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ABSTRACT 

The Rodent Hill Locality is a fossil-bearing site that is part of the Cypress Hills 

Formation, and is located roughly 15 km northwest of the town of Eastend, 

Saskatchewan.  A number of fossil mammal and other vertebrate taxa are present at 

Rodent Hill; the primary objective of this project was to identify the fossil rodents of the 

families Sciuridae, Aplodontidae, Castoridae, Heliscomyidae, Heteromyidae, 

Florentiamyidae and Zapodidae.  These taxa were correlated with rodents from other 

North American faunas to establish the age of the Rodent Hill Locality.   

The species Haplomys cf. H. liolophus, Dakotallomys cf. D. pelycomyoides, 

Kirkomys milleri, Proheteromys nebraskensis, Agnotocastor cf. A. praetereadens, and 

possibly Cedromus cf. C. wilsoni support the Whitneyan age designation of the Rodent 

Hill Locality.  Taxa  that are described from Rodent Hill that are better known from 

earlier-age sites include Heliscomys vetus and H. hatcheri, Ecclesimus sp. and 

Oligotheriomys sp.  Taxa that are younger than Whitneyan but have been recovered at 

Rodent Hill include Parallomys sp., Plesiosminthus sp., Protospermophilus sp., and 

Nototamias sp.  Two new species in the genus Sciurion, and one new species in the 

genus Pseudallomys are described, and a new species of Heliscomys is identified but not 

formally named. 

The rodents from the Rodent Hill Locality support the Whitneyan age 

assignment of the site.  This is based on the presence of Whitneyan taxa, and the in situ 

co-occurrence of older and younger taxa within the site. 
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1. INTRODUCTION 

1.1 OVERVIEW 

The Rodent Hill Locality is a fossil-bearing site located roughly 15 km northwest 

of the town of Eastend, Saskatchewan, and is within the Cypress Hills Formation in 

southwest Saskatchewan. The Cypress Hills Formation contains fossil terrestrial 

vertebrates representing ages from the middle Eocene to the early Miocene. The 

vertebrates represented include mammals, birds, reptiles, amphibians, and osteichthyans. 

These fossils have been collected and described since the late 1800s. The formation is 

primarily fluvial deposits, the high-energy nature of which has resulted in the majority 

of the fossil remains being disarticulated bones and isolated dental elements. Dental 

elements are the most reliable fossils for identifying the small mammals, which as a 

group are the most appropriate source for biostratigraphic correlation with other Tertiary 

terrestrial faunas in North America. 

The objectives of this project are to identify the rodents of the families Sciuridae, 

Aplodontidae, Castoridae, Heliscomyidae, Heteromyidae, Florentiamyidae and 

Zapodidae from the Rodent Hill Locality of the Cypress Hills Formation, and correlate 

these taxa elsewhere in North American faunas to establish the age of the Rodent Hill 

Locality. 

 

1.2 RESEARCH IN THE CYPRESS HILLS 

1.2.1 Geology Of The Cypress Hills 

 The Cypress Hills Formation of southwest Saskatchewan and southeast Alberta 

is a Tertiary terrestrial fluvial deposit (Leckie and Cheel, 1989) that is approximately 

1100 km2 in area.  The modern hills are an erosional remnant that was not eroded in the 

late Tertiary (Dawson, 1875a) and consist of sands and gravels, up to boulder-size 
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sediments in some areas, alternating with muds and sandy muds as well as debris flow 

sediments (Leckie and Cheel, 1989; Storer, 1996).  Some of these sediments are lithified 

into sandstones and conglomerates (Leckie and Cheel, 1989) while the sediments of 

other areas are unconsolidated.  These sediments may have been deposited over a period 

of 28 Ma based on the fossil mammal record (Storer and Bryant, 1993), resulting in a 

deposit that now averages 38 m thick, and may be up to 76 m thick (Vonhoff, 1965a, b).  

Nurkowski (1984) estimated that as much as 180 m of sediment eroded away by the 

east-flowing streams during the deposition of the Cypress Hills Formation.  The Cypress 

Hills Formation overlies older Cretaceous or Paleocene strata (Kupsch, 1956), separated 

by a disconformity.  In some areas the Cypress Hills Formation overlies the Paleocene 

Ravenscrag Formation, but in other areas the Paleocene strata have been eroded, and the 

Cypress Hills Formation overlies the Cretaceous Bearpaw or Frenchman Formations 

(Kupsch, 1956). 

 These deposits are non-marine in origin based upon the sedimentary facies and 

the fossil vertebrates that have been recovered, including freshwater fishes, land turtles, 

amphibians, lizards, mammals and birds.  The sedimentology of the Cypress Hills 

Formation is also supportive of a fluvial, non-marine depositional environment (Leckie 

and Cheel, 1989). 

 Interpretations of the deposition of the Cypress Hills Formation have included 

valley-confined stream deposits (Howard, 1960); deposits of a meandering channel 

(Vonhoff, 1965a, b; 1969); and deposits from powerful streams into temporary lakes and 

backwaters (Russell, 1972).  The most recent interpretation of the Cypress Hills 

Formation is a braidplain deposit with sediment transported from the southwest, in 

particular the Rocky Mountains of northwestern Montana, with some input from the 

Bearpaw and Highwood Mountains of central and northern Montana (Leckie and Cheel, 

1989).  Evidence for the braidplain interpretation comes from the long distance between 

sand and gravel deposits, and the low variability of maximum grain sizes (Leckie and 

Cheel, 1989). 

 The braided streams that transported the sediments to be deposited in the Cypress 

Hills headed in the Highwood and Bearpaw Mountains and the Sweetgrass Hills (Leckie 
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and Cheel, 1989).  Several valleys channeled the braided streams that occasionally 

shifted laterally, reworking older strata and depositing the gravel sheet that typifies the 

Cypress Hills Formation.  The majority of the deposits from these events have been 

eroded, preserving only a small area as the Cypress Hills and Swift Current plateaus 

(Leckie and Cheel, 1989). 

 Recent work by Frank McDougall (pers. comm.), University of Saskatchewan, 

using surface exposures and drill cores near Eastend have indicated a topography at the 

beginning of deposition of the Cypress Hills Formation that is similar to that of the 

present day.  With the increase in deposition over time, the valleys were infilled, 

transforming the steep, hilly terrain into a flatter braidplain. 

 

1.2.2 History of Research in the Cypress Hills 

Dawson (1875a, b; 1881) gave the first accounts of the Cypress Hills during a 

geological survey of the area, but the first detailed descriptions of the area were by 

McConnell (1885) who first surveyed the area in 1883 and subsequently described the 

first Tertiary fossils from the region.  The geology of the Cypress Hills was later studied 

by Weston (1895), Davis (1918), McLearn (1928), Williams and Dyer (1930), Russell 

(1940b, 1950a, 1950b, 1951, 1953, 1957), Wood (1949), Furnival (1950), Kupsch 

(1956), Howard (1960), Vonhoff (1965, 1969), Eisenbacher (1977); Storer (1978b), 

Vreeken et al. (1989) and, Leckie and Cheel (1989, 1990). 

The vertebrate fossils in the Cypress Hills of Saskatchewan have been 

extensively studied since first being described by McConnell (1885).  The earliest 

detailed works about Tertiary fossils were by Cope (1885, 1886, 1889a, 1889b, 1891), 

Ami (1891) and Lambe (1905a, 1905b, 1905c, 1908).  Later studies of the vertebrate 

fossils from the Cypress Hills Formation were reported by Matthew (1903), Sternberg 

(1924), Russell and Wickenden (1933), Russell (1934, 1936, 1938, 1940a, 1965, 1972, 

1975, 1976, 1978, 1980a, 1980b, 1982, 1984), Wood (1949, 1961), Weigel (1963), 

Holman (1963, 1968, 1972, 1976), Lundberg (1975), Storer (1970, 1975a, 1975b, 1978a, 

1981a, 1981b, 1984a, 1984b, 1987, 1988, 1990, 1992, 1993, 1995, 1996, 2002), Emry 

and Storer (1981), Krishtalka et al. (1982), Skwara (1986, 1988), Bryant (1991, 1992, 
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1993), Storer and Bryant (1993, 1997), Eberle and Storer (1995); Rothecker and Storer 

(1996), Williams and Storer (1998), Meyer (2003, unpub.) and Rothecker (2003, 

unpub.).  The rodents from the Cypress Hills were mentioned in many of these studies 

(e.g. Russell, 1972; Skwara, 1986; Storer, 1978a, 2002; Williams and Storer, 1998; 

Meyer, 2003; Rothecker, 2003), but only Meyer (2003) and Rothecker (2003) were 

specific to Orellan or Whitneyan faunas, respectively. 

The presumed age of the Cypress Hills fossil sites has varied throughout the 

history of their study.  McConnell (1885) assigned the Cypress Hills a Miocene age (the 

North American Land Mammal Ages did not yet exist).  Other researchers interpreted 

the fauna as Oligocene or lower Miocene (Cope, 1891), early Oligocene (Matthew, 

1903) and Oligocene (Lambe, 1908).  Lambe (1905b) suggested that the diversity of 

equid taxa he described could refer to a wider range of ages than those previously 

considered, which would have corresponded to the “ages” Chadronian, Orellan and 

Whitneyan, but subsequent collectors continued to recover fossils without acquiring the 

necessary stratigraphic detail.  The predominant assumption was that the Cypress Hills 

Formation represented only the Chadronian, as this is the most common age of fossils 

recovered in the formation (Storer and Bryant, 1993).  In 1941, the Wood Committee 

(Wood et al., 1941) identified the Cypress Hills Formation as a paratype of the 

Chadronian Land Mammal Age (Wood et al., 1941), at that time considered earliest 

Oligocene.  Based on the presence of brontotheres, Russell (1965) noted the faunal 

similarities with sites in South Dakota and maintained that the Cypress Hills Formation 

represented a similar Chadronian age.   

A few Cypress Hills Formation sites were assigned ages that were not 

Chadronian; these included the Swift Current Plateau that was studied by Russell and 

Wickenden (1933) and later assigned a Uintan age by Storer (1978b); and the 

Hemingfordian-age Topham Local Fauna (Skwara, 1986, 1988).  The majority of the 

Cypress Hills Formation continued to be considered Chadronian, as exemplified by a 

stratigraphic column in Leckie and Cheel (1989) (Figure 1.1).  In this figure they 

describe the deposition of the Cypress Hills Formation as occurring over two events, one 

extending from the Uintan through to the Duchesnean and the Chadronian, and one in 

the Hemingfordian.  In between these depositions is depicted an extensive gap in the  
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sequence where information about the Orellan, Whitneyan, and Arikareean was 

apparently missing.  

The conclusion that the majority of the Cypress Hills Formation represented a 

single age—Chadronian—was based on assumptions that all fossils came from the same 

stratigraphic horizon, that biostratigraphic zonation was not possible in the southwest 

Saskatchewan Cypress Hills, and that all of the Cypress Hills material represented 

deposits of the same age (Storer and Bryant, 1993).  Although there was the potential for 

these assumptions to be correct, later work would prove them false. 

In 1963, B. A. McCorquodale, at the Saskatchewan Museum of Natural History 

(now the Royal Saskatchewan Museum) measured a series of sections throughout the 

Cypress Hills Formation and collected fossils with stratigraphic control, but these were 

not made available until thirty years later starting with work on the fossil horses from the 

Figure 1.1 Stratigraphic column from Leckie and Cheel (1989), 
showing the very large Oligocene unconformity that was thought 
to be present in the Cypress Hills. 
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area (Storer and Bryant, 1993).  Once this work was studied at the RSM, the span of 

time represented in the Cypress Hills Formation was recognized as being more complete 

than previously thought. 

The importance of the Cypress Hills Formation faunas has increased due to the 

recognition of Tertiary mammal fossils that extend from the middle Eocene to the 

middle Miocene (Uintan to Hemingfordian) in a relatively continuous stratigraphic 

sequence (Storer and Bryant, 1993) with smaller disconformities representing shorter 

spans of missing time.  Among the most notable are sites that are Orellan and Whitneyan 

(early Oligocene), ages that are not extensively represented throughout North America 

(Emry et al., 1987).  The Rodent Hill Locality has been regarded as Whitneyan in age 

(Storer and Bryant, 1993; Storer, 1996), a designation that will be tested here based on 

the rodent taxa identified. 

More recently, Rothecker (2003) studied two families of rodents, the Cricetidae 

and Eomyidae, and found that the taxa from these families offered strong support that 

the Rodent Hill Locality represents a Whitneyan-age fauna.   

 

1.3 THE RODENT HILL LOCALITY 

1.3.1 Location of the Rodent Hill Locality 

The Rodent Hill Locality is a site located in Bone Coulee, 10 km northwest of 

the town of Eastend, southwest Saskatchewan (Figure 1.2).  It is one of several sites in 

Conglomerate Creek, which consists of sites ranging in age from middle Chadronian to 

Hemingfordian (Storer, 1996).  Rodent Hill is a road cut in a section known as the 

“titanothere section”.  The lowest site in the section is a Chadronian age quarry from 

which a titanothere skeleton was collected.  Stratigraphically superior to this site, the 

Orellan-age Fossil Bush Locality is present, followed vertically by the Rodent Hill 

Locality.  Capping the section, there is a Hemingfordian-age site (Storer, 1996; Storer 

and Bryant, 1993). 
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1.3.2 Fossils at the Rodent Hill Locality 

There have been several collections of fossils from the site.  McCorquodale first 

collected and described the “Titanothere” section while measuring localities in the 

Cypress Hills in 1963 (Storer and Bryant, 1993) but the material was not published or 

made available until much later.  Russell (1972) refers to material from the Rodent Hill 

Locality, but Storer found that those fossils were probably mixed with specimens 

collected from the nearby Fossil Bush Locality and an unknown Chadronian-age site.  

Various workers made subsequent collections for the Royal Saskatchewan Museum in 

the 1990s, and more recently collections for this study were made there in 2000 and 

2001.  

Most fossils were obtained from the site by surface collecting matrix that was 

then power screened and later picked through in a lab.  Although the majority of the 

material was collected without consideration of stratigraphic location on the site, some 

collections differentiated between fossils collected above and below the weathering-

resistant bench that is a prominent feature of the site.  Only the material collected in 

2001 was controlled stratigraphically to determine any faunal changes within the site. 

Figure 1.2 Map of the Rodent Hill Locality, marked with an X.  Adapted 
from Storer and Bryant (1993), modified by Rothecker (2003). 
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Table 1.1 Preliminary list of fossil mammal taxa identified from Rodent Hill.  
From Storer, 1996. 

Order Didelphimorpha 

Family Didelphidae 

Herpetotherium sp. 

Order Leptictida 

 Family Leptictidae 

Leptictus sp. 

Order Insectivora 

Family Proscalopidae 

Proscalopidae, gen. et sp.  

indet. 

Family Soricidae 

 Soricidae, gen. et sp. indet. 

Order Carnivora 

 Family Nimravidae 

  Dinictis sp. 

 Family Mustelidae 

  Mustelidae, gen. et sp. indet. 

 Family Amphicyonidae 

  Daphoenus sp. 

 Family Canidae 

 ?Hesperocyon sp. 

Order Perissodactyla 

 Family Equidae 

  Miohippus nr. M. equiceps 
(Cope, 1879) 

 Family Rhinocerotidae 

  Diceratherium sp. 

 

 

Order Artiodactyla 

 Family Leptochoeridae 

  Leptochoerus sp. 

 Family Anthracotheridae 

  Elomeryx sp. 

 Family Agriochoeridae 

  Agriochoerus sp. 

 Family Merycoidodontidae 

  Merycoidodontidae, gen. et sp. 
indet. 

 Family Protoceratidae 

  Protoceras sp. 

 Family Leptomerycidae 

  Leptomeryx sp. 

  Pronodens sp. 

Order Rodentia 

 Family Aplodontidae 

  Prosciurus relictus (Cope, 1877) 

  Aplodontidae, gen. et sp. indet. 

 Family Cricetidae 

  Eumys brachyodus (Wood, 1937) 

 Family Eomyidae 

  Namatomys sp. 

  Paradjidaumo sp. 

 Family Heteromyidae 

  Proheteromys sp. 

Order Lagomorpha 

 Family Leporidae 

  Palaeolagus cf. P. burkei (Wood, 
1940) 

 Megalagus primitivus (Dawson, 
1958) 
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Table 1.2.  Eomyidae and Cricetidae identified from Rodent Hill.  From 
Rothecker, 2003. 

 

Order Rodentia 

 Family Eomyidae 

  Leptodontomys bernadettae Rothecker, 2003 

  Leptodontomys sp. 

  Metadjidaumo harveyi Rothecker, 2003 

  Paradjidaumo hypsodus Setoguchi, 1978 

  Pseudotheriomys sp. 

  Eomyidae gen. et sp. indet, Type A 

  Eomyidae gen. et sp. indet, Type B 

Family Cricetidae 

  Eumys brachyodus (Wood, 1937) 

  Eumys elegans Leidy, 1856 

  Wilsoneumys sp. 

  Leidymys korthi Williams and Storer, 2003 

  Scottimus cf. S. ambigus Korth, 1981 

 Scottimus sp. 

 

 

The Rodent Hill Locality is only referred to in a few published studies (Storer, 1995, 

1996; Storer and Bryant, 1993, 1997) and none of the fauna is described in detail.  Storer 

(1996) provided a preliminary faunal list from the locality, but the majority of these 

identifications were not beyond the familial level.  The taxa previously identified from 

Rodent Hill by Storer (1996) are listed in Table 1.1. 

 When Storer (1996) assigned the site an age of Whitneyan, it was primarily 

based upon a single lagomorph taxon, Paleolagus cf. P. burkei, a taxon described from 

the Whitneyan-age Vista Member in Colorado (Dawson, 1958) that is distinguishable by 

an anteroexternal fold on the p3.  Other identified taxa that are also supportive of a 

Whitneyan age include Miohippus near M. equiceps, Eumys brachyodus and Megalagus 

primitivus (Storer and Bryant, 1997). 
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Rothecker (2003) studied the rodent families Eomyidae and Cricetidae of Rodent 

Hill and found several more taxa in these families than first identified by Storer (1996). 

The identified eomyids and cricetids are listed in Table 1.2. 

 The findings of Rothecker (2003) supported the assignment of Rodent Hill as a 

Whitneyan site due to the presence of Eumys brachyodus and the transitional faunal 

composition of the site, with taxa that are better known from older (Orellan) or younger 

(Arikareean) age sites. 

 

1.4 THE NORTH AMERICAN LAND MAMMAL AGES 

The fossil localities in the Cypress Hills are biostratigraphically distinguished 

based on the North American Land Mammal Ages (NALMA) proposed by the Wood 

Committee (Wood et al., 1941).  The purpose of this committee was to develop a 

biostratigraphic framework to divide the entire terrestrial Tertiary of North America into 

provincial ages based on mammalian faunas.  In principle, these ages were supposed to 

be independent of local lithologies or other stratigraphic schemes (including the epochs 

or European divisions) and include all of Tertiary time (Wood et al., 1941).  Some 

compromises were necessary at the time, including the presence of temporal gaps within 

the scheme due to a lack of information, the definition of the NALMA ages using local 

geological formations (14 out of the original 18), and the correlation of the NALMA 

ages to the Tertiary epochs (Emry et al., 1987).  These issues were not enough to 

outweigh the utility of the system that has allowed for its widespread use among North 

American paleontologists.  Later work has attempted to resolve some of the confusion 

about the NALMA ages from the original proposal through more detailed stratigraphy 

and better correlation through absolute dating and magnetostratigraphy, notably in the 

Eocene and Oligocene (Emry et al., 1987; Korth, 1989a, Swisher and Prothero, 1990; 

Tedford et al., 1996; Prothero and Whittlesey, 1998). 

A major advancement in the understanding of the correlation of the Eocene and 

Oligocene NALMA ages is their position relative to the Tertiary epochs.  When first 

proposed by the Wood Committee (Wood et al., 1941), the late Eocene was comprised 

of the Uintan and Duchesnean, while the NALMA ages of the Oligocene were the 
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Chadronian (oldest), Orellan, and Whitneyan (youngest).  Berggren et al. (1978) 

proposed that the Eocene-Oligocene boundary was around 37.5 Ma, based upon 40K/40Ar 

dating and correlation of European and North American mammal faunas.  This date 

would have allowed for the Chadronian to remain as the basal NALMA in the 

Oligocene.  However, later work pushed the age of the Eocene-Oligocene to much 

younger dates.  Berggren et al. (1985) produced a date of 36.6 Ma correlating 

magnetostratigraphic data with planktonic biostratigraphic data, and 40Ar/39Ar data 

produced an Eocene-Oligocene boundary age of 34.4 Ma (Swisher and Prothero, 1990; 

Berggren et al., 1992; Prothero and Swisher, 1992).  This date did contrast with Wang 

(1992) who proposed that the Eocene-Oligocene boundary remain at 36 or 37 Ma based 

upon early Oligocene Asian mammals that are similar to those from the Chadronian of 

North America, but Prothero and Swisher (1992) countered that the Chadronian fauna 

had likely emigrated to Eurasia after first evolving in North America. 
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Swisher and Prothero (1990) also used 40Ar/39Ar to better reconcile the 

boundaries of the Paleogene NALMA ages (Figure 1.3).  This work found the boundary 

dates to be about 34 Ma for the Chadronian-Orellan boundary and about 32 Ma for the 

Orellan-Whitneyan boundary (Swisher and Prothero, 1990).  With these new boundary 

dates, the Chadronian would be recognized as the last NALMA age in the Eocene, with 

the Orellan and Whitneyan comprising the earlier part of the Oligocene, and the late 

Oligocene coinciding with the early Arikareean (Prothero and Swisher, 1992; Prothero, 

1996; Prothero and Emry, 1996).  These boundaries also allowed for better correlation of 

Figure 1.3.  The North American Land Mammal Ages of the 
Tertiary, and the relative positions of the NALMA with the 
Epochs of the Tertiary.  Modified from Korth (1994a). 
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North American mammalian extinction events with the terminal Eocene event in the 

European marine record (Swisher and Prothero, 1990). 

The mammal fauna of North America from the early Chadronian to the early 

Arikareean are usually included in the White River Chronofauna, although the ancestral 

elements had become clear as early as the Uintan (Emry et al., 1987).  A chronofauna is 

a natural faunal assemblage in a limited geographic range that is relatively stable for a 

discernable period of geologic time (Olson, 1952); there may be minor changes in the 

fauna or flora, but this is usually replacement of early taxa by related forms (Emry et al., 

1987).  The characteristics of the faunas from the Chadronian through the Orellan and 

Figure 1.4. Map of the Chadronian, Orellan and Whitneyan localities of 
North America.  Modified from Emry et al. (1987) by Rothecker (2003). 
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the Whitneyan were mostly stable, with some immigration and extinction events, but 

significant faunal changes that end the chronofauna began in the early Arikareean (Emry 

et al., 1987). 

Storer (1996) determined that the mammals of the Cypress Hills Formation 

indicated a close affinity with other Great Plains localities that were part of the White 

River Chronofauna, and should only have varied regionally based on local ecology.  

Recognition of this point was another leading cause for the re-evaluation of the NALMA 

of the Cypress Hills Formation, as some taxa were being described that were more 

advanced than would be expected in Chadronian-age sites.  It is now understood that the 

anomalous taxa were a result of assuming that most Cypress Hills fossil localities 

represented the same NALMA age (Storer and Bryant, 1993). 

Based on the recognition by Storer (1996) that the localities of the Cypress Hills 

Formation are part of the White River Chronofauna, the fossils from Rodent Hill can be 

correlated with other White River faunal assemblages within the White River Group.  

White River Group and other localities are shown in Figure 1.4.  Correlation of the 

rodent families of this study requires comparison to sites of Orellan, Whitneyan and 

early Arikareean age (Table 1.3). 
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Table 1.3.  Orellan, Whitneyan and early Arikareean sites in North America.  From 
Emry et al. (1987) except where noted. 

Orellan Localities 

 Orella Member, Brule Formation – Nebraska, Wyoming 

 Scenic Member, Brule Formation – South Dakota 

 Cedar Creek Member, Brule Formation – Colorado 

 Cedar Ridge Local Fauna, Badwater Creek area – Wyoming (Setoguchi, 1978; 
Korth, 1981) 

 Cook Ranch and Matador Ranch Local Faunas, Cook Ranch Formation – 
Montana (Tabrum et al., 2001) 

 Climbing Arrow Formation – Montana 

 Dunbar Creek Formation – Montana 

 Renova Formation – Montana 

 John Day Formation – Oregon 

 Fossil Bush Locality and Anxiety Butte, Cypress Hills Formation – 
Saskatchewan (Storer, 1996) 

Whitneyan Localities 

 Whitney Member, Brule Formation – Nebraska, Wyoming 

 Poleslide Member, Brule Formation – South Dakota 

 Vista Member, Brule Formation – Colorado, South Dakota 

 John Day Formation – Oregon 

 I-75 Locality – Florida (Patton, 1969) 

 ?White Hills Local Fauna, Blacktail Deer Creek Formation – Montana (Tabrum 
et al., 2001) 

 Rodent Hill Locality and Anxiety Butte, Cypress Hills Formation – 
Saskatchewan (Storer, 1996) 

Early Arikareean Localities 

 Gering Formation – Nebraska, South Dakota (Tedford et al., 1996) 

 Rockyford Ash Member, Sharps Formation - South Dakota 

 John Day Formation – Oregon 

 Mill Point Local Fauna, Grasshopper Basin – Montana (Tabrum et al., 2001) 

 Blacktail Deer Creek Formation – Montana (Tabrum et al., 2001) 

 Kealey Springs Local Fauna, Cypress Hills Formation – Saskatchewan (Storer, 
1996) 
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1.5 OBJECTIVES 

 This study will analyze the rodent families Aplodontidae, Sciuridae, Castoridae, 

Heteromyidae, Florentiamyidae, Heliscomyidae and Zapodidae at the Rodent Hill 

Locality.  The primary goal is to describe the rodent species present at Rodent Hill in the 

aforementioned families.  

Once the rodent taxa are identified, objective one will be to test the Whitneyan 

age designation of the Rodent Hill Locality.  Wood (1980) considered rodents an ideal 

group for biostratigraphy, and utilized them to correlate the Oligocene localities of North 

America.  It is anticipated that comparisons of the Rodent Hill rodents, described herein, 

with taxa from other Orellan, Whitneyan and Arikareean localities, particularly from the 

Great Plains, will provide strong support in determining the age of Rodent Hill. 

 Objective Two is to test for any stratification of the rodent taxa throughout the 

Rodent Hill section.  There is the possibility that a noticeable change in the rodent fauna 

could be present within the stratigraphy of the site, giving a better understanding of 

rodent evolutionary events in the age represented by the Rodent Hill Locality.  Rodents 

of demonstrably different ages could also be present at Rodent Hill.  This might involve 

different subdivisions within a NALMA age, or the recognition of more than one 

NALMA age within Rodent Hill. 

 Objective Three is to produce a more detailed sedimentological and stratigraphic 

description of the Rodent Hill Locality.  This data will be used in determining any faunal 

stratification within the site. 

Objective Four of this study is to present new information on the described 

rodent families, and augment the faunal characterization of the NALMA age determined 

for the Rodent Hill site.  Based on the work of previous workers (Storer and Bryant, 

1993; Storer, 1996; Rothecker, 2003) the working hypothesis will be that the Rodent 

Hill Locality probably represents a Whitneyan-age site, although the rodents found in 

this study might indicate otherwise. 
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A well-supported Whitneyan age designation would make this characterization 

particularly important, as Whitneyan age sites are very uncommon (Emry et al., 1987) 

and small mammal faunas are especially rare (Setoguchi, 1978).  Korth (1994a) listed 

only 15 species of rodent in the Whitneyan, compared to 48 in the preceding Orellan, 

and 110 in the ensuing Arikareean.  Since 1994, there has been an increase in the 

described rodent taxa from the Whitneyan, but the diversity of Whitneyan rodents 

continues to appear far below that of most other ages.  The low number of fossil-bearing 

Whitneyan sites is the cause of this apparent reduced diversity, rather than a real 

taxonomic plunge during the Whitneyan.  This conclusion is borne out by the genera and 

even families of rodents that are present in the Orellan and Arikareean, but have not 

been recovered from the Whitneyan (Korth, 1994a).  There has been the suggestion 

(Prothero and Whittlesey, 1998) that temporal ranges of many micromammal groups, 

particularly taxa with last appearances in the late Orellan, will be extended with 

increased discoveries of Whitneyan microfossil sites.  The majority of the fossils from 

the Rodent Hill Locality are small mammal remains, with a high proportion of rodents.  

Rodent Hill has the potential to be a very important fossil site due to the abundance of 

small mammal fossils recovered there. 

 Of the families being studied here, some are better known from Whitneyan 

faunas than others.  Korth (1994a) lists the Aplodontidae as the family with the most 

recognized taxa (6).  There are two recognized species in the Sciuridae, and only one 

each from the Heteromyidae, Florentiamyidae and the Castoridae.  There are no listed 

species in either the Heliscomyidae or the Zapodidae. 

 If there is support for the Whitneyan designation for Rodent Hill, this would be 

important for the refinement of Whitneyan biostratigraphy, which is currently defined 

primarily by larger mammals, including oreodonts, camelids and equids.  The rodent 

taxa Proheteromys nebraskensis, Agnotocastor praetereadens, Eumys brachyodus, 

Scottimus lophatus, Paradjidaumo and Ischyromys were identified by Emry et al. (1987) 

as having the potential to be important to definitions of Whitneyan biostratigraphy.  

When Prothero and Whittlesey (1998) reevaluated the Orellan and Whitneyan, the 

rodents that were indicated as important to Whitneyan biostratigraphy included 

Agnotocastor praetereadens, Oropyctis pediasus, Cedromus wilsoni, and Metadjidaumo 
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hendryi, Paradjidaumo, Eumys and Scottimus.   More information on Whitneyan small 

mammal faunas will be necessary to evaluate their biostratigraphic significance. 
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 2. GEOLOGY OF THE RODENT HILL LOCALITY 

 

2.1 STRATIGRAPHY AND SEDIMENTOLOGY OF THE RODENT HILL LOCALITY 

2.1.1 Surface Appearance of the Rodent Hill Locality 

The surface exposure of the site is composed of unconsolidated sediments, 

primarily clays to fine sands, with pebbles and carbonate nodules present throughout the 

section in varying abundance.  The weathered surface of the site has been split into three 

distinct surface features that have generally been referred to when the site is described in 

unpublished field notes.  The bottom-most portion is light buff color; the top portion is  

gray.  Both of these layers are composed of the clays to fine sands that typify the Rodent 

Hill Locality.  Between the two different-colored layers is a prominent bench that is 

more resistant to weathering than either the top or bottom layers.  The sediment of the 

bench is predominantly fine to medium sand with a much higher relative proportion of 

calcrete.  These nodules are generally larger and contain more sand-size material than 

the other nodules from the site.  The surficial appearance of the two unconsolidated 

layers is due to erosion and deflation of the site, whereas the bench appears be a 

relatively stable feature. 

 

2.1.2 Stratigraphy and Sedimentology of the Rodent Hill Locality 

In the summer of 2001 the author, with Harold Bryant, sampled the Rodent Hill 

Locality stratigraphically.  The side of the hill was dug out as steps so that a clear 

vertical column of the locality would be visible without the loose overburden obscuring 

the stratigraphy (Figure 2.1).  The sedimentary features indicate a more complicated 

lithostratigraphic sequence than previously recognized from the surface exposure. 
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The site was then divided into seven stratigraphic units based upon the sediments 

and sedimentary structures.  Samples were dug directly from Units I and II at the bottom 

of the section, and from Units V, VI and VII at the top (Figure 2.2).  The assumption  

was that any faunal shifts that were present at the site would be most obvious between 

the furthest apart units. 

The base of the section is a contact with an unstudied unit that is well below the 

level of the road beside the locality and was not dug out except to determine the base of 

Unit I.  The sediment below Unit I is compact medium-coarse sand that is not cemented, 

and contains a large number of calcrete and clay nodules.  No samples were taken from 

this unit for this study. 

The lowest unit, Unit I, is one of the thickest units (180 cm), composed of fine 

sand and silt-sized laminae primarily present as cross-laminated ripples, although some 

are more planar.  Throughout the layer there are local short, very thin lenses composed  

Figure 2.1 The Rodent Hill Locality.  A step trench being dug out of Rodent 

Hill in 2003.  The “bench” (indicated by arrow) is visible as a light horizontal 

line to the left of the trench, with plants growing directly above it.  The 

distinction in the color of the upper and lower surface layers has been obscured 
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of clay intraclasts.  At the bottom of this unit the laminae of silts and sands are about 

equal in number and thickness, while the unit coarsens at the top to be predominantly 

sandy laminae.  This unit was the most fossiliferous of the sampled units. 

Unit II is the nodular bench that is clearly visible on the weathered surface of the 

Rodent Hill Locality.  It is about 68cm thick.  The nodules here are composed mainly of 

calcrete and are relatively large, up to pebble size.  There is some sand within the layer, 

but for the majority of the unit all interstitial clastics have been weathered away.  The 

dominance of the nodules gives this unit the resistance to weathering that produces the 

surficial bench feature that has been used to separate the top and bottom of the Rodent 

Hill Locality.  Fossils were obtained from this unit, but not nearly as many as produced 

in Unit I. 

Unit III is roughly 25 cm thick and primarily composed of sand and silt angular 

cross-laminations.  Throughout this unit there are numerous clay intraclasts.  The origin 

of these clasts is currently unclear.  Unit III was not sampled for fossils. 

Figure 2.2. Stratigraphic column of Rodent Hill sedimentary units. 
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Unit IV is approximately 65 cm thick, and has a more complicated structure than 

the other units.  The lower part of this unit has some large calcrete nodules, several 

centimeters long, in an unsorted sand matrix.  They appear to have formed in situ and 

were probably not transported.  In the middle of the unit the sediment is also composed 

of large amounts of sand matrix, with smaller clay clasts and calcrete nodules 

throughout.  The top of the unit is similar to Unit II, with very little sand present and a 

predominance of mostly horizontal silcrete nodules that form a layer that is more 

resistant to weathering than the sandy units. Unit IV also was not sampled for fossils. 

Unit V is the thickest unit (187 cm) and is composed primarily of interbedded 

sands and silts with only a few clay nodules present in small accumulations.  This was 

the second-most fossiliferous unit, although many fewer teeth were recovered here than 

from Unit I. 

Unit VI is a thin unit, 36 cm thick that is very similar to Unit II, with some sand 

matrix and a predominance of silcrete nodules forming a weathering-resistant layer.  

This unit was sampled for fossils, but only three teeth were recovered, and very few 

bone fragments compared to the other sampled units. 

Unit VII is the top unit, 45 cm thick, composed primarily of massive medium-

size sands.  This unit was sampled for fossils, and while relatively few fossils were 

recovered, some were of direct interest to this study due to their relatively advanced 

nature. 

 

2.2 DEPOSITION OF THE RODENT HILL LOCALITY 

The sedimentology of the Rodent Hill Locality units may indicate an intermittent 

stream of the kind proposed by Leckie and Cheel (1989) to explain the deposition of the 

Cypress Hills Formation.  The laminated and cross-bedded fine sand grains indicate 

fluvial movement from a western direction.  The amount of time to deposit this material 

is unknown.   The layers that are composed primarily of nodules likely signify periods 

when the area was drier.  These nodules normally take hundreds to thousands of years to 

form (Leckie and Cheel, 1989; 1990) and there is no reason to believe that this would be 

different at the Rodent Hill Locality.  These nodules could have formed from the 
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precipitation of minerals from the local groundwater.  High amounts of precipitation or 

other sources of water might have encouraged the minerals to move back into solution; 

therefore, long periods of time between events of high amounts of moisture 

(precipitation or inundation) are likely.  However, smaller amounts of moisture in the 

area are possible, and would not have impeded the formation of the calcrete nodules.    

Once formed as resistant layers these units would have provided surfaces for later fluvial 

deposits when streams did flow in the area.  Evidence for this is the scoured upper 

surfaces of the nodular layers.  The alluvium that was present on top of the nodular 

layers could have been scoured away and new alluvium deposited several times until 

there was finally a long enough hiatus that left a fluvial deposit in place.  With time, new 

nodular horizons would form at the top of the fluvial deposit, repeating the cycle. 

The source for the Cypress Hills Formation was determined to be from the uplift 

and erosion of the Sweetgrass Hills and Bearpaw Mountains in western Montana 

(described above) (Leckie and Cheel, 1989).  There is no reason to believe that the 

Rodent Hill sediment did not share this provenance.  The one deposited structure that is 

found at Rodent Hill that could not have come from Montana are the small clay 

intraclasts that are found throughout the fluvial sections.  These structures are generally 

small, less than 3 cm, and are very friable.  They are also generally round in shape, and 

are therefore products of transport.  A likely source for this clay would be earlier-aged 

sites in the Cypress Hills.  At the nearby Bud Locality there is a large amount of clay in 

some layers that appears very similar to the clay in the balls found at Rodent Hill, 

offering a probable source for these sediments (Leckie and Cheel, 1989).  It is fortunate 

that fossils are only rarely recovered from these clay layers in that Chadronian-age site, 

so that it is unlikely that a Whitneyan fauna at Rodent Hill has become mixed with an 

earlier Chadronian one.  The fossil rodents recovered at Rodent Hill also bear this out. 

Leckie and Cheel (1989) describe the Saskatchewan portion of the Cypress Hills 

as the product of a braid plain or meandering stream plain that flowed in a semi-arid 

region.  The Rodent Hill Locality appears to reflect a similar depositional situation, with 

the locality possibly occurring at the edge of the flood plain.  If this were the case, the 

sand bars (Units I, III, V and VII) would form during episodes where the stream flowing 

from the southwest had shifted northward, depositing the alluvium.  The nodular units 
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(II, IV, and VI) would have formed during the longer periods when the stream was not 

in a position to deposit large amounts of water and alluvium into the area while the 

silcretes consolidated.  One factor that is unknown, and at this time untested, is how 

much time is missing in the disconformity between the consolidation events of the 

nodular units and the deposition events of the sand bars.  This period of time could be 

nil, i.e., the sand bars indicate a direct deposition immediately after the formation of the 

nodular units.  Conversely, there could be hundreds or thousands of years indicated by 

the time between the solidification of the nodules and the sand deposits.  This question 

currently remains unresolved. 

Another important consideration is the mixing of faunas during transport.  There 

is the potential that the streams that deposited the Rodent Hill fossils during one 

NALMA were also cutting down into older sediment, thus combining species of 

different ages.  At the Rodent Hill Locality there is no definite way to know for sure, but 

there are no described taxa that stand out as anomalous in age compared to the rest.  

Based on the evidence from this study, the possibility must be considered for the 

combining of faunal elements from different ages due to stream action, but is unlikely to 

have had much effect on the mammal remains at the Rodent Hill Locality.  
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3. METHODS AND MATERIALS 

 

3.1 MATERIALS – FOSSILS USED IN THIS STUDY  

The fossils for this study were recovered from two sources.  The first was the 

non-stratigraphically controlled materials that had been previously collected from the 

Rodent Hill Locality by other workers.  The collection of many of these specimens came 

from surface collecting or sorting through matrix.  Some fossils were obtained by 

picking through matrix that was collected in 1994. The specimens that were recovered 

by other people had been catalogued and given RSM P-numbers (Table 3.1), and some 

had preliminary familial identifications, but only one relevant specimen, P2785.021, had 

been identified to the species level.  This specimen was identified as the aplodontid 

Prosciurus relictus (Storer, 1993), a species found elsewhere in Orellan sites only 

(Korth, 1989a) so the Whitneyan age assignment of Rodent Hill needed to be tested.  It 

also became apparent that it would be important to test if there was an identifiable 

stratification of taxa within the site, in order to determine whether material of an older 

(likely Orellan) or younger (likely Arikareean) age might be identified from a distinct 

layer.  

Sediment that was collected by using a shovel was processed in a double-drum 

power screen.  The amount of sediment screened from each of the units varied, but at 

least 100 liters were removed from all units except Unit VI, for which 50 liters was 

screened.  The volume of screened material was determined by the volume of the 

Table 3.1.  RSM P-numbers of non-stratigraphically collected fossils and the 
total number of rodent teeth in this study assigned to each P-number. 

P number 2452 2521 2685 2706 2785 2794 

Number of rodent teeth 20 105 1 2 2 1 
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available containers, each of which was about 45 L.  Each unit produced a similar 

volume of screened matrix (the screened material of Unit VI produced a similar volume 

after screening only half the amount taken from the other stratigraphic units).   

The power screen was used to remove all of the very finest (<1 mm) sediment 

and to separate the coarsest material (>5 mm) from the rest of the sediment.  There was 

the possibility that the very tiniest of fossils, such as insectivore incisors and reptile 

teeth, could be lost in the clays and silts that were left behind.  These elements were 

recovered from the sampled matrix from this site and others in the Cypress Hills, so 

considering the costs versus the benefits, the potential to miss a few small fossils was 

considered minimal compared to the amount of time that would have to be expended 

sorting through the voluminous amounts of clays and silts. 

 The two separate sets of samples were then brought back to the University of 

Saskatchewan to be sorted.  The search for fossil material was accomplished by placing 

a small amount of matrix on a tray, then picking out fossils with fine forceps under a 

magnifying lamp.  All fossil material was retained, including teeth, skeletal elements and 

fragmentary remains.  Only the teeth, and mandibles and maxillae with teeth present, 

were collected in individual containers and assigned individual catalogue numbers 

(except for rodent and lagomorph incisors).  The rest of the fossils were placed in  

 containers, one containing skeletal elements and the other containing fragments.  The 

fossils from each unit were assigned a different RSM “P” number to avoid later 

confusion (Table 3.2). 

 

Table 3.2.  P-numbers assigned to Stratigraphic Units of Rodent Hill, total number 
of associated dental remains, and the total number of rodent teeth relevant to this 
study (excludes eomyids and cricetids). 

Stratigraphic Unit I II III IV V VI VII 

P number P2834 P2835 N/A N/A P2836 P2837 P2838 

Total dental remains 165 28 0 0 37 3 15 

Total rodent teeth 15 6 0 0 9 0 5 
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Figure 3.1 Occlusal measurements 
used for all rodent teeth.  a. Upper 
tooth (M1); b. lower tooth (m1).  
Redrawn from Meyer, 2003. 

a b

Figure 3.2 Lateral enamel 
measurements of castorid 
dentition.  Redrawn from 
P2685.002 (RP4), buccal to left. 

 After the matrix had been sorted, a process that took approximately one year, the 

dental remains were then sorted and identified to taxonomic group.  The rodents from 

the families involved in this study were assigned tentatively to families; the cricetids and 

eomyids were passed on to another researcher (Jennifer Rothecker), who was working 

on those two families. 

 

3.2 METHODS - COMPARISONS AND IDENTIFICATIONS 

The fossils for this study were recovered from either the stratigraphic samples or 

from previous collections at Rodent Hill.  The fossil material from the rodent families of 

interest was sorted and identified to the most specific taxonomic level possible, 

depending on the nature of the collected 

fossils and the comparative material 

available.  The teeth were first sorted into 

appropriate families based on literature 

descriptions of the families, and some 

were tentatively assigned to genera where 

possible.  Once sorted into families, the 

teeth were measured using a Nikon 

eyepiece reticule in a Leitz dissecting 

microscope.   

The occlusal surface of each tooth was measured for the maximum 

anteroposterior length (AP), and the maximum transverse width (TR) whenever possible 

(Figure 3.1a).  In the case of lower teeth 

(Figure 3.1b), each was measured for the 

maximum transverse width across both the 

trigonid (TRA) and the talonid (TRP).  

Castorid teeth (Figure 3.2) were also 

measured for maximum lingual and buccal 

enamel height (LEH and BEH, respectively).  

Upper teeth are designated using upper case 
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letters, followed by a number that indicates the tooth position in the row (e.g. P4, M1).  

Lower teeth are indicated using lower case letters (e.g. p4, m1). 

The measurements were plotted into Excel spreadsheets for comparisons on 

scatter plots so that distinct taxa could be recognized based on sizes, and any trends in 

measurements would become apparent, allowing for further sorting of the fossils.  

Where more than one specimen in a tooth position was known for a taxon, the MEAN of 

the measurements is calculated and the operational range of sizes (OR) are given to 

indicate minimum and maximum measurements.  Where four or more specimens were 

known, the standard deviation (SD) and coefficient of variation (CV) were calculated. 

At this point, it became necessary to compare the Rodent Hill fossils with similar 

fossils from other localities.  Specimens were borrowed from collections at other 

institutions whenever possible for direct comparison.  A trip to the American Museum of 

Natural History was considered necessary because of the relatively large number of 

relevant holotypes present there that could not be borrowed.  In this case, photographs 

were taken using a Kodak DX3900 3.1MP digital camera.  In other cases, casts of 

holotypes were provided while paratypical material was borrowed.  When necessary, the 

Rodent Hill fossils were compared with literature descriptions and figures if the 

comparative material was not available for loan. 

Specimens were referred to taxa based on shared morphological similarities with 

known material.  In a few cases the fossils were unlike any that have been described, in 

which case they were considered a new species.  In some instances this resulted in the 

diagnosis and naming of a new species.  In other instances, the material was identified as 

unique, but no specific designation was given.  The choice in such cases depended on 

the amount of material present, the condition of the material, and completeness of the 

resulting upper and lower dentitions.  
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4. RODENT OVERVIEW 

 

4.1 SPECIALIZED STRUCTURES OF RODENTS 

The rodents are a large order of mammals with several specializations in their 

dentition and skulls related to their unique form of mastication called propalinal 

movement (Carroll, 1988, p. 489) that involves an anteroposterior motion of the jaw.  

Some of these cranial and dental adaptations are used in the taxonomy within the order.  

They are introduced here to avoid detailed discussion in the following chapters on the 

families, and will focus on two particular skull features, and the dentition. The 

zygomatic structure and jaw angle are discussed here, as they are skull characteristics 

that are commonly used to group rodents at higher taxonomic levels, while the unique 

dentition of rodents can be used to distinguish between genera or species.   

 

4.1.1 Zygomasseteric Structure 

 The muscles that rodents use for chewing are adapted to allow the jaw to move in 

a back-and-forth motion.  To accomplish this, the masseter muscle is differentiated into 

three parts and extends anteriorly onto an extended zygomatic arch that originates 

anterior of the tooth row (Korth, 1994a).  The masseter muscle extends between the 

ventral surface of the zygoma and the lateral side of the ascending ramus (Korth, 1994a). 

 



  30

 

 

The zygomasseteric structure of the skull is arranged in four different ways in 

rodents, which allows for variations in the expansion of the various masseter muscles 

onto the rostrum (Korth, 1994a).  These morphologies are used in subordinal 

classifications of the rodents, and are known as protrogomorphy, sciuromorphy, 

hystricomorphy and myomorphy (Fig. 4.2).  These terms are used to describe variations 

in the modifications of the rostrum that may relate to an expansion of the anterior margin 

of the zygomatic arch into a plate, an increase in the size of the infraorbital foramen, or a 

combination of these. 

Figure 4.1 The major muscles of rodent mastication and the skull 
structures relevant to the morphology of the zygomatic arch.  
Modified from Korth, 1994a. 
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4.1.1.1 Protrogomorphy 
This is the primitive condition in rodents, where the rostrum is not modified, so 

the masseter originates only on the ventral surface of the zygomatic arch (Korth, 1994a).  

In the Rodent Hill rodents, this condition is seen in the Aplodontidae, the only modern 

family that still exhibits this condition (Korth, 1994a). 

A

B

C

D

Figure 4.2 Examples of the four kinds of zygomasseteric structure in 
Recent rodents.  A, Protrogomorphous Aplodontia rufa. B, 
Sciuromorphous Sciurus niger. C, Hystricomorphous Zapus 
hudsonicus. D. Myomorphous Rhizomys pruinosis.  Skulls are not to 
scale.  Modified from Korth, 1994a. 
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4.1.1.2 Sciuromorphy 
This is a modification where the ventral surface of the zygoma tilts vertically and 

broadens into a zygomatic plate (Korth, 1994a).  The masseter lateralis extends 

anteriorly onto the rostrum, while the m. superficialis extends anteriorly along the 

zygoma and the origination of the m. medialis is the same as in protrogomorphy (Korth, 

1994a).  Most of the Sciuridae, the Castoridae, and the families of the Geomyoidea are 

Rodent Hill families with this morphology.  The Eomyidae, described by Rothecker 

(2003), are also sciuromorphous (Korth, 1994a). 

4.1.1.3 Hystricomorphy 
This is a condition where the masseter medialis is enlarged and passes through 

the  infraorbital foramen, which is also enlarged (Korth, 1994a).  The m. superficialis 

originates on the anterior edge of the zygoma, while the m. lateralis extends over most of 

the length of the zygoma (Korth, 1994a).  The Zapodidae is the only Rodent Hill family 

of rodents in this study that express this morphology (Korth, 1994a).  Some members of 

the Cricetidae, which were described by Rothecker (2003), are also hystricognathous 

(Korth, 1994a). 

 

4.1.1.4 Myomorphy 
This condition is a combination of the expansion and tilting of the zygoma to 

accommodate the masseter lateralis as seen in sciuromorphy, and the enlargement of the 

infraorbital foramen to allow for the m. medialis as in hystricomorphy (Korth, 1994a).  

None of the Rodent Hill rodent families in this study have this morphology, although 

Korth and Emry (1991) suggested that the sciurid subfamily Cedromurinae might have 

some myomorphic modifications.  Some rodents of the family Cricetidae are also 

myomorphic (Korth, 1994a; Rothecker, 2003). 



  33

4.1.2 Angle of the jaw 

The angle of the mandible relative to the horizontal ramus of the jaw is often 

used for subordinal classification of rodents (Fig. 4.3).  There are two different 

morphologies:  sciurognathy, where the angle of the mandible is in the same plane as 

that of the horizontal ramus, in a roughly straight line; and hystricognathy, where the 

horizontal ramus is at an angle to the mandible, giving a line with a distinct bend (Korth, 

1994a).  Some confusion does exist about these conditions in extinct taxa due to 

qualifications such as “incipient” or “subhystricognathous”, and this may require 

recognition of an intermediate morphology that was able to evolve into either form 

(Korth, 1994a).  All of the Rodent Hill rodents, including the Cricetidae and Eomyidae 

studied by Rothecker (2003), exhibit the sciurognathous condition (Korth, 1994a). 

 

4.1.3 Dentition  

 The primitive dentition of the Rodentia is 1023/1013 (Korth, 1994a) although 

this dental formula has been modified in several groups.  The teeth of primary 

importance in this study are the cheek teeth (molars and premolars).  Most of the dental 

homologies and terminology of rodents were summarized by Wood and Wilson (1936), 

and these are generally the terms used to describe the features of the teeth, although they 

have been modified by other authors to suit the special modifications found in many 

rodent families.   

A B C

Figure 4.3 Jaw angle morphology in rodents.  A,  Sciurognathous 
Aplodontia rufa (Recent).  B, Hystricognathous Erethizon dorsatum 
(Recent).  C, “subhystricognathous” Franimys amherstensis 
(Clarkforkian).  Scale equals 1 cm.  Modified from Korth, 1994a. 
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Figures 4.4 and 4.5 show generalized cusp and feature orientations of rodent 

molars and premolars.  The basic occlusal pattern of the upper molars (Figure 4.4) is a 

triangle outline with a tribosphenic cusp pattern.  There is a paracone and metacone on 

the buccal side, and a protocone on the lingual side.  A hypocone may be present 

posterior to the protocone.  On the anterior margin, a raised anterior cingulum may be 

present.  Posterior to the anterior cingulum is a valley that is referred to as the anterior 

transverse valley.  A protocone crest may extend buccad from the protocone into the 

anterior transverse valley.  There are two main transverse lophs within the basin of the 

tooth that may be present; the protoloph is the anterior loph, usually extending linguad 

from the paracone to the protocone, while the metaloph is the posterior loph, extending 

linguad from the metacone towards the protocone.  The valley between the two 

transverse lophs is called the central transverse valley.  A protoconule may be present on 

the protoloph, and one or more metaconules may be present on the metaloph.  On the 

Figure 4.4 Generalized upper rodent molar (left) and premolar with 
major features identified. 1–mesostylar crest 2—ectoloph 3—
mesostyle 4—paracone 5—parastyle 6—posterior transverse valley 
7—metacone 8—anterocone 9—protoloph 10—anterior transverse 
valley 11—anterior cingulum 12—protoconule 13—protocone 
14—metaconule 15—metaloph 16—protocone crest 17—hypocone 
18—posterior cingulum 19—central transverse valley 

Modified from Korth, 1994a.
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posterior margin a raised posterior cingulum may be present.  The valley between the 

metaloph and posterior cingulum is the posterior transverse valley.  On the buccal 

margin, stylar cusps may be present; the parastyle is present anterobuccally to the 

paracone, while the mesostyle is present between the paracone and metacone.  A 

mesostylar crest may extend lingually or buccally from the mesostyle.  The ectoloph is a 

buccal loph that may join some or all of the buccal cusps. 

The P4 is generally similar to the molars, but the anterobuccal corner may be 

expanded into an anteriorly oriented anterocone. 

The lower molars (Figure 4.5) are roughly square in occlusal outline, and are 

divided into the anterior trigonid region and the posterior talonid region.  The trigonid of 

rodents has two main cusps, the buccal protoconid and the lingual metaconid, and an 

anteroconid may be present in front of these two cusps.  The loph that extends between 

Figure 4.5 Generalized lower rodent molar (left) and premolar 
with major features identified. 1–entoconid 2—mesolophid 3—
mesostylid 4—metastylar crest 5—metaconid 6—posterolophid 
7—metalophulid I 8—anteroconid 9—protoconid 10—
metalophulid II 11—mesoconid 12—ectolophid 13—hypoconid 
14—hypolophid 15—hypoconulid l6—trigonid 17—talonid 

Modified from Korth, 1994a.
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the anterior margins of the protoconid and metaconid is the metalophulid I (=anterior 

cingulum of Korth, 1994a) and the loph that extends between the posterior margins of 

those cusps is the metalophulid II.  This latter loph may not completely traverse the 

width of the trigonid, instead leaving the posterior margin of the trigonid basin open.  

Posteriorly, there are three main cusps of the talonid, the hypoconid on the posterobuccal 

corner, the entoconid on the posterolingual corner, and a hypoconulid between those two 

cusps.  The loph that extends along the posterior margin, joining these cusps, is the 

posterolophid (=posterior cingulum of Korth, 1994a).  The hypolophid is a loph, present 

anteriorly to the posterolophid, that extends between the hypoconid and entoconid; this 

loph may be complete, joining the two cusps, or may be incomplete.  On the buccal 

margin of the tooth, an ectolophid may be present as a crest that runs posterad from the 

protoconid to the hypoconid.  A mesoconid may be present as a small cusp along the 

ectolophid.  On the lingual margin, a metastylid crest may extend posterad from the 

metaconid.  This crest may or may not extend to join with the entoconid, or it may 

terminate at one or more mesostylid cusps that are present on the lingual margin. 

The lower premolar has most of the same features of the lower molars, but the 

talonid is usually buccally expanded relative to the trigonid (Korth, 1994a) although this 

may occur in the lower molars of some taxa as well. 

Many rodent families can be identified due to modifications of this general tooth 

morphology; distinguishing features will be indicated within each family discussion.  

Many genera and species of rodents are diagnosed solely on their dental structure e.g. 

Sciurion campestre Skwara, 1986; Pseudallomys nexodens Korth, 1992; Nototamias 

Pratt and Morgan, 1989.  This allows for identification of the rodents from Rodent Hill 

even though the majority of identifiable dental remains recovered from the site are 

isolated teeth. 
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4.2 THE RODENT FAMILIES OF RODENT HILL 

The following families of rodents were identified from Rodent Hill Locality.  

The taxonomy follows that of Korth (1994a), as it is the most recent review of the 

systematics and diversity of the Tertiary rodents of North America.  McKenna and Bell 

(1997) is a more recent classification of the all of the mammals, including alternate 

classifications of the rodents, but the rodent-specific nature of Korth makes it the 

preferred source here. 

Order Rodentia Bowditch, 1821 

 Suborder Sciuromorpha Brandt, 1855 

  Superfamily Aplodontoidea Brandt, 1855 

   Family Aplodontidae Trouessart, 1897 

  Superfamily Sciuroidea Gray, 1821 

   Family Sciuridae Gray, 1821 

 Suborder Sciuromorpha incertae sedis 

  Superfamily Castoroidea Gray, 1821 

   Family Castoridae Gray, 1821 

 Suborder Myomorpha Brandt, 1855 

 Infraorder Myodonta Schaub, 1958 

  Superfamily Muroidea Miller and Gidley, 1918 

   Family Cricetidae Rocheburne, 1883 

  Superfamily Dipodoidea Weber, 1904 

   Family Zapodidae Coues, 1975 

 Infraorder Geomorpha Thaler, 1966 

  Superfamily Geomyoidea Bonaparte, 1845 

   Family Heteromyidae Gray, 1868 

   Family Florentiamyidae Wood, 1936 

   Family Heliscomyidae Korth Wahlert and Emry, 1991 

  Superfamily Eomyoidea Depéret and Douxami, 1902 

   Family Eomyidae Depéret and Douxami, 1902
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5. FAMILY APLODONTIDAE 

 

The Aplodontidae is considered the most primitive living family of rodents, 

containing the single living species, the mountain beaver or sewellel Aplodontia rufa 

(Korth, 1994a) that has a range limited to the northwest United States and southern 

British Columbia.   

The earliest aplodontids are known from isolated teeth from the Uintan and 

Duchesnean (Black, 1971; Storer, 1988) and indicate a likely origin within the rodent 

family Ischromyidae (Korth, 1994a).  Aplodontids were at a peak of diversity during the 

Arikareean (Korth, 1994a) and decline rapidly after that.  During the Oligocene and 

early Miocene the family has a fossil record that is rare, but diverse, in Europe and Asia 

as well as in North America (Korth, 1994a). 

The Aplodontidae is the only living rodent family that still bears the primitive 

protrogomorphic zygomasseteric structure, and the jaw angle is sciurognathous (Korth, 

1994a).   

The dental formula of aplodontids is the primitive rodent formula of 1023/1013 

(Korth, 1994a).  The basic upper molar morphology (Figure 5.1) of the aplodontids is a 

brachydont tooth with large conules, a mesostyle that would develop into an ectoloph in 

some lineages, protocone crest and reduced hypocone (Korth, 1994a).  The P4 is often 

larger than the M1, usually with an expanded anterocone (Korth, 1994a). 

The basic lower molar morphology of aplodontids (Figure 5.2) has a hypolophid 

(partial or complete), and an entoconid that is distinctly isolated from the posterolophid 

(Korth, 1994a).  The p4 is molariform with a trigonid that is constricted relative to the 

talonid (Korth, 1994a). 
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Crown heights of aplodontids are primitively brachydont, as in the subfamilies 

Prosciurinae and Allomyinae, but there is a trend toward greater hypsodonty in the later 

subfamilies Meniscomyinae and Aplodontinae (Korth, 1994a).  The subfamilies found at 

Rodent Hill, the Prosciurinae and the Allomyinae, can be differentiated dentally by the 

relative complexity of the cheek teeth.  Prosciurines have teeth dominated by cusps, with 

fewer lophs and crests (Korth, 1994a) whereas the teeth of allomyines are more 

complex, with more lophules and crests. 

Figure 5.1 Generalized aplodontid 
upper cheek tooth morphology. RM1 
(on left) and RP4 with major features 
identified. 1–metacone 2—metastylar 
crest 3—mesostyle 4—paracone 5—
anterior transverse valley 6—
parastyle 7—central transverse valley 
8—buccal (=labial) fossette 9—
ectoloph 10—anterocone 11—
anterior cingulum 12—protoloph 
13—protoconule 14—protocone 15—
posterior lingual inflection 16—
metaconule (=lingual metaconule) 
17—posterior labial fossette 18—
protocone crest 19—hypocone 20—
metaloph 21—posterior transverse 
valley 22—posterior cingulum 23—
second metaconule (=buccal 
metaconule) 

Drawn by Taran Meyer, modified by 
the author.  Terminology from Wood 
and Wilson (1936) and Rensberger 
(1975). 

Figure 5.2 Generalized aplodontid 
lower cheek tooth morphology. Rm1 
(on left) and Rp4, with major features 
identified. 1—entoconid 2—
mesostylid 3—metalophulid II 4—
metastylid crest 5—posterolophid 
(=posterior cingulum) 6—metaconid 
7—anteroconid 8—posterior 
protoconid crest 9—mesoconid 10—
buccal mesolophid 11—metastylar 
(buccal) shelf 12—anterior hypoconid 
crest 13—hypoconid 14—
metalophulid I (=anterior cingulum) 
15—protoconid 16—ectolophid 17—
posterior buccal fossettid 18—
hypolophid 19—hypoconulid 20—
talonid 21—trigonid 

Drawn by Taran Meyer, modified by 
the author.  Terminology from Wood 
and Wilson (1936) and Rensberger 
(1975).
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5.1 SYSTEMATIC PALEONTOLOGY 

 

APLODONTIDAE Trouessart, 1897 

PROSCIURINAE Wilson, 1949 

PROSCIURUS Matthew, 1903 

 

 Type species—Sciurus vetustus Matthew, 1903 

 Referred species—P. relictus (Cope, 1873); P. lohiculus Matthew and Granger, 

1923; P. shantungensis Rensberger and Li, 1986; P. ordosicus Wang, 1987; P. parvus 

Korth, 1989b; P. magnus Korth, 1989b; P. albiclivus Korth, 1994b. 

 Age and distribution—Chadronian, Orellan of Great Plains of North America, 

Whitneyan of Nebraska and Saskatchewan, Oligocene of Mongolia and China, 

questionably Arikareean of Saskatchewan. 

 Diagnosis—“Small, brachydont aplodontids lacking ectoloph in P4-M3; distinct 

protoconule (paraconule) on P4-M3 that may be reduced in the smallest species; 

metaconid anteroposteriorly compressed, allowing extension of deep interior basin 

farther anterolinguad than in other genera; metalophulid II absent on metaconid, present 

on protoconid; mesostylid separated from metaconid, lacking transverse compression; 

mesostylid with tendency to bear small, transversely directed crest, either bending 

posterad toward hypoconulid, or bending towards ectolophid, often joining posterior 

corner of mesoconid.”  Diagnosis of Rensberger (1975) emended by Korth (1989). 

 

PROSCIURUS CF P. PARVUS Korth, 1989b 

Table 5.1, Figure 5.3 a-c 

 

 Type specimen—UNSM 81084, left mandible with m1-m2, Brule Formation, 

Morrill County, Nebraska (Orellan). 
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Referred specimens—SMNH P2521.154 (LP4); P2785.021  (RM1); P2521.321 

(LM1); P2452.121 (LM?); P2521.305 (Lp4). 

 Horizon at Rodent Hill—Collected in stratigraphically uncontrolled sampling. 

 Diagnosis—“Smallest species of the genus; metaconules on upper molars single; 

hypolophid on lower cheek teeth less well-developed than that of P. relictus; mesostylid 

strong and buccolingually elongate on lower molars; minute cingulum variably present 

at posterior base of protoconid.”  From Korth (1989a).   

Description—The P4 has an anteroposteriorly-compressed anterocone with a 

parastyle situated buccally.  The anterior transverse valley is wide between the 

anterocone and protoloph, and much narrower between the lingual end of the protoloph 

and the anterior margin.  The anterior cingulum is absent.  The paracone is high and 

steep-sided, and is connected to the posterior margin of the low round protoconule via a 

low protoloph.  No ectoloph is present.  An isolated, ovate mesostyle is present posterior 

a

c

b

Figure 5.3  Prosciurus cf. P. parvus:  a. SMNH 
P2521.154 LP4; b. SMNH P2521.321 RM1; c. SMNH 
P2521.305 Lp4.  Scale = 1mm, buccal to top of page. 
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to the paracone and slightly buccal to the metacone.  There are two round metaconules 

of very different size.  The smaller is located buccal to the larger one.  The metacone is 

low and anteroposteriorly compressed.  A short, straight metaloph originates from 

between the mesostyle and the metacone that joins to the small metaconule. The large 

metaconule expands to contact the posterior margin, but instead of a raised posterior 

cingulum there is a distinct posterior shelf.  No hypocone is clearly present.  

The M1 bears a complete protoloph and metaloph that nearly converge buccal to 

their connection with the protocone.  The paracone is joined to the subequally sized 

protoconule posteriorly by the protoloph.  The anterior cingulum is very low, and there 

is no parastyle at the buccal end.  The anterior protocone crest extends from the 

protocone into the anterior transverse valley on P2521.321 but this is not evident on 

P2785.021.  The mesostyle is small, blocking the relatively narrow central transverse 

valley.  No ectoloph is present.  The metacone is connected to the single metaconule 

anteriorly via the metaloph.  The hypocone is present as a small crescentic or ovate 

fossette at the posterolingual margin, and the posterior cingulum is only clearly present 

on P2521.321 (not visible on P2785.021, possibly because the posterior margin is very 

worn).  

The trigonid of the p4 is transversely compressed relative to the talonid, and the 

enamel of the basins is smooth.  The metaconid is higher than the protoconid, and both 

are somewhat cuspate.  There is a very narrow anterior cingulid at the anterior base of 

the protoconid.  There is no metalophulid I, but an anteriorly concave metalophulid II 

borders the posterior margin of the trigonid basin.  The ectoloph is low and continuous 

from the protoconid to the hypoconid.  The mesoconid is low, with a buccal mesolophid 

that continues to the buccal margin.  The hypoconid is wide and lower than the 

protoconid.  The posterolophid is high and extends buccally from the entoconid, and is 

separated from the hypoconid by a narrow gap.  No distinct hypoconulid is present.  The 

hypolophid is equal in height to the posterolophid, extending buccally from the anterior 

margin of the entoconid before curving posterad to join with the hypoconulid.  The 

entoconid is separated by a notch from the mesostylid, which is low and has a slight 

expansion into the talonid.  The mesostylid is joined by a very narrow crest to the 

metastylid crest, which originates from the posterolingual corner of the metaconid.   
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Table 5.1 Dental measurements of Prosciurus cf. P. 
parvus. 

Tooth 
position Dimension N Mean OR 

P4 AP 1 1.98  
 TR 1 2.18  
     

M AP 1 .80  
 TR 1 1.83  
     

M1 AP 2 1.63 1.45-1.80 
 TR 2 2.16 2.08-2.25 
     

p4 AP 1 1.48  
 TRA 1 1.03  
 TRP 1 1.53  

 

Discussion—Prosciurus parvus is the smallest described species of Prosciurus (Korth, 

1989b).  The Rodent Hill specimens are as much as 20% smaller than P. albiclivus 

(Korth, 1994b). The upper teeth are near the upper end of the size range of P. parvus 

given by Korth (1989), whereas the p4 is closer in size to the lower end of the P. parvus 

range.  These teeth approximate the size values of P. relictus (Korth, 1989b), but the 

well-developed, buccally expanded mesostyle and the narrow anterior transverse valley 

of the M1 in the Rodent Hill specimens are more typical of P. parvus (wider in P. 

relictus). Also, the metaconule of P. relictus is situated further buccad relative to the 

protoconule than on the Rodent Hill specimens.  Furthermore, the P4 of P. parvus tends 

to be smaller relative to M1, as is the case of the Rodent Hill specimens, whereas the P4 

is subequal in size to the M1 in P. relictus (Korth, 1989b).  The only significant 

difference between the Rodent Hill specimens and the Nebraska P. parvus described by 

Korth (1989) is the doubled protoconules of the Rodent Hill specimens.  The relatively 

large protoconule is a typical feature of Prosciurus species except in P. parvus (Korth, 

1989b), where it is reduced as in other prosciurines (Rensberger and Li, 1986).  This is 

the major reason for considering the Rodent Hill specimens as conferring well with P. 

parvus, but not including them in that species without reservation.  
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PROSCIURUS SP. INDET. 1 

Table 5.2, Figure 5.4a 

 

 Referred specimens—SMNH P2521.212 (RM1). 

 Horizon at Rodent Hill—Collected in stratigraphically uncontrolled sampling. 

 Description— The M1 has a narrow anterior transverse valley bordered by a low 

anterior cingulum.  The paracone is prominent, while the protoconule is reduced to a 

narrow widening on the protoloph.  The protoloph is complete, higher than the 

metaloph.  The metaloph joins to the protoloph buccal to the protocone.  The protocone 

is very anteroposteriorly compressed, and there is no anterior crest.  The paracone bears 

a slight buccal crest that terminates anterior to the mesostyle.  The mesostyle is small 

and anteroposteriorly compressed, located posterior to the buccal end of the central 

transverse valley, and with a narrow metastylar crest extended into the central transverse 

valley.  This lophule terminates approximately level with the lingual edge of the 

metacone.  The enamel of the central transverse valley bears some slight rugosity.  The 

metacone is present as a transversely compressed widening on the posterobuccal corner 

of the tooth that joins to the single, large metaconule by the metaloph.  The metaconule 

is not joined to either the protoloph or the posterior cingulum.  A posterior transverse 

valley is present is present that is about half the width of the anterior transverse valley.  

The hypocone is a slight swelling of the posterior crest of the protocone, where it has 

been subsumed into a single loph. 

Discussion—P2521.212 is substantially smaller (27% anteroposteriorly; 44% 

transversely) than any described M1 for Prosciurus parvus (Korth, 1989b).  It is not 

included with cf. P. parvus described above, as those teeth are appreciably larger. If a 

distinct species is indicated by this specimen, this would be the smallest Prosciurus 

species, but more material will be necessary.  Alternatively, this tooth could be 

representative of a juvenile specimen. 
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PROSCIURUS SP. INDET. 2 

Table 5.2, Figure 5.4b 

 

 Referred specimens—SMNH P2521.399 (RM1 or M2). 

 Horizon at Rodent Hill—Collected in stratigraphically uncontrolled sampling. 

Description—The M1/2 is a very worn tooth that is missing the buccal and 

anterior margins, and the paracone.  The tooth has a protoloph, presumably extending 

from the paracone, joining to the anterior margin of the protocone apex.  The 

protoconule is large and circular.  The mesostyle is present as a slight bump posterior to 

the location of the paracone blocking the buccal end of the central transverse valley.  

The enamel of the latter is smooth, and uninterrupted by any lophules.  The metacone 

and metaconule are present as round cusps, with the metaconule smaller.  The metaloph 

extends from the metacone across the front of the metaconule.  Buccad to the 

metaconule is a lingual expansion along the metaloph that is somewhat angular, and 

could indicate a very worn second metaconule.  The metaloph joins the protocone 

posterior to the site of contact of the protoloph and protocone, although wear appears to 

exaggerate this feature. 

Table 5.2 Dental measurements of Prosciurus sp.1 and sp.2. 

Taxon Tooth 
position Dimension N Mean 

Prosciurus sp. 1 M1 AP 1 1.28 
  TR 1 1.45 
     

Prosciurus sp. 2 M1-2 AP 1 1.43 
  TR 1 2.60 

  

Discussion—The pronounced wear of this specimen makes identification beyond 

the genus very difficult.  It is probably Prosciurus due to the simple nature of the 

occlusal surface, as well as the pronounced protoconule. P2521.399 is at least 15-20% 

wider (the buccal margin is missing) than the M1 specimens of Prosciurus cf. P. parvus 

described above, while it is narrower, probably due to the missing anterior margin of the 

tooth.  The apparent size of this tooth is closer to the range given by Korth (1989b) for 
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Prosciurus relictus, but the very fragmentary nature of the specimen makes an actual 

assignment difficult. 

 

 

CAMPESTRALLOMYS Korth, 1989b 

 

Type species—Prosciurus dawsonae Macdonald, 1963 

Referred species—C. annectens Korth, 1989b; C. siouxensis Korth, 1989b 

Age and Distribution—Orellan of Nebraska and Saskatchewan; Whitneyan of 

Nebraska and Saskatchewan; Arikareean of South Dakota 

Diagnosis—“Size near that of Prosciurus; dental formula 1-0-1-3; conical 

anterodorsal expansion of auditory bulla, separated from remainder of bulla by single 

septum; buccal cusps on upper molars moderately crescentic, dominated by developed 

ectoloph; mesostyle enlarged and expanded buccally, blocking the central transverse 

valley of the tooth; protoconules reduced in size compared to those of Prosciurus and 

metaconules single; multiple mesostylids on lower cheek teeth connected to the 

mesostylid crest; hypolophids very weak or absent on lower molars; i1 flattened 

anteriorly.”  Diagnosis given by Korth (1989b). 

Figure 5.4  Prosciurus spp.:  a. SMNH P2521.212 
RM1; b. SMNH P2521.399 RM1-2.  Scale = 1mm, 
buccal to top of page. 

a b
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CAMPESTRALLOMYS SP. INDET. 

Table 5.3, Figure 5.5 

 

Referred specimen from Rodent Hill—SMNH P2521.258 (RP4). 

 Horizon at Rodent Hill—Recovered in stratigraphically uncontrolled sampling. 

 Description— This P4 has an anterocone that extends strongly forward, with an 

anterior transverse valley approximately half the width of the central transverse valley.  

The protoloph is complete and appears to connect to the protocone (which is missing).  

The crescentic paracone is slightly anteroposteriorly compressed and larger than the 

protoconule, to which it is joined posteriorly by the protoloph.  The paracone and 

metacone are distinct, crescentic-shaped cusps.  The ectoloph is not present between the  

 

mesostyle.  The mesostyle is distinct, originating along the buccal margin, buccally to  

the paracone and metacone.  A well-developed metastylar crest extends lingually from 

the mesostyle into the central transverse valley and terminates about level with the 

centre of the paracone.  Otherwise, there are no accessory lophules or crests in the 

central transverse valley, and the enamel is smooth.  The metacone is subequal in size to 

the paracone.  The metaloph extends from the lingual margin of the metacone and 

Figure 5.5 Campestrallomys sp indet.: SMNH 
P2521.258 RP4.  Scale = 1mm, buccal to top of page. 
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terminates as a small extension past the metaconule.  The metaconule does extend to the 

posterior margin, where there is no obvious posterior cingulum, but there is a 

pronounced posterior labial fossette between the metacone and metaconule.  Both 

conules are well developed, but smaller than the main cusps. 

Discussion—The well-developed mesostyle and mesostylar crest, crescentic 

cusps and estimated size of this P4 indicate that it is very similar to the genus 

Campestrallomys.  The dominance of the buccal cusps over the ectoloph is especially 

reminiscent of the C. siouxensis upper molars described by Korth (1989b); however, the 

incomplete ectoloph is more reminiscent of C. annectens (Korth, 1989b).  In the latter 

species the ectoloph is best developed between the paracone and mesostyle, which is not 

seen in the Rodent Hill specimen.  Unfortunately, it is the only specimen that appears 

referable to the genus, and it is broken, so the actual size is unknown.  Anteroposteriorly, 

P2521.258 is roughly 13% shorter than C. siouxensis, but it is about 10% larger than C. 

annectens.  It seems more appropriate at this time to refer the Rodent Hill specimen to 

Campestrallomys sp. indet., but not assign it further until more fossil material becomes 

available. 

 

Table 5.3 Dental measurements of Campestrallomys sp. indet. 
Tooth 

position Dimension N Mean 

P4 AP 1 2.00 
 TR 1 1.80 
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HAPLOMYS Miller and Gidley 1918 

 

 Type species—Meniscomys liolophus Cope, 1881 

 Referred species—H. arboraptus (Shevyreva, 1971); H. galbreathi Tedrow and 

Korth, 1997. 

 Age and Distribution—Orellan of South Dakota and Saskatchewan; Whitneyan 

of Oregon and Saskatchewan; middle Oligocene of Mongolia and Kazakhstan. 

 Diagnosis—“Small to intermediate sized prosciurines (equal or larger than 

Prosciurus); cheek teeth brachydont as is typical of prosciurines; fourth premolars equal 

in size to first molars (uppers and lowers) instead of enlarged as in other aplodontid 

subfamilies; lower cheek teeth rhomboidal as in Prosciurus but more lophate; less 

lophate than lower cheek teeth of meniscomyines; variable presence on later species of 

typical Allomyinae fossettid formed by anterobuccal extension of the hypoconid and 

buccal mesolophid, while earlier species show beginnings of an anterior extension on the 

hypoconid; upper cheek teeth bear more prominent parastyle and mesostyle than in 

Prosciurus; weak ectoloph on upper cheek teeth that is absent in other prosciurines but 

well developed in all other aplodontids; single metaconule instead of doubled as in 

Allomyinae”. From Tedrow and Korth (1997). 

  

HAPLOMYS CF. H. LIOLOPHUS (Cope, 1881) 

Table 5.4, Figure 5.6 a-c 

 

Meniscomys liolophus Cope, 1881; 1883 

 

 Holotype—AMNH 6987 (Left maxillary, P4-M2), John Day Formation, Oregon 

(Whitneyan). 
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 Referred specimens—SMNH P2836.004 (Rp4); P2836.008 (Lm2); P2452.128 

(Lm3). 

 Horizon at Rodent Hill—Specimens P2836.004 and P2836.008 recovered from 

Stratigraphic Unit V; P2452.128 recovered in stratigraphically uncontrolled sampling. 

 Emended diagnosis—Largest species of genus; ectoloph distinct and often 

interrupted at central transverse valley unlike H. arboraptus; paracone of P4 larger than 

protoconule; protoconule of M1-M3 subequal in size to paracone (paracone larger than 

protoconule in H. arboraptus); protoloph and metaloph of M1-M3 not straight but 

sharply angled, slightly curved or straight on P4 (only slightly curved in H. arboraptus).  

Lower teeth more lophate than H. galbreathi; anterior extension of hypoconid 

pronounced, may join to metastylid crest to form a posterior buccal fossettid (extension 

weak in H. galbreathi); mesostylids extended transversely (absent in H. arboraptus).  A 

diagnosis was originally given by Cope (1883), based entirely on uppers.  This 

emendment seeks to clarify the Cope (1883) diagnosis and include the lower dentition 

described by Rensberger (1975). 

 Description—The metaconid and protoconid of the p4 are close together, giving 

the tooth a compressed trigonid relative to the talonid.  The protoconid and metaconid 

are relatively high and cuspate.  Metalophulid I is very low and extends anterad from the 

protoconid and metaconid and is convex anteriorly.  Metalophulid II extends posterad 

from the buccal margin of the metaconid, is faintly joined to the protoconid, and is 

concave into the basin, widening the trigonid.  The trigonid and talonid basins both have 

smooth enamel.  The ectolophid is low, just above the basin, and runs straight from the 

protoconid to the mesoconid, with a slight buccal curve from the mesoconid to the 

hypoconid.  The mesoconid is well developed and lower than the other buccal cusps, 

with a distinct mesolophid that extends to the buccal margin.  The anterior crest of the 

hypoconid extends toward and connects weakly with the buccal end of the mesolophid.  

This gives the posterior buccal fossettid a slightly sloped appearance.  The hypoconid is 

high, cuspate, and is transversely widened and buccally expanded, adding to the width of 

the posterior of the tooth.  The posterolophid extends from the lingual edge of the 

hypoconid, across the posterior of the hypoconulid to the buccal margin of the 



 51

entoconid.  The hypoconulid is cuspate, anteroposteriorly compressed, and raised above 

the posterolophid.  A low crest extends from the hypoconulid to the posterolingual 

corner of the mesoconid.  The entoconid is the lowest of the four major cusps (possibly a 

wear feature) and is separated from the mesostylid by a deep notch.  The metaconid 

bears a tiny cuspule on the posterolingual margin, from which the mesostylid ridge 

extends.  The mesostylid ridge terminates in a very low, transversely compressed 

mesostylid. 

Table 5.4 Dental measurements of Haplomys cf. H. liolophus. 
Tooth 

position Dimension N Mean 

p4 AP 1 2.33 
 TRA 1 1.40 
 TRP 1 2.30 
    

m2 AP 1 2.05 
 TRA 1 1.63 
 TRP 1 1.30 
    

m3 AP 1 2.90 
 TRA 1 inc 
 TRP 1 inc 

 

 P2836.008 is the buccal half of an m2.  The protoconid is high and cuspate, with 

a metalophulid II extending from the posterolingual across the trigonid.  The ectolophid 

is low, concave buccally between the protoconid and mesoconid, and again between the 

mesoconid and hypolophid.  The mesoconid is well developed, slightly higher than the 

ectolophid, with a heavy mesolophid extending to the buccal margin.  The anterior crest 

of the hypoconid extends toward the buccal mesolophid, but does not join with it.  The 

hypoconid is cuspate, but lower and smaller than the protoconid.  The hypoconid bears a 

narrow posterobuccal cingulum as well as the well-developed posterolophid extending 

from its lingual margin.  The posterolophid extends to the very anteroposteriorly  
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compressed hypoconulid.  The lingual portion of the hypolophid terminates anterior to 

the hypoconulid, approximately midway across the talonid basin, but the origin of this 

loph is unknown. The enamel of the trigonid and talonid basins bears no distinct pits, 

lophules or crenulations but do appear slightly wrinkled. 

 P2452.128 is the buccal half of a m3.  The enamel of the trigonid and talonid 

basins appears smooth, although little enamel is present.  The cuspate protoconid is large 

and high, with a very short crest extending into the trigonid basin.  Metalophulid I 

extends from the anterior of the protoconid and curves linguad to extend across the 

anterior of the tooth.  The ectolophid is low, and extends straight from the protoconid to 

the anterior margin of the hypoconid.  The mesoconid is well developed and large, with 

a strong buccal mesolophid that is separated from the anterior crest of the hypoconid by 

a notch, creating a nearly enclosed posterior buccal fossettid.  A posterior buccal crest 

extends posterad from the protoconid and nearly joins with the buccal end of the 

mesolophid.  The hypoconid is slightly smaller than the protoconid, and is equally 

Figure 5.6  Haplomys cf. H. liolophus:  a. SMNH 
P2836.004 Rp4; b. SMNH P2836.008 Lm2; c. SMNH 
P2452.128 Lm3.  Scale = 1mm, buccal to top of page. 

a

c

b
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cuspate.  The union with a hypolophid is not apparent due to breakage, but there is the 

indication that the posterolophid does join to the lingual margin of the hypoconid. 

 Discussion—The material described here is very similar to previously described 

specimens for this taxon, in both morphology and size.  The lowers are almost identical 

to those described by Rensberger (1975). 

 

DAKOTALLOMYS TEDROW and Korth, 1999 

 

 Type species—Dakotamys pelycomyoides Tedrow and Korth, 1997 

 Referred species— Dakotallomys lillegraveni (Tedrow and Korth, 1997) 

 Age and distribution—Orellan and Whitneyan of South Dakota; and Whitneyan 

of Saskatchewan. 

 Diagnosis—“Medium to large sized prosciurines, larger than Prosciurus, equal 

to or smaller than Pelycomys; mesostylid on lower cheek teeth small and attached to 

metastylid crest as in some species of Pelycomys; differs from all other prosciurines in 

the presence of a unique labial cingulum of protoconid and hypoconid of lower cheek 

teeth; hypolophid complete on m1-m2 as in Pelycomys; lower incisor wider in relative 

length than Pelycomys and other prosciurines”.  Originally given by Tedrow and Korth 

(1997). Presence of weak ectoloph in P4 and M3 that is not found in Pelycomys. 

 Discussion—The diagnosis for the genus Dakotallomys is emended here to 

include diagnostic information about the upper teeth, as Tedrow and Korth (1997) did 

not describe them. 

 

DAKOTALLOMYS CF. D. PELYCOMYOIDES Tedrow and Korth, 1997 

Table 5.5, Figure 5.7 a-c 

 

 Type specimen—UCMP 82834, right mandible with p4-m3, Backward Butte, 

Harding County, South Dakota (Whitneyan). 



 54

 Referred specimens—SMNH P2794.037 (LP4); P2834.001 (RM3); P2834.003 

(LM3); P2454.042 and P2521.084 (Rm2). 

 Horizon at Rodent Hill—P2834.001 and P2834.003 collected from 

Stratigraphic Unit I; all others collected in stratigraphically uncontrolled sampling. 

 Diagnosis—Differs from D. lillegraveni in being 20% larger.  Lowers with more 

robust cusps and relatively larger entoconids and mesostylids on the lower molars, and 

lacking buccal mesolophids.  From Tedrow and Korth (1997). 

Description—The P4 has a large, anteriorly expanded anterocone and a narrow 

anterior cingulum.  The protoloph is complete and joins the apex of the protocone.  The 

protoloph connects to the anterior margin of the anteroposteriorly compressed paracone 

and the subequal, ovate protoconule.  No anterior protocone crest extends into the 

anterior transverse valley.  The paracone is set well in from the buccal margin, and the 

buccal face of the paracone has two anteroposteriorly-compressed fossettes.  These 

fossettes are produced by the very narrow, very poorly developed ectoloph originating 

from the parastyle.  The ectoloph continues along the buccal margin, through the 

mesostyle, and terminates at the metacone.  The mesostyle is anteroposteriorly elongate, 

buccally expanded, and is the origin of a mesoloph that runs lingually into the central 

transverse valley, which is otherwise smooth and without accessory lophules or crests.  

The metaloph is complete and subparallel to the protoloph, but does not join to the 

protoloph or protocone.  The metacone is anteroposteriorly elongate, set further linguad 

than the paracone, with a wider fossette present at its anterobuccal corner.  The 

metacone is joined anteriorly to a smaller metaconule by the metaloph.  The small 

metaconule then joins to the anterior margin of a much larger metaconule via the 

metaloph.  This larger metaconule is ovate and extends to the posterior margin of the 

tooth, where no posterior cingulum or hypocone is present, but a posterior buccal 

fossette is well developed. 

 M3 has a wide anterior transverse valley and an anterior cingulum that may be 

level with or higher than the parastyle.  The protoloph is complete, much higher than the 

anterior cingulum or metaloph, and originates from the center of the anteroposteriorly-

compressed paracone.  A very tiny protoconule is present on P2834.003, but not on 
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P2834.001.  The protoloph connects with, or near, the apex of the protocone.  The 

anterior protocone crest is wide and extends well into the center of the anterior 

transverse valley.  There is a weak buccal fossette on the paracone, as well as a weak 

posteriorly directed crest that terminates at the anterior margin of the central transverse 

valley.  The mesostyle is present only on P2834.003 as a very tiny, isolated cuspule with 

a very short metastylar crest extended lingually into the central transverse valley.  The 

metacone is very low and broad posterior to the metaloph.  The metaloph is complete, 

originating from the buccal margin very close to the mesostyle, and anterior to the 

metacone.  The metaloph connects with the anterior margin of the large, single 

metaconule.  On P2834.001, the metaloph terminates here, whereas on P2834.003 the 

metaloph extends to the protocone, posterior to the site of union of the protoloph.  The 

metaconule is anteroposteriorly elongate, extends to the protoloph on P2834.001, and 

extends to the posterior cingulum on both specimens.  The posterobuccal corner of both 

teeth is expanded posteriorly, but more so on P2834.001, giving the M3 a triangular 

outline.  This expansion is rimmed by a low posterior cingulum.  The hypocone, which 

Figure 5.7  Dakotallomys cf. D. pelycomyoides:  a. 
SMNH P2794.037 RP4; b. SMNH P2834.003 LM3; c. 
SMNH P2521.084 Rm2.  Scale = 1mm, buccal to top of 
page. 

a

c

b
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is reduced and anteroposteriorly compressed, is present as the lingual terminus of the 

posterior cingulum. 

 The protoconid and metaconid of m2 are of equal height and size.  The 

metaconid may be situated slightly anterad of the protoconid.  On P2521.084, which is 

much less worn, the metalophulid II is much lower than the anterolophid and is poorly 

developed at the metaconid.  On the protoconid end of metalophulid II two tiny cuspules 

are present.  The trigonid is small, about 1/3rd the length of the talonid, and is also 

slightly narrower.  Only the talonid basin of P2521.084 bears any rugosity as a slight 

wrinkling of the enamel.  The ectolophid is well developed, lower than the anterolophid, 

and extends posterobuccally to the junction of the hypoconid and the posterolophid.  The 

mesoconid is also well developed, is higher than the ectolophid, and is linguad to a 

buccal shelf that separates the protoconid and hypoconid.  No buccal mesolophid is 

present, but the mesoconid of P2521.084 has a slightly expanded base that does not join 

with the anterior hypoconid crest.  The hypoconid is large with some buccal expansion.  

A narrow buccal cingulum is present buccad to the hypoconid of P2521.084 that is not 

apparent on the protoconid; the buccal enamel of P2452.042 is broken away. The 

posterolophid joins to the lingual edge of the hypoconid, and continues lingually to 

terminate at the entoconid, or just buccal to it.  The hypoconulid is present as an anterior 

swelling at the center of the posterolophid.  The hypolophid extends buccally from the 

entoconid to either join the ectolophid or terminate in the middle of the talonid basin, 

anterior to the hypoconulid.  A small, anteriorly directed lophule extends from the 

entoconid into the talonid basin, and terminates approximately level with the mesostylid.  

The entoconid is separated from the mesostylid by a deep notch.  On the less worn 

P2521.084, the mesostylid is well developed, although lower than all other cusps and 

cuspules on the tooth, and its base swells slightly buccally into the talonid basin.  The 

mesostylid crest originates from the posterior margin of the metaconid, and terminates 

by connecting to the mesostylid. 

 Discussion—These specimens are the first record of Dakotallomys outside of 

South Dakota, and extend the known range further north into southern Saskatchewan.  

The lower molars that are referred to this species are no more than 10% smaller than the 

South Dakota specimens.  The narrow buccal cingulum on the protoconid of m2 
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(P2521.084) is what clearly distinguishes this specimen as Dakotallomys, as opposed to 

the very similar Pelycomys.  The P4 and M3s listed above are the first upper teeth 

referred to the genus; referral is based primarily on their similar size to the lowers.  

These teeth are the largest upper aplodontid teeth recovered from the Rodent Hill 

Locality, so without another similarly sized option in the rodent fauna it is reasonable to 

associate them with the lowers.  The morphology of the upper cheek teeth is very similar 

to that of Pelycomys, as noted by Tedrow and Korth (1997) in their initial description of 

the lower cheek teeth of Dakotallomys.  The generic diagnosis has been emended, but 

the species diagnosis cannot be properly emended until uppers of the congeneric D. 

lillegraveni are identified and described. For now, the specific diagnosis of the upper 

teeth is as for the genus until the uppers of D. lillegraveni are described.  

 

Table 5.5 Dental measurements of Dakotallomys 
cf. D. pelycomyoides. 

Tooth 
position Dimension N Mean OR 

P4 AP 1 3.00  
 TR 1 3.15  
     

M3 AP 2 2.90 2.90-2.90 
 TR 2 3.18 3.10-3.25 
     

m2 AP 2 2.95 2.80-3.10 
 TRA 2 2.60 2.60-2.60 
 TRP 2 2.75 2.70-2.80 
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ALLOMYINAE Marsh, 1877 

PSEUDALLOMYS Korth, 1992a 

 

 Type Species—Pseudallomys nexodens Korth, 1992a 

 Referred Species—P. korthi, sp. nov.; Fossil Bush Pseudallomys, sp. nov., 

Meyer, 2003 

 Age and distribution—Orellan of Saskatchewan and Montana, Whitneyan of 

Saskatchewan. 

 Emended Diagnosis—Intermediate-sized aplodontid; complex network of 

lophules in the basins of the upper and lower cheek teeth.  Uppers with complete 

ectoloph; mesostyle buccally prominent, protoloph and metaloph complete, converge 

buccal to protocone, anterior cingulum usually joined to protoloph via narrow crest; 

small but not minute metaconule variably present, hypocone well-developed.  Lowers 

with variably present anterior cingulid anterad to protoconid, anteroposteriorly 

compressed metaconid, complete hypolophid, broad shelf at base of crown buccal to 

large mesoconid, doubled mesostylid on at least M2-M3, long buccally running lophule 

from both mesostylids, large hypoconulid. Lowers originally diagnosed by Korth (1992), 

Meyer (2003) diagnosed the uppers.  This emendment seeks to combine their diagnoses 

and include information from the Rodent Hill species. 

 Discussion—Korth (1992a) described the genotypic material of Pseudallomys 

based on a single lower tooth row.  Meyer (2003) described a new species of 

Pseudallomys from the Orellan Fossil Bush Locality that included both lowers and 

uppers.  No name was given to the Fossil Bush species, and it will be referred to herein 

as Fossil Bush Pseudallomys. 
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PSEUDALLOMYS KORTHI SP. NOV. 

Table 5.6, Figure 5.8 a-f 

 

 Holotype—SMNH P2521.309 (Lm3), Rodent Hill Locality. 

 Referred specimens—SMNH P2521.314  (RP4); P2521.160 and P2521.185 

(LP4); P2521.157 (LM1); P2834.008 (RM1); P2521.250 and P2835.006 (LM2); 

P2834.010; (Lp4); P2521.049 (Rp4); P2452.131 and P2834.017 (Lm1 or m2); 

P2521.085 (Lm2); P2521.309 (Lm3). 

 Etymology—Patronym for William W. Korth for his many contributions to the 

study of Tertiary rodents. 

 Horizon at Rodent Hill—P2834.008, P2834.010 and P2834.017 from 

Stratigraphic Unit I, P2835.006 from Unit II.  All other specimens in stratigraphically 

uncontrolled sampling. 

 Diagnosis—About 25% smaller than P. nexodens; similar in size to Fossil Bush 

Pseudallomys.  P4 less anteroposteriorly elongate than in Fossil Bush Pseudallomys; 

M1-2 about 30% wider than Fossil Bush Pseudallomys; upper molars with well-

developed ovate hypocone (round in Fossil Bush Pseudallomys); lowers have doubled 

mesostylids (Fossil Bush Pseudallomys has a single mesostylid); m2 anteroposteriorly 

more elongate than in P. nexodens; trigonid not transversely compressed as seen in P. 

nexodens or Fossil Bush Pseudallomys; m3 more anteroposteriorly compressed than P. 

nexodens; lophules of trigonid and talonid basins less complex than in Fossil Bush 

Pseudallomys, similar to those of P. nexodens.   

 Description—All of the cheek teeth of this taxon bear a number of small 

lophules in the central transverse valleys of the uppers and in the talonid basins of the 

lowers. 

 The anterocone of the P4 is anteroposteriorly compressed, extending lingually 

about midway down the anterior transverse valley.  A complete protoloph connects the 

paracone and subequally sized protoconule along their posterior margins.  The ectoloph 

is complete, forming steep buccal fossettes buccad to the anterior of the paracone,  



 60

 

between the paracone and mesostyle, and between the mesostyle and metacone.  The 

mesostyle is very small, nearly subsumed into the ectoloph, and situated buccally 

relative to the paracone and metacone.  A very short metastylar crest extends into the 

central transverse valley of P2521.185.  The metaloph extends from the metacone 

lingually to a tiny expansion that may be a small second metaconule.  The metaloph 

extends beyond this point to the larger metaconule.  The large metaconule contacts the 

narrow posterior cingulum by a low crest, and approaches the protoloph by another low 

crest.  The posterior buccal fossette and posterior lingual inflection are both closed to the 

posterior of the tooth by the posterior cingulum.  No hypocone is present. 

 On the less worn M1 specimens, the metaloph and protoloph are complete, 

uniting buccal to the protocone before joining to the protocone by a narrow crest.  The 

protoloph is straight, joining the paracone and slightly smaller protoconule along their 

Figure 5.8  Pseudallomys korthi:  a. SMNH P2521.314 LP4; b. 
SMNH P2834.008 RM1; c. SMNH P2835.006 LM2; d. SMNH 
P2834.010 Lp4; e. SMNH P2521.085 Lm2; f. SMNH 
P2521.309 Lm3.  Scale = 1mm, buccal to top of page. 

a

cb

d e
f
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posterior margins.  The protoloph is connected to the anterior cingulum by a low crest 

that extends from the buccal margin of the protoconule.  The anterior protocone crest 

extends well into the anterior transverse valley.  There is a well-developed ectoloph 

along the buccal edge of the tooth, producing three steep fossettes.  The mesostyle is 

poorly developed and expanded buccally, and has a lingually directed metastylar crest 

extending into the central transverse valley.  This metastylar crest joins to the smaller, 

more buccal, of the two metaconules that forms a steep sided fossette anterior to the 

metacone of P2834.008.  The metacone is small, and joins to the anterior of the small 

metaconule via the metaloph.  The metaloph then connects with the larger, transversely 

compressed lingual metaconule before continuing to join with the protoloph.  The larger 

metaconule connects with the protoloph and the posterior cingulum via low crests.  The 

posterior cingulum of P2834.008 bears a tiny cuspule situated approximately halfway 

between the metacone and larger metaconule.  A small, but distinct, ovate hypocone is 

present at the union of lingual terminus of the posterior cingulum and the posterior 

protocone crest. 

 The M2 is morphologically similar to the M1, except that the protoloph is not 

straight but instead is wavy, and there are more small lophules extending into the 

anterior transverse valley from the protoloph. 

 The p4 has a tiny anteroconid at the center of an interrupted metalophulid I, and 

the somewhat anteroposteriorly compressed metaconid and protoconid are separated by 

a deep valley.  The metalophulid II is an anteriorly concave ridge extending from the 

posterior margins of the anterior cusps.  From this ridge, a posteriorly directed crest 

extends to the center of the tooth.  The ectolophid is well developed, and terminates 

anterior to the hypoconid.  The mesoconid is present, buccad of which is a broad shelf 

between the protoconid and hypoconid.  There is also a buccal mesolophid extending 

almost to the buccal margin that nearly joins the anterior hypoconid crest, but does not 

quite enclose the posterior labial fossettid.  The hypoconid is expanded posterobuccally, 

and is separated from the posterolophid by a deep notch.  The hypoconulid is present as 

an anteroposteriorly-compressed expansion of the posterolophid, and is the origin of a 

crest that extends anteriorly to the center of the tooth.  The posterolophid terminates just 

before reaching the entoconid.  A hypolophid extends buccad from the entoconid, but is 
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interrupted by the crest that extends from the hypoconulid.  The entoconid is separated 

by a wide gap from the metastylar ridge, which originates from the metaconid.  There 

are no definite mesostylids, but the posterior end of the metastylar ridge bears some 

small, widened areas.  .  In P2834.010 (the better preserved p4) a small crest extends 

from the metastylid ridge that extends transversely across the tooth to interrupt the 

hypoconulid lophule and the metalophulid II lophule.  A second, posteriorly directed 

low crest originates at the posterior margin of the metaconid and curves slightly linguad 

before terminating beside the metastylid crest. 

 Both m1/m2 specimens are broken, making precise identification uncertain.  The 

m1/m2 have an incomplete metalophulid I; it is also separated by a notch from the 

protoconid.  The ectolophid is strong, and reaches the large, crescentic hypoconid.  A 

large mesoconid with a well-developed buccal mesoloph extends along the deep buccal 

shelf.  On P2834.017, the wear is sufficient that the buccal mesolophid has joined with 

the anterior hypoconid crest to enclose the posterior labial fossettid.  The posterolophid 

is narrow and extends across the posterior margin of the tooth.  The hypoconulid is 

anteroposteriorly compressed, and the entoconid is large and separated by notches from 

the metastylid ridge and from the posterolophid.  The hypolophid is complete.  On 

P2452.131 there are two visible metastylids along the metastylid ridge, the more 

posterior one has a transverse lophule that extends across the width of the tooth.   

 The m2 (P2521.085) is fairly worn, with only the largest basin lophules still 

visible and the buccal edge of the hypoconid broken off.  It has a complete metalophulid 

I between the protoconid and metaconid, and an incomplete metalophulid II extending 

buccally from the protoconid that terminates midway across the trigonid.  A short 

process present on the anterior margin of the protoconid may be an anterior cingulum.  

The metalophulid II encloses a small basin fossettid by joining with the ectolophid and a 

small lophule extended from the ectolophid.  The ectolophid extends to the hypoconid.  

The mesoconid is large with a deep buccal shelf and a buccal mesolophid extended to 

the buccal margin.  The portion of the hypoconid that is present is large and crescentic.  

The posterolophid extends from the lingual edge of the hypoconid across the 

hypoconulid and terminates before reaching the entoconid, which is also separated by a 

gap from the metastylid ridge.  A low crest extends anterad from the hypoconulid, and a  
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second, parallel crest extends from the posterolophid, just lingual to the hypoconulid.  

The hypolophid is complete, extending from the entoconid to the ectolophid.  The 

metastylid ridge extends posteriorly from the metaconid, and joins with two mesostylids 

that both have buccally oriented lophules that extend into the talonid basin. 

The m3 has a complete metalophulid I that bears several posteriorly directed 

crests that extend across the trigonid basin.  The incomplete metalophulid II extends 

linguad from the protoconid.  The protoconid has a flattened surface.  The ectolophid is 

well developed and continuous to the hypoconid.  The mesoconid is large with a wide 

buccal shelf but no discernable buccal mesolophid.  The hypoconid is large and 

expanded posteriorly, and the anterior hypoconid crest extends to midway across the 

Table 5.6 Dental measurements of Pseudallomys korthi.  Holotype  
SMNH 2521.309 (Lm3) 

Tooth 
position Dimension N Mean OR Holotype 

P4 AP 2 1.75 1.68-1.83  
 TR 1 2.23   
      

M1 AP 3 1.60 1.53-1.70  
 TR 3 2.34 2.25-2.50  
      

M2 AP 2 1.59 1.53-1.65  
 TR 2 2.09 1.90-2.28  
      

p4 AP 1 1.75   
 TRA 2 1.36 1.33-1.40  
 TRP 1 1.80   
      

m1-2 AP 2 1.76 1.73-1.80  
 TRA 2 1.38 1.33-1.43  
 TRP 2 1.55 1.53-1.58  
      

m2 AP 1 1.83   
 TRA 1 1.53   
 TRP 1 1.63   
      

m3 AP 1 1.93  1.93 
 TRA 1 1.65  1.65 
 TRP 1 1.63  1.63 
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metastylar shelf.  The posterolophid extends from the lingual margin of the hypoconid, 

across the distinct hypoconulid, and then terminates before contacting the entoconid.  

The entoconid is large and separated from the metastylid ridge.  The hypolophid is 

complete, extending from the entoconid to the ectolophid.  A small anteroposteriorly 

directed lophule connects the hypoconulid and the hypolophid.  The mesostylids are 

doubled, and continuous with the mesostylid ridge that originates at the 

anteroposteriorly-compressed metaconid.  Each mesostylid has a crest extending from it 

transversely into the basin. 

 Discussion—The few specimens (P2521.085 (Lm2) and P2521.309 (Lm3)) of 

this taxon that are comparable with the genotype from Montana (CM 11898), are both 

smaller than the teeth of Pseudallomys nexodens, and the proportions are quite variable 

(5 and 26% smaller anteroposteriorly for the m2 and m3, respectively; and 22 and 15% 

smaller transversely).  The upper teeth are referred to Pseudallomys based upon their 

similarity to the species described by Meyer (2003) from the Orellan-age Fossil Bush 

Locality.  The lophulate enamel of the basins of the cheek teeth and the doubled 

mesostylids on the Rodent Hill specimens are particularly indicative of the genus 

Pseudallomys.  The substantial difference in size and proportions from P. nexodens 

distinguish P. sp. 1 from that species; the distinct differences in the crenulations and the 

more robust stylid cusps of the Fossil Bush Pseudallomys indicate that the Rodent Hill 

material represents a separate species. 
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PARALLOMYS Rensberger1983 

 

 Type species—Plesispermophilus ernii Stehlin and Schaub, 1951 

 Referred species—P. argoviensis (Stehlin and Schaub, 1951); P. macrodon 

(Schmidt-Kittler and Vianey-Liaud, 1979); P. americanus Korth, 1992. 

 Age and distribution—Late Oligocene of France, Switzerland, and Germany; 

Whitneyan of Saskatchewan; Arikareean of Nebraska and Saskatchewan. 

 Diagnosis—“Upper cheek teeth with broad, U-shaped central transverse valley, 

low protoloph, metaloph.  Central, anterior, posterior transverse valleys without 

accessory crests; walls smooth to faintly crenulated.  Labial faces of paracone, metacone 

sloping strongly linguad; metastylar crest trending strongly labiad.  Lower cheek teeth 

basined, internal crests low or absent, never reaching center of diagonal valley.  

Posterointernal crest of mesoconid (ectolophid) not connected to hypoconid”.  Given by 

Rensberger (1983).   

PARALLOMYS SP. 

Table 5.7, Figure 5.9 

 

 Referred specimen from Rodent Hill—SMNH P2838.001 (LP4). 

 Horizon at Rodent Hill—Stratigraphic Unit VII. 

  Description—This P4 has a well-developed, anteriorly expanded anterocone 

with a lingual anterostyle.  There is a broad anterior transverse valley.  The protoloph is 

complete and high, originating from the posterior corner of the paracone.  The paracone 

is large and steep-sided, and connects to the posterior margin of the smaller round 

protoconule via the protoloph.  The protoloph connects to the protocone anterior to its 

apex.  The anterior protocone crest extends well into the anterior transverse valley.  The 

lingual margin of the tooth bears a narrow cingulum.  The ectoloph is complete and very 

well developed, originating at the parastyle and terminating at the posterior margin of 

the tooth.  The parastyle and mesostyle are not distinct; instead they are subsumed into 
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the ectoloph.  The metastylar crest extends buccally from the ectoloph to the buccal 

margin of the tooth.  The ectoloph has two large buccal fossettes, anterior and buccad to 

the paracone and metacone.  There is a low buccal cingulum situated below each buccal 

fossette.  The metacone is also steep-sloped, but smaller and more crescentic than the 

paracone.  The metaloph extends from the lingual apex of the metacone, connecting to 

two metaconules.  The buccal-most metaconule is slightly smaller and somewhat 

crescentic in shape.  The second, lingual metaconule is round in shape and is located 

slightly more anterior relative to the first metaconule.  The posterior labial fossette is 

pronounced, and posterior extensions from both metaconules create a second posterior 

fossette.  The metaloph terminates at the lingual metaconule, leaving the posterior 

lingual inflection open to the central transverse valley.  The hypocone is present as a 

sliver-shaped, anteroposteriorly-compressed cusp at the lingual terminus of the posterior 

margin.  The posterior margin is barely raised above the level of the posterior transverse 

valley, and so cannot properly be called a posterior cingulum.  The central transverse 

valley is relatively wide and free of accessory crests except for a very small crest that 

extends posteriorly from the lingual edge of the paracone.  A larger lophule extends 

anterad from the anterior face of the lingual metaconule and terminates in the center of 

the valley as a circular cuspule. 

Figure 5.9  Parallomys sp: SMNH P2838.001 LP4.  
Scale = 1mm, buccal to top of page.
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 Discussion— To date, only one specimen of this aplodontid has been recovered 

from the site, so any specific assignment will require more material. This specimen is 

smaller than any of the other species of Parallomys, being almost 60% shorter 

anteroposteriorly than the P4 of P. americanus described by Storer (2002), and about 

35% shorter than any upper tooth of P. americanus described by Korth (1992) or Storer 

(2002).  Furthermore, P. americanus is itself relatively small compared to the European 

species (Rensberger, 1983). 

 

Table 5.7 Dental measurements of Parallomys sp. 
Tooth 

position Dimension N Mean 

P4 AP 1 2.30 
 TR 1 2.68 
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6. FAMILY SCIURIDAE 

 

The Sciuridae includes modern squirrels, marmots, chipmunks and flying 

squirrels, a very diverse group that is found on every continent except Australia and 

Antarctica (Mercer and Roth, 2003; de Bruin, 1999; Korth, 1994a).  Sciurids probably 

originated from an ischromyid ancestor (Korth, 1994a).  The earliest known sciurid, 

Douglassciurus jeffersoni has been found from the middle Chadronian of North America 

(Mercer and Roth, 2003; Emry and Korth, 1996; 2001), and the family quickly radiated 

throughout the Northern hemisphere by the early Oligocene (Mercer and Roth, 2003; de 

Bruijn, 1999).  The sciurids entered Africa in the middle Miocene, and appeared in 

South America after the closing of the Panama land bridge (Mercer and Roth, 2003). 

The jaw angle of all known sciurids is sciurognathous, and most sciurids have a 

sciuromorphous zygomasseteric structure (Korth, 1994a).  The exceptions to this are the 

earliest sciurid Douglassciurus jeffersoni, which has a protrogomorphous zygomasseter 

(Korth, 1994a) and the cedromurine sciurids that may demonstrate a modified 

myomorphic zygomasseter (Korth, 1994a; Korth and Emry, 1991). 

The dental formula of most sciurids is 1023/1013 except for the North American 

genus Tamias and a few African genera, where the P3 is lost (Korth, 1994a).  Sciurid 

upper dentition (Figure 6.1) can be recognized by having three main cusps (paracone, 

metacone and protocone) and weak or absent conules, except in some pteromyines (de 

Bruin, 1999).  The lower dentitions of sciurids (Figure 6.2) have four main cusps 

(protoconid, metaconid, hypoconid and entoconid), but the entoconid is sometimes 

poorly developed or subsumed within the protolophid (de Bruin, 1999). 
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Variations in the dentition make the three main groups of sciurid recognizable.  

In ground squirrels (Marmotini, Tamiini), the lophs of the upper teeth converge at the 

protocone, the metaloph of P4-M2 is incomplete, the entoconid is submerged within the 

posterolophid (de Bruin, 1999) and the teeth are lophate with less distinct cusps (Korth,  

1994a).  Tree squirrels (Sciurini) are distinguished by a complete metaloph on P4-M2, 

subparallel upper lophs, a distinct entoconid (de Bruin, 1999) and low, rounded lophs 

(Korth, 1994a).  The lowers of tree squirrels and tamiines may be distinguishable by 

being rectangular or square in outline, while the ground squirrels have lower cheek teeth 

with a rhombic occlusal outline due to a shorter lingual margin than buccal margin 

(Black, 1963). 

Figure 6.1 Generalized sciurid upper 
cheek tooth morphology. RM1-2 (on 
left) and RP4 with major features 
identified. 1–metacone 2—central 
transverse valley 3—paracone 4—
anterior transverse valley 5—
parastyle 6—mesostyle 7—ectoloph 
8—anterocone 9—anterior cingulum 
10—protoconule 11—metaconule 
12—protoloph 13—protocone 14—
hypocone 15—metaloph 16—
posterior transverse valley 17—
posterior cingulum 

Drawn by Taran Meyer, modified by 
the author.  Terminology from Wood 
and Wilson (1936) and Black (1963)

Figure 6.2 Generalized sciurid lower 
cheek tooth morphology. Rm1-2 (on 
right) and Rm3, with major features 
identified. 1—entoconid 2—
mesostylid 3—metastylid crest 4—
metalophulid I (=anterior cingulum) 
5—metalophulid II 6—metaconid 7—
anteroconid 8—protoconid 9—
mesoconid 10—hypoconid 11—
metastylar shelf 12—ectolophid 13—
hypolophid 14—posterolophid 
(=posterior cingulum) 15—talonid 
16—trigonid 

Drawn by Taran Meyer, modified by 
the author.  Terminology from Wood 
and Wilson (1936) and Black (1963)
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The flying squirrels (Pteromyinae) are most recognizable by the rugose enamel 

of the basins of the teeth, as well as strongly convergent or parallel lophs in the upper 

teeth, and well-developed entoconids (de Bruin, 1999) except for Blackia and Sciurion 

(Mein, 1970; Skwara, 1986; de Bruin, 1999). 

 

6.1 SYSTEMATIC PALEONTOLOGY 

 

SCIURIDAE Gray 1821 

PTEROMYINAE Brandt 1855 

SCIURION Skwara 1986 

 

Type species—Sciurion campestre Skwara, 1986 

Referred species—Sciurion xenokleitus sp. nov.; Sciurion oligocaenicus sp. nov. 

Age and Distribution—Orellan, Whitneyan, Arikareean and Hemingfordian of 

southwest Saskatchewan; Clarendonian of Nebraska. 

Emended Diagnosis—Small to medium sized pteromyines (m1/2 is 1.3 mm to 

1.6 mm long); differs from Petauristodon in lacking protoconule, metaconule, and 

accessory lophs; differs from Blackia in presence of anteroconid, mesoconid, and 

(incipient) hypocone.  Other distinguishing characters include: enamel of basins of teeth 

finely crenulated when unworn, high relief on occlusal surface of teeth; molar structure 

simple. Upper cheek teeth lacking conules or accessory lophs; protocone narrow 

anteroposteriorly; P4 with or without mesostyle on mesostylar ridge; when present, 

mesostyle may be reduced or well developed; M1 or M2 with strong mesostyle; variably 

developed hypocone and parastyle; M3 smaller than M1 or M2.  Lower cheek teeth 

bearing anteroconid and mesoconid, mesoconid better developed on molars than 

premolar; hypoconid strong, displaced buccally resulting in an enlarged talonid; 

mesostylid distinct on m1 or m2, incorporated into high cingulum on p4.  This diagnosis 
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is essentially the same as that of Skwara (1986) except for the increase in size range 

within the genus and the reference to the variability of the mesostyle on P4. 

Discussion—The species Sciurion xenokleitus and S. oligocaenicus have also 

been recovered in the Orellan Fossil Bush Locality (Meyer, 2003) and the Arikareean-

age Kealey Springs Local Fauna (Storer, 2002); both of these sites also occur in the 

Cypress Hills Formation of Saskatchewan.  Korth (1998b) described a single tooth of 

this genus from the late Clarendonian Ash Hollow Formation of Nebraska. 

 

SCIURION OLIGOCAENICUS SP. NOV. 

Table 6.1, Figure 6.3 a-f 

 

Holotype—SMNH P2840.142 (Lp4), Fossil Bush Local Fauna, Cypress Hills 

Formation (Orellan). 

Referred specimens from Rodent Hill —SMNH P2452.123 (RdP4); 

P2521.283 (LP4); P2834.005 (LM1 or M2); P2521.259 (Rdp4); P2521.304 (Ldp4); 

P2521.188 and P2521.338 (Lp4), P2521.060 (Rp4), P2521.202 (Rm1 or m2), P2521.253 

and P2521.272 (Lm1 or m2), and P2521.382 (Lm3).  

 Horizon at Rodent Hill —P2834.005 from Stratigraphic Unit I.  Other 

specimens collected in stratigraphically uncontrolled sampling. 

Diagnosis— Similar in overall size to S. campestre, but more robust; about 25% 

smaller than S. xenokleitus.  P4/p4 and M3/m3 enlarged relative to those of S. 

campestre; proportions of p4 and m1-2 longer than wide (TR/AP<1) compared to 

proportions in S. campestre (TR/AP>1); proportions of m3 similar in length and width 

(TR/AP≤1) whereas the m3 of S. campestre is much longer than wide (TR/AP<<1); 

cusps more bulbous and lophs thicker than in S. campestre. 

Description— The deciduous upper premolar is identified based on comparisons 

with those described for Blackia (DeBruijn and Ünay, 1989).  The D4 has a broad 

triangular outline due to the expansion of the anterior transverse valley and anterocone.  

The paracone is large, triangular in shape and somewhat anteroposteriorly compressed, 
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and extends into the straight protoloph directly to the anterior margin of the protocone.  

At the buccal end of the central transverse valley is a very low, buccally expanded 

mesostyle.  The metacone is smaller than the paracone but they are subequal in height.  

The metaloph is complete and curves anterobuccad to the protocone.  On the posterior 

margin of the tooth a very low posterior cingulum is present that is only very narrowly 

separated from the raised metaloph that extends from the metacone to the minute and 

somewhat distinct hypocone. 

The P4 is triangular in outline, with a more acute angle at the protocone than the 

DP4.  The anterior margin of the tooth expands anteriorly, particularly at the anterocone.  

The anterior transverse valley is wide but steeper-walled and lower than the central 

transverse valley.  The paracone is high and anteroposteriorly compressed, and extends 

to the protocone via a protoloph that does not bear any conules.  The protocone is about 

as high as the paracone, and is very transversely compressed.  The central transverse 

valley has a number of crenulations, and buccally is interrupted by a large mesostyle; the 

mesostyle joins to the paracone by a low, narrow loph.  The metacone is slightly lower 

than the paracone and more anteroposteriorly compressed, and does not join to the 

mesostyle.  The metaloph is roughly parallel and equal in height to the protoloph, and 

also lacks any conules.  Posterad to the metaloph is a narrow posterior transverse valley, 

which is enclosed posteriorly by a low posterior ridge.  At the lingual-most end of the 

posterior ridge is a small, ovate hypocone. 

The M1 or M2 has a slightly rhomboidal outline and no fine enamel crenulations 

are visible on the very worn occlusal surface. The protocone dominates the lingual 

margin, is anteroposteriorly narrow and is located anterior of center.  The paracone is 

narrow and higher in relief than the metacone, and is connected to the protocone by a 

low protoloph that is parallel to the anterior margin.  The metacone connects to the 

protocone with a low metaloph that transverses the occlusal surface from the metacone 

anterolingually to the protocone.  Both the protoloph and metaloph exhibit very narrow 

expansions about midway along their length, which could be interpreted as a reduced 

protoconule and metaconule, but are more likely a result of tooth wear.  The hypocone is 

poorly developed but clearly visible on the posterior margin; it joins with the metacone 

by a shallow posterior cingulum that is interrupted midway by the metaloph.  The broad, 
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low anterior cingulum is higher at the buccal than the lingual margin.  A poorly 

developed parastyle is separated by a shallow depression from the paracone while a 

deeper notch separates the lingual margin of the cingulum from the protocone.  The 

mesostyle is very worn, but present, and strongly connected to the paracone, but is not 

attached to the metacone.   

The dp4 (P2521.304, P2521.259) were identified based on comparisons with a 

Blackia dp4 figured in de Bruijn and Ünay (1989). These teeth have a somewhat 

quadratic occlusal outline, longer than a p4, and shorter than m3.  The teeth are worn, 

with only a few remnant lophules present in the posterior of the basin that suggest the 

enamel rugosity characteristic of Sciurion.  The metaconid is the highest cusp of the 

tooth, and joins to the protoconid via metalophulid I.  The well-developed anteroconid is 

present that is slightly closer to the protoconid.  Posterior to the anteroconid is a small 

Figure 6.3  Sciurion oligocaenicus:  a. SMNH P2452.123 RD4; 
b. SMNH P2834.005 RM1-2; c. SMNH P2521.304 Ld4; d. 
SMNH P2521.060 Rp4; e. SMNH P2521.202 Rm1-2; f. SMNH 
P2521.382 Lm3.  Scale = 1mm, buccal to top of page. 
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fossettid indicating the enclosed trigonid basin.  The entire trigonid is much higher than 

the talonid.  Joining the protoconid to the very low hypoconid is a very poorly developed 

ectolophid.  Buccal to the ectolophid is a narrow, but deep buccal shelf with no apparent 

mesoconid.  The hypoconid is slightly expanded buccally, and joins to the entoconid by 

a low posterolophid.  A small swelling in the posterolophid is present just lingual of the 

hypoconid.  Anterior to the entoconid there does not appear to be any mesostylid or 

metastylid crest.  

The p4 has a trapezoidal occlusal outline, and although the basins are worn on all 

specimens, some rugosity is still visible as very low lophules (P2521.188) or low 

crenulations (P2521.060 and P2521.338).  The anterior margin of the tooth is 

transversely compressed relative to the posterior margin, and the metaconid is wider and 

higher than the protoconid.  The anteroconid is poorly developed and closely appressed 

to the protoconid. The trigonid basin is short, being closed off from the talonid by a 

short metalophulid II on P2521.060 and P2521.338 (indistinguishable on P2521.188), 

and the trigonid is high relative to the talonid. A poorly developed mesoconid is present 

on the low ectolophid that is present close to the buccal margin of the tooth.  Buccal to 

the ectolophid is a shallow metastylar shelf.  The hypoconid is wide, lower in height 

than the protoconid, and appears expanded buccally, causing the talonid to be 

buccolingually wider than the trigonid.  A shallow posterolophid is evident that is 

highest at the hypoconid and the posterolingual margin.  The entoconid is present as a 

very minor widening at this margin.  A small mesostylid is present only on the 

metastylid crest of P2521.338, and is separated by a narrow gap from the entoconid 

The m1 or m2 has a quadrate occlusal outline.  The enamel crenulations are well 

developed on P2521.253, but are barely distinguishable on P2521.2020 and P2521.72. 

These teeth vary in the amount of relative transverse compression of the anterior cusps, 

from closely appressed on P2521.253 to more widely spaced in P2521.272, but this 

range of variation is considered here to be acceptable until more material of this genus 

becomes available for comparison.  A very small trigonid basin, that is slightly higher 

than the talonid basin, is variably enclosed by metalophulid II. The low ectolophid is set  
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Table 6.1 Dental measurements of Sciurion oligocaenicus. 
Tooth 

position Dimension N Mean OR 

D4 AP 1 1.45  
 TR 1 1.33  
     

P4 AP 1 1.23  
 TR 1 1.25  
     

M1-2 AP 3 1.10  
 TR 3 1.30  
     

d4 AP 2 1.35 1.33-1.38 
 TRA 2 1.13 1.03-1.23 
 TRP 2 1.09 0.93-1.25 
     

p4 AP 3 1.14 1.08-1.20 
 TRA 3 0.87 0.80-0.93 
 TRP 3 1.03 0.93-1.10 
     

m1 AP 1 1.30  
 TRA 1 0.93  
 TRP 1 1.25  
     

m2 AP 2 1.24 1.20-1.28 
 TRA 2 1.06 1.03-1.10 
 TRP 2 1.25 1.20-1.30 
     

m3 AP 1 1.50  
 TRA 1 1.45  
 TRP 1 1.35  

 

well in from the buccal margin of the tooth, with a well-developed mesoconid that is set 

closer to the hypoconid.  The hypoconid is broad and expands buccad to the protoconid, 

particularly in P2521.253, causing the talonid to be buccolingually wider than the 

trigonid.  The posterolophid is higher than the talonid valley, but lower than the trigonid, 

and is highest at the hypoconid; at the lingual margin, the posterolophid becomes lobate 

and terminates in a poorly developed entoconid.  The mesostylid is separated from the 

entoconid by a notch, and rests about midway along the lingual margin of the tooth.  A 
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low metastylid crest extends posteriorly from the metaconid and does not join to the 

mesostylid. 

The occlusal outline of m3 is slightly rhombic, and longer anteroposteriorly.  The 

metaconid is high and almost conical, much higher than the protoconid that is low, wide 

and posteriorly offset to the metaconid. Most of the anterior margin is damaged or worn 

away, making assessment of the anterior portion of the m3 difficult.  From what is 

visible the anteroconid is low and poorly defined, present as a swelling anterolingually 

to the protoconid and connected to the metaconid by a low metalophulid I.  The trigonid 

basin is open posteriorly and higher than the talonid.  A well-developed mesoconid on a 

poorly developed ectolophid is set lingually of the buccal margin, and is separated from 

the protoconid and hypoconid by deep notches.  The hypoconid is wide and dominates 

the posterolophid.  The posterolophid runs diagonally from hypoconid to the lobate 

posterolingual corner, where a slight expansion represents the entoconid.  A deep notch 

separates the entoconid from the weak mesostylid.  A very low metastylid crest posterad 

to the metaconid extends to the mesostylid, but they are separated by a very shallow gap. 

Discussion—The species Sciurion oligocaenicus was described by the author 

and Taran Meyer while reviewing the Saskatchewan pteromyines.  This is the smaller of 

two new species described from the Oligocene of Saskatchewan.  Specimens of this 

species have also been described from the Orellan-age Fossil Bush Locality (Meyer, 

2003) as Sciurion “new species” and from the early Arikareean-age Kealey Springs 

Locality (Storer, 2002) as either Protosciurus sp. or Nototamias sp.  It is similar in 

appearance to the Hemingfordian-age Sciurion campestre, but appears to be a more 

robust species, with relatively larger premolars and third molars, and heavier cusps, 

lophs and crenulations.  It is reasonable to infer that S. oligocaenicus may represent an 

ancestor to Sciurion campestre.  There appears to be a general reduction in the length of 

the lower teeth from the Fossil Bush S. oligocaenicus to the S. oligocaenicus of Kealey 

Springs.  This trend would grade into the tooth proportions seen in S. campestre, but the 

small number of specimens from all four sites makes it unclear whether this trend is 

statistically valid, or is a reflection of individual variations.  It is also possible that what 

appears to be a general trend within the S. oligocaenicus specimens from Fossil Bush, 

Rodent Hill and Kealey Springs may actually indicate separate species from each site, 
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but at the moment they appear to share sufficient morphology with each other to warrant 

grouping into one species that is distinct from S. campestre. 

 

SCIURION XENOKLEITUS SP. NOV. 

Table 6.2, Figure 6.4 

 

Holotype—SMNH P2452.126 (Lm1), Rodent Hill Locality, Cypress Hills 

Formation, Saskatchewan (Whitneyan). 

Referred specimens from Rodent Hill —SMNH P2836.007 (RdP4); 

P2521.033, P2521.047, P2521.333, P2834.004 and P2834.014 (RM1 or M2); 

P2452.122, P2835.004, P2836.006 and P2836.010 (LM1 or M2); P2452.124 and 

P2452.125 (RM3); P2835.001 (LM3); P2521.082 and P2521.083 (Rm1-2); P2452.126 

(Lm1-2); P2835.003 (Rm3) and P2521.322 and P2785.020 (Lm3). 

Etymology—XENO-, (Gr.) foreign, strange; -KLEITUS, (Gr.) hillside, slope; refers 

to the unexpected occurrence of this genus at the Rodent Hill Locality, a site on a 

hillside. 

Horizon at Rodent Hill —SMNH P2834.004 and P2834.014 from Stratigraphic 

Unit I, P2835.003 and P2835.004 from Stratigraphic Unit II, and P2836.006 and 

P2836.010 from Stratigraphic Unit V.  All others collected in stratigraphically 

uncontrolled sampling. 

 Diagnosis—Morphologically very similar to S. campestre but 25% larger.  

Anteroconid of m1/m2 well developed, but less pronounced than in S. campestre; 

entoconid of m1-m3 present, often well developed, unlike in S. campestre. 

 Description—Like the smaller species of Sciurion and many other pteromyines, 

the basins of unworn teeth bear numerous fine crenulations  Except for the dP4, which is 

broadly triangular, the upper cheek teeth are generally rhomboid to trapezoidal in outline 

and bear a protocone that is anteroposteriorly compressed.  The lowers are quadrate to 

trapezoid in occlusal outline, and the hypoconid is expanded buccally causing the talonid 
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to be wider than the trigonid. In the lower cheek teeth the m3 is longer anteroposteriorly 

than m1 or m2, and only slightly wider. 

The dP4 has a triangular outline due to the expansion of the anterocone, which is 

slightly raised above the anterior transverse valley.  The anterior transverse valley is 

wide  and V-shaped.  The paracone is prominent on the buccal end of the protoloph, 

situated slightly lingually from the buccal margin, and round.  The protoloph extends 

uninterrupted to the anterior end of the protocone crest.  The central transverse valley is 

about as wide as the anterior transverse valley, but is more U-shaped.  The mesostyle is 

isolated and prominent, blocking the buccal end of the central transverse valley, and has 

a mesostylar ridge that extends about one third of the way into the valley.  The metacone 

is round, smaller and lower than the paracone, and is connected with the posterior edge 

of the protocone by an uninterrupted metaloph that is slightly curved and subparallel to 

the protoloph.  The buccal portion of the posterior transverse valley is narrower, and a 

low ridge (not substantial enough to be considered a cingulum) is present posterad to the 

posterior transverse valley.  At the posterior margin, posterad to the protocone crest, a 

swelling is present that may be a hypocone.  The enamel of all three transverse valleys is 

worn, but the crenulations and lophules are clearly present. 

The M1 or M2 are rhomboidal in outline although some appear slightly more 

trapezoidal.  The protocone occupies more than half of the lingual margin and occurs 

slightly anterad of center.  The paracone and metacone are narrow and elevated, the 

paracone occurring lingual to the buccal margin.  The metacone and paracone connect to 

the protocone via subparallel lophs that lack conules and accessory lophs.  The well-

developed mesostyle occurs beside the paracone and is separated from the metacone.  

The hypocone is poorly developed in some specimens and not present in others. The 

hypocone connects buccolingually to the metacone via a low posterior cingulum.  The 

wide, low anterior cingulum is separated from the protocone by a notch, which may be 

more pronounced in M2, and buccally rises into a low crest that may bear a poorly 

developed parastyle.  

M3 is slightly larger than M1 or M2 and triangular in outline. The large 

protocone dominates the lingual margin of the tooth.  The narrow, elevated paracone 

connects to the protocone via a low and wide protoloph that runs parallel to the anterior 
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cingulum.  The anterior cingulum is low and separated from the paracone by a shallow 

notch but connects directly to the anterior margin of the protocone. The central 

transverse valley is expanded into a broad basin that is bounded posteriorly and lingually 

by a low crest.  The metacone is present as a widening in the posterobuccal-most corner 

of the crest.  The crest terminates at the small mesostyle that is present as a small 

cuspule posterior to the paracone. 

The m1 or m2 has a slightly trapezoidal occlusal outline, with the trigonid 

slightly narrower than the talonid.  The enamel crenulations in the talonid basin vary, 

from fewer, thicker lophules (P2521.082) to larger numbers of thinner lophules 

(P2521.126).  This difference may result from wear of the enamel.  The metaconid is 

higher than the anteroposteriorly-compressed protoconid, and is set slightly anterad.  

The anteroconid is low and broad, not as pronounced as in S. campestre, and connects to 

the metaconid by a rising metalophulid I, while separated by a deep notch from the 

protoconid.  A short metalophulid II extends lingually from the protoconid; this loph 

may extend across the trigonid, or only reach part way across the basin.  A poorly 

developed mesoconid is present on the low ectolophid that joins the protoconid and 

Figure 6.4  Sciurion xenokleitus:  a. SMNH P2836.007 RD4; b. 
SMNH P2834.004 LM1-2; c. SMNH P2835.001 RM3; d. 
SMNH P2452.126 Lm1-2; e. SMNH P2835.003 Rm3.  Scale = 
1mm, buccal to top of page. 
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hypoconid.  There are small internal inflections of the ectolophid anterior to the 

hypoconid and posterior to the protoconid.  The hypoconid is slightly lower than the 

protoconid and is buccally expanded relative to the protoconid, causing the buccal 

expansion of the talonid. The posterolophid is well developed but lower than the 

posterior cusps, and joins to the well-developed entoconid at the posterolingual corner of 

the tooth.  The mesostylid is low but well developed, and is separated by a deep notch 

from the entoconid, and by a shallower notch from the metastylid crest that extends from 

the metaconid. 

The occlusal outline of m3 is trapezoidal and extended anteroposteriorly. The 

metaconid is very high and anteroposteriorly compressed.  The protoconid is lower and 

wider and placed slightly posteriorly to the metaconid.  The anteroconid is broad and 

anteroposteriorly narrow, and joins to the metaconid by a low anterior lophid while 

separated from the protoconid by a deep notch.  The trigonid is not enclosed posteriorly 

by any lophids and is slightly raised above the talonid.  The ectolophid is set near to the 

buccal margin of tooth, with a small, variably developed mesoconid.  Buccal to the 

ectolophid is a deep and narrow buccal shelf.  The ectolophid is straight and joins the 

hypoconid and the protoconid.  The hypoconid is broad, lower than and slightly 

expanded buccad to the protoconid.  The posterolophid is low, almost diagonal from the 

hypoconid to the mesostylid, and slightly lobate at the posterolingual edge, which may 

be angular or smoothly curved.  The entoconid is variably present as either a small but 

well-developed cusp (P2785.020), a distinct swelling on the lingual edge of the 

posterolophid (P2521.322) or as a very slight swelling that is subsumed into the 

posterolophid (P2835.003).  On P2835.003, the posterolophid then continues around to 

the lingual edge, eventually terminating at the metaconid and leaving no visible 

mesostylid.  On the other specimens, the posterolophid ends at the entoconid, and the 

mesostylid, which varies in size, is separated from the entoconid and metastylid crest by 

narrow notches. 
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Table 6.2 Dental measurements of Sciurion xenokleitus. Holotype SMNH 
P2452.126 (Lm1-2). 

Tooth 
position Dimension N Mean OR SD CV Holotype 

D4 AP 1 1.90     
 TR 1 1.80     
        

M1-2 AP 9 1.83 1.75-1.90 0.07 3.61  
 TR 9 2.01 1.80-2.20 0.14 7.17  
        

M3 AP 3 1.91 1.88-1.98    
 TR 3 2.06 2.00-2.15    
        

m1-2 AP 3 1.73 1.70-1.78   1.78 
 TRA 3 1.62 1.55-1.65   1.65 
 TRP 3 1.80 1.68-1.95   1.95 
        

m3 AP 3 2.02 1.88-2.18    
 TRA 3 1.88 1.78-1.98    
 TRP 3 1.56 1.48-1.70    

 

Discussion—Sciurion xenokleitus is the second species referred to the genus 

Sciurion, and except for a substantial difference in size (25% larger) is morphologically 

very similar to the genotype.  There are many more specimens of S. xenokleitus than of 

S. oligocaenicus in the Rodent Hill Local Fauna. Specimens representing this species 

have been identified from the Orellan Fossil Bush Locality and the Arikareean Kealey 

Springs Fauna (Meyer, 2003; Storer, 2002).  

 

CEDROMURINAE Korth and Emry 1991 

CEDROMUS Wilson 1949 

 

 Type species—Cedromus wardi Wilson, 1949 

 Referred species—C. wilsoni, Korth and Emry, 1991 
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 Age and distribution—Orellan of Wyoming, South Dakota, Colorado and 

Nebraska; Whitneyan of Nebraska and Saskatchewan. 

 Diagnosis—Larger than Oligospermophilus; hypocones small and metaconule 

large on upper molars; mesostyle close to metacone on upper molars, completing 

ectoloph from mesostyle to metacone, blocking central transverse valley buccally with 

wear; posterior cingulum continuous with entoconid and mesostylids buccolingually 

elongate on lower molars.  From Korth and Emry (1991).   

 

CEDROMUS SP. CF. C. WILSONI Korth and Emry 1991 

Table 6.3, Figure 6.5 

 

 Holotype—USNM 256584, complete skull with all teeth except P4s, Orella 

member, White River Formation, Wyoming (Orellan). 

 Referred specimen from Rodent Hill —SMNH P2836.003 (LM 1 or 2). 

 Horizon at Rodent Hill —Stratigraphic Unit V. 

 Diagnosis—Smaller than C. wardi; ectoloph incomplete, continuous from 

paracone to mesostyle on P4-M3, not connecting with metacone; metaconule variably 

continuous with protocone by narrow connection; hypolophid more strongly developed 

than in type species, commonly continuous with ectolophid; anterostylid variably 

Figure 6.5  Cedromus cf. C. wilsoni: SMNH 
P2836.003 LM1-2.  Scale = 1mm, buccal to top of 
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present on p4.  From Korth and Emry (1991). 

 Description—The tooth is a very worn specimen so most occlusal features are 

faint.  P2836.003 is equal length anteroposteriorly to Cedromus wilsoni specimens 

previously described by Korth and Emry (1991), but is slightly narrower buccolingually 

(14% difference).  The paracone is very high relative to the occlusal surface, and a very 

small protoconule is present as a widened area on the protoloph.  The buccal margin of 

the paracone extends posterad as a narrow ectoloph that terminates at a small mesostyle 

that is located close to the metacone.  The metacone is worn but clearly present as a 

large round depression on the buccolingual corner of the tooth, while the metaloph is 

worn to a very low ridge.  A large metaconule is present as a depression that is lingual to 

the metacone, and no hypocone is present due to wear.  The anterior cingulum is low 

and ends buccally in a small parastyle that is worn to give the appearance of a slight 

anterobuccal expansion. 

 

 Discussion—The large metaconule, larger size, and presence of an ectoloph are 

the main reasons that this specimen has been placed in the genus Cedromus instead of 

Oligospermophilus.  P2836.003 shares the incomplete ectoloph that distinguishes C. 

wilsoni from Cedromus wardi, as well as the smaller size. A problem with the 

assignment is that only one specimen was recovered, an M1 or M2 that is very worn, 

with features that are difficult to distinguish. P2836.003 is also 14% smaller than the C. 

wilsoni specimens described by Korth and Emry (1991), but the apparent morphological 

similarities between P2836.003 and previously described C. wilsoni specimens probably 

suggest a variation of size within the species, as opposed to a distinct species. 

Table 6.3 Dental measurements of Cedromus cf. 
C. wilsoni. 

Tooth 
position Dimension N Mean 

M1-2 AP 1 2.33 

 TR 1 2.60 
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SCIURINAE Gray 1821 

TAMIINI Black 1963 

NOTOTAMIAS Pratt and Morgan 1989 

 

 Type species—Nototamias hulberti Pratt and Morgan 1989. 

 Referred species—N. quadratus Korth 1992b. 

 Age and distribution—Whitneyan of Saskatchewan; Arikareean of Nebraska, 

South Dakota and Saskatchewan; Hemingfordian of Florida. 

 Dental diagnosis—Fused anterior and posterior roots on lower molars; 

anterolabial groove on lower cheek teeth reduced or lost; loss of mesoconid on the lower 

cheek teeth.  From Pratt and Morgan (1989). 

 

NOTOTAMIAS SP. 

Table 6.4, Figure 6.6 

  

 Referred specimens from Rodent Hill —SMNH P2521.080 (Lp4), P2521.294 

(Lm1/2). 

 Horizon at Rodent Hill —Specimens collected in stratigraphically uncontrolled 

sampling. 

 Description— This is a very small sciurid species, roughly equal in size to 

Sciurion campestre.  The teeth show no crenulations.  The teeth increase marginally in 

size from the p4 to the m1. 

The p4 has a trapezoidal occlusal shape, with a wider and slightly higher 

metaconid than protoconid; these cusps are joined by a lower anterolophid, and there is 

no anteroconid.  The hypoconid is wide and low, and expands buccad to the protoconid, 

causing the talonid to be buccolingually wider than the trigonid.  A well-developed  
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ectolophid, lacking any mesoconid, joins the hypoconid and protoconid and is located 

well lingual of the buccal margin of the tooth.  No posterolophid is evident, and the 

hypoconid joins to the much higher entoconid by a low, narrow posterior cingulum.  A 

partial hypolophid extends from the entoconid about halfway across the posterior 

margin. The entoconid is well developed and about the same height as the metaconid.  

No mesostylid is present between the two lingual cusps.  Across the center of the tooth,  

extending anterobuccally from the entoconid to the protoconid is a raised loph that cuts 

diagonally across the talonid basin. 

 The m1/2 has a rhombic occlusal outline, and is a very worn specimen.  The 

metaconid appears to be about the same height as the protoconid, with the two cusps 

connected by a narrow metalophulid I.  The trigonid basin is very narrow and appears to 

be partially closed posteriorly by a very narrow metalophulid II.  The hypoconid is low 

and buccally expanded, causing the talonid to be somewhat wider than the trigonid.  The 

ectolophid is clearly visible, although no mesoconid is apparent.  The hypoconid extends 

into the posterolophid lingually, which reaches the low but distinct entoconid. The 

mesostylid is faint, but this may be due to wear.  The anterior roots are broken away, but 

Figure 6.6  Nototamias sp.:  a. SMNH P2521.081 Lp4; b. 
SMNH P2521.294 Lm1-2; c. SMNH P2521.294 (posterior). 
Scale = 1mm, buccal of a,b to top of page. 

c
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the posterior roots are present almost to their tips, and are clearly fused together.  Only 

at the very tip is there any indication of separation between these roots.  

 

Table 6.4 Dental measurements of Nototamias sp. 
Tooth 

position Dimension N Mean 

p4 AP 1 1.08 
 TRA 1 0.88 
 TRP 1 1.10 
    

m1-2 AP 1 1.03 
 TRA 1 1.03 
 TRP 1 1.05 

 

 Discussion—These specimens are among the smallest sciurids found at the 

Rodent Hill Locality, and cannot be referred to any known contemporary taxon. The 

very small size is reminiscent of Sciurion oligocaenicus, but these specimens lack many 

of the typical features of those taxa, such as the crenulated enamel and the anteroconid. 

 In both size and morphology these two teeth are very reminiscent of the 

Nototamias figured by Storer (2002) and are definitely referable to the genus based on 

the dental diagnosis given by Pratt and Morgan (1989).  The most compelling evidence, 

along with the small size of the Rodent Hill specimens, is the lack of the mesoconid and 

the fused roots of the m1.  The surface of the m1 is too worn to preserve the area of the 

anterolabial groove, so its presence can be neither confirmed nor denied.  The very 

pronounced entoconid of the p4 is unusual but a large entoconid is present on the p4 in 

the specimens of N. quadratus described by Korth (1992b).  Of the described species of 

Nototamias, the Rodent Hill specimens are smaller but closer in size to N. hulberti based 

on the dimensions given by Pratt and Morgan (1989), particularly the p4. Since only two 

worn specimens of this population have been recovered, no assignment to species can be 

made. 
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MARMOTINI Pocock 1923 

PROTOSPERMOPHILUS Gazin 1930 

 

 Type species—Citellus (Protospermophilus) quatalensis Gazin, 1930 

 Referred species—P. vortmani (Cope, 1879); P. malheurensis (Gazin, 1932); P. 

angusticeps (Matthew and Mook, 1933); P. oregonensis (Downs, 1956); P. kellogi 

(Black, 1963). 

 Age and distribution—Whitneyan to Barstovian (possibly Clarendonian) of 

western North America. 

 Diagnosis—Skull slightly convex dorsally; cranium moderately expanded; 

dorsal limit of zygomatic plate terminating on side of rostrum; masseteric tubercles 

small; notches in ventral border of zygomatic plate opposite either m1 or line of contact 

between p4 and m1; masseteric fossa deeply concave, ending below m1; generally a 

small pit anterior to masseteric fossa for separate slip of masseter; cheek teeth low 

crowned but robust; protoconules absent or subordinated in protolophs, metaconules 

distinct; protocone-posterior cingulum union expanded; entoconid a distinct cusp; 

entoconid corner angular.  Emended by Black (1963).   

 

PROTOSPERMOPHILUS SP. 

Table 6.5, Figure 6.7 

 

 Referred specimens from Rodent Hill —SMNH P2521.362 (Lm2); P2452.127 

(Rm3). 

 Horizon at Rodent Hill —Collected in stratigraphically uncontrolled sampling. 

 Description—This m2 is worn and some features are not clearly visible.  The 

tooth has a rhomboidal occlusal outline and is wider than it is long.  The metaconid is  
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well developed and higher than the protoconid.  A very shallow anterior cingulum is 

visible, as well as a metalophid extending from the protoconid to the midpoint of the 

anterolophid, partially enclosing the trigonid basin; the trigonid is higher than the 

talonid. The ectolophid is worn, set lingually from the buccal margin and is very low.  

The mesoconid is a small, round cuspule midway along the ectolophid.  The hypoconid 

is low and buccally expanded, and is connected to the entoconid by a very low posterior 

ridge.  The entoconid is well developed and higher than the hypoconid, but is not as high 

as the metaconid.  On the lingual edge a mesostylid is not clearly present, but a low 

metastylid ridge that is interrupted anteriorly to the entoconid extends posteriorly from 

the metaconid. 

The very curved posterolingual margin causes the occlusal outline of the m3 to 

appear rhombic.  The tooth is larger than the m2, being longer anteroposteriorly, and is 

the same width.  The metaconid is bulbous and much higher than the protoconid, and 

these cusps are connected by a low metalophulid I.  The trigonid basin is enclosed by a 

metalophulid II that extends from the protoconid to the metaconid and is slightly raised 

above the talonid.  The hypoconid is about the same size and height as the protoconid, 

with the two connected by a low ectolophid that lacks a mesoconid. On the anterior face  

Figure 6.7  Protospermophilus sp.: a. SMNH P2521.362 Lm2; 
b. SMNH P2452.127 Rm3. Scale = 1mm, buccal to top of page. 

a b
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Table 6.5 Dental measurements of Protospermophilus sp. 
Tooth 

position Dimension N Mean 

m2 AP 1 1.43 
 TRA 1 1.50 
 TRP 1 1.63 
    

m3 AP 1 1.80 
 TRA 1 1.63 
 TRP 1 1.25 

 

of the hypocone are two shallow grooves, possibly remnants of enamel rugosity.  A deep 

buccal shelf is present buccad to the ectolophid. A low posterolophid extends from the 

hypoconid to the posterolingual margin of the tooth.  No entoconid is clearly present 

because the lingual margin appears to have been worn away during transport. In front of 

the lingual terminus of the posterolophid is a buccally directed gap in the tooth produced 

by breakage that extends to the posterior margin of the metaconid. 

Discussion—These two specimens are indicative of lower cheek teeth of 

marmotines and ground squirrels as diagnosed by Black (1963) in their shorter lingual 

than buccal margins, the rhomboidal shape of the m2, and the high posterolophid of 

P2452.127.  The entoconid of P2521.362 is better developed than indicated by Black 

(1963) for later marmotines, but a distinct entoconid is a diagnostic feature for 

Protospermophilus (Black, 1963).  

 These Protospermophilus specimens may be the oldest known record of this 

genus so far, and would be the smallest. This is in line with a general increase in size of 

the genus over time from the Arikareean Protospermophilus vortmani to the latest 

species of the Barstovian or Clarendonian, based on dimensions given by Black (1963). 

Of the taxa included by Black in the genus Protospermophilus, SMNH P2521.362 most 

resembles an indeterminate Arikareean specimen referred to as Protospermophilus sp 

(Black, 1963, pp. 162).  The major difference is that the Rodent Hill specimens are 

smaller, do not have a definite mesostylid, and there is only minimal talonid rugosity 

present in P2452.127, and none in P2521.362.  These latter two features are probably 

indeterminate due to wear.  With only two specimens available it is difficult to draw any 
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other conclusions regarding the evolutionary or biogeographic history of this genus, or 

to make any definitive designations of the species. 
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7. FAMILY CASTORIDAE 

 

The Castoridae includes the modern beavers, Castor canadensis of North 

America and C. fiber from Eurasia (Korth, 1994a).  The ancestral rodent family to the 

beavers remains unknown, although there are possibilities within the Paramyidae or 

Ischromyidae (Korth, 1994a).  The earliest North American beaver known is 

Agnotocastor galushai from middle Chadronian localities although the earliest Eurasian 

species are roughly the same age (Korth, 1994a).  North American beavers reached a 

peak of diversity in the Arikareean, and experienced a second radiation in the Blancan, 

from which the modern Castor is descended (Korth, 1994a). 

The castorids have a sciurognathous jaw angle and, where known, are 

sciuromorphous (Korth, 1994a). 

The dental formula for castorids is 1013/1013 except for agnotocastorines, which 

still retain at least P3 (Korth and Emry, 1997).  Early beavers have cheek teeth that are 

mesodont, although many later genera develop fully hypsodont teeth.  The P4/p4 is the 

largest tooth in the tooth row, and there is a general decrease in size to the M3/m3 

(Korth, 1994a).  Due to unique adaptations of castorid dentition, the cusps of the teeth 

are very difficult to identify (Korth, 1994a).  Instead, the teeth are described based on 

the presence and morphology of enamel lakes (fossette/-id) or reentrant enamel valleys 

(flexus/-ids) that were named, based on relative tooth position, by Stirton (1935).  On the 

lateral enamel of the teeth there may be vertical reentrant enamel folds referred to as 

stria/-ids that correspond to the flexi.  

In the upper teeth (Figure 7.1), the anterior-most buccal fossette is the 

parafossette, the medial fossette is the mesofossette, and posterior-most is the 

metafossette.  The only lingual fossette is the hypofossette.  If these enamel lakes open 
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Figure 7.1 Generalized castorid upper 
cheek tooth morphology with major 
features identified. A—Buccal view 
(occlusal down) B, C—Occlusal view 
D—Lingual view (occlusal up).  1–
mesostria 2—metastria 3—parastria 4—
metaflexus 5—mesoflexus 6—paraflexus 
7—hypoflexus 8—metafossette 9—
mesofossette 10—parafossette 11—
hypofossette 12—hypostria  

Drawn by the author, based on Korth 
(2001b).  Terminology from Stirton 
(1935). 

Figure 7.2 Generalized castorid lower 
cheek tooth morphology with major 
features identified. A—Buccal view 
(occlusal down) B, C—Occlusal view 
D—Lingual view (occlusal up).  1–
hypostriid 2—hypoflexid 3—
metaflexid 4—mesoflexid 5—
paraflexid 6—hypofossettid 7—
metafossettid 8—mesofossettid 9—
parafossettid 10—metastriid 11—
mesostriid 12—parastriid  

Drawn by the author, based on Korth 
(2001b).  Terminology from Stirton 
(1935). 
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to the margins of the tooth to form reentrant valleys, they are described as flexi (Stirton, 

1935; Korth, 1994a). 

The anterior-most lingual fossettid of the lower teeth (Figure 7.2) is the 

parafossettid, followed by the mesofossettid and the posterior-most fossettid is the 

metafossettid.  On the buccal margin is the hypofossettid.  If the fossettids open to the 

margins of the teeth, they are referred to as flexids. 

In several species of castorids, there may be other distinct enamel lakes present 

on the occlusal surface that could be used for identification.  Xu (1996) determined that 

the identification of beavers solely on dentition is unreliable, so the identifications made 

here will be tentative.  Castorids in the subfamily Agnotocastorinae can be recognized 

dentally by having mesodont teeth (Korth and Emry, 1997) with a more complex 

occlusal pattern (Korth and Emry, 1997; Korth, 2001b).  The Palaeocastorinae are 

recognizable dentally by having a simplified occlusal pattern and molars that are higher 

crowned but still rooted (Korth, 2001b). 

 

7.1 SYSTEMATIC PALEONTOLOGY 

 

CASTORIDAE Hemprich, 1820 

AGNOTOCASTORINAE Korth and Emry, 1997 

AGNOTOCASTOR Stirton, 1935 

 

 Type species—Agnotocastor praetereadens Stirton, 1935 

 Referred species—A. coloradensis Wilson, 1949; A. galushai, Emry, 1972; A. 

auabekerovi, Lytshev, 1978; A. readingi, Korth, 1988 

 Age and distribution—Chadronian to Whitneyan of northern Great Plains of 

North America, and earliest Oligocene of Asia. 
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 Diagnosis—“Rostrum long and narrow; skull relatively narrower than in 

Palaeocastor; hypostria shallow; no canal piercing basioccipital at end of basispheno-

basioccipital groove; bulla apparently kidney-shaped; dental formula 1.0.2.3, alveoli for 

incisor round…P3 represented by small alveoli; cheek teeth lower crowned than in 

Palaeocastor; P4 nearly square in outline; molars nearly rectangular in shape, elongate 

transversely; enamel borders of fossettes and flexi thicker than in Palaeocastor; fossettes 

and flexi wider than in Palaeocastor; mesostria and hypostria of equal or nearly equal 

length; two fossettes anterior to the mesostria in a late stage of wear.”  From Stirton 

(1935).  

AGNOTOCASTOR CF. A. PRAETEREADENS Stirton, 1935 

Table 7.1, Figure 7.3 

 

Steneofiber nebrascensis Matthew, 1902 

 

 Holotype—AMNH 1428, nearly complete skull with LP4-M3 and RP4-M2, 

“Protoceras beds”, Brule Formation, South Dakota. 

 Referred specimens from Rodent Hill —SMNH P2685.002 (RP4); P2706.026 

(RM2); P2706.028 (Lp4). 

 Horizon at Rodent Hill—Both specimens collected in stratigraphically 

uncontrolled sampling. 

 Diagnosis—“Intermediate sized species (larger than A. galushai, smaller than A. 

coloradensis); occlusal pattern of cheek teeth less complex (fewer fossettes) than in 

other species; last premolars larger relative to molars than in other species; mandibular 

diastema shallow (less than 30% depth of mandible); rostrum not elongated as in A. 

coloradensis.”  Emended by Korth (2001b). 

 Description—The P4 is a mesodont tooth, with the crown enamel of the lingual 

side extended slightly below that of the buccal side.  The tooth is wider than it is long, 

and rectangular in overall outline.  The mesoflexus is the dominant feature of the tooth, 

extending from the buccal margin to more than midway across the tooth, terminating in 
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a posteriorly directed curve that produces a J-shape.  Two fossettes are present anteriorly 

to the mesoflexus, situated laterally to one another.  The fossette closest to the buccal 

margin is nearly circular in outline; the second is situated roughly central in the anterior 

portion of the tooth, is ovate and open to the anterior margin via an anterobuccally 

directed flexus (paraflexus?).  A short, ovate metafossette is present posteriorly to the 

mesoflexus, separated by a very small gap.  The metafossette is connected to the 

posterobuccal margin, and nearly opens to form a metaflexus.  The mesostria is a deep 

inflection, and continues to the base of the crown.  A hypoflexus is present on the 

lingual side of the tooth that is approximately one third of the width of the tooth, 

anteroposteriorly wider than the mesoflexus, and oriented in an anterobuccal direction.  

The hypoflexus is almost directly in line with the “paraflexus”.  The hypostria on the 

lingual margin is narrower than the mesostria and does not extend to the base of the 

crown.  The enamel between the fossettes and flexi of this tooth is relatively thick. 

 P2706.028 is a very unworn p4 with an anteroposteriorly elongate shape; the 

anterior portion has a slight transverse compression in comparison to the posterior end, 

and the crown enamel of the buccal margin is slightly deeper compared to that of the 

lingual margin.  The hypoflexid does not extend deeply into the tooth, but is long, with 

an associated wide hypostriid that extends to just above the base of the crown.  The 

mesoflexid is only barely open to the lingual margin, extends almost to the hypoflexid, 

and bends anterad midway along its length.  The metafossettid is posterior to the 

mesoflexid, and almost opens to the posterolingual corner of the tooth.  The 

metafossettid extends across the tooth to join with the mesoflexid as it curves anterad.  

There is a small, circular fossettid between the mesoflexid and metafossettid.  On the 

lingual margin, next to the small fossettid, is a short ovate flexid open to the mesoflexid.  

On the anterior half of the tooth, the parafossettid is situated approximately centrally, 

extending about the same transverse length as the mesoflexid and metafossettid, is of an 

irregular shape, and is nearly open to the anterior margin.  The parafossettid and 

mesoflexid are nearly joined together by an anterior extension of the mesoflexid.  On the 

lingual margin, a short mesostriid is present that does not extend very far down the side 

of the tooth.  The enamel on the buccal side of the tooth is relatively thick, whereas the 

enamel on the lingual side, around the more complex fossettids and flexids, becomes 
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much thinner, pinching out posteriorly to the metafossettid, and along the anterobuccal 

margin. 

 Discussion—According to Xu (1996) and Storer (2002) the classification of 

castorids is primarily based on skull characteristics, and the individual teeth may not be 

assignable to genus or species.  Unfortunately, dental material from Rodent Hill is 

almost always isolated, and as such cannot be definitely referred.  These specimens are 

identified tentatively as being morphologically very similar to Agnotocastor 

praetereadens based on direct comparisons with SDSM 6420, SDSM 40167 and SDSM 

40168 from South Dakota.  In particular, the arrangement of fossettes on the P4 

(P2685.002) and the morphology of the mesoflexid of the p4 (P2706.028) recall the 

descriptions of the South Dakota material given by Korth (2001b). 

Figure 7.3 Agnotocastor cf. A. praetereadens: a. SMNH P2685.002 RP4; 
b. SMNH P2706.028 Lp4 c. SMNH P2685.002 anterior view; d. SMNH 
P2706.028 anterior view. Scale = 1mm, buccal of a, c to left of page; b, d 
to right. 

d

a
b

c
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OLIGOTHERIOMYS Korth, 1998a 

 

 Type species—Oligotheriomys primus Korth, 1998a 

 Referred species—?O. senrudis (Wood, 1945) 

 Age and distribution—Orellan of North Dakota, Whitneyan of Montana and 

Saskatchewan, possibly Hemingfordian of Montana and Wyoming. 

 Diagnosis—“Agnotocastorine beaver similar to Anchitheriomys and differing 

from other agnotocastorines in having a posterior maxillary notch rather than foramen, 

upper tooth rows diverge slightly (not as much as in castorines, palaeocastorines, and 

castoroidines), upper molars unilaterally hypsodont, occlusal pattern of cheek teeth more 

complex (more fossettes), and hypoflexus much shallower than on other 

agnotocastorines.  Differs from Anchitheriomys in being much smaller (approximately 

half of all dental dimensions of Anchitheriomys), having cheek teeth lower crowned, P3 

present (lost in Anchitheriomys), and lacking a deep mesoflexus on all upper molars 

(deep mesoflexus always present in Anchitheriomys).”  From Korth (1998a).   

 

? OLIGOTHERIOMYS SP. 

Table 7.1, Figure 7.4 

 

 Referred specimen from Rodent Hill —SMNH P2838.003 (RM2?). 

 Horizon at Rodent Hill— Stratigraphic Unit VII. 

 Description—P2838.003 is somewhat rectangular, longer than wide, and low 

crowned.  The tooth is relatively mesodont, and the lingual enamel is extended 

substantially more deeply than the buccal enamel.  The hypoflexus does not extend very 

far into the tooth and is anterobuccally oriented.  A hypostria is present on the lingual 

side that extends almost to the base of the crown, but does not reach it.  From the buccal 

margin, the mesoflexus is the dominant feature, extending about half way across the 

width of the tooth as a narrow valley before curving sharply posterad.  Only a very tiny  



 98 

 

mesostria is visible from the buccal edge of the mesoflexus.  Two transverse fossettes 

(parafossettes?) are located anteriorly to the mesoflexus and extend the width of the 

occlusal surface.  The longer of the two is marked by a slight expansion of the lingual 

portion of the fossette.  Posteriorly to the mesoflexus is a transversely ovate fossette 

between the buccal margin and the posterior curve of the mesoflexus. An elongate 

fossette (metafossette?) extends across the width of the posterior margin.  The center of 

the metafossette has an extension of the enamel that partially divides the fossette into a 

circular buccal portion and a more elongate lingual portion. 

Discussion—This tooth most closely resembles the M2 of Oligotheriomys 

primus described by Korth (1998a), based on the buccally open mesoflexus with the 

sharp curve. Unfortunately, while being described, the tooth broke below the 

mesoflexus.  The single transverse posterior fossette, on the other hand, resembles the 

M1 more, but the partial intrusion of the enamel could potentially be worn so that the 

single fossette would become two.  When described by Korth (1998a) the complexity of 

the dentition of Oligotheriomys (and the related Anchitheriomys) was noted, and the 

majority of the fossettes were not identified using dental terms since they are not readily 

identifiable in the terminology first produced by Stirton (1935). 

Figure 7.4 ?Oligotheriomys sp.: SMNH P2838.003 
RM2?.  Scale = 1mm, buccal to top of page.
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 This specimen is unlikely to be Oligotheriomys primus due to the even more 

reduced number of anterior fossettes, and the smaller size.  The unilateral hypsodonty 

(reduced in this specimen), lower crown height, shallow hypoflexus and higher degree 

of fossette complexity probably indicate that P2838.003 represents a different species 

within the genus.  As with the Agnotocastor species described above, referring castorids 

based on isolated dentition alone is not generally feasible (Xu, 1996; Storer, 2002); 

however P2838.003 can probably be referred to Oligotheriomys. 

 

? PALAEOCASTORINAE Martin, 1987 

? PALAEOCASTORINAE, GEN. ET SP. INDET. 

Table 7.1, Figure 7.5 

 

Referred specimen from Rodent Hill—SMNH P2706.026 (Rm). 

 Horizon at Rodent Hill—Collected in stratigraphically uncontrolled sampling. 

 Description— The M2 (P2706.026) is a very worn tooth that is more hypsodont 

compared to the other Rodent Hill castorids, but still bears a root.  The crown enamel 

appears deeper on the lingual margin, but this could be due to the intense wear on the 

buccal margin.  The occlusal outline is somewhat ovate, with the tooth being greater in 

width than in length.  No striae are visible on the sides of the tooth, possibly due to wear.  

The mesofossette is essentially straight, and oriented slightly posterolingually from the 

buccal margin.  A single parafossette is located anteriorly to the mesofossette and they 

are roughly parallel to each other.  The metafossette is transversely elongate, situated 

very close to the center of the posterior margin.  The hypofossette extends from the 

lingual margin across the tooth anterolingually, nearly joining to the parafossette.  The 

enamel surrounding the fossettes of this upper cheek tooth is raised slightly above the 

occlusal surface. 
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 Discussion— The assignment of P2706.026 as a palaeocastorine beaver is based 

primarily on the tooth being more hypsodont than the other identifiable castorid teeth 

from Rodent Hill, and the simplified occlusal pattern (Xu, 1996; Korth and Emry, 1997; 

Korth, 2001b).  The intense wear of the tooth has removed many features that might 

allow identification at least to genus, but this is certainly a distinct species from the other 

castorid material. 

Figure 7.5 ? Palaeocastorinae, gen. et sp. indet.; a. SMNH 
P2706.026 Rm; b. SMNH P2706.026 posterior view. Scale = 1mm, 
buccal to right of page. 

a

b
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Table 7.1 Dental measurements of Rodent Hill castorids. 

Taxon Tooth 
position Dimension N Mean 

Agnotocastor cf. A. praetereadens P4 AP 1 3.70 
  TR 1 4.80 
  LEH 1 3.50 
  BEH 1 2.40 
     
 p4 AP 1 4.20 
  TRA 1 2.90 
  TRP 1 3.80 
  LEH 1 2.90 
  BEH 1 3.90 
     
? Oligotheriomys sp. M2 AP 1 3.30 
  TRA 1 2.40 
  TRP 1 2.50 
  LEH 1 3.00 
  BEH 1 1.00 
     
? Palaeocastorinae, gen. et sp. indet. m AP 1 3.00 
  TR 1 3.80 
  LEH 1 5.70 
  BEH 1 3.70 

 

 

CASTORIDAE, GEN. ET SP. INDET. 

 

 Referred specimens from Rodent Hill —SMNH P2452.130, P2521.044, 

P2521.046, P2521.360, P2834.002, P2834.011. 

 Horizon at Rodent Hill—Specimens P2834.002 and P2834.011 from 

Stratigraphic Unit I, all others collected in bulk sampling. 

 Descriptions—P2452.130 is the edge of a tooth with two isolated lakes present. 

 P2521.044 is a fragment from the center of a tooth.  It appears to be a transverse 

flexid, divided into two lobes, one straight and one curved. Transversely opposite from 

the straight lobe is a transversely elongate fossettid. 
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 P2521.046 is an indeterminate section of a tooth with several small 

fossettes/lakes on the surface (could potentially be a eutypomyid based on the large 

number of lakes). 

 P2521.360 is a fragment of a tooth with a single flexus/flexid with a 

fossette/fossettid present next to it. 

 P2834.002 is a fragment from the margin of a tooth.  It is fairly high crowned 

and has an occlusal surface with several indeterminate lakes. 

 P2834.011 is from the lingual margin of a lower left molar.  The hypoflexid is 

not extended deeply into tooth, and divides into two very short lobes at buccal end.  A 

transversely elongate hypostylid is present posteriorly to the hypoflexid.  A small, ovate 

metafossettid is located buccally to the hypostylid.  

 Discussion—All of these specimens are referable to the family Castoridae due to 

an identifiable feature, usually the presence of a fossette/fossettid or flexus/flexid.  They 

are mentioned here briefly only to indicate that more fragmental castorid material has 

been recovered from the Rodent Hill Locality than identifiable castorid fossils.  It 

appears that most of the castorid dentition that was recovered was quite worn in 

transport before deposition, due to the rounded appearance of the fracture surfaces on 

these specimens. 
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8. SUPERFAMILY GEOMYOIDEA 

 

8.1 INTRODUCTION TO THE GEOMYOIDEA 

 The Superfamily Geomyoidea includes two extinct rodent families, the 

Florentiamyidae and Heliscomyidae, and two living families, the Heteromyidae and the 

Geomyidae. 

 This group of rodents has been restricted to North America since the appearance 

of the oldest known family, the Heliscomyidae, in the Uintan (Korth, 1994a).  The 

ancestors of this family may have been within the family Sciuravidae (Korth, 1994a) but 

no definite ancestral lineage is known.   

 In all geomyoids the skulls are sciuromorphous, and the jaw is sciurognathous 

(Korth, 1994a). 

 The dental formula for all geomyoids is 1013/1013.  The molars of these rodents 

(Figures 8.1, 8.2) are arranged in two transverse rows with two cusps each.  The lingual 

margin of the uppers may bear one or more smaller stylar cusps.  On the lowers, the 

stylar cusps occur on the buccal margin if they are present. 

 



 104

 

8.2 FAMILY HELISCOMYIDAE 

 The Heliscomyidae is an extinct family of geomyoid rodents that are among the 

smallest rodents ever in North America (Korth, 1994a).  The earliest heliscomyids have 

been identified from isolated teeth from Saskatchewan (Storer, 1987) and California 

(Kelly, 1992).  Despite being the oldest geomyoid group, the Heliscomyidae is not 

considered directly ancestral to any later geomyoid family (Korth, 1994a).  The peak 

diversity of the Heliscomyidae was in the Orellan and the family was extinct by the end 

of the Barstovian (Korth, 1994a).  No species from this family have been described from 

a Whitneyan site but this was considered to be due to sampling errors rather than a real 

lack of heliscomyids at that time (Korth, 1994a).  The description herein of three 

Figure 8.1 Generalized geomyoid 
upper cheek tooth morphology. RM1 
(on left) and RP4 with major features 
identified. 1–metacone 2—transverse 
valley 3—paracone 4—anterior 
cingulum 5—protocone 6—lingual 
cingulum (anterior portion) 7—
protostyle 8—entostyle 9—lingual 
cingulum (posterior portion) 10—
hypostyle 11—hypocone 12—
posterior cingulum 13—protoloph 
14—metaloph 

Drawn by the author, based on Korth 
(1994a).  Terminology from Wood 
and Wilson (1936) and Korth 
(1994a)

Figure 8.2 Generalized geomyoid 
lower cheek tooth morphology. Rm1 
(on left) and Rp4, with major 
features identified. 1—entoconid 
2—transverse valley 3—metaconid 
4—protoconid 5—anterior cingulum 
6—protostylid 7—hypostylid 8—
hypoconid 9—posterior cingulum 
10—metalophid 11—hypolophid 

Drawn by the author, based on 
Korth (1994a).  Terminology from 
Wood and Wilson (1936) and Korth 
(1994a). 
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different heliscomyids supports the supposition that this family was present in the 

Whitneyan, but not yet described. 

  Heliscomyid dentition has the general geomyoid morphology, and is identifiable 

based on the very small size of the cheek teeth, the very brachydont crowns, and the 

stylar cusps that are much smaller than the cusps (Korth, 1994a). 

 

8.2.1 Systematic Paleontology 

GEOMYOIDEA Weber 1904 

HELISCOMYIDAE Korth, Wahlert and Emry 1991 

HELISCOMYS Cope 1873 

Genotype—Heliscomys vetus Cope, 1873 

Referred species—H. gregoryi Wood, 1933; H. hatcheri Wood, 1935a; H. 

senex, Wood, 1935; H. woodi, McGrew, 1941; H. subtilis (Lindsay, 1972); H. mcgrewi 

Korth, 1989; H. ostranderi Korth, Wahlert and Emry, 1991. 

Age and distribution—Duchesnean of Saskatchewan; Chadronian of Wyoming, 

Montana, Nebraska and Saskatchewan; Orellan of the Great Plains and mountain states 

of the U.S.A, Saskatchewan?; Whitneyan of Saskatchewan and Montana; Arikareean of 

South Dakota; Hemingfordian of Saskatchewan; and Barstovian of California. 

Diagnosis—Heliscomyid with p4 variably reduced (three- or four-cusped); 

entostyle present on M1; i1 and mandible slender, gracile.  Korth et al. (1991) gave the 

most recent diagnosis for this genus.  

Discussion—Although not previously described from the Whitneyan of the 

Cypress Hills Formation, Heliscomys specimens have previously been recovered from 

the Lac Pelletier fauna of Duchesnean age (Storer, 1988), the Calf Creek Local Fauna of 

Chadronian age (Storer, 1978) and the Topham local fauna of Hemingfordian age 

(Skwara, 1988). 
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HELISCOMYS (HELISCOMYS)  Cope, 1873 

Genotype—Heliscomys vetus Cope, 1873 

Referred species—Heliscomys (H.) senex, Wood, 1935; H. (H.) woodi, 

McGrew, 1941; H. (H.) mcgrewi Korth, 1989. 

Diagnosis—“Premolars reduced; dp4 simple, four-cusped, lacking any lophs; 

metaconid central when three-cusped on p4; width of P4 45-82 percent that of first 

molar, cusps other than hypocone often reduced or lost; lingual cingulum continuous on 

M1; protostyle lacking on upper molars.” Diagnosis for subgenus from Korth, (1995). 

 

HELISCOMYS (HELISCOMYS) VETUS Cope 1873 

Table 8.1, Figure 8.3 a-c 

 Holotype—AMNH 5461, left mandible with p4-m1, Cedar Creek Member, 

White River Formation, Logan County, Colorado (Orellan). 

 Referred specimens from Rodent Hill—SMNH P2521.001, P2521.087 and 

P2521.090 (LM1); P2521.168, P2521.220, P2521.291, P2521.300 and P2834.019 

(RM1); P2521.285 (LM2); P2834.013 (RM2); P2838.002 (Lm1); P2521.351 and 

P2836.001 (Rm1). 

Horizon at Rodent Hill—P2834.013 and P2834.019 from Stratigraphic Unit I, 

P2836.001 from Stratigraphic Unit III and P2838.002 from Stratigraphic Unit VII.  

Other specimens collected by stratigraphically uncontrolled sampling.  

Emended diagnosis—Approximately equal in size to H. hatcheri; premolars 

variable in morphology and relatively smaller than in H. hatcheri; continuous lingual 

cingulum and variable occurrence of entostyle on M1; no protostyle, or very reduced.  

Differs from H. senex by having an entostyle that may be rounded or ovate (always 

round in H. senex).  The m1 of H. vetus may be distinguished from H. hatcheri by a  
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weaker anterior cingulum and reduced stylid cusps. Korth’s (1989c) diagnosis is 

emended here to include information about the lower molars. 

Description—M1 has four cusps, with the protoloph offset buccally relative to 

the metaloph, giving the teeth an uneven appearance as the protoloph is not parallel to 

the metaloph.  All of the cusps are circular, with the protocone being slightly larger.  The 

paracone is set anterior to the protocone, accentuating the uneven appearance of M1; 

there is variation in how far forward the paracone is placed.  An anterior cingulum is 

present that joins with a low lingual cingulum. On the continuous lingual cingulum there 

is no protostyle, but an entostyle is usually present that can vary from round to ovate.  

The entostyle is situated just posterior to the lingual end of transverse valley, and does 

not appear connected to the hypocone.  The metaloph has a posterior cingulum between 

the metacone and hypocone that varies in width but is well defined. 

M2 is nearly identical to M1 except that the protoloph and metaloph are parallel, 

although the protoloph may be slightly expanded buccally.  In addition, the M2 appears 

to lack the posterior cingulum. In P2834.013, the cusps are worn very low, causing the 

entostyle to broaden anteriorly. 

The m1 has an approximately square occlusal outline, and has four major cuspids 

and two smaller stylid cusps.  The cuspids are arranged in the typical geomyoid pattern 

of two transverse rows.  The metaconid and protoconid are generally quite close together 

Figure 8.3  Heliscomys (Heliscomys) vetus: a. SMNH P2521.090 LM1; b. 
SMNH P2521.285 LM2; c. SMNH P2836.001 Rm1. Scale = 1mm, buccal to top. 

a
c

b
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but do not form a loph, and have an anterior cingulum extending almost the width of the 

tooth.  The anterior cingulum is continuous with the anterior part of the buccal 

cingulum, which in turn terminates in a low, ovate protostylid.  The protostylid is 

situated anteriorly to the transverse valley.  The hypolophid is slightly compressed 

transversely compared to the metalophid, and the hypoconid and entoconid are further 

apart, joining at their bases with wear.  A posterior cingulum is present only between the 

two major cuspids.  The hypostylid is separated from the hypoconid. 

Discussion—The material from Rodent Hill is assigned to Heliscomys vetus 

rather than H. senex based on direct comparisons with referred material; however the 

species are diagnosed based on complete tooth rows, primarily using P4 and p4, 

meaning that isolated dentition is very difficult to tell apart.  Korth (1989c) synonymised 

these two species based on their apparent similarities, but later reversed this decision 

(Korth, 1995) after finding a skull and associated mandible of H. senex.  There is, 

however, no doubt that the Rodent Hill specimens belong to one of these species, and 

that they are morphologically most similar to H. vetus, particularly in the variable 

presence and shape of the entostyle on M1.  Heliscomys vetus also appears to be more 

variable in size (Galbreath, 1953) and this variability is evident in the Rodent Hill 

specimens.  The Rodent Hill specimens identified as Heliscomys vetus are also 

distinguishable from the similar sized H. hatcheri and H. gregoryi by the lack of the 

protostyle and the continuous lingual cingulum.   

Four specimens (P2521.090, P2521.168, P2521.220 and P2521.291) are larger 

anteroposteriorly than any specimen of this species previously described.  This 

difference is interpreted as a minor increase in size (no more than 10% larger) within the 

species over time, so that some of the Whitneyan individuals were larger than some 

Orellan individuals.  Given the small number of specimens present at Rodent Hill, the 

size difference is not considered sufficient to warrant a new species for only four 

individual teeth. 
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HELISCOMYS (SYPHYRIOMYS) KORTH, 1995 

Genotype—Heliscomys hatcheri Wood, 1933 

Referred species— Heliscomys (S.) gregoryi Wood, 1933; H. (S.) subtilis 

(Lindsay, 1972); H. (S.) ostranderi Korth, Wahlert and Emry, 1991. 

Diagnosis—“P4 four-cusped with width 77-95 percent that of M1; dp4 with 

accessory cuspules and anteroposterior lophs; metaconid non-central on three-cusped p4; 

lingual cingulum on M1-M2 broken by valley, protostyle present on M1-M2 on all but 

the most primitive species” Diagnosis from Korth, (1991).  

 

HELISCOMYS (SYPHYRIOMYS) HATCHERI Wood 1935a 

Table 8.2, Figure 8.4 a-c 

Holotype—USNM 6635, partial mandible with m1-m2, Cottonwood Creek, 

Orella Member, Brule Formation, Sioux County, Nebraska (Orellan).  

Referred specimens from Rodent Hill—SMNH P2521.286, maxilla fragment 

with LM1-2; P2521.386 and P2835.002 (RM1); P2521.368 (LM2); P2452.114, 

P2452.117, P2521.034, P2521.147, P2521.190, P2521.263, P2521.391 and P2834.006 

(Lm1); P2521.149, P2521.152, P2521.161, P2521.256, P2521.317, P2521.352, 

P2521.375, P2835.005 and P2836.005 (Rm1); P2521.295 (Lm2); P2521.320, P2521.344 

and P2521.374 (Rm2). 

Table 8.1 Dental measurements of Heliscomys (Heliscomys) vetus.  
Tooth 

position Dimension N Mean OR SD CV 

M1 AP 7 0.95 0.83-1.03 0.08 8.59 
 TR 7 1.10 1.03-1.15 0.05 4.91 
       

M2 AP 2 0.87 0.86-0.88   
 TR 2 1.08 1.04-1.13   
       

m1 AP 3 0.80 0.70-0.90   
 TRA 3 0.88 0.86-0.90   
 TRP 3 0.82 0.77-0.89   
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Horizon at Rodent Hill—P2834.006 from Stratigraphic Unit I, P2835.002 and 

P2835.005 from Stratigraphic Unit II and P2836.005 from Stratigraphic Unit V.  Other 

specimens collected by stratigraphically uncontrolled sampling.  

Figure 8.4  Heliscomys (Syphyriomys) hatcheri: a. SMNH 
P2521.286 L maxilla fragment M1&M2; b. SMNH P2521.161 
Rm1; c. SMNH P2521.320 Rm2. Scale = 1mm, buccal to top of 
page. 

a
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Emended Diagnosis—Equal in size to H. vetus; premolars variable in 

morphology and relatively larger than in H. vetus; upper molars with distinct entostyle 

and protostyle and discontinuous lingual cingulum.  The m1 of H. hatcheri may be 

distinguished from H. vetus by a stronger anterior cingulum and better-developed stylid 

cusps.  Originally diagnosed by Wood (1935a), emended by Korth (1989c).  The 

diagnosis is emended here by incorporating information about the lower molars. 

Description—M1 and M2 are both sextituberculate teeth arranged in two 

transverse rows, with four larger main cusps and two smaller style cusps on the lingual 

margin.  M1 is slightly larger anteroposteriorly than M2, with a more pronounced 

interruption in the lingual cingulum, increasing the gap between the protostyle and 

entostyle relative to M2.  With wear, the interruption of the cingulum can become less 

pronounced, existing as a tiny notch, but the style cusps remain relatively pronounced.  

On the M1, a slight buccal offset of the protoloph relative to the metaloph gives the 

tooth an uneven appearance; this offset is not apparent in M2.  An anterior cingulum that 

extends most of the width of the tooth is present on both M1 and M2, whereas a 

posterior cingulum is present only on M1 

The m1 specimens are variably squared in outline, with four large major cuspids 

and two smaller stylid cuspids, a protostylid and hypostylid.  An anterior cingulum is 

present across the width of the tooth and may expand anterad causing the buccal end of 

the anterior cingulum to be wider than the lingual end.  The anterior cingulum extends 

around to the buccal edge to join the buccal cingulum that terminates at the protostylid.  

The protostylid does not extend past the transverse valley.  On the hypolophid, a 

variable posterior cingulum may extend the width of the tooth, or may exist only as a 

reduced shelf between the hypoconid and entoconid (this reduction could also be due to 

wear of the tooth).  The hypostylid is placed on the buccal margin, well posterior to the 

anterior margin of the hypoconid. 
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The m2 is similar to the m1, but anteroposteriorly shorter, giving a slightly 

rectangular outline.  As with the m1, the tooth is arranged in two transverse rows of two 

larger main cuspids and a smaller stylid cusp.  There is the same anterior cingulum that 

extends around the anterobuccal corner to the protostylid, but there is no recognizable 

posterior cingulum. 

 

Discussion—As well as being approximately equal in size, these specimens are 

morphologically very similar to previously described Heliscomys hatcheri specimens.  

Some specimens, most notably P2835.005, are larger than any other referred H. hatcheri 

specimens; however, all Rodent Hill specimens are within 10% of the dimensions of 

comparable specimens.  Only P2835.005 is larger by 15% transversely, being closer in 

size to H. gregoryi (see below), but it is included with H. hatcheri for morphological 

reasons as representing a slightly larger individual. 

The Rodent Hill specimens are representative of the subgenus H. (Syphyriomys) 

erected by Korth (1995) to distinguish the Heliscomys species with interrupted lingual 

cingula and relatively larger P4 (although no upper premolars were recovered at this 

locality) from those with continuous lingual cingula and relatively small P4.  This 

distinction serves to separate the H. hatcheri specimens from those of H. (Heliscomys) 

Table 8.2 Dental measurements of Heliscomys (Syphyriomys) hatcheri.  
Tooth 

position Dimension N Mean OR SD CV 

M1 AP 3 0.85 0.82-0.88   
 TR 3 0.99 0.96-1.00   
       

M2 AP 2 0.79 0.78-0.80   
 TR 2 1.00 0.98-1.03   
       

m1 AP 16 0.87 0.85-1.00 0.23 4.66 
 TRA 17 0.90 0.82-1.00 0.05 5.48 
 TRP 17 0.87 0.81-0.96 0.05 5.65 
       

m2 AP 4 0.84 0.83-0.88 0.02 2.79 
 TRA 4 0.90 0.88-0.92 0.02 2.36 
 TRP 4 0.89 0.85-1.00 0.07 8.03 
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vetus and H. (H.) senex. Unfortunately, no distinction between the subgenera was made 

at the time based on lower molars, and it remains to be seen if the distinctions provided 

 in the emended diagnoses of this species and H. vetus (below) are applicable to the 

subgenera as well.  

It is necessary to distinguish the Rodent Hill specimens from a similarly sized H. 

(Syphyriomys) species, H. (S.) gregoryi.  Korth (1989) gives four distinguishing 

characteristics to differentiate these two species. Heliscomys (S.) hatcheri is 

distinguished from H. (S.) gregoryi by a posterior cingulum on M1, deeper separation of 

protostyle and entostyle on M1, poor separation of protostyle and entostyle on M2, and 

less reduction of M3.  As indicated by the posterior cingulum and the wide separation of 

the entostyle and protostyle of M1, and the poor separation of the entostyle from the 

protostyle on M2 as seen in the Rodent Hill specimens, the small H. (Syphyriomys) 

specimens should be regarded as Heliscomys (S.) hatcheri. 
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HELISCOMYS (SYPHYRIOMYS) SP. INDET. 

Table 8.3, Figure 8.5 

 

Referred specimens from Rodent Hill—SMNH P2521.381 (LM1); P2452.112 

and P2521.369 (LM2). 

Horizon at Rodent Hill—Collected by stratigraphically uncontrolled sampling. 

Description—M1 has four cusps, with the protoloph extended buccally relative 

to the metaloph, giving the tooth an uneven appearance.  All of the cusps are circular 

and distinct, with the protocone being the largest.  The paracone is offset slightly 

anteriorly to the protocone, giving an uneven appearance to the tooth.  An anterior 

cingulum extends from the anterior margin  of the paracone on the buccal end and 

curves around the anterolingual corner on the lingual end.  The anterior cingulum 

terminates in a protostyle that is present as a small swelling.  The lingual cingulum is not 

continuous, but instead is deeply divided at the lingual end of the deep central transverse 

valley.  Across this gap from the protostyle is a very well developed entostyle that 

extends to partially block the central transverse valley.  The entostyle is separated from 

the hypocone by a narrow gap.  The cusps of the metaloph are spaced widely apart and 

distinct, with a well-developed, deep posterior cingulum posterad to the metacone that 

extends to the buccal side of the hypocone. 

Figure 8.5  Heliscomys (Syphyriomys) sp. indet.: a. SMNH 
P2521.381 LM1; b. SMNH P2452.112 LM2; c. SMNH 
P2521.369 RM2. Scale = 1mm, buccal to top of page. 
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The M2 is smaller than M1 with better-developed stylar cusps, giving a more 

strongly sextituberculate occlusal pattern.  The cusps of the protoloph are separated as in 

M1, and the paracone is situated slightly buccal and anterior to the protocone.  An 

anterior cingulum appears to terminate at the lingual margin of the tooth and continues 

into the well-developed protostyle.  There is a gap that is almost the width of the 

transverse valley between the protostyle and entostyle. The lingual cingulum is 

dominated entirely by the stylar cusps.  The hypocone and metacone are well divided as 

in the M1, and are joined by a posterior cingulum. 

Table 8.3 Dental measurements of Heliscomys (Syphyriomys) sp. 
indet. 

Tooth 
position Dimension N Mean OR 

M1 AP 1 1.15 0.82-0.88 
 TR 1 1.20 0.96-1.00 
     

M2 AP 2 0.94 0.93-0.95 
 TR 2 1.09 1.09-1.10 

 

Discussion—These specimens are placed within the subgenus Syphyriomys due 

to the interruption of the lingual cingulum of the M1 and the development of both a 

protostyle and entostyle (Korth, 1995).  The uppers share the narrow gap between the 

protostyle and entostyle on M1 and the deep divide on the cingulum of M2, 

characteristic of Heliscomys gregoryi (Korth, 1989c).  However, there is a well-

developed posterior cingulum on the M1 that is more characteristic of H. hatcheri.   

The heliscomyid specimens described above are distinguishable by their size 

from any known Orellan or Arikareean species of Heliscomys, or any other heliscomyid.  

The teeth are larger than those of H. hatcheri or H. vetus by as much as 45% (depending 

on tooth position and compared specimen).  Only the Orellan Heliscomys mcgrewi, the 

largest species in the family, is similar in size.  On average, Heliscomys mcgrewi is 

larger by 6% anteroposteriorly and 18% transversely, based on dimensions given by 

Korth (1989c).  Most specimens of H. mcgrewi are larger than the Rodent Hill 

specimens, except for one M1 that is 4% smaller.  The Rodent Hill specimens cannot be 
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H. mcgrewi due to the absence of the continuous lingual cingulum that is present in H. 

mcgrewi. 

The size and morphology of these specimens probably indicates a distinct species, but 

the material available is very limited and would not make good holotypic material.  It is 

hoped that similar finds in a locale that produces complete associated upper and lower 

dentitions may help to characterize this taxon better.  

8.3 FAMILY FLORENTIAMYIDAE 

 This extinct family of geomyoid rodents first arose in the Orellan and has only 

been found from the Great Plains of North America (Korth, 1994a). The family was 

extinct by the Barstovian.  The diversity of the Florentiamyidae peaked in the 

Arikareean (Korth, 1994a).   

 The upper cheek teeth of the Florentiamyidae are brachydont and bear an 

anteroposteriorly elongate entostyle on the lingual cingulum that blocks the transverse 

valley (Wahlert, 1983).  The lower molars have well-developed stylar cusps that are not 

as large as the main cusps (Korth, 1994a). 

8.3.1 Systematic Paleontology 

 

FLORENTIAMYIDAE Wood 1936 

KIRKOMYS Wahlert 1984 

 

Genotype—Kirkomys milleri Wahlert, 1984  

Referred species—K. schlaikjeri  (Black, 1961). 

Age and distribution—Orellan of South Dakota; Whitneyan of Nebraska and 

Saskatchewan; early Arikareean of Wyoming.  

Emended diagnosis—Upper molars of Kirkomys are smaller than those of 

Florentiamys or Sanctimus and larger than those of Ecclesimus; anteroposteriorly 

elongate entostyle characteristic of florentiamyids present on the continuous lingual 
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cingula of M1 and M2.  P4 with protocone and supporting root on the anterior part of the 

tooth, and paracone and parastyle absent.  Incisive foramina very short, approximately 

12% of diastemal length.  Posterior palatine, dorsal palatine, sphenopalatine and optic 

foramina and anterior-alar fissure farther anterior than in Florentiamys and Sanctimus.  

No marginal flanges on frontal bones over orbits.  Diagnosis from Wahlert (1984). 

Discussion—The diagnosis has been emended to compare Kirkomys with 

Ecclesimus.  

KIRKOMYS MILLERI Wahlert 1984 

Table 8.4, Figure 8.6 

 

Holotype—F:AM 105337, snout, palate, orbit with LI1-LM3 and RP4-RM3, 

Brule Formation, Nebraska. 

Referred specimens from Rodent Hill—SMNH P2521.172, P2521.230 and 

P2834.016 (LM1); P2452.148, P2521.354 and P2521.373 (RM1); P2521.193 (LM1 

orM2); P2521.088 and P2521.089 (RM2); P2521.274 (LM3); P2521.216 and P2521.228 

(RM3). 

Horizon at Rodent Hill—P2834.016 from Stratigraphic Unit I.  Other 

specimens collected in stratigraphically uncontrolled sampling. 

Diagnosis—Cheek teeth proportionally larger than in K. schlaikjeri, having deep 

separation between protocone and entostyle; posterior cingulum absent on P4; anterior 

cingulum on molars narrow; maximum curvature of edge of maxilla into zygoma 

anterior to P4. From Wahlert (1984). 
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Description—The M1 and M2 are low crowned with four circular main cusps 

and a lingual cingulum bearing a smaller, lower entostyle that blocks the transverse 

valley.  The entostyle is better developed on the M1 than on the M2.  On most 

specimens that clearly display the entostyle it is low and anteroposteriorly elongate, 

while on one M1, P2521.172, the entostyle is slightly higher. This tooth is interpreted as 

an unworn tooth of Kirkomys due to the high, relatively pointed nature of all of the 

cusps.  The protoloph and metaloph of the M1 and M2 each bear two closely appressed 

cusps, and the lophs are parallel to subparallel.  On some M1 specimens (P2521.354, 

P2834.016) there is a slight offset buccally of the protoloph so that the paracone and 

protocone are situated slightly buccad to the metacone and hypocone, respectively.  This 

apparent offset is not present on the M2 specimens; instead, the posterior margin of the 

metaloph of the M2 specimens is very slightly convex compared to the straight metaloph 

of the M1 specimens.  A distinct anterior cingulum, present on all M1 and M2 

specimens, connects with the lingual cingulum; this latter cingulum is widely separated 

from the protocone.  In the M2 P2521.089 there is an accessory crest that extends 

anterad from the protocone to the anterior cingulum.  A low, narrow posterior cingulum 

is present on most M1 specimens, although the exact position varies widely, either being 

situated between the hypocone and metacone, extending from the buccal edge of the 

hypocone to terminate posteriorly to the metacone, or being situated posteriorly to the 

metacone only. The M2 specimens do not show any posterior cingulum.  

Figure 8.6  Kirkomys milleri: a. SMNH P2834.016 LM1; b. SMNH 
P2521.088 RM2; c. SMNH P2521.216 LM3. Scale = 1mm, buccal 
to top of page. 

a cb
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Description—The M1 and M2 are low crowned with four circular main cusps 

and a lingual cingulum bearing a smaller, lower entostyle that blocks the transverse 

valley.  The entostyle is better developed on the M1 than on the M2.  On most 

specimens that clearly display the entostyle it is low and anteroposteriorly elongate, 

while on one M1, P2521.172, the entostyle is slightly higher. This tooth is interpreted as 

an unworn tooth of Kirkomys due to the high, relatively pointed nature of all of the 

cusps.  The protoloph and metaloph of the M1 and M2 each bear two closely appressed 

cusps, and the lophs are parallel to subparallel.  On some M1 specimens (P2521.354, 

P2834.016) there is a slight offset buccally of the protoloph so that the paracone and 

protocone are situated slightly buccad to the metacone and hypocone, respectively.  This 

apparent offset is not present on the M2 specimens; instead, the posterior margin of the 

metaloph of the M2 specimens is very slightly convex compared to the straight metaloph 

of the M1 specimens.  A distinct anterior cingulum, present on all M1 and M2 

specimens, connects with the lingual cingulum; this latter cingulum is widely separated 

from the protocone.  In the M2 P2521.089 there is an accessory crest that extends 

anterad from the protocone to the anterior cingulum.  A low, narrow posterior cingulum 

is present on most M1 specimens, although the exact position varies widely, either being 

situated between the hypocone and metacone, extending from the buccal edge of the 

hypocone to terminate posteriorly to the metacone, or being situated posteriorly to the 

metacone only. The M2 specimens do not show any posterior cingulum. 

The anterior half of M3 is slightly narrower but similar to the other molars, 

bearing a narrow anterior cingulum separated from a protoloph with well-developed 

protocone and paracone. The metaloph is buccolingually shortened, with a poorly 

developed cuspule where the hypocone would be expected, and a low metacone.  There 

is no distinct posterior cingulum. A minor expansion on the lingual cingulum indicates 

the presence of any entostyle blocking the transverse valley. The lingual cingulum, as on 

M1 and M2, is a continuation of the anterior cingulum, and is well separated from the 

protocone.  With wear, the metaloph appears to join with the buccal margin to form a 

continuous crest that is lower than the protoloph; in the extreme wear indicated by 

P2521.274, this posterobuccal crest can be worn down to approximately the same height 

as the central valley. 
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Table 8.4 Dental measurements of Kirkomys milleri.  
Tooth 

position Dimension N Mean OR SD CV 

M1 AP 6 1.21 1.15-1.28 0.05 3.85 
 TR 6 1.50 1.38-1.58 0.09 5.92 
       

M1-2 AP 1 1.15    
 TR 1 1.23    
       

M2 AP 2 1.14 1.13-1.15   
 TR 2 1.52 1.50-1.53   
       

M3 AP 3 1.07 1.03-1.10   
 TR 3 1.26 1.08-1.35   
 

Discussion—All specimens referred to Kirkomys milleri are upper dentition.  

There is the possibility that K. milleri is synonymous with Proheteromys nebraskensis.  

This situation is described in more detail in the P. nebraskensis discussion below. 

The Rodent Hill specimens are considered florentiamyids  because they  share 

the typical florentiamyid molar morphology of four large main cusps in two transverse 

rows and a lingual cingulum containing an anteroposteriorly elongate entostyle  

(Wahlert, 1983).  The Cypress Hills material is referred to K. milleri due to the 

diagnostic narrow anterior cingulum and deep separation between the protocone and 

entostyle as seen in the holotype and only previously known specimen, F:AM 105337 

(Wahlert, 1984).  The Rodent Hill specimens are generally larger than the holotype 

(maximum 7% difference anteroposteriorly, and 9% difference buccolingually in 

unbroken specimens) but this is considered to be a reasonable amount of variation within 

the species. 



 121

ECCLESIMUS Korth, 1989c 

  

 Genotype and only species—Ecclesimus tenuiceps (Galbreath, 1948) 

 Age and distribution—Orellan of Colorado and Nebraska, Whitneyan of 

Saskatchewan 

 Diagnosis—Smaller than Kirkomys and later florentiamyids; paracone variably 

present on P4; M3 smaller relative to M2 than in other genera. From Korth (1989c). 

 

?ECCLESIMUS SP. 

Table 8.5, Figure 8.7 

 

 Referred specimens from Rodent Hill—SMNH P2521.395 (LP4); P2521.087 

(LM1); P2521.400 and P2838.004 (RM2); P2452.113 and P2521.086 (LM2); P2521.040 

(LM3); P2836.002 (Rm1); P2521.170 and P2834.018 (Lm1); P2452.118, P2521.203 and 

P2834.015 (Lm2). 

Horizon at Rodent Hill—P2834.004, P2934.015 and P2834.018 collected from 

Unit I, P2836.002 collected from Unit V.  All other specimens collected by 

stratigraphically uncontrolled sampling. 

 Description—The P4 is four cusped, with a protoloph that bears a large central 

protocone and a much smaller paracone that is slightly anterior.  The metaloph has two 

major cusps, a hypocone and metacone, which are equal in size to the protocone, and a 

smaller hypostyle that is separated by a gap from the hypocone.  The hypostyle does not 

extend beyond the anterior margin of the metaloph.  There is a posterior cingulum 

between the metacone and hypocone that does not extend beyond the cusps, and no 

anterior cingulum is apparent. 

M1 has four major cusps in two subparallel transverse rows, each with a small 

transversely compressed stylar cusp.  The protocone and paracone are distinct cusps and 

are joined by only a very narrow crest. The paracone is situated slightly anteriorly to the 
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protocone, giving the subparallel appearance to the lophs. There is a wide anterior 

cingulum that curves around the anterolingual corner to join with the lingual cingulum.  

There is a wide gap between the protocone and the lingual cingulum.  The lingual 

cingulum is interrupted by a very shallow depression between the protostyle and the 

entostyle.  The lingual end of the central transverse valley is blocked by the long, very 

narrow entostyle.  The hypocone and metacone on the metaloph are also set widely 

apart, and may be connected posteriorly by a distinct posterior cingulum.   

The M2 has four bulbous cusps, with the anterior cusps being more pronounced 

than the posterior cusps.  A valley that is not quite as deep as the central transverse 

valley separates the anterior cusps.  A narrow anterior cingulum that originates from the 

anterolingual corner of the paracone extends around the lingual margin to join with the 

lingual cingulum.  There is a small protostyle present at the anterolingual corner of the 

tooth along the lingual cingulum.  The lingual cingulum is separated widely from the 

protocone and bears an anteroposteriorly elongate entostyle that blocks the lingual end 

Figure 8.7  ? Ecclesimus sp.: a. SMNH P2521.395 LP4; b. SMNH 
P2521.400 RM1; c. SMNH P2452.113 RM2; d. SMNH P2521.040 LM3; e. 
SMNH P2834.018 Lm1; f. SMNH P2521.203 Lm2. Scale = 1mm, buccal to 
top of page. 

a
cb

e fd
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of the transverse valley.  The lingual cingulum continues around to the posterior margin 

of the tooth, where it forms a ridge with the metaloph, and terminates at the 

posterolingual corner of the metacone.  The hypocone and metacone are both well 

developed and are similar in size.  Both posterior cusps are about equal in height to the 

protocone, and are connected by the posterior ridge. At the buccal margin of the tooth, a 

wide transverse valley separates the protoloph and metaloph. 

Table 8.5 Dental measurements of ? Ecclesimus sp. 
Tooth 

position Dimension N Mean OR 

P4 AP 1 0.85  
 TR 1 1.08  
     

M1 AP 2 0.92 0.90-0.93 
 TR 2 1.20 1.15-1.25 
     

M2 AP 3 0.96 0.95-0.98 
 TR 3 1.19 1.15-1.23 
     

M3 AP 1 0.78  
 TR 1 1.08  
     

m1 AP 3 1.17 1.10-1.25 
 TRA 3 1.09 1.08-1.10 
 TRP 3 1.06 1.05-1.08 
     

m2 AP 3 1.04 0.98-1.10 
 TRA 3 1.13 1.10-1.15 
 TRP 3 1.06 1.03-1.10 
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The only M3 is worn such that no cusps or features are readily visible. It is much 

smaller than the M2.  The protoloph is transversely wider than the metaloph and extends 

further buccally.  The protoloph appears to connect to the metaloph via the lingual  

cingulum and with wear has joined at the buccal margin, creating a central pit on the 

tooth. 

The m1 has four major cuspids arranged in two transverse rows, and very small, 

poorly developed stylid cusps.  The cuspids of the metalophid are situated close together 

but are distinct and do not appear to form a single lophid.  There is an anterior cingulum 

that extends for the entire length of the metalophid, and curves around to join with the 

buccal cingulum.  The anterior cingulum varies in its length, and in one specimen 

(P2836.002) is expanded anterobuccally compared to the anterolingual margin.  The 

buccal cingulum is interrupted at the transverse valley.  The protostylid is poorly 

developed, appearing as little more than a slightly higher widening on the cingulum, and 

is situated slightly posteriorly to the anterior margin of the transverse valley.  The 

cuspids of the hypolophid are set further apart and are about the same size as the cuspids 

of the metalophid.  The hypoconid extends anterad into the transverse valley.  There is a 

distinct posterior cingulum across the posterior width of the tooth, which curves around 

on the buccal margin to join the buccal cingulum and terminates at the hypostylid.  The 

hypostylid is better developed than the protostylid, circular in appearance, and definitely 

higher than the cingulum. 

The m2 is smaller than the m1 and appears anteroposteriorly shorter.  The 

protoconid is larger than the metaconid, and the two are more closely appressed than in 

m1, forming a more loph-like structure as the tooth wears.  There is a narrow, straight 

anterior cingulum that does not deviate in width, unlike on m1.  The anterior cingulum is 

continuous with the buccal cingulum, terminating in a well-developed ovate protostylid 

that is lower than the metalophid.  The protostylid does not extend posteriorly beyond 

the anterior margin of the transverse valley.  On the hypolophid the hypoconid is the 

larger cusp, expanding anteriorly into the transverse valley.  The hypoconid may begin 

to join to the metalophid with wear.  The hypoconid and entoconid join to form a distinct 

loph with wear.  A variable posterior cingulum extends from about midway along the 
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width of the tooth and terminates at the hypostylid.  The hypostylid is circular and 

smaller than the protostylid, and with wear becomes joined with the hypolophid. 

Discussion—These teeth are referred to the Florentiamyidae based on the 

characteristic entostyle blocking the central transverse valley (Wahlert, 1983).  They are 

questionably referred to Ecclesimus based on size as they are very similar in size and 

proportions to that genus (7% larger anteroposteriorly, 16% larger transversely) and 

have an M3 that is much smaller than M2 (Korth, 1989c).  They are also distinctly 

smaller than the Kirkomys specimens recovered from the site.   

The lowers have been referred to this taxon more for convenience than any other 

reason.  They are larger than those referred to the Heliscomys species from Rodent Hill, 

but smaller than the Proheteromys specimens.  Since no lowers have been described for 

Ecclesimus these would be the first ones identified, but the assignment of these teeth is 

tentative. 

8.4 FAMILY HETEROMYIDAE 

 The family Heteromyidae first appeared in the Whitneyan of North 

America (Korth, 1994a) and is extant in North America as the modern kangaroo rats and 

pocket mice.  The diversity of the family was highest during the Barstovian 

8.4.1 Systematic Paleontology  

 

HETEROMYIDAE Gray 1868 

PROHETEROMYS Wood 1932 

Genotype—Proheteromys floridanus Wood, 1932 

Referred species—The species in this list are based on Korth (1997).  P. parvus 

(Troxell, 1923); P. magnus Wood, 1932; P. matthewi Wood, 1935a; P. thorpei Wood, 

1935; P. nebraskensis Wood, 1937; P. fedti Macdonald, 1963; P. gremmelsi Macdonald, 

1963; P. sulculus Wilson, 1960; P. maximus James, 1963; P. cejanus Gawne, 1975. 

Age and distribution—Orellan of South Dakota; Whitneyan of Nebraska, South 

Dakota, Saskatchewan; Arikareean of Nebraska, South Dakota, Colorado?; 
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Hemingfordian of Florida, South Dakota, New Mexico, Saskatchewan and Colorado?; 

and  Barstovian of California.  

, but since the Arikareean there have always been several species (Korth, 1994a).  

The cheek teeth of heteromyids vary from brachydont in the earlier species to 

hypsodont in later taxa (Korth, 1994a).  All of the molars of heteromyids have two 

transverse lophs with three cusps each (Korth, 1994a).  The stylar cusps are almost the 

size of the principal cusps (Korth ,1994a). 

Diagnosis—Cheek teeth bilophodont and in about the same stage of 

development as in Mookomys, and likewise based upon a primarily sextitubercular 

pattern; upper incisors asuclate; p4 quadritubercular; posterior cingula on lower and 

anterior cingula on upper teeth. From Wood (1932). 

 

PROHETEROMYS NEBRASKENSIS Wood 1937 

Table 8.6, Figure 8.8 

 

Holotype—MCZ 5051, left mandible with p4-m3, Morrill County, Nebraska. 

Referred specimens from Rodent Hill—SMNH P2521.210 (Lp4); P2521.092, 

P2521.219 and P2521.301 (Lm1); P2521.025, P2521.211, P2521.264, P2521.275, 

P2834.012 and P2838.005 (Rm1); P2452.115, P2452.119 and P2521.081 (Lm2); 

P2521.054, P2521.197, P2521.306 and P2521.353 (Lm3) and P2521.283 (Rm3). 

Horizon at Rodent Hill—P2834.012 from Stratigraphic Unit I, and P2838.005 

from Stratigraphic Unit VII. Other specimens collected by stratigraphically uncontrolled 

sampling. 

Diagnosis—Intermediate in size between P. floridanus and P. parvus; teeth are 

proportionately long antero-posteriorly; posterior cingula are weak; protostylid of molars 

separate from cingulum when unworn, and is far to the rear; protoconid and metaconid 

are connected by a cingulum along their anterior margins; cusps are independent of the 
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lophs, uniting when tooth is fully worn; H-pattern in the molars; m3 has a 2-cusped 

hypolophid.  From Wood (1937). 

Description— The p4 is smaller than m1, somewhat square in outline, and is 

quadrituberculate with two main cusps in each of the anterior and posterior lophs.  

Despite wear to the specimen, there is also a small but distinct accessory lophulid 

apparent between the protoconid and metaconid that is more closely appressed to the 

metaconid, and separated from the protoconid by a narrow gap.  The origin of the 

lophulid is unclear due to the wear of the tooth, but it does appear to join with the 

protoconid at the anterolingual margin of the latter.  A distinct, low anterior cingulum is 

present that begins anterior to the metaconid and terminates anterior to, and below, the 

lophulid-protoconid union. The metalophid is separated from the hypolophid by a 

straight, uninterrupted transverse valley.  The hypolophid bears two cuspids, and there is 

a well-developed posterior cingulum across the width of the posterior margin of the 

tooth. 

The m1 specimens vary in states of wear, allowing the progression of wear to be 

understood.  In the least worn specimen, the metalophid bears a high, pointed metaconid, 

distinctly separated from a slightly lower protoconid of about equal size.  An anterior 

cingulum borders the entire width of the metaconid.  The anterior cingulum is then 

interrupted by an accessory crest that extends anterad from the protoconid, bending 

slightly linguad then recurving buccad, forming a “hairpin turn”, and extending around 

the buccal edge. The anterior cingulum then terminates at a well-developed protostylid 

that partially interrupts the buccal end of the transverse valley.  With wear, the 

protoconid expands anteriorly to join with the anterior cingulum, so that by the late stage 

of wear the “hairpin turn” is only visible with very close inspection.  As wear increases, 

the cuspids of the metalophid become joined until they eventually form a single lophid 

that also incorporates the protostylid.  On the hypolophid, the hypoconid and entoconid 

are of equal size and height to the protostylid, and are joined anteriorly by a low ridge.  

Unlike the holotype, a prominent posterior cingulum extends from the posterior of the 

entoconid across the posterior width of even the most worn hypolophid.  This posterior 

cingulum then joins buccally to a low hypostylid that may be round or ovate in shape, 

and is recessed posteriorly to the rest of the hypolophid.  The hypostylid is separated 
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from the hypoconid by a narrow valley.  With increased wear, the hypoconid and 

entoconid appear to join in a line that is parallel to the buccolingual axis of the tooth.  

With more advanced wear, the hypostylid is subsumed within the hypolophid.   

Eventually these cusps join the posterior cingulum and form a single lophid with no 

apparent valleys or cusps, as in the holotype.  In even later wear, the protostylid and 

hypostylid almost appear to join, giving the occlusal surface of the m1 an almost U-

shape. 

Most of the m2 specimens are relatively worn, so that the original heights of all 

the cuspids are indeterminable, but the orientations of the individual cuspids and stylids 

are readily apparent.  The m2 is differentiated from the m1 by a more transversely 

elongate appearance than in the m1, which is squarer in occlusal outline.  The 

metalophid is similar to that of the m1, with clearly divided ovate protoconid and 

metaconid, joined anteriorly by a low ridge.  No anterior cingulum is apparent on the 

anterolingual margin, but there is a hairpin turn-type cingulum extending from the 

Figure 8.8  Proheteromys nebraskensis: a. SMNH P2521.210 Lp4; b. 
SMNH P2521.275 Rm1; c. SMNH P2521.081 Lm2; d. SMNH P2521.306 
Lm3. Scale = 1mm, buccal to top of page. 

a b

c
d
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protoconid that joins to the protostylid.  On the hypolophid, the hypoconid and 

entoconid are joined anteriorly by a low ridge, and the hypoconid expands anterad into 

the transverse basin; with increased wear the hypoconid begins to connect to the 

posterior margin of the protoconid until eventually it creates the H-pattern on the 

occlusal surface, as described by Wood (1937) in the holotype.  The weak posterior 

cingulum extends from the posterobuccal corner of the entoconid, eventually curving 

around the posterobuccal corner of the tooth to join with the round hypostyle. 

The metalophid of the m3 is narrower than that of the m2 or m1, but is similar in 

morphology.  The metaconid and protoconid are relatively high on unworn specimens, 

with little space between them.  An anterior cingulum extends along the width of the 

metalophid and curves around the anterobuccal corner, terminating at the posterior 

margin of the metalophid where no protostylid is visible.  The lingual-most portion of 

the anterior cingulum fades quickly with wear, leaving only a narrow ridge situated 

anteriorly to the protoconid that wraps around the anterobuccal corner.  As wear 

progresses, the metaconid and protoconid become increasingly joined until they form a 

single, low metalophid.  The metalophid is separated from the hypolophid by a 

transverse valley that does not appear to be interrupted at any point in wear.  The 

Table 8.6 Dental measurements of Proheteromys nebraskensis.  
Tooth 

position Dimension N Mean OR SD CV 

p4 AP 1 0.98    
 TRA 1 0.98    
 TRP 1 0.98    
       

m1 AP 9 1.19 1.10-1.28 0.07 5.96 
 TRA 8 1.23 0.75-1.43 0.20 16.59 
 TRP 7 1.20 0.88-1.43 0.16 12.95 
       

m2 AP 3 1.23 1.15-1.28   
 TRA 3 1.38 1.30-1.48   
 TRP 2 1.30 1.25-1.35   
       

m3 AP 5 0.93 0.80-1.00 0.08 8.15 
 TRA 5 1.00 0.88-1.00 0.08 8.32 
 TRP 5 0.87 0.68-1.05 0.14 15.49 
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hypolophid is compressed transversely, extending from the lingual margin buccally to 

about halfway across the protoconid.  The hypoconid dominates the posterior margin of 

the m3, with a smaller entoconid lingually and a very small hypostylid present buccally.  

As wear progresses, the entoconid and hypoconid join to form a single lophid that 

remains higher than, and separate from, the hypostylid, which is completely removed 

with sufficient wear.  No posterior cingulum is clearly visible. 

Discussion—The majority of undamaged specimens are within 10% of the 

described average sizes of Proheteromys nebraskensis, with some larger and some 

smaller.  The only specimens that differ by greater than 10% are the m3 specimens, 

which are larger by about 14% anteroposteriorly and/or 13% transversely.  This 

difference is considered minor, as a lower tooth row, SDSM 10001, figured by Green 

and Björk (1980) shows an m3 that appears smaller relative to the m2 than that of the  

holotype.  As such, this tooth can probably be considered more variable in size than the 

other lower molars. 

Although no uppers from the Rodent Hill Locality are referred to P. 

nebraskensis, Green and Björk (1980) figured an upper tooth row that was referred to 

this species.  Korth (1989c) remarked that the upper dentition figured by Green and 

Björk (1980) was very similar to the holotype material of Kirkomys milleri, but no work 

has been published on the synonymy of these taxa.  Comparison of the figure of SDSM 

10001 in Green and Björk (1980) with photographs of F:AM 105537, the holotype of K. 

milleri, shows that these specimens are very similar; the M3 was the most disparate 

tooth in the tooth row but this alone may not indicate taxonomic separation because the 

dentition of K. milleri could be relatively variable.  If they are synonymous, P. 

nebraskensis would be considered a florentiamyid based on the laterally compressed 

entostyle blocking the transverse valley of M1 on SDSM 10001 (Green and Björk, 

1980), as this is considered a florentiamyid characteristic (Wahlert, 1983; 1984).  A 

further line of evidence may be that twelve Kirkomys milleri uppers and eighteen 

Proheteromys nebraskensis lowers have been recovered together within the Rodent Hill 

fauna, which increases the likelihood that these belong to the same species.  Most likely 

these species are synonymous, but the South Dakota material was not available for direct 
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comparison, and no taxonomic revisions should be made until the specimens are 

compared directly.
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9. FAMILY ZAPODIDAE 

 

 The family Zapodidae contains the modern jumping mice and birch mice, which 

are found in North America and Eurasia (Korth, 1994a).  The family originated in the 

Bridgerian of North America (Emry and 

Korth, 1989), likely from a sciuravid 

ancestor (Korth, 1994a).  The next 

record is from the Duchesnean (Kelly, 

1992), and zapodids next appear in the 

Arikareean (Korth, 1994a).  The greatest 

number of zapodid species appears in 

the Bridgerian (Korth, 1994a).  Zapodids 

appeared later in Asia, in the late 

Eocene, and Europe, in the Oligocene 

(Korth, 1994a).  

 Modern zapodid skulls (no fossil 

skulls are known) are hystricomorphous, 

and the jaw is sciurognathous (Korth, 

1994a). 

 The dental formula of zapodids 

is 1013/1003, and the P4 is lost in the 

living Neozapus (Korth, 1994a).  The 

teeth of zapodids are brachydont to 

mesodont, and earlier species have well-defined cusps on the lophs of the teeth; the 

cusps of later zapodids are subsumed within the lophs (Korth, 1994a).  The upper molars 

of zapodids (Figure 9.1) consist of five transverse lophs joining the cusps on either side

Figure 9.1 Generalized zapodid 
upper cheek tooth morphology, based 
on SMNH P2521.063 LM2? with 
major features identified. 1–metaloph 
2—posterior fossette 3—metacone 
4—endoloph 5—mesocone 6—
mesoloph 7—paracone 8—accessory 
cusp 9—protoloph 10—anteroloph 
11—anterocone 12—protocone 13—
mesostyle 14—hypocone 15—
posterior cingulum. 

Drawn by Taran Meyer, modified by 
the author.  Terminology from Wood 
and Wilson (1936) and Green (1977). 
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 of the tooth.  There is usually a distinct mesocone, and an endoloph joins the lingual 

cusps (Korth, 1994a). 

 

9.1 SYSTEMATIC PALEONTOLOGY 

 

ZAPODIDAE Hemprich, 1820 

SICISTINAE Allen, 1901 

PLESIOSMINTHUS Viret, 1926 

 

 Type species—Plesiosminthus schaubi Viret, 1926 

 Referred species—P. promyarion Schaub, 1930; P. myarion Schaub, 1930; P. 

clivosus Galbreath, 1953; P. quartus Shevyreva, 1970; P. huanguiensis Li and Qiu, 

1980; P. lajeensis Li and Qiu, 1980; P. xiningensis, Li and Qui, 1980; P. winistoerferi 

Engesser, 1987; P. conjunctus Ziegler, 1993; P. moralesi Sierra-Alvarez, Daams and 

Lacomba-Andueza, 1996; P. tereskentensis Lopation, 1999; P. admyarion Comte, 2000 

 Age and distribution—Middle to Late Oligocene and Miocene of Europe and 

Asia, Whitneyan to Hemingfordian of Great Plains of North America. 

 Diagnosis—Ectolophid of m1 joins protoconid obliquely (as opposed to joining 

the metalophid or protoconid via an anteroposterior lophid in Schaubeumys); weak 

mesoconid on m1 (strong in Schaubeumys); anteroconid smaller, less distinct in 

Plesiosminthus; protoloph on M1 (protolophule of Green, 1977) connects to the 

endoloph nearer the protocone in Plesiosminthus (joins nearer the mesoloph in 

Schaubeumys); metacone of M1 anteroposteriorly compressed with a straight metaloph 

in Plesiosminthus (rounded with curved metaloph in Schaubeumys).  From Korth (1980) 

which contained a summary of diagnostic characteristics of the genus given by other 

authors that separate Plesiosminthus from Schaubeumys Wood, 1935b. 

Korth (1980) also suggested that protocone and hypocone of M1 in 

Plesiosminthus were transversely compressed (as opposed to anteroposteriorly 
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compressed in Schaubeumys) but this was disputed based on material described by 

Green (1992).     

Discussion— In discussing the original material of North American 

Plesiosminthus clivosus, Galbreath (1953) remarked on the similarity of that species to 

the otherwise Old World genus.  Several diagnoses of the genus Plesiosminthus have 

been produced, particularly to synonymize it with, or distinguish it from, Schaubeumys 

Wood, 1935b (Wilson, 1960; Martin, 1974; Engesser, 1979; Korth, 1980; Green, 1992; 

Korth, 1994a).  The most recent treatment of these genera (Korth, 1994a) retains 

Plesiosminthus clivosus as the sole American species of the genus, while all other 

American species previously placed in Plesiosminthus are referred to the genus 

Schaubeumys. 

Storer (2002) recorded the genus Plesiosminthus from the early Arikareean-age 

Kealey Springs Local Fauna in the Cypress Hills.  Skwara (1988) described the species 

P. clivosus from the Hemingfordian-age Topham Local Fauna of the Cypress Hills as 

Schaubeumys clivosus. 

 

PLESIOSMINTHUS SP. 

Table 9.1, Figure 9.2 

 

 Referred specimen from Rodent Hill —SMNH P2521.063 (LM2) 

 Horizon at Rodent Hill—Collected in stratigraphically uncontrolled sampling. 

 Description—Dental terminology follows that from Green (1977), with these 

exceptions: the protolophule I and protolophule II of Green will be referred to here as 

the protoloph; and the metalophule I and metalophule II of Green will be referred to here 

as the metaloph.  The tooth is longer than it is wide, a feature that is exacerbated by the 

sheared off buccal margin.  The tooth is still recognizable despite this, with all lophs and 

cusps still plainly visible.  Some features have a greatly widened appearance due to a 

high degree of occlusal wear.  The anterior cingulum is low, slightly raised above the 

anterior transverse valley.  A raised, slightly expanded accessory cusp is present on the  
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buccal end of the anterior cingulum.  On the lingual side, the anterior cingulum bends 

sharply, almost at 90°, and then terminates in a small, round anterocone.  The protoloph 

extends buccally from the anterocone and expands into a large, anteroposteriorly 

compressed paracone.  Further posterolingually from the anterocone is a slightly larger 

protocone.  The endoloph extends from the anterobuccal side of the protocone to  

continue in a lingually concave curve that terminates at the hypocone.  About midway 

along the endoloph, past the apex of the curve, a small mesocone is present as a tiny 

circular feature.  The low mesoloph extends buccally from the mesocone and terminates 

in another very tiny widening representing the mesostyle.  The mesostyle is nearly 

joined anteriorly with the much larger paracone; posteriorly the mesostyle is only 

slightly further away from the large metacone.  Posteriorly along the endoloph from the 

mesocone, the metaloph extends buccally across the tooth, and then terminates in an 

anteroposteriorly-compressed metacone that is almost as large as the paracone, except 

lower and more compressed.  Both the paracone and metacone are expanded at the 

buccal margin, giving both cusps a somewhat triangular outline.  The endoloph 

terminates at the small, somewhat triangular hypocone posteriorly from the origin of the 

metaloph.  Buccally from the hypocone, the posterior cingulum extends along the 

Figure 9.2 Plesiosminthus sp.: P2521.063 LM2?.  
Scale = 1mm, buccal to top of page. 
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posterior margin, curving at the buccal end to join with the posterior margin of the 

metaloph.  This union gives the posterior half of the tooth an enclosed posterior fossette 

that is transversely expanded, and crescentic in shape.   

Table 9.1 Dental measurements of Plesiosminthus sp. 
Tooth 

position Dimension N Mean 

M2 AP 1 1.55 
 TRA 1 1.15 
 TRP 1 1.13 

 

 Discussion—The tooth here described is identified as an M2 based on the 

position of the origin of the protoloph, and the enclosed posterior fossette (based on 

Text-Figure 1 in Green, 1972 pp. 97), and is referred to Plesiosminthus due to the 

compressed metacone, as opposed to an expected round metacone in Schaubeumys (see 

Genus Diagnosis).  This feature is considered diagnostic for M1, but appears to be 

similar for M2 as well.  More material, particularly a more diagnostic M1 or m1 from 

the same site, may aid in the clarification of this specimen.  At that time, identification to 

the species level may also be feasible.  It is notable that this specimen is larger than the 

Arikareean species Plesiosminthus clivosus by quite a wide margin.  Based on 

dimensions for the lowers given by Galbreath (1953), the tooth is almost 50% longer and 

30% wider.  This would indicate that the Rodent Hill Plesiosminthus likely refers to a 

new species, but again more material is necessary. 
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10. STRATIGRAPHIC ASSESSMENT OF THE TAXA AND THE AGE OF  

THE RODENT HILL LOCALITY 

 

10.1 AGE ASSESSMENT OF THE RODENT HILL LOCALITY 

 The Rodent Hill Locality had been assigned a preliminary Whitneyan age based 

on the leporids Paleolagus cf. P. burkei and Megalagus primitivus, the equid Miohippus 

near M. equiceps and the cricetid rodent Eumys brachyodus by Storer (1996) and Storer 

and Bryant (1997).  The findings of Rothecker (2003) supported this assignment due to 

the occurrence of Eumys brachyodus in the same site as Orellan and Arikareean taxa.   

 Korth (1994a) and Rothecker (2003) have mentioned the relative lack of known 

Whitneyan rodents.  This is more likely due to the relatively few known sites of this age 

compared to, for example, the Orellan or Arikareean (Emry et al., 1987) than to an 

actual lack of diversity of rodent species during this particular NALMA.  The following 

species from the families in this study have been identified in Whitneyan age faunas 

from sites other than Rodent Hill (referenced from Korth, 1994a, unless otherwise stated 

in brackets): 

 

APLODONTIDAE 

Prosciurus magnus 

 Campestrallomys siouxensis 

 Oropyctis pediasus 

 Haplomys liolophus 

 Sespemys thurstoni
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 Dakotallomys pelycomyoides (Tedrow and Korth, 1997) 

 Allomys storeri (Tedrow and Korth, 1997) 

 Leptoromys wilsoni (Tedrow and Korth, 1997) 

SCIURIDAE 

 Cedromus sp. 

 ? Cedromus wilsoni (Korth and Emry, 1991) 

HELISCOMYIDAE 

 Heliscomys sp. (Tabrum et al., 2001) 

FLORENTIAMYIDAE 

 Kirkomys milleri 

HETEROMYIDAE 

 Proheteromys nebraskensis 

CASTORIDAE 

 Agnotocastor praetereadens 

 ? Palaeocastor nebrascensis 

 Palaeocastor wahlerti (Korth, 2001a) 

 Oligotheriomys (Tabrum et al., 2001) 

ZAPODIDAE 

 NONE 

As the above list indicates, some families are better understood from the 

Whitneyan than others.  The Aplodontidae includes several Whitneyan species, while 

the Heliscomyidae has one tentatively referred taxon, and the Zapodidae have no 

previously described Whitneyan species.  This low number of comparative species 

meant that several of the rodents identified at Rodent Hill might be new to Whitneyan 

faunas, and many were comparable with either an Orellan or Arikareean taxon (or 

sometimes both), indicating a transitional fauna between those two NALMA. 
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Table 10.1.  Published temporal and geographic distribution of rodent taxa 
described from the Rodent Hill Locality.  In the case of new species, or 
identification only to the genus, the distribution is given for the entire genus. 
(Continued on next page) 

Taxon Age Geographic 
distribution 

APLODONTIDAE 

Prosciurus parvus Orellan Nebraska 
Saskatchewan 

Campestrallomys Orellan-Arikareean 
Nebraska 

Saskatchewan 
South Dakota 

Haplomys liolophus ?Orellan-Whitneyan ? Saskatchewan 
Oregon 

Dakotallomys pelycomyoides Whitneyan South Dakota 

Pseudallomys Orellan Montana 
Saskatchewan 

Parallomys Arikareean Nebraska 
Saskatchewan 

SCIURIDAE 

Sciurion 
Orellan-Arikareean 

Hemingfordian-
Clarendonian 

Saskatchewan 
Nebraska 

Cedromus wilsoni Orellan-Whitneyan Wyoming 

Nototamias Arikareean-
Hemingfordian 

Nebraska 
South Dakota 
Saskatchewan 

Florida 

Protospermophilus Arikareean-Barstovian 
(Clarendonian?) 

“western North 
America” 

 

Table 10.1 lists the geographic and temporal distributions of the taxa described 

in this study from Rodent Hill.  The Rodent Hill rodents have proven to be very diverse 

and indicate an assemblage unlike any described previously, so there is no one 

correlative site that shares all of the rodent genera recovered from the Rodent Hill 

Locality.  Rothecker (2003) noted a number of similarities between the Rodent Hill 

Locality and the late Orellan Cedar Ridge Local Fauna described by Setoguchi (1978) 

based on the eomyids and cricetids.  The rodents described in the present study do not 

support this; the only species identified from both localities are Heliscomys vetus and 

Proheteromys cf. P. nebraskensis.  In fact, many of the families identified at Rodent Hill  
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are not described at all from Cedar Ridge, including the Florentiamyidae, Castoridae, 

Sciuridae and Zapodidae.  Perhaps most significantly, Setoguchi (1978) described only 

two aplodontid species and neither species has been found at Rodent Hill.  In general, 

many of the taxa at Rodent Hill are comparable to rodents from Nebraska and South 

Dakota, but there is no one site that best compares with the Rodent Hill Locality. It is 

possible that the faunas from these states are more similar to the Rodent Hill Locality 

Table 10.1 (continued from previous page).  Published temporal and geographic 
distribution of rodent taxa described from the Rodent Hill Locality.  In the case of 
new species, or identification only to the genus, the distribution is given for the 
entire genus. 

Taxon Age Geographic 
distribution 

CASTORIDAE 
Agnotocastor praetereadens Whitneyan South Dakota 

Oligotheriomys Orellan, ?Whitneyan, 
?Hemingfordian 

North Dakota 
Montana 
Wyoming 

Palaeocastorinae 
(Palaeocastor) 

Whitneyan-earliest 
Arikareean 

South Dakota 
North Dakota 

Oregon 
Saskatchewan 

HELISCOMYIDAE 
Heliscomys vetus Orellan “Great Plains” 

Heliscomys hatcheri Orellan “Great Plains” 

Heliscomys Duchesnean-Barstovian 

Saskatchewan 
Wyoming 
Nebraska 
Montana 

South Dakota 
California 

FLORENTIAMYIDAE 
Kirkomys milleri Whitneyan South Dakota 

Ecclesimus Orellan Colorado 
Nebraska 

HETEROMYIDAE 

Proheteromys nebraskensis Orellan?-Whitneyan 
?Wyoming 
Nebraska 

South Dakota 
ZAPODIDAE 

Plesiosminthus Arikareean-
Hemingfordian “Great Plains” 
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than are faunas from other areas in the Great Plains, but it is just as likely that this 

phenomenon is really due to the lower number of studied Whitneyan sites from other 

states (Emry et al., 1987).  The White Hills Local Fauna of Montana may prove to be 

comparable as there  are some taxa, such as Oligotheriomys and Heliscomys, which have 

also been identified from the Rodent Hill Locality, but the rodents of Montana have not 

yet been formally described.  Rothecker (2003) also remarked on the similarities 

between the cricetids and eomyids of Rodent Hill and the White Hills Local Fauna. 

Kirkomys milleri, Proheteromys nebraskensis, Haplomys cf. H. liolophus, 

Dakotallomys cf. D. pelycomyoides, and Agnotocastor cf. A. praetereadens are taxa that 

support a Whitneyan age (Rensberger, 1975; Wood, 1980; Wahlert, 1984; Korth, 1994a; 

Tedrow and Korth, 1997; Tedrow, 1999).  The aplodontid Campestrallomys, the castorid 

subfamily Palaeocastorinae (likely Palaeocastor) and the sciurid Cedromus cf. C. 

wilsoni might also offer support of the Whitneyan age (Korth, 1989; Korth and Emry, 

1991; Xu, 1996; Korth, 2001a), but the condition of the material makes definite 

identification uncertain.  As is clear in Table 10.1, most of the species that would be 

indicative of a Whitneyan site have been described from South Dakota and/or Nebraska 

(Wahlert, 1984; Stirton, 1935; Wood, 1937; Korth, 1989a, 2001a; Tedrow and Korth, 

1997), except for Haplomys liolophus from the John Day Formation of Oregon 

(Rensberger, 1975) and Cedromus wilsoni from the White River of Wyoming (Korth 

and Emry, 1991). Prosciurus magnus is an Orellan-Whitneyan species (Korth, 1989a) 

that was not recovered from Rodent Hill. 

Several taxa were described that are better known from Orellan-age sites.  One of 

these is the aplodontid Prosciurus cf. P. parvus from the Brule Formation of Nebraska 

(Korth, 1989a) and the Fossil Bush Locality of Saskatchewan (Meyer, 2003).  Another 

aplodontid, the genus Pseudallomys, is previously described from the Fossil Bush 

Locality (Meyer, 2003) and the Dunbar Creek Formation in Montana (Korth, 1992), but 

those occurrences represent different species than at Rodent Hill.  Heliscomys vetus and 

Heliscomys hatcheri are Rodent Hill heliscomyids that are normally associated with 

Orellan deposits (Wood, 1980).  There are five Orellan species of Heliscomys (Korth, 

1989c, 1994a), and one Arikareean species, Heliscomys woodi McGrew 1941.  

Setoguchi (1978) assigned a Whitneyan age to the Cedar Ridge Local Fauna of Colorado 
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where Heliscomys cf. H. vetus was identified; however, Korth (1989b) reassigned that 

site to the late Orellan, a designation that is followed here.  As such, the only record of 

the Heliscomyidae from the Whitneyan is the listed occurrence of the genus in the White 

Hills Local Fauna of Montana (Tabrum et al., 2001), but only the genus Heliscomys is 

mentioned.  The florentiamyid Ecclesimus has only been described from the Orellan of 

Colorado and Nebraska (Galbreath, 1948; Korth 1989c).  The castorid Oligotheriomys 

has been listed from the Whitneyan of Montana (Tabrum et al., 2001), but this genus is 

best known from the Orellan of North Dakota (Korth, 1998). 

There are also several rodents from the Rodent Hill Locality that are previously 

known only from sites that are younger than Whitneyan.  Among these, the aplodontid 

Parallomys has only been described in North America from the Harrison Formation of 

Nebraska (Korth, 1992) and the Kealey Springs Local Fauna of Saskatchewan (Storer, 

2002), both of which are Arikareean age sites.  The sciurid genera Nototamias and 

Protospermophilus and the zapodid Plesiosminthus are also known from sites that are 

Arikareean or younger (Korth, 1994a).  The sciurid Sciurion was originally only known 

from sites that are Hemingfordian or younger (Skwara, 1986, 1988; Korth, 1998).  This 

latter genus has now been recognized in the Orellan Fossil Bush Locality (Meyer, 2003) 

and the Arikareean Kealey Springs Local Fauna (Bell, Meyers and Bryant, in prep). 

Given that there is a unique association of rodents at Rodent Hill that includes a 

mix of taxa previously considered characteristic of Orellan, Whitneyan, or Arikareean 

and younger, it suggests that the rodent fauna is transitional in nature, with more 

primitive (Orellan) taxa co-occurring during the same time period with more advanced 

(Arikareean, etc.) taxa.  In this case, the intermediate age of the Rodent Hill taxa would 

be Whitneyan, which therefore supports the assignment of Storer and Bryant (1997) and 

Rothecker (2003).  In fact, the transitional occurrence of the eomyid and cricetid rodents 

was part of the reason that Rothecker (2003) came to the conclusion that the site is 

Whitneyan. 
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10.2 THE RODENT HILL FAUNA IN THE CONTEXT OF THE CYPRESS HILLS 

Among other sites in the Cypress Hills Formation, the Rodent Hill rodent fauna 

shares six taxa with the Fossil Bush Locality and seven taxa with the Kealey Springs 

Local Fauna.  This finding parallels a statement made by Rothecker in an unpublished 

thesis (2003) that these three faunas share a number of taxa in the rodent families 

Eomyidae and Cricetidae. 

The Fossil Bush Locality is part of the “titanothere section”, like the Rodent Hill 

Locality, but is stratigraphically lower.  Fossil Bush was designated an Orellan aged site 

by Storer (1996), but no taxa of the rodent families in this study were listed, with the 

exception of the aplodontid Prosciurus relictus.  The aplodontid and sciurid rodents 

described by Meyer (2003) were consistent with an Orellan-age site.  None of the other 

rodent families from Fossil Bush have been described in detail, which reflects the small 

number of taxa from that site in Table 10.2. 

The Kealey Springs Local Fauna is located about 11 km northwest of the Rodent 

Hill Locality.  The small mammals have been described by Williams and Storer (1998) 

and Storer (2002) and indicate an early Arikareean age for the site.  Storer (2002) found 

that the fauna from Kealey Springs correlated well with the Monroe Creek assemblage 

from Nebraska and South Dakota.  In addition to the 37 small mammals described at the 

Kealey Springs site by Storer (2002), two sciurids of the genus Sciurion have also been 

identified in the fauna (Bell, Meyers and Bryant, in prep).  Storer (2002) previously 

identified the specimens in question as specimens of Protosciurus or Nototamias. 

The rodent taxa (excluding the Cricetidae and Eomyidae) from the Fossil Bush, 

Rodent Hill and Kealey Springs Local Faunas are listed in Table 10.2.  Prosciurine and 

allomyine aplodontids are found in all three sites, although there is a distinct shift from 

more primitive species at Fossil Bush to more advanced taxa at Kealey Springs, and 

there is a drop in overall diversity.  Fossil Bush and Rodent Hill share the prosciurine 

genera Prosciurus and Haplomys.  Prosciurus is represented by several more species at 

Fossil Bush than at Rodent Hill, while the species Haplomys galbreathi found at Fossil 

Bush is a more primitive species than H. liolophus from Rodent Hill (and possibly from 

Fossil Bush).  The Orellan genus Pelycomys is found only at Fossil Bush, while the  
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Table 10.2.  Occurrence of taxa of rodent families Aplodontidae, Sciuridae, 
Heliscomyidae, Heteromyidae, Florentiamyidae, Castoridae and Eutypomyidae in the 
Fossil Bush, Rodent Hill and Kealey Springs Local Faunas.  Fossil Bush taxa based on 
Storer (1996) and Meyer (2003); Kealey Springs taxa based on Storer (2002). 

TAXON FOSSIL BUSH 
LOCAL FAUNA 

RODENT HILL 
LOCAL FAUNA 

KEALEY SPRINGS 
LOCAL FAUNA 

APLODONTIDAE    
Prosciurinae X X X 

Prosciurus relictus X   
Prosciurus magnus X   
Prosciurus parvus X X  

Haplomys galbreathi X   
Haplomys liolophus ? X  

Campestrallomys annectens X   
Campestrallomys sp.  X  

Campestrallomys cf. C. 
dawsonae   X 

Pelycomys X   
Dakotallomys  X  
Pseudallomys X X  
Parallomys  X X 
Downsimus   X 
Alwoodia   X 

SCIURIDAE    
Sciurion xenokleitus X X X 

Sciurion oligocaenicus X X X 
Cedromus  X  

Nototamias  X X 
Protospermophilus  X X 

Protosciurus   X 
HELISCOMYIDAE    

Heliscomys  X  
FLORENTIAMYIDAE    

Kirkomys  X  
Ecclesimus  X  
Hitonkala   X 

Florentiamys   X 
HETEROMYIDAE    

Proheteromys nebraskensis  X  
Proheteromys ironcloudi   X 

Schizodontomys   X 
ZAPODIDAE    
Plesiosminthus  X X 
CASTORIDAE    

castorid spp.  X X 
EUTYPOMYIDAE    

Eutypomys spp. X  X 
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 Whitneyan Dakotallomys occurs at Rodent Hill.  The allomyine Pseudallomys is 

described from both sites as well.  None of the above aplodontids are described from 

Kealey Springs.  A genus that is shared by all three sites is Campestrallomys, although 

the Kealey Springs species is more advanced than the Fossil Bush species.  The Rodent 

Hill Campestrallomys is an indeterminate species, but seems to have a mix of primitive 

traits such as a reduced ectoloph, and advanced traits such as the dominance of the 

buccal cusps.  The more advanced allomyine genus Parallomys is shared only between 

Rodent Hill and Kealey Springs, although the species are not the same.  Kealey Springs 

is the only site where the advanced taxa Downsimus (a prosciurine) and  Alwoodia (an 

allomyine) are present. 

 The only other rodent taxa described from Fossil Bush are the sciurids Sciurion 

xenokleitus and S. oligocaenicus, and these two species are found in both the Rodent 

Hill Local Fauna and the Kealey Springs Local Fauna. 

The Eutypomyidae has been described from Fossil Bush and Kealey Springs but 

not Rodent Hill.  Although this family is known from other Whitneyan faunas (Korth, 

1994a), no taxa of this family are described for Rodent Hill.  It is possible that some of 

the tooth fragments assigned to the family Castoridae might actually be eutypomyids, 

but fragmentary remains are difficult to identify. 

The other families of rodents have not been described in detail from Fossil Bush, 

making meaningful comparisons between that site and Rodent Hill and Kealey Springs 

impossible at this time. 

Between Rodent Hill and Kealey Springs, there are some trends, such as the 

constant diversity, but not taxa, within the families Sciuridae, Florentiamyidae and 

Zapodidae.  There is also the increase in heteromyid diversity from Rodent Hill to 

Kealey Springs, and the total lack of heliscomyids in the latter. 
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The stratigraphic position of the Rodent Hill Locality above the Orellan-aged 

Fossil Bush Locality, and the more advanced nature of the aplodontid taxa, suggest that 

Table 10.3.  Occurrence of Rodent Hill rodent taxa in each stratigraphic unit.  N/A 
refers to species that were not recovered stratigraphically 

Taxon Stratigraphic Unit 

 Unit I Unit 
II 

Unit 
VI 

Unit 
VII N/A 

Aplodontidae      
Prosciurus cf. P. parvus     X 
Prosciurus sp. 1 & sp. 2     X 

Campestrallomys sp.     X 
Haplomys cf. H. liolophus   X   

Dakotallomys pelycomyoides X     
Pseudallomys korthi X X    

Parallomys sp.     X 
      

Sciuridae      
Sciurion oligocaenicus X     

Sciurion xenokleitus X X X   
Cedromus cf. C. wilsoni   X   

Nototamias sp.     X 
Protospermophilus sp.     X 

      
Castoridae      

Agnotocastor cf. A.  praetereadens     X 
? Oligotheriomys    X  

? Palaeocastorinae sp.     X 
Castoridae indet. X     

      
Heliscomyidae      

H. (Syphyriomys) hatcheri X X X   
H. (Syphyriomys) sp.     X 

Heliscomys (Heliscomys) vetus X  X X  
      

Florentiamyidae      
Kirkomys milleri X     
Ecclesimus sp. X  X X  

      
Heteromyidae      

Proheteromys nebraskensis X   X  
      

Zapodidae      
Plesiosminthus sp.     X 
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Rodent Hill is a younger site.  The rodent taxa of Rodent Hill are generally less 

advanced than those of the early Arikareean aged Kealey Springs, and this implies that 

Rodent Hill is a relatively older site.  This intermediate position of the Rodent Hill 

Locality is strong, if indirect, evidence that supports Whitneyan age designation of the 

fauna. 

10.3 STRATIFICATION OF TAXA WITHIN THE RODENT HILL LOCALITY 

 Thirty-five fossil teeth, representing thirteen of the twenty-three taxa identified, 

were recovered from the designated stratigraphic units at the Rodent Hill site.  These 

teeth were used  to determine any differences between the rodent taxa at the bottom of 

the site and those at the top (Table 10.3).  The results are inconclusive. 

The presence of taxa such as Kirkomys milleri and Proheteromys nebrascensis in 

Unit I is good evidence that the bottom of the site represents a Whitneyan fauna; since P. 

nebrascensis is also found in Unit VII, the top unit should also be considered 

Whitneyan. 

The differences between the upper and lower stratigraphic units are not 

conducive to interpreting evolutionary changes in the Rodent Hill fauna at this time.  

Future tests of stratification at Rodent Hill should involve collection of even larger 

amounts of matrix for processing, and groups other than rodents should also be studied 

to look for patterns in the taxa present in the units.  At the minimum, enough fossil 

material should be recovered in situ to represent all of the known rodent taxa, as some 

appear to be relatively rare.  Once these rare taxa are recovered in situ, it could be 

assumed that a more accurate representation of the rodent fauna from the Rodent Hill 

site has been obtained.  In turn, any stratification of taxa within the Rodent Hill site 

might then be considered to give a more accurate picture of evolutionary changes in the 

fauna in the time represented at Rodent Hill. 

 

10.4 THE RODENTS  OF THE WHITNEYAN NALMA 

Presuming that the Rodent Hill Locality is a Whitneyan site, the rodents 

described from the Rodent Hill Locality will affect the faunal characterization of the 
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Hemingfordian, Arikareean, Whitneyan and Orellan land mammal ages.  Previous last 

and first appearances are taken from Korth (1994a) except where noted. 

 Last appearance in the Orellan is no longer valid for the following taxa:  

Pseudallomys, Ecclesimus, Heliscomys vetus, H. hatcheri and possibly Prosciurus 

parvus.  All of these taxa have now been identified in a Whitneyan-age site, and they 

should now be considered to have a Whitneyan last appearance.  The genus Cedromus 

has only been tentatively assigned to a Whitneyan site (Korth and Emry, 1991), and the 

recovery of this genus from Rodent Hill provides further support that the last appearance 

of this genus is also in the Whitneyan.   

The first appearance in the Arikareean is no longer valid for the following taxa: 

Nototamias, Protospermophilus, Plesiosminthus and Parallomys.  These genera all 

occur in the Rodent Hill Locality, and so their first appearance should be considered 

Whitneyan. 

The genus Sciurion no longer has a first appearance in the Hemingfordian.  This 

genus has now been recovered in Orellan, Whitneyan and Arikareean sites in the 

Cypress Hills, and so the first appearance of the genus should be Orellan. 

Proheteromys nebraskensis, Kirkomys milleri, Dakotallomys pelycomyoides, 

Haplomys liolophus and Agnotocastor praetereadens remain useful as characteristic 

species for the Whitneyan.  The first appearance of the Palaeocastorinae may still be in 

the Whitneyan. 

 

10.5 SUMMARY 

A Whitneyan North American Land Mammal Age is supported for the Rodent 

Hill Locality based on comparisons with taxa from other North American sites and with 

faunas from other sites in the Cypress Hills Formation. 

Species that indicate that the Rodent Hill Local Fauna is advanced over Orellan 

age sites include Proheteromys nebrascensis, Kirkomys milleri, Dakotallomys 

pelycomyoides, Haplomys liolophus and Agnotocastor praetereadens, as well as several 

genera that were previously known only from Arikareean and younger sites.  Similarly, 
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the Rodent Hill Local Fauna is older than Arikareean sites based on the presence of  

Orellan taxa including Heliscomys hatcheri and H. vetus, Prosciurus parvus, Ecclesimus 

and Pseudallomys.  The faunal composition of the Rodent Hill Locality is transitional 

between the Orellan-age Fossil Bush Locality and the early Arikareean-age Kealey 

Springs Local Fauna, indicating an intermediate age. 

The stratigraphic position of the Rodent Hill Locality in the “titanothere section” 

also lends support to the Whitneyan age of the site. The Rodent Hill Locality is above 

the Orellan-age Fossil Bush Locality, and below an unnamed Hemingfordian-age site 

that caps the top of the section.   



 150

11. IMPLICATIONS OF STUDY 

11.1 EVOLUTIONARY IMPLICATIONS:  THE RODENTS OF THE RODENT HILL LOCALITY 

11.1.1 Aplodontidae 

Prosciurus cf. P. parvus, Prosciurus spp. indet. 

The presence of Prosciurus parvus in the Rodent Hill Local Fauna is the 

youngest record of the species, which is previously described from the Orellan of 

Nebraska and Saskatchewan (Korth, 1989a, b; Meyer, 2003).  The Rodent Hill species is 

very similar in overall appearance and size to the Orellan specimens except for the 

doubled metaconule on the P4.  There are few specimens of this taxon at Rodent Hill, 

but this difference could indicate a variation within the species, or it may be an 

evolutionary change in the morphology of the Whitneyan specimens from the older 

Orellan material. 

The two other Prosciurus specimens from Rodent Hill are single teeth that are 

difficult to assign.  One specimen (P2521.212) is substantially smaller than any other 

Prosciurus taxon.  The other specimen (P2521.399) is larger than the Prosciurus cf. P. 

parvus specimens from Rodent Hill, but the condition of the tooth makes specific 

identification impossible. 

Campestrallomys sp. indet. 

This genus has been described from the Orellan (Meyer, 2003) and early 

Arikareean (Storer, 2002) of the Cypress Hills.  Only one specimen that is referable to 

this genus was found at Rodent Hill.  The incomplete ectoloph is reminiscent of the 

Orellan species C. annectens; while the pronounced buccal cusps is more characteristic 

of the Whitneyan species C. siouxensis.  More specimens will be necessary to identify 

the Rodent Hill species and assess the evolutionary implications of the apparently 

intermediate morphology observed. 
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Haplomys cf. H. liolophus 

 The species Haplomys liolophus was previously known only from the Whitneyan 

levels of the John Day Formation in Oregon (Rensberger, 1975) although the genus is 

present in the Orellan of South Dakota (Tedrow and Korth, 1997) and the middle 

Oligocene of Kazakhstan and Mongolia (Shevyreva, 1971).  The Rodent Hill material 

does not appreciably differ from the John Day material and so there is no further 

information on the morphology of the species provided by the Rodent Hill specimens. 

Dakotallomys cf. D. pelycomyoides 

 The recovery of a Dakotallomys pelycomyoides from the Cypress Hills is the 

northernmost presence of this species, as it has previously only been described from 

South Dakota (Tedrow and Korth, 1997).  The identification of the species is due to the 

diagnostic buccal cingulum present on the m2 and the relatively large size.  The lowers 

of this species from Rodent Hill do not differ significantly from the South Dakota 

material. 

The first upper teeth for Dakotallomys have been described from Rodent Hill.  

The uppers are very similar to those of Pelycomys, except for the presence of a weak 

ectoloph that is lacking in Pelycomys.  The large size of these upper molars represents 

the largest aplodontid at Rodent Hill, and is another reason these teeth are referred to 

Dakotallomys.  Tedrow and Korth (1997) suggested that Pelycomys, Dakotallomys and 

another genus, the Uintan to Chadronian Spurimus, might share a close enough ancestry 

to be considered a separate clade within the prosciurines, but they wanted to wait for 

uppers of Dakotallomys to be recovered.  Since only the P4 and M3 are known from 

Rodent Hill, the upper M1/M2 of Dakotallomys should be described before these genera 

are grouped supergenerically from the other prosciurines. 

 

Pseudallomys korthi 

Pseudallomys korthi is the youngest occurrence of the genus Pseudallomys, 

previously recorded only from the Orellan of Montana (Korth, 1992a) and Saskatchewan 

(Meyer, 2003).  Pseudallomys nexodens was described based on a single lower tooth 

row, with no uppers (Korth, 1992a).  Meyer (2003) described uppers for an unnamed 
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species from the Fossil Bush Locality and upper teeth are also found at the Rodent Hill 

Locality. 

The Rodent Hill species approximates the size of Fossil Bush Pseudallomys 

closely, but the occlusal pattern is more like Pseudallomys nexodens.  This is especially 

true of the distinctive enamel crenulations found in the basins of the lower teeth of all 

members of the genus.  In Fossil Bush Pseudallomys, the crenulations are thick and 

numerous; in P. nexodens and P. korthi, the crenulations appear to be fewer in number 

and thinner.  The cusps of Fossil Bush Pseudallomys also appear to generally be more 

robust than in the other two species.  More material of the genotypic species is necessary 

for proper comparisons, but it appears that the Rodent Hill species of Pseudallomys may 

actually be morphologically closer to the Montana species P. nexodens than to the Fossil 

Bush species.  This could indicate that the Fossil Bush Pseudallomys was not the 

ancestor of the Rodent Hill species, but instead was out competed by a smaller 

descendent of the Montana species in the Cypress Hills during the Whitneyan.  

Alternatively, the Fossil Bush Pseudallomys may have evolved a morphology that was 

similar to that of P. nexodens during the Whitneyan.  Fossil material of these species 

from other areas may help to resolve this question. 

 

Parallomys 

Only one tooth of this genus was recovered from the Rodent Hill Locality.  This 

is the first time the genus has been described from a Whitneyan site.  Parallomys has 

previously been described from the Arikareean of Nebraska (Korth, 1992b) and 

Saskatchewan (Storer, 2002) as well as the Late Oligocene of Europe (Rensberger, 

1983).  The Rodent Hill specimen is smaller than other Parallomys specimens, but is 

otherwise very similar in morphology.   

 

11.1.2 Sciuridae 

Sciurion xenokleitus and S. oligocaenicus 

These two species are the most common squirrels at the Rodent Hill Locality.  

They represent a genus that was previously known only from the Hemingfordian of 

Saskatchewan (Skwara, 1986; 1988) and the Clarendonian of Nebraska (Korth, 1998).   



 

 153

The Sciurion species found at Rodent Hill are also known from the Orellan Fossil Bush 

Locality (Meyer, 2003) and the early Arikareean Kealey Springs Local Fauna.  The two 

species are very distinct from one another, but there are only minor intraspecific 

variations in the fossils from the oldest Orellan material to the youngest Arikareean 

specimens.  It is remarkable that two related rodent species would persist for such a long 

period of time (~ 12 Ma) with little appreciable change. It is possible that, if skeletal 

material were available, differences between populations would be discernable.  With 

the information currently available, it appears that a pair of long-lasting sciurid species 

was present in the Cypress Hills during the Oligocene.  By the Hemingfordian, the larger 

species Sciurion xenokleitus is extinct with no descendants; the smaller S. oligocaenicus 

has been replaced by the species S. campestre that is markedly different in tooth 

proportions. 

Skwara (1986) assigned the genus Sciurion to the flying squirrel subfamily 

Pteromyinae based on morphological similarity to the genus Blackia Mein, 1970.  

Although their affinities within the pteromyine squirrels are unknown, the relationship 

between Sciurion and Blackia is not in dispute.  It is a relatively simple exercise to 

provide an ancestor-descendant path from Sciurion to Blackia.  Sciurion first appears in 

the Orellan of North America (Meyer, 2003); Blackia is a later species, first appearing in 

the late Oligocene of Europe (Mein, 1970; de Bruin, 1999) and the Hemingfordian of 

North America (Hutchison and Lindsay, 1974).  The two genera differ in the presence of 

an anteroconid and more distinct stylid cusps in Sciurion that are reduced in Blackia 

(Skwara, 1986; Mein, 1970).  

Additional fossil remains, particularly skeletal elements, would be useful for 

determining how, if at all, these two genera relate to other flying squirrels, or if their 

similar dental morphology, particularly the crenulated enamel of the tooth basins, 

indicates convergence. 

 

Cedromus cf. C. wilsoni 

The presence of this taxon at Rodent Hill gives support that this species, or one 

very similar to it, was present in the Whitneyan.  Korth and Emry (1991) described 

Cedromus wilsoni and tentatively assigned it to either Orellan or Whitneyan age.  It is 
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possible Cedromus wilsoni is found in both ages.  Since only one worn specimen was 

found at Rodent Hill more material is necessary to draw conclusions. 

The genus Cedromus appears for the first time in Saskatchewan, extending the 

geographic range of the subfamily Cedromurinae further north than the previous known 

range of Nebraska and Wyoming (Korth and Emry, 1991). 

 

Nototamias 

 The presence of Nototamias at Rodent Hill is the earliest occurrence not only of 

the genus, but also of the tribe Tamiini.  Nototamias has been described previously from 

the Arikareean of Saskatchewan (Storer, 2002). 

The two teeth that represent this genus from Rodent Hill are very similar in size and 

morphology to later species of the genus, but the teeth were worn, making a specific 

identification difficult. 

 

Protospermophilus 

This genus is represented at the Rodent Hill Locality by only two teeth, but they 

are representative for the genus (see Discussion in Sciuridae chapter).  The Rodent Hill 

material is smaller than any other Protospermophilus teeth.  The presence of this genus 

in the Whitneyan is an earlier first appearance of the genus, and this also extends the 

first appearance of the tribe Marmotini into the Whitneyan.  The genus has been 

recovered from Saskatchewan previously in the Arikareean (Storer, 2002) and the 

Hemingfordian (Skwara, 1988). 

 

11.1.3 Castoridae 

Agnotocastor cf. A. praetereadens 

 The presence of Agnotocastor praetereadens in Saskatchewan is the 

northernmost occurrence of the species.  The fossil material from the Rodent Hill 

Locality is limited and does not generally enhance the understanding of the evolution of 

this species. 
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This species is considered indicative of Whitneyan faunas (Emry et al., 1987; 

Prothero and Whittlesey, 1998), so the presence of this species at Rodent Hill was an 

important age indicator for the site. 

 

?Oligotheriomys 

The identification of this genus from the Rodent Hill Locality is tentative 

because it is based on one tooth.  The genus has been recorded from the Whitneyan of 

Montana (Tabrum et al., 2001) but this is the first potential record of the genus from 

Saskatchewan.  Little can be determined about morphological trends in this genus based 

on the Rodent Hill specimen, except that it is appreciably smaller than the Orellan 

species Oligotheriomys primus. 

 

?Palaeocastorinae, gen. et sp. indet. 

 Storer (1996) referred castorid dentition to the Palaeocastorinae from the Kealey 

Springs Local fauna.  Storer (2002) did not follow this designation and instead left the 

castorids from that site as indeterminate.  Nonetheless, the presence of the subfamily at 

Rodent Hill is not the first record in Saskatchewan, although it is the earliest record. 

The  possible presence of this subfamily in a Whitneyan deposit does not 

contradict the age assignment of the site, as the species Palaeocastor nebrascensis is 

referred to as a late Whitneyan age species by Xu (1996), and the species P. wahlerti is a 

Whitneyan species described by Korth (2001a). 

 

11.1.4 Heliscomyidae 

Heliscomys (Heliscomys) vetus, H. (Syphyriomys) hatcheri, H. (Syphyriomys) sp. 

The presence of three species of Heliscomys in a Whitneyan site is the second 

record of any species from this age.  The only other record of Heliscomys in the 

Whitneyan is the listed presence of the genus in the White Hills Local Fauna of Montana 

(Tabrum et al., 2001).   
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These species fill in a major gap in the record of the Heliscomyidae, which is 

known from 7 species in the Orellan (Korth, 1989c; 1994a) and one in the Arikareean.  

Korth (1994a) presumed that the family was present during this time, but had not been 

described.  The three Rodent Hill species support the trend of the decline in diversity of 

the heliscomyids before their extinction during the Arikareean. 

The specimens of Heliscomys (H.) vetus and H. (S.) hatcheri from Rodent Hill 

are morphologically very similar to their Orellan conspecifics.  The only major 

difference is a small increase in size of both species from the Orellan to the Whitneyan 

Rodent Hill specimens.  This small variation is interpreted as a minor change within the 

species over an appreciable span of time. 

The third Rodent Hill Heliscomys is an indeterminate species differentiated by its 

larger size from most other heliscomyids.  The interrupted lingual cingulum of the M1-2 

indicates a placement within the Heliscomys (Syphyriomys) subgenus that also includes 

H. (S.) hatcheri.  

 

11.1.5 Florentiamyidae 

Kirkomys milleri 

 The Rodent Hill Locality specimens assigned to Kirkomys milleri do not differ 

appreciably from those described by Wahlert (1984) so they do not add any new 

information about the morphology of the species. 

The presence of this species in Saskatchewan is the northernmost occurrence of 

the species, as it was previously recorded only from the Whitneyan of Nebraska 

(Wahlert, 1984). 

 

Ecclesimus 

The occurrence of Ecclesimus at Rodent Hill is the first Whitneyan record of this 

genus.  The only known species, E. tenuiceps has been found in Orellan sites (Korth, 

1989c).  This is also the first time the genus has been recorded in Saskatchewan.  There 
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is the possibility that the Rodent Hill Ecclesimus is a distinct species from E. tenuiceps, 

but geomyoid rodents are difficult to diagnose based on isolated teeth.   

The first lowers for the genus are described from the Rodent Hill Locality.  The 

assignment of these teeth to Ecclesimus is based primarily on their size since they are 

larger than any of the heliscomyid taxa described, but smaller than those assigned to 

Proheteromys nebraskensis. 

Korth (1993) determined that Ecclesimus is a sister taxon to most of the later 

genera of florentiamyids—Florentiamys, Sanctimus and Fanimus.  Previously, 

Ecclesimus was recorded only from the Orellan (Korth, 1989c), while the record of these 

later florentiamyids begins in the Arikareean, so the Rodent Hill Ecclesimus fills in a 

temporal gap in the record of this lineage.  The relationships are based on skull 

characteristics and the morphology of the P4 compared to the M1.  In Florentiamys, 

Sanctimus and Fanimus the P4 is molariform and larger than the M1 (Korth, 1993).  

Like Ecclesimus tenuiceps, the Rodent Hill Ecclesimus has a P4 that is not molariform, 

and is smaller than M1, so the Whitneyan species does not demonstrate the later dental 

advancement of the other florentiamyids. 

 

11.1.6 Heteromyidae 

Proheteromys nebraskensis 

Morphologically, the teeth assigned to P. nebraskensis are very similar to those 

described previously (Wood, 1937; Green and Björk, 1980; Tedrow, 1999).  This is the 

first time the species has been described from Saskatchewan. 

 

11.1.7 Zapodidae 

Plesiosminthus 

This is the first identification of this genus in a pre-Arikareean site.  Only one 

tooth has been recovered, so a confident specific identification cannot be made. 
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The specimen is interesting because it is appreciably larger than the Arikareean 

Plesiosminthus clivosus, based on dimensions from Galbreath (1953).  The size of this 

tooth would suggest that the Rodent Hill specimen belongs to a different species, but one 

tooth is not a sufficient basis for a diagnosis.  The large size of the Whitneyan zapodid is 

interesting, particularly considering that some of the other Rodent Hill taxa, including 

Pseudallomys, Parallomys and Protospermophilus, are smaller at this site than at any 

other time or place.  The implications of these allometric differences are unknown. 

 

11.2 RODENT DIVERSITY IN THE WHITNEYAN NALMA 

The published record of most rodent families from the Whitneyan is limited 

(Korth, 1994a), especially when compared to the preceding Orellan age and the 

succeeding Arikareean age.  Of the families present at that time, only the Aplodontidae 

have an extensive record, while the Sciuridae, Florentiamyidae, Heteromyidae, 

Heliscomyidae and Castoridae have few documented species, and the Zapodidae has no 

documented species (Korth, 1994a).  Rothecker (2003) discussed the diversity of the 

Whitneyan eomyid and cricetid rodents. 

Emry et al. (1987) noted the paucity of Whitneyan sites compared to the Orellan 

and Chadronian, and while additional sites have been identified since then (Storer, 1996; 

Tabrum et al., 2001) the number of sites remains low.  As noted by Rothecker (2003), 

the low rodent diversity apparent in the Whitneyan is not due to a decline in rodent 

species, but reflects this low number of Whitneyan microsites that have been described 

in detail. 

As with the Eomyidae and Cricetidae (Rothecker, 2003) the diversity within the  

rodent families of this study are more diverse than previously recorded.  This is due to 

the extension of the temporal range of several taxa including Pseudallomys, Ecclesimus, 

Heliscomys hatcheri, H. vetus, Prosciurus parvus, Parallomys, Protospermophilus, 

Nototamias, and Plesiosminthus. 

The most diverse rodent family (Figure 11.1) at Rodent Hill is the Aplodontidae 

with 6 genera representing at least 6 species.  This number appears to be lower than the 

diversity known for the aplodontids from other sites, but three of the Rodent Hill taxa 



 

 159

(Parallomys, Pseudallomys korthi, Prosciurus cf. P. parvus) are described from the 

Whitneyan for the first time, and four previously described aplodontids (Prosciurus 

magnus, Oropyctis pediasus, Allomys storeri, Leptoromys wilsoni) were not identified at 

Rodent Hill.  This means that the total number of Whitneyan aplodontid species is 11, a 

higher diversity than that of any other rodent family during this time (Korth, 1994a; 

Rothecker, 2003). 

The peak of diversity of the Aplodontidae is in the Arikareean (Korth, 1994a) 

with at least 20 species; most represent the more advanced subfamilies Meniscomyinae 

and Allomyinae, but a few prosciurines are present.  The Orellan has a similar number of 

aplodontid taxa to the Whitneyan (Korth, 1994a; Tedrow and Korth, 1997; Meyer, 2003) 

with 7 genera and 10 species, and all are prosciurines except possibly Pseudallomys 

(Meyer, 2003).  The presence of this many taxa in the Orellan and Whitneyan may 

indicate a more gradual diversification of the aplodontids than previously realized.
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Figure 11.1.  Rodent diversity previously described from Whitneyan 
sites in North America and from the Rodent Hill Local Fauna.   

*Numbers taken from Korth (1994a) for all families; also Tedrow and 
Korth (1997) for the aplodontids; Korth and Emry (1991) for the 
sciurids; Tabrum et al. (2001) for the heliscomyids and castorids; 
Korth (2001a) for the castorids.
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More sciurid genera are recovered from the Rodent Hill Locality than previously 

recorded (Figure 11.1).  The Sciuridae during the Whitneyan are almost equal in 

number of species to the sciurids of the Orellan and Arikareean (Korth, 1994a), which 

could indicate an evolutionary stasis before the family diversified greatly in the 

Hemingfordian and Barstovian (Korth, 1994a). 

Among the geomyoids, the Heteromyidae are represented by the only previously 

recorded Whitneyan species, Proheteromys nebraskensis.  The florentiamyids are 

represented by one more genus than previously known  (Figure 11.1), which makes the 

family more diverse during the Whitneyan than during the Orellan (Korth, 1994a).  This 

number of taxa is still very low compared to the diversity of the family in the 

Arikareean, where 5 genera and 10 species of florentiamyids have been identified 

(Korth, 1994a).  The heliscomyids are represented in the Whitneyan at Rodent Hill by 3 

distinct species.  Although the genus Heliscomys has previously been listed from the 

Whitneyan (Tabrum et al., 2001), these are the first heliscomyid species described from 

the age.  The number of Rodent Hill species fits in well with a trend of declining 

diversity in the family seen from the Orellan, with 3 genera and 5 species, to the single 

genus and species found in the Arikareean and Barstovian (Korth, 1994a).   

Three castorid genera (one indeterminate, but distinct from the others) have been 

found in the Whitneyan Rodent Hill Local Fauna (Figure 11.1).  The two identifiable 

genera (Agnotocastor, Oligotheriomys) have been previously identified from the 

Whitneyan (Korth, 1994a; Xu, 1996; Tabrum et al., 2001) including the species 

Agnotocastor cf. A. praetereadens.  The third Rodent Hill castorid, a palaeocastorine of 

indeterminate genus, is in keeping with previous assignments of palaeocastorines from 

the Whitneyan (Xu, 1996; Korth, 2001a).  The Whitneyan record of castorids is less 

diverse than that of the Orellan, which has 2 genera but at least 3 species (Korth, 1994a; 

1998, 2001a), and there are substantially fewer Whitneyan taxa compared to the castorid 

maximum diversity in North America of 7 genera and 14 species seen in the Arikareean 

(Korth, 1994a; Korth and Rybczynski, 2003). 
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The Zapodidae has not been described from any Orellan or Whitneyan locality 

before (Korth, 1994a) although there are tentative North American records of the family 

as far back in time as the Bridgerian (Emry and Korth, 1989).  The family increases in 

diversity from the one taxon in the Whitneyan to a maximum of 4 genera and 6 species 

in the Barstovian (Korth, 1994a). 

Korth (1994a) mentioned that only 14 species of rodents were known from the 

Whitneyan; recent studies (Tedrow and Korth, 1997; Tabrum et al., 2001; Rothecker, 

2003) have supported the notion that the diversity of Whitneyan rodents was higher.  

Including those other studies and this one, the current number of Whitneyan rodents is 

about 35 species.  This number is still low compared to the Orellan with at least 48 

species and the Arikareean with over 100 species (Korth, 1994a) but the representation 

of the rodent families in North America during the Whitneyan is improving, so that most 

families that are known from the Orellan and Arikareean have now been described from 

the Whitneyan as well.   

 

11.3 PALEOENVIRONMENTAL IMPLICATIONS:  THE RODENTS AND SEDIMENTOLOGY 

OF THE RODENT HILL LOCALITY 

There is little direct evidence at the Rodent Hill Locality for the climate during 

the Whitneyan.  There is no phytolith, palynomorph or coal data present, and there is no 

fossil plant material available to give clues to the local flora.  As well, the record of 

paleobotanical data from Whitneyan sites is generally poor, with only one site listed by 

Wing (1998) from the Upper Ruby River of Montana (Becker, 1961).  The apparent 

similarities between Rodent Hill and the White Hills Local Fauna of Montana may allow 

the assumption that the local paleoecology was similar.  For the most part, the area may 

have been somewhat cooler and drier than the Orellan (Wing, 1998) with wooded areas 

consisting of conifers and broadleaf deciduous trees (Becker, 1961).   

The teeth of the rodents at Rodent Hill are good indicators that grasses were 

probably not yet prevalent.  Where grass is prominent, the teeth of grazing mammals 

have to deal with excessive wear caused by the silca in grasses which often results in 

more hypsodont teeth (Romer, 1962, p. 315).  The teeth of most of the rodent families at 
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Rodent Hill are rooted and brachydont, and even the higher-crowned castorids are low-

crowned compared to later forms (Korth, 1994a) indicating diets of softer plant matter 

that do not contain phytoliths.  

The sediment in the area may also indicate a climate that was variably dry at 

times.  As mentioned in Chapter 2, the stratigraphic sequence of Rodent Hill indicates 

an alternation of wetter periods of sediment deposition with comparatively drier periods 

of nodule accretion.  The wet events are indicated by the sand bar units that were 

deposited by fluvial activity.  Although there is no direct evidence at the site, it is 

reasonable to assume that the presence of a stream in the area would encourage a greater 

amount of plant life (and by extension, animal life). 

The nodular units indicate drier periods when moisture was low (but probably 

not absent).  During these periods of time the plant life may have been under greater 

stress, resulting in fewer, more resilient plants. 

Although the evidence is tenuous due to small sample numbers, the fossils 

recovered from the stratigraphic units follow a distinct pattern that is related to the 

alternation of sediments seen in the sedimentology (Table 11.1).  More fossils were 

recovered in each of the sandier units than in the nodular layers closest to them.  It is 

possible that the higher moisture levels indicated in the fluvial units may have supported 

a higher number of species and individuals, therefore providing more fossil material.  

There are other possibilities for this apparent pattern, such as increased deposition of 

sediments and fossils during wetter periods, or an increase in geographic range of 

samples due to more active streams over a wider area.  More information will be 

required to determine which of these possibilities is responsible for the pattern at Rodent 

Hill. 

Table 11.1 Major sedimentary deposit type in each stratigraphic unit of Rodent Hill, 
compared to the total number of associated dental remains from each unit. 

Strat Unit I II III IV V VI VII 
Sed deposit type Fluvial Nodular N/A N/A Fluvial Nodular Fluvial

Total dental 
remains 165 28 N/A N/A 37 3 15 
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12. CONCLUSIONS 

The diversity of rodents at the Rodent Hill Locality is much higher than 

preliminary identifications demonstrated.  The rodents identified from the Rodent Hill 

Locality are:  the aplodontids Haplomys cf. H. liolophus, Dakotallomys cf. D. 

pelycomyoides, Pseudallomys korthi, Parallomys sp., Campestrallomys sp., Prosciurus 

cf. P. parvus, and two indeterminate species of Prosciurus; the sciurids Sciurion 

oligocaenicus, S. xenokleitus, Cedromus cf. C. wilsoni, Protospermophilus, and 

Nototamias; the heliscomyids Heliscomys vetus, H. hatcheri, and H. (Syphyriomys) sp.; 

the florentiamyids Kirkomys milleri and Ecclesimus sp.; the heteromyid Proheteromys 

nebraskensis; the castorids Agnotocastor cf. A. praetereadens, ?Oligotheriomys sp., and 

an indeterminate palaeocastorine; and the zapodid Plesiosminthus sp. 

The new aplodontid species Pseudallomys korthi and the new sciurid species 

Sciurion oligocaenicus and S. xenokleitus were described.  Pseudallomys korthi is 

smaller than Pseudallomys nexodens from the Orellan of Montana, but shares more 

features in common with that species than with an unnamed species of Pseudallomys 

from the Fossil Bush Locality.  The Sciurion species are also known from the Fossil 

Bush Locality and the early Arikareean-age Kealey Springs Local Fauna, and may be 

the oldest known pteromyine squirrels. 

The Rodent Hill Locality does not share a great deal of faunal similarity with any 

other single site.  Many of the Rodent Hill taxa have been identified from South Dakota 

or Nebraska, but there are taxa present at Rodent Hill that are known from the 

Whitneyan of Montana, Wyoming and Oregon.  Some taxa from Rodent Hill are only 

known from sites of older or younger age from North Dakota, Montana, Colorado, 

Wyoming and Saskatchewan.  

The combination of typical Orellan and Arikareean cricetid and eomyid rodents 

with the Whitneyan species Eumys brachyodus led Rothecker (2003) to support the 
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Whitneyan age designation for the Rodent Hill Locality.  The findings of this study 

further support the Whitneyan age for the Rodent Hill Locality.  The Whitneyan-age 

rodents that have been identified from the site are Haplomys cf. H. liolophus, 

Dakotallomys cf. D. pelycomyoides, Agnotocastor cf. A. praetereadens, Kirkomys 

milleri and Proheteromys nebraskensis, and possibly Cedromus cf. C. wilsoni.  The 

presence of a palaeocastorine beaver does not contradict the Whitneyan age assignment.  

The taxa Prosciurus cf. P. parvus, Heliscomys vetus, H. hatcheri, Ecclesimus and 

Pseudallomys are all taxa that have been described previously from Orellan sites.  The 

genera Parallomys, Nototamias, Protospermophilus, and Plesiosminthus are previously 

known from Arikareean sites.  The co-occurrence of these Orellan, Whitneyan and 

Arikareean taxa together in the same site suggests that the Rodent Hill locality should be 

intermediate in age, which supports the Whitneyan age assignment.  Within the Cypress 

Hills, the Rodent Hill Locality shares taxa with both the Orellan-age Fossil Bush 

Locality and the early Arikareean-age Kealey Springs Local Fauna, suggesting a 

transition in the rodent fauna over the time represented by these sites.  The combination 

of Orellan, Whitneyan and Arikareean (and younger) faunal elements at the Rodent Hill 

Locality is not considered to be the result of mixing faunas due to the co-occurrence of 

several taxa that were recovered in situ from within the stratigraphic units of Rodent 

Hill. 

The geology of the Rodent Hill Locality is more complicated than previous 

surficial descriptions had indicated.  The seven stratigraphic units of the site represent a 

cycle of fluvial deposited sands and silts; the presence of calcrete nodules indicates 

periods of depositional hiatus of unknown duration.  More fossils are recovered from the 

fluvial deposit layers relative to the nodular layers. 

The diversity of Whitneyan rodents is found to be much higher than previously 

reported (Korth, 1994a) which supports the conclusion of Rothecker (2003).  In the 

families that were included in this study, Korth (1994a) listed 11 species.  This study has 

described 18 species, including taxa from the families Heliscomyidae and Zapodidae, 

which had not been described from Whitneyan sites before.  This large number of 

rodents from the Whitneyan supports the statement by Korth (1994a) and Rothecker 
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(2003) that the low number of described Whitneyan rodents was not a real phenomenon, 

but instead due to a lack of known microsite localities of Whitneyan age. 

 

12.1 FUTURE WORK 

Given that the Rodent Hill Locality is a Whitneyan site, study of the fauna is 

important for a better understanding of an age that is not well represented in the fossil 

record.  Future studies of the other mammal groups that are present at Rodent Hill, 

including marsupials, “insectivores’, lagomorphs, ungulates and carnivores will 

definitely be necessary, and studies of the reptile and fish fossils from the site will also 

give insight to the faunal make-up of localities of this age.  

More fossil material from the stratigraphic units of Rodent Hill will also be 

important in future work.  The test for faunal stratification within the Rodent Hill 

Locality was inconclusive.  More definite conclusions will require enough fossils from 

each stratigraphic unit to be confident that a large percentage of the fauna present has 

been obtained.  There is still the potential that the upper part of Rodent Hill is 

demonstrably younger in age relative to the bottom, but no firm statement can be made 

at this time. 
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