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ABSTRACT 

This thesis implemented a field programmable gate array (FPGA)-based face detector using a 

neural network (NN), as well as a bit-width reduced floating-point unit (FPU).  

An NN was used to easily separate face data and non-face data in the face detector. The NN 

performs time consuming repetitive calculation. This time consuming problem was solved by a 

Field Programmable Gate Array (FPGA) device and a bit-width reduced FPU in this thesis. A 

floating-point bit-width reduction provided a significant saving of hardware resources, such as 

area and power.  

The analytical error model, using the maximum relative representation error (MRRE) and 

the average relative representation error (ARRE), was developed to obtain the maximum and 

average output errors for the bit-width reduced FPUs. After the development of the analytical 

error model, the bit-width reduced FPUs and an NN were designed using MATLAB and VHDL. 

Finally, the analytical (MATLAB) results, along with the experimental (VHDL) results, were 

compared. The analytical results and the experimental results showed conformity of shape.    

It was also found that while maintaining 94.1% detection accuracy, a reduction in bit-width 

from 32 bits to 16 bits reduced the size of memory and arithmetic units by 50%, and the total 

power consumption by 14.7%. 
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CHAPTER 1 INTRODUCTION 

A recognition system is used in order to automatically recognize the objects. This 

automatic object recognition is mainly used for automation and security systems. 

Representative examples are automation machinery in factories, robots, and guided 

missiles. 

A recognition-based security system decides whether an object passes or not. 

Security systems based on recognition of our physical characteristics allow operations 

that are independent of security cards and passwords. Security recognition systems that 

will utilize physical characteristics such as a person’s face, fingerprints, and iris’ have 

been mainly considered for the security system called “Biometric systems”.    

Iris and fingerprint recognition systems have been used for high security systems due 

to their high recognition rates. The disadvantage of both recognition systems is that the 

sensor needs to touch the object directly or to scan a person’s eye by a laser beam which 

makes people fearful. Face recognition systems are convenient due to their non-invasive 

methods. Another advantage of face recognition is the object’s possible unawareness of 

the process. Therefore, the system can be used to search objects in wide areas and to 

stealthily detect suspicious people. 

Due to the low recognition rates of face recognition algorithms, face detection is 

more frequently used in the commercial market rather than in security recognition 

systems. 
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Among the face detector algorithms, an NN was used in this thesis because the NN is 

useful to classify the complex data like face data. Another advantage of the NN is that it 

is suitable to design in hardware based embedded systems due to its simple and repetitive 

calculations. A neural network (NN) detector can be used in various applications such as 

an automatic number plate recognition, postal code recognition, and face recognition 

systems. Because of the repetitive calculation, the NN has some problems in high speed 

detection. A dedicated embedded system using an FPGA and a bit-width reduced FPU 

solves the operating speed problem of the NN. 

A floating-point unit (FPU) was developed due to its advantage and wide range of 

scales. The primary disadvantage of FPUs is their complexity. This problem can be 

addressed by using a bit-width reduced FPU. In order to decide the number of bits of an 

arithmetic unit, we need to know how many bits are required by the NN-based face 

recognition problem. To decide the required number of bits in FPU, an error model and 

design environment for an NN and a bit-width reduced FPU was developed. The error 

model was helpful to estimate the algorithm performance like detection rate error, and the 

hardware specification of area and speed. The design environment co-working of 

MATLAB and VHDL was developed to design and verify the VHDL program.   
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1-1 Motivations 

1-1-1 Face Detection and Recognition System   

The face recognition system is more convenient than other recognition methods because 

it is non-invasive and at times, the targeted object may be unaware of the process 

However, in terms of recognition performance, face recognition systems have a much 

lower recognition rate, between  approximately  60 ~ 80% [1].  

Face detection systems are more practical than total recognition systems [2, 3]. For 

example, the face detector system can be helpful in detecting suspicious faces, and 

manual check in an airport or big stadium where there are many people and it is very 

difficult to manually check. Therefore, face detection was considered and designed in this 

thesis. 

1-1-2 Hardware based Fast Detector 

The disadvantage of a software based detector is its slow processing time. Fast detectors 

can be implemented by a hardware-based system. The hardware based detectors have two 

advantages: fast speed and reliability in terms of scheduling, as compared to a general 

computer system. 

Image processing is a time consuming process because of having to handle a big data 

size. A general computer camera is supported by 800ⅹ600 size images, and some image 

processing, like data format conversion (for example, from RGB color to YCbCr color), 

normalization, histogram equalization, filtering and other image enhancement process, 

are normally required for any image pre-processing [4]. (Note that recent computer 
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monitors use a larger size data to increase the image size and monitor size. The main 

limitation of the monitor and the PC camera size is not sensor size, but the time 

consuming problems caused by interface or image processing.) 

The Following describes how many time units are required for normal image 

processing: 

For mono color, low pass filtering (LPF) by mask, even assuming fast algorithm like 

3ⅹ3 masking, takes 4,320,000 calculation times are required for one process.  

(image size: 800ⅹ600) ⅹ1(mono color) ⅹ9(filter mask) =4,320,000 times. 

Assuming the clock is 132MHz, 32.8ms is required for one process. 132MHz clock 

frequency is recently used for embedded graphic processor [5].  

4,320,000ⅹ7.6ns(132MHz) ≈ 32.8ms 

If 5 processes are applied to image processing, assuming each processing has the 

same masking time, 164ms is required. 

5 process = 32.8msⅹ5 = 164ms 

It means about 6 frames can be treated per second. 

Therefore, it is obvious that high speeds allow for more image enhancement 

processing. 

Even commercial software based face detector programs have speed problems, 

taking 1 second to detect 1 frame. There are two main reasons for the speed problems of 

software based detector: interface and scheduling of software. 

First of all, one of time consuming sources of a software based system is the 

interface. The interface between PC and sensor (camera) is a time consuming process due 

to arbitration and transfer time.  
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To reduce the transfer time, in other words to raise the frame rate, two methods are 

used for a general computer: reduction of image data size and JPEG compression. Both 

of the methods are data loss compression methods. 

Figure 1-1 shows the maximum image size and frame rate for a normal PC camera. 

To maintain the 30 frame, 352 by 288 are the maximum image size. Therefore, to 

maintain 800 by 600, frame rates will be reduced to 15 frames per second or less. 

 

Figure 1-1 Max image and frame size of normal PC camera 

 Figure 1-2 shows how the JPEG loss compression method affects recognition 

performance. Correlation was used to compare similarity of two images. JPEG 

compression reduces the correlation value from -0.0795 to -0.0817 due to a data loss of 

compression.  

Two loss compression methods reduce the recognition performance. Therefore, a 

higher speed operation allows more data so that it improves the recognition performance. 
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Image1

Image2

JPEG

JPEG

Comparison

Image1

Image2

Comparison

Is it same?

 

(a) Experiment diagram 

Image1.bmp

Image2.bmp

Image1.jpg

Image2.jpg

Correlation result
= -0.0795

Correlation result
= -0.0817

 

(b) Correlation result of BMP and JPEG image 

 Figure 1-2 Correlation difference affected by JPEG loss compression 

Another time consuming source of a software based system is Windows OS 

scheduling. The scheduling also affects the systems reliability because of the difficulty in 

estimating the processing time. When software based systems delay the image processing 
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time, software based detector can miss the chance to detect an object when it is moving 

fast. This is a serious problem for security.  

Standard environments of a general computer, like interfacing with HDD and 

memory, also increase the detection time.  

Therefore, H/W (detection) + S/W (recognition) can improve the performance like 

processing time and reliability in image processing. This separated system can save the 

S/W effort and burden.  

Figure 1-3 shows an example of the type of separated system by detection and 

recognition functions [6]. The recognition part can be accessed through different devices 

such as servers, PCs, mainframes, etc.  

Camera
Recognition

System
NN

Detector

S/WH/W
 

Figure 1-3 Example of face detection system 

A computer will display the images we need to watch. We do not have to watch 

every spot at every second, like Figure 1-4. Only detected objects from the camera will 

be sent to the main server. Note that the camera has a hardware based detector. This saves 

management costs and reduces the burden on the server or main computer. Furthermore, 

faster detection will capture more frames and frames of higher quality.  
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Main Surveillance System
- Display
- Recognition Process

Camera +
FPGA detector

Detected object

…

…

 

Figure 1-4 Example of building surveillance system 

Hardware based detectors save the image processing time and contributes to the 

reliability of the system by reducing extra work, like interfacing and scheduling of S/W.  

Therefore, the hardware based system is attractive for image processing systems 

which require huge data processing and high resolution. The main reason why a hardware 

based graphic card is required for image processing is because it improves image 

processing time and image resolution. Chapter 5 compares the processing time of 

software and hardware based FPGA detector. 

1-1-3 Face Detector based on a Neural Network 

The NN is useful in classifying complex data, like face data, and suitable to design in the 

hardware based embedded system with simple and repetitive calculation. 
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The third advantage of an NN detector is strong for the change of environment. 

When the environment of the NN detector is changed, the performance can be maintained 

through the changes of weights. For example, if the NN detector was fitted to run under a 

bright environment, the performance can be decreased under a dark environment. In this 

case, weights data can be renewed after learning the procedure with the new database. 

The weights data, in other words, coefficients of the NN, are obtained through the 

learning procedure of the NN. 

Therefore, the same detectors can be used in various environments and conditions. 

This flexibility of the NN is an attractive feature for a designer. 

A neural network (NN) detector can also be used not only for face detectors, but also 

for recognition system or various applications such as car inspections and postal code 

extractors. 

1-1-4 Neural Network Face Detector based on FPGA 

Even though the NN is simpler than other algorithms, the complexity of the NN through 

repetitive calculation is still the major issue to be solved. 

Windows and computer based detectors take 1 second to detect a 1 frame image 

according to experiments with the commercial product. Scheduling of a Windows 

operating system (OS), communication time from the device using USB or LAN, and 

hardware communication time such as loading time from the file, HDD or Memory, 

causes the system to work slowly.  

Hardware based, dedicated embedded system and bit-width reduced FPU can solve 

this speed problem. 
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Among some devices for dedicated hardware based embedded system such as a 

digital signal processor (DSP), a microprocessor like an advanced RISC machine (ARM) 

and a field programmable gate array (FPGA). An FPGA was considered as a device for 

the NN design due to its high speed by both pipelining and flexible circuits. A DSP was 

developed for digital signal processing and a microprocessor is used for a small-size 

embedded system, which is not required of high speed performance. 

An FPGA has no limit for pipelining, while DSP has support for 4 pipelines which 

can calculate 4 calculations at the same time. Moreover, using an FPGA allows the 

designer or researcher to design a flexible circuit, like a bit-width reduced FPU. 

Therefore, the detector based on an FPGA provides flexibility by allowing the 

system to work faster. Moreover, an FPGA has many I/Os (Inputs and Outputs) which 

allow for a sensor system to have many sensors. For example, XC3S4000 has 250 I/Os 

and DSP has 32 I/Os (TI TMS320C6701 floating-point DSP).  

Moreover, some FPGA’s include a microprocessor and a DSP module inside so that 

an FPGAs will be the most popular device [7]. 

1-1-5 Bit-Width Reduced FPU for Embedded System 

In order to design an embedded system for specific applications, we need to decide the 

proper arithmetic unit for calculation. Among representative arithmetic units, a fixed-

point unit (FXU) and a floating-point unit (FPU), an FXU is simpler than an FPU and this 

makes a system simple and work fast. However, the disadvantage of an FXU is that it has 

a smaller range than an FPU so a designer needs to consider the exact number range of a 

digital system to avoid overflow or underflow error. 
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The advantage of an FPU is that it has a wide range compared to an FXU. Therefore, 

a digital system can be easily designed with an FPU with less concern about range than 

an FXU. Data range can be easily changed without changes of the number system.  

The feature of wide range is also effective for NN systems because the NN requires 

the wide range when the learning weight is calculated or changed [8, 9].  

Another advantage is ease of use. A digital system can share the number system with 

other digital systems. For example, there is a standard for the FPU, and most computers 

use an FPU, so that a program in a computer can be applied for a digital system having an 

FPU without changing the number system. These advantages are the main reason why we 

use the FPU on our personal computer. 

These two reasons, wide range and ease of use, are the main reasons why general 

computer use the FPU. 

Floating-point hardware offers a wide dynamic range and high computation 

precision, but it occupies a large size of the chip area and consumes more energy. 

Therefore, its usage is very limited. Many embedded microprocessors do not even 

include a floating-point unit due to their unacceptable hardware costs.  

A bit-width reduced FPU solves this complexity problem. A floating-point bit-width 

reduction can provide a significant saving of hardware resources such as area and power. 

It is useful to understand the loss in accuracy and the reduction in costs as the 

number of bits in an implementation of floating-point representation is reduced.  

Incremented reductions in the number of bits used can produce useful cost reductions, 

while still meeting any given accuracy requirement. 
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Flexible bit-width reduced FPU IP is useful not only for study, but also for the 

industry because there is no free commercial Intellectual Property (IP). Moreover, there is 

no simulation environment model based on bit-width reduced FPU to help with 

verification before the chip is designed. 

There are several tools for the FXU number system simulation, such as FRIDGE 

(Fixed-point Programming Design Environment), MATLAB program language and a 

FPU to FXU converter program to simulate the performance of finite precision FXU [10, 

11, 12]. However, not many programs are available for a reduced precision FPU. 

FPGA vendors provide some FPU IP through third party companies shown in Table 

1-1. Most companies provide FPU multiplication, addition, and some operations 

following the standard which has 32 bits for single precision, 64bits for double precision 

and an extended mode. There is no free commercial bit-adjustable FPU addition and 

multiplication IP.  

Table 1-1 FPU IPs of XILINX and ALTERA [13, 14] 

 3rd party free Operation bits Stages Language

XILINX Qinetiq - ×, /,+,-,root 
,compare 

32,64 
(extended: 

43,79 ) 
Scalable 

(12~64bits) 

3,4,5 VHDL 

ALTERA Amphion Multiplication 
(32,64,43 bits) +,×,/ 

32,64, 
(extended 

:43) 

5,6 
(for ×) VHDL 
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1-1-6 Finite Precision Error Analysis 

Having an adjustable bit in circuits is an easy way to optimize the circuit reducing extra 

hardware cost and for increasing the hardware performances like area and speed. To 

determine the required number of bits in the bit-width reduced FPU, the error caused by a 

reduced precision needs to be analyzed. Developed error analysis including FPU 

accuracy indices, MRRE, and circuit errors are helpful to estimate the upper bound error 

of applications. 

Reduced precision error analysis for NN implementations was introduced in [15]. A 

formula that estimates the standard deviation of the output differences of fixed-point and 

floating-point networks was developed in [16]. Previous error analyses are useful to 

estimate possible errors. However, it is necessary to know the maximum and average 

possible errors caused by a reduced precision FPU for practical implementation.  

Therefore, in this thesis, the error model was developed using the maximum relative 

representation error (MRRE) and average relative representation error (ARRE) which are 

representative indices to examine the FPU accuracy. One more error term caused by the 

arithmetic unit is the rounding error of arithmetic calculation which was added in result in 

contrast to an input quantization error [17]. After the error model for the reduced 

precision FPU was developed, the bit-width reduced FPUs and the NN were designed 

using MATLAB and VHDL. Finally we compared the analytical (MATLAB) results with 

the experimental (VHDL) results. 

The design environment co-working of MATLAB and VHDL was developed and it 

was also very helpful to design and verify the VHDL program. Reliability is the 
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important factor for arithmetic. A test with all possible numbers using the manual is very 

difficult; therefore, the automatic test program environment provides reliability.   

The MATALB program is a popular and familiar program tool for an engineer and it 

was used to program the NN face detector, to provide test-bench for verifying VHDL 

program and to analyze the output error caused by bit-width reduced FPU and the NN 

circuit.  
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1-2 Contributions 

1-2-1 Fast Neural Network Detector based on an FPGA device 

Hardware based dedicated embedded detectors using an FPGA works faster than a 

software based system through the reduction of extra work, and it allows the user to 

process more frames by allowing more image processing algorithms, such as pre-

processing and the enhancement algorithm. 

The FPGA based detector can also be used as a stand alone type without a computer 

system. As a device, the FPGA was used due to its flexibility in circuit design, speed by 

pipeline, and its cheap cost. 

1-2-2 Fast Neural Network Detector Using a Bit-Width Reduced FPU 

A bit-width reduced FPU improves the hardware performance such as area, power, speed 

and chip cost. An adjustable bit FPU makes it easy to decide and design the dedicated 

embedded system.  

1-2-3 Error Analysis and Design Environment 

The numerical error model was developed to estimate the system specification through 

the estimation of the output error before we design the chip. MRRE and ARRE for bit-

width reduced FPU were added in the error model to estimate the maximum output error 

and average output error. One more error term caused by the FPU circuit was added in 

the error model to be compensated for practical usage. 

Moreover, the design environment co-working with MATLAB and VHDL make it 

easy to verify the circuit. 
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1-3 Outlines 

This thesis is outlined as follows. In Chapter 2, the FPGA implementation of the NN face 

detector using the bit-width reduced FPUs is described. Chapter 3 explains how 

representation errors theoretically affect a detection rate in order to determine the 

required number of bits for the bit-width reduced FPUs. In Chapter 4, implementation 

methodology is described. In Chapter 5, the experimental results are presented, and then 

they are compared with the analytical results to verify if both results match closely. 

Chapter 6 draws conclusions. 
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CHAPTER 2 BACKGROUND 

2-1 Face Recognition and Detection 

People have the ability to recognize facial features and characteristics, and if a machine 

can do this work instead of people, it will save time and money. 

Face recognition or detection is an identification or authentication process in various 

areas like security, retail, banking, industry and home. In order to let a machine 

automatically work by itself, the first job of the machine is to recognize the object.  

Moreover, we are living in the ubiquitous era connected by wireless and complex 

network systems which require identification and authentication of an object far from the 

server. Therefore, authentication is very important for automatic and security systems. 

The best advantage of face recognition compared with other biometrics, such as 

fingerprint and iris recognition system, is that it is easy to detect an object through a 

normal camera, which is a non-invasive process. Moreover, face recognition following 

people’s recognition principle allows us to easily understand the recognition procedure 

and techniques. Another advantage of face recognition is that there are many database 

sources; for example, most identification cards include a picture of a person’s face. The 

disadvantage of face recognition is that it has a low recognition rate and that it takes a 

long time to calculate the huge image data to increase the recognition rate. 

The early technique of face recognition was started from the simple algorithm using 

basic facial features. Contemporaneously, many algorithms based on the statistics are 
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introduced. Examples of representative algorithms are principle component analysis 

(PCA), fisher linear discriminant (FLD), support vector machine (SVM), neural networks, 

and face recognition committee machine (FRCM) [2, 3, 18].  

An NN has a good recognition rate, even though FLD, SVM, and FRCM are better 

[18]. Advantages of an NN are that it is easy to classify the complex data and to design 

hardware through simple processing elements, providing basic architecture of a multi-

processor computer and neural computer systems. Moreover, the advancement of neuro-

science is providing the opportunity to use biological neural networks to improve the 

performance to overcome the limitation of computational modeling based on statistics 

and mathematics. 

Biometrics is the standard organization for the recognition system in the U.S [19]. 

NIST also invests and researches for the recognition system [20]. FERET database, 

supported by NIST, is widely used to test performance. Many institutions and universities 

like MIT, FERET, UMIST, University of Bern, Yale, AT&T (Olivettti), Harvard and 

Purdue opened face databases [3].  The database types are various in terms of the number 

of databases, the number of faces in a picture, color, angle of face, and pose. The proper 

database needs to be chosen for the applications. The Olivettti database was used in the 

thesis because of its advantages, like mono color, small size image, well organized data, 

and its free database were easy to use [3, 21].  
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2-2 Face Detection System based on a Neural Network 

2-2-1 A Neural Network 

A neural networks (NNs) system imitates the biological neural networks. The system 

makes it possible to classify data clusters using a learning procedure that utilizes 

examples, generalization, associative memory, and fault tolerance [22, 23]. 

The learning procedure is implemented through the mapping and grouping of a 

sufficiently large number of examples so that the system outputs a desired value. This 

process is composed of both supervised learning and unsupervised learning. 

Generalization means that an NN classifies the input data to a desired value, even though 

input data is not the same as the desired value. Associative memory creates output even 

when confronting unfamiliar or incomplete data. Fault tolerance allows work to continue 

even when a part of a neuron is faulty or disconnected.  

An NN readjusts the weight values during the learning procedure, so that the NN 

outputs the closest value to a desired value whenever new data are entered.   

On the one hand, the NN is time-consuming during the learning procedure, and 

needs massive data. On the other hand, once the system is learned, it does not take long 

for the process to complete recognitions and data detections. 

An NN is also used to model complicated problems which are difficult to make 

equations by analytical methods. For example, an artificial leg can work through the co-

operation of sensor groups after each of sensor groups pre-learned about standing, sitting, 

or running procedures. 
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In this thesis, data consists of two groups: face and non-face data. Two data groups 

were used to test the classification ability of an NN. 

2-2-2 Learning and Detection Algorithm 

Neural networks are divided into several groups (refer to Figure 2-1) [24]. In our research, 

multi-layered perceptron (MLP) was used as a representative method for the supervised-

learning groups. For reference, a single-layered perceptron cannot map a curved line, and 

cannot solve non-linear problems, like the XOR problem. Therefore, the single-layered 

perceptron is used for a simple filter or detector due to its limited abilities. 

The MLP can classify complex data groups onto a curved line.  

Neural Nets

Binary Valued
Inputs

Continuous
Inputs

UnsupervisedSupervised

Hopfield Nets
&

(Boltzman Machine)

Hamming Nets
Single-Layered

Perceptron

ART I
(Stephen

Grossberg Nets)

Multi-Layered
Perceptron

ART II
&

Kohonen Maps

UnsupervisedSupervised

 

Figure 2-1 Types of neural networks [24] 

Considering the topology of an MLP, the MLP can be categorized either as a fully 

connected, or as a partially connected network as shown in Figure 2-2. A fully connected 

network is connected by all nodes between layers, unlike a partially connected network 

which is not connected at all nodes between former and next layers [22]. A partially 

connected network can be used as a filter. The partially connected network uses less 
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weights memory; however, it was proved that less connection reduced the performance 

through the simple experiment.  

(a) Fully connected 
network

(b) Partially 
connected network

 

Figure 2-2 Fully and partially connected network [22] 

Figure 2-3 shows an example of a fully connected and partially connected network 

applied for face detection system. This topology divided the part of data to some block, 

and is known for being efficient when one is detecting the performance [25]. Figure 2-3 

reduce the weights by 96%, from (a) to (b), from 120,300 (=400×300+300) to 4,803 (= 

(20×20×4)+(10×10×16)+(10×40×4)+3). 

 However, considering its performance, the detection rate of a fully connected 

network was better than a partially connected network. Moreover, it was very difficult to 

make the NN learn. 

Therefore, multi-layered and fully connected networks were used for the NN 

detector. 
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(b) Partially connected network 

 
Figure 2-3 Example of fully and partially connected network 
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A learning algorithm of an MLP is called a multi-layer back propagation (MLBP).  

The MLBP algorithm renews the weights by reducing the mean squared error (MSE) 

between the desired value and output of an NN. Equations (2.1) ~ (2.4) show the concept. 

The MSE of output )(wE with a desired value of ( d ) and output of (O ) can be described 

in equation (2.1) [22].  

2
2
1 )()( ∑ −= OdwE          (2.1) 

The error of the weights is the differential of (2.1) and induced to (2.2).  

)(wEW ∇=Δ            (2.2) 

After solving the equation (2.2), the error equation form (2.3) is obtained.  

OOnetfOdW δ=−=Δ )(')(         (2.3) 

Finally, new weights can be renewed by the error equation of weights.  

WtWtW Δ+=+ )()1(                      (2.4) 

All other extra equations for the learning algorithm are omitted to avoid expansion.  

The learning and detection procedure are explained with the notification depicted in 

Figure 2-4. 

)(xf  is an activation function which is used to transform the activation level of a 

neuron to an output [26]. Sigmoid function is used for the activation function due to some 

of its advantages [27, 28]:  

1. Nonlinearity makes the learning powerful. 

2. Differential is possible and easy with simple equations. 

3. Negative and positive value makes learning fast. 
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Figure 2-4 A feed-forward neural network (FFNN) 

The back propagation learning algorithm is performed in the following steps. 

1. Initialization: weights, stopping condition (ex: “if error is less than 0.001”),  

   desired value (ex: Face: 0.9, Non-face: -0.9) 

[Feed-forward step] 

2. Entering an input pattern.  

3. Calculation of input value for j-th neuron ( jnet ). 

i

n

i
ijj XWnet ∑

=
=

1
         (2.5) 

4. Output ( jO ) calculation of j-th neuron using activation function (sigmoid 

function).  
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)( jj netfO =           (2.6) 

5. Calculation of the input value for k-th neuron ( knet ) using the output of hidden 

layer ( jO ). 

j

m

j
jkk OWnet ∑

=
=

1
         (2.7) 

6. Output ( kO ) calculation of k-th neuron. 

)( kk netfO =                      (2.8) 

[Back-propagation step] 

7. Calculation of the error ( kδ ) between desired value and output value  

)(')( kkkk netfOd −=δ         (2.9) 

8. Calculation of the error ( jδ ) of hidden layer  

∑
=

=
m

j
jkkjj Wnetf

1
)(' δδ       (2.10) 

9. Renew the weights using the error from (2.9) and (2.10)  

jkjkjk OtWtW δ+=+ )()1(       (2.11) 

ijijij XtWtW δ+=+ )()1(       (2.12) 

10. Go to the step (2) and repeat the renewal the weights until the stop condition 

is satisfied. 

After the learning procedure and weights are fixed, the feed-forward step is used for 

the NN detector, which is called a feed forward neural network (FFNN). 
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2-2-3 Arithmetic Unit for an Hardware based NN 

For the VHDL program to design the FPGA based face detector using the (ML)FFNN, 

two arithmetic units, multiplication and addition were required as shown in Table 2-1.  

Arithmetic is necessary for the following reasons: 

1. to add and multiply the  input and weights data (or former layer data and weights),  

2. to calculate output value using the activation function, 

3. to determine face or non-face through the comparison of output and threshold 

value. 

The activation function was estimated by a polynomial equation so that 

multiplication was used. The determination procedure is obtained from subtraction, and 

subtraction is calculated from addition. Therefore, all required arithmetic units are (FPU) 

addition and multiplication.  

Table 2-1 Arithmetic units for the FPGA based NN detector 

Function Arithmetic unit 
Net value calculation 

( i

n

i
ijj XWnet ∑

=
=

1
, j

m

j
jkk OWnet ∑

=
=

1
) 

× , 
+  

Activation function calculation 
( )( jj netfO = , )( kk netfO = ) ×  (by polynomial estimation) 

Classification value calculation 
( thresholdO j − ) +  (with two’s compliment) 

2-3 Floating-Point Unit and Standard 

Finite precision number system need to be defined and designed for all hardware or 

software systems, due to their limited resources. There are two kinds of representative 

number representation methods: an FXU and an FPU. An FXU has the fixed-point and an 
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FPU express the point by exponent bits; therefore, an FPU consists of sign, fraction, and 

exponent bits. The exponent expression makes it possible to express the number having 

wide range. A general computer uses both an FXU and FPU inside of a CPU because of 

its advantages: wide range of an FPU and the accuracy of an FXU.  

An FPU and its advantage, wide range, are useful for various systems without 

concern of an exact range, which causes overflow and underflow error.  

The Floating-Point Arithmetic method following the IEEE Standard have been used 

in our general purpose computers since IEEE announced the IEEE Standard 754 for an 

FPU in 1985 [29]. Figure 2-5 shows the single and double precision of standard FPU 

format. 

 

Sign
(1)

Exponent
(8)

Fraction
(23)

Sign
(1)

Exponent
(11)

Fraction
(52)

Single: 32 bits Double: 64 bits

 

Figure 2-5 FPU standard format (single and double precision) 

Representative calculation modules are FPU addition and multiplication because 

other calculation modules, like division, can be expressed by using both calculations. 

Therefore, the study of both calculations is important. 

Figure 2-6 shows the basic steps for the FPU calculation method which consists of 

alignment, calculation, normalization, and rounding. At the first step, the fraction number 

needs to be aligned if the exponents are different. Secondly, the aligned fraction number 

is added. Thirdly, normalization performs to fit the format and calculates the new 

exponent. Finally, rounding is performed. This rounding makes a circuit error; therefore, 
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the circuit error is caused by rounding the added in the NN error model. Chapter 3 

explains the rounding error and how affects the NN output.  

Alignment

Addition

Normalization

Rounding

Sign
(1)

Exponent
(8)

Fraction
(23)

1.11111 00000 11100 10000 101 × 215

1.00000 01000 11100 10001 000 × 210

(A)

(B)

1.11111 00000 11100 10000 101 × 215

1.00000 01000 11100 10001 000 × 215

(A)

(B)+

10.11111 01001 11001 00001 101 × 215

1.011111 01001 11001 00001 10 1 × 216

1.011111 01001 11001 00001 10 × 216
Rounding error 
by truncation

 

Figure 2-6 FPU addition 

In the research, multiplication and addition of the bit-width reduced FPU are 

designed by following the standard (single precision) using VHDL, and MATLAB was 

used to verify the circuits. Secondly, the VHDL code was modified to make the circuit 

adjustable. Then, the experimental errors and synthesis report was obtained.  

This adjustable FPU arithmetic IP, design environment to verify circuit and error 

model was useful to design dedicated embedded hardware system. 
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2-4 Field Programmable Gate Array (FPGA) Device   

2-4-1 Devices for Embedded System 

DSP, microprocessor, and FPGA are all possible devices for embedded systems. A DSP 

is used for signal processing applications like image and sound which require high speed. 

This high speed feature is performed by pipelining hardware architecture. Other 

representative advantages of the DSP are fluent libraries for signal processing.  

Microprocessors like an ARM, INTEL 80 series, Motorola 68000 series or PIC are 

the general microprocessor chip for various fields. 

An FPGA consists of gates, which are part of the circuit element. An advantage of an 

FPGA is its flexible digital circuit design, including pipelines and high speeds. Compared 

with DSP, DSP support 4 pipelines but the FPGA allows the researcher to design a more 

pipelined architecture. This flexible design feature is more useful to make dedicated 

system which allows high speed than other devices. Moreover, the flexible design was 

useful in order to change the hardware architecture.  

Therefore, an FPGA is a suitable device for the NN due to its high speed and flexible 

design. 

2-4-2 FPGA Design Environment 

To design the FPGA, special programs for the circuit synthesis, porting, and simulation 

are needed. ALTERA, XILINX, and ACTEL are the most dominant producers in the 

market, and they provide each of the necessary programs or combined packages of such 

programs.  
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Among hardware description languages (HDLs), VHDL and VERILOG HDL are 

frequently used. For our research, the VHDL was used because it is preferable for 

parameterization. Figure 2-7 is an emulation program, Integrated Software Environment 

(ISE) for a XILINX FPGA and show the NN face detector modules and codes. 

For a synthesis of logic circuit, the XILINX Synthesis Technology (XST) program 

inside the ISE was used. The hardware performance of area and timing can be improved 

by a few percent through the use of a dedicated synthesis tool like SYNPLIFY. After 

synthesizing the digital circuit, a total gate capacity and maximum operating frequency 

were obtained. Finally, those calculations allowed us to infer the implementation 

possibility and features of an NN system design using the FPGA.  
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Figure 2-7 XILINX FPGA emulation program (ISE) 

In the simulation program market, two programs, a MODELSIM and NCSIM, are 

used. MODELSIM is used for simulation. Two simulation programs work with a library 

which is provided by FPGA vendors, ALTERA and XILINX, so that we can estimate the 

exact delay for the circuits by considering their physical features. Figure 2-8 shows the 

MODELSIM waveform describing the FPU addition and the multiplication calculations 

to obtain the net value. To verify the value by watching the all values and waveform is 

not convenient and is tedious work. For example, a simulation time of 1.914 seconds 

using 220 files for face and non-face data took one day (and saving few Giga Bytes size 
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data in a PC hard disk (HDD)). This means it takes one day to check the result after the 

code is changed. Therefore, an automatic verification using MATLAB had to be 

developed to help verification.  

MATLAB program provides the test-bench file, and reads and analyzes the result file 

from the VHDL program. 

sum(300)=Y(300)×W(300)+ sum(299) → BE98AF0C×BC0AF654+ 3FB67FE0 = 3FB6D2C1

Figure 2-8 Modelsim waveform 

XC3S4000 (about 4M Gates), one of the SPARTAN series, was considered as an 

FPGA device [30]. The chip is not expensive compared with other FPGAs, because it 

does not have many hardwired IP inside, and it is easily utilized in the fashioning of a 

simple detection system.  
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2-4-3 Total Design Flow for the FPGA based NN Detector Design 

In the commercial market, some companies provide fixed-point simulation models for 

application in embedded systems. However, no company provides simulation models 

based on the bit-width reduced floating-point.  

Figure 2-9 shows the design environment for this thesis. The NN face detector was 

simulated on MATLAB and Visual C++. The MATALB environment simulates the NN 

face detector, and makes a test-bench for the VHDL program. The MATLAB program 

also provides the test-bench code for VHDL simulation. The programs create the bit-

width reduced FPU format code. The test-bench data consists of face data and weights 

data. 

VHDL Program
(Modelsim,Altera/Xilinx)

FPU
(32~12)

MATLAB Program

Test Bench

Neural Networks

Input Data
(ASCII)

Output Data
(ASCII)

 

Figure 2-9 Design environments 
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The Visual C++ can substitute for the MATLAB. The advantages of using Visual 

C++ is that a Graphic User Interface (GUI) is user-friendly and that it has a fast running 

time so it doesn’t use much of the computer’s resources. However, the programming of 

Visual C++ is not as easy as the MATLAB.  

The MODELSIM program supports the VHDL simulation environment. Of the two 

major HDLs in the market, the VHDL was used because of the VHDL’s advantages of 

commands, package and generic, are suitable for making parameterized circuits. After the 

MODELSIM program simulates the circuit using the test-bench, it makes the output data. 

Then, finally, the MATALB programs read the data, and analyze the error and 

performance. The ISE was used to synthesize the circuit for FPGA. We can develop logic 

circuits in the FPGA through two tools: simulation and synthesis programs. 

The environment, MATLAB+HDL simulator, and the bit-width reduced FPU will be 

helpful to decide the system specifications for an embedded system. 
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CHAPTER 3 ERROR ANALYSIS 

Unfortunately, there is no computer which can express all numbers due to its finite 

hardware resources. In practice, a personal computer uses a limited bit width of 64 bits to 

express the number system. Therefore, any digital system cannot be free from errors.  An 

application, like an embedded system, with a specific purpose needs to be designed and 

confined enough to satisfy given conditions in order to reduce the unnecessary 

complexity of components and to save costs. Therefore, it is essential to analyze the error 

of a system to determine the bits required.  

An FPU is useful for an NN in terms of its acceptance of a wide ranging number 

system and its memory efficiency. The error model with maximum relative representation 

error (MRRE), which provided representative indices of FPU accuracy, was developed 

and the total output error of the NN system was analyzed. The main calculation of the 

NN system is a Multiplication and Accumulation (MAC) process. The FIR filter and the 

FFT, which are frequently used for engineering, also use the MAC calculation; therefore, 

this error model can be applied to the FIR filter and the FFT as well. 

In our design, an NN + bit-width reduced FPU + FPGA, there are two possible 

errors: polynomial estimation error and reduced precision error of the FPU. Estimation of 

an activation function causes a polynomial estimation error. In Chapter 5, the side effects 

of this error are explained by analyzing the experimental result. We are more interested in 

the second error, Sections 3-1 and 3-2 explain the second error and its side effects. 
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3-1 Error caused by bit-width reduced FPU 

3-1-1 Accuracy and Precision of FPU 

Figure 3-1 shows the machine number expression of an FXU and an FPU. The FXU has a 

fixed distance between consecutive numbers. The FPU have different distance between 

consecutive numbers. This makes the difference between the FXU and the FPU. The 

FXU can be more accurate than the FPU in possible range of the FXU; meanwhile, the 

FPU can express more wide range relatively losing accuracy.   

A precision is defined as the distance two consecutive number expression, for 

example, |F2-F1|as shown in Figure 3-1. An accuracy is defined as the distance between 

the real number ( x ) and machine number expression, | x -F2|.  

2F1F 2F1F 2F1F

Precision
|F2-F1|

x

Accuracy
|x-F2|

x  

(a) Fixed-point number expression 

x
2F1F

Precision
|F2-F1|

Accuracy
|x-F2|

 

(b) Floating-point number expression 

Figure 3-1 FXU and FPU number expression 
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Figure 3-2 explains the advantage of the wide range of the floating-point arithmetic 

representation method. The data within specific bounds of the fixed-point method has 

less errors than the FPU, however, a narrow range make more errors than the FPU when 

data goes beyond the bounds. The floating-point method, however, maintains an error of 

the same rate over a much wider range of numbers than the FXU. The advantage of the 

FPU wide range makes it easy to design when the exact number range is not known and 

when the data range are changed frequently. This advantage can be a very useful feature 

for an NN because the range of weights is difficult to know exactly and can be changed 

following the system. For example, if two NN detectors are under two different 

conditions like the bright light and the dark light, weights might be changed. 

Fixed point 

Floating point 

 

Figure 3-2 Error feature of fixed and floating-point 
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Figure 3-3 specifically shows how to express a number by the finite FPU. The size of 

the error can be graphically realized and the error is increased at a constant rate. For 

example, the error of the value of 8 is less than 0.016, |8|×0.002 ≤× 0.016. It means “8” 

can be expressed by “7.984(8-0.016) ~ 8.016(8+0.016)” in FPU16. Her, “0.002” is called 

maximum relative representation error (MRRE). Section 3-1-2 explains about the MRRE. 

In this example, the FPU16 consist of sign (1bit), exponent (6 bits), and fraction 

(9bits) respectively.  

Value
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Figure 3-3 FPU16 representation error 

3-1-2 MRRE and ARRE 

Figure 3-4 shows the relative representation error (RRE) of some FPU16 numbers. 

MRRE is the maximum relative representation error. The MRRE is the upper bound of 

the RRE, and is equivalent to the value of unit in the last position (ulp) at radix 2. 

Equation (3.1) describes MRRE [31]. 

β××= ulpMRRE 5.0 ,        (3.1) 
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where β is the radix and ulp is a unit in the last position and ulp is also defined as 

the distance between two consecutive significands. Therefore, if the fraction bit is 9 

(FPU16),the ulp is 2-9. 

For example, let β =2(radix), then the unit in the last position (ulp) is 2-9 for 

FPU16. 

002.02)2(002.05.0 9 =×≈×= −MRRE       (3.2) 

Therefore, the number of the FPU16 is bounded by the number × MRRE (0.002),  

Error ≤ |FPU16 number| - |number| = |number|× MRRE. 

For example, the FPU16 representation error ≤ 10×  0.002 =   0.02 (Y-axis of Figure 

3-4) 
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Figure 3-4 RRE of FPU16 (Error/FPU16 number) 

An average relative representation error (ARRE) in practical use is shown in 

equation (3.3). The trend of the graph is not changed by the ARRE because the ARRE is 

the MRRE of the constant value intervals (Table 3-1). Equation (3.3) describes the ARRE 

[31]. 
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ulpARRE ××
−

=
4
1

ln
1
β

β .        (3.3) 

The number of bits in the FPU is important for the area and operating speed [32]. 

Therefore, it is important to decide on the least number of bits required within the 

acceptable error range. A maximum relative representation error (MRRE) [31] is used as 

one of the indices of floating-point arithmetic accuracy, as shown in Table 3-1.  
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Table 3-1 MRRE and ARRE of five different FPUs 

Unit β, e, m Range MRRE 
(ulp) 

ARRE 
(0.3607×ulp) 

FPU32 2, 8, 23 25512 22
8

=−  2-23 0.3607×2-23 
FPU24 2, 6, 17 2-17 0.3607×2-17 
FPU20 2, 6, 13 2-13 0.3607×2-13 
FPU16 2, 6, 9 2-9 0.3607×2-9 
FPU12 2, 6, 5 

6312 22
6

=−  

2-5 0.3607×2-5 

3-2 Output Error Estimation of an NN Caused by Bit-Width Reduced FPU  

The FPU representation error increases with repetitive multiplication and addition in an 

NN. The difference in output can be expressed using the following equations with the 

notification depicted in Figure 3-5. 
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Figure 3-5 A general neural network model 
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3-2-1 Output Error Estimation by the MRRE and the ARRE 

The error of the 1st layer can be described as shown in equation (3.4). 

The output error of the first layer, caused by finite length arithmetic unit, jε is the 

differentiation between the output of real number ( j
fO ) and the output of first layer 

caused by finite length arithmetic unit ( jO ), or jj
f OO − . The output is solved by the 

MAC calculation, ∑∑
==

n

i
iiji

f
n

i
ij

f XWXW
11

, , and the activation function )(MACf of 

weights data and input data.  

jj
f

j OO −=ε  Φ
==

+−= ∑∑ ε)()(
11

n

i
iiji

f
n

i
ij

f XWfXWf .              (3.4) 

The error of the 2nd layer also can be described as (3.5). 

kk
f

k OO −=ε Φ
==

+−= ∑∑ ε)()(
11

m

j
jkj

m

j
jk

f
j

f WOfWOf           (3.5) 

Where jε  represents the hidden layer error, kε  represents total error generated 

between the hidden layer and output layer. W represents the weights and O represents the 

output of the hidden layer [16].  

Φε  is the summation of other possible errors:  

Φε  = fε + Multiplication Error ( *ε ) + Summation Error ( +ε )  

+ other calculation errors.          (3.6) 

fε  is the non-linear function error of Taylor estimation. A polynomial equation was 

used to estimate an activation function so that all derivatives, except the first derivative, 

are 0. (Equations (4.3) and (4.4), )('' xf , )(''' xf …=0). Therefore fε  = 0. 
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Other calculation errors occur when the differential of activation is calculated, 

)(' xf =0.75×sum and the final face determination calculation, 

))('())(),(( thresholdxfsignnonfacefacef −=+− . 

The multiplication unit assigns twice the size of the bits to save the result data. For 

example, multiplication of 16 bits × 16 bits saved 32 bits in the register. This large size 

register reduces the error. These errors are negligible except for the summation error 

( +ε ). The error ( +ε ) was added in the error term ( Φε ). The multiplication error and the 

addition calculation errors are bounded by the MRRE (assuming rounding mode = 

truncation) as given by equations (3.7) and (3.8). 

*ε  < Multiplication Result )( MRRE−× .                  (3.7) 

(For example, the *ε of “ 2054 =× ”: )(20* MRRE−×=ε .) 

               +ε  < Addition Result )( MRRE−× .                     (3.8) 

(For example, the +ε of “ 954 =+ ”: )(9 MRRE−×=+ε .) 

Note that the maximum error caused by truncation is bounded by 

)22( ulpfp
t x −− −×≤ε .                    (3.9) 

In this equation, fp is the final position of the number before being truncated like 

Table 3-2, and the fp is dependent on the circuit design. This means that the large size 

registers are assigned and reduced the rounding error. Therefore, (3.9) can be described 

as, 

)(2)22( MRRExxx ulpulpfp
t −×=×≈−×≤ −−−ε .   (3.10) 

Appendix A-2 explains how to express the bit-width reduced FPU error through the 

MRRE. 
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The error by round-to-nearest scheme is bounded as 

MRRExx ulp
n ××=×≤ −−

2
1)2( 1ε .     (3.11) 

The total error can be reduced by almost 50% by round-to-nearest scheme. 

For example, the max error by truncation, in the case of Table 3-2, is    

             4/322)22( 02 −=−=−×≤ −−− ulpfp
t xε . 

The max error using the round-to-nearest scheme is, 

             2/12)2( 11 ==×≤ −−−ulp
n xε . 

Table 3-2 Error caused by rounding: truncation & round-to-nearest 

Position (ulp) 
0 

 
1 

(fp) 
2 

X 0. 1 1 
X by rounding 0.   Truncation 

Error ( tε ) 0. 1 1 
X 0. 1 0 

X by rounding 1.   
Round 

to 
Nearest Error ( nε ) 0. 1 0 

 
The error analysis method of the bit-width reduced FPU was summarized as outlined 

in Figure 3-6, and Figure 3-7 shows the code including input quantization error and 

rounding error of arithmetic calculation.  

1. Define Error Model: OO f −=ε  

2. Substitute Error Term by MRRE: 

     x
f xx ε×= , )( MRRExx −×=ε  

3. Add Error Term by Calculation: 

( *ε  = Multiplication Result× -MRRE), 

             +ε  = Addition Result× -MRRE. 

(a) Summary 
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1. Function Definition: 21 XXO +=  

2. Error Model Definition 

     )()( 2121 XXXXOO fff +−+=−=ε  

3. Substitution of Error Term by the MRRE 

     x
f xx ε×= , )( MRRExx −×=ε  

     ( ) )()()( 212211 XXXX XX +−+++= εεε  

     )()( 2121 MRREXMRREXXX −×+−×=+= εεε  

4. Addition of  Error Term by Calculation  

     +ε  = Addition Result× -MRRE. 

     ++−×+−×= εε )()( 21 MRREXMRREX  

5. Final Error Model  
     )()()()( 2121 MRREXXMRREXMRREX −×++−×+−×=ε  

(b) Simple Example 

Figure 3-6 Summarization of error analysis method 

for k       

    for m 

        W = LAYER01.Weights(k,m); 

        X = NET1_INPUT(k,m); 

        SUM=SUM+W*X; 

        % Error Term 

        h=(2*X*W*MRRE); 

        SUM_Error=SUM_Error+h;                                    % h 

        ADD_ERROR=ADD_ERROR+SUM*MRRE;      % +ε           

    end, end 

        OUT_LAYER1=0.75*SUM;          

        f_diff=0.75;         

        Ej(count)= SUM_Error*f_diff + ADD_ERROR; 

Figure 3-7 Error calculation codes ( jε ) 
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 From the equation (A.23) in Appendix A-3, an error model for an NN with the 

precision reduced FPU and the MRRE was obtained as equation (3.12). 

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+×−×< ∑

=

m

j
jkjjjkk WOMRREW

1
)]()[( εε +

=
+∑ ε)('

1

m

j
jkjWOf , 

∑
=

+ −×≈
n

i
jkj MRREWO

1
)()(ε .                   (3.12)                         

3-2-2 Relationship between the MRRE and the Output Error 

From the equation (A.26) in Appendix A-2, 

)(')('2
11
∑∑
==

××−×××≈
m

j
jkj

n

i
iijk WOfXWfMmnε .               (3.13) 

Some properties were derived from (3.13) for the output error. The error is 

proportional to the number of nodes (n and m) and the MRRE. If the term 

MRREmn −×× is small enough, the output error caused by the representation error is 

negligible.  

There is one more interesting finding. The differential of summations affects the 

output error, )('
1
∑
=

∝
n

i
iijk XWfε . Figure 3-8 shows the differential graph of activation 

function. X-axis shows the output value (= summation value) and Y-axis shows the 

differential value of activation function. The output of the NN detector which learned 

well goes to the desired value, 1. In that case, as X-axis value goes to 1, the differential 

value in Y-axis goes to 0. It means that the well learned NN system has less output error. 

(Refer to the learning process which makes an NN learn to reduce the error (|desired 

value - output|). 
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1

21 ⎥⎦
⎤

⎢⎣
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+

− − xe
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)(' xf

)(' xf

x   
 Figure 3-8 First derivative graph of activation function 

From the equation (A.22) in Appendix A-1, 

)('2
1
∑
=

×−××≤
n

i
iijj XWfMnε , where MRREM =       (3.14) 

If W, X < 1, 

MRREj ∝ε ,        (3.15) 

from equation (3.13), the result will be 

Mmnck −××××≈ 2ε , c=constant            (3.16) 
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Therefore,   

MRREk ∝ε .         (3.17)  

In our experiment, 

εk(H300)= 0.002939×400×300×-MRRE=352.68×-MRRE, 

εk(H500) = 0.002729×400×500×-MRRE=545.8×-MRRE, 

H300 and H500 mean 300 and 500 nodes of the first layer respectively. The constant 

is 352.68 for an NN (H300), and the output error is proportional to the constant and the 

MRRE. The MRRE is ulp . The ulp  value can be expressed by n−2  (n= the number of 

fraction bits) (refer to eq. (3.1)). 

Therefore, the output error logarithmically increases in base 2.  

    n
k ulpMRRE −==∝ 2ε               (3.18)  

Finally, it is concluded that n-bits reduction in the FPU creates 2n times the error. If 

one bit is reduced, for example, the output error is doubled (2-(-1)=2). 

3-2-3 The Number of Nodes and Layers 

The sensitivity (3.20) can be defined to understand the relationship between the output 

error and a number of nodes. 

Mmncy ××××= 2        (3.19) 

mnc
M
yySensitivit ×××=

Δ
Δ

= 2      (3.20) 

Therefore, if the number of the node is big, the system is unstable, and makes errors 

proportional to this number of times. 

Referring to (3.20), “n” is the number of input (former Layer) and “m” is the number 

of the first layer (current Layer) node. 
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Therefore, the number of layers does not affect the error as much as the number of 

nodes. For example, as indicated by Figure 3-9, the sensitivity of network (a) and 

network (b) are equivalent. 

Sensitivity of network (a) = 3004002 ××× c  

Sensitivity of network (b) = 30020202 ×××× c  

1

2

n

:

:

1

2

m

:

:

:

:

1

2

n

:

:

1

2

n

:

:

1

2

m

:

:

:

:

(a) 400-by-300, 2 Layer                             (b) 20-by-20-by-300, 3 Layer
 

Figure 3-9 Two networks 

3-3 Detection Rate Changes Caused by Output Error 

How the detection rate changes by the number representation error can be more important 

information than the representation error itself. If we know the NN output error caused by 

the representation error and expected detector performance graph, we can estimate the 

detection rate changes caused by number representation error. 

The NN output error caused by the representation error was calculated through the 

error model. The expected detector performance graph, Equal Error Rate (EER) graph, 

can be simulated by Gaussian Distribution Function. Section 3-3-1 explains about EER 

graph and Section 3-3-2 explains how much detection rate changes by output error 
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caused by number representation error. This pre-analysis concept will be helpful to 

estimate the detector performance before designing the embedded system. 

3-3-1 A Face Detector Performance Test 

Table 3-3 shows the representative statistical measure for a binary classification test [33]. 

Detector makes four conditions:  

1. True positive: Ex. Face data classified to face data. 

2. False negative: Ex. Non-face data classified to face data. (Wrong prediction) 

3. False positive: Ex. Face data classified to non-face data. (Wrong prediction) 

4. True negative: Ex. Non-face data classified to non-face data. 

Among them, false acceptance rate (FAR) and false rejection rate (FRR) are used for 

the representative measure of a face detector performance test. FAR means that face data 

is classified as non-face data. Therefore, if FAR is 0.01, face can be classified to non-face 

data. Therefore, the following Table 3-3, FAR = 1 – True Positive. 

 Negative case and non-face also need to be considered for the total detection rate. 

FRR = 1-True Negative. 
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Table 3-3 Statistical measure of a binary classification test [33] 

                  Condition 
Test Outcome True False 

Positive 
(Face) 

True Positive 
(Face detection rate 

among Face data base) 

False Positive 
(FAR) 

Negative 
(Non-face) 

False Negative 
(FRR) 

True Negative 
(Non-face detection rate 

among Non-face data base) 
 

Figure 3-10 shows the EER graph which described FAR and FRR. The Gaussian 

distribution function (eq. (3.21)), also called normal distribution, was used to estimate the 

EER graph. The graph is adjustable, changing two variables a mean ( μ ) and variance ( ∂ ). 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

2

2
)(exp

2
1)(

σ
μ

πσ
xxf                  (3.21)  

An EER was named for this graph because the left and right regions are the same 

from the cross point.The X-axis shows the threshold value (to determine face or non-face 

from the output value of the NN detector) and Y-axis shows the probability. As the EER 

value is small, the detector is an  ideal system because FRR and FAR will be 0. The 

nearby cross point means that the False Positive (Face detect rate/face data) and False 

Negative (Non-face detect rate/non-face data) will be 100%.  

After the threshold value (output value), changed by the number representation error 

as entered into x in MATALB program (equation (3.21)), the changes of the detection 

rate are obtained. Section 3-3-2 describes about the detection error. 
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Figure 3-10 EER graph of detection system 

3-3-2 Detection Rate Changes Caused by Output Error 

In order to approximate the detection rate errors before designing the hardware system 

using the VHDL, an equal error rate (EER) graph was developed using the Gaussian 

Distribution Function. The EER graph shows the maximum detection rate error versus 

the threshold error variation as shown in Figure 3-10. 

The bit reduction of 25% from the FPU32 to the FPU24 is affected by the maximum 

0.48 % deterioration in the detection rate as shown in Table 3-4. This error pre-simulation 

is useful for estimating the detection error caused by the arithmetic unit error with an 

expected EER graph. Chapter 5 explains this experiment result. 
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Table 3-4 Detection rate errors 

Unit MRRE NN OUT 
Error (Max) 

Detection 
Rate Errors 

(1-FAR) 
FPU32 2-23 4E-05 7.38E-05 

FPU24 2-17 0.0026 0.0048 
(0.48%) 

FPU20 2-13 0.0410 0.081 
FPU16 2-9 0.6560 0.8301 
FPU 12 2-5 10.4 0.3316 
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CHAPTER 4 IMPLEMENTATION 

Figure 4-1 shows the total design flow using MATLAB and VHDL. The MATLAB 

program consists of two parts: learning and detection programs. After the leaning 

procedure, weights data are fixed and saved to a file. The weights file is saved to a 

memory model file for FPGA and VHDL simulation. The MATLAB also provides input 

test data to the VHDL program and analyzes the result from the result file of the 

MODELSIM simulation program. Pre-processing includes mask, re-sizing, and 

normalization. 

Pre-
Processing

MATLAB (Learning)

NN
Detector

Pre-
processing

NN
Learning
Program

Save
Weights

Performace
Test &

Verification

Memory
(input
data)

NN
Detector

Memory
(Weights)

MODELSIM
(Simulation)

Xilinx ISE

( Design and Synthesis )

Data
(Face &

Non-face)

MATLAB (Detection)

 

Figure 4-1 Design environment 
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4-1 An NN Face Detector Design Using MATLAB 

In order to get weights data, in other words, to let the circuit learn, the NN used multi- 

layered back propagation (MLBP) as a learning algorithm.  

A multi-layer perceptron (MLP) is a representative method of supervised learning. It 

is known that 3-layers, having 2-Hidden layers, are better than 2-layers in terms of 

learning [34].  

However, a 2-layer MLP was used in this thesis, as shown in Figure 4-2. The output 

error equation of the first layer ( jε : Refer Figure 3-5, eq. (A.3) in Appendix) and the 

error equation of the second layer ( kε , eq. (A.7)) are different. However, the error 

equation of the second ( kε ), the error equation of the third ( lε , eq. (A-8)) and the error 

equation of the other layers are the same form. Therefore, a 2-layer MLP is enough to be 

examined in this thesis.   

Hidden node (300)

∑F

:

:

wts01

∑F

∑F

:

:
∑F

wts12

y1

Input
Node
(400)

Activation
function

Layer 1 Layer 2
 

Figure 4-2 The neural network structure (2 Layer Perceptron) 
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Figure 4-3 shows the sample images of the face and non-face database after the 

normalization and mask for simple pre-processing. Some institutes and universities 

provide face databases. The Olivetti face database was used from Scott Sanner’s face 

detector design environment [21] programmed with MATLAB. The Olivetti face data is 

one of the standard images in the world, and the images consists of mono-color face and 

non-face image. Some other databases, which have large size, color, mixed with other 

pictures, are difficult for this error analysis purpose due to the necessity of more pre-

processing like cropping, data classification and color model change. Moreover, some 

databases are not free and require authentication; however, the Olivetti data are free to 

use. 

face data Non-face data
 

Figure 4-3 Input image (Face and Non-face data) 

Figure 4-4 shows the classification result of 220 data including 60 face data and 160 

non-face data. X-axis shows the data number of face data from 1 to 60, and non-face data 

from 61 to 220. Y-axis shows the output value of the NN. The NN was learned to pursue 

the desired value ‘0.9’ for face and ‘-0.9’ for non-face. Threshold is the standard value of 

output value to determine face or non-face.  
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Figure 4-4 Data classification result of the neural network 

Table 4-1 was obtained after the threshold value changed from 0.1 to 1. When the 

threshold is 0.5, the face detection rate is about 83%, and the non-face detect rate is 55%. 

When the threshold is 0.6, the face and the non-face detection rate are 71.67% and about 

69.4% respectively. As the threshold value goes to ‘1’, and as the horizontal red line goes 

to up in Figure 4-4, the face detection rate is decreased (83%→71.67%). This means the 

input image is difficult to pass, and it is good for security. Therefore, the threshold is 

needed to be chosen accordingly depending upon applications. For example, a bank 

requires more security features than door locks for a car.  

Table 4-1 Detection rate of the neural network face detector  

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Face 60 60 60 53 50 43 29 21 17 10
Rate 100 100 100 88.33 83.33 71.67 48.33 35 28.33 16.67

Nface 17 26 41 65 88 111 130 149 155 160
Rate 10.625 16.25 25.625 40.625 55 69.375 81.25 93.125 96.875 100
Total 35 39.09 45.91 53.64 62.73 70 72.27 77.27 78.18 77.27
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The EER graph can be obtained from Table 4-1. 

Figure 4-5 is the Equal Error Rate (EER) graph which is one of the best recognition 

system performance test measures. The EER graph provides a hint of the threshold value 

decision for specific applications. For example, if the designer changes the threshold 

from the crossing value, 0.6, toward right side value, 0.7, the FRR is changed from about 

30% (0.3) to about 50% (0.5). This means that the face detection rate is decreased from 

about 70% to about 50%, and the FAR is changed from about 30% to about 20%, so the 

non-face detection rate was increased to 80%. It means input images, whether the input 

data is face or non-face, are difficult to pass so that lower face detection rate contributes 

the security. Meanwhile, as the threshold goes to the left, the input data can be easily 

passed. The graph provides us a means to select an appropriate balance between security 

and convenience. 
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Figure 4-5 Equal Error Rate (EER) Graph 

The EER graph was used to estimate how much the number of representation errors 

affects the detection rate. After designing the VHDL with bit-width reduced FPU, the 

detection error is obtained directly through the experiment. Chapter 5 and Section 5-2-2 

explain a detection rate change by a reduced precision in the FPU. 

4-2 An NN Face Detector Design Using VHDL 

4-2-1 A Neural Network Design 

The implemented neural network architecture uses the multi-layer perceptron (MLP), as 

shown in Figure 4-6. The architecture is a representative method of supervised learning, 
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and consists of input and one hidden layer.  Each layer has 400 (=20-by-20 images) input 

nodes for first layer and 300 nodes for second layer, respectively.  

The large size nodes (300) of a hidden layer were considered to the worst case 

because they have the possible biggest error. Note that the number 300 is the largest size 

to save the weights to a built-in memory of the FPGA (3S4000) at the FPU16 [30]. 

The size of weights data = 400×300+300×1=120,300=481,200 Bytes 

The two layers, hidden and output, share the one multiply-accumulate calculation 

(MAC) and the activation modules, as shown in Figure 4-6, because the first layer spends 

99.8% of the total time allotted to calculate the output. (99.8% = (300×400) / 

(300×400+300)). Therefore, pipelining to save time was not required. 

∑F:
:

:
:

Input Weights
wts01

Activation
function

∑F
:
:

:
:

Weights 
wts12

Hidden

Layer 1 Layer 2

Activation
function

400
120,000
(400×300) 300

300

 
Figure 4-6 FPGA-based MLP structure 

 

After the face data enters the input node, it is calculated by the MAC with weights. 

Face or non-face data is determined by comparing output results with the thresholds. For 

example, if the output is larger than the threshold, it is considered as a face data. Here, on 

the FPGA, this decision is easily made by checking a sign bit after subtracting the output 

results and the threshold.  
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Table 4-2 and Figure 4-7 shows the NN calculation process of one frame in VHDL 

and final symbol.  

Table 4-2 The NN calculation process 

Stage Description Operation 

One 1st Layer Calculation 
(MAC of Weights and Input) jnet = i

n

i
ij XW∑

=1
 

Two 1st Layer Calculation 
(Activation Function) jj netnetf ×= 75.0)(  

Three 2nd Layer Calculation 
(MAC of Weights and Input) knet = j

m

j
jk OW∑

=1
 

Four 2nd Layer Calculation 
(Activation Function) 

)( knetf knet×= 75.0  

Five Decision of Face or Non-face 
(If MSB=1, non-face, otherwise face) 

thresholdOfaceOut k −=)(  

Six Result Out 

 

One frame took 423,163 clocks. To process 220 files under the conditions, FPU32 

and 48.4MHz, a simulation time unit of 1.914 seconds in waveform was required. It took 

one day to run the simulation using MODELSIM program. 

1.914 seconds = 8.7ms (423,163clocks× MHz4.48
1 )×220files 
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Start

Done

Face_dec
(Result)

Stage Zero One Two Three Four Five Six Zero

1 frame = 423,163 clocks

 

(a) The NN simple waveform and flow 

 

(b) Symbol 

Figure 4-7 The FPGA based NN waveform and chip symbol 

4-2-2 Activation Function Estimation of a Neural Network 

An activation function is used to calculate the output value of the neural network. When 

learning the procedure, the differentiation of the activation function is used to renew the 

weights value.   

Therefore, the activation function has to be differentiable. A sigmoid function, 

having an “S” shape, is used for the activation function and a logistic or a hyperbolic 
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tangent function is commonly used as the sigmoid function. The hyperbolic tangent 

function and its anti-symmetric feature were better than a logistic function for testing 

learning ability in our experiment. 

For the activation function, the hyperbolic tangent sigmoid transfer function was 

used, as shown in equation (4.1). The first derivative of the hyperbolic tangent sigmoid 

transfer function can be obtained as equation (4.2) [23]. The MATLAB provides the 

commands, “tansig” and “dtansig”, for the hyperbolic tangent sigmoid transfer function 

and its differentiation function. 

MATLAB function for (4.1) is “tansig”. 

x

x

x e
e

e
xf 2

2

2 1
11

1
2)( −

−

− +
−

=−
+

= .        (4.1) 

MATLAB function for (4-2) is “dtansig”. 

2

2
2 1

1
21)(1)(' ⎥⎦

⎤
⎢⎣

⎡ −
+

−=−=
− xe

xfxf .       (4.2)  

The activation function is a transcendental function which is difficult to design in a 

hardware system. Therefore, the activation function is estimated with all possible 

hardware resources. (Note that all calculation systems, including computers, estimate the 

function through a basic arithmetic unit.) 

The activation function can be estimated by using multiple methods. A Look-up-

table (LUT) is simple and fast, but much more memory is required to make the system 

accurate; therefore, an LUT is used for a simple NN detector [35, 36]. A Coordinate 

rotation digital computer (CORDIC) consists of many iterations and takes a long time to 

calculate; therefore, this algorithm is used for calculators as it does not critically require 

speed [37]. The Taylor and polynomial methods are effective, and guarantee the highest 
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speed and accuracy among these methods. The polynomial method was used to estimate 

the activation function because it is simpler than the Taylor approximation (refer to 

polynomial estimation equation (4.3) and Taylor estimation equation (B.32)). 

Therefore, the polynomial method was applied for our detection system as seen in 

equations (4.3) and (4.4).  

A first degree polynomial estimation of the activation function is  

   xxf ×= 75.0)( .                   (4.3) 

A first derivative is  75.0)(' =xf .                               (4.4) 

Figure 4-8 shows the activation function and the estimation graph. X-axis is the input 

of activation function and Y-axis is the output. The activation function confines the 

output value from 1 to -1. The polynomial function, xxf ×= 75.0)( , can be used for the 

detector because the output value will be put from the value from -1 to 1 after the 

learning procedure. Therefore, the region from -1 to 1 polynomial graph in X-axis was 

used for the NN detector.  
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Figure 4-8 Estimation (eq. 4-3) of activation function (eq. 4-1) 

4-2-3 Bit-Width Reduced FPU Design 

Figure 4-9 shows the NN block diagram in an FPGA. The module consists of control 

logic and an FPU. 

Neural Networks
Top module

FPU Multiplication

FPGA Multiplier
(H/W IP)

FPU Addition
(modified from 

Leon processor FPU)

MAC
(Multiplication and 

Accumulation)

 

Figure 4-9 Block diagram of the neural network in an FPGA 
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The implemented FPU is IEEE 754 Standard compliant. In order to make the bit-

width reduced FPU simple and to easily to analyze, the number of exponent bits had to be 

fixed. For example, the FPU64 and the FPU32 follow the IEEE Standard. From the 

FPU24 to the FPU12, all FPUs have 6 bit exponents. To make the FPU bit adjustable, 

every sub-module needs to be designed to be adjustable.  

The FPU in this system has two modules: Multiplication and Addition. A bit-width 

reduced floating-point multiplication unit was designed using a multiplier, a Hard IP core 

in an FPGA, to improve speed.  

In our research, the FPU (FPU32) also follows the IEEE 754 Standard single 

precision (32bits) which consists of sign (1bit), exponent (8bits) and fraction (23 bits). 

The FPU unit in this thesis consists of two calculation modules: multiplication and 

addition. A Hard IP core in an FPGA was used to multiply the FPU multiplication 

module in order to speed it up. The XILINX XC3S4000 [30] is more reasonable in terms 

of price than a VIRTEX series which has various hardwired IP.  

A commercial IP, LEON Processor FPU adder, was used and modified to make the 

bit size adjustable [38]. The IP was already verified in the market; therefore, design time 

could be saved and the circuit has proved to be reliable. Figure 4-10 shows the block 

diagram of the pipelined FPU implemented in this thesis. All modules, multiplication and 

addition, work in parallel to save time. 

The FPU multiplication used the multiplier IP in the FPGA which is a hardwired IP; 

therefore, multiplication is faster than the FPU addition, because it only takes two clocks. 

In general, by increasing the number of pipelines, the speeds became faster, but area and 

power are also increased [32]. 
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Figure 4-10 Block diagram of pipelined FPU 
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CHAPTER 5 EXPERIMENTAL RESULTS 

5-1 Hardware Performance 

The FPGA-based face detector, using the NN and the reduced precision FPUs, was 

implemented. The logic circuits of the NN face detector were synthesized using the 

FPGA design tool, XILINX ISE 6.3i on a XILINX FPGA device, SPARTAN-3 

XC3S4000 [30]. To verify the error model, first of all, the NN on a PC was designed 

using the MATLAB. Next, the weights and test-bench data were saved as a file to verify 

the VHDL code. After simulation, area and operating speed were obtained by 

synthesizing the logic circuits. The FPU uses the same calculation method, floating-point 

arithmetic, as the PC so it is easy to verify and easy to change the NN’s structure.  

5-1-1 Timing 

The implemented FPGA detector (the FPU16) took 5.3 ms to process 1 frame, file 

loading time from memory + NN out time, at 80 MHz which is 9 times faster than 50 ms 

(40 ms for loading time + 10 ms for calculation time) required for a PC (Pentium 4, 1.4 

GHz, like Figure 5-1-(a) as shown in Table 5-1.  
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Table 5-1 Timing results of the NN and FPUs 

 Max Clock 
(MHz) 

1/f 
(ns) 

Time/1 frame 
(ms) 

Frame rate 
(frame/sec) 

FPU32 48.4 20.7 8.7 114.4 
FPU24 57.5 17.4 7.4 135.9 
FPU20 77.1 13 5.5 182.1 
FPU16 80.4 12.5 *5.3 **189.8 
FPU12 85.4 11.7 5 201.8 
* NN detect / 1frame =12.5ns× 423,163(total cycle) = 5.3ms 

** Frame rate = 1000/5.3=189.8/sec 

Figure 5-1-(b) shows how the C program code is used to check how long the 

program takes. The “GetTickCount” function in Visual C++ returns the number of 

milliseconds that have elapsed since the program was started [39]. Whenever the program 

runs, the calculation time is different depending on the PC conditions. 40 ms was the 

minimum, and normally any function on the program takes at least 10ms, and sometimes 

the processing time is very slow when the OS is busy.   

Loading time reads the weights data from the file. The main reason for a long 

processing time is Windows OS scheduling and the commutation time between hardware 

resources like hard disk, memory, and the CPU. When the detector is connected to an 

outer sensor, like a camera or interface system like USB or LAN, processing time will 

increase. Moreover, other running programs on the OS, like Figure 5-1-(c), will require 

more time. Therefore, it is obvious that the hardware based dedicated embedded system 

reduces the processing time and will be very helpful for image processing required high 

speed operation. 
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(a) Visual C++ Program 

DWORD dwFir, dwSec; 

dwFir = GetTickCount();                                              // t1 

: 

for(y=0;y<NUM_MID1;y++) 

{ wts_01[y]=new double [NUM_IN+1];} 

//load_wts_01 

FILE *fp1; 

if((fp1=fopen(strWeightName,"r"))==NULL) 

AfxMessageBox("can't open txt file"); 

for (k=0;k<NUM_MID1;k++) 

for (i=0; i<=NUM_IN;i++) 

fscanf(fp1,"%lf",&wts_01[k][i]); 

fclose(fp1); 

: 

dwSec = GetTickCount();                                                    //t2 

m_LoadingTimer.Format("%d ms", dwSec - dwFir);     // Processing time = t2-t1 

(b) Visual C++ 6.0 Program Code 
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(c) Windows Scheduling 

Figure 5-1 Calculation time in PC 

Maximum clock frequencies in the FPGA were 48 and 80 MHz for the FPU 32 and 

the FPU 16, respectively, which allows enough time to process many frames. For 

example, the FPU16 provided 190 frames per second. Speed is always critical for image 

processing because a reduced processing time allows for more image enhancement 

processing. 

 Note that the NN, in our research, has large-sized nodes in order to make the larger 

size error in order to easily analyze the error. If the error is too small, close to 0, it will be 

difficult to analyze the error.  

The FPU arithmetic bit reduction led to a total FPGA based NN area reduction. Bit 

reduction of the FPU led to an area reduction and a faster operating clock speed. For 

example, as shown in Table 5-2, the maximum operating clock speed is increased by 61% 
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(48.4/80MHz). In the case of area, reduction from FPU 32 to FPU 16 resulted in 50% 

reduction of the adder area (250/486) and in the memory reduction as shown in Tables 5-

3 and 5-5.   

Table 5-2 Area results of the NN and FPUs 

 SLICES F/F LUT 
MAX 
FREQ 
(MHz) 

Resource 
(XILINX 3s4000) 27648 55296 55296  

FPU32 1077(4%) 771(1%) 1952(4%) 48.402 
FPU24 878(3%) 637(1%) 1577(3%) 57.509 
FPU20 750(3%) 569(1%) 1356(2%) 77.045 
FPU16 650(2%) 501(1%) 1167(2%) 80.337 
FPU12 556(2%) 433(1%) 998(2%) 85.4 

 
Table 5-3 shows the synthesis result of the FPU adder. A hardwired IP, multiplier 

block, was used for FPU multiplication, so the adder module is responsible for most of 

the area in the MAC. A 50% bit reduction from the FPU 32 to the FPU 16 led a reduction 

by 50% of the adder area (250/486). 
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Table 5-3 Synthesis result of FPU adder 

Area Path delay 
 

Slice F/F LUT IOB (Max Clock) 
FPU32 486 269 905 114 14n (72MHz) 

FPU24 403 
(83% vs. FPU32) 213 755 90 13n (80MHz) 

FPU20 300 
(62% vs. FPU32) 185 554 78 12n (88MHz) 

FPU16 250 
(51% vs. FPU32) 157 461 66 11n (92MHz) 

FPU12 173 
(36% vs. FPU32) 129 311 54 9.5n (105MHz) 

 

Table 5-4 shows the area of the FPU and the NN. 

The area of the FPU adder is 39% (250/650) ~ 45% (486/1077) of the total NN area 

of the NN as shown in Table 5-4. Therefore, arithmetic size and maximum clock speed 

are important factors for the system. Note that “%” in FPU adder area represents a 

percentage of the total size of the NN. 

Table 5-4 Area of NN total area and adder (Slices) 

 NN total Adder 
FPU32 1077 486 (45%) 
FPU24 878 403 (45%) 
FPU20 750 300 (40%) 
FPU16 650 250 (39%) 
FPU12 556 173 (31%) 

 

Table 5-5 shows the memory (weights) size. This result explains why the FPU is 

important for an NN. The weight memory of the FPU32 is 3,760Kbits (470Kbytes), 

which is a large size for an embedded system. Bit reduction of the FPU makes it possible 
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to reduce memory size proportionally. For example, the bit reduction from the FPU32 to 

the FPU 16 reduces the memory size by 50% (1,880/3,760). 

Table 5-5 Memory size 

 *Weights Memory (bits) KBbits % vs. FPU32 
FPU32 3,849,600 3,760  
FPU24 2,887,200 2,820 75 
FPU20 2,406,000 2,350 63 
FPU16 1,924,800 1,880 50 
FPU12 1,443,600 1,410 38 

 *: Weights memory bits = # of bits × [(400 ×300)+300] 

**: example of FPU 32 = 32× [(400 ×300)+300] = 3,849,600 bits. 

It is possible to use the XILINX FPGA 3S4000 which provides the size of 2160Kbits 

memory (Block RAM: 1728Kbits, distributed memory: 432Kbits) when the FPU16 is 

necessary. 

5-1-3 Power 

Power consumption is a very important factor for an embedded system when it is used in 

a stand alone system.  

When considering possible devices for embedded systems and their power 

comparison, in general, DSP and FPGA use more power than Microprocessors and ASIC 

(DSP > FPGA > MICOM > ASIC). 

XILINX and ALTERA FPGA companies provide the built-in power simulation tool 

and the FPGA tool. Reports are available after synthesis of the circuits occurs. In our 

experiment, we used the XILINX Web Power simulation model which is provided on the 

XILINX website. The parameters which affect power, like the number of nodes and IOs, 

can be changed on the web site [40]. 
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Bit reduction from the FPU32 to the FPU16 reduces the total power by 14.7% 

(FPU32: 305mW, FPU16: 261mW) through RAM, Multiplier, and I/O as shown in Table 

5-6.  

The change of the logic cell does not affect the power at all (refer to CLB of Table 5-

6). However, the memory and the multiplier reduction save the power by 4.6%, excluding 

a number of I/O in an FPGA. In other words, the reduction of the power rate is 4.6% 

(FPU32 memory and multiplier - FPU16 memory and multiplier) / total power = (26-

12)/306 = 4.6%.  

In fact, the number of I/Os can be excluded even though it affects power more than 

those factors, memory, and a hardwired IP (multiplier) because there is no real physical 

connection pin with the other chips outside.   

 Table 5-6 Power consumption for different FPUs [unit: mW] 

 *CLB RAM 
(Width)

Multiplier
(Block) I/O 

Sub sum 
(**Total  
power) 

Decreasing rate 
(of total power) 

FPU32 2 17 (36) 9 (5) 67 95 
(306)  

FPU24 2 17 (36) 7 (4) 49 75 
(286) 6.5 

FPU20 2 17 (36) 4 (2) 45 68 
(279) 8.8 

FPU16 2 8 (18) 4 (2) 36 50 
(261) 

14.7 
((306-261)/306) 

FPU12 1 8 (18) 4 (2) 29 42 
(253) 17.3 

*: Configurable logic block (CLB)  

**: Total Power = Sub sum+211mW (basic power consumption of the FPGA)                               

 
Figure 5-2 shows the power of multiplier and memory in FPGA. Graph is drastically 

altered at FPU16 and FPU20 because the “block unit” component in the memory and 
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multiplier IP are used for FPGA. For example, FPU20 and FPU32 use 2~5 block (4~9  

mW) multiplier and 36bit width (17 mW) memory caused almost the same power 

consumption (21~26 mW).  

 

Figure 5-2 Power effect of finite FPU the NN 

5-1-4 Architectures of FPU Adder 

An NN system and the FPU hardware performance are greatly affected by the FPU 

addition. The bit-width reduced FPU addition circuit is modified from the commercial IP, 

LEON. LEON is used as standard architecture [38]. The system performance and clock 

speeds can be improved by using the leading one prediction (LOP) and close-and-far 

algorithm [31, 41, 42]. The leading one detection (LOD) for normalization, and rounds 
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work together at the same time because there is no relationship between two or more 

processes, as shown in Figure 5-3.  

Adder

Input A Input B

LOD

Shifter

     

Adder

Input A Input B

LOP

Shifter

 

(a) LOD                                              (b) LOP 

 Figure 5-3 LOP in FPU 

The close-and-far algorithm can save the processing time by splitting the circuit into 

two paths. If a circuit is split by the circuit to two parts, one for a fast calculation and the 

other one for a slow calculation, the processing time is increased more than twice. 

According to the studies, 43% of floating-point instructions have an exponent difference 

of either 0 or 1. A leading-one detector or predictor is needed to count the leading 

number of zeros only when the effective operation is subtraction and the exponent 

difference is 0 or 1. For all the other cases, no leading zero count is needed. Following 

these concepts, the circuits can be divided to two paths. Table 5-7 shows the steps for two 

paths in addition. 
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Table 5-7 The steps in the close-and-far cases [31] 

 Close Far 
1 Predict exponent Subtract exponents 

2 Subtract significands 
Predict number of leading zeroes Align significands 

3 Post-normalization Subtract significands 
4 Rounding Rounding 
 

In our experiments, the FPU adder based on the LOP technique increases the 

maximum clock frequency by 143% (102.04/71.5). The FPU adder based on the close-

and-far algorithm [41, 42] increases the area by 200%, but improves the maximum clock 

frequency by 280% (200/71.5) as shown in Table 5-8. 

Table 5-8 Comparison of different FPU adder architectures (5 pipeline stages) 

 LOP Far-and-close LEON 
Slice 570 1026 486 
FF 294 128 269 

LUT 1052 1988 905 
Min period (ns) 9.8 5 13.98 

Max Freq (MHz) 102.04 200 71.5 
 

(Device: SPARTAN, Condition: ISE 6.3i, default) 
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5-1-5 Hardware Specification Summary 

The specification of the implemented FPGA-based face detector is summarized in Table 

5-9. 

Table 5-9 Specification of a FPGA-based face detector  

 Specification 
Bit Width 32~16 

Frequency 48/80MHz 
(FPU32 NN/FPU16 NN) 

Gates 
160,000/120,000 

(FPGA SPARTAN) 
(FPU32/FPU16) 

Arithmetic Units IEEE 754 single precision 
(Multiplication and Addition) 

Networks 2 Layer(400/300/1 node) 
Input Data Size 20×20 (400 pixel image) 
Operating Time 8.7~5.3ms/frame (FPU32~FPU16) 

Frame Rate 114~190/seconds 
(FPU32~FPU16) 

5-2 Algorithm Performance: Detection Error Changes Caused by Activation 
Function Estimation and Bit-Width Reduced FPU 

Two factors affect the detection rate error. One factor is the polynomial estimation error 

which occurred when an activation function is estimated through the polynomial 

equation. Another possible error is the error caused by reduced precision of the FPU. 

5-2-1 Detection Rate Change by Activation Function Estimation 

To reduce the error caused by the polynomial estimation, the polynomial equation can be 

more elaborately modified as shown in (5.1).  The problem of (5.2) is that the function is 

not differentiable at ,1± and also, the error (equation (3.14)) will be identically 0 

( 0)'1()(' =±=sumf ) for 1|| >sum . This makes error analysis difficult. 
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sumsumf ×= 75.0)(                                  (5.1) 

               ,75.0)( sumsumf ×=  ,1|| <sum  

                            ,1= ,1≥sum  

                            ,1−= .1−≤sum                                                  (5.2) 

Therefore, the simplified polynomial equation (5.1) was used in this thesis because 

we are interested in the error caused by the reduced precision FPU. It is confirmed 

through MATLAB simulation that this polynomial approximation resulted in an average 

4.9 % error in the detection rate, as compared to the results of the equation (4.1) in our 

experiment, as shown in Table 5-10. 

Table 5-10 Detection rate of polynomial estimation (MATLAB)  

threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 
tansig 34.09 34.55 37.27 45.91 53.636 61.36 73.09 77.73 75 72.73
Poly 

( sum×75.0 ) 35 39.09 45.91 53.64 62.727 70 72.27 77.27 78.18 77.27

abs diff 0.91 4.54 8.64 
(max) 7.73 9.091 8.64 0.82 0.46 

(min) 3.18 4.54 

Average 
error 4.9 

 

5-2-2 Detection Rate Change by Reduced Precision FPU 

Table 5-11 shows the detection rate error caused by reduced precision FPUs.  

Detection rate includes face and non-face detection rate and average detection rate error 

is obtained by  

|detection rate of FPU 64(PC) – detection rate of reduced precision FPUs|. 

The detection rate is changed from FPU32 to FPU16 by 5.91% (72.27-78.18) where the 

threshold is 0.7. The detection rate is also changed by 5.91% on average. 
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Therefore, if the FPU16 is used instead of the FPU32, the system will work with 

5.91% error on an average in detection rate, and it will be better to use the over 20 bits 

FPU to reduce the error.  

Table 5-11 Detection rate of reduced precision (VHDL) 

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Average 
Detection 

Rate 
Error 

FPU64 
(PC) 35 39.09 45.91 53.64 62.73 70 72.27 77.27 78.18 77.27  

FPU32 
NN 35 39.09 45.91 53.64 62.73 70 72.27 76.82 78.18 77.27 0 

FPU24 
NN 35 39.09 45.91 53.64 62.73 70 72.27 76.82 78.18 77.27 0 

FPU20 
NN 35 39.09 46.36 53.64 63.18 70 73.64 76.82 77.73 76.82 0.36 

FPU18 
NN 35 41.36 47.73 56.82 65.46 69.55 74.55 77.73 77.27 74.09 1.73 

FPU16 
NN 35.91 44.55 53.18 66.36 70.46 76.36 78.18 74.55 72.73 72.73 5.91 

|FPU64-
FPU16| 0.91 5.45 7.27 12.73 7.73 6.36 5.91 2.73 5.46 4.55 5.91 

 

Figure 5-4 shows the effect of error caused by finite precision arithmetic, the bit-

reduce FPU (from left: 18, 16, 14, 12 FPU bits). This result was obtained from MATALB 

analysis of MODELSIM result file for the FPGA based NN. As FPU bits are reduced to 

12bits, the NN result data are collapsed. From this visible result, FPU 18 or more bits 

FPU is valuable to use. 



 

 82

FPU18 FPU16 FPU14 NN output of FPU12

NN output of FPU64

Figure 5-4 NN Output Changes Caused by Bit-Width Reduced FPU 

Section 5-2-3 explains how the error of the NN is estimated by reduced precision and 

detection rate error before implementing the NN in the FPGA. 

5-2-3 FPU Bit Decision Graph 

Table 5-12 and Figure 5-5 show the output error (|the NN output on PC- the output of 

VHDL|).  Figure 5-6 is the Log graph (base is 2) of those results. Readability is a strong 

point of a log graph. The readability is better for analysis, and it helps us to decide how 

many bits are required. 

Analytical results are found to be in agreement with simulation results as shown in 

Figure 5-6. The analytical MRRE results and the maximum experimental results show 

conformity in shape. The analytical ARRE results and the experimental results (Mean) 

show conformity in shape. As the n bits in the FPU are reduced within the range from 32 

bits to 14 bits, the output error is incremented by 2n times. For example, 2-bit reduction 
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from the FPU16 to the FPU14 makes 4 times (22) the error. Due to the small number of 

fraction bits (for example, 5 bits in the FPU12), there was no meaningful result under 14 

bits. Therefore, at least 14 bits should be employed to achieve an acceptable detection 

rate. Refer to Figures 5-5 and 5-6.  

Table 5-12 Results of output error on the face detector 

MATLAB VHDL 
 Calculation 

(MRRE) 
Calculation 

(ARRE) 
Experiment 

(max) 
FPU32 4E-05 2.89E-05 1.93E-05 
FPU24 0.0026 0.0018 0.0012 
FPU20 0.0410 0.0296 0.0192 
FPU18 0.1641 0.1184 0.0766 
FPU16 0.6560 0.4733 0.2816 
FPU14 2.62 1.891 0.9872 
FPU12 10.4 7.5256 1.0741 
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4times

 

Figure 5-5 Comparison between analytical output errors and experimental output errors 

2

 

Figure 5-6 Comparison between analytical output errors and experimental output errors 

(Log2) 
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A Signal-to-Noise Ratio (SNR) can be defined to quantify noise by (5.3), 

SNR = 10 Log10(PS/PN)            (5.3) 

For example, 1 bit reduction creates -3dB error, also called noise, 

10 Log10(1/2-(-1)) =  -3dB. 

In another example, a 16 bit reduction arising from conversion from the FPU32 to the 

FPU16 creates 42dB noise, 

10 Log10(1/2-(-16)) = -48.1648dB. 
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5-2-4 Comparison Between Fixed-Point and Floating-Point 

In the case of the hardware performance, the FXU is faster than the FPU in clock speed. 

However, the FPU MAC calculation is known to be more efficient than the FXU in terms 

of area [43]. Therefore, the FXU is not always better than the FPU in terms of hardware 

performance. Table 5-12 show the formats and examples of the FPU and the FXU.  

The FPU has a smaller size precision and wide range, but the FXU is better than the 

FPU in terms of accuracy if the FXU precision is smaller than the required precision. 

Note that the range of the FXU is very small, so that the FXU has many more error 

possibilities by overflow and underflow than the FPU. Therefore, if the information about 

range or data bounds are not given (especially, over a large range like in the learning 

process), the FPU is much more preferable than the FXU in terms of error. It is difficult 

to estimate the range for the NN because over the course of learning the model, weights 

and sum data vary over a large range. Therefore, the bit-width reduced FPU is the better 

arithmetic model for an NN with limited hardware resources.  
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Table 5-13 Example format of Bit-width reduced FPU and FXU 

Precision 
 Format 

(S/E/F) Highest Lowest 
Range 

32 1/8/23 2-23-126 2-23+127 ±[ 2-126 ~ (2-2-23)2127 ] 
±(1.1755e-38 ~ 3.4028e+38) 

24 1/6/17 2-17-30 2-17+31 ±[ 2-30 ~ (2-2-17)231 ] 
±(9.3132e-10 ~ 4.2950e+9) 

20 1/6/13 2-13-30 2-13+31 ±[ 2-30 ~ (2-2-13)231 ] 
±(9.3132e-10 ~ 4.2947e+9) 

16 1/6/9 2-9-30 2-9+31 ±[ 2-30 ~ (2-2-9)231 ] 
±(9.3132e-10 ~4.2908e+9 ) 

FPU 

12 1/6/5 2-5-30 2-5+31 ±[ 2-30 ~ (2-2-5)231 ] 
±(9.3132e-10 ~4.2279e+9 ) 

2-30 0 000001 00000 
(2-2-5)231 0 111110 11111 

±0 0 or 1 000000 00000 
NAN d 111111 ddddd 

Expression 
example 
(FPU12) 

±Infinity 0 or 1 111111 11111 
- Bias =31 (1~63) for FPU (exponent=6), bias =127 (1~255) for FPU (exponent=8) 
- 2 numbers (all 0 and all 1) is used to express “zero (0)”, “Not a number (NAN)” and 
“Infinity”. 
- The de-normalized numbers using the only fraction bit was not considered.  
- d: don’t care, 0 or 1. 
 

 Format 
*(S/I/F) 

Precision 
(Error) Range 

27 1/3/23 2-23 ±[ 2-23~ (6+1-2-23) ] 
±(1.1921e-7 ~ 7) 

21 1/3/17 2-17 ±[ 2-17~ (6+1-2-17) ] 
±(7.6294e-6 ~ 7) 

17 1/3/13 2-13 ±[ 2-13~ (6+1-2-13) ] 
±(1.2207e-4 ~ 6.9999) 

13 1/3/9 2-9 ±[ 2-9~ (6+1-2-9) ] 
±(0.002 ~ 6.9980) 

FXU 
(least 
bits 

constitut
ion) 

9 1/3/5 2-5 ±[ 2-5~ (6+1-2-5) ] 
±(0.0313 ~ 6.9688) 

2-5 0 000 00001 
(6+1-2-5) 0 110 11111 

0 0 000 00000 

Expression 
example 
(FXU9) 

±Infinity 0 or 1 111 11111 
- *: Sign/Integer/Fraction 
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CHAPTER 6 CONCLUSION 

The FPGA face detector was implemented using an NN. To verify the circuit, first of all, 

the NN was designed and verified on the PC using MATLAB. Next, the weights and test 

bench data were saved to verify the VHDL code. After the simulation of the NN, area and 

operating speed were obtained by synthesis using ISE: XILINX FPGA tool. The FPU 

uses the same calculation method as the PC so that it is easy to verify and easy to change 

the NN’s structure.  

It is useful to understand the loss in accuracy and the reduction in costs as the 

number of bits in an implementation of floating-point representation is reduced. 

Incremented reductions in the number of bits used can produce useful cost reductions 

while still meeting any given accuracy requirement. 

In this thesis, the analytical error model was developed using the maximum relative 

representation error (MRRE) and average relative representation error (ARRE) to obtain 

the maximum and average output errors for the bit-width reduced FPUs. After the 

development of the analytical error model, the bit-width reduced FPUs and the NN was 

designed using MATLAB and VHDL. Finally, the analytical (MATLAB) result with the 

experimental (VHDL) result was compared. The analytical results and the experimental 

results showed conformity of shape. According to both results, as the n bits in FPU are 

reduced, the output error is incremented by 2n times. For example, from FPU14 to FPU16 

makes 4 times the output error, 2n=16-14=2=4. A significantly improved performance was 

achieved from an FPGA-based face detector implementation using a reduced precision 
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FPU. For example, it took 5.3 ms in the FPU 16 to process one frame which was 9 times 

faster than 50 ms (40 ms for loading time + 10 ms for calculation time) of the PC 

(Pentium 4, 1.4 GHz). Therefore, the number of detectable frames in 1 second increases 

substantially so that more frames create more opportunities to improve performance. This 

happens through image enhancement processing with larger images, and to take better 

pictures, like a trembling compensation effect. For a face recognition system, fast 

detection performance allows the system to take better pictures and to reduce the burden 

on the main PC. This high speed performance is also useful to detect car license plates 

and could be used in military applications that require high speed detections. 

It was found that bit reduction from the FPU32 (bits) to the FPU16 (bits) reduced the 

size of memory and arithmetic units by 50% and the total power consumption by 14%, 

while still maintaining 94.1% detection accuracy.  

Both Bit-width reduced FPU and FPGA are suitable for fast detection systems due to 

their high speed. We intend to expand the results of this thesis to applications that require 

high speed detection such as missile and car surveillance systems. 
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APPENDIX 

A Error Model for an NN using Bit-Width Reduced FPU 

A-1 Numerical Error Model for an NN using Taylor Approximation 

From equation (3.4) in Section 3-2-1, the error of the 1st layer, jε  is given by 
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i
iijj XWfhXWf       (A.1) 

(A.2) and (A.3) are obtained by applying Taylor 1st order approximations (A.2) [15, 

16]. 
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The error of the 2nd layer also can be found the same method as shown in equation 

(A.4). 
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Simply,   +
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The error equation (A.8) can be generalized for n-th layer, l , in a similar way. 
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A-2 MRRE Expression of the Bit-Width Reduced FPU Error Caused by 
Truncation Rounding 

The number of floating point format can be expressed as (A.9). 

biasEs fF −××−= 2).1()1(                    (A.9)  

Where S, E and f  are sign, exponent and fraction in floating point format.  

Sign 
(S) 

Exponent 
(E) 

Fraction 
( f ) 

 

Also simply, 

).1( fCF ×= , biasEsC −×−= 2)1( .                (A.10)  

Ft is the bit-width reduced fraction caused by the truncation rounding and bounded 

as in (A.11). 

)2().1()2.1((max) ulpulp
t CfCfCF −− ×−×=−×< .  (A.11) 

From (A.11), (max)tε  can be extracted and limited like (A.12) 

)2((max) ulp
t C −×<ε .                 (A.12) 

From (A.10),  
).1( f

FC =                    (A.13)  

C in (A.12) is replaced by (A.13). 

)2(
).1(

(max) ulp
t f

F −×<ε .                 (A.14) 

A range of fraction is 2.11 <≤ f . 

Therefore, the error (max)tε  is limited by (A.15) and (A.16). 
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)2((max))2(
2
1 ulp

t
ulp FF −− ×<<×× ε                (A.15) 

MRREFF ulp
t ×=×< − )2((max)ε                 (A.16) 

Finally, (A.17) is the MRRE expression used to estimate the error caused by 

truncation rounding. The sign indicates the direction. The truncation rounding error 

creates negative error shown as Figure A-1. 

MRREFt ×−=(max)ε                  (A.17) 

tε

-Ft-F

C>0C<0

FFt

tε−

 
Figure A-1 Error Range of Finite Precision FPU 

(A.17) can be used when the ulp is small enough (experimentally, up to FPU14 (ulp 

= -7)). 

 The nearest rounding scheme reduces the error by 50% as in (A.18) and creates 

positive error. 

MRREFn ××=
2
1(max)ε                  (A.18) 
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A-3 Error Estimation by the MRRE 

From (A.3), the 1st error is described by 
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The (max)Wε and (max)Xε  terms can be defined by  

)((max) MRREWW −×=ε and )((max) MRREXX −×=ε . 

Thus from (A.19), the error jε is bounded so that 
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If W, X < 1 and n is sufficiently large, 
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Finally, the output error of the 2nd layer, kε , is also described as shown in (A.13) 

from (A.6). Where the error of weights can also be written by               
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Where   ∑
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If the MRRE ≈ 0, then 
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By using equation (A.21), 
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If W < 1 and n and m are big enough, then (A.25) can be simplified to (A.26).  
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B Taylor Series Expansion of the Activation Function 

The activation function can be estimated by the Taylor estimation theorem. 

Sigmoid function:  xe−+1
1                   (B.27) 

By Taylor's theorem, an exponential function can be estimated as in (B.17), 
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The 4th order was considered. 
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Therefore, to design an estimation function, division, multiplication, and addition 

calculation units are required. This estimation technique is still time consuming; more 

than over 4 stages of pipelines can be required, moreover, division is a very complicated 

calculation. 

The hyperbolic tangent function can also be estimated in the same way. 

Hyperbolic tangent function: x
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In here, 2
2 1

k
e x =−  using (B.29). 

Finally, estimated function is 
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