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The electronic absorption spectra of pyridine and nicotine in

aqueous solution have been computed using a multistep

approach. The computational protocol consists in studying the

solute solvation with accurate molecular dynamics simulations,

characterizing the hydrogen bond interactions, and calculating

electronic transitions for a series of configurations extracted

from the molecular dynamics trajectories with a polarizable

QM/MM scheme based on the fluctuating charge model.

Molecular dynamics simulations and electronic transition

calculations have been performed on both pyridine and nico-

tine. Furthermore, the contributions of solute vibrational effect

on electronic absorption spectra have been taken into account

in the so called vertical gradient approximation. VC 2016 The

Authors. Journal of Computational Chemistry Published by

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24683

Introduction

The determination of spectroscopic properties of molecules in

aqueous solution requires a detailed understanding of solute/

solvent interactions, particularly when complex effects, such as

hydrogen bonding, play a significant role. To obtain useful

information, accurate models describing solute/solvent interac-

tions are needed. Although ab initio molecular dynamics

(MD)[1] or quantum-mechanics/molecular mechanics (QM/MM)

approaches[2,3] have been revealed to be effective in the

description of a series of hydrogen bonded systems, their appli-

cation has been limited by computational cost in considering

systems characterized by an elevated number of atoms and/or

by relative dynamics that occur with relatively long time scale

(typically, larger than 10 ps). In such cases, classical methods, in

particular MD simulations, can provide the required amount of

phase space sampling. The intra- and inter-molecular interac-

tions in classical methods are modeled through force fields like,

for example, AMBER,[4–9] CHARMM,[10–13] GROMOS,[14–21] and

OPLS,[22–26] which are continuously developed to improve the

accuracy and to extend the application to different systems.

One of the limitations of classical methods is represented by

the impossibility to have access to spectroscopic properties,

which require the knowledge of the electronic structure of the

studied systems. To overcome this problem, it is possible to

adopt a number of computational strategies. For example, the

calculations of the sought properties can be obtained perform-

ing QM calculations on the solute and a limited number of

hydrogen bonded solvent molecules and eventually consider-

ing the average solvent effects with a polarizable continuum

model (PCM)[27–29] or similar methods.[30,31] This approach

allows to avoid problems related to the description of the

intermolecular interactions, which perturb the electronic struc-

ture and consequently the spectroscopic properties of the sol-

ute, but it fails, for example, whenever the solute can populate

different conformations or it can form stable hydrogen bond

interactions with a different number of solvent molecules. A

different approach relies on the adoption of QM/MM meth-

ods,[2,3] which can suffer however from some polarization prob-

lem when the solvent molecules are treated with fixed charges

(FX).[32] In this respect, many different methods have been

developed in the last years to include polarization effects in

the total energy of QM/MM schemes,[33–44] allowing a mutual

polarization between the QM charge density and the MM

charge distribution. Among these, we have selected a recent

QM/MM implementation including both fluctuating (FQ) and

fixed point-charge distributions[44] and based on the electroneg-

ativity equalization principle.[45–47]

The UV-vis spectra of nicotine in water have been calculated

with this QM/MM approach for a series of configurations

extracted from a MD trajectory. Nicotine molecule represents a

challenging system, which has been adopted as a test case in

gas phase[48] to verify the accuracy of a series of computation-

al method to determine electronic excitations. The results
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show that TD-DFT calculations provide results similar to multi-

reference and coupled cluster approaches and allow to obtain

first insights on the solvent effects on the electronic absorp-

tion spectrum, simulating nicotine in aqueous solution with

PCM and QM/MM methods.[49]

To perform accurate simulations including proper sampling

of the conformational freedom of nicotine related to the d1

dihedral angle (see Fig. 1), a new force field specific for this

system has been developed. The approach used to parame-

trize the electrostatic part and, in particular, the anisotropy in

the interactions due to the lone pair on the nitrogen atom,

has been validated by MD simulations of the rigid aromatic

moiety of nicotine (i.e., pyridine) in water. The simulations on

the heterocycle have been performed using a force field devel-

oped with the same approach adopted for nicotine, explicitly

describing the lone pair of the nitrogen atom using a virtual

site (VS). Pyridine has been also adopted as test case to calcu-

late electronic spectra in aqueous solution through a polariz-

able QM/MM approach,[44] considering the vibrational effects

in the harmonic approximation with the vertical gradient (VG)

method.[50,51] The computational approach has been subse-

quently applied to the study of nicotine.

Methodology

Nicotine force field

The molecular structure of the nicotine molecule, shown in

Figure 1, consists of two building blocks, namely a pyridine

rigid ring and a methylpyrrolidine five-membered ring. The

dihedral angle around the bond connecting the two afore-

mentioned moieties (d1) gives rise to a number of different

conformations, which are expected to be populated at room

temperature.

The force field used in the MD simulations has been devel-

oped performing a series of DFT calculations at B3LYP/6-

31 1 G(d) level of theory considering implicitly the interactions

with water through the Conductor-like Polarizable Continuum

Model (C-PCM)[52,53] to accurately reproduce the intramolecular

features, with particular regard to the distribution of the d1

dihedral angle.

It has been shown[49,54] that nicotine presents two different

conformers (labeled A and B) characterized by two different val-

ues of the dihedral angle d1, as reported in Figure 1. The poten-

tial energy curve (PES) along the dihedral angle d1 for a series

of optimized molecular structures allows to identify the most

stable conformers of nicotine, verifying that the conformer A is

more stable than B. Consequently the conformer A has been

adopted as reference in the development of the force field.

To properly describe Coulomb interactions, a population anal-

ysis based on Charge Model 5 (CM5)[55] has been carried out. It

has been recently shown by Jorgensen and coworkers,[56,57] that

to take into account polarization effects the atomic charges

have to be increased with an appropriate scaling factor to

obtain a better agreement with experiments. To alleviate the

solute polarization problem, a different approach has been

adopted, which consists in the determination of CM5 charges

performing DFT calculations at B3LYP/6-31 1 G(d) level of theo-

ry, describing the solvent effects with the C-PCM approach[52,53]

imposing the value of the scaling factor for the sphere radius (a)

to 1.05. All DFT calculations have been performed with the

Gaussian suite of programs.[58] To further improve the descrip-

tion of the interactions between the heteroatom of the six-

membered ring with the environment, a VS has been introduced

in the model to properly describe the lone-pair directional char-

acter on the sp2 nitrogen atom. The VS position has been

obtained through a localization of the molecular orbitals with

the Boys method.[59,60] The centroid of the molecular orbital

describing the lone pair of nitrogen atom has been adopted as

the VS position, as shown in Figure 1. The centroids of localized

orbitals have been calculated with the approach described by

Vidossich et al.[61] This procedure has been successfully applied

in the study of structural and dynamic properties of formamide

and its two N-methyl derivatives, N-methylformamide, and N,N-

dimethylformamide in liquid phase.[62]

The procedure adopted to assign the charge to the VS can

be easily explained in the case of the pyridine molecule and it

consists in the following step:

1. the charge on nitrogen atom is moved on the VS;

2. the charge on the VS is reduced to avoid overpolarization

effects imposing the constraint that the dipole moment of

the C-VS-C and C-N-C groups has to be equal.

Figure 1. Molecular structure of pyridine (left) and the nicotine A (middle) and B (right) conformers. The spheres in cyan represent the position of the virtu-

al sites. The distance is indicated as 0.38 or 0.39 Å depending on the algorithm adopted. The most probable dihedral angle value (d1) is reported for the A

and B conformers, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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This correction allows to obtain a very similar dipole

moment for pyridine with and without VS. It has been verified

that adopting the localization algorithm proposed by Pipek

and Mezey,[63] the position of the centroid related to the nitro-

gen atom lone-pair is only slightly different, leaving the

description of the hydrogen bond interactions unchanged.

The atomic charges, dipole moment and rN���VS of pyridine

molecule are summarized in Table 1.

The nitrogen atom on the five-membered ring does not

require a VS as a consequence of the tetrahedral local struc-

ture due to the sp3 hybridization.

A set of 36 relaxed nicotine structures, with d1 spanning

the [2180
�
, 180

�
] interval (one configuration every 5

�
), and

their relative energies have been adopted to determine the

torsional potential related to the variation of the dihedral

angle d1 through a fitting procedure using the Joyce pro-

gram.[54] As it can be observed in Figure 2, the PES along the

d1 coordinate is characterized, as expected, by the presence

of two different minima separated by two � 25 kJ/mol energy

barriers.

The parameters defining the force field of nicotine and of

the adopted water model are listed in Table 2.

MD simulations

MD simulations of nicotine in aqueous solution have been per-

formed with the GROMACS software,[65] using the new devel-

oped force field. The procedure adopted to set up the

electrostatic part of the force field has been validated perform-

ing a series of MD simulations on pyridine. In fact, due to the

rigidity of the aromatic ring, only intermolecular parameters

are critical for pyridine. OPLS-AA parameters developed by Jor-

gensen et al.[64] have been adopted to model pyridine, with

the exception of the atomic charges. The water molecules

have been described through the three-site, fixed-geometry

model proposed by Wang et al.[66] (TIP3P-FB), which improves

the determination of structural and dynamic properties with

respect to the original TIP3P model.[67] MD simulations have

been carried out in the NVT ensemble, adopting the algorithm

proposed by Bussi et al.[68] The simulation box, using periodic

boundary conditions, is made up of one solute molecule

together with 512 (cubic box with side length 24.423 Å) or

3196 (orthorhombic box with a546:133 Å, b546:621 Å, c5

44:559 Å) solvent molecules for pyridine and nicotine, respec-

tively. The time-step has been set to 0.2 fs, for a total accumu-

lation run of 5 and 100 ns for the simulations of pyridine and

nicotine, respectively. The particle mesh Ewald[69,70] method

has been used to compute long-range interactions.

Hydrogen bond characterization

The hydrogen bond interactions with solvent during the simu-

lations of both nicotine and pyridine have been analyzed by

means of the FHB function introduced by Pagliai et al.[71] The

FHB function for water molecule j interacting with the nitrogen

atoms of pyridine and nicotine is defined as:

FHB
j 5AjðrðtÞÞ � BjðhðtÞÞ (1)

with AjðrðtÞÞ and BjðhðtÞÞ given by:

AjðrðtÞÞ5e2ðre2rjðtÞÞ2=ð2rr
2Þ if ðre2rjðtÞÞ < 0

AjðrðtÞÞ51 if ðre2rjðtÞÞ � 0

BjðhðtÞÞ5e2ðhe2hjðtÞÞ2=ð2rh
2Þ if ðhe2hjðtÞÞ < 0

BjðhðtÞÞ51 if ðhe2hjðtÞÞ � 0

8>>>>>>>><
>>>>>>>>:

The values of the parameters re; he; rr and rh are obtained

from the histograms of the H-bond distance, h(r), and angle,

h(h). re and he represent the position of the first peak in h(r) and

h(h), respectively, while rr and rh are the half widths at half

maximum (HWHM) in h(r) and h(h), respectively. rjðtÞ and hjðtÞ
are the instantaneous distance and angle involved in the inter-

action between the water molecule j and the nitrogen atoms of

pyridine and nicotine. The FHB
j function assumes values in the

Table 1. Atomic charges, dipole moment, and nitrogen� � �VS distance for

the models without, NO_VS, and with virtual site, VS, respectively.

Atom NO_VS VS

N 20.424 0.000

C1 0.042 20.033

C2 20.095 20.095

C3 20.075 20.075

H1 0.121 0.121

H2 0.120 0.120

H3 0.124 0.124

VS 0.000 20.275

NO_VS VSB

l/D 2.812 2.812

rN���VS/Å – 0.38

The atom labeling proposed by Jorgensen et al.[64] has been used

Figure 2. Solid black line: Torsional potential obtained by the fitting proce-

dure with Joyce program.[54] Red open circles: Potential energy differences

computed for each relaxed structure of nicotine varying the value of the

dihedral angle d1. The potential energy of conformer A has been taken as

reference in the fitting procedure. [Color figure can be viewed at wileyonli-

nelibrary.com]
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Table 2. Force field specifications, following the atom numbers and names in inset figure.

Atom charge � (kJ mol21) r (Å) VS dist. (Å) VS charge

1 C1 20.03563 0.276 3.55

2 N6 0.00000 0.711 3.25 0.38 20.27536

3 C1 20.03694 0.276 3.55

4 C2 20.09629 “ “

5 C3 20.07391 “ “

6 C2 20.00370 “ “

7 C4 0.02385 “ 3.50

8 C5 20.15717 “ “

9 C5 20.16100 “ “

10 C6 20.06059 “ “

11 N5 20.42009 0.711 3.25

12 CT 20.13787 0.276 3.50

13 HT 0.09688 0 0

14 HT 0.09688 “ “

15 HT 0.09688 “ “

16 H1 0.11836 “ “

17 H1 0.11836 “ “

18 H2 0.11947 “ “

19 H3 0.11639 “ “

20 H4 0.09940 0.126 2.50

21 H5 0.09474 “ “

22 H5 0.09474 “ “

23 H5 0.09432 “ “

24 H5 0.09432 “ “

25 H6 0.08835 “ “

26 H6 0.10561 “ “

Bond Å kJ mol21Å22 Angle (cont.) � kJ mol21rad22

C1 - N6 1.34 3173.2 C2 - C3 - C2 119.40 693.8

C1 - C2 1.40 3057.2 C2 - C4 - C5 114.28 612.0

C2 - C3 1.39 3269.3 C2 - C4 - N5 113.29 373.1

C2 - C4 1.51 2230.0 C2 - C1 - H1 119.67 290.4

C4 - C5 1.55 1884.2 C2 - C3 - H3 120.00 320.1

C5 - C5 1.55 1916.9 C2 - C4 - H4 107.84 405.1

C5 - C6 1.54 2143.0 C3 - C2 - C4 122.18 507.4

C6 - N5 1.47 2353.8 C4 - C5 - C5 104.83 608.3

C4 - N5 1.47 2063.0 C4 - N5 - CT 114.15 760.2

N5 - CT 1.46 2356.1 C4 - N5 - C6 104.64 782.9

CT - HT 1.10 3061.1 C4 - C5 - H5 110.57 402.9

C1 - H1 1.09 3299.1 C5 - C5 - C6 104.22 690.4

C2 - H2 1.09 3394.8 C5 - C4 - N5 103.23 613.0

C3 - H3 1.09 3357.2 C5 - C6 - N5 104.22 610.9

C4 - H4 1.11 2764.3 C5 - C4 - H4 108.47 405.1

C5 - H5 1.09 3151.8 C5 - C6 - H6 113.72 374.7

C6 - H6 1.11 2947.6 C5 - C5 - H5 112.50 398.9

C6 - N5 - CT 113.15 740.0

C6 - C5 - H5 111.41 409.8

Angle
�

kJ mol21rad22 N5 - CT - HT 109.53 463.2

C1 - N6 - C1 117.38 601.3 N5 - C6 - H6 110.60 461.7

C1 - C2 - C3 118.68 513.4 N5 - C4 - H4 109.59 472.0

C1 - C2 - C4 120.77 429.4 N6 - C1 - H1 115.89 406.2

C1 - C2 - H2 120.18 331.1 HT - CT - HT 108.23 336.9

N6 - C1 - C2 124.44 861.0 H5 - C5 - H5 107.38 331.0

H6 - C6 - H6 107.63 336.2

Dihedral Functional Nb Functional

Improper Harmonic in pyrid.; cos(3h) in pyrrol. 1-4 off

C4 - N5 - CT - HT 4.507 [kJ/mol] ð11cos ð3h½rad�ÞÞ 1-51 lj and q-q

C1 - C2 - C4 - N5
X4

n51

knð11cos ðnd2/nÞÞ
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range between 1 and 0, depending of the deviation of rjðtÞ and

hjðtÞ from the reference values re and he.

The TD-DFT/FQ/FX approach for UV-vis spectra

The TD-DFT/FQ/FX approach for the calculation of vertical excita-

tion energies has been recently presented by Carnimeo et al.[44]

and is briefly summarized in the following. The total QM/MM

ground state energy for a molecular system partitioned into a

QM subsystem, a MM subsystem endowed with FQ charges, and

a MM subsystem endowed with FX charges, can be written as

Etot5EQM1EMM1EQM=FQ1EQM=FX1ELJ; (2)

where EQM is the total energy of the QM subsystem, which

depends on the particular level of theory used in the calcula-

tions, EMM is the total energy of the MM force field, includ-

ing—among the other terms—also the electrostatic Coulomb

interaction between the FQ and FX charge distributions, ELJ is

a parametrization of the dispersion-repulsion interactions

between the QM and the MM subsystems, while EQM=FQ

(EQM=FX) is the electrostatic interaction energy between the

QM and the FQ (FX) charge distributions.

For a MM system composed by NFQ polarizable atoms and

NFX FX atoms, and when the QM charge density distribution is

expanded in atomic orbital basis set fvlð~rÞ; l51; . . . AOg
EQM=FQ reads

EQM=FQ5
X

k2FQ
A2QM

ZAðAjkÞ~qk2
X

k2FQ
lm2AO

PlmðlmjkÞ~qk; (3)

where the k (A) index runs over the FQ (QM) atoms, ZA is the

atomic number of the atom A, Plm is the lm element of the AO

ground state density matrix, ~q is the array containing the

polarizable charges, and the integrals are defined as

ðlmjkÞ5
ð

d~rd~r
0 vlð~rÞvmð~rÞdð~r

0
2~Rk Þ

j~r2~r
0j

ðAjkÞ5
ð

d~rd~r
0 dð~r2~RAÞdð~r 02~Rk Þ

j~r2~r 0j
:

(4)

The ~Rk and ~RA refer to the coordinates of the atoms k and A,

respectively.

The energy term EQM=FX corresponding to the FX charge dis-

tribution is analogous to eq. (3), where the ~q is replaced by

the q array containing the FX, and the proper atomic coordi-

nates are used.

The FQ charges are obtained at each step of the SCF proce-

dure by solving the linear system[42]

D
~q

k

 !
5

2v2V

Q

 !
; (5)

where D is the charge-charge interaction matrix, based on a

semi-empirical kernel[72] using the atomic hardnesses as

parameters and also including the proper terms for the charge

conservation constraints; v is the atomic electronegativity

array, V is the vector of the electrostatic potential generated

by the QM and FX charge distributions and evaluated at the

coordinates of the FQ atoms, and Q is the array containing the

total charge on each FQ fragment, which defines the charge

conservation constraints.

Then, at each step of the SCF, the FQ charges are polarized

by the QM and FX charge densities through the external

potential V, as well as the QM charge density is polarized by

the FQ charges by adding to the total Fock matrix the contri-

bution related to eq. (3) (vQM=FQ
lm )

vQM=FQ
lm 52

X
k2FQ

ðlmjkÞ~qk: (6)

Once the SCF is at convergence, the TD-DFT equations are

solved using standard numerical approaches,[73–77] the contri-

bution from eq. (3) (f
QM=FQ
lm;jk ) being explicitely included in the

coupling matrix elements

f
QM=FQ
lm;jk 52

X
kl2FQ

ðlmjkÞD21
kl ðljjkÞ: (7)

Starting from the MD trajectories of both pyridine and nicotine

aqueous solutions, 100 snapshots equispaced in time have

been extracted and used as input configurations for the subse-

quent excited state calculations. Although the MD simulations

were carried out with periodic boundary conditions using

orthorhombic boxes, only the water molecules inside a sphere

with origin at the center of mass of the solute and a radius of

11 Å and 17 Å (in the case of pyridine and nicotine, respec-

tively), were retained for the subsequent TD-DFT/FQ/FX calcu-

lations. The FQ parameters used in this study (summarized in

Table 3) have been taken from a previous work,[44] where a

new parametrization was proposed to reproduce the changes

in the polarization of the water molecules for different envi-

ronments, ranging from the isolated molecules in the gas

phase to the bulk phase of condensed systems. Regarding the

excited state calculations of hydrogen bonded systems, it was

found that the vertical excitation energies were better repro-

duced by the TD-DFT/FQ/FX model by including a proper

screening in the electronegativity of the hydrogen atom

directly involved in an hydrogen bond with a QM donor. Thus,

for every water molecule in the FQ subsystem, the magnitude

of the hydrogen bond with the QM solute has been estimated

through the FHB function [eq. (1)].[71] The molecules showing

values lower than a fixed threshold (1:0 � 1022) were

Table 3. Parameters (in atomic units) for water molecules in the QM/MM

calculations.

Oxygen Hydrogen Hydrogen/QM

v 0.189194 0.012767 0.042000

g 0.623700 0.637512 0.637512

q 20.659 0.329 0.329

Electronegativity, hardness, and atomic charges are labeled with v; g,

and q, respectively. The parameters of the FQ hydrogen atom directly

bonded to the QM nitrogen are labeled as hydrogen/QM.
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considered as bulk water molecules, and the hydrogen and

oxygen parameters in Table 3 were used; whereas, the mole-

cules showing larger values where considered as directly inter-

acting with the QM charge distribution, and the hydrogen/QM

parameters were used for the hydrogen atom accepting the

hydrogen bond.

In the same work,[44] it was proposed that a good strategy for a

reliable representation of the MM charge density is to endow the

outer layer of water molecules with fixed (FX)—rather than polar-

izable—charges as the electrostatic potential acting on such mol-

ecules is frustrated by the truncated coordination, and leads to

nonphysical polarization effects. The solvation spheres end with a

2 Å layer made up by fixed-charge TIP3P-FB[66] water molecules

as shown in Figure 3 for both pyridine and nicotine systems.

The TD-DFT/FQ/FX results were compared with TD-DFT cal-

culations in vacuo and TD-DFT/PCM calculations using the C-

PCM[52,53] scheme, for the two molecules at optimized geome-

try, and in all cases the B3LYP exchange and correlation func-

tional and the 6-31 1 G(d) basis set were used, including 12

and 24 states for pyridine and nicotine, respectively.

Eventually, for each snapshot c and each transition i, energies

hmc;i and oscillator strengths fc;i were convoluted in the energy

domain with broadening functions giðm2m0
c;iÞ, which in principle

depend on the particular transition, and with a custom HWHM

Dm. The final electronic spectrum was then obtained by averag-

ing the signals originated by each snapshot as

�cðmÞ /
X

c2snap

1

Nsnaps

X
i2statesc

fc;i

Dm
giðm2m0

c;iÞ; (8)

and is reported in the wavelength domain, for a better com-

parison with experimental data expressed in nm.

A more refined approach is based on the fact that the sam-

pling rate adopted in the MD simulations is much larger than

the typical time step of the vibrational motions, so that the

vibronic broadening effects can be evaluated separately from

the solvent effects. First, the vibronic stick spectra were

obtained within the VG approach (see Refs. [78,79] and refer-

ences therein.) by evaluating excited state potential energy

surfaces in the harmonic approximation from ground state

vibrational frequencies, normal modes and excited state forces.

This choice was supported by the fact that a reliable approach

for the calculation of the polarizable QM/MM excited state gra-

dients has been recently developed and validated,[44] so that

the VG method is currently more appealing than other

approaches[80,81] based on Hessian calculations (e.g., adiabatic

Hessian) requiring further steps of parametrization and

validation.

Vibronic calculations have been performed on pyridine or

nicotine, interacting with one or two explicit water molecules,

on the geometry optimized with the PCM. Then, the stick

vibronic spectra of the relevant transitions were normalized

and convoluted with Gaussian functions with a very small

HWHM (20 cm21), and such spectral line-shapes were used to

define the giðm2m0
c;iÞ functions. The solvent effects were then

added using eq. (8) to convolute the vibronic line-shapes with

the excitation energies and oscillator strengths obtained along

the MD trajectories.

Results

Pyridine in aqueous solution interacts with water essentially by

forming hydrogen bonds, which involve the lone pair on the

nitrogen atom of the heterocyclic compound with

Figure 4. Radial and angular distribution functions for NO_VS (red line) and

VS (black line). a) Radial distribution function (solid line) and running inte-

gration number (dashed line) for the N� � �H intermolecular interactions. b)

Radial distribution functions for the N� � �O contacts. C: Angular distribution

functions of the HO� � �N angle, limited to the interactions with N� � �H and

N� � �O distances within the first minimum position in the respective g(r).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. One snapshot taken from the MD simulation of pyridine in water.

The oxygen atom of the water molecule directly bonded to the QM is col-

ored in red. The pink color refers to the FQ water molecules, whereas the

green color has been adopted for the external layer of FX[66] molecules.

[Color figure can be viewed at wileyonlinelibrary.com]
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solvent.[82,83] To validate the proposed model, in which the

lone pair on nitrogen atom is explicitly described through the

VS, the H-bond interactions have been compared with a mod-

el without VS (hereafter NO_VS) and previous experimen-

tal[82,84–91] and computational[92–96] results. The first

information on the hydrogen bond structure has been

obtained by determining the radial pair distribution function,

g(r), for the N� � �H and N. . .O contacts, reported in Figure 4.

The position of the first g(r) maximum obtained by both

models is in agreement with the most recent experimental

measurements by Kameda et al.[97] (1.9 Å), with the exception

of the coordination number, which is definitively lower. In fact

the coordination number obtained by a fitting procedure of

experimental data provides a value of 2.5, while the coordina-

tion number extracted from g(r) is 1.3 and 1.8 for VS and

NO_VS, respectively. However, Bak�o et al.[83] have observed

that an accurate estimation of both interaction distances and

coordination number for the N� � �O contacts is very difficult as

a consequence of the concomitant presence of the inter-

molecular H-bond (1.8–1.9 Å) between solvent molecules. Low-

er values for the number of hydrogen bonds between the het-

erocyclic nitrogen atom and the hydrogen atom of solvent (in

the range 1–2) are obtained by both experiments[82,84–91] and

models to interpret experimental findings,[92–96] with a prepon-

derance of 1:1 complexes.[82,95]

It is expected that the inclusion of the VS allows to obtain a

more directional character in the H-bond interaction. This

behavior can be observed by calculating the angular distribu-

tion functions related to the /HO � � �N angle. Figure 3 shows

the angular distribution functions limited to the N� � �H and

N� � �O interactions with distances shorter than those of the

corresponding first minimum. The function obtained with VS

goes faster to zero than in the case of simulations with pyri-

dine without VS, confirming the hypothesis on the VS effect.

In all cases, the angular distribution functions reach a zero val-

ue for angle higher than 30
�

usually adopted as threshold (in

conjunction with other parameters, such as for example the

potential energy[93,94]) to ascertain the presence of H-bond

interactions.

Further details about the number of hydrogen bonds

between pyridine and water can be accessed determining the

value of
X

j
FHB

j during the simulations. On the basis of experi-

mental results and on the initial analysis of g(r) for the N� � �H
contacts, it is expected that the instantaneous value of

X
j
FHB

j

is close to one. The analysis reported in Figure 5 confirms the

expected value, especially in the case of the model with VS.

The results are summarized in the histogram of the distribu-

tion of hydrogen bonds and are compared with those

obtained adopting geometrical criteria, based on the position

of first minimum in g(r) and on the zero value in g(h) shown

in Figure 4.

The most probable coordination number computed during

the simulations of pyridine with the VS model is 1, indepen-

dently of the criterium adopted to calculate this quantity and

Figure 5. Hydrogen bond analysis for the NO_VS (a and b panels) and VS (c and d panels) models. a and c panels: Evolution of
X

j
FHB

j . b and d panels:

Blue line represents the probability distribution of
X

j
FHB

j ; Red bars represent the coordination numbers valuated with geometrical criteria. [Color figure

can be viewed at wileyonlinelibrary.com]
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is in agreement with the values extrapolated from the g(r).

The main complex observed in aqueous solution is repre-

sented by the solute molecule bound to one water molecule

as hypothesized to interpret a series of spectroscopic

results.[82,95,98] The NO_VS model presents instead a higher

coordination number with a non-negligible number of config-

urations with pyridine involved in two hydrogen bonds.

The correct representation of the H-bond interactions with

the VS model permits to adopt the present approach to model

also the pyridine ring in nicotine moiety.

MD simulations on nicotine system have been carried out

with the developed force field, analyzing initially the variation

of the d1 dihedral angle during the 100 ns accumulation run

and the relative distribution. As observed in previous MD sim-

ulations on nicotine both in water[49] and methanol,[54] the

most populated configurations are essentially related to the A

and B conformers in agreement with the DFT computed PES,

as Figure 6 shows. Results of experimental measurements have

been correctly interpreted on the basis of models with a simi-

lar relative population of the two conformers.[99,100]

The study of nicotine solvation in water requires a particular

attention due to the different conformations accessible and to

the presence of a nitrogen atom on both the pyridine and

methylpyrrolidine rings, labeled N6 and N5 in the following.

Preliminary information regarding the interaction with solvent

has been obtained by analyzing the radial and angular distri-

bution functions involving each nitrogen atom. Figure 7 shows

that the position of the first peak maximum in the g(r) for the

N� � �H and N� � �O interactions is nearly the same for the two

different nitrogen atoms, whereas the stability of the hydrogen

bond appears to be higher for N5 than for N6, as confirmed

by the depth of the first minimum in the g(r), which indicates

a lower rate of exchange between molecules of the first and

second shell. This behavior can be explained on the basis of

the higher basicity of N5 with respect to N6.[49,101,102] The

coordination number is closer to one for N5 than for N6.

To characterize the hydrogen bond interactions the angular

distribution functions have been computed for all the N� � �H
and N� � �O contacts with distances shorter than that of the

first minimum. The results are reported for the two nitrogen

atoms in Figure 7, showing a slightly faster decay for the H-

bond with N5. To confirm the hypothesis that the main differ-

ence of the H-bond interaction between water and the two

nitrogen atoms on nicotine is essentially due to the rate of

exchange between molecules of first and second solvation

Figure 6. Left panel: Evolution of the dihedral angle d1 during the molecular dynamics simulations. Right panel: Histogram of the probability distribution

of d1 obtained by the analysis of the molecular dynamics trajectory.

Figure 7. a) Radial distribution functions for the N� � �H contacts (solid lines)

and running integration number (dashed lines). b) Radial distribution func-

tions for the N� � �O contacts (solid lines) and running integration number

(dashed lines) c) Angular distribution functions of the HO� � �N angle, only

for N� � �H and N� � �O distances lower than the position of the first mini-

mum in the respective gðrÞ. Blue and red lines refer to nitrogen atoms N5

and N6, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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shells, the number of times that the hydrogen bonded mole-

cule differs in two consecutive steps has been valuated. The

exchange rate is � 4 times higher for N6 than for N5.

Electronic absorption spectra of pyridine and nicotine in

water

In Table 4, the vertical excitation wavelengths and oscillator

strengths for the first six transitions of the pyridine molecule at

B3LYP/6-31 1 G(d) level of theory (in the range 190–300 nm) are

reported, as computed with TD-DFT calculations on the opti-

mized molecule in vacuo (VAC) and in PCM (PCM) and TD-DFT/

PCM calculations of the pyridine optimized with one explicit QM

water molecule directly interacting with the nitrogen

(PCM 1 H2O). The results from TD-DFT/FQ calculations on the

QM pyridine directly interacting with one FQ water molecule—

FQ(H2O)—taken from a previous work[44] have been also

reported. The electronic absorption spectrum of pyridine has

been studied with several computational methods,[103–110]

which have been shown difficulties in the correct determination

of electronic transitions energies using different levels of theory.

To verify the effects of exchange and correlation functional or

basis set, the calculations reported in Table S1 and Table S2,

respectively, of the Supporting Information have been per-

formed. The observed variations on the excitation energies and

oscillator strengths are very small and do not change the overall

description of the computed electronic spectrum of pyridine

obtained using the B3LYP exchange and correlation functional

in conjunction with the 6-31 1 G(d) basis set.

Excited state calculations on optimized geometries

The features of the calculated UV-vis spectrum of pyridine in

vacuo are due to one weak transition at 256 nm well separated

from all the others, one dark transition at 242 nm, and two

bright transitions at 225 and 197 nm. When the PCM is used for

modeling bulk solvation effects, with both the PCM and

PCM 1 H2O schemes, the wavelength of the bright transitions at

225 nm is quite unaffected by the solvent, being red shifted to

227 nm, while the dark transition at 242 nm is strongly influ-

enced by the solvent, being shifted to 231 nm and 221 nm with

the PCM and PCM 1 H2O schemes, respectively. In the latter

model, the larger solvatochromic shift results in an inversion of

the ordering between the dark n! p� and the bright p! p�

transitions. For this reason, we adopted the notation of indicat-

ing the first weak transition and the fourth bright transition as 1

and 4, respectively, being well separated from the others, while

the second and the third are labeled as D (dark) and bright (B),

to avoid possible confusion due to the inverse ordering.

Such a progressive red shift found in the wavelengths of

the electronic absorption bands reported in Table 4 when

moving from the isolated molecules to the solvated systems is

in agreement with previous works.[44,52,53,111,112] Marenich

et al.[111,112] found that the presence of the directional interac-

tion induces a red shift in the first excited state transition,

showing that the average position of the first excited state

band goes from 263.1 nm in the isolated pyridine to 254.0 nm

with the C-PCM[52,53] scheme, finally reaching the value of

248.5 when the hydrogen bonded water molecule is explicitly

included. A similar result (249.5 nm) was obtained by means

of QM/MM calculations,[44] where the water molecules sur-

rounding pyridine were explicitly described through the multi-

layer model based on the FQ approach.

If we compare the transitions reported in Table 4 with the

experimental UV-vis vertical spectrum of Figure 8, we notice that

significant discrepancies between the wavelengths of the two

bright transitions and the experimental maxima are observed.

Such discrepancies, are partially due to the fact that vertical exci-

tation energies (and oscillator strengths) of pyridine in gas phase,

predicted by computational approaches are quite dependent on

the specific method adopted.[103–110] Hence, the results dis-

cussed in the following should be considered as a best estimate

of the real spectrum within the B3LYP/6-31 1 G(d) level of theory.

In particular, the maximum of the experimental first absorp-

tion band is observed at about 257 nm, and this value could be

either compared with the B absorption band at 227 nm, and/or

with the transition 1, predicted at 247 and 239 nm by the PCM

and PCM 1 H2O models, respectively. In the first case, the dis-

crepancy is due to a wrong solvatochromic shift predicted in

the wavelength of transition B, while in the second case, the

error on the wavelength of transition 1 would be smaller but

the intensity should be much more enhanced by the solvent.

Furthermore, the experimental band shape appears to be very

complex, with the presence of many minor absorption peaks at

246, 251, 262 nm, suggesting that beyond the solvation effects

modeled by the PCM and PCM 1 H2O schemes, other effects are

likely to affect the overall spectral line-shape.

The inclusion of vibronic features and broadening effects

To improve the agreement between simulated and experimental

spectra, we will mainly focus on two main effects in the

Figure 8. UV-vis spectrum of pyridine in aqueous solution. The black line is

the experimental spectrum[113]; the blue dashed line is the spectrum

obtained by convolution with Gaussian functions (HWHM 5 200 cm21) of

the vertical spectra taken from 100 snapshots of the MD simulation (1 con-

figuration every 50 ps). The red line is the spectrum obtained using Gauss-

ian functions with HWHM 5 500 cm21 in the convolution. [Color figure can

be viewed at wileyonlinelibrary.com]
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following: the solvent broadening effects coming from the intrin-

sic disorder of the molecule in solvent (i), and the effects coming

from the vibronic structure of the electronic transitions (ii).

The former effect (i) can be included by the MD. In Table 4

averages and standard deviations of wavelengths and oscilla-

tor strengths of the first six states computed with the TD-DFT/

FQ/FX model on the 100 snapshots extracted from the MD

simulation of pyridine in water, are labeled as FQ(MD). We

observe that transition 1 and 4, falling at 247 and 202 nm,

respectively, are well separated from the others, and the inten-

sity of transition 1 appears increased with respect to the PCM

and PCM 1 H2O models, suggesting that the intrinsic disorder

of the geometry of the snapshots leads to an average increase

of the oscillator strength. On the other side, the bright and

dark character of the second and third transition cannot be

recognized anymore, and they appear as two mixed bright

transitions with lower oscillator strengths than the ones pre-

dicted by the PCM and PCM 1 H2O models. This could

be explained by recalling that while the wavelength of the

bright p! p� transition is poorly affected by the solvent, the

dark n! p� transition shows a large solvatochromic shift, pos-

sibly leading to the inversion of the levels; thus, there still

could exist a Bright and Dark character for the second and

third transitions, but as the two states are randomly inverted

in the different snapshots of the MD, they appear mixed in the

averages. As a first level of approximation we simply neglected

such an issue adopting a very simple and intuitive approach

of calculating the vertical UV-vis spectrum on each snapshot

by convoluting transition energies and oscillator strengths of

each transition with the same Gaussian function with fixed

HWHM 5 200 cm21, and for comparison with HWHM 5

500 cm21, independently of the assignment. Then, the final

the UV-vis spectrum has been obtained as the sum of the con-

tributions from each snapshot, with normalized intensities.

This has been done using the VMS program[114–116] recently

developed by our group and some handmade programs writ-

ten on purpose, and the final spectrum is shown in dashed

line in Figure 8, together with the experimental one.

From such an approach we observe that there is quite a

broad distribution of peaks in the low energy zone of the

spectrum, possibly due to the fact that transition 1 in the MD

simulation has higher average oscillator strengths with respect

to the PCM and PCM 1 H2O models and a broad distribution

of wavelengths, as suggested by the value of standard devia-

tion of 11 nm (Table 4). In this respect, the small peaks at

about 240, 250, 260, and 270 nm of the FQ(MD) spectrum can

be assigned to such a transition. The strong absorption band

between 225 and 235 nm is due to the contributions from the

mixed transitions M1 and M2, being worth of note that the

solvent broadening leads to a red-shift of the wavelength with

respect to the value of 227 nm found with the PCM and

PCM 1 H2O model (Table 4), approaching the experimental

maxima. Comparing the simulated and experimental band-

shape, it seems that the simulated spectrum generally repro-

duces relative intensities and wavelengths differences of the

transitions, and just suffers from a rigid blue-shift of few tens

of nanometers. There are many reasons which could possibly

lead to such a shift. While some sources of error (such as the

particular choice of the DFT functional and basis set, the para-

metrizations of the FQ model, MM force field and FHB function,

the lack of dispersion effects in the description of the interac-

tions between the p and n orbitals of pyridine and the water

Figure 9. Vertical gradient spectrum of pyridine in aqueous solution

according to the PCM 1 H2O model. The red line is the spectrum obtained

using Gaussian functions with HWHM 5 200 cm21 in the convolution. [Col-

or figure can be viewed at wileyonlinelibrary.com]

Figure 10. Assignment of the second and third excited states from the

FQ(MD) simulation, in Bright/Dark states (71 snapshots) and Unknown

states (29 snapshots). [Color figure can be viewed at wileyonlinelibrary.

com]
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molecules) cannot be removed being intrinsically related with

the fact that the medium/large size of the molecular system

under study requires the use of approximate methodologies,

other effects such as the vibronic substructure underlying the

electronic transitions can be analyzed in more detail.

Indeed, further insights in the reproduction of the band-

shapes can be added by the vibronic effects (ii). We applied

the VG approach[50,51] to simulate the vibrational structure of

the transitions 1, B and 4 in the PCM 1 H2O model, and in Fig-

ure 9 the corresponding spectra are shown.

Transition 1 has an absorption maximum at about 240 nm,

transition B has two main maxima at about 230 and 235 nm,

and transition 4 has two maxima at about 200 and 205 nm.

Comparing such values with the vertical absorption wave-

lengths of the PCM 1 H2O model reported in Table 4, the gener-

al macroscopic effect coming from the vibronic structure seems

to be an overall red-shift of the absorption maxima with respect

to the vertical values of about 5–7 nm. As such a shift is very

similar for all the three observed transitions, it could be reason-

able to assume that the vibrational features contribute to rigidly

shift the overall simulated spectrum toward higher wavelength

zone, at least in this region. Furthermore, we observe that the

vibronic line-shapes of transitions B and 4 are far from being

similar to a Gaussian line-shape, suggesting that using Gaussian

functions with fixed HWHM for the convolution of the vertical

transitions of the snapshots is a coarse approximation.

As in the real system the vibronic effects and the solvent

broadening should be both present at the same time, we tried

to combine these two effect in a simple and empirical way for

the first absorption band, by convoluting the vertical excitation

energies obtained along the MD simulation with the vibronic

line-shapes of the transitions 1 and B, in place of using simple

Gaussian functions.

To do that, we have to be sure that we are convoluting the

line-shape of the right transition with the right excitation

wavelength for each snapshot. From one side, the FQ(MD) and

FQ(H2O) (Ref. 44) schemes predict the weak transition 1 at 241

and 247 nm, respectively, and the bright transition 4 at 197

and 202 nm, respectively, in agreement with the PCM 1 H2O

model. Furthermore, the latter appear to be well separated

from the 5th transition, occurring at 184 and 183 nm, respec-

tively. On the other side, in many snapshots of the FQ(MD)

model the dark/bright assignment of the second and third

transition is lost, and they appear mixed.

We decided to proceed in an approximate way, using the

ratio between the oscillator strengths of the different transi-

tions as a criterion to determine whether a given snapshot

shows an electronic structure similar to the PCM 1 H2O one,

or not. In particular, we retained only those snapshots showing

a ratio between oscillator strengths of the second and third

transitions higher than an arbitrary threshold value (3.0). In

this way, we were sure that the contributions from the bright

and dark transitions were not mixed, being similar to the

PCM 1 H2O one. In Figure 10, the distribution of the second

and third transition energies and oscillator strengths is plotted.

By applying the aforementioned criterion, we found that in 71

snapshots the second and third states presented very different

oscillator strengths, and could be assigned as bright and dark

transitions. Otherwise in 29 snapshots, those state presented

similar oscillator strengths, so that nothing could be concluded

about the assignment (we labeled those states as “Mixed” or

“Unknown” states, as no comparison could be made with the

Figure 11. First absorption band of pyridine in aqueous solution. Upper panel: The vibronic features of transition 1 and B of the PCM 1 H2O model have

been projected onto the vertical excitation energies coming from the MD simulation. Both bands normalized to one. Lower panel: The black line is the

experimental spectrum, the dashed line is the FQ(MD) spectrum, the straight red and blue lines are the spectra of the 1 and B transitions showed in the

upper panel weighted with a ratio of 1:3, according to the oscillator strengths of the FQB=D model shown in Table 4. [Color figure can be viewed at

wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

330 Journal of Computational Chemistry 2017, 38, 319–335 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


reference PCM 1 H2O spectral features). The values of wave-

lengths and oscillator strengths averaged over the 71 selected

snapshots are reported in Table 4 as FQB=D(MD), together with

the standard deviation. The average value of wavelength and

oscillator strengths of transition B are 229 nm and 0.0390,

respectively, in agreement with PCM and PCM 1 H2O predic-

tions. On the other side, transition D, which is very sensitive to

the solvation environment is found at about 230 nm, in close

agreement with the PCM model. It is worth noting that the

Mixed transitions are found at 231 and 224 nm, very close to the

PCM 1 H2O values, and this could suggest that the explicit

water directly interacting with the QM nitrogen induces some

mixing in the oscillator strengths of the bright and dark transi-

tions. The average wavelength for transition 1 is of 248 nm, with

a standard deviation of 11 nm. As the next transition occurs at

230 m, the risk of level inversion should be very small. Further-

more, such an analysis confirms the enhancement of the oscilla-

tor strength of transition 1 (0.0112) with respect to the PCM and

PCM 1 H2O models, as was also found with the FQ(MD)

approach. The average wavelength of transition 4 is 202 nm,

with a standard deviation of 3 nm, and the other closest transi-

tions occur at 224 and 183 nm, being well separated.

To be sure that such results are not dependent on some

particular computational choice, such as the parametrization

of the FQ model for TD-DFT/FQ/FX calculations or some

unphysical arrangement of the solvent molecules in the MD

simulations, we removed from the snapshots all the water

molecules except the one which was found to be directly

bonded with the QM nitrogen (from the FHB function analysis),

and computed the vertical absorption spectrum with TD-DFT/

PCM calculations. The results are referred in Table 4 as

PCM(MD) and PCMB=D(MD), and the values of wavelengths and

oscillator strengths are in very close agreement with the corre-

sponding FQ(MD) and FQB=D(MD) calculations.

Then, if a given snapshot showed an electronic structure similar

to the PCM 1 H2O one, we projected the vibronic line-shape on

the transitions 1 and B, assuming that the spectral structure of

such a snapshot should be reasonably similar to the PCM 1 H2O

one; in the other cases we simply rejected that snapshot without

considering its contribution to the final overall spectrum.

In Figure 11, the first absorption band obtained by convo-

luting the vibronic features of the 1 and B transitions of the

PCM 1 H2O system with the vertical energies obtained from

the 71 selected snapshots is shown.

In the upper panel of Figure 11, vibronic stick spectra and

convoluted line-shapes of the two transitions are shown nor-

malized on the same scale, to evidence the comparison. In the

lower panel of Figure 11, the convoluted spectra of the two

transitions have been plotted together with the experimental

and the FQ(MD) line-shapes. Furthermore, the intensities have

been scaled to keep into account the enhancement of the

oscillator strength of transition 1 found in the MD simulation,

so that the intensity of transition 1 has been set to be 29% of

Table 5. Wavelength (nm) and oscillator strengths (f ) for the first eight excited states of nicotine in aqueous solution.

PCM12H2O

Nicotine A Nicotine B FQ(MD) FQB=D(MD)

Label Assign. nm f nm f hnmi hfi N hnmi hfi N

10 n0 ! p? 267 0.0033 264 0.0069 h287i23 h0:0059i0:0061 100 h288i24 h0:0056i0:0045 68

20 n0 ! p? 242 0.0026 249 0.0011 h264i15 h0:0087i0:0100 100 h264i16 h0:0078i0:0087 68

1 n! p? 241 0.0046 237 0.0058 h246i8 h0:0176i0:0178 100 h246i8 h0:0155i0:0148 68

B p! p?(Bright) 234 0.0942 232 0.0769 h233i6 h0:0539i0:0220 68

D n! p?(Dark) 221 0.0019 223 0.0004 h232i9 h0:0071i0:0058 68

M1 (Mixed) h237i6 h0:0317i0:0242 100 h236i6 h0:0277i0:0126 32

M2 (Mixed) h228i7 h0:0276i0:0254 100 h227i8 h0:0281i0:0167 32

4 p! p? 207 0.0349 205 0.0459 h217i7 h0:0396i0:0401 100 h217i7 h0:0398i0:0398 68

5th – 204 0.0423 208 0.0613 h208i7 h0:0343i0:0349 100 h209i7 h0:0329i0:0352 68

6th – 195 0.0000 194 0.1215 h202i7 h0:0346i0:0413 100 h202i7 h0:0366i0:0456 68

PCM 1 2H2O refer to TD-DFT calculations on the optimized pyridine in PCM with two explicit hydrogen bonded QM water molecules. FQ(MD) refers to

wavelengths and oscillator strengths averaged over the N snapshots of the MD simulation, using the TD-DFT/FQ/FX model. The averages including the

Bright/Dark states analysis are reported as FQB=D(MD) (see text). M1 and M2 refer to the Mixed states found in the MD simulations. Standard deviations

are given as subscripts.

Figure 12. UV-vis spectrum of nicotine in aqueous solution. The black line

is the experimental spectrum; the dashed blue line is the spectrum

obtained by the MD simulation configurations (1 snapshot every 1 ns of

the MD simulation) convolved with Gaussian functions at fixed

HWHM 5 200 cm21. The red line is the spectrum obtained using Gaussian

functions with HWHM 5 500 cm21 in the convolution. [Color figure can be

viewed at wileyonlinelibrary.com]
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transition B, according to the average values of the oscillator

strengths of 0.0112 and 0.0390, respectively (Table 4).

In this way, the red shift coming from the vibronic features

and the intensity enhancement coming from the solvation

effects can be visualized together, showing a better agreement

with the experimental spectrum with respect to the simple

Gaussian functions used in the FQ(MD) model, both in terms

of wavelengths and line-shapes. It is worth noting that

although the effect of the Mixed states has been neglected in

this approach, as they were found to be important for only

the 30% of the snapshots, they still should give a contribution

to the final spectrum to some extent.

Eventually, from our calculations we can conclude that the

red shift of the UV-vis spectrum of pyridine, moving from the

Figure 13. Vertical gradient spectrum of the transitions 1 and B of nicotine A (a) and nicotine B (b) with the PCM 1 2H2O model. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 14. Upper panel: Convolution of the vibronic features related to transitions 1 and B of nicotine in PCM 1 H2O, with the vertical excitation energies

coming from the shapshots of the MD simulation. Lower panel: The black line represent the experimental spectrum of nicotine in aqueous solution. The

red line is the spectrum obtained by convolution of the vibronic structure of the state B, whereas the cyan line is the spectrum obtained by convolution

of the vibronic structure of the state 1. The blue dashed line is the spectrum obtained without vibronic resolution. [Color figure can be viewed at wileyon-

linelibrary.com]
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gas phase to the aqueous solution should be mainly due to a

combination of effects: a moderate red shift of the spectrum

to the vibronic structure, an enhancement of the oscillator

strength of the n! p� transition due to the solvent broaden-

ing, and the mixing of the oscillator strengths of the B and D

transitions possibly due to the fact that in the solvent environ-

ment the A2 and B2 symmetries of the dark n! p� and bright

p! p� transitions are lost.

UV-vis spectrum of nicotine in water

The experimental electronic absorption spectrum of nicotine

at basic pH,[101,102] resembles the one of pyridine shown in

Figure 8, in agreement with the detailed description reported

by Clayton et al.[101,102] suggesting that the UV spectrum of

nicotine in water is dominated by the transition related to the

pyridine ring. Thus, the same computational protocol adopted

for pyridine and described in the previous paragraph has been

used for nicotine.

In Table 5, the vertical excitation energies of the first seven

excited states are reported, as computed using the

PCM 1 2H2O, FQ(MD) and FQB=D(MD) models. In the high

wavelength zone of the spectrum of the nicotine A conformer,

two weak n0 ! p? transitions related to the pyrrolidine ring of

nicotine are found, and they have been labeled as 10 and 20.

Then, moving to lower wavelengths the electronic structure of

pyridine is recovered, with the two n! p? transitions at 241

and 221 nm (labeled as 1 and D according to Table 4), and

the two p! p? transitions at 232, 207 nm (B and 4). The tran-

sitions of nicotine B are very similar to those of nicotine A,

with minor changes in wavelengths and oscillator strengths,

with the only noticeable remark that an inversion occur

between the p! p? transition 4 and the 5th.

Moving to the FQ(MD) averages, the n0 ! p? transitions locat-

ed on the pyrrolidine ring seem to be quite well separated from

the others, being the average wavelengths at 287 and 264 nm,

and the values of oscillator strengths relatively close to the

ones found with the PCM 1 2H2O model. Then we found the

first n! p? transition at 246 nm shows an increased intensity

with respect to the PCM 1 2H2O calculations, and the second

and third transitions, again with values of oscillator strengths

intermediate between the values found for the B and D transi-

tions with the PCM 1 2H2O model. In Figure 12, the spectra

computed by convoluting the values of wavelengths and oscilla-

tor strengths in the 100 snapshots with Gaussian functions at

fixed HWHM 5 200 cm21 and HWHM 5 500 cm21 are shown.

Besides the issues related to the specific choice of the computa-

tional methods used for the calculations,[48] the discrepancies

between the experimental and simulated spectra can be related

either to an underestimation of the wavelength of transition B,

or to an underestimation of the intensity of transitions 10, 20,

and 1. Regarding the latter point, we recall that the oscillator

strength of transition 1 in the FQ(MD) approach is larger than

the corresponding value computed with the PCM 1 2H2O mod-

el, and in Figure 12 the peak related to such a transition appears

at about 245–250 nm.

To split the effect of the inversion of the transitions due to sim-

ilar wavelengths, from the physical effect of mixing of oscillator

strengths, we applied the same criterion used for the pyridine

and presented in the previous section, and the results are pre-

sented in the FQB=D(MD) column. Also in this case about 70% of

the snapshots showed an electronic structure similar to the

PCM 1 2H2O model, with one bright transition at 233 nm, and

the dark one at 232 nm, while in the remaining 30% of the snap-

shots the mixing of the oscillator strengths occurred due to the

breaking of the symmetry of the n! p? and p! p? transitions.

The other p! p? transition seems to be quite unaffected by the

level inversion as the values of averages and standard deviations

for both the wavelength and the oscillator strengths are quite

similar between the FQ(MD) and the FQB=D(MD) models. Further-

more, the oscillator strength of transition 1 in this model is about

28% of the intensity of transition B, in quantitative agreement

with the results for pyridine.

Moving to the vibronic effects, we found a major difference

with respect to the pyridine spectrum. In Figure 13, the VG

spectra of the B transition for both the nicotine A and B con-

formers are shown, and the vibronic line-shape resembles the

one of a Gaussian function, suggesting that the vibronic shift

should be smaller in this case than for the pyridine. To be sure

that such a Gaussian shape is really due to the vibronic struc-

ture, we used a very small HWHM of just 20 cm21, evidencing

the subtle features of the spectra.

Finally, in Figure 14, we plotted the convolution of the

vibronic features related to transitions 1 and B, with the wave-

lengths and oscillator strengths of the 68 snapshots selected

in the FQB=D approach. While in the upper panel the two tran-

sition have been plotted together and both scaled to unity, to

evidence the two separate contributions, in the lower panel

the convoluted line-shapes of transition 1 has been set to be

the 28% of the one of transition B, to show the correct contri-

butions, in agreement with the oscillator strengths of Table 5.

In this case, we note that the vibronic features do not shift

the maximum of the absorption band, but provide only broad-

ening effects.

Conclusions

The electronic absorption spectra of molecules in aqueous

solution have been determined with an integrated computa-

tional approach made up by MD simulations of the target

molecule in water followed by TD-DFT calculation in a QM/

MM framework with the solvent molecules described through

fluctuating or FX models depending on the distance from the

solute.[44] Both the intramolecular potential and atomic

charges of the solute molecule in MD simulations have been

accurately parametrized to improve the description of the

intermolecular interactions, with particular regard to the

hydrogen bonds. The electronic states have been computed

on a series of configurations extracted by MD trajectories.

Because it has been observed[44] that the MM water molecules

directly interacting with the QM part require parameters which

differ from those adopted in the bulk phase, these are locate

using the FHB function developed by Pagliai et al.[71] To avoid
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polarization problems of the most external fluctuating charges

water molecules, these have been replaced by the FX charac-

terizing the TIP3P-FB model. This approach has allowed an

accurate description of the structural variation of nicotine mol-

ecule in aqueous solution, observing the presence of two dif-

ferent conformers in agreement with experimental data.[99,100]

As deduced by different measurements,[49,101,102] the N5 atom

forms more stable hydrogen bonds than N6, even if a VS has

been needed to describe the intermolecular directional charac-

ter due to the sp2 ibridization of the latter. The correct inter-

pretation of the solute/solvent interactions has been a

valuable help in the definition of a model for the electronic

absorption spectra, taking into account the vibrational effects

through vibronic calculations. Together with the specific inter-

est of the studied molecules, our results pave the route

toward systematic use of the proposed tool as a companion

to experimental spectroscopic studies.
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