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Abstract 

The purpose of this study was to investigate whether locomotor training, in the form of 

treadmill training, could ameliorate neurochemical changes and behavioural deficits in the 

6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. It has been recently 

demonstrated that rehabilitative forelimb motor training can attenuate dopamine loss and 

some deficits in forelimb movements in this animal model. In addition, brief locomotor 

treadmill training has been shown to attenuate forelimb deficits in 6-OHDA treated rats. 

However, it is not known whether locomotor training could result in an amelioration of 

locomotor deficits in these animals. Rats were lesioned with 6-OHDA injected 

intracerebrally. Lesioned rats were randomly assigned to one of 3 groups: early treadmill 

trained, late treadmill trained and untrained. Animals in the treadmill groups were trained to 

trot on a moving treadmill for 2 x 20 minute sessions daily for 30 days, beginning either 24 

hours or 7 days after 6-OHDA injection. Untrained animals were exposed to a stationary 

treadmill for the same time periods. All animals were assessed on their abilities to perform 

several behavioural tasks designed to test locomotor and forelimb movement abilities prior 

to 6-OHDA injection and again at 3 and 6 weeks post-injection. These tests included 

measurement of ground reaction forces during overground locomotion, paw placements 

during a ladder crossing task, forelimb useage during exploratory behaviour and ability to 

initiate forelimb stepping movements. In addition, assessments of dopamine depletion in 

the striatum were carried out first in vivo, by measuring apomorphine-induced rotations at 2 

weeks post 6-OHDA injection, and subsequently by post-mortem analysis of dopamine 

levels in the striatum using HPLC at the conclusion of the study. Treadmill training resulted 

in attenuation of dopamine depletion compared to non-treadmill trained animals, as 

measured by both apomorphine injection and HPLC. However, treadmill training produced 

no difference in behavioural deficits on a variety of tests compared to untrained animals. In 

some cases, early treadmill trained animals tended to display more severe behavioural 

deficits compared to untrained animals.  Late treadmill training had a similar but smaller 

effect compared to early treadmill training. We conclude that treadmill training does not 

ameliorate locomotor deficits, in the 6-OHDA model of Parkinson’s disease, even though 

this same training results in attenuation of dopamine loss in the striatum. 



 iii

 

Acknowledgements 

 

I would like to thank my supervisor Dr. Gillian D. Muir for her mentoring, 
patience and support throughout my Masters of Science program in the Department of 
Veterinary Biomedical Sciences. Above all she has taught me to appreciate the small 
things in science and in life. I wish her the best in her scientific endeavors as well as in 
her home life.   

 
I would also like to give my thanks to my advisory committee members Drs. 

David Janz, Don Hamilton, and Baljit Singh for their time, effort and guidance during 
the course of this work. Additional thanks to the external examiner Dr. David Schreyer, 
for his thought provoking questions and stimulating scientific conversations.  

 
Thank you to the members of the department who provided comic relief from 

the daily grind of bench research. I would like to thank Dr. Ronald Chaplin for his 
amusing conversations, pictures of amazing sunsets and sharing his belief that all 
students can be taught. Thanks to Diane Matovich, Joan Payne, and Sandra Rose for 
their friendly and ever-so helpful secretarial support during my time here.   

 
Thank you to all of my colleagues in the Cameco MS Neuroscience Research 

Center. Thanks to Dr. Andrew Gloster and his technicians for the crash course into the 
world of stem cell research.  Additional thanks to Dr. Valerie Verge, her students and 
technician for the use of equipment, insightful techniques and delightful coffee breaks.  
 

I would also like to thank my significant other Grant Woronuk, who inspired my 
pursuits in graduate studies, and whose contribution to my happiness is beyond 
measure.  

 
Finally I would like to thank my parents Gordon and Elaine Poulton for 

encouraging me to follow my dreams and for their unconditional love and support 
throughout my life.  

 



 iv

 

List of Figures 

 

 

 

Figure 1 Diagrammatic representation of the workings of the basal ganglia………….3 

Figure 2  Assessment of forelimb akinesia…………………………………………...23 

Figure 3  Apomorphine rotation……………………………………………………....14 

Figure 4  Forelimb use asymmetry……………………………………………………16 

Figure 5  Forelimb akinesia asymmetry ……………………………………………...19 

Figure 6  Stride length and speed on ladder task……………………………………...21 

Figure 7  Correct forelimb placements on ladder……………………………………..23 

Figure 8  Forelimb errors on the ladder …………………………………....................25 

Figure 9  Pre-surgical ground reaction forces …………………………………….......28 

Figure 10  Force vector dynamogram of pre-surgery ground reaction forces…….…..29 

Figure 11 Ground reaction forces in untrained animals, 3 weeks post surgery...……..30 

Figure 12 Ground reaction forces in early trained animals, 3 weeks post surgery…....31 

Figure 13 Ground reaction forces in late trained animals, 3 weeks post surgery……..32 

Figure 14 Ground reaction forces in untrained animals, 6 weeks post surgery…….....33 

Figure 15  Ground reaction forces in early trained animals, 6 weeks post surgery…...34 

Figure 16  Ground reaction forces in late trained animals, 6 weeks post surgery…….35 

Figure 17  Vector Dynamograms for hemi-Parkinsonian rats………………………...36 

Figure 18  Catecholamine content of striatum at 8 weeks post-surgery……………....38 



 v

 

List of abbreviations 

 

 

 

6-OHDA  6-hydroxydopamine 

ANOVA   Analysis of Variance 

DA   Dopamine 

DOPAC  3, 4-dihydroxyphenylacetic acid 

GRF   Ground reaction forces 

GPe   External segment of the globus pallidus. 

GPi   Internal segment of the globus pallidus 

HP   hemi-Parkinsonian  

HPLC   High performance liquid chromatography 

LED   Light emitting diode 

L-DOPA  L-3,4-dihydroxyphenylalanine 

NE   Norepinephrine 

PD   Parkinson’s disease 

PRE   Pre-surgery 

PS3   Post-surgery 3 weeks 

PS6   Post-surgery 6 weeks 

SE   Standard error of the mean 

SNC   Substantia nigra pars compata 

SNR   Substantia nigra pars reticulate 

STN   Subthalamic nucleus 

S-VHS   Super-video home system 

 



 vi

TABLE OF CONTENTS 

Page                     

Permission to use………………………………………………………………….....i 
Abstract……………………………………………………………………………...ii 
Acknowledgements ………………………………………………………………..iii 
List of Figures……………………………………………………………………....iv 
List of abbreviations………………………………………………………………...v 
 
Chapter 1. Literature Review……………..………………………………..….1 
1.1  Parkinson’s disease……………………………………………………………..1 
1.2 Neural control of locomotion……………………………………………………2 
1.3 Basal ganglia…………………………………………………………………….5 
1.4 Current therapies………………………………………………………………...6 
1.5 6-OHDA model of Parkinson’s disease…………………………………………7 
1.6 Symptoms in the 6-OHDA model of Parkinson’s Disease……………………...9 
1.7 Methods used for assessing motor abilities in rats……………………………..10 
1.8 Rehabilitative motor training in 6-OHDA lesioned rats……………………….14 
1.9  Purpose ………………………………………………………………….…….16 

1.9.1 Hypothesis………………………………………………………………..16 
 
Chapter 2.  Materials and Methods…………………………….…………….17 
2.1 Animals………………………………………………………………………...17 
2.2 Behavioural training……………………………………………………..……..17 

2.2.1 Treadmill training………………...……………………………….....18 
2.3 Surgery…………………………………………………………………………19 

2.3.1 Stereotaxic injections………………………………………………...19 
2.4 In vivo verification of lesion size………………………………………….…...20 
2.5 Behavioural assessment…………………………………………………….….21 

  2.5.1 Forelimb use asymmetry …………………………………………….21 
  2.5.2 Forelimb akinesia assesment….……………………………………...22 
  2.5.3 Ladder rung walking test………………………………………….....24 
  2.5.4 Kinetic measurements of ground reaction forces …………………...25 
 2.6 Neurochemical analysis……………………………………………………….26 
 2.7 Statistical analysis …………………………………………………………….27 
  
 Chapter 3.  Results……………………………………………………………….28 
 3.1 In vivo verification of lesion size………………………………………..……..28 
 3.2 Behavioural assessment…………………………………………………..…....30 
  3.2.1 Forelimb use asymmetry …………………………………………….30 
  3.2.2 Forelimb akinesia ………..…………………………………………..32 
   3.2.2.1 Adduction…………………………………………………..32 
   3.2.2.2 Abduction…………………………………………………..32 
   3.2.2.3 Extension………………………………………………...…33 
  3.2.3 Ladder rung walking test…………………………………………….35 



 vii

   3.2.3.1 Stride length………………………………………………..35 
   3.2.3.2 Speed……………………………………………………….35 
   3.2.3.3 Correct placement of forelimbs…………...……………….38 
   3.2.3.4 Errors in forelimb placement on ladder walking task……...40 
  3.2.4 Kinetic measurements of ground reaction forces ……………………42 
 3.3 Neurochemical analysis………………………………………………………..53 

 
Chapter 4.  Discussion…………………………………………………………55 
4.1 Locomotor asymmetry in hemi-Parkinsonian rats…………………………….56 
4.2 The effects of rehabilitative training in 6-OHDA treated rats………………...57 
 4.2.1 The effects of forced forelimb use…………………………………..57 

4.2.2. The effects of treadmill training……………………………………59 
 4.2.3. Possible mechanisms for the effect of training……………………..61 
4.3 The effect of exercise on catecholamine levels in healthy rats……………64 
4.4 Catecholamine levels and behavioural correlates in 6-OHDA treated rats..65 
 
Chapter 5.  Conclusion………………………………………………………...66 
 
Chapter 6.  Reference List……………………………………………………..67 
 



 1

 

 

 

Literature review 

 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is a common neurodegenerative disease affecting 300 

out of every 100,000 people in North America (Rajput 1992). Dr. James Parkinson first 

described this neurological disease in 1817 as a shaking palsy.  Today this disease is 

characterized by rigidity, slowness of movements (bradykinesia), stooped posture, 

difficulty with balance and walking (altered gait), difficulty with fine motor movements 

and a resting involuntary tremor. The primary pathology in PD is a degeneration of 

dopamine producing neurons in a midbrain nucleus called the substantia nigra. This 

nucleus has extensive connections to the striatum, which is part of the basal ganglia 

system in the forebrain (Foley & Riederer 1999; Hirsch 1999).  The underlying 

neuropathy of PD is dominated by the progressive degeneration of the nigrostriatal 

dopamine system. This degeneration will give rise to clinical symptoms when there is 

approximately 50% dopaminergic cell loss in the substantia nigra (Foley & Riederer 

1999). This corresponds to an 80% depletion of striatal dopamine (Foley & Riederer 

1999).  

The clinical symptoms of PD are dominated by difficulty initiating voluntary 

movement. As a result, patients with severe dopamine loss often demonstrate little or no 

facial expression, are unable to perform daily tasks such as getting out of bed or 

walking even short distances, and at rest they have a tremor. Patients with moderate 
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dopamine loss in the early stages of the degeneration and patients that have been 

medicated with L-DOPA, are often able to move around but they have a characteristic 

shuffling gait, that is, they take short choppy steps and fail to pick up their feet during 

the swing phase of the stride.  This abnormal gait arises because the striatum, as part of 

the basal ganglia, is an important component of the neural circuitry involved in the 

control of locomotion. 

 

1.2   Neural control of locomotion 

  Every animal must perform some sort of coordinated purposeful movement to 

travel through their environment to explore, obtain food and escape from harm. There 

are many ways in which an animal can accomplish this task of purposeful movement, 

i.e. swim, crawl, fly, walk, trot, gallop or hop. Each form of movement that the animal 

is physiologically capable of can be adopted and used as needed when moving through 

the environment.  Humans have adapted many forms of locomotion to move through 

their environment, including walking, climbing, and swimming.  Neural control of 

locomotion can be voluntary or involuntary. Involuntary locomotion can occur using 

only the spinal cord circuitry, as in reflex movements, or stereotyped behaviours. In 

fact, spinal circuitry is able to produce functional locomotor movements and can be 

utilized to aid in mobility after spinal cord injury (for review see Fouad & Pearson 

2004).  However, voluntary locomotion, similar to any voluntary movement, requires 

cortical interaction with the basal ganglia. In particular, any type of planned motor 

output or movement involves activation of the basal ganglia prior to the movement(s) 

being executed. Therefore if any part of the basal ganglia are not functioning properly,  
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the motor commands will not be produced in the intended way or possibly will not be 

produced at all (DeLong 2000).  These pathways, many of which are dopaminergic, are 

highly conserved among mammals (DeLong 2000).  

  The use of mammalian animal models to study human locomotor disorders, such 

as those occurring in Parkinson’s disease, present some interesting challenges with 

respect to differing modes of locomotion in bipeds and quadrupeds. Rats, like all 

quadrupeds adopt several different gaits for locomoting overground, such as walking, 

trotting, galloping, and hopping.  They are able to compensate for locomotor disorders 

in ways that are not available to humans. Nevertheless, one common characteristic 

between bipedal gaits and many quadrupedal gaits is bilateral symmetry. Examination 

of locomotion overground in quadrupeds that are trotting, for example, reveals that a 

trot is comprised of alternating diagonal limb pairs in contact with the ground during 

each stride. This gait is symmetrical and alternating as is the bi-pedal walking gait.  

Although results of examinations of movement disorders in rats are not directly 

translatable to humans, valid and valuable comparisons can be made as a result of the 

conservation of the neural circuitry involved in control of locomotion and the 

components of symmetry in the gaits.   

1.3 Basal ganglia 

To further examine the movement disorders produced in Parkinson’s disease, the basic 

workings of the basal ganglia must be understood.  

 



Direct D1 Direct  D1 Indirect  D2 Indirect D2 

Green       Glutamate excitatory 

Red        GABA inhibitory 

Thalamus
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GPe 

STN 
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Striatum-putamen
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Striatum-putamen 
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    GPe  
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Figure 1. Diagrammatic representation of the workings of the basal ganglia in a normal and Parkinsonian brain. See text 
for description.  The 2 types of dopamine receptors (D1, D2) are located on 2 types of output pathways. Internal segment 
of the globus palludus (GPi); External segment of the globus pallidus (GPe); Substantia Nigra pars compacta (SNC); 
Substantia nigra pars reticulate (SNR); Subthalamic nucleus (STN).  



 5

The striatum, the globus pallidus, the substantia nigra (pars compacta and pars 

reticulata), and the subthalamic nucleus are the structures that make up the basal ganglia 

(Figure 1).  These four nuclei are located throughout the forebrain and midbrain and 

play a major role in the initiation of voluntary movement (DeLong 2000).  The striatum, 

often referred to as the striatum-putamen, consists of the caudate nucleus, the putamen, 

and the ventral striatum (nucleus accumbens). The striatum is the main input target of 

the basal ganglia. These inputs come from the cerebral cortex, thalamus and brainstem. 

The main output of the basal ganglia arises from the substantia nigra (SNR) and the 

globus pallidus and is inhibitory to the thalamus. The internal circuitry of the basal 

ganglia is illustrated in Figure 1, as follows. The neurons of the striatum project to the 

globus pallidus and the substantia nigra which in turn project to the thalamus and 

brainstem, via two pathways, termed the direct and the indirect pathways.  The direct 

pathway facilitates movement. It projects directly from the striatum to the output nuclei, 

i.e. globus pallidus (Gpi) and substantia nigra (SNR). This pathway allows the 

momentary activation of the thalamus and brainstem pathways by inhibiting the 

tonically active inhibitory neurons which project to the thalamus and brainstem.  The 

indirect pathway, which inhibits movement, also begins at the putamen and runs 

through the external segment of the globus pallidus (GPE) and secondly from the 

subthalamic nucleus (STN) to the output nuclei via a rare glutaminergic excitatory 

pathway. Activation of this pathway ultimately results in the inhibition of the thalamus 

and brainstem (DeLong 2000).   

These two pathways of the striatum are differentially acted upon by the 

dopaminergic input from the substantia nigra pars compacta (SNC). Striatal neurons of 
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the direct pathway normally receive excitatory input from dopaminergic neurons in the 

substantia nigra pars compacta. This activity acts through D1 type dopaminergic 

receptors. Conversely, dopaminergic input from the substantia nigra pars compacta 

inhibits the indirect pathway, by acting through D2 receptors on striatal neurons.  This 

input also facilitates movement by inhibiting the inhibitory indirect pathway.  In 

Parkinson’s disease, the lack of dopaminergic input from the substantia nigra (SNC) 

due to reduced numbers of dopaminergic neurons results in reduced excitation of the 

excitatory direct pathway and reduced inhibition of the inhibitory indirect pathway, 

causing reduced movement. In summary, Parkinson’s disease results in an overactivity 

of the basal ganglia output nuclei, resulting in net decrease in movement.  

 

1.4 Current Therapies 

Current pharmacological therapies available to people with PD are limited to 

alleviating the symptoms by increasing the amount of dopamine available in the 

striatum. This is accomplished in most cases by using L-DOPA, a dopamine precursor 

that works by increasing the amount of dopamine released from remaining 

dopaminergic terminals in the striatum.  Unfortunately, drugs such as L-dopa have 

debilitating side effects and are by no means a cure for progressive degeneration of 

dopaminergic neurons (Grimes et al. 1999). Invasive therapies such as pallidotomy 

(lesioning of the D2 pathway) often have good outcomes but also do not prevent the 

further loss of dopamine neurons in the substantia nigra (Lozano & Lang 2001).  

Another attempted therapeutic strategy as of late is the transplantation of stem cells into 

many locations within the basal ganglia (Isacson et al. 2001). Stem cell transplantation 
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has shown some promising results but it is invasive and does not seem to improve the 

problem of the neurotoxic brain environment and often times leaves the patient at risk 

for brain tumor formation (Freed 1999). Less invasive therapies, such as body weight 

supported treadmill walking or in home physiotherapy, tend not to have as profound 

effects on alleviation of symptoms or attenuation of dopamine loss (Miyai et al. 2001; 

Mayai et al. 2002; Nieuwboer et al. 2002)  

There have been some positive results after rehabilitative body weight supported 

treadmill training, in combination with medicinal therapy, on improving the short-step 

gait and the reported general well-being in Parkinson patients (Miyai et al. 2000; Miyai 

et al. 2002). Physiotherapy or rehabilitative exercise could potentially improve 

flexibility and ease rigidity in Parkinsonian patients as well as possibly slow down the 

progressive loss of dopamine neurons in early stages of Parkinson’s disease.   

 

1.5 6-OHDA model of Parkinson’s disease 

The 6-hydroxydopamine (6-OHDA) induced hemi-Parkinsonian rat has proven 

to be a useful tool in the study of both the basic biology of PD as well as for testing 

novel therapeutic strategies (Ungerstedt & Arbuthnott 1970; Bjorklund et al. 2002; 

Olsson et al. 1995; Dunnett & Bjorklund 1999; Schallert et al. 2000; Metz & Whishaw 

2002a; Metz & Whishaw 2002b).  The 6-OHDA model has been used to examine 

various components of PD including basic pathology and neuronal degeneration 

pathways (Glinka et al.1997; McNaught et al. 2001; McNaught & Jenner 2001; Roedter 

et al. 2001; Elkon et al. 2001). It has also been used to test therapies such as neural stem 

cell transplantation, embryonic tissue transplantation, growth factor therapies, and novel 
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drug treatment (Winkler et al. 1999; Mukhinda et al. 2001; Armstrong et al. 2002; 

Dobrossy & Dunnett 2003). This model involves the stereotaxic injection of the 

catecholinergic-selective neurotoxin 6-OHDA into the medial forebrain bundle of 

dopaminergic neurons that project from the substantia nigra pars compacta to the 

striatum (Ungerstedt & Arbuthnott 1970).   

Although 6-OHDA will cause the cell death of any catecholamine neuron (be it 

dopamine or norepinephrine) it encounters, the precise placement of injection into the 

medial forebrain bundle of the midbrain allows for the selective death of dopamine 

neurons, as the medial forebrain bundle contains a discrete population of dopamine 

neurons (DeLong 2000). This dopaminergic bundle begins at the neuronal somas in the 

substantia nigra and the axons project toward the forebrain, diverging ventral to the 

striatum. At this point, about 80% of the neurons in the bundle go to the basal ganglia 

region while the remainder go on to make other forebrain connections (DeLong 2000).  

The cell death following unilateral 6-OHDA injection is therefore along the entire 

ipsilateral forebrain, and not selective for the connections to the striatum.  However, due 

to the divergence of 80 % of the projections from the substantia nigra going to the basal 

ganglia and only 20% to the remainder of forebrain, the majority of symptoms are 

attributable to the striatal loss of dopamine.  

The 6-OHDA is taken up into the catecholamine neurons by the dopamine 

transporter and induces oxidative damage. This disrupts normal mitochondrial function, 

resulting in the selective death of the dopamine neurons in the bundle (for review see 

Miller et al. 1999). This process takes around 14 days after injection to deplete 

approximately 90% of the dopamine in the striatum (Ungerstedt & Arbuthnott 1970; 
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Hudson et al. 1993; Metz & Whishaw 2002b). Importantly, the injection is only placed 

on one side of the brain, resulting in dopamine depletion in one striatum only. This 

generally produces symptoms on the side of the body contralateral to the lesion. 

Animals with these lesions are thus referred to as hemi-Parkinsonian (HP). 

 

1.6 Symptoms in the 6-OHDA model of Parkinson’s Disease 

Hemi-Parkinsonian rats display particular behavioural deficits in posture, 

reaching, and other movements (Miklyaeva et al. 1994; Miklyaeva et al. 1995; 

Miklyaeva et al. 1997; Olsson et al. 1995; Johnston et al. 1999; Schallert et al. 2000; 

Metz & Whishaw 2002a). In both moving and stationary rats, postural instability 

develops by 14 days post-surgery, characterized by a head position bias deviating from 

body axis by 10º toward the side of the lesion (Henderson et al. 2003).  The limbs on 

the impaired side of the body are able aid in the support of posture but do not appear to 

partake in adjustments to posture (Miklyaeva et al. 1995).  Lesioned rats also 

demonstrate a decrease in precision aiming of the forelimb during reaching for a food 

pellet, resulting from difficulties in adducting the elbow and bringing the paw to 

midline. This deficit requires the compensatory substitution of whole body movement to 

manipulate the forelimb towards the food pellet (Metz & Whishaw 2002b). A typical 

reaching posture develops in 6-OHDA lesioned rats in which more weight is distributed 

on the ipsilateral hindlimbs than in normal rats. This adopted posture appears to affect 

reaching success on both the contralateral and the ipsilateral forelimbs (Vergara-Aragon 

et al. 2003). 6-OHDA lesioned rats tend to circle toward the side of the lesion when 

placed in an open field (Miklyaeva et al. 1995).  When forced to walk along a runway, 
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they often move tangentially compared to normal rats. There is also frequently a slight 

hop in the gait when freely walking overground (Miklyaeva et al. 1995). Footprint 

analyses of stepping during walking and trotting in these rats have demonstrated an 

uneven stride length by each diagonal limb pair (Miklyaeva et al.1995).  An essential 

first work on examination of the ground reaction forces produced by hemi-Parkinsonian 

rats during overground locomotion using a single force plate demonstrated 

characteristic deficits during the contact of the impaired forelimb-unimpaired hindlimb 

during trotting (Muir & Whishaw 1999).  The capabilities of the force plates used in the 

present study exceed those of the early single plate equipment. Thus the current force 

plate data acquisition system allows for more precise quantification of locomotor 

deficits effecting hemi-Parkinsonian rats.  

 

1.7 Methods used for assessing motor abilities in rats 

Behaviour results from the integration and coordination of sensory and motor 

information in the central nervous system (CNS).  The manifestation of this type of 

neural information is in locomotion, skilled meaningful movements, and exploratory 

behaviours. Behaviours like those mentioned can be studied for a variety of reasons, the 

most pertinent being to determine the specific function of an area or network in the 

CNS, or to determine whether the behavioural changes (deficits) quantified post-injury 

have been rectified by a novel treatment.  Behavioural tests must be sensitive and 

quantitative, appropriate to the species being tested, and must utilize robust and reliable 

motivations or training methods to allow for comparison between individuals with 

varying degrees of internal motivation. 
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In our laboratory, we have the ability to precisely assess locomotor 

characteristics in rats by measuring ground reaction forces (the forces acting through the 

limb on the ground). We have previously shown that this method is a sensitive 

technique with which to quantify locomotor deficits in rats after central nervous system 

injury and disease, including rats with striatal dopamine depletion (Muir & Whishaw 

1999; Webb & Muir 2002; Webb & Muir 2003).  Kinetic analysis of locomotion has 

been used extensively in animals to determine the effects of such things as CNS and 

peripheral damage (Bertram et al. 1997; Webb & Muir 2003; Webb & Muir 2004), 

ontogeny of bi-pedal locomotion in chicks (Muir et al 1996), voluntary gait 

modification in cats (Lavoie et al 1995), and changes occurring from cortical spinal 

tract lesions (Muir & Whishaw 1999), red nucleus lesions (Muir & Whishaw 2000), and 

unilateral damage to the spinal cord (Webb & Muir 2002).  

Kinetic analysis requires the following equipment and facilities: runway (gait-

path), force transducers (force plates), signal-conducting electronics, computer soft-

ware and hard ware, velocity monitoring electronics, and a camera.  It has been 

suggested that multiple force plates are required for accurate determination of 

simultaneous measurement of ground reaction forces (Bertram et al. 1997). Ground 

reaction force determination is precise and can be used to measure a wide range of 

forces. The analysis of these forces reveals how the limbs are being used during 

locomotion.  Unfortunately, the equipment used for this type of analysis is expensive 

and elaborate, and requires a trained individual to operate and maintain.  However this 

method of analysis is robust and repeatable between institutions and laboratories.  
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To assess forelimb use in the 6-OHDA rat model, several labs exploit a naturally 

occurring exploratory behaviour in rats when placed in a new environment.  By 

examining the vertical placement of the forelimbs on a clear cylinder wall, one can 

assess asymmetry in the use of the forelimbs that may have occurred due to injury of the 

CNS or periphery. The range in paw use of intact normal rats has been assessed several 

times and has demonstrated a natural symmetry in forelimb use during vertical 

exploratory behaviours (Schallert et al. 2000).   

Ability to initiate a step using the forelimbs is traditionally assessed using a 

stepping test that utilizes a restraint grip on the rat and a table top surface (Olsson, et al. 

1995; Schallert & Woodlee 2003). Methods used here are to slowly move the animal 

across the table and to quantify the time it takes to initiate a step. Although the 

Parkinsonian rats are significantly slower on this test compared to normal animals, there 

is a problem of motivation. Even normal animals can display a blatant disregard for 

their limb during this examination.  Due to this potential motivational confound, this 

test was slightly modified to assess akinesia utilizing a treadmill belt that will move the 

forelimb in a standardized predictable manner, allowing for each animal to endure the 

same motivation during the test.   

Ladder crossing has been used as a test of fine motor skills as well as an 

assessment of coordinated gait (Metz & Whishaw 2002). Analysis of the type and 

frequency of errors produced by 6-OHDA lesioned rats demonstrated a bilateral 

impairment resulting from the unilateral injury with most errors being produced by the 

forelimbs (Metz & Whishaw 2002).  In addition to assessing error made on the ladder 

task, the assessment of stride length and speed across the ladder have been quantified in 
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the current study as indicators of ability to perform the skill-testing task of ladder 

crossing.  

Treadmill training and voluntary wheel running have been used as attempted 

remedy and as an inducer of plasticity in many animal models of CNS injury (Fouad et 

al. 2000; Multon et al. 2003; Yang et al. 2003). Treadmill training after partial spinal 

cord injury in rats did not improve functional recovery but did increase exploratory 

behaviours compared to untrained lesioned rats (Fouad et al. 2000). However, treadmill 

training appears to have accelerated locomotor recovery after spinal cord compressive 

injury (Multon et al. 2003).  Treadmill training has been demonstrated to be 

neuroprotective prior to ischemia, infarctions and 6-OHDA lesion (Cohen et al. 2003; 

Wang et al. 2001; Yang et al. 2003). The mechanisms of treadmill trainings effects are 

as contentious as the effects mentioned earlier. However, several recent reviews have 

provided some plausible insight in the possible mechanisms of exercises affects on the 

brain (Miller et al. 1999; Sutoo & Akiyama 2003; Tümer et al. 2001).  These 

mechanisms include increased production of neurotrophic factors (Kleim et al. 2003; 

Smith & Zigmond 2003), down-regulation of potential transporters of neurotoxins 

(Miller et al. 1999), up-regulation of vesicle transporters to aid in removal of some 

neurotoxins (Miller et al. 1999), and increase in circulating calcium that has been found 

to increase synthesis of neurotransmitters, including dopamine (Sutoo & Akiyama 

2003; Tümer et al. 2001).  

It is important to avoid complications from extraneous effects of exercise due to 

exhaustion, and to choose a regime that the animal is both able to complete, and that is 

consistent.  Incomplete recovery after CNS injury with treadmill training maybe due to 
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training regimes used or maybe combination therapy is most effective. Examination of 

the effects of treadmill training on the ground reaction forces of hemi-Parkinsonian rats 

moving overground will elucidate any improvements in gait as a result of treadmill 

training in this animal model of Parkinson’s disease.  

 

1.8 Rehabilitative motor training in 6-OHDA lesioned rats 

Recently, it has been demonstrated that rehabilitative motor training can 

attenuate some of the behavioural deficits seen in HP rats (Tillerson et al. 2001; Cohen 

et al. 2003; Vergara-Aragon et al. 2003). In particular, specific motor training in a 

forelimb-reliance task reduces the forelimb reaching deficits seen in 6-OHDA lesioned 

rats.  The immobilization of the unimpaired forelimb (ipsilateral to the lesion) for one-

week post-surgery generated a forced use of the impaired forelimb (contralateral to the 

lesions) during routine activity. This forced-use resulted in an alleviation of some 

deficits in the impaired forelimb as well as attenuating the loss of dopamine in the 

striatum compared to controls (Tillerson et al. 2001). The immobilization of the 

impaired limb for the same time period exacerbated both the forelimb deficits and 

striatal dopamine loss in HP rats (Tillerson et al. 2002). Interestingly, the animals that 

did not receive intervention until one week post-surgery were no different from animals 

that did not receive intervention in the form of a cast (Tillerson et al. 2001; Tillerson et 

al. 2002). This indicates that there may be a critical period for use-dependent 

intervention therapies.  In another rehabilitative study that did not involve 

immobilization, a novel skilled reaching task was used as motor training in HP rats, 

which resulted in alleviation of reaching deficits in both forelimbs (Vergara-Aragon et 
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al. 2003).  An interesting study by Döbrössy & Dunnett (2003) explored the idea of 

using forelimb reaching training in dopamine depleted rats that had just received an 

intrastriatal transplant of fetal striatal tissue in the form of a graft. They found that this 

combination therapy to aid in recovery of behavioural performance on forelimb 

reaching (Montoya staircase) task as well as decrease the lesion size as estimated by 

apomorphine rotation (Döbrössy & Dunnett 2003).   

In addition to specific training in forelimb tasks, brief locomotor treadmill 

training has recently been shown to attenuate some forelimb deficits in HP rats 

(Tillerson et al. 2003). However, it is not yet known whether locomotor training could 

result in a reversal of locomotor deficits in HP rats. Our ability to sensitively quantify 

locomotor and other behavioural deficits in hemi-Parkinsonian animals prompted us to 

examine the effects of treadmill training on alleviation of behavioural deficits in this 

animal model.  
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1.9  Purpose 

The purpose of this study is to examine the behavioral and neurochemical effects 

of treadmill training in the 6-OHDA rodent model of Parkinson’s Disease.  

 

1.9.1 Hypothesis 

Locomotor training, in the form of regular treadmill training, will ameliorate 

striatal dopamine depletion and behavioural deficits, including locomotor deficits, in the 

6-OHDA rodent model of Parkinson’s disease. The effects of early treadmill training 

will be more dramatic than late intervention of treadmill training.  
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2. Materials and Methods 

 

2.1. Animals 

Twenty-nine (29) female Long Evans rats, weighing 250-330 g (Charles River 

Laboratories, Quebec, Canada) were used in this study.  Animals were housed in groups 

of 2-4 in Plexiglass cages measuring 45 cm x 24 cm (3-4 per cage) or 28 cm x 35 cm (2 

per cage) with a 12 h light/12 h dark photoperiod within the animal care facilities in the 

Department of Veterinary Biomedical Sciences at the University of Saskatchewan.   

Starting at 2-3 months of age (250 g), the rats were fed approximately 15 grams of 

Purina rat chow daily (plus food rewards) to maintain a relatively constant weight. All 

procedures were approved by the University of Saskatchewan Committee on Animal 

Care and Supply. Animals were cared for according to the standards set out by the 

Canadian Council on Animal Care, and were examined weekly by a veterinarian. 

 

2.2. Behavioural training 

Animals were handled daily and weighed weekly. Animals were trained to trot 

the length of a 1.8 m long x 20 cm wide Plexiglas runway to obtain a food reward.  

Training began approximately two weeks after arrival at the animal care facility. 

Training was considered complete when the animals were able to consistently trot back 

and forth along the runway.  
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2.2.1. Treadmill training  

Animals were randomly selected to be in the early treadmill training, late 

treadmill training or no treadmill training (untrained) group. All animals (n=29) were 

familiarized with the treadmill for 3 sessions of 20 minutes each, 2 weeks prior to 

surgery. Untrained (n=11) animals were exposed to the motionless treadmill, and 

animals in the early (n=9) and late (n=9) treadmill trained groups ran at 13 m/min for 

these brief exposure session pre-surgery.  If animals were not trotting on the treadmill, 

they were coaxed with a food reward (peanut butter and/or vanilla icing) at the front of 

the treadmill through a small hole in the clear Plexiglas motivation window, and lightly 

prodded on the rear by the researchers’ hand if necessary. Beginning at 24 hours post-

surgery, rats in the early treadmill trained group (n=9) were forced to trot on the 

treadmill for 20 minutes twice daily at an average speed of 13 m/min. This was 

continued for 6 days per week for the next 30 days. The late treadmill trained group 

(n=9) began treadmill training seven days post-surgery, and continued until 37 days 

post-surgery. The late group followed the same treadmill protocol as the early group. 

The total treadmill exposure post surgery was 30 days for all groups. All groups, trained 

and untrained, had equal exposure to the treadmill, prodding and food rewards. Each 

day of treadmill training, treadmill sessions were performed once in the morning during 

the rats’ light photoperiod and once again in the early evening within the first 3 hours of 

the rats’ dark photoperiod.  
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2.3. Surgery 

Animals were 9-10 months of age at the time of surgery and weighed 250-300 g. 

All animals were premedicated with subcutaneous injections of buprenorphine (0.05 

mg/kg) (Buprenex, Reckitt and Colman Pharmaceuticals, VA, USA) and atropine (0.05 

mg/kg) (MTC Pharmaceuticals, Ontario, Canada).  Animals were anesthetized using an 

intraperitoneal injection of 35 mg/kg sodium pentobarbital (Somnotol, MTC 

Pharmaceuticals).  Animals were kept warm with a recirculating warm water blanket 

and administered 100% oxygen nasally throughout the surgical and recovery periods.   

Postoperative analgesia was administered (subcutaneous buprenorphine (0.05 mg/kg) 

10 hours after the pre-operative injection, ensuring comfort post-surgery. 

Trimethoprimsulfa (30 mg/kg subcutaneously, Trivetrin, Schering Canada Inc. Quebec, 

Canada) was also administered daily for 7 days following surgery to prevent infections.  

 

2.3.1. Stereotaxic injections 

Rats were placed in a stereotaxic apparatus, and a hole was drilled in the skull to 

allow for unilateral injections of 10 µg of 6-hydroxydopamine (6-OHDA) in 3 µl of 

0.9% NaCl solution with 0.02% ascorbic acid. The solution was infused at a rate of 

1µl/min using a 10 µl (701 series) Hamilton syringe. Two injections of 6-OHDA were  

delivered, the first site at tooth bar -2.4 mm,  4.4 mm posterior and 1.2 mm lateral to 

bregma, 7.8 mm ventral to dura. The second site was at tooth bar +3.4 mm, 4.0 mm 

posterior and 0.8 mm lateral to bregma, 8.0mm ventral to dura (Paxinos & Watson, 

1998).  The total amount of 6-OHDA injected was 20 µg. The cannula was left in place 

for 2 minutes following each injection prior to removal.   
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2.4. In vivo verification of DA depletion  

Evaluation of the extent of dopamine depletion was examined two weeks post-

surgery using apomorphine-induced rotation. Apomorphine stimulates post synaptic 

dopamine receptors directly, preferentially on the 6-OHDA lesioned side, possibly due 

to denervation-induced dopamine receptor super-sensitivity in animals with unilateral 

striatal dopamine depletion (Creese et al. 1977). Apomorphine administration results in 

increased activity in the lesioned striatum compared to the unlesioned striatum (Hudson 

et al. 1993).  Behaviourally, this produces rapid repetitive turning of the body away 

from the lesioned side (Ungerstedt 1972; Hudson et al. 1993). The number of complete 

360 degree spins contralateral to the lesion has been shown to correlate well with lesion 

severity, specifically with percent dopamine loss (Ungerstedt 1972; Hudson et al. 1993; 

Metz & Whishaw 2002b).  As such, this test is used not as an assessment of 

Parkinsonian behavior, but rather as an in vivo verification of lesion severity. At 14 days 

post-surgery, all animals were subcutaneously administered apomorphine (0.05 mg/kg) 

(Sigma-Aldrich Chemicals, Canada), a dopamine receptor agonist, and placed into a 

stainless steel bowl. Animals were videotaped (S-VHS) from above. The number of 

times the animal rotated 360 degrees in each direction over a period of 30 minutes was 

counted by viewing the videotapes after the test was completed.  Data presented in 

Figure 1 are the number of ipsilateral rotations subtracted from the number of 

contralateral rotations resulting in the net contralateral rotations induced by the 

apomorphine in one hour, presented as group mean ± standard error (SE).  
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2.5 Behavioural assessment 

All animals were assessed using endpoint and kinetic measurements. Endpoint 

measurements were: forelimb usage while rearing in a cylinder, forelimb akinesia 

assessment and foot-faults while crossing a ladder. Kinetic measurements were 

determined by measuring ground reaction forces during locomotion. All assessments 

were done prior to surgery, at 3 weeks post-surgery and again at 6 weeks post-surgery.   

 

2.5.1. Forelimb use asymmetry 

This task tests the animal’s relative usage of the impaired and non-impaired 

forelimbs for weight shifting movements during spontaneous vertical exploration 

(Schallert et al. 2000).  It is commonly used as an index of asymmetry in forelimb 

usage, and involves scoring the number of contacts of each forelimb while the animal 

explores inside a clear cylinder (Johnston et al. 1999; Tillerson et al. 2001; Tillerson 

2002; Vergara-Aragon et al. 2003). Briefly, each rat was placed in a Plexiglas cylinder 

(46 cm high x 40 cm diameter) and videotaped (S-VHS) from a ventral perspective 

through a clear glass floor for 5 minutes. Videotapes were analyzed by an individual 

blinded to experimental treatment.  The number of times that the animal contacted the 

wall of the cylinder with right, left or both forelimbs was recorded. The number of 

times that the ipsilateral or contralateral limb was used to contact the wall was divided 

by the total number of wall contacts. This ratio was then used to produce asymmetry 

scores for each animal (ipsilateral/total – contralateral/total = asymmetry score). The 

individual animal asymmetry scores were then averaged and graphed in Figure 2 as 

group mean ± SE.  
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2.5.2. Forelimb akinesia assessment  

Akinesia, or slowness to initiate movement, can be assessed in the forelimbs by 

videotaping animals while each forelimb produces stepping movements (Schallert et al. 

2000).  The hindlimbs and one forelimb are restrained by the experimenter while the 

forelimb to be tested (the unrestrained forelimb) contacts a horizontal surface. In most 

studies, stepping movements are produced when the experimenter slowly moves the rat 

laterally and the number of steps produced per second is used to assess akinesia (Olsson 

et al. 1995; Schallert & Woodlee 2003). As a modification in the present study, a 

moving treadmill belt was used to generate a stepping event while the experimenter and 

rat remain stationary, allowing for more consistency in speed of movements between 

trials (Figure 2).  Utilization of the treadmill belt for this task allows for the 

quantification of forelimb stepping latency in three directions: extension, adduction and 

abduction. The treadmill belt speed was set to 9 m/min and a wooden bridge at a height 

of 3 cm above the belt was used to rest the experimenter’s hand while restraining 

hindlimbs and one forelimb of each rat. The unrestrained limb was placed in contact 

with the belt so that the belt induced abduction, abduction or extension of the rat’s 

forelimb. The numbers of steps taken per second for each direction were counted using 

frame-by-frame analysis of the videotape recording. The number of steps per second for 

each limb were used to identify the asymmetry score [(ipsilateral steps/ipsilateral + 

contralateral) – (contralateral steps/ ipsilateral + contralateral)]. A score of zero would 

reflect perfect symmetry in forelimb stepping. Individual scores were then averaged and 

presented graphically in Figure 3 as group means ± SE.  
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Figure 2 

 

 
Figure 2  Assessment of forelimb akinesia. Experimenter is restraining 3 limbs of the rat 
while using a treadmill belt to induce the stepping event in the unrestrained forelimb. 
The number of steps taken in a given amount of time during abduction, adduction and 
extension of the forelimb can be quantified.  
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2.5.3. Ladder rung walking test 

The horizontal ladder rung walking test apparatus was a clear Plexiglas runway 

(1.3 m X 20 cm) with solid platforms (56 cm X 20 cm) on either end and a metal rung 

floor spanning the middle 18 cm of the runway.  Each ladder rung was 3.5 mm in 

diameter with a distance of 1cm spacing between each rung (Metz &Whishaw 2002a). 

The ladder test apparatus was suspended above a 45º angled mirrored table to enable 

simultaneous videotape recording from both a lateral and ventral perspective. A light 

emitting diode (LED) timer was positioned in the camera field of view to facilitate 

measurement of movements speed for each run.  

Animals were pre-trained to cross the ladder to retrieve a food reward at either 

end of the runway. For recording sessions, each animal was required to complete 15 

acceptable runs at a moderate speed (13-19 cm/sec) across the ladder.  A run was 

considered acceptable if the animal had not stopped or reared prior to entering the field 

of view of the camera, and if the animal was not galloping or hopping.  Videotapes were 

examined using frame-by-frame analysis at 60 frames/sec to assess limb placement on 

the rungs of the ladder. Foot fault scoring was performed according to the qualitative 

scoring system of Metz and Whishaw (2002a). Briefly, each step of each limb was 

scored as either a correct placement, partial placement, correction, replacement, slight 

slip, deep slip or total miss (Metz & Whishaw, 2002a). These frequencies were then 

used to determine the number of foot faults in each category for 12 runs across the 

ladder per animal. For total correct placements, the frequency counts for the categories 

of correct and partial placement were combined for left and right limbs [(number 

correct ipsilateral + contralateral/total steps) + (number partial ipsilateral + 
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contralateral/total steps)].  Similarly, for total errors, the frequency of slight slips, deep 

slips and total misses were summed for the ipsilateral limbs and separately for the 

contralateral limbs, and these numbers were divided by the total number of steps for 

each limb.  Stride length, in cm, was calculated by measuring the horizontal distance 

between the position of ipsilateral forelimb in one stride and the position of the same 

forelimb in the subsequent stride. Data was averaged from 12 runs for each animal, as 

seen on videotape recordings, and individual averages were used to produce group 

means ± SE.  Speeds across the ladder were calculated by dividing stride length by 

stride duration (obtained from the LED timer) over 12 runs for each animal, and 

presented as group means in cm/sec ± SE. 

 

2.5.4. Kinetic measurements of ground reaction forces 

Ground reaction force determination was performed as previously described 

(Webb & Muir 2002; Webb & Muir 2003). Briefly, the animals were trained to walk 

and trot in a runway in which three force platforms were built into the runway floor 

surface. Each force plate (10.5 cm x 11 cm) measured ground reaction forces in the 

vertical, fore-aft and mediolateral directions.  Analogue output from the force platforms 

was amplified and converted to digital and collected on computer (High Speed Imaging 

(HSI) Data Acquisition System (Mississauga Ontario, Canada). Digital video was 

simultaneously recorded and collected using a high-speed digital camera (Motionscope 

1050, Redlake, MASD, Inc.).  For each testing session, the weight of the rat was 

recorded immediately prior to data collection, and was used to normalize force data to 

bodyweight to allow for direct comparison of forces exerted by rats of different weights.   
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For a pass to be considered acceptable for analysis, the animal was required to 

be (1) trotting, (2) moving at a constant velocity, (3) traveling between 40 and 100 

cm/sec.  The force data were filtered and averaged as previously described using custom 

writing software (Webb & Muir 2003; Webb & Muir 2004).  Limb pairs were separated 

into left and right, and averaged together at each data collection time point for each rat 

(minimum of 6 runs per trial).  Group averages were obtained by averaging individual 

averaged forces with others in the same group, generating group mean data with 

standard error values. Variables of the ground reaction force data that were analyzed 

statistically were peak vertical, propulsive, and braking forces for both fore and 

hindlimbs bilaterally.   

 

2.6. Neurochemical analysis 

At eight weeks post-surgery, all animals were decapitated, brains were removed, 

divided into left and right hemispheres and immediately put on an ice cold surface.  For 

each brain, the caudate nucleus was removed bilaterally and placed into a -80 ºC 

freezer.  Catecholamine levels, including dopamine (DA) 3, 4-dihydroxyphenylacetic 

acid ( DOPAC) and norepinephrine (NE), were examined using high-performance 

liquid chromatography (HPLC) performed in Dr. Peter Yu’s Laboratory in the 

Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, 

Saskatoon, Saskatchewan, Canada.  Briefly, caudate tissue was suspended in 0.1 M 

perchloric acid containing 2.5 x 10-4 M ethylenediamine-tetraacetic acid (EDTA) and 1 

x 10-4 M sodium nitrite, homogenized and centrifuged at 14,000 rpm for 10 minutes at 

4ºC.  The supernatant was removed and the remaining tissue was assessed for dopamine 
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(DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and norepinephrine (NE) content by 

injecting 50 µl aliquot of sample into a Beckman Ultrasphere C-18 reverse phase 

Column (5 micron, 4.6 x 250 mm Beckman, Toronto, Ontario, Canada).  The mobile 

phase consisted of 1940 ml of HPLC H2O, 464 mg octyl sodium sulfate (SOS), 20.7 g 

of NaH2PO4, 32.2 mg of EDTA and 175 ml of acetonitrile, pH 2.7. The mobile phase 

was pumped though the system at 1 ml/min. Molecules were detected 

electrochemically.  Peak heights and standard curves were used to calculate ng/mg 

tissue. The amount from the ipsilateral hemisphere was divided by the amount on the 

contralateral hemisphere and presented as percent of intact side by multiplying ratios by 

100. Data were square root transformed to generate a normal distribution and grouped 

by treatment. Statistical analysis was done using SAS (Version 8) to examine 

differences between treatment groups. 

 

2.7. Statistical analysis  

 Statistical assessments for all behavioural tests were done using either repeated 

measure one-way ANOVA for comparison across testing sessions or one-way ANOVA 

for group comparisons within testing sessions.  The Tukey multiple comparison 

procedure was used post hoc to examine differences between groups.  All data are 

presented as mean ± SE.  For HPLC data, a single degree of freedom orthogonal 

contrast was used to examine differences between groups. 
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3. Results 

 

3.1 In vivo estimate of lesion size  

 Statistical analysis (ANOVA) of the number of contralateral rotations made by 

animals revealed a significant group effect (F 2, 26 =3.701; p <0.05) (Figure 3). Post hoc 

analysis revealed significantly lower number of rotations in the early treadmill trained 

group (n=9) compared to untrained (lesion only) group (n=11) (p<0.05). The early 

treadmill trained group had fewer than 200 contralateral rotations in 30 minutes.  There 

was no significant difference in number of contralateral rotations of the late treadmill 

trained group (n=9) compared to the untrained group (p= 0.159).  There was also no 

significant difference between the late treadmill and early treadmill groups (p= 0.788).   
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Figure 3  Apomorphine rotation 
Effects of treadmill training post-surgery on apomorphine-induced rotation 14 days 
after 6-OHDA infusion. Early treadmill training significantly attenuated apomorphine-
induced rotations compared to those in untrained animals. All values are expressed as 
mean contralateral rotations in 30 minutes ± standard error. * p< 0.05 
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3.2. Behavioural assessment 

 

3.2.1 Forelimb use asymmetry 

 Statistical analysis (repeated measures one-way ANOVA) revealed an overall 

significant effect across testing sessions (F6, 52 = 9.255; p< 0.001) (Figure 4). Post 

surgery, all groups displayed forelimb use asymmetry favoring the ipsilateral forelimb. 

Post hoc analysis revealed a significant increase in asymmetry at 3 weeks post surgery 

for all groups (untrained, early and late treadmill) compared to pre-surgical scores (p< 

0.001).  Asymmetry scores for all groups at 6 weeks post surgery also demonstrated a 

significant increase in asymmetry compared to the pre-surgery scores (p<0.001).  There 

was no significant difference in asymmetry scores between 3 and 6 weeks for any of the 

groups in this study.  There was also no significant effect of treadmill training (early or 

late) as compared to untrained animals at any of the time points.  Thus, treadmill 

training did not alter the ipsilateral preference in forelimb use in 6 OHDA lesioned 

animals.  
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Figure 4  Forelimb use asymmetry 
Effects of treadmill training on forelimb use asymmetry after 6-OHDA injection. All 
animals displayed a significant asymmetry in forelimb preference at 3 (PS3) and 6 
(PS6) weeks post-surgery compared to pre-surgical data (p< 0.001).  In all cases, 
animals preferentially used the forelimb ipsilateral to the lesion for exploratory 
behaviour.  No differences could be detected between groups at any time point, 
indicating that treadmill training did not alter limb use asymmetry. * Denotes 
significant difference from corresponding pre-surgical values (p<0.001). 
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3.2.2. Forelimb akinesia  

 

3.2.2.1 Adduction, Figure 5A: 

When the animals’ forelimb was adducted medially (toward the midline of the 

body) by the treadmill to produce a stepping event, statistical analysis revealed a 

significant difference across the testing sessions (Untrained F10, 2 =12.750; p<0.001; 

Early F8, 2=7.043; p= 0.006; Late F8, 2=4.910; p=0.002).  In all groups, asymmetry 

scores were greater than zero after surgery, indicating that the contralateral limb showed 

more deficits (i.e. slower step initiation) after surgery compared to before surgery.  Post 

hoc analysis revealed a significant increase in forelimb adduction asymmetry score at 

both 3 and 6 weeks post-surgery compared to pre-surgical scores (p<0.05) for both early 

and late treadmill trained groups (Early PS3 vs. PRE, p=0.007; Early PS6 vs. PRE, 

p=0.030; Late PS3 vs. PRE, p=0.024; Late PS6 vs. PRE, p= 0.047).  For the untrained 

group, forelimb asymmetry was not different from pre-surgical values at 3 weeks (p= 

0.188) but was different from pre-surgical values at 6 weeks post-surgery (p=0.019).  

Thus, it appears that treadmill training may accelerate step initiation deficits in the 

adduction direction, although by 6 weeks there were no differences between trained and 

untrained groups (p<0.05).  

3.2.2.2. Abduction, Figure 5B: 

When the animals’ forelimb was abducted laterally (away from the body) by the 

treadmill to produce a stepping event, statistical of asymmetry scores revealed an 

overall effect across testing session in untrained animals (Untrained F10, 2=12.750; 

p<0.001; Early F8, 2=4.748; p=0.024; Late F8, 2 =6.316;p=0.010).  Post hoc  analysis 
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revealed a significant increase in asymmetry in all groups at 3 and 6 weeks post-surgery 

compared to pre-surgical-scores (p<0.05 for all groups).  Again, the increase in 

asymmetry scores post-surgery indicates that all animals were slower to initiate 

movements with the forelimb contralateral to the lesion compared to the ipsilateral 

forelimb.  There were no statistically significant differences between groups at any of 

the data collection sessions (p>0.05 for all groups) and thus treadmill training did not 

ameliorate stepping akinesia in the abduction direction in 6-OHDA lesioned rats.  

3.2.2.3. Extension, Figure 5C: 

When the animals’ forelimb was moved in a forward stepping motion by the 

treadmill, (comparable to a forward step during locomotion), statistical analysis 

revealed a significant effect across testing sessions (Untrained F 10, 2=16.420; p<0.001; 

Early F 8, 2=18.980; p<0.001; Late F8, 2=13.954; p<0.001).  Post hoc analysis revealed a 

significant increase in forelimb extension asymmetry scores at 3 weeks (PS3) and 6 

weeks post-surgery (PS6) compared to pre-surgical scores for both untrained and late 

treadmill trained groups (p<0.05 for all groups), indicating that the contralateral 

forelimb was slower to initiate stepping compared to the ipsilateral limb.  In contrast, 

early treadmill training produced forelimb extension asymmetry that was significantly 

different from pre-surgical values at 3 weeks, but returned to within pre-surgical values 

by 6 weeks post-surgery (Early PS3 vs. PRE, p<0.001; Early PS6 vs. PRE, p=0.260).. 

Thus, treadmill training does not appear to ameliorate the forelimb akinesia in the 

extension direction by 3 weeks post-surgery (PS3), but early treadmill training appears 

to attenuate akinesia in this direction after 6 weeks.  
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Figure 5  Forelimb akinesia asymmetry  
The effect of treadmill training on asymmetries in forelimb stepping initiation in 3 
different directions: adduction (A), abduction (B), and extension (C). Behaviour was 
quantified at 3 different testing sessions once pre-surgical (PRE), 3 weeks post-surgery 
(PS3) and 6 weeks post-surgery (PS6).  In all cases, values greater than 0.0 indicate that 
the forelimb contralateral to the lesion was slower to initiate stepping movements 
compared to the ipsilateral forelimb. * Denotes significant difference from pre-surgical 
values (p<0.05).  
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3.2.3. Ladder rung walking test 

 

 3.2.3.1 Stride length, Figure 6A:  

Statistical analysis revealed a significant change in stride length across testing 

sessions for all groups (Untrained F10, 2=8.683; p=0.002; Early F8, 2 =30.441; p<0.001; 

Late F8, 2 =13.111; p<0.001).  At 3 weeks, all groups demonstrated a significant 

decrease in stride length compared to pre-surgical values (p<0.05). Nevertheless, by 6 

weeks the stride length of untrained animals increased to pre-surgery levels, while the 

stride length of both early and late treadmill trained animals did not recover (Untrained 

PS6 vs. PRE, p=0.613; PS6 vs. PRE, p<0.001 for both early and late groups).  Thus, 

treadmill training of 6-OHDA rats resulted in a sustained decrease in stride length on 

the ladder walking task, a change that was not seen in untrained animals. 

3.2.3.2 Speed, Figure 6B: 

 Statistical analysis of average speeds used to cross the ladder revealed a 

significant effect across testing sessions in all groups. (Untrained F10, 2=7.798; p=0.003; 

Early F 8, 2 =8.187; p=0.004; Late F 8, 2 =14.362; p<0.001).  Post hoc analysis revealed a 

significant decrease in speed on the ladder task at 3 weeks post surgery compared to 

pre-surgical values in all groups (p<0.05 all groups). However, by 6 weeks post-

surgery, the speeds used by both untrained and early treadmill trained animals showed 

no significant difference from pre-surgery values (p>0.05 for both early and untrained), 

even though, for the early treadmill trained group, the average speed was slower than 

pre-surgery. The lack of statistical significance in the latter group is likely due to the 

large variation in speeds used by animals in this group at 6 weeks. Animals in the late 
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treadmill trained group maintained a slower speed across the ladder at 6 weeks post-

surgery compared to pre-surgery values (p<0.05). Thus, animals which underwent 

treadmill training use slower speeds to cross the ladder compared to the speeds used 

prior surgery. This is consistent with the smaller stride lengths used by these groups 

described above, as speed is determined partly by stride length.   
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Figure 6  Stride length and speed on ladder task 
The effects of treadmill training on stride length and speed on the ladder walking task in 
6-OHDA lesioned rats. (A) All groups demonstrate a significant decrease in stride at 3 
weeks post surgery compared to pre-surgical values. At 6 weeks post-surgery, there was 
a natural recovery of stride length in the untrained group that did not occur in either of 
the treadmill trained groups.  (B) All groups demonstrate a significant decrease in stride 
at 3 weeks post surgery compared to corresponding pre-surgical values, although only 
speeds used by the late treadmill trained groups were significantly lower than pre-
surgical values by 6 weeks.  PRE = previous to 6-OHDA surgery, PS3 = 3 weeks post-
surgery, PS6 = 6 weeks post-surgery.  * Denotes significance from pre-surgical value 
(p<0.05). 
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3.2.3.3 Correct placement of forelimbs  

Analysis of limb placement during the ladder walking task revealed that there 

were no differences in the number of correct placements or errors in placement of the 

hindlimbs between pre-surgery and post-surgery time points for any of the groups 

(p>0.05 all groups post-surgery 3 and 6 weeks compared to corresponding pre-surgical 

values) Therefore, the remaining results focus on the placement of the forelimbs only.  

Prior to surgery, animals tended to make correct forelimb placements on the ladder 95% 

of the time (Figure 7).  At 3 and 6 weeks after the 6-OHDA surgery, all groups made 

correct forelimb placements only 70 – 75% of the time, which was significantly less 

than pre-surgical values (Untrained F 10, 2=60.591; p<0.001; Early treadmill F8, 

2=29.299; p<0.001; Late treadmill F8, 2 =20.292; p<0.001).  Mean asymmetry scores for 

correct forelimb placements were consistently less than zero in all groups, indicating 

that most correct placements occurred in the forelimb ipsilateral to the lesion (i.e. the 

unimpaired forelimb).  There were no differences between any of the groups at any time 

point, indicating that treadmill training did not affect correct forelimb placement on the 

ladder rung walking task, (Pre, F2, 26=1.859; p=0.176), (PS3, F2, 26 =0.502; p=0.611), 

(PS6, F2, 26= 0.136; p=8.74). 
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Figure 7 Correct forelimb placements on ladder 
All groups made significantly fewer correct forelimb placements on the ladder after 6-
OHDA lesion. There was no effect of treadmill training on the number of correct 
forelimb placements.  * Denotes significant difference from corresponding pre-surgical 
value (p<0.05). 
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3.2.3.4 Errors in forelimb placement on ladder walking task 

The frequency of forelimb errors on the ladder (= slight slips + deep slips + 

misses; see Methods) was increased in all groups after 6-OHDA surgery for both right 

and left limbs (Figure 8).  At 3 weeks post-surgery for all groups, more errors were 

made by both the right forelimb (the impaired limb – Figure 8A) and the left forelimb 

(the unimpaired limb – Figure 8B) compared to corresponding pre-surgical values 

(Untrained group right limb F 10, 2=25.497; Untrained group left limb F 10, 2 =25.137; 

Early group right limb F 8, 2=22.038; Early group left limb F 8, 2=25.551; Late group 

right limb F8, 2=6.282; Late group left limb F8,2=25.551, p<0.001 for all groups, either 

limb).  At 6 weeks post-surgery, untrained animals and those in the early trained group 

continued to make more errors with the impaired limb compared to errors made prior to 

surgery, but the errors made by the unimpaired limb had recovered to pre-surgical 

values by this time (compare PS6 in Figure 8A with Fig 8B; Untrained group right limb 

F 10, 2=25.497; Untrained group left limb F 10, 2 =25.137; Early group right limb F 8, 

2=22.038; Early group left limb F 8, 2=25.551; p<0.001 for impaired limb, p= 0.50 for 

unimpaired limb).  Similar results were obtained for the late trained group, except that 

the errors made by the impaired limb at 6 weeks only approached significant difference 

from pre-surgical values ( Late group right limb F8, 2=6.282; Late group left limb 

F8,2=25.551, p=0.059 for impaired limb, p=0.60 for unimpaired limb).  Thus, treadmill 

training does not appear to alter the number of errors made by the forelimbs during 

ladder crossing.  
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Figure 8  Forelimb errors on the ladder 
(A) Frequency of slips and misses made on the ladder by the impaired forelimb 
(contralateral to lesion).  (B) Frequency of slips and misses resulting from unimpaired 
(ipsilateral) forelimb placements on the ladder. * Denotes significant difference from 
corresponding pre-surgical values (p<0.05). 
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3.2.4. Ground reaction forces generated during locomotion 

 Ground reaction forces produced by all animals prior to 6-OHDA injection were 

identical to those found previously for normal animals (Figure 9, Muir and Whishaw 

1999; Muir and Whishaw 2000; Webb and Muir 2002; Webb and Muir 2003; Webb and 

Muir 2004). Rats trot overground by weightbearing alternately on diagonal limb pairs. 

Peak vertical forces produced by the forelimbs are similar to those produced by the 

hindlimbs, such that rats normally bear equal amounts of weight on fore- and hindlimbs 

(Figure 9A).  Examination of fore-aft forces demonstrates that most of the braking 

forces (negative fore-aft forces) are produced by the forelimbs, whereas most 

propulsion (positive fore-aft force) is generated by the hindlimbs (Figure 9B).  Lateral 

forces are small (Figure 9C). Normal animals move symmetrically, with equal forces 

produced by right and left limbs (Figure 9, compare Right and Left).  This symmetry is 

more apparent when vertical forces are plotted against fore-aft forces for right and left 

limbs (Figure 10).   

 After unilateral injection of 6-OHDA, all animals moved with an asymmetric 

gait characterized by altered forces generated by all limbs (Figures 11 – 17; Muir & 

Whishaw, 1999).  In particular, smaller peak propulsive forces were generated by the 

impaired forelimb (contralateral to the lesion) compared to pre-surgical values in all 

groups (F6,80  = 31.744, p<0.001; post-hoc tests, p <0.05 for all groups).  The 

unimpaired forelimb generated larger peak braking forces compared to pre-surgical 

values in all groups (F6,80 = 6.613, p<0.001; post-hoc tests, p<0.05 for all groups).  In 

untrained animals, there was a significant reduction in the peak braking forces 
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generated by the unimpaired hindlimb compared to pre-surgical values. However, this 

difference was not seen in the treadmill trained animals (F6,80 = 2.851, p<0.05; post-hoc 

tests, p< 0.05 for untrained groups at 3 and 6 weeks post-surgery).  There were no other 

differences in ground reaction forces between trained and untrained animals at any time 

point.  

Force-vector dynamograms in Figure 14 demonstrate the differences in right-left 

symmetry between pre-surgical animals and those at 3 and 6 weeks after 6-OHDA 

injection (Figure 16 B – G; compare red and black lines).  These dynamograms also 

illustrate differences in the manner in which the limbs, particularly the impaired 

forelimb and unimpaired hindlimb, were loaded and unloaded during weightbearing 

(Figure 16).  During the trot, these limbs are weightbearing simultaneously. In both 

trained and untrained groups, the loading of the impaired forelimb occurred such that 

braking forces (negative fore-aft forces) were generated only by the time most vertical 

force was exerted (solid arrows in Fig 16, B-G: impaired forelimb = red solid line).  

This was in contrast to pre-surgical animals in which braking forces were exerted 

gradually as the forelimb supported increasing amounts of bodyweight (solid arrowhead 

in Fig 16A: forelimbs = red and black solid lines).  Similarly, the unimpaired hindlimb 

was unloaded such that propulsive forces (positive fore-aft forces) began to decrease 

much earlier in the stride compared to those generated by the hindlimbs prior to surgery 

(open arrows in Fig 16, A-G: black dashed line).  
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Figure 9 Pre-surgical ground reaction forces 
Ground reaction forces for all animals prior to 6-OHDA injection vs. proportion of 
stride during overground locomotion. Data from right and left limbs are shown 
separately. Thick lines represent mean forces normalized to bodyweight, thin lines 
represent ± standard error, n=29. For each graph, data from the forelimb precedes that 
from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal fore-aft forces, (C) 
Horizontal lateral forces. Note the normal symmetry between left and right limbs.  
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Figure 10  Force vector dynamogram of pre-surgery ground reaction forces 
Force vector dynamogram (mean vertical vs. mean fore-aft forces) of pre-surgical 
animals (n=29) during overground locomotion. All forces are normalized to 
bodyweights. Vertical force indicates the weight supported by a given limb. Fore-aft 
force indicates the amount of braking or propulsion produced by a given limb. The 
forelimbs produce mainly braking forces (negative fore-aft forces) whereas the 
hindlimbs produce mainly propulsive force (positive fore-aft forces). Note the 
symmetry between left and right for both fore and hindlimbs. Arrows indicate the 
loading of the limbs over time, beginning at the initiation of the stance phase at 0.0.  
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Figure 11 Ground reaction forces in untrained animals, 3 weeks post surgery 
Ground reaction forces for untrained animals 3 weeks post 6-OHDA injection vs. 
proportion of stride during overground locomotion. Data from right and left limbs are 
shown separately. Thick lines represent mean forces normalized to bodyweight, thin 
lines represent ± standard error, n=11. For each graph, data from the forelimb precedes 
that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal fore-aft forces, (C) 
Horizontal lateral forces. * Denotes that peak force is significantly different from 
corresponding pre-surgical values (p<0.05).
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Figure 12 Ground reaction forces in early trained animals, 3 weeks post surgery  
Ground reaction forces for early treadmill trained animals 3 weeks post 6-OHDA 
injection vs. proportion of stride during overground locomotion. Data from right and 
left limbs are shown separately. Thick lines represent mean forces normalized to 
bodyweight, thin lines represent ± standard error, n=9. For each graph, data from the 
forelimb precedes that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal 
fore-aft forces, (C) Horizontal lateral forces. * Denotes significant difference in peak 
force from corresponding pre-surgical values (p<0.05). 
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Figure 13 Ground reaction forces in late trained animals, 3 weeks post surgery 
Ground reaction forces for late treadmill trained animals 3 weeks post 6-OHDA 
injection vs. proportion of stride during overground locomotion. Data from right and 
left limbs are shown separately. Thick lines represent mean forces normalized to 
bodyweight, thin lines represent ± standard error, n=9. For each graph, data from the 
forelimb precedes that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal 
fore-aft forces, (C) Horizontal lateral forces. * Denotes significant difference in peak 
force from corresponding pre-surgical values (p<0.05). 
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Figure 14 Ground reaction forces in untrained animals, 6 weeks post surgery 
Ground reaction forces for untrained animals 6 weeks post 6-OHDA injection vs. 
proportion of stride during overground locomotion. Data from right and left limbs are 
shown separately. Thick lines represent mean forces normalized to bodyweight, thin 
lines represent ± standard error, n=11. For each graph, data from the forelimb precedes 
that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal fore-aft forces, (C) 
Horizontal lateral forces. * Denote significant difference in peak force from 
corresponding pre-surgical values (p<0.05). 
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Figure 15 Ground reaction forces in early trained animals, 6 weeks post surgery 
Ground reaction forces for early treadmill trained animals 6 weeks post 6-OHDA 
injection vs. proportion of stride during overground locomotion. Data from right and 
left limbs are shown separately. Thick lines represent mean forces normalized to 
bodyweight, thin lines represent ± standard error, n=9. For each graph, data from the 
forelimb precedes that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal 
fore-aft forces, (C) Horizontal lateral forces. * Denotes significant difference in peak 
force from corresponding pre-surgical values (p<0.05). 
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Figure 16 Ground reaction forces in late trained animals, 6 weeks post surgery 
Ground reaction forces for late treadmill trained animals 6 weeks post 6-OHDA 
injection vs. proportion of stride during overground locomotion. Data from right and 
left limbs are shown separately. Thick lines represent mean forces normalized to 
bodyweight, thin lines represent ± standard error, n=9. For each graph, data from the 
forelimb precedes that from the ipsilateral hindlimb (A) Vertical forces (B) Horizontal 
fore-aft forces, (C) Horizontal lateral forces. * Denote significant difference in peak 
force from corresponding pre-surgical values (p<0.05). 
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Figure 17  Force-Vector Dynamograms in hemi-Parkinsonian rats 
Force-Vector Dynamograms (mean vertical vs. fore-aft forces) illustrate symmetry 
between left and right limbs during overground locomotion. All forces are normalized 
to bodyweight. (A) Animals have nearly perfect symmetry prior to 6-OHDA lesions. 
(B-G) Note the distinct right-left asymmetries in all groups at 3 and 6 weeks post-lesion 
(B-D) 3 weeks after 6-OHDA injection. (E-G) 6 weeks after 6-OHDA injection. Solid 
arrows indicate differences in impaired forelimb braking in all groups compared to 
presurgical forces. Open arrows indicate differences in unimpaired hindlimb propulsion 
in all groups compared to corresponding pre-surgical forces. 
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3.3. Neurochemical analysis 

 Individual HPLC values for left and right hemispheres were used to calculate a 

ratio (lesion/intact hemisphere x 100) which indicated the percent of catecholamine 

remaining in the lesioned hemisphere. Date for both treadmill trained groups were 

combined, as there was no significant difference between early and late treadmill 

training on catecholamine levels at 8 weeks post-surgery (DA F=0.04, p=0.8389; 

DOPAC F =0.28, p=0.5984; NE F=0.00, p=0.9533).  A single degree of freedom 

orthogonal contrast demonstrated a significant difference between the trained and 

untrained animals for levels of dopamine (p<0.05) and DOPAC (p<0.05) but not for NE 

(p=0.07) (Figure 18).   Thus, treadmill training attenuated dopamine and DOPAC loss 

in the striatum compared to that in untrained animals.   
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Figure 18 Catecholamine content of striatum 8 weeks post-surgery 
The effect of treadmill training on catecholamine content in the striatum at 8 weeks 
post-surgery. (A) Dopamine content of the lesioned caudate/intact caudate after square 
root transformation (see methods).  Treadmill training preserved significant amounts of 
dopamine on the lesioned side of the brain.  (B) DOPAC content of the lesioned 
caudate/intact caudate after square root transformation (see methods).  Treadmill 
training preserved significant amounts of DOPAC on the lesioned side of the brain.   
(C) Norepinephrine content of the lesioned caudate/intact caudate after square root 
transformation (see methods).  Treadmill training did not affect the NE levels on the 
lesioned side of the brain.  (* indicates p<0.05) 
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4. Discussion  

In summary, the results demonstrate that treadmill training in a 6-OHDA 

induced model of Parkinson’s disease caused attenuation of dopamine loss in the 

striatum as assessed by response to apomorphine injection and assessment of post-

mortem striatal dopamine levels. In contrast, this same training did not ameliorate 

behavioural deficits, including locomotor deficits.  Treadmill trained animals showed 

similar behavioural deficits compared to untrained animals on most tests, including 

forelimb preference during exploration, forelimb akinesia during limb abduction, 

forelimb placement during ladder crossing, or the ground reaction forces generated 

during overground locomotion.  On several tests, treadmill trained animals tended to 

display more severe behavioural deficits compared to untrained animals.  For example, 

treadmill trained animals developed forelimb akinesia in the adduction direction at an 

earlier time point than did untrained animals. Treadmill trained animals also moved 

across the ladder at slower speeds and with smaller stride lengths compared to untrained 

animals.  There was only one test on which treadmill trained animals appeared to have 

less severe deficits than untrained animals - early treadmill training appeared to reduce 

forelimb akinesia when stepping in the extension direction.  For most behavioural tests, 

late treadmill training had a similar effect compared to early treadmill training. 
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4.1 Locomotor asymmetry in hemi-Parkinsonian rats 

This is the first thorough examination of the ground reaction forces produced 

during locomotion in 6-OHDA lesioned rats. Untrained lesioned rats moved with a 

characteristic asymmetric gait. The most abnormalities were seen during the 

simultaneous diagonal contact of the impaired forelimb (contralateral to the lesion) and 

the unimpaired hindlimb (ipsilateral to the lesion). The impaired forelimb generated 

smaller propulsive forces and also produced braking forces much later in the support 

phase compared to those generated by the forelimbs prior to surgery (Figures 11B-16B, 

Fig 17). Propulsive forces generated by the unimpaired hindlimb began to decrease 

much earlier in the stride compared to those generated by the hindlimbs in pre-surgical 

animals (Figure 17). These changes were compensated in part by the actions of the 

unimpaired forelimb, which produced increased braking forces much earlier in the 

stride compared to pre-surgical values (Figures 11B – 16B). Interestingly, many of 

these changes are similar to those seen in rats with other unilateral central nervous 

system (CNS) lesions, including unilateral red nucleus ablation and unilateral spinal 

lesions (Muir & Whishaw 2000; Webb & Muir 2003; Webb & Muir 2004). It may be 

that rats with unilateral CNS impairment adopt a general compensatory strategy for 

locomoting overground.  

Locomotor training in the form of treadmill training did not induce a return to a 

symmetric pre-surgical gait. As discussed below, it may be that the amount and type of 

training was not able to attenuate the loss of DA in this animal model sufficient to affect 

locomotor behaviour. It is also possible that the asymmetric gait adopted by treadmill 

trained animals in the present study was actually reinforced by repeated treadmill 
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training. A third possibility is that, because animals were still able to move overground 

effectively using an asymmetric gait, there was no impetus to return to normal 

symmetrical movement. In future studies, it would be of interest to administer proven 

pharmacological therapies, i.e. L-DOPA, in this animal model to determine whether 

lesioned animals would recover normal symmetrical locomotion.  

 

4.2 The effects of rehabilitative training in 6-OHDA treated rats 

4.2.1. The effects of forced forelimb use 

The results of this study are in contrast to previous work which examined the 

forelimb use and forelimb akinesia after forced use of the impaired forelimb in 6-

OHDA treated rats. Specific rehabilitation strategies involving the forelimbs have 

resulted in attenuation of deficits on forelimb-specific tests post surgery (Tillerson et al 

2001; Vergara-Aragon et al. 2003). Forced use of the impaired forelimb (by casting the 

unimpaired forelimb for 7 days starting at 1-3 days post-surgery) resulted in attenuation 

of forelimb use asymmetry, forelimb abduction akinesia, and reduced striatal dopamine 

loss (Tillerson et al. 2001). If the cast was not in place until 7 days post-surgery, there 

was no attenuation of behavioural deficit or dopamine loss (Tillerson et al. 2001).  

Interestingly, if the cast was placed on the impaired limb for 7 days post-surgery, 

forelimb deficits were exacerbated (Tillerson et al. 2002). Both attenuation and 

exacerbation of forelimb deficits correlated well with the amount of dopamine 

remaining in the striatum post-lesion (Tillerson et al. 2001; Tillerson et al. 2003).  

These studies suggest that there is an opportune window of time in which use of the 

forelimb can prevent the death of dopamine neurons in the presence of 6-OHDA. In this 
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animal model, development of striatal dopamine depletion is thought to occur over a 1-2 

week post-injection period through oxidative damage and eventual apoptosis of 

dopaminergic neurons (Cerruti et al. 1993; Croker et al. 2001; Decker et al 1993; Glinka 

et al. 1997; Hirsch 1999; Hudson et al 1993; Ungerstedt 1972). Early forced forelimb 

use may interfere with this process through a variety of mechanisms (see Section 4.2.3), 

producing animals with less severe dopamine loss.  

 In a separate study, forelimb reaching rehabilitation that commenced 21 days 

post-surgery was also demonstrated to have positive behavioural effects in 6-OHDA 

treated rats (Vergara-Aragon et al. 2003). Rehabilitation training for 14 days in a 

reaching box, with wire grid construction, beginning 21 days after surgery, resulted in 

significant improvement on a single pellet reaching task (Vergara-Aragon et al. 2003).  

During training, the rats were free to use either forelimb, although the unimpaired limb 

was used preferentially (Vergara-Aragon et al. 2003).  Although this task improved 

reaching success (ability to bring food to their mouth) with the unimpaired limb, 

detailed movement analysis revealed that subtle deficits in paw supination persisted 

after training (Vergara-Aragon et al. 2003).  It was suggested in this study that the 

improvement in reaching success was not due to reduction of lesion severity, but 

resulted from the development of compensatory movements that were specific to 

reaching behaviour (Vergara-Aragon et al. 2003). It is therefore possible that deficits in 

other, untested, behavioural tasks would remain unaffected by forelimb rehabilitation 

training.  

 

 



 59

4.2.2 The effects of treadmill training 

In the present study, we investigated whether locomotor rehabilitation, in the 

form of treadmill training, would ameliorate locomotor and forelimb behavioural 

deficits. We found that neither early or late intervention in the form of treadmill training 

resulted in the amelioration of deficits for most behaviours examined. It is possible that, 

if reduction in lesion severity is the cause of amelioration of behavioural deficits after 

early training, as suggested by Tillerson (2001, 2002), then perhaps there was 

insufficient preservation of DA levels in the present study to produce attenuation of 

deficits, as discussed further in this section. If, instead, behavioural compensation 

underlies rehabilitative recovery after late training, as described in Vergara-Aragon et 

al. (2003), then perhaps treadmill training provided insufficient specific forelimb 

training than was necessary to improve forelimb behavioural tasks. The exception to 

this finding was the reduction in forelimb extension akinesia seen in early treadmill 

trained rats (fig 5C).  This apparent attenuation may be a result of the repetition of 

forelimb extension movement which occurred during treadmill training.  In any case, 

the range and quantification of different behaviours examined in the present study 

reflect a clear representation of the effects of treadmill training on forelimb and 

locomotive behaviour in 6-OHDA induced hemi-Parkinsonian rats. 

There is only one other study which has examined the effects of early treadmill 

training on forelimb use and akinesia in hemi-Parkinsonian rats (Tillerson et al. 2003). 

Surprisingly, complete amelioration of DA depletion, deficits in forelimb use 

asymmetry and stepping initiation asymmetry were found after brief exposure to very 
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early treadmill training (Tillerson et al. 2003).  As discussed below, several 

methodological differences may have contributed to these contrasting results. 

First, there were differences in the amount of 6-OHDA used to create the 

lesions.  In the present study, we infused a total of 20 µg of 6-OHDA over 2 injections.  

In the Tillerson (2003) study, a single injection of 10 µg of 6-OHDA was reported.  The 

quantitatively different exposure to the neurotoxin might have produced different 

severity of lesions in that a larger amount of neurotoxin may have induced more rapid 

degeneration.  In the current study, post-mortem striatal DA analysis showed that, in 

untrained animals, 95-100% of DA was depleted in the affected striatum, whereas this 

value was 80% in untrained animals in the Tillerson (2003) study. In contrast, the 

treadmill trained animals in the Tillerson (2003) study had an astounding 0%-10% loss 

in dopamine content whereas our findings indicate a 75%-80% loss of dopamine in the 

treadmill trained groups (Figures 3 & 18). In future studies, it may be fruitful to 

examine the behavioural effects of treadmill training on animals with mild or moderate 

6-OHDA lesions, to determine whether rehabilitation is more effective in animals with 

less severe lesions.  

A second major methodological difference was the time of onset of the treadmill 

training. In the present study, animals were allowed to recover for 24 hours post-surgery 

before the first 20 minute treadmill session began (see Methods).  Tillerson (2003) 

reported that treadmill training commencing 2 - 4 hours post-surgery following a 

forelimb-use asymmetry screening (i.e. only animals that displayed asymmetry were 

kept in the study).  This very early introduction to treadmill running directly following 

anesthetic and surgery (which involves removal of bone from the skull and an 
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intracerebral injection), may have had unexpected effects. For example, it may have 

introduced an increased amount of stress on the animals compared to that involved after 

a 24 hour recovery period prior to exercise.  Stressful experiences in hemi-Parkinsonian 

animals have been demonstrated to produce a phenomenon of “paradoxical kinesia,” in 

which behavioural deficits are strikingly less severe following exposure to electric 

shock, submersion in cool water, forced immobilization, etc. (Keefe et al. 1989; Keefe 

et al. 1990; Keefe et al. 1993; Schallert 1989).  Paradoxical kinesia effects are usually 

transient, however, unlike the long lasting results in the Tillerson (2003) study, but the 

mechanism of paradoxical kinesia is still not well understood (Keefe et al. 1990; Keefe 

et al. 1993).  

 

4.2.3 Possible mechanisms for the effect of training 

It is difficult to interpret the findings of Tillerson et al (2003) in terms of what is 

known regarding the development of motor output deficits after 6-OHDA injection. 

Dopamine cell loss has been reported to occur over 14 days post-injection, as assessed 

by asymmetrical rotation induced by apomorphine injection (Sauer & Oertel 1994; 

Metz & Whishaw 2002b).  Nevertheless, the animals in Tillerson’s study showed 

forelimb use asymmetry 2 – 4 hours post-injection and then showed complete return to 

symmetrical forelimb use at 24 hours post-injection, after a 15 minute training session 

the previous day.  This almost immediate recovery of behavioural symmetry and the 

astounding 90-100% intact dopamine remaining after 6-OHDA injection are indicative 

of the interruption of lesion formation. This may have occurred by inhibition of 6-

OHDA uptake into the neuron and/or by an inhibition of apoptosis after 6-OHDA 
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uptake.  In future studies, these possibilities could be examined using apoptotic markers 

in the dopaminergic and other catecholaminergic cell populations surrounding the initial 

injection site for both trained and untrained groups of animals. It is also possible that the 

lesion was not formed due to normal physiological events occurring during exercise, 

(discussed later) which may have induced an unintended dispersion of the 6-OHDA 

away from the medial forebrain bundle, to an area that did not allow for uptake of the 

neurotoxin by DA neurons.  A simple test of this possibility could be performed by 

examination of the spread of a labeled 6-OHDA after treadmill running at various times 

post-surgery.  

One specific mechanism suggested for DA neuronal sparing after training in 6-

OHDA injected rats was exercise-induced down-regulation of the dopamine transporter 

(DAT) (Tillerson et al, 2003).  The dopamine transporter is thought to be the entrance to 

the cell for neurotoxins such as 6-OHDA (Decker et al. 1993; Cerruti et al. 1993; for 

review see Miller et al 1999).  Once inside the neuron, the neurotoxin induces a cascade 

of oxidative pathways that lead to apoptosis of the cell (Sauer & Oertel 1994; Crocker 

et al. 2001).  In normal animals, the dopamine transporter functions to reuptake excess 

synaptically released dopamine.  Upon entering the cell, the re-cycled dopamine is 

packaged into vesicles by vesicular monoamine transporter (VMAT2) (for review see 

Miller et al.1999). It is thought that the ratio of DAT to VMAT2 is predictive of 

susceptibility to Parkinson’s disease (for review see Miller et al. 1999). It is possible 

that treadmill running would induce a change in DAT expression, as exercise is known 

to alter dopamine synthesis and gene expression of catecholamines (Sutoo & Akiyama 

2003; Tümer et al. 2001).  If one session of treadmill exposure was able to induce an 
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effective down-regulation of DAT, thus blocking the uptake of 6-OHDA as suggested 

by Tillerson et al (2003), and if the uptake of 6-OHDA into the DA neuron occurs only 

during the first 24 hours post-injection, this may provide an explanation for the marked 

differences in the results of the present study compared to those of Tillerson et al 

(2003). Treadmill training in the present study did not begin until 24 hours post-

injection and it is possible most of the 6-OHDA was already taken up into dopaminergic 

neurons by this time, such that further treadmill training was not successful in 

preventing DA neuron cell death. If this is the case, then a single episode of treadmill 

training within 24 hours after 6-OHDA injection should ameliorate dopaminergic loss 

and behavioural deficits. The clearance and/or degradation of 6-OHDA from the extra-

cellular space requires further study and may play an important role in the prevention of 

neurodegeneration in this animal model. 

The possibility that very early behavioural training after 6-OHDA injection 

results in lack of striatal DA depletion raises an important issue. If the ultimate purpose 

for developing rehabilitation protocols in the 6-OHDA animal model is to apply them to 

Parkinsonian patients, then rehabilitation interventions should be assessed in animals 

which have developed Parkinsonian symptoms, i.e. after striatal DA depletion has 

developed 2 weeks post-injection. The biological constraints of the 6-OHDA model are 

interesting, of course, and should be further explored, but it is yet unclear how these 

would eventually have consequences for Parkinson’s patients. One potential application 

is the prevention of further development of symptoms in patients in the early stages of 

Parkinson’s, but there is no evidence that rats within the first 2 weeks after 6-OHDA 

injection are a model for human patients with early stage Parkinson’s. Instead, it may be 
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more useful to examine the effects of rehabilitation protocols in rats with partial lesions 

induced by smaller quantities of 6-OHDA, as previously suggested.    

 

4.3  The effects of exercise on catecholamine levels in healthy rats 

One important result from the present study which was consistent with previous 

studies was the reduction in DA depletion in trained 6-OHDA-injected animals. 

Treadmill exercise therefore has an effect on DA levels in the striatum. This also occurs 

in normal animals. Normal animals that undergo treadmill training at moderate speeds 

have an increased level of dopamine in the striatum, above that which is induced by 

other stresses alone (Hattori et al. 1994). Exercise training in normal rats results in a rise 

in tyrosine hydroxylase activity (the rate limiting enzyme for catecholamine synthesis), 

as measured by mRNA levels in various brain regions (Tümer et al. 2001).  

Catecholamines other than dopamine are also affected by exercise, but importantly, 

treadmill training has mixed effects on brain catecholamine levels depending on the 

training regime, which can alter the outcome dramatically (for review see; Dishman 

1997). Acute exposure to treadmill training has been found to induce a decrease in NE 

levels, whereas chronic forced exercise has been shown to increase NE in the 

hypothalamus, brainstem and amygdala. Interestingly, these changes in brain NE levels 

apparently attenuate the normal increase in NE following foot shock or immobilization 

stress in rats (Dishman et al. 2000). In the present study, there were no differences in 

the NE levels in the striatum between trained and untrained animals, likely due to the 3-

4 week time period between the end of treadmill training and analysis for catecholamine 

content. Moderate treadmill training has also been demonstrated to up-regulate growth 
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factors such as brain-derived neurotrophic factor, and growth factor receptors such as 

TrkB in healthy rats (Skup et al. 2002).  The result of such neurochemical changes on 

the effects of 6-OHDA injection are unclear and require close attention in future studies 

involving treadmill training. 

 

4.4 Catecholamine levels and behavioural correlates in 6-OHDA treated rats  

In the present study, there was essentially no effect of treadmill training on 

behavioural deficits in 6-OHDA injected animals despite some preservation of DA 

levels in the striatum in these animals. The discrepancy between striatal dopamine 

levels and performance on behavioural tests has been previously noted in this animal 

model (Metz & Whishaw 2002b).  It was found that apomorphine-induced rotation, an 

in vivo measure of striatal DA levels, was not correlated with endpoint measures of 

skilled forelimb reaching or performance on the ladder rung walking task (Metz & 

Whishaw 2002b).  Other studies have found that certain behavioural deficits, such as 

increased latency during switching from one behaviour to another (disengagement task), 

body axis asymmetry and some sensorimotor functions showed non-linear correlations 

to apomorphine-induced rotations and to the amount of dopamine remaining 

(Henderson et al. 2003).  Studies of animals with partial lesions demonstrated that these 

animals do not rotate after apo-morphine injection yet still have behavioural deficits on 

motor tasks (Barnéoud et al. 1995).  It is possible that there is a threshold level of 

dopamine that is required to produce functionally correct movements (e.g. >70-80 % 

reduction in normal levels) and that this threshold is different from that required to 

produce apomorphine rotations (>90% reduction in normal levels) (Barnéoud et al. 
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1995; Metz & Whishaw 2002b).  Thus, as previously mentioned, the small difference in 

striatal DA levels between trained and untrained animals in the present study may not 

have been sufficient to affect their behavioural performances. 

 

 

5. Conclusion 

The results of the present study demonstrate that treadmill training in a 6-OHDA 

model of Parkinson’s disease caused partial attenuation of dopamine loss in the 

striatum, but did not ameliorate behavioural deficits. These results are in contrast to 

several studies which have shown positive effects of training on behavioural recovery 

after 6-OHDA injection, but discrepancies between studies could be accounted for by 

differences in the type of training and methods of assessment. This study has provided 

new insights into the manner in which hemi-Parkinsonian animals move overground 

and highlights several important issues concerning rehabilitation protocols in this 

animal model. 
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