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ABSTRACT 
 

Methodologies for the analysis and computer simulations of active optimal 

vibration control of complex elastic structures are considered. The structures, generally 

represented by a large number of degrees of freedom (DOF), are to be controlled by a 

comparatively small number of actuators. 

 Various techniques presently available to solve the optimal control problems are 

briefly discussed. A Parametric optimization technique that is versatile enough to solve 

almost any type of optimization problems is found to give poor accuracy and is time 

consuming. More promising is the optimality equations approach, which is based on 

Pontryagin’s principle. Several new numerical procedures are developed using this 

approach. Most of the problems in this thesis are analysed in the modal space. Even 

complex structures can be approximated accurately in the modal space by using only 

few modes.  Different techniques have been first applied to the cases where the number 

of modes to control was the same as the number of actuators (determined optimal 

control problems), then to cases in which the number of modes to control is larger than 

the number of actuators (overdetermined optimal control problems). 

The determined optimal control problems can be solved by applying the 

Independent Modal Space Control (IMSC) approach. Such an approach is implemented 

in the Beam Analogy (BA) method that solves the problem numerically by applying the 

Finite Element Method (FEM). The BA, which uses the ANSYS program, is 

numerically very efficient. The effects of particular optimization parameters involved in 

BA are discussed in detail. Unsuccessful attempts have been made to modify this 

method in order to make it applicable for solving overdetermined or underactuated 

problems.  

Instead, a new methodology is proposed that uses modified optimality equations. 

The modifications are due to the extra constraints present in the overdetermined 

problems. These constraints are handled by time dependent Lagrange multipliers. The 

modified optimality equations are solved by using symbolic differential operators. The 

corresponding procedure uses the MAPLE programming, which solves overdetermined 

problems effectively despite of the high order of differential equations involved.  
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The new methodology is also applied to the closed loop control problems, in 

which constant optimal gains are determined without using Riccati’s equations.  
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Ĉ   Matrix 

121..CC             Integration constants 

31 ˆ..ˆ cc                Damping coefficients 

1D   Matrix  

DD
~

,ˆ                Differential operators  
DOF                Degree of freedom  

21,dd   Constants 

EEi

~
,               Differential operators 

EI   Bending stiffness 

221
ˆ,,,, FFFFF a  Forces 

21, mm FF  Forces 

FEM                Finite element method 
FBC                 Final boundary condition 
G  Gain matrix 
g   Gravity (9.81 2/ sm ) 

21, gg   Constants 

ivid gg ˆ,ˆ             Modal gains for 

displacement and 
velocity 

H, Ĥ   Hamiltonian 
I  Identity matrix 
IBC Initial boundary 

condition 
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1. INTRODUCTION 

 

Most physical processes which take place in technology can be realized by 

various means depending on the will of man. Then the question arises of finding the best 

or, as is said, the optimal way of realizing these processes. Mathematical optimization 

helps answering such questions. 

Optimal control, a branch of mathematical optimization, deals with time and 

dynamic processes. It has variety of applications in automation, robotics, and other 

areas. In this thesis it is applied to active control of vibrations in continuous elastic 

structures. Typically such structures may be quite complex and, if modelled by Finite 

Element Method (FEM), may require very large number of degrees of freedom (DOF).  

Undesired vibrations may be attenuated by applying passive or/and active 

damping devices. In passive approach the system’s performance depends on built-in 

dampers which use natural damping characteristics of the material. In active approach 

the performance of the system depends on actuators which can be programmed or set up 

according to particular needs. For example, to reduce vibrations in a long span bridge 

(see Fig. 1.1), one may use passive friction based dampers and/or actuators that would 

generate forces attenuating the vibrations that might be caused by moving load or wind. 

An active control has many advantages over the passive control, mainly better 

and more precise vibration controls and usually lighter designs. The latter is due to the 

fact that passive dampers, especially in tall buildings [1], might be quite massive which 

in turn necessitates stronger and heavier structures. 
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Figure 1.1: Bridge Structure 

 

Active vibration control also plays a major role in controlling satellites and 

telescopes. A precise control of the movement is essential for a big telescope shown in 

Fig. 1.2-a [2]. Even very small vibrations are undesirable and must be effectively 

eliminated, which can be done only by active vibration control methods [3].  

 

                   

   (a)      (b) 

Figure 1.2: (a) Gemini Telescope; (b) Satellite arms 

  

The solar cell panels or extended arms of a satellite shown in Fig. 1.2-b [4] need 

to rotate in a controlled manner to follow the Sun without exciting excessive vibrations. 

The disturbances imposed by the intermittent action of thrusters can be effectively 

attenuated by the quickly reacting actuators [5]. 

Actuator Actuator 

Passive 
Damper 
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The main purpose of computer simulations of actively controlled structures is to 

predict the desired or expected optimal action of actuators, which then could be used 

either in designing a new damping system, or to improve an existing one. Such 

simulations could be based on the theory of elastic vibrations and the theory of optimal 

control.  Separate software and techniques are presently available to analyse/simulate 

either the vibrations or the control problems. 

            The analysis of vibration can be efficiently performed by the FEM even for very 

complicated systems with a large number of DOFs. On the other hand, the optimal 

control techniques can handle systems with a limited number of DOFs (one preferable). 

That is why many real mechanical systems are simplified to a single or few DOFs 

models in control considerations. 

           On the other hand, most flexible bodies move in such a way that their motion is a 

combination of only several lower natural frequency modes. Also, motions of many 

structures that may need a large number of DOFs to model accurately in FEM can be 

approximated with fair precision by only one fundamental frequency mode. It indicates 

the practical importance and convenience of using modes instead of DOFs, therefore 

almost all the analysis presented in the thesis is done in the modal space. 

 There are two types of approaches to handle optimal active vibration control for 

multi modal systems. The independent modal space control (IMSC) approach controls 

the number of modes equal to the number of actuators [6]. Such systems will be referred 

to as the determined ones. If the number of modes to be controlled is greater than the 

number of actuators, such systems and the corresponding optimization problems will be 

referred to as the overdetermined optimal control problems (such problems are also 

referred to as the underactuated control problems).  

Numerous techniques have been developed to solve IMSC problems, but very 

few techniques are available to solve overdetermined problems effectively. This 

research work is an attempt to find a better solution technique for optimal active 

vibration control of overdetermined problems. 
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1.1 Outline of Thesis 

 An optimal control problem for the vibration attenuation is formulated in 

Chapter II. The dynamic systems are represented by the coupled equations of motion in 

terms of the DOFs, and then in terms of the modal variables in order to uncouple these 

equations. The objective of control, or the performance index, is also formulated in 

terms of DOFs and then in terms of modal variables. The performance is optimized by 

considering the constraints in the form of the equation of motion, the initial and final 

(target) boundary conditions. 

 Some general solution techniques that are available for optimal control problems 

are discussed in Chapter III. An overdetermined gantry crane problem is solved by 

various techniques to illustrate their pros and cons. The optimality equations approach 

and an iterative, gradient based parametric optimization technique are discussed in 

detail.  

 Beam Analogy (BA), a recently developed technique to solve complicated IMSC 

problems is studied in Chapter IV. The effects of various optimization parameters 

available in BA are discussed. This technique, which uses the FEM programme ANSYS, 

is found to be numerically very effective but is presently not applicable to the 

overdetermined problems. 

 A new technique to solve specifically overdetermined problems is developed in 

Chapter V. The Lagrange multipliers are used to handle the extra constraints generated 

in overdetermined problems. Gantry crane problem is solved initially and then the 

methodology is generalized for more complicated problems. The technique is 

programmed in MAPLE software to solve complex problems quickly. 

 Closed loop control is addressed in chapter VI by determining optimal gains for 

the time invariant problems. Obtaining gains accurately for the overdetermined 

problems becomes more difficult with more modes to control. An approach that uses the 

condition number to help finding acceptable solutions is presented.   

           Chapter VII contain conclusions and suggestions for the future research. 
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2. PROBLEM FORMULATION 

 

2.1 Introduction 

Extensive research has been done recently on active vibration control which aims 

on reducing the vibration level of a mechanical structure. Most of the techniques have 

been developed to control a given number of modes of vibrations by an equal number of 

actuators. This approach is referred to as an Independent Modal Space Control.  

The structure may have a large number of DOFs and, hence, a large number of 

modes of vibrations. In IMSC approach, for example, actuators F1 and F2 acting on the 

structure shown in Fig. 2.1 can control only two modes of vibrations, leaving other 

modes uncontrolled. On the other hand, only lower modes may practically require some 

control [1]. This is because higher modes are usually damped out naturally due to the 

presence of internal and external friction in the system. Such a strategy should work well 

if the natural frequencies of the system are well separated and the frequencies of the 

uncontrolled modes are much higher than the controlled ones. 

 

 

Figure 2.1: Two bay frame structure 

 

In cases, where the natural frequencies are close to each other, it may be 

important to control a larger number of modes, for example, more than two modes in the 

���������	��
�
 

F2 

F1 
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frame. Also there are cases (such as gantry crane in Fig. 2.2) where it would be 

advantageous for a certain number of actuators to control a number of modes that is 

greater than the number of actuators. Such problems are referred to as overdetermined 

problems.  

The IMSC method is considered not applicable to the overdetermined problems. 

Instead, other methods, such as parametric optimization, optimality equations, etc. are 

applied. However, the application of such techniques is rather challenging from the 

computational point of view. 

 The main focus of this research work is to obtain better technique for the 

overdetermined problems. Similar to IMSC, such problems will be solved in modal 

space. 

Many actively controlled mechanical systems can be represented by the 

equations of motion (Eq. 1.1) in the form  

FtBFKXXCXM a ==++ )(&&&       (2.1) 

where M, C, K are constants matrices, C is Rayleighs damping matrix, )(tFa  is an 

actuation force vector, X is a vector representing n DOFs of the system, F is a 

corresponding force vector, matrix B assigns the actuator forces to DOFs. 

Let the number of independent actuation forces be an . These forces are to 

control n number of DOFs, where n >> an . Typically, not all matrices M, C and K of Eq. 

(2.1) are diagonal, therefore the DOFs are coupled. The problem can be uncoupled by 

using modal space i.e. converting X variables into the modal variables η . The details of 

modal analysis are explained later. The modal variables and forces are related to the X 

variables and actuation forces as 

φη=X , a
T BFu φ=         (2.2) 

where φ  is a matrix of modal shapes.  

Using these relations in Eq. (2.1), yields a new system of n uncoupled equations as 

iiiiiii u=++ ηωηωζη 22 &&&        (2.3) 

where i =1..n , iζ  is a modal damping coefficient and iu  is a modal force corresponding 

to thi  mode. 
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The above two formulations, Eq. (2.1) and (2.3), are mathematically equivalent 

as long as the number of modes in Eq. (2.3) is the same as the number of DOFs in Eq. 

(2.1). However, in Eq. (2.3) the higher the mode the less important it becomes in 

practise because of natural damping. Therefore, in order to obtain accurate solutions the 

number of modes, mn , that need to be considered can be much smaller than the number 

of DOFs i.e. mn << n . This property of the solution in modal space is used in the IMSC 

in which mn  is set to be equal to an <<n.  

If mn > an  the problem becomes overdetermined. Such problem is explained in 

detail on the gantry crane example (Fig. 2.2), which was an analysed in [7] using 

different solution technique. 

 

 

Figure 2.2: Gantry crane 

 

The gantry crane example is selected as a test problem because of its simplicity. 

Its two DOFs, corresponding to the motion of mass 1m  and motion of mass 2m , can be 

controlled by two actuators, one at mass 1m  and other at mass 2m . This is a determined 

problem and can be converted into two modes problem to solve by IMSC approach. The 

(a) Initial Condition (c) Final Condition (b) 

L  

1m  

2m  

θ  

2mF  

1mF  

L  

1m  

2m  

a 

mx  
m  

2mF  

1mF  x  

L  

1m  

2m  
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system can also be controlled by only one actuator, acting on 1m , for example. Such 

problem obviously becomes overdetermined with 1=an , 2=mn  and can not be solved 

by IMSC. 

The following is a detailed formulation of the overdetermined gantry crane 

problem. The control force 1mF  is applied to move the system. It is required that masses 

1m  and 2m  should start from the rest, travel a given distance ‘a’  and should stop without 

any oscillations when arriving to its final destination. The optimum value of force 1mF (t) 

and the corresponding displacement and velocity trajectories are to be determined.  

The equations of motion for this system using the DOFs and then the modal 

space are discussed next.  

 

2.2 Equations of Motion 

Two forces 1mF  and 2mF  are considered for generality. The control problem will 

be made overdetermined by setting 02 =mF . The damping effect is neglected. 

Lagrange’s equations of motion are obtained as follows.  

Let the displacement of mass 1m  is x, and that of mass 2m  is mx .  

Assuming θ <<1, the displacement of mass 2m  can be written as  

θLxxm +=                                  

The velocity of mass 1m  is x�  and that of mass 2m  is θ&&& Lxxm +=     

Thus x and θ  can be used as DOFs of this system.  

Kinetic Energy of the system is 

2
2

2
1 )(

2

1
)(

2

1 θ&&& LxmxmKE ++=       (2.4) 

Potential Energy of the system is 

2

2

2

θ
gLmV =          (2.5) 

Virtual work by forces 1mF  and 2mF  is 

)(21 δθδδδ LxFxFW mm ++= δθδ )()( 221 mmm LFxFF ++=    (2.6) 
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Lagrange’s Equations for the system are 

21 mm
aa FF

x

L

x

L

dt

d +=
∂

∂
−




∂
∂
&

       (2.7) 

2m
aa LF

LL

dt

d =
∂
∂

−



∂
∂

θθ&
       (2.8) 

where VKELa −= . 

The right hand side of the above equations are the forces corresponding to the virtual 

displacements 1xδ  and δθ  respectively in Eq. (2.6).  

Substituting Eq. (2.4) and (2.5) and differentiating one obtains  

2121 )( mm FFLxmxm +=++ θ&&&&&&        

222 )( mFgmLxm =++ θθ&&&&        

These equations of motion can be expressed in the matrix form as 








=






+





 +

2

1

222

221

10

11

/0

00)(

m

m

F

F

L

x

LgmL

x

mm

mmm

θθ&&
&&

   (2.9) 

Comparing with Eq (2.1), the matrices in Eq. (2.9) are  




 +
=

22

221 )(

mm

mmm
M , 0=C ,  




=
Lgm

K
/0

00

2

,   





=

10

11
B ,   




=
θL

x
X , 




=
2

1

m

m
a F

F
F    (2.10) 

The initial and final boundary conditions for these equations are  

[ ]00)0( =TX , [ ]0)( atX f
T =  and 0)()0( == f

TT tXX &&   (2.11) 

The final boundary condition (for ftt = ) will also be referred to as target condition. Eq. 

(2.9) are coupled equations in terms of x  and θ . The modal analysis is performed to 

uncouple these equations. 

 

2.3 Modal Analysis 

Modal analysis solves the eigenvalue problem to determine the frequencies ω  at 

which vibration naturally occurs, and the corresponding modal shapes ωφ , the vibrating 
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system assumes [8]. Natural frequencies or the eigen values of the system with no 

damping can be obtained by substituting  

)sin( txx ω= , )sin( tωθθ =  

or )sin( tX ωφω=         (2.12) 

where [ ]θφω LxT =  and F =0 into equations of motion (2.9) to obtain 

   



−+−

−−
Lmmm

Lg

2
2

21
2

22

)( ωω
ωω

  





−

−

θ
x =0      (2.13) 

Solving Eq. (2.13) for eigenvalues, the natural frequencies of the system are 

2
1ω =0           (2.14) 

2
2ω = Lgmm /)/1( 12+        (2.15) 

The first value indicates a rigid body mode of motion. Substituting 1ω  in Eq. (2.13) and 

requiring that 111 =φφ MT , the first normalized mode is obtained as 




 +=
0

/1 21
1

mmφ         (2.16) 

Similarly, for the second mode, substituting 2ω  into Eq. (2.13) and normalizing one 

obtains 







+−
+

=
2121

2112
2

/)(

)(/

mmmm

mmmmφ        (2.17) 

The modal matrix φ  is defined as [ ]21 φφφ =  or 







+−
++

=
2121

211221

/)(0

)(/)/(1

mmmm

mmmmmmφ      (2.18) 

Also, it can be verified that  

 IMT =φφ  and 



=

2
2

2
1

0

0

ω
ωφφ KT  =Ω  

where Ω  is a diagonal matrix of eigenvalues (square of frequencies). 

Let [ ]21 ηηη =T  be the modal variables such that 

φη=X          (2.19) 
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Substituting Eq. (2.19) in (2.9) and pre-multiplying by Tφ  one obtains 

uI =Ω+ ηη&&          (2.20) 

Modal forces are defined as                  

=



=

2

1

u

u
u a

T BFφ = 






−+ 2

1

211221
//

111

m

m

F

F

mmmmmm
  (2.21) 

Note that, the matrix BTφ  in the above equation is a square matrix if the number of 

modes equals number of actuator forces. In such cases it is possible to take inverse of 

this matrix, which allows conversion of modal controls u into the actuator forces aF . 

For overdetermined problems, BTφ  is not square and such operation is not possible. 

Eq. (2.20) for the gantry crane takes the form 

111 0 u=+ ηη&&                (2.22a) 

22
2

22 u=+ ηωη&&               (2.22b) 

The initial and final boundary conditions for these equations are  

[ ]00)0( =Tη , ]0[)(
ftf

T t ηη =  and 0)()0( == f
TT tηη &&  

These modal BCs are obtained from the BCs for the DOFs, by making use of Eq. (2.19). 

The Eq. (2.22) are uncoupled equations of motion and can be solved independently if 

the modal controls 1u  and 2u  are known.  

In order to control the two modes of this system by one force, let 02 =mF . Then 

from Eq. (2.21) one obtains 

)(/ 2111 mmFu m +=         (2.23) 

)(// 211212 mmmmFu m +=       (2.24) 

Both the modal controls depend on one force 1mF . It can be noted from Eq. (2.23) and 

(2.24) that the modal controls are not independent and satisfy the equation 

0/ 2121 =− mmuu         (2.25) 

Thus for this system, an extra constraint (2.25) that is imposed on modal control has to 

be considered. That is why this problem is referred as an overdetermined problem. To 

analyse it in the modal space one has to solve Eq. (2.22) that is additionally constrained 

by the condition (2.25) and BCs.  
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In control theory, one would be interested in finding a force 1mF  that would 

satisfy the equation of motion and the target conditions. An infinite number of solutions 

may be possible.  

In optimal control, the best force can be obtained by assuming a certain objective 

referred to as the performance index. Various optimization techniques to minimize the 

objective and to solve optimal control problems are briefly presented in coming sections. 

 

2.4 Optimal control and optimality equations 

This methodology is based on Pontryagin’s maximum principle [9] and is 

capable of providing exact solutions. First the theory of optimal control is briefly 

described followed by the analysis of gantry crane example in the next chapter.  

The optimal control problem for n DOF system is formulated as below. The cost 

function or the performance index is assumed as 

dtRFFXQXXQXJ
ft

T
v

T
d

T ][
0

2
1 Γ+++= ∫ &&    →  minimum   (2.26) 

where dQ , vQ  and R are positive definite weighting matrices. 

In particular, the term 2
1 XQX d

T  represents elastic energy of the system if KQd = . 

The term 2
1 XQX v

T &&  represents kinetic energy of the system if MQv = . 

The term 2
1 RFF T  represents work done by external force, if 1−= KR . 

The term Γ  represents contribution of maneuver time. Optimal maneuver time, if not 

known, can be calculated by assigning weightage to Γ . If the maneuver time is already 

known then 0=Γ . 

The objective function is minimized subject to the equation of motion (2.1) 

FtBFKXXCXM a ==++ )(&&&       

The initial and final boundary conditions for the controlled maneuver are 

IBC: 0)0( XX =    FBC: ff XtX && =)(  

         0)0( XX && =              ff XtX =)(    (2.27) 



 13 

The purpose of optimal control is to determine )(tFa , )(tX , ft  that satisfies Eq. (2.1), 

conditions (2.27) and minimizes the performance index (2.26). 

The problem is now written in the form that uses the state variables and is solved 

by the optimal control methodology [9]. The state variables represent the system’s 

displacements and velocities. For n DOF system there are 2n state variables defined as 

  



=

X

X
z

&
         (2.28) 

In terms of the state variables the performance index (2.26) is 

min][2/1),(
00

→Γ++== ∫∫ dtRFFzQzdtFzfJ
ff t

TT

t

   (2.29) 

The state variables z  and controls F must satisfy the equation of motion (2.20) which 

can be rewritten as 2n of first order state equations in the form 

 FAzAz 21 +=&          (2.30) 

and 4n boundary conditions 

 0)0( zz =  ff ztz =)(        (2.31) 

where 
nn

CMKM
A

22
111

10

×
−− 




−−
=   

nn
M

A
×

− 



=

2
12

0
         (2.32-33) 

Formally, the objective (2.29) with the constraints (2.30-31) defines a constrained 

optimization problem, which can be solved by applying general optimization methods. 

The necessary conditions for z and F to minimize J and satisfy all the constraints can be 

derived from Pontryagin’s principle. These conditions are in the form of differential 

equations and are referred to as the optimality equations. In order to apply Pontryagin’s 

principle, the Hamiltonian is defined as 

)(),( 21 FAzAPFzfH T ++−= = ),,( FPzH     (2.34) 

where P  is a vector of costates.  

For optimal motion H should be stationary in terms of Pz,  and F . According to 

Pontryagin’s principle the costates must satisfy the equation 

PAQzP
z

H T
1−==

∂
∂− &        (2.35) 

The state equation is 
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FAzAz
P

H
21 +==

∂
∂

&         (2.36) 

Costate and state are 4n of first order differential equations. The extremum of 

Hamiltonian with respect to control gives 

02 =+−=
∂
∂

PARF
F

H T        (2.37) 

From the above equation, optimal control force is specified as 

PARF T
2

1−=          (2.38) 

The Hamiltonian must also satisfy the target equation  

0)( =ff ttH δ          (2.39) 

If ft  is given, this equation is automatically met. Otherwise 0)( =ftH  is used to 

determine the optimal maneuver time ft . Eq. (2.35 – 2.38) constitute the set of 

optimality equations that must be satisfied by the optimal maneuver. It should be noted 

that formally the functions Pz,  and F  will be determined in terms of time. It implies 

that the actuator forces will also be known functions of time, constituting an open loop 

control problem. 

If the modal space is used then η→X , IM → , Ω→K , uF → .  

The problem defined by Eqs. (2.29 – 2.39) can also be analyzed using the Riccati 

equation derived as follows. 

Let  ztCP )(ˆ=          (2.40) 

where Ĉ  is a symmetric matrix of dimension 2n. 

Substituting back into Eq. (2.35) one obtains 

zCAQzzCzC T ˆˆˆ
1−−=+ &

&
       (2.41) 

Substituting Eq. (2.40) into Eq. (2.38) 

  zCARF T ˆ
2

1−=         (2.42) 

Substituting Eq. (2.36) and (2.42) into (2.41) 

0ˆˆˆˆˆ
12

1
21 =++++ − zCAQzzCARACzACzC TT&

  

Since this equation must be satisfied for any z(t) ≠ 0, the matrix Ĉ (t) must satisfy the 

equation  
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0ˆˆˆˆˆ
12

1
21 =++++ − CAQCARACACC TT&

     (2.43) 

This equation is referred to as the Riccati equation. The boundary conditions for this 

equation can be derived from the target equation. The solution of the Riccati equation 

provides the matrix Ĉ  that can be substituted back to get controls, costates and 

trajectories of the optimal maneuver. Since the equation is non-linear due to the 

multiplication of matrices Ĉ  in the third term, it is generally difficult to solve. 

 It can be shown that →Ĉ constant if ∞→ft  (and 0=Γ ) in Eq. (2.29). Then 

Eq. (2.43) becomes the algebraic Riccati equation in the form 

 0ˆˆˆˆ
2

1
211 =+++ − QCARACCAAC TT       (2.44) 

This equation solves the so-called time invariant optimal control problem. However, the 

Riccati equations are generally difficult to solve, as discussed in [10]. 

 Eq. (2.42), which represents the relationship between forces and states, can be 

rewritten as  

zGF ⋅−=  where CARG T ˆ
2

1−−=       (2.45) 

If matrix G, to be referred to as gain matrix, is known then the current controls (input) 

can be defined upon the knowledge of the states (output). This allows for a closed loop 

control with the optimal gains determined either from Eq. (2.44) or by directly 

minimizing the performance  

 ∫∫ ∞∞

⋅+=+=
00

)(
2

1
][2/1 dtzRGGQzdtRFFzQzJ TTTT    (2.46) 

Subject to zGAAFAzAz )( 2121 −=+=&  

 A method of finding the optimal gains from the latter approach will be discussed 

in Chapter VI.  

 

 

 

 

 



 16 

 

 

 

3. SOME SOLUTION TECHNIQUES 

 

3.1 Introduction 

Solution techniques for the optimal control problems defined in chapter II can 

generally be divided into two categories, analytical which attempt to solve the optimality 

equations, and parametric optimization that tries to minimize the performance index 

directly. An analytical technique can provide exact solutions but complicates quickly 

with the number of DOFs. Parametric optimization can theoretically handle more 

complicated problems but the convergence and sufficient accuracy is difficult to obtain. 

These techniques are briefly discussed in the coming sections.  

 

3.2 Overdetermined gantry crane problem by optimality equations  

Due to the simplicity, overdetermined gantry crane problem can be solved 

analytically. An exact solution of the crane controlled by the actuator 1mF  is determined 

first for the comparison purposes. Results obtained by applying different methodologies 

will be verified against this solution.  

Let 
21

1

mm

F
u m

+
=  and 12 / mmj =                  (3.1-a,b) 

Eq. (2.22) can be rewritten as 

u=+ 11 0ηη&&          (3.2)

 ju=+ 2
2

22 ηωη&&         (3.3)  

As can be seen, the two modes of the gantry crane motion are controlled by one modal 

control u. 

Let, 

11 η=z    23 η=z       (3.4) 
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12 η&=z   24 η&=z       (3.5) 

Equations of motion (3.2-3) can be written in the form of state equations as 

21 zz =&      43 zz =&    

 uz =2&       ujzz +−= 3
2

24 ω&   (3.6) 

Similarly as in [7], assume that the work done by actuators should be minimized in the 

maneuver executed in a given time ft . The corresponding performance index is 

∫=
ft

dtuJ
0

2

2

1
         (3.7) 

Hamiltonian (Eq. (2.34)) can be written as, 

)(
2

1
3

2
2443221

2 ujzPzPuPzPuH +−++++−= ω     (3.8) 

The costates equations (2.35) are 

1
1

P
z

H
&−=

∂
∂

,    01 =P&        (3.9) 

2
2

P
z

H
&−=

∂
∂

,    12 PP −=&       (3.10) 

3
3

P
z

H
&−=

∂
∂

,   4
2

23 PP ω=&       (3.11) 

4
4

P
z

H
&−=

∂
∂

,   34 PP −=&       (3.12) 

Note that for this particular case, the costate equations are independent of the states. A 

more generalized case is discussed later. 

From Eq. (3.9-3.12) one can write 

02 =P&&           (3.13) 

04
2

24 =+ PP ω&&         (3.14) 

The control equation (2.37) is 

0=
∂
∂

u

H
 →  42 jPPu +=        (3.15) 

For this problem Eq. (3.13) can be independently integrated to obtain 

212 CtCP +=          (3.16) 
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Similarly integrating Eq. (3.14) 

)cos()sin( 24234 tCtCP ωω +=       (3.17) 

Substituting Eq. (3.16) and (3.17) in (3.15) 

)cos()sin( 242321 tjCtjCCtCu ωω +++=      (3.18) 

Substituting Eq. (3.18) into (3.2)  

)cos()sin( 2423211 tjCtjCCtC ωωη +++=&&  

Integrating above equation twice 

652
2

2
42

2

2
3

2

2

3

11

)cos()sin(

26
CtC

t
jC

t
jC

t
C

t
C ++−−+=

ω
ω

ω
ωη   (3.19) 

Now substituting Eq. (3.18) into (3.3) and integrating 

( )[ ]+−+++= )cos()sin()cos(22
2

1
2232224212

2

2 ttjCtttjCCtC ωωωωω
ω

η  

)cos()sin( 2827 tCtC ωω +        (3.20) 

The solution is obtained in terms of eight integration constants 81..CC . These constants 

can be determined from the following boundary conditions.    

 0)0(1 =η     mMat f +=)(1η  

0)0(1 =η&     0)(1 =ftη&  

0)0(2 =η     0)(2 =ftη     (3.21) 

0)0(2 =η&     0)(2 =ftη&  

Let, Kgm 10001 = , Kgm 20002 = , mL 2= , st f 515.4= (maneuver time),  a=4m, 

srad /836.32 =ω  

Using above values, the integration constants can be calculated (using Maple software) 

as 

01979.301 −=C    231477.25 −=C  

7727.672 =C     55804.06 −=C  

5599.83 −=C     3407816.07 =C    (3.22) 

211489.84 −=C    118878.68 −=C  

Substituting these constants in Eq. (3.19) and (3.20) 
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0.5581-2.230t-t).5581cos(0t).5814sin(033.888t5.00384t 22
23

1 ωωη +++−=    (3.23) 

)sin(341.0)cos(577.1)sin(514.1)cos(514.6514.6885.2 22222 ttttttt ωωωωη +⋅+⋅−−+−=   (3.24) 

The above modal variables are converted into x  and θ  variables by using Eq. (2.19) 

21 )(

1 ηη
mMM

m

mM
x

+
+

+
=       (3.25) 

2ηθ
Mm

mM
L

+−=         (3.26) 

Substituting all constants, one can write, 

{ }+−++−= ttttx 03908.001942.0)sin(618677.0091347.0 2
23 ω   

       { } 1579887.011523.004074.015798.0)cos( 2 +−+− tttω    (3.27)  

{ }+−+−= tttL 0611115.0252265.0)cos(252265.01117406.0 2ωθ   

          { }0131984.0058624.0)sin( 2 −ttω      (3.28) 

Plots of x(t) and )(tθ  are shown in Fig. 3.1. Some angular positions are also indicated in 

the graph. 

 

                       

 

(a)  (b) 

Figure 3.1: (a) Plot of x (m) versus time(s); (b) Plot of θ (rad) versus time(s) 

 

Fig. 3.2 represents the variation of modal variables 1η  and 2η   

 x
 (

m
) )(radθ

 

 

 

t (s) 

t (s) 
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   (a)      (b) 

Figure 3.2: (a) Plot of 1η  versus time; (b) Plot of 2η  versus time 

 

The optimal actuator force now can be calculated from Eq. (3.1-2) and equals to 

)cos(7618.449)sin(8475.4680632.37122519.1644 221 tttFm ωω −−+−=  (3.29) 

 

 

Figure 3.3: Plot of 1mF  (N) versus time (s) 

 

 
t (s) 

1mF (N) 

1mF

 

1η  
2η  

 

 

t (s) 

t (s) 
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This force is plotted in Fig. 3.3. It can be noted that the 1mF  changes within about 

± 3000N. Starting from the high positive value, the force is reduced to zero in the first 

half and then the same way it attains the high negative value in the later half. The force 

is zero after ftt = . The optimal value of 6108.9 ×=optJ  is calculated for the 

comparison purpose. 

 

3.3 Some L imitations 

It should be emphasised again that the analytical solution for the above 

overdetermined problem was possible because the costates in Eq. (3.9-12) were 

independent of states. It is not the case for most of the other control problems. For 

example, a suspension system shown in Fig. 3.4 (analysed in chapter V) with one 

actuator force to control two modes would be very difficult to solve by this technique. 

 

 

Figure 3.4: Suspension system 

 

The problem with this case is that the costate equation takes the following form 

2
12

2
1121 ωω PzaP +=&          

1212 PzbP −=&         

 2
24

2
2323 ωω PzaP +=&        (3.30-a,b,c,d) 

3414 PzbP −=&           

Unlike the costates (Eq. (3.9-12)) of gantry crane, these costates are coupled with the 

states 321 ,, zzz 4z . The state equations for the problem in Fig. 3.4 are somewhat similar 

to Eq. (3.6), and takes the form 

suspF  

1x  

2x  
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21 zz =&           

1
2

12 zuz ω−=&           

43 zz =&         (3.31-a,b,c,d) 

3
2

24 zjuz ω−=&               

In order to solve the problem defined by Eq. (3.30–31) it is important to uncouple the 

costates from the states. It would be possible if the boundary conditions were available 

for the costates, but in this case those are available only for the states. Hence, these type 

of problems are very difficult to solve. Various other techniques to tackle such more 

general problems are discussed in coming chapters.  

  

3.3 Parametr ic optimization technique 

This technique attempts to directly minimize the performance index (such as 

defined by (2.26), for example). A gradient based numerical procedure for 

unconstrained optimization problems will be used to solve the overdetermined gantry 

crane problem. The constraint optimization problem may be converted into unconstraint 

one by using a penalty function. If eP  is a penalty then the objective function could be 

the sum of a positive definite performance index and eP  times a positive definite 

constraints equation. Note that the costates do not need to be considered. 

In order to solve gantry crane problem by parametric optimization, the force 

1mF (t) may be approximated by a piecewise constant or linear functions as shown in Fig. 

3.5. The total time span ft  is broken into dn  equal divisions. The optimum value of 

forces at the start and at the end of each division is to be obtained by optimization. To be 

consistent with the analytical solution in the section 3.2, the objective function includes 

summation of square of forces.  

dttFJ
d

i

i
n

t

t

⋅= ∑ ∫+1

2)( = )..( 11 +dnFFJ →min 

The procedure is explained with the help of flowchart shown in Fig. 3.6. The 

values of forces iF  at the starting point are assumed. Using IBCs at the start (t=0) and 

the applied forces on the first division, the FBCs at the end of the first division are 
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calculated from analytical solution explained in the next section. These FBCs become 

IBCs for the second division which in turn yields the FBCs for second division. The 

loop is repeated for dn  divisions. The values of all variables at the end of last division 

are obtained and are compared with the required FBC values. The target error (TE) is 

defined as 

TE = 22 ))(())(( fifi
i

fifi tt ηηηη && −+−∑  

  

 

Figure 3.5: (a) 1mF  is constant in each division; (b) 1mF  changes linearly with time in 

each division 

 

Any combination of forces iF  that eliminates this error solves the control problem. The 

combination that gives the minimum value of the performance index is considered 

optimal. In each iteration new forces are calculated by minimizing the objective function  

)(ˆ TEPJJ e ⋅+=   

The Davidon-Fletcher-Powell (DFP) optimization procedure is used to minimize Ĵ . The 

objective function includes forces and the penalty ( eP ) times error. The procedure is 

terminated if the target error is sufficiently small ( 1ε<TE ) and the objective function 

between two consecutive iteration steps is smaller than user defined 2ε . 

(a) (b) 

t t i  

F i  

t f  t 0  

1mF  

t 1+i  t 

F i  

t i  t f  t 0  

1mF  

t 1+i  
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Figure 3.6: Flowchart for parametric optimization technique 

Read 
Number of steps dn , given FBCs  

IBC = )0(),0(),0(),0( 2121 ηηηη &&  
Time increment t∆ , Iteration k =0 

 

Calculate: FBC ( )(),(),(),( 12111211 ++++ iiii tttt ηηηη && ) 

  

Read: k
iF , k

iF 1+  

ttt ii ∆+=+1  

i=0, it =0 

i = i+1 
IBC=FBC 

If 
i < dn  

If 
Target Error ≤ 1ε  

2
1ˆˆ ε≤− +kk JJ  

Minimize the objective function 

)())((ˆ
1

2 ErrorPtFJ e

n

i

kk
d

⋅+= ∑
=

  

k = k +1 
New 1+k

iF  

Yes No 

End 
Yes 

No 

Start 
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In order to develop the programming codes, the analytical solution to obtain FBC is 

derived for a linearly varying force.  

 

 3.3.1 A piecewise linear ly varying force approximation 

Linearly varying forces are used as they give closer approximation to the actual 

forces than the constant value forces. The analytical solution for a division is obtained. 

The force applied on mass 1m  for 21 ttt <<  is shown in Fig. 3.7. 

 

 
Figure 3.7: Linearly varying force 

 

The force can be expressed as 

)(ˆ 111 ttSFFm −+=         (3.32) 

where 
12

12ˆ
tt

FF
slopeS

−
−

== . 

The objective function iJ  (where ∑=
n

iJJ
1

) can be expressed as 

dttFJ
t

t

mi ⋅= ∫2
1

2
1 )( = tFFFF ∆++ )(

3

1 2
221

2
1  

From Eq. (2.23) 

211 qtqu +=          (3.33) 

432 qtqu +=          (3.34) 

where 
21

1

ˆ

mm

S
q

+
=    

21

11
2

ˆ

mm

tSF
q

+
−=  

1mF  

t  

1F
2F  

2t1t

)()( 111 ttSFtFm −+=  

t∆  
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21

12
3

/ˆ
mm

mm
Sq

+
=   )ˆ(

/
11

21

12
4 tSF

mm

mm
q −

+
=  

Let the initial boundary conditions for a time step be 

)( 11 tη , )( 12 tη , )( 11 tη& , )( 12 tη&        (3.35) 

From equation (2.21)  

211 qtq +=η&&          (3.36) 

Integrating with respect tot ,  

21
2

2
3

11 2/6/ CtCtqtq +++=η       (3.37) 

12
2

11 2/ Ctqtq ++=η&        (3.38) 

1C  and 2C  are integration constants to be found from boundary conditions. 

From Equation (2.22) 

4322
2

22 qtqu +==+ ηωη&&        (3.39) 

Integrating with respect tot , 

2
24

2
2324232 //)sin()cos( ωωωωη qtqtCtC +++=     (3.40) 

2
232242232 /)cos()sin( ωωωωωη qtCtC ++−=&     (3.41) 

X variables are obtained using φη=X  











+−
++

=



2

1

2121

211221

/)(0

)(/)/(1

η
η

θ mmmm

mmmmmm

L

x
    (3.42) 

1C , 2C , ,3C  4C  are integration constants and can be found from the initial boundary 

conditions (3.35). For numerical purposes the time scale is shifted so that for each 

division 01 =t  and tt ∆=2 . Then from Eq. (3.37-38) and Eq. (3.40-41) one obtains 

)( 111 tC η&=          

)( 112 tC η=                  

2
24123 /)( ωη qtC −=              (3.43-a,b,c,d)

 2
2

23124 /]/)([ ωωη qtC −= &            

The FBCs or the values of all functions at time 2t  can be obtained by substituting all the 

constants in Eq. (3.37-38-40-41) and tt ∆= . 



 27 

 The DFP program is used to solve the optimization problem. For a specific 

objective function, all the derivatives and increments of the variables (forces iF ) are 

calculated numerically. The case of four forces i.e. 3=dn  is considered first, as it yields 

four unknowns which can be calculated directly from the four equations of boundary 

condition. In this case the target error criterion is met by only one set of forces. These 

forces can be obtained quickly by setting the penalty eP  high enough to eliminate the 

target error. For 3>dn , the number of unknown forces is greater than the number of 

equations available and the optimization procedure has to simultaneously minimize the 

objective J and eliminate the target error.  

In some cases, the target error corresponding to positions and velocities are 

several orders different, making it difficult to satisfy the target boundary condition. It is 

required to exaggerate those error functions by applying bigger penalty. As the value of 

penalty changes, the forces and error values changes almost randomly. The values of 

penalty functions become more and more difficult to predict when the number of steps 

and the number of iF ’s increases.  
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Figure 3.8: Plot of 1mF  versus time 

 

It can be concluded that the parametric optimization can be used to solve any 

type of problem but it is very difficult to obtain satisfactory convergence. The results of 

)(1 NFm  
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DFP program for 4 forces and 5 forces are plotted in Fig. 3.8. The exact plot is also 

shown for comparison. 

In order to illustrate how the performance index is optimized its values for these 

cases are listed in Table 3.1. The exact value is also shown.  

 

Number 
of forces 

J 

4 2153E04 

5 1125E04 

Exact 988E04 
 

Table 3.1: Performance index for different number of forces 

 

It can be noted from Fig. 3.9 that the performance index improves drastically as the 

number of division dn  increases from three to four.  

  

 

Figure 3.9: Plot of performance index J versus number of division dn  
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The dashed line shows that the performance index should reach the exact value if the 

number of divisions is increased. But in practise it is very difficult to handle the cases 

having four divisions or more. 

 

 

Figure 3.10: Plot of x versus time for different cases 

 

 

Figure 3.11: Plot of θ (rad) versus time(s) for different cases 
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The displacement x(t) for these three cases is shown in Fig. 3.10. All the linear 

displacements resemble each other closely unlike the angular displacement θ  which is 

plotted in Fig. 3.11. In the plots, the calculated values at it  were connected by cubic 

spline lines for convenience. The exact lines should be plotted using Eq. (3.37-42). 
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4. BEAM ANALOGY 

 

4.1 Introduction   

The two general solution methods mentioned before, optimality equations and 

parametric optimization can be used effectively to solve optimal control problems with a 

small number of DOFs to control. Both of these methods complicate quickly with the 

increase in the number of DOFs.  

A new technique called Beam Analogy (BA) based on optimality equations has 

been developed in [11] to obtain the solutions for problems with large number of DOFs 

by using the IMSC approach. The technique eliminates the costates and uses the analogy 

between optimality equations for control and the deflection of a beam on elastic 

foundation. The optimality equations problem is converted into fourth order beam 

deflection problem and solved efficiently with the help of FEM as a boundary value 

problem. 

The standard first order optimality equations (2.35 – 2.37) can be combined to 

eliminate the costate and to obtain the second order equations of optimal states as [11] 

0)()( 11
1

1111
1

111 =+−−+ −− zQDADADzADADz TT
&&&     (4.1) 

where TARAD 2
1

21
−=         (4.2) 

Eq. (4.1) together with boundary conditions (Eq. (2.31)), constitutes a boundary value 

problem of second order. Formally, this problem is suitable for handling by the finite 

element method. However, for the mechanical system defined by Eq. (2.1), matrix 1D  is 

singular. The singularity may be removed if the costates related to the displacement 

( dP ), are considered separately from the costates related to the velocity ( vP ). The 

costate vector may be decomposed into 





=

v

d

P

P
P          (4.3) 
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Now, using the degree of freedom )(tX , instead of the costates z , the costate equation 

(2.35) can be written in the form  





+−

+
=

∂
∂−=




= −

−

vdv

vd

v

d

PCMPXQ

PKMXQ

X

H

P

P
P

)(

)(
1

1

&&

&
&     (4.4) 

The optimal control force from Eq.(2.38) becomes 

vPMRF 11 −−=         (4.5) 

Note that the set of three equations comprising Eq. (2.1) and (4.4) contain three sets of 

variables X, dP  and vP . The costate dP  and vP  can be written in terms of X as [11] 

)()( KXXCXMCRXKXCXMMRXQP vd +++++−= &&&&&&&&&&             (4.6a)               

)( KXXCXMMRPv ++= &&&        (4.6b) 

Finally, eliminating the costates, the equations for optimal DOFs are derived as [11] 

0][]2[ =++−−+ XQKRKXCRCQKRMXMRM dv
&&&&&&    (4.7) 

It can be noted that the DOFs of Eq. (4.7) are coupled. Assuming that dQ , vQ  and R are 

linear combinations of matrices M, C and K 

CaKaMaQd 321 ++=  

CbKbMbQv 321 ++=          (4.8-a,b,c) 

CcKcMcR 321
1 ++=−  

and using modal relations i.e. φη=X  the optimality equations become uncoupled in the 

modal space and assume the following form [11]  

0)ˆˆ()ˆˆˆ2(ˆ 22 =+Ω+∆−−Ω+ ηηη dv QRRQRR &&&&&&  

or 0)ˆˆ()ˆˆˆ2(ˆ 422 =++∆−−+ idiiiiiiiiiiviiiiiiii QRRQRR ηωηωη &&&&&&  mni ..1=  (4.9) 

where mn  is the number of modes to control, and matrices vd QQ ˆ,ˆ  and R̂  are diagonal 

with the terms: 

 iiidii aaaQ ζωω 2ˆ
3

2
21 ++=        

 iiivii bbbQ ζωω 2ˆ
3

2
21 ++=       (4.10-a,b,c) 

 1
3

2
21 ]2[ˆ −++= iiiii cccR ζωω      
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321321321 ,,,,,,,, cccbbbaaa  are the optimization parameters. 

 The terms of diagonal modal damping matrix ∆  are iiii ζω2=∆  

The Boundary Conditions in the modal space are 

  00 )0(,)0( ηηηη &==
dt

d
             (4.11-a) 

 ffff t
dt

d
t ηηηη &== )(,)(             (4.11-b) 

Having solved Eq. (4.9) for optimal modal variables iη  the corresponding modal 

controls are calculated from ηωηωζη 22 iiiiiiu ++= &&& .  

It should also be noted that Eq. (4.9) is the optimality equation for the 

optimization problem defined by the performance index (2.26) with the constraint (2.1). 

This optimization problem in the modal space is reformulated as 

dtuRuQQJ T

t

v
T

d
T

f

)ˆˆˆ(
2

1

0

Γ+++= ∫ ηηηη &&     →  Minimize   (4.12) 

where the variables η  and u satisfy the equation of motion ( uI =Ω+∆+ ηηη &&& ) and 

vd QQ ˆ,ˆ  and R̂  are diagonal matrices defined above (see Eq. (4.10)). 

 

 

Figure 4.1: Beam on elastic foundation 

 

bL  

aP  

aP  

aP  
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The optimal control problem defined by Eq. (4.9-4.12) is analogous to the static 

beams problem shown in Fig. 4.1. The beam of a length bL  and bending stiffness EI 

supported on elastic foundations of stiffness fk  is loaded only at the ends by bending 

moment 0M  and fM , shear forces 0T  and fT  and the axial forces aP  (compressive 

force is assumed positive). Small deflections in the beam are governed by the well-

known fourth order differential equation [12] 

0'''''' =++ ifiiiaii vkvPvEI       (4.13) 

where, i  is a beam number, v is a vertical deflection and 
dy

dv
v i

i ='  

For each mode to control there is one optimality equation and hence one analogous 

beam. The geometrical boundary conditions are assumed in the form 

00 )0(,)0( i
i

ii dy

dv
vv θ==    ifi

i
ifii L

dy

dv
vLv θ== )(,)(   (4.14) 

Using the sign conventions indicated in the Fig. 4.1, the bending moment and shear 

forces in the beam are 

  
2

2
ˆ

dy

vd
EIM =         (4.15) 

  
3

3
ˆ

dy

vd
EIT =         (4.16) 

The analogy between the boundary value problem for control (Eq. (4.9-4.12)) and the 

boundary value problem for a structural beam (Eq. (4.13-4.14)) gives the following 

correspondence  

 

iii

i
ccc

EI
ζωω 2

1

3
2

21 ++
≡        (4.17) 

( )+++−
++

≡ iii

iii

iia bbb
ccc

P ζωω
ζωω

ω 2
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1
2 3

2
21
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++ iii
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2

21
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( )





+++
++

≡ iii

iii

if aaa
ccc

k
i

ζωω
ζωω

ω 2
2

1
3

2
21

3
2

21

4    (4.19) 

The equivalent variables are 

ii ty ≡   )()( tyv ii η≡        (4.20) 

The numerical values of bL  and ft  can be assumed to be identical. The modal functions 

in time domain are analogous to the beam variables as follows 

)()( yvt ii ≡η   ii θη ≡&    
i

i
i EI

M≡η&&   
i

i
i EI

T≡η&&&  (4.21) 

The modal force can be derived in terms of the beam parameter as 

iiiii
i

i
i v

EI

M
tu 22)( ωθζω ++≡        (4.22) 

Thus all the parameters of optimality equations problem are converted into analogous 

beams problem. It should be emphasized that the beams are fictitious and each beam 

represents the time response of one mode of the vibrating structure considered. These 

fictitious beams are then solved by FEM and the results are converted back to the 

solution of optimal control problem. The flowchart detailing the procedure is shown in 

Fig 4.2. The FEM related calculations such as the modal analysis and solution of the 

analogous beams are done by ANSYS. The details of operations of the BA procedure 

are explained in [13, 14]. Here the procedure is first applied to the gantry crane problem 

with two DOFs and then to the frame structure that has a much larger number of DOFs 

and finally to determine optimal solutions for a suspension system. 
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Figure 4.2: Flow chart for beam analogy 

 

4.2 Example 1: Gantry crane controlled by two actuators  

 The gantry crane is modeled by two DOFs converted into two modes of motion. 

The IMSC methodology and the BA can only be used if two actuators are to control 

these two modes. 

Let the performance index be 

∫ +=
ft

dtuuJ
0

2
2

2
1 )(

2

1
        (4.23) 

Use optimization 
to modify L Generate static Beams Model 

to solve Optimality Equation 

Yes 

 Start 

No 

Run modal analysis 

Assume a length L 

Yes 

No 

Generate DYNAMIC MODEL  
of the structure 
 

)(tFKXXCXM =++
���

      given ft

Assume  ftL =

   Solve for  VM ,,,θν

 
 

ε≤H

      Set optimization parameters 
Determine parameters of analogous BEAMS 

Γ,,, cba

Transfer BEAMS MODEL  results back to the modal 
solutions; Calculate actuator forces          , and the 

dynamic response 
)(tFc

For verification, use         in 
DYNAMIC MODEL  of the 

structure to run transient 
dynamic Analysis 

)(tF
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where the modal controls 1u  and 2u  in terms of forces 1mF  and 2mF  are given by Eq. 

(2.21). 

Comparing this performance index with the Eq. (2.26), one obtains the weighting 

matrices defined by Eq. (4.8) as 

0=dQ  

0=vQ  

11 =−R  

0=Γ  since the final time is given. 

This corresponds to the values of the parameters in the Eq. (4.8) being zero with the 

exception of 11 =c . Let, as before, the crane travel 4m distance starting from 

mx 4)0( −=  to 0)( =ftx  then the boundary conditions in the modal variables are 

IBCs: 089.219)0(1 −=η , =)0(1η& =)0(2η 0)0(2 =η&  

FBCs: =)(1 ftη =)(1 ftη& =)(2 ftη 0)(2 =ftη&  

Following the procedure through (4.1) to (4.9), the modal equations of the gantry crane 

take the form 

01 =η&&&&           (4.24) 

02 2
4

22
2

22 =++ ηωηωη &&&&&&        (4.25) 

Two independent fictitious analogous beams are constructed for the above two equations 

(identical set of beams will be used to solve the frame problem shown in Fig. 4.4). For 

the first beam, comparing Eq. (4.24) with (4.13), the parameters are 

11 ≡EI  

01 ≡aP          (4.26) 

0
1

≡fk  

and the BCs are 089.219)0(1 −≡v , ≡)0(1v& ≡)(1 Lv 0)(1 ≡Lv&  

Similarly, comparing (4.24) with (4.13) the second beam is formed.  

12 ≡EI  

2
22 2ω≡aP          (4.27) 
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Figure 4.3: (a) Plot of DOFs for gantry crane; (b) Actuator forces plot for gantry crane 
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These two fictitious beams are analyzed separately by FEM using forty eight 

beam elements to obtain Mv ,, θ  and shear force V. The results are converted back to 

the original case by using Eq. (4.20-22). The DOFs for gantry crane and the actuation 

forces are plotted in Fig. (4.3). The dots indicate the values calculated at the nodal points 

of the fictitious beams. 

The gantry problem controlled by two forces is somewhat trivial. The optimal 

solution requires that two forces are applied on two masses in such a way that the angle 

θ  is always zero. In the first half of the maneuver, the masses accelerates while in 

second half decelerates to stop at ft .  

 

4.3 Example 2: Frame structure 

A structure mentioned in section 2.1 (Fig. 2.1) is solved to illustrate the 

application of BA to a more complicated problem. More details of the frame are 

indicated in Fig. 4.4. The whole structure is modeled by about thirty real beam elements, 

mass element and ninety DOFs. The locations of some nodes are indicated in figure. 

    

 (a) Real structure            (b) Fictitious beams 

Figure 4.4: BA for Frame structure (disturbance exaggerated) with two actuators 

 

A frame of 20×20mm square tube with 2mm wall thickness is made up of aluminium 

and supports a mass of 100Kg on the top. In an initial disturbed configuration the node 7 

is displaced by 16mm. Two actuators configured as shown and generating forces F1 and 

F2 
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F2 are applied to bring the structure to the rest. The modal analysis of frame is done by 

ANSYS. The first three modal frequencies are  

srad /736.41 =ω , srad /79.1712 =ω  and srad /509.2323 =ω   

This case was extensively analyzed in [13]. It was shown that it is sufficient to control 

only first two modes of vibrations. The initial deflections can be transformed into the 

initial boundary condition in the modal space for the two modes as 

1604.0)0(1 =η  and 0036.0)0(2 =η  

The performance index to be minimized is as follows 

dtRFFXQXXQXJ
ft

T
v

T
d

T ][
0

2
1 Γ+++= ∫ &&      (4.28) 

To represent the energies the following weighting matrices are used. 

KaQd 2=  

MbQv 1=          (4.29) 

KcR 2
1 =−  

The optimal maneuver time will be obtained for 5.0=Γ . 

Note that all the optimization parameters in the Eq. (4.8) equal to zero except 2a , 1b  and 

2c . This way the terms in Eq. (4.28) have simple interpretation of the strain energy, 

elastic energy and the work of external forces respectively. Substituting the values of 

these parameters in Eq. (4.17-19), two fictitious beams can be formed with the following 

properties.  

2
2

1

i

i
c

EI
ω

≡           

1
2

2
b

c
P ia −≡          (4.30)

 ( )



+≡ 2

2
2

2 1
iif a

c
k

i
ωω  

Where the values of 2a , 1b  and 2c  have to be assumed.  

Let these optimization parameters be 

12 =a , 11 =b , 01.02 =c         
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This implies that the following performance index is minimized. 

dtFKFXMXKXXJ
ft

TTT ]5.0100[
0

1
2
1 +++= ∫ −&&     (4.31) 

The optimum forces and displacement response are plotted in Fig. 4.5 (a) and (b) 

respectively. The actuation forces oscillates relatively fast for almost first half of the 

maneuver time. This can be attributed to the attempts of eliminating the vibrations of the 

second mode. 
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Figure 4.5: Force and displacement plots 

 
The values of these optimization parameters can be changed to achieve different effects. 

The influences of 2a , 1b  and 2c  on the performance of two bay frame structure are 

discussed one by one by changing the value of one parameter and keeping others 

constant. It should help to understand sensitivity of the system’s optimal response to the 

values of these parameters. 
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4.4 Effect of 2a  on the per formance of the system 

This parameter controls the level of strain energy in the frame. Effects of 

increasing the value of 2a  can be observed in Fig. 4.6. 

 

Case 1: 2a =10, 1b =1, 2c =0.01   
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Case 2: 2a =50, 1b =1, 2c =0.01     
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Case 3: 2a =100, 1b =1, 2c =0.01 
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(e)         (f)  

Figure 4.6: Force and displacement plot for different values of 2a  

 
 It can be noted that as 2a  increases, the vibrations of the second mode are 

eliminated faster, the actuation forces oscillates less (their maximum value remains 

almost unaltered) and the value of final time reduces.   

 

4.5 Effect of parameter  1b  on the per formance of a system 

This parameter controls the level of kinetic energy in the frame. Effects of 

increasing the value of 1b  can be observed in Fig. 4.7. It can be noted that as the value 

of 1b  increases, the vibration (peaks at the start of UX 13 ) in the second mode reduces 

rapidly. If the value of 1b  is bigger the optimization process try to reduce the kinetic 

energy of a system faster. 

As the kinetic energy and the elastic energy in the vibration system are correlated 

to each other, the effect of 2a  and 1b  on the system is almost the same. 
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Case 1: 1b =2, 2a =1, 2c =0.01   
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Case 2: 1b =10, 2a =1, 2c =0.01 
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Case 3: 1b  =30, 2a =1, 2c =0.01    
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  (e)         (f)  

Figure 4.7: Force and displacement plot for different values of 1b  

 

4.6 Effect of parameter  2c  on the actuator  forces 

This parameter controls the work done by actuators and affects mostly the value 

of actuator forces. The effect of this parameter on the system is studied by changing the 

value of 2c  and keeping 112 == ba . Various cases are compared by plotting forces and 

displacements in Fig. 4.8.  
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Case 1: 1.02 =c , 11 =b , 12 =a   
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Case 2: 12 =c , 11 =b , 12 =a  
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Case 3: 2c =8, 1b  =1, 2a =1 
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Case 4: 2c =40, 1b  =1, 2a =1 
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(g)         (h)  

Figure 4.8: Force and displacement plot for different values of 2c  
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The absolute maximum force maxF  (N) to be generated in either actuator for all the 

plots are tabulated in Table 4.1 

2c maxF  

0.1 33.138 

1 92.213 

4 167.23 

8 265.61 

15 393.22 

40 699.03 

80 1030.66 

 

Table 4.1: maxF  values for 2c  

 

The tabulated values are plotted in Fig. 4.9 in terms of 1/ 2c . 

 

 

Figure 4.9: Plot of maxF  versus 1/ 2c , when 2a =1, 1b =1 
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1/ 2c  should be bigger. The value of optimal time also reduces with the decrease in the 

value of 1/ 2c .  

It can also be noted that the behavior of the forces changes with the change in 2c  

as seen in the Fig. 4.8-a,c,e. For 1.02 =c  and 0.01, the forces are relatively small 

initially which allows for the more oscillations of the system (examine the plots of 

UX 13 ).  

The vibrations are attenuated without any oscillations for 82 ≥c . Thus, for the 

problem considered, the actuators will provide undercritical active damping if 82 <c , 

while the damping will be overcritical for 82 >c . 

 

4.7 Example 3: Suspension system  

A suspension system shown in the Fig. 4.10 is one of the simplest vibrating 

systems which can be controlled passively and actively by applying one actuator as well 

as two actuators. Such a system is routinely used to represent the suspension of a car 

(see [15] for example).  

 

 

Figure 4.10: Suspension System 
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2ĉ  
2F  

1F  

1x  

2x  

3ĉ  



 50 

Mass 2m  is to represent a quarter of the car’s mass, while 1m  the mass of one 

wheel with attachments. Usually, 1k  corresponds to the tire stiffness and 2k  to the 

stiffness of a spring in the shock absorber installed. Therefore, typically 2m >> 1m  and 

2k << 1k . Optimal actuator forces are to be calculated to control the vibrations when 

system is released from the initial disturbed position. In this chapter the BA is used to 

solve the problem with two actuators. The overdetermined problem with one actuator 

will be solved in the next chapter.  

Formally, Rayleigh’s damping can be used here if the third viscous damper is 

added in parallel to other two dampers.  

The equations of motion for such a system can be written as, 
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(4.32) 

Let the data for suspension system be 

kgm 401 = , kgm 2002 = , mNk /2354401 = , mNk /392402 =  and the internal 

damping of 15% (damping coefficients 15.021 == ξξ ). 

The modal analysis is done the same way as performed in chapter II. The natural 

frequencies are 

srad /94105.121 =ω , srad /040527.832 =ω   

Modal shape function is 





−

=
0046204.00705596.0

157776.00103319.0
φ         

Let, Fu Tφ=           (4.33) 

where 



=

2

1

u

u
u  and 


 −

=
2

21

F

FF
F         

Let, φη=x           (4.34) 

For Rayleigh’s damping, 

iii KMc βα +=ˆ         (4.35) 

Substituting (4.34-35) in (4.32) and using modal properties one can write 
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  (4.36) 

The values of constants α  and β  can be obtained by solving following equation for 

2,1=i  

22 iii βωαωξ +=         (4.37) 

Substituting values in Eq. (4.37), 

358868.3=α           

0031255998.0=β          

The values of 321 ˆ,ˆ,ˆ ccc  can be obtained from following equation. 





+

+=
2

2

2
1

0

0

βωα
βωαφφ CT        

solving above equation 

msNc /.33726.870ˆ1 = , msNc /.63361.122ˆ2 = , msNc /.7959.671ˆ3 =  

Let, the performance index to be minimized is as follows 

dtRFFXQXXQXJ
ft

T
v

T
d

T ][
0

2
1 Γ+++= ∫ &&      (4.38) 

As before, to represent the energies in performance index, the following weighting 

matrices are used. 

KaQd 2=  

MbQv 1=         (4.39-a,b,c) 

KcR 2
1 =−  

The optimal maneuver time is st f 2=  and 0=Γ . 

Note that as before, all the optimization parameters in the Eq. (4.8) are equal to zero 

except 2a , 1b  and 2c . Substituting the values of these parameters in Eq. (4.17-19), two 

analogous beams can be formed with the following properties.  

2
2

1

i

i
c

EI
ω

≡           
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1
2

2
b

c
P ia −≡ + 

2

24

c
iζ

       (4.40-a,b,c)  







+≡ 2
2

2 1
a

c
k if i

ω   2,1=i  

It can be noted that, the damping affects only the term iaP  and increases the axial force 

applied on the beam. 

Let the optimization parameters be 

12 =a , 11 =b , 12 =c          

The boundary conditions are 

IBC: mmx 10)0(1 = , mmx 50)0(2 = , 0)0(1 =x& , 0)0(2 =x&  

FBC: 0)(1 =ftx , 0)(2 =ftx , 0)(1 =ftx& , 0)(2 =ftx&  

The displacements and optimum forces are plotted in Fig. 4.11 by running the BA 

program. For the better visibility, the plots are shown for a short period of 0.6s, as the 

system is almost at rest after around 0.6s.  
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   (c)      (d) 

Figure 4.11: The results for suspension system with dampers ( 15.021 == ξξ ) 

 

Such a fast vibration attenuation is essentially due to the action of actuators. For 

comparison purposes the BA analysis is repeated for the suspension system without 

dampers ( 021 == ξξ ). The plots of zero damping case are presented in Fig 4.12. 
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(c)      (d) 

Figure 4.12: The results for suspension system without dampers 

 

It can be noted that the difference between the two cases is negligible.  
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5. APPLICATION OF LAGRANGE MULTIPLIERS – 

A NEW METHODOLOGY 

 

5.1 Introduction 

The solution techniques of optimal control problem presented in the previous 

chapter allowed for decoupling the modes so that it was possible to solve each mode 

independently, including the modal controls. Such an approach, especially when 

combined with the BA is very efficient numerically, but can be applied only to the 

determined problems in which the number of actuators is the same as the number of 

modes to control. As shown in chapter II, the overdetermined problem can also be 

analysed in the modal space but then the number of extra constraints in the form of Eq. 

(2.25) must be imposed on the modal controls. Usually, in general optimization 

strategies, most of constraints can be handled by using constant Lagrange multipliers. In 

optimal control the extra constraints require the Lagrange multipliers that are functions 

of time. Here the modified optimality equations that include these time dependent 

Lagrange multipliers are derived and then solved. This method is first applied to the 

overdetermined gantry crane problem and then extended to more complicated problems. 

 

5.2 Gantry crane problem by new methodology 

Consider the gantry crane problem as a two mode problem governed by Eq. 

(2.22) with an extra constraint (2.25) imposed on the modal controls. The performance 

index for such a problem can formally be assumed as (see Eq. (3.7)) 

∫ +=
ft

dtuuJ
0

2
2

2
1 )(

2

1
        (5.1) 

The constraint (2.25) can be written in the form 

0),( 22121 =−= uduuuh        (5.2) 
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where 
2

11
2 ==

j
d  for the gantry crane solved in chapter III. 

Now instead of Hamiltonian given by Eq. (3.8), the augmented Hamiltonian has to be 

considered 

 vhHH +=ˆ          (5.3) 

where v is a Lagrange multiplier. 

Substituting for H and h one obtains 

)()()(
2

1ˆ
22123

2
24431221

2
2

2
1 uduvuzPzPuPzPuuH −++−+++++−= ω   (5.4) 

The approach presented in chapter III will change only in this sense that now the optimal 

controls must satisfy the following equations (instead of Eq. (3.15)). 

0
ˆˆ

21

=
∂
∂=

∂
∂

u

H

u

H
            (5.5-a,b) 

From Eq. (5.5-a,b) one obtains  

 vPu += 21           

vdPu 242 −=              (5.6- a,b) 

Substituting (5.6) into the state equations (3.2) and (3.3), one can express the costates in 

terms of the modal variables and the multiplier v as 

vP −= 12 η&&           

vdP 22
2

224 ++= ηωη&&             (5.7-a,b) 

Substituting (5.7) in the costate equations (3.13 - 3.14) gives the optimality equations in 

the form 

01 =− v&&&&&&η          (5.8) 

0)(2 2
222

4
22

2
22 =++++ vvd ωηωηωη &&&&&&&&      (5.9) 

Eq. (5.2), using the equation of motion, can be written in the form 

0)( 2
2

2221 =+− ηωηη &&&& d        (5.10) 

Eq. (5.8-10) constitute a set of three ordinary differential equations (ODE) with three 

unknown functions 1η , 2η  and v. These equations can be solved by eliminating 

variables. Differentiate Eq. (5.10) twice  
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0)( 2
2

2221 =+− ηωηη &&&&&&&&&& d        (5.11) 

Next, substitute (5.10-11) into (5.9) to obtain 

( ) 02
21

2
2

2
21 =+++ vdvd ηωη &&&&&&&&        (5.12) 

Then, substitute (5.8) in the above equation to obtain 

( ) 02
21

2
2

2
2 =+++ vdvdv ηω &&&&&&        (5.13) 

Finally, differentiating above equation twice and substituting v&&&&&& =1η  from Eq. (5.8) one 

obtains 

02
2 =+ vv &&&&&& ω          (5.14) 

Note that, four differentiation operations were performed, which means that the solution 

will have four more integration constants than the original problem. 

Eq. (5.14) is only in terms of v  and can be integrated to obtain 

)sin()cos( 242321 tCtCtCCv ωω +++=      (5.15) 

Differentiating twice and substituting into Eq. (5.8) one obtains 

 )sin()cos( 2
2

242
2

231 tCtC ωωωωη −−=&&&&      (5.16) 

Integrating the above equation we have 

{ })663()sin(6)cos(6
6

1
87

2
6

3
5

2
224232

2
1 CtCtCtCtCtC ++++−−= ωωω

ω
η  (5.17) 

Similarly, substituting (5.15) in (5.9) and integrating one obtains 

ttCttCtCtCd
CtC

)sin()cos()sin()cos( 2122112102922
2

12
2 ωωωω

ω
η ++++

+
−=  (5.18) 

Eq. (5.15,17,18) contain twelve integration constants. These constants must satisfy four 

equations that can be obtained by comparing the terms of Eq. (5.10) when 1η  and 2η  are 

substituted. This equation takes the form 

652423

1
2
22

2
22211222122

)sin()cos(

)sin(2)cos(2

CtCtCtC

CdtCdtCdtCd

+++
=−−−

ωω
ωωωω

   (5.19) 

To have identical coefficients on both the RHS and LHS terms the following is required 
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2123 2 ωCC =         

 2114 2 ωCC −=        

 
2

2
5

C
C −=                  (5.20-a,b,c,d) 

2
1

6

C
C −=           

Substituting back into Eq. (5.15,17,18), one obtains the following functions containing 

eight integration constants. 

)]sin()cos([2 211212221 tCtCtCCv ωωω −++=  







−−++
+

−= )]sin()cos([26)(6
2

)3(

6

1
211212287

2
2

21
22

2
2
2

1 tCtCCtC
tCCt ωωωωω

ω
η

ttCttCtCtCd
CtC

)sin()cos()sin()cos( 2122112102922
2

12
2 ωωωω

ω
η ++++

+
−=  (5.21-a,b,c) 

These eight constants can be determined from the eight boundary conditions for the 

modal variables, which can be written as 

0)0(1 =η     089.219)(1 =+= mMat fη  

0)0(1 =η&     0)(1 =ftη&  

0)0(2 =η     0)(2 =ftη            (5.21-d) 

0)0(2 =η&     0)(2 =ftη&  

The numerical values of constants are 

554.1351 −=C   51388.69 −=C   

0461.602 =C    341089.010 =C  

23025.27 −=C   57702.111 =C              (5.21-e) 

55816.08 −=C   51398.112 −=C  

Substituting into Eq. (5.21) one obtains 

  - the Lagrange multiplier function 

)sin(55523.8)cos(21326.80461.60554.135 22 tttv ωω −−+−=   (5.22) 

  - the modal variables 
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)sin(5814.0)cos(5582.0

0038.5888.3323024.255816.0

22

32
1

tt

ttt

ωω

η

+

+−+−−=
    (5.23) 

)sin()514.13411.0(

)cos()51388.6577.1(885.25138.6

2

22

tt

ttt

ω

ωη

⋅−

+−⋅+−=
    (5.24) 

Note that Eq. (5.23-24) are the same as Eq. (3.23-24) that were obtained in chapter III 

without using Lagrange multipliers. It can also be noted that, for this particular gantry 

crane problem, Eq. (5.8-10) are simple enough to be solved by eliminating variables. 

However, this procedure might not be feasible to use for more complicated problems. A 

generalized procedure that applies the Lagrange multipliers is derived in the next 

section.  

 

5.3 Some generalization – the use of differential operators   

 The above method is first generalized to an arbitrary two modal frictionless 

system controlled by one actuator, and finally to a general overdetermined system. Also, 

in this chapter differential operators are introduced. The performance index for a two 

modal system can be written in the form 

∫∑
=

Γ+++=
ft

i
iiiiviiidii dtuRQQJ

0

2

1

222 )ˆˆˆ(
2

1 ηη &      (5.25) 

where diiQ̂ , viiQ̂  and iiR̂  are defined in chapter IV (see Eq. (4.10)). 

The modal variables and controls satisfy the equations of motion 

iiii u=+ ηωη 2
&&   2,1=i       (5.26) 

and the constraint 

  0),( 221121 =+= uguguuh        (5.27) 

where ig  are known constants. 

As before, the augmented Hamiltonian is defined as 

[ ] [ ] vhuPPuP

PuRQQH
i

iiiiviiidii

+−++−+

+



 Γ+++−= ∑

=

2
2

224231
2

112

11

2

1

222 )ˆˆˆ(
2

1ˆ

ηωηηω

ηηη

&

&&

    (5.28) 

The optimal control must satisfy 
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0
ˆˆ

21

=
∂
∂=

∂
∂

u

H

u

H
        (5.29) 

Now, one can proceed similarly as with Ĥ  defined by Eq. (5.4). Using the above 

equations first the costates (see (5.7)) and then modal controls (see (5.6)) can be 

eliminated. The optimality equations in terms of the modal variables 1η , 2η  and the 

multiplier v takes the form (instead of (5.8-9)) 

0)()ˆˆ()ˆˆ2(ˆ 2
11111

4
111111

2
111111 =+−++−+ vvgQRQRR dv ωηωηωη &&&&&&&&    

0)()ˆˆ()ˆˆ2(ˆ 2
22222

4
222222

2
222222 =+−++−+ vvgQRQRR dv ωηωηωη &&&&&&&&       (5.30-a,b) 

The constraint (5.27) can be rewritten as 

 0)()( 2
2
2221

2
111 =+++ ηωηηωη &&&& gg              (5.30-c) 

Eq. (5.30) represent a general form of the set (5.8-10) that was solved by direct 

elimination of variables in the previous section. However, it could be much more 

difficult to apply this approach to solve Eq. (5.30). Instead, the solution to these 

differential equations can be formalized using the symbolic differential operator defined 

as 

n

n
n

dt

d
D =  

For example, Eq. (5.30-a) can be written in the form 

 [ ] 0)()ˆˆ()ˆˆ2(ˆ 2
1

2
1111

4
111

2
11

2
111

4
11 =+−++−+ vDgQRDQRDR dv ωηωω  (5.31) 

or in short  

0)( 2
1

2
111 =+− vDgE ωη        (5.32) 

where  

)ˆˆ()ˆˆ2(ˆ
11

4
111

2
11

2
111

4
111 dv QRDQRDRE ++−+= ωω      (5.33) 

is a fourth order differential operator containing a linear combination of operators nD .  

Eq. (5.30-b) can be written in a similar form with 1E  replaced by 2E  (with indices “1”  

replaced by “2” ). The above notation allows writing the set (5.30) in the short form as 

 0)( 2
1

2
111 =+− vDgE ωη  

 0)( 2
2

2
222 =+− vDgE ωη         (5.34-a,b,c) 
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 0)()( 2
2
2

2
21

2
1

2
1 =+++ ηωηω DgDg      

Applying the operators 1E  and 2E  on Eq. (5.34-c) one obtain 

 0)()( 221
2
2

2
2112

2
1

2
1 =+++ ηωηω EEDgEEDg  

then substituting for the operations 11ηE  and 22ηE  from (5.34-a,b) we have 

0])()([ 1
22

2
22

22
22

1
22

1 =+++ vEDgEDg ωω       

or 0
~ =vE          (5.35) 

where the operator  

1
22

2
22

22
22

1
22

1 )()(
~

EDgEDgE ωω +++=      (5.36) 

is of eighth order. Note that sixteen differentiation operations were performed while 

deriving Eq. (5.35). 

Interestingly, if the variables 2η  and v are eliminated from the set (5.34) then one 

obtains 

0
~

])()([ 111
22

2
22

22
22

1
22

1 ==+++ ηηωω EEDgEDg     (5.37) 

If, in turn, the variables 1η  and v are eliminated, then one obtains again 

0
~

2 =ηE          (5.38) 

Thus the optimality equations (5.30, 34) can be written in the short form as 

0
~~~

21 === vEEE ηη         (5.39) 

where E
~

 is a differential operator that can be specified for the system considered. 

The general solution to each of Eq. (5.39) is in the exponential form, rte  [16], where 

eight roots 81..rr  can be derived from the characteristic polynomial equation of eighth 

order for operator E
~

. The roots are in the form kk iβα ±±  ( 2,1=k ), where kα  and kβ  

are real numbers. Once the roots are known, the set of eight independent solution 

functions can be obtained. For example, if kα  and kβ  are positive and non-multiple 

then each pair generates the solutions )sin( te k
tk βα±  and )cos( te k

tk βα±  
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5.3.1 Application to the gantry crane problem 

As an illustration, the above methodology is reapplied to the gantry crane 

problem for which 1ˆˆ
2211 == RR , 01 =ω , 0ˆˆ == viidii QQ , 11 =g , 22 dg −=    

Substituting into (5.30) one obtains 

01 =− v&&&&&&η          

 0)(2 2
222

4
22

2
22 =++++ vvd ωηωηωη &&&&&&&&        (5.40-a,b,c) 

 0)( 2
2
2221 =+− ηωηη &&&& d  

which is same as the Eq. (5.8-10).        

The fourth order operators (5.33) are 4
1 DE = , 22

2
2

2 )( ω+= DE  and the eighth order 

operator (5.36) is 

 422
2

22
2 ))(1(

~
DDdE ω++=        (5.41) 

The characteristic equation for this operator is  

0)( 422
2

2 =+ rr ω                 (5.41-a) 

The roots of this equation are 0,0,0,0, 22 , ωω ii ±±  and each of the solution of Eq (5.39) 

for v, 1η  and 2η  will have the form 

)cos()()sin()( 286275
3

4
2

321 ttCCttCCtCtCtCCv ωω +++++++=   

)cos()()sin()( 286275
3

4
2

3211 ttAAttAAtAtAtAA ωωη +++++++=   

)cos()()sin()( 286275
3

4
2

3212 ttBBttBBtBtBtBB ωωη +++++++=   

(5.42-a,b,c)  

Since each operator is of 8th order, the above functions contain 8 3× =24 integration 

constants. When solving Eq. (5.39) it is convenient to denote the integration constants as 

81..CC , 81..AA  and 81..BB  instead of a sequential notation in the previous section 

(constants 121..CC  in Eq. (5.15,17,18)). 

Eq. (5.40 a) requires that vDD 2
1

4 =η . By grouping and comparing similar 

terms in this equation we obtain 

 043 == CC  

 55 CA −=            (5.43-a,b,c) 
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66 CA −=  

Similarly, comparing similar terms of Eq. (5.40 b) requires that 

vDdD )()( 2
2

2
22

22
2

2 ωηω +=+ , we obtain 

 078 == CC  

121
2
2 CdB −=ω           (5.44-a,b,c) 

222
2
2 CdB −=ω  

Finally, comparing similar terms in Eq. (5.40 c) we have 

 08743 ==== AABB  

31
2
22 2ABd =ω  

42
2
22 6ABd =ω                    (5.45-a,b,c,d,e)

 52822 ABd ω=  

62722 ABd ω−=  

The above sixteen equations allow to reduce the number of independent integration 

constants from twenty-four to eight, that is to the number of the given boundary 

conditions imposed on the variables 1η  and 2η . The solution functions are 

)cos()sin( 262521 tCtCtCCv ωω +++=   

)cos()sin()3(
6 262521

2
2

2

211 tCtCtCC
dt

tAA ωωη −−−−+=             (5.46-a,b,c) 

( ))cos()sin(
2

)cos()sin()( 2526
2

2
2625212

2

2
2 tCtC

d

t
tBtBtCC

d ωωωωω
ω

η +++++−=

As can be seen the above functions are identical to the ones obtained in section 5.2 

without using the differential operators. In this case the constants 

5216521 ,,,,,, BAACCCC  and 6B  corresponds to the constants 111098721 ,,,,,, CCCCCCC  

and 12C  in Eq. (5.21) respectively. 

The advantage of using the operators is that the whole procedure can be 

automated within the MAPLE program (see Appendix A). The flowchart is shown in 

Fig. 5.1. Once E
~

 is specified the roots of the corresponding characteristic equation can 

be obtained by ‘solve’  command. Grouping and comparison of the terms involved in the 
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differentiation of 1η , 2η  and  v can be handled by ‘collect’  command. This operation 

renders the set of equations similar to Eq. (5.43-45). By adding the boundary conditions, 

such as given by Eq. (5.21-d), the complete set of integration constants is calculated. 

This, in turn, allows the determination of modal variables and modal controls and finally 

the optimal values of DOFs and actuator forces. More details of the program are 

discussed in the section that follows. 
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Figure 5.1: Flowchart of the MAPLE program 

 

 

Start 

Substitute above values in Eq. (5.30) to 

obtain operators 1E , 2E  and E
~

 
 

Read ,ˆ
iiR ,ˆ

diiQ viiQ̂ , iω , ig  and BCs 

Obtain the roots of E
~

 and write v, 1η  and 

2η  in terms of 24 integration constants 

Substitute v, 1η  and 2η  into Eq. (5.34), 
group and compare similar terms to get 16 

equations for the integration constants 

Substitute BCs to get the 
remaining 8 equations  

Solve 24 equations to obtain all 
integration constants in v, 1η  and 2η   

Modal force vector u is obtained by substituting 

1η  and 2η  in equation of motion (5.26) 

Obtain DOFs from φη=X  and actuator 

forces from uBF T
a

−= φ  

End 
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5.3.2 Application to the suspension system problem 

The above methodology is applied to the suspension system problem considered 

in chapter IV, where two modes of vibrations were controlled by two actuators 1F  and 

2F . Here the system is to be controlled by only one actuator, 2F , which makes the 

problem overdetermined (see Fig. 5.2). 

 

 

Figure 5.2: Suspension system 

 

The optimization parameters in Eq. (4.8) are zero except 1212 === cba  which 

yields the following values of the diagonal of the weighting matrices (4.10). 

2/1ˆ
iiiR ω= , 2ˆ

idiiQ ω= , 1ˆ =viiQ , 0=Γ   

As before the system was disturbed by assuming mmx 10)0(1 = , mmx 50)0(2 =  and 

should be brought to the rest by actuators in st f 2= .  

Since 


 −
=






== −

2

21

2

1

0.9242058-14.11189

6.3116740.4133025

F

FF

u

u
uF Tφ   

and 038747.5525.14 211 =⋅+⋅= uuF , then 037089.0 21 =⋅+ uu  and 11 =g , 

37089.02 =g .  

The frequencies of the system are 

,/94105.121 srad=ω  srad /040527.832 =ω  

The set (5.30) has the form 

1x  

2x  

1m  

2m  

1k  

2k  2F  

1F  
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0)(2 2
1

2
111

4
11

2
11 =+−++ vvg ωωηωηωη &&&&&&&&     

0)(2 2
2

2
222

4
22

2
22 =+−++ vvg ωωηωηωη &&&&&&&&        (5.47-a,b,c) 

 0)()( 2
2
2221

2
111 =+++ ηωηηωη &&&& gg  

The fourth order operators (5.33) are 2224 2 iii DDE ωω ++= − ,  

and the eighth order operator is 

 1
22

2
22

22
22

1
22

1 )()(
~

EDgEDgE ωω +++=      (5.48) 

The roots of characteristic equation for the operator E
~

 are kk iβα ±±  (k=1,2), where  

5742.71 =α , 3544.222 =α , 8185.121 =β , 8699.822 =β            (5.48-a) 

Each of the variables v, 1η  and 2η  will have the form (only 1η  is shown) 

[ ] [ ])sin()cos()sin()cos( 242322211
22 tAtAetAtAe tt ββββη αα +++= −  

       [ ] [ ])sin()cos()sin()cos( 18171615
11 tAtAetAtAe tt ββββ αα ++++ −  (5.49) 

It can be observed that 11 βω ≅  and 22 βω ≅  

Twenty four equations in terms of integration constants can be obtained from boundary 

conditions and by substituting 1η  and 2η  into (5.47) and comparing the terms, similarly 

as it was done before. 

Boundary Conditions are 

709734.0)0(1 =η    0)2(1 =η  

0169135.0)0(2 =η    0)2(2 =η  

0)0(1 =η&     0)2(1 =η&  

0)0(2 =η&     0)2(2 =η&  

The set of constants 81..AA  and 81..BB  solved by Maple are (constants 81..CC  are not 

shown since they are not needed for further manipulations) 

-27
1 10.13560 ×=A    -27

1 10-0.6171×=B  

-28
2 10.71720 ×=A    -27

2 10.50650 ×=B  

-2
3 10-.2451×=A    -2

3 10.36440 ×=B  

-3
4 10-.2686×=A    -1

4 10.12300 ×=B  

-13
5 10-0.8533×=A    -15

5 10-0.5486×=B  
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-13
6 10.36480 ×=A    -14

6 10-0.7474×=B  

.712207 =A     .0132707 =B  

.418208 =A     -0.06538 =B  

These constants may be substituted back to get the response plot shown in Fig. 5.3.  

 

               

    (a)          (b)  

 

    

    (c)       (d)  

Figure 5.3: Modal variables and DOFs versus time(s) plots 
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The modal controls are plotted in Fig. 5.4-a,b and the corresponding actuator’s force is 

shown in Fig. 5.4-c. Note that 21 37089.0 uu ⋅−=  as it was imposed by an extra 

constraint (5.47-c). The actuator force aF  was determined from 

212 92395.0112.14 uuFFa ⋅−⋅== . 

 

          

   (a)      (b) 

 

 

 (c) 

Figure 5.4: Modal controls 1u , 2u and actuator’s force aF  versus time (s) plots 
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Note that similarly as in section 4.7 the disturbances are practically eliminated after 

about 0.8 s despite the assumed st f 2= . Also one actuator 2F  seems to be capable of 

attenuating the vibrations in a similar pattern as two actuators in the previous chapter. 

This may be attributed to the ratios of masses ( 2m >> 1m ) and stiffness ( 2k << 1k ) used in 

the example. 

 

5.4 A general overdetermined problem 

 For a general case assume that an  actuators control mn  modes where mn > an . 

The equation of motion for the system of mn  modes can be considered in the form 

(instead of (5.26)) 

 uI =Ω+∆+ ηηη &&&         (5.50) 

where the mn  control components of u must satisfy amc nnn −=  constraints in the form 

 0..... 11111 =+=
mm nn ugugh  

 ………………………  or   01 =×× mmc n
T

nn uA    (5.51) 

0.....11 =+=
mmccc nnnnn ugugh    

where the rectangular matrix 











=

mcm

c

nnn

n

gg

gg

A

.....

...............

.....

1

111

 contains known coefficients ijg  

that can be always found from the operation uBFF T
a

−== φ .  

The constraint equation (5.51) represents a generalized form of Eq. (5.27). 

The constraints will be met by applying a vector of cn  Lagrange multipliers 

[ ]
cn

T vvv ......1= . The augmented Hamiltonian takes the form 

uAvuPPuRuQQH TT
vd

T
v

T
d

T ++Ω−∆−++Γ+++−= )()ˆˆˆ(
2

1 ηηηηηηη &&&&  

          (5.52) 

The costate equations (5.7) remain unaffected and are 

 vdd PQ
H

P Ω+=
∂
∂−= η

η
ˆ&  
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 vdvv PPQ
H

P ∆+−=
∂
∂−= η

η
&

&

& ˆ             (5.53-a,b) 

while the new optimal control requires that 

0ˆ =++−=
∂
∂

AvPuR
u

H
v        (5.54) 

Above equation is a generalization of Eq. (5.6). 

Eliminating the costates and modal control, the modified optimality equation becomes  

0)()ˆˆ()ˆˆˆ2(ˆ 22 =Ω+∆−−+Ω+∆−−Ω+ AvvAvAQRRQRR dv &&&&&&&&& ηηη  (5.55) 

This is a generalization of Eq. (5.30-a,b). Note that Eq. (5.55) contains mn  equations 

with mn  unknown components of modal variable η , and cn  components of Lagrange 

multipliers vector v.  

Eq. (5.30-c) can be generalized by presenting the constraint equations (5.51) in the form 

0)( =Ω+∆+= ηηη &&&IAuA TT  ( cn  equations)    (5.56) 

The sets (5.55-56) have ( mn + cn ) equations that contain mn  modal variables and cn  

Lagrange multipliers and can be solved explicitly. 

Eq. (5.55) using the differential operators can be written as 

∑
=

=
cn

j
jijii vDE

1

ˆη  mni ..1=             (5.57-a) 

while Eq. (5.56) as 

∑
=

=
mn

i
iijD

1

0
~ η  cnj ..1=              (5.57-b) 

where the operators are 

 )ˆˆ()ˆˆˆ2(ˆ 42224
diiiiiiiiviiiiiiii QRDRQRDRE ++∆−−+= ωω    

 )(ˆ 22
iijiij DDgD ω+∆−=  

)(
~ 22

iijiij DDgD ω+∆+=          (5.58-a,b,c) 

Note that ijij DD
~ˆ =  for no damping case ( 0=∆ i ). 

The set of equations (5.57) can be written in the matrix form as 
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    (5.59) 

 

Or 01 =×× ttt nnn YE  

where the size of matrix E  is mct nnn +=  and Y contains all the modal variables and 

Lagrange multipliers. 

It can be shown by applying the operators similarly as in Eq. (5.34), section 5.3, that 

each component of vector Y will satisfy the equation  

 =⋅ iYEdet 0
~ =⋅ iYE          (5.60) 

Note that each operator iE  is of fourth order and each operator ijD
~

 or ijD̂  is of second 

order. The order of the operator EE det
~ =  is mn×4  and its form can be always found 

by calculating the determinant of E  in Eq. (5.59). Once E
~

 is determined then the roots 

of the corresponding characteristic equation can be obtained, and the integration 

constants calculated similarly as in the previous section. The above approach is first 

verified on the suspension system solved before, and then applied to a triple pendulum 

problem. 

 

5.4.1 Example 1: Suspension system 

The general method is applied to the suspension system for verification purposes. For 

the system in Fig 5.2 in the previous section, 2=mn , 1=cn , 3=tn  and as before 

2/1ˆ
iiiR ω= , 2ˆ

idiiQ ω= , 1ˆ =viiQ , 0=Γ  and 0=∆ i  

Eq. (5.57-a,b) are in the following form 

11111
ˆ vDE =η         

 12122
ˆ vDE =η  

0

....

....

0....0
~

....
~

........................

0....0
~

....
~

ˆ....ˆ....0

........................

ˆ....ˆ0....

1

1

1

111

1

1111

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−−

−−

c

m

cmc

m

cmmm

c

n

n

nnn

n

nnnn

n

v

v

DD

DD

DDE

DDE

η

η

E  Y  
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1θ  

2θ  

1L  

2L  

3L  

1T  

1m  

2m  

3m  

3θ  

0
~~

221111 =+ ηη DD  

where 2224 2 iii DDE ωω ++= − , )(
~ˆ 2

1
2

11111 ω+== DgDD  and 

)(
~ˆ 2

2
2

22121 ω+== DgDD   

Matrix E  has the form 













−
−

=
0

~~
ˆ0

ˆ0

2111

212

111

DD

DE

DE

E      (5.61) 

and  

2111112121
ˆ~ˆ~

det
~

EDDEDDEE +== 1
22

2
22

22
22

1
22

1 )()( EDgEDg ωω +++=   

                   (5.61a) 

which is the same as Eq. (5.48) obtained before. 

 

5.4.2 Example 2: Tr iple pendulum 

A triple pendulum with masses 321 ,, mmm  and massless links 321 ,, LLL  is shown in Fig. 

5.5 in a disturbed initial position. Such a system has three DOFs or three modes of 

vibrations. All three modes are to be controlled by applying only one torque 1T , which 

makes the problem overdetermined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Triple Pendulum 

1X  

2X  

3X  
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Governing equations of motion are obtained by energy method. 

Assuming small amplitude oscillations one may write 

111 θLX =  

22112212 θθθ LLLXX +=+=  

3322113323 θθθθ LLLLXX ++=+=  

Kinetic Energy,  




 


 +++


 ++=
2

3

.

32

.

21

.

13

2

2

.

21

.

12
2

1

.
2

112

1 θθθθθθ LLLmLLmLmKE   

Potential energy,  

( ) ( ) ( )[ ] ( ) ( )[ ]{ }
( )2/1

2/12/12/12/12/1
2

111

2
22

2
112

2
33

2
22

2
113

θ
θθθθθ

−+

−+−+−+−+−=

Lgm

LLmLLLmgPE

and L=KE-PE 

Lagrange equations are 

1

11

.
T

LL

dt

d =
∂

∂−





∂

∂

θθ
        

 0
22

.
=

∂

∂−





∂

∂

θθ

LL

dt

d
        

 0
33

.
=

∂

∂−





∂

∂

θθ

LL

dt

d
         

After differentiation and grouping, the above three equations can be written in the 

matrix form as, 

 FKM =+ θθ&&         (5.62) 

where, [ ]321 θθθθ =T , [ ]001TF T =  

( ) ( )
( ) ( )














++
+++

=

3
2

3332331

33232
2

23221

3313221321
2

1

mLmLLmLL

mLLmmLmmLL

mLLmmLLmmmL

M     
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( )
( )












+

++
=

33

322

3211

00

00

00

gmL

mmgL

mmmgL

K      

Let, mL 11 = , mL 22 = , mL 33 =  

kgm 11 = , kgm 22 = , kgm 33 =  

For the above data, the natural frequencies are 

srad /373406.11 =ω , srad /778047.32 =ω  , srad /362831.93 =ω   

The corresponding mode shape matrix is 













−
−=

05863.027964.0104673.0

570085.020861.008052.0

970836.02295.006932.0

φ       (5.63) 

The modes are shown in Fig 5.6 

 

 

Figure 5.6: Mode shapes 

 
Modal equations of motion can be written in the following form 

iiii u=+ ηωη 2
&&  3,2,1=i        (5.64) 

mode 1 mode 2 mode 3 



 76 

where φηθ =  and Fu Tφ= .  

The second relation gives   

 

  uF T−= φ =












=

























0

0

0.059061.72971-4.89945

.63796-1.433794.18781

0.651850.946402.16324 1

3

2

1 T

u

u

u

        (5.65) 

 

Note that the bottom part of the matrix T−φ  represents TA , the matrix of constraints. 

Eq. (5.65) also provides the equation for the actuator moment 1T  as 

3211 u.651850+u.94640+u16324.2 ⋅⋅⋅=T                  (5.66-a) 

The constraint equations are in the form 

3211 u0.63796-u.433791+u18781.40 ⋅⋅⋅==h         

3212 u.059060+u1.72971-u89945.40 ⋅⋅⋅==h          (5.66-b,c) 

Note that the constraint equations (5.66-b,c) are homogenous and can be further 

modified to obtain a simpler form. 

Namely, eliminating 3u  and 1u  from (5.66-b) and (5.66-c) respectively gives 

030205.0 211 =−= uuh  

023639.0 322 =−= uuh             (5.67-a,b) 

Thus, instead of the full form of matrix A as defined by Eq. (5.66), this matrix can be 

modified to 





=

23

12

10

01

g

g
AT         (5.68) 

where 30205.012 −=g  and 23639.023 −=g .  

The form (5.68) is more convenient for further manipulations. 

Similarly as in the suspension problem, let the optimization parameters in Eq. (4.8) be 

all zero except 1212 === cba which yields  2/1ˆ
iiiR ω= , 2ˆ

idiiQ ω= , 1ˆ =viiQ , also 

st f 3= , 0=Γ  and 0=∆ i (no damping) 

For this system, 3=mn , 1=an , 2=cn , 5=tn  

TA  
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Eq. (5.57-a) can be written as 

21211111
ˆˆ vDvDE +=η              

 22212122
ˆˆ vDvDE +=η         (5.69) 

23213133
ˆˆ vDvDE +=η  

Eq. (5.57-b) can be written as 

 0
~~~

331221111 =++ ηηη DDD  

 0
~~~

332222112 =++ ηηη DDD        (5.70) 

where 2224 2 iii DDE ωω ++= −  and )(
~ˆ 22

ijiijij DgDD ω+== .  

The coefficients jig  are given by Eq. (5.68) as 12211 == gg , 30205.012 −=g ,  

23639.023 −=g  and 02113 == gg .  

Then )(
~ˆ 2

1
2

1111 ω+== DDD , )(
~ˆ 2

2
2

2222 ω+== DDD , )(30205.0
~ˆ 2

2
2

2121 ω+−== DDD , 

)(23639.0
~ˆ 2

3
2

3232 ω+−== DDD  and 0
~ˆ~ˆ

12123131 ==== DDDD  

Now, matrix E  has a form  

















−
−−

−

=

00
~~

0

000
~~

ˆ000

ˆˆ00

0ˆ00

3222

2111

323

22212

111

DD

DD

DE

DDE

DE

E      (5.71) 

and 311112222211113232132322121
ˆ~ˆ~ˆ~ˆ~ˆ~ˆ~

det
~

EDDDDEDDDDEDDDDEE ++== . 

The order of operator E
~

  is twelve (2+2+2+2+4). 

The roots of characteristic equation for the operator E
~

 can be obtained and each 

of the variables v, 1η  and 2η  can be calculated by Maple. The roots are 

ir 3777.12652.02,1 ±= , ir 3777.12652.04,3 ±−= , ir 8262.38665.06,5 ±= , 

ir 8262.38665.08,7 ±−= , ir 1881.90742.510,9 ±= , ir 1881.90742.512,11 ±−= . The 

following boundary conditions are used. 

IBC: �5)0(1 =θ , 
�

10)0(2 =θ , 
�

15)0(3 =θ , 0)0(1 =θ& , 0)0(2 =θ& , 0)0(3 =θ&  

FBC: 0)3(1 =θ , 0)3(2 =θ , 0)3(3 =θ , 0)3(1 =θ& , 0)3(2 =θ& , 0)3(3 =θ&  
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The optimal variation of the modal variables is shown in Fig. 5.7. 

 

                      

 (a)     (b)     (c) 

Figure 5.7: Modal variables versus t(s) 

 

The corresponding variation of the DOFs is presented in Fig 5.8. 

 

                        

(a)    (b)     (c) 

Figure 5.8: DOFs versus t(s) 

 

The optimal torque is shown in Fig. 5.9. It can be noted that the torque has 

positive value for most of the time and negative value at the end of time span. This can 

be attributed to the fact that mass 123 mmm >>  and also to the time span which is short. 

The pendulum configurations at 3,5.2,2,5.1,1,5.0,0=t , indicated by dots in Fig. 

5.9, are shown in Fig. 5.10. 

 

1η  3η  2η  

1θ  2θ  3θ  
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Figure 5.9: Optimal torque 

 

The values and variations of torque strongly depends on the requested maneuver 

time ft . As shown in Fig. 5.11, the maximum value of torque increases to about 60 Nm 

if st f 2=  and is reduced to about 18 Nm for st f 20= . It is evident that the torque is 

almost always positive for a short time, and alternates for longer times. 

 

)(1 NmT 

t (s) 
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Figure 5.10: Pendulum configuration at different times 

 

 

                     
(a)    (b)     (c) 

Figure 5.11: Plot of 1T  (Nm) for (a) st f 2= , (b) st f 4= , (c) st f 20=  

t= 0s0.5
1.01 .5

2 .0 2.53 .0

T  

1T

 

1T

 

1T
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Generally the variation of torque becomes unaffected if the maneuver time is 

sufficiently long. What is important is that, for such cases it is possible to determine 

constant gains that can be applied in a closed loop control, to be discussed in the next 

chapter. 

If the triple pendulum was controlled by two actuators as shown in Fig 5.12, for 

example, then for such a system 3=mn , 2=an , 1=cn , 4=tn .  

 

Figure 5.12: Triple pendulum controlled by two actuators 

 

For this case the E  would have the form 

0

0
~~~

ˆ00

ˆ00

ˆ00

1

3

2

1

312111

313

212

111

=































−
−
−

=

vDDD

DE

DE

DE

E
η
η
η

     (5.72) 

Each of the variables must satisfy the equation 0
~~~~

1321 ==== vEEEE ηηη  where, 

111132212131313121
ˆ~ˆ~ˆ~

det
~

DDEEDDEEDDEEEE ++==            (5.72a) 

The order of the above operator is again 12 (4+4+2+2 for 3121

~
,, DEE  and 31D̂  

respectively). For particular boundary conditions, this problem could be solved similarly 

as the previous one. 

 If the pendulum was controlled be three actuators then the problem could be 

solved efficiently by the BA method discussed in chapter IV. 

1T  

2T  
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Also, if one actuator was to control three lower modes of the continuous frame in 

Fig. 4.4 then operator E
~

 will take the form of Eq. (5.61a). If, in turn, these three lower 

modes were to be controlled by two actuators then operator E
~

 will take the form of Eq. 

(5.72a). 
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6. CLOSED LOOP CONTROL AND OPTIMAL GAINS 

 

6.1 Introduction 

In chapters III and V the optimal vibration’s control was discussed with the 

application to the open loop control system problems, in which the actuator forces are 

calculated as functions of time. In the closed loop control systems, the actuator forces 

should be determined from the states that is (see Eq. (2.45)) 

)(tzGFa ⋅−=          (6.1) 

The gains G allow obtaining the current actuator forces (input) from the state of the 

system (output) [17]. Optimal gains G are constant if ∞→ft  and can be obtained from 

the performance index written in the form 

min][2/1
0

→+= ∫∞ dtRFFzQzJ TT         (6.2) 

Such a problem is referred to as a time invariant problem. Nonlinear algebraic Riccati’s 

equations mentioned in Chapter II can be used to calculate optimal gains. An alternative 

way of determining optimal gains is presented in this chapter. In the modal space, the 

gains relate the actuator forces to the modal variables as follows 

 ))()(()(
1
∑

=

+−=
mn

i
iijviijdj tGtGtF ηη &    anj ..1=   (6.3) 

where ijdG  and ijvG  are am nn ×2  components of the gain matrix corresponding to the 

modal position and velocity respectively.  

In the IMSC approach Eq. (6.3) simplifies to  

iiviidi ggu ηη &ˆˆ −−=         (6.4) 

where idĝ  and ivĝ  are modal gains that can be determined for each mode independently. 

Such modal gains were calculated automatically by the BA in [11]. 
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 For overdetermined systems, because the modal controls are not independent, the 

actuator forces may depend on the state of all modal variables considered. Therefore all 

am nn ×2  components of the gain matrix in Eq. (6.3) have to be found simultaneously.  

 

6.2 Calculation of gains by the Lagrange Multiplier method 

 The values of gains can be obtained by slightly modifying the flowchart of the 

program in Fig 5.1. Firstly one should realize that only the problems for which the roots 

of characteristic equation for the operator E
~

 (see Eq. (5.60), for example) are in the 

form kk iβα ±±  with 0≠kα  can be considered. If at least one 0=kα , then the solution 

will contain a term ( )cos()sin( tBtA kkkk ββ + ) which can not be attenuated with ∞→t  

(see Eq. (6.6)). Such systems can not be treated as time-invariant ones (the gains can not 

be constant). 

 If 0≠kα  then each solution will have one set of exponentially increasing 

function tkeα ( )cos(ˆ)sin(ˆ tBtA kkkk ββ + ), and one set of exponentially decaying function 

tke α− ( )cos(
~

)sin(
~

tBtA kkkk ββ + ). Since the exponential functions have to disappear 

when ∞→t , one must set all the constants ,ˆ
kA  kB̂  to zero. This way all the zero 

boundary conditions at the target are automatically met. The remaining constants ,
~

kA  

kB
~

 can now be determined from the initial conditions only. The solution generated by 

the modification described above will be valid for the case of ∞→ft . Note that 

formally such a solution will have am nn ×2  independent functions, which equals the 

number of independent components of the gain matrix in Eq. (6.3). 

 One way of calculating the gains from the Eq. (6.3) would be to substitute the 

solution functions to both sides of this equations and compare terms at similar functions, 

which is somewhat cumbersome. A numerically simpler method is to use the solution 

for the modes and actuator forces in at least am nn ×2  time instances (test points) to form 

am nn ×2  equations to solve. This method is explained in detail on the examples next. 
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6.2.1 Example 1: Suspension system 

  The suspension system problem presented in section 5.3.2 become time invariant 

if ∞→ft  is set in the performance index, that is 

dtuRuQQJ T
v

T
d

T )ˆˆˆ(
2

1

0

++= ∫∞ ηηηη && →  Minimize    (6.5) 

The initial boundary conditions are the same as before 

mmx 10)0(1 = , mmx 50)0(2 = , 0)0(1 =x& , 0)0(2 =x&  

while the final boundary conditions are 

0)(1 =∞x , 0)(2 =∞x , 0)(1 =∞x& , 0)(2 =∞x&      

All the other parameters are the same as in section 5.3.2.  

As solved in chapter V, the 1η  and 2η  are obtained in the form 

[ ] [ ])sin()cos()sin()cos( 242322211
22 tAtAetAtAe tt ββββη αα +++= −  

 [ ] [ ])sin()cos()sin()cos( 18171615
11 tAtAetAtAe tt ββββ αα ++++ −  (6.6) 

[ ] [ ])sin()cos()sin()cos( 242322212
22 tBtBetBtBe tt ββββη αα +++= −  

  [ ] [ ])sin()cos()sin()cos( 18171615
11 tBtBetBtBe tt ββββ αα ++++ −  (6.7) 

where α  and β  are given by Eq. (5.48-a). 

The steps of generating optimal solutions for ∞→ft  using the flowchart in Fig. 5.1 are 

explained first. All the constants by the increasing functions are set to zero, that is 

06521 ==== AAAA  and 06521 ==== BBBB  in order to satisfy the boundary 

conditions at ∞→ft . It leaves only eight other constants to calculate from four initial 

boundary conditions and four equations obtained by grouping similar terms in Eq. (5.47-

c), rewritten below. 

0)()( 2
2
2221

2
111 =+++ ηωηηωη &&&& gg        

The new integration constants are 

73-0.00245163 =A    -2
3 10.3644480 ×=B  

-3
4 10-0.268617×=A    .012305604 =B  

.71218507 =A    .013269007 =B    (6.8) 
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.41827708 =A    -0.0653588 =B  

 It can be noted that these values are very close to those obtained in section 5.3.2. 

The difference is that, in the previous case the constants 6521 ,,, AAAA  and 6521 ,,, BBBB  

were very small, but now all these constants are exactly zero.  

The actuator force is plotted in Fig 6.1. The plot is visually indistinguishable 

from the plot (5.4-c). The points indicate various time instances used for calculating 

gains.  

 

 

Figure 6.1: Actuator force plot indicating various time instances selected 

 
For this case, Eq. (6.2) can be written as 

[ ]













−=

2

2

1

1

43212

η
η
η
η

&

&

GGGGF       (6.9) 

Eq. (6.9) can be solved for gains by substituting values of 2F , η ’s and η& ’s for 

four different time instances selected randomly as indicated in Fig. 6.1. All these values 

are available from the MAPLE program with sixteen digits accuracy. For testing 

purposes, five different times (test points) are selected randomly and the corresponding 

values are listed in the table below. 

 

)(2 NF

 

t (s) 
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SR. t  
2F  1η  1η&  2η  2η&  

1 0.1 1196.05158 0.3012712 -5.551997 0.0257316 -0.219607 

2 0.2 464.85082 -0.0748636 -1.607054 0.0107910 -0.182946 

3 0.35 -176.83143 -0.0429322 0.855884 -0.0042958 0.005366 

4 0.5 -9.644264 0.0172252 -0.023326 -0.0001871 0.021118 

5 0.6 27.446471 0.0060576 -0.130806 0.0006648 -0.001331 

 

Table 6.1: Values of force and η ’s for different times 

 

It occurs that solving any four of the above five sets give the values of gains as follows 

2957.6831 =G , 11804.2752 =G , 0438.71543 =G , 56303.2664 =G  

with seven digits accuracy. The gains remain the same for the system regardless of any 

four test points selected from the Table 6.1. It assures that all the points are acceptable 

and the calculated gains are correct (the issue to be discussed next). It should be noted 

that Eq. (6.9) represents a system’s trajectory that must be on a hyperplane in 5-D space 

with 1η , 1η& , 2η , 2η&  and 2F  as the dimensions. In order to visualize this trajectory in 3-

D space, the Eq. (6.9) can be written in the following form 

 1211242322
ˆ ηηηη && GGGGFF −−=++=  

The plot of 2F̂  in terms of 1η  and 1η&  is presented in Fig. 6.2. 

A line representing )(ˆ
2 tF  as a function of )(tiη  and )(tiη&  is referred to as a 

modal trajectory. Such a line will generally have the spiral shape converging to the 

origin as shown in Fig. 6.2. According to Eq. (6.2) the modal trajectory must be 

completely flat and entirely on a certain plane S. The gains 1G  and 2G  can be obtained 

from the orientation of S in the coordinates iη , iη&  and 2F̂ . Note that in order to obtain 

the plane S in 3-D space, only two test points (t=0.1 and t=0.2 for example) are needed 

(the third point is always at the origin). Therefore in 5-D space considered in the 

example, only four points were sufficient to determine a hyperplane S. 
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Figure 6.2: Modal trajectory 

 

 In general the problem of determining the gains from Eq. (6.9) is purely 

geometrical. The time instances must be selected in such a pattern that the calculated 

points define a hyperplane. Therefore a pattern with spread test points indicated in Fig. 

6.3-a should give good results, while the pattern indicated in Fig. 6.3-b with the points 

concentrated about a hyperline might not be acceptable. This problem is addressed in 

detail in the next section. 

 

                    

 (a) Good selection of points          (b) Poor selection of points 

Figure 6.3: Selection of points on hyperplane S 
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Another problem arises when the values of 2F̂ , iη  and iη&  are not calculated 

exactly as it would be the case if the results for 2=ft  obtained in section 5.3.2 were 

used instead of the results for ∞→ft  (as already mentioned, the lines representing 

these two solutions are indistinguishable on the graphs). Then the selected test points 

will not be exactly on the hyperplane. This problem is also addressed in the next section.  

 

6.2.2 Example 2: Pendulum 

The pendulum problem defined in section (5.4.2) is solved for ∞→ft  using the 

same procedure as in example 1. The optimal torque is plotted in Fig. 6.4. 

 

 

Figure 6.4: Actuator torque plot indicating various time instances selected 

 

The plot is similar to the one presented in Fig. 5.10-c for st f 20= . The gains are 

calculated for this case from following equation  

[ ]
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Several time instances are selected randomly as indicated in Fig. 6.4 to solve the Eq. 

(6.10) to obtain G’s. The corresponding values of the variables involved are tabulated in 

Table 6.2. 

 

CASE )(st  )(1 NmT  1η  2η  3η  1η&  2η&  3η&  

1 1 16.37910 0.629546 0.41662 0.1873 -2.45506 0.1347 0.17212 

2 2 6.228144 -1.1403 0.06426 0.0674 -0.64579 -0.2973 -0.270 

3 3 -8.13662 -0.69937 -0.15225 -0.0916 1.214807 -0.1738 -0.0685 

4 4 -6.53243 0.46522 -0.11067 -0.0737 0.755111 0.2045 0.1076 

5 5 3.227427 0.547128 0.06221 0.0370 -0.49696 0.1110 0.0726 

6 6 4.640630 -0.11186 0.08498 0.0523 -0.59074 -0.0684 -0.0369 

7 7 -0.49757 -0.35513 -0.01353 -0.0060 0.119419 -0.0889 -0.057 

8 8 -2.87283 -0.03867 -0.053 -0.0324 0.382158 0.0129 0.0062 

 

Table 6.2: 1T  and η ’s for time instances indicated in Fig 6.4 

 

The gains obtained for set (a): t=1, 2, 3, 4, 5, 6 are 

-2.81521 =G , -2.04252 =G , 49.71013 =G  

10.65464 =G , 10.83655 =G , 9.46196 =G          (6.11-a) 

However, the gain values for another set (b): t= 2, 3, 4, 5, 6, 8 are 

-2.81731 =G , -1.75962 =G , 51.10293 =G  

10.80884 =G , 10.98295 =G , 9.35596 =G          (6.11-b) 

It can be noted that the different sets of test points give slightly different values of gains 

(compare 2G  and 3G  in particular), which means that the points are not selected 

properly to define the hyperplane S. The question arises about the accuracy of the above 

results. This is discussed with the help of condition number in the coming section.   

A 3-D modal trajectory plot for set (a), similar to the plot shown in Fig 6.2, is 

presented in Fig. 6.5. This plot is for illustrative purposes only, the real trajectory is in 7-

D space, impossible to visualize. 
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Figure 6.5: Modal trajectory 

 

6.3 Estimation of errors in calculating gains 

An error in calculating gains can be attributed to two sources namely due to a 

poor selection of test points and due to some inaccuracies in calculating the trajectories. 

These two error types and the means to evaluate them are briefly discussed below. 

 

6.3.1 Error due to the selection of test points  

This error occurs because of the improper selection of the test points as indicated 

in Fig 6.3-b. It is important that these six points (the seventh point is at the origin) 

should be selected in such a way that they represent a seven dimensional hyperplane S. 

Generally, the selection of such points becomes more difficult with the increase of 

problem dimensionality. 
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Figure 6.6: Force and torque plot 

 

Also, it becomes more difficult when, the number of cycles increases (as in the Torque 

plot shown in Fig 6.6-b). The possibility of selected test points to form a hyperline 

instead of defining a hyperplane increases because there are more revolutions in the gain 

plot, making it difficult to choose sufficiently separated points to define the hyperplane 

precisely. It can be seen that the number of cycles in case (a) is less than that of case (b) 

resulting in less numerical complications and increased accuracy for case (a).  

 

6.3.2 Error due to the assumption of a finite time 

As mentioned before, the plots representing the pendulum problem for st f 20=  

and for ∞→ft  are practically indistinguishable. It indicates that sufficiently long finite 

time may be selected to represent the infinite time case. This makes the use of MAPLE 

program (refer to flowchart in Fig 5.1) more convenient. The assumption of finite time 

always incorporates some errors. These errors were less important while calculating the 

modal gains in the IMSC approach [18] for which the sufficient finite time ft  values 

were possible to define in a closed form. However, estimating a sufficient finite time ft  

and the corresponding trajectory errors are more difficult to handle for overdetermined 

(a) Suspension system 

aF (N) 

t (s)  

)(1 NmT

(b) Pendulum 

t (s) 
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problems. To illustrate the problem, the case of pendulum which was solved before for 

infinite time (by substituting the constants corresponding to the positive exponential 

terms in the solution equal to zero and omitting the final boundary conditions) was 

solved again by assuming st f 40= . It is found that these two solutions differ marginally 

(the results change by around 510− ). The error is not visible in the initial time span (up 

to around 20s), though can be seen if the plot scale is magnified in the latter stage as 

shown in Fig. 6.7.   

 

 

Figure 6.7: Magnified torque plots for pendulum 

 

The error shown in Fig. 6.7 indicates that for a finite ft  the trajectory is not exactly 

plane and that hyperplane S does not exists. A deviation from a plane trajectory will be 

referred to as a trajectory error. Consequently, one can only try to determine a 

hyperplane S  that minimizes this deviation. The orientation of S  defines approximate 

values of the gains. 

Both sources of the errors i.e. poor selection of points and trajectory error can be 

monitored by calculating the condition number, which is discussed next. 

 

 

∞=ft

40=ft

t  (s) 

)(1 NmT 
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6.3.3 Condition Number 

The errors due to the assumption of finite time can be estimated by inspecting 

the system’s response or eliminated by using a more cumbersome procedure for 

∞→ft . However, the error due to the selection of points is more difficult to control 

and eliminate. Anyway, in both cases, the condition number helps to select the best 

solution. The gains are calculated by solving the linear equations in the form bAx = . 

For poor selection of points, matrix A becomes ill-conditioned (almost singular). For the 

trajectory error, matrix A and vector b contain some errors. The condition number is 

basically a measure of how ill-conditioned and sensitive to any errors is the problem of 

finding x (which represents the gains).  

If x~  is an approximation to the solution x  of bAx = , then the condition number 

( 1−AA ) gives the idea about how close are x~  to the x . Smaller the condition number 

closer the x~  with x  [19]. The condition number also measures the sensitivity of the 

solution of bAx =  to the perturbations of A  or b. As mentioned the values of A and b 

may not be correctly determined if finite time ft  is used instead of ∞→ft . 

The condition numbers for the cases of Eq. (6.11-a) and (6.11-b), where 

∞→ft , are 4.2711 710×  and 1.238 910×  respectively, while for the similar cases with 

40=ft  the condition numbers are 4.32752 710×  and 1.367 910×  (sets 1 and 2 in Table 

6.3). The condition numbers are slightly bigger for 40=ft  as compared to ∞→ft  

which means that the error is mainly because of the selection of test points. For the 

pendulum case with 40→ft , various sets of test points are tried (test times are not 

tabulated) and the resulting gains along with the condition number are presented in 

Table 6.3.   
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Set 
No 

Condition 
Number 

G1 G2 G3 G4 G5 G6 % Error 

1 1.36E+09 -2.6351 -25.6161 -66.460 -2.2055 -1.3768 18.2985 1192 

2 4.32E+07 -2.8255 -2.35221 48.8038 10.5347 10.7314 9.60809 15.40 

3 1.76E+08 -2.6500 -2.29395 40.4923 9.88598 9.99354 9.16999 54.781 

4 8.85E+07 -2.8206 -2.20851 49.2219 10.5901 10.7799 9.54019 11.233 

5 7.89E+07 -2.8203 -2.19635 49.2595 10.5950 10.7842 9.53455 10.405 

6 5.45E+07 -2.8216 -2.03256 50.0712 10.6847 10.8695 9.47337 2.1689 

7 4.23E+07 -2.8255 -2.35221 48.8031 10.5347 10.7314 9.60809 20.967 

8 2.87E+07 -2.8282 -2.02225 50.4386 10.7154 10.9031 9.4848 4.3648 

9 7.38E+05 -2.8153 -2.03959 49.7298 10.6566 10.8385 9.46113 0.2546 

10 3.87E+05 -2.8152 -2.04250 49.7101 10.6546 10.8365 9.46190 0.0187 

11 2.48E+05 -2.8152 -2.04361 49.7072 10.6542 10.8361 9.46254 0.0521 

12 2.44E+05 -2.8152 -2.04360 49.7072 10.6542 10.8361 9.46253 0.0510 

13 2.36E+05 -2.8152 -2.04362 49.7082 10.6543 10.836 9.46259 0.0503 

14 1.49E+05 -2.8152 -2.04297 49.7090 10.6544 10.8363 9.46223 0.0085 

15 1.40E+05 -2.8152 -2.04337 49.7089 10.6543 10.8363 9.46247 0.0335 

16 1.30E+05 -2.8152 -2.04341 49.7087 10.6543 10.8363 9.46248 0.0360 

17 4.44E+04 -2.8152 -2.04283 49.7091 10.6545 10.8364 9.46215 0 
   

Table 6.3: Condition numbers and gains for various time sets 

 

As can be seen, the gain values differ very little if the condition number is smaller than 

about 610 . Smallest condition number is 44381 for test times set: =t 0, 1, 1.5, 1.7, 2.2, 4 

   The errors in the gains in Table 6.3 are obtained by assuming smallest condition 

number as a zero error case. The plot of error versus condition number is presented in 

Fig. 6.8.  

The graph shows that for the case of pendulum the error increases as the 

condition number increases. The error remains insignificant if the condition number is 

smaller than about 610 . In this case, either the choice of test points or the choice of 

finite maneuver time ∞<ft  is acceptable if the condition number is smaller than the 

above limit. The condition number for the case of suspension system discussed in 

section 6.2.1 for which the gains obtained were acceptable is 7.55× 610 . 
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Figure 6.8: Error versus condition number plot 

 

 As presented, the condition number gives a better idea for selecting the test 

points to obtain an acceptable solution. The gains values remain almost constant if the 

condition numbers stay below a certain limit, which can be determined by numerical 

experimentations. 
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7. CONCLUSIONS AND FUTURE WORK 

 

This thesis focuses on various techniques to solve optimal vibration control 

problem, in particular it tries to handle overdetermined optimal control problems more 

efficiently. The parametric optimization technique can theoretically solve any 

overdetermined problem but is not recommended. This technique is difficult to converge 

and mostly consumes lot of time. Also, the accuracy of this technique is poor.  

The optimality equations technique was found to be more efficient as compared 

to other techniques. The modal space can be used to simplify the complex problems by 

converting a large number of DOFs formulation into a corresponding few modes 

formulation. This technique is efficient for the determined problems (IMSC approach), 

but it is difficult to apply for the overdetermined problems. 

  The Beam Analogy (BA), which can solve complicated optimal control cases 

with high numerical efficiency, applies only to IMSC problems. BA handles the 

optimality equations technique by constructing analogous differential equations for the 

static beams and solving these beams by FEM. One independent fictitious analogous 

FEM beam is created for each mode to control. An attempt has been made to modify BA 

to solve the overdetermined problems too. As compared to IMSC problems, there are 

extra constraints in overdetermined problems which couples the modes involved. The 

idea was to construct analogous fictitious beams which would have those extra 

constraints built in.  

 The BA for determined problems solves the optimality equations in the form 

(Eq. (4.9)) 

0)ˆˆ()ˆˆˆ2(ˆ 22 =+Ω+∆−−Ω+ ηηη dv QRRQRR &&&&&&     (7.1) 

The optimality equations for overdetermined problems has the form (Eq. 5.55) 

qAvvAvAQRRQRR dv ˆ)()ˆˆ()ˆˆˆ2(ˆ 22 =Ω+∆−=+Ω+∆−−Ω+ &&&&&&&&& ηηη  (7.2) 
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Eq. (7.1) permit constructing the independent analogous beam solved efficiently by 

FEM as presented in Chapter IV. Eq. (7.2) could also describe some beams but there 

should be some fictitious loads q̂  exerted on these beams. Also, the load q̂  introduces 

some coupling between particular modes. For example, two analogous independent 

beams were used to solve the IMSC problem of the frame with two actuators shown in 

Fig. 4.4. If two modes were to be controlled by one actuator only (as in overdetermined 

problem solved in example 1 and 2 in chapter V) then the two analogous beams would 

have to be extra loaded and interconnected as illustrated in Fig. 7.1. Such a modified set 

of fictitious beams would be easily solved by the FEM if q̂  and the property of 

interconnection were known. 

 

 

Figure 7.1: Conceptual design for solving overdetermined problems by BA 

 

Unfortunately, the attempts to determine workable details of such extra loads and 

interconnection have not been successful. Work should be done in the future to find 

these modifications, so that the BA technique could be applied to the overdetermined 

problems. 

 In this thesis, the overdetermined problem has been formulated by using time 

dependant Lagrange multipliers. The extra constraints generated in such problems (the 

number of which is equal to the difference between the number of modes to control and 

the number of actuators) are handled by equal number of Lagrange multipliers. This 
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technique generates high order of differential equations (twelfth order in the cases 

solved in this thesis), which makes the problem mathematically challenging. The 

differential operators are used in order to formalize the whole procedure, which makes 

the problem rather easily solvable by applying the Maple programming. The results 

obtained are accurate.  

It should be noted that solutions to overdetermined or determined problems can 

be verified by ANSYS software, which can be used to run the dynamic response once 

the actuator forces are found. 

For closed loop control problems the gains are obtained without solving Riccati’s 

equations. By assuming infinite maneuver time ( ∞→ft ), constant gains are derived by 

setting selected integration constants as zero and then selecting sufficient number of test 

points on the optimal trajectories. However, it is found that as the number of modes to 

control increases, the precision of calculating gains decreases. The error in determining 

gains is addressed with the help of condition number. The limiting magnitude of the 

condition number to secure sufficient accuracy was determined by numerical 

experiments. The future work may attempt to determine such a limit analytically, that is 

based only on the characteristics of the optimal control problem. 
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APPENDIX A: MAPLE PROGRAM 

 

Maple program codes to solve suspension system problem defined in Section 5.3.2 

are presented below  
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