
This is the author's final version of the contribution published as: 
Anglano, Cosimo; Gaeta, Rossano; Grangetto, Marco. Securing Coding-Based 
Cloud Storage Against Pollution Attacks. IEEE TRANSACTIONS ON 
PARALLEL AND DISTRIBUTED SYSTEMS. 28 (5) pp: 1457-1469. 
DOI: 10.1109/TPDS.2016.2619686 
The publisher's version is available at: 
https://ieeexplore.ieee.org/document/7604064 
 

© 2016 IEEE.  Personal use of this material is permitted.  Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers 
or lists, or reuse of any copyrighted component of this work in other works.” 
 



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 1

Securing coding-based cloud storage against
pollution attacks

Cosimo Anglano, Rossano Gaeta, and Marco Grangetto, Senior Member, IEEE

Abstract—The widespread diffusion of distributed and cloud storage solutions has changed dramatically the way users, system

designers, and service providers manage their data. Outsourcing data on remote storage provides indeed many advantages in terms

of both capital and operational costs. The security of data outsourced to the cloud, however, still represents one of the major concerns

for all stakeholders. Pollution attacks, whereby a set of malicious entities attempt to corrupt stored data, are one of the many risks that

affect cloud data security.

In this paper we deal with pollution attacks in coding-based block-level cloud storage systems, i.e. systems that use linear codes to

fragment, encode, and disperse virtual disk sectors across a set of storage nodes to achieve desired levels of redundancy, and to

improve reliability and availability without sacrificing performance. Unfortunately, the effects of a pollution attack on linear coding can

be disastrous, since a single polluted fragment can propagate pervasively in the decoding phase, thus hampering the whole sector.

In this work we show that, using rateless codes, we can design an early pollution detection algorithm able to spot the presence of

an attack while fetching the data from cloud storage during the normal disk reading operations. The alarm triggers a procedure that

locates the polluting nodes using the proposed detection mechanism along with statistical inference. The performance of the proposed

solution is analyzed under several aspects using both analytical modelling and accurate simulation using real disk traces. Our results

show that the proposed approach is very robust and is able to effectively isolate the polluters, even in harsh conditions, provided that

enough data redundancy is used.

Index Terms—Cloud storage, coding, security, integrity, performance, pollution attack.

✦

1 INTRODUCTION

Block-level cloud storage systems [1] provide the sub-
strate allowing users and applications to attach their
computing resources to remote, dynamically provisioned
storage resources, that appear, behave, and can be used
as local disks. Thanks to them, very large data sets
can be stored without having to incur into potentially
significant capital and operational expenses. However,
to unlock their full potential, various problems need to
be properly addressed, including performance of data
access, as well as data availability and security.

Security of outsourced data to the cloud represents
a key concern for users, system designers, and ser-
vice providers. Among the many risks to data security,
pollution attacks represent one of the most dangerous
threats to data integrity, i.e., the ability of ensuring
data trustworthiness. In this kind of attack, malicious
entities take control of one or more storage resources to
corrupt (pollute) data (or parts of it) so as to hinder data
availability.

The negative impact of pollution attacks is further am-
plified when coding techniques are employed to represent
data outsourced on storage resources. In this case, indi-
vidual data items (each one stored independently from

• Rossano Gaeta and Marco Grangetto are with Università degli Studi
di Torino, Dipartimento di Informatica, Torino, Italia. Cosimo Anglano
is with Università degli Studi del Piemonte Orientale, DiSIT-Computer
Science Institute, Alessandria, Italia.
E-mail: {first.last}@unito.it {first.last}@unipmn.it

each other) are first subdivided in parts, that are then
encoded to obtain a suitable number of coded fragments
to be placed on a set of independent storage resources;
the set of coded fragments must be computed such that
a suitable subset of it allows the user to reconstruct the
original data item. In this case, a couple of hard problems
arise:

• in principle, any sequence of bits may be a valid
coded fragment, so there is no simple mean to find
out whether the data has been altered by a malicious
storage node until the corresponding data item has
been recovered by the user;

• even under the assumption that the above data
item has been recovered, and it has been correctly
detected as polluted, it is not trivial to understand
which coded fragment(s) among those received by
the user was polluted (and thus to identify the
malicious storage resource responsible for that).

1.1 Our contribution

In this paper we propose a solution to both problems:

• we devise a pollution detection algorithm that detects,
with high probability if a set of untrusted storage
resources provides at least one polluted coded frag-
ment. The algorithm is based on a modified version
of the LT decoding algorithm exploiting Gaussian
Elimination; since an analytical model for decoding
(and detection) performance is unavailable in the
literature we resort to simulations to estimate the
detection probability.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 2

• we design an identification algorithm that identifies
the storage resources that are polluters with high
probability. The algorithm we propose is not based
on cryptographic checksums or digital signatures
(hence it does not rely on the existence of a PKI
or preestablished secure channels) and it only ex-
ploits coding redundancy and efficient decoding
algorithms that require the solution of systems of
linear equations.

• We perform an extensive evaluation of our algo-
rithm using a combination of experimentation with
a C++ prototype, analytical modeling and discrete-
event simulations driven by real-word disk access
traces. In particular, we assess its accuracy and
time complexity, and we show that identification
of malicious storage resources is possible with high
probability and low running time for a wide range
of coding redundancies. Moreover, we show that the
average number of sector reads required to identify
all polluters is very low and decreases as the coding
redundancy increases.

We use the architecture of ENIGMA (defined in [2]) as a
blueprint for the model of a typical cloud storage system
based on LT codes, and we exploit some results reported
[2] to set the values of various system parameters in
the experimental evaluation. We would like to point out
that in [2] we limited ourselves to quantify the ability
of ENIGMA of merely tolerate the presence of polluters
in the system, i.e. its ability of correctly reconstructing a
sector assuming that a subset of its fragments have been
altered, but we did not study the problem of detecting
polluted sectors and of identifying malicious storage
nodes responsible for that.

The paper is organized as follows. Sec. 2 discusses
related works while in Sec. 3 we present the cloud
storage model on which our work is based. Then, we
continue with Sec. 4, where we discuss the attack model
we consider in our work, and illustrate the pollution
detection algorithm we devised. In Sec. 5 we move to
the problem of identifying polluters, and we present our
identification algorithm. In Sec. 6 we develop a mathe-
matical model enabling us to study the time required
to identify all polluters in the cloud storage system,
that is validated against simulation results in Sec. 7. In
this latter section, we also study, via experimentation
and simulation, the accuracy vs. speed trade-off of the
proposed algorithm. Finally, Sec. 8 concludes the paper,
and outlines future research work.

2 RELATED WORK

Several papers have dealt with the problem of integrity
check and repair of coding-based cloud storage systems.
Closer to the spirit of our work are [3] and [4].

In [3] the authors consider random coding-based cloud
storage and devise both a pollution detection algorithm
and four identification and repair algorithms to recover
the original data. The algorithms represent trade-offs

between computational and communication complexity
and successful identification (and repair) probability.
This work differs from ours in many ways:

• the work in [3] exploits coding in GF (q) with
very large q to assume one extra coded fragment
is enough to detect pollution, i.e., the pollution
detection algorithm is assumed to be perfect. Con-
versely, we base our work on an imperfect pollution
detection algorithm (see Alg. 1, Sec. 4) that stems
from the use of LT codes based on simple XOR
combinations (q = 2), and of small values of the
coding block length k (that are preferred in the
context we consider for the sake of performance
and availability [2]). The imperfection of the pol-
lution detection algorithms forced us to develop a
more complex approach with respect to [3] because
we simply cannot trust the (imperfect) detection
mechanism to draw conclusions on the status of the
system of equations. All algorithms in [3] would be
more complex if an imperfect pollution detection
mechanism had to be adopted;

• our pollution detection algorithm works incremen-
tally as soon as an additional coded fragment is an-
alyzed therefore it can detect pollution even before
the data is recovered (it allows for a reduced run-
ning time). Conversely, the detection algorithm in
[3] works right after the system of linear equations
is solved. Alg. 1, being a variation of GE decoding
follows the same principle of [3]. We provide the
implementation details in the specific case of LT
codes that, being suboptimal from the decoding
overhead point of view, lead to suboptimal (imper-
fect) pollution detection;

• the output of the two polluter identification meth-
ods are different. Algorithms in [3] are invoked only
if a random subset of cardinality k + 1 (out of n
available equations) triggers the pollution detection,
and aim to repair the data and to output a clean set
of equations, from which the original data can be
recovered. This means that only the polluted equa-
tions in the originally drawn subset are removed,
while other polluted equations in the remaining
n− k− 1 ones are left there. Our algorithm, instead,
processes all the n equations at once and outputs
the set of all malicious storage nodes. This involves
a more complex organization of our method (Alg. 2,
Sec. 5) and represents a significant difference with
respect to algorithms in [3] (we believe that algo-
rithms in [3] could well be adapted to output the
entire set of polluted equations although to the price
of a more complex structure;

• computational complexity of identification algo-
rithms is sensitive to n and k since they are all based
on trying all different subsets of equations until a
clean one is found. In [5] the same authors devise
a more efficient decoding algorithm that sometimes
has to resort to a complex subspace search.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 3

• besides characterizing the accuracy of our method
(estimation of probability pf ) we conduct a more
comprehensive analysis to evaluate the time re-
quired for identifying all polluters in the system.

In [4] rateless codes are exploited to devise a file based
cloud storage system that achieves high availability and
security; the paper mainly deals with data integrity and
data repair and focuses on exact repair instead of a
simpler functional repair of polluted coded fragments.
The authors propose to use multiple LT encoding and
decoding checks to avoid LT decoding failures; since
the number of required encoding and decoding checks
is equal to

(

n
k

)

, it follows that the data integrity check
algorithm may become rather complex as the values of
n and k increase. Nonetheless, only coding vectors are
involved in the proposed approach that turns to be a
one-time preprocess that can be reused on different files.

Cryptographic or algebraic based approached to de-
sign on-the-fly verification techniques of the received
coded fragments is another line of research proposed and
discussed by several papers, e.g., [6], [7], [8], [9], [10],
[11], [12], [13], [14]. High computational costs for ver-
ification and remarkable communication overhead due
to pre-distribution of verification information represent
limitations of these approaches.

Besides verification, error correction of corrupted
coded fragments is another important approach to deal
with pollution attacks in coding-based systems, e.g.,
[15], [16], [17], [18]. All these methods are based on the
addition of coding information that enable the coded
fragment receivers to detect and automatically recon-
struct the original data. The price to be paid is a re-
markable increase in the coding overhead; furthermore,
the effectiveness of these approaches heavily depends on
the amount of corrupted information.

3 SYSTEM MODEL

The architecture of the cloud storage system we consider
in this paper builds upon the ENIGMA distributed cloud
storage infrastructure [2], that allows the provision of
Virtual Disks (VDs), consisting of a set of consecutively-
numerated sectors, that can be used as if they were
standard physical disks. Its architecture features a set
of NS Storage Nodes (SNs), that store VD sectors after
their proper encoding by means of rateless codes, and a
Proxy where all the metadata allowing the retrieval and
decoding of VD sectors are kept.

More precisely, ENIGMA uses Luby Transform (LT)
rateless codes [19] to encode each sector, whereby each
sector S is first split into k fragments of equal length
S = (s1, . . . , sk), from which n coded fragments F =
(f1, . . . , fn) are created [2]; these fragments are then
placed on a subset AS of the NS storage nodes. The
parameter k is known as coding block length, whereas n
can be selected freely allowing to reach the desired level
of redundancy n/k. After encoding, the n fragments of
a given sector S are stored in group of x on a random

s2s1 sk

f1 f2

SN1

Sector S

fn−1 fn

SNn/x

f3 f4

SN2

Fig. 1. Sector encoding and placement.

subset of the SNs. Thus, we have that every sector is
stored on |AS | = ⌈n/x⌉ different SNs.

In this paper we also assume that a subset of NP of the
NS storage nodes are malicious and may intentionally
corrupt the data they store (we call them polluters), and
we also assume that the coded fragments of a given
sector are stored by no more than nP (out of the total
NP ) polluters.

To read a sector S, all the SNs storing fragments of
that sector are contacted by using the metadata stored
on the Proxy. Upon receiving this request, each SN sends
to the Proxy the x coded fragments of S it stores. The
Proxy then progressively decodes the original sector S
using the On-the-Fly Gaussian Elimination (OFG) [20],
[21] algorithm. Any set of k′ ≥ k coded fragments can
be interpreted as a linear system of equations that can be
solved with Gaussian Elimination to get the original k
sector fragment (provided that k independent equations
are available). The average number of fragments in
excess ǫ = (k′ − k) required for decoding is termed as
coding overhead.

The overall scenario is graphically shown in Fig. 1
that represents a sector S first broken into k parts
S = (s1, s2, . . . sk), and then placed on SNs in group of
x coded fragments (in the pictorial representation we
assume x = 2 for the sake of simplicity). The arrows
are used to represent the contribution of each sector
fragment to every coded fragments, and show that –
as consequence of the encoding technique described in
Sec. 4.1 – each coded fragment contributes to the decod-
ing of several original sector fragments. For instance, the
encoded fragments f2 and f4 can be used to decode two
and three distinct sector fragments, respectively.

The dependency of several sector fragments from the
same encoded fragment implies that, in case of pollution
of the latter one, the decoding of all the former ones
is potentially compromised, thus preventing the correct
decoding of the corresponding sector. To increase robust-
ness to pollution we impose a constraint on the place-
ment of the coded fragments. In particular, we guarantee
that the coded fragments referring to a given si are
stored by at least nP+nr SNs, where nr > 0 can be tuned
to obtain increased resilience to polluters by decreasing
the probability that si is controlled only by malicious



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 4

TABLE 1
Paper notation.

S VD sector
k Number of sector fragments
n Number of coded fragments
x Grouping factor
si i-th fragment sector
fi i-th coded fragment
NS Number of SNs
NP Number of polluters
nP Max. number of polluters storing a sector
nr Number of redundant SNs storing each si
AS SNs storing sector S

SNs. Please note that nr is not a free parameter since it
must hold that nP +nr ≤ n/x; therefore, higher values of
nr can be imposed by increasing the coding redundancy.
It follows that the satisfaction of the placement constraint
implies that at least nP + nr coded fragments including
si are available. Since encoding is quite efficient in this
work we implement a simple rejection method where
random placement of the coded fragments is iterated
until the above constraint is fulfilled. Tab. 1 summarizes
the notation used throughout the rest of the paper.

4 ATTACK MODEL AND POLLUTION DETEC-
TION

In this section we model the pollution attack considered
in this work, that consists in the injection of bogus coded
fragments sent by malicious SNs in response to read
requests, and we show how the OFG decoder (in charge
of reconstructing the original sectors starting from the
set of corresponding coded fragments) can be also used
to carry out pollution detection.

4.1 Pollution Attack Model

The primary goal of polluters SNs is to make VD sectors
unrecoverable by preventing the decoding of the original
information while, at the same time, hiding their identity
so as to make it difficult to recognize and remove them
from the system. As already said, they attempt to achieve
their goal by polluting in a certain fashion the coded
fragment they store.

To explain how these pollution attacks may be carried
out, we need to define how coded fragments are gener-
ated by the Proxy for given values on n, k, and x.

To simplify notation, and without loss of generality,
in the following we assume that n is an integer multiple
of x. Every coded fragment is computed as a XOR of
a random set of sector fragments. More precisely, the i-
th coded fragment of a given sector can be expressed

as fi =
∑k

j=1 gi,jsj where we use the summation to
represent the XOR operation, and gi,j = 1 or gi,j = 0
if the j-th fragment is included in the XOR or not,
respectively.

The vector gi = (gi,1, . . . , gi,k) is known as the coding
vector, and it is drawn randomly according to the pro-
cedure shown in [19], that guarantees optimal decoding

properties. In particular, first a degree ρ is selected ac-
cording to the so called Robust Soliton Distribution, and
then a subset of ρ (out of k) sector fragments is randomly
picked up for XOR. The coding vector is generated
randomly and it is known only by the Proxy; from the
point of view of SNs the coded fragments represent an
unintelligible partial and randomized XORed segment
of an unknown sector, thus guaranteeing privacy.

With this in mind, we can now define the type of
pollution attacks we consider in this work. In particular,
we assume that a polluter SN can reply to a read request
by supplying a faked coded fragment fp, created by
XOR-ing an original coded fragment f with a random
sequence r 6= 0 (where 0 denotes a string of 0s), i.e.
fp = f + r. In other words, a polluter transmits a
fragment that is not in agreement with the coding vector
known by data owner. Altering the coded fragment f to
get fp is a safe option for the polluter, since any receiving
client that has not yet decoded the sector ignores the
original information sj and has no means to discriminate
between polluted and non polluted fragments.

4.2 Pollution Detection

As shown in [2], rateless coding can be used to increase
sector availability since the same original information
can be retrieved from any random set of more than k
coded fragments (the actual number of required frag-
ments depends on the decoding overhead ǫ). At a first
glance, it could seem that the use of coding can make the
system very vulnerable to pollution. Indeed, as shown
in Fig. 1, it is possible that a single polluted coded
fragments propagates to many original sector fragments
si. However, in this work we show that coding brings
also significant benefits in terms of pollution detection,
since it can be exploited to both detect pollution and
identify the SNs responsible of the damage. To this end,
we need to look in more detail at the LT decoding
process.

LT decoding can be cast as the solution of a linear
system of equations GS = F where G is a k×k decoding
matrix carrying on the rows k linearly independent
coding vectors, F is the column vector of the k coded
fragments corresponding to such coding vectors, and S
is the vector of k unknown original sector fragments. In
the following, we denote as Gl the l-th row of G and Fl

the l-th element of vector F .
The OFG decoder [20] sequentially processes the in-

put, i.e., the pairs (fi, gi), that are being provided by
SNs, and executes Gaussian Elimination on the fly to
progressively fill up G starting from an empty matrix,
until G turns full rank, that corresponds to the recovery
of the original sector.

A modified version of the OFG decoder, that includes
the pollution detection mechanism we propose in this
paper is shown in Alg. 1 below by using pseudo-code.
The algorithm takes as input a set of coded fragments
Q, processes the coded fragments (f, g) ∈ Q, and returns



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 5

Algorithm 1 Decode(Q)

1: decoded = false, polluted = false
2: for all (f, g) ∈ Q do
3: while true do
4: {Gaussian Elimination}
5: l ← position of leading one of g.
6: if Gl = ∅ then
7: Gl ← g;Fl ← f
8: break
9: else

10: if g = Gl then
11: {g is linearly dependent on current G}
12: if f 6= Fl then
13: polluted = true
14: end if
15: break;
16: else
17: {g is linearly independent on current G}
18: g ← g +Gl; f ← f + Fl

19: end if
20: end if
21: end while
22: end for
23: if G is full rank then
24: decoded = true
25: end if

two logic flags, namely decoded and polluted, indicating
whether decoding is successful or not, and whether
pollution is detected or not, respectively. It is worth
recalling that here the goal is only to check whether the
set Q includes or not polluted fragments and not to spot
which ones have been actually modified.

OFG aims at selecting k linear independent equations
(or linear combinations thereof) to fill the matrix G
(initialized as an empty matrix). This is achieved by
iteratively considering the position l of the leftmost 1
of every g ∈ Q. If the l-th row of G is empty then g
is copied to Gl while f is copied to Fl (see lines 5-8 in
Alg. 1).

If, instead, Gl is already occupied, g is checked against
it. If g 6= Gl the algorithm performs a XOR operation
with Gl, i.e. g ← g+Gl; f ← f+Fl (lines 17-18 in Alg. 1)
and the process is iterated on the resulting pair (f, g).
Conversely, if g = Gl (line 10 in Alg. 1), the equation is
recognized as a linear combination of the current rows of
G and in standard OFG decoder is simply discarded. In
this paper we exploit this particular condition to perform
pollution detection.

To this end, we note that in this case g =
∑k

j=1 αjGj

and f can be computed according to the same combina-

tion of elements of F , i.e. f =
∑k

j=1 αjFj .

From now on, let us assume we are processing a
polluted fragment fp = f+r. First of all let us recall that
g corresponding to fp is known only by the decoder and
cannot be modified by the attacker; therefore, the OFG

row insertion process will not be affected by pollution.
When processing the pair (fp, g) two outcomes are pos-
sible:

a) g is linearly independent on current G. In this case
any polluted fragment is stored in a given row of G
and F (lines 6-8 in Alg. 1);

b) g is linearly dependent on current G. In this case

the decoder knows a linear combination
∑k

j=1 αjFj

that should coincide with fp. If all previous rows

are clean, it turns out that
∑k

j=1 αjFj = f 6= fp and
therefore pollution is detected (lines 12-14 in Alg. 1).
If polluted equations were inserted before (see pre-

vious item a) one gets
∑k

j=1 αjFj = f +
∑k

j=1 αjrj ,
that is a combination of random pollution patterns
(assuming rj = 0 for clean equations). It follows
that, if the malicious SNs are not able to collude one
another, it is likely to get f +

∑k

j=1 αjrj 6= fp since
∑k

j=1 αjrj 6= r allowing one to detect pollution.

Finally, we note that the second check can detect pollu-
tion also when processing a clean equation, provided
that at least a polluted one has already contributed
to G according to a). In this case, the insertion of a
clean equation g that is recognized as dependent on
G will indeed allow the decoder to compute the check
∑k

j=1 αjFj = f +
∑k

j=1 αjrj that has the chance to in-
volve some polluted row with rj 6= 0, that would violate
the system of equations, thus revealing the presence of
pollution.

Previous analysis shows that there is a chance to



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 6

recognize pollution every time a linearly dependent
equation is considered. It must be pointed out that the
probability of such an event increases with the number
|Q| of processed fragments. In fact, every new fragment
progressively fills G, thus increasing the probability that
a randomly encoded equation is redundant. This obser-
vation unveils that the more fragments the decoder can
process (e.g., when a higher coding redundancy n/k is
used), the more reliable the detection mechanism will be.
Moreover, it must be noted that Alg. 1, being based on
the observation of an inconsistency in the system of lin-
ear equations, cannot generate false pollution detections;
in other words, our detector yields only false negatives
and no false positives. In the following we denote as
pdet the probability that Alg. 1 correctly detects pollution
when at least one polluted fragment belongs to Q.

5 POLLUTER IDENTIFICATION ALGORITHM

In this section we describe the algorithm we developed
to identify the polluters in the system. We would like
to stress that polluter identification is not an easy task,
since the linear coding approach prevents the use of
simple means to identify both which fragments have
been altered and the SNs responsible for the damage.

In the following we consider a proxy that accesses a
sector S using the retrieval procedure described in Sec. 3,
and performs sector decoding by means of Alg. 1. If a
pollution is detected by this algorithm, the Proxy triggers
the polluters identification stage that aims at identifying
– among the set AS of SNs storing the n coded fragments
of S – those SNs that have replied to the read request
with polluted fragments.

During the polluters identification stage, the Proxy
gathers all the n fragments corresponding to the sector
that is found to be polluted, and uses them as input for
the polluter identification algorithm; the sector is held
at the Proxy (i.e. it is not forwarded to the requestor)
during the identification. Conversely, those sectors that
are found to be clean are handled as usual, that is
once they have been recovered (using a suitable subset
of the corresponding n fragments), they are passed to
the users that requested them. It is worth pointing out
that normal operations and polluter identification occur
simultaneously.

In the remainder of this section, we first describe the
polluter identification algorithm (Sec. 5.1), and then we
discuss several building blocks that it leverages (Sec. 5.2)
to carry out identification.

5.1 Identification algorithm

The polluter identification algorithm, described by
Alg. 2, aims at computing the set of polluter SNs in
AS using an iterative approach. In each iteration, the
algorithm analyzes a random subset of AS , and employs
statistical inference to compute, for each SN, the prob-
ability of being a polluter. This probability drives the
incremental computation of two sets, representing the

Algorithm 2 Identify polluters set

1: for i = 1 to MaxAttempts do
2: U = F = L = AS

3: H = P = ∅
4: while (|U| > 0 and (F 6= ∅ or L 6= ∅) and |P| ≤ nP ) do
5: F = L = ∅
6: for j = 1 to MaxBP do
7: h = min{w − 1, |H|}
8: W ⊆R

h H, Y ⊆R
w−h U

9: W =W ∪Y
10: if (Decode(W).polluted) then
11: {F ,L} ← BP core(W,U ,H)
12: if (F 6= ∅ or L 6= ∅ ) then
13: P = P ∪F , H = H∪L, U = U \ F , U = U \ L
14: break
15: end if
16: end if
17: end for
18: if (not Decode(H∪ U).polluted) then
19: H = H∪ U
20: U = ∅
21: end if
22: end while
23: if (not Sanity checks(H,P)) then
24: P = ∅
25: else
26: break {success: exiting from Algorithm.}
27: end if
28: end for
29: return P

polluters and the honest SNs, respectively. After each
iteration the set of SNs yet to be analyzed shrinks until
all SNs have been classified as either being honest or
polluters.

Our algorithm uses the sets of SN identifiers defined
below:

• U , containing the identifiers of all the SNs whose
state is still unknown;

• P , containing the identifiers of the SNs that have
been already classified as polluters;

• H, containing the identifiers of the SNs that have
been already classified as honest.

Moreover, we use the notation A ⊆R
d B to denote that

set A is a random subset of set B, with |A| = d.
Let us describe now the polluter identification algo-

rithm, shown in Alg. 2. This algorithm uses a divide et
impera approach to define several simpler identification
problems. To this end it builds a working set W ⊂ AS ,
of size w < n, by mixing h SNs randomly selected from
H and the remaining w−h from U (lines 7-9). At startup
(lines 2-3), H = ∅, so all the SNs are taken from U = AS ;
as the identification proceeds, more and more (up to
w − 1) honest SNs will be added to W , thus easing the
inference on the state of the SNs taken from U (only one
in the most favorable case).

Then, the algorithm enters a loop (lines 4-22) in which
– at each iteration – uses the Decode method (Alg. 1) to
check whether the decoding of the fragments contributed
only by nodes in W gives rise to a polluted sector (line
10). If this is the case, then at least one SN in W is a



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 7

polluter. To identify these nodes, we resort to a statistical
inference technique, known as Belief Propagation (BP),
that has been already applied to the problem of polluter
identification in the different scenario of coded peer-to-
peer streaming [22].

In this paper, we apply BP to estimate the two SNs in
W that are most likely to be polluter and honest (sets
F and L at line 11, respectively) by calling the BP core
procedure, that is presented in Alg. 5. If BP core succeeds
(lines 12-15), then the memberships of sets H,P ,U are
updated and the for loop (lines 6 through 17) is exited.
On the contrary, i.e. if either BP core fails or if Decode
does not detect pollution, then another attempt is made
on a new random working set W up to a maximum
number of trials (MaxBP ).

When exiting the for loop (line 17) the sets H,P have
been possibly updated with the identification of a pair
of SNs (polluter, honest). If we are able to decode from
the set H∪U , i.e. all the SNs identified so far plus all SNs
still unknown, without detecting any pollution (line 18),
then we can reliably assume all members of the union
are honest; in such a case the algorithm exits the outer
while loop.

The steps of the algorithm are iterated through the
external while loop in order to progressively move SNs
from U to H or P until one of the following conditions
occur (while loop condition in line 4):

• there are no remaining SNs whose state is unknown,
i.e. identification has been completed;

• BP core failed all MaxBP trials to identify either a
polluter or an honest SN, i.e. the proposed decision
metric does not allow to discriminate any further;

• the number of already identified polluters exceeds
the maximum limit nP .

The first case corresponds to a successful termination,
whereas in the latter two cases both H and P are
emptied to signal that the algorithm failed to identify
the polluters.

BP core, while being statistically solid, may fail iden-
tification when pdet < 1. Therefore, all the decisions
taken on F and L cannot be considered as completely
trustful. To avoid misclassifications, at the end of the
while loop (line 23), sets H and P are tested using the
Sanity checks method defined in Alg. 6. The main identi-
fication algorithm successfully terminates by returning a
non empty set P only if all sanity checks on H and P are
passed (line 30). On the contrary, an additional attempt
to compute P is performed up to a maximum number
MaxAttempts. The repeated trials are useful since all
attempts are driven by randomness, e.g., in the choice
of working sets W , that can lead to different outcomes.

To conclude, the identification algorithm can termi-
nate either with success or with failure to compute
the set of polluters P . Therefore, it is characterized by
the failure probability pf that depends on all algorithm
parameters that are summarized in Tab. 2. It is worth
pointing out that a limited failure probability can be
tolerated since during the normal operations carried on

Algorithm 3 Build random factor graph(W)

1: A =W
2: C = E = ∅
3: for i = 1 to BPw do
4: Di ⊆

R
d W

5: ci = (i,Decode(Di).polluted)
6: C = C ∪ {ci}
7: for all a ∈ Di do
8: E = E ∪ {(a, ci)}
9: end for

10: end for
11: return G = (A, C,E)

by clients on a VD several different sector reads can
trigger the pollution detection and, as a consequence,
different identification rounds are available. Therefore,
doubtful identification outputs can be skipped waiting
for a most favorable chance.

5.2 Building blocks

As discussed in the previous subsection, to carry out its
operations Alg. 2 relies on two other procedures, namely
BP core and Sanity checks, whose detailed descriptions
follow.

5.2.1 Belief Propagation core algorithm

Polluter identification can be cast as a statistical inference
problem as follows. The main idea is to characterize each
SNs i ∈ AS by an unknown (hidden) binary state χi,
where χi = 1 is used to identify a polluter and χi = 0 is
used to identify an honest SN. The goal is then to infer
∀i ∈ AS , p(χi = 1).

The probability distributions of {χi} are inferred by
carrying out the following two phases:

1) first, we build a random instance of the so called
factor graph G = (A, C, E) (see Alg. 3). The fac-
tor graph is a bipartite undirected graph where
the first set of vertices (A) represents SNs in AS ,
while the other one (C) represents checks. The i-th
check is represented by a pair of elements ci =
(i,Decode(Di).polluted) where:

• the first element (i) is a check identifier;
• the second element is a boolean check state that

is obtained by first computing a random subset
Di ⊆ A, and then by running the pollution
detection and decoding algorithm (Alg. 1) on it.
If the fragments in Di lead to a clean decoding,
then a negative check is created; conversely, if
pollution is detected, then a positive check is
created instead. We denote |Di| = d as the check
size.

It is worth pointing out that it is necessary to use
BP with a decoding set D of size d < w to have the
chance to obtain negative checks, that represent the
hints on which the identification of honest SNs is
based. On the contrary, if we used d = w, then
all the checks provided to BP would be positive,



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 8

thus making identification impossible. The arcs of
the factor graph G are created as follows: for each
check ci ∈ C the undirected arc (a, ci) ∈ E if a ∈ Di,
i.e. if the i-th check involves SN a.

2) next, we apply the Belief propagation procedure to
the factor graph G (see Alg.4) to obtain an estimate
of the p(χi = 1) values given the current instance of
G. At startup we set p(χi = 1) = 0.5 for all vertices
in A not yet identified as honest. This value is
meant to represent the maximum uncertainty with
respect to the hidden state of SNs. On the contrary,
all SN in H have their p(χi = 1) probabilities
set to 0, i.e., honest SNs are polluters with zero
probability.
Subsequently, the BP algorithm is run on the factor
graph to obtain an estimate of the p(χi = 1) val-
ues. The mathematical details and approximations
required to run BP along the bipartite graph of
SNs and checks can be found in [22]. Nonetheless,
Alg. 4 summarizes the key steps; intuitively, a neg-
ative check ci contributes to lower the probability
of SNs in Di to be malicious while a positive check
would increase it. To counteract the fact that the
checks are not fully reliable since pdet < 1, several
runs of the BP inference are used on different ran-
dom subsets Di and the estimated probabilities are
accumulated. As shown in Alg. 4 the BP inference
algorithm (referred to in the pseudo-code as an
external function named BP inference (G)) is used
BPt times, and the output estimates p(χi = 1)
are summed onto P (χi), that will represent the
decision metric used for identification. At the end
of the cycle, P (χi) is the average probability of
being a polluter, estimated on BPt different in-
stances of G. It can be noted that the computation
of the P (χi) is based on several checks and factor
graph instances and therefore the negative effect
of the unreliable pollution detection mechanism

Algorithm 4 Belief propagation(W ,H)

1: for all a ∈ W do
2: P (χa) = 0
3: if a ∈ H then
4: p(χa = 1) = 0
5: else
6: p(χa = 1) = 0.5
7: end if
8: end for
9: for i = 1 to BPt do

10: G ← Build random factor graph(W)
11: {p(χa)} ← BP inference(G)
12: for all a ∈ W do
13: P (χa) = P (χa) + p(χa = 1)
14: end for
15: end for
16: for all a ∈ W do
17: P (χa) = P (χa)/BPt

18: end for
19: return {P (χa)}

(that could erroneously assign the check state) is
attenuated when the probability of false negatives
in Alg. 1 is low.

Alg. 5 describes the BP core method that exploits the
two previous algorithms to create our core decision
method based on the output of BP. This algorithm shows
how to threshold P (χi) to decide on the most likely
polluter and honest node, respectively. In particular,
SN f is inserted in set F (containing the top suspect
SN) only if P (χf ) exceeds the threshold ηf . A similar
reasoning is carried out to assign an element to set L
that contains the identity of the SN that is most likely to
be honest (l).

The if statement at line 3 discriminates the behavior of
the algorithm depending on the number of SNs whose
state is still unknown: if such a number is larger than
k/x, we found that is convenient to use the probability
ranking to discriminate between the most and least likely
to be polluters and both f and l SNs can be identified;
otherwise only the SN f with the largest P (χf ) is identi-
fied (in this case the number of SNs in ranking is limited
and we do not assume the least likely being a honest
one). This sets will then be used to progressively refine
the identification of all the malicious nodes forming the
sets H and P that have been defined previously.

5.2.2 Sanity checks

Since all phases of our method are based on an unreliable
pollution detection mechanism (as discussed in Sec. 4.2,
Alg. 1 may yield false negatives with probability pdet),
to avoid misclassifications we also apply sanity checks
algorithms to the output of the identification phase, i.e.,
sets H and P . To this end, Alg. 6 verifies the following
constraints:

• the SNs in H allow decoding of the sector without
pollution (line 2);

• the SNs in P are actual polluters (for loop in lines 3-
14). This check is performed by decoding a working
set Y , composed of one polluter from P and all but
one honest node from H to verify that pollution
actually occurs. This check is carried on all possible
elements in P and H. The check fails as soon as a
clean decoding is detected.

Algorithm 5 BP core(W ,U ,H)

1: {P (χa)} ← Belief propagation(W,H)
2: f = argmaxa{P (χa)}, l = argmina{P (χa)}
3: if (|W ∩ U| > k/x) then
4: if (P (χf = 1) ≥ ηf and P (χl = 1) ≤ ηl) then
5: F = {f}, L = {l}
6: end if
7: else
8: if (P (χf = 1) ≥ ηm) then
9: F = {f}

10: end if
11: end if
12: return {F ,L}



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 9

Algorithm 6 Sanity checks(H,P)

1: success = true
2: if (Decode(H).decoded and not Decode(H).polluted) then
3: for p ∈ P do
4: for h ∈ H do
5: Y = H∪ {p}, Y = H \ {h},
6: if (not Decode(Y).polluted) then
7: success = false
8: break
9: end if

10: end for
11: if (not success) then
12: break
13: end if
14: end for
15: if (success) then
16: if (decoding of H depends on single equation) then
17: success = false
18: end if
19: end if
20: else
21: success = false
22: end if
23: return success

• sector decoding does not depend on a single equa-
tion since in this case there is clearly no way to
verify whether such equation is polluted or not. Of
course, this check potentially classifies as failed a
correct identification attempt.

5.3 Failure probability vs. speed trade-off

Clearly, the failure probability pf of Alg. 2 depends on
all its parameters and a trade-off arises between the
algorithm speed and the pf values. In particular, this
trade-off is determined by the:

• robustness of the BP based inference that increases
as the overall number of checks in the factor graphs
we randomly generate increases. Of course, the
larger the factor graph the slower Alg. 4. The size
of the factor graphs is given by BPt · BPw;

• thresholds ηf , ηl, and ηm in Alg. 5 determine the
accuracy required to identify one polluter and a
potential honest SN. Tight thresholds require to
generate a larger number of random factor graphs
before reliable identification (i.e., early exiting the
for loop in lines 6-17 of Alg. 2). Parameter MaxBP
represents an upper bound to the number of such
attempts.

• the maximum number of identification trials
(MaxAttempts). Indeed, identification is repeatedly
attempted to take advantage of randomness both in
the choice of working sets W and in the creation
of checks in the factor graphs. Clearly, the larger
MaxAttempts the higher the probability to run a
successful identification attempt at the expense of
increasing the algorithm execution time.

6 MATHEMATICAL MODEL

In this section, we develop a mathematical model to
represent the average number of sector requests to iden-
tify all NP polluters among the NS storage nodes. To
this end, let us define a trace of disk sector reads as
a sequence {S(t)} where S(t) represents the t-th disk
sector request.

Every sector read triggers the decoding and detection
Alg. 1; in case pollution is detected, Alg. 2 is invoked
to attempt identification. We then observe that the NS

SNs of the cloud storage system are progressively par-
titioned into three disjoint subsets: identified polluters,
unidentified polluters, and honest.

We denote the number of identified polluters as 0 ≤
NI ≤ NP and the number of unidentified polluters as
0 ≤ NU ≤ NP , with the constraint that NI + NU = NP .
It follows that the number of honest nodes is equal to
NS −NI −NU .

The allocation of the n fragments of a sector S to
n
x

SNs can be viewed as just as many draws without
replacement from all the SNs. In this case, it is well-
known that the probability a sector has been allocated
to nI identified polluter and to nU unidentified polluters
(hence to n

x
− nI − nU honest storage nodes) follows a

multivariate hypergeometric distribution

h(nI , nU , NI , NU ) =

(

NI

nI

)(

NU

nU

)(

NS−NI−NU
n

x
−nI−nU

)

(

NS
n

x

) (2)

where h is equal to 0 if nI + nU > n
x

. We denote as
pid(t, y) the probability that after processing the request
for sector S(t) exactly 0 ≤ y ≤ NP polluters have been
identified. We can express pid(t, y) recursively as in Eq. 1
where l = min(n

x
, NP ).

The base case (for S(1)) refers to the very first sector
processing; the number of identified polluters remains



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 10

equal to 0 either if the sector has been entirely allocated
to honest storage nodes (first term) or if Alg. 2 fails when
u unidentified polluters store fragments. On the other
hand, y polluters are identified only if the sector has been
allocated to y unidentified polluters (factor h(0, y, 0, NP ))
and if Alg. 2 is successful on y polluters (factor (1 −
pf (y))).

The general expression (for t > 1) is the contribution
of three cases:

• the first case states that y polluters are identified
when processing sector S(t) if y− u were identified
at the previous step (request for sector S(t − 1))
and Alg. 2 is successful on a sector allocated to
u unidentified polluters and to i already identified
ones. All the possible cases are taken into account
by summing over all feasible values for u and i;

• the second case considers when 0 unidentified pol-
luters store fragments of S(t) for all feasible values
of already identified ones;

• the third case represents the situation when S(t)
is allocated to i identified and to u unidentified
polluters but Alg. 2 fails. All feasible cases for i and
u are taken into account by the double summation.

Eq. 1 represents a discrete time model that describes
the number of identified polluters. The tth time step of
the model represents the processing of S(t) by Alg. 2.
We can thus start from Eq. 1 to define the average
time (number of sector read requests) to identify all NP

polluters as

nclean =

∞
∑

t=1

t · [pid(t, NP )− pid(t− 1, NP )] (3)

where we assumed that ∀i, pid(0, i) = 0.

7 EXPERIMENTAL RESULTS

In this section we provide results characterizing our
proposal. The section is organized in three parts:

1) in Sec. 7.1 we define the parameters setting for
Alg. 2. To this end, we first analyze the perfor-
mance of the pollution detection algorithm (Alg. 1)
in terms of probability pdet; this preliminary step
allows us to set the values of parameters w and d
required by Alg. 2 to identify polluters;

2) in Sec. 7.2 we provide a sensitivity analysis of
Alg. 2 in terms of probability pf as a function of
several parameters;

3) in Sec. 7.3 we consider a complete cloud storage
system and we evaluate the time required to ex-
punge all polluters from the system.

The first two parts of the analysis are carried out with
a C++ prototype implementing all algorithms described
in Sec. 4 and 5. Probabilities pdet and pf are estimated
by running 1,000,000 trials. In the third case, we develop
a trace-driven, discrete event simulator, that we use to
reproduce the dynamic behavior of the whole system
by considering requests to disk sectors extracted from

real traces; we also exploit the numerical solution of the
mathematical model developed in Sec. 6 that is validated
against simulation results.

Unless otherwise stated, all results are worked out
with the coding and placement parameter k = 32,
n = 2k, x = 4, that in [2] have shown to yield an op-
timum compromise among the different VD properties
and performance when using a small redundancy factor,
i.e., n = 2k.

The parameter nP can be chosen as a function of
the LT coding parameters. In particular, we impose that
the honest SNs are enough to permit LT decoding, i.e.
there are at least k′/x honest SNs; therefore we set
nP = n−k′

x
= n−k−ǫ

x
. In our settings we use ǫ = 12: in this

case the probability to successfully decode from (k+ǫ)/x
SNs (with Alg. 1) turns to be 0.9926. Furthermore, we
set nr = 2, i.e. we assume that each sector fragment is
dispersed on at least nP + 2 SNs.

7.1 Parameters setting

The first step of our analysis is to characterize the ca-
pability of correctly spotting a sector as polluted, i.e., to
evaluate the detection probability pdet of Decode (Alg. 1).

Our C++ prototype implements two different attack
models: in the first case (type A attack) a polluter mod-
ifies all the x fragments it holds, whereas in the second
case (type B attack) it modifies only one fragment out of
x, instead. In Fig. 2 pdet is shown as a function of |Q| (the
SNs set size used for decoding) for several values of the
number of polluters m ≤ nP in the sector. The left plot
refers to type A attack whereas the right one represents
type B attack.

As discussed in Sec. 4.2, it can be noted that pdet in-
creases with |Q| up to maximum reliability, i.e., pdet = 1.
Moreover, it can be observed that pdet increases also
with m; in this case, it is more likely that multiple
polluted coded fragments trigger the consistency check
in Alg. 1. Finally, it is worth pointing out that type B
attack yields lower values of pdet w.r.t. type A attack, i.e.,
it makes pollution detection less reliable. For example,
when |Q| = 9 and m = 1 we obtain pdet = 0.9998 for
type A attack and pdet = 0.9206 for type B attack.

We exploit the results for pdet to set the values of two
key parameters of Alg. 2:

• the working set size w must be chosen so as that
any subset including at least one polluter is reliably
detected. As shown in Fig. 2 (where |Q| on the x-
axis must be interpreted as w), the larger w the more
reliable the detection. Therefore, we set w = 13,
that yields pdet ≥ 0.99999 in our worst case attack
scenario (type B attack in Fig. 2).

• the decoding set size d ≤ w must be chosen as a
tradeoff between the probability to have a small sub-
set to decide upon, and the reliability of detection.
To strike a balance between the opposite needs we
use d = 10 that yields pdet = 0.99374 in the worst



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. 11

TABLE 2
Algorithms parameters

Parameter Algorithm Value
w 2 13

MaxBP 2 10,25,100
MaxAttempts 2 1-5

d 3 10
BPw 3 w
BPt 4 7
ηf 5 0.6
ηl 5 0.4
ηm 5 0.8

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20

p f

m

n=2k
n=3k
n=4k
n=5k

Fig. 4. Identification failure pf as a function of the number

m of malicious SNs for several values of n.

case shown in Fig. 2, where |Q| on the x-axis must
be interpreted as d now.

Finally, taking into account the analysis of the BP algo-
rithm worked out in [22], the BP inference window BPw

has been given the same size of the working set w, while
the number of BP rounds BPt has been set to the value
of 7. All remaining parameter values are summarized in
Tab. 2.

7.2 Sensitivity analysis

Here we analyze the performance of Alg. 2 with the
parameters setting we defined in the previous section
to consider the effect of parameters MaxBP . In Fig. 3
(left) pf is shown as a function of m when increasing
MaxBP from 10 to 100. It can be noted that MaxBP can
be used to significantly boost the identification algorithm
performance in particular when m = nP , i.e. when
coping with the maximum number of tolerable polluters
in a single sector. As an example, setting MaxBP = 100
reduces pf by almost two orders of magnitude with
respect to the case MaxBP = 10.

A similar behavior is obtained when fixing MaxBP =
100 and considering different values for parameter
MaxAttempt: in Fig. 3 (right) pf is shown for some
values of the parameter in the range from 1 to 5. Also
in this case the gain is significant in the case m = 5 for
MaxAttempt = 5.

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30  35

n=2k

n=3k

n=2k

n=3k

n c
le

an

NP

CFS
RADBE
DAPAY

DADS
RADAUT

Fig. 5. nclean values computed by the simulator for n = 2k
and n = 3k.

Now we set MaxBP = 100, MaxAttempt = 5 and
we analyze pf as function of the coding redundancy.
In Fig. 4 pf is shown as function of m when n =
2k, 3k, 4k, 5k. It can be noted that the algorithm we
designed is able to exploit the coding redundancy to
identify an increasing number of malicious SNs in a
single sector. As an example, if one targets pf ≤ 10−3

it can be observed from the reported results that 3, 7,
12 and 16 polluters can be identified out of 16,24,32
and 40 SNs; in other words the percentage of identified
malicious SNs in a single sector increases from 18%
(n = 64) up to about 40% (n = 160).

7.3 Performance Analysis

In this section we evaluate the performance of the iden-
tification algorithm in a complete framework using the
following metrics:

• nclean as defined in Eq. 3, that is the number of
sectors processed by the identification algorithm
before all polluters are identified;

• tclean, that is the amount of time elapsed from the
beginning of the experiment until all polluter are
identified (to assess the performance of the algo-
rithm when all timings, e.g., inter-arrival times of
sector requests, are taken into consideration).

While, from a theoretical standpoint, nclean allows us to
assess the complexity of the polluter detection algorithm,
from the perspective of a user the actual time tclean taken
to clean the system is more relevant.

The mathematical model discussed in Sec. 6 is used
to compute nclean, while tclean is estimated by means of
a discrete-event trace-driven simulator. This simulator is
also used to validate the above mathematical model.

7.3.1 System simulator

The simulator we developed takes as input a description
of an ENIGMA configuration, expressed in terms of its
relevant system parameters, and a trace of disk sector


