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Abstract 

Two surface-mounted finite-height cylinders in a staggered configuration immersed in a cross-

flow can be used to represent a broad variety of engineering applications. The centre-to-centre 

pitch ratio, P/D, incidence angle, α, and Reynolds number, Re, are known to strongly influence 

the aerodynamic loading on the cylinders and vortex shedding, however the effects of cylinder 

aspect ratio, AR (= height/diameter) and the boundary layer thickness on the ground plane, δ/D, 

are not yet well understood. Most studies of the flow around two surface-mounted finite-height 

cylinders have focused on two main configurations, tandem (α = 0°) and side-by-side (α = 90°). 

In the present research, the flow around two finite cylinders in a staggered configuration 

was systematically studied, to better understand the effects of the cylinder aspect ratio. Wind 

tunnel experiments were conducted at Re = 6.5×104 with a relative boundary layer thickness of 

δ/D = 1.4 for cylinders of AR = 9, 7, 5, and 3. The pitch ratio was varied from 1.125 ≤ P/D ≤ 4.5 

in 12 discrete steps and the incidence angle was varied from 0° ≤ α ≤ 90° in small increments. Of 

specific interest were the effects of AR on the mean drag coefficient, CD, mean lift coefficient, 

CL, and Strouhal number, St, experienced by the upstream and downstream cylinders in each 

staggered configuration, and any differences between the behaviour of two finite cylinders 

compared to more extensively studied case of two infinite (two-dimensional) cylinders. 

The results for the two finite cylinders in tandem showed a relatively smooth transition 

from the reattachment flow pattern to the co-shedding flow pattern, in contrast to what is seen for 

two infinite cylinders. A reduced range of P/D was found where the downstream cylinder 

experienced a thrust force. These changes were attributed to downwash entering the gap between 

the cylinders and impinging on the downstream cylinder. 

For the side-by-side configuration, the biased flow pattern continued to be observed for 

two finite cylinders, but the proximity interference effects were strengthened compared to two 

infinite cylinders. For closely spaced finite cylinders (P/D ≤ 1.75) near α = 90°, hysteresis was 

found over a small range of incidence angle where CD and CL could attain different values 

depending on whether α was incremented positive or negative. At the upper and lower ends of 

this range of incidence angle, a sudden change in the wake state and the values of CD and CL 

occurred. Many aspects of the hysteresis were found to be complex functions of AR and P/D. 
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For the staggered configuration, the behaviours of CD, CL, and St were found to be 

complex functions of P/D, α, and AR. In many cases, but not all, the general effect of reducing 

aspect ratio was to weaken the wake and proximity interference effects. The data for the two 

cylinders of AR = 3 behaved distinctly from those of AR = 9, 7, and 5, which showed that these 

cylinders were less than the critical aspect ratio.  
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Chapter 1 Introduction 

1.1 Background 

The study of bluff bodies immersed in a cross-flow may be applied to a wide range of 

applications. Many wind and marine engineering projects can be modelled using simplified 

geometric shapes, such as cylinders. A cylinder that is sufficiently long and slender such that the 

end effects are negligible, and for which the flow and geometry can be considered two-

dimensional (2D), is often referred to as an “infinite” cylinder. For a sufficiently high Reynolds 

number, a pair of separated shear layers forms from the sides of the cylinder and a low-pressure 

wake develops downstream of the cylinder. This low pressure region downstream, coupled with 

the high pressure exerted by the fluid impacting the upstream side of the cylinder, are largely 

responsible for the high drag forces (or wind loading) experienced by a cylinder. Like with many 

bluff bodies, the skin-friction exerts much smaller forces relative to the pressure acting on solid 

surfaces. The separated shear layers that produce the low pressure wake roll up on alternating 

sides of the cylinder before being shed, one at a time, into the wake as vortices; this is the 

familiar Kármán vortex shedding phenomenon. The frequency of vortex shedding is also a 

concern, as frequencies near a natural frequency of the structure may lead to vortex-induced 

vibration. 

The flow around an infinite cylinder has been extensively studied, and there are several 

key review articles and references (Coutanceau and Defaye, 1991; Williamson, 1996; 

Zdravkovich, 1977) on the subject; however, an infinite or 2D cylinder is not often a close match 

to actual engineering applications. A truncated finite-height cylinder mounted in a cantilevered 

manner to a flat surface more closely resembles many engineering applications, and the effects 

of the free end and surface mounting can be profound on the resulting wind loads and vortex 

shedding frequency. The low pressure wake behind this three-dimensional (3D), surface-

mounted, finite-height cylinder causes flow over and around the free end to be deflected towards 

the ground plane. The resulting “downwash” and streamwise counter-rotating tip vortices cause 

the entire flow and wake to become much more complex and strongly 3D. Additionally, the 

cylinder wall-junction and ground plane boundary layer lead to the formation of the horseshoe 

vortex upstream and surrounding the cylinder, and the flow varies significantly along the 

cylinder’s height or span. The slenderness of the surface-mounted finite-height cylinder is found 
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to have strong effect on the resulting flow behaviour. Flow around surface-mounted finite-height 

cylinders has not been as extensively studied, however, compared to infinite cylinders. 

Isolated cylinders of both infinite and finite-height configurations represent only a small 

portion of flows possible with cylindrical shapes. Two cylinders placed parallel to each in a 

staggered configuration (Figure 1.1) are subject to a large range of wind loads and vortex 

shedding frequencies based on their relative positions, due to wake and proximity interference 

and complex shear layer interactions. A cylinder placed within the wake of another can 

experience severely reduced wind loads as it is sheltered from the incoming flow, while 

cylinders placed side-by-side can experience a large repulsive side force as the flow is forced 

through the gap between the cylinders. The flow around two infinite cylinders has been 

extensively studied (Sumner, 2010; Zhou and Alam, 2016), whereas the flow around two 

surface-mounted finite-height cylinders has not received much attention, and this is the main 

focus of, and motivation for, the present research. 

 

Figure 1.1: Schematic of geometric properties associated with the flow around two surface-

mounted finite-height cylinders of diameter, D, and height, H, mounted in a general, staggered 

configuration. The centre-to-centre spacing, P, and incidence angle, α, define the staggered 

configuration. Note the coordinates: streamwise, x; transverse, y, and wall-normal, z. The flow 

itself is defined by the boundary layer mean velocity profile, U(z), the freestream velocity, U∞, 

and the boundary layer thickness, δ, on the ground plane. Key regions of the flow include the 

wake, gap, and free end. 
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A schematic of two surface-mounted finite-height cylinders (of diameter, D, and height, 

H) can be found in Figure 1.1. The cylinder slenderness or aspect ratio, AR = H/D, is the most 

important influencing parameter for the finite cylinders. The flow itself is characterized by the 

Reynolds number, Re (= ρ∞U∞D/µ∞, where U∞ is the freestream velocity, ρ∞ is the fluid density, 

and µ∞ is the fluid dynamic viscosity) and the boundary layer mean streamwise velocity profile, 

U(z), which extends from zero at the ground plane to U∞. The boundary layer thickness, δ, is 

defined as the wall normal position, z, at which U(z) = 0.99U∞ and the relative thickness of the 

boundary layer, δ/D, is a key influencing parameter for the finite cylinders. For the two staggered 

cylinders, the proximity and wake interference effects will be determined by the pitch ratio, P/D 

(where P is the centre-to-centre spacing of the cylinders), and the incidence angle, α. With 

different combinations of P/D and α, many flow patterns are possible that are sensitive to AR, 

Re, and δ/D across the entire range of possible cylinder configurations, from tandem (α = 0°) to 

side-by-side (α = 90°) and the staggered arrangements in between (0° < α < 90°) as seen in 

Figure 1.2. 

   

Figure 1.2: Configurations of two surface-mounted finite-height cylinders: a) tandem (α = 0°); 

b) side-by-side (α = 90°); and c) staggered (0° < α < 90°). 

 

The focus of the thesis research was on three main parameters that are functions of AR, 

P/D, α, Re, and δ/D. The mean coefficient of drag, CD (= 2FD/(ρ∞U∞
2DH)), is based on the time-

averaged drag force, FD, which is positive in the streamwise direction. The mean coefficient of 

lift, CL (= 2FL/(ρ∞U∞
2DH)), is based on the time-averaged lift (side) force, FL, which is positive 

when there is a repulsive force between the cylinders; see ahead to Figure 1.3. Finally, the 

Strouhal number, St (= fD/U∞, where f is the vortex shedding frequency), is the dimensionless 

a) b) c) 
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vortex shedding frequency, which, for the present thesis, was measured at the mid-height of the 

cylinders. The two aerodynamic force coefficients, CD and CL, represent the majority of the wind 

loading for each cylinder in the staggered configuration, while St represents the dominant vortex 

shedding frequency of each cylinder. Together these three parameters (CD, CL, and St) are of 

value to engineering applications involving the flow around surface-mounted finite-height 

cylinders in a staggered configuration. 

1.2 Objectives 

Three objectives were set for the research program detailed in this thesis: 

1. Determine the influence of aspect ratio (AR) on the mean coefficient of drag (CD), mean 

coefficient of lift (CL), and Strouhal number (St) of both the upstream and downstream 

cylinders in staggered configurations between tandem and side-by-side inclusive, and 

compare the observed trends to the behaviour of two infinite cylinders in a staggered 

configuration in the literature. 

2. Determine the effect of aspect ratio (AR) on the pitch ratio (P/D) and incidence angle (α) 

boundaries that produce the different flow patterns as described in the literature. 

3. Examine the effect of aspect ratio (AR) and pitch ratio (P/D) on the hysteretic wind 

loading of the cylinders near the side-by-side configuration. 

1.3 Scope and Methodology 

Within the context of surface-mounted finite-height cylinders in a staggered configuration there 

are many aspects dependent on a variety of geometric and flow conditions. In the interest of 

completion time, the scope of this thesis was limited in both the number of measured quantities 

and the number of variables systematically changed. The main focus of this thesis is on the wind 

loading and the mid-height vortex shedding frequency. The wind load experienced by a finite 

cylinder can be divided into three orthogonal forces and moments (drag force, FD, and rolling 

moment, MR, along the streamwise direction, x; lift force, FL, and yawing (bending) moment, MY, 

along the transverse direction, y; and normal force, FN, and pitching moment, MP, along the wall-

normal direction, z) as shown in Figure 1.3. Time limitations limited the scope of wind loading 

to only the primary two forces found with staggered cylinders, namely the mean drag and lift 

forces (FD and FL) experienced by each of the two cylinders (non-dimensionalized as CD and 
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CL). The vortex shedding frequency, f, (non-dimensionalized as St) is also an important flow 

feature for bluff bodies. A finite cylinder of sufficiently high AR may exhibit a variation in St 

along its height, but to limit the testing time measurements of St were only taken at the mid-

height (z = H/2) of both cylinders. 

 

Figure 1.3: Aerodynamic forces and moments exerted on a surface-mounted finite-height 

cylinder: drag force, FD; lift force, FL; normal force, FN; rolling moment, MR; yawing (bending) 

moment, MY; and pitching moment, MP. The coordinate system is centred at the cylinder-wall 

junction. 

 

A summary of the independent variables and the ranges covered during the experiments 

can be found in Table 1.1. The effects of AR across the entire staggered range were the focus, 

and as such four aspect ratios (AR = 9, 7, 5, and 3) were chosen. These same aspect ratios have 

been tested previously under similar experimental conditions (Sumner et al., 2004; Adaramola et 

al., 2006; Igbalajobi et al., 2013; Rostamy et al., 2012; Sumner et al., 2015; Beitel and Sumner, 

2017) and ensured that cylinders above the critical AR (AR = 9, 7, and 5) and below the critical 

AR (AR = 3) would be tested. The critical aspect ratio is found between AR = 3 and 5, though it 

is dependent on Re and δ/D, and cylinders below this point have a distinct wake structure 

(Sumner et al., 2004). The size of the cylinders were chosen to minimize blockage factor, 

maximize the measurable drag and lift forces, as well as maximize the range of P/D within the 

limited size of the existing turntable in the wind tunnel. Discrete pitch ratios (Table 1.1) were 

chosen similar to that of Sumner et al. (2005) to allow for direct comparison to infinite cylinder 

data, with additional P/D tested to help identify flow pattern boundaries that may change as a 
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function of AR. The highest pitch ratio of P/D = 4.5 was determined by the size of the turntable 

apparatus, as discussed later in Section 3.3. The adjustment of incidence angle, α, was 

incremented finer than AR and P/D, with increments of 1° across the entire staggered range 

between tandem (α = 0°) and side-by-side (α = 90°) used for CD and CL. In order to save 

experiment time, a coarser increment in α was used for measuring St for configurations where St 

was only slowly varying; a map of the α increment for each combination of AR and P/D can be 

found in Appendix A. For experiment-specific test trajectories, see ahead to Section 3.4 for CD 

and CL and Section 3.5 for St.  

 

Table 1.1: List of independent parameters and their range covered within the scope of the 

research program. 

Variable Range 

Aspect Ratio, AR 3, 5, 7, 9 

Pitch Ratio, P/D 1.125, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, 4.5 

Incidence Angle, α 0° to 90° (for exact increment see Appendix A) 

Reynolds Number, Re 6.5 ± 0.1×104 (subcritical) 

Boundary Layer Thickness, δ/D 1.4 ± 0.1 

 

Though the Reynolds number, Re, and boundary layer thickness, δ/D, have a significant 

influence on the resultant flow field, wind loads, shear layer behaviour, and vortex shedding, 

they were kept constant to reduce experimental testing time. A subcritical Re (6.5×104) was 

chosen to remain consistent with previous work (Beitel, 2017), and to attain larger lift and drag 

forces so as to reduce the measurement uncertainty (discussed in Section 3.4). A subcritical Re is 

characterized by laminar boundary layers on the cylinder surface with early separation from the 

cylinder sides. The chosen δ resulted from the “untripped”, natural development of the boundary 

layer from the rounded leading edge of the wind tunnel’s ground plane, which ensured a fully 

developed turbulent flat-plate boundary layer at the location of the two cylinders. Discussion on 

Re and δ/D may be found in Section 3.2. Increased surface roughness of the cylinders can have a 

similar effect as increasing Re, however only smooth cylinders were tested. 
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1.4 Outline of Thesis 

The thesis is divided into five main chapters and five Appendices. Chapter 2 is a review of 

present literature on the topics of infinite (2D) cylinders in a staggered configuration (Section 

2.2), isolated surface-mounted finite-height cylinders (Section 2.3), and two surface-mounted 

finite-height cylinders in a staggered configuration (Section 2.4). Chapter 3 details the apparatus 

used to conduct the experiments, focusing on the wind tunnel (Section 3.2), cylinder models and 

positioning system (Section 3.3), and the instruments and methodology used to collect data for 

CD, CL, (Section 3.4) and St (Section 3.5). Chapter 4 contains an extensive discussion on the data 

gathered, separated into three main cylinder configurations. Section 4.2 encompasses the tandem 

configuration (α = 0°) with Sections 4.2.1 and 4.2.2 covering CD and St, respectively. Section 4.3 

details the side-by-side configuration (α = 90°) with discussion for CD, CL, St, and the hysteresis 

phenomenon found in Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4, respectively. Section 4.4 covers the 

remaining staggered configurations with Sections 4.4.1, 4.4.2, and 4.4.3 covering CD, CL, and St, 

respectively. Finally, Chapter 5 summarizes the conclusions of the thesis (Section 5.1), the 

contributions of this work (Section 5.2), and the recommendations for future work (Section 5.3). 

Appendix A shows a visual representation of the AR, P/D, and α configurations used for 

the measurement of CD, CL, and St. Appendix B contains all of the measured data in plots for CD, 

CL, and St as a function of α, separated by P/D for the four aspect ratios. Appendix C details a 

method used to further capture the intermittent gap bias switching found for closely spaced 

cylinders in a side-by-side configuration. Appendix D is a detailed discussion on the CL findings 

of Alam et al. (2003a) for infinite cylinders in a side-by-side configuration. Appendix E shows 

additional plots describing the hysteresis phenomenon for AR = 7 and AR = 5 that are relevant 

for Section 4.3.4. Appendix F contains the permissions from various publishers to reproduce 

figures from the literature. 
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Chapter 2 Literature Review 

2.1 Introduction 

Cylinders immersed in a cross-flow are common in present engineering applications, with a 

variety of flow characteristics carrying importance in the design. Their round cross-section and 

reduced stress concentrations contribute to strength when used in pressure vessels, storage tanks, 

and bins (ASME, 2012), making them commonplace in many industries. In many applications, 

these structures are exposed to potentially large wind loads, which can vary in strength and 

direction. Proximity and wake interference effects become an additional contribution to the wind 

loading experienced in storage tank farms or clusters of cylindrical bins (Portela and Godoy, 

2005 and 2007). Exhaust stacks for factories, power generation facilities, and refineries are also 

commonly found in groups, with the local air flow around the cylindrical bodies of significance 

to ensure proper exhaust dispersion (Gerhardt and Kramer, 1981). The effectiveness of many 

cooling systems often relies on the flow of coolant or air around clusters of cylinders, whether 

they are in the form of cooling lines or pin fin arrays (Igarashi et al., 2004). Engineering 

applications involving cylinder groups are both varied and numerous (some examples are shown 

in Figure 2.1), with the flow characteristics being a key component. 

The aerodynamic forces, vortex shedding, wake patterns, and flow-induced vibrations 

associated with two infinite cylinders in a staggered configuration (Figure 2.2) have been 

extensively studied and reviewed (Sumner, 2010; Zhou and Alam, 2016). The two-cylinder 

configuration is the simplest case of multiple cylinders, and has received the most attention in the 

literature. Section 2.2 contains a brief review of the literature pertaining to the flow around two 

infinite cylinders. Less well studied, however, is the flow around two surface-mounted finite-

height cylinders in a staggered configuration. A literature review for the flow around an isolated 

finite cylinder, which better resembles the engineering applications described above (and 

illustrated in Figure 2.1), may be found in Section 2.3 that details the additional 3D effects 

caused by the fixed and free end. The research in this thesis is focused on the flow around two 

surface-mounted finite-height cylinders in a staggered configuration, and a literature review for 

this arrangement of cylinders is found in Section 2.4. 
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Figure 2.1: Common examples of cylinder groups in cross-flow: a) grain storage bins, b) 

electrical components, c) chemical storage tanks, and d) smoke stacks. 

 

2.2 Flow around Two Infinite Cylinders in a Staggered Configuration 

Two infinite cylinders of equal diameter D arranged in a staggered configuration (Figure 

2.2), at arbitrary centre-to-centre spacing or pitch, P, and incidence angle, α, relative to the 

approach flow (with uniform freestream velocity U∞), is the most general arrangement. This 

configuration is of value in describing the flow field and associated fluid-structure interactions 

for cylinders in a 2D plane. Comprehensive reviews on two infinite cylinders in a staggered 

configuration have been compiled recently by Sumner (2010) and Zhou and Alam (2016) and 

cover many of the key topics, such as wake and proximity interference, shear layer reattachment, 

vortex shedding behaviour, mean and fluctuating aerodynamic forces, pressure distributions on 

the cylinders, and the flow patterns. 
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Figure 2.2: Schematic of two infinite cylinders in a staggered configuration. 

 

There are many contributing geometric and flow parameters that influence the overall 

flow field. The pitch ratio, P/D, coupled with the incidence angle, α (Figure 2.2), allow for an 

infinite number of cylinder arrangements. Ranges of P/D and α fall into either wake and/or 

proximity interference regions, accounting for many of the flow regimes possible. The Reynolds 

number, Re, also has a strong influence on whether a given configuration of P/D and α will 

produce wake and/or proximity interference. For example, studies by Ljungkrona and Sundén 

(1993), Said et al. (2008), and Zhou et al. (2009) found the behaviour of shear layer separation, 

reattachment, and roll-up was found to be sensitive to Re. Consequently the flow structures, 

wake profile, wind loading, and vortex formations found at various P/D and α are all sensitive to 

Re as well.  

Wake interference occurs when the downstream cylinder falls entirely or partially within 

the wake of the upstream cylinder as found in tandem configurations and staggered 

configurations at small α. The ultimate effect on the wake patterns becomes largely dependent on 

P/D as it dictates the ability of the upstream cylinder’s shear layers to reattach onto the 

downstream cylinder, although Re has some influence. Flows in the near tandem configuration 

can be classified as extended body, reattachment, and co-shedding regimes contingent on how 

the shear layers shed from the upstream cylinder interact with the downstream cylinder (Zhou 

and Alam, 2016). 
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Proximity interference occurs when the wakes of both cylinders are influenced by the 

presence of the other cylinder, though neither body is immersed directly in a wake. This is found 

with side-by-side configurations and staggered configurations at large α. The strength of the 

interference is also largely dependent on P/D. When P/D is reduced the proximity effects 

become stronger as the fluid flowing through the gap between the cylinders is accelerated and 

may be deflected to one side. Flows experiencing proximity interference can be classified as base 

bleed, biased flow, and co-shedding regimes depending on the behaviour of the gap flow (Zhou 

and Alam, 2016). 

 

2.2.1 Infinite Cylinders in a Tandem Configuration 

Two cylinders arranged such that one is directly downstream from the other is a 

fundamental configuration. The wake interference resulting from tandem (or inline) cylinders 

can result in a significant reduction in drag (wind loading). Flow dynamics are dictated by the 

Reynolds number and P/D, with patterns classified into the extended body, reattachment, and co-

shedding regimes (Figure 2.3).  

The extended body flow regime (Figure 2.3a) is found at very small pitch ratios (P/D ≤ 

1.125), although it can persist to higher P/D at lower Reynolds numbers (Igarashi, 1981). This 

flow regime is characterized by the downstream cylinder residing entirely within the separated 

shear layers from the upstream cylinder without any reattachment. The two cylinders function as 

one body, with negligible flow between them and Kármán vortices rolling up on alternating sides 

behind the downstream cylinder at a Strouhal number, St, higher than that of an isolated cylinder 

(Sumner, 2010). The mean drag coefficient, CD, for the upstream cylinder remains similar to that 

of an isolated cylinder (Sumner et al., 2005). The downstream cylinder, however, experiences 

significantly different mean wind loads, as the leading edge of the downstream cylinder 

experiences very low pressure stagnant gap fluid acting on it. Also, as it is enveloped in the 

separated shear layers from the upstream cylinder, the entire surface of the downstream cylinder 

is at a negative pressure coefficient (Alam et al., 2003b), resulting in an upstream-directed thrust 

force (or negative drag force). The magnitude of the thrust force is a strong function of P/D, with 

values able to reach CD = −0.50 (Sumner et al., 2005). As the cylinders are arranged 

symmetrically with the flow and the vortices are produced in an alternating fashion, the time-

averaged lift coefficient remains at zero (Sumner, 2010). 
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Figure 2.3: Tandem infinite cylinder flow regimes: a) extended-body, b-e) reattachment, and f) 

co-shedding. Figure taken from Sumner (2010); original source Igarashi (1981). 

 

The reattachment regime (Figure 2.3b-e) is found at intermediate P/D (between values of 

2.0 and 4.0), with higher Reynolds numbers allowing reattachment at P/D = 1.1 (Igarashi, 1981). 

This flow regime exhibits reattachment of the upstream cylinder’s separated shear layers onto the 

surface of the downstream cylinder. As P/D increases, the reattachment behaviour can take 

different forms as illustrated in Figure 2.3b-e (Igarashi, 1981).  
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At P/D = 1.1 – 1.6 (Figure 2.3b) one shear layer will envelop and the other will reattach 

onto the downstream cylinder, which occurs in an alternating fashion. The reattaching shear 

layer splits into two, with the downstream portion separating further along producing a Kármán 

vortex and the upstream portion able to reattach to the base region of the upstream cylinder 

(Alam et al., 2003b). A strong thrust force is experienced by the downstream cylinder in this 

region (Sumner et al., 2005). At P/D = 1.6 – 2.5 (Figure 2.3c-d) both shear layers continuously 

reattach onto the downstream cylinder, with a similar upstream and downstream directed shear 

layer split upon reattachment. The symmetric shear layer behaviour produces a pair of counter-

rotating gap vortices and a single Kármán vortex street (Alam et al., 2003b). The CD (which is 

negative) of the downstream cylinder increases as P/D increases, peaking around a neutral drag 

force (Sumner et al., 2005). At P/D = 2.5 – 4.0 (Figure 2.3e) one shear layer will reattach to the 

downstream cylinder while the other rolls up into a vortex that impinges on the downstream 

cylinder, occurring intermittently. This produces asymmetric counter-rotating gap vortices while 

maintaining the single Kármán vortex street found with all reattachment flow regimes at a St 

number lower than an isolated cylinder (Sumner et al., 2005). 

The co-shedding regime (Figure 2.3f) is found beyond a critical pitch ratio of P/D = 3.5 

to 5.0 (dependent on Re), with the transition from the reattachment regime occurring abruptly (as 

a discontinuous change in CD). The upstream cylinder sheds Kármán vortices which impinge on 

the leading face of the downstream cylinder triggering vortex shedding from the downstream 

cylinder. Both cylinders shed at the same frequency (St is similar to an isolated cylinder (Alam et 

al., 2003b)), only with a phase shift related to the distance between the cylinders (Sumner, 2010). 

During co-shedding, the downstream cylinder falls outside of the upstream cylinder’s “vortex 

formation length”. The vortex formation length is the streamwise distance downstream from the 

cylinder where the separated shear layers roll up and are shed into the wake as vortices, however 

the exact definition of this length has taken many forms from many authors (Noca et al., 1998). 

The vortex formation length has been defined as the point where the streamwise velocity 

fluctuations reach a peak, the point on the wake centreline where the streamwise Reynolds 

normal stress reaches a peak, the point along the wake centreline where the time-averaged 

streamwise velocity is zero (also known as the mean recirculation zone), and many others. 

Though the precise definitions vary, they all show similar trends, and as the vortex formation 

length of a cylinder depends strongly on Re (Noca et al., 1998), the P/D at which the upstream 
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cylinder can shed vortices becomes strongly dependent on Re as well (Sumner, 2010). A 

thorough study by Zhou et al. (2009) into the Re effects on the flow structures produced with 

staggered cylinders show that an increase in Re shortens the vortex formation length, causing the 

abrupt transition from the reattachment regime to the co-shedding regime to occur at lower P/D. 

Both upstream and downstream cylinders experience a sudden and large increase in CD when 

transitioning into the co-shedding regime, with the downstream cylinder going from a mean 

thrust force to a mean drag force (Sumner, 2010). 

Infinite cylinders in a tandem configuration generally have been well documented. Use of 

flow visualization techniques alongside both instantaneous and time-averaged measurements 

have given a fairly comprehensive view of how both P/D and Re affect the applied forces and 

shear layer behaviour. Identifying regions of strong vortex production and fluctuating lift forces 

are crucial for structural applications where strength can be compromised if vortex-induced 

vibration occurs near a resonant frequency. Abrupt changes in wake profiles like found at the 

onset of the co-shedding regime may also result in impulse-type (gust) loading, which is an 

important consideration in the design of structures. 

 

2.2.2 Infinite Cylinders in a Side-by-Side Configuration 

Two infinite cylinders arranged in a side-by-side configuration perpendicular to the 

incident freestream are another well-documented fundamental arrangement. Two side-by-side 

cylinders are a simplified version of a prevalent arrangement, with rows of adjacent cylinders 

often found as coolant lines in heat exchangers, as support cables in suspension bridges, or as a 

cluster of closely spaced high-rise buildings or smokestacks. Three predominant flow regimes 

(or flow patterns), namely the base bleed, biased flow, and co-shedding regimes (Figure 2.4), can 

be found in this configuration with the presence of each dependent on P/D and Re. Though the 

configuration is geometrically symmetric, strong proximity effects can cause close and moderate 

P/D to experience significant asymmetry in the wake profiles producing large mean lift 

coefficients and dissimilar vortex shedding frequencies and mean drag coefficients between the 

two cylinders.  
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Figure 2.4: Side-by-side infinite cylinder flow regimes a) base bleed, b) biased flow, and c) co-

shedding (where U is the freestream velocity). Figure taken from Sumner (2010). 

The base bleed flow regime (Figure 2.4a) is found at P/D ≤ 1.2, though the exact range is 

dependent on Re (Alam and Zhou, 2007). Alternating Kármán vortex shedding off the outer 

sides of the cylinders dominate the wake structure with both cylinders producing a single vortex 

street like a single wider bluff-body. Limited gap flow between the cylinders does not produce 

vortices, however it does bias strongly to one side. As the gap flow wraps behind one cylinder it 

ultimately joins the outer shear layer as it rolls into a vortex. Two modes of asymmetric gap flow 

may exist (Figure 2.5), with one prevalent at P/D = 1.1, the other at P/D = 1.2, and intermittent 

switching between both at P/D values between 1.1 – 1.2. With the gap bias direction also able to 

intermittently switch sides, a resulting “quadri-stable” flow regime is possible at P/D = 1.13 as 

found by Alam and Zhou (2007).  

 
Figure 2.5: Side-by-side infinite cylinder base bleed flow patterns found at a) P/D = 1.1 and b) 

P/D = 1.3. /, stagnation points; /, outer separation points; ➨/➩, inner seperation points; 

♥, reattachment point.  Figure adapted from Alam and Zhou (2007). 
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At P/D = 1.1 (Figure 2.5a) the gap flow remains attached to the inner face up to 175° 

from the leading edge of the “narrow wake” cylinder. A separation bubble occurs for 

approximately 40° along the base region of the cylinder, after which the flow reattaches and 

subsequently separates, joining the outer shear layer. The attached flow over the entire inner face 

and base region of the narrow wake cylinder produces a large area of low pressure, resulting in 

the mean lift force on the narrow cylinder being inward directed (toward the gap and the “wide 

wake” cylinder) (Alam and Zhou, 2007; Sumner, 2010) and the mean drag force to be 

significantly higher than the wide wake cylinder (Sumner, 2010). The strong proximity 

interference and significantly less negative base pressure causes the non-biased wide wake 

cylinder to experience a strong outward directed (away from the gap and the narrow wake 

cylinder) mean lift force coefficient, CL, (Alam and Zhou, 2007) and a relatively low CD 

(Sumner, 2010). Though the gap flow between the cylinders is highly asymmetric, the single 

bluff-body type vortex shedding occurs from only the outermost shear layers of the two cylinders 

at a single Strouhal number approximately half that of an isolated cylinder (Sumner, 2010). 

A similar biased base bleed flow pattern may be found at P/D = 1.2 (Figure 2.5b) where 

the gap flow follows the inside face of one cylinder, though the deflection angle of the gap flow 

is much smaller. Separation from the inner face of the narrow wake cylinder is found at 112° 

from the leading edge, with the deflected gap flow joining the outer shear layer in a similar 

manner as P/D = 1.1. Though proximity effects are weaker and the gap flow does not remain 

attached for as long as at P/D = 1.1, the cylinders still have dissimilar wind loads. The narrow 

wake cylinder experiences a more repulsive CL and a higher CD whereas the wide wake cylinder 

is found to have a less repulsive CL and a lower CD (Sumner et al., 2005). In a similar fashion to 

P/D = 1.1, the weak base bleed gap flow does not contribute significantly to the outer shear layer 

“single bluff-body” behaviour resulting in a similar value of St (Sumner, 2010). 

The biased flow regime (Figure 2.4b) may be found between P/D = 1.2 and 2.0, 

depending on Re. Both cylinders undergo vortex shedding despite the strong proximity 

interference and gap flow deflection. The deflection angle is proportional to the proximity 

effects, with smaller P/D values leading to higher deflection angles. Narrow and wide near 

wakes form behind the cylinders, with the narrow wake associated with a higher CD, CL, and St 

and the wide wake associated with a lower CD, CL, and St (Sumner et al., 2005).  
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The transition from the biased flow regime to the co-shedding flow regime (Figure 2.4c) 

occurs near P/D ≥ 2.0, though the exact boundary is both Re dependent and a subtle, smooth 

transition. As P/D increases the proximity interference weakens, reducing the gap flow 

deflection until the overall flow field is symmetric and there are two parallel vortex streets in the 

wakes of the cylinders (Sumner, 2010). Though the wake patterns become more akin to those 

found behind an isolated cylinder, the mutual influence of the other cylinder results in vortex 

shedding synchronization. Anti-phase synchronization is most commonly found, with in-phase 

synchronization also possible though much less stable (Sumner, 2010). Both cylinders 

experience similar wind loads and vortex shedding frequency near the onset of the co-shedding 

regime (Sumner, 2010). Values of CD, CL, and St asymptotically approach that of an isolated 

infinite cylinder as P/D tends toward a value of 5.0 (Sumner, 2010). 

In summary, side-by-side infinite cylinders may experience a wide range of wind loading 

and vortex shedding behaviour across the range of P/D. Closely spaced cylinders (P/D ≤ 1.2) 

show very dissimilar values for CD, CL, and St as the limited gap flow wraps around to the base 

region of one of the cylinders. Abrupt changes in wind loading occur as the near wake profile 

changes mode and when the gap flow changes sides. The asymmetric flow field for moderately 

spaced cylinders (1.2 < P/D ≤ 2.0) is characterized by a narrow wake and a wide wake, with the 

narrow wake cylinder experiencing relatively higher CD, CL, and St. Some studies report the 

asymmetric flow pattern to be bi-stable, in that the direction of the gap flow (and the narrow and 

wide wakes) can intermittently switch from one cylinder to another, or be stably biased to one of 

the cylinders for many vortex shedding periods (Sumner, 2010). Widely spaced side-by-side 

cylinders (P/D ≥ 2.0) each shed vortices similar to isolated cylinders though the vortex formation 

is synchronized either anti-phase or in-phase.  
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2.2.3 Infinite Cylinders in a Staggered Configuration 

A staggered configuration of two infinite cylinders represents any configuration whose 

angle of incidence lies between tandem (α = 0°) and side-by-side (α = 90°). The oblique angles 

found in staggered configurations lead to complex shear layer interactions that can produce new 

flow patterns in addition to variants of the flow regimes previously discussed. As with tandem 

and side-by-side configurations, the exact boundaries between flow regimes are functions of P/D 

and Re, with the addition of α as a third influencing parameter. Studying the flow around 

staggered cylinders is a more practical approach to understanding wake and proximity 

interference effects as a very limited number of real engineering applications will be exposed to 

exclusively parallel or perpendicular freestream conditions, notably so in outdoor conditions 

where the freestream is comprised of wind that may come from any direction or change direction 

over a time period.  

Many varying flow regimes are possible within the scope of P/D, α, and Re. 

Classification of these modes may differ with the flow characteristic of focus. Sumner et al. 

(2000) found nine different flow patterns at Re = 850 – 1900, which were grouped into single 

bluff-body, small incidence angle, and large incidence angle flow patterns (Figure 2.6). The 

defining feature of each flow pattern was the shear layer behaviour in the near wakes of the two 

cylinders. Hu and Zhou (2008) characterized the observable flow patterns at Re = 7000 by the 

number of vortex streets found in the wake, with further classification based on the vortex 

behaviour in the far wake. Zhou et al. (2009) studied the effect of Re on pre-existing vortex 

formation patterns in the near wake, with many individual modes described. Many of the flow 

pattern classifications overlap, though due to varying Re used for each classification system the 

boundaries in P/D and α vary. 
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Figure 2.6: Staggered infinite cylinder flow regimes as classified by Sumner et al. (2000). Figure 

taken from Sumner (2010); original source Sumner et al. (2000). 

 

Single bluff-body (Figure 2.6a-c) flow patterns are found at all α when P/D ≤ 1.25 and 

are characterized by negligible gap flow between the cylinders and a single vortex street formed 

by the outer shear layers. Single bluff-body type 1 (SBB1 found in Figure 2.6a) is found near 

tandem (α = 0° - 45°) at very close spacing (P/D < 1.125) and is marked by uneven length shear 

layers between the upstream and downstream cylinders. At angles very near tandem (α < 15°) the 

downstream cylinder is shielded by the upstream cylinder and resides within its low pressure 

base region, resulting in a thrust force (up to CD = −0.53). Around α = 9° the “inner lift peak” is 

found, which corresponds to the rapid development of an inward-directed lift force experienced 

by the downstream cylinder (up to CL = −0.67). At the inner lift peak the mean drag coefficient 

for the downstream cylinder attains a local minimum value (Sumner et al., 2005). Both cylinders 

shed vortices off their outer sides at the same frequency throughout this regime, with a maximum 

value at the inner lift peak of St = 0.25 (Sumner et al., 2005). Single bluff-body type 2 (SBB2 

found in Figure 2.6b) is found near side-by-side (α = 45° - 90°) and very small pitch ratios (P/D 
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< 1.125) though unlike SBB1 the outer shear layers are of equal length and shed at the same 

frequency like a single body at St = 0.12 (Sumner et al., 2005). 

The base bleed flow pattern (BB found in Figure 2.6c) is the third single bluff-body flow 

pattern and is observed near side-by-side (α = 45° - 90°) with closely spaced cylinders (P/D = 

1.125 – 1.25) (the BB flow pattern closely resembles the base bleed flow regime for two side-by-

side cylinders discussed previously). The data presented by Sumner et al. (2005) show dissimilar 

wind loading on the cylinders near α = 90° with one cylinder experiencing a significantly higher 

CD and lower CL (analogous to the findings of Alam and Zhou (2007) for closely spaced side-by-

side cylinders). The three single bluff-body flow patterns described by Sumner et al. (2000) 

(SBB1, SBB2, and BB) broadly coincide with the S-Ia mode identified by Hu and Zhu (2008). 

Small incidence angle flow patterns (Figure 2.6d-f) are found at all but the smallest P/D 

where the cylinders are near tandem (α < 20° - 30° depending on P/D). These flow patterns have 

a single vortex street and strong wake interference as the upstream shear layers interact directly 

with the downstream cylinder. The shear layer reattachment flow pattern (SLR in Figure 2.6d) is 

found very near tandem (α < 15°) and with moderately to closely spaced cylinders (1.125 < P/D 

< 3.0). The SLR flow pattern is characterized by the inner shear layer from the upstream cylinder 

reattaching onto the outer surface of the downstream cylinder. As the shear layer envelops the 

downstream cylinder there is no appreciable gap flow. The SLR flow pattern overlaps with the S-

Ib mode found by Hu and Zhou (2008). Similar to SBB1, the shielding from the upstream 

cylinder allows the downstream cylinder to experience a thrust force proportional to the 

closeness of the cylinders (Sumner et al., 2005). The inner lift peak described earlier persists in 

the SLR regime as well, for example Sumner et al. (2005) found the downstream cylinder at P/D 

= 1.5 would experience the local peak value of lift at α = 9°.  

The induced separation flow pattern (IS in Figure 2.6e) is found at the same pitch ratios 

as SLR (1.125 < P/D < 3.0) but at slightly higher incidence angles (α = 15° - 25°). The upstream 

cylinder’s inner shear layer now moves next to the inner surface of the downstream cylinder, 

with the deflected gap flow between the cylinders triggering early separation off the inner face of 

the downstream cylinder. With the downstream cylinder outside of the upstream cylinder’s shear 

layer and able to produce vortices off both inner and outer faces, there is a rapid reduction in the 

magnitude of attractive CL and increase in CD. As found by Sumner et al. (2005) at P/D = 2.0, 
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moving away from the inner lift peak by just 7° the value of CL for the downstream cylinder 

increases from −1.16 to −0.43 with CD also increasing from −0.28 to +0.48. This sudden change 

in wind loading (and in the vortex shedding frequency) with a small change in wind direction 

may be problematic for structural engineers. 

The vortex impingement flow pattern (VI found in Figure 2.6f) is found at similar 

incidence angles as SLR and IS (α < 20° - 30°) but at higher pitch ratios (P/D > 3.0). Here the 

cylinders are far enough apart that the upstream cylinder’s shear layers can roll up into vortices, 

which once shed then impact the leading face of the downstream cylinder. A less prominent 

“outer lift peak” is found where the downstream cylinder aligns with the outer edge of the wake 

of the upstream cylinder; the outer lift peak is found at a higher α than the inner lift peak. The 

outer lift peak is far less sensitive to α, and at P/D = 4.0 it occurs at α = 18° with no 

corresponding local minimum in CD. Since the upstream cylinder is far upstream and the wake 

interference effects are relatively small, it acts similar to an isolated cylinder throughout this 

flow pattern (Sumner et al., 2005). Both the IS and VI flow patterns reside within the P/D and α 

range described as S-II by Hu and Zhou (2008). 

Large incidence angle flow patterns (Figure 2.6g-i) occur at between P/D = 1.5 – 5.0 and 

over the majority of the staggered range away from tandem (20° - 30° < α < 90° depending on 

P/D). Proximity interference influences the vortex shedding that occurs behind both cylinders, 

with the far-wake interactions dictating whether two vortex streets persist or if one envelops the 

other (Hu and Zhou, 2008). The vortex pairing and enveloping flow pattern (VPE in Figure 2.6g) 

occurs between P/D = 1.25 – 3.5 at α = 20° - 45°. This region is a narrow band adjacent to the 

induced separation flow pattern, though instead of the upstream cylinder’s inner shear layer 

reattaching onto the inner face of the downstream cylinder, it rolls up into a vortex and is forced 

into a narrow wake behind the upstream cylinder. The inner face of the downstream cylinder also 

forms a vortex that is drawn in behind the upstream cylinder. As both of the paired weaker gap 

vortices progress downstream they are enveloped by the stronger outer shear layer from the 

upstream cylinder, resulting in a single vortex street.  

A variant of the VPE flow pattern is the vortex pairing, splitting, and enveloping flow 

pattern (VPSE in Figure 2.6h). Both gap vortices still pair up, though the outer shear layer splits 

the downstream cylinder’s gap vortex in two as it envelops the pair. What is left of the split 
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vortex remains between the two larger vortices formed from the outer shear layers as the wake 

proceeds downstream. As the only difference between the VPE and VPSE regime is a subtle 

change in the far wake, the wind loading characteristics are fairly similar. Also, as both VPE and 

VPSE ultimately revert back to a single vortex street in the far wake, they both fall under the S-II 

mode defined by Hu and Zhou (2008).  

The synchronized vortex shedding flow pattern (SVS found in Figure 2.6i) is found over 

a large range of moderately to widely spaced staggered configurations, essentially as long as the 

downstream cylinder is situated more than 1.5D away from the upstream cylinder in the 

transverse direction. No vortex enveloping occurs, but the twin vortex streets formed behind the 

cylinders synchronize as either in-phase or more commonly anti-phase. Proximity effects still 

influence the wakes, and in a similar manner to the biased flow pattern for side-by-side 

cylinders, the staggered cylinders in the SVS regime experience a larger disparity in their wake 

widths the closer they are spaced. As the SVS flow pattern produces twin vortex streets it falls 

into the T-I and T-II modes identified by Hu and Zhou (2008), with the T-I mode covering the 

vast expanse of the SVS region, and the T-II mode only applying in the very near side-by-side 

region (within an α of 2°). Data from Sumner et al. (2005) show trends for either end of the SVS 

spectrum at P/D = 1.5 and 4.0. At P/D = 1.5 the downstream cylinder has the wide wake with a 

lower CD, CL and St. The upstream cylinder maintains a narrow wake with a higher CD, CL and 

St. As P/D increases the proximity effects weaken, causing the cylinders to behave more 

independent of each other, like isolated cylinders, at P/D = 4.0.  

With the large number of cylinder arrangements within the range of P/D = 1.0 – 5.0 and α 

= 0° - 90° summarized in Figure 2.6 there follows that a vast amount of data can be produced to 

capture the flow’s behaviour. Complex shear layer interactions in the near wake found at very 

low P/D can produce abrupt changes in surface pressure and mean wind load. Equally complex 

vortex interactions in the far wake found at intermediate to large P/D can produces vastly 

different vortex shedding frequencies between the cylinders. Research into the numerous 

possible modes of flow for two infinite cylinders in a staggered configuration helps to provide a 

comprehensive view for use in engineering applications. 
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2.3 Flow around an Isolated Surface-Mounted Finite-Height Cylinder 

A cylinder of diameter D and height H affixed to a ground plane on one end and 

immersed freely in the flow on the other end, as seen in Figure 2.7, is a common geometry that 

covers a wide range of scales and applications. Details on the wind loading and vortex shedding 

frequency for these surface-mounted, finite-height cylinders are of value as many structures such 

as cooling towers, grain bins, and fuel storage tanks (Figure 2.1) can be approximated as 

cantilevered cylinders. Vortex induced vibration of large structures can have devastating effects, 

and research in this field has benefited the safe design of many engineering structures (Wu et al., 

2012). The vortex dynamics around surface-mounted finite-height cylinders plays a significant 

role in air quality studies as well with exhaust gas entrainment behind smokestacks and pollution 

dispersion around buildings in cities (Petersen et al., 2002). 

 

Figure 2.7: Schematic of the flow around a surface-mounted finite-height cylinder (of diameter D 

and height H) partially immersed in a flat-plate boundary layer (of thickness δ). The origin of the 

co-ordinate system (z being wall-normal (vertical) and x being streamwise) is at the centre of the 

cylinder at the junction with the ground plane. 

 

There are several parameters that influence the flow patterns produced by finite cylinders. 

The aspect ratio, AR, of the cylinder is a measure of its slenderness and is the most important of 

these parameters. Additionally, the relative thickness of the ground plane boundary layer, δ/D, 

and the Reynolds number, Re, can influence how different flow patterns develop. 
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The Kármán vortex shedding found with infinite (2D) cylinders represents one of the four 

main vortex structures found once 3D effects are introduced via the free end (or tip) and the 

fixed end (cylinder-wall junction) flow conditions (Wang et al., 2006). Complex vortex systems 

and structures occur above the free end (Sumner, 2013), in the wake of the cylinder (Sumner et 

al., 2004), and near the ground plane (Sumner et al., 2017). For cylinders above a critical AR, 

streamwise tip vortex structures, Kármán vortices shed from the sides of the cylinder, streamwise 

base vortex structures, and a horseshoe vortex at the cylinder-wall junction, are present (Figure 

2.8b and Figure 2.9). Below the critical AR, the base vortices are absent and the Kármán vortices 

connect near the free end to form an arch (Figure 2.8a) (Porteous et al., 2014). The additional 

vortex systems have an effect on the mean drag coefficient, CD, and the Strouhal number, St, for 

the cylinder as well as the overall wake structure. 

 

Figure 2.8: Surface-mounted finite-height cylinder (for cylinder height or length, L) vortex 

dynamics (a) below the critical aspect ratio and (b) above the critical aspect ratio (Porteous et al. 

2014).  

a) 

b) 

Legend 

Vf Free end vortex 

Tv Tip Vortex 

Fw Far wake vortex 

Av Connected Kármán vortex 

H1 Primary horseshoe vortex 

H2 Secondary horseshoe vortex 

Nv Near wake base vortex 

Bf Base vortex 
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2.3.1 Free and Fixed End Effects for a Surface-Mounted Finite-Height Cylinder 

Complex three-dimensional vorticity enters the fluid as it is allowed to flow over the free 

end of the finite cylinder and is obstructed by the ground plane at the fixed end. Additional 

vortex structures that strongly affect the near wake of a surface-mounted finite-height cylinder 

are the streamwise tip vortices, streamwise base vortices, and the horseshoe vortex. The tip 

vortices are a symmetric pair of counter-rotating vortices anchored at the tip of the cylinder that 

extend primarily in the streamwise direction but are angled slightly toward the ground plane. 

They rotate such that downwash is created along the wake centreline downstream of the free end 

in the upper part of the wake, deflecting the freestream fluid that passes over the free end of the 

cylinder towards the ground plane. The freestream entrainment adds momentum to the near 

wake, increases the base pressure, and reduces CD (compared to an infinite cylinder). Tip 

vortices are stronger than base vortices (Sumner et al., 2004), and their effects contribute more to 

the overall wake profile. Though the reduced wind load on the cylinder is favourable for most 

structures, the entrainment of fluid from above the cylinder can bring exhaust fumes from smoke 

stacks back to the ground, causing air quality problems directly downstream of a stack if the 

stack exit momentum is too low (Adaramola et al., 2010). In a similar manner to the tip vortices, 

base vortices form as a symmetric pair anchored to the cylinder-wall junction region of the 

cylinder that rise away from the ground plane as they move downstream. The orientation of the 

base vortices produces “upwash” along the centreline of the cylinder wake near the ground 

plane, suppressing Kármán vortex shedding near the ground plane (Sumner et al., 2004). Effects 

from the base vortices are not as strong as the tip vortices. The horseshoe vortex is formed from 

the presence of the cylinder-ground plane junction. The boundary layer rolls up in front of the 

cylinder and the resultant vortex is diverted around either side of the cylinder base with the 

strength of the vortex proportional to δ/D (Sumner, 2013). 

A surface-mounted finite-height cylinder’s wake vortex structure is highly dependent on 

AR, with a critical aspect ratio identified between AR = 3 – 5 by Heseltine (2003) and AR = 3 by 

Lee (1997). Far above the critical aspect ratio the vortex structures near the ends of the cylinder 

are weaker relative to the Kármán vortices formed at the mid-height, allowing the Kármán 

vortices to form uninterrupted at all but either end of the cylinder as seen in Figure 2.9. Near the 

critical AR the Kármán vortex shedding that normally occurs is more strongly influenced by the 
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tip and base vortices as they pinch off the mid-height region, inclining or bending the axes of the 

Kármán vortices (Figure 2.8b). Below the critical AR the base vortices no longer appear, and 

Kármán vortices that are usually shed from alternating sides connect at the free end forming an 

arch that is shed as one vortex (Figure 2.8a). Under the critical aspect ratio the tip vortices 

remain and become a large contributor to the wake profile. In this configuration the downwash is 

often strong enough to cause the freestream passing over the free end to reattach to the ground 

plane (Porteous et al., 2014). 

 

Figure 2.9: Surface-mounted finite-height cylinder vortex dynamics for significantly above the 

critical aspect ratio (taken from Sumner (2013); original source Sumner et al. (2004)). Here, U(z) 

is the mean streamwise velocity profile of the boundary layer on the ground plane. 



28 

 

2.3.2 Near Wake of a Surface-Mounted Finite-Height Cylinder 

It has been shown that the downwash induced from the tip vortices and the upwash 

induced by the base vortices can suppress the strength and the formation length of the Kármán 

vortices. Sumner et al. (2004) showed that lowering the cylinder aspect ratio from AR = 9 to AR 

= 3 results in weaker vortex shedding peaks near the mid-height position as the relative strength 

of the end effects grows. One of the definitions for vortex formation length offered by Noca et al. 

(1998) is the peak in velocity fluctuations measured by a hot-wire probe on the centreline of the 

wake. At AR = 9, the vortex formation length is longest just below the mid-height of the 

cylinder. The vortex formation lengths are shorter near the ends of the cylinder, with no 

discernable peak velocity fluctuation near the free end. This follows as the tip vortices are 

stronger than the base vortices, causing the pinching of the wake to be more severe from the top. 

A similarly shaped mean recirculation region (defined by the point of zero streamwise velocity) 

was found by Rostamy (2012) for AR = 7 and 5 likely due to the inclined Kármán vortices 

induced by the tip and base vortices requiring a longer formation length closer to the ground 

plane. Rostamy (2012) found that the vortex formation length increased with AR (from AR = 3 

to AR = 7), where AR = 9 had a shorter and more constant vortex formation length (see Figure 

2.10) along its mid-height. This is likely due to the diminished end effects allowing Kármán 

vortices to being produced uninterrupted along the majority of the cylinder height at a formation 

length similar to an infinite cylinder. 
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Figure 2.10: Mean streamlines in a vertical plane on the wake centreline for a) AR = 9, b) AR = 

7, c) AR = 5, and d) AR = 3. Figure taken from Rostamy (2012) and reproduced with the 

permission of the student’s supervisor, D. Sumner. 

 

2.4 Flow around Two Surface-Mounted Finite-Height Cylinders in a Staggered 

Configuration 

Groups of surface-mounted finite-height cylinders represent a large portion of structures 

and components in engineering applications today. Cooling towers, power transmission poles, 

storage tanks, high-rise buildings and many more large scale structures can be approximated as 

groups of cantilevered cylinders of various aspect ratios. The wake and proximity interference 

effects of two staggered cylinders, combined with the additional vortex structures produced by 
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finite-height cylinders, result in a highly complex flow field that is sensitive to P/D, α, AR, δ/D, 

and Re (Figure 2.11). Though this configuration (Figure 2.11) is the most applicable to design 

problems, the literature is far more limited than for infinite staggered cylinders or isolated finite-

height cylinders. Contributions can be made regarding the effects of AR specifically on when 

different flow regimes develop, as well as the behaviour of CD, CL, and St across the entire 

staggered range (P/D = 1.0 – 5.0 and α = 0° – 90°). 

 

Figure 2.11: Schematic of two surface-mounted finite-height cylinders (each of the same 

diameter, height, and aspect ratio) in a staggered configuration. 

 

A key feature of the finite-height cylinders is the modification to Kármán vortex 

shedding due to the finite height and end conditions. For finite cylinders, Kármán vortex 

shedding is only found at the mid-height well above the critical aspect ratio. As tip and base 

vortices pinch the wake, the mid-height vortex formation length of a finite-height cylinder is 

longer and the near-wake region becomes wider (outwards from the centre line) than those of an 

infinite cylinder (Rostamy, 2012). These differences potentially allow the closely spaced flow 
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patterns to be maintained at higher P/D; for example, Li and Sumner (2009) reported two finite 

cylinders of AR = 9 experiencing reattachment behaviour at P/D = 3.0, a point at which infinite 

cylinders would typically exhibit co-shedding. The shear layers of finite-height cylinders also 

roll up into vortices farther away from the wake centreline in the transverse direction, potentially 

allowing shear layer reattachment at higher α away from tandem; for example, Taniguchi et al. 

(1982) found that inner lift peak for two staggered finite cylinders of AR = 3 was at α = 15° for 

P/D < 3.0, compared to α = 8° for infinite cylinders in this P/D range (Sumner et al., 2000). 

Variation of the vortex formation length along the heights of the finite-height cylinders could 

potentially even allow multiple flow patterns to co-exist at different locations along the heights 

of the cylinders, provided the aspect ratio is sufficiently high (Sumner and Li, 2014). For 

example, at moderate P/D the upstream cylinder’s shortened vortex formation length near the 

free end may result in a co-shedding regime over the upper portion while the mid-span shear 

layers remain reattached to the downstream cylinder. 

Isolated surface-mounted finite-height cylinders experience a lower CD and St than 

infinite cylinders due to the downwash and upwash entraining high momentum freestream into 

the wake fluid and weakening the Kármán vortex shedding. This reduction in drag when 

compared to infinite cylinders is reported for most staggered configurations, with a notable 

exception within the extended body regime for tandem cylinders. In this configuration infinite 

cylinders experience a strong thrust force as the entire downstream cylinder resides within the 

separated shear layers. The extended vortex formation length allows the downstream cylinder to 

maintain shear layer reattachment at wider P/D, up to P/D = 5.0 as found by Luo et al. (1996). 

Additionally, the freestream impingement on the upper portion at smaller P/D results in a weaker 

overall thrust force (Taniguchi et al., 1982; Luo et al., 1996). Said et al. (2008) found with AR = 

2.67 cylinders at P/D = 5.33 that the lower portion of the cylinders would experience co-

shedding, where a large portion of the downstream cylinder would be exposed to the entrained 

freestream. Local minima and maxima in the CD and CL curves (with α) are lower in magnitude 

and less sensitive to changes in P/D when compared to infinite staggered cylinders. Spanwise 

(along the height) variation in shear layer behaviour can cause transitions between flow regimes 

to happen at different times along the height of the cylinder as opposed to abrupt changes as the 

entire shear layers reattach or begin shedding as vortices, as found by Luo et al. (1996) with AR 

= 8 cylinders at P/D = 3.0 for the height between z/D = 0.65 and 0.85. 
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Finite-height effects are also apparent on cylinders in a side-by-side configuration. Zhang 

et al. (2015) found that, as noted previously, CD for finite-height cylinders is lower than that of 

infinite cylinders at similar P/D. The local spanwise (sectional) values of CD and CL are also a 

function of P/D for staggered finite cylinders, with Lui and Cui (2006) noting the cylinder-wall 

junction and free end regions showing local maximum values of CD at larger P/D, while smaller 

P/D produced higher magnitude mid-span CL with a gradient to zero near the free end. Reddy 

and Poddar (2008) performed experiments focusing on the P/D effects for side-by-side cylinders 

of AR = 8.95 and found that, similar to finite-height cylinders in a tandem configuration, 

proximity effects were present in the force data for larger spacing than found with infinite 

cylinders (up to P/D ≤ 3.0). Additionally, the behaviour of the biased flow regime at small P/D 

was very sensitive to Re. A subcritical regime (Re = 2.0×105) caused one cylinder to obtain a CD 

higher than an isolated cylinder while the other cylinder had a CD lower. Conversely, a 

supercritical regime (Re = 6.5×105) caused both cylinders have CD values closer to each other 

and above an isolated cylinder.  

An important staggered configuration between tandem and side-by-side is the 

configuration associated with the “inner lift peak” found at small P/D. Infinite cylinders 

experience distinct local maximum values of CL and St for the downstream cylinder at α = 9° 

(Sumner et al., 2005). For two finite cylinders, however, this inner lift peak is less prominent: 

Rooney et al. (1995) observed a broader peak in St at a wider incidence angle near α = 15°; 

Taniguchi et al. (1982) observed similar behaviour in their CL data for AR = 3 cylinders, with 

only P/D = 1.2 producing a distinctive peak, and P/D ≥ 1.35 producing weaker, broad peaks 

similar to the “outer lift peak” described by Sumner et al. (2005). 

In general, there is limited literature on the wind loading and vortex shedding of finite-

height staggered cylinders. Thus, systematically varying AR, P/D, and α to explore the finite-

height effects on CD, CL, and St is the focus of this thesis. Beyond the scope of this thesis, there 

are still areas of potential future work, include studying the effects of Re and δ/D. Additionally, 

flow visualization or particle image velocimetry could give valuable insight to the complicated 

vortex dynamics that occur in these highly three-dimensional flows.  
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Chapter 3 Experimental Apparatus 

3.1 Introduction 

An experimental approach was followed in the research described in this thesis. Measurements 

of the mean drag coefficient, CD, mean lift coefficient, CL, and Strouhal number, St, as functions 

of aspect ratio, AR, pitch ratio, P/D, and incidence angle, α, for two surface-mounted finite-

height cylinders in a staggered configuration, were collected with the use of a low-speed closed-

return wind tunnel at the University of Saskatchewan. The experimental methods used were 

similar to those of Sumner et al. (2004), Adaramola et al. (2006), Rostamy et al. (2012), and 

Igbalajobi et al. (2013) for an isolated finite-height cylinder, and to Sumner et al. (2005) and Li 

and Sumner (2009) for two staggered cylinders. Section 3.2 details the wind tunnel, freestream 

measurements, and flow conditions. Section 3.3 describes the cylinder models and turntable 

positioning system. Section 3.4 provides information on the measurement of the mean drag and 

lift coefficients, and Section 3.5 details the measurement of the Strouhal numbers. 

 

3.2 Wind Tunnel and Freestream Measurements 

The testing program made use of the low-speed closed-return wind tunnel in the Department of 

Mechanical Engineering at the University of Saskatchewan. A 100 hp, constant speed, variable 

pitch fan supplies the wind, which passes through a set of turbulence reduction screens 

comprised of a coarse mesh and a fine mesh. The airflow passes through an area reduction of 7:1 

before entering the test section (measuring 1.96 m in length, 1.13 m in width, and 0.91 m in 

height). For a schematic of the wind tunnel, see Figure 3.1.  

 
Figure 3.1: Low-speed, closed-return wind tunnel used for the experiments. 
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Instrumentation for measuring the freestream conditions was controlled by a desktop 

computer via LabVIEW Virtual Instruments (VI’s). The data acquisition system used a 16-bit 

National Instruments PCIe-6295 card. The VI measuring the freestream static pressure, P∞, 

dynamic pressure, q∞, and temperature, T∞, acquired 10,000 instantaneous samples at a rate of 1 

kHz before averaging each of the individual parameters. 

Measurements of the freestream static (P∞) and stagnation (P0) pressure were made with 

a 3.2 mm United Sensor Pitot-static probe mounted from the side wall of the test section. The 

static pressure (P∞) line was connected to a Datametrics Barocel Type 600A-1000T-513-H21X-4 

absolute pressure transducer and the reference side of a Datametrics Barocel Type 590D-10W-

2QB-VIX-4D differential pressure transducer. The stagnation pressure (P0) line was connected to 

the opposing inlet of the differential pressure transducer providing the measurement of the 

freestream dynamic pressure, q∞ = P0 – P∞, for use in calculating the freestream velocity (U∞). 

The United Sensor Pitot-static probe affixed to the test section wall also contained a T-type 

thermocouple for measuring the freestream temperature (T∞).  

Using the averaged measured values of P0, P∞, and T∞, the freestream air density (ρ∞), 

dynamic viscosity (μ∞), U∞, and Reynolds number (Re) were calculated. The density was 

calculated using the ideal gas law, ρ∞ = P∞/RT∞, where R (= 287 J/(kg·K)) is the specific gas 

constant for air. The dynamic viscosity was calculated using Sutherland’s Law, 

 𝜇∞ = 𝜇0
(𝑇∞/𝑇0)

3
2⁄ (𝑇0+𝑆)

(𝑇∞+𝑆)
  , (3.1) 

where the constants are chosen for air at a specific reference temperature (μ0 = 1.725×10-5 

kg/(m·s), T0 = 273 K, and S = 110.4 K). The freestream velocity was calculated from the 

freestream dynamic pressure using equation 3.2. 

 𝑈∞ = √2
𝑞∞

𝜌∞
 (3.2) 

Conditions for the experiments were dictated by U∞, and it was manually set such that the 

Reynolds number, Re (= ρ∞U∞D/µ∞ where D = 31.5 mm is the cylinder diameter) was 6.5 ± 

0.1×104. The wind tunnel did not have any form of active temperature control, therefore the 

slowly rising temperature that occurred throughout each test had the effect of slowly reducing 

Re. Each test conducted remained within a Re range of 6.4×104 and 6.6×104, however. 
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Figure 3.2: Boundary layer mean streamwise velocity profile at x/D = −5.0 (), x/D = 0 (), x/D 

= 5.0 (), and the 1/7th power law (–), where x/D = 0 is the location of the central cylinder. 

 

The wind tunnel ground plane was a flat plate of aluminum with a rounded leading edge 

897 mm upstream from the centre of the instrumented central cylinder (of the pair of staggered 

cylinders). A fully turbulent boundary layer was developed over the ground plane with a 

thickness defined as the vertical position, z, where the local streamwise velocity, U(z), achieved 

99% of U∞. The velocity profile, U(z), was calculated using the stagnation pressure measured 

with a 0.85 mm diameter boundary layer Pitot probe and P∞ from the freestream Pitot-static 

probe. These pressures were connected to a Validyne Model P55D differential pressure 

transducer to acquire the local dynamic pressure used to calculate the local velocity in a similar 

manner as the freestream velocity. The boundary layer characteristics for the streamwise position 

of the central cylinder as well at 5D upstream and downstream may be found in Table 3.1. The 

respective non-dimensional velocity profiles may be found in Figure 3.2 alongside the 1/7th 

power law for a turbulent boundary layer. 

 

Table 3.1: Ground plane boundary layer characteristics with respect to central cylinder position. 

x δ [mm] (δ/D) δ* [mm] (δ*/D) θ [mm] (θ/D) δ*/θ 

−5D 42 (1.3) 4.4 (0.1) 3.6 (0.1) 1.2 

0D 44 (1.4) 4.5 (0.1) 3.7 (0.1) 1.2 

5D 47 (1.5) 4.8 (0.1) 3.9 (0.1) 1.2 
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3.3 Cylinder Models and Positioning 

The wind tunnel models representing surface-mounted finite-height cylinders in a staggered 

configuration (Figure 3.3) were machined out of solid aluminum on CNC machines. For the four 

pairs of cylinders the diameter was D = 31.5 mm, with heights of H = 283.5, 220.5, 157.5, and 

94.5 mm providing AR = 9, 7, 5, and 3, respectively. The solid blockage ratio of the cylinders 

was minimal, with two AR = 9 cylinders in a side-by-side configuration providing a blockage of 

only 1.7 %. The eccentricity, surface roughness, and tolerance in H and D due to machining were 

considered negligible compared to the uncertainty in the mounting and positioning of the 

cylinders. The central cylinder was positioned with a centering ring to the force balance as seen 

in Figure 3.4. Though the central cylinder was machined to a small tolerance, thermal effects 

associated with the heating of the wind tunnel caused the ground plane to lift up past the bottom 

edge of the cylinder when tests were conducted. The swelling was limited to under 2 mm, which 

for the AR = 3 cylinder provides an uncertainty of ~2 %. 

Systematic variation of P/D and α was accomplished using the turntable shown in Figure 

3.5 and Figure 3.6. Holes in the turntable were drilled to mount the outer cylinder at P/D = 

1.125, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, and 4.5. A large pulley was attached to 

the bottom of the turntable along with a securely fastened timing belt. A stepper motor controlled 

by a VI on the main computer allowed for full control over the turntable and outer cylinder angle 

(α). For specification on the speed of angular rotation, see Table 4.4 in Section 4.3.4. 

 

Figure 3.3: Staggered cylinder apparatus in the wind tunnel. 
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Figure 3.4: Central cylinder connection to force balance. 

 

The assembly and operation of the apparatus induced a small uncertainty into P/D and α 

(values summarized in Table 3.2). Unlike the central cylinder, the outer cylinder was not 

sensitive to T∞ although it did not utilize a centering ring to set P/D. The bolted connection 

through a clearance hole in the aluminum turntable resulted in an uncertainty in P of ± 0.2 mm. 

Additionally, the ground plane (connection to the outer cylinder) and force balance (connection 

to central cylinder) were not connected, and the ground plane could move approximately 0.5 mm 

in any direction. This resulted in a total uncertainty in P of ± 0.7 mm, which at its most severe 

(P/D = 1.125) is ~2 %. The stepper motor and timing belt could only provide precision to ± 0.5° 

and this coupled with the centering uncertainty provided an angular uncertainty of ± 1.6° at its 

most severe (P/D = 1.125).  

Centering ring 
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Figure 3.5: The turntable with outer cylinder mounting holes to set P/D (filled with brass plugs 

to have a smooth upper surface). The turntable rotates from α = −5° to 185° in increments of 1°. 

The central cylinder mounts to the force balance adapter in the centre of the turntable.  

 

Figure 3.6: An underside view of the ground plane. The stepper motor rotates the turntable via a 

timing belt. 
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Table 3.2: Uncertainty in P/D and α at all P/D tested. 

 Uncertainty 

P/D P [mm] P/D [mm] P/D [%] α [°] 

1.125 ± 0.7 ± 0.02 ± 2.0 ± 1.6 

1.25 ± 0.7 ± 0.02 ± 1.8 ± 1.5 

1.5 ± 0.7 ± 0.02 ± 1.5 ± 1.3 

1.75 ± 0.7 ± 0.02 ± 1.3 ± 1.2 

2.0 ± 0.7 ± 0.02 ± 1.1 ± 1.1 

2.25 ± 0.7 ± 0.02 ± 1.0 ± 1.1 

2.5 ± 0.7 ± 0.02 ± 0.9 ± 1.0 

2.75 ± 0.7 ± 0.02 ± 0.8 ± 1.0 

3.0 ± 0.7 ± 0.02 ± 0.7 ± 0.9 

3.5 ± 0.7 ± 0.02 ± 0.6 ± 0.9 

4.0 ± 0.7 ± 0.02 ± 0.6 ± 0.8 

4.5 ± 0.7 ± 0.02 ± 0.5 ± 0.8 

 

3.4 Measurements of CD and CL 

The measurement of the mean drag coefficient, CD (= 2FD/(ρ∞U∞
2DH)), and mean lift 

coefficient, CL (= 2FL/(ρ∞U∞
2DH)), were made at the central cylinder by a six-component force 

balance made of six HBM PLC single point load cells. The calibration used three of the load 

cells and measured the mean drag force, FD, mean lift force, FL, and mean pitching moment, MP, 

simultaneously. Only the drag force and lift force were of interest in the present research, and the 

orientation of the forces can be found in Figure 3.7. Drag was oriented along the streamwise 

direction, and the sign of the lift was such that a positive lift represented a repulsive force away 

from the other cylinder. Typical values of FD for a 31.5 mm diameter cylinder immersed in a 35 

m/s freestream are 5 N and 1.5 N for AR = 9 and 3 respectively. The data acquisition was 

controlled by a VI on the main computer, and each data point represented the average of 10,000 

instantaneous samples taken at 1 kHz.  

The total uncertainty in CD and CL (Table 3.3) was calculated as the root-sum-square of 

the individual uncertainties associated with the force balance calibration, the offset (zero load) 

drift, and variance in repeated measurements. The uncertainty in the force balance calibration 

was based on a standard error estimate computed from the response equations for the force 
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balance. As the smaller AR cylinders produced smaller wind loads, the relative magnitude of the 

calibration uncertainty was larger, though this uncertainty represented the largest contribution to 

the total uncertainty for all AR. Additionally, the voltage offsets of the load cells were sensitive 

to T∞ and extended tests would result in a small drift. It was assumed that for most configurations 

load cell 1 (primarily responsible for measuring drag) would experience the highest load. It was 

also found that load cell 1 was showed the highest temperature sensitivity. Therefore load cell 1 

was used as the metric for maximum offset drift, and at the end of each experiment if the offset 

for load cell 1had drifted farther than 2 % of the value of CD for an isolated finite cylinder of the 

same AR, the test would be rejected. Finally, the mean drag and lift forces were measured ten 

times for each AR with only one isolated cylinder, to provide a standard random uncertainty 

estimate. For all AR this type of uncertainty was very small relative to the uncertainty from the 

force balance calibration and the temperature sensitivity. For a summary of the total uncertainty 

in CD and CL see Table 3.3. For reference, across all measurements made in this thesis research, 

the force coefficients ranged from −0.4 < CD < 1.4 and −1.1 < CL < 0.7. 

For a representative example of the uncertainty, the measured values at P/D = 2.0 and 

α = 90° are used: i) AR = 9, CD = 0.93 ± 0.03 and CL = 0.11 ± 0.02; ii) AR = 7, CD = 0.91 ± 0.03 

and CL = 0.11 ± 0.02; iii) AR = 5, CD = 0.89 ± 0.04 and CL = 0.09 ± 0.02; and iv) AR = 3, 

CD = 0.87 ± 0.07 and CL = 0.08 ± 0.03. 

 

Figure 3.7: Force convention for staggered cylinder data. 
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Table 3.3: Uncertainty in force balance measurements at a 95 % confidence level. 

AR FD [N] FL [N] CD [-] CL [-] 

9 ± 0.16 ± 0.12 ± 0.03 ± 0.02 

7 ± 0.14 ± 0.09 ± 0.03 ± 0.02 

5 ± 0.13 ± 0.08 ± 0.04 ± 0.02 

3 ± 0.13 ± 0.06 ± 0.07 ± 0.03 

 

In order to systematically test the effects of AR, P/D, and α on CD and CL, a systematic 

test trajectory was developed. Initially the highest AR cylinders were mounted in the wind tunnel 

at the largest P/D. Forces were then measured from α = −5° to 185° in increments of 1°, with the 

central cylinder representing a downstream cylinder from α = −5° to 89° and an upstream 

cylinder from α = 91° to 185°. Once forces were measured at all α for the given AR and P/D, the 

outer cylinder was incremented to a smaller P/D and the entire α range was completed again. 

Then, once the forces were measured for all α and P/D at a given AR, the cylinders were 

swapped out for the next lowest AR and the cycle was repeated until force data had been 

captured for every combination of AR, P/D, and α. Special attention was given to small P/D (< 

2.0) as a significant difference was found in the wind loads for certain combinations of AR and 

P/D near α = 90° (side-by-side) depending on whether α was increasing or decreasing. Thus, for 

small P/D, α was also varied from 185° to −5° in an increment of −1°. This hysteresis 

phenomenon is discussed at length in Section 4.3.4. 
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3.5 Measurements of St 

The measurement of Strouhal number, St (= fD/U∞), was completed for both upstream and 

downstream cylinders simultaneously at all of the AR and P/D combinations outlined previously 

in Section 3.4. The experimental apparatus for measuring St is shown in Figure 3.8. Velocity 

fluctuation power spectra were measured using a six-channel Dantec Streamware constant-

temperature anemometer unit and two single-wire hot-wire probes. Time series voltage 

fluctuations for each probe were sampled for 1 s, and a fast Fourier transform was used to 

separate the signals into their component frequencies. Thirty (30) consecutive samples were 

averaged over 30 s for each configuration, and local peaks in the averaged power spectra were 

taken as the dominant vortex shedding frequencies and non-dimensionalized into values of St. A 

stationary probe holder was positioned behind the central cylinder and held a Dantec 55P11 

straight single-wire probe. A Dantec 55P15 boundary layer single-wire probe was affixed to a 

traversing probe holder that was controlled by a VI on the main computer; this probe followed 

behind the outer cylinder as AR, P/D, and α were incremented.  

 

 

Figure 3.8: Full St measurement apparatus. AR = 9 cylinders shown in a side-by-side 

configuration at P/D = 4.5. 
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The positions of the probes relative to the cylinders were held constant for most 

configurations at x/D = 3.0, y/D = 1.0 (on the outer side), and z/H = 0.5 as seen in Figure 3.9 in 

the context of the upstream cylinder. For smaller P/D that produced more proximity interference 

and larger flow deflection angle, y/D ≤ 1.8 was used to increase the clarity of the spectral peaks. 

The uncertainty in the position of the traversing system was very small, and therefore the 

uncertainty in the actual position of the outer cylinder as described in Table 3.2 represents the 

uncertainty in the traversing hot-wire probe’s position. The central cylinder was fixed, however 

the stationary hot-wire probe was manually positioned to within an uncertainty of 1 mm in each 

direction representing less than a 3 % uncertainty in its position. The largest uncertainty 

associated with St was selecting the peaks from the velocity fluctuation power spectra. For 

reference, the typical vortex shedding frequencies for 31.5 mm diameter cylinders immersed in a 

35 m/s freestream are approximately 200 Hz and 170 Hz for AR = 9 and 3 respectively. For 

many of the larger P/D with sharp well-defined peaks, the dominant frequency only varied by ~5 

Hz (less than 4 % of the dominant frequency). The weaker vortex shedding found with AR = 3 

produced weaker peaks that were more challenging to define, with an uncertainty upwards of 10-

15 %. Configurations at small incidence angles near the inner lift peak (as described at length in 

Section 4.4.3) often did not show discernable peaks at all, and, if there were peaks, the 

uncertainty was often on the order of 25 %. 

 

 

Figure 3.9: Schematic of traversing hot-wire probe positioning for upstream cylinder St 

measurement. 
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Systematic variation of AR, P/D, and α was accomplished in a similar manner as for CD 

and CL. The largest AR cylinders were mounted at the largest P/D, then α was incremented from 

0° - 95° in increments as described in Appendix A. As St for both the upstream and downstream 

cylinders were measured simultaneously by two probes, the entire α range of the turntable was 

not required. Once α was finished incrementing, P/D was incremented down to the next largest 

mounting hole. Once all α and P/D were completed for a given AR, the cylinders were swapped 

for the next lower AR and the process continued. For AR and P/D configurations that previously 

resulted in hysteresis, measurements above α = 95° were made as well as with incrementing α in 

the negative direction. For several reasons as discussed in Section 4.4.3, hysteresis near α = 90° 

was not apparent in the St data as it was for CD and CL. 

  



45 

 

Chapter 4 Results and Discussion 

4.1 Introduction 

In the present research, measurements of CD, CL and St were made for both the upstream and 

downstream finite cylinders for each staggered configuration, while AR, P/D, and α were 

systematically varied. By comparing these results to data for two infinite cylinders in a staggered 

configuration (from Sumner et al. (2005) and other studies in the literature), the influence of 

finite-cylinder height and the presence of the ground plane can be better understood. 

The overall results from the research show that AR has a significant effect on the 

magnitudes of CD, CL, and St, the directions of CD and CL in some of the cases, the behaviour of 

CD, CL, and St with α, as well as the P/D boundaries between the various flow patterns. The 

results are presented in the following sections primarily with respect to how CD, CL, and St vary 

with α, for given ranges of P/D and values of AR (similar to the approach adopted by Sumner et 

al. (2005) and Li and Sumner (2009)). Also discussed are the general trends found in the CD, CL, 

and St data with respect to AR and P/D. Section 4.2 describes the findings for the two finite-

height cylinders in a tandem configuration (α = 0°). Section 4.3 shows the results for the two 

finite-height cylinders in a side-by-side configuration (α = 90°), with an additional discussion on 

hysteretic behaviour found for closely spaced cylinders near α = 90°. Section 4.4 details the 

findings for the two finite-height cylinders in the more general staggered configuration, i.e., for α 

between 0° and 90°. 

Based on earlier work using similar cylinders in the same wind tunnel, at similar 

Reynolds numbers and boundary layer thicknesses (Sumner et al., 2004; Adaramola et al., 2006; 

Igbalajobi et al., 2013; Rostamy et al., 2012; Sumner et al., 2015), it was known that the 

cylinders of AR = 3 were below the critical aspect ratio. Therefore, the results for the cylinders 

of AR = 3 were expected to show distinct behaviour compared to AR = 5, 7, and 9.  
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4.2 Tandem Finite-Height Cylinders 

Cylinders arranged in tandem (α = 0°) such that the upstream cylinder shields the downstream 

cylinder from the incident freestream represent one of the most basic configurations of staggered 

cylinders. Three main flow types (Section 2.2.1) are well-documented for infinite cylinders with 

P/D being a major influence at a constant Re. Closely spaced cylinders (P/D ≤ 1.125) represent 

the extended-body regime, moderately spaced cylinders (P/D = 1.25 – 4.0) represent the 

reattachment regime, and widely spaced cylinders (P/D > 4.0) represent the co-shedding regime. 

Key features of CD and St with respect to varying AR and P/D (as found in Figure 4.1 and Figure 

4.2) are discussed in the following sections. Since both cylinders in the tandem configuration are 

aligned with the flow, there is no mean lift force experienced by the cylinders. 

 

4.2.1 Mean Drag Coefficient 

Mean drag coefficient (CD) data for both the upstream and downstream cylinders in the tandem 

configuration, with varying P/D, are shown in Figure 4.1. The behaviour of CD with P/D 

demonstrates clearly how the wind loading of the two cylinders can be drastically different 

because of wake interference effects. 

For the upstream finite cylinder, the behaviour of CD is mostly similar to that of two 

infinite cylinders, but the magnitude of CD is lower. The discontinuous jump in CD seen for 

infinite cylinders at higher P/D, which occurs at the boundary between the reattachment and co-

shedding regimes, is not seen in the finite-cylinder CD data. It is possible that this jump has 

shifted to a higher pitch ratio, beyond the range (P/D = 1.125 to 4.5) considered in the present 

research. As the vortex formation length is longer for finite cylinders (Igbalajobi et al., 2013), the 

critical spacing needed to attain co-shedding (vortex shedding from both cylinders) may be 

greater than the maximum pitch ratio (P/D = 4.5) tested. However, with the variation of the 

vortex formation length along the heights of the finite cylinders, it may be that the discontinuity 

seen for tandem infinite cylinders has been smoothed out or eliminated. In other words, as the 

vortex formation length of a finite cylinder varies along its span it is possible that no clear jump 

may exist at all as different points along the span may develop vortices gradually as P/D is 

increased.  
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The complexity of the flow in the gap between two tandem finite cylinders can be seen in 

the results of Kim and Christensen (2018), for two cylinders of AR = 2.37. At P/D = 2.0 they 

showed two counter-rotating recirculation zones in the gap flow, one at the mid-height and the 

other near the ground plane. This may indicate that the reattachment found at the mid-height 

location does not extend fully to the fixed end of the cylinder, resulting in weak co-shedding near 

both ends of the cylinders coexisting with reattachment at the mid-height. 

If a very small increment in P/D had been used in the present research, it may have been 

possible to better clarify the behaviour of CD at higher pitch ratios. The result may be a smooth 

continuous transition in CD as the co-existing reattachment and co-shedding regimes contribute 

less and more, respectively, to the overall flow field. Perhaps the finite cylinders never truly 

experience the reattachment regime across their entire height, as the tip and base vortices 

interfere with the shear layers at both ends of the cylinder, and downwash continues to enter the 

gap between the cylinders, more so as the cylinders are spaced farther apart. Further discussion 

follows in Section 4.2.2 alongside presentation of the St data.  

 
Figure 4.1: Mean drag coefficient, CD, data for upstream (closed symbols), downstream (open 

symbols), and isolated (solid colour line) cylinders in tandem as function of P/D and AR: 

//–, AR = 9; //–, AR = 7; //–, AR = 5; //–, AR = 3; and +, infinite (Alam et 

al., 2003b).  



48 

 

For the downstream cylinder, the CD data for the finite cylinders are shifted upwards 

compared to the data for the infinite cylinders, resulting in a weaker thrust force at low pitch 

ratios but a higher drag force elsewhere; the wake interference effects are basically weaker for 

finite cylinders. The range of P/D where the downstream cylinder experiences a thrust force is 

also greatly reduced for the case of the finite cylinders which may be due to the effects of 

downwash. Similar to what is seen for the upstream cylinder, a discontinuous jump in CD for the 

downstream cylinder at higher pitch ratios is not apparent, in contrast to what is seen for two 

infinite cylinders in tandem. This may be due to the gradual increase of freestream impingement 

(onto the downstream cylinder) as P/D increases. At the P/D where the mid-span shear layers 

completely roll up into vortices, the portion of the span that actually results in vortex 

impingement is of comparable size to the portion of the span that contains entrained freestream, 

causing the “jump” to have a diminished effect on CD. 

It is possible that if a smaller increment in P/D had been used in the present research, a 

small discontinuous change in CD for the downstream cylinder could have been detected (it 

might have better captured the downstream cylinder leaving the recirculation region behind the 

upstream cylinder, which may result in an abrupt change in drag alongside the onset of co-

shedding). A change in shear layer reattachment behaviour will have an effect on the entire 

surface of the downstream cylinder and its near wake as opposed to just the near wake of the 

upstream cylinder, which may result in a more obvious change in CD. A smaller increment in 

P/D would also have been beneficial between P/D = 1.25 and 1.5, where shear layer interaction 

with the downstream cylinder is very strong and the magnitude of CD is changing rapidly.  

When compared directly to infinite cylinder tandem data from Alam et al. (2003b) 

(Figure 4.1) at the widest P/D = 4.5, the upstream finite cylinder has a far lower CD, likely from 

the residual reattachment experienced by finite cylinders as opposed to the co-shedding 

experienced by infinite cylinders at this P/D. The downstream finite cylinder has a CD slightly 

higher than the infinite cylinder, possibly due to the freestream impingement causing a larger 

drag on the upper portion of the cylinder than would have been felt from lower momentum 

vortex impingement in the infinite case. 
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Aspect ratio was found to have a large effect on CD across much of the P/D range shown 

in Figure 4.1. From the perspective of the upstream cylinder, a decrease in AR corresponds to a 

decrease in CD for all P/D considered. This could be due in part to the lower AR cylinders being 

more fully immersed in the lower momentum ground-plane boundary layer. Additionally, the 

increased significance of downwash behind the upstream cylinder at lower aspect ratio may 

entrain more high energy flow into the gap region, increasing base pressure near the free end and 

reducing CD. The upstream cylinder for AR = 3 has a significantly lower CD for P/D < 3.0, which 

may be a consequence of being below the critical aspect ratio, giving the cylinder different near 

wake characteristics. As the finite cylinders of AR = 3 have a significantly different near-wake 

structure than cylinders that are above the critical AR, it follows that the P/D range that is 

strongly influenced by shear layer reattachment should also be different for AR = 3. Drag 

coefficient data for all four aspect ratios tested asymptotically approach a lower CD than their 

respective isolated cylinder, with lower aspect ratio cylinders approaching these values quicker. 

For AR = 3, CD measured for the upstream cylinder becomes independent of pitch ratio for P/D 

≥ 2.0; this coincides with the maximum extent of the mean recirculation region, found at x/D = 

2.0 by Rostamy et al. (2012) for an isolated finite cylinder of AR = 3. This would suggest that 

once the pitch ratio exceeds 2.0, the downstream cylinder no longer sits within the recirculation 

zone of the upstream cylinder, and therefore the zone’s effect is greatly reduced. In a similar 

fashion for finite cylinders above the critical aspect ratio (AR = 9,7, 5), the maximum extent of 

the mean recirculation zone is higher, extending to x/D = 3.0 – 4.0 (Rostamy et al., 2012). 

Consequently, for tandem finite cylinders above the critical aspect ratio, the drag coefficient 

becomes independent of pitch ratio at higher P/D. 

In the context of the downstream cylinder, for cylinders above the critical AR (cylinders 

of AR = 9, 7, 5) the AR effects across the entire P/D range tested can be observed in Figure 4.1. 

As AR decreases from AR = 9 to AR = 5, more of the downstream cylinder’s height is exposed 

to downwash impinging on it from the cylinder upstream, providing a more consistent level of 

drag on the downstream cylinder than the various shear layer interactions found as P/D increases 

from 1.125 to 4.5. Consequently for P/D ≤ 3.0, the AR = 5 configuration has a higher CD than 

AR = 7 and AR = 9 as it benefits less from the shear layer reattachment that occurs over a 

smaller portion of its span. Conversely for P/D > 3.0, where shear layer reattachment potentially 

only occurs over a small band in the middle and lower portion of the cylinders, where the vortex 
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formation length is the longest, the shorter AR = 5 cylinder has a lower CD than AR = 7 and AR 

= 9 as a larger portion of its span is within the lower momentum boundary layer.  

Aspect ratio has a large effect on CD measured for the downstream cylinder at smaller 

P/D (found in Figure 4.1). The mean thrust force experienced by the downstream cylinder, which 

occurs for P/D < 4.0 for infinite cylinders (Alam et al., 2003b), becomes weaker and occurs over 

a more limited range of P/D as AR is decreased. For AR = 9, the downstream cylinder 

experiences a mean thrust force for P/D < 2.0 whereas for AR = 3 it only occurs for P/D < 1.5. 

Though the longer and wider near wake found at lower AR might tend to extend the P/D range 

where a thrust force is found, stronger downwash behind the upstream cylinder may cause more 

of the higher momentum freestream fluid to impinge on the leading face of the downstream 

cylinder near its free end, thereby increasing its CD (making it less negative, as the case may be). 

The base vortices also disrupt the shear layer reattachment near the cylinder-wall junction which 

increases the pressure in the gap region, with a similar effect from the tip vortices. Ultimately, an 

increase in CD (reduction in thrust) for the downstream cylinder results. As AR is decreased the 

very high thrust forces found at very small P/D become further suppressed. 

 

4.2.2 Strouhal Number 

The Strouhal number (St) was measured for both cylinders simultaneously at their mid-height via 

two hot-wire probes and the data may be found in Figure 4.2. The probe associated with the 

downstream cylinder was affixed to a stationary probe holder, while the probe associated with 

the upstream cylinder was affixed to a computer-controlled traversing system able to reposition 

the probe during tests. As repositioning the stationary probe required the wind tunnel to be shut 

down, it was not feasible to take St data as a function of position relative to the cylinder. 

Consequently, the streamwise and transverse positions (relative to the centre-line of the 

cylinders) of the probes were fixed for all measurements. From the power spectra of the velocity 

fluctuations, the vortex shedding frequency was identified as the strongest peak (in some cases 

more than one peak was identified). The traversing probe was initially used to identify the 

streamwise (between x/D = 2.5 and 3.0) and transverse (between y/D = 1.0 and 1.8) position that 

provided the sharpest power spectra peak for both the upstream and downstream cylinders. 

Following the selection of probe positions, the stationary probe was manually set behind the 
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downstream cylinder while the traversing probe was positioned behind the upstream cylinder 

allowing for a simultaneous measurement of the power spectra. Though the height of the probe 

relative to the cylinders has an effect on the power spectra measured, only measurements at the 

mid-height were conducted for simplicity in the experiments and for the stronger vortex 

shedding found away from the ends of the cylinders. 

Considerably more scatter was found in the St measurements, in terms of the dependence 

on P/D, than with CD, due to the spectral peaks becoming less defined as AR was reduced, 

representing a weakening of the vortex shedding (at the location of the hot-wire probe in the 

wake, specifically). The following section discusses the effects of P/D, then the effects of AR 

and spanwise (heightwise) variation in flow regime in the context of St.   
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Figure 4.2: Strouhal number, St, measured at mid-height for upstream (closed symbols), 

downstream (open symbols), infinite (+ from Alam et al., 2003b) and finite-height isolated 

(solid colour lines, from Wang et al. (2012)) cylinders in tandem as functions of P/D and AR: 

a) //– AR = 9; b) //– AR = 7; c) //– AR = 5; d) //– AR = 3; 

and e) only downstream cylinder data shown for all AR alongside infinite data from literature. 
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From the results in Figure 4.2, it can be seen that both the upstream and downstream 

cylinders have the same values of Strouhal number, which is consistent with the results in the 

literature for two infinite cylinders, i.e., there is one dominant frequency in the flow field for 

cylinders in tandem. 

For P/D < 3.0 (Figure 4.2) the upstream and downstream cylinders at a given AR have 

similar values of St that are lower than those found with an isolated cylinder of the same AR. 

Falling within the extended-body and shear layer reattachment regimes, it follows that the two 

cylinders acting together as one larger body would shed vortices at a lower frequency than one of 

the bodies on its own, consistent with what is seen for a finite cylinder with a splitter plate 

(Igbalajobi et al., 2013). For the larger AR (AR = 9 and 7), the value of St increases from P/D = 

1.125 to P/D = 1.25. This marks the transition from extended-body to shear layer reattachment as 

the reattached shear layers produce a narrower near wake with a higher shedding frequency than 

found in the extended-body regime. As P/D increases from 1.25 the value of St gradually 

reduces as the reattached shear layers still cause the cylinders to behave as one pseudo-body, 

only one that is increasing in effective length. At P/D = 3.5 for AR = 9 and 7 (P/D = 3.0 for AR 

= 5) the upstream cylinder seems to experience a small increase or jump in St corresponding to 

the onset of co-shedding. Past this critical P/D the values of St for the upstream cylinder become 

reasonably close to those of their respective isolated finite cylinders.  

As found in Figure 4.2a at AR = 9, both the upstream and downstream cylinders have the 

same critical values of pitch ratio, between P/D = 3.5 and 4.0.The finite cylinders of AR = 7 and 

AR = 5 have different critical P/D for the upstream and downstream cylinders, however, more 

data are needed to make conclusions about the delay in downstream cylinder critical P/D. 

Measurements made in a similar fashion as the present study (dual hot-wire probes 

simultaneously measuring velocity fluctuation power spectra) could be expanded to a fine 

increment of height along the cylinders in the range where the onset of co-shedding is delayed 

(P/D between 3.0 and 4.0). As there is likely no exact boundary between flow regimes and the 

production of vortices at each height is likely intermittent, a shorter time period for each power 

spectra measurement made several times may lead to more clarity in the spectra data as well. 
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The discrepancy in upstream and downstream critical P/D marking the onset of co-

shedding (Figure 4.2d) is not apparent for AR = 3, as it is likely that the cylinders are too short to 

experience a large variance in flow regime along their height. In addition, the cylinders of AR = 

3 experience a largely dissimilar near wake than higher-AR cylinders. Both the upstream and 

downstream cylinders have similar values of St across the entire P/D range, though the weaker 

vortex shedding does not allow for a sharp jump to the co-shedding regime. Instead, the 

cylinders both experience a steep increase in St from P/D = 1.75 to 2.75. If the two flow regimes 

(reattachment and co-shedding) are bi-stable over this P/D band with reattachment more likely 

near P/D = 1.75 and co-shedding more likely at P/D = 2.75, then the power spectra may show 

two spectral peaks. In fact, in Figure 4.3 the power spectrum for P/D = 2.75 shows two very 

small peaks, perhaps representing the intermittent switching between shear layer reattachment 

and co-shedding. 
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Figure 4.3: Velocity fluctuation power spectra for the AR = 3 cylinders in a tandem 

configuration for a) upstream and b) downstream cylinders. Vertical black lines are added to 

show the existence of two peaks in the power spectra. 
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Significantly more scatter was found in the St data (Figure 4.2c and Figure 4.2d) for the 

finite cylinders of AR = 5 and AR = 3. The vortex shedding for these lower-AR cylinders is 

weaker, and as a result the peaks in the power spectra are less defined. It can be seen in Figure 

4.2e, however, that the AR = 5 and AR = 3 cylinders experience a largely different St trend than 

AR = 9 and AR = 7 for P/D < 2.5. In this region a lower aspect ratio correlates to a significantly 

lower St. Isolated finite-height cylinders also exhibit a decrease in St with decreasing AR. It is 

possible that the longer formation lengths found at lower AR coupled with the extended-body 

nature found with the shear layer reattachment regime could amplify this decrease in St. As a 

result, significantly lower values of St are possible with reduced AR and P/D. 

From the data for CD (Section 4.2.1) and St (Section 4.2.2), it is seen that the 

discontinuous jump in the data at the onset of the co-shedding regime is seen only for the St data 

(this jump itself is much weaker than what is observed for infinite cylinders), at P/D = 4.0, 3.5, 

3.0, and 2.75 for AR = 9, 7, 5, and 3, respectively. The CD data do not show any jump, and the 

initial suggestion in Section 4.2.1 was that the absence of the jump could be due to a delayed 

switchover to the co-shedding regime at higher P/D (beyond the range of the present study). The 

St data, however, suggest that the switch to a co-shedding regime indeed occurs, but is sensitive 

to AR, is more gradual rather than discontinuous (compared to two infinite cylinders in tandem), 

and that the difference in St across the boundary between the two flow regimes is much smaller 

(compared to two infinite cylinders in tandem). The reason the CD data do not show any sudden 

jump may be attributed to the variation of the flow field along the cylinder heights, hence the 

changes in CD with P/D are more gradual. 

 

4.3 Side-by-Side Finite-Height Cylinders 

Much like the tandem configuration discussed in Section 4.2, the flow around two infinite 

cylinders arranged in a side-by-side configuration has been extensively documented in the 

literature. Though geometrically symmetric, the flow field, wind loading, and vortex shedding 

associated with each cylinder may be significantly different. The degree of asymmetry between 

the two cylinders is proportional to the proximity interference, thus a smaller P/D results in a 

larger difference in flow characteristics. 



57 

 

Three main flow regimes are associated with infinite side-by-side cylinders: base bleed, 

biased, and co-shedding. The base bleed flow regime (P/D < 1.25) is characterized by single-

body behaviour where both cylinders are associated with a single Kármán vortex street. The 

small portion of the flow that passes through the gap into the base region (the base bleed flow) 

may bias strongly to one cylinder, causing a strong attractive lift force (negative values of CL). 

The biased flow regime (P/D = 1.25 – 2.5) is characterized by vortex shedding from both 

cylinders, with the gap flow becoming biased to one side. The result is a narrow near wake 

behind one cylinder and a wide near wake behind the other cylinder. The co-shedding regime 

(P/D > 2.5) is characterized by two parallel Kármán vortex streets produced by the cylinders, 

with proximity effects causing the vortex streets to synchronize either anti-phase or in-phase. 

This section contains the results for two surface-mounted finite-height cylinders in a side-

by-side configuration, including the mean drag coefficient, CD (Section 4.3.1), mean lift 

coefficient, CL (Section 4.3.2), and Strouhal number, St (Section 4.3.3) as functions of P/D. 

Additionally the quasi-stable gap flow bias found at very small P/D, which is associated with 

hysteretic behaviour for incidence angles close to 90° (when the cylinders are nearly side-by-

side), is also discussed (Section 4.3.4). 

 

4.3.1 Mean Drag Coefficient 

Mean drag coefficient data for the two side-by-side finite cylinders, for AR = 9, 7, 5, and 3, are 

found in Figure 4.4 alongside infinite cylinder data from Alam et al. (2003a). For small P/D 

configurations where distinct CD values associated with two different wake states were obtained, 

data were acquired along test trajectories using both clockwise (CW) and counter-clockwise 

(CCW) increments in α. Varying the direction that α was incremented up to α = 90° allowed the 

instrumented central cylinder to obtain both wake states each with its own unique wind loads.  

In a similar fashion to infinite cylinders, finite-height cylinders in close proximity (P/D < 

1.5) showed a large difference in CD values between the two cylinders (found in Figure 4.4). The 

base bleed flow regime at P/D = 1.125 had the highest difference in the two CD values, with the 

gap flow remaining attached to the base region of the higher CD cylinder (based on results from 

Alam et al. 2003a). Reducing the AR causes a dramatic decrease in CD. As the pitch ratio 
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increases from P/D = 1.125 to 1.25, there is a significant decrease in CD for both cylinders (this 

is also found with infinite cylinders). This decrease in CD represents the transition from the base 

bleed flow regime to the biased flow regime, as the additional gap flow significantly increases 

the base pressure behind the cylinders. The changes in CD at these low pitch ratios may be due to 

the considerable amount of downwash produced by two closely spaced cylinders. As the two 

cylinders act similar to one larger body, the entire structure is represented by twice the frontal 

width, resulting in half the AR. 

The critical value of P/D at which point the cylinders no longer exhibit dissimilar CD, i.e., 

the upper P/D limit for the biased flow regime, is found to decrease as the cylinder AR is 

lowered. By defining the P/D boundary between the biased and co-shedding flow regimes as the 

point where there is no longer an abrupt change in CD within α = 90° ± 1° (to account for 

uncertainty in turntable position) it was found that AR had a large effect.1 Using this criterion, 

the critical P/D was found to be at P/D = 2.0, 1.75, 1.5, and 1.25 for AR = 9, 7, 5, and 3, 

respectively (Table 4.1). This result suggests that the aspect ratio influences the gap stability, 

with a smaller AR unable to maintain a preferential bias side for the full 10 s sample time 

(particularly at smaller values of P/D). The critical P/D values for all AR were therefore found to 

be lower than the critical value of P/D = 2.5 identified for infinite cylinders (Alam et al., 2003a).  

                                                 
1 Identifying the high and low values of CD, and the end of the biased flow regime, required some analysis of the 

staggered cylinder data, reported later in this chapter, as the method of data acquisition may have affected the results for 

cylinders near the side-by-side configuration at intermediate P/D. Though only a single value of CD was measured for both 

CW and CCW α at many of the moderate P/D, the staggered cylinder plots presented in Appendix B show a dissimilar 

value of CD for upstream and downstream cylinders near α = 90° for moderately spaced cylinders (approximately P/D = 

1.5 – 3.0 depending on AR). Increased gap stability found at very low P/D (= 1.125 and 1.25) can result in the gap bias 

remaining fixed to one cylinder for the entire length of the 10 s sample period, resulting in two distinct values of CD at α = 

90° when α is varied CW and CCW. On the contrary, at intermediate P/D (=1.5 – 3.0) the diminished gap stability allows 

for the bias to intermittently change side throughout the course of the 10 s sample period, with high and low CD values 

corresponding to both wake states equally represented in the instantaneous force data. The result is an averaged value of 

CD between the two wake states, with a preferential direction more likely as one cylinder is brought slightly in front of the 

other (small changes in α away from 90°). The aforementioned reduction in proximity effect as P/D increases also affects 

the ability to manually bias the flow to one side by changing α, as seen by the broader α range over which the intermittent 

switching is apparent as P/D is increased.  
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A more accurate way of determining the critical value of P/D, at the end of the biased 

flow regime, would be to instrument both cylinders with force balances and measure 

instantaneous forces simultaneously on the two cylinders. As long as the random intermittent 

switching is at a frequency lower than the vortex shedding frequency, discrete high and low 

bands of CD representing both wake states could then be identified at alternating times for the 

two cylinders. In the present experiments, however, as the data collected were averaged over a 

10 s period and only for one cylinder at a time, the exact behaviour of both cylinders at the same 

instant is unclear. In an attempt to approximate the critical P/D without the undue influence of 

the intermittent bias switching, data from staggered configurations of α = 85° and 95° were then 

used, where the flow remained stably biased preferentially to one cylinder for a longer portion of 

the 10 s sampling time. This method is described in detail in Appendix C, and allowed the 

critical value of P/D to be estimated as P/D = 3.0, 2.5, 2.0, and 1.75 for AR = 9, 7, 5, and 3, 

respectively (Table 4.1). Using this second method to identify the critical P/D, the biased flow 

regime for the finite cylinders may extend over a wider range of P/D compared to infinite 

cylinders for the case of AR = 9. The general effect of lowering the AR, however, remains 

unchanged, which is to lower the value of the critical P/D and thus reduce the extent of P/D 

where biased flow is observed. The main finding is that a sufficiently high aspect ratio is needed 

for the biased flow pattern to occur. 
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Figure 4.4: Mean drag coefficient, CD, data for side-by-side finite-height (solid symbols), 

isolated finite-height (solid colour line), and infinite (+ data from Alam et al., 2003a) cylinders 

as function of P/D and a) AR: /– AR = 9, b) /– AR = 7, c) /– AR = 5, d) /– AR = 3, 

and e) all data combined. High CD is narrow wake state (NW); low CD is wide wake state 

(WW). 
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Compared to the infinite cylinder CD data of Alam et al. (2003a) (Figure 4.4), which 

shows complex behaviour at intermediate P/D within the biased flow regime, the finite cylinder 

CD data behave much simpler overall. The greater number of vortex systems found with finite-

height cylinders may act to simplify the behaviour of the drag coefficient data compared to 

infinite cylinders. Though the flow field itself is vastly more complicated, a significant change in 

one vortex system does not have the profound effect on the entire finite cylinder flow field 

compared to what occurs for infinite cylinders with less complex vortex dynamics.  

The CD curves (Figure 4.4) for the finite-height cylinders trend toward that of isolated 

cylinders as P/D increases to the widely spaced range and the influence of proximity interference 

becomes less significant. As AR is decreased, the isolated cylinder’s value of CD is reached at a 

lower P/D in a similar fashion to that of the boundary between the biased and co-shedding flow 

regimes being found at a lower P/D. 

 

4.3.2 Mean Lift Coefficient 

Experimental data for CL at AR = 9, 7, 5, and 3 may be found in Figure 4.5 along with the 

infinite cylinder data from Alam et al. (2003a). As described in the preceding section, both of the 

bi-stable wake states were attained for the instrumented central cylinder by rotating the outer 

cylinder in either the clockwise (CW) or counter-clockwise (CCW) direction when approaching 

α = 90°. For intermediate P/D where intermittent bias switching prevented the two distinct wake 

states from being easily identified, data from staggered configurations of α = 85° and 95° (see 

Appendix C) were used to determine the preferential bias of the gap flow.  
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Figure 4.5: Mean lift coefficient, CL, data for side-by-side finite-height (solid symbols), 

isolated finite-height (solid colour line), and infinite (+ data from Alam et al., 2003a) cylinders 

as function of P/D and AR: a) /– AR = 9, b) /– AR = 7, c) /– AR = 5, d) /– AR = 3, 

and e) all data combined. For P/D ≥ 1.25, high CL is narrow wake state (NW); low CL is wide 

wake state (WW). 
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The base bleed regime at P/D = 1.125 is very apparent in the CL data presented in Figure 

4.5. Two very different CL values are obtained, with the biased side cylinder experiencing an 

attractive (negative) CL. The limited number of P/D points for very closely spaced cylinders only 

allowed for one data point to be measured within this unique flow regime characterized by 

severe gap (base bleed) flow deflection. With the exception of AR = 5, a lower AR tended to 

reduce the difference between the two CL values. 

For P/D > 1.125, a repulsive (positive) CL was measured for both cylinders. As P/D 

increases and the gap flow becomes parallel to the freestream, the difference in CL between the 

two cylinders becomes smaller. As the magnitude and range of CL is much smaller than CD, the 

intermittent gap bias direction switching found at intermediate P/D is more difficult to identify in 

the CL data gathered at α near 90°. Thus, it is difficult to define the upper P/D boundary between 

the biased and co-shedding flow regimes using CL data alone.  

For P/D > 2.5, where the co-shedding flow regime would be encountered, the finite 

cylinders (for all AR) behave similarly to the infinite cylinders, with very small magnitudes of 

CL (each cylinder experiences the same small repulsive lift force). For this flow regime, AR 

seems to only have a small effect, with a decrease in AR corresponding to a small decrease in CL. 

The data for all AR trend toward zero mean lift coefficient as P/D approaches 4.5, as the reduced 

proximity effects cause both cylinders to behave as if they were isolated.  

Within the biased flow regime, it was noticed that the cylinder experiencing the high CL 

also experiences a high CD and a high St, while the cylinder experiencing the low CL also 

experiences a low CD and a low St. This result is consistent with the infinite cylinder data for 

staggered cylinders reported by Sumner et al. (2005), however it is different than what was 

reported by Alam et al. (2003a); this discrepancy is explored in detail in Appendix D. 

 

 

 

 

 



64 

 

4.3.3 Strouhal Number 

Strouhal number, St, measurements were conducted in a similar manner as described in the 

tandem cylinder section (Section 4.2.2). Two hot-wire probes were used, one in the wake of each 

cylinder, and each located at the cylinders’ mid-height positions. The St data for the two 

cylinders are presented in Figure 4.6. Due to intermittent gap bias switching found at moderate 

P/D (the biased flow regime) and the extended sampling time compared to acquiring force 

balance data, the power spectra typically showed multiple peaks, although they tended to be less 

well defined. It was often found that both probes would capture the same two peaks, 

corresponding to both wake states that would switch back and forth several times throughout the 

measurement period. Consequently, data in Figure 4.6 represent data selected between α = 87° 

and 90° that show both values of St captured by both probes before an obvious gap bias change 

that would happen at a single α.  

Single bluff body behaviour found within the base bleed flow regime is very apparent in 

Figure 4.6 at exclusively P/D = 1.125. Both hot-wire probes read the same value of St which was 

approximately half of that found with the isolated cylinder of the same AR. It follows that the 

two finite cylinders are functioning as one body of twice the width with a single vortex street. 

The AR does not have a large effect on St in the base bleed flow regime, as all of the measured 

St are approximately the same. However, if the greater width is taken into account the effective 

AR tested only covers a smaller range of AR = 4.5, 3.5, 2.5, and 1.5, which all are close to, if not 

below, the critical AR.   
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Figure 4.6: Side-by-side configuration mid-span Strouhal number, St, data as measured by the 

traversing hot-wire probe (solid symbols), stationary hot-wire probe (open symbols), and for 

an isolated cylinder (solid colour line) as function of P/D and AR: a) //– AR = 9, b) 

//– AR = 7, c) //– AR = 5, d) //– AR = 3, and e) all data combined. High St is 

narrow wake state (NW); low St is wide wake state (WW). 
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Intermediate P/D show the biased flow regime quite clearly in Figure 4.6. For all AR, the 

transition from the base bleed regime to the biased flow regime occurs between P/D = 1.125 and 

1.25. Within this range, smaller values of P/D produce a stronger gap deflection and a larger 

difference between the near wakes of the two cylinders. As described in Alam et al. (2003a), the 

side to which the gap flow is biased experiences a narrower near wake with a higher vortex 

shedding frequency, while the opposing side experiences wider near wake with a lower vortex 

shedding frequency. Within this flow regime a smaller value of P/D is associated with greater 

interference, resulting in a larger difference in wake width and ultimately the measured value of 

St between the two cylinders. As seen in Figure 4.6, the largest difference in St occurs at P/D = 

1.25, with the two St values rapidly approaching each other as P/D is increased. The cylinder 

with the wide near wake (opposite to the direction of the biased gap flow) does not experience 

much change in St as either P/D or AR is varied, remaining at or just below the value of its 

respective isolated finite cylinder throughout the biased flow regime. The cylinder with the 

narrow near wake (to which the gap flow is biased) experiences a steep, non-linear decrease in St 

with increasing P/D that asymptotically approaches the value of the other cylinder. The AR has a 

large influence on St within the biased flow regime, where a lower AR causes the two distinct 

values of St to more quickly approach one another as P/D is increased. 

The P/D boundary between the biased flow and co-shedding regimes was previously 

defined as the point where an appreciable change in CD (approximately 5 %) was seen. Velocity 

spectra were measured for both cylinders simultaneously, thus the intermittent gap switching was 

easier to identify as the spectra would show a peak for each wake state. As P/D increases, St for 

both wake states asymptotically approach each other and the intermittent switching becomes less 

noticeable, the spectra show one wider peak as opposed to two. The spectra for AR = 9 and 3 

may be found in Figure 4.7. Using the St based criterion described above, the onset of the co-

shedding regime occurs at P/D = 2.75, 2.5, 2.5, and 2.25 for AR = 9, 7, 5, and 3, respectively. 

When compared to the boundaries defined by CD in Table 4.1, the St criterion provides 

boundaries much larger than the CD criterion, though their dependency on AR is similar.  
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Figure 4.7: Power spectra of velocity fluctuations behind the outer cylinder in the side-by-side 

configuration for a) AR = 9 and b) AR = 3. The vortex shedding peaks (Strouhal numbers) are 

marked by red lines. 

 

 

 

⬛ P/D = 4.5 

⬛ P/D = 4.0 

⬛ P/D = 3.5 

⬛ P/D = 3.0 

⬛ P/D = 2.75 

⬛ P/D = 2.5 

⬛ P/D = 2.25 

⬛ P/D = 2.0 

⬛ P/D = 1.75 

⬛ P/D = 1.5 

⬛ P/D = 1.25 

⬛ P/D = 1.125 
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Similar to the discussion above on classifying co-shedding with CD, a similar 

methodology was used with St by preferentially biasing the intermittent gap flow using staggered 

configurations of α = 85° and 95° (Figure C.3 in Appendix C). The flow regime boundary is then 

defined as the P/D value where there is no longer an appreciable difference between individual 

cylinder St values and both cylinders assume the same value; the boundary is still dependent on 

AR. Using the St based criterion described above, the onset of the co-shedding regime occurs at 

P/D = 3.0, 2.75, 2.5, and 2.25 for AR = 9, 7, 5, and 3, respectively. When compared to the 

boundaries in Table 4.1 the results are very similar to the St criterion at α = 90°, likely due to the 

presence of two distinct spectra peaks limiting the effect of averaging. 

 

Table 4.1: Upper P/D limit of the biased flow regime for side-by-side finite-height cylinders 

using appreciable variance in individual cylinder data criterion. *Infinite cylinder data taken 

from Alam et al. (2003a). 

AR CD Criterion 
α = 90° ± 5° 

CD Criterion 
St Criterion 

α = 90° ± 5° 

St Criterion 

Infinite 2.50 --- --- --- 

9 2.00 3.00 2.75 3.00 

7 1.75 2.50 2.50 2.75 

5 1.50 2.00 2.50 2.50 

3 1.25 1.75 2.25 2.25 

 

At large P/D both cylinders have vortex streets, with the only proximity interference 

being synchronization of vortex shedding. The anti-phase or in-phase nature of the vortex 

shedding could not be experimentally determined from the time-averaged data collected, 

however, as seen in Figure 4.6, both cylinders would share identical values of St approaching the 

value of their respective AR isolated cylinder as P/D was increased. This is indicative of an 

absence of biased flow. The AR does has a small effect on the Strouhal number for widely 

spaced side-by-side cylinders, with a lower St corresponding to a lower AR. The rate at which St 

approaches the isolated cylinder value as P/D increases does not seem to be AR dependent, with 

all AR tested being similarly close to the isolated values at P/D = 4.5.  
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4.3.4 Hysteresis at α near 90° 

Hysteresis was identified at low P/D for staggered configurations near α = 90° where CL and CD 

measured at the central cylinder were different depending whether α was incremented clockwise 

(CW, α increasing) or counter clockwise (CCW, α decreasing). Many characteristics of the 

hysteresis are dependent on both AR and P/D. Though not within the scope of this thesis, it is 

likely that Re and δ/D would also have an influence on the hysteresis. 

At the point of geometric symmetry (the side-by-side configuration, α = 90°), the 

cylinders may experience asymmetric near wakes and subsequently different wind loads, as 

discussed in Section 4.3. For all four aspect ratios tested, P/D = 1.125 corresponds to the base 

bleed flow regime with severe gap flow deflection: the cylinder to which the flow is deflected 

experiences a very high CD and an attractive CL, while the non-biased cylinder experiences a 

lower CD and a strongly repulsive CL. Increasing the spacing to P/D ≥ 1.25 results in the biased 

flow regime with a gap deflection angle inversely proportional to P/D. The biased flow regime is 

characterized by one cylinder (towards which the gap flow is deflected) having a narrow near 

wake with a higher CD, CL, and St, while the other cylinder (away from the deflected gap flow) 

has a wider near wake with a lower CD, CL, and St. In a similar manner, closely spaced cylinders 

in a staggered configuration near α = 90° exhibit a gap bias with the upstream cylinder assuming 

the narrow wake state and the downstream cylinder assuming the wide wake state. 

Measurements of CD and CL were made from α = 0° to 180° in increments of 1°, which 

represents a CW rotation, where the central cylinder switches from a downstream cylinder (wide 

wake state) to an upstream cylinder (narrow wake state) at the point of symmetry, α = 90°. 

Conversely, CD and CL data were also acquired in reverse order from α = 180° to 0° in 

increments of 1°, representing a CCW rotation, where the central cylinder starts as an upstream 

cylinder (narrow wake state) and ends as a downstream cylinder (wide wake state) as it passes α 

= 90°.  

The hysteresis occurs as the outer cylinder moves past α = 90° but maintains its initial 

wake state, causing the CD(α) and CL(α) curves to depart from their CW or CCW counterpart. 

Only once the outer cylinder has rotated to a sufficiently high (or low) critical value of α past 90° 

(which is a complex function of AR and P/D) does the gap flow bias change orientation and the 

central cylinder assumes the opposite wake state. The critical α, where the wake state changes, is 
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marked by an abrupt change in both CD and CL that jump back to the value measured at the same 

α for the opposite direction of rotation, at which point the CW and CCW collected CD and CL 

data are identical for all α away from 90°. For a summary of the hysteretic behaviour as a 

function of both P/D and AR, see Table 4.2, and for a simplified sketch of the shear layer 

behaviour, see Figure 4.8. 

 

Table 4.2: Summary of hysteretic behaviour as a function of P/D and AR for staggered cylinders 

near the side-by-side configuration. 

P/D AR = 3 AR = 5 AR = 7 AR = 9 

1.125 

Strong Hysteresis: 

“less stable”, inconsistent 

upper and lower limits on 

critical values of α 

Strong Hysteresis: 

inconsistent upper 

and lower limits on 

critical values of α 

Strong Hysteresis: 

very consistent upper 

and lower limits on 

critical values of α 

Strong Hysteresis: 

very consistent upper 

and lower limits on 

critical values of α 

1.25 No Hysteresis 

No Hysteresis: 

discontinuous change 

at α = 90° 

Weak Hysteresis: 

very consistent upper 

and lower limits on 

critical values of α 

Moderate Hysteresis: 

very consistent upper 

and lower limits on 

critical values of α 

1.5 No Hysteresis No Hysteresis 

No Hysteresis: 

discontinuous change 

at α = 90° 

Weak Hysteresis: 

very consistent upper 

and lower limits on 

critical values of α 

1.75 No Hysteresis No Hysteresis No Hysteresis 

No Hysteresis: 

discontinuous change 

at α = 90° 

2.0  No Hysteresis No Hysteresis No Hysteresis No Hysteresis 
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Table 4.3: Range of incidence angle (α) over which hysteresis is experienced in the wind loading 

on the cylinders. Values in parentheses show upper and lower critical α. The * denotes 

configurations that did not experience a hysteretic α range centered (symmetric) about α = 90°. 

 
AR = 3 AR = 5 AR = 7 AR = 9 

P/D = 1.125 
23° * 

(70° - 93°) 

47°-56° * 

(53° - 109°) 

24° 

(77° - 101°) 

23° 

(77° - 100°) 

P/D = 1.25 
No 

Hysteresis 

0° 

(90°) 

5° 

(92° - 88°) 

10° 

(85° - 95°) 

P/D = 1.5 
No 

Hysteresis 

No 

Hysteresis 

0° 

(90°) 

2° 

(89° - 91°) 

P/D = 1.75 
No 

Hysteresis 

No 

Hysteresis 

No 

Hysteresis 

0° 

(90°) 

P/D = 2.0 
No 

Hysteresis 

No 

Hysteresis 

No 

Hysteresis 

No 

Hysteresis 

 

 

Figure 4.8: Simplified sketch of shear layer behaviour during hysteresis near α = 90° in a two-

dimensional plane 
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Figure 4.9 shows the behaviour of CL and CD with α for AR = 9 (Figure 4.9a) and AR = 3 

(Figure 4.9b) at several P/D. For similar plots depicting AR = 7 and 5, see Appendix E. It can be 

seen that lowering P/D increases both the angular range where hysteresis is found as well as the 

difference in the magnitude of CL and CD between wide and narrow wake states. For a full list of 

the angular ranges with hysteresis present as a function of both P/D and AR see Table 4.3. For 

configurations that experience hysteresis (P/D ≤ 1.5 for AR = 9, P/D ≤1.25 for AR = 7, and only 

P/D = 1.125 for AR = 5 and 3) there is a distinct difference in wind loading between P/D = 1.125 

(the base bleed flow regime) and P/D ≥ 1.25 (the biased flow regime). 

For P/D ≥ 1.25 the cylinders fall within the biased flow regime, however as AR is 

reduced the P/D range where the gap bias behaviour is found also reduces. When the central 

cylinder is initially in the downstream position (wide wake state, CW rotation with α increasing 

from α < 90°), CD for the central (downstream cylinder) is relatively low and CL is less repulsive 

relative to the narrow wake state. Conversely, when the central cylinder is initially in the 

upstream position (narrow wake state, CCW rotation with α decreasing from α > 90°) both CD 

and CL for the central (upstream) cylinder are higher than found in the opposing wake state. This 

pairing of higher coefficients with the narrow wake state and lower coefficients with the wide 

wake state is also found in the infinite cylinder data of Sumner et al. (2005). The initial wake 

state developed at the central cylinder before α reaches 90° is maintained past 90°. A smaller 

P/D results in an extended region of α before the central cylinder abruptly switches to the other 

wake state.  

At P/D = 1.75 for AR = 9, P/D = 1.5 for AR = 7, and P/D = 1.25 for AR = 5 (as seen in 

Table 4.2) no hysteresis occurs, however the biased flow regime persists with the central cylinder 

intermittently switching between wake states at α = 90°. At higher P/D than these values, there is 

no longer an abrupt jump in CD or CL at or near α = 90°, and any intermittent gap bias switching 

is no longer discernable without instantaneous measurements, as described in Appendix C. 

For P/D = 1.125 the measured wind loads resemble those of base bleed flow regimes, and 

the initially upstream cylinder behaves significantly different to cylinders in the biased flow 

regime. When the central cylinder is initially downstream (non-biased side, CW rotation with α 

increasing from α < 90°) it behaves similar to larger P/D, with a lower CD relative to the other 

wake state and a largely repulsive CL. Conversely, the cylinder that was initially upstream 
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(biased side, CCW rotation with α decreasing from α > 90°) experiences significantly higher CD 

and an attractive CL, unlike any larger P/D. These alternating high and low coefficients with 

narrow and wide wake states match well with the infinite cylinder results of Alam and Zhou 

(2007) and Alam et al. (2003a). Only P/D = 1.125 results in either of the cylinders experiencing 

an attractive CL, which becomes more significant in magnitude the farther the outer cylinder 

moves past α = 90° in the hysteretic range, as the base bleed flow is further deflected. As the 

proximity interference is strongest with P/D = 1.125, the abrupt jump in CD and CL is largest in 

magnitude, with the directions of the lift force also changing direction. It is also noted that P/D = 

1.125 was the only cylinder spacing that produced hysteresis for all aspect ratios, indicating that 

the base bleed dynamics may have a stronger influence than aspect ratio effects for this pitch 

ratio. 

 

Figure 4.9: CD and CL data for the central cylinder for a) AR = 9 and b) AR = 3. Solid 

symbols: CW movement of the outer cylinder. Open symbols: CCW movement of the outer 

cylinder. , : P/D = 1.125; ,: P/D = 1.25; ,: P/D = 1.5; ,: P/D = 1.75. 
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Figure 4.10 shows the behaviour of CD and CL as a function of α and AR for P/D = 1.125 

(Figure 4.10a) and P/D = 1.25 (Figure 4.10b) for all four aspect ratios. All four aspect ratios 

experience hysteresis at P/D = 1.125, however AR effects have a strong influence over whether 

or not a given P/D in the biased flow regime (P/D ≥ 1.25) will experience hysteresis, as detailed 

in Table 4.2. 

Hysteresis is present for all aspect ratios at P/D = 1.125, however the behaviour of each 

AR at P/D = 1.125 is markedly different. Consistency (or repeatability) in the upper and lower 

limits of α (the critical values of α) for the range of hysteresis, between different tests, lessens as 

AR decreases (Table 4.3), such that for smaller aspect ratios there is a greater potential for a 

broader range of α associated with hysteresis. The upper and lower bounds of incidence angle for 

the occurrence of hysteresis were highly repeatable for AR = 9 and AR = 7 for both CW and 

CCW rotations, however the cylinders of AR = 5 and AR = 3 did not have consistent 

(repeatable) α limits between tests nor in the CW and CCW directions. For AR = 5, the CW 

range of α for hysteretic behaviour in the wind loading varied up to 10° between tests and 

differed from the CCW limit by ~30°. For AR = 3, the CW data showed some intermittent 

switching between the two states between α = 86° and 89°, and therefore the hysteresis was 

considered “less stable”. Additionally, AR = 5 experienced an additional wake state, with a 

discontinuity at α = 95° when the tests were conducted CCW. At this point the base bleed flow 

perhaps biases toward the central cylinder, and after the discontinuity the already higher CD and 

more attractive CL increase in magnitude. This increase in magnitude gives AR = 5 the most 

extreme values of CD and CL out of all of the AR tested. Moreover, AR = 5 showed the largest 

hysteretic range with the unique wake state persisting until α = 53° (37° past the point of 

symmetry). Flow visualization would be beneficial for all tests conducted at P/D = 1.125 to more 

conclusively determine the base bleed dynamics for both cylinders simultaneously. 

Cylinders in the biased flow regime (P/D ≥ 1.25) are less complex than the base bleed 

flow regime (P/D = 1.25). At a given P/D, lowering the aspect ratio reduces the range of α where 

hysteresis occurs: at P/D = 1.25, only the cylinders of AR = 9 and 7 experience hysteresis; at 

P/D = 1.5, only the cylinders of AR = 9 experience hysteresis (Table 4.2). For P/D = 1.25, the 

cylinders of AR = 9 have a hysteretic range of 10° (between α = 85° and 95°), the cylinders of 

AR = 7 have a range of 5° (between α = 88° and 93°), and the cylinders of AR = 5 only 
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experience a discontinuous change at α = 90°. The cylinders of AR = 3 do not experience any 

discontinuity, rather only a gradual change between the two wake states across a wide band near 

α = 90°; this distinct behaviour for AR = 3 can be attributed to these cylinders being below the 

critical AR. 

 

 

Figure 4.10: CD and CL data for the central cylinder, for (a) P/D = 1.125 and (b) P/D = 1.25. 

Solid symbols: CW movement of the outer cylinder. Open symbols: CCW movement of the 

outer cylinder. , : AR = 9; ,: AR = 7; ,: AR = 5; ,: AR = 3. 
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It is noted that data were acquired by rotating the outer cylinder to the desired α, 

measuring the forces for 10 s, then incrementing α again. The turntable and the outer cylinder 

rotate at an angular speed of 6°/s. The starting and stopping of the motion is sudden, but the 

resulting steady speed of rotation is still small. The tangential velocity (in m/s) of the outer 

cylinder depends on the pitch ratio, but in all cases (Table 4.4) it is very small compared to the 

freestream velocity, and sufficiently small that the flow can be assumed to remain quasi-steady. 

At the highest pitch ratio where hysteresis is experienced (P/D = 1.5 for AR = 9), the tangential 

speed of the outer (rotating) cylinder is only 0.01 % of the freestream velocity.  

 

Table 4.4: Experimental apparatus outer cylinder and turntable motion characteristics. 

P/D 1.125 1.25 1.5 1.75 2 4.5 

Angular Velocity [°/s] 6.0 6.0 6.0 6.0 6.0 6.0 

Tangential Velocity [m/s] 0.0037 0.0041 0.0049 0.0058 0.0066 0.0148 

Tangential Velocity / U∞[-] 0.00011 0.00012 0.00014 0.00016 0.00019 0.00042 
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4.4 Staggered Finite-Height Cylinders 

Surface-mounted finite-height cylinders in a staggered configuration can represent a vast amount 

of geometries for engineering applications. Angles between tandem (α = 0°, Section 4.2) and 

side-by-side (α = 90°, Section 4.3) fall within the staggered range, with the combination of α and 

P/D mapping out complex regions of wake and/or proximity interference. Within the context of 

α, P/D, and AR, the behaviour of the mean drag coefficient, CD (Section 4.4.1), mean lift 

coefficient, CL (Section 4.4.2), and Strouhal Number, St (Section 4.4.3), will be discussed. Each 

of these sections contains several complex figures (illustrated in Figure 4.11), with contours of 

CD found in Figures 4.12, 4.13, 4.14, and 4.15, characterization of the “inner lift peak” in Figure 

4.16, contours of CL found in Figures 4.17, 4.18, 4.19, and 4.20, and contours of St found in 

Figures 4.21 and 4.22.  

Each of the contour plots (showing lines of constant CD for example) displays data in a 

similar fashion, with a simplified CD contour plot shown in Figure 4.11 as an example. The white 

circle in the centre of each contour plot represents a stationary cylinder for reference, with flow 

from left to right. The radial lines extending from the centre show values of α, and the concentric 

rings show values of P/D. Values plotted on each contour around the stationary reference 

cylinder represent the value of CD, CL, or St experienced by the second (outer) cylinder if it were 

to be positioned at that P/D and α. For example, the red “A” found on Figure 4.11 would 

represent the value of CD experienced by an upstream cylinder at P/D = 2.0 and α = 75° (255° on 

plot). This cylinder would be in the biased flow-like regime, with a relatively higher value of CD. 

Conversely, a downstream cylinder with the same P/D = 2.0 and α = 75° configuration would 

experience a lower value of CD as shown by the red “B”, as it is now downstream of the 

stationary reference cylinder. The grey cross-hatched region adjacent to the stationary reference 

cylinder marks the region where no measurements were conducted, as P/D < 1.0 would result in 

the cylinders overlapping. In the context of hysteresis (as discussed in Section 4.3.4) each 

contour represents the outer cylinder rotating clockwise around the stationary reference cylinder 

(α increasing from 0° to 360°). The result is the outer cylinder moving from upstream to 

downstream (left to right) on the upper portion of the contour plot, and the outer cylinder moving 

from downstream to upstream (right to left) on the lower portion of the contour plot. 
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Figure 4.11: Simplified example of a CD contour plot for illustrative purposes. A and B refer to 

specific staggered configurations described in the text. 
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4.4.1 Mean Drag Coefficient 

Mean drag coefficient, CD, contours (lines of constant CD) for AR = 9, 7, 5, and 3 are shown in 

Figures 4.12, 4.13, 4.14, and 4.15, respectively. These contours represent the value of CD that 

would be experienced by the outer cylinder positioned at each P/D and α relative to the central 

cylinder. The contours for each AR were built using the 12 discrete pitch ratios (P/D = 1.125, 

1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, and 4.5) and incidence angles from α = −5° to 

185° in increments of 1°. For closely spaced P/D resulting in hysteresis (described in Section 

4.3.4) data were also collected by incrementing α in the opposite direction. A polar map of the 

data collection points for CD and CL may be found in Appendix A. The CD data collected may be 

found separated by P/D in Appendix B.  

From the contour plots, three main regions may be identified for all AR that loosely align 

with the regions of wake interference, proximity interference, and no interference. These regions 

are similar for CL, and they are characterized by a low CD region found at very low incidence 

angles (α = 0° to ~20°), a biased flow-like region found near side-by-side (α = ~45° to 90°), and 

a region with little interference found predominantly for the upstream cylinder at moderate to 

wide P/D (α = 20° to ~45°). 

The low incidence angle region is mainly influenced by wake interference effects and is 

at the angles near tandem (α = 0° to ~20°) in Figures 4.12 though 4.15. In this region both 

cylinders experience complex CD behaviour as P/D and α are varied. In the tandem 

configuration, a downstream cylinder experiences a thrust force for all AR at low P/D. A 

decrease in AR allows more high momentum fluid to enter the gap between the cylinders. This 

increases drag on the downstream cylinder, reduces drag on the upstream cylinder and allows a 

higher AR downstream cylinder to experience a thrust force at larger P/D than lower AR 

cylinders. For all aspect ratios, interference effects are found even up to P/D = 4.5. The upstream 

cylinder is significantly less affected than the downstream cylinder at large P/D, with CD 

remaining fairly close to that of an isolated cylinder; however, an increase in AR results in a 

larger variation in CD. 
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At small P/D, a local minimum value of CD is found for the downstream cylinder at α ≈ 

11°in Figures 4.12 through 4.15. At the same α, the upstream cylinder experiences a local 

maximum value of CD. These characteristics align with the descriptions given by Sumner et al. 

(2005) for the “inner lift peak” found with staggered infinite cylinders at similar P/D and α. 

Sumner et al. (2005) found that the inner lift peak transitioned to the “outer lift peak” between 

P/D = 2.5 and 3.0; the outer lift peak is not associated with a local minimum or maximum drag, 

however. The contours in Figures 4.12 through 4.15 show that the local maximum drag for the 

upstream cylinder extends to larger P/D than the downstream cylinder for all AR. The behaviour 

of the local maximum and minimum values of CD for the cylinders varies significantly with AR, 

with a decrease in AR decreasing the prominence of the local max/min values at larger P/D. This 

result suggests that the transition from the inner lift peak to outer lift peak happens at a smaller 

P/D for a smaller AR; this is discussed in more detail in Section 4.4.2. Additionally, the 

upstream cylinder experiences significantly different behaviour in the local maximum drag for 

AR = 3, which may be due to it being below the critical AR, causing a substantially different 

shear layer and wake structure. AR = 9 and 7 show similar behaviour in this region, with AR = 5 

resembling a transition between the aspect ratios above and below it (this transitional behaviour 

is also reported by Rostamy et al. (2012)). This dependence on aspect ratio is discussed further in 

Section 4.4.2. 

Large incidence angles (α = ~45° - 90°) produce proximity interference effects that 

strengthen as P/D is reduced or AR is increased. For all AR, proximity interference effects were 

apparent up to P/D = 4.5. For P/D ≥ 1.75 the biased flow regime associated with side-by-side 

cylinders (discussed in Section 4.3) can be seen in the CD contours, with the upstream cylinder 

assuming the narrow wake state characterized by a higher CD and the downstream cylinder 

assuming the wide wake state characterized by a lower CD. At α = 90° the wake states and their 

corresponding CD values switch cylinders. A higher AR increases the P/D range and the 

difference in CD values between the two cylinders, while low AR tends to smooth out the 

behaviour across a smaller P/D and broader α range. 
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Very closely spaced cylinders (P/D ≤ 1.5, though very dependent on AR) can experience 

hysteresis in the wind loading near α = 90°, and this phenomenon was discussed thoroughly in 

Section 4.3.4. In this P/D range the difference in CD is large between the upstream cylinder 

(narrow wake state, higher CD) and downstream cylinder (wide wake state, lower CD). Figures 

4.12 through 4.15 show the value of CD for the outer cylinder as it rotates clockwise (α 

increasing from 0° to 360°), representing a cylinder that is initially downstream (lower CD) on 

the bottom portion of the figure (α = 0° - 90°) and initially upstream (higher CD) on the top 

portion of the figure (α = 180° - 270°). For the case represented by the bottom portion of the 

contour plot, the initial lower value of CD associated with the downstream cylinder is maintained 

as α increases past 90° until a critical α is reached, at which point the value of CD reverts back 

the higher value expected by an upstream cylinder. The reverse is true for the upper portion of 

the contour plot, where the higher CD value of the upstream cylinder is carried past α = 90° until 

a critical α, where is abruptly switches to the lower value expected by a downstream cylinder. 

This behaviour is a complex function of both AR and P/D and was discussed in detail in Section 

4.3.4. 

The regions where CD is largely unaffected by wake or proximity interference are quite 

small, only spanning a range of approximately α = 20° to 45° for the upstream cylinder alone at 

large P/D. At AR = 9, 7, and 5 a small local maximum in CD occurs at α = 30° and the largest 

P/D, which may be the appearance of an “outer lift peak” type regime. This pattern seems to 

develop at P/D > 4.5, beyond the scope of the measured data. Reducing AR has an effect of 

pushing this local maximum CD to a larger P/D which may be a result of increased vortex 

formation length found with lower aspect ratio cylinders. Although at AR = 3 the downstream 

cylinder shows little indication of this local maximum CD at α = 30°, the peak itself may have 

just been pushed well beyond the largest data point at P/D = 4.5. 
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Figure 4.12: CD contour plot for AR = 9. Contours displayed represent CD for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle is the stationary 

reference cylinder, and the grey cross-hatching is the area where no data was collected. White 

cross-hatching is isolated cylinder value, black cross-hatching is CD = 0. P/D = 1.0 represents the 

cylinders touching. Flow is from left to right. 
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Figure 4.13: CD contour plot for AR = 7. Contours displayed represent CD for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle is the stationary 

reference cylinder, and the grey cross-hatching is the area where no data was collected. White 

cross-hatching is isolated cylinder value, black cross-hatching is CD = 0. P/D = 1.0 represents the 

cylinders touching. Flow is from left to right. 
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Figure 4.14: CD contour plot for AR = 5. Contours displayed represent CD for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle is the stationary 

reference cylinder, and the grey cross-hatching is the area where no data was collected. White 

cross-hatching is isolated cylinder value, black cross-hatching is CD = 0. P/D = 1.0 represents the 

cylinders touching. Flow is from left to right. 
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Figure 4.15: CD contour plot for AR = 3. Contours displayed represent CD for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle is the stationary 

reference cylinder, and the grey cross-hatching is the area where no data was collected. White 

cross-hatching is isolated cylinder value, black cross-hatching is CD = 0. P/D = 1.0 represents the 

cylinders touching. Flow is from left to right.  
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4.4.2 Mean Lift Coefficient 

Mean lift coefficient data, CL, were obtained simultaneously with CD for the entire range of 

staggered configurations. In a similar manner as CD, contour plots showing lines of constant CL 

were created for AR = 9, 7, 5, and 3 that may be found in Figures 4.17, 4.18, 4.19, and 4.20, 

respectively. A polar map of the data collection points for CD and CL may be found in Appendix 

A as well, with the CL data separated by P/D found in Appendix B. As with CD, three main 

regions may be identified for all AR that loosely align with the regions of wake interference, 

proximity interference, and no interference. These three regions are a region of negative CL at 

low incidence angles (α = 0° to ~45°), a region of positive CL near side-by-side (α = ~45° to 

90°), and a zero-lift region found predominantly for the upstream cylinder at moderate to large 

P/D (α = 0° to ~45°). Generally, in all of these regions the magnitude of CL decreases as P/D is 

increased with the peak values near P/D ≈ 1.25; however, P/D = 1.125 often shows significantly 

different behaviour than that of larger P/D. The shapes of these regions and the magnitudes 

within them are a more complex function of AR. A decrease in AR generally broadens the 

regions with respect to α and shortens them with respect to P/D, with the magnitudes generally 

decreasing as well.  

Small incidence angle flow regimes described by Sumner et al. (2000) are apparent in the 

lift contours (α = 0° to ~45° in Figures 4.17 through 4.20), most notably the occurrence of the 

“inner lift peak”. For closely spaced infinite cylinders the inner lift peak is found at α = 9° 

(Sumner et al., 2005) and is characterized by a well-defined peak of negative CL, reduced CD, 

and increased St as a result of shear layer reattachment on the downstream cylinder. In contrast, 

the “outer lift peak” described by Sumner et al. (2005) occurs at larger P/D where the vortex 

impingement on the downstream cylinder causes a broader lower-magnitude peak of negative CL, 

with no corresponding decrease in CD, at α = 18°. The boundary between the inner and outer lift 

peaks as found by Sumner et al. (2005) for infinite cylinders was found to be between P/D = 2.5 

and 3.0.  
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The CL contours found in Figures 4.17 through 4.20 show significant gradients in CL for 

the downstream cylinder at small α, and it can be seen that AR has a significant influence on the 

behaviour of CL as the downstream cylinder sits within the separated shear layer of the upstream 

cylinder. Sumner et al. (2005) defines the transition from inner lift peak to outer lift peak as the 

P/D where the peak in CL experiences a discontinuous jump to a larger α, as seen in Figure 4.16. 

The finite cylinders of AR = 9 and 7 do not show any jump, however, but only show the 

presence of the inner lift peak, while AR = 5 and 3 would seem to transition to the outer lift peak 

at only P/D = 1.5 (however the peaks are still initially sharp in nature, unlike the broader peaks 

expected for the outer lift peak). The finite cylinders of AR = 3 are unique, with the lift peak 

measured for the downstream cylinder significantly broader and offset farther from α = 0° than 

the higher aspect ratio cylinders. 

The effects on the upstream cylinder are also influenced by aspect ratio. AR = 9, 7, and 5 

show similar features, with a smaller area of influence concentrated near α = 15°. Small P/D in 

this range also produce a sharp negative CL for the upstream cylinder. The cylinders of AR = 3, 

however, have a much wider area of influence (up to α = 45°) with a much weaker peak, much 

like the downstream cylinder. Aspect ratio has a large effect on the development of the lift peak, 

with the longer vortex formation length likely allowing AR = 9 and 7 cylinders to not transition 

to a vortex impingement flow pattern (characterized by the outer lift peak). AR = 3 is below the 

critical aspect ratio and has a different near wake and shear layer behaviour entirely, which may 

be why the lift peaks are fundamentally different when compared to larger AR. The cylinders of 

AR = 5 are likely in a transitional region, with the sharp peak in CL at small P/D similar to higher 

AR cylinders while also having broad, weaker peaks at large P/D similar to AR = 3. Flow 

visualization of the shear layer interactions on the downstream cylinder may bring clarity to the 

classification of these lift peaks. 
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Figure 4.16: Peak negative CL locations with respect to α for: , AR = 9; , AR = 7; , AR = 

5; , AR = 3; and +, infinite cylinder data from Sumner et al. (2005). 

 

The narrow band of low lift between the lift peaks for the downstream cylinder near 

tandem (Figures 4.17 through 4.20) is also a complex function of AR and P/D. Deviations from 

α = 0° at small P/D cause asymmetric shear layer reattachment to the outer side and a negative 

lift on both cylinders that attempts to realign them. For the downstream cylinder the small region 

of low CL near tandem is quite narrow for P/D ≤ 1.25 at around α = 5°. Between P/D = 1.25 and 

1.75 this region becomes wider, with AR = 9 up to α = 8° and AR = 3 up to 11°. For AR = 5 and 

3 this marks a significant decrease in inner lift peak magnitude and sharpness as well as an 

increase α where the peak is found. For AR = 9 and 7 the shape and severity of the peaks remains 

unchanged, however a very slight increase in α is found. The upstream cylinder, however, has a 

far smaller P/D range where it experiences any CL ≤ 0 (between P/D ≤ 2.5 -2.75, increasing 

slightly with decreasing AR). This could be related to the vortex formation length of the 

cylinder, and it is possible that P/D ≥ 2.75 results in vortex formation and impingement rather 

that shear layer reattachment onto the downstream cylinder which provides far less feedback 

upstream.  
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Proximity interference found at large incidence angles (α = ~45° to 90°) produces 

exclusively a positive, repulsive CL for P/D ≥ 1.25 as found in Figures 4.17 through 4.20. This 

region is similar to the biased flow regime found with side-by-side cylinders as discussed in 

Section 4.3. In this case, the upstream cylinder has the narrow near wake with higher CL and the 

downstream cylinder has the wide near wake with lower CL. The proximity interference is 

highest when P/D is at its lowest, causing the magnitude of CL to increase as P/D decreases. 

Conversely, at larger P/D both upstream and downstream cylinders experience lower values of 

CL that are much closer to one another. An indication of the gap deflection angle is found in the 

magnitude of CL, with zero lift indicating insignificant gap deflection as found at wide P/D. The 

aspect ratio has a large effect on what is considered a large P/D in this region, such that as AR is 

reduced a smaller P/D is required to produce zero lift (P/D = 4.0 for AR = 9 and only P/D = 2.75 

for AR = 3). When comparing AR = 3 and AR = 9, the smaller region of positive CL at large 

incidence angles contrasted against the larger region of negative CL at low incidence angles 

would indicate that below the critical AR, wake interference becomes the larger influence.  

Very small P/D behave drastically different than small and intermediate P/D. As 

described in Section 4.3, the base bleed flow regime found at P/D = 1.125 causes the bias side 

cylinder (in the staggered case, the upstream cylinder) to obtain an attractive CL unlike any other 

P/D in the large incidence angle flow regimes. The non-bias side cylinder (in the staggered case, 

the downstream cylinder) obtains a repulsive CL that is large in magnitude. Coupled with this 

largely different CL is the presence of strong hysteresis at P/D = 1.125 for all AR. In Figures 4.17 

through 4.20 the data are displayed such that the contours represent CL on the outer cylinder as it 

rotates clockwise around the central cylinder (α increasing from 0° to 360°). Therefore the upper 

half of the contours (α = 180° to 360°) clearly shows the narrow region of attractive CL that 

begins at α ≈ 255° (15° before the side-by-side configuration) where the cylinder is upstream. 

This narrow region continues across α = 90° up to a critical α before abruptly changing back to 

the repulsive CL that is expected of a downstream cylinder at P/D = 1.125. Similarly on the 

bottom half of the contours in Figure 4.17 through Figure 4.20 (α = 0° to 180°) where the 

cylinder is initially downstream the repulsive CL experienced for α < 90° is maintained across to 

α > 90° before reaching the critical α, reverting CL back to the attractive value expected for an 

upstream cylinder. The critical α and the P/D where this hysteresis occurs is a strong function of 

AR, and is discussed in Section 4.3.4 with additional graphs explicitly showing the phenomenon.  
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The third main region outlined in Figures 4.17 through 4.20 is the area of zero lift, 

specifically areas of minimal proximity interference and no wake interference. Though areas of 

zero lift occur at small P/D and for many of the tandem configurations, they are transitional 

regions between attractive and repulsive zones characterized by complex flow fields. The areas 

of minimal proximity interference occur predominantly with the upstream cylinder for large P/D 

> 2.75 and between α = 0° and ~45°. The vortex street formed behind the upstream cylinder may 

impinge on or be deflected by the presence of the downstream cylinder, though as the vortex is 

already shed it has less influence on the flow upstream than a free shear layer. Proximity 

interference only becomes significant for the upstream cylinder once large incidence angles are 

achieved. As AR is decreased larger α is possible while still maintaining negligible CL. 

Overall, the mean lift coefficient experienced by staggered finite cylinders is a 

complicated function of AR, P/D, and α. Three main regions were identified for each AR. Low 

incidence angles (α = 0° to ~45°) produce wake interference and regions of attractive CL. High 

incidence angles (α = ~45° to 90°) produce proximity interference and generally result in 

repulsive CL. Low incidence angles (α = 0° to ~45°) and large P/D (> 2.75) produce negligible 

wake or proximity interference for only the upstream cylinder resulting in negligible CL. The 

shape of each region is also a strong function of AR, with AR = 3 experiencing smaller regions 

of positive lift and larger regions of negative lift. Conversely, AR = 9 and 7 experience larger 

regions of positive lift and smaller regions of negative lift. AR = 5 seems to be a transitional 

aspect ratio, with positive and negative lift regions intermediately sized between that of higher 

and lower AR. 
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Figure 4.17: CL contour plot for AR = 9. Contours displayed represent CL for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle represents the 

stationary reference cylinder, and the grey cross-hatching represents the area where no data is 

collected. P/D = 1.0 represents the cylinders touching. Flow is from left to right. 
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Figure 4.18: CL contour plot for AR = 7. Contours displayed represent CL for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle represents the 

stationary reference cylinder, and the grey cross-hatching represents the area where no data is 

collected. P/D = 1.0 represents the cylinders touching. Flow is from left to right. 
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Figure 4.19: CL contour plot for AR = 5. Contours displayed represent CL for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle represents the 

stationary reference cylinder, and the grey cross-hatching represents the area where no data is 

collected. P/D = 1.0 represents the cylinders touching. Flow is from left to right. 
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Figure 4.20: CL contour plot for AR = 3. Contours displayed represent CL for the outer cylinder 

placed at that point on the plot. In the context of hysteresis, the outer cylinder rotates clockwise 

around the central cylinder (α increasing from 0° to 360°). The white circle represents the 

stationary reference cylinder, and the grey cross-hatching represents the area where no data is 

collected. P/D = 1.0 represents the cylinders touching. Flow is from left to right.  
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4.4.3 Strouhal Number 

Strouhal number data were acquired for both the upstream and downstream cylinder 

simultaneously across the entire staggered range from α = 0° to 90° for the same 12 discrete P/D 

used for CD and CL. As detailed in Section 4.2.2, velocity fluctuation power spectra were 

measured via one stationary hot-wire probe behind the fixed central cylinder while another 

moveable hot-wire probe tracked the rotating outer cylinder over the range of P/D and α. In a 

similar manner as the CD and CL data, the St data were compiled into contours for AR = 9, 7, 5, 

and 3, and can be found in Figure 4.21 and Figure 4.22. Polar maps of the data collection points 

for St may be found in Appendix A, with gaps along certain α (predominantly near the inner lift 

peak) where no discernable peaks were found in the velocity fluctuation power spectra. The St 

data separated by P/D are found in Appendix B as well. The St contours can be divided into 

three main regions, however the α and P/D boundaries as defined by CD in Section 4.4.1 and CL 

in Section 4.4.2 do not align well with the St contours. There is a wake interference region at low 

incidence angles (α = 0° to ~20°), a biased flow-like region found at moderate and high 

incidence angles (α = ~20° to 90°), and a region of negligible interference found for both 

cylinders at large P/D (boundaries are dependent on AR). 

At low incidence angles (α < ~20°) wake interference is dominant. The St data have some 

limitations however, as the hot-wire probes were positioned at x/D = 3.0, y/D = 1.0, and z/H = 

0.5 relative to the cylinders. Consequently, for P/D < 3.0 the upstream probe is actually situated 

behind the downstream cylinder, meaning there will be some ambiguity in the interpretation of 

St for these staggered configurations. Without the use of flow visualization or whole field 

techniques, or different hot-wire techniques, the upstream cylinder St behaviour is more difficult 

to interpret for low incidence angles.  

The St contours found in Figure 4.21 and Figure 4.22 show a local maximum in St for the 

downstream cylinder at an α that coincides with the inner lift peak described in Section 4.4.2 

(approximately α = 12° to 15°). Measuring St in this region was challenging, however, with the 

positioning of the probes influencing the measured velocity fluctuation power spectra. The 

Strouhal number was only measured at the mid-height of the cylinders, and AR has a large effect 

on the vortex formation along the height of the cylinder. In some instances the upstream cylinder 

showed a peak in the power spectra in this region, however, more often the power spectra 
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showed no coherent peak for small and intermediate P/D between α = ~8° to 16°, even when 

moving the probe around in the x-y plane. The absence of clear St values may also be in part due 

to the upstream probe being positioned either behind or very close to the downstream cylinder. 

The behaviour of St for α > 20° remains fairly constant, with P/D being the larger 

influence for both the upstream and downstream cylinders. As described in Section 4.4.1, the gap 

flow between the cylinders becomes biased toward the upstream cylinder. The result is the 

upstream cylinder has a narrow near wake and a higher St, while the downstream cylinder has a 

wide near wake and a lower St. A similar result is found for all AR, with the difference between 

the two St values a strong function of P/D. Increasing P/D reduces the proximity interference, 

and results in St values that asymptotically approach that of an isolated finite cylinder. For this 

entire region the downstream cylinder (low St mode) remains just below the St of an isolated 

cylinder, where the upstream cylinder (high St mode) can experience a severe gradient at small 

P/D. For an increase in AR, the region in which the upstream and downstream cylinders have not 

yet attained the isolated cylinder St increases in P/D.  

The St contours in Figure 4.21 and Figure 4.22 show a fairly consistent divide between 

high and low St ranges at α = 90°. Intermittent switching of the gap bias direction is likely at this 

incidence angle at low P/D, and this topic is discussed at length in Section 4.3.3 and Appendix 

C. The power spectra over a range of α near 90° (the range increases as P/D decreases) show the 

same two distinct peaks for both probes, corresponding to the low and high St values, indicating 

at least one gap bias switch during the 30 s sample time. 

When at α = 90°, both wake states are equally likely, though flow stability found at lower 

P/D can cause the gap flow bias to remain in one direction for longer periods of time before 

switching sides. When α is brought away from 90° however, the high St (narrow) wake state 

becomes more likely for the upstream cylinder, while the low St (wide) wake state becomes 

more likely for the downstream cylinder. This is found in the power spectra data at staggered 

angles near α = 90°, however increasing P/D causes the upstream and downstream St to 

converge. The lack of difference between the two states results in one wider power spectra peak 

likely comprised of two indiscernible peaks of similar value. The shared St at wider P/D very 

close to α = 90° described in Section 4.3.3 earlier is a fairly good indication of the departure 

from the biased flow regime as summarized in Table 4.1, however the repulsive CL in this region 
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still shows the proximity interference of the co-shedding regime. Moving to an incidence angle 

farther from α = 90° extends the P/D “range” of the bias flow-like regime on the St contours as 

the effective P/D is reduced slightly however. 

The strong hysteresis found in the CD and CL contours near the side-by-side configuration 

is not nearly as apparent in the St contours, which is why the St data are not divided by CW and 

CCW α increments. This may be for a number of reasons. The most severe (and therefore easiest 

to identify) hysteresis is at P/D = 1.125 where the extended-body flow regime occurs, at which 

point only one Kármán vortex street is produced. The result is only one St measured by both 

probes at approximately half the value of an isolated cylinder as discussed in Section 4.3.3. 

Looking at the data for P/D ≥ 1.25, neither AR = 3 nor 5 experience hysteresis, AR = 7 

experiences only a few degrees of hysteresis at only P/D = 1.25, and AR = 9 has notable 

hysteresis at P/D = 1.25 (although the 30 s sampling time for a power spectrum increases the 

chance that a small disturbance will flip the wake states during the measurement). Thus only a 

few degrees of hysteresis were produced for AR = 9 at P/D = 1.25, however this is almost 

negligible when compared to the highly repeatable hysteresis found with CD and CL. 

With the exception of small incidence angles, large P/D configurations found in Figure 

4.21 and Figure 4.22 show similar St values for both upstream and downstream cylinders that 

match the isolated finite cylinder St data. This region of reduced proximity interference with 

respect to St does not align very well with those defined by CD and CL in Sections 4.4.1 and 

4.4.2. Near side-by-side and at very large incidence angles, the St contours approach isolated 

finite cylinder values of St at lower P/D than in surrounding regions, where the CD and CL 

contours near the side-by-side configurations showed significant proximity effects. Conversely, 

where the CD and CL contours had shallow gradients near α = 45° for the upstream cylinder, the 

St contours experience their largest magnitude change. The highest values of St were found near 

α = 45°, making it a useful reference for defining the critical P/D that produces no significant 

proximity interference. As AR is reduced, the critical P/D reduces significantly at P/D = 4.0, 3.5, 

2.75, and 2.25 for AR = 9, 7, 5, and 3, respectively. This trending of critical P/D with respect to 

AR is similar to that found with CD and CL. Overall, a reduction in AR reduces the proximity 

interference effects, especially for the upstream cylinder. 
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In summary, the vortex shedding frequencies measured for both upstream and 

downstream cylinders in a staggered configuration were divided into three main regions, 

however the P/D and α boundaries did not align well with those identified for CD and CL in 

Sections 4.4.1 and 4.4.2. The wake interference region at low incidence angles (α = 0° to ~20°) 

was characterized by a low St with a local maximum at the inner lift peak. The proximity 

interference region at moderate and high incidence angles (α = ~20° to 90°) showed biased flow-

like characteristics with the upstream cylinder having a higher St compared to the downstream 

cylinder. Finally the region of negligible interference was found at wide P/D, though the 

boundaries were dependent on AR. 
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Figure 4.21: St contour plots for AR = 9 (top) and AR = 7 (bottom). Contours displayed are St 

for the outer cylinder placed at that point on the plot. The white circle is the stationary reference 

cylinder, and the grey cross-hatching is the area where no data was collected. Black cross-

hatching is isolated cylinder value. P/D = 1.0 represents the cylinders touching. Flow is from left 

to right. 
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Figure 4.22: St contour plots for AR = 5 (top) and AR = 3 (bottom). Contours displayed are St 

for the outer cylinder placed at that point on the plot. The white circle is the stationary reference 

cylinder, and the grey cross-hatching is the area where no data was collected. Black cross-

hatching is isolated cylinder value. P/D = 1.0 represents the cylinders touching. Flow is from left 

to right.  
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Chapter 5 Conclusions, Contributions, and Recommendations 

5.1 Conclusions 

In the present research, the effects of aspect ratio on the wind loading and vortex shedding 

frequency of two surface-mounted finite-height cylinders in a staggered configuration were 

studied using a low-speed, closed return wind tunnel. Mean drag and lift force coefficients (CD 

and CL) were measured on the central cylinder (of the two-cylinder staggered arrangement) using 

a force balance while the non-instrumented outer cylinder was located at discrete pitch ratios 

(P/D) and rotated to different incidence angles (α) relative to the central cylinder. Measurements 

of the Strouhal number (St) were made simultaneously for both cylinders. The cylinder aspect 

ratio (AR), P/D and α were varied systematically to obtain a large set of data for CD, CL, and St 

for every combination of P/D and α at AR = 9, 7, 5, and 3. The data were divided into three main 

configurations for analysis purposes: tandem, side-by-side, and staggered. All of the experiments 

were conducted at a single Reynolds number and a single boundary layer thickness. 

Aspect ratio and pitch ratio effects on CD and St were first studied for cylinders in a 

tandem configuration (α = 0°). The drag coefficients of the upstream cylinders became lower as 

AR was decreased, consistent with isolated finite-height cylinders. The downstream cylinders 

however, showed more complex behaviour. For small P/D (≤ 2.0) a decrease in AR produced an 

increase in CD (for small P/D this equated to a reduction in net thrust). At lower AR, it was 

suggested that increased downwash behind the upstream cylinder resulted in an increase in 

freestream impingement over a larger portion of the downstream cylinder, increasing the 

pressure in the gap between the two cylinders and CD of the downstream cylinder while reducing 

CD for the upstream cylinder. Within the CD data there was no abrupt increase to mark the onset 

of co-shedding as seen for two infinite cylinders in tandem. This may be a result of the longer 

vortex formation length found with finite-height cylinders allowing shear layer reattachment to 

persist up to the largest P/D (= 4.5) measured. Additionally, it may be caused by two flow 

patterns coexisting in different regions along the cylinder heights. The result would be a smaller 

abrupt increase in CD, or perhaps just a smooth transition as a larger portion of the height 

experiences co-shedding as P/D increases. In contrast, the mid-height St data showed a small 

jump for all AR, to the value expected for isolated finite cylinders, however this only represents 

the vortex shedding at the mid-height, and does not reflect any heightwise variation in St. 
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Measurements of CD, CL, and St were then presented for cylinders in a side-by-side 

configuration (α = 90°). At P/D = 1.125 the base bleed flow regime was identified for the two 

finite cylinders, characterized by one cylinder experiencing a significantly higher CD and an 

attractive CL; this was apparent for all AR, and much like the tandem configuration, a lower AR 

resulted in a smaller CD. Similar to the infinite cylinder results of Sumner et al. (2005) for P/D ≥ 

1.25, an abrupt jump to the biased flow regime occurs for all AR, where the finite cylinder with 

the narrow wake state experiences a higher CD, CL, and St, and where the finite cylinder with the 

wide wake state experiences a lower CD, CL, and St. The behaviour of the biased flow regime is 

sensitive to AR, where an increase in AR increases the critical value of P/D signifying the upper 

limit of the biased flow regime (and the differences in the magnitudes of CD, CL, and St between 

the two wake states). Defining the exact transition between the biased and co-shedding flow 

regimes was difficult as at intermediate P/D the gap bias direction intermittently switches sides. 

As CD, CL, and St were time-averaged values the measurements tended to show one value 

representing the average of both wake states (as opposed to two distinct values found at smaller 

P/D, where increased gap stability would allow the gap bias to stay preferentially to one side 

throughout the entire measurement averaging period).  

An interesting hysteresis phenomenon was found at small P/D (≤ 1.75) near α = 90° 

where CD and CL experienced by the central cylinder were different depending on whether α was 

incremented CW or CCW. The initial values of CD and CL obtained by the central cylinder 

before α = 90° would be maintained after α = 90° up to a critical α, at which point both CD and 

CL would experience a sudden jump to the values expected by the opposing wake state. The size 

of the hysteretic range of α and the P/D that could produce hysteresis were both functions of AR. 

An increase in AR showed hysteresis at larger P/D with more repeatable critical α limits. A 

decrease in AR caused the potential for a larger hysteretic range of α, however the results were 

less repeatable and hysteresis was only found at smaller P/D. 

For the staggered finite cylinders, contour plots of CD, CL, and St were produced for all 

AR to visually display the regions of wake and or proximity interference. Characteristics of the 

inner lift peak described by Sumner et al. (2005) are apparent in the data for CD, CL, and St, 

however the distinction between inner and outer lift peaks become less clear with surface-

mounted finite-height cylinders. The sizes and shapes of the regions in the contour plots 
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experiencing wake and or proximity interference were sensitive to AR as well. As AR increases, 

strong wake interference effects were found at higher P/D, however as AR decreases wake 

interference effects are found at α farther from tandem. In the context of large incidence angle 

flow regimes, proximity interference at large P/D was found to increase at AR was increased. 

Overall, higher AR cylinders experienced a larger magnitude range of CD, CL, and St with 

steeper gradients throughout the entire staggered range. Additionally, higher AR cylinders 

experienced the effect of the other cylinder up to larger P/D than smaller AR cylinders. 

For all staggered configurations, the data for AR = 3 behaved in a distinct fashion with 

changes in pitch ratio and incidence angle. This behaviour demonstrated that these cylinders 

were below the critical aspect ratio. 

Overall, the differences between two infinite cylinders and two finite cylinders in a 

staggered configuration were found to be significant, due to the effects of aspect ratio and the 

greater complexity of the flow field for finite cylinders. This finding means that wind loading 

and vortex shedding data acquired for infinite cylinders should be used with caution when 

applied to engineering structures that are more appropriately represented by finite cylinders. 

 

5.2 Contributions of this Work 

The work presented in this thesis provides a systematic look at how the aspect ratio affects the 

wind loading and vortex shedding for both the upstream and downstream cylinders in a staggered 

configuration. No similar systematic study of aspect ratio effects for the flow around two 

surface-mounted finite-height finite cylinders exists in the literature to date. The data are 

presented in easy to read contours in addition to graphs displaying precise data sets. Evidence of 

strong hysteresis in the wind loading near α = 90° has not been extensively reported in other 

studies of two cylinders in cross-flow, and warrants further investigation as the sudden jump in 

CD and CL at the end of the hysteretic range produce strong impulsive loading on the cylinders. 

This thesis also provided a review of the CD, CL, and St classifications for the narrow and wide 

wake states found for the side-by-side configuration by Alam et al. (2003a), Sumner et al. 

(2005), and the present data, ultimately providing a reconciliation between the current 

designations.  
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5.3 Recommendations for Future Work 

Limitations on both time and experimental complexity meant that this thesis is also limited in 

both its breadth and depth. The recommendations for future work involve considerations for new 

experiments and improvement on existing ones. The first recommendation would be to utilize 

flow visualization or whole field measurements techniques (such as particle image velocimetry) 

that would capture the complex flow field near the free ends and cylinder-wall junctions. These 

techniques would be valuable in understanding the root cause of the wind load and vortex 

shedding variations found for different AR that could only be speculated in the present thesis.  

Improvement on apparatus limitations are also strongly recommended. A finer increment 

of P/D at very close cylinder spacing with less positioning uncertainty would be beneficial in 

describing the large variation in flow regimes currently presented. Finding exact boundaries 

between the flow patterns as a function of AR was challenging when each discrete P/D 

experienced a significantly different CD, CL, and St. Conversely, a method of measuring CD, CL, 

and St at cylinder spacing larger than the upper limit of P/D = 4.5 presented in this thesis would 

be useful. The true range of proximity and wake interference cannot be fully defined if the P/D 

range tested does not produce fully isolated-cylinder-like results. A larger P/D is needed, 

especially in the case of finite-height cylinders that were shown to produce proximity effects at 

larger P/D than infinite cylinders. Improvements to the method of obtaining CD and CL would 

also be of benefit, with the ability to measure the wind load on both cylinders simultaneously for 

small P/D recommended. Simultaneous force measurement (with each cylinder attached to its 

own, dedicated force balance) in conjunction with recording and analyzing the force time series 

data for both cylinders would provide greater insight into flow regimes that may switch back and 

forth intermittently (for example the biased flow regime for the side-by-side configuration 

discussed in Appendix C). Finally, a form of temperature compensation for either the freestream 

temperature or the temperature sensitive load cells used to measure CD and CL is recommended. 

A significant portion of the measurement time for the CD and CL data presented in this thesis was 

spent checking the force balance offsets, to minimize the impact of temperature drift on the 

measurement error; this was time that could have been better spent gathering additional data. A 

method of reducing the temperature effects would save a significant amount of experiment time, 

equipment wear, and thermal swelling of the ground plane and turntable assembly.   
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Appendix A Map of Data Collection Points 

A map of the data collection points for the force balance measurements are found in Figure A.1. 

Maps for the St data collection points for AR = 9, 7, 5, and 3 are found in Figure A.2a, Figure 

A.2b, Figure A.2c, and Figure A.2d, respectively.  

Force balance measurements of CD and CL were made simultaneously from the central 

cylinder at each of the points in Figure A.1. The test trajectory for each AR was the same, using 

the 12 discrete P/D (= 1.125, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, and 4.5) mounting 

holes for the outer cylinder in the turntable. The turntable itself was incremented from α = −5° to 

185° in increments of 1°. For small P/D and AR combinations resulting in hysteresis (described 

in Section 4.3.4), data were also collected by incrementing α in the opposite direction. 

 

 

Figure A.1: Locations of the outer cylinder, for measurements of CD and CL for the central 

cylinder, with 12 discrete P/D and 1° increments in α. For α = 0° to 90°, the central cylinder 

represents a downstream cylinder. For α = 90° to 180°, the central cylinder represents an 

upstream cylinder. P/D = 1.0 represents the two cylinders touching. 

 

Central 

Cylinder 
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The velocity fluctuation power spectra used to measure St were made at each of the 

points in Figure A.2. The P/D increments were the same as used for CD and CL, however each 

AR used a different increment of α in order to concentrate points where St was found to be more 

rapidly changing with P/D and α. With a stationary probe behind the central cylinder and a 

traversing probe behind the outer cylinder, simultaneous power spectra measurements from α = 

0° to 90° covered the entire range. As described above, P/D and AR combinations resulting in 

hysteresis were also conducted in the CCW direction (with a decreasing value of α). 

 

  

  

Figure A.2: Data collection points for St with 12 discrete P/D, α increments of 1°, 2° or 5°, for 

a) AR = 9, b) AR = 7, c) AR = 5, and d) AR = 3. Data were collected at x/D = 3.0, y/D = 1.0, 

and z/H = 0.5 for both the central (downstream) and the outer (upstream) cylinders 

simultaneously. P/D = 1.0 represents the two cylinders touching. Flow from left to right. 

Central 

Cylinder 

Central 

Cylinder 

Central 

Cylinder 
Central 

Cylinder 
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Appendix B Mean Coefficient of Drag, Mean Coefficient of Lift, and 

Strouhal Number Data as Functions of Pitch Ratio and Aspect Ratio 

This Appendix shows the mean coefficient of drag, CD, mean coefficient of lift, CL, and Strouhal 

number, St, data as functions of pitch ratio, P/D, aspect ratio, AR, and incidence angle, α. All of 

the data were obtained at Re = 6.5×104 with δ/D = 1.4. For a map of the P/D and α 

configurations used for each AR to measure CD, CL, and St, see Appendix A. The Strouhal 

number data were obtained at the mid-height position. 

All figures in this Appendix (Figure B.1 to Figure B.12) follow the same general layout. 

The left side of each figure shows the upstream cylinder data while the right side of each figure 

shows the downstream cylinder data. The top pair of graphs show CD data, the middle pair of 

graphs show CL data, and the bottom pair of graphs show St data. Each graph contains the data 

for AR = 9 (/), AR = 7 (/), AR = 5 (/), and AR = 3 (/). For closely spaced 

staggered cylinders at high AR, hysteresis was found in the CD and CL measurements with 

respect to whether α was increasing or decreasing as described in detail in Section 4.3.4. For 

configurations resulting in hysteresis, tests conducted with both increasing (solid symbols) and 

decreasing (open symbols) α are shown. 
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Figure B.1: P/D = 1.125 data for CL, CD, and St. 
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Figure B.2: P/D = 1.25 data for CL, CD, and St. 
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Figure B.3: P/D = 1.5 data for CL, CD, and St. 



116 

 

 

Figure B.4: P/D = 1.75 data for CL, CD, and St. 
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Figure B.5: P/D = 2.0 data for CL, CD, and St. 
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Figure B.6: P/D = 2.25 data for CL, CD, and St. 
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Figure B.7: P/D = 2.5 data for CL, CD, and St. 
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Figure B.8: P/D = 2.75 data for CL, CD, and St. 



121 

 

 

Figure B.9: P/D = 3.0 data for CL, CD, and St. 
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Figure B.10: P/D = 3.5 data for CL, CD, and St. 
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Figure B.11: P/D = 4.0 data for CL, CD, and St. 
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Figure B.12: P/D = 4.5 data for CL, CD, and St.  
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Appendix C Intermittent Gap Bias Switching for Moderately 

Spaced Surface-Mounted Finite-Height Cylinders in a Side-by-Side 

Configuration 

Two cylinders in a side-by-side configuration at moderate pitch ratios (P/D = 1.5 to 3.0, although 

this range is dependent on Re) exhibit deflected gap flow, biased towards one of the cylinders. 

The biased flow regime produces leads to different wakes, wind loading, and vortex shedding 

frequencies for the two cylinders. As the cylinders are geometrically symmetric, it is equally 

likely that the gap flow may bias to either cylinder and may switch between the two 

intermittently. The lower the value of P/D, the more stable the gap flow becomes, allowing the 

deflected flow to remain biased towards one cylinder for a longer period of time (or perhaps 

permanently biased). Conversely, at higher P/D the reduced proximity interference reduces the 

gap deflection angle and its ability to maintain a preferred direction. At a critical P/D (that is a 

function of AR and Re) the cylinders no longer exhibit a deflected gap flow, the asymmetry in 

the flow disappears, and two identical parallel vortex streets are formed. 

Force balance measurements represented an average of 10,000 instantaneous samples 

over 10 seconds. The time duration of the wake state was likely less than the sample time, 

resulting in an average of the two wake states effectively being measured for moderate P/D at α 

= 90°. For P/D that did could not maintain a single preferential gap deflection for the entire 10-

second sampling time, the direction of the gap bias was manually influenced in order to 

approximate CD for both discrete wake states throughout the intermittent bias switching range of 

P/D. By using the data at α = 90° ± 5° (at α = 85° and 95° to obtain both gap bias directions), the 

gap bias was found to be deflected to one cylinder for the majority of the 10-second sample time 

while still maintaining a geometry very close to the side-by-side-configuration. Using this 

information the two wake states could be approximated from the averaged data at α = 90°; if the 

difference in the two CD values was greater than 5 %, the P/D was considered to fall within the 

biased flow regime. Following this criterion, the boundary between the biased and co-shedding 

flow regimes for AR = 9, 7, 5, and 3 was found at critical pitch ratios of P/D = 3.0, 2.75, 2.25, 

and 2.0, respectively (Table 4.1). Figure C.1 and Figure C.2 show the CD and CL values at α = 

85° and 95° to further exemplify the difference in wind loading between the two wake states. 

Figure C.3 shows all power spectra peaks between α = 85° and 90° for both hot-wire probes to 

show the intermittent wake state switching caught over the biased flow regime range.   
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Figure C.1: Mean drag coefficient, CD, data for side-by-side finite-height (solid symbols), 

isolated finite-height (dashed line), and infinite (+ data from Alam et al., 2003a) cylinders as 

function of P/D and a) AR: /– AR = 9, b) /– AR = 7, c) /– AR = 5, d) /– AR = 3, and 

e) all data combined. Data taken from α = 85° and 95°. High CD is narrow wake state (NW); 

low CD is wide wake state (WW). 
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Figure C.2: Mean lift coefficient, CL, data for side-by-side finite-height (solid symbols), 

isolated finite-height (dashed line), and infinite (+ data from Alam et al., 2003a) cylinders as 

function of P/D and AR: a) /– AR = 9, b) /– AR = 7, c) /– AR = 5, d) /– AR = 3, and 

e) all data combined. Data taken from α = 85° and 95°. For P/D ≥ 1.25, high CL is narrow 

wake state (NW); low CL is wide wake state (WW). 
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Figure C.3: Side-by-side configuration mid-span Strouhal number, St, data as a function of 

P/D and AR measured by the traversing (solid symbols) and stationary hot-wire probe (open 

symbols) with isolated cylinder (dashed line) as reference. a) //– AR = 9, b) //– AR = 

7, c) //– AR = 5, d) //– AR = 3, and e) all data combined. Data taken between α = 

85° and 90° from both probes to show bias switching behaviour. High St is narrow wake state 

(NW); low St is wide wake state (WW). 
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Appendix D Discussion of Alam et al. (2003a) Narrow and Wide 

Wake State Designations for Side-by-Side Cylinders 

This Appendix discusses the narrow wake state and wide wake state designations offered by 

Alam et al. (2003a), with a focus on the interpretation with regard to the mean lift coefficient, CL. 

In the article the authors describe (at a given P/D) the narrow wake state (mode NW) as having a 

universally higher CD and St than the wide wake state (mode WW). The narrow wake state 

(mode NW) was also associated with a lower CL than the wide wake state (mode WW) as shown 

in Figure D.1. Additionally, time-averaged pressure coefficient, CP, data as a function of 

circumferential angle was presented for cylinders at P/D = 1.5 (Figure D.2; Alam et al., 2003a) 

and P/D = 1.2 (Figure D.3; Alam and Zhou, 2007). 

 

Figure D.1: Lift coefficient, CL, and corresponding wake stated designations offered by a) Alam 

et al. (2003a) (figure taken from Alam et al. (2003a)). 

The finite cylinder data from this thesis and the infinite cylinder data from Sumner et al. 

(2005) show that high values of CD and St also correspond to a high value of CL within the 

biased flow regime. This contradicts the finding of Alam et al. (2003a), which showed the 

opposite tendency for CL. The CP data for P/D = 1.5 and 1.2 were digitized and integrated for 

both the narrow wake and wide wake designations given in the original pressure data figures 

(Figure D.2 and Figure D.3, respectively) using the following equation. 

 𝐶𝐿 = −0.5 ∫ 𝐶𝑃𝑠𝑖𝑛(𝜃)𝑑𝜃
2𝜋

0
 (D.1) 
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It was found for both P/D = 1.5 and 1.2 that the narrow wake state produced the higher 

magnitude of CL with integrated pressure data where the wide wake state produces the lower 

magnitude of CL as summarized in Table D.1. This would indicate that for the biased flow 

regime found at P/D ≥ 1.15 the “Mode ‘NW’” and “Mode ‘WW’” designations given in Figure 

D.1 should be reversed. 

Table D.1: Comparison of narrow and wide wake state CL using directly measured values and 

integrated pressure distribution values. All data taken from Alam et al. (2003a) and Alam and 

Zhou (2007). 

 Direct CL (Figure D.1) 
CP Integration (Figure 

D.2 and Figure D.3) 

Wake State Designation from 

Original Graph 
Narrow Wide Narrow Wide 

P/D = 1.5 (Alam et al., 2003a) 0.236 0.327 0.432 0.305 

P/D = 1.2 (Alam and Zhou, 2007) 0.343 0.468 0.590 0.379 

 

When using the designations for CL as defined by the CP data, the biased flow regime 

(P/D ≥ 1.15) exhibits a narrow wake state characterized by a higher CD, CL, and St and a wide 

wake state characterized by a lower CD, CL, and St. With new designations, the data for both the 

narrow wake state and wide wake state across all P/D in the context of CD, CL, and St would all 

align with the present data and the data from Sumner et al. (2005). 
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Figure D.2: Time-averaged pressure coefficient, CP, data for wide wake (solid symbols) and 

narrow wake (open symbols) states for side-by-side infinite cylinders at P/D = 1.5. Isolated 

cylinder (dashed line) for reference. Figure taken from Alam et al. (2003a). 

 

Figure D.3: Time-averaged pressure coefficient data for wide wake (open symbols) and narrow 

wake (solid symbols) states for side-by-side infinite cylinders at P/D = 1.2. Isolated cylinder 

(dashed line) for reference. Figure taken from Alam and Zhou (2007). 
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Appendix E Hysteresis for AR = 7 and AR = 5 

The following Appendix provides the data for the hysteresis in wind loading found at low P/D 

near α = 90°. Behaviour as a function of P/D for AR = 7 may be found in Figure E.1a, and AR = 

5 in Figure E.1b below. In depth discussion on this phenomenon may be found in Section 4.3.4, 

and similar curves for AR = 9 and AR = 3 may be found in Figure 4.9. For the effect of AR on 

hysteretic behaviour at P/D = 1.125 and 1.25, see Figure 4.10. 

 

Figure E.1: CD and CL data for the central cylinder for a) AR = 7 and b) AR = 5. Solid symbols: 

CW movement of the outer cylinder. Open symbols: CCW movement of the outer cylinder. , 

: P/D = 1.125; ,: P/D = 1.25; ,: P/D = 1.5. 
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