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Abstract

With sensors becoming increasingly ubiquitous, there is a tremendous potential for services which can take

advantage of the data collected by these sensors, from the important – such as detecting medical emergencies

and imminent natural disasters – to the mundane – such as waiting times experienced by diners at restaurants.

This information can then be used to offer useful services. For example, a busy professional could find a

restaurant to go to for a quick lunch based on information available from smartphones of people already there

having lunch, waiting to be seated, or even heading there; a government could conduct a census in real-time,

or “sense” public opinion. I refer to such services as mobile distributed services.

The barriers to offering mobile distributed services continue to be prohibitive for most: not only must

these services be implemented, but they would also inevitably compete for resources on people’s devices. This

is in part because such services are poorly understood, and consequently, there is limited language support

for programming them.

In this thesis, I address practical challenges related to three important problems in mobile distributed

services. In addition, I present my efforts towards a formal model for representing mobile distributed services.

First, I address the challenge of enhancing the programmability of mobile distributed services. This thesis

presents a set of core mechanisms underlying mobile distributed services. I interpret and implement these

mechanisms for the domain of crowd-sourced services. A distributed runtime middleware, CSSWare, has been

developed to simplify the burden of initiating and managing crowd-sourced services. CSSWare provides a set

of domain-specific programming constructs for launching a new service. Service designers may launch novel

services over CSSWare by simply plugging in small pieces of service specific code. This ease of programming

promises to democratize the building of such services.

Second, I address the challenge of efficiently supporting the sensing needs of mobile distributed services,

and more generally sensor-based applications. I developed ShareSens, an approach to opportunistically merge

sensing requirements of independent applications. When multiple applications make sensing requests, instead

of serving each request independently, ShareSens opportunistically merges the requests, achieving significant

power and energy savings. Custom filters are then used to extract the data required by each application.

Third, I address the problem of programming the sensing requirements of mobile distributed services. In

particular, ModeSens is presented to allow multi-modal sensing requirements of a service to be programmed

separately from its function. Programmers can specify the modes in which a service can be, the sensing

needs of each mode, and the sensed events which trigger mode transition. ModeSens then monitors for mode

transition events, and dynamically adjusts the sensing frequencies to match the current mode’s requirements.

Separating the mode change logic from an application’s functional logic leads to more modular code.

In addition, I present MobDisS (Mobile Distributed Services), an early model for representing mobile

distributed services, allowing them to be carefully studied. Services can be built by composing simpler

services. I present the syntax and operational semantics of MobDisS.
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Although this work can be evaluated along multiple dimensions, my primary goal is to enhance pro-

grammability of mobile distributed services. This is illustrated by providing the actual code required for

creating two realistic services using CSSWare. Each service demonstrates different facets of the middleware,

ranging from the use of different sensors to the use of different facilities provided by CSSWare. Furthermore,

experimental results are presented to demonstrate scalability, performance and data-contributor side energy

efficiency of CSSWare and ShareSens. Finally, a set of experimental evaluation is carried out to measure the

performance and energy costs of using ModeSens.
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Chapter 1

Introduction

With the growing ubiquity of personal computational devices, such as smartphones and wearable devices,

has come the ubiquity of sensors on these devices, as well as the potential for triggering actions virtually

anywhere. This opens up an opportunity to offer a variety of services across a wide variety of domains

including health-care, entertainment, environmental monitoring and transportation. These services rely on

the state of the context in which devices are located, such as a person or a group of people carrying the

devices, their geographical location, etc. I broadly refer to these as mobile distributed services.

Consider a restaurant recommendation service which samples data collected about experiences of clients

at a number of restaurants in a neighborhood and ranks them according to the service experienced by

these clients. The source of the data could be sensor feeds on clients’ smartphones, used to guess whether

they are waiting, seated, enjoying their meals, paying or leaving. Consider other services, such as one for

recommending hospital emergency services to people. Such services have a pattern of communication in

which contextual data offered by a number of contributors becomes the basis for a service. Another class

of applications with a similar pattern of communication is social media applications, such as Twitter, where

crowds contribute to collective messages by contributing short free-form messages, which are then available

to others in a digestible form.

However, offering such services continue to be challenging because of the lack of precise understanding,

specification, and analysis of such services. Furthermore, they would also inevitably compete for resources

on people’s devices. Although there is a growing body of work devoted to this area (see [1–5]), the focus has

been on narrow application areas or specific concerns, making it difficult to utilize them for a wider class of

services.

1.1 Approach

This thesis presents both practical and foundational contributions to address some key challenges in support-

ing mobile distributed systems. The practical side of this work builds mechanisms to support programming

of mobile and distributed sensing-based systems, prototypes them, and experimentally evaluates them. Par-

ticularly, this thesis addresses three different challenges in supporting such systems: (1) enhancement of the

programmability of crowd-sourced services (Section 1.1.1), (2) energy-efficient mobile sensing (Section 1.1.2),
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and (3) multi-modal sensing (Section 1.1.3). The foundational work is aimed at understanding principles

underlying such services and informing design and implementation decision about them. I present an early

model, MobDisS (Mobile Distributed Services), for representing mobile distributed services, allowing them

to be rigorously studied (Section 1.1.4).

I use the Actor model [6] for concurrency as a reference model for my research. Actors are autonomous

concurrently executing primitive agents (i.e., active objects) which communicate using asynchronous mes-

sages.

1.1.1 CSSWare: An Actor-Based Middleware for Crowd-Sourced Services

The programming required for offering a new mobile distributed service can be significant if done from scratch.

However, there is an opportunity created by the similarity in the patterns of communication required for

such services, especially for crowd-sourced services where contextual data offered by a number of contributors

becomes the basis for the service. This pattern of communication was originally defined in [7] as multi-

origin communication. This is the type of communication where a group of senders contributes to a group

message, without any of them necessarily taking the lead. Contrast this with a single-origin (multi-sender)

communication [7], which is initiated by a single party which solicits interest from other parties to join

together in sending a particular message. An example of the latter would be a workplace petition drafted by

an individual and presented to others to sign. In multi-origin (implicitly also multi-sender) communication,

there is no single party which needs to take the lead. In other words, multiple parties may autonomously

launch messages which are then aggregated in order to create a group message.

It turns out that unlike single-origin multi-sender messages, multi-origin messages require a setup in

advance. Consider a public square where a number of citizens spontaneously begin to gather to party

or protest. In this context, the physical space of the square serves as part of a setup which allows mutual

observation, an opportunity to join in or leave, to endorse, reject or refine the collective message or experience

over time. The closest electronic equivalent of such a physical space would be social media services such as

Twitter, which allow people to observe others’ tweets in an aggregate form (which is quite natural in physical

space, but requires filtering and counting mechanisms in electronic space), endorse them by adopting hashtags,

improve upon the message, and so on. In general, for a crowd (or mass) – conceived communication to happen,

there is a need for a mechanism to be in place to coordinate the generation of the group message by soliciting

(or more generally instigating) individual messages, receiving them, and then aggregating them into a group

message. The solicitation lays out the rules to be followed for selection of the potential senders, receiving

their messages and aggregating them. For example, imagine a multi-stage communication with the first

solicitation being to invite nominations for topics to have the message on, followed by a vote to select the

topic, followed by a solicitation of messages, followed by a final vote to agree on an aggregate message. The

communication could be one-time, periodic, or continual. There may or may not be a time-out for responding

to the solicitation. All these aspects would be laid out in the original solicitation.
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Multi-origin coordination mechanisms can be provided on a platform over which such class of services

could be implemented relatively easily. I interpret and implement these mechanisms for the domain of

crowd-sourced services. This thesis presents my efforts in realizing that potential by implementing CSSWare,

a middleware for crowd-sourced services. CSSWare provides a set of domain-specific mechanisms to support

initiating and managing crowd-sourced services. Having CSSWare as a platform, all that a service designer

needs to do to launch a new service is to identify a constituency of potential contributors, and to provide a

few lines of service-specific code for specifying the nature of contributions and for aggregating them when

they arrive. I present source code for two realistic crowd-sourced services to illustrate the ease with which

new services can be specified and launched. Finally, I present a set of experimental results demonstrating

scalability, performance and data-contributor side energy efficiency of the approach.

1.1.2 ShareSens: An Approach for Energy-Efficient Mobile Sensing

Smartphones and a growing number of wearables have a variety of different sensors built into them. These

sensors can be divided into three main categories: motion sensors (e.g., accelerometer, gravity, gyroscope,

GPS, and rotation vector), position sensors (e.g., orientation, geomagnetic field, and proximity), and environ-

ment sensors (e.g., light, pressure, humidity, and temperature). Sensors typically have different configuration

methods requiring specification of various parameters or settings such as sampling rate, trigger conditions,

identifiers, and calibration.

Different sensors place different levels of power demand on a device. For example, GPS and orientation

sensors are significantly more power-expensive than accelerometers. A continuous sensing workload in par-

ticular – which requires sensors to be sampled for a period of time – can quickly drain the battery of a mobile

device [8]. Such workloads are required for a variety of independent applications, such as those focused on

personal health and fitness, but their impact on power consumption would be most pronounced if they were

for contributing data to a significant number of services [9]. One widely used approach to reducing the energy

consumed by continuous sensing is to decrease the sensor’s sampling rate, the number of raw samples collected

by the sensor per unit time [10]. Although this can certainly extend battery life, it can also lower sampling

accuracy to a level that is below what would be ideal for the application. My aim is to opportunistically

optimize the power consumption of sensors while meeting user-specified accuracy requirements.

Consider a scenario where two continuous sensing apps are running simultaneously on the same mobile

device, requiring periodic samples from a sensor, but at different sampling rates. The first is an activity

detection app, which needs accelerometer samples at the rate of 10Hz, while the other is a background

service for location-detection, which needs accelerometer samples at the rate of 20Hz. Even though the

20Hz stream obviously contains a 10Hz, existing sensor APIs on mobile platforms would set up two separate

sampling requests, amounting to a cumulative sampling rate for the sensor of 30Hz.

I develop ShareSens, an approach which opportunistically economizes on collection of sensor data. When

multiple applications make sensing requests, instead of serving each request independently, ShareSens oppor-
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tunistically merges the requests, achieving significant power and energy savings. Custom filters are then used

to extract the data required by each application. Applications – running over ShareSens – can request sensor

feeds of fixed or flexible sampling rates. An optimizing sampling scheduler then schedules the sampling of

sensors based on the sensing requirements received from applications running concurrently. The scheduler

opportunistically optimizes the effective sampling rate of each sensor, exploiting opportunities for different

apps to share sensor samples when possible. ShareSens also opportunistically offers higher sampling rates

than minimally required to applications which indicate – through flexible rate requests – that they can use

them. I present the design and implementation of ShareSens, as well as experimental results on the power

savings that can be achieved by using it.

1.1.3 ModeSens: An Approach for Multi-modal Sensing Support

As the number of services on mobile devices grows, so does their energy demand. An important opportunity

for conserving energy for such services lies in optimizing sensing for the evolving context that a device is

in. Consider, for example, a health-monitoring service which monitors a device owner’s heartbeat at a low

frequency; however, if an unexpected pattern is detected, it switches the mode to begin monitoring several

sensors at a high frequency. This is called multi-modal sensing.

I am interested in modeling context switching, in which it is represented as a Finite State Machine (FSM)

model for context-aware mobile systems. Using the proposed model, I aim to model the dynamicity of the

context-aware mobile systems that adjust their own behavior according to changes in the context.

I develop ModeSens, a mechanism which allows multi-modal sensing requirements of a service to be

programmed separately from its function. Programmers can specify the sensing modes in which a service can

be, the sensing needs of each mode, and the sensed events which trigger mode transition. ModeSens then

monitors for mode transition events, and dynamically adjusts the sensing frequencies to match the current

mode’s requirements. Separating the mode change logic from an application’s functional logic leads to more

modular code. I present a set of experimental results demonstrating the performance and energy costs of

using ModeSens.

1.1.4 MobDisS: A Formal Model for Representing Mobile Distributed Services

I present my efforts towards a formal model, MobDisS (Mobile Distributed Services), for representing mo-

bile distributed services, which allows fundamental principles of mobile distributed services to be carefully

studied. MobDisS identifies core mechanisms underlying mobile distributed services. Services can be built

by composing simpler services. I precisely describe the syntax and operational semantics of MobDisS. The

simplest form of a service is defined by having one contributor sending a service feed to one client; more

complex services are specified by composing services.

4



1.2 Contributions

The contributions of this work are as follow:

� Design, implementation and evaluation of CSSWare, an Actor-based middleware for initiating and

managing crowd-sourced services.

� Design, implementation and evaluation of ShareSens, an approach for efficiently supporting the sensing

needs of sensor-based applications.

� Design, implementation and evaluation of ModeSens, a mechanism for programming mode transition

concerns of multi-modal sensing applications separately from their functional concerns.

� Compositional definition of the MobDisS model, and its operational semantics.

1.3 Outline

The rest of this thesis is organized as follows: Chapter 2 discusses related work. Chapter 3 describes a set of

domain-specific mechanisms for supporting crowd-sourced services using multi-origin communication, as well

as the design, implementation, and evaluation of CSSWare. Chapter 4 presents the design, implementation

and evaluation of ShareSens. Chapter 5 presents ModeSens, an approach to modeling and programming multi-

modal sensing requirements of mobile applications. MobDisS and its operational semantics are presented in

Chapter 6. Finally, Chapter 7 concludes this thesis.
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Chapter 2

Related Work

My research work to support mobile distributed services has three main aspects – programmability, mobile

sensing and formal modeling – with a particular focus on mobile crowd-sourced services within programma-

bility. This chapter discusses related works in programming frameworks and middlewares, mobile sensning,

multi-modal sensing and formal models.

2.1 Programming of Mobile Crowd-Sourced Services

There have been a number of projects – both in academia and industry – involving crowd-sourced services.

The term crowd-sourced can refer to two types of services: participatory sensing services and crowdsensing

services. Participatory sensing involves the explicit participation of human beings in possession of mobile

devices, whereas crowdsensing relies on sensor feeds automatically flowing from devices to servers.

I first present some representative examples of both these types of crowd-sourced services, I then present

some existing frameworks for enabling it, and finally discuss the existing models for composing such services.

2.1.1 Examples of Crowd-Sourced Services

Some of the best examples of participatory sensing services can be found in services aimed at assisting

automobile drivers. Waze [11] is one of the largest community-orientated mobile travel applications with

users volunteering information about their driving experience in real time, by reporting on congestions,

delays, and gasoline prices. These reports then become the basis for information displayed on other drivers’

maps (on their mobile devices), to help them make routing decisions.

Similarly, TrafficPulse [12] combines sensor data from mobile devices with real-time traveler reports from

frequent travelers, and then offers this information to other drivers in an aggregate form.

Crowd-sourcing has also been found to be useful in efforts to coordinate rescue efforts following major

disasters, such as the Haitian earthquake in 2010 [13]. Information aggregated from social media (e.g., blogs,

emails, tweets, and Facebook status updates) was used to overcome challenges created by both the inadequacy

of maps and the change in the landscape because of the devastation.

CrowdHelp [14] uses smartphones to collect direct feedback from mobile users about their medical con-

dition, in combination with data coming from sensors in smartphones. This information is used to enable
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a swift response to emergencies. For example, when CrowdHelp is used for emergency reporting, mobile

users submit information relevant to an event (such as the number of injured people and their state) to a

central server. This information is collected and sent to the nearest health care facility capable of treating

the injured.

Among crowdsensing services, the real-time traffic information displayed on Google Maps is arguably the

most widely used one. The service relies on location data voluntarily made available by users of Google’s

services, which is then aggregated and then visualized on Google’s Maps to show traffic flow. Since Google’s

acquisition of Waze in 2012, Waze’s participatory sensing service has now been combined with Google’s

crowdsensing service for providing real-time traffic flow information.

Crowdsensing has also been used by Uga et al. [15] in an earthquake warning system, which uses data from

accelerometers present in many modern mobile devices to detect seismic vibrations. Devices send reports of

likely seismic activity to a server which then aggregates the reports received to send out warnings.

2.1.2 Frameworks for Mobile Crowd-Sourced Services

My work is more closely related to research focused on supporting crowd-sourced applications. Existing efforts

have taken different approaches to supporting such applications, focusing on concerns from programmability

(e.g., Medusa [1] and AutoMan [2]), to privacy (e.g., AnonySense [3]), to participatory crowd-sensing (e.g.,

CDAS [4]), and efficient sensor data collection (e.g., MECA [5]). I discuss these frameworks below.

Medusa [1] is a programming framework for crowd-sourced applications. A task (such as video documenta-

tion or citizen journalism) is launched by a requester, and workers are solicited through Amazon’s Mechanical

Turk (AMT) service.1 These workers – volunteering smartphone users – then provide raw or processed data

to be used as part of a social or technical experiment. An XML-based programming language, MedScript, is

used to specify the required task as a series of several stages, from the initial recruitment of volunteer workers,

to the workers’ (say, for a video documentation task) recording videos on their smartphones, summarizing

them, and then sending them back. The stages can involve actions selectable from a library of executables,

which are downloaded to mobile devices from a cloud server. Because Medusa requires that tasks pick from

a limited set of activities, it suffers from limited programmability and generality, and is not applicable to a

large class of crowd-sourced services.

AutoMan [2] is a programming platform for enabling a function-call-like mechanism for requesting human

beings to carry out tasks involving vision, motion, natural language understanding, etc. The platform

supports scheduling, pricing and quality control. A programmer’s interface to AutoMan is a set of function

calls, implemented as an embedded domain-specific language for the Scala programming language. The

platform also uses Amazon’s Mechanical Turk for hiring workers to perform these short-term human-based

assignments. Although the way AutoMan supports interactions with people is interesting, its scope is limited

1Mechanical Turk is an online human hiring system which acts as an intermediary between employers (requesters) and
employees (workers or turkers) to perform short-term computational tasks. https://www.mturk.com/mturk/
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to that function. For instance, a similar approach could be used along with my middleware for applications

requiring deliberate human input.

AnonySense [3] is another framework for collecting and processing sensor data, which pays particular

attention to privacy concerns. AnonySense allows a requester to launch one of a selected group of applications

with their parameters. The application then distributes sensing tasks across anonymous participating mobile

devices (referred to as carriers), and finally aggregates the reports received from the carriers. Achieving

anonymity relies on separating sensor data from identifying features (such as homes or workplaces in GPS

traces) to obscure individual identities. Similarly to Medusa, AnonySense has limitations in programmability

and generality because of its limited focus on a collection of sensor data and in-network processing.

CDAS [4] is an example of participatory crowd-sensing frameworks. It enables deployment of various

crowd-sensing applications which require human involvement for simple verification tasks to deliver high

accuracy services. Similar to CDAS, MOSDEN [16] is a collaborative mobile sensing framework that operates

on smartphones to capture and share sensed data between multiple distributed applications and users.

The MECA (Mobile Edge Capture and Analysis) middleware for social sensing applications [5] focuses

on efficient data collection from mobile devices. It uses a multi-layer architecture to take advantage of

similarities in the data required for different applications to lower the demand on devices on which data

is being collected. MECA’s focus is limited to a narrow class of applications, and does not address wider

programmability challenges. Furthermore, MECA – like other similar frameworks – uses the smartphone as

a dumb data generator, offloading all processing to the server layer. This increases communication cost and

does not allow applications to take advantage of data collected while the mobile device is not connected.

In summary, existing frameworks for crowd-sourced applications focus on narrow application areas or

specific concerns, making it difficult to utilize them for a wider class of services. Also, none of them support

concurrent execution of multiple services from within one service platform, which precludes taking advantage

of opportunities to optimize for shared sensing requirements.

2.2 Mobile Sensing

An important concern in continuous mobile sensing is its impact on the power consumption of smartphones

and wearables. I first present some representative continuous mobile sensing applications, and then discuss

existing platforms which support them.

2.2.1 Continuous Mobile Sensing Applications

Many modern smartphones and wearables are equipped with a number of sensors, creating opportunities for

applications which can use feeds from these sensors. Of particular interest to my research work is continuous

mobile sensing, which involves continual sampling of sensors over a period of time. A number of applications

rely on continuous mobile sensing across a variety of domains, from healthcare (e.g., [14]) to social networks
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(e.g., [5]) to environmental monitoring (e.g., [13]) to transportation (e.g., [11, 12, 17]) and human activity

recognition (e.g., [18, 19]).

Activity Monitoring

Human activity recognition has opened the door for new types of applications in the field of personal health-

care such as fitness monitoring, elder-care support, and chronic care [19]. Activity recognition systems

typically have a sensing module that continuously collects relevant information about the body activities

(e.g., walking, sitting, lying down, etc.).

Activity recognition systems can be broadly classified into video and physical sensor-based activity recog-

nition [20]. Video sensor-based activity recognition involves continuous capture of human activities through

cameras [21]; however, the extraction of features from the captured images requires complex computations.

Due to these limitations, wearable sensor-based activity recognition (i.e., sensor-based activity recogni-

tion) [22] – which requires less data processing – is more commonly used. Accelerometer and gyroscope

are the most widely used body-worn sensors for activity recognition. Although these sensors are accurate

in monitoring activities, the continuous sensing can quickly drain the battery of mobile devices in a short

amount of time [10].

In the health-monitoring field, activity monitoring can provide the ability to monitor and diagnose patients

using continuously generated data. Physicians can detect deviations from a typical routine of a patient’s

current physical status. Patients undergoing physical therapy, gain the benefit of being able to have their

condition monitored in more details and therapists can ensure their patients improved the quality of care

with more accurate evaluations [23].

Activity recognition has also become a key component in several commercial products. For example,

game consoles such as the Nintendo Wii2 and the Microsoft Kinect3 rely on the recognition of gestures

or body movements to enhance the game experience. While these systems are originally developed for

the entertainment sector, they have also been used for other types of applications such as personal fitness

training [24]. Furthermore, some sports products such as the NikePlus4 running shoes which integrate motion

sensors and offer athletes feedback on user’s performance.

2.2.2 Mobile Sensing Platforms

Energy consumption in mobile phones is a well-studied research topic in literature from various perspectives

[10,25–27], each offering a different approach. To my knowledge, there is no existing approach to economizing

by enabling sharing of sensing data among different applications.

Early efforts to build frameworks for mobile sensing applications have tended to trade off accuracy for lower

2http://www.nintendo.com/wiiu
3http://www.microsoft.com/en-us/kinectforwindows/
4https://secure-nikeplus.nike.com/plus/
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power usage by implementing algorithms which reduce the amount of sensor data. Other frameworks [28,29]

have tried to reduce power usage by opportunistically offloading sensor data processing to back-end servers in

the cloud infrastructure. Other techniques rely on adopting a variety of duty cycling techniques that manage

the sleep cycle of sensors on the device to trade off the amount of battery consumed against sensing accuracy

and latency [30]. The drawback of these approaches is that they are not applicable to continuous sensing

scenarios.

Adapting sampling rates for human activity recognition is a well-studied research topic. SpeakerSense [31]

uses a low sampling rate to detect whether a speaker exists, and switches to a high sampling rate once a

speaker has been detected. Similarly, SociableSense [32] lets the sensors operate at a high sampling rate

only when interesting events happen. If there are no interesting events, the sensors are set to run at a low

sampling rate. SpeakerSense and SociableSense use what I call multi-modal sensing to sample data only

at the rate required. In my efforts to improve programmability of such sensing requirements, I developed

ModeSens, which separates applications’ multi-modal sensing concerns from their functional concerns.

Another approach is to achieve energy savings through optimizing sensor duty cycles (i.e., periodic sensing

and sleeping instead of continuous sensing). EEMSS [30] is an energy-aware framework for human activity

recognition. EEMSS tries to achieve energy savings by shutting down unnecessary sensors, and carefully

selecting sensor duty cycles. A sensor management scheme is used to determine the minimum sampling lengths

and intervals for a set of sensors to recognize user states and to detect state transitions. Mercury [33] uses

a similar strategy to reduce energy consumption by disabling and enabling sensors dynamically. ShareSens

addresses the orthogonal concern of sharing sensor feeds.

Senergy [34] offers an API that can be used by developers of context-aware applications to specify Latency,

Accuracy, and Battery (LAB) requirements of the used sensors in their applications. Senergy focuses on

the optimization of continuous context monitoring, energy, latency and accuracy while meeting developers’

LAB requirements. The approach essentially allows an application’s inherent flexibility to be used to find

opportunities to conserve energy.

The growing popularity of continuous sensing has also attracted the attention of hardware designers to

develop hardware processors to support it. For example, the Little Rock project [35] at Microsoft Research is

developing energy efficient co-processors for a mobile device, dedicated to the task of continuous sensing. The

tasks of duty cycle management, sensor sampling, and signal processing are offloaded to the new co-processor,

allowing the primary CPU to sleep more frequently, saving the overall power consumption. The Little Rock

architecture gives programmers the flexibility to choose between the primary processor and the co-processor

for the various tasks in their applications, but it also makes application development more challenging.
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2.3 Formal Approaches

First, in Section 2.3.1, I review the Actor model of concurrency [6], which is used in this research as the

underlying model for distributed computations. In Section 2.3.2, I review the key concepts and principles of

Service-Oriented Architecture (SOA). Then, in Sections 2.3.3 and 2.3.4, I review different types of approaches

for modeling and composing mobile services, as well as multi-modal sensing.

2.3.1 Actors

Actors [36] provide a formal model for concurrent systems. Actors are autonomous concurrently executing

primitive agents (i.e., active objects). Each actor encapsulates a thread of control, an object (state and

methods) and a mailbox. Only an actor’s encapsulate thread may access its object directly and change

its state. Actors communicate using asynchronous messages. A message’s recipient takes a message from

its mailbox and executes its corresponding method, possibly sending messages to other actors, or creating

new actors. Messages are not necessarily processed in the order they are sent, but fairness in the delivery of

messages is guaranteed. Recipients of messages are identified by globally unique addresses (i.e., actor names).

An actor can only communicate with actors whose addresses it possesses. Actor names cannot be guessed.

The key semantic properties of the Actors model are described as follows: (i) encapsulation of state; (ii)

atomic execution of a method in response to a message; (iii) fairness in scheduling actors and the delivery of

messages; and (iv) location transparency enabling distributed execution and mobility.

As a result of processing a message, an actor can concurrently:

� Create a finite number of new actors

� Send a finite number of messages to other actors

� Designate a new behavior to process subsequent messages

Actors are becoming increasingly important as the model of choice for building large-scale interactive

systems. There is a growing number of implementations of Actors, including programming languages such

as Scala [37] which supports actors through its Akka library [38], Erlang [39], Pony [40], SALSA [41], etc. In

addition, there are also actor libraries to support Actor programming with existing languages, such as Actor

Architecture (for Java) [42], ActorFoundry (for Java) [43], Pulsar (for Python) [44], CAF (for C++) [45],

Orleans [46] (for Microsoft’s .NET framework), etc. These languages and libraries have been used in many

industrial projects such as Twitter’s message queuing system, Facebook chat, Vendetta’s game engine, etc.

[47].

2.3.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) [48] is a software paradigm that provides a way to design flexible,

scalable, and reusable services over a network. In SOA, a service is defined as a logical representation of
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a business activity that has a specified outcome. Services can be composed to create a new service which

provides a new business value. An architecture for service-oriented systems has three parts: a provider,

a consumer, and a registry. Providers publish their services on registries, which provide an interface for

consumers to search for services and then invoke them. A service is a loosely-coupled and self-describing

computation element. This is achieved through encapsulation and communication through message passings.

In SOA, a set of interface languages are used to permit a service to export sufficient information so that

consumers can discover and connect to it. The key principles of SOA are described as follows [48]:

� Service Abstraction. Services act as black boxes, that is their inner logic is hidden from the consumers.

� Service Autonomy. Services are autonomous and independent of control.

� Service Reusability. A service-oriented system’s logic is divided into various services in order to support

reuse of code.

� Service Longevity. Services should be designed to be long lived.

� Service Location Transparency. Services can be consumed from anywhere within the network which

enables distributed execution and mobility.

In SOA, applications are primarily distributed systems of composed services. These services can belong

to different organizational domains. Therefore, there is no single line of authority regulating their interac-

tions, which enforces consumers to either trust the provider to deliver the expected service, or establish a

contract with it. A contract describes an agreement between a number of services that determines rights and

obligations on its signatories.

Orc [49] is a programming language designed for supporting service-oriented computing. Orc provides

uniform access to computational services, including distributed communication and data manipulation. Orc

enables a concurrency-first style of programming, in which programmers start with a concurrent program,

instead of adding concurrency only when it is required. In Orc, concurrent computations (called Orc expres-

sions) are built by composing primitive operations using a set of combinators and declarations. Executing

an Orc expression results publishing values. These publications may occur at different times, which means

that Orc naturally supports asynchronous events. The primitive operations in an Orc program are called

sites, which are callable values whose execution is outside the Orc semantics and can be implemented in any

language. Therefore, sites allow an Orc program to interact with the outside world.

2.3.3 Mobile Service Models

Mobile services are increasingly attracting significant interest. There are a number of related works in

the literature which offer support for mobile services, ranging from efficient communication protocols (e.g.,

CoAP [50]), to publish/subscribe systems for mobile environments (e.g., [51] , [52]), to service composition

models (e.g., [53], [54]).
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CoAP [50] is specially designed protocol for use with resource-constrained devices (e.g., mobile devices)

over low-bandwidth network links. CoAP fulfills the requirements of the mobile environment domain such as

providing support for asynchronous message exchange, multicast capabilities, low overhead, and implemen-

tation simplicity.

Huang et al. [51] attempted to extend the publish/subscribe model to operate in a mobile environment,

where events can be generated by moving mobile devices or users, and subscribers can request delivery of

events at their mobile devices. The proposed model consists of three main parties: event sources, an event

brokering system, and event displayers. An event source generates events based on changes its surrounding

environment. Then the generated events are published to the event brokering system, which matches them

against a set of subscriptions, submitted by event displayers in the system. However, the described system

assumes a broker backbone that has a dedicated broker-based sub-network located on a static backbone and

consisting of a predefined set of servers, which limits the application of this approach on a larger scale.

Existing solutions to service composition use two different approaches: a template-matching approach

and a dynamic approach.

In the template-matching approach, the client requirements (i.e., service specs) are expressed as a request

template, and through composition, a system would identify services to populate the target service’s specs

within the request template. However, with the dynamism involved in mobile environments, the client

requirements have to be met by exploiting available resources, even when an exact match does not exist.

Furthermore, the traditional models of template-matching service composition [55–57] do not consider the

mobility of service providers (i.e., contributors) and requesters (i.e., clients) in mobile environments. So they

cannot be used directly for mobile services because these models have an implicit assumption that services

are running on stationary servers. This assumption does not hold true for modern mobile devices equipped

with various sensors and a significant computation power.

In the dynamic approach, the service specs have to be met by exploiting available resources, even when

an exact match does not exist. Our work is more closely related to that research focused on supporting

dynamic service composition. However, existing solutions which implement that approach focus on state-

space model [58], wherein a huge number of states need to be checked before composition. These solutions

for dynamic composition are called state-based solutions.

One of the earliest attempts to provide dynamic service composition in mobile environments is proposed

in [53] where a composition service protocol is implemented through a middleware called PICO. Mobile

services can be initiated and consumed through that middleware. This service composition approach models

mobile services as directed attributed graphs, maintains a repository of service graphs and dynamically

combines multiple basic services into complex services. However, two issues limit the application of this

approach on a larger scale: service selection and detection of equivalent services. During the step of state-

space exploration, a state can be generated more than once for analysis purpose. To avoid analyzing the

same states repeatedly, it is necessary to remember the states already explored by storing them in the
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memory. However, this can lead to storing a huge number of them in the memory and eventually to state-

space explosion [58], making it difficult to support more complex compositions. Our approach for service

composition avoids state explosion as it does not depend on the state of composable services.

Deng et al. [54] describe a mobile service provisioning architecture to solve the problem of service selection

and composition of mobile services when both service requesters and providers are mobile. They propose a

mobility model to describe mobile user moving behavior. The mobility model is used to transfer the mobility-

aware service composition problem into an optimization problem and then the Krill-Herd (KH) algorithm [59]

is used to solve it. However, such an approach can be impractical when applying the mobility model to each

provider (i.e., contributor) in the system because of the complexity of solving the composition problem,

which leads to significant decrease in performance. In comparison, our approach for service composition

does not suffer from performance issues when composing services because each composition rule has a set of

light-weight constraints which applied on the input services before the composition process takes place.

2.3.4 Multi-Modal Sensing

Multi-modal behavior has previously been examined in various mobile device contexts. I present below some

existing frameworks for programming sensing modes in a mobile environment.

In [60], the history of contexts of a device together with the actions previously carried out by the device,

define a mode which then determines which actions are to be carried out in that mode. The author presented

a finite state machine model for the situation-aware mobile applications, where each state represents a mode

that a mobile device behaves at a time, and each mode is characterized by the historical context record and

the internal action record of that device. Furthermore, the finite state machine is used to build a spanning

tree of state machine which could be used in verifying that a corresponding situation-aware application’s

requirement is valid, i.e., the requirement does not specify any situation that will never be true or never

trigger any actions.

Matic et al. [61] attempted to identify the social mode in which a user might be. The goal of this work

was to detect face-to-face social interactions between people on a small spatiotemporal scale using built-in

sensors in mobile devices (e.g., accelerometer, microphone and GPS). The proposed approach detects spatial

setting through parameters of interpersonal distances and relative body orientations sensed by mobile phones.

Recognition of speech activity is done using the accelerometer sensor by detecting vibrations at the chest

level that are generated by vocal chords during phonation.

Chiu et al. [62] present an advisory system for the transportation domain, which offers routing advice

based on the perceived mode of traffic flow. In MOSDEN [16], mobile devices determined to be in particular

modes (such as being in a moving vehicle) can be tapped for data in a sensing as a service context. MOSDEN

also provides a mobile sensing as a service framework that operates on smartphones to capture and share

sensed data between multiple distributed applications and users.

In contrast, I am specifically interested in sensing modes, which tell us the sensing requirements in an

application’s environmental, interest or resource context.
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Chapter 3

CSSWare: An Actor-Based Middleware for Mobile

Crowd-Sourced Services

This chapter is organized as follows: Section 3.1 describes a set of domain-specific mechanisms to sup-

porting crowd-sourced services using multi-origin communication. Section 3.2 and 3.3 present the design and

prototype implementation, respectively. Section 3.4 evaluates the approach in two ways. First, it illustrates

the ease with which new services can be implemented on the platform. Second, it presents experimental

results showing scalability, performance and energy efficiency of the approach.

3.1 Multi-origin Communication

It turns out that a large class of crowd-sourced services exhibit a similar pattern of interaction, where

members of a crowd contribute bits of information from their respective contexts, which are then aggregated

to create useful information for clients. This pattern of interaction is orginally defined in [7] as multi-origin

(multi-sender) communication, which involves aggregation of the messages received from a group of senders

(referred here to as the constituency) into a group message to be sent on behalf of the group to one or more

intended recipients.

This thesis shows how to apply this approach in the domain of crowd-sourced services. This is illustrated

in Figure 3.1, where senders a1 through an autonomously send messages with the intention of them being

sent to a destination in aggregate form.

To be precise in the presentation of multi-origin communication, it is specified in terms of the Actor

model [6]. The different parties involved in a multi-origin communication are represented using actors, and

the required communication is defined in terms of asynchronous actor messages.

n

coordinator

destination
aggr

a1

a

2
a

Figure 3.1: Multi-Origin Communication
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Figure 3.2: Multi-Origin Communication Setup

The requester of a multi-origin communication makes a function call in order to launch the communication.

The call passes two parameters, the first specifying the potential contributors – the constituency – to be

invited to participate in the communication, and the second specifying an aggregation method. As illustrated

in Figure 3.2, an invocation of this function results in the creation of a new coordinator actor capable of

coordinating the communication, which is next told to invite the constituency to participate. The coordinator

then sends invitations to the members of the constituency (the contributors) to send their messages; when

applicable, it also sends them parameters advising on how to construct their contributions (such as by tapping

into a set of sensors, or soliciting input from the user), how often to send them (once or periodically, how

frequently), etc.

I assume that each contributor is an actor with a method to receive these requests, and the capability to

create the types of messages. Given that there are a relatively small number of sensors on mobile devices,

the parameters could simply be specifying which sensors to be tapping into, with what frequency, and what

periods to be averaging the feeds over, etc. However, coordinators for some services may be more interested

in hearing about higher-level events – such as a restaurant client sitting down at the table, finishing eating,

paying the bill – which would require more significant local processing to generate than simply receiving

sensor feeds. This could be supported in various ways: by migrating an actor with the required behavior to

the sender, by sending the code as a parameter to create an actor locally, or simply by frequently updating

the sender-side application to include the functionality needed by every type of request.

As the contributors send their messages, the messages are aggregated by the coordinator according to its

own behavior, to generate group messages on behalf of the contributors.

Two types of such setups are introduced. The first – one-off multi-origin communication – is to solicit

a group message from a number of contributors with a termination condition and a timeout. This would

be the type of communication used to serve one-time requests, such as to hold a census or an election, or

to satisfy a one-off request to recommend a restaurant with a short waiting time. The second – continual

multi-origin communication – is to solicit a continual feed of group messages from a number of contributors.

This would be useful for a service provided over the web or through a mobile application where site visitors

or application users seek up-to-date information (say) on restaurant waiting times in a neighborhood. For

some services, such as the one for restaurant recommendations, the choice of one or the other setup would

depend on the frequency of requests, the number of potential contributors of messages, etc. For instance, it
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would not be useful to be maintaining up-to-date information about all restaurants when there are very few

requests for recommendations; however, it would be wasteful to solicit one-off communications for frequent

requests.

3.1.1 One-Off Multi-Origin Communication

In a one-off multi-origin communication, the coordinator actor expects at most one message from any con-

tributor. It collects messages until either a sufficient number of messages has been received (as can be tested

using a termination function), or a timeout has been reached; it then proceeds to aggregate the messages,

and sends the aggregate to the requester on behalf of the contributors. An example of a multi-origin com-

munication with timeout would be an electronic voting service, where the coordinator expects no more than

one vote from each voter and there is a deadline by which all votes must be in.

Figure 3.3 illustrates the execution of a one-off multi-origin communication using an actor event diagram

[6]. In the figure, contrib1 through contribn are the prospective contributors. There is a clock actor to

which the requester sends a request to notify the coordinator when the timeout has been reached. I assume

that the clock is local to the coordinator and has a way of notifying in a timely manner. The requester

initiates the communication by calling the function oneOffCommSetup(coordClass, constit, termCond,

timeout), where coordClass is the desired behavior of the coordinator, constit is a list of contributors,

termCond is a function to test the termination condition indicating receipt of a sufficient number of messages,

and timeout is a time when the coordinator would stop accepting messages from the contributors.

Once the coordinator is created, it sends announcements to all contributors, and begins collecting mes-

sages. The coordinator expects to receive the maximum of one message from each contributor. After the

timeout is reached, the coordinator sends a message to the requester with an aggregate of all responses.

The coordinator actor’s behavior can be defined by extending the multicall selective blocking broadcast

operation defined in [7] with support for timeouts, or directly using the following three methods:

� announce(constit), used by the requester to instruct the coordinator to solicit messages from members

of the constituency.

� sendMessage(msg), used by the contributors to send their messages to the coordinator.

� timeout(), used by the clock to tell the coordinator that the timeout has been reached.

A contributor actor’s communication behavior is defined by one method: receiveAnnouncement(service-

Params). This is the method invoked when the solicitation is received from the coordinator, and it carries

out the computations specified in serviceParams in order to create its message.

Figure 3.4 shows pseudocode for the oneOffCommSetup function. The createCoordActor function creates

a new coordinator actor with the termination condition and application-specific customization initialized in

its behavior, and returns the coordinator name. Once the coordinator has been created, a message is sent
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Figure 3.3: One-Off Multi-Origin Communication

to the coordinator to broadcast an announcement to all contributors. Another message is sent to the clock

actor instructing it to notify the coordinator when the timeout is reached.

Here we assume that there is a static timeout set by the coordinator in the communication setup. One

possible way to generalize this approach is to reset the clock after receiving a group of contribution messages

to allow for dynamic context-sensitive timeouts. For example, a clock-reset message could be sent from the

condition function to the clock after receiving a new contribution message. Another approach is to use

multiple timeout intervals, wherein each of the timeout intervals corresponds to one type of contribution

messages. When a timeout interval elapses for any of these types of messages, all messages with that type

will be discarded.

3.1.2 Continual Multi-Origin Communication

In a continual multi-origin communication, the coordinator expects multiple messages from each contributor

over time, and periodically aggregates them and sends updates to the communication’s requester. When a

new message arrives, the coordinator checks whether it warrants an update, or whether the interval for which

it was to collect messages has passed. In either case, it forwards an aggregate of messages received since
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1 void oneOffCommSetup ( coordClass , c on s t i t , termCond , timeout )
2 {
3 coo rd ina to r = createCoordActor ( coordClass , termCond , custom ) ;
4 coo rd ina to r <− announce ( c o n s t i t ) ;
5 c l o ck <− t imeoutSetup ( coord inator , t imeout ) ;
6 }

Figure 3.4: Pseudocode for oneOffCommSetup

the beginning of the interval to the requester. An example of continual communication would be that of a

restaurant recommendation service available over the web, which attempts to offer up-to-day information to

site visitors. The service could also be customized for individual visitors, based on their geographic locations,

preferences, etc.

Figure 3.5 illustrates the execution of a continual multi-origin communication using an actor event dia-

gram. contrib1 through contribn now send multiple messages over time, reporting local updates. Also, the

clock actor periodically (i.e., after every interval period of time) notifies the coordinator of the passage of

an interval, at which time the coordinator computes a new aggregate.

A continual communication is initiated by the requester by calling the function continualCommSetup(

coordClass, constit, updateCond, interval), where coordClass is the desired behavior of the coor-

dinator, constit is the list of prospective contributors, updateCond specifies the condition in which the

requester should be immediately updated,1 and interval specifies the intervals at which the coordinator

would be notified by the clock.

Once the coordinator has been created, it broadcasts an announcement to all contributors, and then waits

to receive messages. Contributors either send updates periodically or when they observe an interesting event

(such as a change in the level of activity in a restaurant, for example).

A coordinator actor’s behavior is defined by the following methods:

� announce(constit), used by the requester to instruct the coordinator to solicit messages from members

of the constituency.

� sendMessage(msg), used by the contributors to send messages to the coordinator.

� interval(), used by the clock to inform the coordinator of the passage of each interval.

A contributor actor’s behavior is defined by one method: receiveAnnouncement(serviceParams). This

is the method invoked when the solicitation is received from the coordinator, and it carries out the compu-

tations specified in serviceParams required for creating its messages.

1This should also lead to resetting of the interval with the clock; this is not shown in the event diagram to avoid making it
too crowded.
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Figure 3.5: Continual Multi-Origin Communication

Figure 3.6 shows the pseudocode for function continualCommSetup. The createCoordActor function

creates a new coordinator actor with an update condition and application-specific customization initialized

in its behavior, and returns the coordinator name. Once the coordinator has been created, a message is sent

to the coordinator2 to broadcast an announcement to all contributors. Another message is sent to the clock

actor instructing it to notify the coordinator every time the required interval has passed.

Most examples of crowd-sourced services fit the continual type of multi-origin communication, where

members of the constituency send messages on a continual basis rather than just once. From here on, I will

refer to continual multi-origin communication as simply multi-origin communication.

Appendix A presents two case studies to illustrate the use of the two multi-origin communication primitives

which have been discussed in this chapter.

2a← m(p) means message m with parameters p is sent asynchronously to actor a.
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1 void continualCommSetup ( coordClass , c on s t i t , updateCond , i n t e r v a l )
2 {
3 coo rd ina to r = createCoordActor ( coordClass , updateCond ) ;
4 coo rd ina to r <− announce ( c o n s t i t ) ;
5 c l o ck <− i n t e rva lS e tup ( coord inator , i n t e r v a l ) ;
6 }

Figure 3.6: Pseudocode for continualCommSetup

3.2 CSSWare Design

The design of the CSSWare middleware builds on the domain-specific mechanisms for multi-origin commu-

nication described in the previous section.

As illustrated in Figure 3.7, the sensing crowd becomes the constituency whose input is solicited. The

service continually aggregates the feeds arriving from the crowd to create up-to-date custom views for various

types of clients. For example, if the service were for recommending restaurants, one interface could be for

prospective diners, another for the restaurant managers making real-time staffing plans, yet another could

be for a vehicular routing system interested in improving downtown traffic flow at lunch time.
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Figure 3.7: Crowd-Sourced Service

Figure 3.8 illustrates how the distributed run-time system for the middleware is organized with parts

executing on the service platform, on devices of members of the constituency, as well as client devices. In

the rest of this section, I discuss these three parts separately.

3.2.1 Service Platform Side

The service designer uses the service creation API to create and launch a new crowd-sourced service. A

set of parameters stating service specifications is passed through the API. These specifications identify the

contributors to be invited to participate in the service, the aggregation method to be used, as well as a
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Figure 3.8: System Architecture

description of the feeds solicited from the contributors in terms of specific events of interest, such as arrival

at a restaurant, being seated at the table, etc.

To launch a new service, the service manager (see the server in Figure 3.8) creates a new service coordinator

to coordinate the communication between the contributors and the CSSWare platform, which is capable

of coordinating the communication between the contributors and the CSSWare platform. Next, it sends

invitations to the contributors to send their events – when one is detected – to the coordinator. It also sends

them parameters advising on how to detect events, construct their messages, and how often to send them

(once or periodically, how frequently, etc.).

Contributor events received by a service coordinator are handled by its event aggregator, which in turn

reports the events in aggregate form to the CSSWare platform’s event receptionist. The aggregated events

are then passed on to the service manager, which processes them to update the service’s state, which is

forwarded to the service interface manager to deliver appropriate views requested by clients through custom

interfaces.

3.2.2 Contributor Side

To launch a service, the platform’s service manager sends invitations to contributors to participate in the

service. It also sends them parameters advising on how to detect events and construct their messages (i.e.,

sensing parameters). Event detection is carried out by dedicated event detection actors, who generate event

feeds using relevant sensor feeds, which are then sent to the service coordinator.

An optimizing sampling scheduler schedules the sampling of each sensor based on the sensing requirements

received from the service coordinator for each service being served at the time. More details about the

sampling scheduler will be discussed in Chapter 4.
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3.2.3 Client Side

A service can have various types of clients subscribed to different views of the service’s state, each provided

by a custom interface. When a client requests subscription to a particular type of view, the request manager

inside the client app constructs a custom view subscription request. This request is passed on to the service

view interface, which is transmitted through the service request API of the CSSWare platform (see Figure 3.8).

The platform adds the client to a list of subscribers to that view of the service, and begins sending it all

updates.

3.3 CSSWare Implementation

This section presents the prototype implementation of CSSWare middleware. I have prototyped it as an

actor system. In particular, the prototype implementation is built using the CyberOrgs [63] extension of

Actor Architecture (AA) [42], a Java library and runtime system for distributed actor systems.3

The mobile side – contributor and client sides – for the systems is prototyped as a self-contained mobile

application implemented over AA ported to Android.

As shown in Figure 3.9, crowd-sourced services run over the CSSWare platform, which runs over the

CyberOrgs runtime system. The implementation for both CSSWare and ModeSens has two parts: a server

implementing a crowd-sourced service platform (about 7,800 lines of code), and a mobile app supporting

both client and contributor functionalities (about 4,900 lines of code).

3.3.1 Service Platform Side

To launch a new service, first, the requested service’s meta data (i.e., its title and description) is added to

the list of published services, which lists active services visible to contributors. Next, the service manager

creates a service actor which invites potential contributors to send their events to the service’s coordinator.

3Actor Architecture is a platform for implementing systems of actors [6], which are autonomous concurrently executing
primitive agents (i.e., active objects) which communicate using asynchronous messages, CyberOrgs extension adds mechanisms
for resource coordination of actors.
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It also sends them parameters advising on how to construct their contribution messages. After inviting the

contributors, a new service view is created in the service request API to serve clients’ requests.

As contributors to a service detect and send events, the events are aggregated by the coordinator and

reported to the service manager through the event receptionist (see Figure 3.8). The service manager collects

aggregated events until a sufficient number of them have been received (as determined by a sufficiency

condition provided by the service designer in the form of a function) and then updates the service state,

revising the custom service views available to the clients.

3.3.2 Contributor Side

For the contributor (and client) side, I have ported CyberOrgs to Android OS, and implemented a self-

contained application over it which runs on the Android OS (ver. 5.1). The current implementation supports

contributions based on feeds from the GPS, accelerometer, microphone, magnetometer, gyroscope, pressure,

humidity, temperature and light sensors. A set of high-level sensor events has been pre-implemented in

terms of these (low-level) sensor events – as executable specifications – which a service designer can draw

from and customize by providing parameters. These high-level events form the basis for service events. For

each high-level sensor event feed, the list of required low-level feeds is provided in the form of a list, where

each entry identifies a sensor and specifies the rate at which it should be sampled. These specifications are

typically only a few lines of code, varying between 7 and 18 lines of code for the triggers used in the example

service prototypes. The code for using high-level sensor events to generate the service events is typically even

shorter. The current prototype does not have a way for a service designer to add an entirely new high-level

sensor or service event types; ongoing work is developing a way to allow that.

As shown in Figure 3.10, the runtime system executing on the Android device has two components: the

sampling scheduler and the event detector.

Sampling Scheduler. As described in Section 3.2.2, the sampling scheduler sets a sampling rate for each sensor

based on the received sensing parameters. The scheduler optimizes sensor sampling feeds by opportunistically

sharing them between different service feeds. It then sends these requirements to individual sensor listeners,

which then sample sensor data at the required sampling rate.

In Chapter 4, I describe further details of this process and introduce the ShareSens API through which

the sampling scheduler can be accessed by any mobile application.

Event Detector. Because the data sampled from a sensor can be for multiple event feeds, the data is filtered

to extract the sub-feed pertinent to each event feed being served, and only that sub-feed is forwarded to

the relevant event detection actor. An event detection actor monitors the sensor feed it receives for event

triggers; when it sees one, it fires the event off to its service coordinator.

An event detector does not maintain a local record of the triggered events itself; all events are sent to the

service coordinator.

Because the contributor side of the system will likely execute on battery-operated mobile devices, it is
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Figure 3.10: Contributor Side

important that contributors have the ability to either develop or adopt simple resource consumption policies

to avoid undesired battery drain. I hope to utilize the fine-grained resource management features already

present in the CyberOrgs [63] extension of Actor Architecture, which I have used in my prototype. For now,

I have implemented a feature allowing a service designer to specify resource limits after reaching which the

contributor device would stop contributing feeds.

3.3.3 Client Side

The client side of the platform is implemented as part of the Android application implementing the contributor

side. When a new service is launched, each client receives a notification about the launch. Multiple views

are supported through custom interfaces installed by the service designer. A client interested in subscribing

to a service can examine available views using the service view interface (see Figure 3.8), and then use the

service request API to subscribe to the desired view.

There is a collection of four general purpose view interfaces pre-implemented in the platform, which

averages at about 85 lines of code (the largest at about 100 and the smallest at 75 lines).4 Although

4These 350 lines of code are included in the previously mentioned roughly 4,900 lines of code for the Android application’s
implementation.
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these interfaces are sufficient for the examples I have implemented, and for services with similar client-side

requirements, additional interfaces would need to be implemented for different types of services. In my

current prototype, there is no way for service designers to program these interfaces themselves; however, I

plan to provide a way for new (general purpose or custom) interfaces developed by service designers or other

parties to be installed or added to a repository from which they could be installed.

3.4 Evaluation

This section evaluates the CSSWare model in two ways. First, the programmability advantages of using

CSSWare in terms of the orders of magnitude lower number of lines of code required for launching a new

service. Next, the experimental results demonstrating scalability, performance and data-contributor side

energy efficiency of the approach.

3.4.1 Programmability

The benefit of using CSSWare is relatively obvious: a fewer number lines of code to create new services.

I illustrated the ease with which new services can be launched by presenting source code for prototype

implementations for two qualitatively different types of services. My objective here is not to compare these

implementations with equivalent services built on top of existing frameworks (such as [1–5]) because it is

difficult to utilize these frameworks for implementing such services. Rather, I compared them with equivalent

built-from-scratch services I implemented.

As shown in Table 3.1, the prototype restaurant recommendation service presented in this section required

19 lines of main service specification code; in comparison, an equivalent standalone service I implemented

required 6,142 lines of code. A Twitter-like messaging service I implemented, similarly required 21 lines

of main service specification code instead of 4,768 lines of an equivalent standalone service. Both services

required less than 160 lines of additional relevant code from available libraries of aggregation functions,

sensor-events specifications and service view interface. These 160 lines of code are included in the previously

mentioned roughly 4,900 and 7,800 lines of code for the Android application’s implementation and service

platform’s implementation, respectively.

Table 3.1: Lines of Code Comparison

Service Standalone
CSSWare

service speci-
fication

aggregation
function

high-level
sensor events

view
interface

Restaurant Recommendation 6,142 19 9 53 94

Twitter-like Messaging 4,768 21 16 31 75
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To further simplify the specification of crowd-sourced services, I have developed a simple graphical user

interface to allow clients to specify the service events, transitions between events, and any outputs to the

service. Figure 3.11 shows this interface.

Figure 3.11: The GUI for Creating Crowd-sourced Services

Below, I present prototype implementations of these two qualitatively different services to illustrate the

ease with which new services can be programmed.

Restaurant Recommendation Service

Consider the type of restaurant recommendation service previously described in Chapter 1, where mobile

devices of people visiting restaurants in a neighborhood automatically send real-time updates about the

service they are receiving to a service provider, which then aggregates this information for people searching

for restaurants. I assume that information required for generating these feeds can be gathered automatically

by the devices by tapping into various sensors to determine when someone arrives at a restaurant, when they

are waiting to be seated, when they sit down, when they are served, when they finish eating, and when they

leave. The information could be coarser or finer grained depending on the device, usage habits, quality of

the behavior detecting software, etc. These updates from personal mobile devices could then be aggregated

by a service provider to rank restaurants according to criteria such as the amount of wait time before being

seated, the length of time taken dining (shorter or longer, as preferred), the total amount of time that the

user could expect to travel to the restaurant, dine, and be back at work. The ranking could also consider the
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server’s meta-knowledge about the number of people being sent to various restaurants by the service.

Figure 3.12 shows the service graphically, and Figure 3.13 presents my code implementing such a service

as a createSensorService() method. First, a number of service variables are initialized: a method to be

used by the coordinator to aggregate contributions, aggrMethod, and the default sampling rate to be used for

sensor feeds when a rate is not explicitly specified, samplingRate. aggrMethod is initialized here to a general

purpose method for computing the average; it is to be used by the coordinator to compute average waiting

time. Other services could use other available aggregation methods; the prototype provides a selection of

them. I also provide a template for a service designer to add a new (custom) aggregation method.

. . . .

mobile devices mobile devices

Restaurant 1 Restaurant n
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coordinatorcoordinator

client
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Figure 3.12: Restaurant Recommendation Service

Two types of service events are defined. The first, locationEvent, is defined in terms of a number of

parameters. The “trigger” parameters identify high-level sensor events, which become the basis for service

events. For example enterPlace recognizes entering a location (a restaurant in this service). The “output”

parameters identify the service events to be sent to the coordinator; here, visitTime computes the difference

between enterPlace and departPlace. Additional parameter types are parameters that are available to

the various methods; for example, updateInterval is available to visitTime as a parameter to decide the

frequency of feeds to send to the coordinator.

Similarly, activityEvent specified a different sensor feed related to observations of the restaurant client’s

activity. It uses various sensor feeds. The triggers detect activities of “sitting down” or “being still,” the

latter using the stillTime parameter, which are then used as the basis for a waitTime service event to be

sent to the coordinator.

Finally, the service is created as an instance of the CrowdService class, and launched. The constructor

for CrowdService takes as parameters a title, a description, the sampling rate to be used for sensor feeds

samplingRate, the list of events (i.e., locationEvent and activityEvent) and the aggregation method
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void c r e a t eS en so rS e rv i c e ( )
{

/* i n i t i a l i z e s e r v i c e v a r i a b l e s */
1 . int aggrMethod = SvcEnum . average ;
2 . int samplingRate = SensorManager .SENSORDELAYNORMAL;

/* de f i n e a s e r v i c e event */
3 . Serv iceEvent locat ionEvent = new Serv iceEvent (SvcEnum . sensorEvent ,
4 . new List<EventParam>(){
5 . createParam ( ‘ ‘ t r i g g e r ’ ’ , SvcEnum . ente rP lace ) ,
6 . createParam ( ‘ ‘ t r i g g e r ’ ’ , SvcEnum . departPlace ) ,
7 . createParam ( ‘ ‘ argument ’ ’ , SvcEnum . geoRadius , 10) ,
8 . createParam ( ‘ ‘ argument ’ ’ , SvcEnum . placeType , ‘ ‘ r e s t au rant ’ ’ ) ,
9 . createParam ( ‘ ‘ argument ’ ’ , SvcEnum . update Interva l , 30) ,
10 . createParam ( ‘ ‘ output ’ ’ , SvcEnum . v i s i tT ime ) }) ;

/* de f i n e a s e r v i c e event */
11 . Serv iceEvent ac t i v i tyEvent = new Serv iceEvent (SvcEnum . sensorEvent ,
12 . new List<EventParam>(){
13 . createParam ( ‘ ‘ t r i g g e r ’ ’ ,SvcEnum . sitDown ) ,
14 . createParam ( ‘ ‘ t r i g g e r ’ ’ ,SvcEnum . s t i l l ) ,
15 . createParam ( ‘ ‘ argument ’ ’ ,SvcEnum . s t i l lT ime , 1 ) ,
16 . createParam ( ‘ ‘ output ’ ’ ,SvcEnum . waitTime ) }) ;

/* c r ea t e and launch the s e r v i c e */
17 . CrowdService s e r v i c e = new CrowdService ( t i t l e , d e s c r i p t i on , samplingRate ,
18 . new List<ServiceEvent >() { l ocat ionEvent , a c t i v i tyEvent } , aggrMethod ) ;
19 . s e r v i c e . launch ( ) ;

}

Figure 3.13: Restaurant Recommendation Service

aggrMethod. Once the service has been created, launch is called to launch the service, which creates the

coordinator actor to coordinate the communication between the contributors and the service, which then

invites the contributors to begin sending their event feeds.

Twitter-like Messaging Service

A service like Twitter serves a number of purposes, which include transmission of personal, organizational and

news updates, social networking, coordination of collective action, and sharing or propagation of opinions.

Increasingly, it has also served as a source of information for journalists, opinion makers, politicians, etc. to

acquire a sense of public sentiment. There are a handful of specific message formatting devices (particularly

hashtags) which are created and subsequently adopted by contributors to indicate a relationship with existing

messages and conversations, and which enable some degree of analysis of sentiment. Here I show how the

mechanisms presented in this paper can be used to implement a service which allows users to both contribute

their opinions, and obtain aggregate information helpful in assessing contributor sentiment.
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First, I assume that potentially relevant contributors are somehow invited to participate in discussions.

Once invited to contribute, a contributor can propose a message by simply typing it. Because of the nature

of this service, a contributor of a message is also simultaneously a client who gets to see other messages. On

proposing a message, the service shows the contributor (now also a client) a list of existing messages in the

discussion which contain keywords from the proposed message (or are similar in a more meaningful way). At

this point, the contributor decides whether to proceed with contributing their message as a new message to

the discussion or to add support to one of the existing messages. This decision is made by the contributor

by voting for either their own message or one or more existing messages, or both, by distribution their 1.0

vote among them.

Figure 3.14 shows the service graphically and Figure 3.15 presents my code implementing it. To define

events, I abstract the observation of a user’s contribution as an event sensed by the keyboard sensor. I use

three events – msgSentEvent, createDiscEvent and addMsgEvent – corresponding to the three types of

activities a user can engage in.

. . . .

coordinator coordinator

constituency constituency

service
client

aggrag
gr

createcre
ate

Discussion 1 Discussion n

Figure 3.14: Twitter-like Messaging Service

Next, the set of events to be reported to the coordinator is defined. A createDiscEvent fires when a

contributor sends a request to create a new discussion with the identified constituency discConstit. When

the service receives this request, it assigns a new discussion ID to identify the discussion topic by, and creates

a dedicated discussion coordinator for that discussion, and sets up an updateInterval specifying the lengths

of the intervals after which the service would receive updates from the coordinator. The coordinator in turn

announces the discussion to contributors (SvcEnum.inviteConstit). Once invited, the contributors are free

to send messages to the discussion coordinator in the form of asynchronous messages. An addMsgEvent

fires when the service receives a (msg) from a contributor. This msg is either a new message drafted by

the contributor, or an existing message previously sent to the service. On receiving a msg, the discussion
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void c r ea teMessageServ i c e ( )
{

/* i n i t i a l i z e s e r v i c e v a r i a b l e s */
1 . int defaultSampl ingRate = SensorManager .SENSORDELAYNORMAL;
2 . int aggrMethod = SvcEnum . msgRanking ;

/* de f i n e a s e r v i c e event */
3 . Serv iceEvent createDiscEvent = new Serv iceEvent (SvcEnum . msgEvent ,
4 . new List<EventParam>(){
5 . createParam ( ‘ ‘ t r i g g e r ’ ’ , SvcEnum . rcvReq ) ,
6 . createParam ( ‘ ‘ argument” , ‘ ‘ c ons t i tuency ’ ’ , d i s cCon s t i t ) ,
7 . createParam ( ‘ ‘ argument” , ‘ ‘ update In te rva l ’ ’ , 1) ,
8 . createParam ( ‘ ‘ output ’ ’ , SvcEnum . i n v i t eCon s t i t ) }) ;

/* de f i n e a s e r v i c e event */
9 . Serv iceEvent addMsgEvent = new Serv iceEvent (SvcEnum . msgEvent ,
10 . new List<EventParam>(){
11 . createParam ( ‘ ‘ t r i g g e r ’ ’ , SvcEnum . rcvMsg ) ,
12 . createParam ( ‘ ‘ argument” , ‘ ‘ message ’ ’ , msg) ,
13 . createParam ( ‘ ‘ output ’ ’ , SvcEnum . updateLis t ) }) ;

/* de f i n e a s e r v i c e event */
14 . Serv iceEvent voteEvent = new Serv iceEvent (SvcEnum . msgEvent ,
15 . new List<EventParam>(){
16 . createParam ( ‘ ‘ t r i g g e r ’ ’ , SvcEnum . sendVote ) ,
17 . createParam ( ‘ ‘ output ’ ’ , SvcEnum . msgText ) ,
18 . createParam ( ‘ ‘ output ’ ’ , SvcEnum . msgWeight ) }) ;

/* c r e a t e and launch the s e r v i c e */
19 . CrowdService s e r v i c e = new CrowdService ( t i t l e , d e s c r i p t i on , samplingRate ,
20 . new List<ServiceEvent >(){voteEvent , createDiscEvent , addMsgEvent } , aggrMethod ) ;
21 . s e r v i c e . launch ( ) ;

}

Figure 3.15: Twitter-like Messaging Service

coordinator first updates the ranked message list (SvcEnum.updateList) to reflect the new message received,

and then checks to see if it is time to aggregate received messages and report back to the service. When it

is time to aggregate,5 it aggregates the updates and reports them to the server using an update message,

which invokes the corresponding method in the server. The server’s update method updates the state of

the discussion, and then for every entry in the list of service subscribers, sends them the view that they are

subscribed to. A voteEvent is reported to the coordinator when a new message is drafted by the contributor.

A message contains some text (msgText) as well as the proportion of the contributor’s vote for the message,

msgWeight. Each contributor has a total of 1.0 vote for any discussion, which they are free to distribute

between various messages under that discussion.

5If messages are infrequent, a clock is used by the service to interrupt the coordinator at the end of each interval.
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3.4.2 Experimental Evaluation

I experimentally evaluated CSSWare regarding performance, scalability and energy efficiency. My experi-

ments were conducted on a prototype Actor-based implementation of CSSWare. On the contributor side, I

used a Samsung Galaxy Note II phone with a 1.6GHz quad-core processor and 2GB of RAM running Android

OS ver 5.1. The server ran on a Windows 7 laptop equipped with a 2.6GHz quad-core Intel i7 processor and

8GB of RAM.

I installed instrumentation in the server and mobile application (i.e., contributor and client) parts of my

prototype restaurant recommendation service to measure the processor time was taken to perform various

tasks. Instrumentation was also added to the contributor side to measure the energy consumption of sensing.

Each experiment presented in this chapter is carried out for ten trials, then I took the average of these

trials’ results.

Performance and Scalability

Service Platform Processing Demand. To evaluate the scalability of the server, I measured the resources

required to host a service.

I created and launched a set of instances of the previously described restaurant recommendation service

with their required frequencies of event feeds distributed over a normal distribution function. Specifically, I

picked 150 random values with an average of 6.7 (SD 3.45), with the intension to be added up to 1,000.6 I

created 150 services with the randomly chosen feed frequency requirements, adding up to a cumulative feed

frequency of 1,000 feeds per second. Each service received feeds from 10 restaurants. Note that the event

feeds here are feeds of higher level events detected at the contributor end; these are not the raw data received

at a high frequency from the sensors. In other words, the average frequency of 6.7 events per second per

service would mean that something interesting is observed at some contributor device related to the service

at the rate of 6.7 per second. Furthermore, I used a window size of 20 for recently received feeds for any

window; this is the number of recent feeds which were used to compute a score for the restaurant. For this

local aggregation, I simply maintained the average wait time for the restaurant, which required O(1) amount

of time to maintain. These local aggregates for restaurants fed into the creation of a global aggregate in the

form of a ranked list of the restaurants based on their scores, which amounted to a single step of insertion

sort to maintain a sorted list, with an O(n) cost.7

Table 3.2 separately shows the one-time processing costs involved in the creation of a new service as well

as on-going processing costs as each event feed is received and processed. Creating service and coordinator

actors – the former also including parsing the service’s metadata (i.e., title and description) and adding the

new service to the published service list – took 13.04ms and 11.67ms on average, respectively. Initializing the

6I manually changed two average frequencies in order to make the 150 values precisely add up to 1000.
7Although this performs well for the small number of restaurants, it would be more efficient to use a binary search tree to

keep a large number of restaurants sorted.

32



global view for the service required 7.84ms. In terms of on-going costs, receiving and parsing an incoming

event feed required 7.35ms on average. The cost of local aggregation to keep track of the average of the last 20

waiting times for a restaurant was 0.024ms on average. This aggregation has O(1) complexity. As shown in

the table, I also measured costs for O(log n), O(n) and O(n2) complexity local aggregation functions. These

aggregation functions implemented different algorithms which have these time complexities. Particularly,

I used a binary search tree to keep the last 20 waiting times sorted, which has O(log n) complexity; I

implemented a quick select algorithm to find the median value of the last 20 waiting times, which has O(n)

complexity; and I used insertion sort to maintain a sorted list of these 20 values, which has O(n2) complexity.

The global aggregation for ranking the ten restaurants incurred an average processing cost of 0.95ms.

Table 3.2: Average Processing Time at the Server Side in ms

One-Time Per-Service Costs Mean SD
Create a service actor 13.04 2.63
Create a coordinator actor 11.67 1.74
Create a service view 7.84 0.98
Total processing time 32.55 5.35

Per-Event-Feed Costs Mean SD
Process an event feed 7.35 1.11
Local aggregation (O(1) cost) 0.024 0.0021
Local aggregation (O(log n) cost) 0.078 0.0083
Local aggregation (O(n) cost) 0.280 0.0349
Local aggregation (O(n2) cost) 0.680 0.0987
Global aggregation (10 Restaurants) 0.95 0.17
Total processing time (O(1) local aggregation) 8.325 1.28

To put these numbers in some context, given the 8.325ms required per feed on an on-going basis, about

120 event feeds could be processed by a server of my configuration per second. This could support a single

service where 120 events are being collectively detected by the contributors every second, or 10 services which

are each receiving about 12 feeds per second on average, and so on. In a broader context still, assuming 40% of

the population dines out at a meal time,8 assuming the diners are distributed somewhat evenly over a period

of two hours, and each diner’s device is sending 3 events over the course of their meal (indicating arrival,

seating, departure) a server of my modest configuration could process 288,288 diners’ data, equivalently data

for a city of about 720,720 people. In practice, data from a small fraction of the diners could be used, allowing

service for an order of magnitude higher population.

That said, the global aggregation function assumed only ten restaurants. Although this may be reasonable

because individuals requiring restaurant recommendations are not likely to be close to hundreds of restaurants,

narrowing down the selection before aggregation would mean custom global aggregations, each costing the

8Zagat 2014 restaurant survey reported that an average American ate out or bought 47% of their lunches or dinners
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0.95ms. However, this custom aggregation could happen on the client’s own device, without impacting the

server’s scalability. Alternatively, for a truly global aggregate for a city with (say) 10,000 restaurants, an

O(log n) binary search tree could be used to keep the restaurants sorted; only the top few would ever need

to be fetched, limiting the fetching cost.

Contributor Processing Demand. On the contributor side, again, I separately measured the initial cost of

handling a new service’s request for a contribution, as well as the on-going cost of serving the service.

The average total of measured one-time cost was 53.35ms (SD 3.41). The on-going costs measured were

per sensor feed: every time a piece of raw data was received from a server, its average total processing cost

amounted to 8.68ms (SD 1.02). A finer breakdown of this total is presented in Table 3.3.

Table 3.3: Average Processing Time at the Contributor Side in ms

One-Time Per-Service Costs Mean SD
Process a service invitation 32.51 2.32
Initiate service 20.84 1.09
Total processing time 53.35 3.41

Per-Sensor-Feed Costs Mean SD
Schedule samples 2.81 0.45
Filter a sensor feed 4.16 0.49
Detect a service’s event 1.71 0.08
Total processing time 8.68 1.02

To put this on-going cost in perspective, about 115 sensor feeds per second could be handled on a device

of my configuration (assuming no other computations are executing). If an average service requires as many

as 10 data samples per second (from a variety of sensors), 11.5 of such services could be supported; if an

average of 1 data sample per second is required per service, a more likely scenario, 115 services could be

simultaneously contributed to.

Client Processing Demand. For the client side as well, I measured the one-time processing costs of accessing

a new service, as well as the on-going costs of receiving updates.

As shown in Table 3.4, the average total of measured one-time costs was 35.53ms. The total of measured

per-refresh on-going costs amounted to 60.9ms on average, with 28.7ms (SD 3.9) for processing the update,

and 32.2ms (SD 6.4) for display. In other words, a client could be simultaneously subscribed to and receive

updates from 16 services every second. This is not very meaningful considering that more than half of the

processing cost is for graphically displaying the update, which is not likely to happen simultaneously for more

than only a few services. If I assume that only one service’s updates are actually displayed at a time, more

than 30 services could be supported in the background where interesting updates could lead to notifications,

invitations to display, etc.
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Table 3.4: Average Processing Time at the Client Side in ms

One-Time Per-Service Costs Mean SD
Parse a service notification 21.32 2.21
Subscribe to a custom view 14.21 1.84
Total processing time 35.53 4.05

Per-View-Update Costs Mean SD
Parse a service update 28.7 3.9
Display a service view 32.2 6.4
Total processing time 60.9 10.3

Energy Consumption of CSSWare vs. Standalone Services

Finally, a set of experiments was carried out to measure the overall improvement achieved in energy consump-

tion by using CSSWare’s sampling scheduler on the contributor device. I used the PowerTutor software [64]

for my energy measurements.

To measure the overall improvement in energy consumption, I made measurements of energy used by

CSSWare and identical standalone services implemented without using CSSWare. Table 3.5 shows the total

amount of energy used by each sensor for the entire experiment duration. As shown in Table 3.5, the

sampling scheduler improved energy consumption of accelerometer and gyroscope sensors by up to 24.60%

and 26.63%, respectively. However, the percentage savings depend entirely on the number of requests being

served, because although the energy used is roughly linear in the cumulative sampling rate of all requests for

the standalone services, for CSSWare, it depends almost entirely on the highest frequency being requested

at the time, from which other requests are also served.

Table 3.5: Energy Consumed using CSSWare vs. Standalone Services in mJ

Sensor
Standalone CSSWare

Mean SD Mean SD
Accelerometer 2,646 132.3 1,995 102.6
Gyroscope 14,653 761.4 10,751 645

Overhead Analysis. To determine the non-sensing overhead of CSSWare, I measured the energy consumed

by the contributor device side of the framework, albeit without the actual sensing. The average energy

consumed was measured to be 70.4 mJ for the accelerometer, and a similar 79.6 mJ for the gyroscope sensor.

In percentage terms, this was roughly 4% of the total energy consumed in the accelerometer experiments,

and 0.8% for the gyroscope sensor, the difference explained by the order-of-magnitude larger overall energy

demand of the gyroscope sensor itself.
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Chapter 4

ShareSens: An Approach for Energy-Efficient Mo-

bile Sensing

This chapter presents ShareSens, an approach for efficiently supporting the sensing needs of mobile dis-

tributed services. ShareSens is implemented as an Android API for requesting sensor feeds, which enables

sharing of overlapping feeds between services. This chapter is organized as follows: Section 4.1 and 4.2 present

the design and implementation of ShareSens respectively. Section 4.3 presents my evaluation of ShareSens.

4.1 ShareSens Design

ShareSens also uses the Actor model [6], which is an increasingly influential model for concurrent systems.

My design of the ShareSens is shown in Figure 4.1. An optimizing sampling scheduler is used to schedule the

sampling of each sensor based on the sensing requirements received from apps being served at the time. The

scheduler attempts to optimize the sampling rate of each sensor exploiting opportunities for different apps

to share sensor samples when possible.

ShareSens handles two types of sensing requests, fixed – specified using a single required sampling rate –

and flexible – specified using a range of acceptable rates, from the lowest acceptable rate to the highest rate

which, if available, can be made use of. Furthermore, because the approach is most beneficial when multiple

requests can be merged to serve the requests simultaneously, my prototype implementation makes further

assumptions about the nature of requests, which will be discussed below.

Even though fixed sampling rate requests are essentially subsumed by flexible rate requests, there are

advantages to handling sets of fixed-only rate requests separately. This is primary because flexible rate

requests present an additional opportunity to serve applications at rates above their minimum requirements,

which adds a degree of complexity. When all requests are for fixed rates, that complexity can be avoided.

When handling fixed-only rate requests, on receiving a new request, ShareSens’s scheduler checks if the

current sampling rate – sufficient for serving all currently served requests – can also satisfy the new sampling

rate being requested. To ensure that the data samples are equidistant in time, the scheduler needs to compute

the least common multiple (LCM) of the sensor’s current sampling rate and the rate being requested, to

determine a rate that would serve both existing requests and the new request. This, however, presents a

challenge.
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Figure 4.1: ShareSens Architecture

Because of the way LCM is defined,1 it is only in special circumstances that LCM(x, y) is lower than

the sum of x and y, meaning that using the LCM of two requested sampling rates would rarely be better

than serving them independently. Particularly, the LCM of two numbers is lower than their sum when the

numbers are equal or one is the multiple of the other. For this reason, finding a covering sampling rate is most

beneficial when the sampling rates requested by applications are in such a relationship among themselves.

It turns out that this is possible to achieve by setting up preferred sampling rates for applications to pick

from – as the Android Sensor API already does by offering 5Hz, 16Hz, 50Hz, 100Hz with designated purposes

of UI, normal, game, highest, respectively2 – so that they are of the form x ∗ 2n, making the LCM of any

two requested sampling rates simply the larger of the two. In the prototype, I use 10Hz, 20Hz, 40Hz, 80Hz ;

however, we can easily add a lower rate of 5Hz, or change the scheme to begin with 12.5Hz so that 100Hz

can be served.

Once the sampling rate to be used has been decided by the scheduler, it is passed on to the sensor listener

for sampling sensor data at that rate. The sensor feed is then received by a dedicated filter for the sensor

which extracts from the feed the samples required for each application.

4.1.1 Fixed-Only Sampling Rate

Algorithm 1 shows the steps taken by ShareSens in handling fixed-only sampling rate requests. Each sensing

request specifies the sensor s to be sampled and the rate r at which it should be sampled. When a new

1LCM(x, y) = (x ∗ y)/GCD(x, y); and LCM(x, y, z) = LCM(LCM(x, y), z)
2These use-case focused sampling rates are in addition to the ability to request specific sampling rates.
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request is received, the scheduler checks if the sensor is already scheduled to serve other requests. If not, it

sets it up to be schedule from then on. If the sensor is already being scheduled to serve existing requests, the

scheduler determines the rate of sampling which will be sufficient for also serving the new request. Assuming

that requests are limited to the preferred sampling rates, this simply requires comparing the new request

with the existing sampling rate, and picking the larger of the two. In general, it would require a more

complex process computing LCMs of different numbers of requests to be served, and check if serving them

independently would be more efficient than serving them from a covering rate. Because of the computational

complexity of this method, as well as the low likelihood that the LCM of requests would be lower than their

sum – let alone the LCM of all requests – my implementation and experiments assume that requests pick

from the preferred sampling rates of 10Hz, 20Hz, 40Hz and 80Hz.

The computation involved in this algorithm only has fixed costs with respect to the number of requests

being served.

Algorithm 1 Fixed-Only Sampling Rate Request Handling Algorithm

1: procedure Sensor Scheduling(s, r) . sensor name (s) and sampling rate (r)
2: if ¬SamplingScheduler.isSensorFound(s) then
3: SamplingScheduler.add(s, r); . add s to the scheduler
4: ShareSensManager.createSensorListener(s); . create a new sensor listener actor for s
5: ShareSensManager.createSensorF ilter(s); . setup a sensor filter actor for s
6: else . s is already scheduled
7: if (r > SamplingScheduler.currentRate) then
8: SamplingSchedule.adoptSamplingRate(s, r); . adopt the sampling rate to r

9: end if
10: end if
11: end procedure

4.1.2 Flexible Sampling Rate

Algorithm 2 shows the steps taken by ShareSens in handling a flexible sampling rate request. Flexible

requests come in the form of a range of possible sampling rates rather than just one. Particularly, there is a

low rate, which is the lowest rate required by the application, and there is a high rate, which is the maximum

rate which the application can take advantage of when available. The implied intent is that although the

application minimally requires the low rate, if a higher rate is available because of other requests being served,

the application would like to receive it.3

This is achieved as follows. As in the fixed case, if the sensor is currently not serving requests, it is asked

to begin collecting data at the low rate. However, if it is already sensing, the current rate is compared with

3In a related project, I am exploring a pricing model for sensing requests in a Sensing as a Service context, where requesting
applications/services could share the expense of receiving a higher sensing rate.
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the requested low rate to see if it readily serves the request (i.e., whether the requested low rate is less than

or equal to the current sampling rate). If it does not, the low rate is adopted as the new sampling rate for

the sensor. Recall that this works because I assume that the sensing rates pick from the preferred rates, and

the higher of two sampling rates is always also the LCM of the two. Next, the scheduler checks whether this

raising of the rate has created opportunities for existing requests to be served at higher rates, and sets up

the filter to do exactly that. Alternatively, if the low rate of the new request is already served by the current

sampling rate, the scheduler looks for the opportunity to serve the new request at the highest rate already

available.

Finally, note that the advantage of applications picking only from the preferred sampling rates is even more

pronounced for the flexible case because the complexity of finding the lowest common multiple (LCM) for the

range of rates acceptable to each application would be very high – significantly increasing the computational

cost of accommodating every change in sampling rate requests.

In terms of time complexity, when the for loop is executed to look for opportunities for serving existing

requests a higher rate, O(n) amount of time is taken, where n is the number of requests currently being

served; the rest of the computation takes constant time with respect to the number of requests.

Algorithm 2 Flexibile Sampling Rate Request Handling Algorithm

1: procedure Sensor Scheduling(s, l, h) . sensor name (s) and sampling rate range (l,h)
2: if ¬SamplingScheduler.isSensorFound(s) then
3: SamplingScheduler.add(s, l);
4: ShareSensManager.createSensorListener(s);
5: ShareSensManager.createSensorF ilter(s);
6: else . s is already scheduled for sampling
7: if (l > SamplingScheduler.currentRate) then
8: SamplingSchedule.adoptSamplingRate(s, l)
9: for each request in SamplingScheduler.getRequestList(s) do

10: if (request.h > SamplingScheduler.currentRate) then
11: ShareSensF ilter.setRate(request, SamplingScheduler.currentRate);
12: else
13: ShareSensF ilter.setRate(request, h); . set the filter to provide h to application

14: end if
15: end for
16: else if (h > SamplingScheduler.currentRate) then
17: ShareSensF ilter.setRate(request, SamplingScheduler.currentRate);
18: else
19: ShareSensF ilter.setRate(request, h);

20: end if
21: end if
22: end procedure
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Discussion

I assume that requests need to begin being served immediately, and that applications have no tolerance for

stale data.

Under these assumptions, for ShareSens to be beneficial, there must exist a covering sampling rate which

is better than the sum of the sampling rates being requested. As I have explained above, this happens most

readily if the requests are for sampling rates of the form x ∗ 2n (or ranges defined in terms of them). When

the covering sampling rate is not better than the sum of the requested sampling rates, it would be better to

serve the requests separately.

That said, if there is flexibility in when the sensing takes place, or if the applications can tolerate some

delay between when data is collected and when it is made available to the application, that would create

opportunities for scheduling sensing tasks to increase sharing of data. In both of these scenarios, caching of

sampled data would also be beneficial. The extent of these opportunities will depend on the types of sensors

involved and the needs of the applications.

4.2 ShareSens Implementation

A prototype of the system described in the previous section has been implemented as an Android app. As

Figure 4.2 shows, our implementation is built over Actor Architecture (AA) [42], a Java library and runtime

system for programming and executing distributed actor systems.4 I have ported AA to the Android OS for

supporting the mobile app. Android OS was not modified in any way.

ShareSens API

....

Android Platform

Apps

AA Platform

Figure 4.2: ShareSens Platform and APIs

4.2.1 Sensor APIs in Android

Android offers a sensor API to read sensor data, which provides access to event handlers to capture sen-

sor events. Android provides two event handlers through an interface called SensorEventListener: an

4More precisely, it is an extension of AA for supporting resource-bounded actor computations based on the CyberOrgs
model [63]. CyberOrgs also adds mechanisms for resource coordination of actors, which we plan to use in the future.
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onSensorChanged event is triggered when a sensor reports a new sensor value, and an onAccuracyChanged

event is triggered when a sensor’s accuracy changes.

The SensorManager class implements an Android service which provides various methods for accessing

and listing sensors, and registering and unregistering sensor event listeners. To start up the sensor service, an

app has to retrieve a handle to SensorManager, and uses the handle to make registration or unregistration

calls for its event handlers.

4.2.2 ShareSens API

Figure 4.3 shows the implementation of the ShareSens API. The ShareSensManager class – which extends

the Android platform’s SensorManager abstract class – implements a background service to host actors

executing in the system, and defines methods for accessing and managing sensors. Each sensor is encap-

sulated by a SensorServiceActor, which collects data samples collected by the sensor. At runtime, the

ShareSensManager is responsible for computing the sampling frequency which would satisfy all requests for

each sensor’s data, and keeps the relevant SensorServiceActors informed about it. Once an application

registers a SensorListener actor for collecting sensor data, it begins receiving a custom sub-stream of sensor

data collected by the SensorServiceActor just for itself. The customization is done by a special filter actor

– one for each sensor – which knows the requirements of all applications’ sampling requests, and accordingly

extracts and forwards the required streams from the feed received from a SensorServiceActor to applica-

tions’ SensorListeners. A SensorListener then passes the feed it receives from the filter to its application.

Both control and data communication happen using asynchronous message passing.

ShareSensManager

Filter

SensorManager

Scheduler
Sampling

Listener
Sensor

Platform

Android
Platform

ShareSens

Figure 4.3: ShareSens Class Diagram

As discussed previously in Section 4.1, ShareSens assumes that applications pick from a small number

of sampling rates available, selected both to increase opportunity for sharing sampled data as well as to en-
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hance performance of the scheduling mechanism. Particularly, ShareSensManager expects the sampling rates

requested to be in terms of four values (roughly matching similar choices offered by the Android API): (i) SEN-

SOR DELAY NORMAL (10Hz ) which is suitable for screen orientation changes; (ii) SENSOR DELAY UI

(20Hz ) which is suitable for the user interface; (iii) SENSOR DELAY GAME (40Hz ) which is suitable for

games; and (iv) SENSOR DELAY FASTEST (80Hz ) which is the fastest rate at which sensor data is pro-

vided. I have picked these values for convenience; they can be changed as long as they have the desired

property described in Section 4.1 to facilitate sharing of sampled data. Note also that my approach aims to

deliver samples to applications collected at equal intervals.

ShareSens handles both fixed and flexible sampling requests, the latter specified in terms of a range of

sampling rates. Figure 4.4 shows a code snippet illustrating how a fixed sampling rate would be requested

by an application. The code implements ShareSensListener and uses ShareSensManager to register an

accelerometer sensor with the normal sampling rate (SENSOR DELAY NORMAL). A reference to the sensor server

is obtained to identify the sensors available on the device. This requires creation of an instance of the

ShareSensManager class by calling the getSystemService() method and passing it the SENSOR SERVICE

argument. A reference to the accelerometer sensor can be obtained using the getDefaultSensor() method by

passing in the type constant for a specific sensor (Sensor.TYPE ACCELEROMETER).

1 public class ShareSensFixedRateExample implements ShareSensL i s t ener
2 {
3 private ShareSensManager mShareSensManager ;
4 private Sensor mAccelerometer ;
5

6 @Override
7 public ShareSensFixedRateExample ( ) {
8 mShareSensManager=(ShareSensManager ) getSystemServ ice ( Context .SENSOR SERVICE) ;
9 mAccelerometer = mShareSensManager . ge tDe fau l tSensor ( Sensor .TYPE ACCEL) ;

10 mShareSensManager . r e g i s t e r L i s t e n e r ( this , mAccelerometer , ShareSensManager .
SENSORDELAYNORMAL) ;

11 }
12

13 @Override
14 public f ina l void onSensorChanged ( SensorEvent event ) {
15 // Do something wi th the sensor event .
16 }
17

18 @Override
19 public f ina l void onAccuracyChanged ( Sensor sensor , int accuracy ) {
20 // Do something here i f sensor
21 // accuracy changes .
22 }
23 }

Figure 4.4: ShareSens API Usage Example for Fixed-Only Rate

Similar to the sensor APIs in Android, raw sensor data is monitored by implementing the onAccuracy-
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Changed() and onSensorChanged() callback methods provided through the ShareSensListener interface.

Programming of flexible sampling requests is illustrated in Figure 4.5. Here, ShareSensManager allows

the programmer to specify a range of sampling rates by stating the low and high rates. The code shown in Fig-

ure 4.5 is very similar to the one for the fixed sampling rate (Figure 4.4), except that the registerListener

method is now overloaded (see line 12) to take the low and high sampling rates, minSamplingRate and

maxSamplingRate. Again, the rates which can be requested are assumed to be from the preferred ones. In

other words, all preferred rates between the low and high values are meant to be included in the range.

1 public class ShareSensFlexRateExample implements ShareSensL i s t ener
2 {
3 private ShareSensManager mShareSensManager ;
4 private Sensor mAccelerometer ;
5 private int minSamplingRate = 20 ;
6 private int maxSamplingRate = 40 ;
7

8 @Override
9 public ShareSensExample ( ) {

10 mShareSensManager = ( ShareSensManager ) getSystemServ ice ( Context .
SENSOR SERVICE) ;

11 mAccelerometer = mShareSensManager . ge tDe fau l tSensor ( Sensor .TYPE ACCEL) ;
12 mShareSensManager . r e g i s t e r L i s t e n e r ( this , mAccelerometer , minSamplingRate ,

maxSamplingRate ) ;
13 }
14

15 @Override
16 public f ina l void onSensorChanged ( SensorEvent event ) {
17 // Do something wi th the sensor event .
18 }
19

20 @Override
21 public f ina l void onAccuracyChanged ( Sensor sensor , int accuracy ) {
22 // Do something here i f sensor
23 // accuracy changes .
24 }
25 }

Figure 4.5: ShareSens API Usage Example for Flexible Rate

4.3 ShareSens Evaluation

The benefit of using ShareSens is relatively obvious: a lower cumulative sampling rate would lead to power

savings related to the sampling. In this context, I evaluated ShareSens with two goals in mind. First, to

confirm the opportunity for offering higher sampling rates “for free” when sampling request rates are flexible.

Second, and more significantly, to assess the cost of using ShareSens, and to establish its limits: when does

ShareSens stop being beneficial?
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Precisely because of the opportunistic nature of the advantage of using ShareSens – there are savings

only when there is an opportunity to share sensing data – I decided against using complete applications

for evaluating it. The rationale for this decision was that it would be difficult to sufficiently control the

sensing requirements of real(istic) applications for controlled experiments. Also, in order to obtain meaningful

results, we would have to install instrumentation to isolate the situations where the opportunities for shared

sampling did exist. More importantly, these efforts would be aimed at first creating and then isolating

situations which are of interest, defeating the point of having the real(istic) applications in the first place.

An evaluation approach explicitly built around the interesting situations – opportunities for sharing sensed

data, and transitions between these opportunities – would achieve the evaluation goals more effectively. I

chose the latter approach.

I carried out a number of experiments with both fixed and flexible sampling requests, with multiple goals:

to confirm the expected reduction in sensors’ sampling rates as a result of using ShareSens, with concomitant

reduction in energy consumption; to confirm the opportunity to serve flexible requests of applications at

sampling rates higher than the lowest rates; to determine the energy footprint of using ShareSens, and finally

to establish whether using ShareSens stops being beneficial beyond a certain frequency of changes in requests

by applications.

4.3.1 Experimental Setup

My experimental work was done on a Samsung Galaxy Note II phone running Android OS version 5.1,5 and

executing the prototype implementation of ShareSens.

Because of the opportunistic nature of the advantage of using ShareSens, the experiments are designed

primarily to establish that (a) when there is an opportunity presented by overlapping sensing requests, energy

saving actually materialize, and (b) when the opportunity does not exist, my approach does not do worse

than Android’s API.

I artificially generated a set of sensing loads to simulate application requests for continuous sensing for

two different sensors, the accelerometer and the orientation sensor. Specifically, I used three loads which I

refer to as light, normal, and heavy. For each experiment, measurements were carried out over the period

of 60 seconds, where fresh requests could arrive at 5-second points. With the exception of one low rate

sensing request active over the entire 60 seconds period, other requests were inserted at randomly selected

points, and each was active for 5 seconds at a time. The maximum number of requests for a certain rate

were restricted as well, with fewer requests for higher sampling rates than those for lower rates, implicitly

assuming that higher sampling demands – such as for fine-grained health monitoring requiring 80 samples

per second – would be less frequent.

Each experiment presented in this chapter is carried out for ten trials, then I took the average of these

5This was the current version of Android OS at the time of our experiments, which were carried out in 2015; newer versions
of Android OS have not significantly changed the relevant sensing mechanisms.

44



0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50 55 60

SR
 (
H
z)

Time Line

Light Load

10 Hz

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50 55 60

SR
 (
H
z)

Time Line

Light Load

20 Hz

Figure 4.6: Fixed-Only Rate Requests (Light Load)

trials’ results.

Fixed Sampling Rate

Figures 4.6, 4.7 and 4.8 show the light, normal and heavy sensing loads used in the experiments for the fixed

sampling rate (SR) requests. In each case, there was a 10 Hz request which lasted the entire 60 seconds.

Additionally, 20 Hz, 40 Hz, and 80 Hz requests were inserted at randomly selected points, each for 5 seconds

at a time. The maximum number of requests of a certain sampling rate were limited depending on the

frequency: 6 of 20 Hz, 4 of 40 Hz, and 2 of 80 Hz. The same three sets of measurements were carried out for

the accelerometer and the orientation sensors.

Flexible Sampling Rate

Figures 4.9, 4.10 and 4.11 show the light, normal and heavy sensing loads used in the experiments for the

flexible sampling rate (SR) requests. The loads used here are similar to those in the fixed case in terms of

when the requests arrive. The main difference is in that the individual requests are for ranges of sampling

rates, rather than fixed rate, implying that the requesters would be satisfied with the low rates, but would

like higher sampling rates when available for “free.” In all loads, there is one request for a sampling rate

between 10 Hz and 20 Hz for the entire 60 seconds interval. Additionally, there are requests for ranges of

20 – 40 Hz, 40 – 80 Hz, and 80 – 80 Hz.6 The maximum number of requests different types are 6, 4 and 2

respectively. The same three sets of measurements were carried out for the accelerometer and the orientation

sensors.

6Note how a fixed request can be represented as in 80 – 80 Hz. Although flexible requests conceptually subsume fixed
requests, collections of fixed-only requests can be implemented more efficiently because of the absence of opportunity to serve
requests at higher rates than the low rates in the ranges.
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Figure 4.7: Fixed-Only Rate Requests (Normal Load)
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Figure 4.8: Fixed-Only Rate Requests (Heavy Load)
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Figure 4.9: Flexible Rate Requests (Light Load)
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Figure 4.10: Flexible Rate Requests (Normal Load)
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Figure 4.11: Flexible Rate Requests (Heavy Load)

4.3.2 Opportunistic Raising of (Flexible) Sampling Rates

For the case of flexible sampling requests, I collected data about when requests were served at a higher

sampling rate than the low rate in the request. Recall that flexible requests specify a range of acceptable

sampling rates, with the intent of specifying the minimum required rate, and the highest rate which the

requesting application may be able to take advantage of. At times when different requests are being served

with different low (i.e., required) sampling rates, the rate used for sampling data would be the highest of

these low rates. Consequently, there is an automatic opportunity to serve those with lower low rates with a

higher sampling rate. Figures 4.12, 4.13, and 4.14 show the actual sampling rates which were served in my

experiments for the flexible rate requests.

4.3.3 Energy Consumption of ShareSens vs. Android’s Sensor API

For this set of experiments, I used the PowerTutor software [64] for power measurements.

As intended, for the fixed-only sampling rate experiments, the actual rate at which ShareSens sampled a

sensor was always the highest requested rate (in accordance with Algorithm 1 presented in Section 4.1). For

the flexible rate experiments, as well, I observed the actual sampling rate to be correct – i.e., the highest low

rate requested – in accordance with Algorithm 2. Figure 4.15 compares the actual sampling rates used by
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Figure 4.12: Opportunistic High Sampling Rate for Flexible Request (Light Load)
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Figure 4.13: Opportunistic High Sampling Rate for Flexible Request (Normal Load)
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Figure 4.14: Opportunistic High Sampling Rate for Flexible Request (Heavy Load)

ShareSens with those used by the Android API for identical flexible rate loads. Recall that both algorithms

assume that sampling requests by applications pick from the preferred sampling rates of the form 10 ∗ 2n Hz

in the spirit of similar preferred sampling rates offered by the Android API.

Figures 4.16, 4.17, 4.18 and 4.19 show the power use measurements for the accelerometer and orientation

sensor experiments for fixed-only and flexible sampling requests, respectively. ShareSens delivered energy

savings as expected, effectively reducing the power use to the requirement for the actual rate at which the

sensor was sampled.

Surprisingly, using the Android API led to power consumption that was superlinear with respect to the

sum of all sampling rates requested by the concurrent sensing tasks; most notably, in my tests, I found that

multiple requests adding up to a cumulative sampling rate of (say) 80Hz used less power than a single request

for 80Hz, leading to a negative correlation between the number of independent sensing streams and the power

required to serve them, for the small number of streams I tested for.

For completeness, in Tables 4.1 and 4.2, I present the total amount of energy used for the entire 60

seconds sensing loads used in my experiments. The percentage saving in the energy consumed when using

ShareSens (in comparison with the Android API) depends entirely on the number of requests being served,

and the difference between the sampling rates they request. This is because although the energy used is

roughly linear in the cumulative sampling rate of all requests for the Android API, for ShareSens, it depends
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Figure 4.15: Actual Sampled Rate for Flexible Rate Experiments
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Figure 4.16: Fixed-Only Rate Requests: Power Consumption for Accelerometer
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Figure 4.17: Fixed-Only Rate Requests: Power Consumption for Orientation Sensor
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Figure 4.18: Flexible Rate Requests: Power Consumption for Accelerometer
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Figure 4.19: Flexible Rate Requests: Power Consumption for Orientation Sensor
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almost entirely on the actual sampling rate used by ShareSens, which is equal to the highest rate requested

for fixed-only requests, or the highest of the low rates requested for flexible requests.

Table 4.1: Fixed-Only Rate: Energy consumed for different workloads in mJ

Sensor Workload
Android ShareSens
Avg. SD Avg. SD

Accelerometer Light 982 49 737 38
Accelerometer Normal 1,370 82 886 41
Accelerometer Heavy 1,921 104 1,245 70
Orientation Light 5,427 282 3,980 239
Orientation Normal 7,638 367 4,876 234
Orientation Heavy 10,960 504 7,123 356

Table 4.2: Flexible Rate: Energy consumed for different workloads in mJ

Sensor Workload
Android ShareSens
Avg. SD Avg. SD

Accelerometer Light 1,156 58 742 39
Accelerometer Normal 1,649 99 894 41
Accelerometer Heavy 2,405 130 1,255 70
Orientation Light 6,384 332 3,986 239
Orientation Normal 9,175 440 4,884 234
Orientation Heavy 13,655 628 7,134 357

4.3.4 Transition Frequency Overhead

Finally, I examined the impact of the delay in transitioning from one rate of sampling a sensor to another,

which is observable in the power consumption graphs.

I measured the two sources of delay in transitioning from one sampling rate to another: the processing

time taken by ShareSens to determine the new sampling rate, and the time is taken by a sensor to change

its sampling rate. These measurements are shown in table 4.3. As previously discussed in Section 4.1, the

complexity of the computation involved is constant for the fixed-only rate case, and linear (in the number of

requests being served by a sensor) for the flexible rate case. As a result, the measured time of 0.636 ms is

for the 3 to 4 requests used in my experiments, and will change if there are more requests. Regardless, the

dominant delay in making these transitions is the sensors’ delay in switching to a new sampling rate. For

the accelerometer and orientation sensors, the total per-transition cost (including both CPU time and sensor

delay) for the fixed-only sampling rate experiments was 6.29ms and 10.24ms, respectively, and for the flexible

sampling rate experiments was a similar 6.806ms and 10.756ms, respectively.
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Table 4.3: Transition Delay in ms

Mean SD
Scheduler CPU Time (Fixed-Only Rate) 0.12 0.0063
Scheduler CPU Time (Flexible Rate) 0.636 0.046
Sensor Transition Delay (Accel.) 6.17 1.13
Sensor Transition Delay (Orient.) 10.12 1.39

It is difficult to definitively translate these delays into a frequency of sampling rate transitions beyond

which using ShareSens will no longer be useful, without a much more detailed analysis. However, considering

that as long as ShareSens’s scheduling does get a chance to select sampling rates, it can deliver energy savings

over Andriod’s API, there is some value in determining the total number of transitions which can happen per

second. That number turns out to be roughly 160 or 100 depending on whether it involves the accelerometer

or the orientation sensor.

In any reasonable scenario, I would expect there to be only a few transitions every second, which is about

two orders of magnitude fewer, suggesting that the transition time would not be a significant concern.
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Chapter 5

ModeSens: An Approach for Multi-modal Mobile Sens-

ing

This chapter presents the ModeSens’s approach to modeling and programming multi-modal sensing re-

quirements of applications. This chapter is organized as follows: Section 5.1 presents the model and imple-

mentation of the approach. Section 5.2 evaluates ModeSens in two ways. First, I state the programmability

benefits of separating sensing mode transition concerns from functional concerns of applications. Second, I

present experimental results on performance and energy costs of using ModeSens.

5.1 Model and Implementation

A natural way to represent multi-modal sensing is by using a finite state machine. Particularly, I specify

a machine M = 〈S, Σ, δ, s0〉 (Figure 5.1), where S and Σ are non-empty finite sets of states and inputs

respectively, with s0 ∈ S being the initial state. δ: S × Σ → S is the state transition function. Σ contains

triggers for mode change, defined in terms of recently sensed data. Sensing of specific data can fire a trigger

t ∈ Σ which leads to state transition from si to sj .

2

M

M

M
1

0

2

t

t

1

nt t
1

Figure 5.1: Multi-Modal Sensing

Similar to CSSWare, I have prototyped this mechanism for multi-modal sensing as a self-contained mo-

bile application implemented over the CyberOrgs [63] extension of Actor Architecture (AA) [42] ported to

Android.
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5.2 ModeSens Evaluation

In this section, I present the evaluation of ModeSens for both the programmability benefits, as well as the

experimental evaluation of performance and energy costs of using ModeSens. Note that the latter is intended

more to document these cost than to compare with the alternative of mixing mode transition concerns with

functional concerns, which would obviously still have the same monitoring, triggering and mode transition

costs.

5.2.1 Programmability

My approach to multi-modal sensing offers programmability advantages by separating concerns of the sensing

mode transition from the application’s functional code, which would otherwise be (and are) mixed. To

simplify the specification of the multi-modal system, I have developed a simple graphical user interface to

allow programmers to specify the finite state machine for the mode transitions, by defining new modes,

transitions between modes, and any outputs to the application. The lower half of Figure 5.2 shows this

interface; the complete figure shows an interface for specifying a crowd-sourced service, which is used by

CSSWare.

Figure 5.2: The GUI for Creating Crowd-sourced Services
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5.2.2 Experimental Evaluation

My experimental evaluation used a specific case study involving human activity recognition as a sensing

application, which ran on a Samsung Note II (1.6 GHz quad-core, 2 GB RAM) running Android 5.1. I

defined four activity modes, namely stilling (i.e., being still), walking, bicycling and driving. Each mode had

its sensing requirements for one or more of the accelerometer, gyroscope and GPS sensors, which represented

the functional requirements for the application. The stilling mode required accelerometer data, walking mode

required accelerometer and gyroscope data, and the bicycling and driving modes required accelerometer and

GPS data.

In addition, the mode transition logic also relied on sensed data. Although it is not required in general,

here I assumed that all sensors were to be sampled to detect mode transition triggers at a sampling rate of

1Hz. In other words, for the sensors being already sampled for the current mode’s functionality, only one

of a presumably larger number of samples was accessed every second for trigger detection purposes; for the

remaining sensors, new sensing was required. The latter could also be pulled from sensing done for other

applications using ShareSens mechanism.

Each experiment presented in this chapter is carried out for ten trials, then I took the average of these

trials’ results.

Performance. I separately measured the ongoing cost of monitoring for detecting mode transition

triggers, and the sensing and processing delays in carrying out the triggered mode transitions.

The trigger detection mechanism checked for a trigger on the arrival of every new feed set, and examined

a window of recently sensed data to detect a trigger. I found the trigger detection cost to depend primarily

on the size of the window of recently sensed data considered. For my case study, I used a window of size 12,

which seemed sufficient for detecting mode transition triggers.

Table 5.1 shows the processing time measured for the ongoing cost of monitoring for mode transition

triggers for each of the modes. The time (in milliseconds) is for both acquiring and processing the set of feeds

(one feed from each sensor) to check for a transition trigger. Old applies when data already being collected

for the mode’s function can be utilized; New applies when fresh sensing is required. Because the sensing for

detecting triggers was at the rate of 1Hz in my case study, this cost is also in milliseconds per second. The

delay in transitioning individual sensors from a current sampling rate to a different one were measured to be

6.21ms (SD: 1.21), 10.71ms (SD: 1.76) and 17.39ms (SD: 2.36) for the accelerometer, gyroscope and GPS

sensors, respectively. Table 5.2 shows the cost of making a transition from one of the four modes to another.

This involved the sampling rate changes for the sensor involved plus a small amount of processing cost

required to call for the changes. The sampling rate change cost was incurred only if a previously unsampled

sensor was to be sampled in the new mode, or vice versa; the delay between a pair of modes is symmetric.
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Table 5.1: Ongoing Cost Per Feed Set of Monitoring for Mode Transition Triggers in ms

Mode Accel. Gyroscope GPS Total
Stilling Old: 0.39 (SD: 0.05) New: 4.50 (SD: 0.54) New: 7.31 (SD: 0.81) 12.2
Walking Old: 0.39 (SD: 0.05) Old: 0.39 (SD: 0.05) New: 7.31 (SD: 0.81) 8.09
Bicycling Old: 0.39 (SD: 0.05) New: 4.50 (SD: 0.54) Old: 0.39 (SD: 0.05) 5.28
Driving Old: 0.39 (SD: 0.05) New: 4.50 (SD: 0.54) Old: 0.39 (SD: 0.05) 5.28

Table 5.2: Mode Transitions Delay in ms

Stilling Walking Bicycling Driving
Stilling X 12.32 (SD: 0.98) 19 (SD: 1.33) 19(SD: 1.33)
Walking 12.32 (SD: 0.98) X 31.32 (SD: 3.45) 31.32 (SD: 3.45)
Bicycling 19 (SD: 1.33) 31.32 (SD: 3.45) X 1.61 (SD: 0.15)
Driving 19 (SD: 1.33) 31.32 (SD: 3.45) 1.61 (SD: 0.15) X

Energy Consumption. A set of experiments was carried out to measure the ongoing energy cost

incurred by the sensors for additional sensing for detecting mode transition triggers, as well as the cost of

change the sensors’ sampling rates to carry out the mode change. I used the PowerTutor software [64] for

energy measurements. As shown in Table 5.3, the ongoing costs were measured to be 0.63mJ (SD: 0.03),

1.24mJ (SD: 0.08) and 1.93mJ (SD: 0.13) for the accelerometer, gyroscope and GPS sensors respectively.

These per feed set costs amounted to mJ per second for my case study, because the sensing for detecting

triggers was at the rate of 1Hz. The cost of changing a sensor’s sampling rate was measured to be 2.42mJ

(SD: 0.12), 3.18mJ (SD: 0.15) and 4.05mJ (SD: 0.21) for the accelerometer, gyroscope and GPS sensors,

respectively.

Table 5.3: The Energy Consumption of Sensors for Multi-Modal Sensing in mJ

Accelero. Gyro. GPS
Cost Per Transition 2.42 (SD: 0.12) 3.18 (SD: 0.15) 4.05 (SD: 0.21)

On-Going Cost Per Feed Set 0.63 (SD: 0.03) 1.24 (SD: 0.08) 1.93 (SD: 0.13)
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Chapter 6

Towards a Formal Model for Representing Mobile

Distributed Services

This chapter presents an early model, MobDisS (Mobile Distributed Services), for representing mobile

distributed services. MobDisS provides a mechanism for specifying the creation and manipulation of services.

This chapter is organized as follows: Section 6.1 presents the definition of a mobile service. Section 6.2 de-

scribes a set of composition rules through which more complex services are constructed from simpler ones, and

gives examples to demonstrate the concept of service composition. Section 6.3 presents operational semantics

for MobDisS. Section 6.4 discusses the connections between multi-origin communication and CSSWare in the

context of the model. Section 6.5 summarizes this chapter.

6.1 Services

A service receives input contributions from some contributing source, processes them, and creates output

contributions for some client. We call these contributions as service feeds. In a system of services, we treat

every client and contributor as a service: they are called the client service and the contributing service of

the particular service. In other words, the client service could simply be an end user receiving a feed from

some service, but not necessarily producing a derivative service for another service; a contributing service,

similarly, could be just a sensor without any service contributing to it.

We model a service by a set of ports and a set of agents. Ports can be one of two types: input or output.

A service receives input feeds from contributing services through its input ports and sends output feeds to

client services through its output ports. Agents implement the service’s logic and convert the feeds arriving

from contributing services into the feeds required by client services. Our definition for a service is as follows:

Definition 1 (Service):

A service has one or more input ports, which receive feeds from contributing services, and one or more output

ports, which send feeds to client services, and a set of agents, which are responsible for implementing the

service’s logic.

From this definition, a service has two types of components: ports and agents. Both ports and agents are

active objects. Consequently, a service can be defined as a set of active objects. Input ports are receptionists
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of data. Therefore, contributing services must know the names of input ports of client services in order to

send data messages – through their output ports – to them.

6.1.1 Communication between Services

In a system of services, the required communication between services is carried out by sending and receiving

asynchronous messages. Messages can be of one of two types: control messages or data messages. Control

messages (also called inter-service messages) are communicated between services for administrative purposes;

while the data messages are used to send service feeds from contributing services to client services. Each

service has a dedicated agent called the service coordinator, which is responsible for handling control messages

between its service and other services in the system. When a control message is sent to a service, the message

is received by its coordinator agent. The rest of agents implement the service logic and process the received

data messages.

Figure 6.1 illustrates the interaction between services. A rectangle represents a service’s boundary. Each

service has a set of ports using which it could communication with other services in the system. The figure

also illustrates the components of a service. Ovals are agents serving the service, white circles are input ports,

black circles are output ports, and the lines with arrows represent message flows; the service encapsulates a

set of agents implementing its logic. These agents are invisible to other services. To interact with a service,

both contributing and client services have to be connected to the service’s ports: to send messages to the

service, contributing services are connected to its input ports; to receive messages from the service, client

services are connected to its output ports.
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Figure 6.1: Communication between Services
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6.2 Composition

We define services compositionally. In other words, simpler services can be composed to create more complex

services by applying a set of composition rules. A service connects to other services using input and output

ports. Messages can be received by a service at its input ports and can be sent out to other services from its

output ports. An external observer can only see the input ports and the output ports of the final composed

service.

We make a clear distinction between the composition of the definitions of services and the composition

of running services. Here, we present how to compose the definitions of services using a set of composition

rules. Later in Section 6.3, we will discuss the composition of running services.

Making services composable offers two benefits: First, from the programming perspective, composing

services facilitate the reuse of designs and implementations of existing services. Particularly, a platform

or a middleware could use a set of service composition rules to allow service designers to compose simpler

contributing services, which could be as simple as sensor services, to create new services utilizing them.

However, composing services is not the only way for creating new services. Services can also be defined

directly by first creating its sets of ports and agents, and then connecting it to the required set of contributing

and client services through its input and output ports, respectively. Second, from the definitional perspective,

compositional definition allows for properties of services to be proven inductively.

A service s is written as:1

[[I : α : O]]s

where s is the service’s unique name, I is a set of input ports, α is a set of agents of the service, and O is a

set of output ports. To be precise in our presentation of services, we assume that the computations involved

in a service are carried out by actors [36]. Actors are active objects, which use asynchronous messages to

communicate. In particular, we use actors to model ports and agents. An actor with name a ∈ α and

behavior b is represented by (b)a.

6.2.1 The primitive service

The primitive service is a one-time service, which has one input port, one agent, and one output port.

It simply forwards a one-time service feed received from a contributing service, which is connected to the

service’s input port, to a client service, which is connected to the service’s output port.

Consider a simple alarm service which serves one-time requests. The service’s client expects at most one

feed message from the alarm at a specific time in the future; when that point of time is reached, an alarm

message is sent to the client.

The primitive service shown in Figure 6.2, which has one contributing service sending it a one-time service

1A table of notations (Table 6.1) is included at the end of this chapter.
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feed, ζ, through its input port, i (white circle), which it sends to a client service through its output port, o

(black circle), can be written as:

[[{i} : {a} : {o}]]s

where i is an input port, o is an output port, and a is an agent which has a forwarder behavior. For improving

readability, from here on, we will refer to {a}, {i} and {o} as simply a, i and o, respectively.
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Figure 6.2: Primitive Service: One-time Service

A service feed ζ is represented in our model as a timed data feed, with its temporal and contextual

constraints which define when and how this feed can be collected and delivered to a client service, respectively.

Formally,

ζ = 〈γ , s , td , dζ〉

where γ denotes an expression which is evaluated by a service to obtain the sensing task that is carried out

by the service,2 s represents the client service which will receive the feed, td is the delivery time of the feed,

and dζ is the maximum time delay between the sensing time and the delivery time. If the sensed data is a

result of aggregating multiple feeds, then dζ becomes the maximum time delay between the oldest feed and

the delivery time of the aggregate.

6.2.2 Composition Rules

There are three service composition rules: union, output merge and serial composition.

Union Composition

The union composition rule is used to compose a number of services by combining their ports and agents,

as well as their service feeds. The purpose of this composition is to create a new service which utilizes the

definitions of a number of existing services, to widen the scope of coverage provided by them over time, space,

or both.

First, services can be composed over time by combining their output feeds temporally, but not necessarily

combining their ports and agents. However, the delivery times of these output feeds must be different. We

refer to the output service of this composition as a temporally distributed service. A temporally distributed

service receives continual input feeds from a number of contributors, and periodically aggregates these feeds

and sends continual output feeds to the service’s clients. An example of a temporally distributed service would

2After evaluating the γ expression, the service replaces it with the sensed data.
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be that of a restaurant recommendation service available over the web or through a mobile application, which

attempts to offer up-to-day information to site visitors.

Second, services can also be composed over space by combining their ports and agents. As a result, the

output feeds of the composed service can be considered as the union of all output feeds of the services being

composed, without any restrictions on their delivery times. Therefore, the time union composition can be

considered a special case of the space union composition. For instance, this composition would be useful to

create a new service which takes advantage of some existing services covering different geographical locations

in a city, observing various events of interest in the same location, collecting signatures in an organization or

community for an electronic petition using personal smartphones, etc.

The union composition first creates a new service with empty sets of input ports, agents and output

ports. If the services are composed over space, then both ports and agents of the services being composed,

which retain the old behaviors, are cloned and added to their corresponding sets ports and agents of the new

(composed) service. Figure 6.3 shows an example of composing n > 1 services over space using the union

composition rule. Each contributing service sj , which has a set of input Ij , a set of agents αj and a set

of output ports Oj , produces a set of feeds Zj during the execution of the service, for 1 ≤ j ≤ n, where n

is number the contributing service to be composed. Each output port of the services being composed can

produce one or more service feeds during the execution of the service. As shown in the figure, all ports and

agents of the services being composed, as well as their output feeds, are combined into the composed service.

 

 

 

 

 

 

  ..…
 

Ζ1  

…
 𝛼1  

…
 

I1 O1 

Ζ𝑛
  

…
 𝛼n  

…
 

I𝑛 O𝑛 

…
 

…
 {𝛼1, … , 𝛼n}  {Ζ1, … , Ζ𝑛}  

{I1, … , I𝑛}  {O1, … , O𝑛}
  

Ζ𝑐 

  ..…
 

Ζ1
  

…
 𝛼1  

…
 

I1 O1 

Ζ𝑛
  

…
 𝛼n  

…
 

I𝑛 O𝑛 

…
 

o𝑐 
𝛼c  

{I1, … , I𝑛}  

Ζ1
  

…
 𝛼1  

…
 

I1 O1 

Ζ𝑛
  

…
 𝛼n  …
 

I𝑛 O𝑛 

……. …
 

I𝑐 

𝛼c  Ζ𝑐
  

…
 

O𝑐 

o1 
I1 

  ..…
 

…
 

…
 

ζ
1
 

o𝑛 
I𝑛 

…
 ζ

𝑛
 

o𝑐 
ζ
𝑐
 

𝛼1  

𝛼n  

𝛼c  

{I1, … , I𝑛}  

o1 
I1 

  ..…
 

…
 

…
 

ζ
1
 

o𝑛 
I𝑛 

…
 ζ

𝑛
 

𝛼1  

𝛼n  

…
 {ζ1, … , ζ𝑛}  

{I1, … , I𝑛}  {o1, … , o𝑛}
  

{𝛼
1
, … , 𝛼n}

  

……. 

o1 i1 

ζ
1
 𝑎1 

o𝑛 i𝑛 
ζ
𝑛
 𝑎𝑛 

on i1 

ζ
c
 𝛼c  

Figure 6.3: Composition: union

We use the composition operator symbol | to represent one of the composition rules defined in this section.

The union composition of n > 1 services can be described as follow:⋃
|nj=1 [[Ij : αj : Oj ]]sj ⇒ [[

n⋃
j=1

Ij :
n⋃
j=1

αj :
n⋃
j=1

Oj ]]sc

where n > 1, sc is the name of the composed service, and the domains of all αj (Dom(αj)) are disjoined for

1 ≤ j ≤ n.

Next, I present two examples to illustrate how services can be composed using union composition over

space and time.

Example: Online Petition Service. Consider an online petition where a client wants to collect a number
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of signatures in an organization or community using personal smartphones. Figure 6.4 illustrates how an

electronic petition service can be created by composing a number of one-time services over space using the

union composition rule. Each contributing service sj , which has a set of input Ij , a set of agents αj and one

output port oj , produces only one signature feed ζj during the execution of the service, for 1 ≤ j ≤ n, where

n is number the contributing service to be composed.

The online petition service can be created by composing n > 1 one-time services over space using the

union composition rule, as follows:⋃
|nj=1 [[Ij : αj : oj ]]sj ⇒ [[

n⋃
j=1

Ij :
n⋃
j=1

αj :
n⋃
j=1

oj ]]sc

where n > 1, sc is the composed (online petition) service, and Dom(αj)’s are disjoined for 1 ≤ j ≤ n.
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Figure 6.4: Example: Online Petition Service

Example: Periodic Alarm Service. A periodic service can be considered a particular case of the tem-

porally distributed service. It can be created by composing a number of one-time services over time if the

time interval between every two adjacent service feeds is the same, given that the service feeds are sorted

by their delivery times. An example of a periodic service would be that of a periodic alarm service which

serves continual requests. The service’s client expects periodic notifications from the alarm at specific points

of time in the future; when one of these points of time is reached, an alarm notification message is sent to

the client.

Figure 6.5 illustrates how the periodic alarm service can be created by composing n > 1 one-time alarm

services over time using the union composition rule. Each contributing service sj has one input port ij , one

agent aj and one output port oj ; each output port produces at most one service feed ζj during the execution

of the service, for 1 ≤ j ≤ n, where n is number of the contributing service to be composed. sc is the name

of the composed service with ic and oc as its input and output ports, respectively. This composition can be

described as follow: ⋃
|nj=1 [[ij : aj : oj ]]sj ⇒ [[ic :

n⋃
j=1

aj : oc]]sc

where n > 1; sc is the name of the composed (periodic alarm) service with ic and oc as its input and output

ports, respectively; and Dom(αj)’s are disjoined for 1 ≤ j ≤ n. This composition happens only if this
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condition dt(ζj)− dt(ζj+1) = const > zero holds, for all temporally adjacent ζj , ζj+1 ∈ Zc, where 1 ≤ j < n,

Zc is a set of feeds produced by the composed service, and dt is a function which returns the delivery time

of a service feed ζ.
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Figure 6.5: Example: Periodic Alarm Service

Output Merge Composition

The output merge composition rule is used to compose a number of services by merging their output ports.

The purpose of this composition is to create a new service which enables a single client to receive service

updates collected by a number of contributing services aggregated in some order. That said, the input feeds

can be received by the composed service and processed as required by the service’s logic. Alternatively, they

can be somehow aggregated. In its simplest form, the service simply forwards out each feed received in its

original form. In more interesting forms, it can process received feeds in permitted ways, both to create

aggregate feeds to be forwarded, and to make decisions about whether and when to forward aggregates [9].

It turns out that unlike the previous composition rule, the output merge composition rule requires a set

of parameters to be provided at the composition time. To compose a number of services by merging their

output ports, the composition receives as parameters the set of output ports to be merged and one behavior.

The composition first creates a new service with empty sets of input ports, agents and output ports. Then,

the input ports of the services being composed, which retain the old behaviors, are cloned and added to the

input ports of the composed service. The composition then creates a new output port, which becomes the

output port of the composed service, and creates a new agent actor with the provided behavior targeting the

newly created output port. Finally, the composition transforms the output ports to be merged into agents

which have the newly created agent as their target.

Figure 6.6 shows an example of composing n > 1 services using the output merge composition rule. Each

contributing service sj , which has a set of input Ij , set of agents αj and set of output ports Oj , produces

a set of feeds Zj during the execution of the service, for 1 ≤ j ≤ n, where n is number the contributing

service to be composed. αc is the set of agents of the composed service. Zc is a set of feeds produced by the

composed service. oc is the output port of the composed service (i.e., the newly created output port). This

composition can be described as follow:
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⋂
|nj=1

So,b

[[Ij : αj : Oj ]]sj ⇒ [[
n⋃
j=1

Ij :
n⋃
j=1

αj ∪ {(b)ac} ∪ So : (
n⋃
j=1

Oj − So) ∪ {oc}]]sc

where n > 1, So is a set of output ports to be composed, b is the provided behavior, sc is the name of the

composed service, oc is the newly created output port, ac is the name of the newly created agent actor with

a behavior b targeting oc, and Dom(αj)’s are disjoined for 1 ≤ j ≤ n. Each output port in So, which retains

the same behavior, is added to the set of agents of sc, and they all have their target to the newly created

agent ac.
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Figure 6.6: Composition: Output Merge

Example: Electronic Voting Service. Imagine a scenario where smartphones are used in an electronic

election organized by a government. The type of communication in the electronic voting service is defined as

a one-off event-based communication with a timeout [9], in which the electronic vote service expects at most

one message from any contributing service. It collects messages until either a sufficient number of messages

has been received (as can be tested using a termination function), or a timeout has been reached; it then

proceeds to aggregate the messages (i.e., count and classify votes), and sends the election result to the client.

Figure 6.7 illustrates how an electronic voting service can be constructed by composing a number of

one-time services using the output merge composition rule. Each contributing service sj , which has a set of

input Ij , a set of agents αj and one output port oj , produces only one vote feed ζj during the execution of

the service, for 1 ≤ j ≤ n, where n is number the contributing service to be composed. αc is the set of agents

of the composed service. oc is the output port of the composed service. ζc is the output vote result produced

by the composed service. This composition can be described as follow:⋂
|nj=1

So,b

[[Ij : αj : oj ]]sj ⇒ [[
n⋃
j=1

Ij :
n⋃
j=1

αj ∪ {(b)ac} ∪ So : (
n⋃
j=1

{oj} − So) ∪ {oc}]]sc

where n > 1, So is a set of output ports to be composed, b is the provided behavior which could be

implemented as a function that counts and classifies votes, sc is the composed (electronic voting) service, oc

is a newly created output port, ac is the name of the newly created agent actor with a behavior b targeting

oc, and Dom(αj)’s are disjoined for 1 ≤ j ≤ n.

Figure 6.8 shows an implementation code of the merge behavior bac . In this example, we assume that the

client wants to know the winning candidate of the election if the total number of votes exceeds a threshold,
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Figure 6.7: Example: Electronic Voting Service

or a deadline is reached. When a new vote feed is received at the ac actor, the function cond is used to check

whether that condition is reached. In cond, t is the expiration date; we also assume a function time() which

can obtain current time of the voting system. The votes received by the ac actor are all placed into its internal

queue q, until enough votes have been received to make the function call cond(ac, q, t, total, threshold, vote)

true. At this point, the contents of q are aggregated and sent back to the client along with total number

of collected votes for the winner candidate (using pr operator, which simply creates a pair), and ac actor

changes its own behavior to become a sink and consume all future messages without doing anything.

bac = rec(λb.λac.λclient.λcond.λq.λvote.
let{total := 0, threshold := 50}
seq(putq!(q, vote),
if(cond(ac, q, t, total, threshold, vote),
seq(send(client, pr(vote, total), ready(sink))),
ready(b(self)))))

cond = rec(λac.λq.λtotal.λthreshold.λvote
if(emptyq?(q),
false,
if(or((total > threshold), (time() > t)),
true,
if(eq(getq(q), vote),
ac(delq!(q), t, total + 1, threshold, vote)))))

Figure 6.8: Electronic Voting Service: Merge Behavior

We assume four queue operations: getq(q) retrieves the element at the front of queue q; putq!(q) adds

an element at the end of queue q and returns the modified queue; delq!(q) deletes the element at the front

of queue q and returns the modified queue; emptyq?(q) determines whether queue q is empty. Also, we use

the following syntactic sugar: seq is used for expressing sequential composition; rec represents a definable

call-by-value fixed-point combinator.

Serial Composition
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The serial composition rule is used to create a new service by composing a number of services serially. The

composition connects some of the output ports of one service to some of the input ports of another service.

The purpose of this composition is to create a new service which enables its client to consume feeds from a

pipeline of services, where the feed flow is from the first service to the second service, and so on. In its simplest

form, each service in this pipeline simply forwards out each feed received in its original form. Alternatively,

it can process the received feeds before forwarding it to the next service.

The composed service can be created by composing a number of services in serial if a port-map, M, is

provided. Each entry inM has the form (osk , isk+1
, bk), where osk is the name of an output port of the kth

service being composed, isk+1
is the name of an input port of the (k + 1)th service being composed, and bk

is a binding behavior for a newly created agent actor which connects between osk and isk+1
, for 1 ≤ k < m,

where m is the number of entries in M.

Figure 6.9 shows an example of composing n > 1 services using the serial composition rule. Each

contributing service sj , which has a set of input Ij , a set of agents αj and a set of output ports Oj , produces

a set of feeds Zj during the execution of the service, for 1 ≤ j ≤ n, where n is number the contributing service

to be composed. Ic, Oc and αc are the sets of input and output ports, and agents of the composed service,

respectively. Zc is a set of feeds produced by the composed service. This composition can be described as

follow:
�
|nj=1

M
[[Ij : αj : Oj ]]sj ⇒ [[(

n⋃
j=1

Ij)− (
m⋃
k=1

{ik}) :
n⋃
j=1

αj ∪
m⋃
k=1

{(b)ak} : (
n⋃
j=1

Oj)− (
m⋃
k=1

{ok})]]sc

where n > 1, and Dom(αj)’s are disjoined for 1 ≤ j ≤ n; M is a provided port-map, with its kth entry

has the form of (osk , isk+1
, bk), which is a triple identifying an output port osk of the kth service, which

connects to an input port isk+1
of the next service, and a behavior bk of a newly created agent actor ak which

implement that binding behavior, for 1 ≤ k < m, where m is the number of entries inM; and sc is the name

of the composed service.
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Figure 6.9: Serial Composition

Example: Document Approval Service. Imagine a scenario where smartphones are used to hierarchically

obtain formal approvals from a group of people in a government or an organization for an important document

such as a project plan, a contract proposal, etc. A document approval service can be created to help in sending

the document to the target people, keeping track of which people have approved the document, and guiding

them on how they can formally record their approval.
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Figure 6.10 illustrates how a document approval service can be created by composing a number of one-

time services using the serial composition rule. Each contributing service sj , which has one input ij port,

one agent aj and one output port oj , produces only one document feed ζj during the execution of the service,

for 1 ≤ j ≤ n, where n is number the contributing service to be composed. αc is the set of agents of the

composed service. ζc is the output signed document produced by the composed service. This composition

can be described as follow:
�
|nj=1

M
[[ij : aj : oj ]]sj ⇒ [[i1 :

n⋃
j=1

aj ∪
m⋃
k=1

{(b)ak} : on]]sc

where n > 1, and Dom(αj)’s are disjoined for 1 ≤ j ≤ n; M is a provided port-map, with its kth entry

has the form of (osk , isk+1
, bk), which is a triple identifying an output port osk of the first service, which

connects to an input port isk+1
of the next service, and a behavior bk of a newly created agent actor ak which

implement that binding behavior, for 1 ≤ k < m, where m is the number of entries inM; and sc is the name

of the document approval service.
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Figure 6.10: Example: Document Approval Service

Figure 6.11 shows the implementation code of the binding behavior bak . In this example, we assume that

each person (service) involved in the approval process signs the received document doc if it is valid as can

be checked using the function isvalid?(doc). The ak actor then send the signed document forward to the

next person represented by the client argument, and ak actor changes its own behavior to become ready to

receive future messages.

bak = rec(λb.λak.λclient.λsign.λdoc.
seq(if(isvalid?(doc), send(client, sign(doc))),

ready(b(self))))

Figure 6.11: Document Approval Service: Binding Behavior

6.3 Operational Semantics

This section presents the operational semantics for MobDisS. As mentioned earlier, MobDisS relies on the

Actor model [36] for concurrency to model ports and agents of a service, which use asynchronous messages
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to communicate. We define the state of a service as follows:

Definition 2 (Service State):

A service is denoted as s and is written as:

[[I : α : O]]s

where s is the service’s unique name, I is a set of input ports of the service, α is a set of agents of the service,

and O is a set of output ports of the service. Here, we are only interested in modeling the interactions between

services, so we do no show data messages with local recipients within a service. Because agents are modeled

as actors, α can be considered as an actor map which maps a finite set of actor addresses to their behaviors.

A coordinator actor of a service s, written as as ∈ α, receives all messages sent to s. Notice that there is a

one-to-one mapping between s and as; i.e., for each service s, there is exactly one coordinator agent.

Definition 3 (MobDisS Configuration)

The instantaneous snapshot of a system of services is called a MobDisS configuration. A MobDisS configura-

tion represents the state of a finite set of long-lived services, a finite set of contracts between services which

define how services are connected to each other, and a finite set of control messages between services. A

contract is negotiated between two services when one of them wants to consume service feeds produced by

the other. A MobDisS configuration can be represented by a 3-tuple:

〈S | C |M〉

S is a set of services. C is the set of contracts between the services, where each contract c ∈ C has the form

(s1, s2, map), where s1 is the name of the first service, s2 is the name of the second service and map is

a name table which says which output ports of the first service are connected to which input ports of the

second service. The connections are represented using (o ; i) pairs where o ∈ O is an output port of s1 and

i ∈ I is an input port of s2. The contracts involving a service s ∈ S can be written as co(s) ⊂ C. M is a

finite set of control (inter-service) messages in the system which are communicated between services, and are

handled by coordinator actors of the communicating services.

MobDisS assumes that there is a special service, called the directory service, which has up-to-date infor-

mation about the capabilities of all contributing services in the system.3 The directory service fits the service

definition (Definition 1) because it has non-empty finite sets of input ports, output ports and agents, so it can

be considered as a service. The directory service can be implemented as a federated hierarchy of directory

services which can be distinguished by different metrics such as geographical locations, type of services, etc.

Each contributing service in the system must be registered with the directory service in order to participate

in serving clients.

3For example, the service capability of a sensor service is determined by the maximum sampling rate of that sensor.
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6.3.1 Service Request

One way to represent the requirements of a service is to represent them as sets of timed data feeds. For

each of these feeds, the service needs to secure appropriate sensor data feeds and carrying out the required

aggregations and customizations for different clients. This representation of a service request gives the ability

to a client to represent their service requirements without being too rigid. If the client is too rigid in defining

their request, the service request is likely to be rejected if the directory service is too busy at these points of

time. A service request is represented by ρ and is defined as follows:

Definition 4 (Service Request):

A service request ρ is a set of sets of timed service data feeds. Each set ρi ∈ ρ has a sufficient number of

service feeds for serving that request.

A service request is represented formally as follows:

ρ = {ρ1, . . . , ρn}, ρi = 〈ζ1, . . . , ζm〉

where n ≥ 0 is the number of sets in ρ, m ≥ 0 is the number of service feeds in ρi, and ζ represents a single

timed service feed.

Only one set ρselected out of ρ needs to be served. The selection of this ρselected can be said to be done

by a function f as follows:

ρselected = f(ρ)

The necessary and sufficient condition for accepting a service request can be stated as follows:

Axiom 1: Accepting a Service Request. A service request ρ can be accepted in the system if and only

if at least one member of ρ, ρselected ∈ ρ, can be served by a set of contributing services, Sρselected ⊂ S.

We consider a continuous-time model for representing services. This continuous-time modeling approach

provides more flexibility in describing such services because of their real-time requirements, which are repre-

sented as sets of temporally defined feeds. These feeds are constructed by aggregating sensor events – such

as user activities, change in a geographical location, etc. – which occur at particular points in time and lead

to a change in state of interest to a service.

We assume there is a global clock in the system. One method to achieve global clock synchronization in a

sensor network is to synchronize the clocks in the whole network such that all the clocks have approximately

the same reading at a global time point, as described in [65]. The main idea of this method is to start from a

master node, adjust the clocks of its neighbors, and diffuse this clock adjustment to other nodes. However, this

approach is not scalable for large networks because it requires the nodes in the entire network to participate in

the synchronization process at the same time. Another method for global clock synchronization that is fully

distributed and localized is presented in [66], called diffusion-based time synchronization. In this method,

time synchronization is done locally, without a global synchronization initiator. The diffusion method achieves

global synchronization by spreading the local synchronization information to the entire system.
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6.3.2 Transition Rules

We use transition rules to describe the progress of a system of services. Here, I review the transition rules in

actor semantics.

The operational semantics for actor systems are defined using a transition relation on actor configurations,

which is an instantaneous snapshot of the system state. An actor configuration is written as:

〈α | µ〉

where α is an actor map which maps a finite set of actor addresses to their behaviors; and µ is a multi-set of

messages, a message m ∈ µ which has two parts a target a and message content v, is written as m = 〈a⇐ v〉.

An actor a can be in one of two states: idle and busy. The state of an idle actor is written as (b)a (round

brackets is the symbol of an idle actor), which means that the actor a is ready to accept a message. When

a message m arrives, the actor’s behavior b is applied to the incoming message value. The state of an busy

actor a is written as [b(v)]a (square brackets is the symbol of a busy actor), which means that the actor is

processing a message 〈a⇐ v〉 by applying its behavior b to the message value v.

An actor expression e is either a value or it can be decomposed uniquely into a reduction context, R,

with a hole filled with a redex r, written as e = R[r]. Intuitively, r is the sub-expression to be reduced next

when the actor performs a computation step. R is the remainder of the actor’s behavior.

The following rule shows that if an actor expression e reduces to expression e′, then an actor a with

behavior e will change its behavior to e′:

e
λ−→X e′ ⇒ 〈[R[e]]a , α | µ〉 −→ 〈[R[e′]]a , α | µ〉

where X = Dom(α) ∪ {a} is the context in which e is reduced to e′, and Dom(α) is the domain of α.

The following rule describes how an actor a sends a message 〈a′ ⇐ v〉 to an actor a′ using the send

primitive:

〈[R[send(a′, v)]]a , α | µ〉 −→ 〈[R[nil]]a , α | 〈a′ ⇐ v〉 , µ〉

where send(a′, v) is a primitive used to send a message with communication value v asynchronously to an

actor with the address a′. This leads to the creation of message 〈a′ ⇐ v〉 on the right hand side.

The following rule shows how an actor a with a behavior b can receive a message when it is in the idle

state:

〈[R[ready(b)]]a , α | 〈a⇐ v〉 , µ〉 −→ 〈[b(v)]a , α | µ〉

where 〈a ⇐ v〉 is a message sent to an actor a, ready(b) means that a is ready to receive a message. The

actor a’s new state becomes b(v), that is, its behavior b is applied to the incoming message value v. Notice

that the reduction context R is discarded because ready discards the rest of the computation.

The following rule shows how an actor a can create a new actor a′ with a provided behavior b using the

create primitive, and the name of the newly created a′ is returned to a:
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〈[R[new(b)]]a , α | µ〉 −→ 〈[R[a′]]a , [ready[b]]a′ , α | µ〉

a′ is fresh

where a′ is the fresh name of the newly created actor.

Next, I present transition rules of MobDisS.

Sending a service request

In MobDisS, a service is initiated by a client service which sends a service request ρ to the directory service

with the intent of creating a new service. The client’s requirements are expressed in that request ρ. The

same service request can also be used to subscribe to an existing service.

The following transition shows how a client service sends a service request to the directory service:

〈[[I : [R[send(sd, (ρ, s))]]as , α : O]]s, S | C |M〉 −→ 〈[[I : [R[nil]]as , α : O]]s, S | C | 〈sd ⇐ (ρ, s)〉, M〉

where s is a client service, sd is the directory service, ρ is a service request, as is s’s coordinator actor, and

send(sd, (ρ, s)) sends message (ρ, s) containing the received ρ and the client’s name to the directory service sd.

This leads to the creation of message 〈sd ⇐ (ρ, s)〉 on the right hand side, and actor as continues execution.

Search function

For convenience, we define a function search which is used by the directory service to determine the oppor-

tunity to serve a new service request ρ by selecting one existing service matching the requirements of ρ, or

a set of contributing services which could collectively contribute to serving ρ. The search function takes as

parameters a service request ρ and the name of the client service s requesting ρ, and returns one of three

pairs: (1) ({sm}, c), a pair of the name of an existing service sm which matches ρ’s requirements and a new

contract c created between sm and s; (2) (Sρ, ∅), a pair of a set of potential contributing services Sρ which

could collectively contribute to serving ρ based on their capabilities and an empty set ∅ indicating that no

contract is created at this point; or (3) (∅, ∅) to indicate that there is no way of serving ρ. The search

function is defined as follows:

search(ρ, s) = ({sm}, c) | (Sρ, ∅) | (∅, ∅)

Receiving a service request

On receiving a service request ρ, the directory service uses the search function to determine the opportunity

to serve ρ. This transition is written as:

〈[[I : [R[ready(search)]]asd , α : O]]sd , S | C | 〈sd ⇐ (ρ, s)〉, M〉 −→ 〈[[I : [search(ρ, s)]asd , α : O]]sd , S | C |M〉

where sd is the directory service, asd is sd’s coordinator actor, s is the name of the client service which sent

ρ, 〈sd ⇐ (ρ, s)〉 is a service request message sent to sd, and ρ is the service request. As a result of delivery of

this message to actor asd , asd uses the search function to first searches for an existing service matching the

requirements of ρ, or a set of contributing services which could collectively contribute to serving ρ.
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Subscribing to an existing service

If a matching service is found, then the directory service tells the client service about this service, and a new

contract is signed between the client service and the found service.

If search(ρ, s) evaluates to ({sm}, c), then the transition rule for subscribing to an existing service is as

follows:

search(ρ, s)
λ−→X ({sm}, c)⇒

〈[[I : [R[search(ρ, s)]]asd , α : O]]sd , S | C |M〉 −→ 〈[[I : [R[({sm}, c)]]asd , α : O]]sd , S | C ′ | 〈s⇐ sm〉, M〉

where X = {asd} is the context in which search(ρ, s) is reduced to ({sm}, c); sd is the directory service;

asd is sd’s coordinator actor; ρ is the service request; s is the name of the client service which sent ρ; sm is

the name of an existing service sm which matches ρ’s requirements; c is a new contract created between sm

and s, which has the form (sm, s, (osm ; is)) where osm ∈ Osm is an output port of sm and is ∈ Is is an

input port of s; and C ′ = C ∪ {c}. This transition happens only if and only if search(ρ, s) is evaluated to

({sm}, c). This leads to the creation of message 〈s⇐ sm〉 containing sm which is sent to s, and the creation

of a new contract c created between sm and s on the right hand side.

Creating a new service

Here, we present the composition of running contributing services to create a new service based on the

definition of ρ.

Consider a function create, which when provided as parameters a service request ρ, a set of contributing

services, Sρ, which could collectively contribute to serving ρ, and the name of the client service s requesting

ρ, creates a new service which satisfies ρ’s requirements; the create function returns the name of the newly

created service s′, and a set of contracts Cρ between s′ and Sρ. The create function is defined as follows:

create(ρ, Sρ, s) = ({s′}, Cρ, c)

If there exist contributing services whose feeds are sufficient for generating ρ, then the service request is

accepted. This operation is shown in the following:

search(ρ, s)
λ−→X (Sρ, ∅)⇒

〈[[I : [R[search(ρ, s)]]asd , α : O]]sd , S | C |M〉 −→ 〈[[I : [R[(Sρ, ∅)]]asd , α : O]]sd , S | C |M〉

where X = {asd} is the context in which search(ρ, s) is reduced to (Sρ, ∅), sd is the directory service, asd

is sd’s coordinator actor, ρ is the service request, and s is the name of the client service which sent ρ. This

transition happens only if and only if search(ρ, s) is evaluated to (Sρ, ∅).

The directory service then uses the create function to create a new service utilizing the contributing

services. The transition rule for creating a new service is as follows:

create(ρ, Sρ, s)
λ−→X ({s′}, Cρ, c)⇒

〈[[I : [R[create(ρ, Sρ, s)]]asd , α : O]]sd , S | C |M〉 −→ 〈[[I : [R[({s′}, Cρ, c)]]asd , α : O]]sd , S
′ | C ′ | 〈s⇐ s′〉,M〉

{s′} , Cρ and c are fresh
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where X = {asd} is the context in which create(ρ, Sρ, s) is reduced to ({s′}, Cρ, c); sd is the directory service;

asd is sd’s coordinator actor; s is the client service which sent the service request ρ; s′ is the newly created

service producing ρ from Cρ’s contributions; Cρ is a new set of contracts created between s′ and Sρ; c is a

new contract created between s′ and s, which has the form (s′, s, (os′ ; is)) where os′ ∈ Os′ is an output

port of s′ and is ∈ Is is an input port of s; C ′ = C ∪ Cρ ∪ {c}; and S′ = S ∪ {s′}. This transition

happens only if and only if search(ρ, s) is evaluated to (Sρ, ∅). This leads to the creation of message 〈s⇐ s′〉

containing the name of the new service s′, the creation of new sets of contracts Cρ and {c}, and the creation

of a new service s′ on the right hand side.

Rejecting a service request

A service request is rejected if none of the existing services match the target service’s requirements expressed in

ρ, and there do not exist sufficient contributing services for serving ρ (i.e., there are no sufficient contributing

services for serving any member of ρ). If these two conditions hold, a request rejection message to sent to

the client service which sent ρ.

If search(ρ, s) evaluates (∅, ∅), then the transition rule for rejecting a service request is as follows:

search(ρ, s)
λ−→X (∅, ∅)

〈[[I : [R[search(ρ, s)]]asd , α : O]]sd , S | C |M〉 −→ 〈[[I : [R[(∅, ∅)]]asd , α : O]]sd , S | C | 〈s⇐ ∅〉, M〉

where X = {asd} is the context in which search(ρ, s) is reduced to (∅, ∅), sd is the directory service, asd is

sd’s coordinator actor, and s is the client service which sent service request ρ. This transition happens only

if and only if search(ρ, s) is evaluated to (∅, ∅). This leads to the creation of message 〈s ⇐ ∅〉 which is a

rejection message sent to s indicating that there is no way of serving ρ.

6.4 Discussion

Mobile distributed services often require complex communication, which is not adequately supported by ex-

isting communication mechanisms. In this thesis, I tried to represent these complex communications in terms

of primitive asynchronous messages in Actor systems for the domain of crowd-sourced services. For instance,

I have identified multi-origin communications as a key mechanism underlying such crowd-sourced services,

and then implemented these mechanisms in the form of a distributed middleware, CSSWare. CSSWare allows

a rich variety of crowd-sourced services to be implemented with relative ease, from crowd-sourced recommen-

dation services for restaurants to social media services similar to Twitter. Consequently, service designers can

focus their attention on service-specific details rather than having to implement underlying communication

mechanisms from scratch.

MobDisS can be considered as a generalization of multi-origin coordination mechanisms. The model can

be used to understand and represent the communication requirements of a wider class of mobile distributed

services in different domains. This can be achieved this by first identifying common types of communications
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in the domain, and then implementing high-level support for them.

Furthermore, the composition rules of MobDisS define the boundary of the class of services which are

supported by our model, and consequently, the class of services which can be built over CSSWare. In other

words, services that cannot be created using these composition rules are not supported by our model and

cannot be implemented using our middleware. For example, our composition rules cannot be used to create

a service that has a self-loop, which connects an output port of a service to an input port of the same service.

However, this type of loops can be implemented within the service’s logic.

6.5 Summary

This chapter gave the definition of a service from two different angles: compositionally and directly. From the

composition angle, we presented a set of composition rules for constructing complex services by composing

simpler ones. From the direct creation angle, we defined a service as a set of active objects, which are ports

and agents. A service receives input feeds from contributing services via its input ports and sends output

feeds to client services via its output ports. The received feed messages are handled by the service’s agents,

which sends the processed feeds to output ports.

A service can be as simple as a primitive service, which could forward a single feed received from a

contributing service connecting to its input port to a client service connecting to its output port. Because of

the composition rules, we can build more complex services starting from these primitive services. Therefore,

having a set of composition rules through which more sophisticated services are constructed from simpler

ones is crucial to our model.

Finally, this chapter presented the operational semantics for MobDisS, which are defined by a transition

relation on MobDisS configuration.
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Symbol Description Section

s Service 6.2

is An input port of a service s 6.2

os An output port of a service s 6.2

Is The set of input ports of a service s 6.2

Os The set of output ports of a service s 6.2

αs The set of agents of a service s 6.2

(b)a An actor a with behavior b ready to accept a message 6.2

ζ Service feed 6.2.1

γζ The sensing expression of a service feed ζ 6.2.1

tdζ The delivery time of a service feed ζ 6.2.1

dζ The time delay of delivering a service feed ζ 6.2.1

| Composition operator symbol 6.2.2

sc The name of a composed service 6.2.2

Dom(f) The domain of a function f 6.2.2

Z A set of service feeds 6.2.2

e A lambda-calculus expression 6.2.2

λx.e Abstractions 6.2.2

seq(e1, . . . , en) Sequencing construct 6.2.2

if(e0, e1, e2) Conditional branching 6.2.2

let{x := e0}e1 Lexical variable binding 6.2.2

rec A definable call-by-value fixed-point combinator 6.2.2

pr A pairing operator 6.2.2

M A port-map used for serial composition 6.2.2

as A coordinator actor of a service s 6.3

sd The directory service 6.3

S A set of services 6.3

C A set of contracts between the services 6.3

M A set of control (inter-service) messages 6.3

ρ Service request 6.3

〈α | µ〉 An actor configuration with: 6.3

α – an actor map

µ – a multi-set of messages

[b]a The state of a busy actor a with behavior b 6.3
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R Reduction context 6.3

r Redex 6.3

∅ Empty set 6.3

λ−→ The reduction relation for functional redexes, e
λ−→X e′ 6.3

−→ The reduction relation for configurations 6.3

Table 6.1: Notation
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Chapter 7

Conclusions and Future Directions

In this chapter, I present the conclusion of the thesis in Section 7.1, and future directions of the research

in Section 7.2.

7.1 Conclusion

With the growing ubiquity of sensors and mobile devices, it is more possible than ever to offer innovative

services based on both what the millions of sensors on people’s devices are sensing, as well as what individuals

are willing to actively contribute. However, the lack of precise understanding, specification, and analysis of

such services limit the widespread of them.

In this thesis, I focused on building mechanisms to support programming of mobile distributed services,

and formal models to understand them. My research objective was to understand the properties of these

services and to design and implement novel mechanisms to improve the programmability and performance

of them.

I have argued in this thesis that many crowd-sourced services, including prominent social media services

(if we consider their role of helping evolve collective messages), require similar communication mechanisms.

I focused on one such mechanism – multi-origin communication – which allows a number of autonomous

participants to contribute messages which can then be aggregated to create group messages on behalf of

all. I introduced an approach to supporting crowd-sourced services using multi-origin communication, and

presented the design and implementation of CSSWare, an Actor-based middleware for crowd-sourced services

as a platform for launching such services. I illustrated the ease with which new services can be launched

by presenting source code for prototype implementations for two qualitatively different types of services,

each requiring less than 25 lines of main service specification code, with less than 160 lines of additional

relevant code from available libraries of aggregation functions, sensor-events specifications and service view

interface. Finally, I experimentally evaluated the scalability of the approach. Most notably, even our modestly

configured server could potentially provide a restaurant recommender service to a population of millions;

contributor devices could contribute to tens if not hundreds of services simultaneously; client devices could

monitor tens of services.

I also addressed the challenge of satisfying the energy needs of a potentially large number of services
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requiring sensor data continuously. I developed an approach for optimizing the frequency of data collection

by sensors, which takes advantage of the overlap in sensing requirements of various applications. I presented

the design and prototype implementation of the ShareSens API for Android, which can be used by applications

to request access to sensor data. The experimental evaluation showed that significant power savings can be

achieved using ShareSens when there are overlapping sensing requests. With applications requesting flexible

sampling rates, it is also possible to opportunistically deliver higher rates to applications than what they

minimally require, essentially for free.

Furthermore, I discussed how to support multi-model sensing of mobile distributed services. I proposed

ModeSens, an approach to programming mode transition concerns of multi-modal sensing applications sepa-

rately from their functional concerns. The mode transition logic can be easily specified using an appropriate

finite state machine, for which I have implemented a simple GUI. My evaluation was two-fold. First, I stated

the obvious programmability benefits of using ModeSens. Second, I presented experimental results docu-

menting the processing overhead, sensing delays and energy costs involved in using ModeSens for achieving

mode transitions. These experimental results are not intended to compare ModeSens with the alternative

of mixing mode transition code with functional code, which would carry out virtually the same monitoring,

triggering and mode transitions, except with worse programmability.

Finally, I built a formal model, MobDisS (Mobile Distributed Services), for representing mobile distributed

services, allowing them to be carefully studied. Services can be built by composing simpler services. MobDisS

relies on the Actor model to define services. I precisely described the syntax and operational semantics of

MobDisS.

7.2 Future Directions

I envision two major avenues for my future research: first, I would like to build on my experience in concur-

rency, formal modeling, mobile distributed services and mobile sensing. Second, I would like to expand the

scope of my research to related areas of big data processing and Internet of Things (IoT).

7.2.1 Mobile Distributed Services

In CSSware project, I would like to develop mechanisms for service designers and third parties to add

custom service view interfaces and aggregation functions. This will allow a larger variety of services to

be implemented. Also, I would like to apply an approach based on CyberOrgs model [63] for fine-grained

resource coordination to refining the sensor sampling scheduler, and more generally to manage the resource

demands that a larger number of services may place on resource-constrained mobile devices.

In ShareSens project, I would like to look into opportunities for updating existing applications to use

ShareSens. Although a tool could easily be developed to automatically change source code to use the Share-

Sens API instead of the default Android API, it is not obvious that this would lead to the best outcomes.
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Particularly, programmers coding while assuming ShareSens’s properties may very well choose different sam-

pling rates for the various sensors from what they would choose when working with the default Android

API.

A related question concerns fairness among different applications in terms of which applications can

request how much sampling, and consequently use how much energy, and how to account for this when

multiple applications piggyback on each other’s sampling rates as is possible by requesting flexible sampling

rates. One possibility would be to treat sampling privileges as precious resources, and use an approach based

on CyberOrgs model to coordinate competition for them.

In a related project, I have developed programming support for implementing multi-modal sensing, where

evolving sensing requirements of applications can be programmed separately from an application’s functions.

Although the primary goal of this project, ModeSens, is to achieve software engineering objectives such as

modularity and reusability, multi-modal sensing – by definition – has dynamically evolving sensing require-

ments, which creates opportunities for ShareSens to exploit for power conservation. Particularly, I plan

to compose ModeSens with ShareSens to further generalize the class of sensing tasks to which it can be

beneficial.

Furthermore, ShareSens and ModeSens can work together to optimize more complex sensing requirements

of applications. The problem of cumulating demand on sensors is a significant barrier to simultaneously

serving multiple sensing applications on battery powered devices. My research work addressing this challenge

has the potential of making it possible to simultaneously serve multiple sensing-heavy applications or services,

or help realize Sensing as a Service.

In ModeSens project, I would like to develop a mechanism to allow mobile users to train new modes into

their multi-modal sensing applications – ModeLearn. In particular, I would like to develop an online Activity

Recognition (AR) system to be implemented on mobile devices using its built-in sensors.

I would like to generalize the MobDisS model to support a broader class of services in different domains

such as Wireless Sensor and Actuator Network (WSAN), IoT, etc. I also would like to express and prove

interesting properties of these services based on the model.

7.2.2 Related Research Areas

Potential future work in related research areas is presented in the following sections.

Big-Data Services

With sensors becoming increasingly ubiquitous, the amount of data generated by sensors and individuals is

increasing exponentially. The increasing volume, variety and velocity of sensor data places a demand not

only for the storage and compute resources, but also on the development of big data services which can

process those continuous sensing workloads. I am interested in building data aggregation services which

can take advantage of the data collected by these sensors in aggregate form, to offer useful services such as
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detecting medical emergencies and imminent natural disasters, or simply recommending the restaurant with

the shortest wait time.

Resource Coordination Support for Big-Data Frameworks

The Scala programming language [37] with its Akka [38] library for supporting actors, has become highly

influential in the development of large-scale systems. Apache Spark [67] – the leading big data analytics system

– has been implemented in Scala which enables scalable, high-throughput, fault-tolerant processing of data

workloads. I would like to examine the opportunities for resource control and coordination available in the

Scala programming language, and its Akka library and installed mechanisms to create resource encapsulations

for long-lived computations.

Internet of Things (IoT)

Although there are a growing number of technologies and applications focused on IoT [68], there is relatively

limited foundational work on such applications. These applications sense interesting environments, they do

computation, and they act in a way to serve some purpose. I would like to extend MobDisS to support

services focused on IoT which will allow fundamental properties of such services to be rigorously studied. I

also would like to study the equivalence and composition of such services.

Supporting New Computing Paradigms in Software Engineering

New computing paradigms such as IoT, mobile crowd-sourcing, could computing and big data processing,

present new challenges that current programming languages do not always support satisfactorily. I am

interested in revisiting the foundations of object-oriented and functional languages to better support these

new computing paradigms.
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Appendix A

Case Studies For Multi-Origin Communication

This chapter presents two case studies to illustrate the use of the two multi-origin communication primi-
tives discussed in Chapter 3. Both examples use the continual multi-origin communication primitive; one-off
versions of the examples can be easily adapted from these solutions using the one-off communication primitive.

A.0.3 A Restaurant Recommendation Service

Consider the type of restaurant recommendation service introduced earlier in Section 3.4.1. This service
can be launched by creating and launching of a service actor, which in turn makes a number of calls to set
up continual multi-origin messages, one for each restaurant, each geographical area, etc., depending on the
degree of distribution required or desired. The start method in Figure A.1 shows how this could be done
if a separate coordination were needed for each restaurant. The restaurants of interest are chosen, assigned
unique IDs, and placed in a restIDList. Then for each restID, mobile devices in and near the restaurant are
identified, say by tracking automatic check-ins. Finally, a call is made to set up a multi-origin communication
primitive for each restaurant, with the nearby devices identified as the constituency.

void start() {

* choose restaurants to track; assign them IDs; place them in restIDList with coordinates *

for each restID in restIDList {

* collect names of devices in or near restaurant ID *

continualCommSetup(restCoordClass, deviceNameList, sigChange, null, restID);

}

}

rankedRestList getView(location, rankParams) {

return rank(filter(restIDList, location), rankParams);

}

void update(stateUpdate, restID) {

* update global state with restID’s new state *

}

Figure A.1: Methods Defining Behavior of Restaurant Service Actor

Additional parameters specify the condition indicating significant change in the restaurant state warrant-
ing an update to the server, and null to indicate that there is no set interval at which updates must be
made. Each of these calls creates a local restaurant coordinator which invites event updates from current
diners’ devices. The devices in turn have applications installed to tap into sensor feeds to recognize significant
events, such as arriving at the restaurant, being seated at a table. If there are a number of similar services
that the device’s owner is interested in, then each would interpret the sensor feeds for the purposes of that
service. As an event gets recognized by a device, it sends a message to its restaurant coordinator, invoking the
coordinator’s sendMessage method (Figure A.2). sendMessage records the event in eventList and checks
to see whether the event represents a significant change in the restaurant’s state, and if so, sends an update
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message to the restaurant service – known to the coordinator by its actor name serviceName – to report the
change. Invocation of update in the service updates the global state with the new information. In a real
system, it would also make sense for both the restaurant coordinators as well as the global service to use
aging functions to lower the relevance of obsolete information.

void sendMessage(deviceName, event, restID) {

* record received event in eventList *

if (sigChange(eventList))

serviceName <- update(aggr(eventList), restID);

}

Figure A.2: Methods Defining Behavior of a Regional Coordinator Actor

A user searching for restaurants would call the getView method on the server with location and
rankParams as parameters, where location specifies the user’s geographical coordinates, and rankParams

specify the metrics by which to rank the restaurant (such as by the wait time). The server filters the restau-
rant list for relevance according to the user’s location, and then creates a ranking using rankParams to be
returned to the client.

A.0.4 Twitter-like Messaging Service

Consider the Twitter service introduced earlier in Section 3.4.1. This service can be launched by the creation
and launching of the messaging service actor, whose behavior is to receive requests for creation of new
discussions with identified constituencies. These requests are received in the form of createDiscussion

message sends as shown in Figure A.3.
When the service receives this message, it assigns a new ID – discussionID – to identify the discussion

topic by, and calls the continual multi-origin communication setup primitive continualCommSetup with
parameters specifying the discussion coordinator’s behavior (discCoordClass), the constit, null for the
update condition, updateInterval specifying the length of the intervals after which the service should receive
updates from the coordinator, and finally discussionID to tell the coordinator its discussion topic ID. This
call creates a dedicated discussion coordinator for that discussion, which in turn announces the discussion
to the constituency. Once invited, members of the constituency are free to send messages to the discussion
coordinator in the form of an asynchronous message invoking its sendMessage method (shown in Figure A.4).

sendMessage takes as parameter a list voteList of (message, weight) pairs, where message is either a
new message drafted by the sender, or an existing message previously sent to the service (a ranked list of
which can be obtained by calling the findMessages method of the messaging server), and weight indicates
the proportional weight that the sender intends that message to have of their vote. Each sender has exactly
one vote for any discussion, which they are free to distribute between various messages under their discussion.

The service can have various types of users, subscribed to different views of the discussions’ states provided
by custom interfaces (see Figure 3.14). When a user requests subscription to a particular type of view –
viewType – after authentication, it is sent the view (by having a view message sent to it), and is also added
to a subscriber list to be sent future updates. The types of view may include a view for an analyst interested
in tracking trends, or even a view for a message sender interested in staying uptodate about a discussion to
possibly revise their votes.

On receiving a sendMessage message, the discussion coordinator first updates recentUpdates to reflect
the new messages received, and then checks to see if it is time to aggregate received messages and report
back to the service. If it is time,1 it aggregates the updates and reports them to the server using an update

1If messages are infrequent, a clock could be asked by the service to interrupt the coordinator at the end of each interval.

93



void createDiscussion(discussionTitle, constit) {

* assign unique ID to discussionTitle *

continualCommSetup(discCoordClass, constit, null, updateInterval, discussionID);

}

void getView(userName, userID, discussionID, viewType, viewParams) {

authenticate(userName,userID);

userName <- view(filter(state, discussionID, userID, viewType, viewParams));

* add userName’s record to the subscriber list *

}

rankedMessageList findMessages(userName, discussionID, keywords) {

* create ranked list of existing messages relevant to keywords *
return * ranked message list *;

}

void update(votesUpdate, discussionID) {

* update state with votesUpdate *

for each entry e in subscriber list {

e.userName <- view(filter(state, e.discussionID, e.userID,

e.viewType, e.viewParams));

}

}

Figure A.3: Methods Defining Behavior of Messaging Service Actor

message, which invokes the corresponding method in the server. The server’s update method updates the
state of the discussion, and then for every entry in the list of service subscribers, sends them the view that
they are subscribed to.

The service maintains the current state for all discussions. In practice, the service itself could be dis-
tributed into a number of actors, each handing any number of discussions.

There are some noteworthy features of this approach. First, message contributors are authenticated, and
the voting is fair in that each contributor has the same one vote in any discussion, which they may divide
among the multiple messages they support. Second, the constituency for each discussion is explicitly specified.
This would allow this approach to be used for holding credible votes. Third, the approach naturally aggregates
by allowing contributors to vote for existing messages rather than having them send a fresh message each
time.
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void sendMessage(userName, userID, voteList) {

authenticate(userName, userID);

* record received votes in recentUpdates *

if (currentTime >= lastAggregate + interval) {

serviceName <- update(aggr(recentUpdates), discussionID);

lastAggregate += interval;

}

}

Figure A.4: Method Defining Behavior of a Discussion Coordinator Actor
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