing this method are RANKPEP [30], BIMAS [31], EpiMatrix [32],

TEPITOPE [33] and Propred [34].

2.5.3 Hidden Markov models (HMMs)

An HMM is a statistical model developed in the 1970s for speech recognition. Since then, it has

been used for many other problems with a simple grammar. Some examples of these problems
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Figure 2.3: A graphical representation of a Markov chain for DNA sequences
(cited from [1])

are: handwriting recognition, gene finding and protein modeling, gesture recognition, and facial

recognition [27]. A good biological example of using an HMM is to form a “ profile HMM” [1]

which is developed from profiling a family of proteins. The resulting model can then be used to

search against databases to discover other members of the family.

Profile and weight matrix methods are functionally similar to HMMs in terms of scoring align-

ments, but HMMs treat gaps in the pattern in a systematic way, while the other two methods do

not. To explain hidden Markov models, it is necessary to discuss Markov chains first.

Markov chains

A Markov chain model generates sequences in which the probability of a symbol depends on the

previous n symbols, where n >= 1. The value n is called the order of the model. A Markov chain has

some basic elements, are “states”, “symbols” and transitions between states. Each state transition

is associated with a probability. A state can emit a symbol with some probability and this is called

“symbol emission rate”. All transitions going out of a state adds up to 1. The probabilities of

emitting all symbols by a particular state also add up to 1. The number of transitions, the number

of states, the transition rates and the emission rates are parameters of a Markov chain model.

A Markov chain can be represented as a directed graph, where the nodes correspond to states

in the model and edges correspond to state transitions. On arrival at a destination state, one

symbol is generated (or consumed). Figure 2.3 is a graphical representation of a Markov chain for

DNA sequences. Each circle is a state and the letters “A”, “C”, “G”, and “T” are the symbols

emitted (or generated) by each state, respectively. These letters represent the four nucleotides that

make up DNA. For some sequence x, the transition probability from state s to state t is ast where

ast = P (xi = t|xi−1 = s). ast is estimated by the following equation in which cst is the count of

transitions from s to t in the training data.
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ast = cst∑
′

t
cst′

(1)

In a first order Markov chain, the probability of generating a sequence x of length L is,

P (x) = P (xL, xl−1, ...x1) (2)

= P (xL|xL−1)P (xL−1|xL−2)...P (x2|x1)P (x1)

With equation 1, the formula for calculating P (x) (equation 2) becomes

P (x) = P (x1) ∗
∏

axi−1xi
(3)

The order of the model reflects the amount of interdependency between the adjacent positions of a

sequence. Hence, in second order Markov chains, the probability of generating a state is determined

by its previous two states.

In a Markov chain, a particular state of it can generate a number of symbols, each with certain

probability. However, a particular symbol can only be generated by one state. The following section

introduces a more complicated Markov model which allows a symbol to be generated by multiple

states.

A general HMM for sequence analysis

Some biological sequence analysis problems involve identifying a characteristic subsequence within

a long sequence, e.g. finding CpG islands [1]. A CpG island is a short piece of DNA in which

the frequency of the CG sequence is higher than in other regions. Most parts of a sequence are

non-islands. If the length of the island is known, a Markov chain can be used. However, the length

is usually not known. To effectively model such a situation, two states are necessary: one for being

in “islands” and one for being in “non-islands”. Each state has its own set of probabilities for

generating each symbol (also called emission probabilities). Given a particular subsequence, it is

unknown what path through the states led to this sequence. This is one type of problem which

can be modeled by a hidden Markov model (HMM). Here “hidden” refers to the unknown identity

of the state which generates the subsequence. The problem of finding CpG islands turns into a

problem of finding the underlying state sequences that generate the character sequence, i.e. finding

a path through the states of the HMM. An algorithm to do this is the Viterbi algorithm.

Viterbi algorithm The Viterbi algorithm is an algorithm to determine the most probable un-

derlying state sequence that generates a given character sequence. Let π∗ be the most probable

path (state sequence) and x be the character sequence. Then we have
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π∗ = argmaxP (x, π)

π

Let vt(i) be the probability of the most probable path ending in state i at time t, with obser-

vations up to xt. If vt(i) is known for all the states before and including i, we can calculate the

probability of observation vt+1(j) by vt+1(j) = ej(xt+1)maxi(vt(i)aij) where aij is the transition

probability from state i to state j and ej(xt+1) is the symbol emission probability of state j to emit

symbol xt+1. Initially, v0(0) = 1, v0(i) = 0 for i > 0, where 0 is the starting state which does not

emit any symbol, and the ending condition is P (x, π∗) = maxi(vL(i)aL0), where L is the length of

the symbol sequence.

After this calculation runs through all observations in the sequence, the underlying state se-

quence can be found by backtracking. The state sequence given by the Viterbi algorithm is the best

one in mathematical sense, but may not be the actual path that generates the observed symbol

sequence in a biological system.

Baum-Welch (BW) algorithm Transition and emission probabilities are needed for the Viterbi

algorithm. They are obtained from previous experience or a set of training sequences. Another al-

gorithm to obtain HMM parameters from a set of training sequences is called the forward-backward

algorithm or Baum-Welch (BW) algorithm [35]. Here is a brief description of the BW algorithm:

Let the set of training sequences be O, the sth training sequence be Os, and the tth symbol

of Os be Os
t . The length of Os is ls. Let the model be H. In model H, let the number of states

be N , the number of symbols be M, the state transition probability from state i to state j be aij

(1 <= i <= N , 1 <= j <= N), and the symbol emission probability of symbol c at state i be ei(c)

(1 <= c <= M). H has two extra states, a starting state which labels the start of a state sequence

and an ending state which labels the end of a state sequence. These two states do not generate

any symbols. The transition probability a and emission probability e must satisfy the following

constraints:

∑N
j=1 aij = 1,

∑M
c=1 ej(c) = 1, where aij >= 0 , ej(c) >= 0

Let ft(j) be the probability of generating a partial sequence Os
1... Os

t such that the state at

time t is j, then we have

f0(j) = 1, if j is the starting state, and

f0(j) = 0, if j is not the starting state,
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ft(j) =
∑N

i=1 aijej(O
s
t )ft−1(i), (t = 1, ..., ls),

fls+1(j) =
∑N

i=1 aijfls(i)

Alternatively, if we start from the other end of the sequence and call bt(i) the probability of

generating a partial sequence Os
t+1 ... Os

ls
. Then we have

bls+1(i) = 1, if i is the ending state, and

bls+1(i) = 0, if j is not the ending state,

bt(i) =
∑N

j=1 aijej(O
s
t+1)bt+1(j), (t = ls − 1, ..., 0),

bls(i) =
∑N

j=1 aijbls+1(j)

Thus,
∑N

i=1 fls+1(i)bls+1(i) or
∑N

i=1 f0(i)b0(i) is the probability that the given training sequence

Os is generated by H, i.e. P (Os|H). Let γt(i) be the conditional probability of state i at time t,

given the sequence. We have

γt(i) = ft(i)bt(i)
P (Os|H)

Further, let ξt(i, j) be the conditional probability of state i at time t and state j at time t + 1.

Then we have

ξt(i, j) =
ft(i)aijbj(O

s
t+1)bt+1(j)

P (Os|H) , (t = 0, ..., ls − 1) and

ξls(i, j) =
fls (i)aijbls+1(j)

P (Os|H)

The goal of the BW algorithm is to maximize the likelihood, i.e. the probability of the observed

sequence Os when given the model H, i.e.
∏

s P (Os|H). This is done by reestimating the transi-

tion and emission probabilities iteratively until the difference of
∏

s P (Os|H) from two consecutive

cycles is small enough (i.e. smaller than a threshold). The equations to perform the parameter

reestimations are

âij =

∑
s

∑
ls

t=0
ξt(i,j)∑

s

∑
ls

t=0
γt(i)
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Figure 2.4: The structure of a pHMM

êi(c) =

∑
s

∑
ls

t=1,Os
t
=c

γt(i)

∑
s

∑
ls

t=1
γt(i)

HMM in vaccine design

Vaccine design is a pattern recognition problem. Determining if a sequence is a potential vaccine

is equivalent to calculating the probability that this sequence should belong to the set of (known)

vaccines. An HMM is one approach that can give the answer. Previous attempts of using HMMs

for vaccine design can be categorized into two groups according to the model’s topology.

Krogh et al. [36] used a structure called an “alignment HMM” or a “profile HMM” (pHMM).

pHMMs were originally developed for multiple sequence alignment (MSA), specifically for the task

of finding motifs or functional units of a protein. Figure 2.4 shows the structure of a pHMM. The

rectangles, diamonds and the circles represent three different states in the model. A rectangular

box is a match state that models the distribution of letters in the corresponding column of an

alignment. A diamond models insertions of symbols between two alignment positions. A circle

models a deletion, which is a gap in an alignment. As evident from the figure, neighboring states

are connected directly by directional lines. Each line represents a transition from one state to

another according to the indicated direction. Each transition has a probability. The states in one

column in the figure correspond to one position of a biological sequence. One such set is indicated

by stars in Figure 2.4.

To perform a MHC-binding peptide prediction, training sequences have to be aligned into a

MSA, from which the parameter set of a pHMM is obtained. Then the pHMM can align an un-

known peptide to the MSA to give this peptide an alignment score which is proportional to the

peptide’s potential to bind to an MHC. More specifically, a pHMM can be trained from unaligned,

known MHC-binding peptides (training data/sequences) or it can be built from prealigned MHC-
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binding peptides using some MSA techniques like ClustalW [37] or SAM [38]. For the latter case,

the state sequence of each peptide in the MSA can be extracted from the alignment. From these

state sequences and the aligned peptide sequences, the parameter set of the pHMM can be deter-

mined by converting observed counts of state transitions and symbol emissions into probabilities.

Alternatively, if a pHMM is trained from unaligned known MHC-binding peptides, the training

process is analogous to doing an MSA of these peptides. The standard training algorithm is the

BW algorithm. From the training, the parameter set of the model is obtained. With the parameter

set, the Viterbi algorithm can be used to find the best state sequence for each training sequence,

which is then aligned into a MSA. At this point, no matter if the prediction starts with prealigned

sequences or unaligned sequences, an MSA of all training sequences and the parameter set of the

pHMM are both available for further analysis. When a new peptide is considered, the Viterbi

algorithm is used again to find the best state sequence for this peptide and then this new peptide

is aligned to the MSA of all training sequences. From this alignment, a score can be calculated

indicating how likely it is that the new peptide is of the same class as the training data. In turn

this membership implies the likelihood of this peptide being able to bind to the MHC.

One problem associated with a pHMM is that the method cannot predict multiple patterns in

the training sequences because the pHMM will combine overlapping patterns into a single one and

thus only the most common pattern in the training data will be discovered. Another problem of

pHMMs is that the MSA used/given by the model is only one alignment for a set of sequences.

When the sequences are of very different lengths, as in the case of MHC II-binding peptides, there

may be several MSAs that have close alignment scores. The one used/given by the model may not

be the one that detects the patterns the best.

In response to this problem, Mamitsuka [39, 40, 41] proposed an alternative HMM topology

for the MHC-binding peptide prediction problem. His model is a fully connected HMM (fcHMM).

In his model, except for two special states, every state is connected to every other state. The

two special states are the starting state and the ending state. Neither of these two special states

emit any symbols, rather they represent the start of a binding-peptide and the end of the binding

peptide. Also, a number of transitions do not exist in this model’s topology: any state to the

starting state, the starting state to the ending state, and the ending state to any other state. The

structure of an fcHMM is the most general kind of topology and allows for every kind of state

path through the model. Since the structure of an fcHMM is so general, the model suffers from

being computationally intensive (because you have to compute many transition probabilities) and

is highly sensitive to noise in training data. However, unlike pHMMs, fcHMMs can capture multiple

patterns in a set of training sequences.

One advantage of HMMs over simpler prediction methods discussed in Section 2.5.1 and 2.5.2

are their ability to capture more complex, non-linear features of the peptide-MHC interaction.
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Here is an example of a non-linear feature: assume the individual contribution to binding affinity

by an amino acid V at position 2 is 5 and that for an amino acid P at position 9 is 10, then the

total contribution of binding affinity made by V and P is not the sum of 5 and 10. In contrast,

HMMs require more training data than simpler methods. This is because in order to capture the

non-linear features, a larger number of parameters are necessary. Not surprisingly, a comparison

between machine learning techniques (HMM and ANN, which will be discussed below) and simple

prediction methods shows that the accuracy of machine learning techniques is much lower than

simpler methods with a small amount of training data [10]. However, there is a point where the

accuracy of machine learning techniques increases dramatically with small increases in the size of

the training data [10]. This study also reported that HMMs needs about 100 training sequences to

achieve a good performance.

There are very few HMM implementations online that are specifically targeted to MHC-binding

prediction. NetMHC [42] and PREDICT [43] are two such packages. NetMHC has a graphical

interface that takes user’s input (a protein sequence) and outputs potential MHC-binding peptides

in the protein sequence. NetMHC has pre-built models (pHMMs) for certain alleles, and does not

take users’ training data to build new models. PREDICT is only available in a demonstration

version which, like NetMHC, does not allow the user to input new training data.

2.5.4 Artificial neural network (ANN)

An ANN [44] is a machine learning technique that is used for classification and pattern recogni-

tion. It is by nature a form of multiprocessor computational system which simulates the parallel

architecture of animal brains. An ANN is orders of magnitude simpler than a network of biolog-

ical neurons, but the principles they employ are similar. Figure 2.5 is a structural diagram of a

simple neural network. An ANN is usually composed of an input layer, several hidden layers and

an output layer of neural nodes (circles in Figure2.5). There can be multiple nodes in each layer,

but the output layer usually has only one node. There are interconnections between layers and

within layers, however the direction of interconnection between layers is from input layer to hidden

layers and finally to output layer. Each interconnection is assigned a weight. The number of hidden

layers, the density of interconnection and weights are parameters that can be used to adjust the

performance of the network.

A widely-used type of ANN, a back-propagation neural network, is used to illustrate the process

of training. A supervised learning process, in which the true value of the output is known for a

certain input, is followed. The training starts with initializing the parameters of the network with

random values. Each training datum is run through the network in a forward pass, generating

an output. This output is compared with the true value for this datum so that an error in the

output can be calculated. A backward pass is then performed, during which the error is propagated

19



�

���������	�
�

���������	�
�

�������	�
�

�������	�
�

Figure 2.5: Structure Diagram of a Simple Artificial Neural Network

through the network. For each node, weights are changed by an amount proportional to the error.

Once the weights have been adjusted, the network generates a new output for the training datum

and the adjustment process is repeated. It continues until the error is less than a threshold, or

some limit (e.g. on number of iterations) is exceeded. After an ANN is trained, an unknown input

can be given to the network and the network will generate an output which tells how likely the

input has the property being studied or which class (or a number of classes) the input belongs to.

For vaccine design, an ANN is trained with a large number of known MHC-binding and non-

binding peptides. Each of the 20 amino acids is represented as a 20-bit binary string with a single

1 bit and nineteen 0 bits. The bit position which has value 1 is specific for each amino acid.

Thus, each known 9-mer peptide is converted into a binary string of 9 ∗ 20 bits, with each of the

bits fed into one input node of the ANN. By adjusting the number of hidden layers, the density

of interconnections between nodes, and the weights of the interconnections, the output of the

network can be made so that it correctly predicts whether a peptide is MHC-binding or not. Brusic

developed an ANN for doing MHC-binding peptide prediction [45]. Raghava not only developed a

program using an ANN, called ANNPred [46], but also developed a hybrid system that combined

matrix-based and ANN technologies, called ComPred [47]. Both ANNPred and ComPred are free

and available online. NetMHC [42], which is developed by researchers in Denmark, can use both

ANN and HMMs to predict MHC-binding peptides. The previously mentioned program PREDICT

(section 2.5.3) demonstrates MHC-binding peptide prediction using an ANN.

HMMs and ANNs are machine learning techniques, which are considered sophisticated methods

that capture non-linear features of MHC-binding activity. Thus, neither HMMs nor ANNs work

well with small input data sets. Unfortunately, researchers do not agree how large the data set must

be before good results are obtained. Donnes and Elofsson reported this number to be 20 peptides

[48]. Raghava and his colleagues used 40 peptides for ANNPred [46]. Yu reported that an HMM

needs about 100 peptides in the training set and to have accurate results an ANN needs even more
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[10]. Yu did not report if machine learning techniques have a upper threshold of accuracy, a point

where more training data makes little difference. This might be due to the fact that no MHC allele

has a training data set large enough to test this effect.

Another machine learning technique uses support vector machines (called SVMHC). It has been

also been applied to MHC-binding peptide prediction [48]. A discussion of this technique is omitted,

however, because it is less commonly used.

2.5.5 Molecular modeling

Molecular modeling tackles the same problem using a very different tactic. It models the interactions

between MHC and the binding peptide using their structural and chemical properties [49, 50, 51].

In other words, this method relies heavily on the structural information of MHC-binding peptide

complexes.

The entities directly involved in the binding activity are the pockets and the amino acids of

the peptide that protrude into the pockets. The structural features of the entities are the size and

shape, and the chemical features include hydrophobicity, charge, aromatic nature, etc. If all these

properties are known for a MHC-peptide complex, the peptide in the MHC groove can be used

as a template upon which unknown peptides are threaded. The binding energy of the unknown

peptides can then be calculated based on a pair-wise potential table [52]. Unfortunately, the energy

calculation is a computationally intensive process. At the end, if a peptide is energetically favored

then it is predicted as a binder. Otherwise, the peptide is taken as a non-binder. A representative

software tool for molecular modeling is PREDEP [53].

One advantage of molecular modeling is that a single known complex alone might be sufficient

to create a prediction model for a MHC allele [48]. However, it is easy to see why this method

is not popular, even though it models the binding event more closely to the real situation than

any other methods. One reason is because available structural information about MHC-peptide

complexes is too sparse, partially because it is technically very hard to get a crystal structure of

the complex. Additionally, the energy calculation is not a simple one. In contrast, because of its

characteristics, molecular modeling has great potential to become popular in the future as more

structural information becomes available and a simpler way to do the energy calculation is found.

2.5.6 Predictive accuracy comparison between methods

When there are multiple methods to solve the same problem, comparison between methods is a

good way to show how well each works. The performance of a program is affected by factors such

as the training and testing data used. Thus the same program may be reported with different

predictive accuracy across comparisons. Note that for molecular modeling, the data required is
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Parameters:

TP (true positive), TN (true negative), FP (false positive)

FN (false negative), TPR (true positive rate), FPR (false positive rate)

Formulae:

sensitivity (TPR)= TP
TP+FN

, specificity = TN
TN+FP

positive predictive value = TP
TP+FP

, negative predictive value = TN
TN+FN

predictive accuracy = TP+TN
TP+FP+TN+FN

, false positive rate (FPR) = FP
FP+TN

Figure 2.6: Definition of Predictive Parameters

very different to those used by other methods. Moreover, the amount of molecular modeling data

is too sparse. Hence, no comparison involving molecular modeling has been reported.

The main issue in comparing methods is the predictive accuracy. The four basic measuring

parameters to analyze a prediction are true positives, true negatives, false positives and false neg-

atives, as listed in Figure 2.6. Five predictive parameters (also in Figure 2.6) can be derived from

these basic measuring parameters. These definitions are widely accepted; however some researchers

defined specificity as true positives over the sum of true positives and false positives [12].

Prediction results are usually in the form of numerical values which need to be translated into

binary values indicating binding identity. The translation is done by choosing a threshold which

separate the values into two grouping, binders and non-binders. Hence, when the threshold is

chosen differently, the numbers of the binders and non-binders vary. An objective way to present

the predictive performance is to derive an AROC curve, which gives an overall view of how the

performance changes with the threshold. AROC stands for the “ area under the receiver operating

characteristic curve [54]”. The curve is developed from plotting the true positive rate (TPR) versus

false positive rate (FPR) over a series of threshold values. The area under the curve represents

the performance of a program, with a value of .5 representing no predictive power and 1.0 perfect

predictive power [55]. Empirically, the AROC value between .5 and .7 is considered less predictive,

between .7 and .9 moderately predictive and over .9 highly predictive. Various methods have beed

developed to find an optimal decision threshold based on the prevalence and the costs of incorrect

classification [56]. Generally, a higher decision threshold is preferred if the prevalence is low, or if

the cost of treating a false positive is greater than that of a false negative. A lower decision threshold

is preferred if the condition is reversed. Some researchers use “Matthew’s correlation coefficient”

to determine the prediction accuracy, which is TP∗TN−FP∗FN√
(TP+FP )(TN+FN)(TP+FN)(FP+TN)

[57].

Works comparing various MHC-binding prediction programs have been published and selected

ones are reviewed here. Yu [10] compared MHC-binding peptide prediction methods on com-

prehensive sets of binding data for HLA-A*0201 and HLA-B*3501. The methods include one
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HLA Non-Binders Binders

T-cell Naturally Processed Poly-Ala Other Total

Epitopes Peptides Synthetic Binders

A*0201a 787 123 33 44 159 359

A*0201b 787 183 57 44 159 443

B*3501 128 24 - - 82 106

Table 2.3: Data set for MHC-binding peptide comparison

motif-based method (SYFPEITHI[29]), three matrix-based methods (YK0201[10], YKW0201[10],

and BIMAS[31]), one HMM method (HMMER [58]) and one ANN method (PlaNet[59]). Table 2.3

shows the composition of the data set for the two alleles used. Each set of binders is composed

of four subsets: T-cell epitopes, naturally processed peptides, poly-A variants and synthetic pep-

tides. The difference between the initial data set (A*0201a) and expanded data set (A*0201b) for

HLA-A*0201 is that the latter includes 60 more T-cell epitopes and 24 more naturally processed

peptides. The binders were retrieved from MHCPEP and the non-binders were collected from the

same literature sources as the binders in MHCPEP.

For allele A*0201, the AROC values for the 6 methods using the initial set are in the range

of 0.81-0.87, which is considered not excellent, but good. Of the six methods, ANN, HMM and

YKW0201 have slightly higher accuracies than the other three. Unexpectedly, the addition of 84

binders in the expanded set resulted in improved accuracy only for ANN [10]. The accuracies

of the same method vary on different subsets of the data in table 2.3. In terms of specificity,

the best preformed methods on initial set are ANN and BIMAS. When the expanded set is used,

the best methods remain the same, except that the ANN’s performance is further improved. For

allele B*3501, the AROC values are in the range of 0.65-0.75 across all methods, which is poor.

SYFPEITHI, HMM and YKW have AROC values of 0.75, 0.75 and 0.72, respectively and the

AROC values for BIMAS, ANN and YK are all below 0.70. Conclusions from Yu’s comparison

are the following: (a). No single method outperforms all the others. The best choice of method

is depend on the quality of data, the extent of bias in the training data set, and the intended

purpose of the prediction. If only the size of data is being considered, the best methods are: for

small amounts of data (less than 40), motif and matrix-based methods; for moderate amounts of

data (40-100), HMM; and for large amounts of data (over 100), HMM and ANN. (b). Predictive

accuracy of a program may not be consistent across alleles. (c). The composition of a data set

(source of data) affects the predictive accuracy.

Another group of researchers [60] compared matrix-based methods with ANNs using two custom

programs HLAPred and ANNPred. The data for model training and testing are drawn from the
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Software Package Predicting Methods Accuracy # of alleles being tested (training

data size / allele)

HLAPred Matrix-based (M) 88.1±4.8 47 (>40 peptides for 30 alleles, 15-

40 peptides for 17 alleles)

ANNPred ANN(A) 88.3±4.8 30 (>40 peptides for all alleles)

ComPred M+A 93.6±2.9 30 (>40 peptides for all alleles)

Table 2.4: Predictive Accuracy Results of Three MHC-binding Peptide Predicting
Methods

MHCBN database [61], a database created and maintained by this group. Predictive accuracy

is used to evaluate the performance of the programs. The average accuracy of the matrix-based

method (HLAPred), based on tests for 47 MHC alleles, is 85.4 (mean)±8.9 (deviation)%. The

average accuracy for ANNs (ANNPred) is 87.6±5.9%, based on tests for 30 MHC alleles. The

reason that the latter was tested only for 30 of the 47 alleles is because there are less than 40

(15-40) binding peptides available for 17 alleles. Less data for those 17 alleles may reduce the

average accuracy of the matrix-based methods. As a result, the difference between these two kinds

of methods is not significant. This group found that the accuracy of the individual method varied

from allele to allele and so they reasoned that if methods were combined they might improve overall

accuracy across alleles. Hence, they created a hybrid approach combining the matrix-based method

and ANN and implemented by a program called ComPred. Together with HLAPred and ANNPred,

ComPred was tested for predictive accuracy using data generated by Parker et al. [62]. The results

of comparison are shown in Table 2.4. The hybrid method resulted in about 5% improvement in

mean accuracy.

Donnes [48] did a comparison of a support vector machine method (SVMHC), a motif-based

method (SYFPEITHI), and a matrix -based prediction method (HLA BIND) over six MHC alleles,

by using binding peptides from the SYFPEITHI database. The non-binders are extracted randomly

from the ENSEMBL database [63]; i.e. a protein sequence from ENSEMBLE is chopped to the

lengths of interest and known binders are removed. The ratio of binders to non-binders in the

training data is 1:2. Analyzing the results with Matthew’s correlation coefficient (Mcc) showed

that a minimum of 20 binders gave successful predictions with all three methods. There was

a small performance improvement if the training data (binders) was increased to 50 peptides.

With 20 binders, the Mcc values for SVMHC, SYFPEITHI and HLA BIND are .85, .75 and .62

respectively. The accuracy of machine learning technique SVMHC is slightly higher than the other

two techniques.

All the comparisons shown above agreed that machine learning techniques outperform simpler
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methods when data size is big enough. For people developing MHC-binding predictions these more

sophisticated methods are of preference, because data set size is guaranteed to grow as time goes

on. Two popular machine learning techniques, HMM and ANN, have high predictive power when

the data set is large. According to Yu [10], HMM needs less (100 peptides) training data than

does ANN. For some HLA alleles there are more than 100 binding peptides, but for MHC in other

species, 100 is still a big number. Thus, HMM seems to be a preferred method to explore at the

present time. Moreover, an ANN is a very sophisticated system, which tries to include every feature

into consideration. To get the network to perform well, it happens quite often that users have to

experiment with even more parameters than are needed by an HMM. An HMM gives a user more

controllability than an ANN does and at the same time it has comparable performance with ANN,

even when the data set size is getting more than 100 peptides [10]. In this sense, HMM is also

preferable to ANN. However, the topology of an HMM is very important to its functionality and

most existing HMM programs (NetMHC and HMMER) implement a Profile HMM. Other types

of model structure are certainly worthy of more exploration. Based on these considerations, this

thesis project will investigate the HMM methods.
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Chapter 3

Research goal

3.1 Specification of thesis problem

Vaccine development in cattle is economically worthwhile and is being pursued by some researchers

in the Vaccine and Infectious Diseases Organization (VIDO) in Saskatoon, SK, Canda. However,

because of the costs associated with traditional vaccine development, computer based methods of

vaccine screening are coming into play.

As discussed previously, many software programs have been developed to conduct rational vac-

cine design. However, most of the existing programs were developed using human and mouse data

because these two data sets are most prevalent and most vaccine design techniques require large

data sets. Many of these programs are not open source, which means they only do predictions for

the alleles that existed in their database. As usually only human or mouse MHCs are available

in their database, it is not possible to use these programs to do prediction on alleles from other

species. Thus an open source prediction program is helpful to researchers working on alleles from

various species. Open source here means the source code is free and others can modify the source

code.

Machine learning techniques have their advantages in doing MHC-binding peptide prediction.

Also, there are some successful cases of using these techniques to predict peptides that bind to

MHCs and some of the predicted peptides even elicit an immune response [2]. However, there is

still room to make improvements on the predictive accuracy of these machine learning programs.

3.2 Objectives and hypothesis

The goal of this project is to develop an HMM-based, open source, accurate MHC-binding peptide

predictor.

The majority of free vaccine development programs use matrix-based methods. According to

Yu’s method comparison, HMM and ANN outperform matrix-based methods and HMM needs less

training data than ANN does, without having to comprise on the performance. Thus HMM is taken

by this program to do MHC binding peptide prediction. Like many other programs, this program
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will be developed on data from human and mouse. But nothing will be done to compromise

its ability to analyze data from other species. Indeed, eventually the program will be used to

analyze data from cattle. The source code of this program is free to the computational immunology

community. Researchers with their own training data for some alleles can use this program. As to

the predictive accuracy issue, this program will strive to achieve higher predictive power by using

two heuristic approaches.

The hypothesis of this research is that the two heuristic approaches will help to improve the

model’s predictive power. The effect of these heuristic approaches will be shown by a performance

comparison between this program and HMMER.
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Chapter 4

Data and methodology

4.1 Data

This program is tested on data for two human MHCs, namely HLA-A*0201 and HLA-B*3501.

The data sources for these alleles are existing databases and literature. For each allele, there are

two types of models, a positive type (“positive models”) and a negative type (“negative models”),

being set up. The positive models are built from peptides that bind to the allele (“positive training

data”) and the negative models are built from peptides that do not bind to the allele (“negative

training data”).

Positive training data are extracted from MHCPEP [21]. Note, that peptides in this database

are labeled with four levels of binding affinity: strong, mediate, weak and unknown. For both

alleles, only peptides with strong binding affinity are used. In this case, 116 peptides were collected

for allele HLA-A*0201 and 70 were collected for HLA-B*3501. The reason that only strong binders

were selected is that it is suspected that the patterns in these sequences is more consistent, and

this makes the model training easier.

Negative training data are from two sources, namely MHCBNa and a search paper. Sixty

sequences1 were extracted from MHCBN [61] and an additional 237 peptides were selected from a

research paper[64], which lead to a total of 297 sequences of non-HLA-A*0201 binding peptides.

According to the literature, the 237 peptides do not bind to HLA-B*3501 either. Thus they were

used as negative training data for HLA-B*3501.

Testing data are chosen from the training data in a cross validation approach (discussed below

in testing environment for proposed solutions). The training and testing data for HLA-A*0201 and

HLA-B*3501 are listed in Appendix 6.3 and 6.3, respectively.

132 of the sequences do not bind to HLA-A*0201 and the other 28 do not have T-cell activity, which implies they
do not bind to HLA-A*0201.
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4.2 Model’s ability to achieve the global maximum

The model training and testing program is written in Java programming language. The implemen-

tation of the Baum-Welch algorithm was checked by a hand trace through a small parameter and

data set. The correctness was further tested by the experiment shown in this section. Baum-Welch

algorithm is not guaranteed to find the global maximum. However it should, under certain con-

ditions (such as a large amount of trianing data, a small parameter space and a model training

point that is close to the global maximum) have a good chance to find the global maximum. This

experiment tends to create such a condition so that if the model achieves a probability that is

higher than that given by the starting point by not too much, then the Baum-Welch algorithm is

implemented as expected. This test is composed of a small artificial data set that consists of only

a few states and symbols, a known global maximum, and a set of simulated training data.

4.2.1 Testing approach

The testing approach is as follows. First, the transition and emission matrices are set randomly.

Using these matrices, the model generates input sequences. Using the same matrices, the model is

trained by the input sequences. Finally, the distance that the parameters have strayed from where

they started is examined. This process is diagramed in Figure 4.1. This process is elaborated on

in the following paragraphs.

The topology of this small testing model is the fcHMM described in Section 2.5.3. However, this

testing model has only four states: 1, the starting state, 2, the first emission state, 3, the second

emission state, and 4, the ending state. A, C, D and E are the only symbols which can be emitted.

The initial emission and transition matrices are shown below.

a) emission matrix b) transition matrix

A E D C 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0.20 0.15 0.50 0.15 2 0.3333 0.78 0.30 0

3 0.20 0.40 0.20 0.20 3 0.6667 0.2 0.68 0

4 0 0 0 0 4 0 0.02 0.02 1.0

These two matrices are named “fixed matrices”. With these fixed matrices, the model is used

to generate 350 sequences. Thus, the fixed matrices give a probability that is close to the global

maximum for this set of sequences. Then using the fixed matrices as initial matrices, the model is

trained by the sequences just generated. When the model converges, the probability of generating
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Figure 4.1: The process of model testing

all 350 sequences by the resultant two matrices is compared to that by the fixed matrices. The

former value is expected to be higher than the latter one but the distance between these two values

should not be far. The method to evaluate if the distance is too far is discussed below. In order to

make sure that the model does converge, the model is trained for 15,000 cycles (the threshold to

stop the training is 8E-18). The result of this experiment given in Sections 5.1 and 5.2 shows that

this number of training cycles is enough to make the model converge. Details of explanation are

given in Section 4.2.1.

Each of the 350 sequences are generated as follows: to determine the symbol for the next position

of the sequence, the model first selects a state randomly, which is based on the state of current

position. Then with the state chosen, a symbol can be randomly picked up for this state. The state

selection is based on the transition probabilities in the transition matrix and the symbol selection

is based on the emission probabilities in the emission matrix. As this process of state and symbol

selection goes on, a sequence of symbols is generated. When the ending state is picked, the symbol

generation ends.

The method to analysis the result of this experiment is called likelihood ratio test: Let P1 be the

probability of generating all the 350 sequences from the fixed matrices. Let P2 be the probability

of generating all 350 sequences from the resultant matrices. Then −2 ∗ ln P1

P2
gives the deviance. If

the deviance is smaller or equal to the number of parameters (or degree of freedom), then it means
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the model has the potential to achieve the global maximum [65].

4.3 Proposed solutions

An HMM is not a new method to solve the MHC-binding peptide prediction problem. Previous

attempts [41, 10, 40] have achieved a certain amount of success. However, there are a number of

issues that have not been addressed by their work. Four of the issues are discussed below.

4.3.1 Model’s topology

The first issue is related to the model’s topology, or structure of the HMM, which has a big

impact on the model’s performance. An HMM can have various topologies. Researchers choose a

topology according to the specification of the problem at hand. Section 2.5.3 discussed two types

of topologies, pHMM and fcHMM, and problems associated with each of them. In response to

these problems, a topology whose connectivity lies between that of a pHMM and a fcHMM, called

a partially connected or pcHMM, is explored in this research.

A pcHMM is constructed by first forming a fcHMM. Then the model training process eliminates

some of the transitions or states in the fcHMM to generate the pcHMM. This allows the training

data to “decide” the correct topology for the model starting from a fcHMM.

The pcHMM is constructed from the fcHMM in an iterative process. We give two heuristic

topology reduction approaches: the first is a transition removal approach and the second is a state

removal approach. For the transition removal approach, after the fcHMM is formed, the transition

with the lowest probability is removed. This means that this transition is no longer considered in

the subsequent training. In the next stage, training starts with this transition being omitted and the

transition rates of the remaining transitions in the model increased proportionally. When the model

converges again, the transition with the lowest transition probability is once more removed. That

is, each time a transition is removed a model has to be trained again. Consequently if N transitions

are removed, then N models are trained. In this research, 120 transitions out of 144 transitions

(all transitions in a 12x12 transition matrix) are removed. This left 24 transitions in the model

and it means that every state gets about 2 transitions out from it on average. The complexity of

the resulting model is considered too low for the current problem. For the state removal approach,

instead of transitions, states are removed at each iteration. Deciding which state to remove is

a simple process. First, the states are ordered by their highest incoming transition rates. The

state with the lowest incoming transition rate is removed and the transition rates for all the rest

transitions in the model are increased proportionally. This process continues until 8 states out of 12

states are removed. Again, the number 8 is chosen because the rest of the model is considered too

small after this. The process of transition and state removals is illustrated in Figure 4.2. After each
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Figure 4.2: Transition and State Removals

transition/state removal, the model’s predictive accuracy is tested. With the relationship between

model’s topology and the model’s performance available, the topology with the best performance

will be the proper topology for the problem at hand.

The reason to do topological reduction from a fcHMM is that in some cases, the model’s overall

performance will increase as the number of transitions/states decrease. In these cases, there are

patterns occurred frequently in the training data and there are patterns occurred with low rates.

When a model has a high level of connectivity, not only those frequently occurred patterns are

recognized as true positives, but those rarely occurred ones have good chances to be recognized

by the model as true positives too. This leads to a high rate of true positives (high sensitivity)

and a high rate of false positives (low specificity). Now if some ignorable connectivities in the

model are removed so that the complexity of the model is just enough for it to pick up patterns

occurred frequently (true positives) but not those occurred rarely, then the model’s sensitivity does

not decrease much while its specificity increases dramatically.

4.3.2 Biological meanings of states

The first issue to consider with HMMs is the biological meaning of the states. In the fcHMM

created by Mamitsuka [39], a state doesn’t have a real-world meaning. Because of this lack of

meaning, the number of states to have in a fcHMM has to be determined through a brute force

approach, i.e. try out a range of numbers and pick out the one that gives the best result. Again

32



because of the lack of meaning for a state, the state transition and symbol emission matrices are

forced to be initialized uniformly. The reason as to why uniformly initialized matrices are not

preferable is discussed below 4.3.3. Alternatively, the brute force approach can also be used in

finding good initial matrices. However, the problem with brute force is that in average it takes a

lot of time of find a good result. In a pHMM, there are two kinds of states that emit symbols, the

normal state and the insert state. Each of these emitting state corresponds to one position of the

binding peptide. But this correspondance has to be decided by MSA, which only gives one out of

many possible good alignments. To measure the transition and the emission rates base only on one

alignment is certainly not preferable.

Observation of known binding motifs of HLA-binding peptides shows that amino acids commonly

replace each others in the peptide. Thus, in this research, a state in the pcHMM will correspond

to a set of related amino acids. The symbols that a state emits correspond to the set of amino

acids that share some properties. Deciding which amino acids can be emitted by a state can be

derived from various methods, e.g. chemical properties of the amino acids (charge, hydrophobicity

etc.), a substitution matrix ([1]), etc. Based on the examination of some existing motifs, using

physical/chemical properties of amino acids seems to be the best criterion for choosing how amino

acids should be grouped together and thus it is adopted by this research. Biochemists classified 20

amino acids into eight groups according to one of the physical/chemical properties. This type of

grouping will be referred to as “single property grouping”. Figure 4.3 shows the eight groups, with

one group per line.

aliphatic L I V

aromatic F Y W H

non-polar L I V M CS CH F Y W H K A G

polar Y W H K R D E CH S T N Q

charged D E K H R

positive H K R

tiny A G CH S T

small V CS CH P A G S T D N

Figure 4.3: Chemical classification

Although the states could be formed based just on the above figure, it was considered worthwhile

to form states of amino acids that share more properties. Table 4.1 shows a 21x21 matrix Z, where

Zij contains the number of groups in which both amino acid i, and j appear. There are 21 amino

acids because C is differentiated as CH and CS . Information from this matrix is extracted and
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L I V CS P A G CH S T D N E Q K R H Y W F M

L 0 2 2 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1

I 2 0 2 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1

V 2 2 0 2 1 2 2 2 1 1 1 1 0 0 1 0 1 1 1 1 1

CS 1 1 2 0 1 2 2 2 1 1 1 1 0 0 1 0 1 1 1 1 1

P 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

A 1 1 2 2 1 0 3 3 2 2 1 1 0 0 1 0 1 1 1 1 1

G 1 1 2 2 1 3 0 3 2 2 1 1 0 0 1 0 1 1 1 1 1

CH 1 1 2 2 1 3 3 0 3 3 2 2 1 1 2 1 2 2 2 1 1

S 0 0 1 1 1 2 2 3 0 3 2 2 1 1 1 1 1 1 1 0 0

T 0 0 1 1 1 2 2 3 3 0 2 2 1 1 1 1 1 1 1 0 0

D 0 0 1 1 1 1 1 2 2 2 0 2 2 1 2 2 2 1 1 0 0

N 0 0 1 1 1 1 1 2 2 2 2 0 1 1 1 1 1 1 1 0 0

E 0 0 0 0 0 0 0 1 1 1 2 1 0 1 2 2 2 1 1 0 0

Q 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0

K 1 1 1 1 0 1 1 2 1 1 2 1 2 1 0 3 4 2 2 1 1

R 0 0 0 0 0 0 0 1 1 1 2 1 2 1 3 0 3 1 1 0 0

H 1 1 1 1 0 1 1 2 1 1 2 1 2 1 4 3 0 3 3 2 1

Y 1 1 1 1 0 1 1 2 1 1 1 1 1 1 2 1 3 0 3 2 1

W 1 1 1 1 0 1 1 2 1 1 1 1 1 1 2 1 3 3 0 2 1

F 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 2 2 2 0 1

M 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0

Table 4.1: The number of common chemical properties shared between each pair
of amino acids

turned into a directed graph 4.4 in the following way: for the numbers in each column, if Zij <= 2

for all i, and if Zij = 2, then amino acid pair ij is selected and drawn as two nodes with a directed

connection from j to i in the graph; if Zij <= 4 for all i, and if Zij >= 3, then amino acid pair

ij is selected and drawn as two nodes with a directed connection from j to i. From this graph all

cliques (a group of fully connected nodes) are picked out to form groups. Any amino acid not in

a group forms its own group of one. Note that at this point,CH and CS are treated as the one

amino acid C. The result of this technique can be seen in figure 4.4. The biological meaning of this

approach is that it groups amino acids by multiple chemical/physical properties that are shared by

amino acids in a group. This approach gives 10 states and will be referred to as “multiple property

grouping”.

The result of multiple property grouping is show in figure 4.5, with one group on each line.
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Figure 4.4: A directed graph that encodes the amino acid pairs with more than 3
(inclusive) common chemical properties
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Figure 4.5: New sets of amino acids developed by using multiple property grouping
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4.3.3 Heuristic approaches to initialize matrices

Another issue to be solved when using HMMs is how to find good initial states for emission and

transition matrices. Had an HMM training algorithm been able to achieve the global maximum,

the initial state of the matrices should not matter; from any matrices, the model would converge

to the matrices that give the global maximum. However, this is not the case for the Baum-Welch

(BW) algorithm which is only guaranteeed to find a local maximum. One way to get around this

problem is to use many different initial matrices, each of which will generate a local maximum. The

one that gives the largest local maximum would then be used [36]. Unfortunately, this approach is

not feasible here as the number of possible initial matrices is too large. A better way to tackle this

problem is to use knowledge about the peptide sequences to help select initial states of the emission

and transition matrices [35]. In this proposal, the physical/chemical properties of amino acids are

used to define states and determine the emission probabilities for states, and the adjacent amino

acid counts in the training sequences are used to determine the state transition probabilities. By

doing this, initial emission and transition matrices can be generated. The details of how to do this

follows.

The initial transition matrix is formed from training peptide sequences as follows. Adjacent

amino acids in a peptide are considered transitions from the amino acid on the left to the amino

acid on the right. With the different states in the HMM defined in Section 4.3.2, amino acid

transitions can be mapped to state transitions. An example of this is given in Figure 4.6. The left

column of the figure shows all adjacent amino acid pairs in the peptide. The entries in the right

column show all possible transitions that can generate the amino acid pair in the left column. 1

is the starting state, 10 is the ending state. State numbers 2 to 9 in this figure correspond to the

first line to the last line in Figure 4.3. Figure 4.7 records the counts of all the transitions in this

sequence. The numbers in the first row are “from” states and the numbers in the first column are

the “to” states.

With the data in Figure 4.6, we can calculate the rate of transition from one state to any

other. For example, the number of transitions from state 9 to state 2 is 2 and the total number of

transitions from state 9 to all other states is 8. Thus, the rate of transition from state 9 to 2 is 2
8 ,

or 0.25.

The emission matrix E is an |N |x|M | matrix, where N is the set of states, M is the set of 20

amino acids, and Eij is the probability of amino acid j (j ∈ M) being emitted by state i (i ∈ N). We

define for each state i, the set of amino acids that belong to it as Ai (the cardinality of this set being

|Ai|), and those that do not as Āi (whose cardinality is |Āi|). We then define two probabilities, Y ,

the probability of emitting amino acids that belongs to state i when in state i, and Z = 1− Y , the

probability of emitting some other amino acids when in state i. Then Eij = Y
|Ai|

if j is an element

of Ai, otherwise Eij = Z
|Āi|

. Arbitrarily, Y and Z are set to be 0.9 and 0.1, respectively. Appendix
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peptide: GILGFVFTL

all adjacent amino acids pairs: (G, GI, IL, LG, GF, FV, VF, FT, TL, L), where “(” represents

the starting position (state 1) and “)” represents the ending position (state 10).

amino acid pair state transitions (from–>to)

(G 1–>4, 1–>8, 1–>9

GI 9–>2, 9–>4, 8–>2, 8–>4, 4–>2, 4–>4

IL 2–>2, 2–>4, 4–>2, 4–>4

LG 2–>4, 2–>8, 2–>9, 4–>4, 4–>8, 4–>9

GF 4–>3, 4–>4, 8–>3, 8–>4, 9–>3, 9–>4

FV 3–>2, 3–>4, 3–>9, 4–>2, 4–>4, 4–>9

VF 2–>3, 2–>4, 4–>3, 4–>4, 9–>3, 9–>4

FT 3–>8, 3–>9, 4–>8, 4–>9

TL 8–>2, 8–>4, 9–>2, 9–>4

L) 2–>10, 4–>10

Figure 4.6: All the state transitions in peptide GILGFVFTL

6.3 show the training sequences that are used to derive the initial matrices for allele HLA-A*0201.

Appendix 6.3 and 6.3 show the initial matrices derived for HLA-A*0201, based on the states given

by “single property grouping” and “multiple property grouping”, respectively.

4.3.4 Training data

The fourth issue concerns the training data. Many previous HMMs do not use negative training

data to act as a control for the model. Without a corresponding model developed from negative

training data, the criterion to categorize a testing peptide is subjective to a certain degree. In

this proposed solution, two separate models are trained from positive and negative training data,

respectively. Except that the training data are different for the positive and the negative model,

the ways to derive states, initial matrices, and the way to do model training and testing are the

same for the two types of models.

Above issues are carried (tested) out in the following environment:

• A fcHMM that is implemented with the Baum-Welch algorithm.

• Two types of training data, positive and negative training data; a separate model is set up

from positive data and negative data, individually.
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1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 1 1 3 0 0 0 2 2 0

3 0 1 0 2 0 0 0 1 2 0

4 1 3 1 6 0 0 0 2 4 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0

8 1 1 1 2 0 0 0 0 0 0

9 1 1 2 3 0 0 0 0 0 0

10 0 1 0 1 0 0 0 0 0 0

Figure 4.7: Counts of transitions in the sample sequence in Figure 4.6

• A cross-validation approach for model training and testing: Each sequence in the data set

(both positive and negative) is used, in turn, as testing data. When a particular sequence is

selected to be the testing data, the remaining sequences are used to train the model. The

model is then used to classify the testing sequence. The positive training data gives the

testing data a score and the negative training data gives it another score. The higher score

decides the binding identity of the testing sequence.

• The threshold to stop the training process is 0.008. Let the logarithm of the model’s probabil-

ity for generating all training sequences in the last cycle be Pcur and that of the second-to-last

cycle be Pprev , then the training is stopped when
|Pcur−Pprev |

Pprev
is smaller than 0.008. 0.008 is an

emperical value, which is a tradeoff between the number of training cycles and the predictive

accuracy.

• The training and testing programs are written in Java programming language. The test-

ing program generates score (numerical values) for each testing sequence. The programs to

analyze these scores and do subsequent classification are written in shell scripts and Perl.

• The machines used to run programs include a cluster of 32 PIV, 2G RAM, 2.38GHz CPU

machines, a cluster of 32 PIII, 900M RAM, 866MHz CPU machines and 50 PIV, 256M RAM,

1.8GHz CPU machines.

The effectiveness of these approaches is examined through performance comparison to the most

popular pHMM application, HMMER. The details of this comparison is given immediately below.
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4.4 Comparison to HMMER

As a popular pHMM for various sequence alignment related tasks, HMMER can be used for vaccine

discovery. HMMER is compared to the “local program” (program developed for the current project)

in terms of predictive accuracy. The data used by HMMER is the same as the data used by the

local program (see Section 4.1, and so is the training and testing approach (the cross-validation

approach in Section 4.3.4). That is, each sequence in the data set (both positive and negative)

is used, in turn, as testing data. When a particular sequence is selected to be the testing data,

the remaining sequences are used to train the model. Thus, for each testing sequence, there is a

positive model and a negative model, each of which gives the testing sequence a score. The higher

one of the two scores determines the category of this testing sequence.

HMMER reports two scores for every testing sequence, a bit-score and a E-value. The bit-score

indicates how likely this sequence could be a member of the training sequences. The E-value is

how likely it is to get a sequence with this bit-score just by chance, when searching in the database

formed by the training sequences. The binding identity of a testing sequence is determined by com-

paring its positive bit-score to its negative bit-score. This approach does not require the E-value

to be considered. A bit-score is defined as:

bit-score = log2
P (seq|pHMM)

P (seq|null)

The numerator is the probability of generating the testing sequence by the profile HMM, which

is built from the training sequence alignment. The denominator is the probability of generating

the testing sequence by a null model. The null model is a model built from protein sequences in

PROSITE, representing the general amino acid composition of proteins. When a negative bit-score

is subtracted from a positive bit-score, the values given by the null model in the two scores cancel

out. The subtraction results in a (log-value) ratio of the positive and negative pHMM scores.

HMMER’s predictive accuracy is measured as follows: the positive (and negative) training

sequences are aligned by ClustalW [37](with all settings as default). A profile HMM is built based

on the alignment with “hmmbuild”. Based on the this profile HMM, “hmmsearch” generates a

score for a testing sequence. All the parameters in HMMER are set by default values.
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Chapter 5

Results

This section will cover three aspects of the results: first, the model’s ability to reach the global

maximum is investigated using artificial training data; second, the effect of using two heuristic

approaches (as out-lined in sections 4.3.1 and 4.3.3) on real biological data; last, a performance

comparison of this program to a typical pHMM program, HMMER, when both are run on real

biological data.

5.1 Model’s ability to achieve the global maximum

Using the fixed matrices shown in section 4.2.1 as initial matrices and the 350 sequences as training

data, the model converged to the “resultant” transition and emission matrices shown below. Figure

5.1 and Figure 5.2 show the value changes of the transition parameters and the emission parameters

during the model training process. As the model training exceeds 3,000 cycles, the values of these

parameters stay stable. When these parameters do not change values, the model’s probabilities of

generating all the sequences in two continuous cycles is so small that the model can be considered

as converged.

a) emission matrix b) transition matrix

A E D C 1 2 3 4

1 0 0 0 0 1 0 0 0 0

2 0.2027 0.1284 0.5080 0.1609 2 0.2861 0.7353 0.2861 0

3 0.2069 0.3957 0.2204 0.1770 3 0.7139 0.2480 0.6903 0

4 0 0 0 0 4 0 0.0167 0.0236 1.0

The natural log-probability of generating all 350 sequences by the fixed matrices is -1369.8243.

The natural log-probability of generating all 350 sequences by the resultant matrices is -1369.1762.

According to the method described in section 4.2.1 for result analysis, P1 = e−1369.8243 and P2 =

e−1369.1762, where e = 2.71828.... P2 is larger than P1 and the deviance is 1.29. Originally there are
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�

Figure 5.1: The convergence process of transition variables

�

Figure 5.2: The convergence process of emission variables
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8 variables in the emission matrix and 8 variables in the transition matrice (section 4.2.1). However,

since all emission variables (4 of them) for a particular state add up to 1, one of the variables is

automatically determined when the other three’s values are fixed. This brings the total number of

emission variables from 8 down to 6. The similar situation with transition variables reduces the

total number of transition variables to 5. Thus the total number of parameters for the model is

11. Since 1.29 is far smaller than 11, this means the model has the potential to achieves the global

maximum, which implies the Baum-Welch algorithm was implemented as expected.

5.2 Effects of proposed solutions

This section examines how the model’s topology and initial matrix affect the model’s predictive

accuracy. Table 5.1 and Table 5.2 show the results for allele HLA-A*0201 and allele HLA-B*3501

respectively in the form of AROC values. The rows show the effect of using various grouping

methods to initialize the transition and emission matrices (Section 4.3.3). The columns show

the effect of using either transition or state removal topological reduction (Section 4.3.1). The

values shown for transition and state removal topological reduction in the two tables are the best

performance these approaches can reach. In other words, out of the 120 topologies derived from

transition removal, the one that gives the best predictive accuracy is shown. Similarly for state

removal, the one being shown is selected from 8 topologies derived. In both tables, the uniform

matrix initialization and the fully connected topology are considered as controls. The accuracy of

each technique is represented as an AROC value. These same results are presented as individual

AROC curves in Figures 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8.

A previous comparison of MHC binding peptide prediction programs performed by Yu et al.

[10] showed AROC values in the range of 0.81-0.87. However, since their training data and the way

they used the training data are different from those in this study, the results are not comparable.

In order to have a performance reference for the local program, HMMER [58] will be used on the

same data.
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uniform matrix single property multiple property

initialization grouping grouping

fully connected 0.860 0.837 0.847

transition removal 0.860 0.858 0.862

state removal 0.861 0.948 0.991

Table 5.1: Model’s predictive accuracy comparisons of different initial matrices
and different model topologies (allele HLA-A*0201)

uniform matrix single property multiple property

initialization grouping grouping

fully connected 0.354 0.873 0.850

transition removal 0.976 0.902 0.917

state removal 0.854 0.854 0.986

Table 5.2: Model’s predictive accuracy comparisons of different initial matrices
and different model topologies (allele HLA-B*3501)
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�

Figure 5.3: AROC curves of the programs using uniform matrix initialization and
topological reduction for HLA-A*0201

�Figure 5.4: AROC curves of the programs using single property grouping matrix
initialization and topological reduction for HLA-A*0201
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�Figure 5.5: AROC curves of the programs using multiple property grouping matrix
initialization and topological reduction for HLA-A*0201

�

Figure 5.6: AROC curves of the programs using uniform matrix initialization and
topological reduction for HLA-B*3501
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�

Figure 5.7: AROC curves of the programs using single property grouping matrix
initialization and topological reduction for HLA-B*3501

�

Figure 5.8: AROC curves of the programs using multiple property grouping matrix
initialization and topological reduction for HLA-B*3501
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5.3 A performance comparison to HMMER

5.3.1 Predictive accuracy

The predictive accuracies of HMMER and the local program are shown through AROC curves.

Figures 5.9 and 5.10 show the results for allele HLA-A*0201 and HLA-B*3501, respectively. The

predictive accuracies, which are the areas under the curves, are shown in Table 5.3.

Besides the AROC values, sensitivity and specificity are usually extracted from the AROC

curves and used to compare performance. As discussed in Section 2.5.6, when the prevalence and

the cost of false positives are known, there are methods to pick up an optimal threshold (a point on

the AROC curve) to achieve the balance between the cost of false positives and the prevalence. This

optimal threshold determines the sensitivity and the specificity. However, when the cost information

is not available, the usual way to find values of these measuring parameters is to take the point

which gives the minimum sum of false negatives and false positives. The point is the intersection

of a line y = x + c and the AROC curve, where c is the maximal value the linear function can get.

The sensitivities and specificities of the local program and HMMER are calculated according to

this method and displayed in Tables 5.4 and 5.5.

�

Figure 5.9: Comparison between HMMER and local program (multiple property
grouping & topological reduction) on allele HLA-A*0201
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�

Figure 5.10: Comparison between HMMER and local program (multiple property
grouping & topological reduction) on allele HLA-B*3501

HLA-A*0201 HLA-B*3501

fully connected 0.847 0.850

transition removal 0.862 0.917

state removal 0.991 0.986

HMMER 0.956 0.964

Table 5.3: Predictive accuracy comparisons between the local program using mul-
tiple property grouping and HMMER
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sensitivity specificity

fully connected 0.827 0.751

transition removal 0.845 0.745

state removal 0.991 1.000

HMMER 0.914 0.892

Table 5.4: Sensitivity and Specificity of models for allele HLA-A*0201

sensitivity specificity

fully connected 0.914 0.738

transition removal 0.866 0.968

state removal 0.986 0.996

HMMER 0.900 0.932

Table 5.5: Sensitivity and Specificity of models for allele HLA-B*3501
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5.3.2 Model’s computational time

Computational time used by local program and HMMER on allele HLA-A*0201 and HLA-B*3501

are shown in table 5.6 and table 5.7.
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training testing testing environment

positive model negative model model testing

(116 sequences) (297 sequences) (single sequence)

fully connected 7hrs 15hrs <1 sec PIV, 256M DRAM, 100%usage of 1x1.8GHz cpu

(50machines) (50machines) (1 machine)

transition removal 20hrs 182hrs <1 sec PIV, 2G DRAM, 100% usage of 2.38GHz cpu

(32 machines) (32 machines) (1 machine)

state removal 8.3hrs 13hrs <1 sec PIV, 2G DRAM, 100% usage of 2.38GHz cpu

(32 machines) (32 machines) (1 machine)

HMMER 10mins 4hrs7mins <1 sec PIV, 256M DRAM, 16.9% and 5.4% usage of 1x1.8GHz

(1 machine) (1 machine) (1 machine) cpu for positive and negative training respectively

Table 5.6: Computational time comparisons between the local program and HM-
MER for allele HLA-A*0201. Each test is done on a single machine.
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training testing testing environment

positive model negative model model testing

(70 sequences) (237 sequences) (single sequence)

fully connected 1.2hrs(50machines) 2hrs(50machines) <1 sec(1 machine) PIV, 256M RAM, 90%usage of 1x1.8GHz cpu

transition removal 20.4hrs 178hrs <1 sec PIII, 900M RAM, 90% and 44%usage of 1x866MHz

(32 machines) (32 machines) (1 machine) cpu for positive and negative training respectively

state removal 15.7hrs 22hrs <1 sec PIII, 900M RAM, 90%usage of 1x866MHz cpu

(32 machines) (32 machines) (1 machine)

HMMER 10mins 2hrs36mins <1 sec PIV, 256M RAM, 5.8% and 4.9% usage of 1x1.8GHz

(1 machine) (1 machine) (1 machine) cpu for positive and negative training respectively

Table 5.7: Computational time comparisons between the local program and HM-
MER for allele HLA-B*3501. Each test is done on a single machine.
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Chapter 6

Discussion and future work

6.1 Effects of proposed solutions

6.1.1 HLA-A*0201

The AROC values in a certain column of Table 5.1 show the effect of topological reduction for

a particular matrix initialization approach. Values across the first column show how topological

reduction helps to improve the predictive accuracy for the uniform matrix initialization approach.

As the values in this column almost do not change, it implies that the topology reduction does

not improve the predictive accuracy for this type of matrix initialization. The second and the

third columns show the results for the two heuristic matrix initialization approaches, i.e. the single

property grouping and the multiple property grouping. The values in these two columns do show

that the predictive accuracy is improved as topologies are reduced. Since state removal give notably

higher AROC values than transition removal, state removal is more effective than transition removal

for allele HLA-A*0201.

The AROC values in a certain row of Table 5.1 shows the effect of matrix initialization for a

particular topology. Values across the first row shows the heuristic matrix initializations do not

improve accuracies for a fcHMM. Instead programs incorporating heuristic matrix initializations

have lower accuracies. Values across the second row do not show a better performance for heuristic

approaches, although one of them, the multiple property grouping has a slightly higher AROC

value than the uniform matrix initialization does. Nevertheless, values in the third row do show

improvements made by the two heuristic approaches and multiple property grouping works more

effectively than single property grouping does.

The possible explanation to these observations is as follows. The uniformly initialized matrices

start the fcHMM training at a place where the local maximum is larger than those of the heuristic

matrices. However, the place where uniformly initialized matrices started is too far away from

the global maximum, but the places where the heuristic matrices started are close to the global

maximum. Because of this, topological reduction does not help the model training (with uniform

matrix initialization) much in finding higher local maximums or the global maximum, while it does
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to the model trainings with heuristic matrix initializations. For heuristic matrix initializations, the

state removal approach seems more effective than the transition removal approach. This may be

because the state removal reduces the model connectivity more dramatically than the transition

removal does and thus the former leads the model trainings to explore larger areas that cover higher

local maximums or even the global maximum.

In Table 5.1, the AROC values of programs that incorporate the two heuristic approaches

(heuristic matrix initialization and topological reduction) are in the range of 0.858 to 0.991, inclu-

sive. These AROC values indicate that the local program has good (>0.800) to excellent (>0.900)

predictive power for HLA-A*0201. One more feature to notice is that among all values in the

table, the highest is given by the combination of multiple property grouping and the state removal

approach.

6.1.2 HLA-B*3501

Results for allele HLA-B*3501 in Table 5.2 are arranged in the same way as those for allele HLA-

A*0201 in Table 5.1. The AROC values in the first column show that a fcHMM has a very poor

predictive power and topological reductions improve the situation dramatically. The AROC values

in the second column show that transition removal helps to improve predictive power, while state

removal does not. The AROC values in the third column show that both transition and state

removal improves the performance notably and state removal works better than transition removal.

There is one obvious difference between the results for HLA-A*0201 and HLA-B*3501. For HLA-

A*0201, transition removal does not improve performance much on a fcHMM, but for HLA-B*3501,

it does.

The AROC values in the first row of Table 5.2 show that heuristic matrix initializations dramat-

ically outperform uniform matrix initialization and single property grouping works slightly better

than multiple property grouping. However, the second row shows different features than the first

row. All matrix initialization approaches got excellent predictive power, but uniform matrix ini-

tialization performs the best. The third row shows that the heuristic matrix initializations perform

equally or better than uniform matrix initialization and multiple property grouping works far better

than single property grouping.

In Table 5.2, the AROC values of programs that incorporate the two heuristic approaches

(heuristic matrix initialization and topological reduction) are in the range of 0.854 to 0.986, inclu-

sive. These AROC values indicate that the local program has good to excellent predictive power

for HLA-B*3501. Like HLA-A*0201, among all values in the table, the highest is given by the

combination of multiple property grouping and the state removal approach.

A possible explanation for the very low AROC value (0.354) is that the uniform matrices put the

starting point of the model training at the place where the local maximum is very small, compared
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to other local maximums. This leads to a very low AROC value for a fcHMM. The problem of being

trapped by local maximums may be fixed by using simulated annealing approach. For a pcHMM

derived from state removal or state removal, the model training may get out of the area where it

starts, which leads to a different and higher local maximum.

A possible explanation for the observation that transiton removal works better than state re-

moval in some cases in table 5.2 is as follows. Determined by the characteristics of the training

data for HLA-B*3501, there are many high local maximums that are close to each other. This

feature, in some cases, lets transition removal which does more subtle adjustments to a model’s

topology to achieve a higher local maximum than state removal does. By comparing the results of

HLA-A*0201 and HLA-B*3501, it is found that the state removal is somehow less effective than

transiton removal for HLA-B*3501 but more effective for HLA-A*0201. However, for both alle-

les, the best performance are given by the combination of the multiple property grouping and the

state removal. This implies that the multiple property grouping (or the initial matrices) plays an

important role in determining the performance.

Taking results from both alleles into considering, the following features are observed:

• Transition removal (a pcHMM) performs better than an fcHMM in all cases. State removal

outperform fcHMM in most cases (5 out of 6 cases).

• A fcHMM never has an accuracy higher than 0.900. Transition removal can, in some cases (3

out of 6 cases), achieve excellent predictive accuracy. So does state removal.

• Heuristic matrix initializations (single property and multiple property) improves performance

in some cases (4 out of 6 cases).

• For both alleles, the best predictive performance comes from the combination of multiple

property grouping and state removal.

In summary, the topological reduction can be used to increase predictive accuracy, while heuristic

matrix initializations can be used to increase predictive power in some cases. The most effective

approach is to combine multiple property grouping with state removal. This result implies that the

heuristic matrix initialization starts model training at a place that is closer to the global maximum

than the uniform matrix initialization does. However, there are still chances in which the model are

trapped into the local maximums. To get around this problem, the model training needs topological

reduction to help it to explore more area and find a high local maximum or the global maximum.

Since the state removal reduces the model’s topology more dramatically than the transition removal

does, it takes the model training out of the starting area more effectively. This is probability the

reason why the state removal has higher AROC values than the transition removal does.

One thing to keep in mind is that the testing results of the proposed solutions are obtained from

testings on two human MHCs only and the results have already shown some differences between
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these two alleles. Hence, the above discussion only give an idea of how well the proposed solutions

may work. The effectiveness of these solutions need to be confirmed by testings on more alleles from

more species. Another item to consider in this work is the well-known problem of “data overfitting”.

This means that a program’s performance has been overly tuned to fit the current set of training

data so that when it is used on another set of data, the performance changes. The main reason

that data overfitting may have occurred is that all the topologies derived from topological reduction

are tested on the current set of training data and the topology that gives the best performance is

selected. Consequently, the topology selected works the best for this set of training data but it may

not work as well for another set. This is one major limitation of this program. The ideal solution

to this problem is probably to use a diverse training data set for each allele, one that represents

the entire population of data for this allele. It is not possible to have the entire population of

data, but as more data (for training) become availabe in the future, the training data will be more

representative to the whole population. Thus, the situation for data overfitting will be improved.

6.2 A performance comparison with HMMER

6.2.1 Predictive accuracy

The predictive accuracy and computational time of the local program are compared to those of

HMMER on allele HLA-A*0201 and allele HLA-B*3501. In terms of predictive accuracy, the

AROC curves in Figure 5.9 show that predictive accuracy of the local program is worse than

HMMER when the model is fully connected and when the fcHMM is modified with transition

removal. However, the local program has better predictive accuracy (AROC value of 0.991) than

HMMER (AROC value of 0.956) when the fcHMM is modified with state removal. Unfortunately

the local program only achieves an AROC value of 0.948 when a singe property grouping method

and state removal is used (see Table 5.1). Therefore, only the combination of multiple property

grouping and the topological reduction with state removal allows the local program to exceed the

performance of HMMER. This result holds true for allele HLA-B*3501 according to Figure 5.10 and

Table 5.2. These data again indicate that the combination of multiple property grouping and the

proposed topological reduction is an effective approach to increase predictive accuracy. Sensitivity

and specificity calculated from the AROC curves (Tables 5.4 and 5.5) again show that only state

removal combined with multiple property grouping performs better than HMMER, for both allele

HLA-A*0201 and HLA-B*3501.
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6.2.2 Computational time

In terms of computational time, the local program needs far more time than HMMER. The local

program takes time in units of hours while HMMER only takes time in units of seconds. The

long computational time is another major limitation of the local program. This problem stems

from two main issues. First, the time complexity of one model training in the local program is

# of training cycles ∗ # of training sequences ∗ L2 ∗ N2, where L is the average length of the

training sequences and N is the number of states. In contrast, HMMER is a pHMM which is a

linear topology. The time complexity of HMMER will be linear of the number of states. The second

reason is that the transition removal involves training 120 such models and state removal involves

training 8 such models.

6.3 Future work

Overall the local program gives good predictive accuracy to real biological data and the two pro-

posed heuristic approaches improve performance. Thus the goal of this thesis has been achieved.

However, there are features of the local programs that should be tested and some limitations that

need to be tackled. Some instances of these are as follows:

• Simulated annealing can be tried to get the model training out of local maximums.

• The predictive accuracy of the local program should be tested with thresholds (to stop model

training) lower than 0.008.

• To have a better picture of the performance of the local program, it should be compared to

available programs that use different prediction methods.

• This work has only shown the effectiveness of proposed approaches on limited data resources.

To get a better grasp on the effectiveness of the local program, various experiments could be

performed, including:

– The performance of the local program could be tested on more alleles to see how consis-

tent the effects of the heuristic approaches observed is across alleles.

– The performance of the local program could be tested with data that includes all levels

of binding affinity instead of just strong binders. This data would be more representative

to the population of real-world peptides for a particular allele.

– The local program could also be tested on a limited amount of data to determine the

minimum amount of data required to train the model successfully.
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Appendix A.1: The single-letter amino acid code

G Glycine P Proline A Alanine

V Valine L Leucine I Isoleucine

M Methionine C Cysteine F Phenylalanine

Y Tyrosine W Tryptophan H Tistidine

K Lysine R Arginine Q Glutamine

N Asparagine E Glutamic Acid D Aspartic Acid

S Serine T Threonine

For each emission matrix in the appendices, the upper-case letters in the first column are amino

acids and integers in the first row are states. For each transition matrix in the appendices, the

integers in the first row are “from” state and the first column are “to” states.

Appendix B.1: Uniformly initialized emission and transition

matrices for HLA-A*0201

>emission matrix

1 2 3 4 5 6 7 8 9 10 11 12

A 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

C 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

D 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

E 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

F 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

G 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

H 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

I 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

K 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

L 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

M 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

N 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

P 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

Q 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

R 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
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S 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

T 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

V 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

W 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

Y 0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0

>transition matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.12 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

3 0.08 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

4 0.12 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

5 0.08 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

6 0.12 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

7 0.08 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

8 0.12 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

9 0.08 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

10 0.12 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

11 0.08 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0

12 0.0 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 0.0909 1.0

Appendix B.2: Initial emission and transition matrices de-

rived from single property grouping for HLA-A*0201

>emission matrix

1 2 3 4 5 6 7 8 9 10

Y 0.0 0.0059 0.225 0.075 0.0067 0.0059 0.075 0.0067 0.0091 0.0

W 0.0 0.0059 0.225 0.075 0.0067 0.0059 0.075 0.0067 0.0091 0.0

V 0.0 0.3 0.0062 0.075 0.0067 0.0059 0.0125 0.0067 0.1 0.0

T 0.0 0.0059 0.0062 0.0125 0.0067 0.0059 0.075 0.18 0.1 0.0

S 0.0 0.0059 0.0062 0.0125 0.0067 0.0059 0.075 0.18 0.1 0.0

R 0.0 0.0059 0.0062 0.0125 0.18 0.3 0.075 0.0067 0.0091 0.0

Q 0.0 0.0059 0.0062 0.0125 0.0067 0.0059 0.075 0.0067 0.0091 0.0
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P 0.0 0.0059 0.0062 0.0125 0.0067 0.0059 0.0125 0.0067 0.1 0.0

N 0.0 0.0059 0.0062 0.0125 0.0067 0.0059 0.075 0.0067 0.1 0.0

M 0.0 0.0059 0.0062 0.075 0.0067 0.0059 0.0125 0.0067 0.0091 0.0

L 0.0 0.3 0.0062 0.075 0.0067 0.0059 0.0125 0.0067 0.0091 0.0

K 0.0 0.0059 0.0062 0.075 0.18 0.3 0.075 0.0067 0.0091 0.0

I 0.0 0.3 0.0062 0.075 0.0067 0.0059 0.0125 0.0067 0.0091 0.0

H 0.0 0.0059 0.225 0.075 0.18 0.3 0.075 0.0067 0.0091 0.0

G 0.0 0.0059 0.0062 0.075 0.0067 0.0059 0.0125 0.18 0.1 0.0

F 0.0 0.0059 0.225 0.075 0.0067 0.0059 0.0125 0.0067 0.0091 0.0

E 0.0 0.0059 0.0062 0.0125 0.18 0.0059 0.075 0.0067 0.0091 0.0

D 0.0 0.0059 0.0062 0.0125 0.18 0.0059 0.075 0.0067 0.1 0.0

C 0.0 0.0059 0.0062 0.075 0.0067 0.0059 0.075 0.18 0.1 0.0

A 0.0 0.0059 0.0062 0.075 0.0067 0.0059 0.075 0.0067 0.0091 0.0

>transition matrix – derived from 116 positive training data shown in appendix 6.3

1 2 3 4 5 6 7 8 9 10

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0877 0.1257 0.1557 0.1378 0.1185 0.1375 0.1357 0.1636 0.1394 0.0

3 0.1039 0.0443 0.0560 0.0495 0.0450 0.0333 0.0434 0.0574 0.0539 0.0

4 0.3019 0.2527 0.2847 0.2649 0.2464 0.2667 0.2561 0.2755 0.2490 0.0

5 0.0519 0.0395 0.0511 0.0512 0.0711 0.075 0.0619 0.0646 0.0598 0.0

6 0.0487 0.0263 0.0219 0.0298 0.0355 0.0333 0.0322 0.0373 0.0324 0.0

7 0.1656 0.1269 0.1411 0.1389 0.1919 0.175 0.1747 0.1492 0.1544 0.0

8 0.1104 0.1066 0.0925 0.0962 0.1019 0.1 0.0891 0.0646 0.0830 0.0

9 0.1299 0.1581 0.1898 0.1687 0.1896 0.1792 0.1900 0.1736 0.1734 0.0

10 0.0 0.1198 0.0073 0.0630 0.0 0.0 0.0068 0.0143 0.0548 1.0

>transition matrix – derived from 297 negative training data shown in appendix 6.3

1 2 3 4 5 6 7 8 9 10

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0705 0.0702 0.0436 0.0693 0.0807 0.0555 0.0774 0.0863 0.0912 0.0

3 0.0457 0.0543 0.0436 0.0464 0.0470 0.0593 0.0339 0.0357 0.0391 0.0

4 0.2010 0.2026 0.1783 0.2019 0.2073 0.1985 0.1943 0.1957 0.2042 0.0

5 0.1188 0.1056 0.0973 0.0970 0.1047 0.1025 0.1047 0.0982 0.0966 0.0
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6 0.0601 0.0586 0.0474 0.0557 0.0566 0.0611 0.0572 0.0553 0.0513 0.0

7 0.2389 0.2344 0.2544 0.2287 0.2206 0.2305 0.2243 0.2118 0.2161 0.0

8 0.0953 0.0803 0.1147 0.0897 0.0892 0.0931 0.1015 0.0993 0.0987 0.0

9 0.1697 0.1418 0.1833 0.1654 0.1517 0.1590 0.1636 0.1731 0.1594 0.0

10 0.0 0.0521 0.0374 0.0461 0.0422 0.0405 0.0430 0.0446 0.0434 1.0

Appendix B.3: Initial emission and transition matrices de-

rived from multiple property grouping for HLA-A*0201

>emission matrix

1 2 3 4 5 6 7 8 9 10 11 12

Y 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.18 0.225 0.0053 0.0053 0.0053 0.0

W 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.18 0.225 0.0053 0.0053 0.0053 0.0

V 0.0 0.3 0.225 0.0067 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

T 0.0 0.0059 0.0062 0.18 0.18 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

S 0.0 0.0059 0.0062 0.18 0.18 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

R 0.0 0.0059 0.0062 0.0067 0.0067 0.18 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

Q 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.0067 0.0062 0.0053 0.9 0.0053 0.0

P 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.9 0.0

N 0.0 0.0059 0.0062 0.0067 0.18 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

M 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.0067 0.0062 0.9 0.0053 0.0053 0.0

L 0.0 0.3 0.0062 0.0067 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

K 0.0 0.0059 0.0062 0.0067 0.0067 0.18 0.18 0.0062 0.0053 0.0053 0.0053 0.0

I 0.0 0.3 0.0062 0.0067 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

H 0.0 0.0059 0.0062 0.0067 0.0067 0.18 0.18 0.0067 0.0053 0.0053 0.0053 0.0

G 0.0 0.0059 0.225 0.18 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

F 0.0 0.0059 0.0062 0.0067 0.0067 0.0067 0.0067 0.0067 0.0053 0.0053 0.0053 0.0

E 0.0 0.0059 0.0062 0.0067 0.0067 0.18 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

D 0.0 0.0059 0.0062 0.0067 0.18 0.18 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

C 0.0 0.0059 0.225 0.18 0.18 0.0067 0.18 0.0062 0.0053 0.0053 0.0053 0.0

A 0.0 0.0059 0.225 0.18 0.0067 0.0067 0.0067 0.0062 0.0053 0.0053 0.0053 0.0

>transition matrix – developed from 116 positive training data in appendix 6.3
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1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.1452 0.1895 0.1994 0.2670 0.2448 0.1953 0.2361 0.2490 0.1667 0.1864 0.2353 0.0

3 0.1398 0.1264 0.1108 0.1522 0.1463 0.1445 0.1545 0.1634 0.1190 0.1525 0.1412 0.0

4 0.1828 0.1607 0.1191 0.1054 0.1194 0.1680 0.1545 0.1479 0.1190 0.1356 0.2000 0.0

5 0.0806 0.0939 0.0720 0.0937 0.1224 0.1563 0.1116 0.1128 0.1905 0.1186 0.1882 0.0

6 0.0860 0.0596 0.0859 0.1054 0.1045 0.1172 0.0901 0.0817 0.1190 0.1186 0.0824 0.0

7 0.1559 0.0650 0.0748 0.0773 0.0836 0.0898 0.0901 0.0739 0.0714 0.1017 0.0 0.0

8 0.1720 0.0668 0.0886 0.0937 0.0925 0.0742 0.0773 0.0895 0.0714 0.1186 0.0588 0.0

9 0.0161 0.0144 0.0028 0.0094 0.0119 0.0195 0.0172 0.0156 0.0476 0.0169 0.0 0.0

100.0161 0.0144 0.0194 0.0304 0.0328 0.0195 0.0258 0.0117 0.0 0.0 0.0471 0.0

110.0054 0.0289 0.0499 0.0422 0.0328 0.0156 0.0258 0.0428 0.0714 0.0169 0.0471 0.0

120.0 0.1805 0.1773 0.0234 0.0090 0.0 0.0172 0.0117 0.0238 0.0339 0.0 1.000

>transition matrix – developed from 297 negative training data in appendix 6.3

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.1107 0.1046 0.1010 0.1344 0.1626 0.1240 0.0961 0.0647 0.1690 0.1315 0.15 0.0

3 0.1086 0.1143 0.1059 0.1029 0.0934 0.0993 0.1212 0.1312 0.1972 0.0516 0.0563 0.0

4 0.1496 0.1197 0.1256 0.1548 0.1609 0.1371 0.1390 0.1701 0.2535 0.1315 0.1313 0.0

5 0.1660 0.1489 0.1626 0.1640 0.1592 0.136290.1787 0.2015 0.1268 0.1127 0.1313 0.0

6 0.1865 0.1575 0.1290 0.1529 0.1540 0.1609 0.1369 0.1442 0.0423 0.2207 0.2375 0.0

7 0.1291 0.1499 0.1355 0.0945 0.1056 0.1289 0.1317 0.1349 0.0423 0.1080 0.0625 0.0

8 0.0717 0.0809 0.0837 0.0556 0.0407 0.0723 0.0439 0.0647 0.1268 0.0423 0.0625 0.0

9 0.0123 0.0097 0.0209 0.0158 0.0078 0.0033 0.0188 0.0129 0.0 0.0 0.0 0.0

100.0348 0.0270 0.0382 0.0250 0.0156 0.0369 0.0376 0.0185 0.0 0.0845 0.0875 0.0

110.0307 0.0097 0.0320 0.0306 0.0329 0.0361 0.0324 0.0019 0.0 0.0329 0.0063 0.0

120.0 0.0777 0.0665 0.0695 0.0675 0.0649 0.0637 0.0555 0.0423 0.0845 0.075 1.0

Appendix C: Training and testing data

Appendix C.1: Data for HLA-A*0201

This section shows the positive (named “binders”) and negative (named “non-binders”) training

and testing data used in this work. The data for HLA-A*0201 is listed first followed by data for
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HLA-B*3501.

binders

The following 116 binders are extracted from MHCPEP [21]. They are labeled as peptides that

have a high level of binding affinity to HLA-A*0201 and have T-cell activity.

GILGFVFTL LLFGYPVYV FIAGNSAYEYV GLLGFVFTL FLPSDYFPSV

LLMGTLGIV TLGIVCPI YMLDLQPETT WLSLLVPFV YLVAYQATV

LLGRNSFEV SLYADSPSV GLSRYVARL FLPSDFFPSV ILCWGELMTL

KLWVTVYYGV FLYCYFALV LLPENNVLSPL RMPEAAPPV ALNKMFCQL

GLAPPQHLIRV LLTEVETYVL SLLTEVETYVL QMVTTTNPL

QTTKHKWEAAHVAEQWRAYL GPEYWDGETRNMKA

WDRETQICKAKAQTDRENLRIALRY WDRETQISKTNTQTYRESLRNLRGY

WDRETQISKTNTQTYREDLRTLLRY KRWILGLNKIVRMYC

SAAFEDLRVLSFIRG KGILGFVFKLTV FLPNDFFPSV

FLPADFFPSV FLPVDFFPSV MLLSVPLLL YMNGTMSQV

KLVALGINAV KTWGQYWQV VLYRYGSFSV YLNKIQNSL

YIGEVLVSV GILTVILGV TVILGVLLL ALMDKSLHV RVIEVLQRA

LLNATDIAV WLWYIKIFI CLGGLLTMV LLFNILGGWV ALMPLYACI

FLLLADARV LLGRDSFEV SLYNTVATL FLPSDCFPSV SLMAFTAAV

FLPSDDFPSV GILGFVKTLTV NLYNELEMNYYGKQENWYSL

MMRKLAILSV YGKQENWYSL YLKKIKNSL YLKKIQNSL SLKKNSRSL

SLNFLGGTTV FLWGPRALV KIFGSLAFL CLTSTVQLV RILGAVAKV

RGPGRAFVAI WTDQVPFSV ITSQVPFSV YMDGTMSQV ALWGFFPVL

ILTVILGV LMDKSLHV AAGIGILT ILGVLLLI FLIFFDLFLV

VLAGLLGNV GLIMVLSFL KILSVFFLA GLLGNVSTV VLPEKDSWTV

EILKEPVHGV KLAEYVAKV RTQDENPVV SLSRFSWGA SAHKGFKGV

GTLSKIFKL LMLSPDDIEQ QLAKTCPVQ GLAPPQHLI GLAPPQHEI

LLGRNSFEM PLDGEYFTL FLLSLGIHL GLYSSTVPV HLYSHPIIL

TLIDVCPI LLAQFTSAI YLVSFGVWI LLVPFVQWFV GLLGWSPQA

FLLTRILTI MMWYWGPSL ILLLCLIFLL KLHLYSHPI GLSPTVWLSV

LLVLQAGFFL LLLCLIFLL ILSPFMPLL VLLDYQGML LLPIFFCLWV

YLEPGPVTA IVGAETFYV

non-binders
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The following 28 peptides are extracted from MHCBN [61]. These peptides do not have T-cell

activity which usually implies that they do not bind to HLA-A*0201.

AGNSAYEYV ALEAQQEAL FIAGNSAYE IAGNSAYEY IFIAGNSAY

ILESLFRAV KIFIAGNSA LKIFIAGNS FRYNGLIHR LVMAPRTVL

SRYWAIRTR YLKDQQLL AASKERGSVSL APRASRPSL APRTVLVYLL

ARLYGIRAK KRYEGLTQR PSLKIFIAGNS DCKTILKAL GEIYKRWII

APRTVALTA PSLKIFIAG PSLKIFIAGNSAYESLKIFIAGN

VITKKVADL KRWIILGLNK RRYQKSTEL ELRSRYWAI

The following 32 peptides are extracted from MHCBN [61]. They do not bind to HLA-A*0201 but

their T-cell activities are unknown

KAMVQAWTFT FDCLPLGVL MTKKRKVDGL SIEDLEVTC SIEDLEVTCQ

DLEVTCTWKL VTCTWKLPT ELGRPSMVWL DIKMILKMV DLFLKEGAC

DLVFDECGI DLVFDECGIT ELFPPLFMA ETFKAVLDGL ETLSITNCRL

GITDDQLLA GVLMKGQHL KMILKMVQL KVKRKKNVL LVELAGQSL

LVFDECGIT NLRRLLLSHI PLQALLERA QTLKAMVQA RTFYDPEPIL

SLSHCSQLTT STEAEQPFI SVWTSPRRLV VLRLCCKKL WLSANPCPHC

WTSPRRLVEL

WTVWSGNRA

The following 237 nonamers are derived from the HPV 16 E6 and E7 proteins [64] by sliding

a 9mer window along the protein sequence. According to the literature, these peptides do not

to bind to HLA-A*0201 or HLA-B*3501. Thus these peptides are also used as negative

training sequences for HLA-B*3501.

DGNPYAVCD YRDGNPYAV EQLNDSSEE LCDLLIRCI TLEQQYNKP

TTDLYCYEQ TFCCKCDST ILECVYCKQ CDSTLRLCV HYNIVTFCC

DLQPETTDL PLCDLLIRC LDLQPETTD CMSCCRSSR TLEDLLMGT

WTGRCMSCC TPTLHEYML LRLCVQSTH DFAFRDLCI DEIDGPAGQ

LDKKQRFHN CDLLIRCIN DGPAGQAEP PAGQAEPDR YCYEQLNDS

LLRREVYDF YEQLNDSSE NDSSEEEDE PEKQRHLDK QRHLDKKQR

EYRHYCYSL DSSEEEDEI QLCTELQTT QRFHNIRGR RCINCQKPL

LCTELQTTI EQQYNKPLC KCDSTLRLC RDGNPYAVC NCQKPLCPE
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YCYSLYGTT HVDIRTLED CCRSSRTRR LGIVCPICS SLYGTTLEQ

YSLYGTTLE EDEIDGPAG RTLEDLLMG GNPYAVCDK KCLKFYSKI

MHGDTPTLH SRTRRETQL RHLDKKQRF VYRDGNPYA PRKLPQLCT

VYCKQQLLR FRDLCIVYR CCKCDSTLR GRCMSCCRS STLRLCVQS

QLLRREVYD KQQLLRREV SSRTRRETQ KKQRFHNIR HDIILECVY

ERPRKLPQL SEYRHYCYS FCCKCDSTL DPQERPRKL SSEEEDEID

DRAHYNIVT KQRHLDKKQ SKISEYRHY AHYNIVTFC EDLLMGTLG

LPQLCTELQ IRTLEDLLM RHYCYSLYG QAEPDRAHY LKFYSKISE

DIRTLEDLL YCKQQLLRR KRTAMFQDP VCDKCLKFY RFHNIRGRW

HYCYSLYGT RCMSCCRSS GPAGQAEPD PTLHEYMLD EYMLDLQPE

KPLCPEKQR KFYSKISEY YAVCDKCLK NIVTFCCKC INCQKPLCP

LYGTTLEQQ YSKISEYRH RSSRTRRET YNKPLCDLL KPLCDLLIR

AVCDKCLKF REVYDFAFR DLYCYEQLN GTTLEQQYN QPETTDLYC

QSTHVDIRT TDLYCYEQL LCPEKQRHL RREVYDFAF VTFCCKCDS

LEQQYNKPL MGTLGIVCP CRSSRTRRE MSCCRSSRT AEPDRAHYN

LHEYMLDLQ NKPLCDLLI IVYRDGNPY LCIVYRDGN RLCVQSTHV

LIRCINCQK HQKRTAMFQ EPDRAHYNI TLRLCVQST RWTGRCMSC

CPEKQRHLD DKCLKFYSK PDRAHYNIV LMGTLGIVC GDTPTLHEY

IILECVYCK CLKFYSKIS KQRFHNIRG IDGPAGQAE IVTFCCKCD

YGTTLEQQY PYAVCDKCL CINCQKPLC CTELQTTIH EKQRHLDKK

SCCRSSRTR TTLEQQYNK RPRKLPQLC PQERPRKLP QDPQERPRK

CKCDSTLRL LLIRCINCQ CDKCLKFYS LQPETTDLY ISEYRHYCY

RDLCIVYRD LEDLLMGTL IVCPICSQK RAHYNIVTF CVQSTHVDI

TELQTTIHD NPYAVCDKC LECVYCKQQ THVDIRTLE AFRDLCIVY

YDFAFRDLC GIVCPICSQ TAMFQDPQE QERPRKLPQ TGRCMSCCR

CQKPLCPEK IRGRWTGRC GRWTGRCMS RKLPQLCTE TTIHDIILE

VCPICSQKP QLNDSSEEE STHVDIRTL VYDFAFRDL PLCPEKQRH

YRHYCYSLY CIVYRDGNP DLLMGTLGI QQYNKPLCD LNDSSEEED

CVYCKQQLL YNIVTFCCK QKRTAMFQD QTTIHDIIL EVYDFAFRD

ETTDLYCYE VQSTHVDIR IRCINCQKP MHQKRTAMF QKPLCPEKQ

FHNIRGRWT IHDIILECV DKKQRFHNI PQLCTELQT QYNKPLCDL

CYSLYGTTL LCVQSTHVD NIRGRWTGR GQAEPDRAH CYEQLNDSS

RTAMFQDPQ LYCYEQLND EIDGPAGQA HGDTPTLHE MFQDPQERP

CKQQLLRRE DTPTLHEYM HEYMLDLQP VDIRTLEDL DLCIVYRDG

EEDEIDGPA FQDPQERPR DLLIRCINC HLDKKQRFH AGQAEPDRA

PETTDLYCY FYSKISEYR DSTLRLCVQ QQLLRREVY HNIRGRWTG
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ELQTTIHDI DIILECVYC KISEYRHYC LRREVYDFA ECVYCKQQL

SEEEDEIDG RGRWTGRCM EEEDEIDGP TIHDIILEC CSQKPMHQK

KPMHQKRTA PICSQKPMH QKPMHQKRT SQKPMHQKR CPICSQKPM

PMHQKRTAM ICSQKPMHQ

Appendix C.2: Data for HLA-B*3501

binders

The following 70 binders are extracted from MHCPEP [21]. They are labeled as peptides that

have a high level of binding affinity to HLA-B*3501 and have T-cell activity.

VPVMPRVPL FPVTPRVPL LPLDLSVIL LPITCEYLL HPLTNNLPL

LPLQIPIPL VPVSETVEL TPVQVQMCL LPGFDFTPGY SPIETVPVKL

EPVPLQLPPL IPLGDAKLVI EPIDKEIYPL YPIVQNLQGQM FPFDENGNVY

VPVWKEATTTL RPIVSTQLLL TPPLVKLWYQL LPINALSNSL IPVESMETTM

YPCTVNFTIF YPGHVSGHRM LPYIEQGMQL NPAIASLMAF LPVCQDHLEF

RPLLREDVTF SPLTTQNTLLF SPDADLIEANL YPWPLYGNEGL TPIPAASQLDL

TPTFVHLQATL SPLTPELNEIL QPLTSPTTSQL QPISHEEQPRY QPLGTQDQSLY

VPIKDIRNLY CPNLVSYSSY IPKKRKRVPY FPVRPQVPL FPVRPQVPM

FPVRPQVPF FPVRPQVPA FPVRPQVPW FPVRPQVPY FPASFFIKL

IPIPSSWAF LPVFTWLAL FPFVLAAII FPHCLAFSY LPWHRLFLL

FPHCLAFSI FPIPSSWAI FPGCSFSIF FPISHLYIL FPFCLAFSY

MPFAGLLI EPIVGAETF IPAETGQETAY TPGPGIRY LPCRIKQII

YPLTSLRSL DSCMGLIY NSCMGLIY APCMGLIY ASCIGLIY

YPNQNLQGQM FPFDENGNPVY MPLETCILAI TPYAGEPAPF FPHCLAFSYM

non-binders

The 237 non-binders for HLA-B*3501 are the same 237 non-binders for HLA-A*0201 listed

above.
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