A 25 Year Review of Fertilizer Consumption and Plant Nutrient Removal in the Prairie Provinces.

P.J. Doyle, L.E. Cowell, D.A. Rennie, and C.A. Campbell*

Department of Soil Science, University of Saskatchewan, Saskatoon, SK. S7N 0W0 * Agriculture Canada Research Station, Swift Current, SK. S9H 3X2

Abstract

Nutrient removal / replacement ratios were calculated in Manitoba, Saskatchewan, and Alberta from 1965 to 1989 by dividing total fertilizer (N, P, and K) sales by the total crop removal of plant nutrients. The nutrient removal / replacement ratios revealed that significant depletions of soil reserves of N, P, and K have taken place over the past 25 years. The average negative balance of N, P₂O₅, and K₂O on the prairies is estimated at 640, 125, and 490 thousand tonnes. Even with the substantial increase in the use of fertilizers in the past five years compared to the 25 year average, the nutrient deficit continues to be unacceptably high for nitrogen (485,000 tonnes), only modest for phosphorus (86,000 tonnes), and as could be expected for potassium, has increased significantly to 570,000 tonnes. Overall, the calculations suggest that Manitoba is very close to nitrogen and phosphorus balance. Alberta has a relatively close balance, while Saskatchewan has not only experienced an unacceptably high N and P deficit for the past 25 years, but continues to do so at the present time.

Introduction

A pillar of sustainable agriculture is the need to balance inputs and exports of the major plant nutrients. In the data reported in this paper for the period 1965 to 1990, certain key assumptions were made:

 (1) All grains are removed from the field and all straw is reincorporated after harvest.
(2) Loss or exports of the major fertilizer nutrients due to leaching, soil erosion, denitrification or volatilization, while undoubtedly large in some instances can be regarded as relatively small as compared to that included in the grain, and therefore can, as a first approximation, be ignored.

(3) Fertilizer nutrient inputs are closely reflected in fertilizer sales.

(4) The recycling of nutrients by incorporating animal manure, while significant and important on specific farms, overall can be disregarded relative to fertilizer nutrient additions.

(5) Biological nitrogen fixation by legumes supplies 50% of the required nitrogen to these crops. Changes in this value will not have a large impact on the overall nitrogen balance, as legumes production is still relatively small.

Calculations:

To calculate the % summerfallow in each province, the total summerfallow acreage was divided by the arable land in each province. The arable land acreage was calculated by totalling the areas used for annual crop production plus that in fallow.

The amount of nutrients (N, P, K, or S) removed each year by each crop, and for each province, was calculated from the data given in Table 1 and the several statistical publications listed in the reference section. The ratio of each nutrient removal to replacement was calculated by dividing the total nutrient removal by crop growth by the total nutrient addition by fertilizer sales. For example, in Alberta the total crop removal of N in 1989 was 577,500 tonnes, and the total amount of fertilizer nitrogen sold in Alberta in the same year was 346,500 tonnes. The ratio of N export to input in 1989 was therefore 1.67. Similar calculations are reported for P and K for Alberta, Manitoba, Saskatchewan, and for all three prairie provinces together.

Fertilizer export / import calculations were not calculated for sulfur because suitable reports of sulfur fertilizer sales in Western Canada are not available for years before 1987.

Table 1. Plant nutrients in the seed portion of various crops (kg nutrient / tonne crop), assuming average growing conditions (Converted from data compiled by the Western Canada Fertilizer Association, 1978).

Crop	Nitrogen (N)	Phosphorus (P2O5)	Potassium (K ₂ O)	Sulfur (S)
Wheat	25	10.0	6.7	1.7
Barley	21	7.6	7.0	1.7
Oats	18	7.7	5.2	2.2
Rye [†]	21	8.4	6.3	1.9
Buckwheat	21	10.0	7.0	3.5
Corn	14	7.2	4.5	1.3
Canola	38	18.0	9.2	6.9
Flax	35	15.0 •	13.0	2.7
Mustard ^{††}	37	17.0	11.0	5.0
Mixed Grains ^{¥¥}	19	8.0	5.8	2.2
Sunflowers	25	8.8	6.9	1.5
Peas	37	9.6	12.0	2.4
Fababeans	45	11.0	39.0	2.0
Lentils¥	41	10.0	26.0	2.2
Sugarbeets	2	0.9	3.3	0.3
Tame Hay ^{¥¥}	21	5.7	26.0	2.1
Potatoes¥¥	3	1.5	5.0	0.3

† taken as the average of wheat, barley, and oats. †† taken as the average of canola and flax ¥ taken as the average of peas and fababeans

¥¥ Goettel (1987)

Summerfallow Acreage

Nutrient removal across the three prairie provinces is affected by all factors which directly influence total production. Included among these is the fallow acreage (Table 2). Percent fallow remained relatively constant until the late 1970's and then has declined rather dramatically, reaching a low of approximately 23% for the prairies in 1989. As long as the soil has a reasonable reserve of organic N, mineralization of N will be maximized under the more optimum microbial environment which occurs under intensive till fallow. This of course means that less fertilizer N would be required for optimum economic yields. However, with rather significant decreases in fallow over the past 15 years, not only has

the release of N from soil organic matter likely declined, but also the resulting increase in moisture use efficiency together with increased seeded acreage has lead to significantly greater yields and consequently greater total nutrient removal through the export of grain.

The fallow acreage in Alberta dropped from 30 to 18 % from 1965 to 1989 (Table 2). The drop in summerfallow acres was consistent from 1965 - 1981 except for 1970 (37 % fallow). This was the year that the LIFT (Lower Inventories For Tomorrow) was introduced. This program encouraged fallow acreage to decrease crop production. Alberta fallow acreages leveled off at about 19 % from 1982 - 1989 (suggesting relatively consistent land use).

In Manitoba, fallow acreage dropped from 25 to 10 % from 1965 -1989 (Table 2). The decrease in the acres of fallow was consistent from year to year except for 1970 when the LIFT program skewed the long term downward trend.

			% Sum	nerfallow	
Year	s Postav Station Station	Alberta	Manitoba	Saskatchewan	Prairies
1965	29-s	30.3	25.2	40.2	35.0
1966	11-	28.0	23.9	37.5	32.6
1967	a and a size	28.0	23.8	39.1	33.5
1968		28.9	. 24.1	38.6	33.6
1969	5	30.5	28.3	42.1	36.6
1970		36.7	34.8	55.4	46.7
1971		29.2	22.8	38.2	33.2
1972		31.4	24.8	47.2	36.6
1973	$\mathcal{A}_{\mu}\mathcal{G}$	28.4	21.1	39.5	33.4
1974		30.5	23.5	41.2	35.4
1975		28.2	21.7	41.1	34.3
1976		26.5	19.8	40.8	33.3
1977		28.4	19.4	40.4	33.6
1978		25.1	16.7	38.3	31.0
1979		25.6	17.5	38.4	31.4
1980		24.1	18.5	40.5	32.1
1981		21.6	12.4	36.7	28.5
1982		20.5	12.0	36.1	27.8
1983		19.7	11.1	35.2	26.9
1984		19.2	8.1	32.6	24.8
1985		19.1	8.1	31.6	24.3
1986		19.4	10.2	30.1	23.9
1987		19.5	10.6	31.5	24.8
1988		19.6	9.4	33.0	25.4
1989		18.1	9.6	30.9	23.5

Table 2. Percentage summerfallow of total acreage in Alberta, Manitoba, Saskatchewan, and for all three prairie provinces (1965 - 1989)¹.

¹Calculated from data obtained from: Canada Grains Council, Statistics Canada, 1974, 1981, & 1989.

The % summerfallow in Saskatchewan was relatively constant from 1965 - 1980 (excluding 1970) at approximately 40 % of total agricultural land (Table 2). In 1970, the

LIFT program resulted in 55 % of the agricultural land in fallow. The largest decrease in fallow acreage was between 1981 and 1989 (41 to 31 % fallow). The decrease in fallow acreage in the 1980's was likely due to increased awareness of the very low efficiency of water capture during fallow and the very high risk of soil erosion.

For the prairies as a whole, the average percent summerfallow from 1965 to 1977 (excluding 1970) was $\approx 34 \pm 1$ % (Table 2). From 1977 to 1989, fallow acreages dropped from 34 to 24 % for the three prairie provinces (Table 2).

Nutrient Addition / Removal:

The majority of N, P, K, and S removal in Manitoba, Alberta, and Saskatchewan is by grains (wheat, barley, oats, and rye). The 25 year (1965 - 1989) averages of grain production (as a percentage of total production) for Alberta, Manitoba, Saskatchewan, and all three prairie provinces totaled are: 61, 58, 81, and 67 % respectively (Statistics Canada, 1989). Each of these crops also has relatively high demand for N, P, K, and S (Table 1).

The average total N, P₂O₅, and K₂O removal by the grain calculated on the basis of each crop grown and addition by fertilizers for Alberta, Manitoba, and Saskatchewan is given in Tables 3, 4, and 5. The same tables show, on a comparison basis, averages calculated for the five-year period ending in 1989. Clearly a very significant draw-down in soil reserves of N, P, and K have taken place over the past 25 years. For the prairies, the negative balance expressed on a yearly average for N, P₂O₅, and K₂O has been 638 700, 123 400, and 488 200 tonnes (Table 6). Even with the substantial increase in use of fertilizers during the past five years compared to the average for the past 25 years, the nutrient deficit continues to be unacceptably high for nitrogen (485 400), modest for phosphorus (86 400), and as could be expected for nutrients such as potash, has increased significantly to 586 500 tonnes.

This nutrient balance did not account for several avenues of nitrogen losses (leaching, denitrification, volatilization and erosion) and gains (free nitrogen fixation and symbiotic N fixation). While there is no doubt that these additional losses and gains are important to the overall nutrient balance, their net effect wold be minute in comparison to fertilizer additions and grain harvest losses. Accordingly, from a plant nutrient prospective, contemporary agriculture even during the past five years is unsustainable from the standpoint of nitrogen balance. Soil N reserves continue to be drawn down at an unacceptable rate. In contrast, the negative P balance is relatively small and suggests that phosphorus is in relatively good balance. While potassium is in a very strong deficit situation, soil reserves of potassium are more than sufficient to meet crop requirements, except in isolate cases. Fortunately, these soils have been clearly identified.

The provincial nitrogen, phosphorus, and potassium nutrient removal / replacement ratios for Alberta, Manitoba, and Saskatchewan are given for the past 25 years in Tables 7 - 9. Average ratios for the three prairie provinces alone and as a whole are summarized in Table 10. It should be noted that these data suggest that Manitoba is very close to "full sustainability" in terms of nitrogen and phosphorus balance. Alberta is relatively close, while Saskatchewan has not only experienced an unacceptably high N and P deficit for the past 25 years, but continues to do so at the present time.

	Nitrogen (N)	Phosphorus (P2O5)	Potassium (K ₂ O
	196	55 -1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	424,300 82,400	152,300 29,800	239,600 50,800
Fertilizer addition (tonnes) Average Std. dev.	198,100 108,000	113,300 39,000	12,900 12,300
	198	84 -1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	536,500 81,700	192,700 27,800	311,400 61,000
Fertilizer addition (tonnes) Average Std. dev.	322,800 26,800	151,000 14,600	28,800 2,400

Table 3. Average N, P, and K removal and addition by crops and fertilizers in Alberta. *Note: assumes nutrient removal by grain only, i.e., straw is returned to soil.*

1965 - 1979 data from Statistics Canada Fertilizer Trade Catalogue (46-207 Annual) Pub. Minister of Industry, Trade, and Commerce. Information Canada, Ottawa. Western Canadian Fertilizer Association

Crop data = Spearin and O'Connor (1991)

Table 4. Average N, P, and K removal and addition by crops and fertilizers in Manitoba. *Note: assumes nutrient removal by grain only, i.e., straw is returned to soil.*

	Nitrogen (N)	Phosphorus (P ₂ O ₅)	Potassium (K ₂ O
	190	55 -1989	ha is so it is a star form an <mark>the contraction of</mark>
<u>Crop removal (tonnes)</u> Average Std. dev.	189,800 48,400	70,800 18,800	98,600 21,700
Fertilizer addition (tonnes) Average Std. dev.	124,000 77,900	70,800 28,500	9,900 9,200
	198	84 -1989	
Crop removal (tonnes) Average Std. dev.	243,000 52,500	91,700 20,100	121,900 24,100
Fertilizer addition (tonnes) Average Std. dev.	232,800 11,000	103,700 5,400	21,600 2,100

1965 - 1979 data from Statistics Canada Fertilizer Trade Catalogue (46-207 Annual) Pub. Minister of Industry, Trade, and Commerce. Information Canada, Ottawa. Western Canadian Fertilizer Association

Crop data = Spearin and O'Connor (1991)

Table 5. Average N, P, and K removal and addition by crops and fertilizers in Saskatchewan.

	Nitrogen (N)	Phosphorus (P ₂ O ₅)	Potassium (K ₂ O
∼,	1965	5 -1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	476,314 97,246	185,407 38,526	179,496 36,073
Fertilizer addition (tonnes) Average Std. dev.	124,642 107,217	106,810 50,627	4,030 4,811
	1984	-1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	542,788 135,396	214,397 52,876	200,897 47,219
Fertilizer addition (tonnes) Average Std. dev.	261,424 14,499	148,459 10,107	11,863 4,662

Note: assumes nutrient removal by grain only, i.e., straw is returned to soil.

1965 - 1979 data from Statistics Canada Fertilizer Trade Catalogue (46-207 Annual) Pub. Minister of Industry, Trade, and Commerce. Information Canada, Ottawa. Western Canadian Fertilizer Association Crop data = Spearin and O'Connor (1991)

3

Table 6. Average N, P, and K removal and addition by crops and fertilizers in the prairie provinces.

Note: assumes nutrient removal by grain only, i.e., straw is returned to soil.

	Nitrogen (N)	Phosphorus (P ₂ O ₅)	Potassium (K ₂ O
Ogen et al	1965	5 -1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	1,085,700 202,200	415,200 82,500	515,900 91,500
Fertilizer addition (tonnes Average Std. dev.	<u>s)</u> 447,000 287,900	291,800 116,000	27,700 26,900
	1984	4 -1989	
<u>Crop removal (tonnes)</u> Average Std. dev.	1,320,900 196,100	507,000 74,500	632,300 86,800
<u>Fertilizer addition (tonne.</u> Average Std. dev.	<u>s)</u> 835,500 39,500	420,600 32,700	63,800 5,900

1965 - 1979 data from Statistics Canada Fertilizer Trade Catalogue (46-207 Annual) Pub. Minister of

Industry, Trade, and Commerce. Information Canada, Ottawa. Western Canadian Fertilizer Association Crop data = Spearin and O'Connor (1991)

Year	Alberta	Manitoba	Saskatchewan	Prairies
1965	7.82	9.73	20.60	11.30
1966	6.77	5.30	15.70	8.84
1967	4.26	3.99	7.08	4.99
1968	4.06	2.93	8.61	4.75
1969	5.34	4.56	23.80	8.03
1970	6.00	4.16	35.40	8.65
1971	4.07	4.03	31.59	7.13
1972	4.14	3.41	19.85	6.03
1973	2.88	2.43	12.71	4.26
1974	2.26	1.61	7.78	3.05
1975	2.26	1.80	8.21	3.19
1976	2.28	1.55	9.81	3.23
1977	2.07	1.98	8.75	3.05
1978	1.98	1.57	5.59	2.64
1979	1.62	1.11	2.98	1.58
1980	1.87	0.84	2.94	1.83
1981	1.64	1.48	3.15	2.01
1982	1.60	1.47	3.20	2.04
1983	1.60	1.23	2.50	1.80
1984	1.29	1.16	1.60	1.37
1985	1.11	1.26	1.80	1.38
1986	1.94	1.17	2.22	1.83
1987	1.91	1.14	2.24	1.81
1988	1.77	0.65	1.28	1.28
1989	1.67	1.03	2.12	1.62

Table 7. Ratio between nitrogen removed by crop harvest and fertilizer nitrogen input for Alberta, Manitoba, Saskatchewan, and the prairie provinces from 1965 to 1989.

*Wheat (spring, winter, durum), Oats, Barley, Rye, Flax, Canola, Mixed Grains, Mustard, Sunflowers, Lentils, Peas, Canary Seed, Grain Corn, Buckwheat, Tame Hay, Sugar Beets, and Potatoes. Calculated from data obtained from: Canada Grains Council, Statistics Canada, 1974, 1981, & 1989. Agriculture Canada Policy Directorate, 1991. and Western Canada Fertilizer Association, 1991

Year	Alberta	Manitoba	Saskatchewan	Prairies
1965	2.13	2.77	3.22	2.65
1966	2.18	1.38	2.77	2.24 -
1967	1.53	1.26	1.54	1.48
1968	1.53	1.18	1.55	1.47
1969	2.07	1.89	3.85	2.64
1970	2.75	1.57	6.71	3.34
1971	1.91	1.63	5.62	2.78
1972	1.96	1.50	3.92	2.40
1973	1.42	1.11	2.63	1.73
1974	1.01	0.72	1.55	1.13
1975	1.13	0.81	1.64	1.24
1976	1.39	0.93	2.37	1.61
1977	1.17	1.24	2.69	1.59
1978	1.29	1.02	1.98	1.44
1979	1.26	0.77	1.27	1.03
1980	1.26	0.58	1.43	1.18
1981	1.16	0.93	1.47	1.31
1982	1.18	1.09	1.67	1.40
1983	1.08	0.93	1.35	1.20
1984	0.93	0.88	0.98	0.98
1985	0.83	1.08	1.14	1.03
1986	1.40	0.98	1.50	1.36
1987	1.41	0.98	1.55	1.39
1988	1.46	0.55	0.86	1.00
1989	1.37	0.85	1.42	1.27

Table 8. Ratio between phosphorus removed by crop harvest and fertilizer phosphorus input for Alberta, Manitoba, Saskatchewan, and the prairie provinces from 1965 to 1989.

*Wheat (spring, winter, durum), Oats, Barley, Rye, Flax, Canola, Mixed Grains, Mustard, Sunflowers, Lentils, Peas, Canary Seed, Grain Corn, Buckwheat, Tame Hay, Sugar Beets, and Potatoes. Calculated from data obtained from: Canada Grains Council, Statistics Canada, 1974, 1981, & 1989. Spearin and O'Connor, 1991. and Western Canada Fertilizer Association, 1991

Year	Alberta	Manitoba	Saskatchewan	Prairies
1965	1140	276	818	674
1966	769	116	689	382
1967	253	62	267	161
1968	143	52	192	114
1969	236	64	996	196
1970	149	56	1190	159
1971	117	70	937	150
1972	80	62	35	53
1973	166	54	619	147
1974	97	65	259	112
1975	65	40	324	. 80
1976	32	35	281	50
1977	18	23	180	117
1978	19	13	351	26
1979	16	8.2	56	15
1980	10	3.7	19	9
1981	11	5.6	48	10
1982	11	5.6	45	11
1983	10	6.5	37	12
1984	10	6.4	21	9.8
1985	。 9	6.4	25	8.9
1986	7	7.4	28	12
1987	12	6.5	19	12
1988	12	3.3	7	7.6
1989	11	5.2	22	10

Table 9. Ratio between potassium removed by crop harvest and fertilizer potassium input for Alberta, Manitoba, Saskatchewan, and the prairie provinces from 1965 to 1989.

Calculated from data obtained from: Canada Grains Council, Statistics Canada, 1974, 1981, & 1989. Spearin and O'Connor, 1991. and Western Canada Fertilizer Association, 1991

Table 10. Average nutrient removal / replacement ratios for Alberta, Manitoba,	
Saskatchewan, and the prairie provinces for 1965 to 1989 (25 years) and	
1984 to 1989 (5 years).	

Alberta	Manitoba	Saskatchewan	Prairies	
	· ·			
2.14	1.53	3.82	2.43	
1.66	1.04	2.08	1.58	
1.34	1.00	1.74	1.42	
1.28	0.88	1.44		
18.60	9.99	44.50	18.60	
	5.65	16.90	9.90	
	2.14 1.66	2.14 1.53 1.66 1.04 1.34 1.00 1.28 0.88 18.60 9.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Contribution of Fertilizer Nutrients into Crop Production

The amount of additional production produced per kilogram of fertilizer N and P depends on efficiency of nutrient uptake. A large number of factors affect fertilizer use efficiency (FUE) either positively or negatively, including the level of available soil nutrients, soil moisture, source of fertilizer, timing and placement of fertilizer, weed and pest population, biological immobilization, gaseous losses, and leaching.

Approximate estimates of the relationship between FUE and yield increases expressed in terms of wheat equivalents are given in Table 11a. The values given for the theoretical maximum or 100 % uptake assume a 40 bushel crop of wheat (2690 kg grain) contains 95 kg of N and 33 kg of P₂O₅ in the grain plus straw (WCFA, 1978). These estimates have been translated into tonnes of increased production for the 25 and 5 year periods ending in 1989, respectively (Table 11b). The dramatic impact of nutrient use efficiency is clearly demonstrated; the percent of total production due to fertilizer N and P for the past 5 years was minimally 15% or approximately 8 million tonnes, but with optimum fertilizer management practices could have been as high as 37% or 19 million tonnes of additional production .

Table 11(a). Fertilizer use efficiencies (FUE) of nitrogen and phosphorus fertilizers, based on wheat yields.

	k	g grain per kg N or P	kg N or $P_2O_5^1$	
	Theoretical maximum FUE (100%)	Research plot data FUE	Estimated "farm gate" FUE	
Nitrogen (N) Phosphorus (P ₂ O ₅)	28.3 81.5	14.2 16.3	5.7 8.1	

¹ Estimated from the WCFA (1978) nutrient requirement table and Beaton (1980), Campbell (1991), and Rennie (1990).

Table 11(b). Estimated annual production increase (wheat equivalents) for the prairies due to N and P fertilization, for specified fertilizer use efficiencies; 10^6 tonnes (% of total yield due to fertilizers).

Time period	Nitrogen FUE		Phosphorus FUE		
	50 %	20 %	20 %	10 %	
1965 - 89	*6.3 (15)	2.5 (6)	4.8 (11)	2.4 (6)	
1984 - 89	11.9 (23)	4.8(9)	6.9 (14)	3.4 (6)	

* Calculated from the average production data given in Table 6.

Discussion:

From 1965 to 1989, the amount of cultivated land on the prairies increased from 20 to 27 million hectares. The increase in land base resulted in an increase in total crop production from 38 to 57 million tonnes of crop from 1965 to 1989 respectively (Statistics Canada, 1974, 1989). Concurrently, the amounts of N, P₂O₅, and K₂O fertilizer applied increased from 76 to 840 thousand tonnes of nutrients from 1965 to 1989 (Statistics Canada, 1979; Spearin and O'Connor, 1991). Such increases are due in part to the onset of continuous cropping through the late 1970's and early 1980's and a decline in the N supplying power of the soil. Improved fertilizer management (eg., new placement techniques), the introduction of fertilizer blends, and improved soil testing procedures also aided in the increased production as these factors lead to improved FUE. An earlier review by Beaton (1980) provides an excellent review of some improvements and advances made in the western Canadian fertilizer industry.

Balance of N and P removal and replacement is a key to sustainable crop production. Such balances may be achieved through sound agronomic management. Generally, fertilizer management practices that lead to high fertilizer use efficiency simultaneously result in maximum economic benefits, and minimum environmental contamination.

The percent of total yield due to fertilizer N and P has been shown to vary dramatically with changing FUE. Production increases (for the prairies) from fertilizer N and P expressed as tonnes of wheat equivalent per year is estimated to be at least 8.2 million tonnes and could range to as high as 18.8 million tonnes, depending on fertilizer management practices. Conversely, improved fertilizer management practices could have lead to dramatic reductions in fertilizer N and P requirements, with the same yields maintained.

Acknowledgements:

The authors would like to express sincere gratitude to the following for making this project possible: 1.) Environmental Sustainability Initiative Fund, 2.) Agriculture Canada, and 3.) Eston Crop Club.

References:

- Alberta Agriculture. 1989. Alberta Agricultural Statistics Yearbook. Pub. Alberta Agriculture, Statistics Branch. Edmonton, Alberta.
- Beaton, J.D. 1980. The role of N, P, K, and S. Prairie Production Symposium Session III. Advisory Committee to the Canadian Wheat Board. University of Saskatchewan, Saskatoon, Sask.
- Campbell, C.A., R.P. Zentner, F. Selles, B.G. McConkey, and F.B. Dyck. 1991. Nitrogen management for spring wheat grown annually on zero-tillage. - yields and N use efficiency. Submitted to Agron. J.
- Goettel, A.W. 1987. Crop nutrient removals and additions in Alberta. pp. 219 232. In: Proceedings of the 24th Annual Alberta Soils and Crops Workshop. Calgary, Alberta.

- Laverty, D.H., J.R.D. Partridge, and J.W. Hamm. 1976. The requirements and removal of nitrogen by agriculture. pp. 128 158 In: Proceedings of Western Canada Nitrogen Symposium, Alberta Soil Science Workshop. January, 1976, Calgary, AB.
- Manitoba Agriculture. 1989. Manitoba Agricultural Statistics Yearbook. Pub. Manitoba Agriculture, Winnipeg Manitoba.
- Rennie, D.A. 1990. Fertilizer N and P use efficiency. A short review prepared for the Products and Services Dept. ESSO Chemical Canada. Edmonton, AB.
- Saskatchewan Agriculture and Food. 1989. Saskatchewan Agricultural Statistics Handbook. Pub. Saskatchewan Agriculture and Food. Statistics Section. Regina, Saskatchewan.
- Spearin, M. and K. O'Connor. 1991. Canadian Fertilizer Consumption, Shipments and Trade. 1989/90. Input Industries and Markets Section, Farm Development Policy Directorate, Agriculture Canada. Ottawa, Ontario.
- Statistics Canada. 1974, 1981, and 1989, Canadian Grains Industry Statistical Handbook. Field Crop Reporting Series. Catalogue 22-002. Pub. Canada Grains Council. Ottawa, Ontario.
- Statistics Canada. 1979. Fertilizer Trade Catalogue (46-207 Annual). Pub. Minister of Industry, Trade and Commerce. Information Canada, Ottawa, Ontario.
- Western Canada Fertilizer Association. 1978 and 1991. Nutrient Conversion Statistics Sheet and Retail Fertilizer Sales Survey (Year ending June 30/89,91).