
CELLULAR AND MOLECULAR MECHANISMS OF ACTION OF THE NOVEL 

ADJUVANT POLYPHOSPHAZENE 

 

A Thesis Submitted to the College of  

Graduate Studies and Research  

in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy  

in the Vaccinology and Immunotherapeutics Program 

in the School of Public Health  

University of Saskatchewan  

Saskatoon, Saskatchewan  

Canada 

 

 

 

By 

 

Sunita Awate 

 

 

 

© Copyright Sunita Awate, December 2012. All rights reserved 



 i 

PERMISSION TO USE POSTGRADUATE THESIS 

In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree 

from the University of Saskatchewan, the author agrees that the libraries of this University may 

make it freely available for inspection. I further agree that permission for copying this thesis in any 

manner, in whole or in parts, for scholarly purpose may be granted by the professor or professors 

who supervised my thesis work. In their absence, permission may be granted from the Head of the 

Department or the Dean of the College in which my thesis work was done. It is understood that any 

copying, publication, or use of this thesis or part of it for financial gains shall not be allowed 

without my written permission. It is also understood that due recognition shall be given to the me 

and to the University of Saskatchewan in any scholarly use which may be made of any material in 

this thesis.   

Requests for permission to copy or to make others use of materials in this thesis in whole or in 

part should be addressed to: 

 

Director, Vaccinology and Immunotherapeutics Program 

School of Public Health 

University of Saskatchewan  

107 Wiggins Road 

Saskatoon, Saskatchewan S7N 5E5  

Canada 

 

 

 



 ii 

ABSTRACT 
 
 

Adjuvants are critical components of modern vaccines. They are added to improve the 

host’s immune responses to the vaccine antigens. Understanding the mechanisms of action of 

adjuvants is critical in the rational design of vaccines. The novel adjuvant 

poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) has shown great potential as a 

vaccine adjuvant, but the mechanisms that mediate its adjuvant activity have not been investigated. 

Hence, the present investigations were undertaken to understand the molecular and cellular 

mechanisms of action of PCEP. First, we investigated in vivo the capacity of PCEP to induce 

innate immune responses at the site of injection. PCEP induced time-dependent changes in the 

gene expression of various “adjuvant core response genes” including cytokines, chemokines, 

innate immune receptors and interferon-induced genes. We also observed that PCEP enhanced 

production of various cytokines including pro-inflammatory cytokines and chemokines such as 

CCL2, CCL4, CCL12 and CXCL10 locally at the injection site but no systemic responses.  

 

Due to the potent chemotactic potential of local cytokines and chemokines produced post-

injection of PCEP, we observed increased recruitment of various myeloid and lymphoid cells at the 

injection site. Neutrophils and macrophages were recruited in significantly higher numbers 

followed by monocytes and dendritic cells (DCs). In addition, there was increased recruitment of T 

and B lymphocytes at the injection site. Further, confocal studies revealed intracytoplasmic 

lysosomal localization of PCEP in recruited immune cells at the site of injection. Whole body in 

vivo imaging of mice injected intramuscularly with PCEP revealed localized distribution of PCEP 

post-injection in the muscle tissue. Approximately 70% of PCEP was cleared from the injection 

site within 24 h post-injection, but there was evidence of PCEP retention up to 12 weeks post-

injection. Although we could not detect PCEP in the draining lymph nodes, we observed 

significant increase in neutrophil, macrophage, monocyte and DC numbers, with the latter cell 

population being most abundant.  
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We observed that in vivo PCEP upregulates NLRP3 gene and pro-inflammatory cytokine 

expression at the injection site. Since caspase-1 is a critical component of NLRP3 inflammasome 

and known to plays an important role in the release of IL-1β and IL-18, we examined the role of 

caspase-1 in PCEP-mediated secretion of IL-1β and IL-18 by splenic DCs. Pre-treatment of splenic 

DCs with the caspase-inhibitor YVAD-fmk significantly inhibited IL-1β and IL-18 secretion in 

response to PCEP. Although PCEP was taken up by the DCs, it failed to induce DC maturation 

(expression of MHC class II and co-stimulatory molecules CD86 and CD40). In addition, PCEP 

did not induce direct activation of naïve T cells. However, when naïve B cells were directly 

activated, PCEP induced significant production of IgM and IL-6. Further, immunization of mice 

with OVA plus PCEP significantly increased the production of OVA-specific IFN-γ by CD4+ T 

cells and CD8+ T cells suggesting that PCEP can generate antigen-specific T cell responses.  

 

Taken together, these results suggest that adjuvant activity of PCEP depends on creating a 

strong immunocompetent environment at the site of injection by activating innate immune 

responses, which involves modulation of adjuvant core response genes, production of cytokines 

and chemokines, recruitment of various immune cells and presumably activation of 

inflammasomes. Together, all these mechanisms might contribute to the adjuvant activity of PCEP.  
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CHAPTER 1. LITERATURE REVIEW 

 
1.1 Overview of vaccine adjuvants 
 
1.1.1   Vaccine history 
 

Vaccines are undoubtfully one of the most valuable public health tools, which have saved 

millions of lives from highly infectious and deadly diseases. The term vaccine is derived from the 

Latin word “vacca” meaning the cow, which is in reference to the work done by the English 

Physician, Edward Jenner. During the smallpox epidemic in Europe in 1796, Dr. Jenner extracted 

the infectious material from a cowpox-infected maid and inoculated it into the arms of an 8-year-

old boy named James Philips, who developed symptoms of smallpox. After 48 h, the boy was 

inoculated with infectious smallpox material again but this time he did not develop the disease. The 

practice of using disease material for the prevention of the disease dates back to 200 B.C. in India 

and China. The ancient people in these countries used to preserve dried smallpox materials and 

injected them into skin or nose to help prevent smallpox. Almost 200 years after Dr. Edward 

Jenner’s work, the World Health Organization (WHO) declared eradication of smallpox in 1980 

after successful vaccination campaign.  Another vaccination success story is the near-eradication of 

polio. Since the launch of the Global Polio Eradication Initiative in 1988, Polio has almost been 

successfully eradicated (99%). This year Polio has been reported only in three countries 

(Afghanistan, Nigeria and Pakistan). Every year millions of lives are saved due to vaccination 

against various infectious diseases including measles, mumps, diphtheria, haemophilius, 

meningitis, tetanus, hepatitis and pertussis in children and adults. However, many people continue 

to die from vaccine preventable diseases due to lack of vaccination.  

 

Two important vaccine components are antigen and adjuvant. Adjuvants are natural or 

synthetic compounds that have been used in vaccines since the early 1920s to enhance or modulate 

the immunogenicity of co-administered antigen. The new vaccines, which include subunit, DNA, 

vectored, and genetically engineered vaccines, have higher safety profiles. However, the major 

drawback of these novel vaccines is that they are poorly immunogenic and therefore require 

addition of adjuvants to induce effective and sustainable immune responses.  
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1.1.2  Types of vaccines  
 

1) Live-attenuated vaccines: To generate this type of vaccines, the pathogenic organisms are 

passaged in culture to reduce replicating ability and pathogenicity. Live-attenuated 

vaccines are replicating and highly immunogenic because they closely mimic the natural 

infection. However, the major drawback of live vaccines is that they have the potential of 

reverting back to their pathogenic nature and cause disease. Therefore, attenuated 

vaccines have a high safety risk especially in newborns, elderly, and 

immunocompromised individuals. Examples of successful live-attenuated vaccines 

include smallpox, polio, yellow fever, tuberculosis, typhoid, anthrax, MMR (measles, 

mumps, rubella), varicella (chickenpox), rotavirus and recently influenza vaccines. As 

live-attenuated vaccines are highly immunogenic, they do not require co-administration 

with adjuvants.    

2) Killed or inactivated vaccines: These vaccines are made by killing or inactivating nucleic 

acids or cross-linking the proteins of pathogens by heat or chemical treatment to make 

them harmless. Since the pathogens are non-replicating, they cannot revert to their 

virulent forms. They often induce poor, short-lived immune responses and therefore 

require co-administration with adjuvants. Typhoid, cholera, hepatitis A, polio and rabies 

are some of the examples of this type of vaccines.  

3) Toxoid vaccines: Toxoids are the weakened and chemically detoxified forms of toxins 

produced by some pathogens. Some toxoids are also poorly immunogenic and require 

adjuvants. The best example of a toxoid vaccine is DTaP (Diphtheria, Tetanus, and 

acellular Pertussis).  

4) Subunit/recombinant vaccines: Contain purified protein antigens of pathogenic 

microorganisms. Since these vaccines are highly purified and contain only part of the 

pathogen instead of whole organism, they are poorly immunogenic and require addition 

of adjuvants. Higher doses of vaccine may be required to elicit protective responses. 

Hence, the major drawback of this vaccine is cost of production and requirement for 

booster doses to maintain immunity. Examples of subunit vaccines are hepatitis B and 

pertussis (whooping cough).  
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5) Conjugated vaccines: Pathogenic bacteria with polysaccharide coating easily escape 

immune recognition. The polysaccharide capsules are poorly immunogenic and hence 

require adjuvants. To induce immune responses against such pathogens, it has to be 

conjugated with immunogenic antigens. Some examples of conjugated vaccines are 

Haemophilus influenzae type B (Hib B) and pneumococcal vaccine.  

6) DNA vaccines: In DNA vaccines, instead of injecting proteins or peptide antigens 

directly, genes encoding for pathogenic antigens are delivered. Expression vectors (e.g. 

plasmids) are used to clone the gene of interest. These vaccines are completely safe and 

cost-effective but poorly immunogenic. Hence, adjuvants or delivery methods are 

required to enhance the immunogenicity of DNA vaccines. Intramuscular inoculation of 

DNA vaccines results in poor transfection efficiency. However, novel delivery methods, 

such as electroporation, have shown higher transfection of antigen presenting cells 

(APCs), which then leads to enhanced humoral and cellular immune responses. 

7) Recombinant vector vaccines: are similar to DNA vaccines, but they use an attenuated 

virus or bacteria to introduce microbial DNA into a host cell for production of antigenic 

proteins that can be tailored to stimulate immune responses. Viral vector vaccines, unlike 

DNA vaccines, also have the potential to actively invade host cells and replicate, much 

like a live attenuated vaccine, further activating the immune system. Various organisms 

have been utilized for vector vaccines including adenoviruses, attenuated poliovirus and 

vaccinia virus.  

 

 
1.1.3  Adjuvants  
 

Adjuvants (Latin word adjuvare, meaning “to help/aid”) were first described by Ramon as 

“substances used in combination with a specific antigen that produced a more robust immune 

response than the antigen alone” (Ramon, 1924). Various natural and synthetic compounds have 

been investigated for their adjuvant properties. However, very few have been approved for human 

use due to safety concerns such as adverse local and systemic effects. Some examples of adjuvants 

are discussed below.  
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1.1.3.1  Alum 
 

For almost a century, alum-based mineral salts were the only adjuvants approved for 

human vaccines. In 1926, Alexander T. Glenny and colleagues reported for the first time that 

precipitation of aluminium potassium sulfate (Potash Alum) to diphtheria toxoid greatly enhanced 

its antibody response (Glenny et al., 1926). Two decades later, Ericsson used aluminium phosphate 

as an adjuvant with diphtheria toxoid. Alum is chemically aluminium potassium sulfate. However, 

the two types of aluminium-containing adjuvants that are used in human licensed vaccines are 

aluminium hydroxide adjuvant and aluminium phosphate adjuvant (Hem and HogenEsch, 2007; 

Hem et al., 2007). Since then, alum has been used in numerous types of vaccines for humans and 

animals. However, aluminium salts mainly induce humoral (Th2) responses and are inefficient 

adjuvants with several vaccine formulations especially against those infections that require Th1 

immune responses for protection (Hunter, 2002). Therefore, there is a clear need for specific 

adjuvants that promote both antibody and cell-mediated immunity. In this regard, several adjuvants 

have been developed or are under investigation. In the past decade, apart from alum, two other oil-

in-water emulsions (MF59 and AS03) and one combination adjuvant (a Toll-like receptor (TLR) 

agonist, MPL plus alum [AS04]) have been approved for use in human vaccines.  

 

1.1.3.2 MF59 

MF59 is an oil-in-water emulsion of a squalene, polyoxyethylene sorbitan monooleate 

(Polysorbate 80) and sorbitan trioleate (Span 85). MF59 was licensed in Europe for a 

commercialized vaccine against influenza (Fluad®, Chiron Vaccines, Siena, Italy). MF59 is a 

potent adjuvant with an acceptable safety profile that has been approved in more than 20 countries 

for influenza vaccines in elderly people (De Donato et al., 1999; Menegon et al., 1999). Another 

emulsion adjuvant, AS03, was approved for a vaccine against prepandemic influenza strain H5N1 

(PrepandrixTM, GlaxoSmithKline Biologicals [GSK], Rixensart, Belgium). MF59 significantly 

enhanced the potency of influenza vaccine antigens as well as the breadth of immune responses 

(O'Hagan et al., 2011). Recently, MF59 has also been shown to be safe in infants and young 

children. MF59 enhanced the immune responses against influenza vaccines from 43% to 89% in 

young childrens (Vesikari et al., 2011). Various studies have shown that MF59 is a more potent 
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vaccine adjuvant compared to alum in induction of both humoral (antibody titers) and cell-

mediated (CD4+ T cell) responses (O'Hagan, 2007; Wack et al., 2008). However, none of the 

MF59 components (squalene oil or citrate buffer) tested alone resulted in higher immune responses 

(Mosca et al., 2008). Currently MF59 has been tested with various other vaccine antigens. Hence, 

MF59 is a potent vaccine adjuvant with a broad safety profile that has the potential to be used with 

wide range of antigens across all age groups.    

 

1.1.3.3 AS04 

AS04 (Adjuvant System 04; GSK) is a combination adjuvant containing 3-O-desacyl-4’-

monophosphoryl lipid A (MPL) and alum (aluminium hydroxide or aluminium phosphate). MPL is 

a “detoxified” derivative of lipopolysaccride (LPS) isolated from the gram-negative bacterium 

Salmonella Minnesota R595 strain. Due to the toxic properties of LPS and its ability to cause 

septic shock, it is not safe for human use. Detoxified MPL has reduced toxicity, but still retains the 

immuno-stimulatory properties of LPS. In 2009, AS04 was licensed in the USA for human use 

with HPV (Cervarix® [GSK]), hepatitis B virus (Fendrix® [GSK]) and herpes simplex virus 

(HSV)-2 vaccines. Clinical data with the AS04 formulation showed sustained antibody levels and 

2.2 to 5.2-fold higher memory B cell responses compared to alum formulations alone (Giannini et 

al., 2006). Stronger B and T cell responses are attributed to the AS04 adjuvant in the CervarixTM 

vaccine.  The HBV vaccine (Fendrix® [GSK]) was the first AS04 formulated vaccine approved for 

human use in Europe. A previously used HBV vaccine formulated with alum has been used 

effectively in persons <40 yrs of age.  Improved immuno-protection in elderly and immuno-

compromised people was achieved by formulating HBV with AS04. Fendrix® induced higher and 

sustained antibody titers, increased seroprotection with fewer vaccine doses and stimulated better 

cell-mediated immune responses compared to HBV vaccine with alum alone (Ambrosch et al., 

2000). Genital herpes caused by HSV-2 is a sexually transmitted disease affecting a large 

population. A vaccine containing glycoprotein D from HSV-2 and AS04 (gD2/AS04) provided 

better immune protection, significantly reduced the viral load and viral shedding than the gD2 

vaccine with aluminum salts alone (Bourne et al., 2005). However, this vaccine was recently 

terminated due to low efficacy in clinical trails (Garçon and Van Mechelen, 2011; Stanberry et al., 
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2002).  

 

1.1.3.4 Liposomes 

Liposomes have been used as vaccine delivery vehicles (e.g. for diphtheria toxoid) for 

several decades (Allison and Gregoriadis, 1974). Liposomes are poorly immunogenic and fail to 

efficiently activate APCs. Hence, they are incorporated with TLR or non-TLR ligands to potentiate 

the immune responses. Viral membrane protein based liposomal vaccines (virosomes) have been 

approved for use in humans as delivery platforms for hepatitis A and influenza vaccines 

(Ambrosch et al., 1997). Cationic liposomes are also effective liposomal delivery systems for 

vaccine antigens and have potent immuno-stimulatory properties (Vangasseri et al., 2006). 

Cationic liposomes prevent antigen degradation and enhance antigen presentation to APCs 

(Christensen et al., 2007). CAF01 is a cationic liposome that consists of 5:1 ratio of 

dimethyldioctadeclammonium (DDA) and trehalose dibehenate (TDB). TDB, a synthetic analogue 

of trehalose-6-6-dimycolate (TDM, also called mycobacterial cord factor) is less toxic and showed 

good adjuvant activity (Numata et al., 1985). CAF01 has been shown to induce potent humoral and 

cell-mediated immune responses against tuberculosis (TB), malaria, hepatitis B and Chlamydia 

(Agger et al., 2008; Vangala et al., 2006). Currently, CAF01 is in Phase I clinical trials for TB 

vaccine.   

 

1.1.3.5 CpG DNA 

Innate immunity is activated by recognition of pathogen-associated molecular patterns 

(PAMPs) including bacterial DNA. Unmethylated CpG DNA (contains central unmethylated CG 

dinucleotides plus flanking regions) released from bacteria, triggers mammalian immune responses 

via direct activation of APCs (Hemmi et al., 2000). Synthetic oligodeoxynucleotides (ODNs) 

expressing unmethylated CpG motifs mimic the immuno-stimulatory properties of bacterial DNA 

(Wagner, 1999). CpG ODNs have shown great potential as vaccine adjuvants in many animal 

models of infectious disease, allergy and cancer. Studies using TLR9 knock out mice confirmed 

that CpG ODNs signals through endosomal TLR9 (Hemmi et al., 2000). CpG ODNs have been 

tested in various Phase I-III clinical trials (Bode et al., 2011). The ability of CpG ODNs to promote 
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Th1 type immune responses and to produce CD8+ T cell differentiation makes them ideal targets 

for cancer vaccines. Due to their very short half-life in vivo and transient activation of immune 

responses, CpG ODNs need to be formulated with other adjuvants (including other TLR ligands) 

to enhance their adjuvant effects in large animals and humans (Ioannou et al., 2002a; Ioannou et 

al., 2002b; Rankin et al., 2002). The reason behind the species differences in activity of CpG is 

partly due to differences in distribution of TLR9 on APCs. In humans, only B cells and pDCs 

express TLR9, whereas, in mice TLR9 is expressed by various myeloid cells including 

conventional DCs (Barchet et al., 2008).  

 

 

1.1.3.6 Polyphosphazenes 

 

Polyphosphazenes are high molecular weight, water-soluble, synthetic polymers 

consisting of a backbone with alternating phosphorus and nitrogen atoms, and organic side groups 

attached to each phosphorus (Fig 1.1) (Andrianov et al., 2006; Andrianov et al., 2004). 

Polyphosphazenes have been used in many applications and are under investigation as vaccine 

adjuvants and delivery systems (Lakshmi et al., 2003). They can be chemically modified by 

incorporating chemical moieties in their structure to make water-soluble salts.  Polyphosphazenes 

have been shown to be potent immunological vaccine adjuvants. They dramatically enhance the 

magnitude, quality and duration of immune responses to a variety of bacterial and viral antigens in 

mouse models. A few studies have also shown the potential of polyphosphazenes as an effective 

and safe adjuvants in large animals (Mutwiri et al., 2009; Taghavi et al., 2009).  Polyphosphazenes 

can be formulated as aqueous solutions or as microparticles by cross-linking with divalent cations. 

These microparticles have been shown to act as effective mucosal delivery systems (Payne et al., 

1995; Shim et al., 2010). Hence, polyphosphazenes are versatile polymers that can act both as 

delivery systems as well as vaccine adjuvants.  
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Fig 1.1 The structures of the polyphosphazene polyelectrolytes, PCEP and PCPP.  

 

 

1.1.3.6.1 Polyphosphazenes as vaccine adjuvants 

 

One of the most investigated polyphosphazenes polyelectrolytes,  poly[di(sodium 

carboxylatophenoxy)phosphazene] (PCPP) has shown promise as a vaccine adjuvant with a variety 

of antigens including hepatitis B surface antigen (HBsAg) (Mutwiri et al., 2008), influenza 

(Mutwiri et al., 2007a; Payne et al., 1998a), rotavirus (McNeal et al., 1999), and cholera (Wu et al., 

2001a) vaccines. Influenza antigens when injected with an aqueous formulation of PCPP, showed 

10-fold enhanced antibody titers compared to influenza antigens without PCPP (Payne et al., 

1998a). Antigen formulated with PCPP resulted in prolonged antibody titers for 6 months 

suggesting that PCPP promotes vaccine longevity (Andrianov and Payne, 1998).  

 

A new generation polyphosphazene polyelectrolyte, poly[di(sodium 

carboxylatoethylphenoxy)phosphazene] (PCEP) has significantly higher adjuvant activity 

compared to PCPP (Mutwiri et al., 2008; Mutwiri et al., 2007b) and 1000-fold higher immune 

responses compared to alum (Mutwiri et al., 2007a). A single immunization with PCEP induces 

sustained antibody responses for at least 6 months (Mutwiri et al., 2007a) suggesting that PCEP 

can be formulated with single-shot vaccines which avoids the need for booster immunization, and 

would reduce the cost of vaccination due to reduction in vaccine doses. PCEP may also increase 

cost-effectiveness of vaccines as PCEP reduced the dose of influenza X:31 antigen used in 
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vaccination by 25-fold, without significantly reducing the magnitude and quality of the IgG2a 

antibody responses (Mutwiri et al., 2007a). This will be an important property especially during 

pandemic outbreaks such as influenza, where antigen-sparing effects can help improve vaccine 

coverage.    

 

Polyphosphazenes have also been shown to modulate the quality of immune responses. 

Both PCPP and PCEP induce Th2 type immune responses, but PCEP also induces Th1 responses. 

Subcutaneous injection of influenza antigen formulated with PCEP resulted in enhanced IgG1 and 

IgG2a antibody titers compared with PCPP and alum, which only induced IgG1 responses 

(Mutwiri et al., 2007a). This indicates that PCEP can promote a mixed Th1/Th2 type response 

giving broad-spectrum immunity (Dar et al., 2012; Mutwiri et al., 2008; Mutwiri et al., 2007b). 

Polyphosphazene adjuvants may be used to influence the quality of the immune responses as 

appropriate for the specific infections. For example, PCPP can be used to induce Th2 type 

responses that are required for protection against extracellular pathogens, whereas PCEP can be 

formulated to induce mixed Th1 and Th2 responses required for both intracellular and extracellular 

pathogens.     

 

In addition to mice, polyphosphazenes have also been shown to be effective and safe 

adjuvants in large animals. In sheep, administration of porcine serum albumin (PSA) or truncated 

glycoprotein D (tgD) from bovine herpesvirus-1 formulated with PCPP, resulted in 100-fold and 

10-fold higher antibody titers respectively, compared to antigen alone (Mutwiri and Babiuk, 2008). 

In recent studies, administration of Actinobacillus pleuropneumoniae outer membrane antigen with 

PCEP resulted in balanced Th1/Th2 immune responses in pigs (Dar et al., 2012). Overall, these 

studies indicate polyphosphazenes have potential as adjuvants in large animals.  

 

Although the majority of the pathogens invade through mucosal routes such as the gastro-

intestinal, respiratory and genital tract, there is a lack of an effective and safe mucosal adjuvant. 

Most of the licensed adjuvants fail to induce effective mucosal immune responses. Hence, there are 

many experimental adjuvants under investigation for mucosal vaccines. Cholera toxin is a potent 
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mucosal adjuvant; however it has been withdrawn from use in humans due to associated toxicity 

(Skene and Sutton, 2006). Intranasal immunization of mice with influenza X:31 antigen formulated 

with PCPP resulted in enhanced antibody responses. In addition to inducing immune responses as 

early as 2 weeks, PCEP also reduced the dose of influenza antigen by five-fold without 

compromising the antibody responses (Eng et al., 2009). Recently it has been shown that intranasal 

administration of influenza X:31 antigen with PCEP resulted in a significantly increased in 

antibody titers in nasal, lung and vaginal mucosal secretions (Eng et al., 2010a). Similar results 

were obtained following intranasal vaccination with several vaccine antigens such as pertussis 

toxoid, pneumococcal surface protein A and the influenza virus strain A/Puerto Rico/8 (PR8) 

formulated in PCPP (Shim et al., 2010). Influenza X:31 antigen + PCEP also induced antigen-

specific IgA antibodies in nasal, saliva, vaginal and fecal secretions (Shim et al., 2010). Taken 

together, these results indicate that polyphosphazenes are effective as mucosal adjuvants (Eng et 

al., 2010a). Polyphosphazene properties such as hydrolytic degradability of their main chain, cost-

effective production, dose-sparing effects, induction of prolonged and enhanced immune 

responses, easy formulation with more than one antigen/adjuvant and mucosal delivery systems 

makes them ideal adjuvant candidates for vaccine development. 

 

1.1.3.6.2 Safety profile of polyphosphazenes 

Many experimental adjuvants with great potential fail to cross the regulatory hurdles 

mainly due to safety concerns. However, PCPP has been tested in Phase I clinical trials in both 

young and elderly adults (Le Cam et al., 1998). Three influenza viral strains (A/H3N2, A/H1N1 

and B strain) were tested with three doses of PCEP (100, 200 and 500 mcg) in 48 young and 41 

elderly subjects. No serious adverse events were associated with any of the PCEP doses in the 89 

subjects tested. Serum titers were increased by 15-fold when H3N2 was formulated with 500 mcg 

PCPP compared to 3-fold increase with non-adjuvanted vaccine. In addition, PCPP has also been 

tested in clinical trails against rgp 160 (MN/LA12) strain of HIV (Gilbert et al., 2003). In large 

animals, up to 1 mg of PCPP was injected in sheep (Mutwiri and Babiuk, 2008), cattle (Kovacs-

Nolan et al., 2009b) and 500 µg in pigs (Dar et al., 2012) without any adverse reactions. Overall, 
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these results suggest that polyphosphazenes are well tolerated in humans and animals but more 

detailed safety studies are required.       

 

1.1.3.7 Combinational adjuvants 

Traditionally, only single adjuvants were used in vaccines. The new approach towards 

vaccine formulation to achieve improved immunoprotection is by using a combination of two or 

more adjuvants. Most adjuvant combinations include a delivery system and an immunostimulatory 

adjuvant. In general, delivery systems tend to induce Th2-type immune responses that are not 

protective against many intracellular pathogens. Alternatively, immuno-stimulatory adjuvants 

predominantly induce potent Th1-type immune responses by strongly activating the innate immune 

system. However, immuno-stimulatory adjuvants tend to have a very short half-life in vivo 

(Mutwiri et al., 2009). By using two adjuvants with complimentary actions, a vaccine may present 

with increased magnitude and also modulate the quality of immune responses. For example, alum 

can allow co-delivery of antigen and immunostimulatory adjuvants to the same APC, thereby 

potentiating the immune responses. When alum was combined with TLR agonists such as CpG 

oligonucleotide or LPS, it resulted in enhanced humoral and cellular responses compared to either 

adjuvant alone (Wack et al., 2008).  Some examples of alum-based combinational adjuvants and 

their effects in immune responses are summarized in Table 1.1. 

 

Polyphosphazenes have been extensively tested in combination adjuvant formulations. 

Mice immunized with a single subcutaneous injection of HBsAg plus the adjuvant combination of 

CpG ODN with PCPP or PCEP resulted in enhanced production of HBsAg-specific antibody 

responses compared with the mice immunized with HBsAg plus any of the three adjuvants alone 

(Mutwiri et al., 2008). In addition, mice immunized with PCPP microparticles encapsulating OVA 

and CpG ODN generated higher antigen-specific antibody responses compared to antigen alone 

(Garlapati et al., 2010; Wilson et al., 2010). Further, encapsulation of genetically detoxified 

pertusis toxoid (PTd) with triple adjuvant combination (synthetic cationic innate defense regulator 

peptide [IDR]-CpG ODN complexes into polyphosphazene-based microparticles) significantly 

lowered bacterial load and increased antigen-specific IL-17 secreting cells in comparison with each 
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adjuvant alone or any of the double adjuvant combinations when assessed in a Bordetella pertusis 

infection challenge model in mice (Garlapati et al., 2011). Co-formulation of PTd with 

IDR/CpG/polyphosphazene increased IgG1 responses in adult mice and induced superior serum 

IgG2a antibody titers in both adult and neonatal mice compared to immunization with each of the 

adjuvants and antigen alone (Gracia et al., 2011).  

 

A recombinant truncated bovine respiratory syncytial virus (RSV) fusion protein (DeltaF) 

co-formulated with the triple combination of CpG, indolicidin and polyphosphazene 

(CpG/indol/pp) enhanced the secretion of antigen-specific serum IgG, IgG1 and IgG2a antibodies 

when compared with antigen alone in mice (Kovacs-Nolan et al., 2009c). In vitro, combination of 

CpG/indol/pp increased the secretion of tumor necrosis factor (TNF)-α, IL-12p40 and IL-6 by 

bone-marrow derived DCs ex vivo relative to the individual components (Kovacs-Nolan et al., 

2009a). In cattle, CpG/indol/pp formulation with the antigen hen egg lysozyme (HEL) increased 

antigen-specific humoral responses and prolonged cell-mediated immune responses (Kovacs-

Nolan et al., 2009b).  

 

 
Table 1.1  Alum and its combination adjuvants 

 
Combinations Species tested Antigen Effect on immune 

response/protection 
 

Alum + MPL 
 

Mice, humans, 
monkeys 

HPV (licensed) 
HBsAg (licensed) 
HSV-2 (withdrawn) 
 

↑ Antibody titers 
↑ Memory  
↑ Duration  

(Didierlaurent et al., 
2009; Giannini et al., 
2006) 

Alum + CpG ODN Mice  HBsAg 
 

↑ Antibody titers (Davis et al., 1998; 
Ioannou et al., 2002a; 
Ioannou et al., 2002b) 

Alum + MDP Mice Helicobacter 
Pylori urease 
 

↑ Th1 responses 
↑ IFN-γ/IL-2 

(Moschos et al., 2006) 

 
HBsAg: Hepatitis B surface antigen; HPV: Human papillomavirus; HSV: Herpes simplex virus; 
MDP: Muramyl dipeptide; MPL: Monophosphoryl lipid A; ODN: Oligodeoxynucleotide.  
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1.2 Mechanisms of action of vaccine adjuvants  

 

1.2.1  Introduction 

  

 The goal of vaccination is induction of protective immunity and in some vaccines this can 

be enhanced by addition of adjuvants. Many diverse classes of compounds have been assessed as 

adjuvants including mineral salts, microbials products, emulsions, saponins, cytokines, polymers, 

microparticles and liposomes (Guy, 2007). Based on their proposed mechanisms of action, vaccine 

adjuvants have been broadly divided into delivery systems and immunostimulatory adjuvants 

(Singh and O'Hagan, 2003). In general, delivery systems were previously thought to act by 

providing a depot while immuno-stimulatory adjuvants activate cells of the innate immune system 

(Pashine et al., 2005). However, this classification is no longer appropriate since evidences have 

emerged that some delivery systems can activate innate immunity.  

 

Surprisingly, despite the wide use of vaccine adjuvants in billions of doses of human and 

animal vaccines, the mechanisms of action by which they potentiate immune responses are not 

well characterized. This is well captured in a famous quote by Charles Janeway who observed that 

adjuvants are “the immunologists’ dirty little secret” (Janeway, 1989).  However, recent advances 

in immunobiological research have unfolded several mechanisms by which adjuvants act. 

Available evidence suggests that adjuvants employ one or more of the following mechanisms to 

elicit immune responses: 1) sustained release of antigen at the site of injection (depot effect), 2) up-

regulation of cytokines and chemokines, 3) cellular recruitment at the site of injection, 4) increase 

antigen uptake and presentation to APC, 5) activation and maturation of APC (increased MHC 

class II and co-stimulatory molecules expression) and migration to draining lymph nodes, 6) 

activation of inflammsomes, and 7) immunomodulation/priming of T cells or B cells  (Fig 1.2) 

(Cox and Coulter, 1997; Fraser et al., 2007; Hoebe et al., 2004).   
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Fig 1.2 Proposed mechanisms of action of adjuvants. 1) Some adjuvants presumably form a 

depot at the site of injection, which is associated with slow release of antigen. 2) Other adjuvants 

are associated with transient secretion of cytokines and chemokines. 3) Secreted cytokines and 

chemokines are involved in recruitment of various immune cells to the injection site. These 

recruited cells secrete cytokines and chemokines, in turn chemoattract other immune cells. All 

these events lead to formation of a local immunocompetent environment at the injection site. 4) 

The recruited APCs express various PRRs both on the surface (TLRs, CLRs) and intracellularly 

(NLRs and RLRs), which are recognized and/or are activated by the adjuvants. 5) This leads to 

maturation and activation of recruited APCs. Mature APCs upregulated the expression of MHC 

and co-stimulatory molecules. 6) They are also characterized by increased capacity for antigen 

processing and presentation. 7) Mature APCs then migrate to the draining lymph nodes to interact 

with antigen-specific B or T cell to (8) activate potent antibody secreting B cells and/or effector 

CD8+ T cell responses.   
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1.2.2 Formation of depot at the site of injection 

The formation of a depot is perhaps the oldest and most widely recognized mechanism of 

action of adjuvants. Antigen trapping and slow release at the site of injection ensures constant 

stimulation of the immune system for production of high antibody titers (Siskind and Benacerraf, 

1969). Until recently, depot effect was considered a classic mechanism of action of many 

adjuvants. Glenny et al. were the first to propose the importance of depot formation in the adjuvant 

activity of alum (Glenny et al., 1926). Antigen was detected for 2 to 3 weeks in alumina gel-

induced granulomas (Osebold, 1982). Antigens are simply adsorbed onto the alum but the binding 

is proposed to be due to strong electrostatic interaction between antigen and alum (Burrell et al., 

2000), which enhanced antigen uptake and presentation by APCs (Mannhalter et al., 1985). 

Various other adjuvants such as water-in-oil emulsions (Complete Freunds Adjuvant [CFA]) and 

biodegradable micro-and nano-particles were shown to act by depot effect to generate prolonged 

and sustained high antibody titers (Herbert, 1968; Kreuter, 1988). AS04, an adjuvant combination 

consisting of monophosphoryl lipid A (MPL) and alum was shown to induce optimal immune 

responses only when co-localized with antigen (Didierlaurent et al., 2009). The presence of alum in 

AS04 is important in stabilizing the MPL and antigen within the vaccine, along with providing a 

depot effect (Didierlaurent et al., 2009). The cationic adjuvant formulation (CAF) 01, a 

combination of dimethyldioctadeclammonium/trehalose-6,6-dibehenate (DDA/TDB), which is 

currently in phase I clinical trial, is also thought to induce long lasting depot effect (Henriksen-

Lacey et al., 2010). 

 

There is no definitive evidence that depot effect significantly contributes to adjuvant 

activity (Marrack et al., 2009). In various studies, it has been shown that surgical removal of the 

antigen-alum depot 14 days after immunization had no effect on the immune responses (Schijns, 

2000). Apparently, the adsorption of antigen to alum was not required for alum adjuvant activity 

(De Gregorio et al., 2008; Iyer et al., 2003). Recently, removal of the injection site 2 h after antigen 

and alum administration had no effect on humoral or cell-mediated immunity (Hutchison et al., 

2012). Similarly, MF59 was rapidly cleared and did not form a depot at the injection site (Ott et al., 

1995). MF59 was distributed and cleared independent of antigen with a half-life of 42 h in the 
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muscle tissue (Dupuis et al., 1999). Likewise, ISCOMs tend to be rapidly transported to draining 

lymph nodes after administration (Morein and Bengtsson, 1999). Therefore, these studies clearly 

indicate that depot effect is not required for adjuvant activity of alum, and possibly MF59 or 

ISCOMs.    

 

1.2.3 Upregulation of cytokines and chemokines leading to cellular recruitment at the 

injection site 

Recent studies on the mechanisms of adjuvants have focused on recruitment of innate 

immune cells at the site of injection. Particulate adjuvants have been shown to create a local pro-

inflammatory environment to recruit immune cells (Goto and Akama, 1982). Using genome wide 

micoarray analysis, Mosca et al. demonstrated that a cluster of genes encoding cytokines, 

chemokines, innate immune receptors, interferon-induced genes and gene encoding adhesion 

molecules defined as “adjuvant core response genes” were commonly modulated by alum, MF59 

and CpG-ODN at the site of injection (Mosca et al., 2008).  Compared with alum and CpG ODN 

(TLR9 agonist), MF59 was a strong modulator of adjuvant core response genes. Chemokines, 

which play a critical role in tissue specific migration of immune cells, were shown to be up-

regulated by adjuvants at the injection site. MF59 significantly up-regulated the expression of 

CCR2, a receptor for CCL2, which is involved in CCR2+ monocyte infiltration. This was in 

agreement with previous in vitro results showing that MF59 induced release of chemoattractants 

like CCL2, CCL3, CCL3 and CXCL8 (Seubert et al., 2008). Further, studies in CCR2-deficient 

mice showed that MF59-induced mononuclear cell recruitment is CCR2 dependent (Dupuis et al., 

2001). Another oil-in-water emulsion AS03 co-localizes with antigen to trigger colony-stimulating 

factor 3 (CSF3) and IL-6, and leukocyte-recruiting chemokines CCL2, CCL3 and CCL5 at the site 

of injection (Morel et al., 2011). Similar cytokine and chemokine mRNA expression profiles were 

upregulated in the draining lymph nodes (Morel et al., 2011).  Likewise, alum-induced infiltration 

of immune cells was accompanied by production of chemo-attractants like CCL-2, the neutrophil 

chemotaxin KC (CXCL1), and eosinophil chemotaxin eotaxin (CCL11) in the peritoneal cavity of 

mice (Kool et al., 2008c). Similarly, PCEP induced stronger expression of adjuvant core response 
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genes compared to CpG at the site of injection. Locally, PCEP triggered production of pro-

inflammatory cytokines and chemokines including CCL2 (Awate et al., 2012).  

 

Alum promotes Th2-type immune responses and differentiation of B cells resulting in 

robust antibody production (Grun and Maurer, 1989). However, the role of Th2 cytokines in the 

adjuvant activity of alum is not clearly defined. In vitro studies indicate that alum-induced 

activation of macrophages and up-regulation of co-stimulatory molecules did not depend on IL-4 

(Rimaniol et al., 2004). However, in in vivo studies, alum induced priming of B cells through IL-4 

producing Gr1+ cells in mouse spleen, which is required for proliferation of antigen-specific B 

cells and for optimal antibody production (Jordan et al., 2004). IL-4 producing Gr1+ cells were 

mainly eosinophils, which appeared within 24 h and induced expansion of B cells and enhanced 

IgM production (Wang and Weller, 2008). Further, studies with eosinophil-deficient mice showed 

that the priming of B cells was abolished after alum injection confirming the central role of 

eosinophils in alum-induced Th2 type immune responses (Jordan et al., 2004; Wang and Weller, 

2008).  In addition, a study by Serre et al revealed that the Th2 type immune responses generated 

by alum may signal through IL-25/IL-17RB and/or IL-6 pathways (Serre et al., 2008).  

 

Alum has been shown to activate the complement cascade and recruit cells from blood to 

create an inflammatory environment at the site of injection (Goto et al., 1997; Ramanathan et al., 

1979). Similar to alum, MF59 has been shown to recruit CD11b+ blood mononuclear cells in the 

mouse muscle (Mosca et al., 2008). Intra-peritoneal injection of alum induced rapid cell 

recruitment of inflammatory Ly6C+CD11b+ monocytes. The inflammatory monocytes take up 

antigen, differentiate into CD11c+ MHC class II+ DCs in a myeloid differentiation primary 

response gene 88 (MyD88)-dependent manner and migrate to draining lymph nodes, where they 

induced proliferation of antigen-specific T cells (Kool et al., 2008a). In similar studies by McKee 

et al, alum induced rapid recruitment of various polymorphonuclear (PMN) cells (eosinophils and 

neutrophils) and also monocytes,DCs, NK and NKT cells at the site of vaccination (McKee et al., 

2009). Interestingly, in cell depletion studies in mice, alum-mediated humoral and cellular 

responses were independent of mast cells, macrophages and of eosinophils (McKee et al., 2009).  



 19 

MF59-mediated immune cell recruitment to the injection site has been studied in detail 

(Calabro et al., 2011). MF59 induced recruitment of neutrophils, monocytes, eosinophils, 

macrophages followed by DCs after i.m. injection in mice. The recruited cells especially 

neutrophils, monocytes and B cells take up both antigen and adjuvant and traffick to draining 

lymph nodes. Neutrophils are the first cells to be recruited at the site of adjuvant injection and also 

one of the highest in numbers. However, depletion of neutrophils had no impact on the antigen-

specific immune responses induced by MF59 (Calabro et al., 2011). Similar to MF59, 

administration of AS03 led to enhanced recruitment of neutrophils, eosinophils and monocytes at 

the site of injection, which take up antigen and traffick to the draining lymph nodes (Morel et al., 

2011). At the injection site, neutrophils attract other immune cells by producing increased amounts 

of chemokines and transport antigen to draining lymph nodes (Calabro et al., 2011; Morel et al., 

2011). However, the role of neutrophils in adjuvant activity is not completely clear.   

 

ASO4 induces transient local NFκB activity and cytokine production (Didierlaurent et al., 

2009). The TLR4 agonist MPL, one of the components of AS04, stimulated increased numbers of 

DCs and monocytes in the draining lymph nodes. Likewise CpG, a TLR9 agonist, signals through 

activation of MyD88, IRAK and TRAF-6, leading to recruitment of transcription factors, which in 

turn up-regulates the pro-inflammatory genes and protein expression (IL-1, IL-6, IL-12, IL-18 and 

TNF-α) within 3 h of injection (Klaschik et al., 2009; Klinman et al., 1996). Genes up-regulated by 

CpG included cytokines, cell signaling, cell movement and DNA damage response genes 

(Klaschik et al., 2010). One of the roles of cationic liposomes is to recruit immune cells and 

increase antigen presentation. Intra-peritoneal injection of cationic liposome (DDA/MPL) 

increases influx of neutrophils, monocytes, macrophages and activated natural killer (NK) cells in 

the peritoneal cavity (Korsholm et al., 2010). Another cationic liposome CAF01 induced 

recruitment of monocytes to the site of injection and increased trafficking of liposomes to the 

draining lymph nodes (Henriksen-Lacey et al., 2010).  

 

Therefore, adjuvants induce recruitment of various immune cells to the site of injection, 

some of which then traffick the antigen to the draining lymph nodes to induce specific immune 
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responses. However, the relationship between these recruited cells and induction of immune 

responses is not very clear. Depletion studies suggest that the role of recruited innate immune cells 

at the injection site is redundant in the generation of adaptive immune responses (Calabro et al., 

2011; McKee et al., 2009). Interestingly, these studies were performed by depleting single cell 

populations. Identifying the role of a specific cell population in vivo is even more challenging due 

to complex environment at the injection site. Injection of adjuvants often leads to recruitment of a 

variety of cell populations and due to high redundancy in the immune system, other recruited cells 

may compensate for the depleted single cell population. In this regard, mice whose specific cell 

populations have been depleted were shown to produce cytokines and chemokines to recruit innate 

immune cells and activate T cells (Calabro et al., 2011; Seubert et al., 2008). Further studies are 

required to investigate the detailed relationship between recruited immune cells and adjuvant 

activity.  

 

1.2.4 Antigen presentation  

Efficient antigen presentation by major histocompatibility complexes (MHC) on APCs is 

important for the induction of adaptive immune response. It was thought that many adjuvants 

including alum, oil-based emulsions and microparticles act by “targeting” antigens to APCs 

resulting in enhanced antigen presentation by MHC (Guéry et al., 1996; Schijns and Lavelle, 

2011). Alum was shown to increase antigen uptake by DCs and alter the magnitude and duration of 

antigen presentation in vitro (Mannhalter et al., 1985; Morefield et al., 2005). Antigen adsorption 

on alum led to an increase in internalization of antigen (Morefield et al., 2005). Recent studies by 

Flach et al. have shown that alum does not enter DCs directly but rather delivers the antigen via 

abortive phagocytosis (Flach et al., 2011). In this regard, alum interacts with membrane lipids on 

DCs leading to lipid sorting, recruitment of ITAM containing molecules Syk and PI3 activation. 

These events eventually lead to uptake of antigen that is adsorbed on alum, DC activation and 

MHC class II expression (Flach et al., 2011). 
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The role of adjuvant-induced increased antigen presentation in development of adaptive 

immunity has not been clearly evaluated. Hence, our knowledge is limited regarding the role of 

this adjuvant mechanism. Recently, Ghimire et al investigated the impact of antigen presentation 

on alum adjuvanticity. In addition to confirming the ability of alum to increase the antigen 

internalization, the study also showed that alum plays an important role in reducing the rate of 

degradation of internalized antigen (Ghimire et al., 2012). Similarly, MF59 facilitated 

internalization of gD2 antigen from type 2 herpes simplex virus (HSV) by recruited APCs at the 

site of injection and increased phagocytosis in human PBMCs (Dupuis et al., 1999). Antigen size 

seems to play an important role in modulating the antigen presentation efficiency. Large lipid 

vesicles end up in early endosome/phagosomes and increases antigen presentation whereas smaller 

vesicles rapidly localize to late lysosomes leading to reduced antigen presentation (Brewer et al., 

2004).   

 

1.2.5 Activation and maturation of DCs    

 

Activation of DCs is essential for induction of adaptive immune responses (Table 1.2). 

Increased expression of MHC class II, activation marker CD86 and maturation marker CD83 leads 

to enhanced ability of APCs to induce T lymphocyte activation and differentiation (Coyle and 

Gutierrez-Ramos, 2001). Freund’s complete adjuvant, LPS, liposomes, CpG ODN, MF59, AS04 

and α-galactosylceramide (α-GAL) have all been shown to induce DC maturation to enhance 

adaptive immunity (Copland et al., 2003; De Becker et al., 2000; De Smedt et al., 1996; Fujii et al., 

2003; Shah et al., 2003). Intra-peritoneal injection of OVA and alum led to uptake of antigen and 

maturation of DCs (Kool et al., 2008a). However, in vitro studies on human cells have shown that 

alum and MF59 failed to directly activate DCs but enhanced the surface expression of MHC class 

II and co-stimulatory molecules (CD83 and CD86) on monocytes, macrophages and granulocytes 

that resulted in increased T cell proliferation (Seubert et al., 2008; Sun et al., 2003). Further, in 

vitro activation of DCs by alum has generated conflicting results. One study suggested that alum 

failed to induce maturation and antigen presentation (Sun et al., 2003) where as another study 

showed that the activation marker CD86 and antigen presentation was increased in DCs 
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(Sokolovska et al., 2007). The source of alum may have been a contributing factor in the 

conflicting results.  

 

AS04 has been shown to induce maturation of DCs (via TLR4), which then trafficks to the 

draining lymph nodes to activate antigen-specific T cells (Didierlaurent et al., 2009). Similarly, 

CpG, induced up-regulation of CD40, CD54, CD80, CD86 and MHC class II molecules and 

antigen processing and presentation in plasmacytoid DCs (pDCs) (Kerkmann et al., 2003; Krieg, 

2002). A novel class of TLR-independent adjuvants, mycobacterial cord factor trehalose-6-6-

dimycolate (TDM) and TDB have been shown to directly activate DCs through the FcγR-Syk-

Card9-Bcl10-Malt1 pathways, and up-regulates the expression of co-stimulatory molecules 

(Werninghaus et al., 2009). Microparticles such as Poly-lactic-co-glycolic acid (PLGA) did not 

induce co-stimulatory molecules expression on bone marrow derived DCs (BMDCs) but enhanced 

antigen presentation efficiency (Sun et al., 2003). DOTAP (1,2-dioleoyl-3-trimethylammonium-

propane)-based cationic liposomes have been shown to induce maturation of DCs through 

activation of MAPK (extracellular signal-regulated kinase and p38), leading to up-regulation of co-

stimulatory molecules (Yan et al., 2007). Likewise, diC14-amidine (3-tetradecylamino-tert-butyl-

N-tetradecylpropion-amidine) based cationic liposomes up-regulates the expression of CD80 and 

CD86 on DCs through specific TLR4/MD2 ligation (Tanaka et al., 2008). Overall, adjuvants 

stimulate DC maturation and enhance the expression of MHC and co-stimulatory molecules, which 

is required for efficient T cell activation.   
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Table 1.2 Innate immune receptors activated by vaccine adjuvants. 
 
 

 

PRRs  Adjuvants Type of immune 
response induced 

References 

TLRs 
 

TLR1/2 Triacyl lipopeptides 
Synthetic Pam3Cys 

Th1, Th2, CTL 
responses 

(Deres et al., 1989; Schild et al., 
1991) 

TLR2/6 Diacyl lipopeptides 
Pam2Cys 

Th1, Th2, CTL 
responses 
 

(Moyle and Toth, 2008) 

TLR2 Pam3Cys 
 

Th1, Th2, CTL 
responses 

(Deres et al., 1989; Schild et al., 
1991) 

TLR3 Poly I:C Both Th1 and Th2  (Choi et al., 2012; Tamura and 
Sasakawa, 1983) 

TLR4 LPS,  
AS04 (MPL) 

Th1 (Casella and Mitchell, 2008; Sasaki 
et al., 1997) 

TLR5 Flagellin Th1 and Th2 (Didierlaurent et al., 2004; 
McCarron and Reen, 2009) 

TLR 7 Imiquimod 
Resiquimod 

Th1, CD8+ T cell, 
CTL responses 

(Stanley, 2002; Wagner et al., 1999) 

TLR8 Resiquimod Th1, CD8+ T cell, 
CTL responses 

(Wagner et al., 1999; Wu et al., 
2004) 

TLR9 CpG ODN Th1, CD8+ T cells, 
CTL responses 

(Kobayashi et al., 1999) 
 

NLRs NOD1/ 
NLRC1 

DAP Th1, Th2, Th17 (Chamaillard et al., 2003; Fritz et 
al., 2007; Girardin et al., 2003a) 

NOD2/ 
NLRC2 

MDP Th1, Th17 (Girardin et al., 2003b; Shaw et al., 
2009; van Beelen et al., 2007) 

NLRP1 Toxoids, MDP Th1 (Hsu et al., 2008) 
NLRP3 Alum, MDP, ATP Th2 (Eisenbarth et al., 2008; Li et al., 

2007; Mariathasan et al., 2006) 
IPAF/ 
NLRC4 

Flagellin Th1 and Th2 (Lightfield  et al., 2011; Zhao et al., 
2011) 

NAIP5 Flagellin Th1 and Th2 (Kofoed and Vance, 2011) 
 

RLRs RIG-1 DNA vectors Th1, CD8+ T cells (Luke et al., 2011) 
MDA5 Poly I:C Th1, CD8+ T cells (Wang et al., 2010) 

 
CLRs Dectin-1 Flagellin,  

β-glucan/zymosan 
Th17 (LeibundGut-Landmann et al., 

2007) 
Mincle CAF01 Th1, Th17 CD8+  

T cells 
(Gram et al., 2009; Rosenkrands et 
al., 2011) 
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Abbreviations: Pam3Cys: tri-palmitoyl-S-glyceryl cysteine, LPS: lipopolysaccharide, AS04: 

Adjuvant system 04, MPL: monophosphoryl lipid A, CpG ODN: cytidine-phosphate-guanosine 

oligodeoxynucleotides, Poly I:C: polyinosinic-polycytidylic acid, DAP: diaminopimelic acid, 

MDP: muramyl dipeptide, CAF01: Cationic adjuvant formulation-01, TLR: Toll-like receptor, 

NLR: NOD-like receptors, RLR: RIG-1 like receptors, CLR: C-type lectins, NOD:  nucleotide-

binding oligomerization domain, NLRP3: NOD-like receptor family, pyrin-domain-containing 3, 

IPAF: IL-1β-converting enzyme protease-activating factor, NAIP: neuronal apoptosis inhibitory 

protein, RIG-1: retinoic acid-inducible gene-1, MDA5: melanoma differentiation associated gene 

5.  
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1.2.6 Activation of inflammsomes 

Innate immune cells express various pathogen-recognition receptors (PRRs) to recognize 

infectious agents. In recent years, various new families of PRRs have been identified including 

TLRs, C-type lectin-like receptors (CLRs), nucleotide oligomerization domain (NOD) like 

receptors (NLRs) and retinoic acid-inducible gene 1 (RIG-1) like receptors (RLRs). Many 

immunological adjuvants signal via PRRs or act as ligands for innate immune receptors. In contrast 

to TLR agonists, particulate adjuvants are not recognized by specific PRRs but they still induce 

adaptive immune responses. The “danger” hypothesis was first discussed by Matzinger, who 

proposed that apart from self/non-self discrimination against infection, danger signals from 

damaged cells can trigger activation of the immune system (Matzinger, 1994).  Molecules 

associated with tissue damage such as uric acid, nucleotides, adenosine triphosphate (ATP), 

reactive oxygen intermediates and cytokines are released at the injection site due to tissue damage 

(Shi et al., 2003). These non-infectious damage signals have now been named damage-associated 

molecular patterns (DAMPs) to distinguish them from PAMPs.  

 

Particulate adjuvants cause local tissue damage and cell death at the injection site (Kool et 

al., 2008a). In addition, many adjuvants induce release of pro-inflammatory cytokines at the site of 

injection (Awate et al., 2012; Calabro et al., 2011; Didierlaurent et al., 2009). These damage 

signals trigger non-specific activation of the innate immune system, subsequently stimulating 

adaptive immunity. Recently inflammasomes have been one of the most widely investigated topics 

due to their potential role in adjuvant activity. The inflammasome receptors belongs to the NLR 

family, which also includes various other receptors, such as the nucleotide-binding oligomerization 

domain (NODs) (NOD1-5), NLRPs (NLRP1-14), NLRP1 (NAIP), NLRC4 (IPAF) and the major 

histocompatibity complex II transactivator (CIITA) (Martinon et al., 2009). Compared to others, 

NOD-like receptor family, pyrin-domain-containing 3 (NLRP3) is the most studied inflammasome 

receptor in regards to adjuvant mechanisms. NLRP3, also known as cryopyrin or NALP3 

(NACHT, LRR and PYD domains-containing protein 3), is an intra-cytoplasmic multi-protein 

complex that consists of three components; a NLRP3 receptor, an apoptosis-associated speck-like 

protein containing a CARD (ASC) and a procaspase-1 (Schroder and Tschopp, 2010). Activation 
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of NLRP3 inflammasome induces caspase-1 activation, which in turn cleaves proforms of IL-1β 

and IL-18 to their bioactive forms (Martinon et al., 2009). The NLRP3 inflammasome can be 

activated by various stimuli including DAMPs, environmental irritants such as asbestos and silica, 

metabolic stress and UVB irradiation (Schroder and Tschopp, 2010). Apart from danger signals, 

inflammasomes can be activated by PAMPs such as bacterial flagellin through NLRC4 activation 

(Zhao et al., 2011).  

 

Li and his colleagues reported for the first time that alum-induced secretion of IL-1β and 

IL-18 was caspase-1 dependent (Li et al., 2007). Subsequent in vitro studies by various groups 

showed that activation of NLRP3 is required for alum induced IL-1β and IL-18 secretion 

(Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Hornung et al., 2008; Kool et al., 2008a). 

However, LPS priming to induce pro-IL-1β in APCs prior to alum stimulation was a pre-requisite 

for secretion of IL-1β. Contrary to in vitro studies, the role of inflammasomes in the adjuvant 

activity of alum in vivo has yielded conflicting results. Using NLRP3, ASC and caspase-1 

knockout mice, Eisenbarth et al. showed that the NLRP3 inflammasome is a crucial component in 

the adjuvant activity of alum. NLRP3, ASC and caspase-1 knockout mice immunized with OVA 

adsorbed on alum, failed to induce antigen-specific antibody responses (Eisenbarth et al., 2008). 

Another study by Kool et al. showed that alum induced lower influx of inflammatory cells in the 

peritoneal cavity of NLRP3 deficient mice. They also showed that alum-mediated activation of 

adaptive immune responses was NLRP3-dependent (Kool et al., 2008a). Similar studies done by Li 

et al. showed that NLRP3 deficent mice injected with alum-adsorbed diphtheria toxoid or OVA 

vaccine elicited impaired levels of antigen-specific antibody responses (Li et al., 2008). All these 

studies indicate that NLRP3 inflammsome is critical in the adjuvant activity of alum in vivo. In 

contrast, Franchi and Núñez clearly showed that antigen-specific IgG production was not impaired 

in NLRP3 deficient mice following intraperitoneal injection of human serum albumin (HSA) in the 

presence of alum (Franchi and Nùñez, 2008). However, NLRP3 did affect alum-mediated cellular 

recruitment suggesting that inflammsomes might play an important role in activating innate 

immunity, but the contribution of inflammasomes in activation of adaptive immunity remains 

elusive. The conflicting results with regard to the role of inflammasomes in adjuvant activity of 
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alum have been attributed to the differences in the nature of alum used in different studies, 

immunization protocols and the mouse strains used (De Gregorio et al., 2008; Marrack et al., 

2009).  

 

To date, the ligand for NLRP3 has not been identified. Some theories proposed for alum-

mediated activation of NLRP3 include phagosomal destabilization and release of cathepsin B, low 

intracellular potassium (K+) concentrations and generation of reactive oxygen species (ROS) 

(Hornung et al., 2008; Kool et al., 2008a; Petrilli et al., 2007). It was proposed that a catabolic 

product of nucleotides, uric acid and ATP released at the site of alum injection due to cell damage 

or necrosis act as danger signals for activation of NLRP3.  Saturation of uric acid due to tissue 

damage forms mono-sodium ureate crystals (MSU). Phagocytosis of crystalline particles such as 

MSU or alum results in phagosomal destabilization and lysosomal rupture releasing the protease 

cathepsin B in the cytosol (Hornung et al., 2008). The released cathepsin B led to activation of 

NLRP3 and secretion of pro-inflammatory cytokines IL-1β and IL-18. Treatment of mice using 

uricase, a uric acid degrading enzyme, led to reduced cellular recruitment to draining lymph nodes 

in mice injected with alum (Kool et al., 2008a). Similarly, ATP released by the damaged cells at 

the injection site has been shown to indirectly activate NLRP3. Extracellular ATP triggered 

stimulation of purinergic P2X7 receptor, resulting in activation of cation channel for K+ efflux and 

opening of pannexin-1 pore for entry of danger signals generated by alum, activate NLRP3 and 

subsequently caspase-1 (Petrilli et al., 2007; Solle et al., 2001). Further, blocking ROS using 

chemical scavengers abolished NLRP3 activation in response to MSU suggesting a link between 

NLRP3 activation and ROS generation (Dostert et al., 2008).  

 

Recently, the role of the inflammasome in adjuvant activity of MF59 was evaluated 

(Ellebedy et al., 2011; Seubert et al., 2011). Two independent studies using NLRP3 deficient mice 

demonstrated that NLRP3 is not required for the adjuvant activity of MF59. However, an adaptor 

molecule required for the assembly of inflammasome, ASC was found to be crucial for MF59 

adjuvant activity (Ellebedy et al., 2011).  A recent study by Embry et al showed that MPL failed to 
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induce intra-cytoplasmic assembly of NLRP3 inflammasome leading to failure of caspase-1 

activation and maturation of pro-inflammatory cytokines IL-1β and IL-18 (Embry et al., 2011).    

      

1.2.7 Activation of adaptive immune responses  
 
Selection of an adjuvant for a vaccine formulation depends on its ability to stimulate innate 

immune responses and subsequently induce potent and antigen-specific adaptive immune 

responses. Different adjuvants induce remarkably different types of adaptive immune responses. 

Most agonists to endosomal TLRs such as TLR3, TLR7, TLR8, and TLR9 (Poly I:C, imiquimods, 

CpG, MPL) promote development of Th1 type immune responses. The liposomal adjuvant CAF01 

and CFA stimulate mixed Th1 and Th17 type immune responses while MF59, AS03, saponins 

(ISCOMs and ISCOMATRIX), and agonists for cell surface TLRs (TLR2/TLR6 and TLR5) 

promote the development of mixed Th1/Th2 type immune responses (Coffman et al., 2010).  

 

Alum is known to enhance potent antibody responses against vaccine antigens but fails to 

stimulate CMI responses (Bomford, 1980). Alum preferentially stimulates Th2 type responses 

including B cell differentiation, production of Th2 type cytokines IL-4, IL-5 and IL-13, and B cell-

mediated IgG1 and IgE antibody production (Brewer and Alexander, 1997). In studies using IL-4 

and IL-13 deficient mice, alum-induced Th2 type immune responses were not affected but instead 

there was an increase in Th1 type antibody responses (IgG2a) and IFN-γ production (Brewer et al., 

1999; Brewer et al., 1996; Kopf et al., 1993). Similar results were observed using IL-6 deficient 

mice (Brewer et al., 1998). These results suggest that alum-induced Th2 type cytokines play an 

important role in inhibiting the Th1 type immune responses. Particulate adjuvants ISCOMs and 

ISCOMATRIX are derived from saponins purified from the bark of Quillaia saponaria tree. 

ISCOMs induce strong CD8+ T cell responses via efficient cross presentation of antigens on DCs 

in humans (Schnurr et al., 2009). ISCOMATRIX triggers activation of DCs and induces efficient 

MHC class II presentation of antigens to elicit strong Th1 cell responses (Duewell et al., 2011; 

Schnurr et al., 2009). Quil A and its derivative QS-21, another saponin based adjuvant, not only 

stimulate Th1 cytokines IL-2 and IFN-γ, but also induces production of cytotoxic T lymphocytes 
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(CTLs) (Kensil et al., 1995; Sun et al., 2009; Takahashi et al., 1990). However, high toxicity 

caused by Quil A makes it undesirable for use in human vaccines (Waite et al., 2001).   

 

The oil-in-water emulsion MF59 activates balanced humoral and cellular immune 

responses. Although MF59 does not activate any TLRs, studies with MyD88-deficient mice have 

shown that MF59-induced Th1 and Th2 responses are dependent on MyD88 (Seubert et al., 2011). 

Recently it was shown that B cell activation and class switching can be triggered via MyD88 

adaptor (He et al., 2010). Therefore, MF59-induced antibody responses could be activated through 

MyD88 signaling pathways in B cells (Seubert et al., 2011). The novel mucosal adjuvant 

glycolipid α-galactosylceramide (α-GalCer) has been shown to induce both Th1 and Th2 type 

cytokines thereby inducing B cell and T cell responses (Cerundolo et al., 2009). GalCer, presented 

through CD1d, induced strong iNKT activation leading to B cell responses and memory (Fujii et 

al., 2003; Galli et al., 2007). Later it was shown that expression of CD1d on B cells was not 

required for generation of antigen-specific antibody responses (Tonti et al., 2009).  

 

Agonists for endosomal TLRs are strong type 1 IFN inducers and are able to elicit Th1 cell 

differentiation and CD4+ T cell activation (Blander and Medzhitov, 2006; Kadowaki et al., 2001; 

Loré et al., 2003). Efficient cross presentation of antigens by Poly I:C activates CD8+ T cell 

responses (Schulz et al., 2005).   In contrast, AS04, which contains the TLR4 agonist MPL, did not 

directly activate B or CD4+ T lymphocytes (Didierlaurent et al., 2009). CpG-ODN induces strong 

Th1 cytokine production including IL-12 and IFN-γ, and CD8+ T cell responses to vaccine 

antigens via activation of TLR9 signaling pathway in plasmacytoid DCs (Kobayashi et al., 1999; 

Overstreet et al., 2010; Salio et al., 2004; Stern et al., 2002). CTL responses induced by CpG-ODN 

against tumor antigens makes them ideal candidates for development of cancer immunotherapy 

(Miconnet et al., 2002).  

 

A liposome-based adjuvant, CAF01, has shown potential as a vaccine adjuvant against 

various disease models in mice (Christensen et al., 2011; Lindenstrøm et al., 2009).  CAF01 

induced antigen-specific IFN-γ+TNF-α+IL2+ multifunctional CD4+T cells responses that were 
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detected for more than one year after injection (Lindenstrøm et al., 2009). CAF01 also induces 

functional CD8+ T cell responses and CTL responses against HIV-1 antigens in mice (Gram et al., 

2009). The adjuvant CAF01 is in clinical trails for HIV and TB vaccines (Christensen et al., 2009; 

Davidsen et al., 2005; Gram et al., 2009; Henriksen-Lacey et al., 2011). DOTIM 

(octadecenoyloxy(ethyl-2-heptadecenyl-3-hydroxyethyl imidazolinium)-based cationic liposome-

DNA complexes (CLDCs), diC14-amidine based adjuvants and DDA/MPL induce strong Th1 

responses and promote increased production of pro-inflammatory cytokines including IL-6, TNF-

α, IL-12 and interferons (Ireland et al., 2010; Tanaka et al., 2008). DDA-based cationic liposomes 

are frequently combined with immuno-stimulator adjuvants (MPL/TDB/Poly I:C) to enhance the 

quality and quantity of immune responses (Christensen et al., 2011). Combinations of CAF01 and 

Poly I:C, termed CAF05, have also induced enhanced CD8+ T cell responses, making them ideal 

adjuvants against viral antigens (Nordly et al., 2011). In addition, combinations of MPL and 

CAF01 resulted in increased numbers of IFN-γ+CD8+ T cells (Nordly et al., 2011). Overall, these 

studies indicate that there is a huge potential of exploiting various adjuvants alone or in 

combination to induce desired antibody and cell-mediated immunity.  

 

1.2.8 Mechanisms of action of polyphosphazenes  

The mechanisms by which polyphosphazenes induce higher immune responses at the 

molecular and cellular levels are poorly understood. The adjuvant activity of polyphosphazenes 

does not appear to depend on depot formation, since excision of the site of injection 24 h post-

injection had no effects on antibody production (Payne et al., 1998a). However, polyphosphazenes 

form water-soluble, non-covalent complexes with protein antigens (Andrianov et al., 2005). This 

physical association with antigen might help to deliver antigens to APCs.  

 

Available evidence suggests that the potent adjuvant activity of PCEP may be a 

consequence of its activation of innate immunity. In vitro studies by Mutwiri et al. 2008 have 

shown that polyphosphazenes stimulate the production of innate cytokines, which might contribute 

to its adjuvant activity. However, no in vivo mechanistic studies were done to understand the 

mechanisms of action of polyphosphazene.  
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In conclusion, a detailed knowledge of adjuvant mechanisms is very important in the 

rational design of vaccines. In recent years, considerable advances have been made in 

understanding the mechanisms of action of various adjuvants, particularly the activation of innate 

immunity via various mechanisms (Table 1.3). Safety is the biggest concern when it comes to 

adjuvant approval for human use and our knowledge of the same is very limited. Detailed 

understanding of the adjuvant mechanisms will provide some insight into its safety profile. In the 

coming years, we hope to get more intrinsic details of various adjuvant mechanisms that might 

help in rational formulations of vaccines and we finally hope to see more adjuvants approved for 

human use.  
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Table 1.3  Mechanisms of action of adjuvants licensed for human use. 
 

Adjuvants Proposed mechanisms of action Immune response 
activated 

Licensed vaccines References 

Alum 
 

• No depot effect  
• NLRP3 activation in vivo? 
• Independent of TLR signaling 
• ↑ Local cytokines & chemokines 
• ↑ cell recruitment (eosinophils, monocytes, macrophages) 
• ↑ Ag presentation 

↑ Ab responses 
 
↑ Th2 responses 
 
Poor Th1 responses 

Many human vaccines 
(e.g. DTap, Hib, 
Hepatitis A, Hepatitis 
B) 

(Franchi and Nùñez, 
2008; Gavin et al., 
2006; Hutchison et 
al., 2012; Kool et al., 
2008a; McKee et al., 
2009) 

MF59 
 

• No depot effect 
• NLRP3 independent but ASC-dependent 
• Independent of TLR signaling but MyD88-dependent for Ab 

responses 
• ↑ Local cytokines & chemokines 
• ↑ Cell recruitment (neutrophils, macrophages & monocytes) 
• ↑ Ag uptake 
• Activate muscle cells 
• ↑ Ag-loaded neutrophils & monocytes in dLNs 

Balanced Th1 and 
Th2 responses 
 
 

Licensed for influenza 
vaccine (Fluad®), 
H5N1 pre-pandemic 
vaccine (Aflunov®), 
H1N1 pandemic 
vaccines (Focetria® and 
Celtura®), 

(Calabro et al., 2011; 
Dupuis et al., 1999; 
Ellebedy et al., 2011; 
Mosca et al., 2008) 

AS04 
 

• MPL signals through TLR4 to activate APCs  
• ↑ Local cytokines & chemokines 
• ↑ Cell recruitment (DCs & monocytes) 
• ↑ Ag-loaded DCs & monocytes in dLNs 

↑ Ab responses 
 
↑ Th1 responses 

 

Licensed for human 
papilloma virus (HPV) 
(CervarixTM), hepatitis 
B virus (Fendrix®)  

(Didierlaurent et al., 
2009) 

AS03 
 

• Spatio-temporal co-localization with Ag 
• Transient ↑ cytokines locally & in dLNs  
• ↑ Cell recruitment (granulocytes & monocytes) 
• ↑ Ag-loaded monocytes in dLNs 

↑ Ab responses 
 
↑ Immune memory 

Licensed for pandemic 
flu vaccine 
(Pandemrix®)  

(Morel et al., 2011) 

Virosomes 
 

• Ag delivery vehicle  
• Bind APCs & induce receptor-mediated endocytosis. 
• Escape endosomal degradation 
• Ag presentation via MHC class II and MHC class I to CD4+ 

T cells & CD8+ T cells respectively. 
• Immunopotentiator 

↑ Ab responses 
 
↑ CTL responses 

Licensed for Inflexal® 
V and Invivac® 
influenza vaccine and 
hepatitis A vaccines 
(Epaxal®) 

(Bungener et al., 
2002a; Bungener 
et al., 2002b; 
Glück et al., 1992; 
Khoshnejad et al., 
2007) 

Abbreviations: Ab: antibody, Ag: antigen, CTL: cytotoxic T lymphocytes, dLNs: draining lymph nodes
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1.3 Dendritic cells 

 

1.3.1 Introduction 

 
Innate immune cells recognize evolutionary conserved PAMPS (lipids, nucleic acids, cell 

wall polysaccharides) or DAMPS (heat shock proteins, purine metabolites such as ATP, 

adenosine and uric acid), through PRRs. APCs express many PRRs both extracellularly (TLRs 

and CLRs) and intracellularly (NLRs and RLRs). Recognition of PAMPs leads to activation of 

APCs and secretion of cytokines and chemokines, which further stimulate and recruit innate 

immune cells (Kensil et al., 2004; Pashine et al., 2005). Activated APCs possess enhanced 

antigen uptake, processing and presentation capacities and migrate to the draining lymph nodes. 

Before reaching lymph nodes, APCs mature and up-regulate the expression of MHC class II and 

co-stimulatory molecules (CD86, CD83 and CD40) that are required for activation and 

differentiation of adaptive immune responses (Hoebe et al., 2004; Medzhitov and Janeway Jr, 

1997; Singh and O'Hagan, 2002).  

 

In 1868, a German Scientist Paul Langerhans first identified DCs while staining human 

skin cells. Due to their dendritic morphology, he believed them to be nerve cells but they were 

actually skin DCs (called Langerhans DCs). Almost 100 years later, a Canadian Scientist Ralph 

Steinman discovered DCs as a part of the innate immune system and described their role in 

adaptive immunity (Steinman and Cohn, 1973). This discovery won him the Nobel Prize in 

Physiology and Medicine in 2011. Due to their critical role in activation of adaptive immune 

responses or induction of tolerance, DCs are becoming promising targets for treatment of various 

diseases including cancer, allergies and autoimmune disorders.   

 

Compared to other immune cells, DCs are the only APCs specialized in antigen uptake, 

processing and presentation to adaptive immune cells. Due to this property DCs are also called 

professional APCs. Immature DCs (iDCs) act as sentinels in peripheral tissues, where they 

continuously sample antigenic environment. Upon encounter with pathogenic organisms, 

byproducts of tissue damage or danger signals, DCs process and present antigens on the MHC 

class II and up-regulate co-stimulatory molecules expression that are required for effective 
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interaction with B, T, NK or NKT cells. DCs then migrate and when they reach lymph nodes, the 

now mature DCs (mDCs) guide the development of immune responses or immune regulation 

resulting in immunity or tolerance.  

 

1.3.2 Generation and development of DCs 

 

1.3.2.1  In vivo generation of DCs 

Hematopoietic stem cells (HSC) in bone marrow differentiate into myeloid (MPs) and 

lymphoid precursors (LPs). MPs give rise to monocyte, macrophages and DC precursors 

(MDPs), which in turn differentiate into common DC precursors (CDPs) that later differentiate 

into plasmacytoid DCs (pDCs) and pre-conventional DCs (pre-cDCs).  Pre-cDCs circulate in 

blood and enter lymphoid organs and differentiate into CD8α+ and CD8α- DCs and in peripheral 

tissues they give rise to CD103+ lamina propria DCs (Geissmann et al., 2010). During 

inflammatory conditions, Ly6C+ monocytes might differentiate into DCs that produce copious 

amounts of TNF and inducible nitric oxide synthase (iNOS), hence called TipDCs (Serbina et al., 

2003). DCs have short life span and are non-replicating cells, hence need to be continuously 

replenished in vivo (Kamath et al., 2000).  

 

1.3.2.2  In vitro generation of DCs 

The use of DC in cancer immunotherapy has gained a lot of interest in recent years. 

Effective transfection of tumor antigens or pathogens to DCs leads to generation of high quality 

and quantity of immune responses. However, the pre-requisite in DC therapy is in vitro 

generation of DCs and subsequently maturation of DCs (mDCs), as immature DCs (iDCs) are 

poor inducers of immune responses. Human DCs can be generated in vitro from many sources. 

The most common source are circulating peripheral CD14+ blood monocytes, CD34+ stem cells 

from the cord blood, circulating DCs from blood, and bone marrow CD34+ cells. In vitro 

generated bone marrow DCs differentiate into both cDCs and pDCs. Various cytokines are used 

for in vitro generation of DCs such as granulocyte macrophage colony stimulating factor (GM-

CSF), IL-4, IL-3, IL-15 and transforming growth factor beta-1 (TGF-β1). GM-CSF and IL-4 are 

used in combination for generation of DCs from human monocytes (Rossi et al., 1992). Both 

GM-CSF and IL-4 promote the development and differentiation of bone-marrow stem cells into 
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DCs. IL-4 plays an role in inhibiting macrophage differentiation and provides a bias towards 

generation of DCs (Sallusto and Lanzavecchia, 1994). Haemopoietic growth factor, feline 

McDonough sarcoma (a family of DNA sequences; fms)-like tyrosine kinase ligand (Flt3L) was 

used in vivo to expand early hematopoietic progenitors and DCs. Recently, Flt3L was used in 

vitro to culture human bone marrow stem cells and for expansion of DC precursors (Daro et al., 

2000). Flt3L-stimulated BMDCs express CD11c, MHC class II and co-stimulatory molecules and 

differentiate into both myeloid and lymphoid DC subsets. The expression of co-stimulatory 

molecules was further up-regulated upon treatment with LPS or IFN-α (Brasel et al., 2000).  

 

1.3.3 Dendritic cell subsets 

DC subtypes are classified based on their location within the body, the type of pathogen 

to which they are exposed, surface markers and distinct immune responses modulated by them 

(Shortman and Naik, 2007). The developmental relationship between these subtypes, generation 

of immunity or tolerance in response to pathgens and factors influencing the adaptive immunity 

are areas of intense research. There are considerable differences between the murine and human 

DC subsets. However, generally in steady state, we can categorize DCs into tissue resident cDCs 

and migratory type 1 IFN producing pDCs. cDCs are immature DCs with high phagocytic 

abilities that are present in the peripheral tissues and continuously sample pathogens. Their main 

function is to guide the adaptive immune system to mount specific immune responses against 

harmful invading pathogens or maintain self-tolerance against non-harmful microorganisms 

(Banchereau and Steinman, 1998). cDCs express myeloid lineage markers (CD11c and CD11b) 

and are capable of inducing Th1 and Th2 type immune responses. cDCs and pDCs differ 

drastically in their shape, surface markers, function and location. cDCs show characteristic 

dendritic morphology whereas pDCs are round cells without dendrites and they resemble 

antibody producing plasma cells (Shortman and Liu, 2002). Compared to cDCs, pDCs have 

negligible phagocytic ability and are normally not found in the peripheral tissues. Their main 

function is to secrete type 1 IFN in response to viral infection, hence were originally known as 

IFN-producing cells (Siegal et al., 1999; Svensson et al., 1996). pDCs express high levels of 

CD123 and low levels of CD11c. CD123 is an IL-3 cytokine receptor, hence IL-3 is very 

important for in vitro differentiation of pDCs.  
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The oldest known subset of DC family is LDCs, which are present in the epidermis of the 

skin. They typically express intracytoplasmic rod-shaped Birbeck granules (Wolff, 1967). They 

can be easily identified based on the high expression of CD11c, DEC205 and langerin (CD207) 

(Pulendran et al., 2008; Valladeau et al., 2000).     

  

Secondary lymphoid organs harbor a DC-like cell population known as follicular DCs 

(FDCs) in their germinal center and B cell follicles. However, they are distinct from cDCs and 

produce IL-6 and CXCL13 in large amounts when activated by antigen (Allen and Cyster, 2008; 

Suzuki et al., 2010).   

 

Tolerogenic DCs (tolDCs) have the capacity to induce antigen-specific unresponsiveness 

or tolerance in the body. They gain the capacity to induce tolerance in central lymphoid organs 

and in the periphery via T cell silencing, T cell deletion, immune deviation (polarization of the T 

cell cytokines) or by induction of regulatory T cells (Tregs) (Steinman et al., 2003). Due to their 

role in maintaining immune tolerance, immunomodulation of tolDCs have become potential 

targets for treatment of auto-immune diseases and increasing transplantation efficiency in humans 

(Thomson, 2010).  

 

The new and most informative way of classifying DCs is based on their phenotypic 

characteristic, function and location. Based on the location, DCs are classified as splenic and 

lymph node DCs. Mouse spleen contains three subsets of DCs: 1) CD8α+ CD4- CD11chigh 

CD11b- DEC205+ lymphoid DCs, 2) CD8α- CD4+ CD11chigh CD11b+ DEC205- myeloid DCs, 3) 

CD8α- CD4- CD11b- B220+ Gr1+ plasmacytoid DCs. In addition to these three subsets, lymph 

nodes contains two more subsets: CD11chigh CD8αlow DEC205high langerin+ langerhans DCs and 

CD11chigh, CD8α- DEC205+ langerin- dermal DCs (Pulendran, 2004; Shortman and Naik, 2007).   

 

Although CD8 molecules are usually present on T cells, CD8 molecules present on the 

DC surface are αα-homodimers whereas CD8 on classical T cells are αβ-heterodimers. CD4 and 

CD8 are present on mouse DCs but human DCs express only the CD4 marker. CD8+ DCs 

localize mainly in the T cell area of the spleen and lymph nodes whereas CD4+ DC are 

concentrated in the marginal zones of the spleen and subcapsular sinus of the lymph nodes. 
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However, CD4+ DCs have been shown to migrate into T cell zones upon stimulation (Iwasaki 

and Kelsall, 2000; Pulendran et al., 1997; Sousa et al., 1997). Functionally both DC subsets have 

cross-presentation capacity in vivo (den Haan and Bevan, 2002), however CD8+ DCs secrete 

copious amounts of IL-12 and induce Th1 type immune responses while CD4+ DCs secrete more 

IL-10 than IL-12 and induce Th2 type responses (Maldonado-López et al., 1999; Pulendran et al., 

1999). Further, the functional significance of CD4 and CD8 on DCs has not been reported yet. 

They are used only for characterization of mouse DC subsets (Shortman and Liu, 2002). 

 

In conclusion, DCs play an important role in determining the type of immune response, 

which in turn depends on the pathogen encountered, type and level of DC maturation and the 

cytokine microenvironment in the lymph nodes. Balancing the relationship between various 

subtypes is important in regulating immunity, maintaining homeostasis and limiting harmful 

reactions or damage to the host such as allergic conditions and autoimmune diseases. 

 

1.3.4 Phagocytosis  

DCs are the only cells known as professional APCs because of their unique ability to 

phagocytose, process and present various antigens. DCs express diverse receptors (TLRs, CLRs, 

etc.) on their surface that aid in detecting and phagocytosing a variety of pathogens via clathrin-

dependent and clathrin-independent mechanisms (Barral et al., 2008; Savina and Amigorena, 

2007; Steinman et al., 1999). Liquid phase particles are taken up via macropinocytosis (Norbury, 

2006). However, DCs can also recognize danger signals and DAMP molecules/alarmins released 

from necrotic cells and leukocytes via various intracellular receptors. Except DCs, all other APCs 

are involved in destroying and clearing pathogens from the body. However, DCs do not clear the 

pathogens directly but instead are involved in processing and presentation of specific antigenic 

peptides via MHC to T helper (Th) cells and subsequently initiating adaptive immune responses.  

 

1.3.5 Maturation 

Once DCs take up antigen, they undergo a maturation process to become specialized 

APCs. Mature DCs attain the following features: reduction of endocytic abilities (which is 

increased in the first few hours), reduced expression of CCR5 and CCR6 and increased 

expression of CCR7, which helps trafficking to lymph nodes and increased ability to present 
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antigen (Ohl et al., 2004; Willimann et al., 1998). Mature DCs also have increased expression of 

MHC and co-stimulatory molecules (CD80, CD86 and CD40), maturation marker (CD83) and 

chemokine receptors (CCR7 and CXCR4) (Lechmann et al., 2001; Ohl et al., 2004). They also 

gain the ability to secrete copious amounts of cytokines and chemokines. On the contrary, iDCs 

express low levels of MHC and co-stimulatory molecules (Table 1.4). Sometimes DCs do not 

undergo the maturation process even after pathogen recognition and phagocytosis. Such iDCs are 

shown to be involved in induction of T cell tolerance (Hawiger et al., 2001; Tan and O'Neill, 

2005).  

 

 

Table 1.4  Characteristics of iDCs and mDCs. 

 

S.no. Immature DCs (iDCs) 
 

Mature DCs (mDCs) 

1. High intracellular expression of MHC High surface expression of MHC I and 
II molecules 
 

2. High surface expression of PRRs Low surface expression of PRRs 
 

3. High phagocytic abilities Less phagocytic abilites 
 

4. Low/absent costimulatory molecules 
(CD40/80/86) 
 

High costimulatory molecules 
(CD40/80/86) 

5. Low cytokine expression High cytokine expression 
 

6.  Express CCR5 and CCR6 Express CCR7 
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1.3.6  Antigen processing and presentation  

Antigen presentation by DCs plays a crucial role in linking innate and adaptive immune 

responses. The type of immune responses activated by DCs depends on the pathogen 

encountered, tissue environment and maturation signals. Exogenous pathogens are endocytosed 

and presented mainly on MHC class II molecules on DCs. In the endoplasmic reticulum (ER) of 

DCs, newly synthesized MHC class II are associated with preformed invariant chain (Ii), which 

occupies the peptide-binding site (Lamb and Cresswell, 1992; Roche et al., 1991). Later they are 

transported to the acidic endosmal compartments, where Ii is degraded by lysosomal proteases 

into contiguous internal segment of Ii (CLIP). Internalized proteins are processed into peptides in 

endosomes and later loaded on to newly synthesized MHC class II molecules by replacing CLIP 

with the aid of the non-conventional MHC class II molecule HLA-DM (Bryant and Ploegh, 

2004). Degradation of proteins and loading on MHC class II process is further enhanced in 

mature DCs by enhancement of acidification of endosomal compartments via activation of a 

proton pump (Trombetta et al., 2003).  The antigen-loaded MHC class II complexes are 

transported to plasma membranes via tubular organelles (Kleijmeer et al., 2001; Savina and 

Amigorena, 2007).   

 

Endogenous antigens (viral proteins, defective ribosomal products) and exogenous 

antigens that are processed internally are exclusively presented on MHC class I molecules 

(Savina and Amigorena, 2007). Intracellular proteins often have ubiquitin attached to them. 

These ubiquitin-conjugated proteins are degraded into small peptides of eight to ten amino acids 

by multifunctional protease complexes called proteasomes and later transported into the ER via 

transporter associated with antigen processing (TAP) (Yewdell and Nicchitta, 2006).  An MHC 

class I molecule consist of α chain and β2-microglobulin and this complex leaves the ER after 

peptide binding. The assembly of this complex requires various chaperones such as calnexin, 

calreticulin, ERp57 and tapasin that assist in folding and loading of peptides on the MHC 1 

peptide-binding groove (Cresswell et al., 2005; Rock et al., 1990). Peptide-MHC class I 

complexes exit from the ER and are transported to the cell surface via the Golgi apparatus.   
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Apart from the traditional pathway, sometimes APCs can switch these pathways resulting 

in cross-presentation of antigens such as presentation of exogenous antigens via the MHC class I 

pathway. DCs are the only APCs that have the capacity of cross-presentation (Jung et al., 2002). 

Cross-presentation of antigens could occur due to destruction and release of acidic compartments 

carrying exogenous antigens into cytoplasm or fusion of MHC class I molecules with endosomes 

carrying exogenous antigens (Grommé et al., 1999). This pathway is especially important for 

cross-presentation of tumor-associated antigens (TAAs) to produce strong cell-mediated 

immunity against tumor cells. DC-mediated cross-presentation could be further exploited 

clinically to generate desired immune responses against diseases by vaccination.  

 

1.3.7 Migration of DCs 

  DCs are strategically positioned throughout the body as immune sentinels to protect 

against invading pathogens. Upon antigen exposure, DCs traffic to secondary lymphoid organs, 

where they induce adaptive immune responses. DCs have been shown to continuously migrate 

towards lymph nodes even in the absence of pathogens or tissue damage probably to induce 

peripheral tolerance (Kamath et al., 2000). The DCs migration process can be divided into six 

steps: 1) recognition of mobilizing signals: DCs are mobilized in response to various 

inflammatory signals including PAMPs, DAMPs and pro-inflammatory cytokines TNF-α and IL-

1β (Antonopoulos et al., 2001; Cumberbatch et al., 1999; Enk and Katz, 1992). Exposure to such 

stimuli induces maturation of DCs, rearranges their chemokine receptor expression, alters 

expression of adhesion molecules and eventually induces mobility (Granucci et al., 1999). Pro-

inflammatory cytokine exposure induces expression of CCR7, which is generally not present on 

iDCs (Yanagihara et al., 1998). 2) Detachment from the surrounding tissues: adhesion molecules 

such as E-cadherin are responsible for retention of DCs in the peripheral tissues. TGF-β plays an 

indirect role in DC retention as it upregulates the expression of E-cadherin on DCs and inhibits its 

maturation and CCR7 expression (Geissmann et al., 1999). Pro-inflammatory cytokines TNF-α 

and IL-1β induces DC detachment by reducing E-cadherin expression (Jakob and Udey, 1998). 

3) Interstitial migration: Once DCs are detached from tissue they must migrate through 

extracellular matrix proteins (collagens, fibronectins and laminins) and basement membranes 

before entering the lymphatic system. To overcome these barriers, mDCs up-regulate matrix-

metalloproteinases (MMP)-2 and MMP-9 (Ratzinger et al., 2002), and down-regulate tissue 
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inhibitors of metalloproteinases (TIMPs) (Darmanin et al., 2007). DC entry into lymphatics is 

guided by chemokine CCR7 and its ligands, CCL19 and CCL21 (Ohl et al., 2004) and CXCR4 

and its ligand CXCL12 (Kabashima et al., 2007). Secretion of TNF-α further increases CCL21 

expression by lymphatic endothelial cells, which further chemoattracts DCs towards lymph 

vessels (Martin-Fontecha et al., 2003). 4) Transit through afferent lymphatic endothelium: steady 

state migration of DCs through lymphatic endothelium is guided by a chemokine scavenging 

receptor, D6 and CCX-CKR1 expressed on the lymphatic endothelium (Heinzel et al., 2007; 

Mantovani et al., 2006). 5) Transit through the afferent lymph: sheer physical force can transport 

DCs into lymph nodes which is supported by the intercellular adhesion molecules (ICAM)-1 and 

vascular cell adhesion protein (VCAM)-1 expressed on the lymphatic endothelium (Johnson et 

al., 2006). However, this mechanism is not clear. 6) DC migration in lymph node: CCR7-

CCL19/CCL21 and CCR8/CCL1 axes control DC migration in the lymph node parenchyma 

(Nakano and Gunn, 2001; Qu et al., 2004).  

 

1.3.8 Development of adaptive immune responses  

Once DCs reach lymph nodes, naïve T cells recognize the antigen presented on MHC 

molecules via specific T cell receptor (TCR).  The activation state of DCs, subset of DC 

presenting antigen as well as presentation of antigen on MHC class I or class II are critical factors 

in determining the outcome of T cell responses (Mellman and Steinman, 2001). Presentation of 

antigen by DCs to naïve T cells can lead to induction of effector function or development of 

tolerance. Three signals are important for generation of effective T cell activation (Fig 1.3). The 

first signal is recognition of antigen displayed on MHC molecules through TCR on T cells. 

Antigens presented by MHC class I are recognized by TCR on CD8+ T cells, whereas antigens on 

MHC class II interact with TCR on CD4+ helper T cells. Formation of prolonged and dynamic 

interaction between DCs and T cells, called immunological synapse, is required for effective T 

cell activation. Initially, ICAM-1 on DCs forms a limited interaction with leukocyte function 

associated antigen 1 (LFA-1) on the T cells (Dustin et al., 2006). This interaction is further 

stabilized by ligation of co-stimulatory molecules CD80/CD86 with CD28 on T cells, which 

provides the second signal (Lotze and Thomson, 2001). Additionally, interaction between CD40-

CD40L activates DCs to further up-regulates co-stimulatory molecules that in turn helps in 

stabilizing the immunological synapse (Lanzavecchia and Sallusto, 2001). Cytokines released 
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from DCs provide the third signal, which determines the differentiation status of the T cells (Fig 

1.3). A T cell that proliferates in the absence of the third signal fails to induce cytotoxic T cell 

(CTL) responses (Curtsinger et al., 2003).  

 

 

 

 
 

Fig 1.3 Three signals are required for the activation of naïve T cells. In the peripheral tissues 

DCs recognize pathogens via PRRs, which initiates the activation and maturation of DCs (signal 

0). Binding of the antigen-MHC complex on DCs to the antigen-specific TCR on T cells provides 

signal 1. Signal 2 comprises of binding of co-stimulatory molecules present on the surface of 

DCs and T cells. Interaction of CD80/86 and CD40 on DCs with CD28 and CD40L on T cells 

generate activation signals, whereas interaction with CTLA4 leads to inhibitory signals. Secretion 

of cytokines by DCs gives signal 3 to T cells, which polarizes them, to differentiate towards 

various phenotypes.   
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Efficient presentation of antigens from intracellular viruses and bacteria results in Th1-

biased responses while Th2-biased responses are generated against extracellular bacteria and 

parasites (Mosmann et al., 1986). DC-mediated naïve T cell differentiation into various 

populations depends on the cytokine microenvironment (Heufler et al., 1996). Various T cell 

types are distinguished based on their cytokine production profiles and immune functions. IL-12 

secreted by DCs activates transcriptional factor TBX21 (T-box transcription factor 21), which is 

responsible for development of Th1 type cells. Th1 cells secrete high amounts of IL-2 and IFN-γ 

resulting in strong cellular responses (Magram et al., 1996; O'Garra and Robinson, 2004). In 

addition, Th1 cells modulate B cell isotype switching to immunoglobulin G2a (IgG2a) and can 

provide help to CTLs, NK and NKT cells. Interleukin-4 is the main cytokine that drives the 

development of Th2 cells via activation of transcription factor GATA3 (GATA-binding factor 3). 

Th2 cells secrete IL-4, IL-5 and IL-13, and modulate isotype switching to IgG1 and IgE, thus 

facilitating induction of potent humoral responses (Kopf et al., 1993; Murphy and Reiner, 2002). 

Since IL-4 secretion by DCs has not been reported, it was believed that induction of Th2 biased 

immune responses was due to absence of IL-12 production by DCs. This concept was later 

disapproved when Ohshima et al showed that ligation of OX40 receptor, a member of TNF 

receptor family, induces the production of IL-4 by naïve T cells and promotes the differentiation 

of Th2 type cells (Ohshima et al., 1998).  

 

Fourteen years after Th1 and Th2 responses were identified, another independent type of 

response, Th17 was described (Infante-Duarte et al., 2000). Differentiation of Th17 cells requires 

both IL-6 and TGF-β, which induces transcription factors retinoid-related orphan receptor (ROR) 

RORα and RORγt. Th17 cells produce various cytokines including IL-17, IL-17F, IL-21 and IL-

22 (Bettelli et al., 2006). In the absence of IL-6, TGF-β induces the differentiation of regulatory T 

cells (Tregs) while addition of IL-6 to Tregs results in differentiation into IL-17 producing cells 

(Xu et al., 2007). Similarly, TGF-β in the presence of IL-4 has been shown to induce 

differentiation of naïve CD4+ T cells into a new T cell subtype called Th9 cells, which are 

characterized by production of high levels of IL-9 and IL-10 and no IFN-γ, IL-4 and IL-17 

cytokines. Despite production of high levels of IL-10, Th9 cells do not have any regulatory 

properties (Dardalhon et al., 2008). Follicular helper T (Tfh) cells are yet another CD4+ T cell 
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population that provides help to B cells, aid in development of germinal centers and promote 

immunoglobulin class switch recombination and affinity maturation (O'Shea and Paul, 2010). 

 

Although immature DCs do not have the ability to activate adaptive immune responses, 

they play an important role in maintaining immune tolerance by programming CD4+ CD25+ 

regulatory T cells (Tregs) (Mahnke et al., 2007). Even mature DCs have been shown to induce de 

novo proliferation of Treg cells (Reis e Sousa, 2006). Treg cells function by producing 

immunosuppressive cytokines IL-10 and TGF-β, up-regulating forkhead box protein3 (foxp3) 

expression and inhibiting effector T cell functions (Levings et al., 2002). Broadly, tolerance can 

be divided into two types: central tolerance, which occurs through clonal deletion in thymus 

during early development and peripheral tolerance, which is required to control stimulation of the 

immune system against extra-thymic self-antigens and non-pathogenic antigens (Bluestone and 

Abbas, 2003). Apart from Tregs, another T helper cell type, Th3 cells have been shown to play a 

role in peripheral tolerance (Groux et al., 1997). Chronic activation in the presence of IL-10 

induces differentiation of CD4+ T cells into Th3 type cells which are characterized by low 

proliferative ability, high levels of IL-10 and TGF-β production and absence of IL-4 production 

(Carrier et al., 2007). Th3 type cells are MHC class II restricted T cells that suppress the antigen-

specific CD4+ T cell proliferation by production of high levels of IL-10 and TGF-β-mediated 

activation of the Foxp3 gene in T cells. A high level of IL-10 production is also associated with 

another regulatory cell known as T regulatory subset 1 (Tr1), however Tr1 cells produce low 

amounts of TGF-β (Groux et al., 1997).              

 

1.3.9 Cytokine and chemokine production 

 

1.3.9.1 Cytokines 

 Cytokines are involved in almost every aspect of immunity from growth, activation and 

differentiation of innate and adaptive immune cells to inducing cell recruitment and determining 

the nature of the immune response and regulation. Various cytokines are produced by DCs but 

the predominant ones are TNF-α, pro-inflammatory cytokines IL-1β, IL-18, IL-6, IL-12, IL-10 

and IFNs. Tumor necrosis factor including TNF-α derived from mononuclear phagocytes and 

TNF-β from lymphocytes (therefore formerly known as Lymphotoxin-α) (Beutler and Cerami, 
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1989). Both TNF-α and TNF-β bind to the same TNF receptor on the cell surface but the 

outcome of the response (apoptosis or inflammation) depends on the adaptor proteins such as 

TNF receptor type 1-associated death domain (TRADD) and TNF receptor associated factors 

(TRAF) (Banner et al., 1993). TNF is involved in various immune functions including activation 

of neutrophils, induction of intracellular adhesion molecules (ICAM-1, VCAM-1 and E-selectin) 

thereby mediating chemotaxis and degranulation. It is also one of the cytokines used for in vitro 

DC maturation (Rieser et al., 1997). The adverse effects of TNF are induction of cachexia and 

fever and it is the primary mediator of sepsis and shock (Tracey et al., 1987). 

 

 The interleukin-1 family consists of four important molecules namely, IL-1α, IL-1β, IL-1 

receptor antagonist (IL-1ra) and IL-18 (Dinarello and Wolff, 1993). Totally there are now 11 

members of the IL-1 family (IL-1F1-IL-1F11). IL-1α and IL-1β are pro-inflammatory cytokines 

with similar biological activities and both of them (along with IL-1ra) interact with the same IL-1 

receptor (IL-1R) (Sims et al., 1993). Apart from APCs, IL-1 is produced by endothelial cells, 

fibroblasts, neutrophils, iNKT cells and γδ T cells. IL-1 and IL-18 are involved in generating 

inflammatory responses against infection. Similar to TNF, they up-regulate expression of 

adhesion molecules, recruit immune cells to sites of inflammation/infection and induce fever 

(Dinarello, 2009). The difference between biological activities of TNF and IL-1 is that TNF is not 

directly involved in lymphocyte function whereas IL-1 promotes the production of IL-2 and IL-2 

receptor thereby activating T cells and IL-1 acts on B cells to induce proliferation and Ig 

production (Ben-Sasson et al., 2011).  

 

IL-1 and IL-18 are produced as inactive precursors, which are later cleaved by IL-1 

converting enzyme (ICE) or caspase-1 to release the active forms (Nett et al., 1992). Neutrophils 

and macrophages can also process pro-IL-1β and pro-IL-18 via serine proteases such as 

proteinase-3, elastase and cathepsin-G to secrete active forms (Coeshott et al., 1999; Netea et al., 

2010; Sugawara et al., 2001). Both IL-1 and IL-18 play an important role in regulation of 

immune responses and are considered Th1 cytokines. The inflammatory process induced by IL-

1β and IL-18 is controlled by another member of the IL-1 family, IL-1ra, which binds to IL-1R 

and modulates the immune responses. Due to its important function in controlling inflammation, 

IL-1ra has been used in the treatment of autoimmune diseases and rheumatoid arthritis.  
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 IL-6 is secreted by DCs, macrophages, osteoblasts, hepatocytes, endothelial cells, T and B 

lymphocytes; however IL-6 is also produced by smooth muscle cells (hence sometimes called 

“myokine”). IL-6 acts as pro-inflammatory cytokine and shares various functions with IL-1. In 

addition, IL-6 has an anti-inflammatory role that includes production of anti-inflammatory 

cytokines (IL-10 and IL-1ra) thereby antagonizing the effects of TNF-α and IL-1 (Dodge et al., 

2003; Kubo et al., 2004).   

   

The IL-12 family consists of three closely related cytokines, IL-12, IL-23 and IL-27. IL-

12 consist of two subunits IL-12A (p35) and IL-12B (p40) and the biological active form is a 

heterodimer. Stimulated APCs produce copious amounts of IL-12, which promotes induction of 

Th1 type immune responses (Berberich et al., 2003; Koch et al., 1996). IL-12 activates and 

induces proliferation of T helper, CTL and NK cells. IL-23 specifically acts on memory T cells 

whereas IL-27 on naïve T cells (Oppmann et al., 2000; Pflanz et al., 2002). In addition, IL-23 is a 

potent inducer of IFN-γ and like IL-12 it is a Th1 inducing cytokine. Biological activities of IL-

12 closely resemble those of IL-18 including IFN-γ release. IL-12 up-regulates the expression of 

IL-18 receptor (IL-18R), thereby synergizes the effect of IL-18 to stimulate IFN-γ production 

(Novick et al., 2001).  

 

The IFN family consists of 3 members (IFN-α, IFN-β and IFN-γ). Plasmacytoid DCs are 

also known as interferon producing cells (IPCs) due to their natural ability to produce high levels 

of type I IFNs. IFN-α and IFN-β are primarily secreted by APCs whereas T cells, NK cells and 

NKT cells are the major sources of IFN-γ. IFNs play significant roles in antiviral and antitumor 

activity (Müller et al., 1994). IFN-γ stimulates APCs to produce cytokines, present antigens via 

MHC class I and modulates the other effector functions including phagocytosis and killing of 

intracellular pathogen. IFNs signals through binding to IFN gamma receptors (IFNGR1 and 

IFNGR2) that leads to downstream signaling of JAK-STAT pathways and induction of immune-

related genes (Platanias, 2005). Similar to IL-1, uncontrolled IFN-γ expression is associated with 

a number of inflammatory and autoimmune diseases. 
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TGF-β and IL-10 are two important anti-inflammatory cytokines. They are produced by 

APCs and some T cell subsets. TGF-β producing T helper cells are Tr1, Th3 and Tregs. In 

addition to inhibiting B and T cell effector responses, TGF-β induces stimulation of fibrosis and 

wound healing (Sporn and Roberts, 1992). Unlike TGF-β, IL-10 is produced by all subsets of T 

helper cells including Th1, Th2, CTL and B cells. IL-10 inhibits secretion of cytokines by all T 

helper cells and APCs (Del Prete et al., 1993). In addition, it inhibits expression of MHC and co-

stimulatory molecules leading to inefficient activation of T cells (Ding et al., 1993).      

 

1.3.9.2 Chemokines 

  Chemokines belong to a large superfamily of mostly small (8-12 KDa) cytokines or 

proteins that are involved in leukocyte trafficking and recruitment in normal and patho-

physiological conditions. Various chemokines are constitutively produced in the peripheral 

tissues to retain APCs for immune surveillance and in the lymph nodes for regular trafficking of 

lymphocytes. However, during inflammatory or disease conditions, damaged endothelium and 

necrotic tissues release inflammatory chemokines to recruit immune cells. Chemokines are 

classified into four sub-families: C, CC, CXC, and CX3C based on positioning of cysteine 

residues, where X is a variable amino acid. The CC and CXC families are the largest containing 

28 and 16 members respectively. The CC family is exclusively involved in the chemotaxis of 

monocytes and lymphocytes whereas CXC largely attracts neutrophils.  

 

Chemokines regulate their biological activity by interacting with G protein-coupled 

transmembrane receptors (GPCRs) called chemokine receptors. Chemokine receptors are 

expressed on various cells and tissues throughout the body to influence bidirectional cellular 

movement. Chemokines play a major role in the movement of immune cells across the tight 

endothelial junction. The magnitude of cellular movement depends on the level of receptor 

expression on the endothelium (Boldajipour et al., 2008). Chemokine binding to GPCRs leads to 

intracellular-signalling cascade such as activation of phospholipase C (PLC) and small GTPase, 

which in turn regulates integrin avidity by increasing integrin affinity and valency (Constantin et 

al., 2000; Laudanna et al., 2002). Chemokine-mediated increase in integrin avidity arrests the 

rolling leukocytes on the endothelium. Leukocyte arrest gives them a chance to further prepare to 
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migrate the endothelial layers. Positive chemokine gradient is required for further movement of 

leukocytes to the site of infection or damage. 

 

DCs continously patrol the peripheral tissues and carry the information back to the lymph 

nodes to generate adaptive immune responses. Various chemokines play a critical role in 

executing DCs functions. DCs utilize various chemokine receptor-ligand pathways such as 

CCR2-CCL2 (Geissmann et al., 2003; Merad et al., 2002), CCR5-CCL5 (Yamagami et al., 2005) 

and CCR6-CCL20 (Merad et al., 2004) to retain and migrate in the peripheral tissues. Once DCs 

encounter pathogens, they undergo maturation and down-regulate these chemokine receptor-

ligand pathways. Mature DCs up-regulate CCR7 and CXCR4 receptor to migrate to draining 

lymph nodes. CCL19 and CCL21 are ligands of CCR7, which are expressed by lymphatic 

endothelial cells as well as lymph nodes to guide DC migration (Britschgi et al., 2010; Ricart et 

al., 2011; Saeki et al., 1999; Schumann et al., 2010). CCR7 is also believed to guide DC 

migration within the lymph nodes, which express high concentrations of CCL19 and CCL21. 

After entering the T cell zone, DCs themselves start expressing CCL19 to attract naïve and 

memory T cells as well as other mDCs to transfer antigenic information (Alvarez et al., 2008; 

Cyster, 2000).  

 

pDCs patrol the blood and enter lymph nodes even in the steady state condition. They 

engage CXCR3, CXCR4 and CCR5 in steady state whereas upon activation they express high 

amounts of CCR7, which guide pDCs migration to lymph nodes (Penna et al., 2001; Seth et al., 

2011). 

 

Neutrophils provide the first line of defense during infections and hence, are the first cells 

to reach infection site. Neutrophil chemoattractants such as CXCL1 (also called neutrophil 

activating protein (NAP)-3 or KC), CXCL2 (also called macrophage-inflammatory protein (MIP-

2a), CXCL3 (MIP-2b), CXCL5 and CXCL-8 are mainly produced by the tissue resident 

macrophages (De Filippo et al., 2008). The receptor CXCR2 binds to most of the neutrophil 

chemoattractants and it plays a critical role in the earliest recruitment of neutrophils during 

microbial infections (Reichel et al., 2006; Souto et al., 2011). CCR2-dependent pathways mainly 

mediate monocyte trafficking during acute inflammatory conditions. CCL2 (also called monocyte 
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chemoattractant protein (MCP)-1) and CCR7 (MCP-3) are ligands for CCR2 and are involved in 

monocyte infiltration during inflammatory conditions (Ingersoll et al., 2011; Jia et al., 2008).   

 

Overall, chemokines play a critical role in tissue specific migration of immune cells in 

normal and diseased conditions. Chemokine-dependent DC migration is crucial to pass antigenic 

information to lymphocytes and induce adaptive immune responses.     
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CHAPTER 2. HYPOTHESIS AND OBJECTIVES 

  

2.1 HYPOTHESIS 

 

PCEP is a strong modulator of innate immune responses. 

 

2.2 OBJECTIVES 

 

Our main objective was to investigate the cellular and molecular mechanisms of action of PCEP.  

 

Objective 1. To investigate whether PCEP is a strong modulator of ‘adjuvant core response 

genes’ at the site of injection. The following were specific aims to achieve this objective: 

 

1.1) To identify the genes regulated by PCEP at the site of injection by qRT-PCR. 

1.2) To investigate the systemic effects of PCEP by assaying serum cytokine concentrations.  

1.3) To investigate the local production of cytokines and chemokines post-injection of PCEP 

by ELISA. 

 

 

Objective 2. To investigate whether PCEP recruits immune cells at the site of injection. The 

following were specific aims to achieve this objective: 

 

2.1) To identify the immune cell recruitment at the site of injection of PCEP by flow 

cytometry. 

2.2) To determine changes in cell composition in the draining lymph nodes post-injection of 

PCEP by flow cytometry. 

2.3) To identify the specific cell targets of PCEP by examining the PCEP uptake by 

recruited immune cells by flow cytometry. 

2.4) To determine localization of PCEP in the recruited immune cells by confocal 

microscopy. 

2.5) To evaluate the distribution of PCEP at the injection site by in vivo imaging.  
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Objective 3. To investigate whether PCEP directly activates dendritic cells (DCs) and 

lymphocytes in vitro. The following are specific aims to achieve this objective: 

 

3.1) To assess induction of pro-inflammatory cytokines by PCEP in splenic DCs.  

3.2) To determine whether the induction of pro-inflammatory cytokines by PCEP is caspase-

1 dependent.  

3.3) To determine whether PCEP induces activation and maturation of DCs.  

3.4) To determine whether PCEP induces activation and proliferation of T cells and B cells.  

3.5) To assess the potential of PCEP to induce antigen-specific CD8+ T cell responses and 

IFN-γ production. 
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CHAPTER 3.  ACTIVATION OF ADJUVANT CORE REPSONSE GENES BY THE 

NOVEL ADJUVANT PCEP 

(Molecular Immunology (2012); 51: 292-303) 

 

 
Relationship of this study to the dissertation 
   
 Polyphosphazene PCEP has shown great potential as a vaccine adjuvant with various 

viral and bacterial antigens but their mechanisms of action are poorly understood. Hence, in this 

first study we investigated the capacity of a novel adjuvant PCEP to induce adjuvant core 

response genes (cytokines, chemokines, innate immune receptors, interferon-induced genes and 

adhesion molecules) at the site of injection and local production of cytokines and chemokines 

after intramuscular injection in mice. These studies suggest that PCEP adjuvant activity depends 

on strongly activating early innate immune responses and promoting a strong immuno-

stimulatory environment at the site of injection.  

 

 

3.1 Introduction 

 Adjuvants are natural or synthetic substances that can enhance or modulate immune 

responses to a co-administered antigen. Ideally, an effective adjuvant will promote strong cell-

mediated as well as humoral immunity, and contribute to antigen sparing and/or eliminate the 

need for booster immunizations. Many diverse classes of compounds have been assessed as 

adjuvants including microbial products, mineral salts, emulsions, microparticles and liposomes 

(Fraser et al., 2007). For over 80 years, insoluble aluminium salts have been the most widely used 

vaccine adjuvant in humans and animals primarily due to their high safety profile. However, their 

safety might be questionable since alum has been associated with causing vaccine-associated 

feline sarcomas in cats (Hendrick et al., 1992; Morrison and Starr, 2001). Secondly, alum mainly 

induces Th-2 type immune responses (humoral response) and is a poor Th-1 adjuvant (Grun and 

Maurer, 1989). Therefore alum is not an appropriate adjuvant with many vaccines such as HIV or 

TB that require Th-1 type immune responses for protection (Hunter, 2002). In addition to alum, 

two oil-in-water emulsions and one combinational adjuvant have recently been approved for use 
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in humans (De Gregorio et al., 2008). These licensed adjuvants do not induce optimal immune 

responses with all the vaccine antigens, promote primarily antibody production and have limited 

ability to induce cell-mediated immune responses. Therefore, novel vaccine adjuvants with a 

good safety profile and an ability to induce cell-mediated immunity are under investigation.  

  

 Particulate adjuvants such as liposomes, virosomes, ISCOMs (immune stimulatory 

complexes), or virus like particles are immunostimulatory in nature and act by encapsulating and 

enhancing the delivery of antigen to antigen presenting cells (APCs) (Wilson-Welder et al., 

2009).  CpG oligodeoxynucleotides (ODN), a strong immunostimulatory adjuvant, has been 

shown to induce Th1 type of immune response and enhance production of pro-inflammatory 

cytokines through activation of TLR9 (Klinman, 2004).   

 

 Despite the wide use of adjuvants in billions of vaccine doses, the mechanisms that 

mediate adjuvant activity remain poorly understood. Understanding the mechanisms of action of 

adjuvants will provide critical information on how innate immunity influences the development 

of adaptive immunity. Recent studies are beginning to unveil the mystery behind adjuvant action. 

It was proposed that at the injection site, alum adsorbs antigen and increases uptake by antigen 

presenting cells (APCs) (Morefield et al., 2005). It is now known that in vitro, alum activates 

NLRP3 inflammasome complex leading to caspase-dependent production of IL-1β, IL-18 and 

IL-33 in dendritic cells (DCs) and macrophages (Kool et al., 2008a; Li et al., 2007). Despite the 

compelling in vitro evidence on alum-induced inflammasome activation, various in vivo studies 

yielded conflicting results on the role of inflammasomes in mediating the adjuvant activity of 

alum (Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Li et al., 2008; McKee et al., 2009). An 

emulsion based adjuvant, MF59, promotes antigen uptake by APCs, induces secretion of 

cytokines and chemokines at the site of injection, increases recruitment of immune cells and 

promotes the differentiation of monocytes towards dendritic cells (Calabro et al., 2011; Mosca et 

al., 2008; Seubert et al., 2008). Taken together, these studies suggest adjuvants activate complex 

molecular and cellular pathways within the innate immune system to enhance antigen specific 

immune responses and this primarily involves activation of DCs.  
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 One promising class of new vaccine adjuvants are polyphosphazenes. They are high 

molecular weight water-soluble synthetic polymers with a backbone comprised of alternating 

phosphorus and nitrogen atoms and organic side groups attached to each phosphorus (Andrianov 

et al., 2006; Andrianov et al., 2004). The two most investigated polyphosphazene polyelectrolytes 

are poly[di(carboxylatophenoxy)phosphazene] (PCPP) and 

poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) (Mutwiri et al., 2009). They have 

been shown to drastically enhance the immune responses when co-administered with a variety of 

bacterial and viral antigens (McNeal et al., 1999; Payne et al., 1998a; Payne et al., 1998b; Wu et 

al., 2001b). PCEP has been shown to possess significantly stronger adjuvant activity that exceeds 

that of PCPP and alum in mice immunized with influenza virus X:31 or HBsAg (Eng et al., 

2010a; Mutwiri et al., 2008; Mutwiri et al., 2007b). PCEP efficiently promotes a mixed Th1/Th2 

type response, both mucosally and systemically, giving broad-spectrum immunity (Eng et al., 

2010b; Mutwiri et al., 2007b).  

 

 The mechanisms that mediate the adjuvant activity of polyphosphazenes are poorly 

understood. A study by Payne et al suggested that polyphosphazenes do not mediate their 

adjuvant activity through formation of a depot at the site of injection (Payne et al., 1998a). 

Rather, their adjuvant activity has been attributed to their physical association with antigen 

(Andrianov et al., 2005). It has been proposed that polyphosphazenes form a water-soluble, non-

covalent protein-polymer complex that delivers or transports antigen to immune cells but this 

remains to be proven (Andrianov et al., 2005). It has recently been proposed that the powerful 

adjuvant activity of polyphosphazenes is a consequence of strong activation of innate immunity 

(Mutwiri et al., 2008). In this regard, in vitro, PCEP stimulates significant production of the 

innate cytokines IL-12 and IFN-γ suggesting that activation of innate immunity may be important 

in mediating its adjuvant activity (Mutwiri et al., 2008). However, whether polyphosphazenes 

induce any innate immune responses in vivo has not been investigated. Hence, the present studies 

were undertaken to determine whether PCEP has any effect on local innate immune responses in 

vivo.  
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3.2 Materials and methods 

 

3. 2.1 Animal experiments 

 Four to six week old female BALB/c mice (Charles River Laboratories, North Franklin, 

CT, USA) were injected intramuscularly (i.m.) in the quadriceps muscle with 25 µl of either 

phosphate-buffered saline (PBS) as control, 50 µg PCEP, or 10 µg of CpG-1826 (a potent 

adjuvant in mice) per animal. These doses were selected based on previous experiments (Mutwiri 

et al., 2008; Mutwiri et al., 2007a). Muscle tissue from the site of injection and sera were taken 

from all six mice per group at 3, 6, 12, 24, 48 and 96 hours after treatment. The animal 

experiments were approved by the University of Saskatchewan’s Animal Research Ethics Board, 

and adhered to the Canadian Council on Animal Care guidelines for humane use of animals.  

 

3.2.2  Adjuvants 

 PCEP was synthesized by Idaho National Laboratory (Idaho Falls, ID, USA) using 

methods described previously (Andrianov et al., 2004; Mutwiri et al., 2007a) and, prior to use, its 

endotoxin levels were determined to be less than 0.034 ng/ml as assessed by the Limulus 

Amebocyte Lysate assay (Biowhittaker, Walkersville, MD, USA). PCEP was dissolved in 

Dulbecco's PBS (Sigma, St. Louis, MO, USA) before using for animal experiments. The CpG 

ODN 1826 (5’-TCCATGACGTTCCTGACGTT-3’) was provided by Merial (Lyon, France).  

 

3.2.3 Quantitative Real-time PCR (qRT-PCR) 

Immediately after mice were euthanized, whole muscle tissues from the thigh were collected 

in TRIzol (Invitrogen) and aseptically homogenized with 2.3 mm Zirconia microbeads (Biospec 

Products Inc., Bartlesville, OK) in a Mini-BeadbeaterTM (Biospec Products Inc.). The 

homogenates were centrifuged for 1 min at 10,000 x g, and the supernatents were collected for 

total RNA extraction as per the manufacturer’s instruction. The extracted RNA was quantified 

and treated with DNase (Invitrogen). The cDNA was synthesized using random hexamers 

(Applied Biosystems) and SuperScript® II Reverse Transcriptase (Invitrogen) as per 

manufacturer’s instruction. All PCR reactions were carried out in duplicate in 96-well plates with 

optical quality tape (Bio-Rad) using an iCycler iQ® Real-Time PCR Detection System (Bio-Rad, 

Hercules, CA). Each PCR reaction contained 1 μl target cDNA, 0.2 μM each of forward and 
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reverse primers, 7.5 μl of iQ SYBR Green Supermix (Invitrogen) and distilled water to make 

15 μl of final volume according to manufacturer's instruction. The negative control contained all 

the reagents except cDNA. All the primers used in qRT-PCR are shown in Table 3.1. Reference 

genes GAPDH, RPL19 and18s rRNA were analyzed and the best (GAPDH) was selected for 

further analysis. Amplification was performed by initial denaturation at 95 °C for 3 min in cycle 

1, followed by cycle 2 (95 °C, 15 s; 55 °C, 30 s; 72 °C, 30 s) ×45 and then cycle 3, the Melt curve 

analysis, was preset at 55 °C ramping to 95 °C with 1 °C increase each 10 s and final hold at 

20 °C. A Melt Curve analysis was performed to ensure that any product detected was specific to 

the desired amplicon.  
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Table 3.1 List of primers used for qRT-PCR 

 

Gene symbol Forward sequence (5’→3’) Reverse sequence (5’→3’) 
IL-1β 5’-GTGTGGATCCCAAGCAATAC-3’ 5’-GTCCTGACCACTGTTGTTTC-3’ 
IL-2 5’-CCTGGAGCAGCTGTTGATGG-3’ 5’-CAGAACATGCCGCAGAGGTC-3’ 
IL-4 5’-ATGGGTCTCAACCCCCAGC-3’ 5’-GCTCTTTAGGCTTTCCAGG-3’ 
IL-6 5’-TGTCTATACCACTTCACAAGTC-3’ 5’-GCACAACTCTTTTCTCATTTCCA-3’ 
IL-10 5’-TAGTTCCCAGAAGCCATGTG-3’ 5’-AGAGGGAGCAGTTTGTAAGC-3’ 
IL-12 5’-TGCCAGCCTGCCTTATATTG-3’ 5’-TCCACCAGGACCACTAAATG-3’ 
IL-13 5’-CAGCAGCTTGAGCACATTTC-3’ 5’-CATAGGCAGCAAACCATGTC-3’ 
IL-17 5’-ACCTCAACCGTTCCACGTCA-3’ 5’-CAGGGTCTTCATTGCGGTG-3’ 
IL-18 5’-ATGGCTGCCATGTCAGAAGAC-3’ 5’-CTAACTTTGATGTAAGTTAGT-3’ 
IFN-γ 5’-TGAACGCTACACACTGCAT-3’ 5’-CGACTCCTTTTCCGCTTCCT-3’ 

TNF-α 5’-GACCCTCACACTCAGATCATCT-3’ 5’-CCACTTGGTGGTTTGCTACGA-3’ 
NLRP3 5’-TCTACTCTATCAAGGACAGG-3’ 5’-CCCAATGTGCTCGTCAAAGG-3’ 
NFκB 5’-AGAAGACACGAGGCTACAAC-3’ 5’-TCACAGACGCTGTCACTATC-3’ 
BCL-2 5’-CAGAAGATCATGCCGTCCTT-3’ 5’-GTCTACTTCCTCCGCAATGC-3’ 

 
CCL-2 

 
5’-TCACCTGCTGCTACTCATTC-3’ 

 
5’-TCTGGACCCATTCCTTCTTG-3’ 

CCL-4 5’-CCAGCTGTGGTATTCCTGAC-3’ 5’-GAGCTGCTCAGTTCAACTCC-3’ 
CCL-5 5’-CTCCCTGCTGCTTTGCCTAC-3’ 5’-CACACTTGGCGGTTCCTTCG-3’ 

CCL-12 5’-TGCCTCCTGCTCATAGCTAC-3’ 5’-GGCTGCTTGTGATTCTCCTG-3’ 
CXCL-10 5’-GTCACATCAGCTGCTACTCC-3’ 5’-CGCACCTCCACATAGCTTAC-3’ 

 
TLR-4 

 
5’-TCCCAGTGATGGCTGATTAG-3’ 

 
5’-GCACCCAACATTGTGTTACC-3’ 

TLR-9 5’-GAAGGGACAGCAATGGAAAG-3’ 5’-GCCAAGTGCTACCATTAACC-3’ 
 

IL-1RA 
 

5’-GGCAACTGGTAACCGTTGAG-3’ 
 

5’-AGAGGCAGGAGATGACAAGG-3’ 
Fcgr1 5’-TGAGGTGTCACGGATGGAAG-3’ 5’-TGCCTGAGCAGTGGTAGATG-3’ 
Fcgr4 5’-ACAATGACAGTGGCTCCTAC-3’ 5’-TCCTATCAGCAGGCAGAATG-3’ 

Fcer1g-M 5’-GCCGCAGCTCTGCTATATCC-3’ 5’-GTGTTCAGGCCCGTGTAGAC-3’ 
Fcer1g 5’-CAGCCGTGATCTTGTTCTTG-3’ 5’-TTTCGGACCTGGATCTTGAG-3’ 
Lilrb3 5’-GGTAACTTCAGGAGGGTATG-3’ 5’-CGTGGTACTTCCTTGTAGAG-3’ 
Lilrb4 5’-TCCCAGCCTGTCAGTCTATC-3’ 5’-GAGAGGCCATGCTTTCCTTC-3’ 
Ltb4r1 5’-CATGAGTCTGGACCGATCAC-3’ 5’-GGTACACAAGGACCGGTATG-3’ 
Klra18 5’-AACAGAGCTGCCAGAATTCC-3’ 5’-AGATGGGCGATTGTCAATCC-3’ 
Msr1 5’-AGGGCTTACTGGACAAACTG-3’ 5’-TGATCTTGATCCGCCTACAC-3’ 

Tnfrsf1b 5’-CCTGTGGATGCTGAGGAAAC-3’ 5’-GGCTTCCGAGATGACAGAAC-3’ 
Csf2rb1 5’-CAGCACTGTCAGGCTCCTTG-3’ 5’-CTGGACCCACACTGCACATC-3’ 

Hrh2 5’-AGGCCAAGAAGTGAGTGTAG-3’ 5’-TGCCAGCAACAGTGATGAAG-3’ 
Ifit2 5’-GCACTGCAGAGGTCTAAATG-3’ 5’-CAGATAAGCCTGAGCCTTTG-3’ 
Ifit3 5’-GTGCCGTTACAGGGAAATAC-3’ 5’-TCTCTACTTCCGGGAAATCG-3’ 
Ifi-47 5’-ATGAATCCGCTGATGTTGGG-3’ 5’-AAGCGTCTGCGTGGAAATTG-3’ 
Mx1 5’-CTCTGCTGTACTGCTAAGTC-3’ 5’-GCCTTGGTCTTCTCTTTCTC-3’ 
Mx2 5’-ATTACCAGGGTGGCTGTAGG-3’ 5’-ACCACCAGGTTGATGGTCTC-3’ 

Oasl1 5’-TGGACCTTGGGCTCAGTAAC-3’ 5’-GCACAACGGTGACAGTGATG-3’ 
Oasl2 5’-CTAAGACACCTGCACAGATG-3’ 5’-GGGTTAGGCTAGGTTATTCC-3’ 
Oas1f 5’-ACTGCACTCAAGAGCAAGTC-3’ 5’-AGCTCTGCACCTCAAACTTC-3’ 

Ifi202b 5’-CATCTGTCCCAGGCAATGTC-3’ 5’-GAGAGGCTTGAGGTTGATCC-3’ 
Ifi204 5’-CAGGTGCCAGTCACCAATAC-3’ 5’-CAGTGAGCACCATCACTGTC-3’ 

 
 

Igtp 
 

5’-GACTCTGGCAATGGCATGTC-3’ 
 

5’-AGGAGTAGCAGGCTGGTTTC-3’ 
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Iigp1 5’-GCAGATGGCAAACCTCAAAC-3’ 5’-AGATTGGTGGCTCAGCAATG-3’ 
Irf7 5’-GTTTGGAGACTGGCTATTGG-3’ 5’-AGATCCCTACGACCGAAATG-3’ 

Garg49 5’-GAGGATGGCAGAACTGAGAC-3’ 5’-GGGCTCTCCTTACTGATGAC-3’ 
Stat2 5’-CTTCCTACTGCGCTTCAGTG-3’ 5’-GCGGATGATCTCTGTCAGTG-3’ 

Psmb8 5’-AGTTCCAGCATGGCGTCATC-3’ 5’-ATGGTGCCAAGCAGGTAAGG-3’ 
Gvin1 5’-AGATGTGTCGTGTCTCTACC-3’ 5’-GACAGAACCAGCAGATTTCC-3’ 
Ifnar2 5’-ACTACATCGTGCCTGCAAAC-3’ 5’-GGCTCGTGCTTCTTCCTAAC-3’ 

 
Clec4a1 

 
5’-CAAAGTCTGGAGCTGTTGTC-3’ 

 
5’-CTCTGGATCACCAGCAGATG-3’ 

Clec4a2 5’-TACCGTTGGAAGACTGGATG-3’ 5’-TCCCAGGTGTCTGTGTAATG-3’ 
Clec4a3 5’-GGAAGCCGTTTGGTTCCTAC-3’ 5’-CTGTGGATCACCACCAGATG-3’ 
Lgals3 5’-TCCCGAAGAATCGAGGTCAG-3’ 5’-AAAGCCGTCCACAGTAGTCC-3’ 

 
Gapdh 

 
5’-TTGATGGCAACAATCTCCAC-3’ 

 
5’-CGTCCCGTAGACAAAATGGT-3’ 

18s rRNA 5’-CGGCTACCACATCCAAGGAA-3’ 5’-GCTGGAATTACCGCGGCT-3’ 
RPL19 5’-CTGAAGGTCAAAGGGAATGTG-3’ 5’-GGACAGAGTCTTGATGATCTC-3’ 
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3.2.4 Cytokine detection in mice  

Cytokine concentrations were assayed in serum and in muscle tissue obtained from the site of 

injection from each mouse. To detect the cytokine concentration at the site of injection, the 

muscle tissues were homogenized in 1 ml PBS with protease-inhibitor cocktail tablet (Roche 

Diagnostics GmbH, Mannheim, Germany). The homogenates were centrifuged at 20,000 g for 

10 min. Cytokine and chemokine concentrations were determined for IL-1β, IL-18, TNF-α, IL-

12, IL-6, CXCL-10, and CCL-2. Saline-injected mice were used as controls. With the exception 

of IL-18, all the cytokine and chemokine concentrations were determined using DuoSet ELISA 

development system (R&D Systems, Minneapolis, MN, USA) following manufacturer’s 

protocol. For IL-18, Immunol II microtitre plates (Dynex Technology Inc., VA, USA) were 

coated overnight with anti-mouse IL-18 antibody (MBL, Japan) at 2 μg/ml concentration at room 

temperature (RT). The microtitre plates were washed 3 times with Tris-buffered saline (pH 7.3) 

containing 0.05% Tween 20 (TBST) and 100 μl of diluted sera or tissue samples were added to 

the wells and incubated for 2 hrs. The wells were washed again 3 times with TBST and 

biotinylated rat anti-mouse IL-18 antibody (MBL, Japan, 1/1000) was added to the wells in a 100 

μl volume and incubated for 2 h at RT. Wells were washed and horseradish-peroxidase 

conjugated streptavidin was added to each well followed by incubation for 20 min at RT. Wells 

were washed 3 times with TBST before addition of 3,3’,5,5’- Tetramethylbenzidine (TMB) 

(Sigma-Aldrich Canada Ltd.). The microtitre plates were incubated for 20 min at RT before 

stopping the reaction with 2 N sulphuric acid. For all the cytokines and chemokines, the 

absorbance was read as optical density (OD) at 570 nm in a Microplate Reader (Bio-Rad 

Laboratories). The samples were assayed in triplicate, and the cytokine concentration was 

determined by extrapolation from a standard curve generated by serial dilution of the respective 

appropriate recombinant murine cytokines.   
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3.2.5 Statistical analysis 

The increase in target gene expression levels in PCEP and CpG-1826 stimulated muscle tissues 

were calculated as fold change increase (2-∆∆CT). Statistical analysis was carried out using 

GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA). The differences in fold 

change of gene expression were calculated by using non-parametric student t-test and Mann-

Whitney test. The results were assumed statistically significant at *P<0.05 and **P<0.005.  

 

 

3.3 Results 

 

3.3.1 Temporal transcriptional responses elicited by CpG 1826, PCEP or saline at the site of 

injection.   

Mosca et al., reported that a set of common genes were stimulated by the adjuvants 

MF59, alum and CpG and referred these genes as “adjuvant core response genes” (Mosca et 

al., 2008). These genes included cytokines, chemokines, innate immune receptors, interferon-

induced genes and adhesion molecules (listed in table 3.2). In the present study, we 

investigated whether PCEP-induced differential expression of the “adjuvant core response 

genes” at the site of injection. We expanded this list of genes to include IL-1β, IL-4, IL-10, 

IL-12, IL-17, IL-18, IFN-γ, IL-6, TNF-α, Bcl-2, NFκb, inflammasome receptor (NLRP3), 

TLR-4, and TLR-9 genes (listed in table 3.2). 

 

The temporal expression profiles of the selected genes of interest were analyzed by qRT-

PCR at 3 h, 6 h, 12 h, 24 h, 48 h and 96 h following administration of PBS, PCEP or CpG 

1826. Global changes in gene expression were analyzed relative to the time matched saline 

controls. At the site of injection, PCEP injection lead to up-regulation of cytokines and 

chemokines (Fig 3.1), innate-immune receptors (Fig 3.2) and interferon-induced genes (Fig 

3.3). PCEP up-regulated Th1 type IL-2 and IFN-γ (Fig 3.1a), Th17 type IL-17 and IL-6 (Fig 

3.1a) and Th2 type IL-4, IL-10, and IL-13 (Fig 3.1b) cytokines with expression generally 

being increased over time. In a similar pattern, CpG up-regulated the gene expression of 
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cytokines at later time points. PCEP induced 14 to 21-fold gene expression of TNF-α at 12 to 

48 h. However, CpG induced significant TNF-α expression as early as 3 h with 39-fold 

increase but the levels dropped sharply by 6 h (Fig 3.1a). None of the adjuvants had any 

effect on IL-12 gene expression pattern (Fig 3.1b). It was interesting that the major 

transcription factor NF-κB was up-regulated 10-fold by PCEP at a later time point (96 h), 

whereas its expression remained unchanged in CpG-injected muscle tissues (Fig 3.1c).  

Although CpG is a TLR9 agonist, PCEP more potently increased the expression of TLR9 as 

well as TLR4 genes at the site of injection (Fig 3.1c). Further, we observed that at the 

injection site, PCEP and CpG were potent inducers of chemokine genes CCL-2, CCL-4, 

CCL-5, CCL-12 and CXCL-10 (Fig 3.1d). CCL-2 and CCL-12 genes, also known as 

monocyte chemotactic protein-1 (MCP-1) and monocyte chemotactic protein-5 (MCP-5) 

respectively, were highly up-regulated in PCEP-injected mice by more than 300-fold at 96h 

but in contrast, were up-regulated to a substantially lesser extent of between 20-30-fold in 

CpG-injected mice.  CXCL-10 gene was highly induced by CpG as early as 3 h by 480-fold, 

to a 1000-fold by 6 h and up to 100-fold by 96 hour (Fig 3.1d).    
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Table 3.2 List of adjuvant core response genes. 

 
Gene symbol Accession no. Gene name 

 
Cytokines 
 
IL-1β NM_008361 Mus musculus interleukin 1 beta (Il1b), mRNA [NM_008361] 
IL-2 NM_008366 Mus musculus interleukin 2 (Il2), mRNA [NM_008366] 
IL-4 AF352783 Mus musculus IMAGE:578022 interleukin 4 mRNA, complete cds 

IL-6 NM_031168 Mus musculus interleukin 6 (Il6), mRNA 
IL-10 M84340 Mouse interleukin 10 (IL10) gene, complete cds 

IL-12 AL669944 Mouse DNA sequence from clone RP23-388G23 on chromosome 11 Contains 
the 3' end of the Il12b gene for interleukin 12b (Il12b)  

IL-13 NM_008355 Mus musculus interleukin 13 (Il13), mRNA [NM_008355] 
IL-17 NM_010552 Mus musculus interleukin 17A (Il17a), mRNA 

IL-18 NM_008360 Mus musculus interleukin 18 (Il18), mRNA 

IFN-γ AK089574 Mus musculus activated spleen cDNA, RIKEN full-length enriched library, 
clone:F830002I10 product:interferon gamma, full insert sequence 

TNF-α NM_013693 Mus musculus tumor necrosis factor (Tnf), mRNA 

NLRP3 NM_145827 Mus musculus NLR family, pyrin domain containing 3 (Nlrp3), mRNA 
NFκB AY521463 Mus musculus nuclear factor kappa B (Nfkb1) mRNA, complete cds 

BCL-2 AK042257 Mus musculus 3 days neonate thymus cDNA, RIKEN full-length enriched 
library, clone:A630075L21 product:inferred: B-cell leukemia/lymphoma 2 / 
bcl2-alpha, full insert sequence 

TLR-4 AF177767 Mus musculus toll-like receptor 4 (Tlr4) gene, Tlr4A allele, complete cds 
TLR-9 AY649790 Mus musculus strain BALB/c toll-like receptor 9 (Tlr9) gene, promoter region 

and partial cds 
 

 
Chemokines 
 
CCL-2 NM_011333 Mus musculus chemokine (C-C motif) ligand 2 (Ccl2), mRNA  
CCL-4 NM_013652 Mus musculus chemokine (C-C motif) ligand 4 (Ccl4), mRNA [] 
CCL-5 NM_013653 Mus musculus chemokine (C-C motif) ligand 5 (Ccl5), mRNA  
CCL-12 NM_011331 Mus musculus chemokine (C-C motif) ligand 12 (Ccl12), mRNA  
CXCL-10 NM_021274 Mus musculus chemokine (C-X-C motif) ligand 10 (Cxcl10), mRNA  
 
Immune cell receptors 
 
IL-1ra DQ383807 Mus musculus strain A/J IL-1 receptor antagonist (Il1rn) gene, complete cds  
Fcgr1 AF143181 Mus musculus strain AB/H (Biozzi) high affinity immunoglobulin gamma Fc 

receptor I (Fcgr1) mRNA, Fcgr1-d allele, complete cds.  
Fcgr4 NM_144559 Mus musculus Fc fragment of IgG, low affinity IIIa, receptor (Fcgr3a), mRNA  
Fcer1g-M AI326608 mm74d09.y1 Stratagene mouse macrophage (#937306) Mus musculus cDNA 

clone IMAGE:534161 5' similar to gb:J05020 Mouse mast cell high affinity 
IgE receptor (MOUSE) 

Fcer1g NM_010185 Mus musculus Fc receptor, IgE, high affinity I, gamma polypeptide (Fcer1g), 
mRNA 
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Lilrb3 NM_011095 Mus musculus leukocyte immunoglobulin-like receptor, subfamily B (with TM 
and ITIM domains), member 3 (Lilrb3), mRNA  
 

Lilrb4 NM_013532 Mus musculus leukocyte immunoglobulin-like receptor, subfamily B, member 
4 (Lilrb4), mRNA  

Ltb4r1 NM_008519 Mus musculus leukotriene B4 receptor 1 (Ltb4r1), mRNA  
Klra18 NM_053153 Mus musculus killer cell lectin-like receptor, subfamily A, member 18 

(Klra18), mRNA  
Msr1 NM_031195 Mus musculus macrophage scavenger receptor 1 (Msr1), mRNA 
Tnfrsf1b NM_011610 Mus musculus tumor necrosis factor receptor superfamily, member 1b 

(Tnfrsf1b), mRNA  
Csf2rb1 TC1516250 CYRB_MOUSE (P26955) Cytokine receptor common beta chain precursor 

(CDw131 antigen) (GM-CSF/IL-3/IL-5 receptor common beta-chain), partial 
(21%)  

Hrh2 NM_008286 Mus musculus histamine receptor H 2 (Hrh2), transcript variant 2, mRNA  
 
Interferon induced genes 
 
Ifit2 NM_008332 Mus musculus interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), 

mRNA  
Ifit3 NM_010501 Mus musculus interferon-induced protein with tetratricopeptide repeats 3 (Ifit3), 

mRNA  
Ifi-47 NM_008330 Mus musculus interferon gamma inducible protein 47 (Ifi47), mRNA  
Mx1 NM_010846 Mus musculus myxovirus (influenza virus) resistance 1 (Mx1), mRNA  
Mx2 NM_013606 Mus musculus myxovirus (influenza virus) resistance 2 (Mx2), mRNA 
Oasl1 NM_145209 Mus musculus 2'-5' oligoadenylate synthetase-like 1 (Oasl1), mRNA  
Oasl2 NM_011854 Mus musculus 2'-5' oligoadenylate synthetase-like 2 (Oasl2), mRNA 
Oas1f NM_145153 Mus musculus 2'-5' oligoadenylate synthetase 1F (Oas1f), mRNA  
Ifi202b NM_011940 Mus musculus interferon activated gene 202B (Ifi202b), mRNA  
Ifi204 NM_008329 Mus musculus interferon activated gene 204 (Ifi204), mRNA  
Igtp NM_018738 Mus musculus interferon gamma induced GTPase (Igtp), mRNA  
Iigp1 NM_021792 Mus musculus interferon inducible GTPase 1 (Iigp1), mRNA  
Irf7 NM_016850 Mus musculus interferon regulatory factor 7 (Irf7), mRNA  
Garg49 AK077243 Mus musculus 11 days pregnant adult female ovary and uterus cDNA, RIKEN 

full-length enriched library, clone:5031412D17 product:interferon-induced 
protein with tetratricopeptide repeats 3, full insert sequence 

Stat2 NM_019963 Mus musculus signal transducer and activator of transcription 2 (Stat2), mRNA 
Psmb8 NM_010724 Mus musculus proteosome (prosome, macropain) subunit, beta type 8 (large 

multifunctional peptidase 7) (Psmb8), mRNA  
Gvin1 NM_029000 Mus musculus GTPase, very large interferon inducible 1 (Gvin1), transcript 

variant A, mRNA  
Ifnar2 NM_010509 Mus musculus interferon (alpha and beta) receptor 2 (Ifnar2), mRNA  
Clec4a1 NM_199311 Mus musculus C-type lectin domain family 4, member a1 (Clec4a1), mRNA  
Clec4a2 NM_011999 Mus musculus C-type lectin domain family 4, member a2 (Clec4a2), mRNA 
Clec4a3 NM_153197 Mus musculus C-type lectin domain family 4, member a3 (Clec4a3), mRNA  
Lgals3 NM_011150 Mus musculus lectin, galactoside-binding, soluble, 3 binding protein 

(Lgals3bp), mRNA 
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Fig 3.1a Th1 and Th17 cytokines 

 

 
 

Fig 3.1b Th2 cytokines and IL-12 
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Fig 3.1c NFκB and TLRs  

 
 

Fig 3.1d Chemokine

 
 

Fig 3.1  Cytokine and chemokine gene expression profiles elicited by PCEP and CpG at the 

site of injection after intramuscular injection in mice. Mice were injected with PBS, PCEP or 

CpG intramuscularly. Muscle tissue were collected at 3, 6, 12, 24, 48 and 96 h and analyzed for 

cytokine and chemokine genes by quantitative real-time PCR. Gene expression profiles in PCEP-

injected muscle tissue are shown in bold line whereas CpG-injected muscle tissues are in dotted 

line. Results shown are the mean ± SE of six replicates at each time point. Relative fold changes 

(y-axis) for each gene were normalized to mouse GAPDH. Fold changes are calculated by the Ct 

method and are relative to the gene expression in PBS-injected muscle tissue.  
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Similarly, PCEP induced significant expression of immune cell receptor genes in a time 

dependent manner at the site of injection. In particular, the members of leukocyte 

immunoglobulin-like receptor family (Lilrb3 and Lilrb4), Leukotriene (Ltb4r1) (Fig 3.2a) and 

macrophage scavenger receptor 1 (Msr1) (Fig 3.2c) were up-regulated as high as 100-400 fold 

by 96 hours.  Furthermore, PCEP and CpG administration induced high expression of FC 

receptors such as Fcgr1, Fcgr4 and Fcer1g at the injection site with CpG being strongest 

inducer of Fcgr4 with 1000-fold upregulation by 96 hour (Fig 3.2b).  

 

 

Fig 3.2a Immunoglobulin-like and Leukotrienem receptors 

 

 
 

Fig 3.2b Fc receptors 
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Fig 3.2c Other innate immune receptors 

 
 

 

Fig 3.2 Innate immune receptor genes induced by PCEP and CpG at the site of injection 

after intramuscular injection in mice. Mice were administered with PBS, PCEP or CpG 

intramuscularly. Muscle tissue were collected at 3, 6, 12, 24, 48 and 96 h and analyzed for innate 

immune receptor genes by quantitative real-time PCR. Gene expression profiles in PCEP-injected 

muscle tissue are shown in bold lines whereas CpG-injected muscle tissues are in dotted lines. 

Results shown are the mean ± SE of six replicates at each time point. Relative fold changes (y-

axis) for each gene were normalized to mouse GAPDH. Fold changes are calculated by the Ct 

method and are relative to the gene expression in PBS-injected muscle tissue.  
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The interferon pathway genes elicited by PCEP and CpG at the site of injection were 

clearly different. Compared to PCEP, CpG induced significantly higher expression of 

interferon-induced GTPase (Igtp, Iigp-1 and Ifi-47) (Fig 3.3a), interferon-induced genes with 

tetratricopeptide repeats (Ifit-2, Ifit3 and Garg49) (Fig 3.3b) and other interferon-induced genes 

(Oasl-1, Mx1, Ifi202b, Stat2, Psmb8 and Gvin1) (Fig 3.3c) at the site of injection. Iigp and 

Iigp-1 were up-regulated by 200 to 400-fold within 48 h of CpG administration (Fig 3.3a). 

Interestingly, PCEP followed a pattern of late expression at 96 h with interferon pathway genes 

that is similar to its expression pattern of innate immune receptors.  

 

 

Fig 3.3a  Interferon-induced GTPase. 

 
 

Fig 3.3b Interferon-induced genes with tetratricopeptide repeats 
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Fig 3.3c Other interferon-induced genes.  

  
 

 

Fig 3.3 Interferon-induced gene profile elicited by PCEP and CpG at the site of injection 

after intramuscular injection in mice. Mice were administered with PBS, PCEP or CpG 

intramuscularly. Muscle tissues were collected at 3, 6, 12, 24, 48 and 96 h and analyzed for 

interferon-induced genes by quantitative real-time PCR. Gene expression profiles in PCEP-injected 

muscle tissue are shown in bold line whereas CpG-injected muscle tissues are in dotted line. 

Results shown are the mean ± SE of six replicates at each time point. Relative fold changes (y-

axis) for each gene were normalized to mouse GAPDH. Fold changes are calculated by the Ct 

method and are relative to the gene expression in PBS-injected muscle tissue.  
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For the overall pictorial depiction, we also presented our data as relative mRNA 

expression (i.e. as 2-ΔCt relative to the time matched expression of the housekeeping gene) so 

one can appreciate the effect that injection of PBS itself has on the gene expression (Fig 3.4). 

Thus, within the muscle tissues injected with PBS, PCEP or CpG, the highest relative mRNA 

values per gene (regardless of the time point) were ascribed the darkest red color (given the 

number 1) represented by the heat map (Fig 3.4). Each relative mRNA values for the 

remaining tissues injected with saline, PCEP or CpG were represented relative to this highest 

relative mRNA value and ascribed the color blue (0-0.25) indicating very low expression, 

turquoise (0.25-0.5) indicating low expression, yellow (0.5-0.7), indicating moderate 

expression, red (0.7-0.9) indicating high expression or very dark red (0.9-1.0) indicating very 

high expression.  

 

By analyzing differences in mRNA expression across all the treatments, the majority of 

the adjuvant core response genes showed higher relative mRNA expression when injected 

with PCEP or CpG relative to the tissues injected with PBS. Generally, PCEP induced 

stronger mRNA expression at later time points (48-96 hrs) (as indicated by the larger pool of 

genes ascribed yellow or dark red color) than did tissues injected with CpG. As expected, the 

act of injecting the tissues with saline did trigger changes in mRNA expression with the most 

noticeable changes being expression of mRNA for IL-10, IL-12, Garg49, Clec4a3 and 

Lgals3bp. However, the majority of the adjuvant core response genes were up-regulated by 

PCEP and CpG at the site of injection but the expression levels and kinetics of the 

transcriptional profile elicited by PCEP and CpG are distinct. Generally, it is evident that 

PCEP induced higher overall expression of adjuvant core response genes relative to CpG.  
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Fig 3.4 

 

Fig 3.4  Comparison of relative mRNA expression in mouse muscle induced by 

administration of saline, PCEP and CpG at the site of injection. Mice were grouped into 

three treatment groups and injected with either PBS, PCEP or CpG intramuscularly. Muscle 

tissues were collected at 3, 6, 12, 24, 48 and 96 h and analyzed for gene expression by 

quantitative real-time PCR. For each gene, expression shown is the ratio of relative mRNA 
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expression at each time point divided by the maximum expression of that gene across the 

treatment at any time point.  Each column represents one time point and each row represents the 

average kinetic of expression of one gene. Color ranges from blue to dark red indicating lowest 

to highest expression, respectively. Gene names are listed on the left of panel; time points on top 

of panel and treatments on the bottom of the panel.  
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3.3.2 PCEP up-regulates NLRP3 and proinflammatory cytokine gene expression 

 

In addition to assessing the transcriptional profile of adjuvant core response genes, 

expression of inflammasome receptor (NLRP3) and proinflammatory cytokines was also 

assessed (Fig 3.5). CpG induced higher NLRP3 expression at 3 hr with an 11-fold increase 

compared to the 5 fold observed with PCEP but at 12 h, 24h, 48 hr and 96 hr, PCEP induced 

significant expression of NLRP3 compared to CpG at the site of injection (Fig 3.5). The 

highest NLRP3 expression by PCEP was observed at 12 h with 86-fold change. When 

comparing IL1β expression, CpG induced significantly higher expression compared to PCEP 

at the earliest time point (3h) but all subsequent time points showed significantly higher 

expression in the presence of PCEP (Fig 3.5). Similar to IL-1β gene expression pattern, 

PCEP induced significant expression of IL-18 at 48 h to 96 h (Fig 3.5).  
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Fig 3.5  

            

            
 

Fig 3.5 PCEP up-regulates the gene expression of inflammasome receptor NLRP3 and 

proinflammatory cytokines IL-1β and IL-18 at the site of injection. BALB/c mice were 

injected i.m. with either PBS, PCEP or CpG and tissues at the site of injection were analyzed by 

quantitative real-time PCR. Expression levels are shown in fold change compared to PBS-treated 

muscles. Black and white column indicate PCEP and CpG respectively. Groups with asterisks 

indicate significant differences from each other [P<0.005 (**) and P<0.05 (*)]. 
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3.3.3 Systemic responses to PCEP 

 

To determine the systemic effect, sera were collected from same mice at the time of muscle 

collection, to measure cytokine concentration. CpG was a powerful inducer of IL-12(p40) (Fig. 

3.6). However, unlike gene expression at site of injection, PCEP and CpG did not induce any 

systemic increase in any of the other tested cytokines (IL-1β, IL-5, IL-6, IL-18, IFN-γ and TNF-

α) and chemokines (CCL-2 and CXCL-10).   

 

Fig 3.6  

 

 

Fig 3.6 Systemic expression of IL-12 induced by PBS, PCEP and CpG in mice. BALB/c 

were injected i.m. with either PBS, PCEP or CpG and sera were collected at 3, 6, 12, 24, 48 and 96 

h. Sera were assayed for IL-1β, IL-4, IL-6, IL-18, IFNγ, TNFα, CCL-2 and CXCL-10 expression 

by ELISA. Systemic expression of IL-12 is shown as the mean ± S.E.M of titers of six replicates at 

each time point.  
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3.3.4 Local cytokine and chemokine production in response to PCEP 

 

The qRT-PCR results showed that PCEP was a strong inducer of cytokine and chemokine 

genes at the site of injection. PCEP also induced significant gene expression of inflammasome 

receptor (NLRP3) and proinflammatory cytokines. Because changes in gene expression do not 

always correlates with changes in protein expression, we examined the local production of 

cytokines and chemokines using site of injection thigh muscle by ELISA. High levels of 

cytokines and chemokines were detected at the site of PCEP injection (Fig 3.7). All cytokines 

and chemokines tested were detected as early as 3 h and sustained even at 96 h after injection. 

PCEP induced production of Th1 and proinflammatory cytokines IL-1β, Il-6, IL-12, IL-18 IFN-

γ and TNF-α (Fig. 3.7a) as well as Th2 cytokine IL-4 (Fig 3.7b) at the site of injection. CCL-2, 

a strong chemoattractant of monocytes was significantly induced after PCEP injection (Fig. 

3.7c). Locally, PCEP also induced early production of CXCL-10 also known as interferon 

gamma-induced protein 10, which sustained for 96 h (Fig 3.7c).  
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Fig 3.7a Th1 and pro-inflammatory cytokines 

 
Fig 3.7b Th2 cytokine 
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Fig 3.7c Chemokines 

 
 

 

Fig 3.7  Local cytokine and chemokine profile induced by PCEP in mice. Mice were assigned 

to three treatment groups and injected intramusculary with PBS (dotted line) or PCEP (solid line) 

in the quadriceps muscle. Muscle tissues were collected at 3, 6, 12, 24, 48 and 96 hours after 

injection to measure cytokine and chemokines by ELISA. Local CCL-2 and CXCL-10 

concentrations in PCEP-injected muscle tissues are shown in bold line whereas PBS-injected 

muscle tissues are in dotted line.  
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3.4 Discussion 

 In the present investigation we demonstrate that PCEP is a strong modulator of early innate 

immune responses at the site of injection. All these studies were performed in vivo to address the 

complex cellular interactions that occur when an adjuvant is administered. To our knowledge, this 

is the first report describing the local and molecular in vivo effects of PCEP.  

 

 It has been demonstrated that PCEP promotes superior antigen-specific Th1 and Th2 

immune responses compared to the response observed when conventional adjuvant alum was used 

(Mutwiri et al., 2007a). The adjuvant activity of polyphosphazenes has been attributed to their 

ability to form water-soluble non-covalent protein-polymer complexes with antigen, which 

facilitates uptake by APCs (Andrianov et al., 2005). However, to date, no definitive proof has been 

provided. The result from the present investigations strongly suggests that activation of innate 

immune responses at the site of injection may be a potential mechanism of action for the adjuvant 

activity of PCEP.    

 

 Despite being used in billions of vaccine doses worldwide, the mechanisms that mediate 

adjuvant activity are not fully understood. Recent studies are beginning to unveil the mystery 

behind adjuvant action. Genome wide microarray analysis was applied to compare the local effects 

of the common adjuvants, MF59, alum and CpG after intramuscular injection in mice (Mosca et 

al., 2008). All three adjuvants modulated a cluster of common genes named “adjuvant core 

response genes” comprised of cytokines, chemokines, innate receptors, interferon-induced genes 

and adhesion molecules. Compared to CpG and alum, MF59 was the most potent activator of 

adjuvant core response genes at the injection site (Mosca et al., 2008). In this report, we 

demonstrate that PCEP is also a strong modulator of adjuvant core response genes at the site of 

injection, and was even more immuno-stimulatory than CpG. Apparently, some genes were also 

modulated in control groups injected with PBS alone including IL-10, IL-12, Garg49, Clec4a3 and 

Lgals3bp. This indicates that the trauma caused by injecting a liquid into the tissue is sufficient to 

alter the expression of a few genes locally, and emphasizes the importance of this control group.   
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 It has been reported that MF59 activated many inflammatory genes including TNF-α, IL-

1β and Ltbr4, forming an immuno-stimulatory environment at the site of injection, whereas CpG 

inhibited these genes (Mosca et al., 2008). Similarly, PCEP was a more potent activator of pro-

inflammatory cytokine genes IL-1β, IL-6, IL-18 and Ltbr4 at the site of injection compared to 

CpG. Locally, MF59 induces secretion of IL-5 and CCL-3 whereas alum induces secretion of IL-5, 

CCL-2, eotaxin and KC (Calabro et al., 2011; Kool et al., 2008b; McKee et al., 2009). Thus, MF59 

induces Th2 type immune responses that lead to prominent recruitment of immune cells principally 

neutrophils and monocytes (Calabro et al., 2011). In contrast, our studies show that PCEP induced 

significant production of cytokines (IL-1β, IL-18, IFN-γ and TNF-α) and chemokines (CCL-2) 

that tend to promote Th1-type immune responses. Up-regulation of the IFN-γ gene in response to 

PCEP is in agreement with previous in vitro studies where PCEP induced IFN-γ production in 

mouse splenocytes (Mutwiri et al., 2008).  

 

 In vitro studies suggest that MF59 and alum do not directly activate dendritic cells (DCs) 

(Li et al., 2007; Seubert et al., 2008). In vivo, these adjuvants activate TLR-independent pathways 

to indirectly activate DCs by creating an immuno-competent environment through up-regulation of 

various cytokines and chemokines (Calabro et al., 2011; Kool et al., 2008b; McKee et al., 2009). 

Conversely, PCEP significantly up-regulated TLR-4 and TLR-9 gene expression at the site of 

injection. Since, CpG is a TLR-9 agonist, this might explain the synergistic effect reported when 

CpG and polyphosphazene were used in combination (Mapletoft et al., 2008; Mutwiri et al., 2008; 

Taghavi et al., 2009).  

 

 CpG was a stronger inducer of interferon-induced genes at 3, 6, 12 and 24 h time points 

than PCEP. However, PCEP up-regulated the same genes on the second or fourth day after 

injection. This finding is consistent with previous data obtained from stimulating human peripheral 

blood mononuclear cells (PBMC) with CpG, which showed that CpG up-regulated interferon-

inducible proteins, including IFIT1, OAS1 and MX1 predominantly at 6 to 24 hours after 

stimulation (Kato et al., 2003).  
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 Previous studies have shown that CpG is a strong inducer of systemic immunity and may 

directly activate circulating blood cells (Mosca et al., 2008). This is in agreement with our results 

showing systemic IL-12 production as early as 3 h after CpG injection. On the other hand, PCEP 

failed to promote significant systemic cytokine production but it did strongly induce the production 

of cytokines and chemokines at the site of injection. PCEP significantly up-regulated chemokines 

especially CCL-2 and CCL-12 both of which are known as monocyte-chemotactic protein that are 

involved in the recruitment of monocytes at the site of tissue injury or inflammation (Sarafi et al., 

1997). Likewise, monocytes and granulocytes recruitment induced by MF59 both in vitro and in 

vivo was shown to be dependent on chemokine receptor 2 (CCR-2), which is a receptor for CCL-2 

and CCL-12 (Dupuis et al., 2001; Seubert et al., 2008). PCEP induced potent expression of  

“adjuvant core response genes” suggesting establishment of local immuno-competent environment 

at the injection site. This leads to effective recruitment of innate immune cells for better antigen 

presenting and processing resulting in stronger antigen-specific immune responses.  Studies are in 

progress for assessing the PCEP-induced immune cell recruitment at the site of injection.  

 

 The inflammasome is a multi-protein complex that comprises of NACHT, LRR and PYD 

domains-containing protein 3 (Nlrp3), an NLR family member that interacts with CARD-domain-

containing adaptor protein ASC and the protease caspase-1. Activation of inflammasome leads to 

processing of pro-inflammatory cytokines (IL-1β and IL-18) into their mature forms (Schroder and 

Tschopp, 2010). Alum has been shown to induce local inflammatory reaction at the site of 

injection (Goto et al., 1997), which resulted in recruitment of neutrophils, eosinophils and 

inflammatory Ly6C+ CD11b+ monocytes (Didierlaurent et al., 2009). Alum-induced 

proinflammatory cytokine production in vitro was dependent on activation of caspase-1, which in 

turn was mediated by NLRP3 (Eisenbarth et al., 2008; Li et al., 2007). However, the role of 

inflammasomes in mediating the adjuvant activity of alum in vivo remains controversial 

(Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Li et al., 2007). Apart from alum, NLRP3 is 

activated by two other vaccine adjuvants namely, Chitosan and Quil A (Li et al., 2008). In the 

present investigations, PCEP up-regulated the expression of NLRP3 gene, a member of the multi-

protein complex inflammasomes, at the site of injection.  
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 In conclusion, the present study demonstrates that PCEP is a potent modulator of adjuvant 

core response genes at the site of injection. However, PCEP did induce genes that are distinct from 

CpG, suggesting that some differences exist in the mechanisms mediating the adjuvant activities of 

PCEP and CpG. In addition, PCEP induces strong local production of cytokines and chemokines at 

the site of injection. Our studies strongly suggest that one of the mechanisms that mediate the 

adjuvant activity of PCEP is the induction of a strong immuno-stimulatory environment at the site 

of injection. Understanding the mechanisms of action of adjuvants will provide critical information 

on how innate immunity influences the development of adaptive immunity. In addition, such 

knowledge will facilitate the rational development of new vaccine adjuvants.  
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CHAPTER 4. PCEP INDUCES RECRUITMENT OF MYELOID AND LYMPHOID 

CELLS IN MUSCLE AND THE DRAINING LYMPH NODE  

 

 

Relationship of this study to the dissertation 
 

In chapter 3, we have shown that PCEP is a strong modulator of adjuvant core response 

genes and induce potent cytokines and chemokines at the injection site. Due to potent chemotactic 

potential of cytokines and chemokines, we hypothesized that PCEP induces recruitment of immune 

cells at the site of injection. In this study, we examined PCEP-induced immune cell recruitment at 

the injection site and changes in cell composition in the draining lymph nodes. We also determined 

the cellular uptake and distribution of PCEP at the site of injection. Taken together, these results 

suggest recruitment of distinct immune cells to the site of injection site may be an important 

mechanism by which PCEP potentiates immune responses to antigens.  

 

4.1 Introduction 

Vaccination continues to be an important public health tool to decrease the mortality and 

morbidity caused by infectious diseases. Vaccines based on live microorganisms typically induce 

potent immune responses but have been associated with a number of safety concerns. Modern 

vaccines containing highly purified antigens are poorly immunogenic and require addition of 

adjuvants to induce effective immune responses. Despite their critical role in vaccines, the 

mechanisms of action of many adjuvants remain poorly understood. Understanding the 

mechanisms of action of adjuvants is important for development of safe and effective vaccines.  

 

Polyphosphazenes are high-molecular weight, water-soluble polymers and promote 

enhanced and long lasting immune responses with a variety of viral and bacterial antigens (Eng et 

al., 2010a; McNeal et al., 1999; Mutwiri et al., 2008; Payne et al., 1995; Payne et al., 1998a). 

Recently, it has been shown that intranasal administration of influenza X:31 antigen with 

poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP)  resulted in significantly higher 
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antibody titers in nasal, lung and vaginal mucosal secretions in mice, suggesting that PCEP is an 

effective parenteral and mucosal adjuvant (Eng et al., 2010a; Shim et al., 2010). Although detailed 

mechanisms of action of polyphosphazenes are not known, excision of site of injection 24 h post-

injection of PCPP with vaccine antigen had no detectable effects on antibody production, 

suggesting that formation of depot was not required for adjuvant activity (Payne et al., 1998a). 

However, polyphosphazenes have been shown to form water-soluble, non-covalent complex with 

protein antigens and this physical association with antigen might help to deliver antigens to 

antigen-presenting cells (APCs) (Andrianov et al., 2005). 

 

Recently, the potent adjuvant activity of PCEP has been attributed to activation of innate 

immunity. In vitro studies by Mutwiri et al have shown that polyphosphazenes stimulate the 

production of innate cytokines in splenocytes, which may contribute to its adjuvant activity 

(Mutwiri et al., 2008). We recently reported that PCEP is a potent modulator of “adjuvant core 

response genes” at the site of injection that includes cytokines, chemokines, innate immune 

receptors and interferon-induced genes resulting in significant production of local cytokines and 

chemokines (Awate et al., 2012).  

 

Several adjuvants including alum and MF59 induce cytokine and chemokine production at 

the injection site, recruit innate immune cells, increase antigen uptake by APCs and transport 

antigen to draining lymph nodes to initiate immune responses (Calabro et al., 2011; McKee et al., 

2009; Seubert et al., 2008). Therefore, we hypothesized that PCEP induced cytokines and 

chemokines production at the site of injection influences local recruitment of various immune cells, 

which are involved in activation of immunity. In the present study, we show that intramuscular 

(i.m.) injection of PCEP promotes immune cell recruitment (including neutrophils, macrophages, 

monocytes, dendritic cells and lymphocytes) to the injection site and the draining lymph nodes. To 

further investigate the specific cellular targets and fate of PCEP after i.m. injection in mice, we 

labelled PCEP with fluorescence dye and examined whether recruited cells were associated with 

PCEP using FACS and confocal microscopy. Finally, we also examined the retention and 

distribution of PCEP after i.m. injection in muscle tissue.  
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4.2   Materials and methods 

 

4.2.1 Animal experiments 

Four to six week old female BALB/c mice (purchased from Charles River Laboratories, 

North Franklin, CT, USA) were used in this experiment. The animal experiments were approved 

by the University of Saskatchewan’s Animal Research Ethics Board, and adhered to the 

Canadian Council on Animal Care guidelines for humane use of animals.  

 

4.2.2 Adjuvants 

PCEP was synthesized by Idaho National Laboratory (Idaho Falls, ID, USA) using 

methods described previously (Andrianov et al., 2004, Mutwiri et al., 2007a) and, prior to use, its 

endotoxin levels were determined to be less than 0.034 ng/ml as assessed by the Limulus 

Amebocyte Lysate assay (Biowhittaker, Walkersville, MD, USA). PCEP was dissolved in 

Dulbecco's phosphate buffered saline (PBS) (Gibco, NY, USA) by gentle agitation for 36 h at 

room temperature (RT). Imject alum (Thermo Fisher Scientific, IL, USA) used in these 

experiments is a mixture of aluminum hydroxide and magnesium hydroxide (40 mg/ml).   

 

4.2.3 Injections 

Mice were divided into three groups (n=5) and injected i.m. on both legs (quadriceps 

muscle) with 25 µl each of either phosphate-buffered saline (PBS) as control, 50 µg PCEP [This 

dose was selected based on previous experiments (Awate et al., 2012; Mutwiri et al., 2008; 

Mutwiri et al., 2007b)], or 1 mg of alum.  

 

4.2.4 Isolation of recruited cells from muscle tissue 

Muscle tissues were dissected from the site of injection and collected in a tube filled with 

ice-cold Hank’s Balanced Salt Solution (HBSS) (Gibco). Muscle tissues were minced and 

incubated with digestion buffer (HBSS) supplemented with 0.1% type II collagenase D 

(Worthington Biochemical, NJ, USA), 0.2% BSA (Sigma-aldrich, MO, USA), 0.025% trypsin 

(Gibco) and 0.01% DNase I (Roche Diagnostics, Germany) for 45 min at 37°C under constant 
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agitation. The cell suspension was centrifuged at 300 x g for 10 min, reconstituted in RPMI 

(Gibco) supplemented with 10% FBS (Gibco) and filtered through 70 µm cell strainer to obtain 

single cell suspension. To further purify the cell suspension, it was layered on 25% percoll (GE 

healthcare, Sweden) and centrifuged at 2000 x g for 1 h. The cell pellets were washed twice and 

resuspended in RPMI (Gibco) with 10% FBS and used for fluorescent labeling for FACS 

analysis. Cell viability was estimated by Trypan Blue (Gibco) exclusion.  

 

Similarly, draining lymph nodes were dissected, collected, minced and incubated with 

digestion buffer containing 2 mg/ml collagenase D (Roche Diagnostics, Germany) and 0.25 

mg/ml DNase I in Hepes (Gibco) for 15 min at 37°C. It was then filtered through 70 µm cell 

strainer to obtain a single cell suspension, which was used for fluorescent labeling for FACS 

analysis.  

 

4.2.5 Flow cytometry 

For FACS staining, cells were incubated for 20 min at 4°C using the following 

antibodies: CD11b-FITC, Ly6C-APC, Ly6G-APC, F4/80-PE, CD11c-PE, CD3-APC, CD8-

FITC, CD4-FITC, CD19-FITC (all from eBiosciences, CA, USA) and CD8-PerCP-Cy5.5, CD4-

CD8-PerCP-Cy5.5 (all from BD Biosciences). The expression of surface markers was assessed 

using CellQuest analysis software on a FACSCalibure flow cytometer (BD Biosciences).   

 

4.2.6 PCEP labeling 

PCEP was reacted with 1,6-diaminohexane (Sigma-Aldrich) and a coupling reagent (1-

ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride; Thermo Fisher Scientific) to 

obtain an amino-modified PCEP (Staros et al., 1986). A thiol group was attached to amino-

modified PCEP, which was then labeled with Alexa-fluor 488 C5-maleimide (Molecular probes, 

OR, USA) or 800CW licor IRDye (LI-COR Biosciences, NE, USA). Briefly, 1 mg of the thiol-

modified PCEP was dissolved in 1 ml of PBS (pH 7.5) and mixed with 500 μl of 1 mg/ml of the 

dye solution in ultrapure water and reacted for 2 h at room temperature in the dark. The 

unlabelled dye was separated from the labelled products by size exclusion chromatography on 
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sephadex G-75 column (GE Healthcare, Sweden). The labelled PCEP was concentrated using 

Amicon ultra-centrifugal filter units with 10 kD molecular weight (EMD Millipore, MA, USA).  

 

4.2.7 Confocal microscopy 

The mice were injected with PCEP-labelled with Alexa fluor-488 and the muscle tissues 

were collected 24 h post-injection. Single cell suspensions obtained from the digested muscle 

tissues were incubated for 12 h using 2 well tissue culture chamber slides at 37°C and 5% CO2.  
After 12 h, cells were fixed with 3.7% paraformaldehyde (RICCA chemicals, TX, USA) for 10 

min and washed three times with 0.1 M PBS for 5 min each. For lysosomal localization, cells 

were incubated in 5 nM LysoTracker Red (Molecular probes, NY, USA) in RPMI media 

supplemented with 10% FBS for 30 min and again washed for three times with 0.1M PBS. 

Finally, the chambers were removed and slides were mounted with VECTASHIELD mounting 

medium containing DAPI (Vector Laboratories, CA, USA) to stain nucleus. The slides were 

allowed to cure for 24 h in the dark at RT before visualizing under Zeiss LSM 5 laser scanning 

confocal microscope (Carl Zeiss, Germany). The images were captured in RITC, FITC and 

bright field were over-laid to determine the localization of PCEP and lysosomal compartments.  

 

4.2.8 In vivo imaging  

At least one-week prior to injection, BALB/c mice were placed on AIN-93G Purified 

Diet (Harlan Teklad, WI, USA) to eliminate potential interference from fluorescence in standard 

pelleted diets. The injection sites were shaved prior to injection. Mice were injected i.m. with 10 

µg PCEP labelled with 800CW IRDye. Control mice were injected with hydrolyzed 800CW IR 

Dye (carboxylate form) to act as a point of reference for background fluorescence with 

unconjugated dye. Mice were scanned at 3 h, 6 h, 24 h, 1 month and 3 month post-injection. To 

maintain sedation during the imaging process, the mice were anesthetized with 2% isoflurane 

(VET One, UK). Imaging was performed using the ODYSSEY® Imaging System and 

MousePOd® (LI-COR Biosciences, NE, USA), which allowed for administration of anesthesia 

and maintenance of localized temperature of 37 °C to reduce stress on the mice.  
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4.2.9 Statistical analysis 

All the data for cell recruitment were analyzed using Graph-Pad Prism 5 software 

(GraphPad Software, San Diego, CA, USA). Differences in the cell numbers between the 

treatments were analyzed by two-way ANOVA by Ranks and the significant differences between 

the treatments were compared by Bonferroni multiple-comparison test where ***P<0.001, 

**P<0.01, *P<0.05.  

 

 

4.3 Results 

 

4.3.1 PCEP induces the recruitment of various immune cells at the injection site. 

Our aim was to identify the cells recruited after injection of PCEP in mouse muscle 

tissues. FACS analysis was performed on the single cell suspensions obtained by enzymatic 

digestion of the muscle tissues taken from mice at 3 h, 24 h, one-week and two-weeks post i.m. 

injection. Recruited immune cells were identified based on specific or combinations of markers 

such as monocytes (CD11b, Ly6C), neutrophils (CD11b, Ly6G), macrophages (F4/80), DCs 

(CD11c), CD8 T cells (CD3/CD8a), CD4 T cells (CD3/CD4) and B cells (CD19).  

 

Mice injected with PBS showed recruitment of few immune cells at the site of injection 

indicating tissue trauma due to injection alone (Fig. 4.1A). However, PCEP induced significantly 

higher recruitment of total cells compared to PBS- and alum-injected mice (Fig 4.1A). At 3 h 

post-injection, there was no significant difference in the recruitment of total immune cells in the 

PBS-, alum- and PCEP-injected mice. PCEP-induced cell recruitment was significantly higher at 

24 h (P<0.001) post-injection relative to PBS-injected and declined thereafter, but was still 

higher relative to alum-injected and PBS control groups. Alum induced significantly higher 

recruitment at 24 h (P<0.001) relative to PBS-injected mice, but at one-week post-injection, the 

number of cells recruited to the injection site was similar to PBS and alum-injected mice (Fig 

4.1A). Overall, we observed that the process of cell recruitment was transient as the cell numbers 

peaked at 24 h but decreased dramatically by one-week after injection of the adjuvant (Fig 4.1A). 
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Although lower relative to number of cells recruited after 24 h, significantly more cells were 

recruited to muscle two-week post-injection with PCEP (P<0.001) or alum (P<0.001) relative to 

PBS control mice (Fig 4.1A).    

 

Kinetic studies on PCEP-induced myeloid cell recruitment revealed peak recruitment at 

one-week post-injection (Fig 4.1B). Relative to PBS-injected mice, PCEP recruited significantly 

higher neutrophils at 24 h (P<0.001), one-week (P<0.001) and two-week (P<0.001), post-

injection. Compared to alum-injected mice, PCEP-induced significantly increased cells at 24 h 

(P<0.05) and two-week (P<0.001) post-injection. Recruitment kinetics of neutrophils observed in 

alum-injected muscle tissues was also significantly higher at 24 h (P<0.001), one-week (P<0.01) 

and two-week (P<0.001) post-injection relative to PBS-injected mice. PCEP induced highest 

number of neutrophils at one-week post-injection followed by macrophages, monocytes and 

DCs. The number of neutrophils recruited to both PCEP-injected and alum-injected muscle 

peaked after one-week post-injection and thereafter began to decline (Fig 4.1B).  

 

Compared to other myeloid cells, macrophages were the first cells to be recruited (3 h) in 

significant numbers (P<0.05) in PCEP-injected muscle and also highest in number at 24 h post-

injection followed by neutrophils, monocytes and DCs (Fig 4.1B). PCEP induced significantly 

higher recruitment of macrophages (P<0.001) at 24 h, one-week and two-week post-injection 

relative to PBS-injected mice. However, compared to alum-injected mice, PCEP induced 

significantly higher recruitment of macrophages as early as 3 h (P<0.05), 24 h (P<0.001) and 

two-week (P<0.001) post-injection (Fig 4.1B).    

 

PCEP-injected muscle tissues showed statistically similar monocyte and DC recruitment 

kinetics post-injection, with peak recruitment at one-week post-injection. PCEP induced 

significantly higher (P<0.001) recruitment of monocytes and DCs at 24 h, one-week and two-

week post-injection compared to PBS-injected mice (Fig 4.1B). When compared to alum-

injected mice, PCEP induced significantly higher recruitment of monocytes at 24 h (P<0.05) and 

two-week (P<0.001) post-injection. The number of monocytes recruited to alum-injected muscle 
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was significantly higher at 24 h (P<0.001) and one-week (P<0.001) relative to PBS control 

muscle. The number of DCs recuruited to PCEP-injected muscle was significantly higher at one-

week (P<0.05) and two-week (P<0.001) relative to alum-injected muscle. Similarly, alum-

injected muscle showed significantly higher recruitment of DCs at 24 h (P<0.01) post-injection 

compared to PBS-injected muscle (Fig 4.1B).    

 

 

Similar to what was observed in the myeloid cell populations, recruitment of CD4+ T 

cells, CD8+ T cells and CD19+ B cells was significantly higher in the PCEP-injected muscle 

relative to both alum-injected and PBS-injected muscle tissues (Fig 4.1C). CD4+ T cells were 

recruited in significant numbers within 3 h post-injection of PCEP compared to PBS and alum-

injected mice, which thereafter declined. At 24 h (P<0.001) and two-week (P<0.05), PCEP-

injected muscle tissue showed significantly higher recruitment of CD4+ T cells compared to 

PBS-injected muscle. Similarly, PCEP induced significantly higher recruitment of CD8+ T cells 

at 24 h (P<0.001), one-week (P<0.01) and two-week (P<0.001) post-injection relative to PBS-

injected mice. Compared to alum, PCEP-injected muscle tissue showed significantly higher 

number of CD8+ T cells at 24 h (P<0.001), one-week (P<0.05) and two-week (P<0.001) post-

injection. Similarly, alum induced significantly higher recrutiment of CD8+ T cells at 24 h 

(P<0.05) post-injection relative to PBS-injected mice (Fig 4.1C). Unlike T cells, PCEP-injected 

muscle tissue showed significantly higher recruitment of B cells only at 24 h post-injection 

compared to alum- and PBS-injected mice (Fig 4.1C). There was no significant difference in the 

recruitment of B cells at 3 h, one-week and two-week post-injection of PBS-, PCEP- and alum-

injected mice (Fig 4.1C). At all time points, PCEP induced higher T cell recruitment compared to 

B cells (Fig 4.1C). PBS-injected muscle did not induce significant recruitment of lymphocytes at 

any time point (Fig 4.1C). In general, we observed that PBS-injected muscle had very low 

recruitment of myeloid and lymphoid cells in the muscle tissues.  
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4.1C  
      
 

   
 
 

 
 
 
Fig 4.1 Cellular recruitment induced by adjuvants at the site of injection. Five mice per group 

were injected with 25 µl of PBS, PCEP (50 µg) or alum (0.5 mg) intramuscularly. Muscle tissues 

were collected at different time points and single cell suspensions were obtained by enzymatic 

digestion of muscle tissues. Cellular recruitment at the site of injection was analyzed by FACS 

analysis. (4.1A) Comparison of total cell recruitment at 3 h, 24 h, one-week and two-week in 

response to the PBS, PCEP or alum. (4.1B) Myeloid cell recruitment kinetics induced by PCEP 

and alum in the muscle tissue post-injection. (4.1C) Lymphoid cell recruitment kinetics induced by 

PCEP and alum at the injection site. Differences in the cell numbers between the treatments were 

analyzed by two-way ANOVA and the significant differences between the treatments were 

compared by Bonferroni multiple-comparison test where ***P<0.001, **P<0.01, *P<0.05.  
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4.3.2  PCEP stimulates increased immune cell numbers in the draining lymph nodes 

 

Draining lymph nodes are the primary inductive sites where immune responses are 

initiated. Hence, we examined the cell composition in the draining lymph nodes after i.m. 

injection of PBS, PCEP or alum. There were significantly higher numbers of myeloid and 

lymphoid cells detected in the draining lymph nodes after injection of PCEP compared to alum- 

and PBS- injected mice (Fig 4.2). This suggests that the increase in cell numbers in draining 

lymph nodes post-injection was attributed to PCEP.  

 

Neutrophils were detected in the draining lymph nodes as early as 3 h (P<0.05) after i.m. 

injection of PCEP in mouse muscle (Fig 4.2A). Relative to PBS- and alum-injected mice, 

neutrophils were significantly higher (P<0.001) at 24 h and one-week responses after injection of 

PCEP (Fig 4.2A). Compared to PBS-injected mice, the number of macrophages in PCEP- and 

alum-injected mice were significantly higher (P<0.001) at all time points with peak at 24 h, 

which thereafter began to decline. Monocyte numbers were significantly increased at 24 h after 

injection of PCEP compared to PBS- and alum-injected mice (Fig 4.2A). However, there was no 

significant difference observed in monocyte numbers at 3 h, one-week and two-week post-

injection in all groups. In comparison with other myeloid cells, DCs were detected in highest 

numbers at 3 h in the draining lymph nodes of PCEP-injected mice. Relative to PBS-injected 

mice, significantly higher numbers of DCs were detected at 3 h (P<0.05) and 24 h (P<0.001) in 

the draining lymph nodes of PCEP-injected mice. DCs and macrophages were increased in 

highest numbers in the draining lymph nodes while neutrophils, macrophages and DCs were 

earliest to be detected after injection of PCEP. Kinetic studies revealed peak in neutrophils, 

macrophages, monocytes and DCs numbers in the draining lymph nodes at 24 h post injection of 

PCEP relative to alum-injected and PBS control lymph nodes, which thereafter declined. For 

monocytes and DCs, there were no significant changes in cell numbers in any of the treatment 

groups in the lymph nodes at one-week and two-week post-injection (Fig 4.2A).  
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Lymphocytes were also increased in the draining lymph nodes of PCEP-injected mice 

compared to lymph nodes of alum- and PBS-injected mice (Fig 4.2B). The number of CD4+ T 

cells were significantly higher at 24 h (P<0.05), one-week (P<0.001) and two-week (P<0.01) in 

the draining lymph nodes of PCEP-injected mice relative to PBS control mice. A similar kinetic 

pattern was observed for CD8+ T cells in the draining lymph nodes of PCEP-injected mice. 

Compared to PBS-injected mice, the numbers of CD8+ T cells were significantly higher at 24 h 

(P<0.05), one-week (P<0.001) and two-week (P<0.05) in the draining lymph nodes of PCEP-

injected mice. Unlike T cells, B cells were detected in significant numbers (P<0.05) only at one-

week after injection of PCEP. Overall, PCEP and alum-injected lymph nodes showed no 

difference in lymphoid cell numbers at 3 h post-injection when compared to PBS-injected lymph 

nodes (Fig 4.2B). Among the lymphoid cells, CD4+ T cells were most prominently increased in 

the draining lymph nodes of PCEP-injected mice (Fig 4.2B). The number of CD8+ T cells 

(P<0.001), CD 4+ T cells (P<0.001) and CD19+ B cells (P<0.05) were significantly increased at 

one-week in the draining lymph nodes of PCEP-injected mice. There were no significant 

differences in lymphocyte numbers in the draining lymph nodes of alum and PBS-injected mice 

at any time point (Fig 4.2B).    
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Fig 4.2  PCEP stimulates increased immune cell numbers in the draining lymph nodes. 

BALB/c mice (n=5 per group) were injected i.m. with either PBS, PCEP (50 ug) or alum (0.5 

mg). Draining lymph nodes were collected, digested to obtain single cell suspensions and 

analyzed by flow cytometry. (4.2A) Neturophils, macrophages, monocytes and DCs kinetics in 
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the draining lymph nodes post injection of PCEP and alum. (4.2B) Kinetics of increase in 

lymphoid cells post-injection of adjuvants in the draining lymph nodes. Differences in the cell 

numbers were analyzed by two-way ANOVA and the significant differences between the 

treatments were compared by Bonferroni multiple-comparison test where ***P<0.001, 

**P<0.01, *P<0.05.  

 

 

 

4.3.3 Uptake of PCEP by myeloid and lymphoid cells at the injection site 

 

To determine whether PCEP is taken up by the cells recruited at the injection site, PCEP 

was labelled with Alex-fluor 488 fluorescent dye and mice were injected with dye labelled PCEP 

or unlabelled dye (served as control). PCEP was detected in approximately 28.55% of the total 

cells recruited to the site of injection (Fig 4.3A) but Alex-fluor 488 fluorescent dye alone was not 

detected in the recruited cells (data not shown).  Approximately 90 percent of all recruited 

monocytes, macrophages and DCs had taken up PCEP, whereas 83 percent of neutrophils were 

positive for PCEP. There were large numbers of T cells recruited 24 h post-injection of PCEP, 

however only 9 percent of CD8+ T cells and 14 percent of CD4+ T cells were positive for PCEP 

(Fig 4.3B). Thus, the majority of myeloid cells take up PCEP within 24 h but only a minority of 

lymphocytes were PCEP-positive.  
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4.3A 
 

 
4.3B 

 
 

Fig 4.3  Cellular uptake of PCEP by recruited immune cells at the injection site. Three mice 

per group were injected i.m. with PCEP labelled with Alexa-fluor 488 fluorescent dye (50 ug). 

Muscle tissues were collected at 24 h post injection and single cell suspensions were obtained by 

enzymatic digestion of muscle tissues. (4.3A) PCEP was detected in the recruited cells 24 h post 

injection using FACS analysis. (4.3B) PCEP is taken up by various recruited immune cells at the 

injection site. 
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4.3.4 Intracellular uptake of PCEP at the site of injection 

 

To identify the localization of PCEP in the recruited immune cells, mice were injected 

i.m. with Alex-fluor 488 labelled PCEP or unlabelled Alex-fluor 488 fluorescent dye (free dye). 

When we evaluated the merged confocal microscopic images of cells from mice injected with 

Alexa-fluor 488 labelled PCEP, we observed that the fluorescent dye was not in the nucleus or 

associated with plasma membrane. Instead, it appeared to be localized within a defined region in 

the cytosol of various recruited cell populations (Fig 4.4A and 4.4C-4.4E). Mice injected with 

free dye did not show dye localization or indeed dye uptake (Fig 4.4B).  
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Fig 4.4 Intracellular uptake of PCEP at the injection site. Mice were injected i.m. with PCEP 

labelled with Alexa-fluor 488 fluorescent dye (50 ug) or free dye. Muscle tissues were collected 24 

h post-injection and single cell suspensions were obtained by enzymatic digestion of muscle 

tissues. Intracellular localization of fluorescent-labelled PCEP was evaluated on representative 

cells using a confocal laser scanning microscope. Nuclei were stained with DAPI in each panel. 

(4.4A) Intracellular uptake of fluorescent labelled PCEP by various recruited cells at the site of 

injection. (4.4B) Cell suspension after injection of unlabelled Alex-flour 488 fluorescent dye in the 

muscle tissue. (4.4C-E) Higher magnification of various recruited cells that have taken up PCEP at 

the injection site. Merge images were shown for each figure. Green color indicates fluorescent 

labelled PCEP; blue color indicates the nucleus.   
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Single cell suspensions obtained from the site of injection were incubated with 

LysoTracker Red dye (to track acidic organelle like lysosomes in live cells). LysoTracker Red 

dye appeared to be overlaid on Alexa-Fluor 488 labelled-PCEP (yellow: green and red combined 

i.e., in the same location) suggesting that dye labelled PCEP was localized within the lysosomes 

of the recruited immune cells (Fig 4.5A and 4.5B).  
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Fig 4.5 Lysosomal localization of PCEP. (4.5A) Mice were injected i.m. with PCEP labelled 

with Alexa-flour 488 fluorescent dye (50 ug). Muscle tissues were collected at 24 h post-injection 

and single cell suspensions were obtained by enzymatic digestion of muscle tissues. Microscopic 

evaluation of PCEP localization was performed on representative cells using a confocal 

microscope. Nuclei were stained with DAPI in each panel. Lysosomes were detected using 

LysoTracker Red. Images captured in RITC, FITC and bright field were overlaid to determine the 

colocalization of fluorescent labelled PCEP in the lysosomes of recruited cells. (4.5B) Higher 

magnification of the representative cell. (4.5C) mice injected with unlabelled Alex-flour 488 

fluorescent dye . Green color indicates intracellular distribution of fluorescent labelled PCEP in the 

various recruited cell populations; blue color indicates the nucleus (blue); red color indicates acidic 

lysosomal compartments; yellow color indicates fluorescent labelled PCEP in lysosomal 

compartment.  
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4.3.5 Retention of PCEP in muscle tissue after injection    

 

To study the retention of PCEP at the injection site, we performed whole animal imaging 

on BALB/c mice. Mice were injected i.m. with either unlabelled PCEP, non-reactive carboxylate 

800CW IRDye or PCEP labelled with 800CW IRDye and scanned at 3 h, 6 h, 24 h, 1 wk, 6 wk 

and 12 wk using the ODYSSEY imaging system. Light intensities were static to allow 

comparisons across the treatment groups. Control mice injected with non-reactive carboxylate 

800CW IRDye (control dye) showed high fluorescent intensity throughout the body within 3 h 

post-injection (Fig 4.6A). The non-reactive control dye was rapidly cleared from the body within 

24 h post-injection. The unlabelled PCEP-injected mice (negative control) did not show any 

fluorescence. Mice injected with PCEP labelled with 800CW IRDye showed localized 

distribution at the site of injection from 3 h to 12 wk post-injection (Fig 4.6A). Average 

fluorescent intensity of PCEP labelled 800CW IRDye measured at the site of injection was 

compared with non-reactive carboxylate 800CW IRDye-injected control mice using a consistent 

surface area. The average fluorescent intensity of PCEP labelled 800CW IRDye was highest 3 h 

to 6 h post-injection and was reduced approximately two-third after 24 h (Fig 4.6B). The average 

fluorescent intensity remained relatively stable with a consistent decline and labelled PCEP was 

still detectable 12 wk post-injection (Fig 4.6B).  
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Fig 4.6 In vivo imaging: near-infrared fluorescence dye labelled PCEP kinetics at the 

injection site. (4.6A) BALB/c mice were injected i.m. with either PBS, carboxylated free dye or 

licor 800CW fluorescent dye labelled-PCEP (10 µg). Control animals were injected with either 

PBS (as a point of reference for background fluorescence) or hydrolyzed carboxylate 800CW 

IRDye (as a reference for uncounjugated dye). Real-time fluorescent images were obtained at 3 

h, 6 h, 24 h, 1 wk, 6 wk and 12 wk post-injection using ODYSSEY Imaging System under 

identical imaging conditions. Intensity and sensitivity settings were held constant for each image. 

The mice were scanned at 800 nm (green fluorescence) and shown here with pseudo-color image 

representation of the 800 nm channels. The pseudo-color images map the intensity of 

fluorescence to a color pallet that is shown as a legend on the extreme right of the image. Red 

color indicates the highest intensity, while the blue represents the lowest intensity. Since the 800 

IRDye was scanned at 800 nm, there was negligible background fluorescence from body tissues 

or animal feed. (4.6B) Quantification of average fluorescent intensity at the site of injection post-

injection at various time points. Average intensity in pixels was obtained from site of injection 

post-licor 800CW fluorescent dye labelled-PCEP injection and was compared with carboxylate 

800CW IRDye-injected control mice using a consistent surface area.  
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4.4 Discussion 

 

In this study, the effects of PCEP on cell recruitment at the site of injection in mouse 

muscle were investigated in detail. We choose i.m. injection because it is the preferred route of 

administration for majority of vaccines. We show that PCEP is a potent inducer of cell recruitment 

at the injection site with lymphocytes, neutrophils and macrophages being the most abundant cells, 

followed by monocytes and DCs. The neutrophil, macrophages, monocyte and DCs were also 

increased in the draining lymph nodes after PCEP injection. Interestingly, PCEP injection also led 

to robust local infiltration by T and B lymphocytes but only a proportion of these cells took up the 

labelled PCEP, whereas most of the recruited myeloid cells did take up the adjuvant. Further, 

PCEP was localized to the intra-cytoplasmic lysosomal compartments of various recruited immune 

cells. Overall, these data suggest that PCEP induces recruitment of APCs to the injection site, 

which then take up adjuvant and presumably traffick to the draining lymph nodes.  

 

Macrophages and DCs have been shown to be present in resting muscle tissue (Pimorady-

Esfahani et al., 1997). We observed few myeloid and lymphoid cells at the site of injection of PBS, 

which might be consequent to the trauma caused by injecting liquid into the muscle tissue. These 

data are consistent with our previous studies where we have reported that a few genes were 

induced at the site of PBS-injection in muscle tissues (Awate et al., 2012). However, both PCEP 

and alum induced significantly higher total cell recruitment into the injected muscle tissue 

compared to PBS-injected mice. Various studies have shown that both alum and MF59-induced 

secretion of chemokines that recruit monocytes and macrophages, and in addition MF59-induced 

recruitment of granulocytes (Seubert et al., 2008). MF59-induced granulocyte and monocyte 

recruitment are CCR2-dependent, which is a receptor for CCL2 and CCL12 chemokines (Dupuis 

et al., 2001; Seubert et al., 2008). Similarly, alum has been shown to secrete various cytokines 

including IL-1β and IL-5 and chemokines including CCL2 and keratinocyte-derived chemokine 

(KC) at the injection site, which led to influx of eosinophils, monocytes, neutrophils and DCs 

(McKee et al., 2009). Amongst other cells, mast cells have been shown to be one of the major 

sensors of alum (McKee et al., 2009). In addition to cell recruitment, alum and MF59 augment the 
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differentiation of monocytes into DCs (Seubert et al., 2008). Previously, we have also shown that 

PCEP is a strong inducer of cytokines and chemokines at the site of injection including CCL2 and 

CCL12 both of which are potent chemotactic proteins (Awate et al., 2012). PCEP has also been 

shown to stimulate production of innate cytokines IL-12 and IFN-γ in mouse splenocytes (Mutwiri 

et al., 2008). These PCEP-induced cytokines and chemokines are potent cell activators and 

chemoattractants. This may explain why in the present study we observed increased cellular 

recruitment of neutrophils, macrophages, monocytes, DCs and lymphocytes after injection of 

PCEP.  

 

Neutrophils were one of the most abundant myeloid cell population recruited after injection 

of PCEP. Neutrophils provide the first line of defense during infections and inflammation. Many 

studies have shown that granulocytes can also act as professional APCs under specific conditions 

(Sokol et al., 2009; Wang et al., 2007). In addition, neutrophils have been shown to transport 

antigens to the draining lymph nodes (Maletto et al., 2006). Neutrophils are recruited in high 

numbers at the injection site following administration of the vaccine adjuvants alum, MF59 or 

Complete Freund Adjuvant (CFA), which then traffick to the draining lymph nodes (Calabro et al., 

2011; Maletto et al., 2006; Seubert et al., 2008). MF59 has also been shown to be internalized by 

DCs expressing high MHC class II and special marker DEC205 in the muscle tissue (Dupuis et al., 

1998). Likewise, we observed that the recruited immune cells took up PCEP in the muscle tissue. 

Recruited myeloid cells took up PCEP in higher amounts compared to lymphoid cells, which may 

be due to higher phagocytic abilities of APCs. 

 

Similar to what was observed with MF59 and CFA, neutrophils were the most abundant 

cell population recruited in muscle tissue after PCEP injection. In addition, the neutrophil numbers 

were significantly increased in the draining lymph nodes suggesting that neutrophils might play a 

role in PCEP-induced adaptive immunity. The role of neutrophils in innate immune responses is 

well known however; its role in activating adaptive immunity has not been studied in detail. 

Neutrophils might activate adaptive immunity by releasing cytokines and chemokines, which  

chemoattract various innate immune cells including DCs and transport antigen to the draining 
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lymph nodes (Abadie et al., 2005; Bennouna et al., 2003; Bonneau et al., 2006). Studies have 

shown that granulocytes can upregulate the expression of MHC class II and co-stimulatory 

molecules and can present MHC class II restricted antigen to activate adaptive immunity (Culshaw 

et al., 2008; Kim et al., 2009; Wang et al., 2007). Contrary to the role of neutrophils in activating 

adaptive immunity, Wang et al. have shown that neutrophils play an important negative role in 

CD4 T and B cell responses induced following immunization with antigen and alum (Yang et al., 

2010). One of the reasons for the negative effect could be that the neutrophils compete for antigens 

with professional APCs at the injection site. Another reason for the neutrophil-mediated negative 

effect on adaptive immunity could be interaction between neutrophils and APCs in the lymph 

nodes. Depletion of neutrophils in mice immunized with antigen and incomplete freund’s adjuvant 

(IFA) has been shown to drastically improve the DC-T cell interactions in the lymph nodes 

suggesting indirect role of neutrophils in modulating adaptive immune responses (Yang et al., 

2010). Neutrophils are recruited in high numbers at the injection site following administration of 

vaccine adjuvants including alum and MF59, which then traffick to draining lymph nodes (Calabro 

et al., 2011; Seubert et al., 2008), similar to what was observed in our studies after injection of 

PCEP. Significant numbers of neutrophils were recruited within 24 h of PCEP injection both at the 

injection site and in the draining lymph nodes.  

 

We also observed an increase in numbers of lymphocytes within 24 h post-injection of 

PCEP in the muscle tissues. MF59 and alum did not induce recruitment of lymphocytes to the 

injection site (Calabro et al., 2011). However, intraperitonial injection of ISCOMs led to 

recruitment of lymphocytes at the injection site (Smith et al., 1999). Recently, Vitoriano-Souza et 

al showed that injection of saponin, IFA and monophosphoryl lipid A (MPL) into the skin of mice 

induced selective recruitment of neutrophils, macrophages and lymphocytes (Vitoriano-Souza et 

al., 2012). Innate immune cells recruited to the injection site might have non-specific effector 

functions, however lymphocytes have capacity to either initiate or regulate antigen-specific 

immune responses. Hence, the lymphocyte recruitment to the injection site might have two 

explanations. One is that they come to injection site as effector cells to amplify the immune 

responses or regulate/terminate these responses. Another possibility is that APCs mainly activate 
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lymphocytes in the lymph nodes but their trafficking to injection site might suggest their ability to 

interact with APCs in anatomically different environment (Drayton et al., 2006; Singh and 

O'Hagan, 1999). However, detailed studies are required to understand the role of lymphocytes in 

the adjuvant activity of PCEP especially at the injection site. 

 

Most studies on mechanisms of action of adjuvants report cellular recruitment at the site of 

injection, but whether this cellular recruitment is critical in enhancing antigen-specific immune 

responses is not known. Depletion studies suggest that the role of recruited innate immune cells at 

the injection site is redundant in the generation of adaptive immune responses (Calabro et al., 

2011; McKee et al., 2009). Mast cell and neutrophil depletion did not affect the adjuvanticity of 

alum and MF59 respectively (Calabro et al., 2011; McKee et al., 2009). Interestingly, these studies 

were performed by depleting single cell populations. Identifying the role of a specific cell 

population in vivo is even more challenging due to complex environment at the injection site. 

Injection of adjuvants often leads to recruitment of a variety of cell populations and due to high 

redundancy in the immune system, other recruited cells may compensate for the depleted single 

cell population. In this regard, mice whose specific cell populations have been depleted were 

shown to produce cytokines and chemokines to recruit innate immune cells and activate T cells 

(Calabro et al., 2011; Seubert et al., 2008). 

 

Until recently, depot effect was considered as a classic mechanism of action of many 

adjuvants including alum, CFA, biodegradable microparticles and cationic liposomes (Henriksen-

Lacey et al., 2010; Herbert, 1968; Kreuter, 1988; Osebold, 1982). In depot effect antigens adsorbed 

onto adjuvants are retained at the injection site and are slowly released to ensure prolonged or 

sustained stimulation of the immune system. Various studies have shown that surgical removal of 

the antigen-alum depot at the injection site 14 days after immunization had no effect on the 

immune responses (Schijns, 2000). Apparently, even the adsorption of antigen to alum was not 

required for alum adjuvant activity (De Gregorio et al., 2008; Iyer et al., 2003). A recent report by 

Hutchison et al. clearly showed that alum adjuvant activity does not depend on depot effect 

(Hutchison et al., 2012). Removal of the injection site 2 h after antigen and alum administration 
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had no effect on humoral or cell-mediated immunity (Hutchison et al., 2012). Similar studies were 

performed with dye labelled MF59, which revealed that within 6 h of i.m. injection, 90% of MF59 

was cleared from the injection site suggesting that MF59 does not form long-term depot at the site 

of injection (Dupuis et al., 1999). Likewise, ISCOMs tends to be rapidly transported to the draining 

lymph nodes after administration (Morein and Bengtsson, 1999). Therefore, these studies clearly 

indicate that depot effect may not be required for adjuvant activity of many particulate adjuvants. 

Similar to particulate adjuvants, the adjuvant activity of polyphosphazene may not depend on 

formation of depot at the site of injection (Payne et al., 1998a). Excision of site of injection 24 h 

post-injection of poly[di(carboxylatophenoxy)-phosphazene] (PCPP) with vaccine antigen had no 

detectable effects on antibody production (Payne et al., 1998a). In our study, we have used in vivo 

whole body imaging of mice injected with PCEP labelled with infra-red dye to detect PCEP 

distribution and retention at the site of injection. PCEP was localized strongly at the site of 

injection. However, 70% of PCEP was rapidly cleared from the site of injection 24 h post-

injection. Further studies are required to confirm whether depot effect plays any significant role in 

the adjuvant activity of PCEP.  

 

In conclusion, PCEP injection causes recruitment of various immune cells to the site of 

injection and these cells presumably traffick to the draining lymph node. Most of these innate 

immune cells recruited to injection site internalize the PCEP. However, the role of these recruited 

cells in the enhancement of antigen-specific immune responses remains to be determined. Further 

studies are required to investigate detailed relationship between recruited immune cells and 

adjuvant activity of PCEP.  
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CHAPTER 5. CASPASE-1 DEPENDENT IL-1β SECRETION AND T CELL 

ACTIVATION BY THE NOVEL ADJUVANT PCEP 
 

 

Relationship of this study to the dissertation 

 In our studies in chapter 3, we have shown that PCEP upregulates NLRP3 gene and pro-

inflammatory cytokines IL-1β and IL-18 at the injection site. Since caspase-1 is a critical 

component of NLRP3 inflammasome, in this study we examined the role of caspase-1 in PCEP-

mediated secretion of IL-1β and IL-18 by splenic dendritic cells and PCEP-mediated maturation of 

dendritic cells. We have also showed PCEP-mediated lymphocyte recruitment (Chapter 4) at the 

injection site. Hence, in this study we examined the potential of PCEP to directly activate 

lymphocytes and induce antigen-specific T cell responses in mice. These studies suggest that 

PCEP activates innate immunity leading to increased antigen-specific cellular responses.  

 

 

5.1.1 Introduction 

 Modern vaccines with highly purified antigens require addition of adjuvants to enhance the 

immune responses. Although how adjuvants enhance immune responses is largely unknown, a few 

mechanisms have been proposed including, depot formation, increase in cytokine and chemokine 

production, immune cell recruitment, enhanced antigen uptake and presentation by antigen 

presenting cells (APCs) and increase in T cell and B cell priming (Brewer et al., 1999; Mannhalter 

et al., 1985; Osebold, 1982). Generally, adjuvants utilize a combination of these various 

mechanisms to promote antigen-specific immune responses.  

 

 Dendritic cells (DCs) are professional APCs and specialize in antigen uptake, processing 

and presentation to T and B lymphocytes resulting in activation of adaptive immune responses 

(Steinman, 2012). Maturation of DCs is essential for inducing T cell activation and differentiation 

(Coyle and Gutierrez-Ramos, 2001). Liposomes and monophosphoryl lipid A (MPL) adjuvants 

have been shown to induce maturation of DCs by upregulating the expression of MHC class II and 
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co-stimulatory molecules CD86 and CD80 (Copland et al., 2003; De Becker et al., 2000; Shah et 

al., 2003; Sokolovska et al., 2007). Further, in vitro studies have shown that alum increases antigen 

uptake by DCs and alters the magnitude and duration of antigen presentation (Mannhalter et al., 

1985; Morefield et al., 2005), however; both alum and MF59 failed to directly activate or induce 

maturation of DCs (Seubert et al., 2008; Sun et al., 2003).   

 

 Recognition of various pathogens through pattern recognizing receptors (PRRs) expressed 

by DC leads to DC maturation and subsequently enhances adaptive immune responses. Various 

studies have shown that TLR dependent signalling is not required by alum and MF59 to induce 

antigen-specific antibody responses (Gavin et al., 2006; Seubert et al., 2011). Studies with MyD88-

deficient mice have shown that MF59-induced Th1 and Th2 responses are dependent on MyD88 

(Seubert et al., 2011). However, antigen-specific T cell responses induced by alum depends on 

MyD88 and uric acid (Kool et al., 2008b). Uric acid is released as a result of cell damage and 

necrosis induced by alum at the injection site, which act as danger signals for activation of NOD-

like receptor family, pyrin-domain-containing 3 (NLRP3). The NLRP3 inflammasome is an intra-

cytoplasmic multi-protein complex containing NLRP3 receptor, apoptosis-associated speck-like 

protein containing a CARD (ASC) and procaspase-1 (Schroder and Tschopp, 2010). Activation of 

NLRP3 inflammasome induces caspase-1 activation, which in turn cleaves proforms of IL-1β and 

IL-18 to their bioactive forms (Martinon et al., 2009). IL-1β is a potent pro-inflammatory cytokine 

that plays an important role in regulation of immune responses and promotes Th17 differentiation 

(Lalor et al., 2011). NLRP3 inflammasome can be activated by various stimuli including damage-

associated molecular patterns (DAMPs), monosodium urate (MSU), alum, bacterial and viral 

nucleic acids, bacterial toxins, muramyl dipeptide, environmental irritants such as asbestos and 

silica, metabolic stress and UVB irradiation (Schroder and Tschopp, 2010). In vitro studies by 

various investigators have showed that activation of NLRP3 is required for alum-induced IL-1β 

and IL-18 secretion (Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Hornung et al., 2008; Kool 

et al., 2008a). Alum-induced secretion of IL-1β and IL-18 was shown to be caspase-1 dependent 

(Li et al., 2007; Sokolovska et al., 2007). However, the role of NLRP3 in adjuvant activity of alum 

in vivo is not clear.  
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 Polyphosphazenes are a novel class of adjuvants that have been shown to be effective as 

parenteral and mucosal adjuvants in small as well as large animals (Eng et al., 2010a; Shim et al., 

2010).  In particular, the new generation polyphosphazene polyelectrolyte, 

poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) promotes enhanced and long-

lasting immune responses with a variety of viral and bacterial antigens (Eng et al., 2010a; McNeal 

et al., 1999; Mutwiri et al., 2008; Payne et al., 1995; Payne et al., 1998a). In addition, PCEP 

induces a mixed Th1/Th2 type responses giving broad-spectrum immunity (Dar et al., 2012; 

Mutwiri et al., 2008; Mutwiri et al., 2007b). However, the mechanisms by which PCEP induces 

higher immune responses are poorly understood.  

 

  We have previously shown that in vitro, PCEP stimulates the production of innate 

cytokines in mouse splenocytes, which might contribute to its adjuvant activity and that 

intramuscular (i.m.) injection of PCEP resulted in induction of adjuvant core response genes and 

production of various cytokines and chemokines at the site of injection (Awate et al., 2012; 

Mutwiri et al., 2008). PCEP enhanced the expression of NLRP3 gene and induced local production 

of pro-inflammatory cytokines IL-1β and IL-18 (Awate et al., 2012). In the present study, we 

investigated the role of caspase-1 in PCEP-mediated pro-inflammatory cytokine production, the 

potential of PCEP to directly activate DCs and lymphocytes and the capacity of PCEP to induce 

antigen-specific cellular responses in mice.      

 

5.2   Materials and methods 
 

5.2.1 Animals 

Four to six weeks old female BALB/c and C57BL/6 mice purchased from Charles River 

Laboratories (North Franklin, CT, USA) were used in all the experiments. The animal experiments 

were approved by the University of Saskatchewan’s Animal Research Ethics Board, and adhered 

to the Canadian Council on Animal Care guidelines for humane use of animals. 
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5.2.2 Adjuvants 

PCEP was synthesized by Idaho National Laboratories (Idaho Falls, ID, USA) using 

methods described previously (Andrianov et al., 2004, Mutwiri et al., 2007a) and, prior to use, its 

endotoxin levels were determined to be less than 0.034 ng/ml as assessed by the Limulus 

Amebocyte Lysate assay (Biowhittaker, Walkersville, MD, USA). PCEP was dissolved in 

Dulbecco's Phosphate buffered saline (PBS) (Sigma-Aldrich, MO, USA) by gentle agitation for 36 

h at room temperature (RT). Imject alum (Thermo Fisher Scientific, IL, USA) used in these 

experiments was a mixture of aluminium hydroxide and magnesium hydroxide (40 mg/ml). 

Lipopolysaccharide (LPS) was purchased from InvivoGen, CA, USA.  

 

5.2.3 PCEP labeling 

PCEP was reacted with 1,6-diaminohexane (Sigma-Aldrich) and a coupling reagent (1-

ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride; Thermo Fisher Scientific) to obtain 

an amino-modified PCEP (Staros et al., 1986). A thiol group was attached to amino-modified 

PCEP and now the thiol modified PCEP was labelled with Alexa-fluor 488 C5-maleimide 

(Molecular probes, OR, USA) with the following modifications. Briefly, 1 mg of the thiol-

modified PCEP was dissolved in 1 ml of PBS (pH 7.5) and mixed with 500 μl of 1 mg/ml of the 

dye solution in ultrapure water and reacted for 2 h at room temperature in the dark. The unlabelled 

dye was separated from the labelled products by size exclusion chromatography on sephadex G-75 

column (GE Healthcare, Sweden). Later, the labelled PCEP was concentrated using Amicon ultra-

centrifugal filter units with 10 kD molecular weight (EMD Millipore, MA, USA). 

 

5.3.4 Isolation of splenic-derived DCs 

Spleens were aseptically removed from naïve/untreated mice and placed in cold HEPES 

(Gibco, NY, USA) with collagenase D (Roche Diagnostics, Germany) solution. Cells were 

disrupted by injecting HEPES with collagenase D solution into the spleen with syringe, later cut 

into smaller pieces, and incubated at 37°C for 30min. The spleen tissues were teased with syringe 

plunger through the nylon mesh. The cell suspension obtained was resuspended with autoMACS 

rinsing buffer with 0.5% BSA (Miltenyi Biotec, CA, USA). Total DCs (conventional and 
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plasmacytoid DCs) from mouse spleen cell suspension were positively selected using Pan DC 

microbeads (Miltenyi Biotec), according to the manufacturer’s instructions. Isolated DCs were 

stained with CD11c-PE (eBiosciences, CA, USA) to check for purity using flow cytometry (the 

purity of the isolated splenic DCs were  >80%).  

 

5.2.4 Splenic DC culture 

MACS isolated splenic DCs were cultured (1 X 106 cells/well) with media, PCEP (50 

ug/ml), alum (0.5 mg/ml), LPS (0.1 ug/ml) alone or PCEP and LPS or alum and LPS combinations 

at 37°C. In some experiments DCs were incubated with caspase-inhibitor YVAD-fmk (R&D 

Systems, MN, USA) along with vaccine adjuvants. After 12 h of stimulation, culture supernatants 

and cells were collected for cytokine measurement and immunoblot respectively.  

 

5.2.6 Measurement of cytokines in culture supernatants 

IL-1β concentration was assayed in culture supernatants using DuoSet ELISA development 

system (R&D Systems) following manufacturer’s protocol. For IL-18, Immunol II microtitre plates 

(Dynex Technology Inc., VA, USA) were coated overnight with anti-mouse IL-18 antibody (MBL, 

Japan) at 2 μg/ml concentration at room temperature (RT). The Microtitre plates were washed 3 

times with Tris-buffered saline (pH 7.3) containing 0.05% Tween 20 (TBST) and 100 μl of diluted 

sera or tissue samples were added to the wells and incubated for 2 hrs. The wells were washed 

again 3 times with TBST and biotinylated rat anti-mouse IL-18 antibody (MBL, 1/1000) was 

added to the wells in a 100 μl volume and incubated for 2 h at RT. Wells were washed and 

horseradish-peroxidase conjugated streptavidin was added to each well followed by incubation for 

20 min at RT. Wells were washed 3 times with TBST before addition of 3,3’,5,5’- 

Tetramethylbenzidine (TMB; Sigma-Aldrich). The microtitre plates were incubated for 20 min at 

RT before stopping the reaction with 2 N sulphuric acid. For IL-1β and IL-18, the absorbance was 

read as optical density (OD) at 570 nm in a Microplate Reader (Molecular Devices, CA, USA). 

The samples were assayed in triplicate, and the cytokine concentration was determined by 

extrapolation from a standard curve generated by serial dilution of the respective appropriate 

recombinant murine cytokines.  
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5.2.7 Immunoblotting  

After 12 h of culture, splenic DCs were washed with ice-cold PBS and lysed with RIPA 

buffer (0.5 M Tris [pH 8.0], 0.15 M NaCl, 0.1% SDS, 1% NP-40, 1% deoxycholic acid) containing 

protease inhibitors (1×Complete Protease Inhibitor; Roche Diagnostics). The lysates were 

homogenized by passing through a syringe with 22-gauge needle several times and incubated on 

ice for 15-20 min. The lysates were centrifuged at 12000 g for 5 min and the supernatant was 

analyzed for total protein content by using BCA protein assay kit (Thermo Fisher Scientific).  

Thirty micrograms of total protein from each lysate was subjected to 12.5 % SDS-polyacrylamide 

gel electrophoresis, and then transferred to nitrocellulose membrane (Bio-Rad, Germany). 

Membranes were blocked for non-specific binding with Tris-buffered saline (TBS) (0.1 M Tris 

[pH 7.6], 0.9% NaCl containing 0.1% Tween 20 and 5% skim milk) for 1 h at room temperature.  

The membrane was probed by antibody to pro-IL-1β (sc-7884; Santa Cruz Biotechnology, CA, 

USA) diluted 1:40 and procaspase-1 (sc-514; Santa Cruz Biotechnology) diluted 1:200, followed 

by incubation with IRDye secondary antibodies (LI-COR Biosciences, NE, USA) diluted 1:5000. 

Finally, the infrared signals of immunoblots were detected by Odyssey infrared imager (LI-COR 

Biotechnology). Immunoblotting for β-actin (Sigma-Aldrich) served as a loading control.  

 

5.2.8 In vitro PCEP uptake 

For PCEP uptake studies, splenic DCs were incubated with PCEP-labelled with Alexa-

fluor 488 fluorescent dye (50 µg/ml) for 12 h on 2 well tissue culture chamber glass slides (Thermo 

Fisher Scientific) at 37°C and 5% CO2. After 12 h, cells were fixed with 3.7% paraformaldehyde 

for 10 min and washed thrice with 0.1M PBS for 5 min each. Finally, the chambers were removed 

and slides were mounted with VECTASHIELD mounting medium containing DAPI (Vector 

Laboratories, CA, USA) to stain the nucleus. The slides were allowed to cure for 24 h in dark at 

RT before visualizing under Zeiss LSM 5 laser scanning confocal microscope (Carl Zeiss, 

Germany).    
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5.2.9 Generation and culture of BMDCs  

Legs (femurs and tibias) were aseptically removed from the mice and flushed with ice-cold 

PBS to isolate bone marrow (BM) cells. Isolated BM cells were centrifuged at 350 g for 10 min at 

4 °C and resuspended with 5 ml of 0.84% ammonium chloride solution for 5 min at RT to lyse the 

red blood cells. The cells were washed two times in PBS, centrifuged at 350 g for 10 min at 4 °C 

and then resuspended in complete RPMI 1640 media (containing 10% fetal calf serum (FBS), 

Hepes, non-essential amino acids, sodium pyruvate, antibiotic/antimycotic [all from Gibco] and β-

mercaptoethanol [Sigma-Adlrich]) supplemented with 100 ng/ml recombinant mouse Fms-related 

tyrosine kinase 3 ligand (Flt3L; PeproTech, NJ, USA). BM cells were cultured in complete RPMI 

media supplemented with murine Flt3L at 1 X 106 cells/ml in a 6-well plate (Costar Corning, NY, 

USA) in a humidified incubator containing 5% CO2 at 37°C for 7 days. On 7th day, immature DCs 

(iDCs) were harvested from the culture plates by pipetting and washing with PBS at RT.  

Harvested iDCs were again resuspended in complete RPMI supplemented with murine Flt3L and 

cultured for 24 h with media, PCEP (50 µg/ml) or LPS (100 ng/ml) at 1 X 106 cells/ml in a 24-well 

plate at 37°C. After 24 h, BMDCs were harvested and stained with mAbs directed against 

maturation (MHC class II) and co-stimulatory molecules CD86 and CD40 (all from eBiosciences). 

 

5.2.10 Allogeneic mixed leukocyte reaction (MLRs) 

The stimulatory capacity of DCs was assessed in an allogenic MLR. BMDCs were 

generated from BALB/c mice and then stimulated with media, PCEP (50 µg/ml) or LPS (1 µg/ml) 

at 37°C and 5% CO2 in a humidified incubator. After 24 h, BMDCs (stimulator cells) were 

harvested, washed with PBS and co-cultured with CD4+ T cells in complete RPMI medium. CD4+ 

T cells (responder cells) were obtained from C57BL/6 or BALB/c mice spleen cell suspension 

using CD4+ T cell microbeads (Miltenyi Biotec), according to the manufacturer’s instructions. 

Isolated CD4+ T cells were stained with CD4-PE (eBiosciences) to check for purity using flow 

cytometry. The positively selected CD4+ T cells were washed and resuspended in complete RPMI 

medium. Triplicate wells of 2 X 105 CD4+ T cells from C57BL/6 or BALB/c mice (responder 

cells) were seeded in a 96 well round-bottom plate, and titrated numbers of BMDCs (stimulator 

cells) were added (DC and T cell ratio; 1:10, 1:40, 1:160 and 1:640). Cells were co-cultured for 
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five days and pulsed with 0.4 µCi/well of titrated thymidine (ARC, MO, USA) during the last 18 h 

of culture. Thymidine incorporation was measured using a liquid scintillation counter (Wallac-

Perkin-Elmer,Wallac, Finland). Results were expressed as mean counts per minute (cpm). The 

stimulation index represents the ratio of cpm obtained in the stimulated cultures to cpm obtained in 

controls (media). A stimulation index of ≥3 indicates a positive proliferation response.  

 

5.2.11 Splenic B and T cell isolation 

Spleens were aseptically removed from naïve/untreated mice and placed in cold HEPES 

(Gibco) with collagenase D (Roche Diagnostics) solution. Spleen cells were disrupted by injecting 

HEPES with collagenase D solution into the spleen with syringe, later cut into smaller pieces, and 

incubated at 37°C for 30 min. The spleen tissues were teased with syringe plunger through the 

nylon mesh. The cell suspension obtained was resuspended with autoMACS rinsing buffer with 

0.5% BSA (Miltenyi Biotec). CD4+ T cells and B cells were positively selected from mouse spleen 

cell suspension using CD4+ (L3T4) and CD45R (B220) microbeads respectively (Miltenyi Biotec), 

according to the manufacturer’s insructions. Isolated CD4+ T and B cells were stained with CD4-

PE and CD19-FITC respectively (both from eBiosciences) to check for purity using flow 

cytometry.    

 

5.2.12 T cell culture and proliferation assay 

MACS isolated splenic CD4+ T cells (1 X 106 cells/well) were cultured in the presence of 

media, PCEP (10 µg/ml) or Con A (2 µg/ml) in a humidified incubator containing 5% CO2 at 

37°C. Culture supernatants were collected after 24 h for quantification of IL-2, IL-4 and IFN-γ 

using DuoSet ELISA development system (R&D Systems). For proliferation assay, triplicate wells 

of naïve CD4+ T cells (2 X 105 cells/well) were cultured in the presence of medium, PCEP (5 

µg/ml, 10 µg/ml and 25 µg/ml) and 2 µg/ml of Con A (Sigma-Aldrich) into 96-well round bottom 

plates for 5 days. The cells were pulsed with 0.4 µCi/well of titrated thymidine (ARC) during the 

last 18 h of culture. Thymidine incorporation was measured using a liquid scintillation counter 

(Wallac-Perkin-Elmer). Results were expressed as mean counts per minute (cpm). The stimulation 
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index represents the ratio of cpm obtained in the stimulated cultures to cpm obtained in controls 

(media). A stimulation index of ≥3 indicates a positive proliferation response.  

 

5.2.13 B cell culture and proliferation assay 

MACS isolated splenic B cells (2 X 106 cells/well) were cultured in the presence of media, 

PCEP (10 µg/ml) or LPS (0.1 µg/ml) in a humidified incubator containing 5% CO2 at 37°C. 

Culture supernatants were collected after 48 h for quantification of IL-6 (DuoSet ELISA 

development system; R&D Systems) and IgM (mouse IgM Ready-SET-Go kit; eBioscience) by 

ELISA. For proliferation assay, triplicate wells of naïve B cells (2 X 105 cells/well) were cultured 

in the presence of medium, PCEP (5 µg/ml, 10 µg/ml and 25 µg/ml) and LPS (0.1 µg/ml) into 96-

well round bottom plates for 5 days. The cells were pulsed with 0.4 µCi/well of titrated thymidine 

(ARC) during the last 18 h of culture. Thymidine incorporation was measured using a liquid 

scintillation counter (Wallac-Perkin-Elmer). Results were expressed as stimulation index. The 

stimulation index represents the ratio of cpm obtained in the stimulated cultures to cpm obtained in 

controls (media). A stimulation index of ≥3 indicates a positive proliferation response.  

 

5.2.14 Immunization of mice 

Mice were divided into groups and immunized with 25 µl each of either phosphate-

buffered saline (PBS) as control, 10 µg OVA (Hyglos GmbH, Germany) or 50 µg of PCEP co-

delivered with 10 µg OVA. Endotoxin concentration in OVA used in immunization studies was 

<1EU/mg. Half of mice in each group were euthanized 9 days after immunization to collect 

spleens. The remaining mice were given a secondary immunization on day 14 and euthanized 21 

day after the first immunization to collect spleens. 

 

5.2.15 Intracellular IFN-γ staining 

Spleens were digested with collagenase solution to get single cell suspension. To 

investigate IFN-γ production, splenocytes (1 X 106 cells/well) were cultured in 96-well round 

bottom culture plates and restimulated with 10 µg/ml OVA and incubated at 37°C and 5% CO2 in a 

humidified incubator. Intracellular staining for IFN-γ was performed after 12 h of incubation. Cells 
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were fixed with 4 % paraformaldehyde (RICCA chemicals, TX, USA) and stained with CD4 and 

CD8a T cell markers listed previously. Subsequently, cells were permeabilized with 

cytofix/cytoperm (BD Biosciences, CA, USA) and stained for intracellular IFN-γ (BD 

Biosciences) in PBS. Enumeration of IFN-γ responses by CD4+ and CD8a+ T cells were done by 

flow cytometric analysis.  

 

5.2.16 Statistical analysis 

Statistical analysis was carried out using GraphPad Prism 5 software (GraphPad Software, 

San Diego, CA, USA). The differences between groups were analyzed by one-way ANOVA and 

statistical significance between the treatments were compared with Dunn’s and Tukey’s multiple 

comparison test; ***P<0.0001, **P<0.001, *P<0.05.  

 

 

5.3 Results 

 

5.3.1 PCEP induces robust secretion of IL-1β and IL-18 in splenic DCs 

In our previous studies we showed that PCEP up-regulates the expression of NLRP3 gene 

and induces production of pro-inflammatory cytokines IL-1β and IL-18 at the site of injection 

(Awate et al., 2012). In various in vitro studies, alum-induced IL-1β secretion has been shown to 

involve activation of inflammasomes (Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Harris et 

al., 2010; Kool et al., 2008a; Li et al., 2007). Hence, we decided to test the ability of PCEP to 

induce secretion of IL-1β and IL-18 in splenic DCs and further confirm the role of caspase-1 in 

PCEP-mediated IL-1β and IL-18 secretion.    

 

Splenic DCs from BALB/c mice were stimulated for 12 h with PCEP or alum in the 

presence or absence of TLR4 agonist LPS, and subsequently assayed for mature IL-1β and IL-18 

secretion in the culture supernatants (Fig 5.1A). Stimulation of splenic DCs with PCEP induced 

significantly higher IL-1β and IL-18 secretion relative to media and alum. In addition, stimulation 

with PCEP in the presence of LPS triggered significantly higher secretion of IL-1β and IL-18 
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compared to PCEP or LPS alone (Fig 5.1A). Further, in the presence of LPS, PCEP induced 

significantly higher secretion of IL-1β and IL-18 compared to alum and LPS combination (Fig 

5.1A).  

 

Since PCEP alone was able to induce significant IL-1β secretion, we assessed induction of 

pro-IL-1β and pro-caspase-1 by PCEP. Splenic DCs were stimulated with PCEP or alum in the 

presence or absence of LPS for 12 h and cell extracts were analyzed for pro-IL-1β and pro-

caspase-1 by Western blot. We observed that PCEP alone induced intracellular production of pro-

IL-1β in splenic DCs (Fig 5.1B). However, pro-IL-1β induction was not as strong as induction by 

the PCEP and LPS combination. LPS induced pro-IL-1β production regardless of presence or 

absence of PCEP or alum. Similarly, PCEP alone induces higher secretion of pro-IL-1β compared 

to alum alone (Fig 5.1B). Pro-caspase-1 was produced in all the splenic DC treatments including 

media control. β-actin was used as loading control in all Western blot experiments.  
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 5.1A 

               
 
5.1B  

 
 
 
 

Fig 5.1 PCEP induces robust secretion of IL-1β and IL-18 in splenic DCs. Splenic DCs from 

BALB/c mice were incubated for 12 h with media, PCEP (50 ug/ml), alum (40 mg/ml), LPS (0.1 

ug/ml) alone or PCEP+LPS or alum+LPS combinations. Supernatants were collected for 

measuring IL-1β and IL-18 by ELISA and the cell extracts were analyzed for pro-IL-1β by western 

blotting. 5.1A, PCEP significantly enhanced the secretion of IL-1β and IL-18 in splenic DCs. 5.1B, 

Pro-caspase-1 (45 kDa), pro-IL-1β (31 kDa) and β-actin (43 kDa) detection in cell lysates by 

Western blot analysis. PCEP alone induced pro-IL-1β production in splenic DCs. Data was 

analyzed by one-way ANNOVA and the comparison between the treatments was done by Tukey’s 

multiple comparison test: ***P<0.0001.   
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5.3.2 PCEP-mediated IL-1β secretion is caspase-1 dependent  

Caspase-1 is a critical component of NLRP3 inflammasome, which cleaves the pro-form of 

IL-1β and IL-18 into mature forms. Hence, we examined the role of caspase-1 in secretion of IL-

1β and IL-18 by splenic DCs. Splenic DCs were treated with or without the caspase-1 inhibitor 

(CI) YVAD-fmk and then stimulated with media, PCEP, alum, LPS alone or PCEP and LPS or 

alum and LPS combinations for 12 h. Secretion of IL-1β and IL-18 was analyzed in culture 

supernatants. Pre-treatment with YVAD-fmk significantly inhibited IL-1β and IL-18 secretion in 

response to adjuvants alone and in adjuvants given in combination with LPS (Fig 5.2). The most 

significant reduction in IL-1β and IL-18 secretion was observed in YVAD-fmk-treated DCs that 

were stimulated with PCEP+LPS (Fig 5.2). The same was observed with alum+LPS-treated 

splenic DCs. These results suggest that PCEP- and alum-mediated secretion of IL-1β and IL-18 in 

splenic DCs was caspase-1 dependent.     

 

  

      
 

Fig 5.2 Role of caspase-1 in PCEP stimulated IL-1β and IL-18 secretion. Splenic DCs were 

treated with or without the caspase-1 inhibitor (CI) YVAD-fmk (40μM) and then incubated with 

media, PCEP (50 ug/ml), alum (40 mg/ml), LPS (0.1 ug/ml) alone or PCEP+LPS or alum+LPS 

combination. Supernatants were collected after 12 h of stimulation, and were analysed for IL-1β 

and IL-18 by ELISA. Data was analyzed by one-way ANNOVA and the comparison between the 

treatments was done by Tukey’s multiple comparison test: ***P<0.0001, **P<0.001, *P<0.05.   
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5.3.3 Intracellular uptake of PCEP by DCs 
 

PCEP was labelled with Alexa-fluor 488 fluorescent dye to identify its uptake by splenic 

DCs. Microscopic evaluation of splenic DCs incubated with fluorescent dye labelled PCEP 

revealed that PCEP was readily taken up and are localized within the cytoplasm of the splenic DCs 

(Fig 5.3). 

 

 

 

                  DAPI   

 

 

Fig 5.3 Intracellular uptake of PCEP by splenic DCs in vitro. Splenic DCs were incubated 

with PCEP labelled with Alexa-fluor 488 fluorescent dye (50 µg/ml) or free dye for 12 h. 

Intracellular localization of fluorescent-labelled PCEP was evaluated on representative cells using 

a confocal laser scanning microscope. Nuclei were stained with DAPI in each panel. Green color 

indicates fluorescent labelled PCEP; blue color indicates the nucleus.   
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5.3.4 PCEP does not induce MHC class II and co-stimulatory molecules expression in 

vitro 

 

To investigate PCEP-mediated maturation and activation of DCs, we generated DCs from 

mouse bone marrow. PCEP did not induce significant MHC class II and co-stimulatory molecules 

CD86 and CD40 expression in BMDCs compared to negative control (Fig 5.4A). In contrast, 

MHC class II, CD86 and CD40 molecules were highly expressed in LPS-treated BMDCs (Fig 

5.4A).  

 

The functional capacity of DC to stimulate T cell responses is assessed by mixed leukocyte 

reaction (MLR). One of the factors affecting the stimulatory capacity includes the state of maturity 

of DCs. Hence we assessed the functional capacity of DCs stimulated with PCEP to induce T cell 

proliferation. BMDCs generated from BALB/c mice were stimulated with PCEP or LPS and then 

co-cultured with CD4+ T cells isolated from C57BL/6 (allogeneic MLR) and BALB/c (syngenic 

MLR) mouse splenocytes in various DC:T cell ratios. PCEP-induced T cell proliferative responses 

were significantly higher than negative controls both in allogeneic and syngenic responses 

suggesting that PCEP did induce maturation of DCs (Fig 5.4B). However, LPS-induced T cell 

proliferative responses were higher than both negative control and PCEP-treated cells (Fig 5.4B).  
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5.4A 

 

 

5.4B  
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Fig 5.4 PCEP does not induce MHC class II and co-stimulatory molecules expression in 

vitro. 5.4A, BMDCs (1 X 106 cells/ml) were incubated with media, PCEP (50 µg/ml) or LPS (100 

ηg/ml) for 24 h. Cells were stained with MHC class II, CD 86 and CD40 antibodies and analyzed 

by flow cytometry. The overlay histograms show the % of maximum cells positive for MHC class 

II, CD86 or CD40 in PCEP- and LPS-treated BMDCs. Blue shaded area represents media control 

and the green overlay line represents LPS- and PCEP-treated BMDCs. 5.4B, Functional capacity 

of DCs to stimulate T cells was tested using MLR. BMDCs generated from BALB/c mice were 

cultured in media stimulated with PCEP (50 µg/ml) or LPS (1 µg/ml) for 24 h, irradiated and then 

co-cultured with CD4+ T cells isolated from C57BL/6 (allogenic) and BALB/c (syngenic) mice 

splenocytes for 4 days. PCEP- or LPS-induced lymphocyte proliferative responses were measured 

by 3H-thymidine incorporation, shown at different DC-to-responder cell ratios (1:10, 1:40 and 1: 

160). Results are expressed as stimulation index (cpm in the stimulated cultures/cpm in the 

controls). Tests were carried out in triplicates. A stimulation index of ≥3 was considered positive 

for proliferative responses.  
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5.3.5 PCEP induces direct activation of naïve B but not naïve T cells in vitro.  

 

In our previous study, PCEP induced significant recruitment of T and B lymphocytes to the 

site of injection, and some of these cells also took up PCEP in moderate amounts. Hence we 

investigated the capacity of PCEP to induce direct activation of T or B lymphocytes in vitro. 

MACS isolated CD4+ T cells and CD19+ B cells were cultured in the presence of PCEP and culture 

supernatants were analyzed for cytokine and IgM responses. PCEP stimulated significant 

production of IgM in a dose-dependent manner with highest production when used at 5 µg/ml 

suggests direct activation of naïve B cells (Fig 5.5A). In addition, PCEP induced significant 

production of IL-6, however the amounts of IL-6 produced was low (Fig 5.5A). Further, we 

observed that PCEP did not induce secretion of IL-2, IL-4 and IFN-γ in naïve CD4+ T cells culture 

supernatants (Fig 5.5B). Additionally, PCEP did not induce IL-10 and IL-12 production by naïve B 

cells or T cells (data not shown).  

 

We have previously shown that PCEP is taken up by splenic DCs but also induces 

maturation in vitro. To determine whether PCEP can induce lymphocyte proliferation directly, we 

performed in vitro B and T cell proliferation assays using LPS and Con A as positive controls, 

respectively. Naïve B and T cells were directly stimulated with various concentrations of PCEP in 

vitro. PCEP did not induce positive proliferation responses in B cells  (Fig 5.5C) and T cells  (Fig 

5.5D) at any concentrations. The data suggests that PCEP induces direct activation of naïve B cells 

(but does not induce B cell proliferative responses) and does not activate T cells.  
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5.5A  

                            

5.5B 
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Fig 5.5 PCEP induces direct activation of naïve B but not naïve T cells in vitro. 5.5A, Splenic 

CD19+ B cells (2 X 106) were cultured in the presence of media, PCEP (10 µg/ml) or LPS (0.1 

µg/ml) and culture supernatants were collected after 48 h for quantification of IL-6 and IgM by 

ELISA. 5.5B, Splenic CD4+ T cells (1 X 106) from BALB/c mice were cultured in the presence of 

media, PCEP (10 µg/ml) or Con A (2 µg/ml) and culture supernatants were collected after 24 h for 

quantification of IL-2, IL-4 and IFN-γ by ELISA. 5.5C, Naïve B cells (2 X 105 cells/well) were 

cultured in the presence of medium, PCEP (5 µg/ml, 10 µg/ml and 25 µg/ml) and LPS (0.1 µg/ml) 

for 5 days. 5.5D, Naïve CD4+ T cells (2 X 105 cells/well) were cultured in the presence of 

medium, PCEP (5 µg/ml, 10 µg/ml and 25 µg/ml) and 2 µg/ml of Con A for 5 days. PCEP specific 

lymphocyte proliferative response was measured by 3H-thymidine incorporation. Results are 

expressed as stimulation indexes (cpm in the stimulated cultures/cpm in the controls). Tests were 

carried out in triplicates. A stimulation index of ≥3 was considered positive for proliferative 

responses (above dashed lines). All the ELISA data was statistically analyzed by one-way 

ANOVA and the differences between the treatments were compared by Tukey’s multiple-

comparison test for T cell and B cells, where ***P<0.0001, **P<0.001, *P<0.05.   
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5.3.6 PCEP induces increased IFN-γ production in CD4+ and CD8+ T cells. 

 

To evaluate antigen-specific T cell responses induced by PCEP, BALB/c mice were 

immunized with PCEP co-delivered with OVA. Mice immunized with PBS or OVA served as 

controls. Half of the mice received a secondary immunization on day 14. Mice were sacrificed and 

spleens were collected on day 9 and 21 post-immunization. To investigate IFN-γ production by T 

cells, we restimulated splenocytes with OVA and the frequency of IFN-γ+ CD8+ and CD4+ T cells 

was analyzed by flow cytometry. As shown in Fig 5.6A, intracellular IFN-γ production was 

increased in mice immunized with PCEP+OVA when compared with OVA alone. Frequencies of 

IFN-γ+ CD8+ T cells on day 9 (3.6% vs 1.3%) and day 21 (6.5% vs 4.2%) were significantly higher 

in mice immunized with PCEP+OVA than in mice immunized with OVA alone (Fig 5.6A).  

Similarly, frequencies of IFN-γ+ CD4+ T cells on day 9 (9.0% vs 3.8%) and day 21 (7.3% vs 5.3%) 

were significantly higher in mice immunized with PCEP+OVA than in mice immunized with 

OVA alone (Fig 5.6B). These results indicate that PCEP induces antigen-specific activation of 

CD8+ and CD4+ T cells. 
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5.6A  

              

5.6B  

              

             

Fig 5.6 PCEP induces antigen-specific IFN-γ production in CD4+ and CD8+ T cells. BALB/c 

mice were immunized with 25 µl each of either phosphate-buffered saline (PBS) as control, 10 µg 

OVA or 50 µg of PCEP co-delivered with 10 µg OVA. Booster immunization was given on day 14 

to half of the mice in each group. Mice were euthanized on day 9 and 21 after first immunization to 

collect spleens. 5.6A-B, Splenocytes (1 X 106 cells) were restimulated with OVA (10 µg/ml) for 12 

h and intracellular production of IFN-γ by CD8+ and CD4+ T cells was analyzed by flow 

cytometry. Statistical analysis was done by one-way ANOVA and the differences between the 

treatments were compared by Tukey’s multiple-comparison test, where ***P<0.0001, **P<0.001, 

*P<0.05. 
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5.4  Discussion 

Polyphosphazenes have shown great potential as vaccine adjuvants. However, the 

mechanisms by which they induce these immune responses are largely unknown. Hence we 

performed the present investigations to understand the mechanisms of action of PCEP in vitro. 

Stimulation of splenic DCs with PCEP led to secretion of pro-inflammatory cytokines IL-1β and 

IL-18 in a caspase-1 dependent manner. PCEP did not induce MHC class II and co-stimulatory 

molecule expression in DCs. However, these DCs did induce allogenic MLR at relatively low 

levels. Further, we observed that PCEP directly activates B cells but not T cells. However, PCEP 

does induce antigen-specific IFN-γ in both CD8+ and CD4+ T cells. 

 

In vivo, PCEP induces local production of various cytokines and chemokines at the site of 

injection (Awate et al., 2012). In particular, PCEP induced significant production of pro-

inflammatory cytokines IL-1β and IL-18 in muscle tissue. Additionally, PCEP also significantly 

upregulated the gene expression of NLRP3 in PCEP-injected muscle tissues. Hence, we further 

explored the mechanisms of PCEP-mediated IL-1β and IL-18 release in splenic DCs. The secretion 

of pro-inflammatory cytokine IL-1β requires two signals; 1) synthesis of pro-IL-1β-mediated via 

TLR agonists and 2) activation of the inflammasome complex (NLRP3) leading to activation of 

caspase-1, which in turn cleaves pro-IL-1β and allowing release of mature IL-1β (Schroder and 

Tschopp, 2010).   

 

Li and his colleagues reported for the first time that alum-induced secretion of IL-1β and 

IL-18 was caspase-1 dependent (Li et al., 2007). In subsequent in vitro studies, various 

investigators have showed that activation of NLRP3 is required for alum-induced IL-1β and IL-18 

secretion (Eisenbarth et al., 2008; Franchi and Nùñez, 2008; Hornung et al., 2008; Kool et al., 

2008a; Sokolovska et al., 2007). Similar to alum, PCEP-induced IL-1β and IL-18 secretion was 

caspase-1 dependent strongly suggesting involvement of NLRP3 in PCEP adjuvant activity. In 

addition, PCEP alone was able to induce pro-IL-1β in splenic DCs. Interestingly, the production of 

pro-IL-1β was increased by addition of LPS. Our data is in agreement with activity of alum in vitro 

where LPS priming to induce pro-IL-1β prior to alum stimulation was a pre-requisite for secretion 
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of IL-1β (Eisenbarth et al., 2008; Kool et al., 2008a). Contrary to in vitro studies, the role of 

inflammasomes in the adjuvant activity of alum in vivo has yielded conflicting results. Using 

NLRP3, ASC and caspase-1 knockout mice, Eisenbarth et al. showed that NLRP3 inflammasome 

is a crucial component in the adjuvant activity of alum. NLRP3, ASC and caspase-1 knockout 

mice immunized with OVA adsorbed on alum, failed to induce antigen-specific antibody responses 

(Eisenbarth et al., 2008). Another study by Kool et al showed that alum induced lower influx of 

inflammatory cells in the peritoneal cavity of NLRP3-deficient mice. They also showed that alum-

mediated activation of adaptive immune responses was NLRP3-dependent (Kool et al., 2008a). 

Similar studies done by Li et al. showed that NLRP3-deficient mice injected with alum adsorbed 

diphtheria toxoid or OVA vaccine elicited impaired levels of antigen-specific antibody responses 

(Li et al., 2008). All these studies indicate that NLRP3 inflammasome is critical in the adjuvant 

activity of alum in vivo. In contrast, Franchi and Núñez clearly showed that antigen-specific IgG 

production was not impaired in NLRP3-deficient mice following intraperitoneal injection of 

human serum albumin (HSA), a T cell dependent antigen in the presence of alum (Franchi and 

Nùñez, 2008). The conflicting results with regard to the role of inflammasome in adjuvant activity 

of alum have been attributed to the differences in the nature of alum used in different studies, 

immunization protocols and the mouse strains used (De Gregorio et al., 2008; Marrack et al., 

2009). However, NLRP3 did affect alum-mediated cellular recruitment suggesting that 

inflammasomes might play an important role in activating innate immunity, but the contribution of 

inflammasome in activation of adaptive immunity remains elusive.  

 

Two independent studies have demonstrated that NLRP3 is not required for the adjuvant 

activity of MF59 (Ellebedy et al., 2011; Seubert et al., 2011). However, an adaptor molecule 

required for the assembly of inflammasome, ASC is crucial for MF59 adjuvanticity (Ellebedy et 

al., 2011).  A recent study by Embry et al., showed that MPL failed to induce intra-cytoplasmic 

assembly of NLRP3 inflammasome leading to failure of caspase-1 activation and maturation of 

pro-inflammatory cytokines IL-1β and IL-18 (Embry et al., 2011).   
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Some theories proposed for alum-mediated activation of NLRP3 includes phagosomal 

destabilization and release of cathepsin B, low intracellular potassium (K+) concentrations and 

generation of reactive oxygen species (ROS) (Hornung et al., 2008; Kool et al., 2008a; Petrilli et 

al., 2007). Phagocytosis of crystalline particles such as MSU or alum results in phagosomal 

destabilization and lysosomal rupture releasing protease cathepsin B in the cytosol (Hornung et al., 

2008). The released cathepsin B led to activation of NLRP3 and secretion of pro-inflammatory 

cytokines IL-1β and IL-18. We report here that PCEP is taken up by the splenic DCs in vitro and it 

induces release of IL-1β and IL-18 in a caspase-1-dependent manner. PCEP was detected in the 

intracellular lysosomal compartments of the recruited immune cells at the injection site 

(unpublished data). Taken together, these results suggest that PCEP might induce lysosomal 

rupture and protease release to activate NLRP3, which in turn release active caspase-1 in the 

cytosol.  

 

Activation of innate immunity is essential to induce adaptive immune responses. Increased 

expression of MHC class II, activation marker CD86 and maturation marker CD83 leads to 

enhanced ability of APCs to induce T lymphocyte activation and differentiation (Coyle and 

Gutierrez-Ramos, 2001). Previously, we have shown that PCEP upregulates the production of 

various chemokines including CCL2, CCL4, CCL12 and CXCL10 at the injection site (Awate et 

al., 2012). Due to chemotactic potential of these chemokines, we observed increased recruitment of 

various myeloid and lymphoid cells to the PCEP-injected muscle tissue (unpublished data). In 

addition, we also observed increase in number of APCs in the draining lymph nodes. DCs were 

first to be recruited and increased in highest number in the draining lymph nodes within 3 h post-

injection of PCEP (unpublished data). Given the fact that DCs are the only professional APCs 

involved in antigen processing and presentation to induce adaptive immune responses, it will be 

important to evaluate the potential of PCEP to activate DCs. Splenic DCs were partially matured 

and showed increased expression of MHC class II molecules (data not shown) and therefore, we 

used BMDCs for DC activation studies. Complete Freund’s adjuvant, LPS, liposomes, CpG, 

MF59, AS04 and α-galactosylceramide (α-GAL) have been shown to induce DC maturation to 

enhance adaptive immunity (Copland et al., 2003; De Becker et al., 2000; De Smedt et al., 1996; 
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Fujii et al., 2003; Shah et al., 2003). However, in vitro studies on human cells have shown that 

alum and MF59 failed to directly activate DCs but enhanced the surface expression of MHC class 

II and co-stimulatory molecules (CD83 and CD86) on monocytes, macrophages and granulocytes 

that resulted in increased T cell proliferation (Seubert et al., 2008; Sun et al., 2003). Similar to 

alum and MF59, PCEP failed to induce direct maturation of DC in vitro. Alum does not enter DCs 

directly but rather interacts with DC membrane lipids to delivers the antigen via abortive 

phagocytosis (Flach et al., 2011). This activates DCs, induces expression of co-stimulatory 

molecules (CD80 and CD86) and adhesion molecules [intracellular adhesion molecule-1 (ICAM-

1)] leading to strong contact with CD4+ T cells, which subsequently leads to B cell responses 

(Flach et al., 2011). Although, PCEP failed to induce DC maturation, we observed that B cells 

were directly activated by PCEP in vitro.   

 

Exogenous antigens are presented on MHC class I molecules via cross-presentation 

pathways (Bevan, 2006). Alum is a known inducer of T helper (Th) 2 type responses (Marrack et 

al., 2009). However, mice primed with OVA plus alum have been shown to induce CD8+ T cell 

responses via cross-presentation by specialized CD8α+ DCs (MacLeod et al., 2011). Further, alum 

plus OVA primed CD8 T cells differentiated into IFN-γ producing cells, whereas CD4 T cells 

differentiated into IL-4 producing cells (MacLeod et al., 2011). In comparison with alum, PCEP 

promotes antigen-specific mixed Th1 and Th2 type immune responses (Mutwiri et al., 2007a). 

Both in vivo and in vitro studies have shown that PCEP induced significant production of 

proinflammatory and Th1 type cytokines including IL-1β, IL-12, IL-18, IFN-γ and TNF-α (Awate 

et al., 2012; Mutwiri et al., 2008). In agreement with our previous results, we observed that 

immunization of mice with OVA plus PCEP induced antigen-specific IFN-γ production by splenic 

CD8+ and CD4+ T cells.  

 

In conclusion, we have shown that PCEP-mediated secretion of pro-inflammatory 

cytokines IL-1β and IL-18 is caspase-1 dependent. Understanding the role of these pro-

inflammatory cytokines in adjuvant activity of PCEP will provide critical information on how 

innate immunity influences the activation of adaptive immune responses.   
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CHAPTER 6. GENERAL DISCUSSION AND CONCLUSIONS 

 

Vaccination continues to be an important public health tool to decrease mortality and 

morbidity caused by infectious diseases. Modern vaccines with purified antigens are often poorly 

immunogenic and require addition of adjuvants to be effective. An ideal adjuvant should have a 

good safety record, induce both cellular and humoral responses that are sustained for a long 

duration, and reduce the dose of antigen to lower the cost of production. Many adjuvants do not 

fulfill many of these criteria and therefore, for almost a century, alum-based mineral salts were the 

only widely used adjuvants for human use. In the last decade, MF59, AS04, AS03 and virosomes 

were approved in Europe whereas only AS04 got the regulatory approval for human use in USA in 

2009, and AS03 in Canada in the same year. There are many new adjuvants that are in various 

stages of research and development. 

 

Polyphosphazene polyelectrolytes are a novel class of synthetic, water-soluble and 

biodegradable polymers that have shown great potential as vaccine adjuvants. Several studies in 

laboratory and large animals have revealed that polyphosphazenes dramatically enhance the 

magnitude, quality and duration of immune responses to a variety of bacterial and viral antigens 

with PCEP being the most powerful (McNeal et al., 1999; Mutwiri et al., 2008; Mutwiri et al., 

2007a; Payne et al., 1998a; Wu et al., 2001b).  

 

Although adjuvants are widely used in vaccine formulations, their mechanisms of action 

are poorly understood. This is well captured in a famous quote by Janeway that adjuvants are “the 

immunologist’s dirty little secret” (Janeway, 1989). Studies from the past decade on adjuvant 

mechanisms are slowly unfolding the complexicity of adjuvant activity. These studies suggest that 

adjuvants employ one or more of the following mechanisms to elicit immune responses: 1) 

sustained release of antigen at the site of injection (depot effect), 2) up-regulation of cytokines and 

chemokines, 3) cellular recruitment at the site of injection, 4) increase antigen uptake and 

presentation to antigen presenting cells (APC), 5) activation and maturation of APC (increased 

MHC class II and co-stimulatory molecules expression) and migration to the draining lymph 
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nodes, 6) activation of inflammsomes, and 7) immunomodulation/priming of T cells or B cells 

(Cox and Coulter, 1997; Fraser et al., 2007; Hoebe et al., 2004).  

 

Similar to other adjuvants, the mechanisms of action of PCEP are poorly understood. 

Previously, it was reported that the adjuvant activity of the polyphosphazene PCPP does not 

depend on depot formation at the site of injection. Excision of site of injection 24 h post-injection 

of PCPP with vaccine antigen had no detectable effect on antibody production suggesting that 

depot formation was not required for adjuvant activity (Payne et al., 1998a). However, 

polyphosphazenes have been shown to form water-soluble, non-covalent complexes with protein 

antigens which may help “direct” antigens to APCs (Andrianov et al., 2005). In vitro studies by 

Mutwiri et al have shown that polyphosphazenes stimulates the production of innate cytokines, 

which might contribute to its adjuvant activity (Mutwiri et al., 2008). However, the mechanisms by 

which polyphosphazenes enhance immune responses have not been systematically investigated. 

Hence we embarked on investigations of the cellular and molecular mechanisms of action of 

PCEP. 

 

It was recently reported that MF59, alum and CpG stimulated a set of common genes 

referred to as “adjuvant core response genes” that included cytokines, chemokines, innate immune 

receptors, interferon-induced genes and adhesion molecules (Mosca et al., 2008). We first sought 

to determine if PCEP induced expression of these adjuvant core response genes at the injection 

site. We found that PCEP was a strong inducer of adjuvant core response genes in mouse muscle. 

In addition to adjuvant core response genes, PCEP also upregulated the gene expression of 

inflammasome receptor NLRP3 and various pro-inflammatory cytokines including IL-1β and IL-

18 (Awate et al., 2012). In addition, we found significantly increased production of cytokines and 

chemokines in muscles injected with PCEP but we did not observe any systemic responses (Awate 

et al., 2012). Thus, PCEP induces local but not systemic responses suggesting that this adjuvant 

may be safe to use. However, further systematic safety studies are required to confirm the same. 

Similarly, clinically approved adjuvants MF59 and alum have also been shown to induce local 

cytokines and chemokines production in muscle following injection (Calabro et al., 2011; 
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Didierlaurent et al., 2009; McKee et al., 2009). Systemically, alum does not induce any cytokines, 

while MF59 upregulates the expression of IL5 (Mosca et al., 2008).  

 

Since PCEP enhances local production of cytokines and chemokines that have potent 

chemotactic potential, we examined the ability of PCEP to recruit immune cells to the injection site 

and identify the specific cellular targets of PCEP. PCEP induced increased recruitment of various 

myeloid and lymphoid cells to the injection site that included neutrophils, macrophages, 

monocytes and DCs relative to alum- and PBS-injected muscle. Lymphocytes, neutrophils and 

macrophages were recruited in highest numbers followed by monocytes and DCs. Kinetic studies 

revealed that cell recruitment declined two-weeks post-injection suggesting that it is transient in 

nature. Neutrophils were recruited in high numbers at the injection site following administration of 

the vaccine adjuvants alum, MF59 or Complete Freund Adjuvant (CFA), which then traffick to the 

draining lymph nodes (Calabro et al., 2011; Maletto et al., 2006; Seubert et al., 2008). Similarly, 

i.m. injection of PCEP resulted in significant increase in number of DCs, monocytes, neutrophils 

and macrophages in the draining lymph nodes. DCs and macrophages were increased in highest 

numbers in the draining lymph nodes while DCs, macrophages and neutrophils were earliest to be 

detected after injection of PCEP. This is a significant finding given that DCs are the predominant 

APCs in initiation of immune responses in the lymph nodes. Surprisingly, we also observed an 

increase in number of T and B lymphocytes in muscle tissues and the draining lymph nodes after 

injection of PCEP. MF59 and alum do not induce recruitment of lymphocytes at the injection site 

(Calabro et al., 2011). Innate immune cells recruited to the injection site might have non-specific 

effector functions, however lymphocytes have capacity to either initiate or regulate antigen-

specific immune responses.  

 

We further examined the specific cellular targets of PCEP at the injection site. For this 

experiment, we labelled PCEP with Alexa-fluor 488 fluorescent dye and injected intramuscularly 

in muscle tissue. We observed that most of the recruited immune cells took up PCEP in the muscle 

tissue. Most of the APCs recruited to the injection site took up PCEP in higher amounts compared 

to lymphoid cells. This could be due to higher phagocytic abilities of APCs. Similarly, MF59 has 
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been shown to be internalized by DCs expressing high MHC class II and special marker DEC205 

in the muscle tissue (Dupuis et al., 1998). Further, confocal studies revealed that PCEP was 

localized in the intra-cytoplasmic lysosomal compartments of various recruited immune cells. 

Overall, these data suggest that PCEP induce recruitment of APCs to the injection site, which then 

take up the adjuvant and then presumably migrate to the draining lymph nodes.  

 

Studies with labelled MF59 revealed that 90% of MF59 was cleared from the injection site 

within 6 h post-injection suggesting that MF59 does not form long-lived depot at the site of 

injection (Dupuis et al., 1999). Similar studies with alum have clearly showed that alum adjuvant 

activity does not depend on antigen depot (Hutchison et al., 2012). Excision of the injection site 24 

h post-injection of polyphosphazene PCPP with vaccine antigen had no detectable effects on 

antibody production (Payne et al., 1998a). Hence, we used whole body imaging to detect the in 

vivo PCEP distribution and retention of PCEP at the site of injection. For this experiment, PCEP 

was labelled with infra-red dye and injected into the mouse muscle. We observed that PCEP was 

localized strongly to the site of injection. Although 70% of PCEP was rapidly cleared from the site 

of injection within 24 h, we still observed traces of PCEP 12 wk post-injection at the site of 

injection. Our observations suggests that depot formation may not be a primary mechanism which 

mediates the adjuvant activity of PCEP, but further studies are required to confirm the same.     

 

Since, we observed upregulation of NLRP3 gene and local production of IL-1β and IL-18 

after injection of PCEP, we investigated the role of the inflammasome in adjuvant activity of PCEP 

in vitro. NLRP3 is an intra-cytoplasmic multi-protein complex that play an important role in the 

activation of caspase-1, which in turn cleaves proforms of IL-1β and IL-18 to their bioactive forms 

(Martinon et al., 2009). Caspase-1 is a critical component of NLRP3 inflammasome; therefore, we 

examined the role of caspase-1 in PCEP-mediated secretion of IL-1β and IL-18 by splenic DCs. 

Pre-treatment of splenic DCs with caspase-inhibitor YVAD-fmk significantly inhibited IL-1β and 

IL-18 secretion in response to PCEP.  NLRP3 inflammasome is activated by various stimuli 

including the particulate adjuvant alum (Eisenbarth et al., 2008; Franchi and Nùñez, 2008; 

Hornung et al., 2008; Kool et al., 2008a). However, the role of inflammasomes in adjuvant activity 
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of alum in vivo has yielded conflicting results (De Gregorio et al., 2008; Franchi and Nùñez, 2008). 

One of the mechanisms proposed for alum-mediated activation of NLRP3 involves phagosomal 

destabilization and release of cathepsin B. Phagocytosis of crystalline particles such as MSU or 

alum results in phagosomal destabilization and lysosomal rupture releasing the protease cathepsin 

B in the cytosol that leads to activation of NLRP3 and subsequent secretion of IL-1β and IL-18 

(Hornung et al., 2008). Our in vivo studies revealed intracellular lysosomal localization of PCEP in 

the recruited immune cells at the injection site suggesting that one of the mechanisms of PCEP-

mediated NLRP3 activation might be via lysosomal rupture and release of protease enzymes in the 

cytosol.   

 

Maturation of DCs is important to induce effective immune responses. Mature DCs 

increase the expression of MHC class II and co-stimulatory molecules expression, which enhances 

their ability to induce T cell activation and differentiation (Coyle and Gutierrez-Ramos, 2001). 

Since there was significant increase in DCs both at the site of injection and in the draining lymph 

nodes after injection of PCEP, we examined the effect of PCEP on activation and maturation of 

DCs. Since splenic DCs are partially mature, we generated BMDCs from mouse bone marrow. 

FACS analysis revealed that PCEP did not induce MHC class II and co-stimulatory molecules 

(CD86 and CD40) expression in BMDCs. In addition, PCEP-stimulated BMDCs induced low 

allogeneic T cell proliferation compared to LPS-stimulated BMDCs. Similar to our observations, 

alum and MF59 also failed to directly activate DCs in vitro (Seubert et al., 2008; Sun et al., 2003). 

However, alum has been shown to interact with DC membranes and deliver antigen via abortive 

phagocytosis, which leads to DC activation and strong contact with CD4+ T cells, subsequently 

resulting in enhanced B cell responses (Flach et al., 2011). PCEP induced recruitment of B and T 

cells in mouse muscle, which took up PCEP in minimal quantities. Hence, we examined the ability 

of PCEP to induce direct activation of B and T cells in vitro. We observed that although PCEP 

induces direct activation of naïve B cells, it does not induce B cell proliferative responses and does 

not activate or induce proliferation of naïve T cells in vitro.  
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Finally, we examined the ability of PCEP to induce antigen-specific CD8+ T cell responses. 

We observed that mice immunized with OVA plus PCEP induced significant production of 

antigen-specific IFN-γ by splenic CD8+ and CD4+ T cells. This is in agreement with our previous 

in vivo and in vitro studies indicating that PCEP induced significant production of Th1 type 

cytokines including IFN-γ (Awate et al., 2012; Mutwiri et al., 2008).  

 

Taken together our investigations suggest that PCEP directly activates innate immunity and 

B cell responses but not T cells. However, PCEP does induce antigen-specific T cell responses. 

PCEP-induced activation of innate immune responses at the injection site involves activation of 

adjuvant core response genes, production of cytokines and chemokines, recruitment of various 

immune cells and presumably activation of the NLRP3 inflammasome. All these events promote a 

strong immunocompetent environment at the injection site that may significantly contribute to the 

adjuvant activity of PCEP. Understanding the mechanisms of action of adjuvants will provide 

critical information on how innate immunity influences the development of adaptive immunity and 

help in rational design of vaccines against various diseases. 
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Fig 6.1 Proposed mechanisms of action of PCEP. 
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FUTURE STUDIES 
 

We have shown that PCEP induces production of cytokines and chemokines, which in turn 

recruit various immune cells to the injection site. Further studies are required to understand the 

different contribution of each of these mechanisms in the activation of optimal adaptive immune 

responses. PCEP have been shown to recruit myeloid and lymphoid cells; however, the 

relationship between these recruited cells and induction of immune responses remains to be 

determined. Further, it will be interesting to determine whether this cellular recruitment is critical 

for the adjuvant activity of PCEP by depletion of single or multiple cell populations.  

 

The role of inflammsomes in adjuvant activity remains unclear. We have shown that 

PCEP-mediated secretion of pro-inflammatory cytokines IL-1β and IL-18 is caspase-1 dependent. 

Additional studies are required to confirm the role of the inflammsome and understand the 

caspase-1 regulation in adjuvant activity of PCEP. There are many questions that need to be 

addressed such as to determine if the inflammasome contributes to the adjuvant activity of PCEP. 

How do PCEP activate the inflammasome? Does inflammasome or its activated products IL-1β 

and IL-18 have any role in induction of adaptive immune responses? Are there other 

inflammasomes involved in the adjuvant activity of PCEP?  

 

Finally, we have shown that PCEP activates innate immune responses at the injection site. 

Future studies examining the receptors targeted by PCEP will provide important information on 

mechanisms of action of polyphosphazenes.  
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