

 Scalable Parallel Architecture

 for Biological Neural Simulation

on Hardware Platforms

A Thesis Presented to the

College of Graduate Studies and Research

in Fulfillment of the Requirement

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

by

Peyman Pourhaj

© Copyright Peyman Pourhaj, September 2010. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226155385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University

may make it freely available for inspection. I further agree that permission for copying of

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by

the professor or professors who supervised my thesis work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done. It

is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

ii

ACKNOWLEDGEMENTS

In the first place I would like to express the deepest appreciation to my supervisor, Dr.

Daniel Teng, for his tremendous support, extraordinary guidance and unflinching

encouragement during the course of my studies. Undoubtedly without his guidance and

persistent help this thesis would not have been possible. I am also grateful to him for

providing me with the opportunities to pursue a dynamic and fascinating area of configurable

computing and biological neural simulation.

Many thanks go to Larry Copper for giving me the opportunity to persuade my study

when working at the Scientific Instrumentation Ltd.

I gratefully thank Joel Ahmed for his constructive comments. I am thankful that in the

midst of all his activity, he accepted to edit this thesis.

Words fail me to express my appreciation to my wife Fatemeh whose dedication, love

and persistent confidence in me, has taken the load off my shoulder.

iii

ABSTRACT

Difficulties and dangers in doing experiments on living systems and providing a

testbed for theorists make the biologically detailed neural simulation an essential part of

neurobiology. Due to the complexity of the neural systems and dynamic properties of the

neurons simulation of biologically realistic models is very challenging area. Currently all

general purpose simulator are software based. Limitation on the available processing

power provides a huge gap between the maximum practical simulation size and human

brain simulation as the most complex neural system. This thesis aimed at providing a

hardware friendly parallel architecture in order to accelerate the simulation process.

This thesis presents a scalable hierarchical architecture for accelerating simulations of

large-scale biological neural systems on field-programmable gate arrays (FPGAs). The

architecture provides a high degree of flexibility to optimize the parallelization ratio

based on available hardware resources and model specifications such as complexity of

dendritic trees. The whole design is based on three types of customized processors and a

switching module. An addressing scheme is developed which allows flexible integration

of various combination of processors. The proposed addressing scheme, design

modularity and data process localization allow the whole system to extend over multiple

FPGA platforms to simulate a very large biological neural system.

In this research Hodgkin-Huxley model is adopted for cell excitability. Passive

compartmental approach is used to model dendritic tree with any level of complexity.

The whole architecture is verified in MATLAB and all processor modules and the

switching unit implemented in Verilog HDL and Schematic Capture. A prototype

simulator is integrated and synthesized for Xilinx V5-330t-1 as the target FPGA. While

not dependent on particular IP (Intellectual Property) cores, the whole implementation is

based on Xilinx IP cores including IEEE-754 64-bit floating-point adder and multiplier

cores. The synthesize results and performance analyses are provided.

iv

Table of Contents

PERMISSION TO USE ... i

ACKNOWLEDGEMENTS .. ii

ABSTRACT ... iii

Table of Contents ... iv

List of Tables .. vi

List of Figures ... vii

List of Abbreviations .. ix

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Objectives ... 4

1.3 Thesis Outline .. 5

Chapter 2 Background .. 6

2.1 Neural Systems ... 6

2.2 Action Potential .. 7

2.2.1 The Hodgkin-Huxley Model ... 8

2.2.2 The Mathematical Models ... 8

2.3 Biological Neuron Modeling .. 11

2.3.1 Compartment Equivalent Circuit .. 12

Chapter 3 Modeling of Biological Neurons ... 13

3.1 Similar Processable Entities ... 14

3.1.1 Dendritic Tree Compartments ... 14

v

3.1.2 Common Nodes ... 16

3.1.3 Soma .. 17

3.2 MATLAB Simulations ... 19

Chapter 4 Architecture for Parallel Neural Simulation .. 24

4.1 Simulator Building Blocks ... 24

4.2 Dendrite Segment Processor (DSP) ... 26

4.3 Common Node Processor (CNP) ... 28

4.4 Soma Processor (SP) .. 29

4.4.1 Soma Voltage Processor (SVP)... 31

4.4.2 Soma Conductance Processor (SCP)... 33

Chapter 5 Detailed Design ... 40

5.1 Processing Model ... 40

5.2 Addressing Scheme .. 41

5.3 Dendrite Segment Processor (DSP) ... 43

5.3.1 Segment Definition Packet .. 43

5.3.2 Detailed Design ... 45

5.3.3 Common Node Processor (CNP) .. 49

5.3.4 Soma Processor (SP) ... 52

5.3.5 Communication Media .. 57

Chapter 6 Results .. 59

6.1 Xilinx FPGAs ... 59

6.2 Synthesis... 61

6.3 Performance Analysis .. 64

Chapter 7 Conclusions .. 68

References ... 71

vi

List of Tables

Table 3. 1 Neuronal cell parameters .. 20

Table 4. 1 Maximum Error in Calculation of ionic conductances in each simulation run

introduced by quantizing A(k) and B(k) coefficients at the high end of

command voltage range .. 39

Table 5. 1 The Status field describes the end node connectivity to the other segments .. 44

Table 5. 2 Elements of the Eq. (3.5) that can be processed in parallel upon receiving an

adjacent node voltage .. 49

Table 6. 1 Device Utilization Summary .. 62

Table 6. 2 Timing Statistics ... 63

Table 6. 3 Number of required floating point operations in each cycle to simulate 600

cells with relatively complex dendritic trees .. 66

Table 6. 4 Number of required floating point operations to simulate action potential for

4000 somas.. 66

vii

List of Figures

Figure 2.1 a) Biological Neuron b) Action Potential [33] ... 6

Figure 2.2 Membrane segment with ionic channels .. 8

Figure 2.3 Embedded gates in K and Na channels .. 9

Figure 2.4 K and Na channel changes due to application of command voltage 10

Figure 2.5 a) cerebellar Purkinje cell [3] b) compartmental model [3] 11

Figure 2.6 Equivalent circuit of a generic compartment.. 12

Figure 3.1 Similar processable entities in compartmental modeling 14

Figure 3.2 Electrical circuit of passive compartment .. 15

Figure 3.3 Equivalent circuit of a common node ... 16

Figure 3.4 Hodgkin and Huxley model of Soma ... 18

Figure 3.5 GENESIS simulation (left) and MATLAB simulation (right) 19

Figure 3.6 Cell model with multi-branch dendrite tree.. 21

Figure 3.7 Soma voltage without stimulation .. 22

Figure 3.8 Membrane voltage of the injected compartment .. 23

Figure 3.9 Soma voltage with current injected into segment #31................................ 23

Figure 4.1 Branching point structure of a dendrite tree in compartmental modeling .. 25

Figure 4.2 Top level block diagram of simulator .. 26

Figure 4.3 DSP block diagram ... 27

Figure 4.4 Equivalent circuit of the first node with appended fake node 28

Figure 4.5 Common Node Processor block diagram ... 29

Figure 4.6 Soma Processor (SP) block diagram .. 30

Figure 4.7 Soma Voltage Processor (SVP) .. 32

Figure 4.8 n-type gate probability changes vs. command voltage 35

Figure 4.9 m- and h- type gates probabilities vs. command voltage 35

Figure 4.10 Simulation result of soma voltage for voltage clamp experiment 36

Figure 4.11 Simulation result of soma voltage for current clamp experiment 36

viii

Figure 4. 12 Quantization error of ��, ��, ��, ��, �� and �� coefficients 38

Figure 5.1 Segment Definition Packet (SDP) structure ... 44

Figure 5. 2 First row of the SDP header .. 44

Figure 5.3 Dendrite Segment Processor block diagram ... 46

Figure 5.4 Node Processor block diagram ... 48

Figure 5.5 Common Node Processor (CNP) block diagram 50

Figure 5.6 Soma Processor block diagram .. 53

Figure 5.7 Internal block diagram of the Soma Conductance Processor 54

Figure 5.8 Potassium conductance processor block diagram 55

Figure 5.9 Sodium conductance processor block diagram .. 56

Figure 5.10 Common Node Switch (CNS) block diagram .. 57

Figure 5.11 Typical two-level simulator .. 58

Figure 6.1 Virtex-5 Configuration Logical Block .. 60

Figure 6.2 Virtex-5 Columnar Architecture .. 61

Figure 6.3 Block diagram of the implemented simulator and the test bench 61

Figure 6.4 The C program to evaluate software based implementation of the proposed

simulator ... 67

ix

List of Abbreviations

CN Common Node

CND Common Node Domain

CNI Common Node Id

CNP Common Node Processor

CNS Common Node Switch

DSP Dendrite Segment Processor

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

GPU Graphic Processor Unit

HDL Hardware Description Language

HH Hodgkin-Huxley

HPC High Performance Computing

IP Intellectual Property

ISE Integrated Software Environment

K Potassium

Na Sodium

PSP Postsynaptic Potential

SCP Soma Conductance Processor

SP Soma Processor

SPE Similar Processable Entities

SVP Soma Voltage Processor

VLSI Very Large-Scale Integration

1

Chapter 1

Introduction

Computational Neuroscience reflects the possibility of generating theories of brain

function in term of the information-processing properties of structures that make up

nervous systems [1]. As a rapidly expanding interdisciplinary science, it combines

various fields such as neuroscience and cognitive science with electrical engineering,

computer science and mathematics. As instructional and research tools, biologically

realistic neural simulators play an important role in computational neuroscience. Due to

difficulties and dangers in doing experiments on living systems, simulators provide a

testbed for neuro-theorists to examine various hypotheses to explain fundamentals of

neural network behavior.

1.1 Motivation

Large scale neural simulators are critical instruments to test hypotheses of brain

structure, dynamics and functions. Through simulation, scientists can have better

understanding how the brain structure leads to cognition. Massive numbers of neurons in

neural systems and neuron dynamics makes the realistic biological neural modeling and

simulations a very challenging area. Available processing power limits the scale of

simulations to much smaller than human brain size. Due to these complexities and

limitations, parallel computation is the only practical approach for large scale

simulations. Efforts toward designing neural simulators fall into three main categories:

Analog (VLSI) design, software approaches and digital reconfigurable circuit. VLSI

2

implementation of Analog models to mimicking neural behavior [2][3][4] can provide the

fastest simulators. Since analog circuits are not reconfigurable they cannot be used as

general purpose simulators as research tools to examine wide range of hypotheses.

Secondly, it would be very difficult, if not impossible, to simulate network of

biophysically detailed neurons with complex dendritic trees with the VLSI approach.

Currently, all general purpose neural simulators are software based. Software packages

such as NEURON [5] and GENESIS [6] have been widely used in many laboratories

around the worlds for rapid modeling of realistic neurons. NEURON and GENESIS are

the two major simulators utilized by researchers to model neural activities. They allow

biologically detailed neural modeling and support parallelization for large scale

simulations. GENESIS can be used to simulate neural systems ranging from complex

models of single neurons to simulations of large networks made up of more abstract

neuronal components. Parallel GENESIS or PGENESIS [7] can run simulation of large

networks on multiple processors or run many simulations concurrently. For parallel

processing, a neural system is divided into group of neurons and each group is allocated

to a single processor. NEURON is designed around the notion of continuous cable

"sections" which are connected together to form any kind of branched cable and which

are endowed with properties varying continuously with position along the section [8].

NEURON supports parallel processing by dividing a network of cells into two sub-

networks at any point within a cell and running each section on separate hosts [9].

Although both simulators can distribute the processing load over thousands of processors

using clustering protocols such as MPI [10] and PVM [11], human brain simulation (with

100 billion neurons and 100 trillion interconnections) cannot be handled at the time. To

improve software solutions, various techniques are used to increase the simulation scale.

Multi-rate simulation [12] improves simulation scale by dividing a dynamic system into a

slow and fast sub-system. The processing power is divided unevenly among the sub-

systems in favor of more demanding ones. But in addition to concerns on accuracy of this

approach [13], a huge gap between the available processing power and realistic neural

simulation requirements remained to be filled.

3

Major attempts to increase the scale of simulations are focused on higher number of

processing units and more powerful processors. The Blue Brain project [14], founded in

2005, aimed at creating a synthetic brain using Blue Gene supercomputers [15]. At the

first phase of the project, NEURON simulator was used to simulate rat neocortical

column. The initial phase was successfully completed with simulation of 10,000 neurons

with 30 million synapses on Blue Gene/L supercomputer with 8000 processors [16]. At

the latest effort of IBM performed the first near real time cortical simulation of the brain

that exceeded the scale of cat cortex [17]. This simulation was performed on IBM Dawn

BlueGene/P supercomputer with 147,456 processors and 144 terabytes of main memory.

The simulation contained 1 billion spiking neurons and 10 trillion individual learning

synapses. To perform this simulation the IBM team built a cortical simulator called C2

[18] that incorporates a number of innovations in computation, memory, and

communication as well as sophisticated biological details from neurophysiology and

neuroanatomy. With all of these efforts the simulator ran for 500 seconds to simulate 5

seconds of brain activity [17].

GPUs (Graphic Processor Units) and FPGAs (Field Programmable Gate Arrays) have

the potential to significantly improve simulation processing speed. GPUs are specialized

microprocessors that accelerate floating point operations and large matrices

manipulations for 2D and 3D graphic rendering. FPGAs are integrated circuits that are re-

configurable after manufacturing. The FPGA configuration is generally specified using a

hardware description language (HDL) such as Verilog or VHDL.

FPGAs are ideal substitutes for high speed processors when high processing power is

required [19]. Configurable Computing [20] provides the performance of application

specific hardware along with the flexibility and low cost of software implementations.

Performance analysis [21] shows that FPGAs can accelerate High-Performance

Computing (HPC) applications by one or more orders of magnitude over traditional

microprocessors, thus they can be used to accelerate scientific applications [22] if utilized

properly.

Reconfigurable computers will be ideal platform for developing new generation of

biologically detailed large scale general purpose neural simulators. They can be

4

categorized in two classes. Hybrid architectures are based on one standard

microprocessor with one or more FPGAs. Fully FPGA based architectures are a relatively

new class of reconfigurable computes which is based on only FPGAs. One of these two

architectures can be used, depending on how effectively simulation algorithms are

implemented on FPGAs [23]. Thus far, most efforts on neural simulations using FPGAs

have been limited to the behavioral level [24][25] or application specific simulators [26].

This research is aimed at providing hardware friendly architecture to use as the base

structure of very fast neural simulators. A proper method should address flexibility,

scalability and parallel processing. A flexible design will be able to process network of

cells with simple or complex structures. Scalability can be achieved by expanding the

simulator over multiple FPGAs without significant changes in the design core.

1.2 Objectives

Neuronal cells couple complex structure with dynamic behavior. Various models have

been proposed in the past to explain neurons behavior and brain function [27]. The

Hodgkin-Huxley model [28] and Resonate-and-Fire model [29] describe cells

excitabilities. Cable theory [30] and compartmental modeling [31] provide a

mathematical model for the complex structure of dendrites. Cell interconnections such as

synapse and postsynaptic potential are described in [32]. Based on these models,

biologically realistic neural networks can be simulated using parallel processing

techniques.

The main goal of this thesis is to improve the simulation time of biologically realistic

neural network models. To achieve this goal, this thesis:

• Studies a new perspective of neural model and simulation process for a flexible

and scalable parallel architecture suitable for hardware implementation;

• Develops a parallel architecture on reconfigurable hardware based platforms; and

• Performs MATLAB modeling and simulations for a feasibility study as well as

for detailed implementation and performance analysis.

5

For the purpose of this research, a classic Hodgkin-Huxley model for cell excitability

and passive compartments for dendritic tree modeling with any degree of complexity are

adopted. Simulation of large number of individual neurons without synaptic connections

is considered.

1.3 Thesis Outline

Chapter 2 provides background on the Hodgkin-Huxley model and compartmental

modeling, with a primary focus on action potential. Chapter 3 introduces the concept of

Similar Processable Entities which is the foundation of the proposed method. Also in

Chapter 3, the main building blocks of the resultant parallel architecture are discussed.

Chapter 4 explains the requirements for each functional block of the architecture. Chapter

5 provides the detailed design of each main module and shows how FPGA resources and

IP (Intellectual Property) cores can be utilized to develop a scalable design. Chapter 6 is

dedicated to reviewing the synthesis results of a prototype simulator and performance

analysis. In Chapter 7 conclusions and future works are provided.

6

Chapter 2

Background

The nervous system is a network of excitable cells - called neurons - that coordinate the

actions in an animal. Electrical and chemical signal interaction among neurons underlies

the neural systems activities. This chapter provides a brief review of neuron structure

with focus on action potential generation, cell modeling and current solutions for general

purpose simulators.

2.1 Neural Systems

A neuron as shown in Figure 2.1(a) is an excitable cell that can generate

electrochemical signals called action potentials. The results of action potentials in neural

Figure 2.1 a) Biological Neuron b) Action Potential [33]

Sodium equilibrium

potential (+55mV)

Potassium

equilibrium

potential

Soma Axon

Dendrite

7

system are various tasks such as heartbeat or body movement. A neuron cell as depicted

in Figure 2.1(a) has three main components. The dendrite is a branching structure which

is responsible for collecting action potentials from other neurons and transferring them to

the cell body or soma. The soma is the processing unit of the neuron. Based on the

signals from the dendritic tree, the soma triggers an action potential. And, at the final

stage, there is the axon. Terminal branches on the axon form synapses with other neurons

which cause the generation of postsynaptic potential (PSP).

Neural activities are mainly based on ionic channels embedded in the membrane of

cells from dendrite to soma. Synaptically activated ionic channels create postsynaptic

potential upon being triggered by action potentials. Voltage activated ion channels in

dendritic trees shape PSPs through the path to the cell body. Finally ion channel in somas

are responsible for creating action potentials. Cells with heterogeneous types of ion

channels show more complex behavior and are more difficult to model and simulate. The

next section provides additional background on biological neuron models, in particular

the action potential generation in the soma.

2.2 Action Potential

Cell excitability is based on properties of ionic conductance. Mutual interaction

between the soma voltage and various ionic currents in soma underlies action potential

generation. For the first time in 1952, Hodgkin and Huxley [28] found the Sodium and

Potassium ionic conductance roles in generating action potentials for assuring the rapid

and regular conduction of the neural impulse to muscles of the squid’s mantle. In more

complex cells, additional varieties of ionic channels, the difference in densities, variation

in voltage thresholds and time constants for activation and inactivation of the channels’

conductance produce wide variation of firing patterns such as “beaters” or regular

“bursters”.

8

2.2.1 The Hodgkin-Huxley Model

In the Hodgkin-Huxley (HH) model, the changes in membrane permeability to Sodium

and Potassium ions are the basis of triggering of the action potential. A cell's membrane

separates solutions of different ionic concentrations, with a much higher concentration of

Potassium inside than outside, and the opposite for Sodium. As shown in Figure 2.1(b), at

the rest potential, inactive state of a neuron, the membrane is semi-permeable to only

Potassium, thus the membrane voltage is close to the Potassium equilibrium potential

(about -75mV). During neural activity, the membrane shows more permeability to

Sodium, and the Sodium conductance contribution to the ionic current overrides the

Potassium current and causes the membrane voltage to tend towards the Sodium

equilibrium potential.

2.2.2 The Mathematical Models

The Potassium or Sodium conductance of the membrane can be considered as the result

of large number of ion channels embedded in the membrane. Figure 2.2 is a hypothetical

representation of a membrane segment with embedded ionic channels. Each individual

ion channel can be thought of a few numbers of gates such that each gate can be either in

a permissive or non-permissive mode. Ions can pass through the gates that are in

permissive states. In Hodgkin-Huxley model, Potassium channels contain four n-type

gates, and Sodium channels contain three m-type and one h-type gates. Various types

have different probabilities of being in the permissive state for the same membrane

Potassium

channels

Sodium

channels

Figure 2.2 Membrane segment with ionic channels

membrane

9

Sodium

Potassium

n-type gates m-type h-type

Figure 2.3 Embedded gates in K and Na channels

voltages. Figure 2.3 demonstrates K and Na channels with the embedded gates. The

probability of each gate to be in a permissive mode is a function of the membrane

potential difference from the resting potential which is called the command voltage, or ��.
Assume that n, m and h are respectively the probability of n-, m- and h- type gates to be

in the permissive mode. 	
���� and 	������ are maximum conductances of Potassium and

Sodium channels when all gates are open (normalization constants), then the channel

conductances are [28]:

�
 � 	
���� �� (2.1)

�� � 	������ ��� (2.2)

The probabilities n, m and h are functions of the membrane voltage. In steady state,

when the membrane stays at a voltage level for a long time such that all gates have time

to change their states properly, the gate probabilities are defined as follow [28]:

 �� � ������
������������� (2.3)

where �� represents the probability of any of n-, m- or h- gate types and �� and �� are

rate constants defined as follow [28]:

������ � 0.01 �10 # ���
exp '10 # ��10 (# 1 , ������ � 0.125 exp �# ��80�

10

�-���� � ../ �012���
345'6789�:; (2/ , �-���� � 4 exp '# ��

/=((2.4)

�>���� � 0.07exp @# ��20A , �>���� �
1

exp '30 # ��10 (C 1

With an instantaneous change of membrane voltage from VC1 to VC2, the changes in

gate probabilities for all types are expressed by [28]:

 ��D� � ��E��6F # '��E��6F # ��E��:F(G2H I�J
 (2.5)

where:

K� � 1
��E��6F C �����6�

The action potential is the result of temporary increase in the membrane voltage which

is initiated by the Sodium conductance and ended by the Potassium channel. Figure 2.4

shows the MATLAB simulation results based on Eqs. (2.1) to (2.5). The figure

demonstrates how the Sodium and Potassium conductance change when a 40mv

command voltage is applied to a typical soma. The Sodium channel reaction to the

command voltage is on the scale of a millisecond and it causes significant increase in

membrane voltage. The Sodium conductance quickly returns to the resting level and

leaves the membrane voltage in the range of Sodium equilibrium voltage. The Potassium

conductance change is slower and gradually increases the negative ionic current. The

negative current in turn returns the membrane voltage back to the resting level.

Na

K

Figure 2.4 K and Na channel changes due to application of command voltage

11

2.3 Biological Neuron Modeling

Modeling is an important step in a simulation process. A neuron can be modeled as a

finite number of interconnected anatomical compartments. Figure 2.5 shows a cerebellar

cell [6] with its compartmental model equivalent. Two types of compartments are used to

model branches and branching points in the dendritic tree and one type is used to model

the soma. Since neuron activities are dependent on electrical properties such as

conductance changes or ionic currents, each compartment is replaced with an equivalent

electrical circuit. During the simulation process, the equivalent circuit is solved for

interested parameters using analytical or numerical methods.

The level of simulation accuracy depends on the size of compartments. In detailed

compartment modeling the division must be small enough such that each compartment is

at approximately the same electrical potential. Due to the limitation on processing power,

it is not always possible to use detailed compartmental modeling to simulate neural

systems with large number of cells. Simplified neuron models consisting of only one or a

few compartments are therefore used. This simplification at the expense of reduced

simulation accuracy may cause discrepancies between simulation results and

experimentally observed behaviors.

 Figure 2.5 a) cerebellar Purkinje cell [3] b) compartmental model [3]

12

2.3.1 Compartment Equivalent Circuit

Figure 2.6 demonstrates the equivalent circuit of a generic compartment connected to

other compartments. �- is the membrane voltage, L- and M- are membrane capacitance

and resistance repectively. These passive properties are part of any compartment. A

typical compartment may have many types of ionic conductance or none. Each type of

ionic conductance in a compartment is represented by a variable conductance. Although

the current source NO�P is not part of a compartment, it is considered in the model to

stimulate the cell for test purposes, such as triggering action potentials in soma.

The membrane voltage �-P can be calculated using a differential equation which

expresses the fact that the rate of change of the potential across membrane capacitance

L-P is proportional to the net current flowing into the compartment to charge the

capacitance. According to the Ohm’s law the current due to each of the sources shown in

Figure 2.6 are in the right hand side of the following equation:

 L-P Q�RSQH � 'TRS 2�RS (
URS C ∑ EWXP # �-PF�XPX C

 E�-P�/ # �-PF�YP C E�-P2/ # �-PF�YP2/ C NO�PP
 (2.6)

where ∑X represents the result of various ionic currents passing through the cell

membrane. In passive compartments, there is no ionic channel, thus ∑X is zero. To

simulate a neuron or a neural network, a system of differential equations in the form of

Eq. (2.6) for all compartments must be created and solved simultaneously.

M-P

W-P

L-P �XP

WX

NO�PP

�YP �-P �-P�/ �-P2/
�YP2/

Figure 2.6 Equivalent circuit of a generic compartment

13

Chapter 3

Modeling of Biological Neurons

This chapter introduces a new architecture which can be used as the basis of general

purpose hardware based simulators for biological neural systems. Due to the complex

structure of neurons and the large number of the cells precise simulation of biological

neural systems require extensive processing power. Parallel processing is the only

available approach for large scale simulation. Intrinsic difference between software and

hardware platforms’ capabilities in supporting applications enforces different

methodologies in developing and implementing the same concepts. Software

environments are sequential in nature. Codes of a program in the context of a process are

executed in sequence on a single CPU core, while building blocks of a hardware system

work in parallel. Implementation of complicated algorithms is easier in software than

hardware. Communication between software processes may degrade the overall

performance of multi-process system because of data transfer through various layers of

kernel or device drivers while communication between hardware units is normally faster.

For an efficient design, the tradeoff between flexibility and performance of the target

platform must be properly considered.

14

3.1 Similar Processable Entities

Similar Processable Entities (SPE) are used to break down a large model to smaller

groups of entities suitable for parallel processing on hardware platforms such as FPGAs.

In SPE, a model is divided to groups in such a way that same set of operations can be

applied to the entities of each group. Referring to Figure 3.1 with membrane voltages as

state variables, three groups of SPEs are recognizable on the compartmental model of a

neuron:

• Dendritic compartments

• Branching points of dendritic tree segments (or “Common Nodes” (CN))

• Cell body or soma

3.1.1 Dendritic Tree Compartments

For the purpose of this thesis and to verify the SPE based approach for neural system

simulation, a passive compartmental model as explained in Section 2.3.1 is used to model

the dendritic tree. In a passive compartment, there is no ionic conductance element.

Common Nodes

Dendritic Compartments

Soma

Figure 3.1 Similar processable entities in compartmental modeling

15

Postsynaptic potential is only attenuated through a resistive path to the soma. Figure 3.2

shows the equivalent circuit diagram of a passive compartment. To reduce the design

complexity, the injection current sources are considered only in dendritic compartments.

The membrane voltage �-P in Figure 3.2 can be characterized by the ordinary

differential equation:

 L-P Q�RSQH � EW-P #�-PF �-P C E�-P�/ # �-PF �YP C E�-P2/ # �-PF �YP2/ C NO�PP
 (3.1)

Due to a large number of compartments in a realistic system, numerical methods are a

preferable approach to solving Eq. (3.1). There are various algorithms, such as Forward

Euler method [34], Exponential Euler and Crank-Nicholson Methods [35], to solve

ordinary differential equations. Forward Euler method provides a hardware friendly

implementation. With ∆t as the simulation time step, application of Forward Euler to the

ordinary differential Eq. (3.1) gives the following equation as the membrane voltage at

step (k+1) of simulation:

L-P �-
P�Z C 1� # �-P�Z� ∆D � 'W-P #�-P�Z�(�-P C '�-P�/�Z� # �-P�Z�(�YP C

E�-P2/�Z� # �-P�Z�F �YP2/ C NO�PP �Z� (3.2)

Simplification of Eq. (3.2) gives:

�-O �Z C 1� � �Q��-O2/�Z� C �-O�/�Z�� C �Q�-O �Z� C LQ C \Q , (3.3)

�-P

W-P

L-P
NO�PP

�YP �-P �-P�/ �-P2/
�YP2/

Figure 3.2 Electrical circuit of passive compartment

16

where:

 �Q � ∆]
^R_ �YO �Q � `1 # ∆H

^R E2�YO C �-O Fa

 LQ � ∆H
^R_ �-O W-O \Q � ∆H

^R_ NO�P�Z�

3.1.2 Common Nodes

Common nodes denote the membrane voltage at the branching points of dendritic trees.

Not only is the equivalent circuit of a common node compartment different from ordinary

compartments of dendrite branches, as will be described in different chapter, but the

processing requirement of common nodes are also different as well. Thus a different SPE

is considered for common nodes. In the proposed model for a branching point, a parent

segment has two child branches. Figure 3.3 represents the equivalent circuit of a common

node. Bifurcation of parent segments simplifies the equivalent circuit (Figure 3.3) and

consequently the processing complexity and hardware resources. The processing unit

must permanently allocate resources such as memory to store child segments’ parameters

(e.g. �-/ or �Y/), therefore permanent allocation of resources for more than two child

segments is not efficient use of available resource. Branching points with more child

segments can be modeled by considering one-compartment child segments at the first

level and dividing them to more child segments. The common node voltage �-. in Figure

W-.

�-.

�-/

�-.
�Y. �-2/

L-.

�Y0 �-0

Parent

Segment

Child

Segment 2

Child

Segment 1

common node

�Y/

Figure 3.3 Equivalent circuit of a common node

17

3.3 can be explained by the ordinary differential equation:

L-. Q�R;
QH � �W-.#�-.��-. C ��-2/ # �-.��Y. C ��-/ # �-.��Y/ C ��-0 # �-.��Y0 (3.4)

Applying the Forward Euler method to Eq. (3.4) gives the following recursive

equation:

 �-.�Z C 1� � ���-2/�Z� C ���-.�Z� C L��-/�Z� C \��-0�Z� C W� , (3.5)

where:

 �� � ∆H
^R; . �Y. �� � `1 # ∆H

^R; ��Y. C �Y2/ C �-/ C �-0 �a

 L� � ∆H
^R; �Y/ \� � ∆H

^R; . �Y0 W� � ∆H
^R; �-. W-.

3.1.3 Soma

To simulate neuron excitability, the equivalent circuit proposed by Hodgkin and

Huxley for the cell body is used. As explained in section 2.2, Sodium and Potassium

conductance are the source of action potential triggering. Figure 3.4 shows the equivalent

circuit of a soma connected to a dendrite compartment. For simplicity, it is assumed that

the dendritic tree is connected to the soma through one root dendritic compartment. Soma

with more than one dendritic tree will be considered in future work. The soma voltage �-.

in Figure 3.4 can be expressed by the ordinary differential equation:

L-. b�-
.

bD � �W-.#�-.�. �-. C �W
. # �-.�. �
. C

EW�
. # �-.F. ��

. C ��-/ # �-.�. �Y. (3.6)

Applying Forward Euler method to Eq. (3.6) gives the following recursive equation for

soma voltage:

�-.�Z C 1� � @�c C �c '��
. �Z� C �
.�Z�(A �-.�Z� C Lc ��

. �Z� C

\c�
.�Z� C Wc�-/�Z� C dc , (3.7)

18

where �-. is soma voltage, �-/ is the connected dendritic compartment voltage and:

 �c � 1 # ∆H
^R; ��-. C �Y/� �c � # ∆H

^R; Lc � ∆H.Te;
^R;

 \c � ∆H.Tf;
^R; Wc � ∆H.g:

^R; dc � ∆H.gR; .TR;
^R;

The main difference between Eq. (3.7) and the recursive Eq. (3.5) or Eq. (3.3) is the

dependency of ionic conductance on the membrane voltage changes. Thus at each

simulation step, �
 and ��must be updated after calculation of the new voltage for the

soma. Assume ��Z�, m�Z� and h�Z� are the gates probabilities and �
.�Z� and ��
. �Z� are

the Potassium and Sodium conductance at the ZH> simulation step. With change in soma

voltage, the ionic conductances must be updated using Eqs. (2.1) through (2.5).

According to Eq. (2.5):

 ��Z C 1� � ������Z C 1�� # E������Z C 1�� # ���Z��F. G2∆H I�J
, (3.8)

With substitution of �� and K� using Eq. (2.3) and Eq. (2.5) respectively, ��Z� can be

specified recursively as:

��Z C 1� � ��Z C 1� C ��Z C 1�. ��Z�, (3.9)

where:

��Z� � ������X��
������X���������X�� '1 # Gh�E#∆D. �������Z�� C ������Z���F((3.10)

��Z� � Gh�E#∆D. �������Z�� C ������Z���F

�-.

W-.

L-.

�-. �-/
�Y/

�
.

W
.

��
.

W�

Figure 3.4 Hodgkin and Huxley model of Soma

19

In Eq. (3.9), ��Z� and ��Z� must be calculated based on the new membrane voltage

prior to updating the probabilities of n-, m- and h- type gates. As the last step, the new

values of n, m and h probabilities are used to calculate the ionic conductances using Eqs.

(2.1) and (2.2).

3.2 MATLAB Simulations

In order to verify the proposed approach, MATLAB scripts are developed to execute

Eqs. (3.3), (3.5), (3.7) and (3.9) for membrane voltage and Eqs. (3.9), (2.1) and (2.2) to

update Sodium and Potassium conductances. The MATLAB simulation results are

compared with GENESIS output as the reference. Figure 3.5 shows MATLAB and

GENESIS simulation results of the soma voltage for a cell with ten passive dendritic

compartments. Identical parameters and models were used in both simulations. The

parameters used to model the cell are listed in Table 3.1. The specific values and the

physical dimensions in Table 3.1 are used to calculate the electrical components of the

compartment equivalent circuit shown in Figures 3.2 and 3.4 using the following

equations [6]:

Figure 3.5 GENESIS simulation (left) and MATLAB simulation (right)

20

M- � Mi/�k. b. l�
 L- � Li. k. b. l

 MY � 4. l. Mm/�kb0� (3.11)

 �
 � 	
����. k. b. l
 �� � 	������. k. b. l

where d and l are the compartment diameter (i.e. dend_d) and length (i.e. dend_l).

�
 and �� are the maximum conductance of the Potassium and Sodium channels,

respectively. 0.002µA injection current is applied to the last compartment starting from

20mS with 40mS duration. 80ms of soma voltage is simulated in 10µs time steps.

Comparison of various parameters in Figure 3.5, such as the number of action potentials,

their voltage levels, and time of triggering, shows similarity between MATLAB and

GENESIS simulations.

Table 3. 1 Neuronal cell parameters

Property Symbol Value Unit

Specific Capacitance Li 1
μd o�0J

Specific Resistance Mi 5 Zp. o�0

Specific Axial Resistance Mm 0.025 Zp. o�

Soma Diameter soma_d 3.00E-03 cm

Soma Length soma_l 3.00E-03 cm

Dendrite Diameter dend_d 2.00E-04 cm

Dendrite Length dend_l 1.00E-02 cm

Sodium normalization

constant
	������ 120 �q o�0J

Potasium normalization

constant
	
���� 36 �q o�0J

Rest potential WrscH -70 mV

Potassium equilibrium

potential
W
 -80 mV

Sodium equilibrium

potential
W� 55 mV

equilibrium potential W- 11.7 mV

21

Figure 3.6 represents a more complex model for simulation. Some of the dendrite

segments in Figure 3.6 are numbered for reference purpose. Although variable numbers

of compartments in each dendrite segment can be used, three compartments are

considered at each segment to simplify creation of the model parameters. Table 3.1 lists

the parameters of the soma and direct-connected dendrite segment. To simplify the

creation of simulation model, child segments diameters are set to half of that of parent

segment. Although the model in Figure 3.6 is regular and unrealistic still it can be used

for verification purpose and studying some properties of neurons such as propagation

delay of electrochemical signals through the dendritic tree.

.

Figure 3.7 shows the soma voltage for the period of 80ms without injection current for

stimulation. Initially, an action potential is created and then the voltage reaches the rest

level. At 30ms of time, a 0.002µA injection current is applied to the last compartment of

the dendrite segment #31 for 30ms duration. Figures 3.8 and 3.9 show the membrane

voltage at the compartment where current was injected and soma, respectively.

31

30

16

17

1

2

3

8

4

soma

Inj. current

Figure 3.6 Cell model with multi-branch dendrite tree

22

According to Eq. (3.11), membrane resistance M- is inversely proportional to membrane

diameter. When a parent dendrite segment is divided into child segments, the membrane

resistance increases as a result of the smaller diameters of those segments. Due to the

increased membrane resistance in the stimulated compartment, injection of the current

causes large voltage displacement as shown in Figure 3.8. This voltage displacement,

through the dendritic tree, stimulates the soma to trigger action potentials. Figure 3.9

shows two action potentials generated periodically. Based on the time difference between

the voltage displacement in Figure 3.8 and the first action potential in Figure 3.9 (≈4ms)

and the distance between the two points (15compartmets × 0.01cm), the propagation

speed of electrochemical signal through the dendritic tree of the model can be obtained

approximately as 350m/s.

Consistency between MATLAB simulation results and GENESIS simulations verifies

that the proposed SPE based approach can be used as the starting point to develop a new

general-purpose neural systems simulator.

Figure 3.7 Soma voltage without stimulation

23

Figure 3.9 Soma voltage with current injected into segment #31

Figure 3.8 Membrane voltage of the injected compartment

24

Chapter 4

Architecture for Parallel Neural Simulation

A proper design architecture for neural simulation must address the common

requirements of large scale simulations, such as parallel processing and scalability. This

chapter demonstrates how the concept of Similar Processable Entities (SPE) groups

discussed in Chapter 3 is used to design a parallel architecture for large scale neural

simulations. The architecture can be implemented efficiently on hardware. Highly

specialized processors with a specific addressing scheme allow scaling up in a flexible

manner.

It should be note that throughout this chapter and the rest of the thesis, the term node

refers to the membrane voltage of a compartment or the compartment itself. Thus a node

can represent a soma voltage, a voltage at a branching point, or a dendritic compartment

voltage. A common node is the branching point voltage. Also dendrite segment refers to a

sequence of dendritic compartments without a common node in the middle.

4.1 Simulator Building Blocks

The dendrite compartment, common node and soma voltage described by Eqs. (3.3),

(3.5) and (3.7), respectively, are implemented individually with customized processors.

In addition to specific functions, each processor is able to communicate with the

remainder of the system. Figure 4.1 shows part of a large model of a neuron with a

25

branching dendrite. To compute the voltage at common node 1 (branching point group),

the voltages at node 2, 4 and 5 (dendritic compartments group) must be available to the

common node processor. On the other hand, the processor which is responsible for

processing node 2 (middle nodes) must have access to the voltage at node 1 (a common

node). This means the architecture should includes a minimum of three types of

processors and a communication media to function together for simulations. Each

processor type is a custom designed hardware unit to process a specific SPE group (e.g.

common nodes) effectively. The communication media is a scalable switching unit to

transfer the data between various processors.

For large simulations, the architecture must be flexible enough to support multiple

instantiations of similar processors to work in parallel to increase total processing power.

Figure 4.2 illustrates the proposed simulator architecture. Two levels of parallelization

are supported by this simulator. At the first level, a model is divided into SPE groups

such as common nodes or soma voltages. At the second level, every large SPE group is

divided to smaller sub-groups. An improved parallelization can be achieved by using a

dedicated processor for each sub-group.

In Figure 4.2, dendrite segment processors (DSPs) are responsible for processing

membrane voltage of dendritic compartments. Common node processors (CNPs) group

compute the branching point voltages. Finally the soma processors (SPs) groups simulate

the soma voltage or action potential generation. The communication media provides

inter-processor communication facilities. The rest of this section describes the structure

of each processor type.

1

23

4

5

Figure 4.1 Branching point structure of a dendrite tree in compartmental modeling

26

4.2 Dendrite Segment Processor (DSP)

The DSP is responsible for updating dendrite compartments voltages based on Eq. (3.3)

as follows:

t-O �Z C 1� � �Q . �t-O2/�Z� C t-O�/�Z�� C �Q. t-O �Z� C LQ C \Q

According to Eq. (3.3) the voltage calculation of node i at each simulation step only

depends on the voltages of the three adjacent nodes i-1, i, i+1. Figure 4.3 shows the

conceptual top level block diagram of the DSP. Dendritic compartment voltages are

stored in a FIFO queue such that the adjacent node voltages can be read from FIFO

sequentially. When the voltage of node i is in register �., its adjacent nodes’ voltages

will be at �/ and �2/.

Dendrite

Segment

Processor

Common Node

Processor

Soma

Processor

Communication Media

Figure 4.2 Top level block diagram of simulator

27

 Referring to Figure 4.3, DSP includes four floating point (FP) adders and two

multipliers. The arrangement of the FP operators is to maximize parallelization in processing

individual nodes voltages. This type of parallelization, meaningful only on the hardware

level, allows the DSP core (in Figure 4.3) to process one compartment per clock.

In addition, the arrangement of FP adders and multipliers minimizes the pipeline clock

depth of the implemented processor. The major source of the processor pipe line delay is

the delay of FP operators. With maximum number of FP operators in parallel the

processor delay is minimized, which in turn reducing the number of clock cycles of each

iteration. On the last stage, the new voltage at the output of the Inj. adder is written back

to the FIFO for the next iteration.

Using a FIFO to store the node voltages makes the design flexible in handling different

number of dendritic segments and different number of nodes per segment. To access

FIFO contents there is no need to address memory locations. Thus, a FIFO simplifies the

design of memory management aspects of DSP in order to process neurons with dendrites

of different complexities. According to Figure 4.3, three adjacent nodes are processed to

update the voltage of the middle node only. Updating the end nodes of each segment

FIFO uv uw u2v

xy

zy

{y

Inj. Current Term

C

|y

C }

}

C

C

Inj. Adder

Figure 4.3 DSP block diagram

28

required special considerations. Based on the end node status of segments, there are three

possible conditions:

• End node is a common node or Soma:

Node value is updated by the CNP or SP. DSP simply uses the node value

without further processing.

• Start of the dendrite segment is an open node:

DSP is responsible for updating the end node voltage. When this voltage is in

�. register (in Figure 4.3), uses the same node value for a fake previous node

by duplicating the contents of �. to �2/ register. Figure 4.4 shows the

resulting electrical circuit. Since both sides of �Y. are always at the same

potential level, the fake node appears as a short circuit to the main node.

• End of the dendrite segment is :

Similar to the case when the start of the dendrite segment is an open node,

DSP updates the next node voltage by duplicating the node voltage from �.

to �/.

4.3 Common Node Processor (CNP)

The CNP module is responsible for updating the voltages at the branching points of the

�-.
W-.

L-.
NO�P.

�Y. �-. �-. �-2/
�Y2/

Figure 4.4 Equivalent circuit of the first node with appended fake node

29

dendritic tree based on Eq. (3.5). Figure 4.5 shows the top level block diagram of CNP.

Upon receipt of voltages of all adjacent nodes of a branching point, CNP starts to

calculate the common node voltage. In Figure 4.5, �. represents the common node

voltage, �2/ is the adjacent node on the parent segment, and �/ and �0 are the next

nodes on the child segments (refer to Figure 3.3 for more details). Since W� term is

constant for each common node, it can be added to the node voltage prior to the next

iteration to decrease input-to-output delay time.

4.4 Soma Processor (SP)

Neural activities in generating action potentials are based on specific behaviors of ionic

channels embedded in the membrane. Ionic channels conductances are functions of

membrane potential. The soma processor computes the new voltage of the node at each

iteration and updates the ionic conductances accordingly. These requirements indicate

that the structure of the soma processor differs from that of other modules described

Common Node Voltage

��

uw u2v uv u~

} } } }

C

C

C

C

�� L� \�

W�

Figure 4.5 Common Node Processor block diagram

30

above, and the design of the processor module is more complex task.

In our research, the Hodgkin-Huxley model [28] is used for cell excitability. As

described in Section 2.2, this model is based on two types of ionic channel, Potassium

and Sodium. Also it is assumed that the root compartment of a dendritic tree can be

connected to the soma.

Implementation of the soma processor is based on two main Eqs. (3.7) and (3.9).

Assume that at the ZH> iteration all parameters of the model are known. Upon receiving

the connected dendrite compartment voltage, the SP uses Eq. (3.7) to process the new

voltage for the soma. The change in soma voltage in turn causes ionic conductance

changes. Thus the SP must update ion related parameters before starting the next

iteration. Accordingly, the soma processor can be viewed as if is composed of two

different processors:

• Soma Voltage Processor (SVP): To update the soma voltage.

• Soma Conductance Processor (SCP): To update the soma parameters.

Figure 4.6 represents the soma processor block diagram with SVP and SCP as sub-

Soma

Voltage

Processor

(SVP)

Dual

Port

Memories

Soma

Conductance

Processor

(SCP)

Dendrite Voltage

Soma Voltage

Figure 4.6 Soma Processor (SP) block diagram

31

processor modules. When SVP receives the new dendrite voltage, it reads the respective

cell parameters from the dual port memories and calculates the new soma voltage. The

new voltage is sent back to the system as well as to the SCP. The conductance processor

uses the new voltage to update the cell parameters in dual port memories. With the

proposed architecture, the two tasks to update soma voltage and ionic conductances are

conducted in parallel. While SVP computes the voltage for new soma, SCP updates the

previous soma parameters. Thus SCP does not add overhead to the simulation time

despite considerably high number of mathematical operations.

4.4.1 Soma Voltage Processor (SVP)

In the proposed simulation method for soma, SVP implements Eq. (3.7). Upon receipt

of an associated dendrite voltage, SVP starts to update the soma voltage. SVP structure as

depicted in Figure 4.7 is similar to that in the CNP module. From as implementation

point of view there is one difference. Unlike Eq. (3.5) for CNP, Eq. (3.7) can be more

easily expanded or factored into various expressions. The fully expanded form of Eq.

(3.6) is:

�-.�Z C 1� � �c�-.�Z� C �c��
. �Z��-.�Z� C �c�
.�Z� �-.�Z� C Lc ��

. �Z� C

\c�
.�Z� C Wc�-/�Z� C dc (4.1)

Factorizing based on the �c coefficient results in:

�-.�Z C 1� � �c�-.�Z� C �c���
. �Z� C �
.�Z�� �-.�Z� C Lc ��

. �Z� C

\c�
.�Z� C Wc�-/�Z� C dc (4.2)

With prior knowledge on the target platform (Xilinx FPGAs) and floating point

arithmetic IP cores delay specifications, Eq. (3.7) provides the better results compared to

Eqs. (4.1) and (4.2). Eq. (3.7) can be implemented using six floating point adders, five

multipliers and one delay line. Eq. (4.1) requires eight multipliers, six adders and two

delay lines. Six adders and multipliers are required to implement Eq. (4.2).

32

�-.�� C 1�

Wc
�-/��� �-.��� �
.��� ��. ���

}

\c

dc �c

Lc

�c

}

}

}

}

C

C

C

C

C

C

Figure 4.7 Soma Voltage Processor (SVP)

3
2

33

4.4.2 Soma Conductance Processor (SCP)

As described by the Hodgkin-Huxley model, ionic conductance varies with membrane

voltage. The SCP module is responsible for updating the Sodium and Potassium

conductances shown in equivalent circuit of Figure 3.4. According to the proposed

architecture of SCP, n-, m- and h-type gate probabilities are calculated according to Eq.

(3.9), and ionic conductances are calculated according to Eqs. (2.1) and (2.2). A notable

difference between SCP with other processors is the non-linear dependence of

��Z� and ��Z� coefficients on the membrane voltage. This dependence makes the SCP

design more challenging.

 Unlike the situation for software based platforms, implementation of Eq. (3.9) on

hardware (e.g. FPGAs) is not straightforward due to the exponential terms. Also because

of longer input-output delay for floating point division operator IP cores, approaches

based on FP adders or multipliers are preferable. Instead of direct implementation of Eq.

(3.9), an approach based on lookup tables (LUTs) is proposed to implement ��Z� and

��Z� coefficients for all three gate types.

Since ��Z� and ��Z� are functions of the command voltage (difference between

membrane potential and the rest potential), the applicable range of the command voltage

must be determined first. As described in Sec. 2.2.2 (referring to Figure 2.4), an increase

in membrane voltage (for example, due to postsynaptic potential received from the

dendritic tree) causes an abrupt rise in Sodium conductance in a short time interval. Also,

according to the equivalent circuit of Figure 3.4, an increase in Sodium conductance

makes the W�the dominant parameter in determining the node voltage (≈125mV).

Eventually, the Sodium conductance returns to the resting condition, and an increase in

Potassium conductance makes the node voltage close to WX (≈ -10mV). Thus the expected

range for the command voltage for LUTs should be in the range of -10mV to +125mV.

As a more quantitative approach in determining of the voltage range, MATLAB scripts

were developed to calculate �����, ����� and ����� based on Eq. (2.3). The results

34

are represented in Figures 4.8 and 4.9. When membrane voltage is below -50mV or

above 150mV, it is clear that the probabilities of all gates in permissive mode are

approximately 0 and 1 respectively. Thus, according to Eqs. (2.1) and (2.2), increasing or

decreasing the command voltage beyond those limits does not have noticeable effect on

the Sodium and Potassium conductance. Voltage clamp mode and current clamp mode

simulations can show what these range limit means in terms of membrane voltage

changes. Referring to Figure 3.4, in voltage clamp mode the voltage of dendritic

compartment �-/ is kept at high voltage of 400mV for 30ms and the soma voltage is

recorded. Figure 4.10 shows that even with high voltage application to the closest

compartment to the soma, the membrane voltage at highest level are less than 180mV

(dominated by W�). On the other hand, when the voltage is removed the lowest level

slightly goes below 0mV. For the current clamp test, 0.002µA injection current is applied

to the dendrite compartment and the results are recorded. Figure 4.11 shows that the soma

voltage ranges from -5mV to 120mV.

Based on the analytical and simulation results, a 256mV voltage range from -64mV to

192mV is considered to store the values of ��Z� and ��Z� coefficients in LUT. To

determine the required voltage resolution or simply the size of the LUTs, the Sodium and

Potassium conductance quantization errors are evaluated. According to Eqs. (2.1) and

(2.2) since ionic conductances are result of multiplication of �� and ��. � in

normalization constant, these equations are used to analyze the quantization error effect.

Considering the fact that target platform is hardware, it is preferred to implement LUTs

using memories. For effective use of addressing of memory space, the size of LUTs is

preferably a power of 2. To show the quantization error on ��Z� and ��Z� coefficients,

the command voltage range is divided into 32 coarse steps of 8mV. MATLAB scripts are

then used to calculate ��Z� and ��Z� at quantized levels of command voltage. Figure

4.12 shows ��Z� and ��Z� terms for n-, m- and h- type gates for a simulation time step of

∆t = 0.01ms.

35

Figure 4.8 n-type gate probability changes vs. command voltage

Figure 4.9 m- and h- type gates probabilities vs. command voltage

36

Figure 4.10 Simulation result of soma voltage for voltage clamp experiment

Figure 4.11 Simulation result of soma voltage for current clamp experiment

37

It is clear that the most quantization errors for ��, �� and �- occur at the high end of

the voltage range and for �-, �> and �> occur at the low end. As an extreme condition,

the error in ��and �� } � is calculated for maximum membrane voltage displacement

and maximum quantization error at the high end of voltage range.

For calculating the maximum error of n-type gate, the command voltage is set at

−64mV for a long time such that n-gates have reached to their stable condition. Thus the

initial value of n is 0.00162 as shown in Figure 4.8. With quick change of command

voltage to 192mV (the upper bound of quantization) according to Eq. (3.9), the new value

of n is:

��0 � ���32� C ���32� } 0.00162 � 0.01885

With one level of quantization error on �� and �� in the worst case:

��/ � ���31� C ���31� } 0.00162 � 0.01806

Thus the error in calculation of Potassium conductance will be proportional to:

�srr�r � ��0� # ��/� � 1.9743G # 008

or

�srr�r% � �srr�r��0� } 100 � 15.65%

Table 4.1 shows the percentage of error in calculation of Sodium and Potassium

conductances at each simulation step (0.01ms) for different steps sizes. In our research

2048 levels of quantization (0.125mV steps) are used to create ��Z� and ��Z� LUTs.

As described above, soma conductance processor (SCP) is the implementation of Eq.

(2.1) and (2.2) in which n, m and h probability terms are computed using Eq, (3.9). Since

the conceptual block diagram and detailed block diagram of SCP are very similar, more

explanation on SCP is provided in Chapter 5.

38

Figure 4. 12 Quantization error of x�, z�, x�, z�, x� and z� coefficients

3
8

39

Table 4. 1 Maximum Error in Calculation of ionic conductances in each simulation run

introduced by quantizing A(k) and B(k) coefficients at the high end of

command voltage range

#Divisions Step Size(mV) K error% Na error%

32 8 15.65 13.34

64 4 7.91 6.64

128 2 3.98 3.31

256 1 1.99 1.65

512 0.5 0.99 0.83

1024 0.25 0.49 0.41

2048 0.125 0.25 0.21

40

Chapter 5

Detailed Design

It is a common practice to select a target platform prior to the detailed design phase.

Although the proposed architecture can be realized on various types of platforms, Field

Programmable Gate Arrays (FPGA) are selected to accelerate the simulation execution.

High configurability of modern FPGAs in many cases make them a valuable candidate

when high processing power along with configurability is required. In this chapter it is

demonstrated how FPGA resources and IP cores can be used efficiently to implement a

highly scalable and flexible neural simulator. The whole design is based on three

different types of processor modules and one communication media. This chapter

provides more details on realizing the proposed simulator building blocks. An

explanation of the processing model and addressing scheme - cross cutting elements

related to the whole system - is provided first, followed by details of each module type.

5.1 Processing Model

Although the three processor types in Figure 4.2 work in parallel to process the three

different groups of model components, their activities have to be synchronized with each

other. For example, at each simulation step, a common node processor (CNP) must

receive the node voltage of the connected compartments (Figure 4.1) from the DSP

modules in order to calculate the new voltage of the common node. A dendrite segment

processor (DSP) needs to receive the end node voltages of a dendritic segment from

CNPs to update the segment nodes.

41

To determine which processor takes action first, the natural path of signal manipulation

in a biological neuron is followed. In a neuron, inputs are collected by the dendritic tree

and then transferred to the cell body for further processing and action potential

generation. Similarly, in our processing model, first the DSP modules start to update the

node voltages of the dendritic segments. Since the end nodes connected to other segments

cannot be processed locally, each DSP sends requests to associated CNPs or SPs for

updated values of the end node voltages. This processing model resembles the

client/server architecture in a software environment, where the DSPs are similar to

multiple client applications sending requests for services (updating node voltages) to the

CNPs or SPs server applications.

Since SP and CNP both update only one node per request, their pipelined architecture

enables them to accept one request per clock. This indicates that the communications

media can treat them as memory mapped devices and write the request without

sophisticated handshaking. It should be noted that other ways of organizing the

processors activities are also possible, e.g. SP as client and DSP as server. The proposed

sequence of operations provides more flexibility in both design and simulation process. If

DSPs are implemented as server applications they have to processes variable numbers of

nodes per incoming request. At the implementation level, this would mean that more

complex memory management in DSPs and sophisticated handshaking with the client

processors (e.g. CNP) are required.

5.2 Addressing Scheme

Partitioning a large model into smaller groups and distributing their evaluations over a

cluster of processors will require communications among the processors to fulfill their

tasks. There are the following activities on each processor type:

• To calculate the common node voltage, the CNP needs to receive the

connected nodes voltages.

• To calculate the soma voltage, the SP needs to receive the connected node

voltage.

42

• To calculate the voltages of penultimate nodes of a segment, DSP needs to

receive the end node (common node) voltages.

The data transferred among the processors are common node voltages (including soma

voltage) or the dendritic node voltages on the node connected directly to a common node.

If by some mechanism, the common nodes (and somas) are uniquely identified in a

model for inter-processor communication, sending the node voltages along with their

associated identification information is adequate.

To develop an addressing scheme to uniquely indentify common nodes within the

model, the concept of host and network address in the Internet Protocol [36] is adopted.

The Internet Protocol allows networks of small or large number of computers connected

together on Internet. Similarly, in our proposed addressing scheme every common node

or soma is uniquely identified within a model by a 32-bit number which is called

Common Node Id (CNI). Also every common node belongs to a domain which is

identified by a Common Node Domain (CND). The CND is a 32-bit number with its right

most significant bits set to 0. A CNI belongs to CND iff:

 CND equal_ to (CND bit_wise_and CNI) (5.1)

The CND concept provides a flexible manner of the load distribution over multiple

processors to meet both the model requirements and hardware resources limitations. For

example, if the model consists of cells with a very simple dendritic structure (low number

of bifurcations), then multiple cells can be placed in a domain for processing by a single

CNP. On the other hand, if a cell includes a complex dendritic tree with several

thousands of common nodes, the cell can be partitioned to several domains for processing

in parallel by multiple CNPs.

To simplify the address allocation and also the routing algorithm in the communication

media, a specific address range for somas is dedicated, starting from (00000000)H. The

last address is determined by the number of somas in the model. For example for a model

with 7000 cells, the address range from (00000000)H to (00001FFF)H will be used to

address the soma nodes and the rest of address space from (00002000)H to

(FFFFFFFF)H can be partitioned into several domains to cover the common nodes.

43

5.3 Dendrite Segment Processor (DSP)

5.3.1 Segment Definition Packet

To process a dendrite segment efficiently, a data structure is created to fully specify

required segment information. Assume the simulation time step ∆t is constant over the

simulation period. According to Eq. (3.3), for a cell with known parameters, �Q, �Q and

LQ are constants. The constants can be computed prior to simulations, for example by a

software application and stored as part of model information. To keep the storage size

minimal in this implementation, the compartments in each segment are considered to

have same properties, e.g., specific resistance, diameter and length. Thus one set

of �Q, �Q and LQ parameters can be used to describe all compartments of a segment. To

process dendrite segments, further information is required about the condition of the end

nodes. The proposed data structure is called Segment Definition Packet (SDP) and is

depicted in Figure 5.1. It contains all information about a dendritic segment to be used by

the DSP.

A SDP packet consists of a number of Header rows and Data rows. Each row is a 66-

bit word. The first header word mainly contains the information about the first node of

the segment. Figure 5.2 shows various fields of the first row. The first 32 bits represents

the CNI field which is uniquely identified as the start of the segment within the model.

INDEX field is the address of local memory where the voltage of the first node is stored.

The content of this memory location is updated by CNP or SP. The next field (bits 40 -

47) specifies the number of the nodes in the segment. Bits 48-64 (marked as "x") are not

used. Bits 64-65 show if the end node is a common node or not. All possible conditions

for an end node are listed in Table 5.1.

Similar to the first header field, the second header contains the information regarding

the last node of the segment. This header row, however, does not have the “Number of

nodes” field. The third to fifth rows contain �Q, �Q and LQ coefficients for the segments

in IEEE-754 64-bit floating-point format, and bits 64-65 of these three rows are spare

bits.

44

Start Node Data

End Node Data

xy

zy

{y

1
st
 Node Voltage/Status

2
nd

 Node Voltage/ Status

▪

▪

Last Node Voltage/Status

Figure 5.1 Segment Definition Packet (SDP) structure

Table 5. 1 The Status field describes the end node connectivity to the other

segments

State Description

00 End of the segment is not connected

01
End of the segment is connected and the segment is a

parent segment

10
End of the segment is connected and segment is one

of the child segments
11

Header Fields

Data Fields

Status x Num of Nodes CNI INDEX
65 64 47 40 39 32 31 0

Figure 5. 2 First row of the SDP header

45

The SDP data rows contain the segment nodes’ voltage, starting from the first node. As

above, node voltage is represented in double precision floating point format (64-bit). The

65
th

 bit represents the injection current status. If it is set to 1, it means that the

compartment has an injection current source and the \Q term in Eq. (3.3) is considered in

computation of the node voltage.

5.3.2 Detailed Design

Figure 5.3 shows the main modules of the DSP. It is composed of two types of

processors. The header part and the data part of the segment definitions packets are

processed separately by the two types of the processors. To start the simulation, the

Header and Data FIFOs are loaded with the header and data parts of the SDPs. Every

simulation cycle starts with applying the cycle start command to the Simulation Cycle

Control module which in turn activates the header processor.

The header processor reads the header of the first segment and sets its output interface

with the individual information retrieved from the SDP header such as �Q, �Q and LQ

coefficients or CNIs. The header processor writes a 66-bit word read from the Header

FIFO back to the FIFO for the next run. Since the write operation prevents the FIFO

from being empty, to detect the end of the segments, the Simulation Cycle Control

module counts the number of write operations and compares it with the initial data size of

the FIFO.

Activation of the segment start signal causes the node processor to start processing of

the first segment. It reads nodes voltage from the Data FIFO and uses the header

information from its input interface to update the node voltages. Updated voltages are

written back to the Data FIFO for the next run. After completion of processing of all

nodes, the node processor sends the segment end signal to the header process to start a

new segment. The End of Cycle Detector module uses the same mechanism as the

Simulation Cycle Control module to detect processing of all nodes and then it issues the

cycle end signal to declare the end of current simulation step.

46

SDP

Header

 FIFO

SDP

Data

 FIFO

Header

Processor

Node

Processor

Simulation

 Cycle

 Control

End of

 Cycle

 Detector

Output

Buffer

(FIFO)

First Node Data

Last Node Data

�Q
�Q
LQ

Cycle

Start

Segment Start

Node Count

Cycle

End

Enable

Request:

Common

Node Address

Response:

Common

Node Voltage

Segment End

Figure 5.3 Dendrite Segment Processor block diagram

4
6

47

The Output Buffer module, which is also a FIFO, provides the interface with the

communication media. After updating the middle nodes’ voltage, the DSP sends requests

for the updated voltage of the end nodes. To send the request, the DSP writes the address

of the common node (CNI) and the voltage of its adjacent node (section 5.2) to the output

buffer. By polling the status of this buffer, the communication media reads the existing

requests and routes them to the proper destinations.

The node processor, shown in Figure 5.4, is responsible for updating the dendritic

segments’ node voltages based on the functional descriptions of section 4.2. The node

processor is composed of four main modules, Common Node Voltage, Node Controller,

Node Voltage Processor and Injection Current Controller. The common node voltage

module is a dual port memory to store the voltages of the end nodes. The communication

media has direct write access to this memory and updates the memory contents with the

common node voltages received from the other processors. The Node Controller module

reads the node voltages from the SDP Data FIFO and organizes them properly, in

accordance to the direction provided in section 4.2. If the end nodes are connected, it uses

the voltage value from the common node voltage memory and then sends a request for the

updated value of the node voltage. For the open ends it creates a fake node to process the

end node locally. For the node to be processed locally, the node controller puts its

voltage and the voltages of its adjacent nodes at the outputs connected to the Voltage

Processor (�-2/, �-. and �-/) for further processing.

The Voltage Processor is the implementation of Figure 4.3 (excluding the FIFO and

the Inj. adder which is to apply the injection current term \Q). �Q, �Q and LQ

coefficients received from the header processor and the node voltages from the node

processor are used to determine the new voltage of the middle node.

In Eq. (3.3) and Figure 4.3, \Q is the injection current term which is only applicable

for dendritic compartment with injection current sources. Based on the status bit of each

node, the Injection Current Controller module decides whether or not to apply the \Q

term. For the nodes with the status bit set to 1, Injection Current Controller adds \Q and

48

for nodes with status bit set to 0, it adds 0 to the updated node voltage received from the

Node Voltage Processor.

Node

Controller

First Node

Data

Last Node

Data

�Q
�Q
LQ

Node Count

Common

Node

Voltage

Memory

Response:
Common node

voltage

Voltage

Processor

Node

Voltage

Request:
Common Node

Address Node

Status

Updated

node

voltage

�2/

�/

�.

Injection

Current

Controller

Figure 5.4 Node Processor block diagram

49

5.3.3 Common Node Processor (CNP)

In our proposed processing model, a CNP is a server process responsible for updating

the branching points’ voltage of the dendritic trees. The update process is based on Eq.

(3.5) and the conceptual design in Figure 4.3. To calculate the new voltage for a common

node, the CNP must receive the adjacent node voltages on three different dendritic

segments. During the distribution of the model elements among various processors, it is

possible to load the parameters of the three segments forming a common node on three

different DSPs. Thus the CNP must be capable of collecting the requests from DSPs in

any order and detecting the completion of data required to process each common node.

The three voltages in Eq. (3.5) are not available at the same time. They are sent from

various sources and in the worst case scenario the communications media delivers all

voltages in three consecutive clocks. In this situation the permanent allocation of floating

point operators to implement the conceptual design of Figure 4.3 does not result in

efficient usage of FPGA resources. For a minimal design which accomplishes the

maximum level of parallelization, the terms of Eq. (3.5) are divided into two groups.

Upon receiving a node voltage, corresponding terms in each group are processed. The

two groups and the conditions to process their elements are listed in Table 5.2.

Table 5. 2 Elements of the Eq. (3.5) that can be processed in parallel upon receiving an

adjacent node voltage

Adjacent node Symbol Node Status Group 1 Group 2

Parent Segment �-2/ 01 �� . t-2/ �� . t-.

Child Segment 1 �-/ 10 L� . t-/ W�

Child Segment 2 �-0 11 \� . t-0 0

50

M

U

X

1

��

L�

\�

Node

Status

×

Request: t-O

M

U

X

2

W�

��

Current t-.

×

0

+

Dual

Port

Memory

Dual

Port

Memory

+

+

Common

Node

Voltage

Monitoring
RESET

New t-.

Term 1 Term 2 Term 3

Response: t-.

CNI

Output

Buffer

(FIFO)

CNP

Monitor

CNP WR

CNP RD
CNP IDLE

Group 1

Group 2

Figure 5.5 Common Node Processor (CNP) block diagram

5
0

51

Figure 5.5 represents the block diagram of the CNP. When an adjacent node voltage is

received, its status is used to conduct the proper arithmetic operation. MUX1 and MUX2

select the proper coefficient for group 1 and group 2 according to Table 5.2. Thus

depending on the status of the received node, different result will be transferred to the

first Dual Port Memory according to the following expressions:

 �D�D�� �� 01 � �� . t-2/ C �� . t-.

 �D�D�� �� 10 � L� . t-/ C W�

 �D�D�� �� 11 � \� . t-0

The two dual port memories are configured to work as shift register for each specific

node. With the CNI as the address of both memories, every time a new term is calculated

for a CNI, the contents of the associated location in the memories chain shift from the

first memory to the second memory (Figure 5.5) and the first memory is updated with the

new term. The Monitoring module detects whether the three terms are ready. If the three

terms are ready, the Monitoring module sends them out for final processing and also

resets the addresses of both memories to 0 for the next run. The new common node

voltage is stored in a dual port memory for the next run of the simulation. The new

voltage is also written to the output FIFO to be read by the communication media at the

proper time.

The CNP Monitor module determines the idle status of the CNP module. As described

above, CNP module needs to receive three requests for each common node update. The

CNP Monitor module has a built-in counter which increments with each write operation

and decrements by three with each read operation. Any time the counter is zero the CNP

Monitor signals the idle status of the CNP. The importance of this signal is in declaring

the end of a simulation step.

52

5.3.4 Soma Processor (SP)

Referring to the conceptual design in section 4.4, the Soma Processor is the realization

of Eqs. (2.1), (2.2) and (3.7) based on two sub-processors, the soma voltage processor

(SVP) and the soma conductance processor (SCP). As shown in Figure 5.6 the soma

processor is composed of six main modules. In addition to SVP and SCP, the Soma

Processor also includes a � Conductance module, �Y Conductance module, SP Monitor

module and an Output Buffer.

In response to incoming requests from the communications media, the SVP uses the

received voltage t-/ , CNI data from the communications media as well as the current

values of Sodium and Potassium conductances from two dual port memories to update

the individual soma voltage t-. . SVP writes the new voltage to the output buffer and to

the SCP for further processing. The output buffer is a FIFO that allows the

communication media to read the new voltage at a proper time. The SCP uses the new

voltage to update the ionic conductance values.

The SP Monitor detects if the soma processor is busy or is in the idle state by counting

read/write operations. Unlike the CNP, SP sends out an updated soma voltage in response

to each incoming request (connected dendritic voltage), thus the SP Monitor counter

increments or decrements by one with each write or read operation. Any time the counter

is 0, the SP IDLE signal is activated. Since the SP has two sub-processors, it is idle only

when both processors are idle. Thus the SP Module counter counts write operations from

the communications media to the SVP (incoming requests) but decrements the counter

with the write operations from SCP to the dual port memories. Thus the IDLE is declared

when both SVP and SCP have completed their current tasks.

5.3.4.1 Soma Voltage Processor (SVP)

The SVP design is a direct implementation of Figure 4.7, with replacement of the

multiplier and adder operators with proper IP (Intellectual Property) cores, thus no further

block diagram is provided for this section. SVP simply uses the incoming CNI to retrieve

�c to dc coefficients from LUTs and then updates the soma voltage.

53

Soma

Voltage

Processor

(SVP)

Soma

Conductance

Processor

(SCP)

Na

Conductance

K

Conductance

Request: t-/

SP

Monitor

SVP WR

SCP WR
SP IDLE

L�N

Response: t-.
Output

Buffer

(FIFO)

 t-. L�N

�
.

��.

Figure 5.6 Soma Processor block diagram

5
3

54

5.3.4.2 Soma Conductance Processor (SCP)

The SCP module updates the Sodium and Potassium conductances of soma based on

Eqs. (2.1) and (2.2). Figure 5.7 represents the internal block diagram of the SCP. There

are dedicated sub-processors for each type of ionic conductances. Each processor is

designed to update the n-, m- and h- type gates probabilities when the membrane voltage

changes based on Eq. (3.9). As it is explained in section 4.4.2, ��Z� and ��Z�
coefficients in Eq. (3.9) are functions of the soma voltage. 2K LUTs are implemented for

these coefficients to cover the voltage range of -64mV to 192mV in 0.125mV steps.

The floating-to-fixed point module is a floating point arithmetic IP core to convert the

soma voltage t-. (a 64-bit double precision floating point number) to 11-bit wide fixed

point number t-,�.
, with 8-bit as the integer part and 3-bit as the fractional. Figures 5.8

and 5.9 show the internal block diagrams of � and �Y conductance processors. The two

processors have a similar structure. The first stage of the conductance processor is the

implementation of Eq. (3.9). Quantized voltage t-,�.
 is applied to the address input of

��Z� and ��Z� lookup tables. The current value of the n-, m- or h-gates probabilities are

read from the respective dual port memories. Then � C � } � expression is calculated

K

Conductance

Processor

Na

Conductance

Processor

Floating

To

Fixed point

t-.

�
.

��
.

t-,�.

Figure 5.7 Internal block diagram of the Soma Conductance Processor

55

using the floating point adder and multiplier operators. The updated values are written

back to the memories. At the next stage, �� term for Potassium conductance processor or

�� } � for Sodium processor is calculated. The final stage multiplies the result by the

normalization constants 	
���� or 	������. The new ionic conductances are written to the dual

port memories for the next simulation run.

��

�X�� C 1�

����

t-,�. �� C 1�

}

C
���

Dual Port

 Memory

	X���

��� C 1�

�� LUT �� LUT

}

}

}

Figure 5.8 Potassium conductance processor block diagram

56

��� C 1�. ��� C 1� ��. �

�0�� C 1�

��� C 1�

���� }

�- LUT �- LUT

��� C 1�

����

�> LUT

	������

���� C 1�

C

�> LUT

t-,�. �� C 1�

���
Dual Port

Memory }

}

}

}

}

C

���
Dual Port

Memory

Figure 5.9 Sodium conductance processor block diagram

5
6

57

5.3.5 Communication Media

The purpose of the communication media in our architecture for biological neural

simulators is the transfer of requests/responses between the DSPs as client applications

and the common node/soma processors as server applications. To have a scalable

simulator which can be expanded flexibly to meet the simulation requirements, a basic

switching module, Common Node Switch (CNS), is developed. Several CNS modules can

be connected together in a hierarchical structure to interconnect higher numbers of

processors for larger simulations. Figure 5.10 shows the block diagram of the CNS

module. In a neural system, the number of cells is less than the number of the branching

points, and the number of common nodes is less than the count of dendritic segments.

Thus for proper simulations, a higher number of DSP modules are required than is the

case for CNP or SP modules. The CNS is designed to allow several DSP processors but

one optional CNP and SP modules.

All processors are equipped with FIFO-based output buffers. The processors write to

these FIFOs when a request or response is required. The CNS CORE scans all buffers

CNS

CORE

Output

Buffer

(FIFO)
To/From

DSP 3

To/From

DSP 1

To/From

DSP 3

To/From

SP

To/From

CNP

From higher

Level CNP

To higher

Level CNP

Figure 5.10 Common Node Switch (CNS) block diagram

58

and reads their contents and transfers them to the proper destination. If the destination of

request is not one of the directly connected CNP or SP modules, it is directed to the

higher level CNS module by writing to the CNS output buffer. Using this routing

procedure, several CNS modules can be arranged in a hierarchal structure for larger

simulation.

It is not necessary to attach a SP and CNP module to each CNS. For example to

simulate a neural system with a low number of cells and very complex dendritic trees,

several CNS modules at the lowest of the CNS hierarchal can be used for DSP modules

connections and the CNP and SP modules can be used at the highest levels of the CNS

tree. Figure 5.11 shows a typical two-level simulator. The CNP and SP modules are

added to the CNS at the point where the model requirements are optimal. CNP 1 provides

services for DSP 1 to 3, CNP 2 covers DSP 4 to DSP 9 and SP 1 process requests from

all DSPs.

CNS 1

CNS 4

DSP

1

DSP

2

DSP

3

CNS 2

DSP

4

DSP

5

DSP

6

CNS 3

DSP

7

DSP

8

DSP

9

CNP

1

CNP

2

SP

1

Figure 5.11 Typical two-level simulator

59

Chapter 6

Results

To verify the proposed architecture, the four basic modules - i.e. DSP, CNP, SP and

CNS - were implemented in Verilog HDL and Schematic Capture. The modules were

integrated to make a base simulator unit. The whole implementation and design were

done in the Xilinx ISE WEB Pack 9.2 environment [37]. In this chapter a brief

explanation of Xilinx FPGAs is provided followed by the description of the base unit and

synthesis and comparisons results.

6.1 Xilinx FPGAs

Xilinx is one of the leaders in FPGA market. Xilinx provides several FPGA lines of

products such as Spartan and Virtex families. Each family is aimed to address specific

application requirements. Spartan series FPGAs are designed for lowest total system cost

and ideal for low-cost, high-volume applications. Virtex series FPGAs encompass higher

density of logic cells and are better option for high-performance applications.

Xilinx Virtex-5 FPGAs, the world first 65nm FPGA, is used as the target FPGA in this

research work. Virtex5 family consists of five different platforms: LX, LXT, SXT, TXT

and FXT. By incorporating various combinations of hardware resources, these five

different platforms are tailored for various design requirements. For example LXT and

SXT series support RocketIO GTP transceivers for high speed serial connectivity up to

60

3.75 Gbps while in TXT and FXT series GTX transceivers provides higher speed (up to

6.5Gbps). FXT series provides one or two Power PC IP cores for Hardware/Software co-

design approaches.

In Xilinx Virtex-5, Configuration Logic Blocks (CLBs) are the main logic resource for

implementation of sequential and combinational circuits. The number of CLBs in each

FPGA device determines the largest design size. In simple words an FPGA design is a

process of configuring CLBs and connecting them through a switch matrix. CLB

structure and their connections to the switch matrix are different among different series of

FPGA families and sub-families. Figure 6.1 shows the CLB structure for Virtex-5 family.

Each CLB has two slices with no connection to each other. Slice is the elementary

programmable logic block in Xilinx FPGAs. Each slice has an independent carry chain

(CIN and COUT). Virtex-5 has column based architecture, i.e. the slices within CLBs are

connected in a columnar form as shown in Figure 6.2.

Xilinx Virtex-5 FPGA user guide provides insights to various aspects of Virtex-5

FPGAs. Each slice contains four look-up tables, four storage elements, multiplexers and

carry logic (not shown). These elements are used by all slices to implement logic,

arithmetic and ROM functions. In Virtex-5 there are two types of slices, SLICEL and

SLICEM. SLICEM is similar to SLICEL with additional functionality for storing data

using distributed RAMs and shifting data using 32-bit registers.

Figure 6.1 Virtex-5 Configuration Logical Block

61

6.2 Synthesis

Figure 6.3 shows the top level block diagram of the system is developed to verify the

proposed architecture. The base unit is composed of three DSP modules and one CNP, SP

End of

Cycle

Cycle Start

CNS

DSP

1

DSP

2

DSP

3
SP

CNP

&

Packet

Distributor

CNP
SP IDLE

Test

Bench DSPs’ FIFOs

Figure 6.3 Block diagram of the implemented simulator and the test bench

Figure 6.2 Virtex-5 Columnar Architecture

62

and CNS modules. A testbench developed in Verilog HDL to test the simulator. At the

initialization process, the testbench reads all Segment Definition Packets (SDPs) from a

text file and sends them to the Packet Distributor module. This module writes the Header

and Data portion of the SDPs to the respective FIFOs in the DSP modules. A simulation

cycle starts by issuing the Cycle Start command from the testbench. All processor

modules start processing the module element based on the sequence of events explained

in the previous chapter. When all DSPs process their segments for one turn and the CNP

and SP modules enter the IDLE state, the End of Cycle signal is activated and the

testbench starts the next iteration. During each simulation step, the testbench monitors the

updated voltages written to the DSP FIFOs and saves them in a file for verification

purposes.

With the following implementation details, the whole design, excluding the test bench

in Figure 6.3, is synthesized for Xilinx XC5VLX330T-1 as the target device [38]. The

synthesize results are listed in Tables 6.1 and 6.2.

• Using the Xilinx IEEE-754 64-bit floating-point multiplier and adder cores

• 8K words depth for Header and Node FIFOs of DSPs that make each DSP

capable of processing 1638 segments of four compartments length on average.

• 2048 common nodes processing capacity for a Common Node Processor

• 4096 somas processing capacity for the Soma Processor

Table 6. 1 Device Utilization Summary

Resource Used Available Utilization

Slice

registers
86,316 207,360 41%

Slice LUTs 78,797 207,360 38%

Block

RAM/FIFO
245 324 75%

63

Table 6. 2 Timing Statistics

 Minimum Period 8.925ns

Maximum Frequency 112.048Mhz

The implemented DSP is capable of processing each segment in (10+number of nodes

in segment) clock cycles. Assuming that for a DSP, S is the number of segments and �O is

the number of Nodes in segment i, then the number of clock cycles to perform one

simulation run for each DSP is:

����l�D��� D��G �\q�� � ∑ �10 C �O��O�/ ; ol�oZ o�olG (6.1)

Eq. (6.1) shows an important point related to the performance of the proposed

simulator. The clock cycles to complete the segment processing task are equal to the

maximum result of Eq. (6.1) for all DSPs. Thus to minimize the processing time of

dendritic tree segments for a model, the Segment Definition Packets must be distributed

such that Eq (6.1) gives almost similar results for all DSPs. For example, anytime a long

segment is loaded to a DSP, several short segments should be loaded to other DSPs to

match their processing times. This indicates the requirement for model processing

software to pre-process a given model prior to simulation.

 The CNS is implemented as a fast switch which is capable of transferring one

request/response per clock between its interfaces using positive and negative clock edges.

 To update a common node voltage, the CNP must receive the voltages of all three

adjacent nodes. CNP’s processing speed on average is one common node update per three

clock cycles. CNP is designed to update common nodes voltages in a clock cycle if it

receives the 3
rd

 voltages of several common nodes consecutively. The Common Node

Processor has 50-clock depth i.e. it declares the IDLE state 50 clock cycles after

receiving the last request.

The Soma Processor has a high speed pipelined architecture which can process one

soma (one action potential) per clock. The clock depth for the SVP and SCP sub-

processors are 55-clock and 56-clock respectively. Thus in each simulation cycle, the

64

Soma Processor can enter the IDLE state 55+56=111 clock cycles after receiving the last

request for updating a soma voltage.

For verification purpose a set of MATLAB scripts was developed to read neuronal

model specifications and to create the LUTs and initial memory contents for the

processors modules (i.e. CNP). The memory contents were saved in separate files in an

appropriate format to create respective memory IP cores. Using the base unit several

models such as cells with a single branch and multi-branch dendrites are simulated and

results are compared with the MATLAB results (Section 3.2).

6.3 Performance Analysis

To have an approximate estimation of the proposed simulator performance, two

different types of applications for the proposed simulator are considered. The first

application contains small numbers of cells with relatively complex dendritic trees. In the

second application, the SP is used to accelerate the simulation of action potentials in a

model with large numbers of cells.

The first model consists of 600 cells with two level of bifurcation in dendritic tree

which gives 7 segments per cell. Each DSP will be responsible for processing the

segments of 200 cells i.e. 200x7=1400 segments. If on average each segment consists of

10 nodes and Segment Definition Packets are distributed evenly among the DSPs, then

according to Eq. (6.1) the number of clocks to process the segments is:

1400 } �10 C 10� � 28000 ol�oZ�

The SP needs 600 clocks to simulate action potentials of 600 cells. With two level of

bifurcation, there are three common nodes per cell. In this case, the CNP will complete

each run at:

600�oGll�� } 3�o����� ��bG �G� oGll� } 3�ol�oZ �G� ��bG� � 5400 ol�oZ�

 Since all processors work in parallel, the DSPs determine the simulation time. In the

worst case, where the last segment of the DSP is connected to the soma, 110 clock cycles

65

will be added to the DSP’s time i.e. 28111 clock cycles in total. With the clock frequency

in Table 6.2, the time to complete one simulation cycle is:

8.925�qGo } 28111 � 251μqGo

Thus the processing time to simulate 10ms of model activity in 10µs simulation time

steps (1000 cycles) is 251ms.

In the second application action potentials for 4000 cells are simulated. The

implemented Soma Processor will process all cells in 4111 clock cycle. Thus the total

time for one simulation cycle is:

8.925�qGo } 4111 � 36.7μqGo

and the processing time for 10ms simulation will be 36.7ms.

To estimate the bottom line of the workload for software based approaches, the

numbers of floating point arithmetic operations conducted at each cycle are counted for

both models. The results are listed in Tables 6.3 and 6.4. For consistency, the lookup

tables and Eq. (3.9) are considered to update gate probabilities which are faster than

direct use of Eq. (3.8). A C program was developed, listed in Figure 6.4, to execute only

the same number of floating point operations in small loop. The program was compiled

and executed on a 2.8GHz Intel Core Duo CPU computer with the Fedora Core 12

operating system. The Linux time command used to measure the execution time for both

models. The best measured times were 540ms and 137ms which demonstrated 215% and

373% increase in execution time respectively, when compared with an FPGA approach.

Considering the fact the test C program doesn’t include the function calls and actual

control logics to perform the complete task, the real execution time would be much

longer. Although the target FPGA is grade 1 and the slowest in its group, the speed

comparison results are very promising, and suggest that the proposed hardware based

architecture demonstrates potential to radically improve biological neural simulation

process.

66

Table 6. 3 Number of required floating point operations in each cycle to simulate

600 cells with relatively complex dendritic trees

Updated item # items (×) per node Total (×) (+) per node Total (+)

Middle nodes 4200×8 2 67200 4 134400

Common Nodes 1800 4 7200 4 7200

Soma voltage 600 5 3000 6 3600

Gates probabilities 1800 1 1800 1 1800

K conductance 600 4 2400 0 0

Na conductance 600 4 2400 0 0

Total 84000 147000

Table 6. 4 Number of required floating point operations to simulate action

potential for 4000 somas

Updated item # items (×) per node Total (×) (+) per node Total (+)

Gates probabilities 12000 1 12000 1 12000

K conductance 4000 4 16000 0 0

Na conductance 4000 4 16000 0 0

Total 44000 12000

67

unsigned long int model1=(84000+147000)/4*1000;

unsigned long int model2=(44000+12000)/4*1000;

double a[1000]={0.0000034141234};

double b[1000]={0.0000051345143};

double c[1000]={0.0000054141142};

double d[1000]={0.0000053421144};

unsigned char index=0;

unsigned long int i;

main()

{

 for(i=0;i<model1;i++)

 {

 a[index+1]=c[index]+d[index];

 b[index+1]=c[index]*a[index];

 c[index+1]=a[index]+b[index];

 d[index+1]=a[index]*c[index];

 index++;

 }

}

Figure 6.4 The C program to evaluate software based implementation of the proposed

simulator

68

Chapter 7

Conclusions

An innovative parallel architecture is presented for accelerating simulations of

biological neural networks consisting of a large number of neural cells. The whole project

was intended to improve the limitations of current solutions when applied to biologically

realistic simulation of large models. It attempted to do that by using hardware based

platforms (FPGAs) rather than software base environments. The architecture

encompasses several features that collectively improve the simulator capabilities:

• Modularity: The whole design is based on three types of processing modules and

one switching unit, which can be integrated in a flexible manner to build a neural

simulator.

• Data Process Localization: The proposed addressing scheme allows using of the

server processors (e.g. CNP or SP) as close as possible to the client processors

(DSP), which increases the processing speed and reduces the communication load

through the whole system.

• Customized Processors: By introducing the Similar Processable Entities (SPE)

concept, highly customized processors can be developed to process the model in

high speed.

69

• Pipelined data processing: All processors process their input data through a

pipelined architecture, which along with the non-blocking nature of

request/response chain between client and server processors significantly

improves the processing speed. For example, the Soma Processor is capable of

achieving a one cell per clock processing.

• Three level of Parallelization: Highest levels of parallelization have been

achieved by partitioning the model to the SPE group, dividing each group to

smaller sub-groups to be processed by dedicated processors, and, finally, parallel

processing of individual elements of the groups at the highest possible level.

• Low Storage Size: By pre-processing the model and consolidating all model

parameters in constants, e.g. Eq (3.3), significant reduction in the required storage

size and the number of floating point operations were achieved.

• Adaptability: The processing units (DSP or SP) can be arranged so as to meet both

the available hardware resources and the model requirements.

The proposed architecture implementation results show such significant improvements

over software implementations that it suggests that the hardware architecture based on

reconfigurable computers concept is a valuable approach for proceed with biological

neural simulations. Of course, further investigation is required to establish effectiveness

of the proposed solution at large scale for a complete general purpose neural system

simulator. In addition to factors such as speed improvement vs. system cost [39], some

other points to consider are the design life cycle and design flexibility. The design life

cycle on FPGA based platforms is usually longer than its equivalent design on software

environments. For example while the core design of Eqs. (3.3), (3.5) or (3.7) are very

quick tasks to program in MATLAB or C, considerable amount of efforts were spent to

arrive at an acceptable solution for FPGA implementation. For the similar reasons, it is

simple to implement and use various numerical methods as loadable libraries for

simulation in software, while in FPGA a separate group of customized processors must

be developed for each method, considering the fact that not all methods have

70

straightforward implementation in FPGA. Another point to consider is the ease of

monitoring of various model parameters during simulation. For example, monitoring the

changes in various ionic conductances or currents in addition to the node voltages are

simple tasks in software but in FPGA each additional parameter requires allocation of

dedicated data acquisition resources, or interested parameters must be recalculated by

complementary software.

Despite the above mentioned challenges, the majority of problems actually are one

time efforts and the design results can be presented in the form of configurable IP cores

as the building blocks of very fast large scale biologically realistic simulators. The future

lines of work can proceed in various area including:

• More complex soma models: Hodgkin-Huxley model explains the timing and

qualitative features of action potentials based on two voltage sensitive ionic

channels. There are wide varieties of ionic currents that cause more complex

firing patterns or features such as shunting.

• Postsynaptic Potentials (PSP): PSP initiates or inhibits the action potentials within

a cell through the changes in membrane potential of postsynaptic terminals of

synapses.

• Action potentials distribution (cell interconnections): In a real model, each

neuron can have more than 10,000 connections with other neurons.

• Inter-FPGA communications protocol to expand the model over very large

number of FPGAs.

• Complementary software application to create the model, calculate the simulation

parameters (i.e. LUTs), distribute them optimally among the FPGAs and interact

with them to collect and show the results on a real time basis.

71

References

[1] E.L. Schwartz, Computational Neuroscience, Cambridge, MA: The MIT Press,

1993.

[2] J. Schemmel, K. Meier, and E. Mueller, “A new VLSI model of neural

microcircuits including spike time dependent plasticity,” in Proceedings of IEEE

International Joint Conference on Neural Networks, Vol. 3, pp. 1711-1716, July

2004.

[3] J. Schemmel, K. Meier, and F. Schürmann, “A VLSI implementation of an analog

neural network suited for genetic algorithms,” in Proceedings of the International

Conference on Evolvable Systems (ICES 2001), Vol. 2210, pp. 50–61, 2001.

[4] P. Häfliger, M. Mahowald, and L.Watts, “A spike based learning neuron in analog

VLSI,” Advances in Neural Information Processing Systems,Vol. 9, pp. 692-698,

1996.

[5] M.L. Hines and N.T. Carnevale, “The NEURON simulation environment,” Neural

Computation, Vol. 9, No. 6, August 1997.

[6] J.M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural

Models with the GEneral NEural SImulation System, New York: Springer-Verlag,

1998.

[7] PGENESIS [Online]. Available: http://www.psc.edu/Packages/PGENESIS/.

[Accessed July 24, 2010].

[8] NEURON [Online]. Available: http://neuron.duke.edu/. [Accessed July 24, 2010].

[9] M.L. Hines and N.T. Carnevale, “Translating network models to parallel hardware

in NEURON,” Journal of Neuroscience Methods, Vol. 169, No. 2, pp. 425-455,

September 2007.

[10] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

Technical Report: UT-CS-94-230, University of Tennessee Knoxville, TN,

USA,1994.

[11] A. Geist, A. Beguelin, J. Dongarra, and W. Jiang, PVM: Parallel Virtual Machine:

A Users' Guide and Tutorial for Network Parallel Computing, The MIT Press,

November 1994.

[12] J.G. Pearce, R.E. Crosbie, J.J. Zenor, R. Bednar, D. Word, and N.G. Hingorani,

“Developments and applications of multi-rate simulation,” 11th International

Conference on Computer Modelling and Simulation, pp. 129-133, March 2009.

72

[13] R.M. Howe, “Accuracy and stability tradeoffs in multirate simulation,” in

Proceedings of SPIE conference on Advanced Methods for Simulation Speedup,

Vol. 4367, pp. 113-126, 2001.

[14] H. Markram, “The blue brain project,” Nature Reviews Neuroscience, Vol. 7, pp.

153-160, Feburary 2006.

[15] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R.

A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M.

Ohmacht, B. D. Steinmacher-Burow , T. Takken, and P. Vranas, “Overview of the

Blue Gene/L system architecture,” IBM Journal of Research and Development, Vol.

49, No. 2, pp. 195-212, March 2005.

[16] “Lab comes one step closer to building artificial human brain”, The Guardian,

December 2007.

[17] S. Adee, “IBM unveils a new brain simulator,” IEEE Spectrum, November 2009.

[Online] Available: http://spectrum.ieee.org/computing/hardware/ibm-unveils-a-

new-brain-simulator. [Accessed July 24, 2010].

[18] R. Ananthanarayanan and D. Modha, “Anatomy of a cortical simulator,”

International conferecne for High Performace Computing, Networking, Storage

and Analysis (SC’07), November 2007.

[19] R. Hartenstein and H. Grünbacher, Field-Programmable Logic and Applications:

The Roadmap to Reconfigurable Computing, Springer, Villach, Austria, 2000.

[20] J. Schewel, “Configurable computing: Technology and applications,” Proceedings

of SPIE, Vol. 3526, 1998.

[21] O.O. Storaasli, W. Yu, D. Strenski, and J. Maltby, “Performance evaluation of

biological applications that use FPGAs,” Cray User Group Meeting (CUG 2007),

(Seattle, Washington), May 7-10, 2007.

[22] V.V. Kindratenko, C.P. Steffen, and R.J. Brunner, “Accelerating scientific

applications with reconfigurable computing: Getting started,” Computing in Science

and Engineering, Vol. 9, No. 5, pp. 70-77, September 2007.

[23] K. Parnell and R. Bryner, “Comparing and Contrasting FPGA and Microprocessor

System Design and Development,” Xilinx White Paper, WP213, July 2004.

[24] J.A. Bailey, P.R. Wilson, A.D. Brown, J. Chad, “Behavioral simulation of

biological neuron systems using VHDL and VHDL-AMS,” IEEE International

Behavioral Modeling and Simulation Workshop, pp. 153-158, September 2007.

[25] S. Modi, P. R. Wilson, A. D. Brown, and J. E. Chad, “Behavioral simulation of

biological neuron systems in SystemC,” in Proceeding of 2004 IEEE International

73

Behavioural Modeling and Simulation Conference (BMAS), pp. 31-36, October

2004.

[26] B. Glackin, J. Harkin, T. M. McGinnity, L. P. Maguire, Wu Qingxiang , “Emulating

Spiking Neural Networks For Edge Detection On FPGA Hardware,” International

Conference on Field Programmable Logic and Applications, pp. 670-673,

September 2009.

[27] D Mishra, A Yadav, S Ray, and P K Kalra, “Exploring biological neuron models,”

The Magazine of IIT Kanpur, Feburary 2006.

[28] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current

and its application to conductance and excitation in nerve,” Journal of Physiology,

Vol. 117, No. 4, pp. 500-544, 1952.

[29] E.M. Izhikevich, “Resonate-and-fire neurons,” Neural Networks, Vol. 14, pp. 883-

894, April 2001.

[30] W. Rall, “Cable theory for dendritic neurons,” in C.Koch and I. Segev (eds),

Methods in Neuronal Modeling: From Synapses to Networks, MIT Press,

Cambridge MA, chapter 2, pp. 9–62, 1989.

[31] Keith Godfrey, Compartmental models and their application, Academic Press Inc.,

London, 1983.

[32] D.A. McCormick, “Membrane properties and neurotransmiter actions,” in Synaptic

Organization of the Brain, Oxford Scholarship Online Monographs, chapter 2, pp.

39–79, 2004.

[33] Action Potential, [Online] Available:

http://en.wikipedia.org/wiki/File:ActionPotential.png. [Accessed July 24, 2010].

[34] M.V. Mascagni, Numerical Methods for Neuronal Modeling, Cambridge, MA: MIT

Press, 1989.

[35] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley,

2003.

[36] Sun Microsystems Inc., System Administration Guide: IP Services, 2009.

[37] Xilinx, Inc., Xilinx ISE 9.2i Design Suite Software Manuals and Help, 2007.

[38] Xilinx, Inc., Xilinx Virtex-5 Family Overview, 2009

[39] J.P. Morrison, P.J. O'Dowd, and P.D. Healy, “An Investigation into applicability of

distributed FPGAs to high performance computing,” in High Performance

Computing: Paradigm and Infrastructure, p. 277-294, Wiley-Interscience, 2005.

