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Abstract 
 

 The hypothesis that the Earth’s mantle is composed of chemically distinct layers has long 

provided a solution to reconcile chemical differences between mid-ocean ridge basalts and ocean-

island basalts. In particular, a perovskitic lower mantle can account for the “missing silicon problem”, 

whereby the upper mantle Mg/Si ratios are systematically higher than chondritic values. Knowledge of 

the bulk chemical and mineralogical profile of the mantle is crucial in constraining models of Earth’s 

convection and dynamics in time, which controls the evolution of igneous processes over Earth’s 

history. The main argument against compositional layering in Earth’s mantle has been observations 

from seismic waves that subducted slabs reach the lower mantle, which imply the existence of a 

component of whole mantle convection. However, recent geodynamical modeling has shown that 

subducted slabs can reach the lower mantle in models including chemical layering. Here, we provide 

new theoretical evidence for a chemically layered mantle, with a perovskitic lower mantle. Our results 

are obtained from a novel approach for predicting mineral compositions, which is based on the 

observation that exchange interactions play an important role in determining optimal compositions in 

Hubbard insulators as well as weak-metals. Our model also provides a solution for the existence of the 

enigmatic large-low-shear-velocity provinces. We provide evidence for the stability of anomalously Fe-

rich brigdmanite, which implies the existence of chemical gradients in the lower mantle. This in turn 

offers a mechanism for the origin of partial melting and mantle plumes in the lower mantle.          
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CHAPTER 1 

Introduction 

 

The notion of a chemically layered mantle originated from the observation of chemical 

differences between mid-ocean ridge basalts (depleted in incompatible elements) and ocean-island 

basalts (less depleted in incompatible elements) (Hofmann, 1997). Since it is not possible to obtain 

samples from depths down to the lower mantle, its chemical and mineralogical composition must be 

inferred by integrating geophysical observations with high-pressure-temperature experiments (Frost, 

2008). Knowledge of the composition profile of the mantle, is crucial in determining planetary 

evolution and dynamics (Kaminsky and Javoy, 2013). Unfortunately, uncertainties in high-pressure-

temperature mineral stabilities, as well as physical properties have led workers to ongoing debates 

about bulk lower mantle compositions, ranging from peridotitic to chondritic (Murakami et al 2012).  

A peridotitic lower mantle had long been the most commonly accepted model, whereby the 

mineralogical constituents are magnesian-silicate perovskite (now formally defined as bridgmanite 

(Bm) [Mg, Fe]SiO3 (Tschauner et al, 2014)), calcium-silicate perovskite and magnesiowüstite/periclase 

(Pr; [Mg, Fe]O) (Kesson, 1998). Such a model would imply a lack of chemical layering (atleast in terms 

of major elements) in the mantle, which is supported by seismic tomographic observations, that 

sinking, subducted slabs penetrate into the lower mantle (Frost, 2016). However, recent geodynamical 

modelling indicates that slabs reach the lower mantle, and this is not inconsistent with the chemical 

layering hypothesis (Ballmer et al, 2015). Furthermore, silicate enrichment in the lower mantle 

(consistent with the perovskitic lower mantle hypothesis, in which it is assumed that the lower mantle 

is composed almost exclusively of Fe-bearing Bm) is needed to explain the discrepancy between the 

upper mantle composition and that of chondritic meteorites (Murakami et al, 2012; Frost, 2016). As 
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well, the signature of noble gas isotopes supports a primitive reservoir in the lower mantle that is 

enriched in silica (Moreira et al 2012; Marty, 2012; Mukhopadhyay 2012). This calls for a re-evaluation 

of the mantle compositional profile model.  

Recent experiments suggested that Fe partitions from Bm to other phases at the conditions of 

the lower mantle (Zhang et al, 2014). However, on a broad scale the perovskitic model remains most 

plausible, based on comparison with the Preliminary Reference Earth Model (PREM) (Dzewonski and 

Anderson, 1981), generated from seismic observations (Ricolleau et al 2009; Murakami et al, 2012). 

Albeit, compositional heterogeneities may be necessary to explain the presence of anomalous large 

low-shear velocity provinces (LLSVPs) (Mao et al, 2011).  

Here, we provide theoretical evidence consistent with a chemically layered mantle, whereby 

the lower mantle is dominated by Fe-bearing Bm. Our results are based on the observation that 

mineral compositions can be explained using a simple model of neighbour spin-spin interactions. 

Geodynamical implications of a perovskitic lower mantle are discussed. We also provide evidence for 

compositional heterogeneities in the lower mantle, which supports a model capable of reconciling the 

presence of LLSVPs. Moreover, the presence of chemical heterogeneities provides an additional 

mechanism for partial melting in the deep Earth and the generation of mantle plumes.   

An understanding of the underlying mechanism responsible for driving the variability of 

mineral compositions is important for not only predicting the composition of planetary materials in 

exotic conditions (extraterrestrial conditions, planetary interiors, etc.) but also for using mineral 

properties to make inferences about the environment of formation. The composition of minerals at 

high pressures and temperatures has generally been determined from high pressure temperature 

experiments, which however are strongly dependant on complicating factors such as oxygen 

fugacities, capsule materials, sluggish kinetics of the equilibration and heterogeneity in the samples 
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(Nakajima et al., 2012). 

Here we present the first attempt at understanding the mechanism driving mineral 

compositions through a first-principles theoretical study. Our analysis shows that exchange 

interactions may be primordial in governing the compositions of weak metals as well as Hubbard 

insulator minerals. In doing so, we develop a new method for quickly and easily determining the 

variability of mineral compositions as a function of pressure and temperature and use this method to 

predict the composition of the lower mantle. The method is first developed through calculations on 

the well-known mineral pentlandite (Pn). We then apply and validate the new approach for predicting 

the compositions of the major phases in the upper and lower mantle as well as the transition zone, 

whose properties are crucial for describing the mantle convection (Deuss et al, 2006). The success of 

our approach in predicting these compositions, suggests that the method should prove useful in 

mapping the mineralogy of planetary interiors. It is noteworthy that the proposed approach does not 

require total energy calculations to make the compositional predictions. The method is developed 

from a relation that is observed between the ground-state composition and the magnetic moment of 

the magnetic species (in this case 𝐹𝑒 atoms). We suggest that this relation exists in weak metals and 

Hubbard insulators (such as the minerals studied here), where the spin degrees of freedom are 

allowed to fluctuate throughout the solid, even though electrons are relatively itinerant. In fact, 

volume, density and elemental partitioning changes in these types of minerals have been observed 

experimentally to coincide with pressure-induced mineral spin-transitions (Lin et al., 2008; Murakami 

et al., 2005). This supports the hypothesis that exchange interactions are important for driving the 

variability of mineral compositions. 

Most minerals display at least partial disorder (Mustapha et al., 2013). Here, the term disorder 

denotes the fact that the position of an atom does not depend on (or is not correlated with) the 
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position of other atoms in the crystal lattice. Accurate modeling of compositional variations in 

minerals and other crystalline solids has previously been hampered by this treatment of disorder. The 

simplest case is that of perfect disorder, where atomic positions are completely uncorrelated. This 

corresponds to the high-temperature limit, where configurational entropy is a maximum. Although 

approximate, the case of perfect disorder has been proven to be successful in describing the 

properties of metamorphic and igneous phases (Sarmiento-Perez et al., 2014; Efthimiopoulos et al., 

2015; Skelton et al., 2015). Here, we adopt the perfect disorder approximation by using the Special-

Quasi-random Structure (SQS) approach (Kikuchi et al. 1951; Sanchez et al. 1984; Van de Walle et al. 

2013). This SQS approach allows us to determine the optimal distribution of the atoms by matching a 

specified set of correlations (or cluster functions) between the neighboring atoms to the 

corresponding correlations of the perfectly disordered state. In this way, the SQS approach provides 

the best periodic supercell approximation to the true disordered state (Van de Valle et al., 2013). 
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CHAPTER 2 

Methods 

 

In the SQS approach, 𝝈� denotes the vector of lattice site compositions, 𝜎𝑖 for lattice site 𝑖�. We 

have 𝜎𝑖 ∈ [0,𝑀𝑖 − 1] if there are 𝑀𝑖  distinct chemical components at the site 𝑖� (Van de Walle et al, 

2013). We call correlation the quantity which determines how the composition of one lattice site 

depends on the composition of all other lattice sites. Our task consists of finding the set of 

compositions 𝝈� which yield the lowest correlation for all lattice sites. The set of sites of a particular 

correlation is called a cluster, denoted by 𝜶�, whose length spans all lattice sites. We set 𝛼𝑖 = 1 if site 

𝑖� belongs to 𝜶�, and 𝛼𝑖 = 0 if site 𝑖� does not belong to 𝜶�.�In accordance with the Ising lattice model, 

we define the correlation 𝜌𝛼(𝝈) associated with cluster 𝜶� as a symmetrized average over cluster 

functions Γ𝜶(𝝈) = ∏ 𝛾𝛼𝑖,𝑀𝑖𝑖 (Sanchez et al., 1984; Van de Walle et al., 2013): 

 

𝜌𝛼(𝝈) = ⌊∏𝛾𝛼𝑖
′,𝑀𝑖

(𝜎𝑖)

𝑖

⌋

𝜶

�,�������������������������������������������������������������(1) 

 

where the product runs over all lattice sites and ⌊… ⌋𝜶 is the average taken over all clusters 𝜶′ 

equivalent by symmetry to 𝜶.  To find the optimal configuration of atoms, the correlation of a 

candidate structure 𝜌𝛼(𝝈) must match that of the perfectly disordered state 𝜌𝛼(𝝈
𝒓𝒏𝒅). For a perfectly 

disordered state, site occupations are completely independent. Hence, the symmetrized average over 

cluster functions in equation (1) becomes a simple product over the average composition of all lattice 

sites: 
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𝜌𝛼(𝝈
𝒓𝒏𝒅) = ⌊∏𝛾𝛼𝑖

′,𝑀𝑖
(𝜎𝑖

𝑟𝑛𝑑)

𝑖

⌋

𝜶

=∏⌊𝛾𝛼𝑖
′,𝑀𝑖

(𝜎𝑖
𝑟𝑛𝑑)⌋

𝜶
𝑖

�.��������������������������(2) 

 

The correlation difference for a candidate SQS can then be strictly defined as Δ𝜌𝛼(𝝈) =

𝜌𝛼(𝝈) − 𝜌𝛼(𝝈
𝒓𝒏𝒅). Finding the optimal SQS then consists of minimizing an objective functional of the 

following kind: 

 

𝑄 = −𝜔𝐿 + ∑|�Δ𝜌𝛼(𝝈)|

𝜶∈𝓐

�,�����������������������������������������������������(3) 

 

where 𝐿� is the largest 𝑙� such that Δ𝜌𝛼(𝝈) = 0 for all clusters with 𝑑𝑖𝑎𝑚(𝜶) ≤ 𝑙. 𝓐 is a user specified 

set of clusters and 𝜔� is a user specified weight. The first term of 𝑄� represents the fact that the quality 

of a candidate SQS should reflect the number of clusters that are matched exactly and the second 

term assures that the optimal SQS approaches perfect disorder (Van de Walle et al, 2013). Here, 𝑄 is 

minimized by sampling configurations using a simulated annealing procedure. This procedure has 

been implemented in the mcsqs code of the Alloy Theoretic Automated Toolkit (Van de Walle et al, 

2013). 

Once the optimal configuration of atoms is obtained, the ionic, magnetic and electronic 

degrees of freedom are relaxed by solving the SCF-Kohn-Sham equations. In doing so we use the spin-

polarized GGA Hamiltonian of Perdew, Becke and Ernzerhof (1996) (PBE), as is usually done for 

metallic systems and materials with small band gaps. However, it is well known that the PBE 

Hamiltonian fails to properly describe the exchange and correlation effects in 3d and higher energy 

level electrons. To circumvent this problem, we adopt an effective Hamiltonian as proposed by 
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Hubbard (1968). The orbital-dependent potentials of Hubbard (1968) are implemented using the 

rotationally-invariant form proposed by Duradev et al. (1998), which includes corrections to the total 

energy according to the first-order term in the multipolar Coulomb and Exchange series (Term 

containing radial Slater integrals of the form 𝐹0). A Slater integral denotes a Coulomb or Exchange 

Hartree-Fock integral of the form ⟨𝜓𝑎𝜓𝑏|𝑂̂|𝜓𝑐𝜓𝑑⟩, where the 𝜓𝑖  are normalized Slater functions (i.e. 

analytical solutions of the one-electron Schrödinger equation) and the indices 𝑎, 𝑏, 𝑐, 𝑑 generally 

combine a set of sequential numbers and cell indices. 𝑂̂ is an operator consisting of a sum of terms, 

where each term is inversely proportional to the distance between the centers of the Slater functions. 

Here 𝐹𝑘 denotes the radial part of these integrals in the 𝑘𝑡ℎ order of the multipolar expansion of 𝑂̂. 

In this manner orbital energies, described as the self-consistent expectation values of the Kohn-Sham 

Hamiltonian are calculated as follows: 

 

𝐸𝑚 = 𝐸𝑃𝐵𝐸 +
𝑈𝑒𝑓𝑓

2
∑(𝑛𝑚,𝓈 − 𝑛𝑚,𝓈�

2 )

𝓈

�,������������������������������������������������(4) 

  

where 𝑚 denotes the momentum quantum number, 𝓼 is the spin quantum number, 𝑈𝑒𝑓𝑓 is the 

effective Coulomb parameter and 𝑛𝑚,𝓈 is the (second-quantized) spin density. Equation (4) displays 

the well-known behavior of 𝑈𝑒𝑓𝑓, which introduces an energy penalty to the pertinent functional 

which favors integer occupation (full or empty) of the orbital manifold over partial occupations. 

Specifically, we use 𝑈𝑒𝑓𝑓 = 4.5𝑒𝑉 for 3d electrons in Fe and 𝑈𝑒𝑓𝑓 = 6.0�𝑒𝑉 for 3d electrons in Ni 

(Aryasetiawan et al, 2006; Duradev et al, 1998). Justification for the choice of these values is provided 

in the following sections. 
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  Broullion zone sampling are performed on a 4*4*4 Γ-centered mesh, where Γ denotes the 

center point of the first Broullion zone. Gaussian finite-temperature smearing of the one-electron 

energy levels was used.  The crystalline-orbitals were expanded with a plane-wave basis set with a 

400 eV energy cut-off. Electron-ion interaction were treated within the Projector-Augmented-Wave 

(PAW) potentials (Blochl, 1994). Here, the d, semi-core s and p states are treated as valence electrons. 

Semi-core states consist of plane waves which intersect the augmentation and valence regions of the 

PAW potentials. The Kohn-Sham Hamiltonian was diagonalized with a band-by-band generalized 

minimal residual minimization method. The ionic degrees of freedom were optimized through 

conjugate-gradient minimization of the total energy, using the Hellmann-Feynman forces (Kresse et 

al, 1996). The relaxation of the electronic and ionic degrees of freedom were considered to have 

converged when the change in the total (free)-energy (and eigenvalues of the KS Hamiltonian for the 

electronic loop) between two subsequent relaxation steps did not exceed 400 eV. These tolerances 

were found to give converged results for lattice geometries and energies of formation. Tighter 

tolerances are used for calculation of other observables (see below). Since the systems are magnetic, 

calculations with the spin unrestricted formalism were performed. This relaxation of the ionic, 

magnetic and electronic degrees of freedom was performed using the VASP code (Kresse et al, 1996). 

The Mossbauer QS and IS values reported in the thesis were calculated using the following 

formulas: 

QS =
1

2
𝑒𝑀𝑉𝑧𝑧 (1 +

𝜂2

3
)

1
3

�����������������������������������������������������������(5) 

 

𝐼𝑆 = 𝛼[|𝜓(0)|2 − |𝜓𝑏𝑐𝑐(0)|
2],����������������������������������������������������(6) 
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where 𝑒 is the elementary charge, 𝑀 is the quadrupole moment of the relevant nucleus (in our case 

𝐹𝑒57), 𝜂 is the asymmetry parameter (𝜂 = |𝑉𝑦𝑦 − 𝑉𝑥𝑥|/|𝑉𝑧𝑧|), if |𝑉𝑧𝑧| ≥ |𝑉𝑦𝑦| ≥ |𝑉𝑥𝑥| are the 

eigenvalues of the 3 × 3 EFG tensor. |𝜓(0)|2 is the electron density extrapolated to the nuclear 

position for the system under consideration, while |𝜓𝑏𝑐𝑐(0)|
2 is the corresponding value for body-

centered-cubic 𝛼 − 𝐹𝑒. Finally, 𝛼 is an element-specific nuclear calibration constant. Here, we use the 

ubiquitous values of 𝛼 = −0.24�𝑎𝑜
3�𝑚𝑚�𝑠−1 (Blaha and Schwarz, 1988) and 𝑄 = 0.16�𝑏𝑎𝑟𝑛 (Dufek et 

al., 1995) for 𝐹𝑒57.  

 The calculation of the elements of the magnetic susceptibility tensor 𝜒𝑖𝑗 is achieved using a 

reciprocal-space finite-difference formula of the form (Yates et al, 2007): 

 

𝜒𝑖𝑗 =
𝑙𝑖𝑚
𝑞 → 0

𝐹𝑖𝑗(𝑞) − 2𝐹𝑖𝑗(0) − 𝐹𝑖𝑗(−𝑞)

𝑞2
,����������������������������������������������(7) 

 

where 𝐹𝑖𝑗 are quantities which include effects of perturbation of the PAW pseudo-wavefunction in 

first order with respect to the applied field and contains corrections for the difference in the norm of 

the PAW pseudo-wavefunction and the true wavefunction inside the augmentation region (Yates et 

al, 2007). Here, we use the value 𝑞 = 0.001. These derivatives are evaluated by interpolating the 

PAW projectors to 𝑞 in reciprocal space using a cubic spline. The magnetic susceptibility (and 

magnetic moment calculations of Figures 3 and 6) were performed using tighter tolerances of 500 eV 

for the plane-wave energy cutoff and energy convergence criterion for the electronic SCF loop. These 

are the highest tolerances that were computationally feasible using our available resources. 
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CHAPTER 3 

Results 

 

3.1 Pentlandite 

 

The mineral pentlandite [Pn, (𝐹𝑒, 𝑁𝑖)9𝑆8] is known to have a composition that clusters around 

𝐹𝑒

(𝐹𝑒+𝑁𝑖)
≈ 0.4 − 0.6 in terrestrial rocks, despite the fact that this mineral has been documented to 

occur in diverse geological environments and lithological associations (Laznicka, 2013). Also intriguing 

is the fact that even though Pn occurs mostly as a ternary Fe-Ni-rich phase with 
𝐹𝑒

(𝐹𝑒+𝑁𝑖)
≈ 0.5, Pn with 

𝐹𝑒

(𝐹𝑒+𝑁𝑖)
≈ 0.7 has been reported to occur in meteorites by Hoffman et al. (2001) and Ni-free Pn has 

been synthesized by Nakazawa et al., (1973). 

Figure 1(a, b) shows the unit cell and dominant features of the crystal structure of Pn. Metal 

clusters consisting of eight tetrahedrally coordinated metal atoms occur across unit cell boundaries. 

The tetrahedral metals are bonded to three face-capping sulphurs and one bridging sulphur. The 

bridging sulphur atoms connect tetrahedrally-coordinated metal clusters through bonding with the 

octahedral metals. 
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Figure 1:  (a) Pn unit cell and (b) metal sulphide cluster occurring in Pn unit cell. The cluster consists of 

eight tetrahedral metal (𝑀𝑇) atoms. The 𝑀𝑇  are bonded to three face-capping (𝑆𝑓) sulphurs and one 

bridging sulphur (𝑆𝑙). The 𝑆𝑙 link the clusters through bonding with octahedral metals (𝑀𝑂). (c) 

𝑀𝑂 

𝑀𝑇 

𝑆𝑙 

𝑆𝑓 

a) 

b) 

c) 
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Periclase unit cell. 

 

 

In the minimization of the 𝑄� functional (see equation 3), two-body correlations are matched 

up to the sixth nearest neighbor, three-body and four-body correlations are matched up to the 2nd 

nearest neighbours. We used a 2*2*1 supercell consisting of 68 atoms, which is sufficiently large to 

guarantee the stability of the SQS solution. We used the weight 𝜔�=1 (see equation (3)) and the 𝑄� 

functional is minimized for simulated annealing temperatures of 1, 10 and 100 [unit-less]. The 

minimization was considered to have converged when sixteen independent samplings of 𝑄� yield the 

same result. The correlation differences Δ𝜌𝛼(𝝈) reach the same values regardless of the simulated 

annealing temperature. This suggests that a global minimum in 𝑄� has been reached and the optimal 

structure has been obtained (at least for the chosen set of clusters and supercell size). The obtained 

correlation differences can be found in the supplementary material. 

The extracted lattice and atomic parameters from the SQS approach are then used as a starting 

point to solve the KS-SCF equations. It is noteworthy that calculations performed with 𝑈𝑒𝑓𝑓 = 0, or 

with halved the 𝑈𝑒𝑓𝑓 values for 3d states predicted diamagnetic structures, in disagreement with the 

observed paramagnetic behaviour (Knop et al., 1975); the extracted energy of formation patterns did 

not vary as a function of composition, which is also incorrect. To validate the chosen 𝑈𝑒𝑓𝑓 (vide supra) 

value, we have computed the Mossbauer Quadrupole splitting (QS) data for the terrestrial Pn 

compositions ((Fe/((Fe+Ni) )=0.56).  The theoretical values of 0.33 mm/s to 0.56 mm/s are in 

reasonable agreement with the experimental values of  ~0.3 mm/s (Knop et al., 1975). To further test 

the choice of  𝑈𝑒𝑓𝑓 we calculated the total-energy and Mossbauer parameters of Pn using the Range-

separated hybrid HSE06 Hamiltonian and an all-electron (AE) localized basis-set using the program 
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CRYSTAL14 (Dovesi et al, 2014).  We adopted the geometric and magnetic information retrieved from 

the PAW/PBE+U results as the initial inputs. Further details on the AE calculation can be found in the 

supplementary information. The AE calculation yielded a QS of ~0.55-0.7 mm/s, in agreement with the 

PAW/PBE+U result. We also extracted the isomer shift (IS) of Pn from the electron density difference 

(between body-centered-cubic Fe and Pn) at the nuclear position. This yielded IS values of ~0.234 

mm/s and ~0.293 mm/s for the octahedral and tetrahedral Fe sites, respectively, again in reasonable 

agreement with the experimental results of 0.22-0.36 mm/s and 0.46-0.65 mm/s (Knop et al., 1975). 

For the extraterrestrial Pn composition (
𝐹𝑒

(𝐹𝑒+𝑁𝑖)
= 0.72̅), the AE calculations yielded IS values of 

~0.175-0.199 mm/s, as compared to the experimental result of ~0.4 mm/s reported by Hoffman et al 

(2001). The minor discrepancies between the calculated and measured Mossbauer parameters are 

most likely the result of the inability of the hybrid and GGA+U Hamiltonians to describe the sphericity 

of core charge distributions, as was noted by other authors (Casassa and Ferrari, 2016; Sinnecker et al, 

2005; Nemykin and Hadt, 2006).    

For comparing the obtained magnetic structures with experimental data, we have calculated 

the 3 × 3 magnetic susceptibility tensor 𝝌̂ of terrestrial Pn using the linear response formula of Yates 

et al. (2007). 𝝌̂ is diagonalized to 𝝌̅ and we report the value 𝜒 = 𝑇𝑟[𝝌̅]/3, which is a scalar that can 

be compared to the experimental results. Here, 𝑇𝑟 denotes the trace operator. We obtain a value of 

𝜒 = 1.4E-5 emu/g, in comparison with the 0.977E-5 emu/g (extrapolated to 0 °K) of Knop et al. 

(1975). Unfortunately, we cannot directly compare the calculated total unit cell dipole moment to any 

experimental value, because the magnetic susceptibility of Fe-Ni Pn has not been measured in the 

regime over which the Curie law holds, so that no simple relation exists between measured 

susceptibility and mean magnetic moment. 

Figure 2 shows the energies of formation that were determined by independently computing 
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the total energies of Pn for various compositions, as well as crystalline Ni, Fe and S in their ground 

states using the PAW/PBE+U Hamiltonian. The black circles represent solutions obtained when an 

initial antiferromagnetic (AFM) spin-configuration was assumed, the blue stars denote those obtained 

from an initial ferromagnetic (FM) state and the red crosses are for an initial non-magnetic (NM) state. 

These calculations are performed from SQS solutions whereby the Fe concentration in the 32 

tetrahedral sites are scaled proportionately to the composition, whereas the 4 octahedral sites contain 

only Fe for Fe-rich compositions (50% Fe and over), and only Ni for Ni-rich compositions (less than 

50% Fe). The red diamonds in Figure 2 represent the solution obtained using an initial FM state and a 

second site-occupation mixing model (model 2), whereby both octahedral and tetrahedral site 

compositions are scaled proportionately to the global composition (i.e., site-occupancies of Ni and Fe 

are less than unity in both octahedral and tetrahedral sites). Of course, in all cases the magnetic 

degrees of freedom were subsequently relaxed.  We find a minimum in the energy of formation when 

the supercell contains about 26 Fe atoms (
𝐹𝑒

(𝐹𝑒+𝑁𝑖)
= 0.72̅), which represents the extraterrestrial Pn 

composition. The fact that our ground state calculations find a minimum in the energy of formation 

near the extraterrestrial Pn composition but not the terrestrial Pn composition should not come as a 

surprise. Experimental phase diagrams have previously suggested that Pn occurs as a more Fe-rich 

phase at lower temperatures (Harris and Nickel, 1972). At higher temperatures, a minimum in the 

energy of formation might be found to occur at the terrestrial composition (
𝐹𝑒

(𝐹𝑒+𝑁𝑖)
≈ 0.5). A local 

minimum in the energy of formation for the second mixing model (red diamonds in Figure 2) is not 

clearly seen near the terrestrial composition. However, this minimum will become clearer in Figure 4 

(see text below for explanation), suggesting a stable phase under different thermodynamic conditions. 



15 

 

 

Figure 2: Energies of formation of Pn as a function of composition. The black circles are for initial 

antiferromagnetic states, the blue stars are for initial ferromagnetic states, the red crosses are for 

initial non-magnetic states and the red diamonds are for initial ferromagnetic states, using the second 

site-mixing model. 

 

 

An understanding as to why an energy minimum occurs at the extraterrestrial composition can 

be gathered from Figure 3. These figures are plots of the energy of formation and the total magnetic 

moment per supercell as a function of the Pn composition. These plots are generated from the set of 

Pn structures, which give a minimum for their respective compositions. Figure 3 shows that a local 

(and not global) minimum exists in the magnetic moment per supercell at the extraterrestrial 

composition. This is because the Fe atoms systematically have higher individual magnetic moments 
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than Ni atoms. Therefore, as the composition varies from Fe-rich to Fe-poor, the magnetic moment 

per supercell decreases as a result of changes in the bulk composition. The effects of bulk composition 

can be removed by normalizing the magnetic moment per supercell by the number of Fe atoms in the 

cell. This results in a normalized magnetic moment, which does have a global minimum at the 

extraterrestrial Pn composition. 

 

 

a) 

b) 
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Figure 3: Plot of the (a) total primitive cell magnetic moment, (b) normalized magnetic moment as a 

function of Pn composition.  

 

The existence of this relation between the magnetic moment and the formation energy 

suggests that exchange interactions are important in dictating the Pn composition. Our calculations 

retrieve atomic magnetic moments of ~3�𝜇𝑏 for the Fe atoms, ~1�𝜇𝑏 for the Ni atoms and negligible 

moments for S atoms. Assuming that the magnetic Fe-atom centers account for most exchange 

interacts in the crystal, we can simplify the exchange interactions as neighbour Fe-Fe spin-spin 

interactions within n-body clusters of finite radius. The Fe-Fe spin-spin interactions can be of direct 

exchange type (in which the Fe atoms are nearest neighbours), or of superexchange type (in which the 

Fe atoms interact through a non-magnetic S anion). Under these assumptions, the relation between 

the magnetic moment and the formation energy translates to a relation between the number of the 

Fe-Fe neighbours in the n-body clusters and the formation energy.  

We plot the number of the Fe-Fe neighbours of the clusters as a function of composition for 

both site-mixing models in Figure 4. These curves were generated starting from the ambient-pressure 

neutron powder diffraction crystal structures of Tenailleau et al. (2006) and using our site occupancies 

obtained from the SQS calculations. We find that the curves reach a stable solution using a diameter 

of 10 𝐴̇ for the clusters. This diameter is also used for all subsequent figures of this type, unless 

otherwise specified. The curves show that the number of Fe-Fe neighbours generally increase as the 

composition becomes more Fe rich. Sharp drops in the curves occur at more stable compositions, 

because a smaller number of Fe-Fe neighbours corresponds to a decrease in exchange interactions, 

which in turn lowers the magnetic moment and the formation energy. The black curve (representing 

the first (one-site) mixing model at 298 K) shows a sharp decrease at the extraterrestrial composition, 
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in agreement with the total-energy calculations. The red curve (second (two-site) mixing model at 298 

K) has sharp drops both at the terrestrial and extraterrestrial compositions, again in agreement with 

the local and global minimums found at these compositions for the same mixing model with the total-

energy calculations. The blue curve (two-site mixing, 573 K) shows a drop at the terrestrial 

composition and a less pronounced drop at the extraterrestrial composition. These results further 

support the hypothesis that the terrestrial composition is favoured at high temperatures. Again all 

these compositional predictions made with Figure 4 did not require total-energy calculations. A code 

for calculating and plotting curves similar to those in Figure 4 is provided in Appendix II. 

 

Figure 4: Number of Fe-Fe neighbors inside the n-body clusters as a function of Pn composition. The 

black curve is for the first (one site) mixing model at 25 °C, while the blue and red curves are for the 

second (two-site) mixing model at 300 and 25 °C, respectively.  

298 K model 1 

573 K model 2 

298 K model 2 
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3.2 Application to Principle Phases in the Upper Mantle and Transition Zone  

To further demonstrate that how plots similar to Figure 4 can be useful in determining 

compositional changes as a function of thermodynamic variables, we validate the method through 

applications to the dominant phases involved in the transitions at the 660 km mantle discontinuity, as 

well as the upper mantle. These phases are olivine (Ol; [Mg, Fe]2SiO4) (the principal phase in the 

lithospheric mantle); as well as ringwoodite (Rw; [Mg, Fe]2SiO4), Bm and Pr. The discontinuity from 

the upper mantle to the transition zone is vital in determining the mantle convective style (Hofmann, 

1997; Schubert, et al., 2001). It is marked by seismic reflections over a wide range of depths, which 

may require the existence of multiple phase transitions (Deuss et al, 2006). It has been inferred that at 

~24 GPa (660 km depth), Rw transforms to an assemblage of Bm and Pr (Frost, 2008). The crystal 

structure of Pr is shown in Figure (1c), which is a simple face-centered cubic unit-cell. We performed 

the SQS calculations on these systems using an approach similar to that developed for Pn. More 

details can be found in the supplementary information. 

For Pr, we use the 0 GPa and 25 GPa X-ray diffraction crystal structures of Fei et al. (1992) as 

the starting models. Figure 5(a) shows the obtained neighbour analysis curves for Pr at 0 GPa, 573 K 

(in red) and at 25 GPa, 803 K (in black). The low pressure curve has a dip at an Fe concentration of 

~0.5. The high pressure curve has a dip at an Fe concentration of ~0.35. These Pr compositions are in 

agreement with the experimental results of Frost and Langenhorst (2002), Ozawa et al. (2008) and 

Nakajiwa et al., (2012).  The Rw curve in Figure 5(b), which was generated from the X-ray diffraction 

crystal structure of Hazen et al (1993) (1673 K, 22 GPa), shows a dip at a Fe concentration of 0.15, 

which is in agreement with the experimental result of Frost et al (2001). For Ol, we use the ambient 

condition crystal structure of Merli et al (2001). The results presented in Figure 5(c) display a dip at an 

Fe concentration of ~0.2, which is within the range of the Ol compositions observed in mantle 
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xenoliths (Bernstein et al, 2007). 

 

a) 

b) 
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Figure 5: Fe Neighbour analysis plots for (a) Pr, (b) Rw (c) Ol (d) Bm. 

 

  

In order to validate the importance of exchange interactions in predicting these mineral 

compositions, we have performed total-energy calculations at 25 GPa, on the Pr series. Using a 𝑈𝑒𝑓𝑓 =

4.5𝑒𝑉 for Fe 3d states, and an Fe concentration of 0.35, we obtain a QS value of ~1.34 mm/s at 25 

GPa, compared to the experimental result of Lin et al. (2009) of ~1.05 mm/s of Pr with a Fe 

concentration of 0.25 at 20 GPa. We obtain a slightly closer agreement with the experiment using a 

𝑈𝑒𝑓𝑓 = 3.5�𝑒𝑉 for Fe 3d states of ~1.27 mm/s.  More importantly, using 𝑈𝑒𝑓𝑓 = 3.5�𝑒𝑉 allow us to 

ensure that the solution converges to a Fe-high-spin-state solution for most Fe atoms, to maintain 

agreement with previous theoretical and experimental studies (see Tsuchiya et al, 2006 and 

references therein). As a result, we use the 𝑈𝑒𝑓𝑓 = 3.5�𝑒𝑉 for calculations on the rest of the series. 

This value of 𝑈𝑒𝑓𝑓 deviates slightly from the values proposed by Tsuchiya et al (2006), which we 

c) 
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attribute to the fact that their calculations are based on the local density approximation, whereas ours 

are based on GGA, as well as different approximations involved in the treatment of the on-site 

Coulomb interactions. For the purposes of this study, we limit the calculations only to the high 

pressure case. At lower pressures, different effective Coulomb parameters would be required, because 

the effects of localized d-electron correlations are expected to decrease with pressure. Furthermore, 

resolving the magnetic structures of the Pr series at low pressures most likely requires a more explicit 

treatment of higher order terms in the multipolar Coulomb and Exchange series (correction according 

to approximate treatment of radial Slater integrals of the form 𝐹2, 𝐹4, 𝐹6, see methods section) for 

the description of the on-site Hubbard term, and these are not captured by equation (4) (which only 

considers corrections due to approximate treatment of 𝐹0). Figure (6) shows the variation of the total 

energy and normalized magnetic moment for the Pr series at 25 GPa, which have minimums at the Fe 

concentration of ~0.35, as predicted by the neighbour analysis curves. 

 

a) 
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Figure 6: (a) Energy of formation of Pr as a function of composition (b) average magnetic moment of 

the Fe atoms as a function of composition, which we report instead of the quantity in Figure 3(b), as 

here Fe are the only magnetically active atoms. 

 

 

 

 

 

 

 

 

 

 

 

b) 
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3.3 Predictions on the Lower Mantle Compositions 

 The neighbour analysis method is now applied to predict the composition of Bm at conditions 

relevant to the 660 km mantle discontinuity, as well as the lower mantle. The curve relevant to the 

660 km mantle discontinuity was generated from the XRD crystal structure of Jephcoat et al (1999) 

(1920 K, 25 GPa). The lower mantle curve was generated using the unit-cell parameters of Zhang et al. 

(2014) (2300 K, 101 GPa), who determined the variation of the Bm parameters in a laser-heated 

diamond anvil cell (DAC). Solid-state reactions in the DAC, as well as other experimental difficulties 

preclude refinement of the crystal structure of the Fe-bearing Bm phase at the lower mantle 

conditions. As a result, the lower mantle Bm Wyckoff positions were extracted from the Mg end-

member phase of Fiquet et al (2000) (2500 K, 94 GPa). Zhang et al (2014) predicted a nearly Fe-free 

Bm composition at these conditions, so the Wyckoff position of Fiquet et al. (2000) should be 

compatible with their lattice parameters. Regardless of possible uncertainties in the Bm crystal 

structure we predict a more Fe-rich composition using the end member parameters, so Wyckoff 

positions from an Fe-bearing Bm experiment would not change our results and conclusions. 

 Figure 7 shows that the obtained neighbour analysis curve relevant to conditions at the 660 km 

mantle discontinuity has a dip at an Fe concentration of ~0.12, which is in agreement with the 

experimental composition of Frost and Lagenhorst (2002). The curve relevant to conditions of the 

lower mantle also has a dip at an Fe concentration of ~0.12, which is a composition that is consistent 

with models that predict a compositionally layered mantle with a perovskitic (more silicic) lower 

mantle. Interestingly, a dip in the curve also occurs at an Fe concentration of ~0.23, suggesting that 

both of these compositions are stable at lower mantle conditions. This finding is consistent with the 

experimental result of Mao et al (2011), who found that the anomalously low shear-wave velocities of 

LLSVPs can be reconciled by the presence of Fe-rich Bm in the lower mantle. Their experiments were 
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performed on Bm with an Fe concentration of 0.25, which is very close to our predicted Fe-rich 

composition. 

 

Figure 7. Neighbour analysis curves for Bm crystal structures relevant to conditions at the 660 km 

mantle discontinuity and the lower mantle. 
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CHAPTER 4 

Discussion and Conclusion 

 In the calculation of the curves of Figures 4, 5, 7, convergence of the shape of the curve and 

position of the minima was thoroughly checked with regards to all computational parameters. These 

parameters are the size of the supercell, the number of matched cluster functions, the value of the 

fictitious simulated annealing temperature and the radius of the spheres involved in enumerating the 

number of Fe-Fe neighbours. The only sources of errors in the curves present in Figures 4, 5 and 7 can 

therefore be considered to be errors in the SQS approximation (perfect disorder or high-temperature 

limit), as well as negligible numerical errors. However, as stated and referenced in the introduction, 

the SQS approximation has been successfully applied to igneous and metamorphic phases, which are 

also even lower temperature phases than the mantle phases studied here. We therefore expect that 

the SQS approximation should be sufficient for our purposes. 

 The curves of Figure (7) and Figure (5b) have minima and compositions which are inconsistent 

with the experimental compositions (Fe concentration of 0.35 and 0.5 for Figure (7) and Fe 

concentration of 0.4 and 0.7 for Figure (5b)). This occurs because our calculations generate a set of 

favourable structures (in the sense of minimizing exchange interactions) which cannot always 

unambiguously predict the lowest-energy composition at a particular thermodynamic conditions. The 

set of minima not corresponding to the experimental composition may either not occur in nature 

because it is not permitted by the bulk composition of the system (for example: not enough Fe 

available at onset of crystallization), or because these compositions are de-stabilized by other factors 

(such as kinetic factors, lattice strain, or Coulombic forces, etc…). The most favourable composition 

can therefore only be unambiguously predicted when only one minimum occurs in the curve (as in 
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Figure 4, Figures 5a, 5c). Otherwise the approach needs to be combined with experiments or 𝑎𝑏 −

𝑖𝑛𝑖𝑡𝑖𝑜 calculations on the set of composition corresponding to minima in order to determine the most 

favourable composition. Nevertheless, our neighbour analysis approach to predicting mineral 

composition has proven useful in describing the major phases of the Earth’s interior and could have 

uses in determining compositions in other thermodynamic conditions. This is an important 

development, as experimental complications associated with phase equilibration experiments, such as 

sluggish kinetics of the ion exchange reactions, provide difficulties in predicting mineral composition 

at high pressure-temperature conditions (Nakahima et al, 2012).  

Exchange interactions are important in governing mineral compositions in the weak metal, as 

well as Hubbard insulator minerals studied here. We suspect this is because electrons are relatively 

itinerant in these systems, even though spin-spin interactions may occur over a long range through 

super-exchange interactions. This allows the crystal to vary its spin degrees of freedom in order to 

accommodate the most energetically favourable composition. In other systems of higher electrical 

conductivity, it is possible that Coulombic interactions would have a greater control on determining 

optimal mineral compositions. A further understanding of the mechanism inducing the observed 

relation between total energy, composition and magnetic moment would require a detailed sampling 

of the spin-hamiltonian, using for example a Heisenberg model. However, such a study is beyond our 

computational capabilities with current theoretical approaches. 

 Our results predict a composition of 12% Fe in Bm. One major factor which is not considered in 

the calculations is the partitioning of Fe from Bm to other phases (in particular Pr, which is the most 

commonly predicted stable phase in the lower mantle, excluding Bm). However, partitioning of Fe 

from Bm to Pr (and other phases) would need to lower the Fe in Bm to a value of 5-8% in order to 

agree with experiments that predict a pyrolytic composition (Ricolleau et al 2008; Kesson et al, 1998). 
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Assuming that the lower mantle’s modal mineralogical proportions is 80% Bm and 20% Pr, our results 

predict that Pr would need to contain 28-40% Fe in order to lower the Fe composition of Bm to the 

desired value. Noteworthy is that 20% Pr is a much higher modal proportion than most experiments 

would suggest, so that the required Fe composition of Pr is likely much more severe. To our 

knowledge, no experimental or theoretical evidence exists to support such a high Fe content in Pr. Our 

results are therefore consistent with a compositionally layered mantle, whereby the lower mantle 

adopts a more silicic (perovskitic composition). Such a chemical layering may have formed following a 

giant impact, such as that required for the formation of the moon. This impact would have shock 

melted at least a major proportion of the Earth’s mantle (Frost, 2016; Canup, 2004; Carlson et al, 

2014). The subsequently formed magma ocean would allow for fractional crystallization and settling of 

Bm, as it would have been the liquidus phase for most of the lower mantle (Frost, 2016; Adrault et al, 

2011; Liebske and Frost, 2012).  

The 12% Fe in Bm raises the Bm density by ~1.05% over the pure Mg end member. The actual 

density value also depends on the assumed unit cell volume and modal mineral proportions. However 

this result can help study discrepancies in model lower mantles densities compared to PREM values. 

 We also predict stability of more Fe rich (~0.23 Fe concentration) Bm, which provides a model 

to account for the presence of LLSVPs in the lower mantle (Mao et al, 2011). These anomalous Fe-rich 

mantle provinces may represent residues from partial melting of sinking slabs, because any extracted 

liquid would be buoyant and would not be preserved in the lower mantle (Andrault et al, 2012). The 

high Fe content can be incorporated in the Bm lattice with increased Al contents (Mao et al, 2011), 

and this is a probable mechanism, as subducted slabs are often highly aluminous due to the 

immobility of aluminous phases during metasomatism. The interpretation of LLSVPs as representing 

chemically distinct piles would suggest that chemical gradients exist in the lower mantle and this 
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provides an additional mechanism for partial melting and formation of mantle plumes. 

 Recent geodynamical modeling (Ballmer et al, 2015) suggests that chemical layering in the 

mantle is not inconsistent with whole-mantle convection. The convection allows for down-going slabs 

to reach the lower mantle. The presence of a component of whole-mantle convection supports the 

hypothesis that partial melting of down going slabs produces LLSVPs. Although, we cannot completely 

discount the possibility of layered mantle convection, as the convective regime is highly sensitive to 

the mantle density profile (Ballmer et al, 2015). Layered mantle convection allows for a greater degree 

of preservation of local chemical gradients at the transition zone to the lower mantle boundary, which 

allows for partial melting and formation of mantle plumes.  

 

 

 

 

 

 

 

 

 

 



30 

 

CHAPTER 5 

References 

Andrault, D., N. Bolfan‐Casanova, G. Lo Nigro, M. A. Bouhifd, G. Garbarino, and M. Mezouar 2011. 

Solidus and Liquidus Profiles of Chondritic Mantle: Implication for Melting of the Earth Across its 

History. Earth and Planetary Science Letters. 304, 251–259. 

Andrault, D., S. Petitgirard, G. Lo Nigro, J. L. Devidal, G. Veronesi, G. Garbarino, and M. Mezouar 

2012. Solid‐liquid Iron Partitioning in Earth’s Deep Mantle. Nature, 487, 354–357. 

Aryasetiawan, F., Karlsson, K., Jepsen, O. and Schonberger, U. 2006. Calculation of Hubbard U from 

First Principles. Phys Rev. B. 74(12), 125106-1-9. 

Ballmer, M.D., Schmerr, N.C., Nakagawa, T. and Ritsema, J. 2015. Compositional Mantle Layering 

Revealed by Slab Stagnation at ~1000-km Depth. Science Advances. 1:e1500815. 

Bernstein, S., Kelemen, P.B. and Hanhoj, K. 2007. Consistent Olivine Mg# in Cratonic Mantle Reflects 

Archean Mantle Melting to the Exhaustion of Orthopyroxene. Geology. 35(5), 459-462. 

Blochl, P.E. 1994. Projector Augmented-Wave Method. Phys. Rev. B. 50(24), 17953-17979. 

Canup, R. M. 2004. Simulations of a Late Lunar‐forming Impact. Icarus. 168, 433–456. 

Carlson, R. W., E. Garnero, T. M. Harrison, J. Li., M. Manga, W. F. McDonough, S. Mukhopadhyay, B. 

Romanowicz, D. Rubie, Zhong S. and Williams Q. 2014. How did Early Earth Become our Modern 

World? Annual Review of Earth and Planetary Science. 42, 151–178. 

Casassa, S., & Ferrari, A. M. (2016). Calibration of 57 Fe Mössbauer Constants by First Principles. 

Physical Chemistry Chemical Physics. 18(15), 10201-10206. 



31 

 

Deuss, A., Redfern, S.A.T., Chambers, K., Woodhouse, J.H. 2006. The Nature of the 660-Kilometer 

Discontinuity in Earth’s Mantle from Global Seismic Observations of PP Precursors. Science. 331, 198-

201. 

Dovesi, R., Orlando, R., Erba, A., Zicovich‐Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., 

Ferrabone, M., De La Pierre, M., D'Arco, P. and Noël, Y., 2014. CRYSTAL14: A Program for the Ab 

Initio Investigation of Crystalline Solids. International Journal of Quantum Chemistry. 114(19), 1287-

1317. 

Duradev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. and Sutton A.P. 1998. Electron-Energy-

Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B. 57(3), 

1505-1509. 

 Dziewonski, A.M. and Anderson, D.L., 1981. Preliminary Reference Earth Model. Physics of the 

Earth and Planetary Interiors. 25, 297-356. 

Efthimiopoulos, I., Liu, Z.T.Y., Khare, S.V., Sarin, P., Lochbiler, T., Tsurkan, V., Loidl, A., Popov, D. 

and Wang, Y. 2015. Pressure-Induced Transition in the Multiferroic CoC r2O4 Spinel. Physical Review 

B. 92(6), 064108. 

Fei, Y., Mao, H.K., Shu, J. and Hu, J. 1992. PVT Equation of State of Magnesiowüstite (Mg0. 6Fe0. 4) 

O. Physics and Chemistry of Minerals. 18, 416-422. 

Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. and Le Bihan, T. 2000. Thermoelastic Properties and 

Crystal structure of MgSiO3 Perovskite at Lower Mantle Pressure and Temperature Conditions. 

Geophysical Research Letters, 27, 21-24. 

Frost, D., J. and Myhill R. 2016. Chemistry of the Lower Mantle. Deep Earth: Physics and Chemistry 



32 

 

of the Lower Mantle and Core. In Press. 

Frost, D. J. 2008. The Upper Mantle and Transition Zone. Elements. 4(3), 171-176. 

Frost, D. J., and F. Langenhorst. 2002. The Effect of Al2O3 on Fe-Mg Partitioning Between 

Magnesiowüstite and Magnesium Silicate Perovskite. Earth Planet. Sci. Lett. 199, 227–241, 

doi:10.1016/S0012-821X(02) 00558-7. 

Frost, D. J., F. Langenhorst, and P. A. van Aken. 2001. Fe-Mg Partitioning Between Ringwoodite and 

Magnesiowüstite and the Effect of Pressure, Temperature and Oxygen Fugacity. Phys. Chem. Miner. 

28, 455–470, doi:10.1007/s002690100181. 

Harris, D.C. and Nickel, E.H. 1972. Pentlandite Compositions and Associations in Some Mineral 

Deposits. Canadian Mineralogist. 11, 861-878. 

Hoffman, E., Housley, R.M., Bland, P.A., Seifu, D. and Oliver, F.W. 2001. Fe-Rich Pentlandite in 

Allende Bulk Sample and Separates: Mossbauer Spectroscopic Analysis. 32nd Annual Lunar and 

Planetary Science Conference. March 12-16, 2001, Houston, Texas, abstract no.2116. 

A W. Hofmann, 1997. Mantle Geochemistry: the Message from Oceanic Volcanism. Nature. 385, 219-

229. 

Hazen, R.M., Downs, R.T. and Finger, R.W. 1993. Crystal Chemistry of Ferromagnesian Silicate 

Spinels: Evidence for Mg-Si Disorder. American Mineralogist. 78, 1320-1323. 

Hubbard, J. 1968.  Electron Correlation in Narrow Energy Bands: Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences. 276, 238-257 

Jephcoat, A.P., Hriljac, J.A., McCammon C. A., O’Neill, H. St. C., Rubie, D.C. and Finger, R.W. 1999. 



33 

 

High-resolution Synchrotron X-ray Powder Diffraction and Reitvelf Structure Refinement of Two 

(Mg.95Fe.05)SiO3 Perovskite Samples Synthesized Under Different Oxygen Fugacity Conditions. 

American Mineralogist. 84, 214-220. 

Kaminski, E. and Javoy, M. 2013. A Two-Stage Scenario for the Formation of the Earth's Mantle and 

Core. Earth and Planetary Science Letters. 365, 97-107. 

Kesson, S.E., Gerald, J.F. and Shelley, J.M. 1998. Mineralogy and Dynamics of a Pyrolite Lower 

Mantle. Nature. 393, 252-255. 

Kikuchi, R. 1951. Theory of Cooperative Phenomena. Physical Review. 81, 988-1002. 

Kresse, G. and Furthmuller, J. 1996. Efficiency of Ab-Initio Total Energy Calculations for Metals and 

Semiconductors using a Plane-Wave Basis Set. Computational Materials Science. 6, 15-50. 

Knop, O., Huang, C. H., Reid, K. I. G., Carlow, J. S., & Woodhams, F. W. D. 1976. Chalkogenides of 

the Transition Elements. X-Ray, Neutron, Mössbauer, and Magnetic Studies of Pentlandite and the π 

phases π (Fe, Co, Ni, S), Co 8 MS 8, and Fe 4 Ni 4 MS 8 (M= Ru, Rh, Pd). Journal of Solid State 

Chemistry. 16(1), 97-116. 

Laznicka, P., 2013. Empirical metallogeny: Depositional Environments, Lithologic Associations and 

Metallic ores. Elsevier. 

Lin, J.F., Watson, H., Vankó, G., Alp, E.E., Prakapenka, V.B., Dera, P., Struzhkin, V.V., Kubo, A., Zhao, 

J., McCammon, C. and Evans, W.J. 2008. Intermediate-Spin Ferrous Iron in Lowermost Mantle Post-

Perovskite and Perovskite. Nature Geoscience. 1(10), 688-691. 

Lin, J. F., Gavriliuk, A. G., Sturhahn, W., Jacobsen, S. D., Zhao, J., Lerche, M., & Hu, M. 2009. 

Synchrotron Mössbauer Spectroscopic Study of Ferropericlase at High Pressures and Temperatures. 



34 

 

American Mineralogist. 94(4), 594-599. 

Mao, Z., Lin, J.F., Scott, H.P., Watson, H.C., Prakapenka, V.B., Xiao, Y., Chow, P. and McCammon, C. 

2011. Iron-rich Perovskite in the Earth's Lower Mantle. Earth and Planetary Science Letters, 309, 179-

184. 

Marty, B. 2012. The Origins and Concentrations of Water, Carbon, Nitrogen and Noble Gases on Earth. 

Earth Planetary Science Letters. 313–314, 56–66. 

Merli, M., Oberti, R., Caucia, F. and Ungaretti L. 2001. Determinations of Site Populations in Olivine: 

Warnings on X-ray data. American Mineralogist. 86, 55-65. 

 Moreira, M., Breddam, K., Curtice, J. and Kurz, M. 2001. Solar Neon in the Icelandic Mantle: 

Evidence for an Undegassed Lower Mantle. Earth Planetary Science Letters. 185, 15–23. 

Mukhopadhyay, S. 2012. Early Differentiation and Volatile Accretion Recorded in Deep-Mantle Neon 

and Xenon. Nature. 486, 101–104. 

Murakami, M., Hirose, K., Sata, N. and Ohishi, Y. 2005. Post‐perovskite phase transition and mineral 

chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters. 32(3), L03304-L03307. 

Murakami, M., Ohishi, Y., Hirao, N. and Hirose, K. 2012. A Perovskitic Lower Mantle Inferred from 

High-pressure, High-temperature Sound Velocity Data. Nature. 482, 90-95. 

Mustapha, S., D’Arco, P., De La Pierre, M., Noël, Y., Ferrabone, M., and Dovesi, R. 2013. On the Use 

of Symmetry in Configurational Analysis for the Simulation of Disordered Solids. Journal of Physics: 

Condensed Matter. 25(10), 105401. 

Nakajima, Y., Frost, D.J. and Rubie D.C. 2012. Ferrous Iron Partitioning Between Magnesium Silicate 



35 

 

Perovskite and Ferropericlase and the Composition of Perovskite in the Earth’s Lower Mantle. Journal 

of Geophysical Research. 117, B08201-B08212. 

Nakazawa, H., Osaka, T. and Sakaguchi, K. 1973. A New Cubic Iron Sulfide Prepared by Vacuum 

Deposition. Nature Physical Science. 242, 13-14. 

Nemykin, V. N. and Hadt, R. G. (2006). Influence of Hartree-Fock Exchange on the Calculated 

Mössbauer Isomer Shifts and Quadrupole Splittings in Ferrocene Derivatives Using Density Functional 

Theory. Inorganic Chemistry. 45(20), 8297-8307. 

Ozawa, H., Hirose, K., Mitome, M., Bando Y., Sata, N. and Ohishi, Y. 2008. Chemical Equilibrium 

Between Ferropericlase and Molten Iron to 134 GPa and Implications for Iron Content to the Bottom of 

the Mantle. Geophysical Research Letters. 35, L05308-L05312. 

Perdew, J.P., Burke, K. and Ernzerhof, M. 1996. Generalized Gradient Approximation Made Simple.  

Physical Review Letter. 78, 1396. 

Ricolleau, A., Fei, Y., Cottrell, E., Watson, H., Deng, L., Zhang, L., Fiquet, G., Auzende, A.L., 

Roskosz, M., Morard, G. and Prakapenka, V. 2009. Density profile of Pyrolite Under the Lower Mantle 

Conditions. Geophysical Research Letters. 36(6), L06302-L06307. 

Sanchez, J.M., Ducastelle, F. and Gratias, D. 1984. Generalized Cluster Description of Multicomponent 

Systems. Physica. 128A, 334-350. 

Sarmiento-Pérez, R., Botti, S., Schnohr, C. S., Lauermann, I., Rubio, A., and Johnson, B. 2014. Local 

Versus Global Electronic Properties of Chalcopyrite Alloys: X-ray Absorption Spectroscopy and Ab 

Initio Calculations. Journal of Applied Physics. 116(9), 093703. 

G. Schubert, D. L. Turcotte, P. Olsen. 2001. Mantle Convection in the Earth and Planets. Cambridge 



36 

 

University Press, Cambridge, UK. 

Sinnecker, S., Slep, L. D., Bill, E., and Neese, F. 2005. Performance of Nonrelativistic and Quasi-

Relativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in 57Fe 

Mössbauer Spectra. Inorganic chemistry. 44(7), 2245-2254. 

Skelton, R., and Walker, A. M. 2015. The Effect of Cation Order on the Elasticity of Omphacite from 

Atomistic Calculations. Physics and Chemistry of Minerals. 42(8), 677-691. 

Tenailleau, C., Etschmann, B., Ibberson, R. M., and Pring, A. 2006. A Neutron Powder Diffraction 

Study of Fe and Ni Distributions in Synthetic Pentlandite and Violarite Using 60Ni Isotope. American 

Mineralogist. 91(8-9), 1442-1447. 

Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B. and Rossman, G.R. 2014. 

Discovery of Bridgmanite, the Most Abundant Mineral in Earth, in a Shocked Meteorite. Science. 346, 

1100-1102. 

Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R., and de Gironcoli, S. 2006. Spin Transition in 

Magnesiowüstite in Earth’s Lower Mantle. Physical Review Letters. 96(19), 198501. 

Van de Walle, A., Tiwary, P., de Jong, M., Olmsted, D.L., Asta, M., Dick, A., Shin, D., Wang, Y., Chen, 

L,-Q. and Liu, Z.-K. 2013. Efficient Stochastic Generation of Special Quasirandom Structures. 

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 42, 13-18. 

Van de Walle, A. 2009. Multicomponent, Multisublattice Alloys, Nonconfigurational Entropy and 

Other Additions to the Alloy Theoretic Automated Toolkit. CALPHAD: Computer Coupling of Phase 

Diagrams and Thermochemistry. 33, 266-278. 

Yates, J. R., Pickard, C. J., and Mauri, F. 2007. Calculation of NMR Chemical Shifts for Extended 



37 

 

Systems Using Ultrasoft Pseudopotentials. Physical Review B. 76(2), 024401. 

Zhang, L., Meng, Y., Yang, W., Wang, L., Mao, W.L., Zeng, Q.S., Jeong, J.S., Wagner, A.J., Mkhoyan, 

K.A., Liu, W. and Xu, R. 2014. Disproportionation of (Mg, Fe) SiO3 Perovskite in Earth’s Deep Lower 

Mantle. Science. 344, 877-882. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

Chapter 6 

APPENDIX I 

Supplementary Information 

 

6.1 The SQS Calculation 

 

 

 In all SQS calculations reported, we test the convergence of the solutions with respect to 

supercell size, number of matched cluster functions and by assuring that a global minimum is reached 

in the minimization through increasing the fictitious simulated annealing temperature. As in Pn, we 

assume that the solutions have converged when 12 independent samplings of 𝑄 reach the same result 

and we use the weight 𝜔 = 1. We report the obtained absolute values of the correlation differences in 

Tables S1-S7. The correlations are for specific cluster functions, which are labelled by two indices 𝑖, 𝑗 

in Δ𝜌𝑖,𝑗, where 𝑖 denotes the number of lattice sites and 𝑗 denotes the number of nearest neighbor shells. 

When results are presented in the thesis for the same mineral at different pressures or temperatures, we 

performed the calculations individually on all lattices. However, sometimes we found no difference in 

the obtained correlation differences, so we only report the correlation differences for one representative 

calculation. For the Pr calculations, we used a 3*1*1 supercell consisting of 60 atoms. 2-body 

correlations were matched up to sixth nearest neighbor, while three- and four-body correlations were 

matched up to second nearest neighbor. For the Bm calculations at 25 GPa, we used a 3*4*2 supercell 

consisting of 480 atoms. Two-body correlations were matched up to seventh nearest neighbor, while 

three-body correlations were matched up to fifth nearest neighbor and four-body correlation were 

matched up to sixth nearest neighbor. Fot the Bm calculations at ~100 GPa, we used a 3*4*4 supercell 

consisting of 960 atoms. Two and three body correlations were matched up to fifth nearest neighbour. 

For Rw, we used a 5*1*1 supercell consisting of 70 atoms. 2-body correlations were matched up to 
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fifth nearest neighbor, while three- and four-body correlations were matched up to second nearest 

neighbor.  Finally for Ol, we used a 3*1*2 supercell consisting of 168 atoms. 2-body correlations were 

matched up to sixth nearest neighbor, while three body correlations were matched up to third nearest 

neighbor and four-body correlations were matched up to seventh nearest neighbor shells. 
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6.2 Pn Ab-initio Calculations 

    

 The AE/HSE calculations were performed using a Γ-centered 4*4*4 mesh in the reciprocal net 

and an 8*8*8 mesh in the Gilat net. We use a Fermi finite-temperature smearing of the fermi-surface, 

using the smearing width 𝑘𝑇 = 0.02�ℎ𝑎 and the spin-unrestricted formalism. For Fe and Ni, we use the 

86-411(d41)G basis sets of Towler et al (1995). For S, we use the 86-3111G** basis set of Bredow et al 

(2004). These basis sets consist of a set of Gaussian functions. The Gaussian functions are grouped (or 

contracted) into so-called shells for the purposes of evaluating bielectronic integrals (see below). The 

Gaussian with the lowest exponent is called the adjoined Gaussian of the shell. The Gaussian functions 

are combined linearly to form the so-called atomic-orbitals, which are approximations to Slater 

functions. The atomic-orbitals have the same periodicity as the crystal. A linear combination of atomic-

orbitals multiplied by plane waves forms a Bloch function. The Bloch functions offer a convenient way 

to capture the effects of the periodicity of the (infinite) crystal on the electronic wavefunction at any 

point in space. A linear combination of Bloch functions provides a basis for representing the electronic 

wavefunction of the infinite crystal.  

Finally, Treatment of integrals related to the Coulomb and Exchange series are controlled in the 

CRYSTAL14 code using five parameters which were set to 6 6 6 6 12. The first parameter is 𝐼𝑇𝑂𝐿1 =

−𝑙𝑜𝑔10𝑆𝑐 and Coulomb integrals are disregarded if the total charge of the relevant atomic-orbital is 

smaller than 𝑆𝑐. A similar (the third) parameter 𝐼𝑇𝑂𝐿3 is defined for the Exchange integrals. The 

second parameter is 𝐼𝑇𝑂𝐿2 = −𝑙𝑜𝑔10𝑆1𝜆 and classifies Coulomb integrals by a comparison of 𝑆1𝜆 to 

the value of the overlap integrals between shells of contracted Gaussians. The contractions are 

implemented in the definition of the basis-set (see above). The overlap integrals of the shells are 

evaluated using the adjoined Gaussian of the respective shells. Classification of the Coulomb integrals 

means that they are either assigned to the exact, short-range or long-range zones. In the exact zone, 
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Coulomb integrals are fully evaluated using an analytical formula. In the short-range zone, Coulomb 

integrals are evaluated through a multipolar expansion. In the long-range zone, Coulomb integrals are 

evaluated using Ewald’s method combined with recursion formulae. The fourth and fifth parameters 

𝐼𝑇𝑂𝐿4 and 𝐼𝑇𝑂𝐿5 are used to disregard Exchange integrals (smaller than 10−𝐼𝑇𝑂𝐿4 or 10−𝐼𝑇𝑂𝐿5) 

involving atomic-orbitals belonging to adjoining cells (see Dovesi et al, 2014 and references therein).    
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6.3 Pr Ab-initio Calculations 

 

  The Pr calculations were performed using an identical functional to that for Pn. We adopted a 

Γ-centered 2*2*6 net for sampling reciprocal space and a 400 eV plane-wave energy-cutoff, as well as 

convergence criteria for the electronic and ionic SCF loops. The PBE/PAW potentials of Kresse and 

Joubert (1999) were used. For Fe, semi-core s and semi-core p states, as well as d electrons are treated 

as valence states. For Mg and O, semi-core s and semi-core p states were treated as valence states. The 

total magnetic moments of Figure 6 were calculated using a tighter tolerance of 500 eV for the plane-

wave energy cutoff and electronic loop convergence criteria. 
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6.4 Supplementary Tables 

 

Table S1. Pn First Mixing Model Correlation Differences 

Fe/(Fe+Ni) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌2,6 Δ𝜌2,7 Δ𝜌3,3 Δ𝜌4,3 

0.1111111 0.020833 0.020833 0.020833 0.020833 -0.0625 0 0.078125 0.183594 

0.2222222 0 -0.08333 0 0 0 0 -0.125 -0.0625 

0.3333333 -0.0625 -0.0625 0.020833 0.020833 -0.0625 0 -0.01563 -0.00391 

0.4444444 0 -0.16667 0 0 0 0 0 0 

0.5 0 -0.16667 0 0 0 0 0 0 

0.5555556 0 -0.16667 0 0 0 0 0 0 

0.6111111 0.067708 -0.01563 -0.01563 -0.0156 -0.0156 0.0052 -0.12305 -0.00024 

0.6666667 0.020833 -0.0625 -0.0625 0.020833 -0.0625 0 0.015625 -0.00391 

0.7222222 0.026042 0.026042 0.026042 0.026042 0.10937 0.0052 -0.07227 -0.01978 

0.7777778 0 -0.08333 0 0 0 0 0.125 -0.0625 

0.8888889 0.020833 0.020833 0.020833 0.020833 -0.0625 0 -0.07813 0.183594 

 

Table S2. Pn Second Mixing Model Correlation Differences 

Fe/(Fe+Ni) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌2,6 Δ𝜌2,7 Δ𝜌3,3 Δ𝜌4,3 

0.1111111 0.020833 0.020833 0.020833 0.020833 -0.0625 0 0.078125 0.183594 

0.2222222 -0.02474 -0.02474 -0.02474 0.010417 -0.0247 0.05859 0.009521 0.149887 

0.3333333 0.027344 -0.05599 0.027344 0.010417 0.0273 0.02734 -0.09302 -0.25954 

0.4444444 -0.01563 -0.01563 0.067708 0 -0.0156 -0.0156 0.123047 -0.00024 

0.5 0 -0.16667 0 0 0 0 0 0 

0.5555556 -0.01563 -0.01563 0.067708 0 -0.0156 -0.0156 -0.12305 -0.00024 

0.6111111 0.020833 -0.0625 -0.0625 0 0.0208 -0.0625 0.015625 -0.00391 

0.6666667 0.026042 0.026042 0.026042 0 0.0260 0.10937 -0.07227 -0.01978 

0.7222222 0.016927 -0.06641 0.016927 0.010417 0.0169 -0.0664 0.02124 0.213364 

0.7777778 -0.01432 -0.01432 -0.01432 0.010417 -0.0143 -0.0976 0.012451 0.026596 

0.8888889 0.020833 0.020833 0.020833 0.020833 -0.0625 0 0.078125 0.183594 
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Table S3. Pr Correlation Differences 

Fe/(Fe+Mg) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌2,6 Δ𝜌3,2 Δ𝜌4,2 

0.1 0.004444 0.004444 -0.00667 0.026667 0.004444 -0.02133 0.057067 

0.15 0.006667 0.04 -0.01 0.24 -0.02667 0.034 0.0704 

0.2 -0.00444 0.017778 -0.01556 -0.00444 -0.00444 -0.01733 0.0704 

0.3 0.017778 -0.00444 -0.00444 -0.00444 0.006667 0.002667 0.041067 

0.3333333 0.01 -0.09 0.01 0.21 0.01 -0.027 -0.0081 

0.4 0.004444 0.026667 0.004444 0.004444 -0.00667 0.008 0.065067 

0.5 0 -0.02222 -0.01111 0 0.011111 0 0.066667 

0.6 0.004444 0.026667 -0.00667 0.004444 0.004444 -0.008 0.065067 

0.7 0.017778 -0.00444 -0.00444 -0.00444 0.006667 0.002667 0.041067 

0.75 -0.01667 -0.05 -0.01667 0.25 -0.01667 -0.025 -0.0625 

0.8 -0.00444 0.017778 -0.01556 -0.00444 -0.00444 0.017333 0.0704 

0.9 0.004444 0.004444 -0.00667 0.026667 0.004444 0.021333 0.057067 

 

Table S4. Rw Correlation Differences 

Fe/(Fe+Mg) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌3,2 Δ𝜌4,2 

0.1 0.026667 0.026667 0.226667 0.093333 0.026667 0.088 0.1904 

0.15 -0.02333 -0.02333 0.243333 0.176667 -0.02333 -0.043 -0.0401 

0.2 -0.02667 0.006667 0.24 0.24 0.04 -0.016 0.0704 

0.3 -0.02667 0.006667 0.306667 0.173333 0.04 -0.064 -0.2256 

0.4 -0.04 -0.00667 0.16 0.16 0.026667 -0.008 -0.2016 

0.5 0.066667 0 0.2 0.2 -0.066667 0 0.2 

0.6 -0.04 -0.00667 0.16 0.16 0.0266667 0.008 -0.2016 

0.7 -0.02667 0.00667 0.306667 0.173333 0.04 0.064 -0.2256 

0.8 -0.02667 0.006667 0.373333 0.106667 0.04 0.016 0.0704 

0.9 0.026667 0.026667 0.226667 0.093333 0.026667 -0.088 0.1904 

 

Table S5. Ol Correlation Differences 

Fe/(Fe+Mg) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌2,6 Δ𝜌3,3 Δ𝜌4,7 Δ𝜌4,7 Δ𝜌4,7 

0.0833333 -0.028 -0.028 -0.028 -0.028 -0.028 0.0787 0.0177 0.0177 0.0177 

0.125 -0.0625 0.0208 0.0208 0.0208 0.0208 0.0052 0.0169 0.0169 0.0169 

0.1666667 0.0556 -0.028 -0.028 -0.028 -0.028 -0.0370 -0.0308 -0.0308 -0.0308 

0.2083333 -0.0069 0.0069 -0.0069 -0.0069 -0.0069 -0.0515 -0.0324 -0.0324 -0.0324 

0.25 -0.0833 0 0 0 0 -0.0417 0.0208 0.0208 0.0208 

0.3333333 0.0556 -0.028 -0.028 -0.028 -0.028 0.0370 -0.0123 -0.0123 -0.0123 

0.5 0 0 0 0 0 0 0 0 0 

0.6666667 0.0556 -0.028 -0.028 -0.028 -0.028 0.0370 -0.0123 -0.0123 -0.0123 

0.8333333 0.0556 -0.028 -0.028 -0.028 -0.028 -0.0370 -0.0308 -0.0308 -0.0308 

0.9166667 -0.028 -0.028 -0.028 -0.028 -0.028 0.0787 0.0177 0.0177 0.0177 
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Table S6. Bm 25 GPa Correlation Differences 

 

Fe/(Fe+Mg) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌2,6 Δ𝜌2,7 Δ𝜌3,5 Δ𝜌3,5 Δ𝜌4,6 

0.0625 0.01563 0.01563 0.01563 0.02604 0.01563 0.01563 0.00326 0.00326 0.00285 

0.0833 0.01389 0.01389 0.01389 0.01389 0.01389 0.01389 0.00463 0.00463 0.02392 

0.1042 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00383 0.00383 0.01780 

0.1250 0.02083 0.02083 0.02083 0.00000 0.02083 0.02083 0.01563 0.01563 0.01693 

0.1458 0.00174 0.00174 0.00174 0.01910 0.00174 0.00174 0.00123 0.00123 0.00174 

0.1667 0.01389 0.01389 0.01389 0.01389 0.01389 0.01389 0.00463 0.00463 0.01080 

0.1875 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00586 0.00586 0.01408 

0.2083 0.00695 0.00695 0.00695 0.00695 0.00695 0.00695 0.00984 0.00984 0.00921 

0.2292 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.00774 0.00774 0.00275 

0.2500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02083 

0.2708 0.00174 0.00174 0.00174 0.00174 0.00174 0.00174 0.01295 0.01295 0.00246 

0.3125 0.01563 0.01563 0.01563 0.00521 0.01563 0.01563 0.00977 0.00977 0.01978 

0.3750 0.02084 0.02084 0.02084 0.00000 0.02084 0.02084 0.00521 0.00521 0.00391 

0.4375 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00195 0.00195 0.00024 

0.5000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.5625 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00195 0.00195 0.00024 

0.6250 0.02083 0.02083 0.02083 0.00000 0.02083 0.02083 0.00521 0.00521 0.00391 

0.6875 0.01563 0.01563 0.01563 0.00521 0.01563 0.01563 0.00977 0.00977 0.01978 

0.7500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.02083 

0.8125 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00586 0.00586 0.01408 

0.8750 0.02083 0.02083 0.02083 0.00000 0.02083 0.02083 0.01563 0.01563 0.01693 

 
 
Table S7. Bm 100 GPa Correlation Differences 

 

Fe/(Fe+Mg) Δ𝜌2,2 Δ𝜌2,3 Δ𝜌2,4 Δ𝜌2,5 Δ𝜌3,5 Δ𝜌3,5 

0.0417 0.006944 0.006944 0.006944 0.013889 0.000579 0.000579 

0.0625 0.005208 0.005208 0.005208 0.005208 0.003255 0.003255 

0.0833 0.006944 0.006944 0.006944 0.003472 0.005787 0.005787 

0.1042 0.001736 0.001736 0.001736 0.001736 0.003834 0.003834 

0.1250 0.000000 0.000000 0.000000 0.000000 0.005208 0.005208 

0.1458 0.001736 0.001736 0.001736 0.001736 0.001230 0.001230 

0.1667 0.006944 0.006944 0.006944 0.003472 0.005787 0.005787 

0.1875 0.005208 0.005208 0.005208 0.005208 0.004557 0.004557 

0.2083 0.006944 0.006944 0.006944 0.003472 0.000579 0.000579 

0.2292 0.001736 0.001736 0.001736 0.008681 0.002677 0.002677 

0.2500 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2917 0.006944 0.006944 0.006944 0.003472 0.000579 0.000579 

0.3333 0.006944 0.006944 0.006944 0.003472 0.005787 0.005787 

0.3750 0.000000 0.000000 0.000000 0.000000 0.005208 0.005208 

0.4167 0.006944 0.006944 0.006944 0.003472 0.005787 0.005787 

0.5000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.6250 0.000000 0.000000 0.000000 0.010417 0.036458 0.005208 

0.7500 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.8750 0.000000 0.000000 0.000000 0.000000 0.005208 0.005208 
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6.5 Supplementary Figures 
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Figure S1: Total density of states in the energy scale for (a) Terrestrial Pn and (b) Extraterrestrial Pn 

with PAW/GGA+U and similar plots for (c) Terrestrial Pn and (b) Extraterrestrial Pn with HSE. 
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Figure S2: Total density of states in the energy scale for Pr with an Fe concentration of (a) 0.2 (b) 0.35 

and (c) 0.5. 
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Chapter 7 

APPENDIX II 

Example Neighbour Analysis MATLAB Code 

pos_Fe2=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe2.xlsx','E7:G198'); 

pos_Fe3=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe3.xlsx','E7:G198'); 

pos_Fe4=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe4.xlsx','E7:G198'); 

pos_Fe5=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe5.xlsx','E7:G198'); 

pos_Fe6=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe6.xlsx','E7:G198'); 

pos_Fe7=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe7.xlsx','E7:G198'); 

pos_Fe8=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe8.xlsx','E7:G198'); 

pos_Fe9=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe9.xlsx','E7:G198'); 

pos_Fe10=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe10.xlsx','E7:G198'); 

pos_Fe11=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe11.xlsx','E7:G198'); 

pos_Fe12=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe12.xlsx','E7:G198'); 

pos_Fe13=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe13.xlsx','E7:G198'); 

pos_Fe14=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe14.xlsx','E7:G198'); 

pos_Fe16=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe16.xlsx','E7:G198'); 

pos_Fe18=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe18.xlsx','E7:G198'); 

pos_Fe20=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe20.xlsx','E7:G198'); 

pos_Fe24=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe24.xlsx','E7:G198'); 

pos_Fe30=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe30.xlsx','E7:G198'); 

pos_Fe36=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe36.xlsx','E7:G198'); 

pos_Fe42=xlsread('C:\Users\Jacques.JacquesDesmarai\bm_sqs_100GPa\Fe42.xlsx','E7:G198'); 

pos_Fe2=transpose(pos_Fe2); 

pos_Fe3=transpose(pos_Fe3); 

pos_Fe4=transpose(pos_Fe4); 

pos_Fe5=transpose(pos_Fe5); 

pos_Fe6=transpose(pos_Fe6); 

pos_Fe7=transpose(pos_Fe7); 
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pos_Fe8=transpose(pos_Fe8); 

pos_Fe9=transpose(pos_Fe9); 

pos_Fe10=transpose(pos_Fe10); 

pos_Fe11=transpose(pos_Fe11); 

pos_Fe12=transpose(pos_Fe12); 

pos_Fe13=transpose(pos_Fe13); 

pos_Fe14=transpose(pos_Fe14); 

pos_Fe16=transpose(pos_Fe16); 

pos_Fe18=transpose(pos_Fe18); 

pos_Fe20=transpose(pos_Fe20); 

pos_Fe24=transpose(pos_Fe24); 

pos_Fe30=transpose(pos_Fe30); 

pos_Fe36=transpose(pos_Fe36); 

pos_Fe42=transpose(pos_Fe42); 

bond_2=zeros(192,192); 

bond_3=zeros(192,192); 

bond_4=zeros(192,192); 

bond_5=zeros(192,192); 

bond_6=zeros(192,192); 

bond_7=zeros(192,192); 

bond_8=zeros(192,192); 

bond_9=zeros(192,192); 

bond_10=zeros(192,192); 

bond_11=zeros(192,192); 

bond_12=zeros(192,192); 

bond_13=zeros(192,192); 

bond_14=zeros(192,192); 

bond_16=zeros(192,192); 

bond_18=zeros(192,192); 

bond_24=zeros(192,192); 
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bond_30=zeros(192,192); 

bond_36=zeros(192,192); 

bond_42=zeros(192,192); 

for i=1:192 

    for j=1:192 

        bond_2(i,j)=sqrt((pos_Fe2(1,i)-pos_Fe2(1,j))^2+(pos_Fe2(2,i)-pos_Fe2(2,j))^2+(pos_Fe2(3,i)-

pos_Fe2(3,j))^2); 

        bond_3(i,j)=sqrt((pos_Fe3(1,i)-pos_Fe3(1,j))^2+(pos_Fe3(2,i)-pos_Fe3(2,j))^2+(pos_Fe3(3,i)-

pos_Fe3(3,j))^2); 

        bond_4(i,j)=sqrt((pos_Fe4(1,i)-pos_Fe4(1,j))^2+(pos_Fe4(2,i)-pos_Fe4(2,j))^2+(pos_Fe4(3,i)-

pos_Fe4(3,j))^2); 

        bond_5(i,j)=sqrt((pos_Fe5(1,i)-pos_Fe5(1,j))^2+(pos_Fe5(2,i)-pos_Fe5(2,j))^2+(pos_Fe5(3,i)-

pos_Fe5(3,j))^2); 

        bond_6(i,j)=sqrt((pos_Fe6(1,i)-pos_Fe6(1,j))^2+(pos_Fe6(2,i)-pos_Fe6(2,j))^2+(pos_Fe6(3,i)-

pos_Fe6(3,j))^2); 

        bond_7(i,j)=sqrt((pos_Fe7(1,i)-pos_Fe7(1,j))^2+(pos_Fe7(2,i)-pos_Fe7(2,j))^2+(pos_Fe7(3,i)-

pos_Fe7(3,j))^2); 

        bond_8(i,j)=sqrt((pos_Fe8(1,i)-pos_Fe8(1,j))^2+(pos_Fe8(2,i)-pos_Fe8(2,j))^2+(pos_Fe8(3,i)-

pos_Fe8(3,j))^2); 

        bond_9(i,j)=sqrt((pos_Fe9(1,i)-pos_Fe9(1,j))^2+(pos_Fe9(2,i)-pos_Fe9(2,j))^2+(pos_Fe9(3,i)-

pos_Fe9(3,j))^2); 

        bond_10(i,j)=sqrt((pos_Fe10(1,i)-pos_Fe10(1,j))^2+(pos_Fe10(2,i)-

pos_Fe10(2,j))^2+(pos_Fe10(3,i)-pos_Fe10(3,j))^2); 

        bond_11(i,j)=sqrt((pos_Fe11(1,i)-pos_Fe11(1,j))^2+(pos_Fe11(2,i)-

pos_Fe11(2,j))^2+(pos_Fe11(3,i)-pos_Fe11(3,j))^2); 

        bond_12(i,j)=sqrt((pos_Fe12(1,i)-pos_Fe12(1,j))^2+(pos_Fe12(2,i)-

pos_Fe12(2,j))^2+(pos_Fe12(3,i)-pos_Fe12(3,j))^2); 

        bond_13(i,j)=sqrt((pos_Fe13(1,i)-pos_Fe13(1,j))^2+(pos_Fe13(2,i)-

pos_Fe13(2,j))^2+(pos_Fe13(3,i)-pos_Fe13(3,j))^2); 

        bond_14(i,j)=sqrt((pos_Fe14(1,i)-pos_Fe14(1,j))^2+(pos_Fe14(2,i)-
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pos_Fe14(2,j))^2+(pos_Fe14(3,i)-pos_Fe14(3,j))^2); 

        bond_16(i,j)=sqrt((pos_Fe16(1,i)-pos_Fe16(1,j))^2+(pos_Fe16(2,i)-

pos_Fe16(2,j))^2+(pos_Fe16(3,i)-pos_Fe16(3,j))^2); 

        bond_18(i,j)=sqrt((pos_Fe18(1,i)-pos_Fe18(1,j))^2+(pos_Fe18(2,i)-

pos_Fe18(2,j))^2+(pos_Fe18(3,i)-pos_Fe18(3,j))^2); 

        bond_20(i,j)=sqrt((pos_Fe20(1,i)-pos_Fe20(1,j))^2+(pos_Fe20(2,i)-

pos_Fe20(2,j))^2+(pos_Fe20(3,i)-pos_Fe20(3,j))^2); 

        bond_24(i,j)=sqrt((pos_Fe24(1,i)-pos_Fe24(1,j))^2+(pos_Fe24(2,i)-

pos_Fe24(2,j))^2+(pos_Fe24(3,i)-pos_Fe24(3,j))^2); 

        bond_30(i,j)=sqrt((pos_Fe30(1,i)-pos_Fe30(1,j))^2+(pos_Fe30(2,i)-

pos_Fe30(2,j))^2+(pos_Fe30(3,i)-pos_Fe30(3,j))^2); 

        bond_36(i,j)=sqrt((pos_Fe36(1,i)-pos_Fe36(1,j))^2+(pos_Fe36(2,i)-

pos_Fe36(2,j))^2+(pos_Fe36(3,i)-pos_Fe36(3,j))^2); 

        bond_42(i,j)=sqrt((pos_Fe42(1,i)-pos_Fe42(1,j))^2+(pos_Fe42(2,i)-

pos_Fe42(2,j))^2+(pos_Fe42(3,i)-pos_Fe42(3,j))^2); 

    end 

end 

n_Fe_2=zeros(1,192); 

n_Mg_2=zeros(1,192); 

n_Fe_3=zeros(1,192); 

n_Mg_3=zeros(1,192); 

n_Fe_4=zeros(1,192); 

n_Mg_4=zeros(1,192); 

n_Fe_5=zeros(1,192); 

n_Mg_5=zeros(1,192); 

n_Fe_6=zeros(1,192); 

n_Mg_6=zeros(1,192); 

n_Fe_7=zeros(1,192); 

n_Mg_7=zeros(1,192); 

n_Fe_8=zeros(1,192); 
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n_Mg_8=zeros(1,192); 

n_Fe_9=zeros(1,192); 

n_Mg_9=zeros(1,192); 

n_Fe_10=zeros(1,192); 

n_Mg_10=zeros(1,192); 

n_Fe_11=zeros(1,192); 

n_Mg_11=zeros(1,192); 

n_Fe_12=zeros(1,192); 

n_Mg_12=zeros(1,192); 

n_Fe_13=zeros(1,192); 

n_Mg_13=zeros(1,192); 

n_Fe_14=zeros(1,192); 

n_Mg_14=zeros(1,192); 

n_Fe_16=zeros(1,192); 

n_Mg_16=zeros(1,192); 

n_Fe_18=zeros(1,192); 

n_Mg_18=zeros(1,192); 

n_Fe_20=zeros(1,192); 

n_Mg_20=zeros(1,192); 

n_Fe_24=zeros(1,192); 

n_Mg_24=zeros(1,192); 

n_Fe_30=zeros(1,192); 

n_Mg_30=zeros(1,192); 

n_Fe_36=zeros(1,192); 

n_Mg_36=zeros(1,192); 

n_Fe_42=zeros(1,192); 

n_Mg_42=zeros(1,192); 

for i=1:192 

    for j=1:192 

        if  bond_2(i,j) <= 12 
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            if j <= 8 

                n_Fe_2(i)=n_Fe_2(i)+1; 

            else 

                n_Mg_2(i)=n_Mg_2(i)+1; 

            end 

        end 

        if  bond_3(i,j) <= 12 

            if j <= 12 

                n_Fe_3(i)=n_Fe_3(i)+1; 

            else 

                n_Mg_3(i)=n_Mg_3(i)+1; 

            end 

        end 

        if  bond_4(i,j) <= 12 

            if j <= 16 

                n_Fe_4(i)=n_Fe_4(i)+1; 

            else 

                n_Mg_4(i)=n_Mg_4(i)+1; 

            end 

        end 

        if  bond_5(i,j) <= 12 

            if j <= 20 

                n_Fe_5(i)=n_Fe_5(i)+1; 

            else 

                n_Mg_5(i)=n_Mg_5(i)+1; 

            end 

        end 

        if  bond_6(i,j) <= 12 

            if j <= 24 

                n_Fe_6(i)=n_Fe_6(i)+1; 
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            else 

                n_Mg_6(i)=n_Mg_6(i)+1; 

            end 

        end 

        if  bond_7(i,j) <= 12 

            if j <= 28 

                n_Fe_7(i)=n_Fe_7(i)+1; 

            else 

                n_Mg_7(i)=n_Mg_7(i)+1; 

            end 

        end 

        if  bond_8(i,j) <= 12 

            if j <= 32 

                n_Fe_8(i)=n_Fe_8(i)+1; 

            else 

                n_Mg_8(i)=n_Mg_8(i)+1; 

            end 

        end 

        if  bond_9(i,j) <= 12 

            if j <= 36 

                n_Fe_9(i)=n_Fe_9(i)+1; 

            else 

                n_Mg_9(i)=n_Mg_9(i)+1; 

            end 

        end 

        if  bond_10(i,j) <= 12 

            if j <= 40 

                n_Fe_10(i)=n_Fe_10(i)+1; 

            else 

                n_Mg_10(i)=n_Mg_10(i)+1; 
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            end 

        end 

        if  bond_11(i,j) <= 12 

            if j <= 44 

                n_Fe_11(i)=n_Fe_11(i)+1; 

            else 

                n_Mg_11(i)=n_Mg_11(i)+1; 

            end 

        end 

        if  bond_12(i,j) <= 12 

            if j <= 48 

                n_Fe_12(i)=n_Fe_12(i)+1; 

            else 

                n_Mg_12(i)=n_Mg_12(i)+1; 

            end 

        end 

        if  bond_13(i,j) <= 12 

            if j <= 52 

                n_Fe_13(i)=n_Fe_13(i)+1; 

            else 

                n_Mg_13(i)=n_Mg_13(i)+1; 

            end 

        end 

        if  bond_14(i,j) <= 12 

            if j <= 56 

                n_Fe_14(i)=n_Fe_14(i)+1; 

            else 

                n_Mg_14(i)=n_Mg_14(i)+1; 

            end 

        end 
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        if  bond_16(i,j) <= 12 

            if j <= 64 

                n_Fe_16(i)=n_Fe_16(i)+1; 

            else 

                n_Mg_16(i)=n_Mg_16(i)+1; 

            end 

        end 

        if  bond_18(i,j) <= 12 

            if j <= 72 

                n_Fe_18(i)=n_Fe_18(i)+1; 

            else 

                n_Mg_18(i)=n_Mg_18(i)+1; 

            end 

        end 

        if  bond_20(i,j) <= 12 

            if j <= 80 

                n_Fe_20(i)=n_Fe_20(i)+1; 

            else 

                n_Mg_20(i)=n_Mg_20(i)+1; 

            end 

        end 

        if  bond_24(i,j) <= 12 

            if j <= 96 

                n_Fe_24(i)=n_Fe_24(i)+1; 

            else 

                n_Mg_24(i)=n_Mg_24(i)+1; 

            end 

        end 

 

        if  bond_30(i,j) <= 12 
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            if j <= 120 

                n_Fe_30(i)=n_Fe_30(i)+1; 

            else 

                n_Mg_30(i)=n_Mg_30(i)+1; 

            end 

        end 

 

        if  bond_36(i,j) <= 12 

            if j <= 144 

                n_Fe_36(i)=n_Fe_36(i)+1; 

            else 

                n_Mg_36(i)=n_Mg_36(i)+1; 

            end 

        end 

 

        if  bond_42(i,j) <= 12 

            if j <= 168 

                n_Fe_42(i)=n_Fe_42(i)+1; 

            else 

                n_Mg_42(i)=n_Mg_42(i)+1; 

            end 

        end 

    end 

end 

avg_Fe_Fe2=sum(n_Fe_2(1:8))/8; 

avg_Fe_Fe3=sum(n_Fe_3(1:12))/12; 

avg_Fe_Fe4=sum(n_Fe_4(1:16))/16; 

avg_Fe_Fe5=sum(n_Fe_5(1:20))/20; 

avg_Fe_Fe6=sum(n_Fe_6(1:24))/24; 

avg_Fe_Fe7=sum(n_Fe_7(1:28))/28; 
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avg_Fe_Fe8=sum(n_Fe_8(1:32))/32; 

avg_Fe_Fe9=sum(n_Fe_9(1:36))/36; 

avg_Fe_Fe10=sum(n_Fe_10(1:40))/40; 

avg_Fe_Fe11=sum(n_Fe_11(1:44))/44; 

avg_Fe_Fe12=sum(n_Fe_12(1:48))/48; 

avg_Fe_Fe13=sum(n_Fe_13(1:52))/52; 

avg_Fe_Fe14=sum(n_Fe_14(1:56))/56; 

avg_Fe_Fe16=sum(n_Fe_16(1:64))/64; 

avg_Fe_Fe18=sum(n_Fe_18(1:72))/72; 

avg_Fe_Fe20=sum(n_Fe_20(1:80))/80; 

avg_Fe_Fe24=sum(n_Fe_24(1:96))/96; 

avg_Fe_Fe30=sum(n_Fe_30(1:120))/120; 

avg_Fe_Fe36=sum(n_Fe_36(1:144))/144; 

avg_Fe_Fe42=sum(n_Fe_42(1:168))/168; 

 

figure(1) 

plot([8*100/192,12*100/192,16*100/192,20*100/192,24*100/192,28*100/192,32*100/192,36*100/

192,40*100/192,44*100/192,48*100/192,56*100/192,64*100/192,72*100/192,80*100/192,96*100/

192,120*100/192,144*100/192,168*100/192],[avg_Fe_Fe2,avg_Fe_Fe3,avg_Fe_Fe4,avg_Fe_Fe5,avg_

Fe_Fe6,avg_Fe_Fe7,avg_Fe_Fe8,avg_Fe_Fe9,avg_Fe_Fe10,avg_Fe_Fe11,avg_Fe_Fe12,avg_Fe_Fe14,av

g_Fe_Fe16,avg_Fe_Fe18,avg_Fe_Fe20,avg_Fe_Fe24,avg_Fe_Fe30,avg_Fe_Fe36,avg_Fe_Fe42],'k--*') 

xlabel('Fe Concentration [%]') 

ylabel('Number of Fe Neighbours') 

 


