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ABSTRACT 

 

In Western Canada, oat crown rust (caused by Puccinia coronata Corda f. sp. avenae Eriks) 

is considered the most economically important disease of cultivated oat (Avena sativa L.). 

Resistant oat varieties are an important control method for crown rust. Avena sterilis L. 

accessions have been the main source of crown rust resistance genes due to their reproductive 

compatibility with A. sativa. In order to discover new seedling resistance genes in Avena 

sterilis accessions, six genetic populations were generated by crossing AC Morgan (Reg. 

no.CV-369, PI 629113) with six A. sterilis accessions (PI311623-4, PI333561, PI334672-5, 

PI335562, PI375506 and PI375547). All F2 populations and partial F3 families were 

inoculated with isolate CR259 (race LQCB-91; virulent on 

Pc35/38/39/40/55/59/60/61/63/91) at the two leaf stage and rated 11
 

or 12 days 

post-inoculation. Resistance in PI334672-5 was the result of two resistance genes with one 

dominant resistance gene and one recessive resistance gene. Two dominant resistance genes 

were likely present in PI375547. Current F2 tests revealed that both PI311623-4 and 

PI335562 contained two dominant genes, resulting in duplicate dominant epistasis. Based on 

current F2 and F3 data, resistance genes present in PI375506 are most likely one dominant 

resistance gene or one dominant resistance gene and one recessive resistance gene. In F2 tests, 

PI333561 appeared to be heterogeneous. Assuming no heterogeneity, PI333561 would carry 

two resistance genes, one or both of which are incompletely dominant. PI333561 is the only 

accession resistant to all crown rust isolates contained in the Cereal and Flax Pathology Lab 

(University of Saskatchewan, Saskatoon, SK) and Cereal Research Centre (Agriculture and 

Agri-Food Canada, Winnipeg, MB) collections.  As such, this accession likely carries 

valuable new seedling crown rust resistance genes. 

 

Extensive use of seedling genes in breeding programs corresponds with high virulence 

frequency to those genes. Adult plant resistance (APR) is believed to be a durable rust 

management strategy. The crown rust resistance in the oat line MN841801 has been effective 

for more than 20 years. Research was conducted to detect APR quantitative trait loci (QTLs) 
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contributed by MN841801. A genetic map was generated in a population of 167 F7-derived 

recombinant inbred lines (RILs) from a cross AC Assiniboia x MN841801 (AM). The map 

containing mostly Diversity Arrays Technology (DArT) markers consisted of 30 linkage 

groups spanning 955 cM. Two field environmental tests under a lattice design were 

conducted in Saskatoon, Saskatchewan. Only one QTL contributed by AC Assiniboia was 

detected on 2010 Saskatchewan field data. This detected QTL was the result of the seedling 

resistance gene Pc68, since it was mapped 4 cM away from the sequence characterized 

amplified region (SCAR) marker Pc68-300. No QTL contributed by MN841801 were 

detected in this study. Low oat genome coverage in the current genetic map of the AM 

population is the primary limitation to detecting APR QTLs contributed by MN841801. 

Single nucleotide polymorphism (SNP) markers from the first complete oat map will be 

important for improving the genetic map of this population and detection of APR QTL from 

MN841801. Additional field testing of the AM population with P. coronata isolate CR251 is 

recommended to improve the precision and accuracy of the phenotypic data.   

 

  



iv 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisors, Dr. Aaron Beattie and Dr. Curt McCartney, for their 

guidance, support and patience throughout this project. Their encouragement, advice and 

kindness will always be remembered. I would also like to convey my acknowledgment 

towards my advisory committee: Dr. Sabine Banniza, Dr. Bruce Coulman and Dr. Pierre 

Hucl. I would like to thank Dr. Maricelis Acevedo for being my external examiner. Special 

thanks to the funding agencies that supported this work: Saskatchewan Agriculture 

Development Fund, PepsiCo Quaker and the Saskatchewan Oat Development Commission. 

 

I also gratefully thank Dr. James Chong and his team for providing initial isolates related 

with crown rust tests and creating the AC Assiniboia x MN841801 population. As well, I 

thank Dr. Eric Jackson for the provided SNP markers. In addition, I am thankful for Dr. 

Curtis Pozniak and Dr. Randy Kutcher for allowing me to using their labs, field plots and 

equipment. Without the help of Robert Stonehouse and Peter Eckstein, I would not have been 

able to complete the molecular part of this project. During the three year study, Tim Dament, 

Jill Woytowich and Jessica Taylor do not only provided technical support at all field tests, but 

also they show great kindness when I struggled with my mother’s two cancer surgeries. I 

would like to acknowledge Xiangmin Zhang and Mark Colin from the Crop Molecular 

Genetics lab, Krystalee Wiebe and Megan Torrico from the Wheat Molecular Breeding lab, 

and Mark Redden and Raelene Regier who previously worked in the Cereal and Flax 

Pathology lab. In addition, I would like to thank my fellow graduate students in the 

department and all the summer students for their help. Finally, I would like to thank my 

family and friends for their patience, understanding and support through this project. 

  



v 
 

TABLE OF CONTENTS 

 

PERMISSION TO USE. . . . . . . . . . . . . . . .    i 

ABSTRACT. . . . . . . . . . . . . . . . . .   ii 

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . iv 

TABLE OF CONTENTS. . . . . . . . . . . . . . . .   v 

LIST OF TABLES. . . . . . . . . . . . . . . . .  viii 

LIST OF FIGURES. . . . . . . . . . . . . . . . .   x 

LIST OF APPENDICES. . . . . . . . . . . . . . . .  xii 

LIST OF ABBREVIATIONS. . . . . . . . . . . . . . .  xiii 

 

1. Introduction. . . . . . . . . . . . . . . . . .   1 

 

2. Literature Review. . . . . . . . . . . . . . . .   3 

 2.1 Oat. . . . . . . . . . . . . . . . . . .   3 

2.2 Puccinia coronata. . . . . . . . . . . . . . . .   4 

  2.2.1 Economic loss caused by P. coronata. . . . . . . . . .   4 

  2.2.2 Life cycle and disease symptoms. . . . . . . . . . .   5 

  2.2.3 Pathogen host range. . . . . . . . . . . . . .  7 

 2.2.4 Epidemiology of P. coronata. . . . . . . . . . . .   7 

2.2.5 New pathogenic forms of P. coronata. . . . . . . . . .   9 

2.2.6 Disease rating methods. . . . . . . . . . . . .  10 

2.2.7 Disease control methods. . . . . . . . . . . . .  11 

2.3 Host Resistance. . . . . . . . . . . . . . . .  12 

2.3.1 Plant non-host defense. . . . . . . . . . . . .  12 

2.3.1.1 Performed or passive defense. . . . . . . . . .  13 

2.3.1.2 Basal defense. . . . . . . . . . . . . .  13 

2.3.1.3 Effector-triggered immunity. . . . . . . . . .  15 

2.3.2 Gene-for-gene resistance. . . . . . . . . . . .  16 



vi 
 

 

2.4 Resistance Breeding. . . . . . . . . . . . . . .  16 

2.4.1 Breeding for crown rust resistance. . . . . . . . . . .  16 

2.4.2 Limitations of seedling resistance genes. . . . . . . . .  17 

2.4.3 Breeding durable disease resistance. . . . . . . . . .  18 

 

3. Genetic Analysis of Crown Rust Resistance in Avena sterilis Accessions. . . .  20 

3.1 Introduction. . . . . . . . . . . . . . . . .  20 

3.2 Materials and Methods. . . . . . . . . . . . . .  21 

3.2.1 Population development. . . . . . . . . . . . .  21 

3.2.2 Disease evaluation. . . . . . . . . . . . . .  22 

3.2.3 Statistical analysis. . . . . . . . . . . . . .  23 

3.3 Results and Discussion. . . . . . . . . . . . . .  24 

 3.3.1 Disease rating for parental lines and F1 hybrids. . . . . . . .  24 

   3.3.2 Chi-square analysis of disease reaction in six different crosses. . . .  24 

  3.3.2.1 Chi-square analysis of AC Morgan x PI311623-4. . . .  24 

3.3.2.2 Chi-square analysis of AC Morgan x PI333561. . . . .  26 

3.3.2.3 Chi-square analysis of AC Morgan x PI334672-5. . . .  29 

3.3.2.4 Chi-square analysis of AC Morgan x PI335562. . . . .  29 

3.3.2.5 Chi-square analysis of AC Morgan x PI375506. . . . .  30 

3.3.2.6 Chi-square analysis of AC Morgan x PI375547. . . . .  31 

3.4 Discussion. . . . . . . . . . . . . . . . .  32 

 

4. Linkage and QTL Mapping of Crown Rust Resistance in the Cross AC 

Assiniboia/MN841801. . . . . . . . . . . . . . .  36 

4.1 Introduction. . . . . . . . . . . . . . . . .  36 

4.2 Materials and Methods. . . . . . . . . . . . . .  38 

 4.2.1 Plant materials. . . . . . . . . . . . . . .  38 

 4.2.2 Disease inoculation. . . . . . . . . . . . . .  38 



vii 
 

4.2.2.1 Fungal isolates and inoculum production. . . . . . . .  38 

4.2.2.2 Naturally (multi isolate / race) infected buckthorn nurseries. . .  38 

4.2.2.3 Single isolate inoculated disease nurseries. . . . . . .  39 

4.2.3 Disease evaluation. . . . . . . . . . . . . .  40 

4.2.4 DNA extraction, marker development and analysis. . . . . .  40 

4.2.5 Phenotypic data analysis. . . . . . . . . . . .  43 

4.2.6 Linkage map construction and detection of APR QTLs. . . . . .  44 

 4.3 Results. . . . . . . . . . . . . . . . . .  44 

4.3.1 Phenotypic distribution. . . . . . . . . . . . .  44 

4.3.2 Linkage map. . . . . . . . . . . . . . .  50 

4.3.3 QTLs for crown rust resistance. . . . . . . . . . .  51 

4.4 Discussion. . . . . . . . . . . . . . . . .  57 

 

5. General Discussion. . . . . . . . . . . . . . . .  62 

 

6. References. . . . . . . . . . . . . . . . . .  66 

 

7. Appendices. . . . . . . . . . . . . . . . . .  76 

 

 

  



viii 
 

LIST OF TABLES 

 

Table 2.1 Correlations between yield loss, test weight loss and three different crown rust 

estimation methods (from Murphy et al., 1940) . . . . . . . . . .  10 

 

Table 3.1 Original collection information for six Avena sterilis accessions from Germplasm 

Resources Information Network, National Genetic Resource Program, Agricultural Research 

Service, United States Department of Agriculture. . . . . . . . . .  21 

 

Table 3.2 Detailed information for crosses made between three AC Morgan female parents 

and several PI333561 male parents at the University of Saskatchewan in 2008 . . .  22 

 

Table 3.3 Crown rust disease ratings for six Avena sterilis accessions, oat cultivar AC 

Morgan, F1 hybrids from the six crosses and the Pc91 crown rust resistance gene differential.

 . . . . . . . . .   . .  . .  . .  . .  . .  .  25 

 

Table 3.4 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI311623-4. . . . . . . . . . . . . . . .  25 

 

Table 3.5 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI333561. . . . . . . . . . . . . . . . .  26 

 

Table 3.6 P-values of the 2 x 2 chi-square contingency tests for crown rust reaction among 

all F2 generation tests in the oat cross AC Morgan x PI333561. . . . . . .  27 

 

Table 3.7 Crown rust ratings for individual PI333561 plants against a range of oat crown rust 

isolates . . . . . . . . . . . . . . . . . . .  28 

 



ix 
 

Table 3.8 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI334672-5. . . . . . . . . . . . . . . .  30 

 

Table 3.9 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI335562. . . . . . . . . . . . . . . . .  30 

 

Table 3.10 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross 

AC Morgan x PI375506. . . . . . . . . . . . . . . .  31 

 

Table 3.11 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross 

AC Morgan x PI375547. . . . . . . . . . . . . . . .  32 

 

Table 4.1 Frequencies (%) of virulence on 6 oat crown rust differentials and two putative 

new genes of Puccinia coronata f. sp. avenae isolates collected from wild oat (Avena fatua) 

and cultivated oat (A. sativa) in commercial farm fields in Manitoba and eastern 

Saskatchewan of Canada during 2007-2009. . . . . . . . . . .  37 

 

Table 4.2 Means and variance components of oat parents and recombinant inbred lines for 

DS, IT and CI at the SK10 and SK11 oat crown rust field nursery experiments.. . .  45 

 

Table 4.3 P-value for normality tests on the raw and transformed data for DS and CI at each 

oat crown rust nursery field experiment using the Shapiro-Wilk method. . . .  .  48 

 

Table 4.4 Summary of crown rust resistance QTL identified based on DS and CI measured 

on 167 RILs from the oat AM cross in the SK10 oat crown rust field nursery experiment   

 . .  . .  . .  . .  . .  . .  . .  . .  . .  . .  52 

 

Table 4.5 Crown rust severity of oat cultivars AC Assiniboia, AC Morgan, Noble-2 and 

Portage, and oat lines MN841801 and MN841801-1 in different crown rust experiments.  57 



x 
 

LIST OF FIGURES 

 

Figure 4.1 Design of the Horticulture Crown Rust Nursery used for the SK10 experiment at 

the University of Saskatchewan. . . . . . . . . . . . . .  39 

 

Figure 4.2 Linkage groups 3 and 26 in the oat MN map containing previously identified APR 

QTLs (modified from Acevedo et al., 2010). Markers in blue color boxes were converted into 

SCAR markers or HRM markers . . . . . . . . . . . . .  42 

 

Figure 4.3 Comparison of linkage group 13 in the oat MN map and linkage group 14 in the 

new oat KO map (modified from Tinker et al., 2009 and Acevedo et al., 2010). Markers in 

blue color boxes were converted into SCAR markers or HRM markers. . . . .  42 

 

Figure 4.4 Frequency distributions for DS for 167 F7-derived RILs of the oat AM cross in 

SK10 (A) and SK11 (B) crown rust field nursery experiments. The line represents the 

negative binomial distribution and the bars represent the number of plants in DS categories 

spanning ten units. .  . .  . .  . .  . .  . .  . . . . .  46 

 

Figure 4.5 Frequency distributions for CI for 167 F7-derived RILs of the oat AM cross in 

SK10 (A) and SK11 (B) crown rust field nursery experiments. The line represents the 

negative binomial distribution and the bars represent the number of plants in DS categories 

spanning ten units. . . . .  . . . .  . . . .  . . . .  47 

 

Figure 4.6 QQ line and QQ norm on raw data, sqrt transformed data and log transformed 

data for DS and CI in SK10 and SK11 oat crown rust field nursery experiments. . .  49 

 

Figure 4.7 Overlapping QTLs for DS and CI detected in the SK10 oat crown rust field 

nursery experiment using both raw data and transformed data. . . . . . .  51 

 



xi 
 

Figure 4.8 Linkage group 3 from the oat MN cross showing two oat crown rust APR QTLs 

(Prq1a and Prq1b) associated with crown rust resistance detected in ten field tests and four 

greenhouse tests.  . .  . .  . .  . .  . .  . .  . . . .  53 

 

Figure 4.9 Comparison of linkage group 3 from the oat MN cross and linkage groups 17 and 

25 from the oat AM cross. Seedling oat crown rust resistance QTLs in linkage group 3 of the 

MN map courtesy of Dr. Acevedo (unpublished data). . . . . . . . .  54 

 

Figure 4.10 Comparison of linkage group 26 from the oat MN map, containing one APR 

QTL (Prq2) associated with crown rust resistance, and linkage group 26 from the oat AM 

cross. . . . . . . . . . . . . . . . . . . .  55 

 

Figure 4.11 Comparison of linkage group 13 from the oat MN map, containing one APR 

QTL (Prq8) associated with crown rust resistance, with linkage group 14 from the new KO 

map and linkage groups 18 and 21 from the oat AM map. . . . . . . .  56 

  



xii 
 

LIST OF APPENDICES 

 

Appendix A Nine Oat Crown Rust Isolates / Races. . .    . . . . .  76 

 

Appendix B Adult Plant Resistance QTL Markers. . . . . . . . . .  77 

 

Appendix C Linkage Map for the AC Assiniboia x MN848101 Population. . . .  85 

 

Appendix D Adult Plant Resistance QTL Identified in Prior Studies. . . . . .  87 

 

  



xiii 
 

LIST OF ABBREVIATIONS 

 

AAFC Agriculture and Agri-Food Canada 

ABC ATP-binding cassette 

AM AC Assiniboia x MN841801 

ANOVA Analyses of variance 

APR Adult plant resistance 

ATP Adenosine-5'-triphosphate 

Avr Avirulence 

Bgh Blumeria graminis f.sp. hordei 

CI Coefficient 

CIM MLE Composite interval mapping based on maximum-likelihood 

 estimates 

CRC Cereal Research Center 

CTAB Hexadecyltrimethylammonium bromide 

CWA Cell wall apposition 

DArT Diversity Arrays Technology 

DS Disease severity 

EFR EF-Tu receptor 

EF-Tu Elongation factor Tu 

EST Expressed sequence tag 

ETI Effector-triggered immunity 

FDNA Fungal DNA 

flg Flagellin 

FLS2 Flagellin-sensing 2-like protein 

GRIN Germplasm Resources Information Network 

HR Homozygous resistant  

HRM High resolution melting 

HS Homozygous susceptible 



xiv 
 

IP Infection peg 

IT Infection type 

KO Kanota x Ogle 

LPS Lipopolysaccharide 

LRR Leucine-rich repeat 

LRR-RLK Lucine-rich repeat-receptor-like kinase 

MAMP Microbe-associated molecular pattern 

MB01 Manitoba in 2001 

MB02 Manitoba in 2002 

MN MN841801-1 x Noble-2 

NB Nuclear binding domain 

PAMP Pathogen-associated molecular pattern 

PCD Programmed cell death 

PCR Polymerase chain reaction 

PGN Peptidoglycan 

PR Pathogenesis-related 

PRR Pattern-recognition receptor 

PTI PAMP-triggered immunity 

q-PCR Quantitative real time polymerase chain reaction 

QTL Quantitative trait locus 

R Resistance 

RFLP Restriction fragment length polymorphism 

RIL Recombinant inbred line 

ROS Reactive oxygen species 

SCAR Sequence characterized amplified region 

SEG Segregating 

SK10 Saskatoon, Saskatchewan in 2010 

SK11 Saskatoon, Saskatchewan in 2011 

SMA Single marker analysis 



xv 
 

SNP Single nucleotide polymorphism 

SSCP Single-strand conformation polymorphism 

SSR Simple sequence repeat 

USDA United States Department of Agriculture 

USDA-ARS United States Department of Agriculture-Agricultural 

 Research Service 

 

 

 



1 
 

1. Introduction 

Oat (Avena sativa L.) is an important cereal crop in the Prairie Provinces of Canada 

(Statistics Canada, 2011). Approximately half of the world’s oat exports are supplied by 

Canada (Agriculture and Agri-Food Canada, 2010) and demand for oat continues to increase 

because oat grains are recognized as very nutritious (Agriculture and Agri-Food Canada, 

2010). In western Canada, oat crown rust (caused by Puccinia coronata Corda f. sp. avenae 

Eriks) is considered the most economically important disease in cultivated oats (McCallum et 

al., 2007; Leonard, 2007; Chong et al., 2008). The disease primarily causes severe yield and 

grain quality losses (Simons, 1970) while lodging and low cold resistance are additional 

negative effects caused by this disease. 

 

Resistant oat varieties have been the main management method in North America, but 

fungicide application is becoming common (McCallum et al., 2007). Avena sterilis L., which 

contains more than 45 effective resistance genes, has been a major source of crown rust 

resistance genes since the 1960s (McCallum et al., 2007; Leonard, 2007). Through 

cross-pollination between A. sativa and A. sterilis resistance genes have been moved from 

wild oats to cultivated oats and identified by seedling tests (McCallum et al., 2007). 

 

The majority of known race-specific resistance genes used in oat breeding programs are 

involved in gene-for-gene resistance. This type of rust resistance is able to control P. 

coronata at the time of initial widespread deployment of the gene. However, in a relatively 

short period of time these genes are overcome by P. coronata. Other Avena spp. beyond A. 

sterilis have also been used to develop crown rust resistance (Rooney et al., 1994; Aung et 

al., 2010). However, Carson (2009a) noted that no evidence exists to demonstrate that 

seedling resistance genes from diploid or tetraploid Avena spp. are more durable than those 

resistance genes from A. sterilis. In the current study, six F2 and partial F2:3 populations 

developed from six A. sterilis accessions crossed with AC Morgan were evaluated in seedling 

tests to detect putative new resistance genes. 

 



2 
 

Partial resistance has been widely applied as a durable disease management strategy in 

other cereal crops (Dyck, 1987; Humphry et al., 2006). The oat line, MN841801, has 

consistently demonstrated resistance to various P. coronata populations for more than 20 

years (Chong, 2000; Leonard 2002). It is believed to potentially contain durable resistance 

genes. Chong (2000) concluded that MN841801 is carrying two adult plant resistance (APR) 

genes with additive effects. However, four major quantitative trait loci (QTLs) and three 

minor QTLs for APR contributed by MN841801-1 were detected in the cross MN841801-1 x 

Noble-2 (MN) (Portyanko et al., 2005). Acevedo et al. (2010) validated these APR QTLs and 

discovered one new QTL from the same cross. A second project was conducted as part of this 

study to establish a recombinant inbred line (RIL) population from the cross AC Assiniboia x 

MN841801. Across two years of field tests using this RIL population, the presence of APR 

QTLs contributed by MN841801 were tested through QTL mapping.  

 

This study consisted of two projects.  In project one, the research hypothesis tested was 

that Avena sterilis accessions carry seedling crown rust resistance genes effective against 

isolate CR259 (LQCB-91) which is virulent against most commonly deployed crown rust 

resistance genes.  The objectives to test this hypothesis were to evaluate the presence and 

genetic inheritance of resistance genes contained in six Avena sterilis accessions when 

inoculated with CR259.  In project two, the research hypothesis was that oat line 

MN841801 contained APR loci that can be mapped. The objectives to test this hypothesis 

were to create a genetic linkage map in a recombinant inbred population derived from AC 

Assiniboia x MN841801 and identify QTLs controlling APR by measuring crown rust 

reaction in this population.  
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2. Literature Review 

2.1 Oat  

Cultivated oat (Avena sativa L.) belongs to the family Poaceae. Optimal growing 

conditions for oat are well drained soils, long warm days and adequate water supply. Suitable 

soil textures range from sandy loam to heavy clay. Oat has been marketed as one of the most 

important human grains. A dehulled oat kernel (groat) contains 12 - 20% protein and has 3 - 

6% beta-glucan. Beta-glucan is a soluble fiber that has been shown in a number of studies to 

reduce the risk of coronary heart disease (Ludwig et al., 1999; Maki et al., 2007) and type ΙΙ 

diabetes (Jenkins et al., 2002). In 1997, the US Food and Drug Administration (FDA) 

approved the use of a health claim for oats stating that soluble oat fiber beta-glucan will 

lower the risk of coronary heart disease. Oat grains also contain a number of anti-oxidants, 

including avenanthramides which are unique to oat (Rines et al., 2006). Studies have linked 

this compound with the prevention of atherosclerosis (Nie et al., 2006). 

 

Oat is an important crop in Canada, particularly in the Prairie Provinces. Approximately 

1.8 million hectares of oat have been seeded each year in Canada over the past decade 

(Statistics Canada, 2011). In 2012, Canada produced 3.25 million tonnes of oat, making 

Canada the third largest oat producer in the world. In addition, Canada was the largest oat 

exporter. In 2012, 1.7 million tonnes were exported to the world cereal market (United States 

Department of Agriculture, 2012). The province of Saskatchewan produces approximately 

1.4 million tonnes of oat on 600,000 hectares of land on an annual basis (Government of 

Saskatchewan, 2010).  

 

There are three ploidy levels in Avena spp., which are diploid, tetraploid and hexaploid. 

Wild oat (A. sterilis L.) and cultivated oat are hexaploids which carry the A, C and D 

genomes. Each genome contains seven base chromosomes. The ancestor of A. sativa is 

suspected to be A. sterilis (Loskutov and Rines, 2011). Avena canariensis is the diploid 

A-genome ancestor of the hexaploid Avena species whereas A. ventricosa is the diploid 

C-genome ancestor. Currently, the ancestral Avena diploid D-genome species is unknown 
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(Loskutov and Rines, 2011). Avena strigosa has been an important AA genome species 

which has contributed a large number of effective crown rust resistance genes (Rines et al., 

2006). Among tetraploid Avena species, the AABB, AACC and CCDD genomes are 

observed.  Avena murphyi and A. insularis carry the AACC genome, A. barbata carries the 

AABB genome and A. magna carries the CCDD genome.  Avena magna is also thought to 

be the tetraploid progenitor of the hexaploid genome (Loskutov and Rines, 2011). With 

respect to crown rust resistance, A. barbata has contributed effective crown rust resistance 

genes that have been transferred into cultivated oat (Carson, 2009a; Loskutov and Rines, 

2011).  

 

2.2 Puccinia coronata  

2.2.1 Economic loss caused by P. coronata 

Common diseases of oat include crown rust, stem rust, barley yellow dwarf virus, loose 

smuts, powdery mildew, Septoria leaf blight, Victoria blight, bacterial blights, soil-borne 

viruses and nematodes (Chong, 2003). In western Canada, oat crown rust (caused by 

Puccinia coronata Corda f. sp. avenae Eriks) is considered the most economically important 

disease in cultivated oats (McCallum et al., 2007; Leonard, 2007; Chong et al., 2008). The 

disease can cause severe yield and grain quality losses in North America, Europe, South 

America, the Middle East and Australia. Yield losses in North America can range from 10% 

to 40% (Simons, 1970). A severe rust epiphytotic in 1957 in Illinois resulted in 20% yield 

loss valued at $16.9 million (Endo and Boewe, 1958). Humphreys and Mather (1996) also 

noted that P. coronata infection is associated with poor grain filling. In addition to grain 

yield, seed weight and test weight were reported to be negatively correlated with crown rust 

severity (Holland and Munkvold, 2001; Long et al., 2006).  

Oat crown rust has additional negative effects on oat beyond yield and poor grain 

quality. Severe crown rust can result in weak straw and lodging, which makes the crop 

difficult to harvest (Endo and Boewe, 1958). Also, juvenile winter oats infected by P. 

coronata have reduced cold resistance (Murphy, 1939).  
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2.2.2 Life cycle and disease symptoms 

There are two different types of rust pathogens: autoecious rusts and heteroecious rusts. 

Puccinia coronata belongs to the heteroecious group. Autoecious rust fungi are able to 

complete their life cycles on a single host species while two unrelated hosts are required to 

complete the life cycle of a heteroecious rust (Littlefield, 1981). The complete life cycle of P. 

coronata consists of five different spore stages: basidiospores, pycniospores, aeciospores, 

urediniospores and teliospores. The telial stage of this fungus was first discovered and named 

P. coronata in 1837. Later, a close relationship between P. coronata on A. sativa and on 

Rhamnus cathartica L. (common buckthorn) was observed. Avena spp. and Rhamnus spp. are 

the essential hosts for P. coronata which are required to complete its life cycle (Simons, 

1970).  

 

The life cycle of P. coronata starts from teliospores in spring. Positive (+) and negative 

(-) nuclei fuse together in the germinated teliospores to form a diploid stage. After nuclear 

fusion, meiosis occurs. Four haploid basidiospores, two of (+) mating type and two of (-) 

mating type, are produced. The newly produced basidiospores have genotypes different from 

that of the haploid nuclei in the parental teliospores as a result of random assortment of 

chromosomes and genetic recombination (Simons, 1970; Littlefield, 1981). Basidiospores are 

able to be transferred by wind a few hundred meters to infect the alternate Rhamnus host. 

When a basidiospore arrives at a Rhamnus leaf under suitable environmental conditions, the 

basidiospores germinate and form appressoria. A penetration peg is developed from the 

appressorium to penetrate the Rhamnus cuticle and epidermis using high turgor pressure 

(Simons, 1970; Agrios, 2004). 

 

After one to two weeks, pycnia are formed from the haploid mycelium on the upper 

surface of the Rhamnus leaf. Pycnia have a mainly epiphyllous growth on leaves, petioles, 

young stems and floral structures. Pycniospores that are produced at the tips of sporophores 

within the pycnia are small, round, orange-yellow, and slightly raised from the leaf.  
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Flexuous hyphae among paraphyses are also initiated from pycnia. The pycniospores, which 

are considered as the male gametes, are capable of entering the flexuous hyphae functioning 

as female receptive structures. The pycniospores cannot mate with flexuous hyphae that 

originate from the same pycnia. Each pycnium is either (+) mating type or (-) mating type. In 

order to mate successfully, a pycniospore is transferred by insects to compatible flexuous 

hyphae of the opposite mating type (Littlefield, 1981). 

 

Aecia develop beneath the pycnia and grow on the underside of the infected Rhamnus 

leaf. When the nucleus of the pycniospore migrates to the aecial primordium from the 

flexuous hyphae, dikaryotic sporogenous cells with two opposite mating type nuclei are 

developed and are named aeciospores. Because several different genotypes of pycniospores 

migrate to one aecial primordium, one aecium can contain a number of different genotypes of 

aeciospores. After receiving several different pycniospore nuclei, an aecium is formed on the 

underside of the infected leaf. The aecium looks round and has tightly packed clusters of 

small orange or yellow cups with long chains. Aeciospores are borne in chains and dispersed 

by wind (Littlefield, 1981).  

 

Aeciospores are released from Rhamnus to nearby Avena plants. Appressoria produced 

from germinated aeciospores form sub-stomatal vesicles inside host plants after penetration 

through the stomata. A dikaryotic mycelium developed from a dikaryotic aeciospore grows 

into the host tissue (Littlefield, 1981). Later, uredinia develop and produce several 

generations of dikaryotic urediniospores. On the main host (Avena spp.), uredinia appear on 

leaf blades and occasionally on the sheaths and floral structures. Bright orange-yellow 

urediniospores are produced in round to oblong uredinia (pustules). Uredinia length ranges up 

to five millimeters. Symptoms on resistant varieties range from small, light-colored flecks to 

small to medium-sized pustules surrounded by chlorotic or necrotic areas (Simons, 1970). 

Urediniospores can be carried by wind long distances (up to 150 km) to infect other Avena 

plants. Major yield loss and poor grain quality are caused by urediniospore infection 

(Eversmeyer and Kramer, 2000).  
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Urediniospores are surrounded by self-germination inhibitors. The inhibitors can be 

digested by hydrolytic enzymes. Urediniospores germinate on an Avena leaf when moisture 

and temperature reach optimal levels. A germ tube is produced from a germinated 

urediniospore which grows and elongates away from light because of negative phototropism 

(Staples and Macko, 1984). Once the germ tube reaches the host stomata, it forms an 

appressorium. A penetration peg grows from the appressorium and hyphae elongate to 

produce haustorial mother cells after penetration into the host leaf. A haustorial apparatus is 

formed when the haustorial mother cell contacts the host mesophyll cells (Harder, 1984). 

Nutrients from host cells are taken up by the haustorium to produce a uredinium. Large 

urediniospores are produced from the uredinium, which can infect additional Avena plants. 

Later, dikaryotic telia are formed to produce teliospores. These teliospores, which are 

clavate-oblong with dark-brown cell walls, are able to tolerate cold and germinate the next 

spring (Simons, 1970; Littlefield, 1981; Agrios, 2004).  

 

2.2.3 Pathogen host range 

Avena spp. are the main hosts for P. coronata in the anamorphic or uredinial stage. This 

includes A. sativa and A. sterilis (McCallum et al., 2007), A. fatua L. and A. barbata 

(McCallum et al., 2007; Carson, 2009a), as well as, A. strigosa Schreb., A. insularis Ladiz. 

and A. murphyi Ladiz. (Rines et al., 2007). During the teleomorph stage of P. coronata, 

common alternate Rhamnus spp. hosts found in North America include R. cathartica, R. 

frangula L., and R. alnifolia L'Hér (Simons, 1970; Simons, 1985; Leonard, 2002). Most 

recently R. lycioides L. has been identified as being a host for P. coronata in Tunisia 

(Hemmami et al. 2006).  

 

2.2.4 Epidemiology of P. coronata 

Crown rust development is favored by warm (20-25˚C) and humid weather, which is 

typical weather in June and July in North America. Urediniospores are spread by wind from 

the United States to Western Canada (Carson, 2008). In North America, P. coronata has two 
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disease transmitting patterns (Simons, 1970). The first pattern does not require participation 

of the alternate Rhamnus host (Eversmeyer and Kramer, 2000). Winter in southern North 

America allows urediniospores to survive on winter oats. Those urediniospores from northern 

Mexico and southern Texas move northwardly across the Great Plains into the Canadian 

Prairies in the spring (Agrios, 2004). This migration route is called the Puccinia pathway. 

Urediniospores in southern North America lose their viability in hot summer temperatures, 

but urediniospores in the northern North America retain their viability because of the 

relatively cool summer temperatures (Simons, 1970). In the fall, urediniospores from 

northern North America are transmitted back to southern North America and cause disease 

infection on juvenile winter oats. The urediniospores on winter oats survive the warmer 

winters in southern North America (Eversmeyer and Kramer, 2000).  

 

The alternate Rhamnus host is involved in the second transmitting pattern (Simons, 

1970). Teliospores overwinter on infected oat residue. Germinated teliospores go through 

meiosis to produce basidiospores in spring (Simons, 1970). Rhamnus around fields is infected 

by basidiospores from infected oat field residue. Later, aeciospores from Rhamnus cause 

disease infection in oat fields. Aeciospores can be moved up to 2.5 km (Eversmeyer and 

Kramer, 2000). Infected Avena spp. then produce urediniospores, which cause further disease 

infection. Telia on infected oat residue that is left in fields allows the pathogen to overwinter 

(Simons, 1970).  

 

In the first transmitting pattern, massive urediniospore numbers disperse through the 

Puccinia pathway and cause severe disease epidemics in susceptible oat fields (Eversmeyer 

and Kramer, 2000). The second transmitting pattern, which harbors aeciospores carrying new 

recombinant genotypes, has the potential to generate new P. coronata races that are virulent 

on resistant oat cultivars (Leonard, 2007; Eversmeyer and Kramer, 2000). Both patterns are 

important sources of primary inoculum (Eversmeyer and Kramer, 2000).   
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2.2.5 New pathogenic forms of P. coronata  

According to Knott (1989), sexual recombination, random mutation and somatic 

hybridization are three sources of pathogenic variability in wheat rust diseases. Puccinia 

coronata has similar patterns of pathogenic variability. Murphy (1935) mentioned that 

Rhamnus is responsible for the development of new races of P. coronata. An aecium can 

produce aeciospores with a large diversity of genotypes because of the following three 

reasons. First, every year newly produced basidiospores have different genotypes than the 

haploid nuclei in the parental teliospores as a result of random assortment of chromosomes 

and genetic recombination. Second, pycniospores fuse with the flexuous hyphae of the 

opposite mating type. Third, several genotypically different nuclei of pycniospores are able to 

migrate to one aecial primordium. Thus, one aecium can contain a number of different 

aeciospores genotypes (Littlefield, 1981). These sexual processes result in greater race 

diversity and is evident when  P. coronata is compared to P. triticina (Chong et al., 2011; 

McCallum et al., 2011). Puccinia triticina causes wheat leaf rust and lacks a sexual 

reproductive cycle in the Puccinia pathway of North America. 

 

A new race of P. coronata could also be produced by heterokaryosis or random 

mutation. For example, P. coronata race 228 was initially avirulent on the oat variety ‘Saia’ 

and virulent on ‘Ukraine’ while race 393 had an opposite virulence pattern on these two oat 

varieties. When the two races were inoculated on the same plant, a new race (race 229) was 

found to be virulent on both Saia and Ukraine. Somatic hybridization through hyphal 

anastomosis created an opportunity to form a new virulent P. coronata race (Bartos et al., 

1969; Simons, 1970). Simons (1970) also noted that one mutation occurs naturally in every 

2,200 P. coronata infections on resistant varieties. However, new virulent P. coronata races 

could be raised relative easily under the extremely high selection pressure created from long 

term use of prevailing commercial oat varieties that contain a few major seedling resistance 

genes.  
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2.2.6 Disease rating methods 

Three different disease rating methods are widely used for evaluation of oat crown rust: 

visual rating, digital image rating, and fungal DNA (FDNA) detection. Visual assessment is 

the most common method and has many different rating scales depending on the crown rust 

research group. For estimating seedling resistance, the disease rating scale developed by 

Murphy (1935) is the most common one. For evaluation in fields, the modified Cobb scale 

and infection type (IT) is widely used (Peterson et al., 1948; Chong et al., 2011). Annual 

Canadian crown rust disease surveys are conducted using a 0-9 rating scale (Xue and Chen, 

2011).  

 

Disease severity (DS), infection type (IT) and coefficient of infection (CI) are three key 

parameters in visual disease rating. IT is commonly used when evaluating seedling resistance 

genes. DS and CI are commonly applied during field evaluations. DS represents the actual 

percentage of leaf area occupied by rust pustules using the modified Cobb scale. In the 

modified Cobb scale, 37% of the actual leaf area covered with rust pustules is considered 

100% DS (Peterson et al., 1948). Coefficient (CI = DS x IT) is considered a better parameter 

to examine and represent actual rust damage in fields because CI has a higher correlation to 

yield and test weight loss (Murphy et al., 1940; Table 2.1).  

 

Table 2.1 Correlations between yield loss, test weight loss and three different crown rust 

estimation methods (from Murphy et al., 1940). 

 Severity Infection type Coefficient 

Yield loss 0.73 0.75 0.8 

Test weight loss 0.68 0.64 0.74 

 

Various research groups estimate disease severity from different parts of the infected 

host plant. According to Chisholm et al. (2006), flag leaf, flag minus one leaf and flag minus 

two leaves supply 43%, 23% and 7%, respectively, of the nutrients impacting grain yield. In 

field oat rust estimation, many researchers focus on the flag leaves since these leaves produce 
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the majority of the energy for seed production (Carson et al., 2009a; Carson et al., 2009b; 

Acevedo et al., 2010; Cabral et al., 2011). Other pathologists have also recorded symptoms 

on flag minus one leaf (Portyanko et al., 2005; Aung et al., 2010; Xue and Chen, 2011), as 

well as the three uppermost leaves on the oat plant (Leonard, 2002; Acevedo et al., 2010).  

 

Digital image analysis has been suggested as one method to overcome differences in 

rating results among individuals (Nutter et al., 1993). Infected host leaves are collected and 

scanned which allows rust pustule coverage of infected leaves to be precisely measured using 

image analysis software (Diaz-Lago et al., 2003; Jackson et al., 2008). Another method 

suggested to improve the precision of rust rating is fungal DNA detection (Jackson et al., 

2006). DNA from rust infected leaves is extracted and FDNA is amplified by 

pathogen-specific primers and measured using quantitative real-time polymerase chain 

reaction (q-PCR). The FDNA method is claimed to provide greater mean difference between 

parents than visual measurements (Jackson et al., 2006; Jackson et al., 2007; Jackson et al., 

2008). Studies by Jackson et al. (2007; 2008) showed that quantitative real time polymerase 

chain reaction (q-PCR) of FDNA also increased accuracy and precision in quantitative trait 

locus (QTL) detection.  

 

2.2.7 Disease control methods 

There are four common ways to control oat crown rust: early seeding, R. cathartica 

removal, fungicide application and resistant cultivar use. Many uredinia overwinter on 

infected oats in the southern United States and Mexico. Through the Puccinia pathway, 

numerous urediniospores move from the United States to Canada in June. Rust diseases tend 

to cause more damage to crops when disease onset is earlier. Early seeding provides 

additional time for oat plant development before urediniospore arrival (McCallum et al., 

2007). Rhamnus spp. provide primary disease inoculum to oat fields earlier than 

urediniospore arrival from the southern United States and also have the potential to release 

new virulent races. Since R. cathartica commonly occurs in North America, removal of R. 
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cathartica close to oat fields is recommended, although it is relatively hard and laborious 

work (McCallum et al., 2007).  

 

According to the Government of Saskatchewan (2009), crown rust can be controlled by 

fungicides, such as Bumper 418EC (propiconazole), Tilt (propiconazole), Folicur 

(tebuconazole) and Headline EC (pyraclostrobin). Prices of these fungicides vary from 

$6.50/acre to $17.2/acre, based on 2008 data, which increases crop input costs. A concern 

with frequent fungicide application is the potential for P. coronata to develop resistance to 

these fungicides under high selection pressure (McCallum et al., 2007). Resistant oat 

varieties have been the main management method in North America, but fungicide 

application is becoming common. Resistant varieties are estimated to have saved farmers 

$0.4 billion between 1995 and 2005 (McCallum et al., 2007).  

 

2.3 Host Resistance  

2.3.1 Plant non-host defense 

Plants are dependent on an intricate defense system to impede pathogen invasion 

(Chisholm et al., 2006). Three general defense mechanisms are relied upon to prevent 

pathogen infection: preformed or passive defense, basal defense, and effector-triggered 

immunity (ETI). Preformed or passive defense and basal defense are classified as Type Ι 

non-host resistance. Type Ι resistance shows no visible symptoms, however several molecular 

changes such as pathogenesis-related (PR) gene expression still occur. Type Ι resistance can 

take the form of physical barriers (cell walls, cytoskeleton, actin microfilament etc.) and 

basal plant defenses that prevent further movement of the pathogen on the host. ETI is 

categorized as Type ΙΙ non-host resistance. Type ΙΙ resistance is the most common 

phenomenon of non-host resistance and is similar to the incompatible gene-for-gene 

interaction. A rapid hypersensitive response with cell death is a common aspect of Type ΙΙ 

non-host resistance defense (Mysore and Ryu, 2004) 
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2.3.1.1 Preformed or passive defense 

When favorable environmental conditions arise, pathogens start to infect plants. 

Preformed or passive defense is the first obstacle to prevent the pathogen from infecting host 

plants (Mysore and Ryu, 2004). Among pre-existing structural defenses, a thick cuticle can 

prevent direct penetration from some pathogens (Walters, 2011), as can the cell wall 

cytoskeleton (Mysore and Ryu, 2004). Stomatal closure can prevent bacteria from penetrating 

through stomata (Walters, 2011). Among pre-existing chemical defenses, many existing 

secondary metabolites act as antimicrobial compounds during infection. Phenolics, 

terpenoids, and nitrogen-containing organic compounds are three groups of secondary plant 

metabolites involved in pre-existing chemical defense (Walters, 2011).   

 

2.3.1.2 Basal defense  

When pathogens pass through preformed or passive defenses and continue to invade 

plants, pathogen-associated molecular patterns (PAMPs) from the pathogens are detected by 

pattern-recognition receptors (PRRs) on host cell surfaces and induce basal defense reactions 

(also called PAMP-triggered immunity (PTI) or innate immunity). PTI is able to repel a wide 

range of pathogens. PAMPs or microbe-associated molecular patterns (MAMPs) are highly 

conserved molecules released by pathogens that assist with infection of the host (Dodds and 

Rathjen, 2010). Disfunction of PAMP molecules results in the absence of pathogen 

recognition by the host and subsequent pathogen virulence (Naito et al., 2008).  

 

The most common MAMPs are flagellin (flg), elongation factor Tu (EF-Tu), 

lipopolysaccharide (LPS) and peptidoglycan (PGN) (Aslam et al., 2009). Flagellin is the 

peptide component of the motility organ flagellum and is the best characterized PAMP from 

phytopathogenic bacteria (Aslam et al., 2009). Flagellin in Pseudomonas syringae induces 

visible alkalization and elicits a type of necrotic or hypersensitive response in tomato plants 

(Felix et al., 1999). Flg22 is a 22-amino-acid peptide, which is the most conserved part in the 

N-terminus of flagellin (Felix et al., 1999) and is used to represent the presence of flagellin in 

many research experiments (Aslam et al., 2009). Gomez-Gomez and Boller (2002) 
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discovered the leucine-rich repeat receptor-like kinase (LRR-RLK) flagellin-sensing 2-like 

protein (FLS2) gene. FLS2 is considered an important flg22 receptor in host plants and 

triggers defense genes PR1 and PDF1.2 (Chinchilla et al., 2006; Aslam et al., 2009). Felix et 

al. (1999) showed that the plant defense response can be quickly induced by FLS2 within a 

few minutes. Plants carrying FLS2 are resistant to P. syringae pv. tomato DC3000. The 

silencing of FLS2 results in susceptibility to P. syringae pv. tomato DC3000 (Zipfel et al., 

2004).  

 

Elongation factor Tu (EF-Tu), which aggregates and forms on the bacterial cell surface, 

helps pathogens attach to host plants and is the most abundant bacterial protein (Kunze et al., 

2004; Zipfel et al., 2006; Zipfel, 2008; Aslam et al., 2009). Elf18, a highly conserved 

N-acetylated 18 amino acid peptide, is used to represent EF-Tu in research (Kunze et al., 

2004). The LRR-RLK EF-Tu receptor (EFR) from host plants is able to recognize EF-Tu 

from pathogens in the host plasma membrane. Basal resistance is triggered and plant 

resistance genes such as PR1, PDF1.2 and PAL1 are activated (Zipfel et al., 2006; Zipfel, 

2008; Aslam et al., 2009). Absence or silencing of EFR-1 causes failure of recognition of 

EF-Tu resulting in susceptible disease reactions (Zipfel et al., 2006). 

 

During PTI, certain plant structures are reinforced to stop the penetration of pathogens. 

Cell wall appositions (CWAs) are formed to reinforce plant cell walls and inhibit invading 

pathogens. Papillae, which are composed of phenolics, callose, peroxidases and cell wall 

material, are produced by plants beneath the site of the pathogen infection peg. Papillae also 

accumulate reactive oxygen species (ROS) to protect against pathogen entrance (Walters, 

2011). Formation of tyloses helps block pathogens from spreading through xylem (Clerivet et 

al., 2000). 

 

PEN1, PEN2 and PEN 3 are three important genes that prevent pathogen penetration via 

PTI in Arabidopsis. Syntaxin, encoded by PEN1, is associated with papilla-related vesicles 

(Mysore and Ryu, 2004). In sites where pathogens attempt to penetrate, vesicles containing 
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syntaxin are docked at the target membrane and are associated with building papillae and an 

antifungal environment (Schweizer, 2007). PEN2 is involved with cell walls (Mysore and 

Ryu, 2004) and encodes a peroxisome-associated glycosyl hydrolase that is associated with 

production of an antifungal compounds (Humphry et al., 2006; Schweizer, 2007). PEN3 

encodes an adenosine-5'-triphosphate (ATP)-binding cassette multi-drug transporter 

(Humphry et al., 2006) which is thought to be involved in transportation of the antifungal 

product of PEN2 into the apoplast (Schweizer, 2007).  

 

2.3.1.3 Effector-triggered immunity 

During the long battle between plants and pathogens, pathogens have adapted by 

secreting a vast range of effectors into plant cells to modify host proteins (Greenshields and 

Jones, 2008). These effectors are able to detoxify host enzymes and overcome the toxic effect 

of preformed antimicrobial secondary metabolites and PTI (Walters, 2011). For example, 

oligosaccharides of chitin, which are produced through the action of plant chitinases, are an 

important PAMP. Increased levels of chitin oligosaccharide triggers medium alkalization and 

leads to PTI in host plants. Cladosporium fulvum, a fungal pathogen of tomoato causing 

tomato leaf mold, secrets an effector (Ecp6) to suppress activation of chitin PTI by specific 

binding to chitin oligosaccharides. Binding of chitin oligosaccharide by Ecp6 prevents 

medium alkalization and activation of PTI (Jonge et al., 2010).  

 

For those pathogen effectors that successfully defeat PTI, plants have developed a 

second pathogen-sensing mechanism in the plant cytoplasm and cell membrane to recognize 

those effectors, trigger resistance (R) genes and constrain the invasion (Walters, 2011). In 

this second mechanism, a group of plant receptor proteins containing nuclear binding 

domains (NB) and leucine-rich repeats (LRR) are used to recognize the microbial effectors 

intracellularly and trigger downstream signaling pathways. This is called effector triggered 

immunity (ETI). In ETI, pathogen effectors change from virulence components to avirulence 

components. Thus, the genes producing these effectors are named avirulence (Avr) genes. 

For example, as a result of flagellin from P. syringae pv. phaseolicola being detected by 
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FLS2 in host PAMP-trigged resistance, the effector AvrPtoB from P. syringae pv. 

phaseolicola evolved to inhibit the basal defense triggered by flagellin (Torres et al., 2006). 

In ETI, the Pto resistance protein in plants recognize AvrPtoB to subsequently trigger 

programmed cell death (PCD) (Abramovitch and Martin, 2005).  

 

2.3.2 Gene-for-gene resistance 

The majority of known race-specific resistance genes used in oat breeding programs are 

involved in gene-for-gene resistance. In the gene-for-gene system, an incompatible 

interaction results from a resistance gene in the host detecting an avirulence gene in the 

pathogen (Flor, 1956). Typically, resistance is dominant in the host and avirulence is 

dominant in the pathogen. Only a single incompatible interaction is needed for host 

resistance. Type ΙΙ non-host resistance and race specific gene-for-gene resistance share some 

similarities. They both trigger hypersensitive reactions, active reactive oxygen species (ROS) 

and increase lignification in cell walls. Both gene-for-gene resistance and Type ΙΙ non-host 

resistance rely on the recognition of avirulence genes or effectors to trigger defense 

mechanisms. Pathogens can avoid detection in gene-for-gene or Type ΙΙ non-host by 

modifying effectors. Type ΙΙ non-host resistance in the Arabidopsis pathogen P. syringae pv. 

phaseolicola is similar to gene-for-gene resistance mediated by RPS2. However, it cannot be 

concluded that Type ΙΙ non-host resistance and gene-for-gene are the same. Type ΙΙ non-host 

resistance governed by PEN1/ROR2 is different from a race-specific R gene. It is suspected 

that Type ΙΙ non-host resistance and gene-for-gene resistance have different signal 

transduction pathways, but with significant amount of cross-talk or convergence between 

these two pathways (Mysore and Ryu, 2004) 

 

2.4 Resistance Breeding 

2.4.1 Breeding for crown rust resistance 

Oat cultivars were susceptible to crown rust before the 1930s. The first resistant oat 

cultivar was released in 1935. From the mid-1940s to the mid-1950s, ‘Victoria’ and lines 

inheriting resistance from Victoria (Pc2, Pc11 and other undefined resistance genes) were 
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widely deployed in North America. Eventually isolates of P. coronata overcame these 

resistant cultivars by the end of the 1950s. Avena sterilis, from which more than 45 effective 

resistance genes have been obtained, became a major source of crown rust resistance genes 

beginning in the 1960s (McCallum et al., 2007; Leonard, 2007). Through cross-pollination of 

A. sativa and A. sterilis, resistance genes were moved from wild oats to cultivated oats and 

identified by seedling disease tests. Many seedling resistance genes to crown rust have been 

detected by this method (McCallum et al., 2007). Pc38 and Pc39 were transferred from A. 

sterilis and released in the early 1980s. However, P. coronata defeated Pc38 and Pc39 in the 

late 1980s (Chong and Seaman, 1997; McCallum et al., 2007). Pc48 was widely used in the 

1990s, but was overcome in 2001 (Chong and Zegeye, 2004). The cultivar ‘AC Assiniboia’ 

with the combination of Pc38/39/68 was released in 1995. The first virulence on AC 

Assiniboia was detected in 1999 (McCallum et al., 2007; Leonard, 2007). By 2005, virulence 

to Pc68 was common in the Canadian P. coronata population (Chong et al., 2008).  Thus, a 

clear pattern of short lived resistance is evident in the oat - P. coronata pathosystem in 

Western Canada. 

 

Other Avena spp. besides A. sterilis have been involved in developing crown rust 

resistance (Rooney et al., 1994; Aung et al., 2010). Pc91 and Pc94 are major crown rust 

resistance genes deployed in Canadian cultivars (Chong et al., 2011). Pc91 originated from 

A. magna (McMullen et al., 2005) while Pc94 was attained from A. strigosa (Fetch et al., 

2007). Carson (2009a) also suggested that A. barbata carries great potential for resistance 

genes. However, Carson (2009a) noted that there is no evidence to demonstrate that seedling 

resistance genes from diploid or tetraploid Avena spp. are more durable than those resistance 

genes from A. sterilis. Virulence to the Pc91 has recently been reported (McCartney et al., 

2011) as have virulent isolates to Pc94 (Chong et al., 2011). 

 

2.4.2 Limitations of seedling resistance genes  

Seedling race-specific resistance genes are relatively easy to use in breeding programs 

(Carson, 2008; Graichen et al., 2010). However, widespread commercial production of oat 
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varieties with seedling resistance genes leads to the development of virulence to those genes. 

Evidence has shown that widespread commercial production of resistant cultivars with few 

major resistances generates greater selection pressure for new virulent races (Chong et al., 

2011). In addition, some P. coronata races already exist with virulence to newly released 

resistance genes (Chong and Kolmer, 1993). At times those P. coronata races which develop 

virulence to a specific resistance gene also quickly become virulent to other resistance genes 

(Chong and Brown, 1996; Leonard, 2007). In these cases, R. cathartica is also thought to 

contribute to the breakdown of resistance gene pyramids. These limitations challenge oat 

breeders to consistently discover and deploy new seedling resistance genes into oat varieties 

to maintain crown rust resistance. 

 

2.4.3 Breeding durable disease resistance  

One classic durable gene-for-gene resistance gene is the mlo resistance in barley against 

powdery mildew. Powdery mildew of barley is caused by Blumeria graminis f.sp. hordei 

(Bgh). Presence of the MLO protein in host plants is essential and critical for powdery 

mildew colonization. Absence of this protein results in failure of the pathogen to enter 

epidermal host cells. The pathogen is stopped at the pre-invasive stage because host plants 

form callose-containing papillae in epidermal cells inhibiting infection and trigger cell death 

to terminate haustoria growth. Barley varieties without the MLO protein (mlo resistance) 

have consistently been resistant to Bgh for more than 25 years (Humphry et al., 2006).  

 

In mlo-mediated resistance research with A. thaliana it was shown that mlo resistance did 

not rely on salicylic acid, jasmonic acid, or ethylene-mediated signaling (Humphry et al., 

2006). Further, the genes Ror1 and Ror2 were required for full function of mlo resistance 

(Freialdenhoven et al., 1996). Loss of non-host resistance genes Ror1 or Ror2 in barley 

inhibited mlo resistance. As noted previously, PEN1, PEN2, and PEN3 are three essential 

genes required to prevent penetration by many different pathogen in PTI (Mysore and Ryu, 

2004). Ror2 in barley is an orthologue of the Arabidopsis PEN1 syntaxin, but the identity of 

Ror1 still remains unknown (Humphry et al., 2006).  Additionally, Humphry et al. (2006) 
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listed several similarities between mlo resistance and non-host resistance and concluded that 

the mlo resistance is a type of non-host resistance or innate immunity (Humphry et al., 2006), 

and not typical of ETI-based resistance genes.  

 

The adult plant resistance gene Lr34 is a durable leaf rust resistance gene in wheat 

(Dyck, 1987). This gene is present in many Canadian wheat cultivars and has not been 

overcome by a virulent leaf rust race despite years of widespread deployment (Kolmer et al., 

2007). Krattinger et al. (2009) cloned Lr34 and discovered that it produced an ATP-binding 

cassette (ABC) transporter and, therefore, was not related to other ETI-based resistance 

genes.  Cloning of the Lr34 gene revealed that the resistant Lr34 allele contains a three base 

pair deletion not present in the susceptible Lr34 allele (Krattinger et al., 2009).  In wheat 

leaf rust resistance breeding, Lr34 has been successfully pyramided with other leaf rust 

resistance genes and other disease resistance genes. Orthologous Lr34 genes are currently 

screened for in Oryza sativa and Sorghum bicolor (Krattinger et al., 2010). Oat researchers 

hope to discover durable resistance genes like Lr34 or mlo for the control of crown rust, and 

to combine these genes with seedling resistance genes to control P. coronata over the long 

term (McCallum et al., 2007). 
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3. Genetic Analysis of Crown Rust Resistance in Avena sterilis Accessions 

3.1 Introduction  

Oat crown rust (caused by Puccinia coronata Corda f. sp. avenae Eriks) is considered the 

most economically important disease in cultivated oat (Avena sativa L.) in Western Canada 

(McCallum et al., 2007; Leonard, 2007; Chong et al., 2008). Moderate to severe yield losses 

are caused by this disease. Since ideal weather conditions for oat growth also favor crown 

rust development, theoretically fields with high yield potential can suffer significant yield 

losses. Pathogen growth is maximal during humid days in June and July when temperatures 

reach 20-25˚C. 

 

In North America, disease resistance breeding is used to manage oat crown rust. Avena 

sterilis L. accessions have been the main source of crown rust resistance genes due to its 

reproductive compatibility with A. sativa. Through cross-pollination and seedling tests, 

resistance genes have been transferred from A. sterilis into cultivated oats and have been 

evaluated (McCallum et al., 2007). The resistance transferred from A. sterilis is typically 

expressed in the early seedling stage based upon a gene-for-gene interaction. Consequently, 

the rust resistance genes from A. sterilis have been effective for only a few years before being 

overcome by new P. coronata isolates (McCallum et al., 2007; Chong et al., 2008). Recently, 

there have been studies on the identification and transmission of novel resistance genes from 

other Avena spp. One current major effective crown rust seedling gene, Pc91, was originally 

transferred from tetraploid A. magna Murphy et. Terrel. (McMullen et al., 2005). A second 

important gene, Pc94, was obtained from diploid A. strigosa Schreb. (Fetch et al., 2007). 

Carson (2009a) also suggested that tetraploid A. barbata Pott ex Link holds great potential as 

a source of resistance genes. In this study, six A. sterilis accessions were chosen for study and 

discovery of putatively new seedling resistance genes. 
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3.2 Materials and Methods  

3.2.1 Population development 

Six A. sterilis accessions (PI311623-4, PI333561, PI334672-5, PI335562, PI375506 and 

PI375547) were obtained from the Germplasm Resources Information Network (GRIN), 

National Genetic Resource Program, Agricultural Research Service, United States 

Department of Agriculture (USDA) (Table 3.1). These accessions demonstrated good 

resistance to crown rust isolates CR13, CR185, CR223, CR241, CR249, CR254, CR257, 

CR258 and CR259 (Dr. Curt McCartney, unpublished data; see Appendix A for race 

nomenclature of these isolates). These nine isolates together are virulent to twenty-nine 

crown rust seedling resistance genes 

(Pc14/35/38/39/40/45/46/47/48/52/54/55/56/58/9/60/61/63/67/68/70/71/91/94/96/101/102/10

3/104), some of which are widely used in North American oat cultivars (Dr. James Chong, 

unpublished data). Since these six A. sterilis accessions were resistant to these isolates, they 

had potential value for discovering new major resistance genes. In the winter of 2008, the six 

A. sterilis accessions were used as male parents in crosses with the cultivar AC Morgan 

(Kibite and Menzies, 2001), which was susceptible to all known Canadian isolates of P. 

coronata.  

 

Table 3.1 Original collection information for six Avena sterilis accessions from Germplasm 

Resources Information Network, National Genetic Resource Program, Agricultural Research 

Service, United States Department of Agriculture. 

Line Collection  Location Collecting Institution Received Date 

PI311623-4 Northern, Israel Hebrew University Feb. 8, 1966 

PI333561 Haifa, Israel Hebrew University Aug. 1, 1968 

PI334672-5 Northern, Israel Hebrew University Aug. 1, 1968 

PI335562 Haifa, Israel Hebrew University Aug. 1, 1968 

PI375506 Tel Aviv, Israel Tel Aviv University Feb. 23, 1972 

PI375547 Northern, Israel Tel Aviv University Feb. 23, 1972 
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F1 hybrids, F2 populations and F2:3 families from these six crosses were developed. AC 

Morgan panicles were emasculated just as they emerged from the flag leaf. Stigmas were 

pollinated 3 to 5 days after emasculation. The F2 and subsequence F2:3 families were 

developed from as few F1 plants as possible. A single F1 plant developed the segregating 

populations for the crosses AC Morgan x PI335562, AC Morgan x PI375506 and AC Morgan 

x PI375547. More than one F1 plant developed the segregating populations for the crosses 

AC Morgan x PI311623-4, AC Morgan x PI333561 and AC Morgan x PI334672-5. The 

population development of AC Morgan x PI333561 is described as an example of A. sterilis 

accession population development in this study. Twelve PI333561 plants and three AC 

Morgan plants were planted. One panicle was emasculated on each AC Morgan plant for 

crossing. Those panicles were named X pan-1, X pan-2 and X pan-3. Pollen from several 

different PI333561 plants was used at each time of pollination (Table 3.2).  

 

Table 3.2 Detailed information for crosses made between three AC Morgan female parents 

and several PI333561 male parents at the University of Saskatchewan in 2008. 

Panicle name Male plants Pollination dates Seed set 

AC Morgan X pan-1 PI333561 Apr 30
th

 , May 1
st
 and May 2

nd
 2 

AC Morgan X pan-2 PI333561 May 3
rd

 1 

AC Morgan X pan-3 PI333561 May 13
th

 and May 14
th

 6 

 

3.2.2 Disease evaluation 

The P. coronata isolate used in this study was CR259 (race LQCB-91), supplied by Dr. 

James Chong (Cereal Research Center, Agriculture and Agri-Food Canada, Winnipeg, 

Manitoba, Canada). This isolate was derived from a single pustule and is virulent on seedling 

resistance genes Pc35/38/39/40/55/59/60/61/63/91. The urediniospores of isolate CR259 

were increased by inoculating the urediniospores on the susceptible cultivar AC Morgan. 

Urediniospores collected from infected leaves were dried in a desiccator in a fridge and then 

stored in a -80 °C freezer. 
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Plants were grown in chambers with a 16 hour photoperiod. Day temperature was 21°C 

with 85% humidity while night temperature was 19°C with 85% humidity. Seedling oat 

plants were inoculated at the complete two leaf stage with urediniospores. Urediniospores 

were heat-shocked in a 40°C water bath for five minutes after removing from a -80 °C freezer. 

Four root trainers of plants (32 plants per trainer) were sprayed with a fine suspension of 

0.01g urediniospores in 900 mL Bayol35 oil, a light mineral oil (Esso Canada, Toronto, ON). 

According to Simons (1970), high moisture and dark, along with temperatures between 18 to 

22°C, are critical for urediospore germination. Thus, the sprayed plants in this study were 

incubated in a 100% humidity chamber for at least 17 hours in the dark (18°C). After 

inoculation, plants were moved back to growth chambers.  

 

Infection types (ITs) were scored using a 0-4 rating scale at 11 or 12 days 

post-inoculation (Murphy, 1935). ITs of “0”, “;”, “1”, and “2” were considered resistant and 

ITs of “3” and “4” were susceptible. Pustule sizes and leaf color around pustules were two 

key parameters in this scale. Necrosis and chlorosis of host tissues around pustules, caused by 

a hypersensitive reaction or plant resistance genes, indicated a strong resistant defense 

reaction in hosts. Light green leaf color around pustules indicated that haustoria successfully 

established in plant tissues and absorbed nutrients from host cells. Those urediniospores 

surrounded by light green leaf color reflected a susceptible reaction in hosts.   

 

3.2.3 Statistical analysis 

In the F2 generation, two hundred and twenty four plants were evaluated in each cross. 

Individuals in each cross were categorized into either the resistant group or susceptible group. 

The Chi-square test with the Yates correction term was used to determine the goodness-of-fit 

to expected segregation ratios. When testing populations with only two classes (i.e. the 

resistant group and the susceptible group), the Chi-square test with the Yates correction term 

is considered more accurate than the general Chi-square analysis (Strickberger, 1985). Since 

the purpose of this study was to identify new putative broadly effective resistance genes, the 

populations that appeared to carry single genes in the F2 generation were further evaluated in 
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F2:3 family tests. Twenty-four plants were tested in each F3 family and at least one hundred 

and twenty families were evaluated in each cross. According to the number of resistant and 

susceptible plants in each family, each family was classified as homozygous resistant (HR), 

segregating (SEG) or homozygous susceptible (HS). Segregation ratios (HR: SEG: HS) in 

F2:3 family tests were evaluated against expected ratios using the general Chi-square test. The 

2 x 2 contingency test was conducted to determine the homogeneity of F2 or F3 results 

derived from different F1 plants of the same cross. If F2 or F2:3 data obtained from different F1 

hybrids of the same cross were determined to be homogeneous, all F2 or F3 data from the 

same cross was pooled together. 

 

3.3 Results 

3.3.1 Disease rating for parental lines and F1 hybrids  

Resistant parental lines, the susceptible parental line (AC Morgan) and one standard 

crown rust gene differential (Pc91) were used as checks in the F2 generation and F3 family 

tests. As shown in Table 3.3, it was confirmed that all resistant parental lines were highly 

resistant (IT) to crown rust isolate CR259, while AC Morgan and the differential Pc91 were 

highly susceptible to the CR259 isolate. 

 

3.3.2 Chi-square analysis of disease reaction in six different crosses 

3.3.2.1 Chi-square analysis of AC Morgan x PI311623-4 

In the cross AC Morgan x PI311623-4, the F1 hybrids were resistant to the crown rust 

isolate CR259 indicating resistance was inherited in a dominant manner (Table 3.3). F2 plants 

from the first F1 plant segregated to 96:10 (resistant:susceptible), which fit the 15:1 ratio (X
2 

= 1.33, P = 0.25) (Table 3.4). F2 plants from the second F1 plant segregated to 102:10 

(resistant:susceptible), which also fit a 15:1 ratio (X
2 

= 0.95, P = 0.33) (Table 3.4). In the 2 x 

2 contingency test, F2 results from the first and second F1 plants were pooled together (X
2 

= 

0.02, P = 0.9). The overall F2 population consisted of 198 resistant plants and 20 susceptible 

plants, which fit a 15:1 ratio (X
2 

= 2.7, P = 0.1). The data is consistent with PI311623-4 

carrying two dominant genes controlling resistance, resulting in duplicate dominant epistasis. 
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Table 3.3 Crown rust disease ratings for six Avena sterilis accessions, oat cultivar AC 

Morgan, F1 hybrids from the six crosses and the Pc91 crown rust resistance gene differential. 

Line Disease Rating 

 0 ; 1 2 3 4 

PI311623-4 (Inbred) 12      

AC Morgan x PI311623-4 F1 hybrids 4      

PI333561 (Inbred) 7 25     

AC Morgan x PI333561 F1 hybrids  1 3    

PI334672-5 (Inbred) 88 42 2    

AC Morgan x PI334672-5 F1 hybrids 1 3     

PI335562 (Inbred) 3 5 1    

AC Morgan x PI335562 F1 hybrids 1 1 1    

PI375506 (Inbred) 25 29 21 3   

AC Morgan x PI375506 F1 hybrids 2 1 1    

PI375547 (Inbred) 1 40 40 22   

AC Morgan x PI375547 F1 hybrids  2 2    

AC Morgan (Inbred)     87 384 

Pc91 differential (Inbred)     54 400 

 

Table 3.4 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI311623-4. 

Generation Total Resistant Susceptible Expected Ratio Χ2
 P 

F1 4 4 0    

F2 (F1-1) 106 96 10 15:1 1.33 0.25 

F2 (F1-2) 112 102 10 15:1 0.95 0.33 

F2 (pooled) 218 198 20 15:1 2.7 0.1 
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3.3.2.2 Chi-square analysis of AC Morgan x PI333561 

In the cross AC Morgan x PI333561, all F1 hybrids were resistant, indicating resistance 

to CR259 was inherited in a dominant manner (Table 3.3). In the F2 generation test, 224 

seeds derived from three F1 plants were evaluated. F2 plants from the first F1 plant (F1 Plant1 

from AC Morgan x PI333561 X-pan3) segregated 76:5 (resistant:susceptible), which closely 

fitted a 15:1 ratio (X
2 

= 0.04, P = 0.84), and F2 plants derived from the second F1 plant (F1 

Plant2 from AC Morgan x PI333561 X-pan3) segregated 66:6 (resistant:susceptible), which 

also fitted with the 15:1 ratio (X
2 

= 0.24, P = 0.63) (Table 3.5). However, F2 progeny from the 

third F1 plant (F1 Plant3 from AC Morgan x PI333561 X-pan3) segregated 47:10 

(resistant:susceptible), which fit both a 3:1 ratio (X
2 

= 1.32, P = 0.25) and a 13:3 ratio (X
2 

= 

0.004, P = 0.95) (Table 3.5). 

 

Table 3.5 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI333561. 

Generation Total Resistant Susceptible Expected Ratio X
2
 P 

F1 4 4 0    

F2 (F1-1) 81 76 5 15:1 0.04 0.84 

F2 (F1-2) 72 66 6 15:1 0.24 0.63 

F2 (F1-3) 57 47 10 3:1 1.32 0.25 

13:3 0.004 0.95 

F2 (F1-7) 204 190 14 15:1 0.047 0.83 

F2 (F1-8) 208 171 37 3:1 5.39 0.02 

    13:3 0.07 0.79 

F2 (F1-9) 208 149 39 3:1 1.6 0.21 

13:3 0.369 0.54 

F2 (F1-3&9 pooled) 245 196 49 3:1 3.01 0.08 

13:3 0.18 0.67 
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Based on the 2 x 2 contingency tests, F2 results from the first F1 plant could not be 

pooled with the F2 data from the third F1 plant (Table 3.6). There are two interpretations of 

this data. First, PI333561 could be a heterogeneous mixture with lines variable for the 

number of genes and/or the gene action controlling resistance to CR259. Second, the pollen 

used to create the third F1 plant was derived from a heterozygous plant. Because seed from 

the original male parents was not separately harvested, it was not possible to evaluate selfed 

progeny seeds from the third parent and determine the existence of heterozygosity. Because 

of the fairly small F2 populations used and to help resolve the two possible ratios identified in 

the F2 population derived from the third parent, larger F2 populations were developed from 

three additional F1 plants (F1-7, F1-8 and F1-9). 

 

Table 3.6 P-values of the 2 x 2 chi-square contingency tests for crown rust reaction among all 

F2 generation tests in the oat cross AC Morgan x PI333561. 

P -value F2 (F1-1) F2 (F1-2) F2 (F1-3) F2 (F1-7) F2 (F1-8) F2 (F1-9)  

F2 (F1-1) 1 0.61 0.03 0.83 0.01 0.003 

F2 (F1-2)  1 0.12 0.68 0.06 0.02 

F2 (F1-3)   1 0.01 0.97 0.60 

F2 (F1-7)     1 0.001 <0.001 

F2 (F1-8)      1 0.46 

F2 (F1-9)       1 

 

Results from the retest confirmed the same segregation ratio of 3:1 or 13:3 for the F2 

population derived from the ninth F1 parent (F1 Plant7 from AC Morgan x PI333561 X-pan1) 

(Table 3.5). This data could also be pooled with the original test (Table 3.6) and together a 

3:1 or 13:3 ratio was observed (Table 3.5). Moreover, F2 plants from the seventh F1 plant (F1 

Plant1 from AC Morgan x PI333561 X-pan1) segregated 190:14 (resistant:susceptible), 
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which closely fit a 15:1 ratio (X
2 

= 0.047, P = 0.83) (Table 3.5). F2 plants from the eighth F1 

plant (F1 Plant1 from AC Morgan x PI333561 X-pan2) segregated 171:37 

(resistant:susceptible), which closely fit a 13:3 ratio (X
2 

= 0.07, P = 0.79) (Table 3.5). 

According to Table 3.2 and Table 3.5, different panicles and even different F1 seeds from the 

same panicles gave rise to F2 populations with different segregation ratios. Heterogeneity 

may exist within the PI333561 parental lines. This is hard to explain given the consistent 

results observed with the original isolate screening on the line (Table 3.7). The most likely 

conclusion is that two genes exist within the line, one gene is dominant and the other gene is 

incompletely dominant. The expression of the incompletely dominant gene is likely variable 

and could be influenced by environmental conditions. 

 

Table 3.7 Crown rust ratings for individual PI333561 plants against a range of oat crown rust 

isolates. 

Isolate Time No. Plants Disease Rating 

CR192 Fall 08 3 0 0 ; 

CR13 Summer 09 3 2 2 2 

CR185 Summer 09 3 ; 0 0 

CR223 Summer 09 3 2 1
+
 2 

CR241 Summer 09 4 1 1 ; 0 

CR254 Summer 09 4 1 1 1 1 

CR257 Summer 09 4 ; ; ; 0 

CR258 Summer 09 4 0 0 0 0 

CR259 Summer 09 4 ; ; ; ; 

CR185 Fall 09 2 0 ; 

CR258 Fall 09 3 1 ; ; 

CR259 Fall 09 3 1 1 ; 

 

 

 



29 
 

3.3.2.3 Chi-square analysis of AC Morgan x PI334672-5 

In the cross of AC Morgan x PI334672-5, the F1 hybrids were resistant to the crown rust 

isolate CR259 indicating resistance was also inherited in a dominant manner (Table 3.3). F2 

plants from the first F1 plant segregated 105:26 (resistant:susceptible), which either fit a 3:1 

ratio (X
2 

=  1.59, P = 0.21) or the 13:3 ratio (X
2 

= 0.044, P = 0.83) (Table 3.8). F2 plants 

from the second F1 plant segregated 58:22 (resistant:susceptible), which also either fit the 3:1 

ratio (X
2 

= 0.15, P = 0.7) or the 13:3 ratio (X
2 

= 3.47, P = 0.06) (Table 3.8). Based on the 2 x 

2 contingency test, F2 results from the first and second F1 plants could be combined (X
2 

= 

1.66, P = 0.2). The overall F2 population consisted of 163 resistant plants and 48 susceptible 

plants, consistent with either a 3:1 ratio (X
2 

= 0.46, P = 0.5) or a 13:3 ratio (X
2 

= 1.96, P = 

0.16) (Table 3.8). The F2 data suggested there was 1 dominant resistance gene or 2 resistance 

genes with dominant and recessive epistasis to CR259 in this cross.  

 

F3 families derived from the first F1 plant segregated 26:32:5 

(resistant:segregating:susceptible), which is fit a 7:8:1 ratio (X
2 

= 0.38, P = 0.83) (Table 3.8). 

F3 families derived from the second F1 plant segregated 17:30:3 

(resistant:segregating:susceptible) which also fit a 7:8:1 ratio (X
2 

= 2.09, P = 0.35) (Table 

3.8). After combining both F3 families, a ratio of 43:62:8 was observed which still matched 

the 7:8:1 ratio (X
2 

= 1.5, P = 0.47) (Table 3.8). From the F2 population and F3 family tests, it 

appears that PI334672-5 contains one dominant resistance gene and one recessive resistance 

gene effective against the isolate CR259. 

 

3.3.2.4 Chi-square analysis of AC Morgan x PI335562 

In the F1 hybrid test of the cross AC Morgan x PI335562, all plants were resistant 

indicating CR259 resistance was inherited as a dominant trait (Table 3.3). F2 plants from the 

F1 plant segregated 195:15 (resistant:susceptible), which fit a 15:1 ratio (X
2 

= 0.15, P = 0.7) 

(Table 3.9). The F2 data for PI335562 suggests it carries 2 duplicate dominant epistatic genes 

which control resistance to CR259. 
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Table 3.8 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI334672-5. 

Generation Total Resistant SEG Susceptible Expected Ratio X
2
 P 

F1 4 4      

F2 (F1-1) 131 105  26 3:1 1.59 0.21 

13:3 0.044 0.83 

F2 (F1-2) 80 58  22 3:1 0.15 0.7 

13:3 3.47 0.06 

F2 (Pooled) 211 163  48 3:1 0.46 0.5 

13:3 1.96 0.16 

F3 (F1-1) 63 26 32 5 1:2:1 14.02 <0.01 

7:8:1 0.38 0.83 

F3 (F1-2) 50 17 30 3 1:2:1 9.84 <0.01 

7:8:1 2.09 0.35 

F3 (Pooled) 113 43 62 8 1:2:1 22.75 <0.01 

7:8:1 1.5 0.47 

 

 

Table 3.9 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross AC 

Morgan x PI335562. 

Generation Total Resistant Susceptible Expected Ratio X
2
 P 

F1 3 3 0    

F2 210 195 15 15:1 0.15 0.7 

 

3.3.2.5 Chi-square analysis of AC Morgan x PI375506 

In the cross of AC Morgan x PI375506, all F1 hybrids from this cross were resistant and 

indicated that resistance to CR259 was inherited as a dominant trait (Table 3.3). F2 plants 
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from F1 plants segregated 160:42 (resistant:susceptible), which fit either a 3:1 ratio (X
2 

= 1.69, 

P = 0.19) or a 13:3 ratio (X
2 

= 0.43, P = 0.51) (Table 3.10). The data suggested PI375506 

carried one dominant resistance gene or two resistance genes with dominant and recessive 

epistasis. F3 families segregated 43:56:17 (resistant:segregating:susceptible), which neither fit 

a 1:2:1 ratio (X
2 

= 11.79, P = 0.003) nor a 7:8:1 ratio (X
2 

= 14.36, P = 0.001) (Table 3.10). 

Thus, the number of genes involved in PI375506 resistance is likely to be one dominant 

resistance gene or one dominant resistance gene and one recessive gene. Further testing with 

a larger sample size may resolve this.  

 

Table 3.10 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross 

AC Morgan x PI375506. 

Generation Total Resistant SEG Susceptible Expected Ratio X
2
 P 

F1 4 4  0    

F2 202 160  42 3:1 1.69 0.19 

13:3 0.43 0.51 

F3 116 43 56 17 1:2:1 11.79 0.003 

7:8:1 14.36 0.001 

 

3.3.2.6 Chi-square analysis of AC Morgan x PI375547 

In the cross of AC Morgan x PI375547, the F1 hybrids from this cross were resistant to 

crown rust isolate CR259 indicating resistance was inherited as a dominant trait (Table 3.3). 

F2 plants segregated 125:58 (resistant:susceptible) which was slightly significant when tested 

against a 3:1 ratio (X
2 

= 4.02, P = 0.045) (Table 3.11). Although the F2 data did not support 

that 1 gene controlled resistance to CR259 in this cross, segregation distortion could account 

for the observed F2 ratio. In the F3 family test, a segregation ratio of 25:55:10 

(resistant:segregating:susceptible) was observed which did not fit a 1:2:1 ratio (X
2 

= 9.44, P = 

0.009) nor a 7:8:1 ratio (X
2 

= 10.87, P = 0.004). When homozygous resistant and segregating 

groups were pooled, F3 families segregated 80:10 (resistant:susceptible) which fit a 15:1 ratio 
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(X
2 

= 2.85, P = 0.09), suggesting that two resistance genes were segregating with segregation 

distortion towards susceptibility in both the F2 and F3 populations (Table 3.11). 

 

Table 3.11 Segregation ratio and chi-square analysis of crown rust reaction in the oat cross 

AC Morgan x PI375547. 

Generation Total Resistant SEG Susceptible Expected Ratio X
2
 P 

F1 4 4  0    

F2 183 125  58 3:1 4.02 0.045 

     13:3 19.29 <0.01 

F3 90 25 55 10 1:2:1 9.44 0.009 

7:8:1 10.9 0.004 

80  10 3:1 8.53 0.003 

15:1 2.85 0.09 

 

3.4 Discussion 

As shown in previous research, rust resistance genes from A. sterilis have been a rich 

source of resistance, but these genes have been effective for only a few years before being 

overcome by new P. coronata isolates (McCallum et al., 2007; Chong et al., 2008). Other 

Avena spp., such as A. magna and A. strigosa, have also been mined for major crown rust 

resistance genes, with Pc91 and Pc94 genes being examples of these efforts (McMullen et al., 

2005; Fetch et al., 2007; Carson, 2009a). However, widespread use of interspecific transfer 

of rust resistance genes between species of different ploidy is limited due to the inherent 

difficulties associated with this approach.  Embryo rescue, the ability to form synthetic 

hexaploids between diploid and tetraploid lines, and silencing of resistance genes once 

transferred into hexaploid oat are significant barriers encountered during interspecific transfer 

of resistance (Rines et al., 2007). Further, Carson (2009a) indicated there is no evidence 

demonstrating that seedling resistance genes from diploid or tetraploid Avena spp. are more 

durable than resistance genes from A. sterilis.  
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Due to the relatively easier task of crossing A. sterilis to cultivated oat, evaluation of 

crown rust resistance to isolate CR259 in F2 populations and F3 families from crosses 

between AC Morgan and six different A. sterilis accessions was undertaken to identify novel 

crown rust resistance.  Several different gene action modes controlling resistance were 

revealed through this process. Resistance in PI334672-5 was clearly demonstrated to be the 

result of two resistance genes with one dominant resistance gene and one recessive resistance 

gene. There was also a strong likelihood that two resistance genes were present in PI375547. 

F2 tests revealed that both PI311623-4 and PI335562 contain two dominant genes, resulting 

in duplicate dominant epistasis. Based on current F2 and F3 data, resistance genes involved in 

PI375506 are most likely due to one dominant resistance gene, or one dominant resistance 

gene and one recessive resistance gene. In F2 tests, PI333561 appeared to be heterogeneous. 

Therefore, the crosses of AC Morgan x PI333561 derived from different F1 plants were 

considered as independent crosses. The PI333561 male parent used to create the first F1 plant 

was resistant to ten crown rust isolates representing considerable virulence variability (Dr. 

Curt McCartney, unpublished data). Assuming no heterogeneity, PI333561 would carry two 

resistance genes, one or both of which are incompletely dominant. Therefore, PI333561 

likely contains new seedling resistance genes for crown rust. Additional research is 

recommended on PI333561-derived resistance. 

 

While these crosses may contain valuable new resistance genes to crown rust, these 

genes will need to be assessed for their interaction with currently available crown rust genes 

being used in cultivated oat. Gene silencing has been noted on two occasions with crown rust 

resistance derived from A. sterilis. Wilson and McMullen (1997) reported that the Pc62 gene 

was silenced by Pc38 (or a gene linked to Pc38) that was introduced from A. sterilis. The 

silencing effect associated with Pc38 was also noted when it was combined with Pc94 

(Chong and Aung, 1996). Rines et al. (2007) noted a similar effect when working with A. 

strigosa crown rust resistance, but in this case the suppressor affected the crown rust 

resistance gene being transferred into cultivated oat (and not one already present in the 

cultivated oat line). No explanation could be found for why the suppressor did not express 
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itself in the originating A. sterilis accession. However, via repeated backcrossing they were 

able to alleviate this effect which indicated that a gene (suppressor) linked to the crown rust 

gene, and not the resistance gene itself was responsible for the suppressive effect. Silencing 

of introduced resistance genes may be more common when using A. sterilis as opposed to 

other Avena spp. Initial crosses between various A. barbata resistance lines and oat varieties 

‘Otana’ and ‘Ogle’ have shown no such silencing issues (Carson 2009a). 

 

Considering the extensive effort and difficulty of identifying and transferring crown rust 

resistance into cultivated oat it is essential to consider the best deployment strategy to 

maximize their longevity.  The use of multilines has been proposed in the past to provide 

more durable resistance (Mundt, 2002).  Multilines are able to reduce the initial inoculum 

levels and inhibit the spread of disease within the field as incompatible (resistant) host plants 

are encountered by the different virulences within the pathogen population (Garrett and 

Mundt, 1999).  Carson (2009b) examined the crown rust load on a multiline containing 10 

susceptible component lines versus the individual lines. Despite the susceptibility in the 

component lines, the multiline consistently showed lower levels (approximately 30%) of 

crown rust infection in comparison to the component lines.  However, an undesired effect of 

the multiline was that it selected for new virulence combinations in the pathogen population 

effective against a greater range of resistance (up to all 10 component lines).  Browning and 

Frey (1981) reported a similar finding in oat crown rust.  This is certainly not a desired 

outcome and would suggest that mulitlines may not be a good strategy to maintain durable 

resistance.  However, the use of several new resistance genes in the multiline (as opposed to 

defeated genes) may inhibit the development of multiple virulences to a greater degree since 

races would not already be present that have virulence against the new resistance genes. 

Release of pure-line varieties containing different resistance genes may also reduce the speed 

at which multiple virulence develops (as the proximity of different virulent races is much 

larger), the ultimate result would likely be the same. 

A better source of durable resistance is non-race specific (also called APR or partial 

resistance) resistance which has proven to be durable in barley (mlo resistance; Humphry et 
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al., 2006) and wheat (Lr34 resistance; Kolmer et al., 2007).  This is the subject of the next 

section. 
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4. Linkage and QTL Mapping of Crown Rust Resistance in the Cross AC Assiniboia / 

MN841801 

4.1 Introduction  

Approximately 1.8 million hectares of oat (Avena sativa L.) have been seeded annually 

in Canada over the past decade (Statistics Canada, 2011). The province of Saskatchewan has 

produced approximately 1.4 million tonnes of oats on 600,000 hectares of land annually over 

this time period (Government of Saskatchewan, 2010). Oat crown rust (caused by Puccinia 

coronata Corda f. sp. avenae Eriks) is considered the most economically important disease 

(McCallum et al., 2007; Leonard, 2007; Chong et al., 2008). Resistant oat varieties are an 

important control strategy for crown rust. An estimated $400 million in lost production was 

prevented from 1995 to 2005 because of breeding of resistant oat cultivars (McCallum et al., 

2007). 

 

Although yield loss from crown rust has been reduced, breeding for resistance to this 

disease is challenging. Major single gene seedling resistance is widely and frequently used in 

North American rust resistant oat varieties (McCallum et al., 2007). Such race-specific 

resistance genes are relatively easy to utilize in breeding lines when compared to adult plant 

resistance (APR) (Carson, 2008; Graichen et al., 2010). Unfortunately, extensive use of 

seedling resistance genes in breeding programs results in the eventual selection of P. 

coronata races with virulence to those genes. For instance, P. coronata races in Western 

Canada defeated previously effective seedling resistance genes such as Pc38 and Pc39 in the 

late 1980s, Pc48 in 2001 and Pc68 in 2005 (McCallum et al., 2007). Virulence to the 

currently effective Pc91 seedling resistance gene has been reported (McCartney et al., 2011; 

Table 4.1). Virulent isolates to another major seedling resistance gene, Pc94, were also 

recently identified (Chong et al., 2011; Table 4.1). Continued widespread use of cultivars 

carrying single race-specific seedling genes will likely continue this trend.  
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Table 4.1 Frequency of virulence on six oat crown rust differentials and two putative new 

resistance genes by crown rust isolates collected from wild oat (Avena fatua L.) and 

cultivated oat (A. sativa) in commercial fields in Manitoba and eastern Saskatchewan 

between 2007 and 2009 (Chong et al., 2011). 

Pc gene 

Virulence Frequency (%) 

Wild oat Cultivated oat 

2007 2008 2009 2007 2008 2009 

Pc38 94.7 92.9 93.2 97.7 98 100 

Pc39 94.1 94.2 88.7 96.9 95.9 100 

Pc68 45.9 42.3 43.9 70.8 81.6 81.8 

Pc91 0 0 0.5 0 0 0 

Pc94 1.8 0 0.5 0.8 0 0 

Pc96 17.6 5.8 2.7 7.7 0 0 

Temp_pc97 1.8 0 1.8 3.1 0 0 

Temp_pc98 1.2 0 1.4 0 2 4.5 

 

Research on APR to wheat leaf rust resulted in the identification of the Lr34 resistance 

gene from the Brazilian cultivar Frontana (Dyck et al., 1966). This gene has been widely 

incorporated into many wheat cultivars around the world and since 1966 has not yet been 

overcome by a virulent leaf rust race (Kolmer et al., 2007). It is possible that durable 

resistance genes similar to Lr34 may be present in the oat genepool. The oat line, MN841801, 

has consistently demonstrated resistance to various P. coronata populations for more than 20 

years (Chong, 2000; Leonard 2002). Chong (2000) concluded that MN841801 is carrying 

two APR genes with additive effects. However, QTL mapping described four major QTLs 

and three minor QTLs for APR contributed by MN841801-1 in the cross MN841801-1 x 

Noble-2 (MN) (Portyanko et al., 2005). Acevedo et al. (2010) validated these APR QTLs and 

discovered one new QTL from the same cross.  
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The present study was conducted to: (1) create a genetic linkage map in a population 

created from the cross AC Assiniboia x MN841801 (AM), and (2) detect and characterize 

QTLs for APR to crown rust.  

 

4.2 Materials and Methods 

4.2.1 Plant materials  

A population of one hundred sixty-seven F7-derived recombinant inbred lines (RILs) was 

developed from the AM cross made at the Cereal Research Center (CRC), Agriculture and 

Agri-Food Canada (AAFC) (Winnipeg, Manitoba). AC Assiniboia was bred at the CRC and 

registered in 1996. This variety is susceptible to current P. coronata populations, even though 

it contains three crown rust seedling resistance genes (Pc38/39/68) (Brown et al., 2001). 

MN841801 is a breeding line with adult plant resistance developed at the University of 

Minnesota in the early 1970s (Leonard, 2002). 

 

4.2.2 Disease inoculation  

4.2.2.1 Fungal isolates and inoculum production 

The P. coronata isolate CR251 (race BRCB) is virulent to all seedling resistance genes 

in both parents, but avirulent to adult plant resistance in MN841801 (Chong, 2000).  The 

isolate was obtained from Dr. Chong at the CRC. Urediniospores of isolate CR251 were 

increased by inoculating the P. coronata susceptible cultivar AC Morgan. AC Morgan was 

released by the Lacombe Research Centre, AAFC in 1999 and is susceptible to most races of 

crown rust (Kibite and Menzies, 2001). Urediniospores collected from infected leaves were 

dried in a desiccator kept at 4°C and then stored in a -80 °C freezer. 

 

4.2.2.2 Naturally (multi isolate / race) infected buckthorn nursery 

The AM population was sown at the University of Saskatchewan Horticulture Crown 

Rust Nursery in Saskatoon, SK in 2010 (SK10). Three rows of buckthorn (Rhamnus 

cathartica L.) are present along two edges of the field with one row down the middle of the 

field (Figure 4.1). In early spring, previously harvested infected oat straw bearing telia were 
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placed under the buckthorn to initiate aecial infection. Aeciospores from the buckthorn 

subsequently infected the nearby spreader rows. Urediniospores were then produced in 

spreader rows and initiated infection of the entire oat nursery. 

 

In SK10, three replicates were planted in an incomplete block design (lattice design). 

Thirty seeds per line were sown in a single hill. Hills were planted 0.3 m from each other. In 

addition, AC Assiniboia, AC Morgan, AC Ronald, CDC Boyer, CDC Dancer, CDC Orrin, 

HiFi, Leggett, MN841801 and four crown rust gene differentials (Pc91, Pc94, Pc96 and Pc97) 

were randomly planted in each replicate as checks for monitoring disease development and 

determining optimal disease rating date. In order to provide even disease inoculum and create 

the environmental conditions necessary for disease development, the blocks were surrounded 

by spreader rows. AC Morgan was planted as the spreader.  

 

 

Figure 4.1 Design of the Horticulture Crown Rust Nursery used for the SK10 experiment at 

the University of Saskatchewan. 

 

4.2.2.3 Single isolate inoculated disease nurseries 

According to Jackson et al. (2008), a single race field inoculation can reduce the 

confounding effects of multiple race field inoculations. Thus, disease resistant QTLs are 

more easily discovered. The AM population was sown in the Preston Field Nursery at the 
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University of Saskatchewan in Saskatoon, Saskatchewan in 2011 (SK11). The test was 

planted as three replicates using the same design as the SK10 nursery. The same checks and 

spreader rows as the SK10 test were planted in SK11. 

 

In SK11, when plants in the spreader rows reached the fourth or fifth leaf stage, three 

inoculations were done within 10 days. At each inoculation, 0.3 g of crown rust 

urediniospores from isolate CR251 were mixed with 300 ml Bayol35 oil, a light mineral oil 

(Esso Canada, Toronto, ON) and sprayed onto spreader rows with a Herbiflex hand-held 

sprayer (Micron Sprayers Ltd., Bromyard, UK). Water was immediately sprayed onto the 

spreader rows after inoculation to provide enough moisture for urediniospore germination. 

Because urediniospores only germinate in darkness, each spreader row was covered by a 0.61 

m wide and 45.72 m long dark plastic tarp for at least 13 hours. Orange pustules on some 

spreader rows were observed after the third inoculation.  

 

4.2.3 Disease evaluation 

In this study, disease estimation focused on the flag leaves. During the summer when 

urediniospore development reaches maximum levels, crown rust disease severity (DS) and 

infection type (IT) were estimated by visually scoring at least five flag leaves in each hill. 

The modified Cobb scale was used in adult plant disease rating (Peterson et al., 1948). All 

ITs were subsequently converted into a numerical value: R=0.2, MR=0.4, MRMS=0.6, 

MS=0.8, S=1. Coefficient (CI) of each hill was calculated with the formula: CI = DS x IT.   

 

4.2.4 DNA extraction, marker development and analysis 

One hundred sixty-seven F7:10 RILs from the AM cross were selected for DNA extraction. 

DNA extraction was performed by using a modified CTAB extraction protocol (Murray and 

Thompson, 1980). For each line, DNA was extracted from five to six coleoptiles. DNA 

samples from the first ninety lines were selected for Diversity Arrays Technology (DArT) 

marker analysis (Diversity Arrays Technology Pty. Ltd, Yarralumla, Australia).  
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In an attempt to improve the genomic coverage of the linkage map, specifically in 

regions previously identified with APR QTL, a number of alternative marker sources were 

used. Fourteen additional single nucleotide polymorphism (SNP) markers, distributed 

randomly across the oat genome, were screened on all one hundred and sixty-seven RILs by 

Dr. Jackson at the Small Grains and Potato Germplasm Research Unit, United States 

Department of Agriculture-Agricultural Research Service (USDA-ARS) (Aberdeen, ID).  

 

Eight additional Sequences Characterized Amplified Region (SCAR) markers were 

developed from expressed sequence tags (EST) of restriction fragment length polymorphism 

(RFLP) markers on linkage groups 3 and 26 in the MN841801-1 x Noble-2 map (MN map; 

Portyanko et al., 2005; Figure 4.2). Linkage group 14 in the new Kanota x Ogle DArT 

linkage map (KO map) (Tinker et al., 2009) was suspected to represent the same region of 

the oat genome as linkage group 13 in the MN map. Thirty-four SCAR markers were 

generated based on DArTs and RFLPs from the linkage group 14 of the KO map (Figure 4.3). 

PCR primers for each SCAR were designed using Primer3 v.0.4.0 software for standard PCR 

reactions and listed in the Appendix B (Rozen and Skaletsky, 2000). Amplified product sizes 

ranged from 150bp to 250bp. Primers were designed to be 18bp to 27bp in length with an 

annealing temperature between 55ºC to 65 ºC and a GC content from 40% to 60%.  

 

High Resolution Melting (HRM) analysis of eleven markers designed based on three 

ESTs of RFLP markers in the MN map and three ESTs of RFLP markers from the KO map 

were generated. PCR primers for each HRMs listed in the Appendix B were designed using 

Primer3 v.0.4.0 software (Rozen and Skaletsky, 2000). Amplified product sizes ranged from 

150bp to 200bp. Primers were designed to be 18bp to 21bp in length. An annealing 

temperature arranged from 57ºC to 62ºC. Percentage of GC in primers is from 40% to 60%.  
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Figure 4.2 Linkage groups 3 and 26 in the oat MN map containing previously identified APR 

QTLs (modified from Acevedo et al., 2010).  Markers in blue color boxes were converted 

into SCAR markers or HRM markers.  

 

Figure 4.3 Comparison of linkage group 13 in the oat MN map and linkage group 14 in the 

new oat KO map (modified from Tinker et al., 2009 and Acevedo et al., 2010).  Markers in 

blue color boxes were converted into SCAR markers or HRM markers.  



43 
 

Finally, one Single-Strand Conformation Polymorphism (SSCP) marker based on marker 

UMN498W, located on linkage group 13 in the MN map, was tested (Appendix B). One 

Simple Sequence Repeat (SSR) marker, AM3, provided by Dr. Scoles (University of 

Saskatchewan, Saskatoon, SK) was also evaluated. The APR wheat leaf rust resistance gene 

Lr34 confers a partial resistance phenotype at the adult plant stage. The SSR marker swm10 

is closely linked to Lr34, where the indel SNP marker caIND11 is located in the gene 

sequence of Lr34 (Bossolini et al., 2006; Dakouri et al., 2010). An SSR marker (swm10) and 

one indel SNP marker (caIND11) were tested for detection of a homologous Lr34 gene in 

Avena (Bossolini et al., 2006; Dakouri et al., 2010). Finally, one SCAR marker, Pc68-300, 

tightly linked with the Pc68 oat crown rust resistance gene was evaluated on the population 

to determine the nature of a putative APR QTL detected in this study (Scoles and Eckstein, 

2004).  

 

4.2.5 Phenotypic data analysis 

The inoculation methods and P. coronata populations in SK10 and SK11 were different, 

so the two field tests in this study were considered as independent experiments. Statistical 

analysis of disease reaction data was carried out using the SAS software package, v. 9.2 (SAS 

Institute Inc., 2008) and R software v. 2.12.1. The two measures of crown rust reaction were 

crown rust disease severity (DS) and coefficient (CI). The Shapiro-Wilk test was applied to 

estimate the normality of the trait distributions (Shapiro and Wilk, 1965). RILs, replication 

and block effect were considered as random effects in the statistical model for the normality 

test. Square root (sqrt (trait+0.5)) (sqrt), log (log10 (trait+2)) (log) and arcsine square root 

(arsine (sqrt (trait/100)) (asin) data transformation methods were used to normalize DS and 

CI data when frequency curves were not in the normal distribution.  

 

Analyses of variance (ANOVA) were performed for DS and CI for each field test. 

Genetic variance (σ
2

G) for DS and CI was calculated using the formula:  

σ
2

G = (MSG – r*σ
2

GE -σ
2

e)/r*e, 
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where MSG was mean square of genotype, σ
2

GE was the variance of interaction of genotype 

and environments, σ
2

e was the error residual of the model used, r was the number of 

replicates in each field test and e was the number of total environmental tests. The model for 

ANOVA and genetic variance considered genotype as a fixed effect, and replication and 

block as random effects. 

 

4.2.6 Linkage map construction and detection of APR QTLs 

DNA marker data was used to generate a linkage map using CarthaGene v. 1.0 R (de 

Givry et al., 2005). Linkage groups were determined using a minimum LOD score of 3.0 and 

a maximum distance between markers of 30 cM was used to generate initial linkage groups. 

The Kosambi mapping function was used to estimate distances. A combination of the 

commands “build”, “greedy”, “flips”, “polish” and “generate” were used to determine and 

generate an optimal marker order within linkage groups.  

 

QTL mapping of APR was done on transformed data of DS and CI from each field 

disease nursery experiment. The single-trait composite interval mapping based on 

maximum-likelihood (CIM MLE) was conducted using QGene v. 4.0 (Joehanes and Nelson, 

2008). A stepwise cofactor selection was used, with a maximum number of 5 cofactors, the F 

to add = 0.05 and the F to drop = 0.05. A permutation test with 1000 iterations was conducted 

to determine a significance threshold for each trait. Single marker analysis (SMA), which is a 

simple t-test between alternate alleles for each unlinked marker, was used to determine 

association (P < 0.05) between unlinked markers and traits.  

 

4.3 Results 

4.3.1 Phenotypic distribution 

DS and CI on AC Assiniboia were significantly higher than on MN841801 (Table 4.2). 

Distribution curves of the 167 RILs for DS and CI for SK10 and SK11 were not normally 

distributed (Table 4.2) and skewed toward the resistant parent (Figure 4.4 and Figure 4.5). 
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The distribution curves indicate that DS and CI were quantitatively inherited traits. From the 

ANOVA test, genotypes were a significant source of variability for DS and CI.  

 

Table 4.2 Means and variance components of oat parents and recombinant inbred lines for 

DS, IT and CI at the SK10 and SK11 oat crown rust field nursery experiments. 

Environment Trait
1
 σ

2
G 

Parents RILs 

AC Assiniboia MN841801 Means STD Range 

SK10 DS 402.7 47.8 11 29.6 23.4 2-99 

 IT
2
  0.9 0.6 0.73 0.19 0.3-1 

 CI 275.9 41.9 7.2 22.3 20.3 1.5-99 

SK11 DS 340 55.6 10.6 34.7 24.6 1-99 

 IT  1 0.4 0.74 0.28 0.2-1 

 CI 431.7 55.6 3.9 30 26.3 0.2-99 

1
DS: disease severity, IT: infection type, CI: coefficient 

2
Infection type based on leaf color surrounding pustules at flag leaves in the Peterson et al., 

1948 diseases rating scale.  
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A. 

 

B. 

 

Figure 4.4 Frequency distributions for DS for 167 F7-derived RILs of the oat AM cross in 

SK10 (A) and SK11 (B) crown rust field nursery experiments. The line represents the 

negative binomial distribution and the bars represent the number of plants in DS categories 

spanning ten units. 
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A. 

 

B. 

 

Figure 4.5 Frequency distributions for CI for 167 F7-derived RILs of the oat AM cross in 

SK10 (A) and SK11 (B) crown rust field nursery experiments. The line represents the 

negative binomial distribution and the bars represent the number of plants in DS categories 

spanning ten units. 
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A generalized linear model was created by treating RILs as a fixed effect and block as a 

random effect. Square root (sqrt (trait+0.5)), log (log10 (trait+2)) and arcsine square root 

(arcsine (sqrt (trait/100)) transformations of the data were investigated to normalize DS and 

CI data. In Table 4.3, raw data and transformed data for each disease nursery field 

environment are listed. Both the square root and log transformation methods normalized the 

SK10 DS and SK11 DS data (Figure 4.6). Both methods were able to improve the SK10 CI 

and SK11 CI data, but neither could normalize the data (Figure 4.6). However, since the 

transformed CI data was closer to a normal distribution than the raw data it was used for QTL 

analysis. Thus, both the square root transformed data and log transformed data for both DS 

and CI data at SK10 and SK11 were used in QTL mapping. 

 

Table 4.3 P-value for normality tests on the raw and transformed data for DS and CI at each 

oat crown rust nursery field experiment using the Shapiro-Wilk method. 

Environment 
DS CI 

Raw data sqrt asin log Raw data sqrt asin log 

SK10 <.001 0.1 <.001 0.35 <.001 0.044 <.001 0.02 

SK11 <.001 0.32 0.02 0.08 <.001 <.001 <.001 <0.01 
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Figure 4.6 QQ line and QQ norm on raw data, sqrt transformed data and log transformed data 

for DS and CI in SK10 and SK11 oat crown rust field nursery experiments. 
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4.3.2 Linkage map 

A total of 553 loci, including 493 DArT, 41 SCAR, 16 SNP, 1 SSCP and 2 SSR markers, 

were screened across the AC Assiniboia x MN851801 population. After removing poor 

quality markers, 30 linkage groups spanning 955 cM of the oat genome were generated using 

240 markers (43.48%) (Appendix C). Thirteen markers were unlinked. Because of short map 

length and limited SNPs, all DArTs with Q>77 and the following SNPs were retained to 

increase genome coverage. Two DArTs (oPt-2660 and oPt-11217) and 1 SNP (7964) showed 

an excess of the MN841801 genotype and 1 SNP (5435) showed an excess of the AC 

Assiniboia genotype. Two SNPs (c12516_2 and c841_2) with 12% and 14% missing data 

were also assigned to this map.  

 

The SCAR marker Pc68-300, linked to the oat Pc68 seedling crown rust resistance gene, 

was successfully added into the AM map. The caIND11 and swm10 markers linked to the 

Lr34 APR crown rust resistance gene were not polymorphic on the AM population despite 

testing by agarose gel electrophoresis, capillary electrophoresis and polyacrylamide gel 

electrophoresis. Seven HRMs markers were polymorphic between AC Assiniboia and 

MN841801. However, these HRM markers were difficult to evaluate on the RILs. None of 

HRM markers were included in the map. 

 

Eight SCAR markers were developed from sequenced RFLP markers in linkage group 3 

and 13 in the MN map. None of the SCAR markers showed polymorphisms between AC 

Assiniboia and MN841801 using agarose gel electrophoresis. One SSCP marker designed 

from marker UMN498W located on linkage group 13 in the MN map was polymorphic on 

the AM population. Thirty-four SCAR markers were generated from the new KO DArT 

linkage map. Only one SCAR marker (oPt0760W) was polymorphic between the parents 

when tested by agarose gel electrophoresis.  
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4.3.3 QTLs for crown rust resistance 

Raw data and transformed data of DS and CI in four different field disease nursery 

experiments were used in QTL mapping. Only one QTL, contributed by AC Assiniboia, was 

detected in the SK10 experiment (Figure 4.7). The permutation test indicated a threshold 

significance level of 3.06 for the trait. The QTL detected demonstrated a LOD score in excess 

of 8. This QTL was 4 cM away from the marker Pc68-300 (Figure 4.7; Table 4.4), making it 

likely that this QTL was the result of the Pc68 seedling resistance gene carried by AC 

Assiniboia.  

 

 

Figure 4.7 Overlapping QTLs for DS and CI detected in the SK10 oat crown rust field 

nursery experiment using both raw data and transformed data of DS and CI. 
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Table 4.4 Summary of crown rust resistance QTL identified based on DS and CI measured on 

167 RILs from the oat AM cross in the SK10 oat crown rust field nursery experiment. 

Trait Data 
QTL 

marker 
Peak/interval

1
 

Linkage 

group 

QTL 

name 
LOD

2
 R

2
x100

3
 

 

Additive
4
 

 

CI Pc68-300 4 / 0 - 10 30 Pc68 5.7 0.15 -7.6 

CI (log) Pc68-300 4 / 0 - 10 30 Pc68 7.6 0.19 -0.21 

CI (sqrt) Pc68-300 4 / 0 - 10 30 Pc68 6.9 0.18 -0.81 

DS Pc68-300 4 / 0 - 10 30 Pc68 6.4 0.17 -9.6 

DS (log) Pc68-300 4 / 0 - 10 30 Pc68 8.7 0.22 -0.151 

DS (sqrt) Pc68-300 4 / 0 - 10 30 Pc68 7.7 0.2 -0.91 

1
Peak of QTL (in cM) and interval spanned by the QTL (in cM). 

2
LOD: log of the odds 

3
phenotypic variance of oat crown rust data explained by the QTL 

4
additive effects from transformed datasets were back-transformation in order to interpret 

with original scale. 

 

Removal of the Pc68 effect was accomplished in 2011 by inoculation of the nursery with 

the CR251 isolate.  No QTLs contributed by MN841801 were detected based on SK11 data. 

The same AM population was also tested with the CR251 isolate at the AAFC Nolette Field 

Station in Winnipeg, Manitoba in 2001 and 2002 (MB01 and MB02) (Dr. James Chong, 

unpublished data) and no QTLs were detected using this data.  Because five QTLs (Prq1a, 

Prq2, Prq3, Prq7 and Prq8) contributed by MN841801-1 were detected using the MN map 

and inoculation with the CR251 isolate in field studies at Aberdeen, ID and Glenlea, MB 

(Acevedo et al., 2010) (Table 4.5), markers closely linked to the most consistent of these loci 

(Prq1a, Prq1b, Prq2 and Prq8) in the MN map were tested in the AM population. Many of 

the markers in the MN map were RFLPs and so were converted to SCARs and evaluated in 

the AM population. However, no significant QTL were detected in the AM population. 
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On linkage group 3 of the MN map, Prq1a (near markers cdo608x, b4, isu707x and 

cdo1467) was detected in seven of fourteen tests and Prq1b (close to markers p35m68m6 and 

p38m35n2) was found in four of fourteen tests (Portyanko et al., 2005; Acevedo et al., 2010; 

Figure 4.8; Appendix D). Linkage groups 17 and 25 in the AM map have three common 

SNPs (c1361_1, c841_2 and lrc16503_1) with linkage group 3 in the MN map, where Prq1a 

and Prq1b were mapped (Figure 4.9). However, no QTLs were detected in this part of the oat 

genome in this study. 

 

Figure 4.8 Linkage group 3 from the oat MN cross showing two oat crown rust APR QTLs 

(Prq1a and Prq1b) associated with crown rust resistance detected in ten field tests and four 

greenhouse tests. 
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Figure 4.9 Comparison of linkage group 3 from the oat MN cross and linkage groups 17 and 

25 from the oat AM cross. Seedling oat crown rust resistance QTLs in linkage group 3 of the 

MN map courtesy of Dr. Acevedo (unpublished data). 

 

On linkage group 26 of the MN map, Prq2 (close to markers umn498, umn23 and AM3) 

was detected in ten of fourteen tests (Portyanko et al., 2005; Acevedo et al., 2010; Appendix 

D). The AM3 SSR marker was not polymorphic between AC Assiniboia and MN841801. 

Three SCARs based on EST sequences from umn23 and umn498 were also not polymorphic. 

One SSCP marker (UMN498W) could be mapped (Figure 4.10). The SSCP marker 

UMN498W in this study and the RFLP marker umn498 in the MN841801-1 x Noble-2 map 

may not be interrogating the same genomic region in the oat genome. 
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Figure 4.10 Comparison of linkage group 26 from the oat MN map, containing one APR 

QTL (Prq2) associated with crown rust resistance, and linkage group 26 from the oat AM 

cross. 

 

On linkage group 13 of the MN map, Prq8 (close to markers cdo1502x and umn5353x) 

was identified in three of fourteen tests (Portyanko et al., 2005; Acevedo et al., 2010; 

Appendix D). Since there were no available EST sequences for umn5353x, umn5353y, 

cdo1502x and cdo1502y, it was impossible to develop SCARs for comparison to the AM 

map. Linkage group 14 in the new KO map contains two RFLP markers, umn5353a and 

cdo1502brv, suspected to share homology with linkage group 13 in the MN map. With the 

assistance of two SCARs developed from DArT markers present on linkage group 14 in the 

new KO map, linkage groups 18 and 21 were identified in the AM (Figure 4.11). However, 

Prq8 was not detected in this study. It is possible that linkage group 13 in the MN map might 

not be homeologous with linkage group 14 in the new KO map.  
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Figure 4.11 Comparison of linkage group 13 from the oat MN map, containing one APR 

QTL (Prq8) associated with crown rust resistance, with linkage group 14 from the new KO 

map and linkage groups 18 and 21 from the oat AM map. 
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Table 4.5 Crown rust severity of oat cultivars AC Assiniboia, AC Morgan, Noble-2 and 

Portage, and oat lines MN841801 and MN841801-1 in different crown rust experiments. 

Oat Line Rust isolate Rated leaves Average 

Severity 

References 

AC Assiniboia Buckthorn Flag leaf 47.8 SK10 

CR251 Flag leaf 55.6 SK11 

29.2 unpublished data
4
 

AC Morgan CR251 Flag leaf 74.1 SK11 

MN841801 Buckthorn Upper three leaves 10.3 Leonard, 2002 

Flag leaf 11 SK10 

CR251 Flag leaf 10.6 SK11 

3.95 unpublished data
4
 

MN841801-1 CR251 Flag leave 1.5
2
 Acevedo et al., 2010 

Upper three leaves 0.2
3
 Acevedo et al., 2010 

Buckthorn Flag leaf minus one 9.9
1
 Portyanko et al., 2005 

Noble-2 CR251 Flag leave 18.8
2
 Acevedo et al., 2010 

Upper three leaves 36.8
3
 Acevedo et al., 2010 

Buckthorn Flag leaf minus one 40
1
 Portyanko et al., 2005 

Portage Buckthorn Upper three leaves 55.7 Leonard, 2002 

1
Average of rust severity in SP97PR and SP98PR. 

2
 DLA severity in the field test at Aberdeen, ID in 2007. 

3 
DS in the field test at Manitoba in 2008. 

4
Unplished data collected from Dr. J. Chong at AAFC-Winnipeg in 2001 and 2002. 

 

4.4 Discussion 

The success of identifying genetic loci associated with crown rust resistance in oat 

depends on both the nature of the resistance and, to a less defined degree, the marker density 

and coverage of the oat genome.  In genetic resistance governed by one or a few genes there 

has been greater success in identifying loci linked to resistance.  Hoffman et al. (2006) were 
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able to identify the Pc58 seedling resistance complex (a cluster of 3 genes) using a 441 

marker linkage map created from the ‘Ogle’ x TAM O-301 population.  Due to the 

dominant nature of this resistance, phenotyping was easily and clearly scored and 

identification of race specific interactions with the Pc58 region was possible.  As with any 

mapping study, good phenotypic information was essential to successful mapping. 

 

When resistance is more quantitative in nature due to a greater number of genetic loci 

involved in the trait, and each loci becomes more environmentally influenced, the ability to 

identify all relevant loci becomes more difficult. For example, Zhu and Kaeppler (2003) used 

a 272 marker linkage map derived from a ‘Ogle’ x MAM17-5 population to identify QTL 

linked to MAM17-5 resistance (which was more quantitative than Pc58 resistance). They 

identified two QTLs consistently over a two year period that explained 48-70% and 9-14% of 

the resistance, respectively. Crown rust evaluation was done in the field on adult plants which 

made the phenotypic data more variable than, for example, seedling tests conducted in the 

greenhouse in populations where resistance is governed by a single major gene.  Despite 

additional variability in the phenotypic data, the relatively simple inheritance of the 

MAM17-5 resistance (one major gene and a minor gene) allowed for detection of the 

resistance loci. 

    

In contrast to these studies, the APR carried by MN841801 is clearly quantitative in 

nature. Portyanko et al. (2005) identified four major and three minor QTL using a 230 marker 

linkage map created in a population derived from MN841801-1 x Noble-2. A total of three 

field environments (using a mixture of isolates) and two greenhouse tests (using a single 

crown rust isolate) were used in this study.  The quantitative nature of this resistance was 

additionally indicated by the low heritability estimates obtained from both the field (0.30) 

and greenhouse data (0.44).  Individual QTL detected from field data explained only 

2.9-16.8% of the variation with only one QTL detected across all three field sites.  The 

inconsistent detection of Prq1a, Prq1b, Prq2 and Prq7 led the authors to suggest that larger 

population size and additional field experiments were needed to confirm the detected QTLs 
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(Portyanko et al., 2005). Using an additional seven field and two greenhouse tests, the same 

population was evaluated and the same seven QTL were detected along with one additional 

QTL identified (Acevedo et al., 2010).  Heritability estimates based on disease leaf area 

measurements from field trials ranged from 0.14-0.38 and again QTL were not consistently 

detected across environments with explained variance ranging from 4.7-36.1% for individual 

QTL. 

 

The large influence of environment on MN841801 resistance is one possible explanation 

why no QTL were detected in this study. That is, different environmental conditions between 

the AM and MN experiments may not have allowed detection of QTL. Thus, future field 

experiments that tested both the MN and AM populations concurrently would be helpful in 

eliminating environmental effects on QTL detection, evaluating the QTLs and understanding 

resistance effects contributed by those QTLs. In addition, different crown rust visual rating 

methods were used between the two studies. The pathology team of Dr. Chong in Manitoba 

and the current Saskatoon research study evaluated only the flag leaves. Acevedo et al. (2010) 

visually assessed the three uppermost leaves and digitally scanned the flag leaves. However, 

the different estimation methods should not create drastically different estimates of disease 

severity and subsequent lack of detection of five QTLs.  The Acevedo et al. (2010) study 

also used the CR251 isolate in greenhouse tests to minimize phenotypic variability, so 

greenhouse testing with this isolate could also be used to evaluate the AM population.  This 

would help to eliminate environmental effects interfering with APR QTL detection and 

clearly demonstrated whether failure to detect these QTL is caused by environmental effects 

or poor oat genome coverage.  Use of this isolate was very helpful at removing the 

confounding effect of the Pc68 gene in the SK10 disease nursery field experiment (i.e. the 

only QTL detected in the current study). 

 

Low oat genome coverage in the current map created with the AM population is strongly 

believed to be the major limitation to detecting APR QTLs contributed by MN841801. 

According to Oliver et al. (unpublished data), the first complete consensus oat map consists 
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of 21 linkage groups with a total map length 1,839 cM. O’Donoughue et al. (1995) predicted 

the complete oat map should be approximately 2,932 cM. In comparison, the AM map was 

much shorter. It contains 30 linkage groups spanning only 955 cM, which is about 32.6% 

coverage of the estimated oat genome. APR QTLs are likely located in the unmapped portion 

of the oat genome in the AM population and it is expected that increasing the current map 

length by adding additional markers would help detect APR QTLs in future research. 

Anchored markers from the complete oat map will help to quickly improve the genome 

coverage of the AM map. 

 

While low oat genome coverage is a logical reason for the lack of QTL detection, it is 

harder to understand why they were detected in the MN population, which could also be 

argued to suffer from low genome coverage.  Although the total marker number used to 

create the maps in the AM and MN populations is fairly similar (230 versus 240, 

respectively), the AM map is only 63% the size of the MN map (955 cM versus 1,509 cM, 

respectively) (Portyanko et al., 2005).  In addition to this size disadvantage, the two maps 

may also be covering different areas of the oat genome.  The MN map is composed 

primarily of RFLP markers (Portyanko et al., 2001) whereas the current map is based on 

DArT markers.  Creation of maps in Triticum monococcum using DArTs and SSR indicated 

that the two marker types tended to produce independent clusters along the linkage groups 

(Jing et al., 2009).  A similar pattern may occur within oat between RFLPs and DArTs.  As 

noted by Tinker et al. (2009), DArT markers are located across the genome, but are not 

uniformly distributed and some oat regions may not contain any DArT markers. 

 

Comparison of linkage maps between different oat mapping populations has been limited 

by the lack of common markers between populations (Rines et al., 2006). As a result, current 

studies face great challenges in evaluating the same QTLs in different populations, even if 

they share the same QTL donor parent. Difficulty in comparing the AM map and the MN 

map is not rare.  This issue is due in part to the markers used to create the maps.  For 

example, the ‘Ogle’ x TAM O-301 (OT) map, which is based predominantly on RFLP 
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markers, contains numerous markers that cross hybridize to multiple loci and makes marker 

placement difficult (Portyanko et al., 2001). The same problem arises when comparing 

markers across maps.  When the OT map was compared to the ‘Kanota’ x ‘Ogle’ (KO) map 

many of the markers gave equivocal KO linkage group assignments (Portyanko et al., 2001). 

Rines et al. (2006) also pointed out the difficulty in correctly assigning map positions to 

markers that may be distributed across homeologous loci in the hexaploid genome, making 

map comparison complicated. In the current study, without a large number of markers in 

common between the AM map and the MN map, it is impossible to make the assumption that 

linkage groups carrying the converted SCAR markers in the AM map are the same linkage 

groups carrying the APR QTLs in the MN map. Accurate comparisons of the crown rust 

resistance in the AM population with the MN population will require an improved AM 

linkage that spans the entire genome and common genetic markers that unequivocally mark 

the same positions in the MN maps, or a reference oat consensus map. 

 

The short linkage map with low oat genome coverage is a reasonable explanation for the 

failure to detect APR QTLs in this study. The AM genetic map needs to be expanded to cover 

the complete oat genome in order to detect APR QTL from MN841801. SNPs from the first 

complete oat map will be important in accomplishing this goal. Additional field or 

greenhouse testing of the AM population with P. coronata isolate CR251 is also 

recommended (perhaps in conjunction with the MN population) to improve the precision and 

accuracy of the phenotypic data. 
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5. General Discussion 

Oat is an important cereal crop that is well adapted to the cooler northern climate of the 

Prairie Provinces in Western Canada. As an important exporter of oat to the world market, 

diseases such as crown rust impact the ability to supply quality oat are of concern. Crown rust 

is the most important disease of oat in Western Canada and as a result, two different genetic 

studies related to crown rust resistance were investigated in this thesis.  The first 

investigated the genetic inheritance of potentially novel seedling resistance genes introduced 

from A. sterilis into cultivated oat.  The second study investigated the genetic control of 

APR present in MN841801 which has shown durable crown rust resistance for several 

decades. 

  

As the alternate host of P. coronata is present in North America, sexual recombination is 

a common occurrence in the pathogen population which produces new virulence 

combinations and results in a limited period of effectiveness for oat crown rust seedling 

resistance genes, typically around seven years (Chong et al., 2011; McCallum et al., 2007; 

McCallum et al., 2011). In order to develop resistance against new virulent races, crown rust 

resistance from Avena spp. such as A. strigosa, A. magna and A. barbata have been used 

(Rines et al., 2007; Carson, 2009a). Genetic inheritance of novel seedling resistance 

transferred from six different A. sterilis accessions was investigated in this thesis using a 

crown rust isolate (CR259) that is virulent against almost all currently used crown rust genes 

(except Pc94). Simple genetic inheritance was observed in all cases (2 or fewer genes), 

although the epistatic interaction between the pairs of resistance genes in some populations 

requires clarification. 

 

Due to the effectiveness of these resistance genes against CR259, they represent a 

valuable set of tools to deal with crown rust. The resistance genes present in lines such as 

PI333561 should initially be the focus of further investigations as it is expected that either 

gene from PI333561 would provide effective resistance. It would also be valuable to 

determine if these, and the other resistance genes, differ in the crown rust race spectrum 
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against which they are effective. One would expect that there would be different resistance 

spectrums present in the six A. sterilis accessions that were used in the study. This will 

require efforts to continue building the crown rust differential set of oat and the nomenclature 

system initiated by Fleischmann and Baker (1971) and most recently advanced by Chong et 

al. (2000). 

 

Avena sterilis continues to be a rich source of crown rust resistance genes. To date, over 

40 different resistance genes have been identified from A. sterilis, with the most recently 

named resistance gene additions being Pc97 and Pc98 (Chong et al., 2008). The relative ease 

of using this gene pool, in comparison to diploid and tetraploid species, and the lack of 

evidence that durability of A. sterilis resistance genes is different from other species (Carson, 

2009a) will ensure its continued use as a major crown rust resistance gene pool. 

 

When using A. sterilis as a source of crown rust resistance genes there have been several 

reports that the introgressed regions from A. sterilis have a silencing effect on crown rust 

genes already present in the cultivated oat parent. This effect was noted by Wilson and 

McMullen (1997) when Pc38, derived from A. sterilis, was introduced into a cultivated oat 

line already carrying Pc62.  Chong and Aung (1996) made a similar observation with Pc38 

when it was combined with Pc94 resistance.  While no explanation has been provided for 

these observations, some have suggested that the different resistance genes may be competing 

for the same signal transduction pathways that are part of the defense reaction following 

pathogen recognition (Rines et al., 2007). Potential suppression by the resistance genes 

identified in this study will need to be determined and if noted, a backcrossing scheme may 

be required to remove this activity.  This approach was successfully used to remove 

suppressors linked to resistance genes being introduced into cultivated oat from A. strigosa 

(Rines et al., 2007).  

 

APR offers a proven method of controlling oat crown rust over extended periods of time 

not seen with race-specific resistance.  Varieties such as ‘CDC Dancer’ and ‘CDC Boyer’ 
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consistently show moderate levels of crown rust infection under strong disease pressure 

which provides good yield potential under these situations.  Similar to these varieties, 

MN841801 has provided good APR since the 1970s (Chong, 2000; Leonard 2002) and has 

been the focus of several QTL mapping studies (Portyanko et al., 2005; Acevedo et al., 

2010). 

The second study of this thesis also undertook to identify APR QTLs in a population 

derived from MN841801.  Over two years of study no APR QTLs were detected in the 

population.  Several factors are thought to be responsible for this.  Firstly, the low 

heritability of this trait, as observed from data in the Portyanko et al. (2005) and Acevedo et 

al., (2010) studies, make QTL detection difficult.  Secondly, poor genome coverage 

obtained with DArT markers in this study means that APR QTLs lying in the unmapped 

regions will go undetected.  This is an issue that has previously been noted for DArT 

markers used with oat (Tinker et al., 2009)  To deal with this issue, an attempt to validate 

those QTLs previously detected for APR in MN841801 was made by screening QTL-linked 

markers from the MN population on the AM population used in this study.  This also proved 

unsuccessful and highlights one of the difficulties in working with oat.  Lacking a common 

marker system makes it difficult to compare and cross reference different maps.  Difficulties 

with assignment of markers to specific loci on a given map, due to hybridization of markers 

to multiple locations within the hexaploid oat genome, increases the probability that different 

regions of the oat genome are being compared across maps (Rines et al., 2006).  It is 

therefore possible that the converted markers from the MN map that were used in this study 

interrogated different areas of the oat genome. 

 

This limitation in oat genetic mapping is being addressed through the Collaborative Oat 

Research Enterprise (CORE) working group.  The goal of this North American initiative is 

to create a set of genomic tool, including a comprehensive oat consensus map, which will 

assist the oat breeding and research community.  Initial work focused on extensive EST 

sequencing and SNP identification for incorporation onto a genotyping platform (Oliver et 

al., 2011). Currently a physically anchored 21 linkage group consensus map with 
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unambiguous marker positions is being generated, along with a 6,000 SNP Illumina 

genotyping assay, which will help avoid ambiguity when comparing QTLs and map positions 

across different populations. Additionally, use of doubled haploids in oat and creation of 

maps from such population (Tanhuanpaa et al., 2008 and 2012) will improve mapping via the 

creation of fixed genomes. 

 

Continuing to explore different durable resistance strategies will be necessary for 

effective control of oat crown rust. Searching for, or perhaps creating via mutations, non-race 

specific resistance such as mlo resistance in barley (Humphry et al., 2006) is one option.  

Other durable resistance genes such as Rpg1 in barley which have been effective for over 60 

years (Brueggeman et al., 2002) need to be better understood so similar modes of action of 

resistance genes can be identified in other crop species. Similarly, identifying an APR gene 

such as Lr34 would be another desirable way to improve resistance to crown rust (Kolmer et 

al., 2007). Although studies with other pathogens have shown the effectiveness of gene 

pyramids over one or two years (Singh et al., 2001; Castro et al., 2003), the effectiveness of 

these pyramids over longer periods of time remain to be seen.  A related strategy involving 

the use of multilines containing different resistance genes indicates that such gene 

deployment strategies does not hinder the development of newly virulent races effective 

against a wide range of resistance genes (Carson 2009b) 

 

In the short term, continuing to exploit A. sterilis as a source of major resistance genes 

and attempting to find markers for these and APR from lines like MN841801 will be valuable 

tools in the management of oat crown rust.  

 



66 
 

6.0 References 

 

Abramovitch, R. and Martin, G. 2005. AvrPtoB: A bacterial type III effector that both elicits 

and suppresses programmed cell death associated with plant immunity. Federation of 

European Microbiological Societies 245:1-8. 

 

Acevedo, M., Jackson, E., Chong, J., Rines, H., Harrison, S. and Bonman, J. 2010. 

Identification and validation of quantitative trait loci for partial resistance to crown rust in 

oat. Phytopathology 100:511-521. 

 

Agriculture and Agri-Food Canada. 2010. Oat: Situation and Outlook. Market Outlook 

Report, vol. 2, no. 3. Market and Industry Services Branch. pp. 8. 

 

Agrios, G. 2004. Plant Pathology, 5
th

 ed. Elsevier, London, UK. 

 

Aslam, S., Erbs, G., Morrissey, K., Newman, M., Chinchilla, D., Boller, T., Molinaro, A., 

Jackson, R. and Cooper, R. 2009. Microbe-associated molecular pattern (MAMP) signatures, 

synergy, size and charge: influences on perception or mobility and host defense responses. 

Molecular Plant Pathology 10:375-387. 

 

Aung, T., Zwer, P., Park, R., Davies, P., Parmindder, S. and Dundas, I. 2010. Hybrids of 

Avena sativa with two diploid wild oats (CIav6956) and (CIav7233) resistant to crown rust. 

Euphytica 174:189-198.  

 

Bartos, P., Fleischmann, G., Samborski, D. and Shipton, W. 1969. Studies on asexual 

variation in the virulence of oat crown rust, Puccinia coronata f. sp. avenae, and wheat leaf 

rust, Puccinia recondita. Canadian Journal of Botany 47:1383-1387 

 

Bossolini, E., Krattinger, S. and Keller, B. 2006. Development of simple sequence repeat 

markers specific for the Lr34 resistance region of wheat using sequence information from 

rice and Aegilops tauschii. Theoretical and Applied Genetics 113:1049–1062. 

 

Brown, P., Duguid, S., Haber, S., Chong, J., Harder, D., Menzies, J., Noll, J. and McKenzie, 

R. 2001. AC Assiniboia oat. Canadian Journal of Plant Science 81:77-79. 

 

Browning, J.A. and Frey, K.J. 1981. The multiline concept in theory and practice. In: 

Strategies for the Control of Cereal Disease. (Eds.) Jenkyn, J.F. and Plumb, R.T. Blackwell, 

Oxford, UK. pp. 37-46. 

 

Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., 

Steffenson, B. and Kleinhofs, A. 2002. The barley stem rust-resistance gene Rpg1 is a novel 

disease-resistance gene with homology to receptor kinases. Proceedings of the National 

Academy of Sciences, USA 99: 9328-9333. 



67 
 

Cabral, A., Singh, D. and Park, R. 2011. Identification and genetic characterisation of adult 

plant resistance to crown rust in diploid and tetraploid accessions of Avena. Annals of 

Applied Biology 159:220–228.  

 

Carson, M. 2008. Virulence frequencies in oat crown rust in the United States from 2001 

through 2005. Plant Disease 92:379-384. 

 

Carson, M. L. 2009a. Broad-spectrum resistance to crown rust, Puccinia coronata f. sp. 

avenae, in accessions of the tetraploid slender oat, Avena barbata. Plant Disease 93:363-366. 

 

Carson, M. 2009b. Crown rust development and selection for virulence in puccinia coronata 

f. sp avenae in an oat multiline cultivar. Plant Disease 93: 347-353.  

 

Castro, A.J., Capettini, F., Corey, A.E., Filichkina, T., Hayes, P.M., Kleinhofs, A., Kudrna, 

D., Richardson, K., Sandoval-Islas, S., Rossi, C. and Vivar, H. 2003. Mapping and 

pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theoretical and 

Applied Genetics 107:922-930. 

 

Chinchilla, D., Bauer, Z., Regenass, M., Boller, T. and Felix, G. 2006. The Arabidopsis 

receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant 

Cell 18:465-476. 

 

Chisholm, S., Coaker, G., Day, B. and Staskawicz, B. 2006. Host-microbe interaction: 

shaping the evolution of the plant immune response. Cell 124:803-814. 

 

Chong, J. 2000. Inheritance of resistance to two Puccinia coronata isolates in a partial 

resistant oat line MN841801. Acta Phytopathologica et Entomologica Hungarica 35:37-40. 

 

Chong, J. 2003. Disease of Oat. In: Diseases of Field Crops. (Eds.) Bailey, K., Gossen, 

B.,Gugel, R. and Morrall, R. The Canadian Phytotpathological Society. pp. 74-88.  

 

Chong, J., and Aung, T. 1996. Interaction of the crown rust resistance gene Pc94 with several 

Pc genes. In: Proceedings of the 9
th

 European and Mediterranean Cereal Rusts and Powdery 

Mildews Conference. Sept. 2-6, 1996, Lunteren, Netherlands. (Eds.) Kema, G.H.J., Niks R.E. 

and Daamen RA. European and Mediterranean Cereal Rust Foundation, Wageningen, 

Netherlands. pp. 172-175. 

 

Chong, J. and Brown, P. 1996. Genetics of resistance to Puccinia coronata f.sp. avenae in 

two Avena sativa accessions. Canadian Journal of Plant Pathology 18:286-292.  

 

Chong, J., Gruenke, J., Dueck, R., Mayert, W. and Woods, S. 2008. Virulence of oat crown 

rust [Puccinia coronata f. sp. avenae] in Canada during 2002-2006. Canadian Journal of 

Plant Pathology 30:115-123. 

 



68 
 

Chong, J., Gruenke, J., Dueck, R., Mayert, W., Fetch, J. and McCartney, C. 2011. Virulence 

of Puccinia coronata f. sp. avenae in the Eastern Prairie Region of Canada during 

2007-2009. Canadian Journal of Plant Pathology 33:77-87. 

 

Chong, J., Leonard, K.J. and Salmeron, J.J. 2000. A North American system of nomenclature 

for Puccinia coronata f. sp. avenae. Plant Disease 84:580-585. 

 

Chong, J. and Kolmer, J. 1993. Virulence dynamics and phenotypic diversity of Puccinia 

coronata f.sp. avenae in Canada from 1974 to 1990. Canadian Journal of Botany 71:248-255. 

 

Chong, J. and Seaman, W. 1997. Incidence and virulence of Puccinia coronata f.sp. avenae 

in Canada in 1995. Canadian Journal of Plant Pathology 19:176-180. 

 

Chong, J. and Zegeye, T. 2004. Physiologic specialization of Puccinia coronata f. sp. avenae, 

the cause of oat crown rust, in Canada from 1999 to 2001. Canadian Journal of Plant 

Pathology 26:97-108. 

 

Clerivet, A., Deon, V., Alami, I., Lopez, F., Geiger, J. and Nicole, M. 2000. Tyloses and gels 

associated with cellulose accumulation in vessels are responses of plane tree seedlings 

(Platanus acerifolia) to the vascular fungus Ceratocystis fimbriata f. sp. platani. Trees 

15:25-31. 

 

Dakouri, A., McCallum, B., Walichnowski, A. and Cloutier, S. 2010. Fine-mapping of the 

leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm 

collections support the ABC transporter as essential for gene function. Theoretical and 

Applied Genetics 121: 373-384.  

 

de Givry, S., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. 2005. Carthagene: 

multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–

1704. 

 

Diaz-Lago, J. E., Stuthman, D. D., and Leonard, K. J. 2003. Evaluation of components of 

partial resistance to oat crown rust using digital image analysis. Plant Disease 87:667-674. 

 

Dodds, P. and Rathjen, J. 2010. Plant immunity: towards an integrated view of 

plant-pathogen interactions. Nature Reviews – Genetics 11:539-548.  

 

Dyck, P. 1987. The association of a gene for leaf rust resistance with the chromosome 7D 

suppressor of stem rust resistance in common wheat. Genome 29: 467-469. 

 

Dyck, P., Samborski, D. and Anderson, R. 1966. Inheritance of adult-plant leaf rust resistance 

derived from the common wheat varieties Exchange and Frontana. Canadian Journal of 

Genetics and Cytology 8: 665-671.   

 



69 
 

Endo, R. and Boewe, G. 1958. Losses caused by crown rust of oats in 1956 and 1957. Plant 

Disease Reporter 42:1126–1128. 

 

Eversmeyer, M. and Kramer, C. 2000. Epidemiology of wheat leaf and stem rust in the 

central Great Plains of the USA. Annual Review of Phytopathology 38:491-513. 

 

Felix, G., Duran, J., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system 

for the most conserved domain of bacterial flagellin. The Plant Journal 18:265-276. 

 

Fetch, J., Duguid, S., Brown, P., Chong, J., Fetch, T., Haber, S., Menzies, J., Ames, N., Noll, 

J., Aung, T. and Stadnyk, K. 2007. Leggett oat. Canadian Journal of Plant 

Science 87:509-512. 

 

Fleischmann, G. and Baker, R. J. 1971. Oat crown rust race differentiation: Replacement of 

the standard differential varieties with a new set of single resistance gene lines derived from 

Avena sterilis. Canadian Journal of Botany 49:1433-1437. 

 

Flor, H. 1956. The complementary genic systems in flax and flax rust. Advances in Genetics 

8: 29–54. 

 

Freialdenhoven, A., Peterhänsel, C., Kurth, J., Kreuzaler, F. and Schulze-Lefert, P. 1996. 

Identification of genes required for the function of non-race-specific mlo resistance to 

powdery mildew in barley. Plant Cell 8:5–14. 

 

Garrett, K.A. and Mundt, C.C. 1999. Epidemiology in mixed host populations. 

Phytopathology 89:984-990. 

 

Gomez-Gomez, L. and Boller, T. 2002. Flagellin perception: a paradigm for innate immunity. 

Trends in Plant Science 7:251-256. 

 

Government of Saskatchewan. 2009. Crown rust of oat-FAQs. [Online] Available: 

http://www.agriculture.gov.sk.ca/Default.aspx?DN=6d68d85d-ab16-4ea9-95e9-1d5f69b5a1c

8 (April 5
th

, 2010).  

 

Government of Saskatchewan. 2010. Oats production and value, Saskatchewan. [Online] 

Available: http://www.agriculture.gov.sk.ca/agriculture_statistics/HBV5_Result.asp (Jan 29
th

, 

2011). 

 

Graichen, F., Martinelli, J., Federizzi, L., Pacheco, M., Chaves, M. and Wesp, C. 2010. 

Inheritance of resistance to oat crown rust in recombinant inbred lines. Scientia Agricola 67: 

435-440. 

 

Greenshields, D. and Jones, J. 2008. Plant pathogen effectors: getting mixed messages. 

Current Biology 18:R128-R130. 

http://www.agriculture.gov.sk.ca/Default.aspx?DN=6d68d85d-ab16-4ea9-95e9-1d5f69b5a1c8
http://www.agriculture.gov.sk.ca/Default.aspx?DN=6d68d85d-ab16-4ea9-95e9-1d5f69b5a1c8
http://www.agriculture.gov.sk.ca/agriculture_statistics/HBV5_Result.asp


70 
 

 

Harder, D. 1984. Developmental ultrastructure of hyphae and spores. In: The Cereal Rusts, 

vol. 1. (Eds.) Roelfs, A.P. and Bushnell, W.R. ) Academic Press, Orlando, FL. pp. 333-373. 

 

Hemmami,I., Allagui , M., Chakroun, M.  and Gazzah, M. 2006. Rhamnus lycioides in 

Tunisia is a new aecial host of oat crown rust. European Journal of Plant Pathology 

115:357-361. 

 

Hoffman, D.L., Chong, J., Jackson, E.W. and Obert, D.E. 2006. Characterization and 

mapping of a crown rust resistance gene complex (Pc58) in TAM O-301. Crop Science 

46:2630-2635. 

 

Humphreys, D and Mather, D. 1996. Heritability of beta-glucan, groat percentage, and crown 

rust resistance in two oat crosses. Euphytica 91:359-364. 

 

Humphry, M., Consonni, C. and Panstruga, R. 2006. mlo-based powdery mildew immunity: 

silver bullet or simply non-host resistance? Molecular Plant Pathology 7:605-610. 

 

Holland, J. and Munkvold, G. 2001. Genetic relationships of crown rust resistance, grain 

yield, test weight, and seed weight in oat. Crop Science 41:1041-1050. 

 

Jackson, E., Avant, J., Overturf, K. and Bonman, J. 2006. A quantitative assay of Puccinia 

coronata f.sp. avenae DNA in Avena sativa. Plant Disease 90:629-636. 

 

Jackson, E., Obert, D., Menz, M., Hu, G., Avant, J., Chong, J. and Bonman, J. 2007. 

Characterization and mapping of oat crown rust resistance genes using three assessment 

methods. Phytopahology 97:1063-1070. 

 

Jackson, E., Obert, D., Menz, M., Hu, G. and Bonman, J. 2008. Qualitative and quantitative 

trait loci conditioning resistance to Puccinia coronata pathotypes NQMG and LGCG in the 

oat (Avena sativa L.) cultivars Ogle and TAM O-301. Theoretical and Applied 

Genetics 116:517-527. 

 

Jenkins, A. L., Jenkins, D. J. A., Zdravkovic, U., Wursch, P., and Vuksan, V. 2002. 

Depression of the glycemic index by high levels of B-glucan fiber in two functional foods 

tested in type 2 diabetes. European Journal of Clinical Nutrition 56:622-628. 

 

Jing, H.-C., Bayon, C., Kanyuka, K., Berry, S., Wenzl, P., Huttner, E., Kilian, A. and 

Hammond-Kosack, K.E. 2009. DArT markers: diversity analyses, genomes comparison, 

mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 

10:458. 

 

Joehanes, R. and Nelson, J. 2008. QGene 4.0, an extensible Java QTL analysis platform. 

Bioinformatics Applications Note 23:2788-2789. 



71 
 

 

Jonge, R., Esse, H., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., Krol, S., Shibuya, N., 

Joosten, M. and Thomma, B. 2010. Conserved fungal LysM effector Ecp6 prevents 

chitin-triggered immunity in plants. Science 329:953-955. 

 

Kibite, S. and Menzies, J. 2001. AC Morgan oat. Canadian Journal of Plant Science 

81:85-87. 

 

Knott, D. 1989. The Wheat Rusts - Breeding for Resistance. Springer-Verlag, Germany. 

 

Kolmer, J., Jin, Y. and Long, D. 2007. Wheat leaf and stem rust in the United States. 

Australian Journal of Agricultural Research 58:631-638.  

 

Krattinger, S., Lagudah, E., Spielmeyer, W., Singh, R., Huerta-Espino, J., McFadden, H., 

Bossolini, E., Seiter, L. and Keller, B. 2009. A putative ABC transporter confers durable 

resistance to multiple fungal pathogens in wheat. Science 323:1360-1363. 

 

Krattinger, S., Lagudah, E., Wicker, T., Risk, J., Ashton, A., Selter, L., Matsumoto, T. and 

Keller, B. 2010. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of 

homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant 

Journal 65:392-403. 

 

Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 2004. The N terminus of 

bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 

16:3496-3507. 

 

Leonard, K. 2002. Oat lines with effective adult plant resistance to crown rust. Plant Disease 

86:593–598. 

 

Leonard, K. 2007. Persistent virulence associations in sexual populations of Puccinia 

coronata. Plant Pathology 56: 35-45. 

 

Littlefield, L. 1981. Biology of the Plant Rusts. Iowa State Univ. Press, Ames, IA. 

 

Long, J., Holland, J., Munkvold, G. and Jannink, J. 2006. Responses to selection for partial 

resistance to crown rust in oat. Crop Science 46:1260-1265.  

 

Loskutov, I. and Rines, H. 2011. Avena. In: Wild Crop Relatives: Genomic & Breeding 

Resources, vol. 1. Cereals. (Eds.) Kole, C. Springer, New York, NY. pp. 109-183. 

 

Ludwig, D. S., Pereira, M. A., Kroenke, C. H., Hilner, J. E., Van Horn, I., Slattery, M. L., and 

Jacobs, D. R. 1999. Dietary fiber, weight gain and cardiovascular disease risk factors in 

young adults. JAMA: 282:1539-1546. 

 



72 
 

Maki, K. C., Galant, R., Samuel, P., Tesser, J., Witchger, M. S., Ribaya-Mercado, J. D., 

Blumberg, J. B., and Geohas, J. 2007. Effects of consuming foods containing oat B-glucan on 

blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and 

women with elevated blood pressure. European Journal of Clinical Nutrition 61:786-795. 

 

McCallum, B., Fetch, T. and Chong, J. 2007. Cereal rust control in Canada. Australian 

Journal of Agricultural Research 58:639-647.  

 

McCallum, B. Seto-Goh, P. and Xue, A. 2011. Physiologic specialization of Puccinia 

triticina, the causal agent of wheat leaf rust, in Canada in 2008. Canadian Journal of Plant 

Pathology 33:541-549. 

 

McCartney, C., Stonehouse, R., Rossnagel, B., Eckstein, P., Scoles, G., Zatorski, T., Beatties, 

A. and Chong, J. 2011. Mapping of the oat crown rust resistance gene Pc91. Theoretical and 

Applied Genetics 122:317-325. 

 

McMullen, M., Doehlert, D. and Miller, J. 2005. Registration of 'HiFi' oat. Crop Science 45: 

1664. 

 

Mundt, C.C. 2002. Use of multiline cultivarsand cultivar mixtures for disease management. 

Annual Review Phytopathoogy 40:381-410. 

 

Murphy, H.C. 1935. Physiologic specialization in Puccinia coronata f.sp. avenae U.S. 

Department of Agriculture Technical Bulletin 433. 

 

Murphy, H. 1939. Effect of crown and stem rusts on the relative cold resistance of varieties 

and selections of Oats. Phytopathology 29:763-782.  

 

Murphy, H., Burnett, L., Kingsolver, C., Stanton, T. and Coffman, F. 1940. Relation of 

crown-rust infection to yield, test weight, and lodging of oats. Phytopathology 30:808-819.  

 

Murray, M. and Thompson, W. 1980. Rapid isolation of high molecular-weight plant DNA. 

Nucleic Acids Research 8:4321–4325 

 

Mysore, K. and Ryu, C. 2004. Nonhost resistance: how much do we know? Trends in Plant 

Science 9:97-104. 

 

Naito, K., Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T. and Ichinose, Y. 

2008. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is 

required for virulence. Molecular Plant-Microbe Interactions 21:1165-1174.  

 

Nie, L., Wise, M. L., Peterson, D. M., and Meydani, M. 2006. Avenanthramide, a poylphenol 

from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide 

production. Atherosclerosis 186:260-266. 



73 
 

 

Nutter, F., Gleason, M., Jenco, J. and Christians, N. 1993. Assessing the accuracy intra-rater 

repeatability, and inter-rater reliability of disease assessment systems. Phytopathology 

83:806-812. 

 

O’Donoughue, L., Kianian, S., Rayapati, P., Penner, G., Sorrells, M., Tanksley, S., Phillips, 

R., Rines, H., Lee, M., Fedak, G., Molnar, S., Hoffman, D., Salas, C., Wu, B., Autrique, E. 

and Van Deynze, A. 1995. A molecular linkage map of cultivated oat. Genome 38: 368-380. 

 

Oliver, R.E., Lazo, G.R., Lutz, J.D., Rubenfield, M.J., Tinker, N.A., Anderson, J.M., 

Wisniewski-Morehead, N.H., Adhikary, D., Jellen, E.N., Maughan, P.J., Brown-Guedira, 

G.L., Chao, S., Beattie, A.D., Carson, M.L., Rines, H.W., Obert, D.E., Bonman, J.M. and 

Jackson, E.W. 2011. Model SNP development for complex genomes using high-throughput 

454 sequencing technology. BMC Genomics 12:77. 

 

Peterson, R., Campbell, A. and Hannah, A. 1948. A diagrammatic scale for estimating rust 

intensity on leaves and stems of cereals. Canadian Journal of Research 26:496–500. 

 

Portyanko, V.A., Hoffman, D.L., Lee, M. and Holland, J.B. 2001. A linkage map of 

hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. 

Genome 44:249–265. 

 

Portyanko, V., Chen, G., Rines, H., Phillips, R., Leonard, K., Ochocki, G. and Stuthman, D. 

2005. Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in 

cultivated oat, Avena sativa L. Theoretical and Applied Genetics 112:195-197. 

 

Rines, H., Molnar, S., Tinker, N. and Phillips, R. 2006. Oat. In: Genome Mapping and 

Molecular Breeding in Plants, Cereals and Millets, vol. 1. (Eds.) Kole, C. Springer-Verlag, 

Berlin. pp. 211-242. 

               

Rines, H., Porter, H., Carson, M. and Ochocki, G. 2007. Introgression of crown rust 

resistance from diploid oat Avena strigosa into hexaploid cultivated oat A. sativa by two 

methods: direct crosses and through an initial 2x.4x synthetic hexaploid. 

Euphytica 158:67-79. 

 

Rooney, W., Jellen, E., Phillips, R., Rines, H. and Kianian, S. 1994. Identification of 

homoeologous chromosomes in hexaploid oat (A. byzantina cv Kanota) using monosomics 

and RFLP analysis. Theoretical and Applied Genetics 89:329-335. 

 

Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist 

programmers. Methods in Molecular Biology 132:365-386. 

 

SAS Institute. 2008. SAS User’s Guide, v. 9.2. SAS Institute Inc., Cary, NC. 

 



74 
 

Schweizer, P. 2007. Nonhost resistance of plants to powdery mildew - new opportunities to 

unravel the mystery. Physiological and Molecular Plant Pathology 70:3-7.  

 

Scoles, G. and Eckstein, P. 2004. The applications of biotechnology to disease resistance 

breeding in oat. Proceedings 7
th

 international oat conference, Helsinki, Finland. pp 77–84. 

 

Shapiro, S. and Wilk, B. 1965. An analysis of variance test for normality. Biometrika 

52:591-599. 

 

Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S., Dhaliwal, H.S. and Khush, G.S. 

2001. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using 

marker-assisted selection into indica rice cultivar PR106. Theoretical and Applied Genetics 

102:1011-1015. 

 

Simons, M. 1970. Crown Rust of Oats and Grasses. The Amercian Phytopathological Society, 

St. Paul, MN.  

 

Simons, M. 1985. Crown Rust. In: The Cereal Rusts, vol. 2. (Eds.) Roelfs, A.P. and Bushnell, 

W.R. Academic Press, Orlando, FL. pp 131-172. 

 

Staples, R. and Macko, V. 1984. Germination of urediospores and differentiation of infection 

structures. In: The Cereal Rusts, vol. 1. (Eds.) Roelfs, A.P. and Bushnell, W.R. Academic 

Press, Orlando, FL. pp. 255-289. 

 

Statistics Canada. 2011. Field and special crops. [Online] Available: 

http://www40.statcan.gc.ca/l01/cst01/prim11a-eng.htm (Jan 29
th

, 2011). 

 

Strickberger, M. 1985. Genetics, 3
rd

 ed. Macmillan Publishing Company, New York, NY. 

 

Tanhuanpaa, P., Kalendar, R., Schulman, A. and Kiviharju, E. 2008. The first doubled 

haploid linkage map for cultivated oat. Genome 51:560-569. 

 

Tanhuanpaa, P., Manninen, O., Beattie, A., Eckstein, P., Scoles, G., Rossnagel, B. and 

Kiviharju, E. 2012. An updated doubled haploid oat linkage map and QTL mapping of 

agronomic and grain quality traits form Canadian field trials. Genome 55:289-301. 

 

Tinker, N., Kilian, A., Wight, C., Heller-Uszynska, K., Wenzl, P., Rines, H., Bjornstad, A., 

Howarth, C., Jannink, J., Anderson, J., Rossnagel, B., Stuthman, D., Sorrells, M., Jackson, E., 

Tuvesson, S., Kolb, F., Olsson, O., Federizzi, L., Carson, M., Ohm, H., Molnar, S., Scoles, G., 

Eckstein, P., Bonman, J., Ceplitis, A. and Langdon, T. 2009. New DArT markers for oat 

provide enhanced map coverage and global germplasm characterization. BioMed Central 

Genomics 10:1471-2164. 

 

http://www40.statcan.gc.ca/l01/cst01/prim11a-eng.htm


75 
 

Torres, M., Mansfield, J., Grabov, N., Brown, I., Ammouneh, H., Tsiamis, G., Forsyth, A., 

Robatzek, S., Grant, M. and Boch, J. 2006. Pseudomonas syringae effector AvrPtoB 

suppresses basal defence in Arabidopsis. Plant Journal 47:368-382.  

 

United States Department of Agriculture. 2012. Production, supply and distribution. Foreign 

Agricultural Service. [Online] Available: http://www.fas.usda.gov/psdonline/ (July 12
th

, 

2012) 

 

Walters, D. 2011. Plant Defense. Wiley-Blackwell, Oxford, UK. 

 

Wilson W.A., and McMullen M.S. 1997. Dosage dependent genetic suppression of oat crown 

rust resistance gene Pc-62. Crop Science 37:1699-1705. 

 

Xue, A.G., and Chen. Y. 2011. Diseases of oat in eastern Ontario in 2010. Canadian Plant 

Disease Survey 91:88-89. 

 

Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Current Opinion in 

Immunology 20:10-16. 

 

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G. 2006. Perception of 

the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated 

transformation. Cell 125:749-760. 

 

Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E., Jones, J., Felix, G. and Boller, T. 2004. 

Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. 

  

http://www.fas.usda.gov/psdonline/


76 
 

APPENDIX A 

Nine Oat Crown Rust Isolates / Races 

Table A 1. Detailed information for nine oat crown rust isolates / races used in this study.  

Isolate Race Virulence to Pc Genes 

CR13 SJQL-96 Pc14/39/40/45/46/47/48/52/54/55/60/71/96/101/102/103/104 

CR185 NBFB Pc35/40/46/58/59/103 

CR223 NGCB-94 Pc39/40/46/55/94/ 

CR241 DSGB Pc38/39/46/47/48/52/55/63/67/70/71 

CR249 DQBG-94 Pc38/39/46/55/56/63/94/104 

CR254 LRBG Pc38/39/55/56/60/61/63/67/68/70/71/104 

CR257 BRBG-94 Pc38/39/55/56/60/63/67/68/70/71/94 

CR258 NTGG Pc38/39/40/46/48/52/55/56/63/67/68/71 

CR259 LQCB-91 Pc35/38/39/40/55/59/60/61/63/91 
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APPENDIX B 

Adult Plant Resistance QTL Markers 

Table B 1. Detailed information for markers linked to adult plant resistance QTL and tested in this study. 

Primer pair Marker 

Type 

Tested 

Loci 

Linkage Original 

Marker 

Type 

Reference Electrophoresis Forward 

Primer 

(5’ - 3’) 

Reverse 

Primer 

(5’ - 3’) 

AM3 SSR am3 MN26 SSR Li et al., 2000 Agarose, 

Capillary, 

PAGE 

CTGGTCATCC

TCGCCGTTCA 

CATTTAGC

CAGGTTGC

CAGGTC 

BCD1729_262W SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose AGATACTGG

CCAAGTTGCT

A 

CCATCAAT

CTTTCAGA

TCGT 

BCD1729_262_1 SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose AGATACTGG

CCAAGTTGCT

A 

CCCTTATG

GTATGGCT

ACG 

BCD1729_262_2 SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TGATGTAAG

CGAATCTCTC

C 

 

CCATCAAT

CTTTCAGA

TCGT 
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BCD1729_375W SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose CTCAGTCCTC

CACTCCAGA

A 

GTGGGTAA

ATGGTGGT

GTTG 

BCD1729_375_1 SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose CTCAGTCCTC

CACTCCAGA

A 

AGGCATGC

AATAGACT

GACC 

BCD1729_375_2 SCAR bcd1729 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose CAGCTTTCAA

GGGATCTGC 

GTGGGTAA

ATGGTGGT

GTTG 

caIND11 indel 

SNP 

Lr34  indel 

SNP 

Dakouri et al., 2010 Agarose, 

Capillary 

GTCTCCCAAT

CTGCATGCTC 

TACCTCCC

AAAAGCCA

GTTG 

CDO400_437W SCAR cdo400 KO14 RFLP Tinker et al., 2009 Agarose AACGAGACA

CGCGGATTTA 

CCATCCAG

AAGCAGAT

AGCC 

CDO400_437_1 SCAR cdo400 KO14 RFLP Tinker et al., 2009 Agarose, HRM AACGAGACA

CGCGGATTTA 

GCGTGTTA

AAAACGAC

GAGA 
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CDO400_437_2 SCAR cdo400 KO14 RFLP Tinker et al., 2009 Agarose GGGCCACTTC

TCTGCTTTAA

T 

CCATCCAG

AAGCAGAT

AGCC 

CDO1090_394W SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose CGAACTGTTC

CACAAAGCA

C 

GGAGGACC

CCAACATC

TTC 

CDO1090_394_1 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose, HRM CGAACTGTTC

CACAAAGCA

C 

GGCAGTCT

TCGTATGC

ACCT 

CDO1090_394_2 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose GCTTAGTCGA

CCTCCTCCAT

C 

GGAGGACC

CCAACATC

TTC 

CDO1090_678W SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose AGGTGCTGG

GTGACAAGG

T 

CAACGAAC

TGTTCCAC

AAAGC 

CDO1090_678_1 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TGGGTGACA

AGGTTGAAA

AA 

 

CATGGTCT

TCTTGCTG

GACA 
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CDO1090_678_2 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose, HRM ACCCTGAGA

ACGCCATCAT 

CTTGAGCA

TGCGGTGG

AT 

CDO1090_678_3 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose, HRM GAGCATTGA

TGAGGATGA

GGA 

CCAACAGC

AGTCAGAA

TGACA 

CDO1090_678_4 SCAR cdo1090 KO14, 

MN10 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose, HRM GATGGAGGA

GGTCGACTA

AGC 

CGAACTGT

TCCACAAA

GCAC 

CDO1509_365W SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TGACATCAG

CAGTTTCAAG

G 

CTGATCAG

TTTGAGGC

CAAG 

CDO1509_365_1 SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TGACATCAG

CAGTTTCAAG

G 

GGTTAGCC

TAATTTGG

AGCA 

CDO1509_365_2 SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TTCACATCGA

ACCTTTCACT 

CTGATCAG

TTTGAGGC

CAAG 
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CDO1509_443W SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TCCTCAAGTG

CGGCAAG 

 

TTGCCTTTT

CAGCCTTG

G 

CDO1509_443_1 SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TCGAGCGTCC

TCAAGTG 

 

TTGCACGA

GACCTGGA

G 

CDO1509_443_2 SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose CATGAGGCC

AAGCAGAAA

G 

CGTGGTAC

ATGTGCTT

GTCA 

CDO1509_443_3 SCAR cdo1509 KO14, 

MN12 

RFLP Tinker et al., 2009; 

Portyanko et al., 2005 

Agarose TAGGCTCCCC

ACCAAGATT 

TCTTGCCTT

TTCAGCCTT

G 

oPt0760W SCAR oPt0760 KO14 DArT Tinker et al., 2009 Agarose AGGCAAGCA

GGTAAAGAA

GT 

TCTTAGTTG

TCCTCGTG

CAT 

oPt0760_1 SCAR oPt0760 KO14 DArT Tinker et al., 2009 Agarose GCAAGCAGG

TAAAGAAGT

GC 

CGGTCAGC

ACTGGACA

ATAG 
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oPt0760_2 SCAR oPt0760 KO14 DArT Tinker et al., 2009 Agarose TTGAGGAGT

ACGTCGCTAT

G 

TCGGACTG

CACTGCTA

TTTT 

oPt0760_3 SCAR oPt0760 KO14 DArT Tinker et al., 2009 Agarose AGTGCAGTG

CGAGCAAGT

AT 

TAATGCAT

CACCGGCT

GTAG 

oPt0760_4 SCAR oPt0760 KO14 DArT Tinker et al., 2009 Agarose CCAAGAAGA

AAGGGAGCT

T 

TCTTAGTTG

TCCTCGTG

CAT 

Pc68-300 SCAR Pc68  SCAR Scoles and Eckstein, 

2004 

Agarose   

swm10 SSR Lr34  SSR Bossolini et al., 2006 Agarose, 

Capillary 

GCCTACTTTG

ACGGCATAT

GG 

CCATCTTG

ACATACTT

TGGCCTTC

C 

UMN23W SCAR umn23 MN26 RFLP Portyanko et al., 2005 Agarose TGGACCAGG

AGAGCTCTG

AA 

GGAACGAA

CTCTTCAG

CTTC 
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UMN23_1 SCAR umn23 MN26 RFLP Portyanko et al., 2005 Agarose, HRM TGGACCAGG

AGAGCTCTG

AA 

GGTTTTCA

GGCCAGGA

CAAT 

UMN23_2 SCAR umn23 MN26 RFLP Portyanko et al., 2005 Agarose,HRM CTGGCCTGA

AAACCAAAC

AT 

GGAACGAA

CTCTTCAG

CTTCT 

UMN339W SCAR umn339 KO14 RFLP Tinker et al., 2009 Agarose GCAGCTTCTG

GAATTTTGAT

G 

GATCATGG

TTGGCCTTT

CAA 

UMN339_1 SCAR umn339 KO14 RFLP Tinker et al., 2009 Agarose,HRM 

 

GCAGCTTCTG

GAATTTTGAT

G 

TCCTTTGG

AGCCATAA

CCAC 

UMN339_2 SCAR umn339 KO14 RFLP Tinker et al., 2009 Agarose GATTGGAAG

CGAGATGAA

GC 

CTGCAAGA

TGAGTTCG

ATCC 

UMN339_3 SCAR umn339 KO14 RFLP Tinker et al., 2009 Agarose TTATGGTTTG

ACGCTTGGTG 

CAATGATT

CATGGGAT

CACG 

 



 

 
 

8
4

 

UMN339_4 SCAR umn339 KO14 RFLP Tinker et al., 2009 Agarose CGTGATCCCA

TGAATCATTG

TT 

GATCATGG

TTGGCCTTT

CAA 

UMN370 SCAR umn370 MN3 RFLP Portyanko et al., 2005 Agarose TGTGGTCTAC

TTGCCGCTTA 

 

CTGCTGCA

AACGAAAA

GACA 

UMN498W SCAR umn498 MN26 RFLP Portyanko et al., 2005 Agarose, SSCP GGAGTACTA

CGGCGGTGA

GA 

ATCGTCAT

TTGCGCAT

GATT 

UMN498_1 SCAR umn498 MN26 RFLP Portyanko et al., 2005 Agarose, HRM CCGCAGGGA

GGAATCTACT

A 

CTACAATC

CATGGGCT

CGAT 

UMN498_2 SCAR umn498 MN26 RFLP Portyanko et al., 2005 Agarose, HRM ACGTGAGGC

TGATGCAGG

T 

CGAACATG

ATCACACG

CATA 

UMN624 SCAR umn624 MN3 RFLP Portyanko et al., 2005 Agarose, HRM AATGCATGT

GTGAAGCAA

GC 

CAGGAATC

AAACCCCA

AATG 
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APPENDIX C 

Linkage Map for the AC Assiniboia x MN841801 Population 

 

 

Figure C1. A 30 linkage group genetic map created using the AC Assiniboia x MN848101 

population spanning 955 cM with 240 markers.  Genetic distance is indicated in 

centiMorgans to the left of each linkage group and marker designations are indicated to the 

right of each linkage group.  Linkage group designatuions are indicated as sequencial 

numbers above each group. 
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Figure C1. (cont.) 
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APPENDIX D 

Adult Plant Resistance QTL Identified in Prior Studies 

 

Table D1. Test identifier, environment, LOD score, R
2
 values, disease rating methods and linkage groups associated with QTLs located on the 

MN map (Portyanko et al., 2005; Acevedo et al., 2010).  DS: Disease severity, DLA: Diseased leaf area, F: Flag leaf, F-1: Flag leaf minus 1. 

Test Identifier Environment LOD R
2
 x 100 Rating method QTL Linkage Group Reference 

SP97PR Field 4 7 DS-F-1 Prq1a MN3 Portyanko et al., 2005 

Rm98PR Field 3.4 6.2 DS-F-1 Prq1a MN3 Portyanko et al., 2005 

Ab07-BRCB Field 3.4 7.1 DLA Prq1a MN3 Acevedo et al., 2010 

Ab07-LSLG Field 4.2 11.7 DLA Prq1a MN3 Acevedo et al., 2010 

LA08 Field 3.9 9.3 DS-F Prq1a MN3 Acevedo et al., 2010 

MB08-BRCB Field 8.9 20 DLA Prq1a MN3 Acevedo et al., 2010 

Gh97PR Greenhouse 11 26.8 DS-F Prq1a MN3 Portyanko et al., 2005 
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Table D1. (cont.)        

Test Identifier Environment LOD R
2
 x 100 Rating method QTL Linkage Group Reference 

SP98PR Field 5.9 12.1 DS-F-1 Prq1b MN3 Portyanko et al., 2005 

Rm98PR Field 18.5 5.2 DS-F-1 Prq1b MN3 Portyanko et al., 2005 

Gh98PR Greenhouse 10 23.7 DS-F Prq1b MN3 Portyanko et al., 2005 

Gh07-LSLG Greenhouse 2.7 7.1 DLA Prq1b MN3 Acevedo et al., 2010 

SP97PR Field 4.5 9.6 DS-F-1 Prq2 MN26 Portyanko et al., 2005 

Rm98PR Field 11.9 16.8 DS-F-1 Prq2 MN26 Portyanko et al., 2005 

SP98PR Field 9.2 14.8 DS-F-1 Prq2 MN26 Portyanko et al., 2005 

Ab07-BRCB Field 13.4 36 DLA Prq2 MN26 Acevedo et al., 2010 

Ab07-LSLG Field 2.6 7.1 DLA Prq2 MN26 Acevedo et al., 2010 

LA07 Field 3.8 9.2 DLA-F Prq2 MN26 Acevedo et al., 2010 

TX07 Field 3.5 8.8 DLA-F Prq2 MN26 Acevedo et al., 2010 
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Table D1. (cont.)        

Test Identifier Environment LOD R
2
 x 100 Rating method QTL Linkage Group Reference 

Gh97PR Greenhouse 9 17.8 DS-F Prq2 MN26 Portyanko et al., 2005 

Gh98PR Greenhouse 9 17.8 DS-F Prq2 MN26 Portyanko et al., 2005 

Gh07-BRCB Greenhouse 10.4 31.7 DLA Prq2 MN26 Acevedo et al., 2010 

Ab07-LSLG Field 3.5 9.4 DLA Prq8 MN13 Acevedo et al., 2010 

MB08-BRCB Field 4.4 11.5 DLA Prq8 MN13 Acevedo et al., 2010 

MB08-BRCB Field 12.9 26 DS Prq8 MN13 Acevedo et al., 2010 
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