
NEW DYNAMIC SUBGRID-SCALE MODELLING APPROACHES

FOR LARGE EDDY SIMULATION AND RESOLVED STATISTICAL

GEOMETRY OF WALL-BOUNDED TURBULENT SHEAR FLOW

A Thesis Submitted to

the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

by

BingChen Wang

c© Copyright BingChen Wang, June 2004. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Post-

graduate degree from the University of Saskatchewan, I agree that the Libraries of

this University may make it freely available for inspection. I further agree that per-

mission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis

work or, in their absence, by the Head of the Department or the Dean of the College

in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without

my written permission. It is also understood that due recognition shall be given to

me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis

in whole or part should be addressed to:

Head of the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5A9

i



Abstract

This dissertation consists of two parts, i.e. dynamic approaches for subgrid-

scale (SGS) stress modelling for large eddy simulation and advanced assessment of

the resolved scale motions related to turbulence geometrical statistics and topologies.

The numerical simulations are based on turbulent Couette flow.

The first part of the dissertation presents four contributions to the develop-

ment of dynamic SGS models. The conventional integral type dynamic localization

SGS model is in the form of a Fredholm integral equation of the second kind. This

model is mathematically consistent, but demanding in computational cost. An effi-

cient solution scheme has been developed to solve the integral system for turbulence

with homogeneous dimensions. Current approaches to the dynamic two-parameter

mixed model (DMM2) are mathematically inconsistent. As a second contribution,

the DMM2 has been optimized and a modelling system of two integral equations has

been rigorously obtained. The third contribution relates to the development of a

novel dynamic localization procedure for the Smagorinsky model using the functional

variational method. A sufficient and necessary condition for localization is obtained

and a Picard’s integral equation for the model coefficient is deduced. Finally, a new

dynamic nonlinear SGS stress model (DNM) based on Speziale’s quadratic constitu-

tive relation [J. Fluid Mech., 178, p.459, 1987] is proposed. The DNM allows for a

nonlinear anisotropic representation of the SGS stress, and exhibits a significant local

stability and flexibility in self-calibration.

In the second part, the invariant properties of the resolved velocity gradient

tensor are studied using recently developed methodologies, i.e. turbulence geometri-

cal statistics and topology. The study is a posteriori based on the proposed DNM,

which is different than most of the current a priori approaches based on experimental

or DNS databases. The performance of the DNM is further validated in terms of

its capability of simulating advanced geometrical and topological features of resolved

scale motions. Phenomenological results include, e.g. the positively skewed resolved
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enstrophy generation, the alignment between the vorticity and vortex stretching vec-

tors, and the pear-shape joint probability function contour in the tensorial invariant

phase plane. The wall anisotropic effect on these results is also examined.
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(Re = 2600). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Averaged angle between the vorticity vector and eigenvectors. . . . . 147

7.3 Time-averaged PF of the angle between the vorticity vector and the

eigenvectors of filtered strain rate tensor (Re = 2600). . . . . . . . . . 148

7.4 Time-averaged PF of the angle between the vorticity vector and eigen-

vectors of the negative SGS stress tensor (Re = 2600). . . . . . . . . 149

7.5 Time-averaged JPF between the Θ(ω̄, eSβ) and Θ(ω̄, eSγ) (Re = 2600). 151

7.6 The spherical triangle related to a vector and an orthonormal triad. . 152

xvii



7.7 Time-averaged JPF between Θ(ω̄, e−τβ) and Θ(ω̄, e−τγ) (Re = 2600). 153

7.8 Time-averaged PF of the resolved normalized enstrophy generation

σ̄n = cos(ω̄, w̄) (Re = 2600). . . . . . . . . . . . . . . . . . . . . . . . 155

7.9 Time-averaged JPF between ω̄2/〈ω̄2〉 and | cos(ω̄, eSβ)| (Re = 2600). . 156

7.10 Time-averaged JPF between ω̄2/〈ω̄2〉 and σ̄n = cos(ω̄, w̄) (Re = 2600). 157

7.11 Averaged ratio between the eigenvalues of the negative SGS stress and

three constituent tensors. . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.12 Time-averaged β∗-PF for the eigenvalue ratio of S̄ij (Re = 2600). . . 162

7.13 Time-averaged (β/α)-PF for the eigenvalue ratio of S̄ij (Re = 2600). . 162

7.14 Time-averaged s∗-PF for the eigenvalue ratio of S̄ij (Re = 2600). . . . 163

7.15 Time-averaged JPF between the relative eigenvalues of the negative

SGS stress tensor (Re = 2600). . . . . . . . . . . . . . . . . . . . . . 165

8.1 Solution space for invariants QA and RA with lines corresponding to

constant values of the discriminant DA. The different subdomains are

labelled according to the terminology of Chong and Perry [58]. . . . . 173

8.2 Time-averaged JPF between invariants Q+
A∆ and R+

A∆ of the filtered

velocity gradient tensor (Re = 2600). . . . . . . . . . . . . . . . . . . 178

8.3 Time-averaged JPF between invariants Q+
S∆ and R+

S∆ of the filtered

strain rate tensor (Re = 2600). . . . . . . . . . . . . . . . . . . . . . . 183

8.4 Time-averaged expectation of resolved non-dimensional enstrophy (ω̄2)E

associated with invariants Q+
A∆ and R+

A∆ (Re = 2600). . . . . . . . . 187

8.5 Time-averaged expectation of resolved non-dimensional enstrophy (ω̄2)E

associated with invariants Q+
S∆ and R+

S∆ (Re = 2600). . . . . . . . . . 188

8.6 Plane and time-averaged profile for non-dimensional enstrophy. . . . . 191

xviii



8.7 Time-averaged expectation of resolved non-dimensional enstrophy gen-

eration σE associated with invariants Q+
A∆ and R+

A∆ for Re = 2600

(positive values: solid lines, negative values: dashed line). . . . . . . . 193

8.8 Time-averaged expectation of the resolved non-dimensional enstrophy

generation σE associated with invariants Q+
S∆ and R+

S∆ for Re = 2600

(positive values: solid lines, negative values: dashed line). . . . . . . . 194

8.9 Time-averaged expectation of the resolved non-dimensional SGS TKE

production rate PrE in the logarithmic region for Re = 2600. . . . . . 198

8.10 Time-averaged expectation of the resolved non-dimensional SGS TKE

production rate PrE in the logarithmic region for Re = 2600 (Forward

scatter P+
rE and backward scatter P−

rE have been separated indicated

by the solid and dashed contours, respectively). . . . . . . . . . . . . 198

8.11 Time-averaged expectation of the resolved SGS TKE production rate

PrE in the QA∆–RA∆ phase plane (x+
2 = 77.2, Re = 2600). . . . . . . 199

8.12 Time-averaged expectation of the resolved SGS TKE production rate

PrE in the QS∆–RS∆ phase plane (x+
2 = 77.2, Re = 2600). . . . . . . 199

xix



Nomenclature

English Symbols

al, aq, ar filter coefficients

a′ coefficient for the pressure correction equation

A constant for the near-wall cubic law

A, B constants for the logarithmic law; or sides of a spherical triangle

A, B, C matrices

Ai cross-sectional area of the control volume perpendicular to the

i-th dimension

Aij velocity gradient tensor: ui,j

AJ
k , AJ

q coefficients for solver in the J-th homogeneous layer

b′ source term for the pressure correction equation
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Chapter 1

Introduction

“Observe the motion of the water surface, which resembles that of hair,

that has two motions: one due to the weight of the shaft, the other to the shape

of the curls; thus, water has eddying motions, one part of which is due to the

principal current, the other to the random and reverse motions.”

—Leonardo da Vinci (1510) [1]

“Even after 100 years, turbulence studies are still in their infancy. We

are naturalists, observing butterflies in the wild. We are still discovering how

turbulence behaves, in many respects. We do have a crude, practical, working

understanding of many turbulence phenomena but certainly nothing approaching

a comprehensive theory, and nothing that will provide predictions of an accuracy

demanded by the designers.”

—John L. Lumley and Akiva M. Yaglom (2001) [2]

1.1 Motivation

The last quarter of the 19th century was a remarkable time in the human history of

fluids science and engineering as modern scientific methodologies were formally intro-

duced into turbulence studies through a dozen pioneering papers linked to a group of

legendary names such as Joseph Valentin Boussinesq, Osborne Reynolds, and John

William Strutt, Third Baron Rayleigh [2–9]. Among these pioneering contributions,
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Osborne Reynolds’ famous experiment (1883) [4] was from a scientific point of view, a

milestone for discovering the laminar and turbulent states of a flow (although accord-

ing to Monin and Yaglom [3], the discussion of these two flow states can be traced

back to the first half of the 19th century.). One hundred and twenty years has passed

since the beginning of modern turbulence studies. The nature of turbulence is still far

from being unveiled, and unlike many other branches of physics, a standard research

methodology for the study of turbulence has not yet been well established. Although

the comment of Lumley and Yaglom (2001) [2] (see the citation above) might be true

that ‘a comprehensive theory that provides predictions of an accuracy demanded by

the designers will stay sealed’, the past century has witnessed a tremendous growth

of human knowledge in turbulence (e.g. Kolmogorov’s theory of 1941) and achieve-

ments related to its engineering application (e.g. the aircraft and automobile engine

industries).

In the past thirty years, due to the rapid advancement of modern compu-

tational theories and facilities, Computational Fluid Dynamics (CFD) has become

one of the most significant research approaches in turbulence study. It has made

available data that were never measurable previously, e.g. the unobtruded velocity

and instantaneous pressure fields. There are basically two purposes for research in

CFD [10]. The first relates to fundamental studies including numerical algorithms,

physical mechanisms of flows and mathematical models (if needed) that reflect these

mechanisms. The second type of research serves the need of engineering analysis

and design based on knowledge obtained from the first type of research. Currently,

three major CFD methodologies are used for studying turbulent flows: the Reynolds

Averaged Navier-Stokes method (RANS), Large Eddy Simulation (LES), and Direct

Numerical Simulation (DNS).

The DNS approach which began with Orszag and Patterson [11] in 1972, is free

from any semi-empirical turbulence modelling and resolves all the scales of motions,

including the smallest dynamically active Kolmogorov scale, both spatially and tem-

porally. This approach requires a computational cost proportional to Re3 (where the

Reynolds number Re is based on an integral scale of the flow). Therefore, due to
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the limitation of computational resources, DNS is still mainly used for low Reynolds

number flow investigations. In contrast, the RANS approach, which has a longer his-

tory than DNS, is based on the temporal Reynolds decompositiona [5]. Since motions

at all wavenumbers have not been resolved in the RANS approach, it heavily relies on

semi-empirical turbulence modelling closures. However, it is computationally efficient

and can be applied for calculating high Reynolds number flows. The LES approach

originally introduced by Smagorinsky in 1962–1963 [2, 12, 13] and followed by Dear-

dorff [14] and Schumann [15, 16], balances the computational ambition and cost of

RANS and DNS. In LES, all the field-dominant anisotropic large scale motions above

a certain cut-off size (usually much larger than the Kolmogorov scale) are resolved

directly in a time-accurate manner, while the small scale or SubGrid-Scale (SGS) mo-

tions are assumed to be homogeneous and universal such that some semi-empirical

methods can be applied to model the SGS effects.

Since the pioneering works of the 1960’s, the LES technique has been advancing

with remarkable speed. It has been widely studied using both theoretical test flows

with simple geometries and practical engineering flows with complex geometries [17].

Much progress has been made in developing and validating the SGS models, among

which influential contributions include the scale-similarity model of Bardina [18], the

dynamic model of Germano et al. [19] and Lilly [20], the spectral eddy viscosity

model of Kraichnan [21], the structure function model of Métais and Lesieur [22],

and the a priori validation of SGS models using DNS data [18,23,24] or experimental

measurements [25–27] (see Adrian’s report [28] and the paper by Tao et al. [29]).

There is no intention to review here all the LES methodologies of the past 40 years,

since some comprehensive works [1, 10, 17, 28, 30–32] are already available for this

purpose. However, the new trends of LES of turbulence that closely relate to this

research will be revisited in a detailed manner in the appropriate chapters to follow.

In general, this dissertation seeks improved LES approaches for turbulence

studies, which can offer a relatively high computational efficiency, account for the

aThe observation of Leonardo da Vinci (1510), cited at the beginning of the chapter, can be
viewed as the precursor of the Reynolds decomposition technique [1].
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nonlinear nature of turbulence in the SGS models, predict turbulence topologies and

near-wall anisotropy of wall-bounded turbulent flows, and reflect the generic tensorial

geometrical characteristics of the SGS stress, filtered velocity gradient, strain rate and

rotation rate tensors. The research has been generally carried out at a fundamental

level in terms of physics, which serves the first type of CFD research as mentioned

previously.

1.2 Method of Large Eddy Simulation and the SGS

Stress Decomposition

In LES, large and small scale structures of the turbulence are distinguished by intro-

ducing a filter

f̄(x) =

∫ ∞

−∞
f(y)G(x,y)dy (1.1)

For incompressible flows, the filtered continuity and Navier-Stokes (N-S) equations,

respectively, take the following forms:

ūi,i = 0 (1.2)

˙̄ui + (ūiūj),j = −p̄,i /ρ− τij ,j +νūi,jj (1.3)

After filtering, the grid-level (Ḡ-level) SGS stress

τij = uiuj − ūiūj (1.4)

appears in Eq.(1.3) and has to be modelled. Recent reviews of different SGS stress

models can be found in the Refs. [1,10,32]. Applying the classical Leonard decompo-

sition, the SGS stress τij can be decomposed into three parts

τij = Lij + Cij +Rij (1.5)
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where

Lij = ūiūj − ūiūj (1.5a)

Cij = u′iūj + ūiu
′
j (1.5b)

Rij = u′iu
′
j (1.5c)

denote the Leonard stress, cross stress and SGS Reynolds stress tensors, respectively.

In developing these equations, the instantaneous velocity has been decomposed as

follows: ui = ūi + u′i, where a prime is used to indicate the unresolved SGS compo-

nent. By requiring each stress term to be Galilean invariant (inertial-frame invariant

under any translation), Germano [33] proposed the following modified method for

decomposing the SGS stress τij

τij = Lm
ij + Cm

ij +Rm
ij (1.6)

where

Lm
ij = ūiūj − ¯̄ui ¯̄uj (1.6a)

Cm
ij = u′iūj + ūiu

′
j − ū′i ¯̄uj − ¯̄uiū′j (1.6b)

Rm
ij = u′iu

′
j − ū′iū′j (1.6c)

As will be shown in the following context, the decomposition of SGS stress tensor is

directly linked to the SGS modelling procedure.

1.3 Conventional SGS Modelling Approaches

In this section, the conventional scale-similarity model and (dynamic) Smagorinsky

SGS viscosity model are revisited as a preparation for future discussion. However,

surveys on other SGS modelling approaches related to the new SGS models to be

proposed will be presented in specific detail in the chapters to follow.
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1.3.1 Scale Similarity Model

The scale similarity SGS stress model is based on the observation that the smallest

grid scale motion is similar to that at the largest SGS scale. The scale similarity

model of Bardina [18, 34] assumes the cross and SGS Reynolds stresses to take the

following forms:

Cij ≈ ¯̄ui(ūj − ¯̄uj) + ¯̄uj(ūi − ¯̄ui) (1.7)

Rij ≈ (ūi − ¯̄ui)(ūj − ¯̄uj) (1.8)

whence

Cij +Rij ≈ ūiūj − ¯̄ui ¯̄uj
def
= Bij (1.9)

Therefore, the constitutive relation of the similarity model given by Eq.(1.5) reads

τij ≈ Lij +Bij = ūiūj − ¯̄ui ¯̄uj ≡ Lm
ij (1.10)

Based on their Particle Image Velocimetry (PIV) measurements in a round jet,

Liu et al. [25] provided empirical support for the idea of scale similarity in LES. They

observed the following stress similarity phenomenon:

τij = CLLij = CL(˜̄uiūj − ˜̄ui ˜̄uj) (1.11)

where CL is the coefficient for the scale similarity SGS stress model, the tilde repre-

sents the test-grid filtering process and Lij = ˜̄uiūj − ˜̄ui ˜̄uj is the resolved Leonard-type

stress. Discussions on the value of CL can be found in the papers by Sagaut and

Grohens [35], and Meneveau and Katz [31]. This model can reflect the backscatter

in a reasonable manner, however it is not dissipative enough to make the calculation

stable. Variations of the scale-similarity models for an improved performance will be

discussed in chapter 4.
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1.3.2 Dynamic SGS Viscosity Model

The conventional Dynamic Smagorinsky SGS stress Model (DM) introduced by Ger-

mano et al. [19] and modified by Lilly [20] was a breakthrough and continues to be

popular in the LES community. The modified DM has been successfully used for

predicting various incompressible and compressible flows (e.g. Moin et al. [36], Zang

et al. [37] and Piomelli [38]). Moin et al. [36] extended this dynamic modelling proce-

dure to the scalar (energy) transport process. In the DM approach, the constitutive

relation between the grid-level SGS stress is expressed as

τ ∗ij = τij − δij
3
τkk = −2CS∆̄2|S̄|S̄ij (1.12)

where CS is the coefficient for the Smagorinsky type models, the asterisk is used

to indicate the tracefree form of a tensor and δij is the Kronecker delta. The SGS

viscosity related to Eq.(1.12) is defined as

νsgs = CS∆̄2|S̄| (1.13)

It should be indicated that the LES approach is intrinsically different from the RANS

approach in that the motions larger than the filter size are resolved using the unsteady

calculation. Thus the level of the SGS viscosity (νsgs) is much smaller (possibly two or

three orders depending on the specific test problem) than that for the eddy viscosity

(νT ) in the RANS approach.

Originally [13], C2
S instead of CS was used in Eq.(1.12), so that the model was

purely dissipative and numerically robust. The resolved strain rate tensor appearing

in the above equations has the form of

S̄ij =
1

2
(ūi,j + ūj,i) (1.14)

and its magnitude is evaluated by |S̄| = (2S̄ijS̄ij)
1/2.
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The original Smagorinsky approach [13] has some drawbacks, e.g. the model

‘constant’ CS is not a self-adjusting flow dependent parameter, it does not account

for backscatter of the SGS Turbulent Kinetic Energy (TKE), it yields inaccurate

predictions of near-wall flow, and the adoption of an additional artificial near-wall

damping function is always necessary in the simulation. Germano et al. [19] proposed

a dynamic SGS model by introducing a second test-grid-level filtering process. The Ḡ-

level SGS stress still retains the original form of the Smagorinsky model, however, CS

is no longer a constant, but rather a function of time and space. A new test-grid-level

( ˜̄G-level) SGS stress, Tij , appears due to the second filter adopted,

Tij = ũiuj − ˜̄ui ˜̄uj (1.15)

where the test-grid filtering process is based on a characteristic filter size of ˜̄∆. Typ-

ically [19], the scaling factor, ε = ˜̄∆/∆̄, is set to 2. Similar to the approach for τ ∗ij ,

the constitutive relation between T ∗
ij and ˜̄Sij can be modelled as

T ∗
ij = Tij − δij

3
Tkk = −2CS

˜̄∆2
∣∣∣ ˜̄S∣∣∣ ˜̄Sij (1.16)

The two SGS stresses, i.e. τij and Tij , are related by the Germano identity [19],

defined as

Lij = Tij − τ̃ij (1.17)

Substituting Eqs.(1.12) and (1.16) into the tracefree form of Eq.(1.17), the following

equation is obtained

L∗
ij = −αijCS + β̃ijCS (1.18)

where

αij = 2 ˜̄∆2
∣∣∣ ˜̄S∣∣∣ ˜̄Sij (1.19)

βij = 2∆̄2
∣∣S̄∣∣ S̄ij (1.20)

At any specific spatial position, Eq.(1.18) represents five independent instantaneous

equations for the single unknown, CS. Therefore, Eq.(1.18) is an over-determined
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system, and consequently an exact solution for CS does not exist and a residual

tensor exists between the right and left hand sides of Eq.(1.18). However, an optimal

value for CS can be obtained by minimizing the local error density function, which is

a function of space at each time step, defined as

Q = EijEij (1.21)

where Eij is the local error tensor, based on the residual of Eq.(1.18), i.e.

Eij = L∗
ij + αijCS − β̃ijCS (1.22)

From the theory of approximation [39], it is understood that the above optimization

approach seeks the projection of L∗
ij in the specified tensorial approximation space of

the model, Morig
L (which will be discussed later in subsection 5.2.3). The projection

then represents the ‘best substitute’ for L∗
ij, i.e.

L∗
ij ≈ Lproj∗

ij = −αijC
ℵ
S + β̃ijC

ℵ
S (1.23)

where the superscript ℵ represents the optimal resultb. Using the above concepts

and Eq.(1.22), the local error tensor, which has the minimal norm Qmin, takes the

following form:

Eij = L∗
ij −Lproj∗

ij (1.24)

The difficulty in minimizing Q comes from the filtered term in Eq.(1.22), i.e. β̃ijCS.

Germano et al. [19] and Lilly [20] both used an assumption of Incomplete Spatial In-

variance (ISI), which assumes that CS is spatially invariant so that it can be extracted

from this filtering operation. However, CS is assumed to be spatially variant in the

other parts of the model. Therefore, a mathematical inconsistency emerges, i.e. the

treatments of CS in the 2nd and 3rd terms on the right hand side of Eq.(1.22) are

bThroughout this dissertation, the superscript ℵ is used only when it is necessary to avoid possible
confusion. It is frequently used in chapter 5.
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different. Nevertheless, with this assumption, Eq.(1.22) can be simplified to

Eij = L∗
ij +MijCS (1.25)

where

Mij = αij − β̃ij (1.26)

The physical meaning of αij, βij , Mij and Lproj∗
ij will be discussed further in

section 5.2. Minimizing Q using the least squares method and noting that the trace of

Lij vanishes, then yields the conventional dynamic Smagorinsky SGS model coefficient

of Lilly [20]

Cℵ
S(x) = − MijLij

MmnMmn
(1.27)

It should be indicated that the above optimization procedure to obtain Eq.(1.27)

is based on the minimal residual of the Germano identity, which was the first and is

still the most popular criterion in the dynamic SGS modelling procedure. However,

it is not the only choice. Other criteria involving different types of identities include:

the kinetic energy identity originally introduced by Cabot and utilized by Ghosal et

al. [40], a new identity involving an explicit filter and its inverse by Kuerten et al. [41],

the generalized Germano identity by Sagaut [10], and the vector identity by Morinishi

and Vasilyev [42]. The Germano identity itself began to attract scrutiny immediately

after the classical papers of Germano et al. [19] and Lilly [20] were published. Some

relevant research papers include Ronchi et al. [43], Meneveau and Katz [44], Kuerten

et al. [41], and Brun and Friedrich [45]. Using Taylor series expansions, Brun and

Friedrich [45] extensively studied the grid-level SGS stress tensor τij, test-grid level

SGS stress tensor Tij and Germano identity. The errors involved in SGS stress terms

were specified in their study and the corresponding corrections to the stress terms

have been quantified. Nevertheless, the criterion of the minimal residual of the Ger-

mano identity will be used exclusively in the optimization procedures of the SGS

modelling approaches throughout this dissertation.
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1.3.3 Integral Type Localization Approach

As mentioned previously, in both the DM approaches of Germano et al. [19] and

Lilly [20], the assumption of ISI treats the filtering term β̃ijCS separately from the

rest of the model. On observing this mathematical inconsistency, Ghosal et al. [40]

minimized a global error functional using the functional variational method without

adopting the a priori assumption of ISI to handle β̃ijCS. They obtained a rigorous

Integral–type Localization Dynamic Smagorinsky type Model (ILDM) in the form of a

Fredholm Integral Equation of the Second kind (FIE2). The global error functional

adopted in their approach was defined as

F(CS) =

∫ ∞

−∞
Qdx =

∫ ∞

−∞
EijEij dx (1.28)

To find the ‘best’ spatial distribution of CS, such that the global error functional F is

minimal, the variation of F must vanish. This results in a Fredholm integral equation

of the third kind or Picard’s Integral Equation (PIE) (Kondo [46], Golberg [47]), given

by

αij(x)Eij(x) − βij(x)

∫ ∞

−∞
Eij(y)G(y,x)dy = 0 (1.29)

which can be further rewritten in the form of a Fredholm integral equation of the

second kind

f(x) = CS(x) −
∫ ∞

−∞
K(x,y)CS(y)dy (1.30)

where

f(x) = − 1

αij(x)αij(x)

[
αij(x)Lij(x) − βij(x)

∫ ∞

−∞
Lij(y)G(y,x)dy

]
(1.31)

K(x,y) =
KA(x,y) + KA(y,x) − KT (x,y)

αij(x)αij(x)
(1.32)

and

KA(x,y) = αij(x)βij(y)G(x,y) (1.33)
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KT (x,y) = βij(x)βij(y)

∫ ∞

−∞
G(z,x)G(z,y)dz (1.34)

If αij(x)αij(x) 	= 0, Eq.(1.29) is equivalent to (1.30). In the optimization approach of

Ghosal et al. [40], a global integration in Eq.(1.28) is necessary to extract the function

δCS from the filtering term β̃ijδCS, so that Eq.(1.29) can be obtained using functional

variational theory. However, as will be shown in chapter 5, the author has found that

the local error density function Q can be minimized directly by introducing the Dirac

delta function without adopting such an additional global integration.

1.4 Linear Boussinesq Constitutive Relation and

Its Limitations

In both the LES and RANS communities, the Boussinesq hypothesis is often used

for constructing a linear constitutive relation between the unknown stress term and

resolved strain rate tensor for (SGS-) eddy-viscosity type models. Generally, the linear

Boussinesq (SGS-) eddy-viscosity type model is advantageous for its simplicity and

robustness, however, as noted by Pope [32], it is improperly based on a molecular

transport analogy, which results in a linear relation between the stress and strain

rate tensors. Such a molecular process is intrinsically different than the physics of

the turbulent motions to be modelled.

The conventional Smagorinsky constitutive relation [12, 13] is based on the

Boussinesq hypothesis. Compared with the original Smagorinsky model, a signifi-

cant theoretical improvement of the Smagorinsky type DM of Germano et al. [19]

and Lilly [20], and the ILDM of Ghosal et al. [40] is that both models are freed

from any empirical constants and wall damping functions. However, the DM and

ILDM have a few drawbacks due to the Smagorinsky constitutive relation adopted in

their modelling approaches: (i) similar to the original Smagorinsky model, it assumes

equilibrium between dissipation and production of the SGS TKE and requires the

principal axes of the SGS stress tensor τij to be aligned with those of the resolved
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strain rate tensor S̄ij , which then gives an inadequate representation of the SGS stress

components [48]; (ii) the model can result in an unrealistic SGS dissipative effect if

the model coefficient is restricted to be positive; (iii) a potential numerical instability

can arise due to excessive backscatter of the SGS TKE if the model coefficient is

allowed to be negative [38, 49]; and (iv) specific to the DM, there is an additional

shortcoming: it is not bounded and admits a possible singularity when the denom-

inator of the formulation (MijMij) becomes very small [10, 38]. A plane averaging

technique has often been adopted (when a homogeneous plane exists) for the DM to

avoid numerical instability due to either excessive backscatter or potential singular

situation of the modelling formulation [19, 36, 38, 49, 50].

Obviously, the first drawback of the DM and ILDM, i.e. the strict alignment

between the τij and S̄ij is a direct result of the adoption of the Boussinesq hypothesis.

However, it will be demonstrated in chapter 6 that the other three drawbacks are also

related to this hypothesis, and a model’s performance can be significantly improved

if this canonical hypothesis is abandoned in formulating its constitutive relation.

1.5 An Improved Criterion for SGS Models

In the past twenty years, the rapid development of two new branches of fluid dynam-

ics, i.e. turbulence geometrical statistics [51–55] and turbulence topology [56–58], have

brought many new insights into the turbulence community. For instance, Kerr [54]

and Ashurst et al. [55] discovered a strong tendency of alignment between the vortic-

ity and the intermediate eigenvector of the strain rate tensor, Lund and Rogers [59]

discovered that a state of axisymmetric expansion is the most probable flow configu-

ration for isotropic turbulence, and Chong and Perry [56, 58] introduced turbulence

topology using the theories of tensorial invariants and nonlinear physics. These new

methodologies have helped fluid dynamicists to develop an improved understand-

ing of turbulence phenomena, such as the helical nature of turbulence [53, 60–62],

invariant features of the velocity gradient tensor, topological characteristics of turbu-
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lence [56–58, 63–74], vortex alignments and stretching [52, 54, 55, 75–91], local inter-

mittency and small-scale vortical structure [51, 92–95], vortex identification [96–98],

geometrical description of the eigensystem of the SGS stress and filtered strain rate

tensors [29, 99, 100], and methods for constructing improved SGS models based on

local vortical structures [101–107].

Currently in both the RANS and LES communities, when one studies a new

modelling approach using the a posteriori numerical approach, focus is often on the

model’s capability of predicting the turbulence features in terms of the magnitude of a

parameter, such as the mean velocity profile (using semi-logarithmic wall-coordinates)

and the associated distributions of turbulence intensity and shear stress. It should be

pointed out that the magnitude and orientation are equally important in determining

the properties of a tensor such as the Reynolds stress tensor, SGS stress tensor,

strain rate tensor, and rotation rate tensor, which then influence the solution set of

the momentum equation. Therefore, it is advocated by this and other recent research

[70] that future improved CFD modelling studies should include consideration of

the tensorial geometrical relations between the known and unknown terms in the

constitutive relation such that a model can mimic not only the scaling features, e.g.

the logarithmic law, but also the tensorial geometrical features, e.g. the alignment

pattern between the vorticity and vortex stretching vectors.

The improved CFD modelling criterion proposed above is based on the ad-

vanced requirement that a model should reflect the nonlinear nature, structures and

physical processes of the flow, such as vortex stretching, vorticity alignment, and

backscatter of TKE from the subgrid scale to the filtered scale. The mechanism of

these physical phenomena and processes have been investigated fruitfully in both tur-

bulence topology and geometrical statistics, and some results are already conclusive,

e.g. ‘backscatter is not generated by a negative eddy viscosity, but rather the inter-

change mechanism of the eigenvector alignment (of a constituent tensor formed by

the velocity gradients)’ [100]. Thus it is apparent that models founded on the linear

Boussinesq constitutive relation, e.g. the conventional DM [19, 20], cannot satisfy

this improved criterion, since a linear Boussinesq constitutive relation only offers one
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possibility that the SGS stress is strictly aligned with the filtered strain rate tensor.

Consequently, these type of models are inadequate for simulating a physical process

that is strongly based on tensorial alignments, e.g. backscatter. In this disserta-

tion, a new dynamic nonlinear anisotropic SGS model will be proposed, with the aim

of achieving an improved performance (in comparison with the DM and ILDM) in

accordance with the improved CFD modelling criterion proposed above.

1.6 Outline of the Dissertation

The objective of this dissertation is to investigate various new dynamic SGS mod-

elling approaches and turbulence phenomenologies of the resolved-scale motions for

wall-bounded turbulent shear flows. Both the linear Smagorinsky and nonlinear con-

stitutive relations for the SGS stress models are studied. Turbulence phenomenologies

of the resolved-scale motions are investigated using such recently developed method-

ologies as turbulence geometrical statistics and topology.

The organization of this dissertation is outlined as follows. In chapter 2, the

numerical algorithm for the governing equations, discrete filtering scheme and test

problem are introduced. From chapter 2 to chapter 5, improved dynamic SGS mod-

elling formulations based on a linear Smagorinsky constitutive relation are investi-

gated. In chapter 3, two efficient direct solution schemes based on the 2-D and 3-D

discrete filters of Sagaut and Grohens [35] are proposed to solve the ILDM (FIE2) of

Ghosal et al. [40] for turbulence with two homogeneous dimensions. In chapter 4, a

new localization dynamic two-parameter mixed model is formulated using functional

variational methods. In the proposed dynamic localization modelling procedure for

the two-parameter mixed model, the mathematical inconsistency due to the assump-

tion of ISI adopted in the current modelling approaches found in the literature is

removed, and a system of two integral equations is obtained, which determines the

instantaneous optimal spatial distribution of the two model coefficients. In chapter 5,

a sufficient and necessary condition for localizing the Smagorinsky SGS stress model

15



is proposed, which is in the form of an orthogonal condition (OC) and controls the

localization model coefficient for the dynamic Smagorinsky SGS model. The OC is

useful for dynamic SGS modelling optimization, since it unifies a few conventional

modelling formulations and also results in a new dynamic SGS stress model in the

form of Picard’s integral equation (PIE). The proposed PIE has one less convolution

operation than the FIE2 introduced previously by Ghosal et al. [40], and therefore is

less expensive in numerical simulation. Also in chapter 5, the construction of the ten-

sorial approximation space for the projection of the Leonard stress is discussed, which

is essential to the optimization methods adopted for deriving the dynamic localization

models.

From chapter 6 to chapter 8, a novel nonlinear dynamic SGS stress modelling

approach is considered, and turbulence features of both the resolved and subgrid

scale motions predicted using the proposed dynamic nonlinear model are investi-

gated. In chapter 6, a three-parameter Dynamic Nonlinear Model (DNM) based on

the quadratic constitutive relation of Speziale [108, 109] is formulated and tested.

Also in this chapter, the tensorial characteristics of the proposed nonlinear model

are investigated, including the backscatter phenomenon, relative alignment between

the principal axes of the SGS stress and filtered strain rate tensor, and related lo-

cal sheetlike, tubelike, 2-D, axisymmetric expansion, and axisymmetric compression

flow configurations. In chapter 7, results on turbulence geometrical statistics are

presented. The statistical features investigated in this chapter are based on a LES

Couette flow database generated using the proposed DNM. The physical quantities

and phenomena studied in this chapter include helicity and helical structure, enstro-

phy, enstrophy generation and vortex stretching, local quasi 2-D state of turbulence,

relative eigenvalue ratios of the filtered strain rate tensor, geometrical alignment be-

tween vorticity and the eigenvector corresponding to the intermediate eigenvalue of

the filtered strain rate tensor, and that between vorticity and the vortex stretching

vectors. In chapter 8, turbulence topological features based on the resolved tensorial

invariants are explored using statistical methods. The sample data are also based

on LES of Couette flow using the proposed DNM and the results in turn confirm
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the performance of the DNM by comparing them to those reported in the literature.

The obtained phenomenological results include the pear-shape contour of the joint

probability function of the invariants of the resolved velocity gradient tensor, and il-

lustrations of the statistical expectation of resolved enstrophy, enstrophy generation,

and SGS TKE production rate in the phase plane of tensorial invariants. Finally

in chapter 9, a summary of major contributions and a discussion of future research

directions are presented.
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Chapter 2

Numerical Algorithm and Test Problem

2.1 Algorithm for the Numerical Calculation

As described in the works by Piomelli [1], and Ferziger and Perić [110], the fractional

step methods have become rather popular in LES and DNS calculations. There are a

variety of fractional step algorithms due to the vast number of approaches to time and

space discretization. In this study, the governing equations (1.2) and (1.3) are solved

using an algorithm based on the fractional step method and second order Adams-

Bashforth scheme introduced by Chorin [111] and Kim and Moin [112], and the

pressure correction technique of Huang [113]. The development of the computational

code for this research was based on a preliminary code inherited from the advisor

of this dissertation, Dr. Donald J. Bergstrom, which adopted a basic conventional

Smagorinsky model [13].

The filtered momentum equation (1.3) can be re-written as

˙̄ui = Hi − p̄,i /ρ (2.1)

where Hi is a combination of the convection and diffusion terms, i.e.

Hi = −(ūiūj + τij),j +νūi,jj (2.2)

Use of a two-step fractional step method and second order Adams-Bashforth scheme
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splits Eq.(2.1) into the following two equations in terms of time-advancement:


ρ
ū�

i − ū
(n)
i

∆t
=

1

2
[3H

(n)
i −H

(n−1)
i ]

ρ
ū

(n+1)
i − ū�

i

∆t
= −p̄,(n+1)

i

(2.3)

where n indicates the current time step and the superscript � indicates an interme-

diate result between two time steps. In the above scheme, the new velocity ū
(n+1)
i

is calculated using the new pressure gradient −p̄,(n+1)
i . According to Ferziger and

Perić [110], the pressure gradient can also be split into two parts in the time advance-

ment, i.e. half of the old pressure gradient −1
2
p̄,

(n)
i goes to the first equation of (2.3)

to calculate ū�
i and the other half of the new pressure gradient −1

2
p̄,

(n+1)
i is used to

update the velocity field ū
(n+1)
i . Both methods were tested in the simulations and no

obvious difference was observed in terms of the statistics of the quantities being cal-

culated. The numerical results presented in this dissertation are based on the scheme

shown in Eqs.(2.3). In the numerical process of solving for the velocity field, periodic

boundary conditions are applied in the streamwise (x1) and spanwise (x3) directions,

while the no-slip boundary condition is applied in the wall-normal direction (x2). The

finite volume method is used throughout the discretization procedures and the spatial

discretization schemes adopted are of second order accuracy. One fictitious node is

used on each side of the discrete computational domain.

The new pressure field used for updating the velocity field in the second equation

of (2.3) can be obtained from the filtered continuity equation (1.2) using a pressure

correction method [113]. The finite volume method is applied to discretize the filtered

continuity equation on a uniform collocated grid system, i.e.

∫ f

b

∫ n

s

∫ e

w

(
∂ū1

∂x1
+
∂ū2

∂x2
+
∂ū3

∂x3

)
dx1dx2dx3 = 0 (2.4)

which results in the following discrete system:

(ūe − ūw)A1 + (ūn − ūs)A2 + (ūf − ūb)A3 = 0 (2.5)
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FIGURE 2.1: Sketch of the collocated grid system in the x1–x2 plane.

where the symbols ‘e’ and ‘w’ represent ‘east’ and ‘west’ face-locations on the two sides

of the central node in the x1 direction, respectively. Similarly, ‘n’ and ‘s’ represent

‘north’ and ‘south’ in the x2 direction, while ‘f’ and ‘b’ represent ‘front’ and ‘back’

in the x3 direction, respectively (see Fig. 2.1). A1 = ∆x2 · ∆x3 is the cross-sectional

area of the control volume perpendicular to the x1 direction, and A2 and A3 are the

cross-sectional areas perpendicular to the x2 and x3 directions, respectively.

The velocity field ū�
i obtained from the first equation of (2.3) does not necessar-

ily satisfy continuity over the control volume. Thus, a velocity correction is made so

that continuity can be satisfied. A conventional approach is to link the flux velocities

at the face-location to the difference of the nodal pressure correction field values, i.e.

ūe = ū�
e +

A1∆t

ρ∆V
(p̄′P − p̄′E)

ūw = ū�
w +

A1∆t

ρ∆V
(p̄′W − p̄′P )

. . . . . .

ūb = ū�
b +

A3∆t

ρ∆V
(p̄′B − p̄′P )

(2.6)

where, ∆V = ∆x1 · ∆x2 · ∆x3 is the volume, and the uppercase subscripts indicate

nodal variables, e.g. the subscript ‘P’ represents the central node, ‘E’ represents the
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‘East’ neighbor node in the x1 direction, etc. By substituting the above equations into

Eq.(2.5), the following discrete equation for the pressure correction field is obtained:

a′P p̄
′
P =

∑
a′NP p̄

′
NP + b′ (2.7)

where the subscript NP represents the six neighbor nodes, a′NP and a′P are discrete

coefficients of the form

a′E = a′W =
(A1)

2∆t

∆V
, a′N = a′S =

(A2)
2∆t

∆V
, a′F = a′B =

(A3)
2∆t

∆V

a′P =
∑

a′NP

(2.8)

and b′ is the source term given by

b′ = −ρ [A1(ū
�
e − ū�

w) + A2(ū
�
n − ū�

s) + A3(ū
�
f − ū�

b)
]

(2.9)

In order to solve Eq.(2.7), the intermediate flux velocity ū�
e, · · · , ū�

b at each face

must be evaluated from the known intermediate velocity ū�
E , · · · , ū�

B and pressure p̄(n)

at each node, e.g.

ū�
e =

1

2
(ū�

P + ū�
E) +

A1∆t

ρ∆V
(p̄P − p̄E) (2.10)

From the solution of Eq.(2.7), the updated nodal pressure field can be obtained via

a ‘correction’ as follows:

p̄(n+1) = p̄(n) + p̄′ (2.11)

The corrected pressure field is used to solve the second fractional-step equation in

(2.3) to obtain the new velocity field.

Equation (2.7) is typically a discrete Poisson equation, which is well-known for

its critical role in the overall numerical algorithm due to high computational cost of

solving it. Although several highly efficient multigrid solvers have been developed

for solving this discrete Poisson equation [114], they were actually not used in the

numerical simulations reported in this dissertation. Instead, a simple ADI (alternative

direction implicit) solver based on a TDMA (tri-diagonal matrix algorithm) in the
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wall-normal (x2) direction and CTDMA (cyclic tri-diagonal matrix algorithm) [115]

in the periodical (x1 and x3) directions was used. Such a choice was based on the

fact that the multigrid schemes adopted [114] are expensive in terms of memory

consumption, while the ADI solver uses much less memory and still does a good

job in Couette flow simulations. For example, it can reduce the global residual of

the discrete Poisson system to an order of 10−12 using about 20–25 iterations once a

fully developed turbulence field is established, with the maximum Courant number

(|u| · ∆t/∆x) set to be 0.3. All the simulations performed for this dissertation were

initiated from a previously obtained fully developed turbulent flow field.

2.2 Discrete Filters

In dynamic SGS modelling approaches, an explicit discrete filter is required

for the test-grid level filtering process. The discrete Gaussian filters introduced by

Sagaut and Grohens [35] are used throughout this dissertation. They proposed two

methods to construct a 3-D filtering convolution using a 1-D discrete filter. The

discrete convolution constructed using a linear combination method has the following

form:

f̃(I, J,K) =
1

3

N∑
l=−N

al [f(I + l, J,K) + f(I, J + l, K) + f(I, J,K + l)] (2.12)

while that constructed using the product method has the following form:

f̃(I, J,K) =

N∑
l=−N

N∑
m=−N

N∑
n=−N

alamanf(I + l, J +m,K + n) (2.13)

where N = 1 for a three point stencil (2nd order accuracy) and N = 2 for a five point

stencil (4th order accuracy), and al, am and an represents the filter coefficients for

the 1-D discrete filter.

Obviously, the cost of the product method is about two orders higher than
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that of the linear combination method. For the discrete filter, the linear combination

method is more often used in LES, e.g. Zang et al. [37], Najjar and Tafti [116],

and Morinishi and Vasilyev [50]. In this study, without an otherwise specification,

the boundary field is processed using a 2nd order discrete Gaussian filter, while the

internal field is processed with a 4th order discrete Gaussian filter. The 1-D discrete

forms for the 2nd and 4th order Gaussian filters given by Sagaut and Grohens [35]

are, respectively,

f̃(I) =
1

24
ε2 [f(I + 1) + f(I − 1)] +

1

12
(12 − ε2)f(I) (2.14)

and

f̃(I) =
ε4 − 4ε2

1152
[f(I + 2) + f(I − 2)]

+
16ε2 − ε4

288
[f(I + 1) + f(I − 1)] +

ε4 − 20ε2 + 192

192
f(I)

(2.15)

where ε = ˜̄∆/∆̄ represents the ratio between the cut-off sizes of the test-grid and grid

filters, which is set to ε = 2 following the conventional approach [19]. An evaluation

of the effect of different values for ε can be found in papers by Najjar and Tafti [116],

Lund [117], and Sagaut and Grohens [35]. It is interesting to observe that with

the choice of ε = 2, the discrete filtering scheme of 2nd order accuracy (Eq.(2.14))

becomes identical to that of 4th order accuracy (Eq.(2.15)).

2.3 Test Problem

Throughout this dissertation, the numerical tests were performed using turbulent

Couette flow. It is a canonical test problem for wall-bounded anisotropic shear driven

turbulence, which has been studied both experimentally [118–124] and numerically

[124–132].

The transitional Reynolds number (lowest Reynolds number for which turbu-

lence can be sustained) for Couette flow is ReT ≈ 600 according to Leutheusser and
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Chu [119], while ReT ≈ 720 (or ReτT ≈ 26) according to other studies [122, 124,125,

127]. The two Reynolds numbers mentioned above are defined as Re = Uh(2h)/ν

and Reτ = uτh/ν. Here, h is the half channel height, Uh is one half of the ve-

locity difference between the two plates, uτ is the wall friction velocity defined as

uτ = (τw/ρ)
1/2, and τw = (µū1,2)wall represents the wall shear stress. The critical

Reynolds number for fully developed turbulent Couette flow [124] is ReF ≈ 1000

or ReτF ≈ 35. It should be noted that although pressure driven Poiseuille channel

flow has exactly the same physical geometry as shear driven Couette channel flow,

its transitional Reynolds number for turbulence to be sustained and critical Reynolds

number for turbulence to be fully developed are much higher. For Poiseuille channel

flows, Patel and Head [133] found the transitional Reynolds number at which a log

law with universal constants can be observed is about ReτT ≈ 104, while according to

Eckelmann [134], Kim et al. [135], and Jiménez and Moin [136], the critical Reynolds

number for fully developed flow is ReτF ≈ 142. Thus, both the transitional and

critical Reynolds numbers for pressure driven Poiseuille channel flow are about four

times those for shear driven Couette flow (104/26 ≈ 142/35 ≈ 4).

To resolve the turbulence field for Re = 2600, Bech et al. [124] used 256× 70×
256 nodes (non-uniform in the wall-normal direction) in DNS for a field domain of

10πh × 2h × 4πh, while Kim and Menon [131, 132] used 48 × 48 × 32 (non-uniform

in the wall-normal direction) in LES for a field domain of 4πh × 2h × 2πh. In this

study, the physical domain is L1 × L2 × L3 = 24h × 2h × 12h in chapter 4 and

8πh × 2h × 4πh in chapters 3 and 5–8, where the half channel height h is set to be

10mm. Three uniform grid systems with a different number of control volumes are

used, i.e. 343 in chapters 5 and 6, 483 in chapters 4–8 and 663 in chapters 3, 5 and

6. The Reynolds numbers tested ranged from Re = 1500 to 7050 (from 2.1ReT to

9.8ReT ). The statistics are based on 6000 time steps in chapters 3 and 6, 2000 time

steps in chapter 4, 5000 time steps in chapter 5, and 4000 time steps in chapters 7

and 8. The different choices of the physical domain sizes and time steps for statistics

are not due to any special consideration of the physics, but instead arise from the fact

that the simulations reported in different chapters were carried out as independent
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research projects spread over a period of approximately four years. The results of the

simulations for testing the new SGS modelling approaches presented in chapters 3–8

are compared with those calculated using conventional SGS models, as well as both

the DNS and experimental results reported in the literature.
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Chapter 3

An Efficient Solution Scheme for Applying

the Integral Type Dynamic Localization

Subgrid-Scale Model in Turbulence with

Homogeneous Directions

3.1 Introduction

In chapter 1, the Integral type Localization Dynamic Smagorinsky type Model (ILDM)

of Ghosal et al. [40] was introduced. The ILDM does not rely on the assumption of

ISI and is mathematically rigorous, however, it has the complex form of a Fredholm

Integral Equation of the Second kind (FIE2). A preconditioning relaxation iterative

scheme was implemented by Ghosal et al. [40] and Carati et al. [137] to solve the

FIE2. It was estimated that the CPU time for solving the ILDM is four times that

of the DM [49]. Piomelli and Liu [49] estimated that the cost for solving the FIE2

is similar to that for solving the Poisson equation for the pressure field, which can

be relatively expensive. They observed that CS is a fairly slowly-varying function of

time, and proposed an approximate explicit scheme to localize the DM. Their ap-

proximate localization model avoids the costly process of solving the FIE2 and has

been successfully tested using rotating channel flow.
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One of the major objectives of this chapter is to apply the discrete filter pro-

posed by Sagaut and Grohens [35] to directly solve the FIE2 of Ghosal et al. [40], in

a manner that avoids using the conventional iterative solver [40,137] or approximate

scheme [49]. It will be shown later that the cost of using the proposed direct solver for

the ILDM is about the same as that for the DM in the case of turbulent flow bounded

by parallel walls. This chapter is organized as follows. The numerical scheme of the

direct solver for the FIE2 is discussed in section 3.2. Numerical results are analyzed

in section 3.3, and conclusions are presented in section 3.4.

3.2 A Direct Solution Scheme for the ILDM

In an approach slightly different than that of Ghosal et al. [40] and Carati et al. [137],

the Picard’s integral equation (PIE) Eq.(1.29) is used directly in the solution strategy

developed below.

For turbulence with a statistically homogeneous plane, the plane averaging

technique is often adopted to obtain a stable solution of CS(x2). This is based on

the assumption that CS varies only in the wall-normal direction and is homogeneous

in the other two directions. Generally speaking, this assumption holds, if (i) such a

spatially averaged distribution for CS exists statistically, and (ii) the instantaneous

plane distribution is sufficiently close to the plane averaged profile. From Eq.(1.12),

it is understood that for an SGS viscosity model, both CS and S̄ij determine the

SGS effects. Condition (i) is a prerequisite for using a plane averaging approach.

Condition (ii) prohibits any instantaneous variations of CS from its averaged value

and relies solely on S̄ij to account for the instantaneous unresolved scales of motions

through Eq.(1.12). Notwithstanding the fact that condition (ii) is unrealistic, the

plane averaging technique does avoid the singularity problem and has been success-

fully used in a variety of different simulations [19, 36, 38, 50]. Integrating both sides

of the PIE over the homogeneous plane, and then on substituting the expression for

three-point discrete Gaussian filter of Sagaut and Grohens [35], i.e. Eq.(2.14), the
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following discrete system is obtained:
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(3.1)

where d = 3, and 〈·〉p =
∫∫ ·dx1dx3 represents the plane integral. For tensors without

a superscript spatial index, the default spatial location is the central node (I, J,K),

e.g. αij represents αI,J,K
ij . The solution, CJ

S , to Eq.(3.1) is the model coefficient for

the J-th homogeneous plane. The above equation can be readily rearranged into a

Penta-Diagonal banded linear System (PDS), which can be directly solved using a

Penta-Diagonal Matrix Algorithm (PDMA)

2∑
k=−2

AJ
kC

J+k
S = SJ (3.2)

where AJ
k represents the coefficients and SJ = −〈αijL∗

ij〉p + 〈βijL̃∗
ij〉p is the source

term.

The complexity of Eq.(3.1) is mainly due to the last term enclosed in the braces

28



{·}, which is the 3-D discrete form of the double test-grid filtered term
˜̃
βijCS contained

in Eq.(1.29). It should be noted that the discrete modelling formulation, e.g. Eq.(3.2),

relies on the specific discrete filter adopted and therefore can take various forms

other than the PDS obtained. In some approaches presented in the literature (e.g.

Morinishi and Vasilyev [50], and Kravchenko et al. [138]), only a 2-D filter is applied

in the homogeneous plane for turbulence with two homogenous dimensions. A 2-D

discrete filter can be constructed from Eq.(2.12) as follows

f̃(I, J,K) =
1

2

N∑
l=−N

al [f(I + l, J,K) + f(I, J,K + l)] (3.3)

Unlike the 3-D filter, a 2-D filter in the homogeneous plane does not allow information

to be exchanged directly in the wall-normal direction between two different homoge-

neous layers. However, if a mixed scheme is used, which applies a 2-D discrete filter

to the inner filtering process and a 3-D filter to the outer filtering process for
˜̃
βijCS,

Eq.(3.1) can be much simplified: d becomes 2, the terms indicated by � vanish, and

Eq.(3.2) reduces to a Tri-Diagonal banded linear System (TDS), which can be eas-

ily solved using a TDMA. Compared with the purely 2-D filtering solution schemes

found in the literature as mentioned earlier, both the PDS and TDS approaches being

proposed allow two adjacent homogeneous layers to communicate field information.

Also, since the PDS and TDS are solved only in the wall-normal direction once for

each time step, the extra cost for the PDMA and TDMA is insignificant.

In order to solve the PDS and TDS, the boundary conditions for CS and S̄ij

(for βij) have to be specified. Since the viscous effect dominates in the vicinity of

the wall, we require that CS|wall = 0. At the wall, S̄ij takes the following form (see

Pope [32]):

S̄ij |wall =
1

2


0 ū1,2 0

ū1,2 0 ū3,2

0 ū3,2 0


wall

(3.4)
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The value of ū1,2 can be estimated using empirical wall friction coefficient correlations.

Numerical tests indicates that statistically ū3,2 
 ū1,2 at the wall due to the fact

that the instantaneous value of ū3 does not have a preference in either the positive or

negative direction of x3. Thus, it was found that an initial assumption of ū3,2 |wall ≈ 0

can give realistic (preliminary) results. For turbulent Couette flow, the following

experimental wall friction law introduced by Aydin and Leutheusser [121] can be

used to obtain the preliminary field:

C
−1/2
f = 3.54 ln(2ReC

1/2
f ) + 4.1 (3.5)

where Cf is the friction coefficient, defined as

Cf = τw/(2ρU
2
h) = (uτ/Uh)

2/2 (3.6)

In this research, the above approximate method was used at the beginning of the

simulation. Once a realistic turbulence field had been established, the plane averaged

values of ū1,2 |wall and ū3,2 |wall were determined explicitly using the velocity field

obtained from the previous time step. Since only one outer fictitious node is used

outside of the flow region, the penta-diagonal equation is applicable to all interior

nodes except for the fictitious node and the first interior node next to the wall. To

solve the PDS, the boundary condition specified previously was used for the fictitious

node and the tri-diagonal equation was applied at the first interior node.

As indicated by Carati et al. [137], the relative computational cost for different

dynamic models is difficult to quantify in a precise manner due to its dependence on

the computer configuration and details of the code. Nonetheless, Table 3.1 provides

an estimate of the computational cost of different SGS models, including the proposed

TDS, PDS, the conventional DM [20], the conventional Smagorinsky Model (SM) with

a constant model coefficient [13], and the Dynamic Two-parameter Mixed SGS stress

Model (DMM2) introduced by Morinishi and Vasilyev [50]. A comparison was made

using the same code structure and initial velocity and pressure fields. The cost was
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TABLE 3.1: Comparison of the computational cost

Model Time per loop (s) Ratio

SM 28.4 0.53

DM 53.8 1

ILDM (PDS) 56.6 1.05

ILDM (TDS) 55.5 1.03

DMM2 80.2 1.49

measured using the averaged computer time for each time step relative to that of the

conventional DM of Lilly. An IBM PC (Pentium IV-2GHz) was used to run the test.

From Table 3.1 it is found that the cost for solving the ILDM of Ghosal et al. [40] can

be reduced to the same order of that for the DM of Lilly, i.e. ILDM : DM ≈ 1 : 1.

Thus, the direct solver provides a practical way to handle the ILDM [40] in turbulence

with two homogenous directions, especially for such canonical test flows as turbulent

Couette and Poiseuille plane channel flows.

3.3 Results of Numerical Simulations

To validate the proposed discrete scheme for the ILDM, numerical tests have been

performed using turbulent Couette flow. Figure 3.1 illustrates the plane and time

averaged distribution of CS in the wall-normal direction. The conventional model

constant for the Smagorinsky model, which uses C2
S instead of CS in its definition,

generally ranges from 0.065 to 0.12 [1, 139]. From Fig. 3.1 it is observed that the

dynamic coefficient predicted by the model vanishes at the wall. For Re = 2600, the

value of C
1/2
S in the core region is 0.078 for the TDS, 0.085 for the PDS, and 0.086

for the DM. For Re = 4762, the value of C
1/2
S in the core region is 0.051 for the TDS,

0.062 for the PDS, and 0.061 for the DM. By comparison, all of these values lie either

within or just below the range of values of the conventional Smagorinsky constant.

Fig. 3.1 indicates that in terms of the prediction for CS, the performance of the PDS
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FIGURE 3.1: Averaged distribution of CS in the wall-normal direction.

FIGURE 3.2: Averaged SGS viscosity distribution in the wall-normal direction.

scheme approaches more closely to that of the DM than the TDS scheme in the core

region. As shown in Fig. 3.2, this conclusion can be extended to the prediction of

the SGS viscosity. One possible explanation for this phenomenon is that both the

PDS and DM use 3-D filters for the non-boundary nodes, while the TDS uses a

mixed filtering scheme based on both 2-D and 3-D filters over the entire domain as

discussed earlier. From Fig. 3.2 it is observed that νsgs vanishes at the wall, which is

consistent with the fact that the viscous shear is dominant near the wall. One may

have already observed from Fig. 3.1 that for all three modelling schemes, the value of
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FIGURE 3.3: Averaged non-dimensional velocity profile (Re = 2600).

the coefficient CS for the higher Reynolds number is smaller than that for the lower

Reynolds number. However, as shown in Fig. 3.2, the value of the SGS viscosity νsgs

for the higher Reynolds number is larger than that for the lower Reynolds number.

From the modelling constitutive equation (1.12) it is understood that νsgs, which

includes information on both CS and the magnitude of S̄ij , plays a more significant

role than CS (alone) in determining the level of the SGS stress τij .

Figure 3.3 shows the mean streamwise velocity profile of 〈ū1〉 at Re = 2600.

Here, 〈·〉 represents a plane and time averaging operation. The velocity profiles ob-

tained using both the TDS and PDS are in good agreement with the experimental

result of Aydin and Leutheusser [120] and DNS result of Bech et al. [124]. Figures 3.4

and 3.5 plot the mean velocity profiles at the two different Reynolds numbers us-

ing wall coordinates, and compare them with the experimental result of Aydin and

Leutheusser [121] and the classical two-layer wall-law of von Kármán [140], i.e. u+
1 = x+

2 (x+
2 ≤ 5)

u+
1 = 2.5 ln(x+

2 ) + 5.5 (x+
2 > 30)

(3.7)

where u+
1 = 〈ū1〉/uτ and x+

2 = x2uτ/ν.

Figures 3.6 and 3.7 compare the resolved streamwise turbulence intensities with

the experimental and DNS results reported in the literature. In a posteriori LES
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FIGURE 3.4: Averaged velocity profile using wall coordinates (Re = 2600).
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FIGURE 3.5: Averaged velocity profile using wall coordinates (Re = 4762).

testing, it is common to compare the predicted streamwise intensity with experimental

and DNS results, and a good agreement is often observed [49,138,141–146]. It should

be recognized, however, that the results obtained from these different approaches are

not conceptually equivalent [32] and some researchers [19,147] compare the LES result

with filtered DNS data to minimize the conceptual difference due to the inherent

filtering effect of the LES approach. As pointed out by Kravchenko et al. [138],
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FIGURE 3.6: Resolved streamwise turbulence intensities (Re = 2600).

FIGURE 3.7: Resolved streamwise turbulence intensities (Re = 4762).

the value of the streamwise turbulence intensity predicted using a coarse grid LES

computation is expected to be slightly higher than the experimental and DNS results.

The residual velocity component shown in Figs. 3.6 and 3.7 is defined as ū′′i = ūi−〈ūi〉.
For the TDS, PDS and DM approaches, the peak value of 〈ū′′21 〉1/2/uτ is about 2.8

at x+
2 = 14 for Re = 2600; and about 3.1 at x+

2 = 15 for Re = 4762. These values

are close to but slightly higher than those reported by Bech et al. [124], i.e. 2.6 at

x+
2 ≈ 12 for Re = 2600, and also those reported by Aydin and Leutheusser [121], i.e.

2.8 at x+
2 ≈ 11 for Re = 2600 and 2.9 at x+

2 ≈ 16 for Re = 4762.
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FIGURE 3.8: Resolved Reynolds shear stress distribution (Re = 2600).

FIGURE 3.9: Resolved Reynolds shear stress distribution (Re = 4762).

Figures 3.8 and 3.9 show the resolved Reynolds shear stress distribution in

the wall-normal direction. Plane turbulent Couette flow has the unique feature of a

constant shear stress distribution, i.e.

µ · 〈ū1,2〉 − ρ〈ū′′1ū2〉 − ρ〈τ12〉 ≈ τwall = ρu2
τ (3.8)

The three items on the left hand side of this equation represent the averaged resolved

viscous shear stress, resolved Reynolds shear stress and subgrid scale shear stress, re-

spectively. The above approximate equation is obtained from the filtered streamwise
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momentum equation based on several assumptions: the flow is steady and homoge-

neous in the x1–x3 plane, and the mean resolved and SGS velocities normal to the

homogeneous plane are zero [141,143], i.e. 〈ū2〉 = 0 and 〈ū′′2〉 = 0. It has been shown

both theoretically [3] and numerically [135] that the Reynolds shear stress varies in a

cubic manner in the near-wall region. Analysis of the cubic behavior of the resolved

Reynolds shear stress for the (dynamic) Smagorinsky type SGS models can be found

in the works by Piomelli [1, 38] and Pope [32]. From Figs. 3.8 and 3.9, it is observed

that the resolved Reynolds stress diminishes in the vicinity of the wall following the

cubic law, i.e. −〈ū′′1ū2〉 ∝ x+3
2 for 0 ≤ x+

2 < 5. In the core region, the resolved

Reynolds shear stress becomes dominant, with a value close to unity. It is noted

that although the predicted profiles of CS and νsgs differ somewhat for the PDS and

TDS in the core region, both solution schemes give very similar predictions for the

plane and time averaged velocity and resolved Reynolds shear stress profiles. This is

because the SGS stress as given by the modelling constitutive relation, i.e. Eq.(1.12),

is determined not only by νsgs (or CS), but also by the filtered strain rate tensor in

terms of its tensorial orientation and magnitude.

The rate of SGS kinetic energy production Pr and the rate of resolved viscous

dissipation εr represent two sinks for the TKE of the filtered scale motions, which are

defined as [32]

Pr = −τ ∗ijS̄ij (3.9)

and

εr = 2νS̄ijS̄ij (3.10)

respectively. Overall, the term Pr has a positive value, which represents a net TKE

cascade from the filtered to the subgrid scales of motions. However, locally it can have

an instantaneous negative value, which indicates a reverse process of the TKE cascade

from the residual subgrid scale to the large filtered scale. There is an inconsistency

regarding the name of this term in the LES community, and sometimes it is referred

to as the SGS dissipation denoted by εsgs or Πsgs. The author would agree with

Pope [32] that it is more appropriate to name it as the rate of SGS TKE production
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for a number of reasons: (i) unlike the true dissipation, it represents the rate of

transfer of kinetic energy from the filtered motions to the residual motions through

an inviscid and inertial process; (ii) it is purely dissipative only for the conventional

single-constant-parameter Smagorinsky SGS viscosity model [13] which does not allow

for inertial inviscid backscatter; (iii) in physics, when a specific amount of TKE is

backscattered from the subgrid to the filtered scales, it is not necessary for all of

this TKE to be exactly returned to the subgrid scale via forward scatter but instead

some of it could optionally be transported through mechanisms such as advection and

diffusion by the filtered scale motions [1,10,32]; and finally (iv) the definition, Eq.(3.9),

is analogous to the production term due to the deviatoric part of the Reynolds stress

tensor in RANS, i.e. −〈u′iu′j〉∗t · 〈Sij〉t, which functions similarly as a TKE source for

the (temporal) residual motions. Here 〈·〉t represents the ensemble average used in

the classical Reynolds decomposition.

It should be indicated that different SGS models implement different methods

to represent SGS TKE transfer between the filtered and subgrid scales via Pr. The

backscatter phenomenon cannot be well simulated using the method presented in this

chapter due to the adopted Smagorinsky type SGS model and plane average method.

More adequate representation of backscatter will be investigated using mixed and

nonlinear SGS modelling approaches later in chapters 4, 6 and 8.

Figure 3.10 shows both the dimensional and nondimensional plane and time

averaged distribution of Pr along the wall-normal direction. From the figure, it is

observed that the prediction for Pr of the PDS is close to that of the DM. The peak

value occurs at x+
2 = 11 for Re = 2600 and x+

2 = 12 for Re = 4762. Figure 3.11

plots the plane and time averaged εr distribution obtained using the TDS, PDS and

DM. Both the dimensional and non-dimensional plots indicate a peak that grows

dramatically in the near-wall region within x+
2 < 30. From previous analysis of

the near-wall behavior of S̄ij , it is understood that this peak of resolved viscous

dissipation is mainly attributed to the resolved near-wall velocity gradient component

ū1,2. Figure 3.12 shows the plane and time averaged ratio of Pr to εr, which indicates

the relative amount of the TKE dissipative effect at the filtered scale due to the two
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FIGURE 3.10: Averaged rate of SGS TKE production.

FIGURE 3.11: Averaged rate of the resolved TKE dissipation.

sinks. Obviously, the resolved viscous effect (εr) overwhelms the inertial inviscid effect

(Pr) in the near-wall region. However, the inertial inviscid effect keeps increasing

relative to the resolved viscous effect as the distance from the wall increases, and

the ratio of these two effects becomes relatively constant in the core region. For

Re = 2600, the stable value of Pr/εr in the core region is about 14% for the TDS,

and 18% for the PDS and DM. For Re = 4762 this value is 17% for the TDS, and

24% for the PDS and DM. Again, the prediction of the PDS is closer to that of the

DM than that of the TDS for this parameter.

39



FIGURE 3.12: Ratio of the rate of SGS TKE production to the rate of resolved
viscous dissipation.

FIGURE 3.13: Instantaneous contours of the spanwise vorticity ω̄3 (Re = 2600).

Finally, Fig. 3.13 shows the magnitude of the spanwise vorticity in the x1-x2

and x2-x3 planes predicted using the PDS for Re = 2600. Clearly, the vorticity

strength is larger in the near-wall region than in the core region. Also, as illustrated

in the figure, some eddy structures can be identified in the near-wall region from the

vorticity magnitude contours shown within a carefully selected vorticity magnitude

range.
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3.4 Conclusions

In order to apply the integral type dynamic localization model (ILDM) [40] for prac-

tical simulations of turbulence with two homogeneous dimensions, two efficient direct

solution schemes have been developed to solve the integral system, i.e. a five-point

scheme (PDS) and a three-point scheme (TDS) based on the 3-D and 2-D discrete

filters of Sagaut and Grohens [35]. The CPU time for solving the ILDM of Ghosal et

al. [40] using the TDS and PDS is thereby reduced to the same order as that for the

DM of Lilly [20], which is substantially less than that for the conventional iterative

solver [49, 137].

Turbulent Couette flow is used in numerical simulations to validate the pro-

posed approach. The proposed solver can predict prototypical features such as the

logarithmic velocity profile, resolved Reynolds shear stress and streamwise turbulence

intensity. In the core region, the performance of the PDS is closer to that of the DM

than that of the TDS, in terms of predictions of the plane and time averaged wall-

normal distribution of the model coefficient, SGS viscosity, and rate of SGS TKE

production. However, in terms of predictions for the resolved velocity profile, shear

stress, streamwise turbulence intensity, and viscous dissipation, the performance of

the TDS, PDS and DM are all very similar. In the vicinity of the wall, the TDS, PDS

and DM yield a similar prediction for all the turbulent quantities mentioned above.

The author would point out that the direct solution schemes for the ILDM proposed

in this chapter are only appropriate for turbulent flows with two homogeneous di-

mensions, and a generalized “fast solver” for non-homogeneous turbulence based on

a different discrete filtering scheme remains yet to be developed.

41



Chapter 4

An Integral Type Localization Dynamic

Two-Parameter Subgrid-Scale Model:

Formulation and Simulation

4.1 Introduction

In this chapter, the so-called Mixed Models (MM) for the SGS stresses are investi-

gated. There are a few different types of MM depending on the method used for

decomposing the SGS stresses and the constitutive relation selected for building the

corresponding model. The most popular approach combines the modified Leonard

stress (different researchers may have different definitions, featured by the coefficient

CL) with an SGS viscosity model (featured by the coefficient CS). Studies of the

CL–CS mixed model include the works of Zang et al. [37], Liu et al. [25], Vreman et

al. [148], Salvetti and Banerjee [48], Horiuti [143], Sarghini et al. [146], Meneveau

and Katz [44], and Morinishi and Vasilyev [50]. Horiuti [143] observed that the pre-

dicted magnitude of the backscatter of TKE using Bardina’s scale similarity model

is larger than the DNS value. To overcome this drawback inherent to the model,

Horiuti [143] proposed the so-called filtered Bardina’s model, which approximates the

SGS Reynolds stress as: Rij ≈ CB(ūi − ¯̄ui)(ūj − ¯̄uj). Based on the coefficient CB,

Horiuti [143] also developed a general dynamic three-parameter mixed model, i.e. the

dynamic CL–CB–CS mixed model. However, this model is demanding in computa-
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tional cost, since it requires a 3 × 3 matrix system composed of terms with complex

filtering processes to be solved at each node. For practical purposes, Horiuti [143]

investigated two dynamic two-parameter mixed models, i.e. the CL–CS and CB–CS

models, which are obtained from the general dynamic CL–CB–CS model using some

specific restrictions. Notwithstanding the existence of other types of mixed models,

this chapter will focus on the popular CL–CS type Dynamic Two-parameter Mixed

Models (DMM2).

As it is well known in the classical optimization procedures of Germano et

al. [19] and Lilly [20] for obtaining the Dynamic One-parameter Smagorinsky Model

(DSM1 or simply DM) using the least squares method, a mathematical inconsistency

exists in processing a filtering term. Such a mathematical inconsistency was removed

by Ghosal et al. [40] in their consistent localization approach using the functional

variational method. Similar to the one-parameter case, in current approaches using

the DMM2, a mathematical inconsistency also exists and thus far the DMM2 has

not been strictly localized. A major objective of this chapter is to deduce a new

optimal localization DMM2 and eliminate the mathematical inconsistency following

the approach used for the DSM1 by Ghosal et al. [40].

This chapter is organized as follows. In section 4.2, the mixed models, espe-

cially the CL–CS type mixed model (and its two base models) will be reviewed. In

section 4.3, a new localization DMM2 will be strictly developed using the functional

variational method. In section 4.4, results of the numerical simulation of turbulent

Couette flow will be presented. Conclusions will be summarized in section 4.5.
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4.2 Mixed Models

In this section, the idea of the mixed SGS model proposed by Bardina [18,34] will first

be summarized, and then the CL–CS type mixed models encountered in the literature

will be reviewed.

4.2.1 Bardina’s Mixed Model

To build the scale similarity model, Bardina [18, 34] utilized information from the

strain rate tensor S̄ij and tensor Bij (see Eq.(1.9)), i.e.

τij = Cr(Bij − 1

3
BkkS̄ij) (4.1)

where Cr is a model constant, which according to Speziale [149], should be 1 in order

to keep the model’s Galilean invariance. From Eq.(4.1) it is understood that the

scale similarity model of Bardina [18,34] is actually a Constant One-parameter Mixed

Model (CMM1), consisting of two elements, i.e. Bij and BkkS̄ij. The second term can

be generally understood as an SGS viscosity model, for its tensorial alignment is con-

trolled by S̄ij and the term Bkk functions in a similar way to the classical Smagorinsky

SGS viscosity. Bardina [18] also extensively studied different types of SGS viscosity

models. He concluded that the scale-similarity model gives a good representation of

the local SGS Reynolds stresses, however, is almost non-dissipative and hence does

not provide a mean energy balance. In contrast, the SGS viscosity model provides a

proper mean energy balance, but is incapable of predicting the correct SGS Reynolds

stresses. To overcome the weaknesses of both modelling approaches, Bardina [18] in-

troduced the idea of a Two-parameter Mixed Model (MM2) into the LES community.

His model relies on the classical Leonard’s SGS stress decomposition and Constant

Two-parameter Mixed Model (CMM2), i.e.

τ ∗ij = −2νtS̄ij + CrB
∗
ij

= −2CS∆̄2
∣∣S̄∣∣ S̄ij + Cr(ūiūj − ¯̄ui ¯̄uj)

∗
(4.2)
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where the two constant parameters are determined as CS = 0.165 ∼ 0.19 and Cr =

1.1, respectively. Based on Germano’s modified decomposition (Eq.(1.6)), Horiuti

[142,143,150] extensively investigated the scale similarity model. He revised Bardina’s

model as a Dynamic One-parameter Mixed Model (DMM1)

τ ∗ij = Lm∗
ij + (CB − 1)[(ūi − ¯̄ui)(ūj − ¯̄uj)]

∗ (4.3)

where CB was determined using the standard dynamic procedure of Germano et

al. [19] and Lilly [20]. By comparison with the DNS data, Horiuti [143] also indicated

that one drawback of Bardina’s scale similarity model is that it over-predicts the

backscatter and underestimates the dissipation. It should be indicated that both

Bardina’s original CMM2 (Eq.(4.2)) and the DMM1 (Eq.(4.3)) revised by Horiuti

[143] are not of the CL–CS type. The CMM2 of Bardina [18] relies on both the SGS

viscosity and the combined effect of Cij and Rij , i.e. Bij . However, the DMM1 of

Horiuti [143] mixes the explicit modified Leonard term and the approximate SGS

Reynolds stress term introduced by Bardina [18] (see Eq.(1.8)).

4.2.2 The CL–CS Type Mixed Models

The essential idea of the CL–CS mixed model is to let the SGS viscosity model and

the scale similarity model work dynamically as a remedy for each other so that both

backscatter and dissipation can be correctly predicted. The CL–CS type mixed models

found in the literature can be generally categorized as follows: (1) DMM1, (2) CMM2,

and (3) DMM2.

The first CL–CS type DMM1 was introduced by Zang et al. [37]. In their

modelling approach, the combined effect of the Cm
ij and Rm

ij is approximated using

the Smagorinsky model, while Lm∗
ij is calculated directly. Therefore, the tracefree

Ḡ-level stress is

τ ∗ij = −2CS∆̄2
∣∣S̄∣∣ S̄ij + Lm∗

ij (4.4)
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while the tracefree ˜̄G-level stress is given by

T ∗
ij = −2CS

˜̄∆2
∣∣∣ ˜̄S∣∣∣ ˜̄Sij + LZ∗

ij (4.5)

where LZ
ij is a ˜̄G-level modified Leonard type stress defined by Zang et al. [37] as

LZ
ij = (˜̄uiūj − ˜̄̄ui

˜̄̄uj) (4.6)

Following the dynamic procedure of Lilly [20] and using the assumption of ISI, Zang

et al. [37] obtained the following DMM1 coefficient:

CS = −(L∗
ij −HZ∗

ij )Mij

MijMij
(4.7)

where

HZ
ij = LZ

ij − L̃m
ij = ˜̄̄ui ¯̄uj − ˜̄̄ui

˜̄̄uj (4.8)

Vreman et al. [148] proposed that the Ḡ-level stress τij should be entirely ex-

pressed using ū and the ˜̄G-level stress T ∗
ij should be entirely expressed using ˜̄u. In

their opinion, the term T ∗
ij introduced by Zang et al. [37], i.e. Eq.(4.5), is inconsistent

because its SGS viscosity part relies on ˜̄u, however, its similarity part, LZ
ij , is based

on ū. Vreman et al. [148] proposed an improved CL–CS type DMM1 by modifying

the similarity part of the ˜̄G-level stress as follows

LV
ij =

˜̄̃
ui ˜̄uj − ˜̃̄

ūi
˜̃̄
ūj (4.9)

Consequently, in their modified model, HZ
ij is replaced by

Hij = LV
ij − L̃m

ij

=

( ˜̄̃
ui ˜̄uj − ˜̃̄

ūi
˜̃̄
ūj

)
−

( ˜̄uiūj − ˜̄̄ui ¯̄uj

) (4.10)

Later, Vreman et al. [147] performed an extensive study of this DMM1 in comparison

with five other SGS models using a weakly compressible turbulent mixing layer flow.
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Their DMM1 showed a mechanism to mimic the backscatter of energy from the sub-

grid to the resolved scales, although the predicted value was found to be a bit lower

than the filtered DNS results.

Liu et al. [25] proposed a CL–CS type CMM2, which is

τij = −2C2
S∆̄2

∣∣S̄∣∣ S̄ij + CLLij (4.11)

By analyzing PIV data, Liu et al. [25] determined that CS = 0.1 ∼ 0.2 and CL = 1.

It should be noted that C2
S in the above model strictly constrains the SGS viscosity

part of the mixed model to be purely dissipative. Thus, the possibility of backscatter

and numerical instability due to a negative value of CS (when the SGS viscosity part

is defined as −2CS∆̄2
∣∣S̄∣∣ S̄ij) is avoided.

Salvetti and Banerjee [48] first applied the dynamic procedure to the two-

parameter mixed model and obtained a CL–CS type DMM2. Since their work was

carried out almost at the same time as Vreman et al. [148], they did not incorporate

the idea of the modified LV
ij and Hij into their work. This step was accomplished

later by Horiuti (1997), and Morinishi and Vasilyev [50], as will be discussed shortly.

The similarity part of the ˜̄G-level stress tensor of Salvetti and Banerjee [48] was still

based on the definition of Zang et al. [37],

T ∗
ij = −2CS

˜̄∆2
∣∣∣ ˜̄S∣∣∣ ˜̄Sij + CLL

Z∗
ij (4.12)

and their Ḡ-level stress takes the following form based on Lm
ij :

τ ∗ij = −2CS∆̄2
∣∣S̄∣∣ S̄ij + CLL

m∗
ij (4.13)

Consequently, HZ
ij instead of Hij was still used in their model. Applying the least

squares method and the assumption of ISI, the result of Salvetti and Banerjee [48]
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for incompressible flow can be rewritten using matrices as HZ∗
ij HZ∗

ij −HZ∗
ij Mij

−HZ∗
ij Mij MijMij

 ·
 CL

CS

 =

 L∗
ijHZ∗

ij

−L∗
ijMij

 (4.14)

By adopting the improved definition of the ˜̄G-level stress of Vreman et al. [148],

i.e. LV
ij (Eq.(4.9)), Horiuti [143], and Morinishi and Vasilyev [50] revisited the DMM2

of Salvetti and Banerjee [48], and provided a modified CL–CS type DMM2 under

the assumption of ISI. The system for the model coefficients is the same as given by

Eq.(4.14), except that Hij was used to replace HZ
ij . Two methods for increasing the

numerical stability were also adopted in the approach of Morinishi and Vasilyev [50],

i.e. (i) similar to the idea of Liu et al. [25], C2
S was used to restrict the SGS viscosity

coefficient to be positive, and (ii) a spatial averaging was applied to each term in the

system equation (4.14) in the homogeneous plane.

4.3 A New Integral Type Localization DMM2

As discussed previously, in the approach of Ghosal et al. [40], a dynamic model in

the form of a FIE2 controls the instantaneous spatial optimal distribution of the

single model coefficient CS, and it is therefore called by its inventors a localization

DSM1. The objective of this section is to similarly propose a new optimal CL–CS

type DMM2, which should also be mathematically consistent.

4.3.1 Model Development

The Ḡ-level and ˜̄G-level SGS stresses introduced by Morinishi and Vasilyev [50], are

adopted to build and optimize the new DMM2, i.e. Eq.(4.13) is used for τ ∗ij and

T ∗
ij = −2CS

˜̄∆2
∣∣∣ ˜̄S∣∣∣ ˜̄Sij + CLL

V ∗
ij (4.15)
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is used for T ∗
ij . Using the definitions in Eqs.(4.13) and (4.15), the traceless form of

the Germano identity can be expressed specifically as

L∗
ij = CLH∗

ij − CSαij + β̃ijCS (4.16)

The local error tensor function is still defined as the residual of Eq.(4.16) and

adopts the following form due to the presence of CL:

Eij(CL, CS,x) = L∗
ij − CLH∗

ij + CSαij − β̃ijCS (4.17)

The definition of the local error density function Q remains as the contraction of Eij ,

as shown in Eq.(1.21).

Similar to the difficulty encountered in the optimization process for the DSM1

introduced by Lilly [20], the difficulty for optimizing the DMM2 using the variational

method mainly comes from the treatment of the filtered term, i.e. β̃ijCS. As discussed

previously, in the DMM community, this difficulty has usually been avoided by using

the assumption of ISI, which assumes CS to be a constant in β̃ijCS so that it can

be readily extracted from this filtering process and thus Q can be minimized using

the least squares method. However, this treatment makes the definition and property

of CS mathematically inconsistent in the third and fourth terms on the right hand

side of Eq.(4.17). This mathematical inconsistency can be avoided by minimizing the

integral of the local error function, which is a functional of CL and CS

F(CS, CL) =

∫
Σ

EijEijdx (4.18)

where the symbol Σ represents the physical domain.

According to functional variational theory, the integral error functional F is

minimal if the following variational conditions hold:
δF |CL

= 2
∫∞
−∞EijδEij |CL

dx = 0

δF |CS
= 2

∫∞
−∞EijδEij |CS

dx = 0

(4.19)
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Substituting (4.17) into δEij in the above equations to obtain


2
∫∞
−∞Eij(−H∗

ij)δCLdx = 0

2
∫∞
−∞Eij(αijδCS − β̃ijδCS)dx = 0

(4.20)

On inverting the sequence of integration in the second equation and renaming the

variables, the following system is obtained
∫∞
−∞EijH∗

ij · δCLdx = 0∫∞
−∞[αijEij − βij

∫∞
−∞EijG(y,x)dy] · δCSdx = 0

(4.21)

for all δCL and δCS ∈ Υ, where Υ is the solution space for the model coefficients.

Thus the following system must hold:
Eij(x)H∗

ij(x) = 0

αij(x)Eij(x) − βij(x)
∫∞
−∞Eij(y)G(y,x)dy = 0

(4.22)

which governs the optimal distribution of the two model coefficients. As such, the

goal of localization has been achieved and the mathematical inconsistency is removed.

If αij(x)αij(x) 	= 0, the second equation can be rearranged as a Fredholm equation

of the second kind, which is similar to the result obtained by Ghosal et al. (1995)

in the one-parameter case. The governing system (4.22) has two integral equations

with two unknown functions, i.e. CS and CL. No special assumptions have yet

been made and thus this governing system holds for both homogeneous and non-

homogeneous turbulent flows. This new model is based on minimizing the functional

F , the integral form of the error function Q, and thus it will be referred to as an

Integral type Localization Dynamic Two-parameter Mixed Model (ILDMM2). For the

same reason, the author would also suggest referring to the optimal DSM1 of Ghosal

et al. [40] as an Integral type Localization DSM1 (ILDSM1). For the ILDMM2, both

the Smagorinsky and similarity parts can account for backscatter of SGS TKE from

small-scale to large-scale motions. However, excessive backscatter of SGS TKE may
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result in instability. An option which attempts to prevent this potential instability

is to introduce the restriction of CS ≥ 0 into the above system, and only allow the

similarity part to be responsible for backscatter.

4.3.2 An Iterative Solver

On substituting the definition of Eij , i.e. Eq.(4.17), Eq.(4.22) becomes a complex

integral system involving a number of convolutions. Solving this integral system also

becomes a challenging problem, which determines the practicability of the proposed

ILDMM2. The system given by Eq.(4.22) can be rearranged as follows

 A11 A12

A21 A22

 ·
 CL

CS

 =

 B1

B2

 (4.23)

or AC = B for brevity. Here, A11 A12

A21 A22

 =

 H∗
ijH∗

ij −H∗
ijαij

−H∗
ijαij αijαij

 (4.24)

B1 = H∗
ij(x)L∗

ij(x) −H∗
ij(x)

∫ ∞

−∞
βij(y)CS(y)G(x,y)dy (4.25)

and

B2 = − αij(x)L∗
ij(x)

+ αij(x)

∫ ∞

−∞
βij(y)CS(y)G(x,y)dy

+ βij(x)

∫ ∞

−∞
L∗

ij(y)G(y,x)dy

− βij(x)

∫ ∞

−∞
H∗

ij(y)CL(y) ·G(y,x)dy

+ βij(x)

∫ ∞

−∞
αij(y)CS(y)G(y,x)dy

− βij(x)

∫ ∞

−∞

∫ ∞

−∞
βij(z) CS(z)G(y, z) ·G(y,x)dzdy

(4.26)

51



The instantaneous integral system (4.23) can be solved using the following

relaxation scheme:

 CL

CS

new

=

 CL

CS

old

+RS

{
1

A11A22 −A12A21

·
 B1A22 −B2A12

B2A11 −B1A21

−
 CL

CS

old


(4.27)

where RS is an iterative relaxation factor for correcting the instantaneous coefficients,

which can be flexibly chosen within the range (0.6 ∼ 1). To increase the stability of

the entire system, a second relaxation scheme is adopted between two adjacent time

steps, i.e. n− 1 and n:

 CL

CS

(n)

=

 CL

CS

(n−1)

+

 RCL
0

0 RCS

 ·


 CL

CS

(n)

−
 CL

CS

(n−1)
 (4.28)

where RCL
and RCS

are the relaxation factors both set to be 0.8. Figure 4.1 shows that

the solver demonstrates an exponential convergence performance at the beginning of

the iteration, which is often observed in linear systems. Figure 4.1 was obtained with

RS = 0.8. The residual shown in the figure is the residual of Eq.(4.23), which is

Res =
∑
i,j,k

‖AC −B‖i,j,k

=
∑
i,j,k

[
(A11CL + A12CS − B1)

2 + (A21CL + A22CS − B2)
2
]0.5

i,j,k

(4.29)

where i, j, k run through the entire domain of 463 internal nodes. The residual after

the first iteration is 1.51 × 105, and drops to 1.85 by the 11th iteration. Figure 4.1

indicates that the proposed iterative solver is capable of decreasing the residual by

5 orders of magnitude. Ten iterations were used in the numerical test, which gave a

final residual of about 1.88 (1.94 × 10−5 at each node).
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FIGURE 4.1: Convergence performance of the solver (Re = 2600).

FIGURE 4.2: Dimensionless mean velocity profile (Re = 2600).

4.4 Results of Numerical Simulations

4.4.1 Predicted Features of Turbulent Couette Flow

Figure 4.2 shows the profile of mean streamwise velocity along the wall-normal di-

rection, obtained using both spatial averaging in the homogeneous plane and time

averaging for 2000 time steps. The velocity profile is in good agreement with the

DNS result obtained by Bech et al. [124]. Figure 4.3 plots the mean velocity profile
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FIGURE 4.3: Mean velocity profile using wall coordinates (Re = 2600).

FIGURE 4.4: Averaged resolved turbulence intensities (Re = 2600).

using wall coordinates, which is shown to agree well with the experimental results

of Aydin and Leutheusser [121] and Bech et al. [124], and von Kármán’s classical

empirical relation for wall-bounded turbulent flows, i.e. Eq.(3.7).

Figure 4.4 compares the resolved turbulence intensities for the three velocity

components and indicates that the streamwise component dominates the turbulence

kinetic energy. The characteristic anisotropy of the three fluctuating velocity compo-

nents persists into the core region. Figure 4.5 gives the resolved Reynolds shear stress
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FIGURE 4.5: Averaged resolved Reynolds shear stress distribution (Re = 2600).
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FIGURE 4.6: Comparison of the friction coefficient.

distribution in the wall-normal direction. At the center of the channel, −〈ū′′1ū2〉/u2
τ

is less than but close to 1, as shown in Figure 4.5. Figure 4.6 compares the friction

coefficient predicted using the proposed ILDMM2 with the experimental wall friction

law of Aydin and Leutheusser [121], i.e. Eq.(3.5), which shows good agreement.

Figures 4.7 and 4.8 plot the averaged distributions of CL and CS in the wall-

normal direction. In the literature, the range of CL for the scale similarity models

varies from 0.45 to 1 (Sagaut and Grohens [35], and Meneveau and Katz [31]). Fig-

ure 4.7 indicates that for the proposed ILDMM2, CL has a peak value of 0.26 at
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FIGURE 4.7: Averaged distribution of CL in the wall-normal direction (Re = 2600).
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FIGURE 4.8: Averaged distribution of CS in the wall-normal direction (Re = 2600).

x+
2 ≈ 18 and is about 0.14 in the central region. The conventional value for the

Smagorinsky model coefficient, which uses C2
S instead of CS in defining the SGS vis-

cosity, ranges from 0.065 to 0.12 [1,139]. Figure 4.8 shows that |CS|1/2 of the ILDMM2

has a peak value of 0.014 at x+
2 ≈ 18 and is about 0.011 in the central region, which

values are only 10 ∼ 20% of that of the conventional Smagorinsky model coefficient as

indicated above. The ILDMM2 developed in this chapter has two self-adjusting dy-

namic coefficients, which allows more flexibility (degrees of freedom) in the values of

56



FIGURE 4.9: Instantaneous velocity field in the central x1-x2 plane (Re = 2600).

FIGURE 4.10: Instantaneous velocity and vorticity fields in the central x2-x3 plane
(Re = 2600).

the coefficients. This suggests the existence of multiple possibilities for the coefficient

distributions. For example, we have at least the following special cases which can be

deduced from the ILDMM2 and are reported to work well for some specific flows in the

literature: if CL ≡ 0, the ILDMM2 reduces to the DSM1 (e.g. Lilly [20]); if CS ≡ 0,

the model reduces to a scale similarity model (e.g. Bardina [18]); if CL ≡ 1, the model

reduces to a DMM1 (e.g. Zang et al. [37], and Vreman et al. [148]); and if CL ≡ 0

and CS ≡ constant, the model reduces to the classical Smagorinsky model [13].

Although a strict definition of a vortex is still lacking, a high vorticity modulus
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is a candidate for vortex identification, especially in free shear flows [151]. Comte et

al. [152] specifically studied coherent structures of mixing layers using the contours of

streamwise vorticity. Figures 4.9 and 4.10 show instantaneous 2-D velocity fields in

the x1-x2 and x2-x3 planes. In Fig. 4.10, streamwise vorticity contours are also used

to locate the vortices. Major vortices (indicated by circles) appear to agree quite well

with the spiralling streamlines suggested by the velocity vectors.

4.4.2 SGS Kinetic Energy Production and Backscatter

Modelling of the SGS stress, τij , is one of the central topics in LES. It builds the

interaction between the filtered and residual scale motions. One of the most important

issues in this interaction is the transfer of TKE. The SGS TKE production rate Pr

for the proposed ILDMM2 becomes

Pr = −τ ∗ij S̄ij

= − [
CL

(
ūiūj − ¯̄ui ¯̄uj

)∗ − 2CS∆̄2|S̄|S̄ij

] · S̄ij

(4.30)

and the resolved TKE dissipation of the filtered scale is defined in Eq.(3.10). For the

ILDMM2 concerned in this research, backscatter can be triggered by either the scale

similarity or the SGS viscosity part. In the latter case, backscatter is due to negative

values of CS. Carati et al. [137] studied the latter case using a DSM1 and found that

a negative CS can bring numerical instability. As indicated earlier, in this study, a

restriction is placed on CS, i.e. CS ≥ 0 and only the similarity part is allowed to

account for backscatter.

Figure 4.11 shows the plane and time averaged distribution of Pr along the

wall-normal direction. Pr peaks in the boundary region and levels off in the center.

Obviously, the statistical approach used in Fig. 4.11 obscures any information on in-

stantaneous backscatter. Figures 4.12 and 4.13 are based on the instantaneous field

at two different locations, where the phenomenon of backscatter is clearly shown.

Figure 4.12, which was obtained by searching for the maximum peak value of −Pr,

shows two adjacent large positive and negative peaks. This is an interesting phe-
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FIGURE 4.11: Averaged SGS TKE production rate (Re = 2600).

FIGURE 4.12: Instantaneous Pr distribution with maximal peaks (Re = 2600; Rel-
ative location in the homogeneous plane: x1/L1 = 0.728, x3/L3 = 0.880).

nomenon and its mechanism might be explained as follows. At the location of the

large positive Pr peak, a large amount of TKE is being transferred from the resolved

to residual subgrid scale motions. If this TKE far exceeds the dissipation capability

of the SGS viscosity part of the ILDMM2, the similarity part is instantaneously trig-

gered to transfer the excessive TKE back to the filtered scale, which then produces

the large negative Pr peak. These two peaks are very close to each other spatially,

however they are not in the same homogeneous layer, which suggests that the motions

and interactions of eddies play a key role in the spatial transport of TKE. The author
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FIGURE 4.13: Instantaneous Pr distribution with moderate peaks (Re = 2600; Rel-
ative location in the homogeneous plane: x1/L1 = 0.989, x3/L3 = 0.663).

FIGURE 4.14: Averaged viscous dissipation of the filtered motions (Re = 2600).

has checked dozens of instantaneous figures for the Pr distribution. Although it is

not yet conclusive, it is commonly found that wherever an intense positive peak is

located, there is always a negative peak nearby to backscatter the excessive TKE.

This feature can also be observed in Fig. 4.13, although the strength of the peaks is

smaller than that in Fig. 4.12. In Fig. 4.13, both forward and backward cascades of

TKE transfer along the entire wall-normal direction can be clearly observed.

Finally, Fig. 4.14 gives the plane and time averaged profile of the viscous dis-

sipation rate of the resolved scale motions. The mechanism of the resolved viscous
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dissipation εr is totally different than that of Pr in that it is purely due to viscous

effects, can only be positive, and serves as a sink for the TKE of the large filtered

motions.

4.5 Conclusions

The previous contributions of other researchers on the CL–CS type dynamic mixed

models (DMM) have been briefly reviewed illustrating the evolution of the Leonard

type stress terms adopted in the DMM modelling approaches. An integral type

localization dynamic two-parameter mixed model (ILDMM2) has been developed. It

is obtained by minimizing the integral error functional of the modified DMM2 using

the functional variational method. The classical assumption of incomplete spatial

invariance (ISI) adopted in many previous studies (e.g., Zang et al. [37], Salvetti and

Banerjee [48], Horiuti [143], Meneveau and Katz [44], Morinishi and Vasilyev [50]) is

not used and thus the mathematical inconsistency has been removed. A system of

two integral equations has been obtained, which governs the instantaneous optimal

spatial distribution of the two model coefficients of the DMM2.

The proposed ILDMM2 is demonstrated to work very well in a numerical sim-

ulation of turbulent Couette flow using a relatively coarse grid. It can successfully

predict many pertinent features such as the logarithmic velocity profile and the cor-

rect level of the friction coefficient. Due to the adoption of the scale similarity model,

the ILDMM2 has the desirable effect of balancing the dissipation and backscatter of

the SGS TKE. From a survey of the instantaneous distributions of the SGS TKE pro-

duction rate, it was observed that wherever there is an intense TKE cascade from the

filtered scale to the residual subgrid scale, there is typically an instantaneous strong

response from the scale similarity part of the model to backscatter the excessive TKE

from the subgrid to the filtered scale.
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Chapter 5

Consistent Localization and the

Constitutive Relation of the Dynamic

Smagorinsky Subgrid-Scale Stress Model

5.1 Introduction

As discussed in the previous two chapters, the first localization dynamic Smagorin-

sky SGS model in the form of a FIE2 was obtained by Ghosal et al. [40] based on

minimizing a residual functional, which is the integral of the modulus of the resid-

ual tensor of the Germano identity over the entire domain. The FIE2 determines

the optimal spatial distribution of the model coefficient and avoids the mathemati-

cal inconsistency encountered in the conventional dynamic modelling approaches of

Germano et al. [19] and Lilly [20]. By introducing the SGS kinetic energy trans-

port equation (k-equation) and using a similar global variational method, Ghosal et

al. [40] reformulated their integral equation and developed a new dynamic localiza-

tion model. The latter reformulated model prohibits instability due to the occasional

excessive backscatter of SGS TKE and is weakly realizable with k ≥ 0. Menon et

al. [153], Kim and Menon [131, 132], and Pallares and Davidson [154] also tested a

different k-equation dynamic localization model, which is based on the similarity be-

havior observed in the experiment of Liu et al. [25] and the least squares method of

optimization adopted by Lilly [20]. Carati et al. [137] developed a different dynamic
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localization stochastic model by introducing an eddy force term into the SGS model

to account for the backscatter of SGS TKE. Similar to the approach of Ghosal et

al. [40], Carati et al. [137] achieved the goal of localization by minimizing a glob-

ally integrated residual. The ILDMM2 proposed and tested in chapter 4 was also

optimized by minimizing the globally integrated residual of the Germano identity in

accordance with the functional variational method.

Notwithstanding the alternative approaches detailed above [132,137,153–155],

the dynamic Smagorinsky model remains to be one of the most popular dynamic SGS

modelling approaches in LES. Making use of the observation that CS is a fairly slowly

varying function of time, Piomelli and Liu [49] proposed an approximate extrapolation

scheme to localize the dynamic Smagorinsky model. Although their approximate

method is not rigorously compatible with variational theory, it has the benefit of

avoiding the large computational cost required for solving a FIE2 [40], and has been

successfully tested using a rotating channel flow.

A common feature of the global optimization technique is that it minimizes

the residual integrated over the general domain (usually an integral type functional),

which does not necessarily ensure the local residual to be minimal. One of the objec-

tives of this chapter is to minimize the local residual directly, avoiding such a global

integration and yet maintaining mathematical consistency.

5.2 A Sufficient and Necessary Condition for the

Localization Dynamic Smagorinsky Model

Although some approximate localization methods are available, e.g. the conventional

DM [20] based on the assumption of ISI and the integral type localization model

obtained by minimizing the integral of Q over the entire domain [40], a consistent

mathematical method for directly minimizing Q is not yet available in the literature.

The philosophical idea for finding such a direct consistent localization approach (to be

addressed in the following section) is borrowed from solid mechanics, which utilizes the
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Dirac delta function δD(x,y) as a tool to treat local effects, e.g. the local concentrated

non-continuous forces and moments, so that they can be generally included in the

continuous differential or integral governing equations and be treated in the same way

as other globally continuous effects or forces.

In order to find the extremum value ofQ directly using the functional variational

method following the above idea, it is necessary to redefine the quantities Eij and Q,

using the symbols Eij and Q to indicate their modified definitions, respectively. Based

on Eq.(1.22), the definition for the local error tensor can be modified as

Eij(x,x0) = L∗
ij(x0) + αij(x0)CS(x,x0) −

∫ ∞

−∞
βij(y)CS(y,x0)G(x0,y)dy (5.1)

where CS(x,x0) and Eij(x,x0) represent, respectively, the model coefficient function

and local error tensor function of x for a specific location x0. The variable x runs

over the entire computational domain (Σ) and these two 3-D spatial functions are

specific for the given location x0 ∈ Σ. The local error density retains a similar form

to Eq.(1.21), however, it becomes a functional of CS(x,x0), using the following fixed

point mapping:

Q(CS(x0,x0)) = Eij(x,x0) · Eij(x,x0) |x=x0
(5.2)

which varies only with the function CS(x,x0) at a given location x0. The variational

problem then can be defined as follows: at each location x0 ∈ Σ, find an optimal

function Cℵ
S(x,x0) ∈ Υ such that Q(Cℵ

S(x0,x0)) is minimal. Here, Cℵ
S (x0,x0) is

the localization (optimal) model coefficient and Υ represents the function space for

CS(x,x0). All Cℵ
S(x,x0) for different locations generate a set of optimal coefficient

functions

{Cℵ
S} = {Cℵ

S(x,x0) |Q(Cℵ
S(x0,x0)) ≤ Q(CS(x0,x0)), ∀CS(x,x0) ∈ Υ, ∀x0 ∈ Σ}

(5.3)

and all Cℵ
S(x0,x0), ∀x0 ∈ Σ, generate a set of optimal model coefficients, which taken
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together represent a 3-D optimal distribution of CS, i.e.

{Cℵ0
S } = {Cℵ

S(x0,x0) |Q(Cℵ
S(x0,x0)) ≤ Q(CS(x0,x0)), ∀CS(x,x0) ∈ Υ, ∀x0 ∈ Σ}

(5.4)

which retains a function mapping (surjective) from the spatial domain Σ to the image

set {Cℵ0
S }. Thus, unlike the traditional approach of searching for one optimal function

CS(x) for the entire domain at each time step, the new approach will look for the

optimal function set and the set of the optimal model coefficients, i.e. {Cℵ
S} and

{Cℵ0
S }, respectively. These two sets are uncountable in the continuous case, while have

at least N3 independent elements in the discrete case, where N3 represents the total

number of discrete nodes. Although conceptually more complex than the traditional

approach, this new way of regarding the model coefficient CS does not change its role

in determining the SGS stress defined by Eq.(1.12) within the classical framework of

the Smagorinsky constitutive relation, and as will be shown later, it is actually more

flexible in terms of mathematics. Furthermore, some general formulations and useful

physical concepts can be derived using this new approach.

This section is organized in the following way: in subsection 5.2.1, a necessary

condition for localization in the form of an orthogonal condition will be derived; in

subsection 5.2.2, the necessary condition obtained in subsection 5.2.1 will also be

proven to be sufficient for localization, and a theorem for localization will be derived;

in subsection 5.2.3, various theoretical applications of the theorem will be explored,

specifically those that result in the conventional models of Lilly [20] and Ghosal et

al. [40], and also a new Picard’s integral equation.

5.2.1 A Necessary Condition for Localization

With the re-defined expressions for Eij(x,x0), Q(CS(x0,x0)), {Cℵ
S}, and {Cℵ0

S }, it is

possible to begin the procedure of optimization for the variational problem defined
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previously. Let the first order variation of Q vanish, i.e.

δQ = 2EijδEij = 0 (5.5)

∀x0 ∈ Σ. Considering Eqs.(5.1) and (5.2), the above equation becomes

Eij(x0,x0) ·
[
αij(x0)δCS(x0,x0) −

∫ ∞

−∞
βij(y)δCS(y,x0)G(x0,y)dy

]
= 0 (5.6)

The Dirac delta function δD(x,y) has the property: φ(x) =
∫∞
−∞ φ(y)δD(x,y)dy, such

that Eq.(5.6) can be expressed as

∫ ∞

−∞
Eij(x0,x0) · [αij(y)δD(x0,y) − βij(y)G(x0,y)] · δCS(y,x0) · dy = 0 (5.7)

∀ δCS(y,x0) ∈ Υ. Therefore, the following relation must hold:

Eij(x0,x0) · [αij(y)δD(x0,y) − βij(y)G(x0,y)] = 0 (5.8)

∀x0 ∈ Σ, or more briefly

EijM
′
ij = 0 (5.9)

where Eij = Eij(x0,x0), and

M ′
ij = M ′

ij(y,x0) = αij(y)δD(x0,y) − βij(y)G(x0,y) (5.10)

Because of the Dirac delta function contained in its first term, M ′
ij is a generalized

function [156] of y at a given location x0. In view of the convolution contained in

Eij (see Eq.(5.1)), Eq.(5.9) is actually an integral equation with respect to CS(x,x0).

Eq.(5.9) also indicates an elegant Orthogonal Condition (OC) between the local resid-

ual stress (or stress error tensor) Eij and the tensor M ′
ij at any given location x0. This

OC is a necessary condition for making the functional Q minimal and as such repre-

sents a Distribution Equation for the dynamic localization model Coefficient (DEC)

for this Smagorinsky type SGS stress model.
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The following is an attempt to provide an interpretation for the previously dis-

cussed tensors M ′
ij and Lproj∗

ij , and also the tensors αij and βij which are frequently

encountered in the literature. In order to understand the physical meaning of these

tensors, we need to revisit some basic concepts given in subsection 1.3.2. From com-

parison of the constitutive relations given by Eq.(1.12) and Eq.(1.20), we understand

that at each time step, βij acts as the ‘base stress tensor function’ (function of space)

for the grid-level SGS stress τ ∗ij , which is then obtained by weighting βij with (−CS).

Similarly, αij can be regarded as a ‘base stress tensor function’ for the test-grid level

SGS stress T ∗
ij at each time step. Both αij and βij are related to the filtered strain

rate tensor S̄ij . Extensive discussions on the integrity bases and invariants related to

the strain rate tensor, and the tensorial spaces for the Reynolds and SGS stresses,

can be found in references [109,139,157–162]. Recall that the tracefree Leonard stress

term L∗
ij in the Germano identity (Eq.(1.17)) can be approximated by Eq.(1.23) using

the SGS models given by Eq.(1.12) and (1.16). Equation (1.23) indicates that L∗
ij is

approximated using αij and βij by a linear weighting operation involving Cℵ
S (x,x0).

From the definition of M ′
ij , the following elegant constructive relation between Lproj∗

ij

and M ′
ij can be readily obtained:

Lproj∗
ij (x0) = −

∫ ∞

−∞
Cℵ

S(y,x0)M
′
ij(y,x0) · dy (5.11)

∀x0 ∈ Σ. From the point of view of approximation theory, the variational problem

defined previously can be equivalently expressed as follows: at a given location x0,

find Cℵ
S(x,x0) ∈ Υ for the projection of L∗

ij(x0) in the specified approximation stress

tensor space M0, i.e. Lproj∗
ij (x0) ∈ M0, such that the ‘error’ (Eij(x0,x0)) is orthogonal

to M0 (see Eq.(5.9)). Here, M0 is a local tensorial approximation space for the Leonard

stress at x0, constructed as

M0 = M0(x0)

=

{
Lappr∗

ij (x0)

∣∣∣∣Lappr∗
ij (x0) = −

∫ ∞

−∞
CS(y,x0)M

′
ij(y,x0)dy, ∀CS(x,x0) ∈ Υ,y ∈ Σ

}
(5.12)
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Obviously, Lappr∗
ij (x0), the element of the local tensorial approximation space for the

Leonard stress, is a functional of CS(y,x0) at the location x0 ∈ Σ, and the space M0 is

specific for x0. The above variational problem requires that Eij(x0,x0) be orthogonal

to any element in M0, which can be easily validated using Eq.(5.9) as follows:

Eij(x0,x0) · Lappr∗
ij (x0) = −

∫ ∞

−∞
CS(y,x0) · Eij(x0,x0) ·M ′

ij(y,x0) · dy ≡ 0 (5.13)

∀Lappr∗
ij (x0) ∈ M0.

Eq.(5.12) clearly shows an linear constructive relation between Lappr∗
ij (x0) and

M ′
ij , weighted by CS(y,x0) · dy in a 3-D continuous case. Considering the difference

in units between Lappr∗
ij (x0) and M ′

ij , M
′
ij can thus be understood as the ‘tensorial

intensity function’ for the local elementary approximation Leonard stress Lappr∗
ij (x0).

Since αij(x0) =
∫∞
−∞ αij(y)δD(x0,y)dy, the first term of M ′

ij , i.e. αij(y)δD(x0,y)

in Eq.(5.10), reflects the contribution of the local test-grid level stress (indicated by

αij) to the local value of Lappr∗
ij (x0) because of the sharp localization effect of the

Dirac delta function at x0. Similarly, the second term, βij(y)G(x0,y), reflects the

contribution of the grid-level stress (indicated by βij) at all locations to the local

value of Lappr∗
ij (x0) using the filter kernel function G(x0,y) as a weight at x0.

Since the reverse procedure from Eq.(5.8) to (5.5) also strictly holds, the OC

(Eq.(5.9)) is equivalent to the variational condition (Eq.(5.5)). In mathematics [163],

the variational condition (Eq.(5.5)) is regarded as a necessary condition for functional

minimization. However, in the following section, it will be proven that the variational

condition (Eq.(5.5)) and the OC (Eq.(5.9)) are not only necessary but also sufficient

for minimizing the local error functional Q.

5.2.2 Proof of Sufficiency

Solutions obtained from the variational condition (Eq.(5.5)) or the OC or DEC

(Eq.(5.9)), can be extremum functions, or non-extremum inflection or saddle ‘points’

(functions, actually) for the local error functional Q(CS(x0,x0)). To investigate the
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sufficient condition for the minimal Q, its second and higher order variations must

be considered. Assuming that Q[CS(x0,x0) + ηδCS(x0,x0)] is at least three times

differentiable with respect to η, where η is all sufficiently small numbers near 0, then

the following results for the 2nd and n-th order variations can be readily obtained

from their definitions [163]:

δ2Q(CS(x0,x0), ηδCS(x0,x0)) =
d2

dη2
Q(CS(x0,x0) + ηδCS(x0,x0))

∣∣∣∣
η=0

= 2δEijδEij ≥ 0

(5.14)

δnQ(CS(x0,x0), ηδCS(x0,x0)) =
dn

dηn
Q[CS(x0,x0) + ηδCS(x0,x0)]

∣∣∣∣
η=0

≡ 0 (5.15)

at any given location x0 and for n ≥ 3.

Suppose that the function Cℵ
S(x,x0) is a solution of the OC, which makes the

first order variation of Q vanish. The possibility for Cℵ
S (x,x0) to be an inflection

‘point’ can be excluded by condition (5.14), which does not allow the sign of δ2Q to

change at Cℵ
S(x,x0). It can be shown that the functional Q can be expanded using

its variations in the following manner [163]:

Q(Cℵ
S(x0,x0) + ηδCS(x0,x0)) =

3∑
n=0

ηn

n!
δnQ(Cℵ

S(x0,x0), δCS(x0,x0)) +R3(C
ℵ
S(x0,x0), δCS(x0,x0), η)

(5.16)

where R3 = R3(C
ℵ
S (x0,x0), δCS(x0,x0), η) is the truncation error, which is restricted

by

|R3| ≤ |η|3
3!

max
|ς|≤|η|

∣∣∣∣ d3

dς3
Q(Cℵ

S(x0,x0) + ςδCS(x0)) − δ3Q(Cℵ
S(x0,x0), δCS(x0,x0))

∣∣∣∣
(5.17)

∀ η and ς near zero. Since the third order derivative and variation vanish as shown

in Eq.(5.15), we know that |R3| ≡ 0. This result can also be understood in the

following intuitive way: from Eqs.(5.1) and (5.2), we understand that Q = EijEij is

a second order functional of CS(x,x0) and thus its third and higher order variations
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must vanish and |R3| ≡ 0. Considering that the first order variation vanishes, then

Eq.(5.16) can be simplified to

Q(Cℵ
S(x0,x0) + ηδCS(x0,x0)) = Q(Cℵ

S (x0,x0)) +
η2

2!
δ2Q(Cℵ

S(x0,x0), δCS(x0,x0))

(5.18)

Using (5.14), we obtain

Q(Cℵ
S(x0,x0) + ηδCS(x0,x0)) ≥ Q(Cℵ

S (x0,x0)) (5.19)

The above result clearly indicates that at any given location x0, C
ℵ
S (x,x0)

which satisfies the necessary condition will only allow Q to be locally minimal. Thus

the variational condition and its equivalent expression, i.e. the OC or DEC, are

not only necessary but also sufficient for minimizing the local error functional Q. The

possibility for Cℵ
S (x,x0) to be a saddle point has automatically been excluded, because

Eq.(5.19) prohibits
[
Q(Cℵ

S (x0,x0) + ηδCS(x0,x0)) − Q(Cℵ
S(x0,x0))

]
to change sign at

Cℵ
S(x,x0).

The principal result of subsections 5.2.1 and 5.2.2, i.e. the sufficient and neces-

sary condition in the form of the OC or DEC (Eq.(5.9)), for localizing the dynamic

Smagorinsky model can be briefly summarized by the following theorem:

Theorem: For the dynamic Smagorinsky SGS stress model, the local error density

functional Q at a given location x0, is minimum, if and only if EijM
′
ij = 0.

5.2.3 Theoretical Application of the OC

Integrating both sides of the OC in terms of y over the entire domain, results in

Eij(x0,x0) · [αij(x0) − β̃ij(x0)] = 0 (5.20)

∀x0 ∈ Σ. Applying the definition of Mij given in Eq.(1.26), the above relation

simplifies to

EijMij = 0 (5.21)
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which is the Integral form of the Orthogonal Condition (IOC) at any given location x0.

Mij is another frequently encountered tensor in the literature, which in view of the

previous discussion, can be explained in general terms as the difference between the

test-grid level SGS base stress and the filtered grid-level SGS base stress, i.e. αij−β̃ij .

Although an additional integration has been performed in obtaining Eq.(5.20) from

the OC, the result still retains some implications of the original variational problem,

which now requires the local error tensor Eij to be orthogonal to Mij at a given

location x0. An elegant linear constructive relation between M ′
ij and Mij can be

obtained from Eq.(5.10) as follows

Mij(x0) =

∫ ∞

−∞
M ′

ij dy (5.22)

at a given location x0. The application of the above equation will be explored in

subsection 5.2.3.1.

Substituting Eij as defined in Eq.(5.1) into the IOC, we obtain

L∗
ij(x0)Mij(x0) + αij(x0)Mij(x0)CS(x0,x0)

−Mij(x0)

∫ ∞

−∞
βij(y)CS(y,x0)G(x0,y)dy = 0

(5.23)

which is an integral equation that governs the optimal function Cℵ
S (x,x0) at a given

location x0. However, this is not a regular integral equation in that Cℵ
S(x,x0) can in

principle be different at every x0, which means that the integral equation needs to be

solved at all N3 discrete nodes for the independent optimal functions. In general, this

would be impractical for a numerical simulation. Fortunately, some useful special so-

lutions have been found. The solution to this integral system, Eq.(5.23), is obviously

non-unique, for it admits at least the following three useful special theoretical solu-

tions under different restrictions. However, a complete investigation of the properties

of the OC and IOC and their applications is beyond the scope of this dissertation.
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5.2.3.1 Restriction to Constant Distribution of Cℵ
S(x,x0)

If Cℵ
S(x,x0) ≡ Cℵ

S(x0,x0), i.e. Cℵ
S(x,x0) has a 3-D spatially constant distribution

with respect to x at each x0, {Cℵ
S} then becomes a set consisting of independent

constant functions. Thus Eq.(5.23) becomes

[L∗
ij(x0) +Mij(x0)C

ℵ
S(x0,x0)] ·Mij(x0) = 0 (5.24)

from which we can obtain

Cℵ
S(x0,x0) = − Mij(x0)Lij(x0)

Mij(x0)Mij(x0)
(5.25)

∀x0 ∈ Σ. Clearly, the above result obtained using the revised approach is the same as

the conventional DM formulation of Lilly [20], i.e. Eq.(1.27), except for the concep-

tual difference that here we are looking for an optimal coefficient set {Cℵ0
S } instead of

the conventional single optimal coefficient function Cℵ
S(x). However, this conceptual

difference does not result in any difference between Eq.(1.27) and Eq.(5.25) for calcu-

lating the value of the local DM coefficient. The constant functions are independent

(and can be different) at each different x0, such that {Cℵ0
S } can still yield a non-

constant optimal distribution of the model coefficient over the entire domain. Thus,

the conventional assumption of ISI is not the only way to obtain Lilly’s result. From

the above approach, it is further understood that Lilly’s result can be generalized as

a special solution of the IOC. The restriction condition of the new approach based

on the set {Cℵ0
S } is weaker than the conventional [19,20] assumption of ISI, and thus

provides a method for obtaining Lilly’s result in a mathematically consistent way.

This is due to the fact that in comparison with the conventional approach [19, 20]

for a single optimal function Cℵ
S(x), the new approach has the advantage of allowing

the freedom to choose an independent optimal function at each position to compose

{Cℵ0
S }.

An alternative consistent approach to obtain Lilly’s formulation can start from

the construction equation for Lproj∗
ij , i.e. Eq.(5.11). Under the restriction condi-
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tion considered, we know that CS(y,x0) is independent of y at a given location x0.

Therefore, using Eq.(5.22), Eq.(5.11) becomes

Lproj∗
ij (x0) = −Cℵ

S (x0,x0)Mij(x0) (5.26)

which has a specific meaning in physics, i.e. the projected Leonard stress Lproj∗
ij (x0)

can be generated from the tensor Mij(x0) using the coefficient −Cℵ
S (x0,x0) as a

weight. From the theory of approximation, an orthogonal relation must exist between

Eij and Lproj∗
ij (x0), i.e. Eij · Lproj∗

ij (x0) = 0, or

−
[
L∗

ij(x0) −Lproj∗
ij (x0)

]
· Cℵ

S(x0,x0)Mij(x0) = 0 (5.27)

The above equation yields two solutions, i.e. a trivial solution of Cℵ
S(x0,x0) ≡ 0, and

an orthogonal relation of [L∗
ij(x0)−Lproj∗

ij (x0)] ·Mij(x0) = 0 which upon substituting

Eq.(5.26) results in Eqs.(5.24) and Eq.(5.25), the revised conventional dynamic SGS

model of Lilly [20] proposed previously. Therefore, besides the general interpretation

given at the beginning of subsection 5.2.3, Mij(x0) can be further identified from

Eq.(5.26) as a ‘base stress tensor’ for the local elementary approximation Leonard

stress Lappr∗
ij (x0) in the specific case of the revised conventional dynamic SGS mod-

elling (Eq.(5.25)) considered. Therefore, under the restriction, the revised conven-

tional dynamic approach of Lilly [20] seeks Cℵ
S(x0,x0) to generate Lproj∗

ij (x0) in the

local tensorial approximation space constructed by

Mrev
L = Mrev

L (x0)

=
{
Lappr∗

ij (x0)
∣∣∣Lappr∗

ij (x0) = −CS(x0,x0)Mij(x0), ∀CS(x0,x0) ∈ R
} (5.28)

where R is the set of all real numbers. Clearly, Mrev
L ⊆ M0 at x0. It should be noted

that the above interpretation of Lilly’s tensorial approximation space for the Leonard

stress is mathematically consistent because Eq.(5.26) is obtained from Eq.(5.11) and

discussions were made locally for x0. However, if we use the original assumption of

ISI [19,20] and begin from Eq.(1.25), we can find the original approximation tensorial
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function space of Lilly’s approach [20] for the Leonard stress, following a similar

procedure of analysis, i.e.

Morig
L =

{
Lappr∗

ij (x)
∣∣∣Lappr∗

ij (x) = −CS(x)Mij(x), ∀CS(x) ∈ C(Σ), x ∈ Σ
}

(5.29)

where is C(Σ) represents the set of all continuous functions over the domain Σ. It is

easy to show that in this specific case of Lilly’s original approach [20], the orthogonal

relation is Eij(x)Mij(x) = 0, and similarly, Mij(x) serves as a ‘base stress tensor

function’ for Lappr∗
ij (x) weighted by −CS(x).

5.2.3.2 Restriction to Identical Distribution of Cℵ
S (x,x0)

(1) Picard’s Integral Equation

If Cℵ
S(x,x0) has the same 3-D spatial distribution for each x0, the elements of the

set {Cℵ
S} become identical, i.e. Cℵ

S(x,xa) ≡ Cℵ
S (x,xb), ∀x,xa and xb ∈Σ (xa 	= xb is

possible). This simplifies the problem to the traditional approach of searching for a

single optimal coefficient function Cℵ
S(x) over the entire domain, instead of a special

optimal function Cℵ
S(x,x0) for each x0. This is a desirable feature and Eq.(5.23)

becomes a regular integral equation, which is a Fredholm integral equation of the

third kind or Picard’s Integral Equation [46] (PIE), i.e.

L∗
ij(x)Mij(x) + αij(x)Mij(x)CS(x) −Mij(x)

∫ ∞

−∞
βij(y)CS(y)G(x,y)dy = 0 (5.30)

where the replacement of x0 by x is valid, since the equation holds ∀x0 ∈ Σ. In the

case of αij(x)Mij(x) 	= 0, this Fredholm integral equation of the third kind or the

PIE can be further rearranged into a Fredholm integral equation of the second kind:

f(x) = CS(x) +

∫ ∞

−∞
ψ(x,y)CS(y)dy (5.31)

where

f(x) = −L∗
ij(x)Mij(x)

αij(x)Mij(x)
(5.32)

74



and the non-symmetric kernel function is:

ψ(x,y) = −Mij(x)βij(y)

αij(x)Mij(x)
G(x,y) (5.33)

(2) Fredholm Integral Equation of the Second Kind of Ghosal et al.

The above integral equation was obtained using the IOC, which is different than the

Fredholm integral equation of the second kind obtained by Ghosal et al. [40]. The

fact that the result of Ghosal et al. [40] is also a special solution of the OC under the

condition of the identical distribution solution of Cℵ
S(x,x0) can be demonstrated as

follows. We have observed that the formulation of the OC is not symmetric in terms

of x0 and y. Under the restriction of identical distribution, Eij(x0,x0) can then be

reduced to Eij(x0) and the OC becomes integrable in terms of x0, and thus we obtain

∫ ∞

−∞
Eij(x0)αij(y)δD(x0,y)dx0 −

∫ ∞

−∞
Eij(x0)βij(y)G(x0,y)dx0 = 0 (5.34)

which can be further rearranged into Eq.(1.29), the result of Ghosal et al. [40] as

discussed previously.

Considering the definition of Eij , i.e. Eq.(1.22), we observe that Eq.(1.29)

has one extra integral operation compared with Eqs.(5.30) and (5.31). Thus, the

new Picard’s integral equation Eq.(5.30) proposed in this subsection is less costly in

computation than the conventional Fredholm integral equation of the second kind of

Ghosal et al. [40].

5.3 Results of Numerical Simulations

In the previous theoretical application of the OC, we obtained several modelling

formulations including the conventional results of Lilly [20] and Ghosal et al. [40], as

well as a new PIE (Eq.(5.30)). Since validations of those conventional models have

already been reported in the literature [19,20,36,38,40,49,116,137], we will focus on

the numerical validation of the new PIE in this study (although the DM of Lilly [20]
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is used for comparison). It should be noted that the main purpose for presenting the

formulation of the PIE in the previous section and its related numerical results in

this section, is to demonstrate one theoretical and practical application of the OC,

the major conclusion of this chapter.

5.3.1 An Efficient Solver for the Picard’s Integral Equation

Similar to the Fredholm integral equation of the second kind of Ghosal et al. [40], the

PIE only needs to be solved once at one time step for the entire domain. The difficulty

in solving this integral equation pertains to the 3-D convolution term, which involves

the unknown CS. Piomelli and Liu [49] observed that CS changes very slowly with

the advancement of time. Thus, the following explicit scheme for Eq.(5.30) could be

used to obtain an approximate solution:

Cnew
S (x) = −L∗

ij(x)Mij(x)

αij(x)Mij(x)
+

Mij(x)

αij(x)Mij(x)

∫ ∞

−∞
βij(y)Cold

S (y)G(x,y)dy = 0 (5.35)

Also since the PIE holds locally at any point, the above scheme may also be used

to perform a local iterative solution. However, instead of using this approximate

explicit scheme, a highly efficient direct implicit solver was developed to solve the

PIE following a similar procedure used in chapter 3 or Ref. [164]. By substituting the

2nd order accurate discrete Gaussian filter of Sagaut and Grohens [35], i.e. Eqs.(2.12)

and (2.14) into Eq.(5.30) and averaging the result in the homogeneous plane, the

following discrete system can be obtained:{
〈αmnMmn〉p − a0

3
〈Mmnβmn〉p

− 1

3

1∑
q=−1

aq

[〈Mmnβ
I+q,J,K
mn 〉p + 〈Mmnβ

I,J,K+q
mn 〉p

]}
CJ

S

− a−1

3
〈Mmnβ

I,J−1,K
mn 〉pCJ−1

S − a1

3
〈Mmnβ

I,J+1,K
mn 〉pCJ+1

S + 〈MmnL∗
mn〉p

= 0

(5.36)
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where 〈·〉p =
∫∫ ·dx1dx3 represents the plane integral operation, and CJ

S is the model

coefficient for the J-th homogeneous plane. The above equation is a 1-D tri-diagonal

banded linear system for CJ
S , i.e.

1∑
q=−1

AJ
qC

J+q
S + SJ = 0 (5.37)

which can be readily solved using the TDMA. Here, AJ
q and SJ represent the coeffi-

cients and source term contained in Eq.(5.36), respectively. The boundary condition

is set as CS = 0 at the wall. From a physical point of view, CS influences the mag-

nitude of the SGS viscosity (νsgs = CS∆̄2|S̄|). Therefore, this boundary condition

is compatible with the notion that viscous shear is dominant in the vicinity of the

wall. Since the computational cost of the TDMA is trivial, the above proposed di-

rect implicit solver is expected to give both high efficiency and accuracy. Although

a relative computational cost for different dynamic models is difficult to quantify in

a precise manner due to its dependence on the computer configuration and details

of the code as indicated earlier, it is meaningful to evaluate the computational cost

of the proposed PIE in comparison with those for the standard DM of Lilly [20] and

the conventional constant-parameter Smagorinsky model (SM) [13]. The comparative

study was performed with the same code structure, and initial velocity and pressure

fields. The cost was measured using the averaged computer Time for each Time Step

(T/TS) relative to that of the DM. An ALC PC (Pentium IV-2.66GHz) was used

to perform the computations for the relative cost analysis. Table 5.1 indicates that

the T/TS for the SM is only about 54—63% that of the standard DM, while the

proposed PIE generally costs only 2—4% more in terms of T/TS than the standard

DM, indicating that the additional cost is negligible.

It should be pointed out that since this highly efficient implicit solver takes

advantage of the existence of a homogeneous plane, it is not applicable to a general

case where a 2-D homogeneous plane does not exist. For such a general 3-D non-

homogeneous case, the discrete filter of Sagaut and Grohens [35] can still be used for

discretizing the PIE (Eq.(5.30)) which then becomes a discrete Poisson type equation
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TABLE 5.1: Absolute and relative computational cost (Re = 2600)

Grid 663 nodes 483 nodes 343 nodes

Cost T/TS (s) Ratio T/TS (s) Ratio T/TS (s) Ratio

PIE 43.1 1.04 16.0 1.03 4.4 1.02

DM 41.5 1 15.6 1 4.3 1

SM 22.5 0.54 8.7 0.56 2.7 0.63

involving a 7-node stencil (one central node and one neighbor node on each side). As

opposed to solving such a discrete Poisson type equation, another option for obtaining

a localized solution in the general case is to implement a local iterative solver (e.g.

Eq.(5.35)) similar to the preconditioning iterative scheme used by Ghosal et al. [40].

Both the discrete Poisson type solution scheme and the iterative solution scheme

have the advantage of being applicable to a general 3-D non-homogeneous flow as

well as retaining the concept of a strictly local solution for the PIE. However, they

are anticipated to be computationally much more expensive.

5.3.2 Basic Flow Features and Discussion

In this subsection, the features of turbulent Couette flow predicted by the LES us-

ing the proposed localization model will be presented. Figure 5.1 shows the non-

dimensional velocity profiles obtained for the three Reynolds numbers of 2600, 4762

and 7050. Although the differences in the velocity profiles for the Reynolds number

of Re = 2600 are very small, the LES result is closer to the DNS result of Bech et

al. [124] than the experimental data of Aydin and Leutheusser [120]. As expected,

the velocity profile at Re = 7050 has a narrower wall region than those at Re = 4762

and Re = 2600. The simulation data presented in Fig. 5.1 are replotted in Fig. 5.2 us-

ing wall coordinates. The prediction for the near-wall velocity profile generally agrees

with the experimental results of Robertson and Johnson [118], Bech et al. [124], Aydin

and Leutheusser [121], as well as the classical two layer wall law of von Kármán [140]
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FIGURE 5.1: Mean non-dimensional velocity profile (663 nodes).

FIGURE 5.2: Mean velocity profile in wall coordinates (663 nodes).

given by Eq.(3.7).

Figure 5.3(a)–(c) illustrates the wall-normal distributions of the three resolved

turbulence intensity components for three different Reynolds numbers, respectively.

The peak value for 〈ū′′21 〉1/2/uτ appears at x+
2 = 13 for Re = 2600, x+

2 = 15 for

Re = 4762 and x+
2 = 16 for Re = 7050. These agree approximately with the locations

x+
2 = 12 for Re = 2600 reported by Bech et al. [124], x+

2 = 11 ∼ 16 for Re = 2600 and

4762 reported by Aydin and Leutheusser [121], and x+
2 ≈ 16 for Re = 7050 reported

by Robertson and Johnson [118]. Figure 5.3 also indicates that the magnitudes of the

peak values of the spanwise and wall-normal components of the turbulence intensities
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FIGURE 5.3: Averaged wall-normal distribution of resolved turbulence intensities
(663 nodes).
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FIGURE 5.4: Averaged wall-normal profile of resolved Reynolds shear stress (663

nodes).
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FIGURE 5.5: Variation of the skin-friction coefficient Cf with Reynolds number (663

nodes).

predicted using the PIE are somewhat lower than the DNS results (Re = 2600) of

Bech et al. [124], while the streamwise component is slightly higher than those for

the DNS and experimental results.

The viscous shear stress dominates in the near-wall region, while the resolved

Reynolds shear stress dominates in the core of the channel. As expected, in Fig. 5.4,

the resolved value of −〈ū′′1ū2〉/u2
τ is flat and close to unity in the center of the channel.
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TABLE 5.2: Near-wall cubic behavior of the resolved Reynolds shear stress (Re =
1500).

x+
2 −〈ū′′1ū2〉/u2

τ (−〈ū′′1ū2〉/u2
τ)/y

+3 × 103

0.822 4.11 × 10−4 0.740

2.46 1.25 × 10−2 0.834

4.11 5.84 × 10−1 0.842

5.75 1.37 × 10−1 0.719

7.39 2.36 × 10−1 0.584

9.04 3.38 × 10−1 0.459

10.7 4.35 × 10−1 0.356

Near the wall, the resolved Reynolds shear stress varies following a ‘cubic law’ as

indicated previously in chapter 3. In the near-wall region, the resolved Reynolds

shear stress can be approximated as

−〈ū′′1ū2〉/u2
τ = A · (x+

2 )3 (5.38)

Monin and Yaglom [3] estimated the value of A to be about 0.001. Table 5.2 indicates

that A ranges from 0.00074 to 0.00084 in the viscous sublayer for x+
2 ≤ 5, which values

are close to those reported by Kim et al. [135].

Figure 5.5 compares the predicted values for the skin friction coefficient with

those of the two empirical friction laws for turbulent Couette flow, i.e. friction law of

Aydin and Leutheusser [121] given by Eq.(3.5) and that of Robertson and Johnson

[118] in the following form:

Cf =
0.072

4 · [log(2Re)]2 (5.39)

Figure 5.5 shows that the friction coefficient obtained from the LES results generally

agrees with both Eqs.(5.39) and (3.5), although it tends to be somewhat lower at

higher Reynolds numbers with a maximum deviation of approximately 8%.
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5.3.3 Rate of SGS TKE Production, Modulus of Filtered

Strain Rate Tensor, Model Coefficient and SGS Vis-

cosity

In order to understand the characteristics of the model coefficient CS and SGS vis-

cosity νsgs, we need first to discuss the SGS TKE production rate Pr, resolved viscous

dissipation rate εr and modulus of the filtered strain rate tensor |S̄|.

Figure 5.6 shows the mean distribution of Pr along the wall-normal direction in

terms of both dimensional and nondimensional values. We observe that Pr exhibits

a general anisotropy due to the restriction by the wall: it is lower in the central

region and peaks in the near-wall region around x+
2 = 13. From the dimensional

diagram, we observe that the profile of Pr is sensitive to the Reynolds number, i.e. the

absolute value of Pr increases dramatically as the Reynolds number increases. This

is explained by the fact that for the same discrete grid system, a higher Reynolds

number turbulent flow has ‘more’ net TKE to be transferred from the resolved to

subgrid scales of motions. Figure 5.7 demonstrates the grid effect on the Pr term.

Clearly, as the grid becomes coarser, the nondimensional value of Pr increases in the

boundary layer region, especially around the peak location.

Equation (3.9) is a general definition for Pr, which is applicable to any SGS

constitutive relations. In general, e.g. for the dynamic two-parameter mixed models

[44,48,50,143,148,155] and quadratic nonlinear dynamic models [161,162], the value

of Pr is decided by both the magnitudes of τij , S̄ij (and other terms), as well as their

relative tensorial geometrical relation. The importance of the tensorial geometry of

the negative SGS stress and filtered strain rate tensors has lately been indicated

by several studies based on a priori approaches [29, 70, 99, 100, 165] and a posteriori

approaches [101–107]. Since −τij is not necessarily aligned with S̄ij in the general

case, various possibilities exist, one of which is the specific theoretical situation that

an instantaneous orthogonality is allowed to exist between the −τij and S̄ij such that

their production is trivial, i.e. Pr = −τ ∗ij S̄ij = 0 (although the value of |τij| and |S̄|
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FIGURE 5.6: Averaged rate of SGS TKE production in the wall-normal direction
(663 nodes).

FIGURE 5.7: Grid effect on the rate of SGS TKE production (Re = 2600).

may be very large). For the Smagorinsky type models, the case that Pr = 0 due to

such an orthogonality never exists, since −τij is always aligned with S̄ij . Furthermore,

for the Smagorinsky type models, if Pr = 0 and ∆̄ 	= 0 then at least one of the two

following conditions must be true: CS = 0 and/or |S̄| = 0. In general, a higher Pr

is not a sufficient condition for a larger value of CS or νsgs, because the value of Pr

is decided not only by the relative tensorial magnitudes of τij and S̄ij but also by

the relative geometry between them as well. Notwithstanding the general case, in
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the particular case of the Smagorinsky type models, Pr takes the following form on

substituting Eq.(1.12):

Pr = νsgs|S̄|2 = CS∆̄2|S̄|3 (5.40)

Thus, for a particular turbulent flow with the Reynolds number specified, Pr =

Pr(νsgs, |S̄|) = Pr(CS, ∆̄, |S̄|) when a Smagorinsky constitutive relation is adopted

for the SGS model. From previous analysis, we understand that a higher Reynolds

number corresponds to a higher level of Pr. While from Eq.(5.40), it is understood

that a higher level of Pr does not necessarily correspond to larger values of CS or νsgs,

because the parameter |S̄| is also involved which responds to the Reynolds number

independently.

The viscous dissipation rate at the filtered scale defined by Eq.(3.10) can be

rearranged into

εr = 2νS̄ijS̄ij = ν|S̄|2 (5.41)

which indicates that εr ∝ |S̄|2, i.e. εr is an indicator for the magnitude of the filtered

strain rate tensor |S̄|. Figures 5.8 and 5.9 plot the dimensional and non-dimensional

profiles of the resolved viscous dissipation rate εr in the wall-normal direction for the

entire channel and the core region. From the dimensional profiles, it is observed that

both εr and S̄ increase with the Reynolds number. As shown in both the dimensional

and non-dimensional diagrams, εr increases drastically as the wall is approached

especially within x+
2 < 30. This also indicates a strong anisotropic distribution of the

modulus of the filtered strain rate tensor |S̄| along the wall-normal direction. The

anisotropy of |S̄| is due to the behavior of the dominant velocity gradient component

ū1,2, whose value changes drastically in the near wall region and averagely reaches a

maximum at the wall.

Figure 5.10 illustrates the mean distribution of the proposed model coefficient

CS along the wall-normal direction in comparison with those calculated using the

conventional DM [20] and SM [13]. Figure 5.11 demonstrates the grid scale effect

on the wall-normal distribution of the model coefficient calculated using the PIE.

C
1/2
S instead of CS was used in Figs. 5.10 and 5.11, because the conventional SM [13]
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FIGURE 5.8: Resolved viscous dissipation in the wall-normal direction (663 nodes).

FIGURE 5.9: Resolved viscous dissipation rate in the core region (663 nodes).

uses C2
S (instead of CS) to model the SGS stress tensor in Eq.(1.12). As shown in

Fig. 5.10, the value of the Smagorinsky constant for the SM typically [1, 10, 139]

ranges from 0.065 to 0.12, however, the C
1/2
S value for the PIE ranges only from 0.014

(Re = 7050) to 0.026 (Re = 2600) in the core region. The model coefficient profile for

both the DM and PIE vanishes at the wall, which is due to the requirement that the

SGS viscosity must vanish at the wall (νsgs|x+
2 =0 ≡ 0). This is intrinsically different

than the approach of the SM, in which case this physical requirement is forced to

be realized by an ad hoc geometric damping function instead of the model itself, for
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FIGURE 5.10: Mean distribution of the model coefficient in the wall-normal direction
(663 nodes).

FIGURE 5.11: Grid effect on model coefficient (Re = 2600).

instance [38], d(x+
2 ) = [1 − exp(−x+

2
3
/253)]. Also, as demonstrated in Fig. 5.10, for

the three Reynolds numbers tested, the value of C
1/2
S for the PIE is about 30% that

of the DM, although both the DM and PIE are dynamic SGS models based on the

same Smagorinsky constitutive relation. Furthermore, it is observed from Fig. 5.10

that as the Reynolds number increases, the value of CS decreases for both the PIE

and DM, which confirms our previous analysis that for the dynamic Smagorinsky

model, a higher Reynolds number is not necessarily linked to a larger CS because of
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FIGURE 5.12: Mean SGS viscosity profile in the wall-normal direction (663 nodes).

FIGURE 5.13: Grid effect on SGS viscosity (Re = 2600).

the involvement of |S̄| which is a function of Re (see Eq.(5.41) and Figs. 5.8 and 5.9).

Figure 5.12 demonstrates that as the Reynolds number increases, the profile

of the SGS viscosity νsgs increases only slightly in the buffer region, which is in

contrast to the large change in the CS profile discussed in the previous paragraph.

The explanation lies in the definition of νsgs, which indicates that for any particular

instantaneous flow field (Re must be specified), νsgs is a function of the grid-level filter

size, CS and |S̄|, i.e. νsgs = νsgs(∆̄, CS, |S̄|). Thus, it is clear that a larger value of νsgs

does not necessarily correspond to a large value of CS due to the involvement of |S̄| (if
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∆̄ is fixed). In fact, from Fig. 5.8 and 5.9, we understand that |S̄| increases drastically

with Re, which explains the difference between the Reynolds number effects on CS

and νsgs. Figure 5.12 indicates that the buffer region (especially around x+
2 ≈ 30)

responds to the Reynolds number more actively than other parts of the flow in terms

of νsgs. Such an anisotropic behavior of νsgs is consistent with its definition (Eq.(1.13))

and the near-wall anisotropic effect of |S̄| and CS as illustrated in Figs. 5.8 and 5.10,

respectively. Figure 5.13 indicates that the buffer region also responds to the grid

scale more sensitively than other regions in terms of the value of νsgs.

Finally, we briefly comment on the non-dimensionalization method for the SGS

viscosity used in this research. From the Eqs.(5.41) and (5.40), we understand that

νsgs/ν has a special meaning unique for the Smagorinsky constitutive relation: the

ratio νsgs/ν actually describes the relative magnitudes of the two sinks for the TKE for

the filtered motions, i.e. Pr/εr ≡ νsgs/ν. Therefore, it is understood that the two non-

dimensional parameters, i.e. Pr/εr used previously in Fig. 3.12 (for demonstrating the

ILDM and DM) and νsgs/ν used currently in Figs. 5.12 and 5.13 (for demonstrating

the PIE and DM) are equivalent.

5.4 Conclusions

This chapter provides a consistent mathematical treatment for localizing the coef-

ficient CS for the dynamic Smagorinsky SGS stress model, and also revisits the

Smagorinsky relation in the concept of functional variation and function approxi-

mation. In contrast to the approach of Ghosal et al. [40], the local error density

functional Q has been successfully minimized without resorting to a global integra-

tion. The properties of the variations of the local error functional at different orders

have been examined, and the possibilities of the non-extremum inflection and saddle

points have been strictly excluded from the solution set of optimization. A theo-

rem on the sufficient and necessary condition for localizing the dynamic Smagorinsky

model using functional variational theory has been obtained, which is in the form of
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an orthogonal condition (OC) and controls the localization model coefficient for the

dynamic Smagorinsky SGS model. The OC is a useful tool in dynamic SGS modelling

optimization, which unifies some conventional modelling formulations as its special

theoretical solutions under different restrictions. These conventional approaches in-

clude the dynamic model of Germano et al. [19] and Lilly [20], and the Fredholm

integral equation of the second kind (FIE2) [40].

From the integral form of the OC (IOC), a new Fredholm integral equation of

the third kind or Picard’s integral equation (PIE) has also been derived, which is

necessary to make the local error density Q minimum. Similar to the FIE2 [40], the

obtained PIE holds locally at any point and needs to be solved only once for the entire

domain. Further, the obtained PIE is more desirable in terms of the computational

efficiency since it has one less convolution operation than the FIE2 introduced earlier

by Ghosal et al. [40].

For the purpose of demonstrating the theoretical potential of the OC as well as

the possibility of applying it in practice, numerical tests based on the PIE have been

performed using turbulent Couette flow. Prototypical features of near-wall turbulent

flow have been obtained and compared with the experimental and DNS results of

other researchers, including the existence of a logarithmic mean velocity profile, the

characteristic anisotropic wall-normal distribution of the resolved turbulent intensi-

ties, and a near-wall cubic behavior for the resolved Reynolds shear stress component.

In order to solve the PIE effectively, a direct implicit solution scheme with an addi-

tional computational cost of less than 4% compared to the DM, has been developed

by using the discrete Gaussian filter of Sagaut and Grohens [35]. Such an efficient im-

plicit solution scheme for the PIE holds when it is acceptable to assume homogeneity

in planes parallel to the walls. It should be noted that as the necessary and sufficient

condition for localization, the OC has many theoretical applications, and the PIE is

only one of its derivatives.

Physical meanings for such grid and test-grid level tensors as αij, βij, Mij , M
′
ij ,

Lappr∗
ij and Lproj∗

ij have been proposed by identifying their role in various constitutive
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and constructive relations. The construction of the tensorial approximation space

for the projection of the Leonard stress has also been discussed, including the tenso-

rial approximation space of Lilly’s original [20] approach Morig
L , that of the revised

approach of Lilly Mrev
L , and that of the general localization approach M0. These

tensorial approximation spaces for the Leonard stress are essential to the optimiza-

tion methods adopted for deriving the dynamic localization models using the local

minimal residual of the Germano identity as the criterion.

For the Smagorinsky constitutive relation, the modulus of the filtered strain rate

tensor |S̄| plays the key role in determining the relative magnitudes of the SGS stress

τij , SGS TKE production rate Pr, SGS viscosity νsgs, and model coefficient CS. The

value of |S̄| (indicated by the resolved viscous dissipation rate εr) changes dramatically

with Reynolds number, especially within the near-wall region for x+
2 < 30. Given that

all the other test conditions are the same, the mean rate of SGS TKE production Pr

increases as the Reynolds number increases, indicating a larger net transfer of TKE

between the filtered and subgrid scales of motions. From the definition of the SGS

viscosity, it is understood that a large value of νsgs does not of itself require a large

value of CS because of the role of |S̄|. For a specific flow (with the grid-level filter

and Re specified), Pr changes with CS and |S̄|3, or with νsgs and |S̄|2, and therefore

due to the involvement of |S̄|, a higher level of Pr does not necessarily imply a higher

level of CS or νsgs, although it is observed from the numerical simulation that it is

true that νsgs increases slightly with Re (and thus with the level of Pr) in the buffer

region.

In general, this chapter attempts to investigate the properties of the localiza-

tion SGS stress model within the framework of the Smagorinsky constitutive relation.

An extensive discussion of this topic is always useful, because so far the (dynamic)

Smagorinsky type models are still the most popular in the LES community. How-

ever, it should be indicated that many drawbacks of the (dynamic) Smagorinsky type

models originate from its overly simplified constitutive relation based on the Boussi-

nesq hypothesis. An increasing body of research [29, 99, 109, 158–162] suggests that

instead of performing localization within the simple Smagorinsky constitutive frame-
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work, which cannot correctly reflect the tensorial geometry of the SGS stress and

usually results in a formulation that is relatively difficult to solve (e.g. an integral

equation), improved methods should consider non-Smagorinsky constitutive relations

in the dynamic modelling procedure [44,48,50,143,148,155,160–162]. The exploration

of this topic will be continued in the next three chapters.
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Chapter 6

A Novel Dynamic Nonlinear Subgrid

Scale Stress Model

6.1 Introduction

In chapter 1, the classical Boussinesq hypothesis and its application in LES was briefly

reviewed. The limitations of the conventional Smagorinsky constitutive relation were

also discussed. For instance, since the Smagorinsky type models (e.g. DM and ILDM)

are based on the Boussinesq hypothesis, a strict alignment between the principal axes

of −τij and S̄ij is required, which makes it impossible to mimic a realistic physical

process that is strongly based on tensorial alignments, e.g. backscatter. In this

chapter, we seek an improved dynamic SGS stress modelling approach based on an

explicit nonlinear tensorial polynomial constitutive relation.

The idea of using an explicit nonlinear tensorial polynomial constitutive relation

to connect the velocity gradient tensor and the unknown stress tensor to be modelled

was originally proposed by Rivlin [166] in the area of non-Newtonian fluid mechanics.

He also suggested that the normal components of the Reynolds stress of Newtonian

fluids in turbulent flows may show a visco-elastic effect, in which case the fluids be-

have like a classical non-Newtonian medium undergoing a homogeneous deformation.

Based on analogies with non-Newtonian fluids, the primary framework of a nonlinear

constitutive relation for closing the Reynolds stress model in RANS was systemat-

ically set up by Lumley [158]. Using the theory of invariants (see Spencer [157]),
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Pope [159] formulated a general expression for the Reynolds stress tensor relying

on ten independent tensorial bases and five invariants derived from the full velocity

gradient. Pope’s pioneering general effective-viscosity hypothesis was only validated

using a 2-D turbulent flow due to the complexity of the algebra involved. The exten-

sion of the modelling formulation from 2-D to 3-D turbulence was later accomplished

by Taulbee [167], and Gatski and Speziale [109]. In the RANS literature, different

numbers of nonlinear terms have been included in the explicit nonlinear tensorial poly-

nomial constitutive relation. For instance, the nonlinear models of Yoshizawa [168],

Horiuti [169], Speziale [108], Mompean [170], Speziale and Xu [171], and Rubinstein

and Barton [172] are all quadratic, while the nonlinear models tested by Craft et

al. [173] and Wall and Taulbee [174] take cubic and fifth order forms, respectively.

On observing the deficiencies of the linear (dynamic) Smagorinsky type models

mentioned previously, nonlinear SGS modelling approaches were introduced into the

LES community. Earlier works on the nonlinear model include the scale-similarity

and related mixed models [18, 23, 175]. More related to this research, the explicit

nonlinear tensorial polynomial stress modelling approach proposed by Rivlin [166],

Lumley [158] and Pope [159] was implemented into LES in 1992 by Lund and Novikov

[160], Meneveau et al. [176], and Wong [161]. The nonlinear model proposed by

Lund and Novikov [160] takes a cubic form, which has five model coefficients that

need to be determined. They evaluated their model coefficients using DNS data for

homogeneous isotropic turbulence. The criterion for the least squares optimization

used for determining the five coefficients in their a priori examination was the minimal

norm of the difference between the SGS stress extracted from DNS data and that

predicted by the model itself. This criterion is different than that used in the dynamic

modelling procedure of Lilly [20], which is the minimal norm of the Germano identity

residual based on a second test-grid filtering process [19]. Using a DNS database for

isotropic turbulence, homogeneous shear flow and channel flow, Meneveau et al. [176]

investigated the correlation between the SGS stress tensor, and the resolved strain

rate and rotation rate tensors. Improved nonlinear models (including that of Lund

and Novikov [160]) that parameterize the SGS stresses have been investigated using
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a special statistical method, i.e. the projection pursuit regression method. Based on

Holographic PIV (HPIV) measurements of a turbulent duct flow, Tao et al. [29, 99]

analyzed the geometrical relations among the SGS stress tensor, strain rate tensor and

vorticity vector. Horiuti [100] further examined the nonlinear constituent terms in

regard to their tensorial principal alignment, and also their roles in vortex stretching

and backscatter phenomena. Horiuti’s research was based on a priori study using DNS

data for incompressible homogeneous isotropic turbulence. Wong [161] adopted the

quadratic constitutive relation of Speziale [108, 109] and implemented the dynamic

procedure into the nonlinear SGS stress model that could be used for a posteriori

studies. Wong’s approach is characterized by use of the SGS TKE equation, two model

coefficients, and lumping the two non-Smagorinsky nonlinear terms together (linearly)

with equal weights. Canuto and Cheng [139] evaluated the value of the Smagorinsky

model coefficient using the framework of a full nonlinear modelling approach proposed

by Pope [159]. Kosović [162] also implemented the quadratic nonlinear constitutive

relation of Speziale [108, 109] into LES. The three model coefficients in Kosović’s

approach were determined analytically using the assumption of isotropic equilibrium

turbulence and Kolmogorov’s −5/3 law for the inertial subrange.

One of the major objectives of this chapter is to propose a Dynamic Nonlinear

SGS stress Model (DNM) which is able to eliminate the drawbacks of the (dynamic)

Smagorinsky type models including the DM and ILDM which have been investigated

in previous chapters. To be specific, it should allow the constituent terms the flexibil-

ity for self-calibration of their coefficients, admit various tensorial orientations of the

SGS stress tensor, reflect both forward and backward TKE scattering processes be-

tween the resolved and unresolved scales of motions, and exhibit instantaneous local

stability which removes the necessity for the conventional plane averaging technique.

The remainder of the chapter is organized in the following way: the model will be

formulated in section 6.2, results of numerical validations of the DNM using turbulent

Couette flow will be presented in section 6.3, the geometrical characteristics of the

DNM will be investigated in section 6.4, the properties of the tensorial eigensystem

of the DNM will be studied in section 6.5, features of SGS TKE transfer between
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filtered and subgrid scales including backscatter will be analyzed in section 6.6, and

finally the conclusions for this chapter will be summarized in section 6.7.

6.2 A New Dynamic Nonlinear Model

Guided by the Smagorinsky model, one may assume that the generic SGS stress τij

is a function of the resolved velocity gradient, the cutoff filter size ∆̄ and the unit

tensor δij , which is [10]

τ ∗ij = τij − δij
3
τkk = f(S̄ij , Ω̄ij, δij , ∆̄) (6.1)

where S̄ij and Ω̄ij are the resolved strain rate and rotation rate tensors, which repre-

sent the symmetric and antisymmetric parts of the filtered velocity gradient, respec-

tively:

ūi,j =
1

2
(ūi,j + ūj,i) +

1

2
(ūi,j − ūj,i)

def
= S̄ij + Ω̄ij

(6.2)

The resolved vorticity vector is defined as ω̄i = εijkūk,j = εijkΩ̄kj, where εijk is the

Levi-Civita permutation symbol. For brevity of expression, the following notations

related to tensorial contractions are introduced [10]:

SΩ = S̄ikΩ̄kj

S2 = S̄ikS̄kj

tr(SΩ2) = S̄ijΩ̄jkΩ̄ki

(6.3)

A general explicit expression for Eq.(6.1) is a tensorial polynomial with an in-

finite number of tensors involving S and Ω of the form Sm1Ωn1Sm2Ωn2 · · · , where

mi and ni are positive numbers [160]. However, in accordance with the theory of

invariants (Rivlin [166], Spencer [157]) and the Cayley-Hamilton theorem, Pope [159]

obtained a general constitutive relation for closure of the Reynolds stress in RANS,
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which has only a finite number of tensorial terms. Given the constitutive relation

(6.1), Lund and Novikov [160] introduced an integrity set which has eleven indepen-

dent symmetric tensorial elements related to the products of S and Ω

T(1) = S T(2) = S2

T(3) = Ω2 T(4) = SΩ − ΩS

T(5) = Id T(6) = S2Ω − ΩS2

T(7) = SΩ2 + Ω2S T(8) = ΩSΩ2 − Ω2SΩ

T(9) = SΩS2 − S2ΩS T(10) = S2Ω2 + Ω2S2

T(11) = ΩS2Ω2 − Ω2S2Ω

(6.4)

and integrity bases consisting of the six associated irreducible tensorial invariants

I1 = tr (S2) I2 = tr (Ω2)

I3 = tr (S3) I4 = tr (SΩ2)

I5 = tr (S2Ω2) I6 = tr (S2Ω2SΩ)

(6.5)

where Id is the identity tensor. It should be noted that I6 can be expressed using

the other five invariants, however, with its sign undetermined. Thus, one can also

argue in the mathematics that only the first five invariants are genuinely irreducible,

as is commonly adopted in the RANS community (see Pope [32], Gatski and Speziale

[109], and Wall and Taulbee [174]). In any event, the SGS stress tensor τij can be

linearly expressed using the above independent tensors, which is an explicit tensorial

polynomial of S and Ω:

τij =

11∑
k=1

G(k)T(k) (6.6)

where the scalar coefficients Gk are functions of the six irreducible tensorial invari-

ants [159]. In both the RANS and LES communities, Eq.(6.6) with all eleven tensors

is not used due to the demanding computational cost, complexity of the associated

algorithm and undesirable performance of some tensorial terms in simulations. A

popular approach is to use the first five tensors to construct a nonlinear quadratic

constitutive relation. However, Speziale [108,109,177] eliminated terms related to T(3)
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from the quadratic formulation because it yielded an erroneous prediction for isotropic

turbulence subjected to a solid body rotation in a RANS approach. Speziale’s ob-

servation [108, 109] has been utilized by Wong [161] and Kosović [162] to construct

nonlinear SGS stress models for LES as noted previously. Also in the tests of Lund

and Novikov [160], for their ten different SGS models constructed by using differ-

ent combinations of independent tensors, the five worst scenarios all included T(3)

and the five best scenarios were generally not related to this term, with only one

exception. For these reasons, the tensor T(3) was not considered in the constitu-

tive relation adopted in this research and instead Speziale’s quadratic formulation

of [108,109,161,162] was employed. Thus, for the dynamic SGS modelling approach,

the deviatoric grid-level and test-grid level stress tensors are proposed, respectively,

to be

τ ∗ij = −CSβij − CWγij − CNηij (6.7)

and

T ∗
ij = −CSαij − CWλij − CNζij (6.8)

where the tensors αij and βij have been defined previously in Eqs.(1.19) and (1.20),

respectively, and the new tensorial notations appearing in the above equations are

γij = 2∆̄2(S̄ikΩ̄kj − Ω̄ikS̄kj)

λij = 2 ˜̄∆2( ˜̄Sik
˜̄Ωkj − ˜̄Ωik

˜̄Skj)

ηij = 4∆̄2(S̄ikS̄kj − 1

3
S̄mnS̄nmδij)

ζij = 4 ˜̄∆2( ˜̄Sik
˜̄Skj − 1

3
˜̄Smn

˜̄Snmδij)

(6.9)

By minimizing the modulus of the Germano identity using the least squares

approach (see Appendix A), a third order quadratic optimal DNM can be obtained


MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

 ·


CS

CW

CN

 = −


L∗

ijMij

L∗
ijWij

L∗
ijNij

 (6.10)
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or AC = B for brevity. Here, Wij = λij − γ̃ij and Nij = ζij − η̃ij are two differential

tensorial functions. By comparing the above model formulation with the conven-

tional DM formulation (Eq.(1.27)) of Lilly [20], we understand from the block matrix

decomposition and multiplication shown in Eq.(6.10) that the conventional DM of

Lilly [20] is the special case of the 1st order approximation for this 3rd order DNM.

6.3 Analysis of Numerical Results

Since a SGS model is usually applied locally at each node at every time step, its

efficiency directly affects the general computational cost and practicability. A com-

parison has been made to study the relative computational cost among the pro-

posed DNM, the standard DM of Lilly [20], and the conventional constant-parameter

Smagorinsky model (SM) [13]. The comparative study was performed with the same

code structure, and initial velocity and pressure fields. The cost was measured us-

ing the averaged computer Time for each Time Step (T/TS) relative to that of the

conventional DM. An ALC PC (Pentium IV-2.66GHz) was used to perform the com-

putations for the relative cost analysis. Table 6.1 indicates that the T/TS for the

SM is only about 54—63% that of the standard DM, while the proposed DNM gen-

erally costs 23—30% more in terms of T/TS than the standard DM, which is not a

substantial increase.

TABLE 6.1: Absolute and relative computational cost (Re = 2600)

Grid 663 nodes 483 nodes 343 nodes

Cost T/TS (s) Ratio T/TS (s) Ratio T/TS (s) Ratio

DNM 54.0 1.30 19.7 1.26 5.3 1.23

DM 41.5 1 15.6 1 4.3 1

SM 22.5 0.54 8.7 0.56 2.7 0.63
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6.3.1 Basic Features of the Flow

In presenting the numerical results, the discussion will focus on those aspects that

feature the proposed DNM and a posteriori research methodology regarding tensorial

geometry, i.e. the characteristics of the DNM coefficients, local singularity condition

of the DNM, relative tensorial geometric relation between the SGS stress and its

constituent terms, and backscatter of TKE from the unresolved to the resolved scales

of motions. The predicted features of the mean large scale velocity field for turbulent

Couette flow only serve to validate the performance of the DNM, and are presented

in the remainder of this subsection.

Figures 6.1 and 6.2 show the mean velocity profiles for two different Reynolds

numbers using wall coordinates. As shown in the figures, the velocity profiles pre-

dicted by the DNM agree well with those predicted using the conventional DM [20],

the experimental results of Aydin and Leutheusser [121], DNS results of Bech et

al. [124], and the classical two-layer wall-law of von Kármán [140], i.e. Eq.(3.7). As

shown in Fig. 6.1, the DNM is generally insensitive to changes in grid size for the

three different grids tested in terms of the velocity profile. Figures 6.3 and 6.4 com-

pare the resolved streamwise turbulence intensities with the experimental and DNS

results reported in the literature. A characteristic anisotropic behavior is manifested

by the fluctuating velocity component in both the near-wall and core regions. The

peak value of 〈ū′′21 〉1/2/uτ is located at x+
2 = 13 ∼ 14 for both Reynolds numbers,

which is close to the values reported by other researchers, i.e. x+
2 ≈ 12 for Re = 2600

by Bech et al. [124], and x+
2 ≈ 11 for Re = 2600 and x+

2 ≈ 16 for Re = 4762 by

Aydin and Leutheusser [121]. As shown in Fig. 6.3, the values of 〈ū′′21 〉1/2/uτ on the

two fine grid systems (using 483 and 663 nodes) are very close to each other, while

the result predicted using the coarsest grid (343 nodes) is slightly higher. This is a

prototypical characteristic of a coarse grid LES computation and is consistent with

the result reported by Kravchenko et al. [138].

Figure 6.5 shows the budget of the shear stress for the grid system of 483

nodes. The mean contributions of the three normalized shear stress components, i.e.

100



FIGURE 6.1: Mean velocity profile using wall coordinates.

FIGURE 6.2: Mean velocity profile using wall coordinates (Re = 4762).

the resolved viscous shear stress, resolved Reynolds shear stress and subgrid scale

shear stress (see Eq.(3.8)), to the total shear stress are demonstrated in the figure.

The total mean shear stress is close to but slightly higher than unity. The resolved

viscous shear stress is dominant in the near-wall region due to the large value of

the resolved velocity gradient component 〈ū1,2〉, while the resolved Reynolds stress

−〈ū′′1ū2〉 dominates the other shear stress contributions in the core region. Close to

the wall, the resolved Reynolds shear stress diminishes illustrating a strong near-wall
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FIGURE 6.3: Resolved streamwise turbulence intensities (Re = 2600).

FIGURE 6.4: Resolved streamwise turbulence intensities (Re = 4762).

anisotropic effect. Figure 6.6 plots the resolved Reynolds shear stress distribution

in the wall-normal direction for the three grid systems tested. In general, the grid

effect on the resolved Reynolds stress is not striking. In the rescaled diagram of

Fig. 6.6, a prototypical cubic behavior is observed for the resolved Reynolds stress,

i.e. −〈ū′′1ū2〉 ∝ x+3
2 for 0 ≤ x+

2 < 5.
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FIGURE 6.5: Budget of shear stresses (Re = 2600). VIS: viscous shear stress
ν〈ū1,2〉/u2

τ , SGS: subgrid shear stress −〈τ12〉/u2
τ , RRS: resolved Reynolds shear stress,

−〈ū′′1ū2〉/u2
τ , TOT: total shear stress.

FIGURE 6.6: Resolved Reynolds shear stress distribution.

6.3.2 Numerical Stability of the Model

In the literature, for turbulence with a statistically homogeneous plane, the plane

averaging technique is often adopted to obtain a stable solution for the model co-

efficient. This approach has been used to avoid a potential singularity problem in

different simulations [19, 36, 38, 49, 50]. However, the plane averaging technique is
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based on the assumption that the model coefficient varies only in the wall-normal di-

rection and is instantaneously homogeneous in the other two directions, which is true

only in a statistical sense. From the perspective of the physics of the flow, the plane

averaging technique is inconsistent with the observation of instantaneous motions and

eddy interactions in a 3-D manner.

An interesting and desirable feature of the numerical simulation performed with

the proposed DNM is that the plane averaging technique is no longer necessary for

achieving stability. From the proposition shown in Appendix A, the DNM is locally

non-singular, if and only if the three differential tensorial functions, Mij, Wij, and

Nij are linearly independent. If they coincidentally are dependent, Rank(A) ≤ 2,

det(A) = 0 and the system is singular. It would be very desirable if we could further

prove that these three differential tensorial functions are linearly independent so that

the DNM can be known to be absolutely locally non-singular at each time step.

Encouraged by the stability exhibited by numerical simulations and an examination

of the definitions of Mij , Wij and Nij, the author suspects that these three differential

tensorial functions are in fact independent. However, a strict analytical proof is

not yet available to support such a conjecture, and it remains an open question for

further analytical exploration. To compensate for the lack of a complete analytical

proof, numerical approaches were employed to examine the property of the coefficient

matrix A in terms of its singularity. The condition number of A, i.e. cond(A) =

‖A‖∞ · ‖A−1‖∞, was evaluated for such a purpose. Here, the norm of matrix A is

defined as

‖A‖∞ = max
1≤ i≤3

3∑
j=1

|aij | (6.11)

The condition number cond(A) can be used for evaluating the stability of a linear

system such as Eq.(6.10). As cond(A) increases, the linear matrix system becomes less

stable in numerical simulations, and in the worst-case scenario, the system becomes

singular when cond(A) → ∞. Figure 6.7 shows both the averaged and instantaneous

profiles of the condition number along the wall-normal direction. The instantaneous

profiles show that typically the condition number is about 10 with a maximum value
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FIGURE 6.7: Averaged condition number cond(A) along the wall-normal direction
(663 nodes).

of 140. The fluctuation of cond(A) relates to the local dynamical instantaneous

small scale motions to be simulated. Due to the fluctuations, the averaged condition

number ranges from 12 to 74. These profiles indicate that the stability of the linear

matrix system AC = B for the DNM is generally good in the numerical simulations

performed. However, since the second step of the analytical proof is not yet available,

this conclusion obtained from the numerical tests should not be generalized for other

wall-bounded flows at this stage.

Considering that MijMij is only one of the nine elements of the coefficient ma-

trix A (see Eq.(6.10)), it is expected that the matrix system of DNM is more robust

than the conventional DM formulation. It is difficult to imagine that all three com-

plex differential tensorial functions could act coincidentally such that det(A) = 0,

especially considering that the values of the elements of A are determined by the in-

stantaneous turbulent flow field. In fact, the author has performed multiple numerical

tests, each with a significant number of time steps, and no singularity difficulty has

ever been encountered. In contrast, in the numerical simulation performed using the

conventional DM for the same test problems, a plane averaging technique is always

necessary to maintain a stable calculation.
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6.3.3 Model Coefficients

Figure 6.8 shows the averaged wall-normal distributions of the three model coeffi-

cients. From the figure, we can see that all three DNM coefficients reduce to zero at

the wall and level off at their maximum magnitude in the core region. The profiles

of the coefficients exhibit a clear anisotropy in the wall-normal direction due to the

restriction by the walls. The averaged value is positive for coefficients CS and CW ,

but negative for CN . As the Reynolds number increases from 2600 to 4762, the value

of CW in the core region remains approximately the same, while the absolute values

of both CS and CN increase. All three DNM coefficients have the same order of mag-

nitude, e.g. in the core region for the flow with Re = 2600, the values for the three

DNM coefficients are CS = 0.035, CW = 0.026 and CN = −0.017.

Figure 6.9 compares the model coefficients calculated for Re = 2600 using three

different grid systems. Generally speaking, the values obtained using the three grid

systems are slightly different to account for the grid effects. It should be indicated

that there is no reason to expect that the dynamic model coefficients for LES are

grid-invariant. To illustrate the difference between the DNM and the conventional

single-constant-parameter SM [13], one could compare the value of CS, though it is

understood that the closure strategies for these two types of SGS models are signif-

icantly different. The conventional SM uses C2
S instead of CS in its definition and

generally ranges in value from [1, 139] 0.065 to 0.12 (C2
S = 0.00425–0.0144), which is

smaller than the value of CS for the DNM in the core region (see Figs. 6.8 and 6.9).

The difference between these two modelling approaches exists not only in terms of

their coefficients, but also in their capability of approximating τij in terms of both

the tensorial magnitude and orientation, which then influences the inertial inviscid

scattering of TKE between the resolved and residual scales of motions. This topic

will be discussed in a detailed manner later the sections 6.4—6.6.

Figure 6.10 illustrates the instantaneous wall-normal distribution of the three

coefficients for Re = 2600 at a central location (x1/L1 = x2/L2 = 0.49). From the

figure, the instantaneous coefficients are generally bounded, however with a fluctu-
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FIGURE 6.8: Distribution of model coefficients in the wall-normal direction.
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FIGURE 6.9: Sensitivity of the model coefficients to the grid size (Re = 2600).

FIGURE 6.10: Instantaneous wall-normal distribution of the coefficients at central
location: x1/L1 = x2/L2 = 0.49 (Re = 2600, 483 nodes).
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ating amplitude about 0 ∼ 8 times the averaged values (shown previously). From

Eq.(6.10), it is understood that the coefficients are flow dependent and determined by

instantaneous tensors of a turbulence field. Therefore, the DNM coefficients should be

considered as local turbulent quantities (via modelling), which account for the local

structure and rapid small scale motions in a dynamic manner. Thus, truly localized

dynamic modelling coefficients should fluctuate (or be variant) to reflect the local

instantaneous flow structures and small scale motions; at the same time they must

be bounded to avoid instability due to excessive backscatter or a potential singularity

of the modelling formulation. Both features of the dynamic coefficients, i.e. being

fluctuating and also being bounded, are important and must balance each other to

make the simulation both realistic and stable. A plane averaging technique is helpful

to make the simulation more stable, but the feature of the coefficients being locally

variant and reflecting local flow structure is sacrificed. It should be indicated that

although it is advantageous to be able to apply the DNM locally without plane aver-

aging for the simulations performed in this study, one should be cautious in extending

this conclusion to other cases.

6.4 Geometrical Characteristics of the DNM

Currently in both the RANS and LES communities, when one studies a new modelling

approach using an a posteriori numerical approach, focus is often given to the model’s

capability to predict turbulence features in terms of the magnitude of a parameter,

such as the mean velocity profile (e.g. using wall-coordinates to demonstrate the log

law pattern) and the associated distributions of resolved turbulence intensities and

shear stresses. However, it should be indicated that the magnitude and orientation

are of equal importance in determining the properties of a tensor such as the resolved

Reynolds stress tensor, SGS stress tensor, strain rate tensor and rotation rate tensor,

which then influence the solution set of the momentum equation and physical pro-

cesses such as backscatter. Therefore, it is argued in this research that future improved

a posteriori CFD studies should include consideration of the tensorial geometric rela-
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tions between the known and unknown terms in the constitutive relation. The recently

reported geometrical alignment based SGS stress models by Pullin, Saffman, Misra

and Voelkl [104, 106, 107] represent this new type of modelling approach. In the fol-

lowing context, attempts will be made to extend this type of research methodology

to a posteriori studies based on the proposed DNM, and preliminary results on some

selected parameters will be presented. It is hoped that the behavior of the DNM can

be better understood by examining the role of each of the three constituent terms in

terms of its relative tensorial orientation with the negative SGS stress tensor −τij .

6.4.1 Conventions on the Tensorial Eigensystem

From algebra (see Appendix B) it is understood that a second order real symmetric

tensor, such as the SGS stress tensor and strain rate tensor, is always diagonable. In

fact, its three eigenvalues represent the three principal values of the tensor, and its

orthonormal eigenvectors represent the principal axes. In this study, the eigenvalues

of a second order tensor are rearranged in a descending order represented by α, β

and γ, respectively. The corresponding normalized eigenvectors are therefore likewise

denoted by eα, eβ and eγ . These three normalized eigenvectors are orthogonal to each

other and form an orthonormal eigenframe triad. Throughout this dissertation, all the

eigenframes are arbitrarily considered to be dextral (right-handed). For the resolved

strain rate tensor (S̄ij) and negative SGS stress tensor (−τij), we have αS ≥ βS ≥ γS

(the overbar on S is omitted in the subscript where no confusion is introduced thereby)

and α−τ ≥ β−τ ≥ γ−τ . These three eigenvalues arranged in a descending order

are referred to as [29, 99] the most extensive, intermediate, and most compressive

eigenvalues, respectively. The relations between the eigenvalues τij and −τij are:

α−τ = −γτ , β−τ = −βτ and γ−τ = −ατ . Due to continuity, the following relation

must hold for incompressible flows:

αS + βS + γS = 0 (6.12)
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The following lists some basic concepts that are related to the eigenvalues of

the resolved strain rate tensor:

• If βS > 0, then there are two components of the principal axes of the strain rate

tensor along which the fluid element is stretched while it is compressed in third

principal direction, which taken together suggests that the local flow structure

is sheetlike.

• If βS < 0, then the fluid element is stretched in one principal direction and

compressed in the other two principal directions, which suggests that the local

flow structure is tubelike [62].

• If βS = 0, the intermediate eigenvalue of the strain rate tensor vanishes and a

3-D flow degenerates to a 2-D flow in terms of the principal deformation of the

local fluid element.

• If the state of small |βS| prevails (i.e. βS 	= 0, |βS| < |αS| and |βS| < |γS|), the

flow exhibits a quasi-2-D (QTD) behavior [78].

• If αS = βS > 0, the local deformation pattern of the fluid material is axisym-

metric expansion; whereas, if 0 > βS = γS, the local deformation pattern is

axisymmetric compression.

6.4.2 Tensorial Alignment Feature of the DNM in Contrast

to the Linear Smagorinsky Type Models

The objective of this subsection is to illustrate the fundamental difference between

the proposed DNM and the conventional DM [20] in terms of their tensorial geomet-

rical characteristics. The statistical results presented in this subsection are based on

the simplest plane averaging method. A more strict analytical study of the tensorial

eigensystem of the DNM will be explored later in section 6.5, while a refined investiga-

tion of the geometrical characteristics of the DNM will be performed in chapters 7 and
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8 using the methodologies of the recently developed turbulence geometrical statistics

and topology.

To illustrate the basic tensorial geometrical feature of the DNM, the principal

angles between the principal axes of two eigenframes are studied. The three principal

angles are represented by Λα(emα, enα), Λβ(emβ , enβ) and Λγ(emγ , enγ). Here the

subscripts m and n are used to differentiate the two tensors involved in discussion,

while α, β and γ are used to indicate the principal axes corresponding to the largest,

intermediate, and smallest eigenvalues following the convention defined previously.

To fully describe the relative rotation between two 3-D orthonormal frames, a 3 × 3

orthonormal rotation matrix, R, formed by the direction-cosines should be considered

(see Appendix B). The cosines of these three angles, i.e. cos(Λα), cos(Λβ) and cos(Λγ),

are special since they are the three principal diagonal elements of the rotation matrix.

The summation of these three cosine values is the trace of the rotation matrix, which

determines the well known Euler rotational angle between the two eigenframes and is

referred to as the natural invariant of the rotation matrix [178]. These three angles

are chosen also because they serve the purpose of the research presented in this

subsection, which is to illustrate the basic tensorial characteristics of the proposed

DNM in comparison with those of the conventional DM of Lilly [20]. To be specific,

the relative rotation between the two 3-D tensorial eigenframes of S̄ij and the 2nd or

3rd nonlinear terms, and that between the eigenframes of −τij and each of the three

constituent nonlinear terms, will be distinctly visualized.

Before discussing the geometrical properties of the tensorial eigenframe, the

ambiguity in defining the alignment angle involving an eigenvector must be addressed.

There appears to be some confusion in the literature in determining the interval for

the angle involving an eigenvector, e.g. the angle between the vorticity vector (ω)

and the intermediate eigenvectora of the strain rate tensor (eSβ). Some authors

[62,75,76,78,85,88,91,100] use [0o, 180o] for the angle (or [−1, 1] for the cosine value),

aStrictly speaking, it should be referred to as the ‘eigenvector corresponding to the intermediate
eigenvalue’. However, without bringing in any confusion, the term ‘intermediate eigenvector’ is
adopted for brevity, as are the terms ‘the largest/most extensive eigenvector’ and ‘the smallest/most
compressive eigenvector’.
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some [29,55,77,79,99,179] used [0o, 90o] for the angle (or [0, 1] for the absolute cosine

value), some [73, 84] use both [0o, 180o] and [0o, 90o], while some [72, 74] even use

[−180o, 180o].

The aliasing of the +/− sign of an eigenvector naturally derives from mathe-

matics, since the eigenvector and its opposite (with an additional negative sign) share

exactly the same eigenvalue for the same eigensystem. For instance, the eigensystem

for −τij corresponding to its largest eigenvalue is: [−τij ] · e−τα = α · e−τα, however,

(−e−τα) is also appropriate, i.e. [−τij ] · (−e−τα) = α · (−e−τα). As such, for the

same eigenvalue α, the angle θ(e−τα, e) is inevitably aliased with [180o − θ(e−τα, e)],

[180o + θ(e−τα, e)] and [360o − θ(e−τα, e)]. Here, e represents an arbitrary eigenvec-

tor. Therefore, only the choice of [0o, 90o] or the absolute cosine value of the angle

is adopted in the statistics for this study, so that the results do not passively rely on

any unexplained factors.

Three different grid systems were used in the study, i.e. 343, 483 and 663 nodes.

Since no obvious grid effect was observed, only the specific results related to 663 nodes

for two different Reynolds numbers are presented in Figs. 6.11–6.15. Also, as it is clear

in these figures that the profiles generally do not change significantly as the Reynolds

number increases from 2600 to 4762, only the results of Re = 2600 are presented in

Tables 6.2 and 6.3 for illustration. Another general impression from both the tables

and Figs. 6.11–6.15 is that the geometrical orientation between the eigenframes of

the SGS stress and each of the three nonlinear constituent tensors exhibits a strong

anisotropic effect due to the existence of the wall.

(1) Principal Alignment between S̄ij and the 2nd and 3rd Nonlinear Terms

From Fig. 6.11, it is observed that Λα, which indicates the relative alignment between

eigenvectors corresponding to the most extensive eigenvalues of S̄ij and γij, is 45o at

the wall demonstrating an equiangular alignment pattern in the near-wall region, and

rises to a value of approximately 52o indicating a general skewed alignment pattern in

the core region. The angle Λβ between eigenvectors corresponding to the intermediate

eigenvalues of S̄ij and γij is 0o at the wall, showing an parallel alignment pattern, and
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FIGURE 6.11: Averaged angles between the eigenvectors of the filtered strain rate
tensor and second constituent term (S̄ij , γij) for the case of 663 nodes.

FIGURE 6.12: Averaged angles between the eigenvectors of the filtered strain rate
tensor and third constituent term (S̄ij , ηij) for the case of 663 nodes.

rises in the core region to an approximate value of 37o indicating a skewed pattern.

The angle Λγ between eigenvectors corresponding to the most compressive eigenvalues

of S̄ij and γij demonstrates an equiangular pattern of 45o at the wall and a skewed

(also regarded as a quasi-equiangular) pattern of 49o in the core region. From Fig-

ure 6.12, it is of interest to note that Λα ≈ 62o at the wall and 72o in the core region,

both of which indicate a skewed alignment pattern between the eigenvectors corre-
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TABLE 6.2: Averaged tensorial alignment between S̄ij and the 2nd and 3rd nonlinear
terms (Re = 2600, 663 nodes).

Tensors S̄ij and γij S̄ij and ηij

Angles (degrees) Λα Λβ Λγ Λα Λβ Λγ

Wall value:Comments 45:E 0:‖ 45:E 62:S 90:⊥ 90:⊥
Core value:Comments 52:S 37:S 49:S 72:S 90:⊥ 90:⊥

Notations: ‘E’ for Equiangular, ‘‖’ for Parallel, ‘⊥’ for Perpendicular, and ‘S’ for Skewed.

sponding to the largest eigenvalues. Otherwise, across the entire channel, Λβ ≡ 90o

and Λγ ≡ 90o both indicate an overall perpendicular alignment pattern between the

eigenvectors corresponding to the intermediate and smallest eigenvalues. In the next

subsection, it will be demonstrated analytically that these peculiar alignments ob-

served in Fig. 6.12 are not a coincidence, but instead, determined by two particular

flow configurations.

(2) Principal Alignment between −τij and the Three Constituent Terms

From Fig. 6.13, it is observed that the relative alignment between the two eigenvectors

corresponding to the most extensive eigenvalues of −τij and βij , is equiangular with

Λα = 45o at the wall, and exhibits a skewed pattern of Λα ≈ 54o in the core region.

The alignment between the two eigenvectors corresponding to the intermediate eigen-

values of −τij and βij is almost parallel (Λβ = 1o) at the wall, but becomes skewed

(Λβ ≈ 58o) in the core region. From the profile of Λγ, it is found that the alignment

between the eigenvectors corresponding to the most compressive eigenvalues of −τij
and ηij is approximately equiangular both at the wall and in the core region. Since

no data on the distribution of these angles for a wall-bounded flow are available in

the literature, the author can only compare the obtained a posteriori numerical re-

sults with those obtained using isotropic turbulence through a priori analysis. Tao et

al. [29, 99] reported that according to their HPIV measurements, the most probable

value for Λα in the core region of a square duct flow is 32o. However, Horiuti [100]

obtained a different value, i.e. Λα = 450, by analyzing DNS data for isotropic turbu-
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FIGURE 6.13: Averaged angles between the eigenvectors of the negative SGS stress
and first constituent term (−τij , βij) or (−τij , S̄ij) for the case of 663 nodes.

FIGURE 6.14: Averaged angles between the eigenvectors of the negative SGS stress
and second constituent term (−τij , γij) for the case of 663 nodes.

lence. Both the reported values of Tao [29, 99] and Horiuti [100] are different than

the result of Λα ≈ 54o (in the core region) found in this research. The existence of

these differences is not surprising for the following reasons: (i) as discussed earlier,

Horiuti [100] used a different angle interval [0o, 180o] for statistics, which has a direct

influence on the final result; (ii) the Couette flow considered in this research is a wall-

bounded anisotropic flow; (iii) the statistical result presented in this study is based
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FIGURE 6.15: Averaged angles between the eigenvectors of the negative SGS stress
and third constituent term (−τij , ηij) for the case of 663 nodes.

on the plane averaging method, while the reported results [29, 99, 100] are based on

probability density functions; and (iv) most importantly, both Tao [29, 99] and Ho-

riuti [100] used an a priori approach, which implies a possible integrity set of 11

independent tensors in total in the constitutive relation shown in Eq.(6.6), whereas,

the DNM considered in this a posteriori study is based on only 3 independent con-

stituent tensors. As discussed earlier, a DNM based on all 11 independent tensors

is impractical due to the complexity of the algorithm, high computational cost and

the possibility of incorrectly representing the physics. Given the ambiguity of any

comparison between the a priori and proposed a posteriori studies, the author has

focused attention on comparison between two a posteriori approaches based on the

(dynamic) Smagorinsky type models and proposed DNM. It is of interest to demon-

strate in the next paragraph how drastically the nonlinear constituent terms change

the tensorial geometry of the SGS stresses.

From the definition of βij it is understood that βij represents the linear Smagorin-

sky component of the SGS stress model, which is exactly aligned with S̄ij . The con-

ventional single-parameter (dynamic) Smagorinsky type models require −τij to be

aligned with S̄ij with Λα ≡ 0o, Λβ ≡ 0o and Λγ ≡ 0o. However, from Fig. 6.13 it is

observed that in the case of the DNM, the geometric relation between −τij and βij (or
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TABLE 6.3: Averaged tensorial alignment between −τij and the nonlinear terms
(Re = 2600, 663 nodes).

Tensors −τij and βij −τij and γij −τij and ηij

Angles (degrees) Λα Λβ Λγ Λα Λβ Λγ Λα Λβ Λγ

Wall value:Comments 45:E 1:‖ 45:E 1:‖ 3:‖ 3:‖ 45:E 89:⊥ 90:⊥
Core value:Comments 54:S 58:S 46:E 45:E 45:E 39:S 62:S 58:S 71:S

Notations: ‘E’ for Equiangular, ‘‖’ for Parallel, ‘⊥’ for Perpendicular, and ‘S’ for Skewed.

S̄ij) demonstrates a much more complicated anisotropic behavior. This suggests that

the proposed DNM has more degrees of freedom to mimic the SGS stresses in terms

of both tensorial magnitude and orientation, which in turn could influence the various

turbulence transport processes between the resolved and subgrid scales of motions,

e.g. the inertial inviscid cascade of TKE. Figures 6.14 and 6.15 further exhibit the

complex tensorial geometric relation between the negative SGS stress −τij , and the

second and third constituent terms in the nonlinear constitutive relation, i.e. γij and

ηij , respectively. These two figures can be analyzed in a similar way to Fig. 6.13,

and for the sake of brevity will not be discussed in detail. Generally, it is observed

in Figs. 6.13–6.15 and specifically summarized in Table 6.3 that the value of these

three angles is approximately either 0o, 45o or 90o at the wall. This indicates that

the relative principal orientation between the negative SGS stress and three nonlinear

tensors has only three scenarios at the wall: parallel, equiangular or perpendicular

alignment. In contrast, the relative principal orientation in the core region is mainly

either skewed or equiangular, and no perpendicular relative alignment pattern has

been observed. It should be noted that all the tensorial alignment features discussed

above are based on statistics obtained using the plane averaging technique. The dis-

cussion of this topic will be continued later in chapter 7 based on refined statistics

using (joint) probability functions.
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6.5 Properties of the Eigensystem

In the previous section the geometrical characteristics of the constitutive relation of

the DNM have been investigated using numerical methods and some interesting re-

sults have been observed, e.g. the relative principal orientation between the principal

axes of S̄ij and ηij corresponding to the intermediate and smallest eigenvalues, are

always perpendicular (see Fig. 6.12). In this section, the geometrical characteristics

of the DNM constitutive relation will be revisited using an analytical approach. First,

a tensorial identity that relates the first and third constituent terms will be proposed,

which plays an important role in determining the flow configuration and rate of TKE

transfer between the filtered and subgrid scales of motions.

6.5.1 An Eigensystem Identity

From Eqs.(6.4), (6.7) and (6.9), it is understood that the relation between the eigen-

systems of the first and third terms (i.e. βij and ηij, respectively) is effectively decided

by their tensorial parts, i.e. S = S̄ij and

Γ
def
= T(2)∗ def

= S̄ikS̄kj − 1

3
S̄mnS̄nmδij (6.13)

Since S̄ij is a real symmetric tensor, it follows that S̄ikS̄kj = SS. Thus, the above

system can be simplified to

Γ = SS− 1

6
|S̄|2δij (6.14)

Suppose that the eigensystem for S is given by

S · e = λS · e (6.15)

where λS and e are, respectively, the eigenvalue and eigenvector for S. On left-

multiplying both sides of the above equation with S and then subtracting 1
6
|S̄|2δije
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from both sides, the following formulation is obtained after some rearrangement:

(SS − 1

6
|S̄|2δij) · e = (λ2

S − 1

6
|S̄|2) · e (6.16)

which is exactly the eigensystem equation for the second tensor Γ, i.e. Γ·e = λΓ ·e. As

such, it has been demonstrated that S and Γ share the same eigenvectors (principal

axes), and an identity that relates their eigenvalues (principal values) is obtained, i.e.

λΓ = λ2
S − 1

6
|S̄|2 (6.17)

Since the three principal axes of the two tensors are the same, the scalar 1
6
|S̄|2 plays

a dominant role in determining their geometrical relation. At this point, a question

arises: if the first and third nonlinear term share the same three principal axes,

how can their relative geometric orientation with the negative SGS stress −τij be

very different as shown in Fig. 6.13 and Fig. 6.15? The answer lies in the above

identity, which implies a parabolic instead of a monotonic relation between λΓ and

λS. This indicates that the sequence of eigenvectors corresponding to the descending

order of the eigenvalues of S, i.e. αS ≥ βS ≥ γS, is not necessarily the same as

that corresponding to αΓ ≥ βΓ ≥ γΓ for Γ. In fact, the smallest eigenvalue for

S is often found to be negative with a large absolute value (see Table 6.4), which

‘switches’ the sequence of the eigenvalues of Γ when they are calculated from αS, βS

and γS via the identity, i.e. Eq.(6.17). This sequence is decided by the instantaneous

property of a turbulence field featured by quantities such as S̄ij. Table 6.4 presents

the instantaneous eigensystems for the first (featured by S) and third terms (featured

by Γ) for Re = 2600 at two specific locations. From the table, it is confirmed that

the three eigenvectors for the first and third constituent terms are the same, however

with a different sequence. At the first location, we have |γS| > |αS| > |βS|, while at

the second location we have |αS| > |γS| > |βS|.
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6.5.2 Mapping Characteristics of the Eigensystem Identity

In the previous subsection, we have found two types of mapping relations between

the eigenvalues of the first and third nonlinear constituent tensors as demonstrated in

Table 6.4. From the point of mathematics, the identity itself allows for six different

scenarios for the mapping relation between the two tensorial eigensystems, which are

illustrated in Fig. 6.16. However, in the following section it will be demonstrated that

only the last two scenarios, represented by Figs. 6.16(e) and (f) are possible. The

numerical demonstration of these two realistic scenarios is also illustrated in Table 6.4.
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FIGURE 6.16: Scenarios for the mapping relation of the eigensystem identity.

Besides the identity, there are two additional restrictions to the eigensystems

between the first and third nonlinear tensorial terms. Supposing that the eigenvalues

of the second order tensor to be investigated are distinct, they can be distinguished

using a descending order, i.e.  αΓ > βΓ > γΓ

αS > βS > γS

(6.18)

If the eigenvalues of a second order tensor are not distinct, ambiguities becomes

inevitable. Discussion on this topic will be left to the end of this section.

Considering that S is a real symmetric 2nd order tensor, it must have three real

eigenvalues (see Appendix B), which satisfy continuity, i.e. αS + βS + γS = 0. Thus,
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αS > 0 and γS < 0 and the sign of βS is undetermined. Further, by applying system

(6.18), the following inequalities are obtained:

 |αS| > |βS| corresponding to αS > |βS| > 0

|γS| > |βS| corresponding to γS < −|βS| < 0
(6.19)

Combining the identity with the above two inequalities, the first four scenarios

illustrated in Fig. 6.16 can be excluded. For instance, for scenario (b) (i.e.: αS → βΓ,

βS → αΓ, γS → γΓ), the identity requires


αΓ = β2

S − 1

6
|S̄|2

βΓ = α2
S − 1

6
|S̄|2

γΓ = γ2
S − 1

6
|S̄|2

(6.20)

By applying the first inequality of (6.18), system (6.20) results in |βS| > |αS| >
|γS|, which is contradictory to both inequalities of system (6.19). The other five

scenarios can be analyzed in a similar way. For brevity, only the results of the

mathematical analysis are summarized in Table 6.5.

TABLE 6.5: Mapping scenarios for the tensorial eigensystems between S and Γ (Dis-
tinct eigen-roots)

Mapping Results from the identity Local
scenarios and αΓ > βΓ > γΓ

Existence Comments
structure

Contradictory to the 2nd(a) |αS | > |βS | > |γS | Impossible
inequality of system (6.19)

—

Contradictory to both(b) |βS | > |αS | > |γS | Impossible
inequalities of system (6.19)

—

Contradictory the 1st(c) |γS | > |βS | > |αS | Impossible
inequality of system (6.19)

—

Contradictory to both(d) |βS | > |γS | > |αS | Impossible
inequalities of system (6.19)

—

Corresponding to βS < 0(e) |αS | > |γS | > |βS | Possible
(or αS > 0 > βS > γS)

tubelike

Corresponding to βS > 0(f) |γS | > |αS | > |βS | Possible
(or αS > βS > 0 > γS)

sheetlike
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The major conclusions of this and previous subsections can be summarized

using the following two properties:

Property 6.1: The eigensystems of the tensorial parts of the 1st and 3rd nonlinear

constituent terms, i.e. S and Γ, respectively, share the same set of eigenvectors. Their

eigenvalues are connected by an identity, i.e. λΓ = λ2
S − 1

6
|S̄|2.

Property 6.2: The mapping relation from the eigensystem of S to that of Γ through

the identity (λΓ = λ2
S − 1

6
|S̄|2), is either (αS → αΓ, βS → γΓ, γS → βΓ) for a local

tubelike structure when βS < 0, or (αS → βΓ, βS → γΓ, γS → αΓ) for a local sheetlike

structure when βS > 0.

Given the descending sequence of the eigenvalues of a second order tensor in-

dicated by system (6.18), the corresponding eigenvectors form a dextral orthonormal

triad (the choice of the dextral frame is optional, however, it follows the tradition of

the engineering community.). With the previous observations, it is now possible to

discuss the topological relation between the dextral eigenframes formed by the or-

thonormal eigenvectors of S and Γ. Such a discussion is necessary for understanding

the tensorial geometrical characteristics of Speziale’s nonlinear constitutive relation

Eq.(6.7). From Property 6.1, it can be inferred that the principal alignment between

the principal axes of the eigenframe of S and Γ are either orthogonal or parallel, which

then allows for six different topological relations. However, from Property 6.2, one

can further limit the topological relations of the two dextral orthonormal eigenframes

to only two scenarios corresponding to either local tubelike or sheetlike structures,

both of which have been validated in the numerical simulations in this research (see

Table 6.4). Furthermore, these two realistic scenarios are determined by the sign of

the intermediate eigenvalue of S, which admits two sequences of the eigenvalues, i.e.

βS < 0 (or αS > 0 > βS > γS) or βS > 0 (or αS > βS > 0 > γS). An equiva-

lent expression to Property 6.2 can be used to conclude the above discussion on the

topological relation of the two eigenframes:

Property 6.2′: The geometrical relation between the orthonormal dextral eigen-

frames of S and Γ can only take one of the following two attitudes: (eΓα ‖ eSα,
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eΓγ ‖ eSβ, eΓβ ‖ eSγ) related to local tubelike structure if βS < 0, or (eΓβ ‖ eSα,

eΓγ ‖ eSβ, eΓα ‖ eSγ) related to local sheetlike structure if βS > 0.

With the above new conclusions, the previous question regarding the numer-

ical result on the averaged principal alignment between S̄ij and the third nonlinear

constituent term ηij (see Fig.6.12) presented in subsection 6.4.2 can now be clearly

answered. For both possible flow patterns indicated by Property 6.2′ corresponding

to Figs. 6.16(e) and (f), the intermediate eigenvectors of the first and third nonlinear

constituent terms (S and Γ) are always orthogonal to each other, i.e. eSβ ⊥ eΓβ ; as

are the smallest eigenvectors of S and Γ, i.e. eSγ ⊥ eΓγ . The alignment between the

largest eigenvectors of both S and Γ, i.e. eΓα ‖ eSα corresponding to Fig. 6.16(e) is

the only realistic non-orthogonal principal alignment pattern for these two constituent

terms.

6.5.3 Situation of Multiple Roots

The above discussion regarding the eigensystems of S and Γ is based on the as-

sumption that all three eigenvalues of the tensor are distinct. Thus, in the case that

the characteristic equation of the tensor allows for multiple roots, some modification

to the conclusion regarding the local tubelike and sheetlike flow patterns discussed

above is expected. Fortunately, the situation of triple roots only relates to the trivial

flow configuration, i.e. αS = βS = γS = 0, since all other nontrivial situations, i.e.

αS = βS = γS 	= 0, can be excluded by the continuity equation. However, in the case

of dual roots, the situation becomes more complicated and the eigensystems for S and

Γ must be differentiated. It can be demonstrated that if the characteristic equation

of S allows for dual roots, there are only two possible local flow configurations, i.e.

αS = βS > 0 (axisymmetric expansion) or 0 > βS = γS (axisymmetric compression).

While if the characteristic equation of Γ has dual roots, according to the parabolic

relation indicated by the identity, Eq.(6.17), one more flow pattern corresponding to

αS = −γS > 0 and βS = 0 (degenerate 2-D flow configuration) becomes possible,

in addition to the previous two flow configurations of axisymmetric expansion and
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compression. In fact, a state of axisymmetric expansion has been found to be the

most probable flow configuration in isotropic turbulence according to recent research

of Lund and Rogers [59] and Tao et al. [29]. Further review and discussion related to

this topic will be pursued in the next two chapters.

6.6 Characteristics of the SGS TKE Production

Rate

6.6.1 Backscatter

The SGS TKE production rate for the proposed DNM has the particular form

Pr = CSβijS̄ij + CWγijS̄ij + CNηijS̄ij

def
= PrS + PrW + PrN

(6.21)

For comparison, Pr for the conventional Smagorinsky type DM of Lilly [20] takes a

different form

PDM
r = 2CS∆̄2|S̄| · S̄ijS̄ij = νsgs|S̄|2 = CS∆̄2|S̄|3 (5.40)

as given previously in chapter 5. PDM
r is similar to PrS, however, the DM uses this

term solely to account for all of the TKE transport processes between the resolved

and unresolved scales. For the DM, the value of |S̄| is always positive, thus the sign of

PDM
r is purely decided by the sign of CS or νsgs, which implies that the TKE transport

exhibits one of two limiting situations, i.e. either completely backward or completely

forward scatter. A few researchers, e.g. Piomelli and Liu [49], Carati et al. [137] and

Ghosal et al. [40], have noted that an unrealistic prediction of backscatter (especially

in the situation of its overestimation) can directly result in instability and failure of

a numerical simulation. As pointed out by Horiuti [100], backscatter is not generated

by a negative eddy viscosity, but rather the relative geometrical alignment pattern
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FIGURE 6.17: Mean profile of the non-dimensional SGS TKE production rate pre-
dicted using the DNM (663 nodes).

between the eigenvectors of the SGS stress and filtered strain rate tensors. Due

to the deficiency of the Smagorinsky constitutive relation, which only admits two

limiting SGS TKE transfer patterns, in some numerical applications involving the

Smagorinsky type SGS models (e.g. Ghosal et al. [40], and Morinishi and Vasilyev

[50]) numerical stability is achieved by employing a restriction of CS ≥ 0 or simply

the adoption of C2
S (instead of CS) to avoid excessive backscatter.

From Eq.(6.21), it is understood that the direction of the TKE transfer between

the resolved and subgrid scales of motions is directly decided by both the sign of

the coefficients (CS, CW and CN), and the relative geometric orientation between

the filtered strain rate tensor S̄ij and the constituent tensors βij , γij and ηij. Of

course, one may also argue that the signs of the coefficients are eventually decided by

the relative geometric relation of all the tensorial terms that appear in Eq.(6.10) in

terms of both their relative magnitudes and orientations. Figure 6.17 plots the plane

and time averaged wall-normal nondimensional profiles of SGS TKE production rate

obtained using the DNM. From the figure, it is observed that the profiles for all

three terms show a strong anisotropic effect in the wall-normal direction, and the

Reynolds number effect is the most obvious in the buffer zone. The contributions of

forward scatter 〈P+
r 〉 and backscatter 〈P−

r 〉 to the general term 〈Pr〉 are separated,

which balance as 〈P+
r 〉 + 〈P−

r 〉 = 〈Pr〉. Fig. 6.17 shows that the averaged level of
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FIGURE 6.18: Instantaneous distribution of the non-dimensional SGS TKE pro-
duction rate (Re = 2600, 663 nodes; relative location in the homogeneous plane:
x1/L1 = 0.570 and x3/L3 = 0.367 for (a), x1/L1 = 0.602 and x3/L3 = 0.461 for (b)).

backscatter is about 10–15% that of forward scatter, and the net scattering effect of

SGS TKE is from the resolved to the subgrid scales, i.e. 〈Pr〉 ≥ 0.

Figures 6.18 and 6.19 show an instantaneous nondimensional profile of Pr and

the contribution of each of the three nonlinear constituent terms, i.e. PrS, PrW and

PrN (see Eq. (6.21)), at specific locations for the two Reynolds numbers tested. These

instantaneous figures clearly show both forward and backward scatter of TKE along

the wall-normal direction. Some typical inertial TKE scattering peaks appearing

in Figs. 6.18 and 6.19 can be approximately identified as follows: positive peaks
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FIGURE 6.19: Instantaneous distribution of the non-dimensional SGS TKE pro-
duction rate (Re = 4762, 663 nodes; relative location in the homogeneous plane:
x1/L1 = 0.383 and x3/L3 = 0.477 for (a), x1/L1 = 0.289 and x3/L3 = 0.180 for (b)).

marked with a circled A in Fig. 6.18 indicate an instantaneous forward scatter of

TKE contributed by both the first and third nonlinear terms; positive peaks marked

with a circled B reflect an instantaneous net forward scatter of TKE from the balance

of forward scatter of the first term and backscatter of the third term; positive peaks

marked with a circled C in both Figures 6.18(b) and 6.19(b) indicate an forward

scatter mainly due to the third term with negligible contributions from other terms;

negative peaks marked with a circled D reflect a net instantaneous backscatter mainly

contributed by the third term with negligible contributions from other terms; and the
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negative peak marked with a circled E indicates an instantaneous net backscatter

from the balance of the forward scatter due to the first term and backscatter (of

relatively larger magnitude) due to the third term.

Based on Figs. 6.18 and 6.19 and an examination of many other similar in-

stantaneous profiles, some general impressions are: the rate of SGS TKE production

due to the first constituent term (the Smagorinsky component), PrS, predominates

forward scatter of TKE from the resolved to the subgrid scales of motions; the rate

of SGS TKE production attributed to the second nonlinear term, PrW , plays a trivial

role in the total TKE transfer between the two scales; the backscatter phenomenon

is preferentially linked to the third term, PrN . From the numerical tests, we observed

that the instantaneous and time averaged value of PrW is always negligible ranging

from 0 to 10−17. A brief analytical explanation for this interesting phenomenon will

be presented in the following subsection.

6.6.2 Rate of SGS TKE Production Due to the 2nd and 3rd

Nonlinear Constituent Terms

In subsection 6.6.1 it has been observed that the rate of the SGS TKE production

(Pr) attributed to the second nonlinear term (PrW ) is trivial as shown in Figs. 6.18

and 6.19. A concern then naturally emerges: is this just a numerical coincidence or

an intrinsic characteristic of the DNM? The above concern is clarified by the following

property:

Property 6.3: The strain rate tensor S̄ij is orthogonal to the second nonlinear

constituent term of the SGS stress tensor, γij, such that the rate of the SGS TKE

production attributed to γij is instantaneously zero at any location, i.e. PrW =

CWγijS̄ij ≡ 0.

Proof: Neglecting the trivial solution of CW = 0, the proof of this property requires

γijS̄ij ≡ 0, i.e. an orthogonal relation between γij and Sij with the inner product of

two tensors defined in Appendix A. Thus, from the definition of γij given in Eq.(6.9),
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we have

γijS̄ij = 2∆̄2(S̄ikΩ̄kj − Ω̄ikS̄kj) · S̄ij

= 4∆̄2Ω̄kiS̄kjS̄ji

≡ 0

(6.22)

due to the fact that Ω̄ij is anti-symmetric, while both S̄ij and S̄kjS̄ji are symmetric.

The performance of the third nonlinear constituent term (ηij) is significantly

different than the second term (γij) in terms of Pr, which is clearly indicated by

Figs. 6.11 and 6.12. To clarify this issue analytically, we give the following property:

Property 6.4: PrN , the rate of SGS TKE production due to the third nonlinear

constituent term (ηij), is proportional to the resolved strain skewness ĪS3, i.e. PrN ≡
4CN∆̄2ĪS3. Here, the resolved strain skewness for incompressible flow is defined as

ĪS3
def
= S̄ikS̄kjS̄ji ≡ α3

S + β3
S + γ3

S (6.23)

which is a 3rd order invariant of S̄ij. Also in the following discussion, the resolved

strain product, a 2nd order invariant of S̄ij will be used, which is defined as

ĪS2
def
= S̄ijS̄ji ≡ α2

S + β2
S + γ2

S (6.24)

Proof: The contribution to the SGS TKE production Pr due to the third nonlinear

constituent term PrN takes the following form:

PrN = CNηijS̄ij

= 4CN∆̄2 · (S̄ikS̄kj − 1

3
S̄mnS̄nmδij)S̄ij

def
= C ′P̊rN

(6.25)
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where C ′ = 4CN∆̄2 and P̊rN is

P̊rN = (S̄ikS̄kj − 1

3
S̄mnS̄nmδij)S̄ij

= S̄ikS̄kjS̄ji − 1

6
|S̄|2S̄ii

= ĪS3

(6.26)

In the above mathematical development, we used two properties specific for S̄ij, i.e.

S̄ij = S̄ji due to symmetry and S̄ii ≡ 0 due to continuity.

Actually, a result of Eq.(6.26) can be obtained more intuitively in terms of

physics from the geometrical relation specified by Property 6.2′, which results in

P̊rN =

αΓαS + γΓβS + βΓγS for βS < 0 (tubelike)

βΓαS + γΓβS + αΓγS for βS > 0 (sheetlike)
(6.27)

which explicitly expresses the SGS TKE production rate due to the 3rd nonlinear

constituent terms (P̊rN) using the principal stresses of the 3rd term and the principal

deformation (strain) rates. By applying the identity (Eq.(6.17)) in accordance with

the two corresponding mapping relations indicated by Figs. 6.16(e) and (f), respec-

tively, both equations in (6.27) result in

P̊rN = α3
S + β3

S + γ3
S − 1

6
|S̄|2(αS + βS + γS) = ĪS3 (6.28)

which is the same as Eq.(6.26).

Thus, from Eq.(6.21) and properties 6.3 and 6.4, the following conclusion on

the overall SGS TKE production rate Pr is straightforward:

Property 6.5: The rate of SGS TKE production inherent to the DNM is a function

of ĪS2 and ĪS3, the invariants of the filtered strain rate tensor, i.e.

Pr ≡ CS∆̄2(2ĪS2)
3/2 + 4CN∆̄2ĪS3 (6.29)
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6.7 Conclusions

A dynamic nonlinear model (DNM) based on Speziale’s three-term quadratic consti-

tutive relation [108, 109] has been formulated, which admits a nonlinear anisotropic

relation between the subgrid scale stress and the resolved strain rate and rotation

rate tensors. The proposed DNM was tested using turbulent Couette flow and such

phenomenological flow features as the logarithmic velocity profile, anisotropic wall-

normal distribution of the resolved streamwise turbulence intensity, and cubic behav-

ior of the resolved Reynolds shear stress in the near-wall region, have been obtained

and compared with the results of other researchers. The additional computational

cost of the DNM is approximately 23–30% that of the conventional DM of Lilly [20].

The proposed DNM demonstrates a variety of self-calibrating mechanisms in

terms of its three coefficients and the tensorial geometric relations between the SGS

stress and the three constituent terms, which in turn provides more degrees of freedom

for predicting the forward and backward scattering processes of TKE. This is in

contrast to the conventional DM [20], which can only reflect the TKE cascade in

two extreme ways: either fully forward scatter or fully backscatter, and thus can

induce numerical instability. The proposed DNM appears to be more robust than the

conventional DM in the numerical simulation. In this study, the DNM can be applied

locally and the simulation remains stable at each time step without the need for the

‘standard’ plane averaging technique to avoid a potential instability due to excessive

backscatter or potential singularity of the modelling formulation. However, under the

same test conditions, an additional plane averaging procedure is always necessary to

maintain the simulation stable when the conventional DM [20] is applied.

The role of each of the three nonlinear constituent terms has been studied in

terms of the relative principal orientation between its eigenframe and those of the

negative SGS stress (−τij) and filtered strain rate tensors (S̄ij). To visualize the

complex geometry between the eigenframes of the two tensors, three principal align-

ment angles, i.e. Λα, Λβ and Λγ are investigated. The principal relative orientation

of the eigenframes between the filtered strain rate and second and third nonlinear
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constituent tensors (γij and ηij respectively), and that between the negative SGS

stress and the three nonlinear constituent tensors exhibit strong anisotropy due to

the presence of the wall. At the wall, the principal alignment between the two eigen-

vectors corresponding to the largest eigenvalue of S̄ij and γij is equiangular, and so is

that between the eigenvectors corresponding to their smallest eigenvectors. However,

the principal alignment between the eigenvectors corresponding to the intermediate

eigenvalues of S̄ij and γij is parallel. In the core region, all these three principal

alignments between S̄ij and γij are skewed, but close to equiangular. The pattern of

the principal alignment between S̄ij and ηij is rather interesting in that the princi-

pal alignment between the eigenvectors corresponding to the largest eigenvalues are

skewed in the wall-normal direction, whereas, the principal alignment between the

eigenvectors corresponding to the intermediate eigenvalues and that corresponding

to the smallest eigenvalues are always orthogonal. For the alignment between the

eigenframes of −τij and the three constituent terms, it is observed that the relative

principal orientation pattern is parallel, equiangular or perpendicular at the wall, and

either skewed or equiangular in the core region. In contrast, the (dynamic) Smagorin-

sky type models only allows the alignment pattern to be Λα ≡ Λβ ≡ Λγ ≡ 0o between

the principal axes of −τij and S̄ij.

Although the first and third constituent tensors are independent of each other

and behave quite differently in terms of the distribution of the corresponding model

coefficients and TKE scattering processes, they share the same set of eigenvectors and

thus the alignment between the principal axes of these two constituent tensors can

be only either parallel or orthogonal. An identity is found to relate the eigenvalues

of their effective tensorial parts, i.e. S and Γ, respectively. Through this identity,

it is found that among the six possible topological relations between the eigenframes

of S and Γ, only two are realistic, which correspond to local tubelike and sheetlike

structures if the roots of the characteristic equation of S and Γ are distinct. If

the characteristic equation of S admits dual roots, the flow configuration of local

axisymmetric expansion and compression become realistic. While if the characteristic

equation of Γ admits dual roots, an additional local degenerate 2-D flow configuration
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is included. It has been shown both numerically and analytically that the second

nonlinear constituent term, γij, is strictly orthogonal to the resolved strain rate tensor,

S̄ij , and as such it does not make any contribution to the rate of SGS TKE production.

However, the rate of SGS TKE production due to the third term is proportional to

the resolved strain skewness, i.e. ĪS3 = α3
S + β3

S + γ3
S for both realistic scenarios

corresponding to local tubelike and sheetlike structures.
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Chapter 7

Turbulence Geometrical Statistics

7.1 Introduction

Turbulence geometrical statistics is a recently developed methodology for studying

geometrical properties of fluid flows such as the relative orientation between two fluid

vectors and relative attitude [180] between two eigenframe triads. The attractiveness

of this methodology is that it is useful for revealing invariant properties of fluid flows,

since many of the relative geometrical alignments studied in turbulence geometrical

statistics are frame invariants under any translations (Galilean) and rotations of

the reference frame. For instance, the enstrophy generation which quantifies the

alignment between the vorticity and vortex stretching vectors, and the previously

discussed resolved strain skewness, are frame invariants.

Studies on the geometrical properties of fluid tensors can be traced back to the

classical works of G. I. Taylor [181], A. A. Townsend [182] and R. Betchov [183]. Fol-

lowing these pioneering works, improved research approaches considering both eigen-

values and eigenvectors have become more active in the past two decades [51–55,184],

leading to the current research branch of so-called turbulence geometrical statis-

tics [52–55,76]. A posteriori applications of turbulence geometrical statistics in LES

include the recent works of Saffman, Pullin, Misra, Voelkl and Chan [101–107] fea-

tured by their alignment-based SGS stress models, while a priori LES investiga-

tions on turbulence geometrical statistics are found in the recent works of Borue and
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Orszag [165], Horiuti [100] and Tao et al. [29, 99].

In this and the following chapters, the numerical results on turbulence geomet-

rical statistics and turbulence topology will be presented, respectively. The approach

adopted in both chapters is based on a posteriori LES of turbulent Couette flow us-

ing the proposed DNM SGS stress model, which is different than most other studies

found in the literature based on a priori analysis of experimental or DNS data. In

this context, the research presents a couple of challenges: (1) can a LES based on

the DNM SGS stress model simulate a resolved turbulent wall-bounded flow to the

extent that it captures not only the conventional turbulence scaling features but also

geometrical and topological features of the flow? since it is advocated in this disser-

tation that in the future the CFD community should consider this as a criterion for a

good turbulence model; and (2) what is the influence of near-wall anisotropy on the

turbulence geometrical statistics and topology of the flow? The answers to these two

questions will be addressed by analyzing the numerical results. Two types of statis-

tical calculations are performed at each time step based on a simple plane average

technique and using Probability Functions (PF) [185]. A PF (denoted by P (si)) is a

real-valued function defined on a discrete sample space {s1, s2, . . . } with properties:

P (si) ≥ 0 and
∑

i P (si) = 1. In the statistical calculations, 30 bins are used for the

PF of a single variable, while 30× 30 bins are used for the Joint Probability Function

(JPF) [185] of a set of two independent variables. Before presenting any numerical

results, it is necessary to first review some basic concepts and previous approaches of

other researchers.

7.2 Basic Concepts Related to the Velocity Gra-

dient Tensor

It is known that the small scales of turbulent flows are characterized by the gradients

of the velocity instead of the velocity itself. The dynamical behavior of the velocity

gradient tensor is of fundamental importance for understanding coherent structures
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because it governs a variety of physical phenomena such as local vortex stretching

and TKE dissipation. It also contains significant information through its tensorial

invariants, which in turn determine the various local flow topologies [57, 58, 63, 186]

and vectorial alignment patterns [54, 55, 76].

From the previous analysis, the velocity gradient tensor ui,j can be decomposed

into a symmetric part and a skew-symmetric part, which are usually referred to as

the strain rate tensor Sij and rotation rate tensor Ωij , respectively. The vorticity

vector ω can be derived from the rotation rate tensor or directly from the velocity

gradient as ωi = εijkΩkj = εijkuk,j. Besides Sij, Ωij and ωi, the velocity gradient also

determines the vortex stretching vector, helicity density and enstrophy generation.

The helicity (density) is defined as

H
def
= uiωi (7.1)

which quantifies helical motions. It is also known to play an important role in mag-

netohydrodynamics and is related to coherent structure, small scale intermittency,

and topology of turbulence [53, 60, 61, 187]. The relative helicity normalized by its

magnitude takes the form

hn
def
= cos Θ(u,ω) =

u · ω
|u| · |ω| (7.2)

where Θ(u,ω) is the angle between the velocity and vorticity vectors. Since hn is not

a Galilean invariant, it is necessary to define what velocity is used in its definition. It

is reported [53,61] that there is a significant likelihood that the velocity and vorticity

fields are aligned when the total velocity is adopted in the definition of hn.

If the strain rate tensor produced by the velocity gradient tensor acts to stretch

the material line element aligned with ω, then ω, the magnitude of ω, increases.

This is the phenomenon of vortex stretching, and the corresponding vortex stretching

vector w is defined as [32]

wi
def
= ωjSij (7.3)
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which by definition clearly represents the response of ω to Sij in terms of the effect of

deformation. The change of the vorticity by vortex stretching is a consequence of the

conservation of angular momentum. The angular momentum of a material volume

element remains constant if viscous effects are absent. If the fluid element is stretched

so that its cross-sectional area and moment of inertia become smaller, the component

of the angular velocity in the direction of the stretching must increase in order to

conserve angular momentum [188]. This can also be understood from the transport

equation for the enstrophy (ω2), i.e. Eq.(C.2) in Appendix C, which shows that an

instantaneous vortex stretching pattern (ωiωjSij > 0) contributes to the transient

increase of enstrophy or vorticity magnitude. A quantity that is closely related to

vortex stretching is the so-called enstrophy generation defined as

σ
def
= ω · w ≡ ωiωjSij = ω2λicos

2(ω, ei) =
∑

i

σi (7.4)

which is a third order frame invariant (or geometrical invariant [78,82]). In Eq.(7.4),

λi and ei are the eigenvalue and eigenvector of the strain rate tensor, respectively.

The subscript i runs from 1, 2 to 3, corresponding to the largest, intermediate and

smallest eigenvalue, respectively. Following the conventions of the fluids community,

the descending order of the eigenvalues mentioned above are represented by α, β

and γ, respectively. In order to avoid any confusion in the subscripts, σα, σβ and

σγ instead of σ1, σ2 and σ3, are used to represent these three enstrophy generation

components in the following discussion. The relative orientation between w and ω

can be represented using the normalized enstrophy generation, i.e.

σn
def
= cos Θ(ω,w) =

ω · w
|ω| · |w| (7.5)

For 2-D flows, both the vortex stretching vector and enstrophy generation vanish,

i.e. w2D ≡ 0 and σ2D ≡ 0, and the only non-zero component of vorticity evolves as

a conserved scalar. Because of the absence of vortex stretching, 2-D turbulence is

qualitatively different than 3-D turbulence [32].
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Based on measurements of turbulent grid flow, Taylor [181] first demonstrated

the positiveness of the mean enstrophy generation 〈σ〉 for isotropic turbulence. This

conclusion is specific for (quasi-)homogeneous isotropic flows and has been more re-

cently confirmed via experiments (e.g. Tsinober et al. [76]) and numerical tests using

DNS (e.g. Ruetsch and Maxey [93, 94], Jiménez et al. [92], Andreotti [84], Tsinober

et al. [77], Horiuti [88]). The predominant positiveness of the mean value of the en-

strophy generation indicates that a most probable state for isotropic turbulence is

related to vortex stretching instead of vortex compressing flow configuration. Vor-

tex compression is the contraction of the vortex line related to a negative enstrophy

generation.

Geometrical invariants are believed to the most appropriate tool for studying

physical processes in turbulent flows, since their properties and implied structures are

universal [78, 82]. Another frequently used third order geometrical invariant is the

strain skewness previously discussed in subsection 6.6.2, which is defined as

IS3 = SijSjkSki (7.6)

Both enstrophy generation and strain skewness are odd moments of Sij which repre-

sent the nonlinearity of turbulence and have a profound influence on local turbulence

structures.

For the LES approach considered in the research, the resolved quantities are

denoted using a overbar. For instance, the resolved relative helicity and normalized

enstrophy generation are h̄ = cos Θ(ū, ω̄) and σ̄n = cos(w̄, ω̄), respectively.
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7.3 Several Classical Topics in Turbulence Geo-

metrical Statistics

Based on the concepts introduced above, some of the current research methodologies

and reported results in the area of turbulence geometrical statistics can be reviewed.

Due to the richness of the topic, only those that are closely related to this research

can be highlighted, specifically the geometrical alignments between fluid vectors and

the ratio of the eigenvalues of the resolved strain rate tensor.

7.3.1 Geometrical Alignments

The study of the relative orientation between the vorticity vector ω and the eigenvec-

tors of the strain rate tensor Sij is one of the classical topics in the area of turbulence

geometrical statistics. In his studies on DNS of isotropic turbulence, Kerr [54, 62]

observed a strong tendency for alignment between the vorticity and the intermediate

eigenvector of the strain rate tensor, i.e. eSβ. Ashurst et al. [55] reported a similar

result based on analysis of a DNS database of a low Reynolds number isotropic flow

and homogeneous shear flow. The discovery of Kerr [54, 62] and Ashurst et al. [55]

is rather “surprising” [77], since it is seemingly contradictory to the previous belief

that ω should be more likely aligned with eSα, in which case, the explanation for

the well acknowledged observation on positively skewed enstrophy generation would

be easier to address (see Eq.(7.4)). The discovery of the preferential alignment be-

tween ω and eSβ was later confirmed analytically by Cantwell [63] based on solving

the restricted Euler equation, and experimentally by a number of researchers includ-

ing: Tsinober et al. [76,77] who measured the full velocity gradient of turbulent grid

flow and boundary layer flow over a smooth plate using the 12- and 20-wire probes,

Honkan and Andreopoulos [179] who measured boundary layer turbulence using three

individual triple-wire gradient probes, and Tao et al. [29, 99] who measured the core

region field of a square duct flow using HPIV and processed the data using a priori

LES approaches. This unique alignment pattern has also been validated by a number
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of numerical studies based on analysis of DNS databases, e.g. the works reported in

Refs. [71–74,77, 85, 88, 90, 94].

As discussed above, although the state of alignment between ω and eSβ is

strongly preferred, some refined research [71,72,74,77,78] indicates that other align-

ment patterns do exist. Tsinober et al. [77,78] and Nomura and Post [71] pointed out

that the flow regions which contribute most to the enstrophy generation are linked to

the alignment between ω and eSα. It is further concluded from numerical [77,85] and

experimental [76–78] investigations that the enstrophy generation related to the most

extensive eigenbasis is larger than but of the same order as that related to the inter-

mediate eigenvalues, i.e. σα > σβ (see Eq.(7.4)), which indicates that the majority of

the enstrophy generation is associated with the most extensive eigenvalue αS.

A strong alignment between the vorticity vector ω and the vortex stretching

vector w has been reported by Tsinober et al. [77, 78] and Shtilman et al. [89]. An-

dreotti [84] also investigated this phenomenon using Burgers’ models. According to

the research of Tsinober et al. [77,78], it appears that both the alignment between ω

and eSβ, and that between ω and w are the strongest when the magnitude of enstro-

phy (ω2) is minimum. Similar results have been observed by Jiménez [92]. Tsinober

et al. [77, 78] concluded that the background turbulence with the weakest excitation

of vorticity is not a “random sea” without any structures. Various local alignment

patterns exist in all regions with or without strong vorticity activities.

7.3.2 Relative Principal Values

Studies on the relative principal value of the strain rate tensor can be traced back to

the pioneering work of Betchov [183], who analyzed the magnitude of the eigenvalues

using some fundamental algebraic inequalities. Recent refined numerical investiga-

tions based on DNS of homogeneous turbulence by Ashurst et al. [55] and Kerr [62]

show that the ratio of the principal values of the strain rate tensor is most likely to

be αS : βS : γS = 3 : 1 : −4. The statistical non-dimensional parameter adopted by
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Ashurst et al. [55] and Kerr [62] was

β∗ =

√
6βS

(α2
S + β2

S + γ2
S)1/2

(7.7)

The experiment of Tsinober et al. [76] based on hot-wire measurements of grid gen-

erated turbulence in a wind tunnel further confirmed the result of Ashurst et al. [55]

and Kerr [62], i.e. β∗ ≈ 0.4 which corresponds to αS : βS : γS ≈ 3.74 : 1 : −4.74 (the

ratio 3.1 : 1 : −3.8 was instead presented in their paper). A similar observation was

reported in the work of She et al. [90] based on analyzing a DNS database of homoge-

neous turbulence. Later, Lund and Rogers [59] indicated that the β∗-PF introduced

by Ashurst et al. [55] and Kerr [62], appears to be inadequate, because it leads to

the incorrect conclusion that a state of local axisymmetric expansion does not ex-

ist in turbulent flows. Lund and Rogers [59] proposed an improved non-dimensional

parameter, i.e.

s∗ =
−3

√
6αSβSγS

(α2
S + β2

S + γ2
S)3/2

(7.8)

Besides s∗, Lund and Rogers [59] also proposed another non-dimensional parameter,

βS/αS. Since there are only two independent eigenvalues for Sij for incompressible

flow, the most probable ratio of αS : βS : γS can be calculated using continuity given

by Eq.(6.12) once the most probable value of either β∗, s∗ or βS/αS is determined.

For instance, a classical ratio of 3 : 1 : −4 corresponds to β∗ = 0.480, s∗ = 0.665, or

βS/αS = 0.333.

With the new parameterization method, Lund and Rogers [59] investigated a

DNS database of isotropic incompressible turbulence, and they obtained the interest-

ing conclusion that a state of axisymmetric expansion (s∗ = 1 and αS : βS : γS = 1 :

1 : −2) is the most probable flow configuration, which is in sharp contrast to the pre-

vious conclusion of Ashurst et al. [55] and Kerr [62]. According to the result of Lund

and Rogers [59], it appears that the statistics based on s∗ do not support the classical

ratio of 3 : 1 : −4. Their refined statistical study indicated that the most probable

state is s∗ = 1 for a low dissipation rate, and s∗ = 0.9 for regions with a high dissipa-

tion rate. The ratio corresponding to s∗ = 0.9 is αS : βS : γS = 1.7 : 1 : −2.7, which is
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somewhat displaced from the state of axisymmetric expansion. Lund and Rogers [59]

reported that for regions of high dissipation rate, the most probable values for βS/αS

and β∗ are 0.357 and 0.54, which correspond to αS : βS : γS = 2.8 : 1 : −3.8 and

2.65 : 1 : −3.65, respectively. Both these ratios are close to the previously discussed

classical ratio of 3 : 1 : −4. It is advocated by Lund and Rogers [59] that s∗-PF

should be used for the purpose of understanding turbulent structures, and (β/α)-PF

should only be used for determining the ratio αS : βS : γS itself. The result of Lund

and Rogers [59] that the axisymmetric expansion is the most probable state has been

confirmed by a number of researchers, including Horiuti [88] who analyzed DNS data

of isotropic turbulence; Soria et al. [64] and Blackburn et al. [73] who studied the

eigenvalue ratio using the phase plane of tensorial invariants (which will be discussed

in the next chapter); and Tao et al. [29] who analyzed HPIV measurements using an

a priori LES approach.

As mentioned earlier, there are two degrees of freedom in determining the rel-

ative principal values for a resolved strain rate tensor for incompressible flow. In

addition to the three probability functions, i.e. β∗-PF, s∗-PF and (β/α)-PF, continu-

ity provides a second constraint. In the special case of βS = 0, the flow degenerates

to 2-D and the relative eigenvalue ratio is usually determined to be 1 : 0 : −1. Such a

choice is arbitrary, since any choice λ : 0 : −λ for all λ ≥ 0 is valid. Strictly speaking,

this is a singular situation. Furthermore, it should be pointed out that in the case

of βS being close to 0, the system of two constraints, continuity and one of the three

statistical parameters, is very unstable and hence unreliable, since any small change

in the value of the statistical quantity corresponding to the most probable state can

result in a large difference in the result. Later in presenting the numerical result, it

will be shown that this singular problem becomes very severe in the viscous sublayer,

where βS is statistically small.
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7.4 Numerical Results on Geometrical Alignments

In this section, three types of relative alignments will be investigated, including the

alignment between the velocity and vorticity vectors, that between vorticity vector

and the eigenvector, and that between the vorticity and vortex stretching vectors.

7.4.1 Results on Helicity

As introduced previously, helicity by its definition describes the relative orientation

between the velocity and vorticity vectors. If the value of the relative helicity density

hn = cos Θ(u,ω) = u · ω/(|u| · |ω|) is close to ±1, strong helical activity related to

an alignment between u and ω becomes dominant, whereas at the same time |u×ω|
must be small (ω × u is known as the Lamb vector). In the other case, if hn → 0,

the level of |u × ω| must be high (supposing that both |u| and |ω| are nontrivial).

Since the nonlinear term u × ω is associated with the convection term in the N-S

equations and its level indicates the rate of energy cascade to smaller scales, a high

level of helicity inhibits nonlinear interactions as well as the cascade of energy due to

u× ω [60, 61].

Figures 7.1(a)–(c) show the resolved helicity density h̄n = cos Θ(ū, ω̄) at the

filtered scale of motions in the three different flow regimes: viscous sublayer, buffer

zone and logarithmic region. Figure 7.1(a) shows an overall “flat” helicity profile,

which, however, turns up at h̄n = ±1. This tailing-up pattern indicates a slightly

greater prevalence of resolved helical structures in the logarithmic region, which agrees

with the DNS results reported by Pelz et al. [53], and Rogers and Moin [61]. From

Figs. 7.1(b) and (c), it is observed that a state of h̄n = 0 becomes more and more

probable as x+
2 decreases, which indicates a near-wall orthogonal alignment between

ū and ω̄. Such a near-wall anisotropic effect of helicity has already been well docu-

mented based on DNS data analysis of Poiseuille channel flow [53,61]. As concluded

by Pelz et al. [53] that for the near wall region, the vorticity is mainly in the spanwise
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 7.1: Time-averaged PF of resolved relative helicity density h̄n = cos(ū, ω̄)
(Re = 2600).

direction, while towards the center of the channel, the large scale vorticity tends to

be convected by and aligned with the mean flow.

7.4.2 Results on Alignment between Vorticity and Eigenvec-

tors

As reviewed earlier, the alignment pattern between the vorticity and the eigenvectors

of the resolved strain rate tensor has become one of the canonical problems ever since

the initial work of Kerr [54, 62] and Ashurst et al. [55] in the earlier 1980’s. Tao et
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al. [29, 99] first examined this alignment pattern in terms of large filtered motions

using the LES approach. Their LES approach is a priori and based on analyzing

HPIV measurements of a quasi-isotropic flow at the center of a square duct. In this

subsection, this subject will be investigated via a posteriori LES predictions based

on the proposed DNM. The relative orientation between the resolved vorticity vector

and the eigenvectors of the negative SGS stress and the three constituent tensors

will be explored. The anisotropic effect due to the presence of the wall will also be

examined. As indicated previously, since an eigenvector by itself does not differentiate

its direction, in presenting the statistical results, either the absolute cosine value or

an angle interval of [0o, 90o] is adopted.

Figures 7.2(a)–(d) present the plane and time averaged profiles of relative ori-

entations between resolved vorticity ω̄, and the eigenvectors of the negative SGS

stress and three constituent tensors. A general impression from all four diagrams is

that the existence of the wall has a significant influence on the relative orientation.

Also, it appears that the Reynolds number only slightly influences the profile in the

buffer zone, and otherwise has no obvious effect. It is of interest to observe from

Figs. 7.2(a)–(d) that the averaged angles between ω̄ and the eigenvectors of the nega-

tive SGS stress and all the three nonlinear constituent tensors are either parallel (0o)

or perpendicular (90o) at the wall. From Fig. 7.2(a), it is observed that the averaged

relative orientation between ω̄ and the most extensive eigenvector of −τij shows a

perpendicular pattern (90o) at the wall, becomes skewed as x+
2 increases and finally

levels off around 62o at the center of the channel for both Reynolds numbers tested.

Similar relative orientation patterns are observed between ω̄ and the compressive

eigenvector of −τij , except that the averaged core value for the latter is about 68o.

The relative orientation between ω̄ and the intermediate eigenvector of −τij exhibits a

parallel pattern (0o) at the wall and reaches 42o in the core region for both Reynolds

numbers. Figures 7.2(b) and (c) for the averaged relative orientations between ω̄

and the eigenvectors of the first and second constituent terms, i.e. βij (as well as

S̄ij) and γij, respectively, exhibit a similar behavior to that shown in Fig. 7.2(a). In

Fig. 7.2(c), the overall characteristics of the eigenvectors corresponding to the largest
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(a) Angle between ω̄ and e−τi (b) Angle between ω̄ and eSi

(c) Angle between ω̄ and eWi (d) Angle between ω̄ and eNi

FIGURE 7.2: Averaged angle between the vorticity vector and eigenvectors.

and smallest eigenvalues of γij are hardly distinguishable in terms of their averaged

relative orientation with respect to ω̄.

The averaged relative alignment pattern between ω̄ and the eigenvectors of

the third nonlinear constituent tensor ηij shown in Fig. 7.2(d) are different than

those shown in Figs. 7.2(a)–(c). The relative orientation between ω̄ and the largest

eigenvector and that between ω̄ and the intermediate eigenvector exhibit a similar

pattern, being perpendicular (90o) at the wall and skewed around 70o (corresponding

to the largest eigenvector) and 63o (corresponding to the intermediate eigenvector) in

the core region. The averaged alignment angle between ω̄ and the smallest eigenvector

of ηij is 0o at the wall, and rises to 40o in the center of the channel.
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(a) Angle between ω̄ and eSα

(b) Angle between ω̄ and eSβ (c) Angle between ω̄ and eSγ

FIGURE 7.3: Time-averaged PF of the angle between the vorticity vector and the
eigenvectors of filtered strain rate tensor (Re = 2600).

The above analysis of the angle between the resolved vorticity vector, and the

eigenvectors of the negative SGS stress and three constituent tensors was based on

plane and time averaged profiles. The following presents a refined analysis of these

geometrical features based on probability functions. Figures 7.3(a)–(c) show the PF

profiles of the absolute cosine value of the angle between ω̄ and the eigenvectors of S̄ij .

Figure 7.3(a) indicates that the relative orientation between ω̄ and the most extensive

eigenvector of S̄ij is the most probable for | cos(ω̄, eSα)| = 0 (perpendicular pattern)

for all three different flow regimes (sublayer, buffer zone and logarithmic region),

regardless of differences in the PF levels. A similar alignment behavior is observed

from Fig. 7.3(c) for the alignment between ω̄ and the most compressive eigenvector
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(a) Angle between ω̄ and e−τα

(b) Angle between ω̄ and e−τβ (c) Angle between ω̄ and e−τγ

FIGURE 7.4: Time-averaged PF of the angle between the vorticity vector and eigen-
vectors of the negative SGS stress tensor (Re = 2600).

of S̄ij. However, in Fig. 7.3(b), it is observed that the relative orientation between

ω̄ and the intermediate eigenvector of S̄ij is the most probable for | cos(ω̄, eSβ)| = 1

(parallel). Therefore, it is concluded that ω̄ prefers to be aligned with eSβ while being

perpendicular to eSα and eSγ. These phenomenological features are prototypical

and consistent with other LES results [29, 99], DNS results [54, 55, 62, 73, 85] and

experimental results [76, 77, 179]. In general, as shown in Fig. 7.3(a)–(c), the peak

value of the PF corresponding to the most probable state increases drastically as x+
2

decreases. This indicates that the alignment patterns identified above are actually

more generic to the viscous sublayer rather than the logarithmic region, which agrees

with the observation of Blackburn et al. [73].
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Figures 7.4(a)–(c) illustrate the PF profiles of the relative alignment between

ω̄ and the negative SGS stress. In general, the features shown in these figures are

similar to those presented previously in Figs. 7.3(a)–(c). From the Figs. 7.4(a)–(c), it

is observed that ω̄ prefers to be aligned with the intermediate eigenvector of e−τβ, and

perpendicular to the most extensive and compressive eigenvectors. The conclusion

of ω̄ being perpendicular to e−τγ is supported by the experimental results of Tao

et al. [29, 99]. Tao et al. also indicated that there is no obvious preferred alignment

pattern of ω̄ in the (e−τα)—(e−τβ) plane. However, according to the results presented

in Figs. 7.4(a) and (b), it is found that ω̄ prefers to be aligned with e−τβ rather than

e−τα.

Since there are two degrees of freedom in determining an alignment pattern

between two vectors, 2-D JPFs are advantageous for providing more insightful results.

Figure 7.5 presents the time-averaged JPF contour for two angles formed by ω̄ and

the intermediate and most compressive eigenvectors of the resolved strain rate tensor.

It is very interesting to observe from both Fig. 7.5(a) and (b) that the JPF contour

occupies only the upper-right triangular statistical domain, i.e.

90o ≤ Θ(ω̄, eSβ) + Θ(ω̄, eSγ) (7.9)

The straight line that separates the trivial and nontrivial JPF values in Fig. 7.5(b)

corresponds to the equal sign in the above relation, and is hereby referred to as a

“natural bound ” due to the fact that such a pattern is not unique to the JPF contour

being discussed, but instead a common feature of the relative orientation between

a vector and an orthonormal triad. Figure 7.6 illustrates the geometry between an

arbitrary vector ω and an arbitrary orthonormal triad [e1, e2, e3]. The sides of the

spherical triangle shown in the figure are represented by A, B and C. From spherical

trigonometry [189], it is known that A+B+C ≤ 360o, A+B ≥ C and |A−B| ≤ C;

whence if C = 90o, the parameters A and B form the following “diamond-shape”
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(a) Logarithmic layer (b) Logarithmic layer (2D contour)

(c) Buffer layer (d) Viscous sublayer

FIGURE 7.5: Time-averaged JPF between the Θ(ω̄, eSβ) and Θ(ω̄, eSγ) (Re = 2600).

domain bounded by four straight lines (four “natural bounds”):

 90o ≤ A+B ≤ 270o

−90o ≤ A−B ≤ 90o
(7.10)

The previous inequality (7.9) is included in the first of the above two general

relations, and the triangular domain shown in Fig. 7.5(b) is only a quarter of this
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FIGURE 7.6: The spherical triangle related to a vector and an orthonormal triad.

general diamond-shape domain due to the restriction of [0, 90o] adopted in the statis-

tical approach. It should be indicated that the line representing the “natural bound”

in Fig. 7.5(b) is in fact not exactly the line: Θ(ω̄, eSβ) + Θ(ω̄, eSγ) = 90o, but in-

stead the contour line corresponding to the lowest PF value. Theoretically speaking,

no states should be shown in the right-left lower triangular region (corresponding

to Θ(ω̄, eSβ) + Θ(ω̄, eSγ) < 90o), however, an uncertainty of ±1.5o is inevitable in

the statistics due to the limited number of 30 × 30 bins adopted, and the smoothing

(interpolating) property of the software package which also contributes to the error

in graphic visualization.

From Fig. 7.5(a), it is observed that in the logarithmic core layer, the most

jointly probable state corresponds to Θ(ω̄, eSβ) = 0o and Θ(ω̄, eSγ) = 90o. This

indicates that the resolved vorticity vector is preferably aligned with the intermediate

eigenvector, while being perpendicular to the most compressive eigenvector of the

filtered strain rate tensor. Further, since there are only two degrees of freedom,

the most probable alignment between the resolved vorticity and the most extensive

eigenvector of S̄ij can only be perpendicular. Figure 7.5(c) shows that in the buffer

zone, the strength of JPF peak increases, indicating a much stronger pattern of ω̄

being parallel to eSβ and perpendicular to eSγ. Finally, Fig. 7.5(d) demonstrates

that in the viscous sublayer, the PF peak becomes very intense, indicating that such

an alignment feature, i.e. Θ(ω̄, eSβ) = 0o and Θ(ω̄, eSγ) = 90o, is not confined to
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(a) Logarithmic layer (b) Logarithmic layer (2D contour)

(c) Buffer layer (d) Viscous sublayer

FIGURE 7.7: Time-averaged JPF between Θ(ω̄, e−τβ) and Θ(ω̄, e−τγ) (Re = 2600).

the buffer and logarithmic layers, nor is such an alignment pattern a unique feature

for (quasi-)isotropic turbulence as it is popularly claimed [29,54,55,62,71,85,90,99].

Instead, it is argued in this thesis that such an alignment pattern is much more generic

to the viscous sublayer.

Figures 7.7(a)–(d) demonstrate the relative orientation between ω̄ and the

eigenvectors of the negative SGS stress. The characteristics shown in these fig-
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ures are very similar to those in Figs. 7.5(a)–(d) which describe the relative ori-

entation between ω̄ and the eigenvectors of the resolved strain rate tensor. In gen-

eral, Θ(ω̄, e−τβ) = 0o and Θ(ω̄, e−τγ) = 90o is the most probable state for all three

flow regimes, i.e. viscous sublayer, buffer zone and logarithmic region, which in-

dicates a prevalent alignment pattern that ω̄ is parallel to e−τβ and perpendicular

to e−τα and e−τγ across the entire channel. This preferred alignment pattern be-

comes stronger as x+
2 decreases. Figures 7.7(a) shows that at the central layer of

the channel where the flow is close to isotropic, the magnitude of the JPF peak

is weaker than those in the buffer zone and sublayer, and the distribution of the

JPF contour is more spread out. This indicates that besides the most probable

state of ω̄ being aligned with e−τβ, there is a considerable fraction of the vortic-

ity being aligned at other angles in the (e−τα)—(e−τβ) plane (consider the restriction

cos2 Θ(ω̄, e−τα)+cos2 Θ(ω̄, e−τβ)+cos2 Θ(ω̄, e−τγ) ≡ 1). Similar results were reported

by Tao et al. [29, 99] based on analyzing HPIV data of quasi-isotropic turbulence.

7.4.3 Results on Enstrophy and Enstrophy Generation

It is controversial whether concentrated vorticity has any significant influence on

the overall behavior of turbulent flows. According to recent studies by Jiménez et

al. [92] and Tsinober et al. [77, 78], the concentrated vorticity seems to be merely “a

consequence rather than the dominating factor” of turbulence. Fluid quantities which

closely relate to concentrated vorticity include the enstrophy ω2, vortex stretching

vector w and enstrophy generation σ. In their work [77,78], Tsinober et al. proposed

and explored several critical issues, e.g. (1) whether QTD turbulence can be treated as

pure 2-D turbulence, and (2) whether the background turbulence (a flow regime with

weak excitations, e.g. ω2 → 0) is purely a “random sea” without any structures as was

thought previously. These topics remain very attractive to the fluids community, since

they relate to the statistical features and topologies of turbulence. In this subsection,

the author presents some preliminary results related to these topics. However, in

contrast to previous approaches based on DNS and experimental data analyses by
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 7.8: Time-averaged PF of the resolved normalized enstrophy generation
σ̄n = cos(ω̄, w̄) (Re = 2600).

other researchers [76–78, 89, 90, 92, 95], the results to be presented in the following

context are based on the resolved large-scale motions calculated using the proposed

DNM.

Figure 7.8 illustrates the PF profile of the normalized resolved enstrophy gen-

eration σ̄n. From Figs. 7.8(a) and (b), it is evident that in both the buffer and

logarithmic regions, there is a strong alignment between the resolved vorticity and

vortex stretching vectors suggesting a dominant local vortex stretching (ω̄ · w̄ > 0)

flow configuration, and closely related to this, the essential feature of positively skewed

enstrophy generation for turbulence that has already been well documented in other

works based on DNS and experimental approaches [76–78,89,92–94]. However, in the
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 7.9: Time-averaged JPF between ω̄2/〈ω̄2〉 and | cos(ω̄, eSβ)| (Re = 2600).

viscous sublayer, as shown in Fig. 7.8(c), both local vortex stretching and compress-

ing (ω̄ · w̄ < 0) configurations are highly probable as indicated by the two strong PF

peaks observed at σ̄n = ±1. Such a symmetric pattern for the σ̄n distribution was

also observed by Chong et al. [67], who pointed out that there are as many vortex

stretching states as vortex compressing states in the viscous sublayer.

Figures 7.9(a)–(c) show the JPF profile between the normalized enstrophy

ω̄2/〈ω̄2〉 and | cos(ω̄, eSβ)|. Here 〈ω̄2〉 represents the plane and time averaged resolved

enstrophy. From the figure, it is evident that the alignment between ω̄ and the in-

termediate eigenvector of the filtered strain rate tensor, i.e. eSβ, becomes strongest

when ω̄2/〈ω̄2〉 is small for all three flow regimes, i.e. the viscous sublayer, buffer
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 7.10: Time-averaged JPF between ω̄2/〈ω̄2〉 and σ̄n = cos(ω̄, w̄) (Re =
2600).

zone and logarithmic region. It is observed that the peak value of the JPF increases

drastically as x+
2 decreases and reaches its largest value in the sublayer. The pattern

shown in Fig. 7.9(a) for the logarithmic layer is in good agreement with the result

reported by Tsinober et al. [77,78], who analyzed quasi-isotropic turbulence based on

DNS as well as experimental measurements.

Figures 7.10(a)–(c) show the JPF between the normalized resolved enstrophy

ω̄2/〈ω̄2〉 and enstrophy generation σ̄n. From all three figures, it is generally observed

that the strongest alignment between the resolved vorticity and vortex stretching

vectors is related to the weakest resolved enstrophy. For the logarithmic and buffer

regions, the state of vortex stretching flow configuration (σ̄n > 0) dominates any
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other possible states. The major features indicated in Fig. 7.10(a) are consistent

with the reported results of Tsinober et al. [77, 78], i.e. the most jointly probable

state is ω̄2/〈ω̄2〉 → 0 and σ̄n → 1 in the quasi-isotropic flow regime. For the viscous

sublayer, two most probable states are observed, i.e. both vortex stretching and

vortex compressing flow configurations prevail. This observation is consistent with

the previous result based on the 1-D PF as shown in Fig. 7.8(c).

From the previous discussion, it is known that the most probable state of align-

ment between ω̄ and the resolved vortex stretching vector w̄ corresponds to a posi-

tively skewed resolved enstrophy generation σ̄. This has been demonstrated by a few

studies, including the current one, to be a generic characteristic of turbulent flows.

It is also known that for pure 2-D incompressible turbulent flows, σ̄ ≡ 0. Therefore,

from Eq.(7.4), an overall positive value of σ̄ implies two properties: (i) turbulence

must not entirely be 2-D, and (ii) σ̄α based on the alignment between ω̄ and the most

extensive eigenvector eSα should not be trivial. However, on the other hand, a QTD

state of turbulence (|βS| < |αS|, |βS| < |γS| and ω̄ being aligned with eSβ) has also

been observed as the most probable state for (quasi-)isotropic turbulence. As such, a

“contradiction” appears. This relates to the first question listed at the beginning of

the subsection. Tsinober et al. [77, 78] extensively investigated this problem. They

indicated that most of the enstrophy generation is related to σ̄α, and in fact a state

of σ̄α > σ̄β and an alignment between ω̄ and eSα do exist. The latter has also been

confirmed by this research. As shown in Fig. 7.5(a) for the core region, apart from

the largest JPF peak corresponding to the most probable state that resolved vorticity

is aligned with the intermediate eigenvector of S̄ij, the JPF values corresponding to

all other states of alignments are obviously not trivial. Also from both Figs. 7.8(a)

and 7.9(a), the strength of the JPF peak for the logarithmic region is much weaker

than that for the viscous layer, and other states including vortex stretching do exist

albeit with a lower probability. She et al. [90] and Tsinober et al. [77, 78] further

indicated that a probable state of the vorticity vector being aligned with the inter-

mediate eigenvector of the strain rate tensor tends to relate to a non-vanishing value

of βS and thus σ̄β is not necessarily zero. This can be readily understood since nei-
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ther of the following two frequently reported “most probable” eigenvalue ratios, i.e.

αS : βS : γS = 1 : 1 : −2 (corresponding to axisymmetric expansion) [29, 59] and

αS : βS : γS = 3 : 1 : −4 [55, 62, 76], suggests that βS = 0 is highly probable. In

this sense, the local QTD state of turbulence is qualitatively different from purely

2-D turbulence in that it possesses essential non-vanishing enstrophy generation and

a finite intermediate eigenvalue of the (filtered) strain rate tensor.

Now, it is appropriate to return to the second question of Tsinober et al. [77,78]

listed at the beginning of this subsection. It is still commonly thought that the struc-

ture of turbulence is related to strong local excitations, such as intense concentrated

vorticity [77]. The background of a turbulent field apart from these strong local events

is considered to be Gaussian [77,90,92,95], and for a Gaussian field 〈σ̄〉 ≡ 0 [76]. As

discussed above, the alignment between ω̄ and eSβ (related to a local QTD state)

and that between ω̄ and w̄ (related to a local vortex stretching pattern) both become

highly probable when the local excitation of resolved vorticity is the weakest. As con-

cluded by Tsinober et al. [77, 78], this implies that the background turbulence is not

locally a structureless random sea; instead, various intense local structure patterns

exist in all regions with or without high excitation of a specific quantity. Although the

results presented in this section are based on the large resolved scale of motions, they

support these comments, which in turn indicates that the proposed DNM performs

well in terms of the prediction of these turbulence geometrical characteristics at the

resolved scales.

7.5 Numerical Results on the Relative Principal

Values

In this section, statistical results on the relative eigenvalues based on the time-plane

averaging method, as well as the three probability functions, s∗-PF, β∗-PF and (β/α)-

PF are presented. Figures 7.11(a)–(d) illustrate the plane and time averaged profiles

of the relative principal values of the negative SGS stress and three constituent ten-
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(a) Negative SGS stress −τij (b) First constituent term βij (S̄ij)

(c) Second constituent term γij (d) Third constituent term ηij

FIGURE 7.11: Averaged ratio between the eigenvalues of the negative SGS stress
and three constituent tensors.

sors. Following convention, all the profiles presented in these four figures have been

amplified by a factor of 3. In general, no obvious Reynolds number effect is observed

in the figures. Figure 7.11(a) shows that the averaged ratio of the eigenvalues of the

negative SGS stress −τij is rather ‘flat’ around α−τ : β−τ : γ−τ = 3 : 0.8 : −3.8 in

the core region, and changes to 3 : 2.5 : −5.5 at the wall for both Reynolds numbers

tested. The locations for transition from the boundary to the flat core values are at

about x2/(2h) ≈ 0.12 and 0.88 which corresponds to x+
2 = 25 ∼ 30. Figure 7.11(b)

indicates that the averaged ratio of the eigenvalues of the filtered strain rate tensor

(as well as for the first constituent term βij) is close to αS : βS : γS = 3 : 0.4 : −3.4 in
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the core region, and changes to 3 : 0 : −3 (or 1 : 0 : −1) at the wall which precisely

reflects the 2-D nature of the near-wall flow. Figure 7.11(c) shows that the averaged

ratio of the eigenvalues of the second nonlinear constituent tensor γij is approximately

αW : βW : γW = 3 : 0 : −3. Finally, Fig. 7.11(d), which is similar to Fig. 7.11(a),

indicates an averaged eigenvalue ratio of αN : βN : γN = 3 : 0.8 : −3.8 in the core

region and 3 : 2.8 : −5.8 at the wall.

Figures 7.12, 7.13 and 7.14 illustrate 1-D PFs of the eigenvalue ratio of the

filtered strain rate tensor S̄ij, i.e. s∗-PF, β∗-PF and (β/α)-PF, respectively. A gen-

eral impression from all these figures is that there is an obvious “viscous-shift ” of

the most probable state as the wall is approached, i.e. the value of s∗, β∗ or β/α

corresponding to the most probable state decreases as x+
2 decreases. Such a shift

reflects the anisotropic effect due to the presence of the walla.

The β∗-PF profile illustrated in Fig. 7.12 shows that the most probable states

are 0.41, 0.16 and 0.04 for the logarithmic region, buffer zone and viscous sublayer,

respectively. These numbers correspond to relative eigenvalue ratios of αS : βS : γS =

3.6 : 1 : −4.6 for x+
2 = 77.2, 10 : 1 : −11 for x+

2 = 22.3 and 42 : 1 : −43 for x+
2 = 5.12.

A most probable value of β∗ = 0.41 matches very well with the experimental result

reported by Tsinober et al. [76], and the corresponding ratio of 3.6 : 1 : −4.6 is

close to the classical one of 3 : 1 : −4 (β∗ = 0.48). The ratios 10 : 1 : −11 and

42 : 1 : −43 correspond to the singular situation when βS is small, and as discussed

earlier in subsection 7.3.2, both should be interpreted as an approximate 2-D state of

1 : 0 : −1. Figure 7.13 indicates the most probable states are βS/αS = 0.15, 0.08 and

0.03 for the logarithmic region, buffer zone and viscous sublayer, respectively, which

correspond to eigenvalue ratios of αS : βS : γS = 6.6 : 1 : −7.6, 14.3 : 1 : −15.3 and

30 : 1 : −31, respectively. Again since the value of βS/αS is very small in the buffer

zone and viscous sublayer, the calculation procedure becomes unstable.

As noted previously, according to Lund et al. [59], both the β∗-PF and (β/α)-

aA similar shifting behavior has been observed by some other researchers, e.g. She et al. [90] and
Lund et al. [59]. However, those studies were based on isotropic turbulence, and the shift is due to
the level of resolved TKE dissipation rate [59] (or simply SijSij [90]) rather than wall anisotropy
related to x+

2 .
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FIGURE 7.12: Time-averaged β∗-PF for
the eigenvalue ratio of S̄ij (Re = 2600).

FIGURE 7.13: Time-averaged (β/α)-
PF for the eigenvalue ratio of S̄ij (Re =
2600).

PF tail off at the two boundaries of the statistical interval and thus fail to predict

the axisymmetric expansion (αS : βS : γS = 1 : 1 : −2 and s∗ = 1) flow configuration,

which is actually regarded to be the most probable state for isotropic turbulence

[29, 59, 64, 73, 88]. The results presented in Figures 7.14(a)–(c) are based on the s∗-

PF. As shown in Fig. 7.14(a), the most probable value of s∗ = 0.9 reported by Lund

et al. [59] via analysis of DNS database has been reproduced in the core region at the

filtered scale of motions. This indicates that a state of (quasi) axisymmetric expansion

is the most probable in the core region. Figures 7.14(b) and (c) show a strong effect

of a viscous-shift as x+
2 decreases in comparison with Fig. 7.14(a). The most probable

values in Figs. 7.14(b) and (c) are s∗ = 0.3 (corresponding to 8 : 1 : −9) and s∗ = 0.07

(corresponding to 37 : 1 : −38), respectively. Once again, a state of s∗ = 0.07 → 0

for the sublayer should be considered as singular, and the ratio 37 : 1 : −38 should

be interpreted approximately as 1 : 0 : −1 reflecting the 2-D nature of the near-wall

flow.

The 1-D PFs such as β∗-PF, s∗-PF and (β/α)-PF are appropriate for studying

the relative eigenvalue ratio for the filtered strain rate tensor, since there are two

constraints for the system of three independent parameters, i.e. the definition of

the statistical quantity itself and the continuity condition that αS + βS + γS ≡ 0

for incompressible flow. However, for the eigenvalue of the SGS stress, there is no
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 7.14: Time-averaged s∗-PF for the eigenvalue ratio of S̄ij (Re = 2600).

continuity equation which can be used as a constraint. Thus, a 2-D JPF should

be considered for investigating the eigenvalue ratio for τij . It is understood that τij

and τ ∗ij share the same eigenvector (eigenframe), with a difference of τkk/3 in their

eigenvalues. The justification of the above statement is straightforward. Suppose

that the eigensystem of τij is τij · ej = λ · ei. Subtract (τkkδij/3) · ej from both sides

of the above equation, and the eigensystem for τ ∗ij is readily obtained, i.e. (τij −
τkkδij/3) · ej = (λ− τkk/3) · ei or simply τ ∗ij · ej = λ∗ · ei. Here the symbol λ is used

to represent the eigenvalue in a general way. In the other parts of this chapter and

the entire next chapter, there is no need to distinguish between τij and τ ∗ij since only

the properties related to the eigenvector are of concern. However, in this particular

subsection, the difference needs to be mentioned since the eigenvalue itself is the
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subject of study. Obviously, the eigenvalue ratio β−τkk/3
α−τkk/3

	= β
α

if τkk 	= 0 or β
α

	=
1. Notwithstanding the above difference, τ ∗ij instead of τij is investigated in this

subsection. For τ ∗ij , its tracefree property acts in a similar way to continuity (referred

to here as pseudo-continuity), i.e. ατ + βτ + γτ ≡ 0, which indicates that a 1-D PF

is sufficient for studying the relative eigenvalue ratio of τ ∗ij or −τ ∗ij . However, the

author is instead motivated to present the results based on the 2-D JPF due to some

interesting geometrical properties it reveals.

Figure 7.15 illustrates the JPF of the relative eigenvalue ratio of the negative

SGS stress tensor in the three layers: logarithmic region, buffer zone and viscous

sublayer. It is interesting to observe that the JPF contour for the logarithmic region

shown in Fig. 7.15(a) exhibits a regular symmetric geometrical shape: “a straight thin

fin”, which in the (β−τ/α−τ )—(γ−τ/α−τ) plane becomes a “straight bar” as shown in

Fig. 7.15(b). In fact, it is observed that the 2-D geometry of a straight bar is a general

feature for all three layers, although the peak which represents the most probable state

is not located at the symmetric center of the JPF contour for the viscous sublayer as

shown in Fig. 7.15(d). The special straight line that the JPF contour is aligned with

is the pseudo-continuity condition for −τ ∗ij as mentioned above. From Figs. 7.15(a)

and (b) the most probable ratio reads α−τ : β−τ : γ−τ = 1 : 0.25 : −1.25 (or 3 : 0.75 :

−4.75) for the core layer. Theoretically speaking, all states of statistics should fall

on the pseudo-continuity line. The observed finite width of the straight bar is due to

the interpolating error of the software package used for graphic visualization and also

the limited number of 30× 30 bins adopted in statistics which admits an uncertainty

of ±0.05. Although in Fig. 7.15(c) the most probable state relates to 1 : 0.65 : −1.65

(or 3 : 1.95 : −4.65) for x+
2 = 22.3, and the JPF contour is approximately flat at the

top. In Fig. 7.15(d), the contour becomes a skewed sharp peak, which indicates a

most probable ratio of 1 : 0.85 : −1.85 (or 3 : 2.55 : −5.55) for the viscous sublayer at

x+
2 = 5.12. As indicated earlier, due to the constraint of pseudo-continuity in addition

to the definition of the statistical quantity, there is no need to apply the 2-D JPF to

determine the relative eigenvalue ratio of −τij . However, it is desirable to find that

the singularity problem encountered in the 1-D PFs (e.g. Fig. 7.13) has been avoided
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(a) Logarithmic layer (b) Logarithmic layer (2D contour)

(c) Buffer layer (d) Viscous sublayer

FIGURE 7.15: Time-averaged JPF between the relative eigenvalues of the negative
SGS stress tensor (Re = 2600).

in the approach of utilizing the 2-D JPF. The calculation becomes stable and the

eigenvalue ratio can be determined in a convergent way without any amplification of

errors. Finally, it should be noted that this method for visualizing the geometry of

a tracefree tensor represents an interesting approach which can be generally used for

visualizing the trace of a second order tensor or the divergence of a vector, e.g. the

strength of a local source or sink ui,i for mass flux.
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7.6 Conclusions

In this chapter, the geometrical statistical characteristics of the resolved scales of

motion have been investigated based on LES of turbulent Couette flow. The LES

procedure relies on the DNM SGS stress model, which in the previous chapter, has

been demonstrated to be capable of simulating a generic turbulence field in terms of

conventional scaling features such as the resolved velocity field, turbulence intensity,

Reynolds shear stress, etc. In this chapter, the LES results on the turbulence geo-

metrical statistics have been compared with those based on DNS and experimental

approaches as reported in the literature. The performance of the DNM is further

validated since it is capable of predicting various prototypical geometrical statistical

features such as helical behavior, the alignment between vorticity and the intermedi-

ate eigenvector of the filtered strain rate tensor, and that between vorticity and the

vortex stretching vector. The effect of near-wall anisotropy due to the existence of the

wall has been examined for three different flow regimes: the viscous sublayer, buffer

zone and logarithmic region. The major conclusions are summarized as follows.

(i) Summary of Geometrical Alignments

Helicity by its definition quantifies the relative alignment between the velocity

and vorticity vectors. In the logarithmic region, a prevalence of helical structure and

a pattern of streamwise alignment of the resolved vorticity vector is observed. As

the wall is approached, a state that the resolved vorticity vector ω̄ is perpendicular

to the resolved velocity vector becomes more and more probable. This anisotropic

effect due to the wall agrees with the reported results based on analyzing DNS data

of Poiseuille channel flow [53,61].

The alignment between the resolved vorticity vector and eigenvectors of the

negative SGS stress and three constituent tensors are examined in this chapter based

on three methods of statistics, i.e. plane average, 1-D PF and 2-D JPF profiles. The

plane averaging method is advantageous for representing the general alignment across

the entire channel, however, some important details are missed, e.g. the widely noted

166



alignment pattern between ω̄ and the intermediate eigenvector of the resolved strain

rate tensor eSβ. This prototypical feature is well captured by the 1-D PF for all

three different flow regimes: sublayer, buffer zone and logarithmic region. It is also

observed that ω̄ is preferentially aligned with the intermediate eigenvector of −τij ,
i.e. e−τβ, and perpendicular to its most extensive and compressive eigenvectors in all

three flow regimes. In general, as x+
2 decreases, the peak of the PF corresponding to

the most probable state increases drastically.

It is very interesting to observe a regular “triangle shape” 2-D JPF contour

in the (Θ(ω̄, eSβ))—(Θ(ω̄, eSγ)) plane. This triangular shape represents the general

characteristics inherent to the relative orientation between a vector and an orthonor-

mal triad. In all three flow regimes, there is a dominant JPF peak corresponding to

the most jointly probable state of two angles, i.e. Θ(ω̄, eSβ) = 0o and Θ(ω̄, eSγ) = 90o.

This again demonstrates the canonical pattern that ω̄ is preferentially aligned with

the intermediate eigenvector of S̄ij , while being perpendicular to its most compressive

and extensive eigenvectors. In the sublayer, the magnitude of the JPF peak becomes

the strongest, indicating that such an alignment feature, i.e. Θ(ω̄, eSβ) = 0o and

Θ(ω̄, eSγ) = 90o, is not only valid for (quasi-)isotropic turbulence as it is popularly

reported, but instead, is found by this research to be even more generic to the viscous

sublayer.

In the logarithmic layer, a strong alignment between the resolved vorticity vec-

tor ω̄ and vortex stretching vector w̄ is predicted by the simulation, which suggests a

dominant local vortex stretching flow configuration associated with positively skewed

resolved enstrophy generation. This feature is expected and has been well docu-

mented in the literature based on DNS and experimental approaches [76–78,89,92–94].

However, in the viscous sublayer, both local vortex stretching and compressing flow

configurations are highly probable.

The observed overall positive value of the resolved enstrophy generation sug-

gests that turbulence must not entirely be 2-D, and σ̄α, the component of resolved

enstrophy generation contributed by the alignment between ω̄ and the most extensive
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eigenvector eSα, cannot be neglected. On the other hand, a QTD state of turbulence,

i.e. |βS| < |αS|, |βS| < |γS| and ω̄ being aligned with eSβ, has also been identified

as the most probable turbulence state. It is confirmed by this research that the local

QTD state of turbulence is intrinsically different than a pure 2-D turbulence state,

since it possesses a non-vanishing enstrophy generation and a nontrivial intermedi-

ate eigenvalue of the filtered strain rate tensor. It is observed in this research, as

well in other studies based on DNS and experimental approaches [77, 78, 92], that

the strongest alignment between ω̄ and eSβ and that between ω̄ and w̄ both become

highly probable when the excitation of vorticity is the weakest, which implies that the

background turbulence is not a random sea without any local structures. Instead, a

variety of local structure patterns exist in all regions with or without high excitation

of the resolved vorticity.

(ii) Summary of the Relative Principal Eigenvalues

Plane and time averaged profiles and three different statistical tools, i.e. s∗-PF,

β∗-PF and (β/α)-PF, are used for investigating the relative eigenvalue ratio of the

negative SGS stress and those of the three nonlinear constituent terms. The plane

and time averaged profiles are advantageous for illustrating the general ratio between

eigenvalues across the entire channel. For instance, the average ratio of the eigenvalues

of the negative SGS stress −τij is approximately α−τ : β−τ : γ−τ = 3 : 0.8 : −3.8 in

the core region, and changes to 3 : 2.5 : −5.5 at the wall. The average ratio of the

eigenvalues of the filtered strain rate tensor is approximately αS : βS : γS = 3 : 0.4 :

−3.4 in the core region, and changes to 3 : 0 : −3 at the wall to be consistent with

the 2-D nature of the near-wall flow.

Generally from 1-D PFs of the eigenvalue ratio of the filtered strain rate tensor,

an obvious “viscous-shift” is observed in the most probable state as the x+
2 decreases,

which is due to the wall-normal anisotropic effect. The β∗-PF profile exhibits a

most probable state of αS : βS : γS = 3.6 : 1 : −4.6 in the core region, which

matches well with the experimental result [76], and is close to the classical ratio of

3 : 1 : −4 [54,55,62,76]. The most probable value of s∗ = 0.9 obtained from the s∗-PF,
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also agrees well with the DNS result reported by Lund et al. [59]. A value of s∗ = 0.9

indicates that a local quasi axisymmetric expansion pattern is the most probable

in the core region. However, the result from the (β/α)-PF for the core region, i.e.

αS : βS : γS = 6.6 : 1 : −7.6, is different from the results obtained using β∗-PF and

s∗-PF. It is identified during the research that in the case when βS is close to 0 (e.g.

in the viscous sublayer), all three statistical methods based on β∗-PF, s∗-PF and

(β/α)-PF tend to become singular and the calculation of the relative eigenvalue ratio

becomes unstable. A 2-D JPF is also adopted for investigating the eigenvalue ratio of

−τ ∗ij . Since −τ ∗ij is tracefree, the JPF contour is aligned with a regular straight line.

The singularity problem encountered in the 1-D PF can be avoided by using the 2-D

JPF, which determines the most probable eigenvalue ratio in an unambiguous way

without the amplification of errors due to small values of β−τ → 0. The most probable

ratio predicted using the 2-D JPF for −τ ∗ij is α−τ : β−τ : γ−τ = 3 : 0.75 : −4.75 for the

core layer, 3 : 1.95 : −4.65 for the buffer zone and 3 : 2.55 : −5.55 for the sublayer.
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Chapter 8

Tensorial Invariants and Turbulence

Topology

8.1 Introduction

In chapters 6 and 7, the velocity gradient tensor was studied using geometrical sta-

tistical methods based on plane averaging and probability functions. It has been

shown that the velocity gradient tensor is fundamental to a variety of important fluids

quantities and processes such as the rotation and strain rate tensors, helical motions,

enstrophy generation, vortex stretching, resolved dissipation rate, rate of SGS TKE

production, etc. The pioneering works of Perry and Chong [56], Chong et al. [58],

Chen et al. [57] and Cantwell [63,186] introduced another interesting methodology, i.e.

turbulence topology, which investigates local small scales of turbulence by classifying

flow topologies in terms of the three invariants of the velocity gradient or filtered strain

rate tensors. Perry and Chong [56] implemented the concept of critical-point analysis

of nonlinear physics into the description of eddying motions, which is fundamental to

the development of the methodology of turbulence topology. This methodology has

been studied using theoretical analysis based on tensorial invariants and restricted

Euler dynamics [52, 58, 63, 65, 69, 184, 186], a priori LES approaches [29, 70, 165], and

DNS analysis of a variety of turbulent flows [57, 64, 66–68,190].

There are several good reasons to study the invariants of a velocity gradient

tensor: (i) the geometry and structure obtained from the analysis are universal, i.e.
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frame invariant under affine transformation [64, 78, 178]; (ii) in the case of incom-

pressible flows, the analysis of a 3-D field can be conveniently reduced to a 2-D

invariant analysis [64]; (iii) different length scales of turbulence corresponding to dif-

ferent magnitudes of the velocity gradient can be sorted in an unambiguous manner

using the invariant phase plane [64]; and (iv) it has been shown by several stud-

ies [67,68,70,73,190] that the so-called turbulence invariant discriminant appears to

be an effective quantity for flow structure visualization since it does not require any

arbitrary thresholds. In this chapter, the methodology of turbulence topology for

LES will be briefly introduced, and numerical results based on analyzing the data

obtained using the proposed DNM will be presented.

In their paper, van der Bos et al. [70] indicated that a good SGS model should

exhibit the capability to reproduce generic turbulence topological features in the

invariant phase planes and also to predict turbulence quantities such as the statisti-

cally expected energy dissipation and various geometrical alignments between fluid

vectors. The sound performance of the DNM in terms of conventional tests and geo-

metrical statistics has been reported previously in chapters 6 and 7, respectively. As

a continuation of the evaluation of the DNM, some preliminary results on turbulence

topologies based on analyzing a Couette flow database (Re = 2600) obtained using

the LES approach will be presented in this chapter. The methodology adopted follows

the roadmap originally laid out by Chen et al. [57] based on analysis of DNS data, and

also refers to the recent works on LES implementations by Borue and Orszag [165]

and van der Bos et al. [70].

8.2 Basic Concepts Related to Tensorial Invariants

and Flow Topologies

As is well known the velocity gradient tensor Aij
def
= ui,j can be decomposed into a

symmetric strain rate tensor Sij and skew-symmetric rotation rate tensor Ωij , i.e.
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Aij = Sij + Ωij . The eigenvalues of Aij satisfy the characteristic equation [58, 69]

λ3 + PAλ
2 +QAλ+RA = 0 (8.1)

where PA, QA and RA are invariants of Aij taking the following forms


PA

def
= −tr(A) ≡ −Aii

QA
def
=

1

2
{[tr(A)]2 − tr(A2)} ≡ 1

2
P 2

A − 1

2
AikAki

RA
def
= − det(A) ≡ −1

3
P 3

A + PAQA − 1

3
AikAknAni

(8.2)

For incompressible flows, PA ≡ 0 due to continuity and thus the local flow topology

only relies on QA and RA, which have the following simplified forms


QA = −1

2
AikAki =

1

4
(ωiωi − 2SijSji)

RA = −1

3
AikAknAni = −1

3
(SijSjkSki +

3

4
ωiωjSij)

(8.3)

The terms on the right hand side of the above equations are readily identifiable

invariants with very clear physical meanings: the enstrophy ω2 = ωiωi = −2ΩijΩji,

strain product (proportional to dissipation) IS2 = SijSji ∝ εr = 2νSijSji, strain

skewness IS3 = SijSjkSki, and enstrophy generation σ = ωiωjSij = 4ΩijΩjkSki. The

behavior of these four invariants and the physical processes related to them will be

discussed later in a detailed manner along with numerical illustrations in section 8.3.

Chong and Perry [58] have shown that when PA = 0 (due to incompressibility),

the nature of the roots of Eq.(8.1) is determined by a discriminant defined as

DA =
27

4
R2

A +Q3
A (8.4)

If DA > 0, Eq.(8.1) admits one real and two complex-conjugate roots. In this case,

vorticity dominates the rate of strain, the local streamlines swirl about the point

and the flow pattern is referred to as a focus [56, 58]. If DA < 0, the three roots of

Eq.(8.1) are distinct and real, the rate of strain dominates the vorticity and the flow
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FIGURE 8.1: Solution space for invariants QA and RA with lines corresponding
to constant values of the discriminant DA. The different subdomains are labelled
according to the terminology of Chong and Perry [58].

pattern resembles a stagnation point. This type of flow geometry is referred to as a

node-saddle-saddle [56, 58] . If DA = 0, Eq.(8.1) has three real roots of which two

are equal, which corresponds to two curves: RA = ±(2
√

3/9)(−QA)3/2 as shown in

Fig. 8.1. These two special curves are also sometimes referred to as the “Vieillefosse

line” [191]. The sign of RA can be used for a further classification of the flow topology:

in the left half of the QA–RA plane (the so-called phase plane of invariants of the

velocity gradient tensor), the real parts of the complex-conjugate eigenvalues or two

of the three real eigenvalues are negative and the critical points are classified as stable;

in contrast, in the right half plane, the real parts of the complex-conjugate eigenvalues

or two of the three real eigenvalues are positive and the critical points are classified

as unstable [73]. The above mentioned three different solution sets corresponding to

DA > 0, DA < 0 and DA = 0, respectively, are illustrated in Fig. 8.1.

Upon taking the gradient of the N-S equation for incompressible flow, a trans-

port equation for Aij can be obtained [63], i.e.

Dt(Aij) + (AikAkj)
∗ = Hij (8.5)
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As usual, the superscript ∗ indicates the tracefree form of a tensor, i.e. ( )∗ij =

( )ij − ( )mmδij/3, the operation Dt( ) = ˙( ) + uj · ( ),j represents the material

derivative, and the tensor Hij in the above equation is defined as

Hij = −(p,ij )∗/ρ+ ν(Aij),kk (8.6)

The two terms on the right hand side of the above equation represent the deviatoric

part of the pressure Hessian and the viscous diffusion terms, respectively. If the ef-

fect of Hij is negligible, Eq.(8.5) reduces to a typical homogeneous equation, which is

referred to as the restricted Euler equation [63]. By employing the rule of tensor con-

traction and Cayley-Hamilton theorem, Cantwell [63] deduced the following evolution

equations for QA and RA from Eq.(8.5):
Dt(QA) = −3RA − AijHji

Dt(RA) =
2

3
Q2

A −AijAjkHki

(8.7)

Mutiply the 1st and 2nd equation of (8.7) with 2
3
Q2

A and 3RA, respectively,

and then add the results to obtain the following relation under the restricted Euler

condition (neglect Hij):

2

3
Q2

ADt(QA) + 3RADt(RA) = 0 (8.8)

which, on applying Eq.(8.4), is simplified to

Dt(DA) = 0 (8.9)

which then results in a restricted Euler solution, i.e. DA = constant as shown in

Fig. 8.1. The tangential direction of the restricted Euler solution vector (or the slope

of the solution trajectory [63]) in the QA–RA phase plane can therefore be determined

as dQA/dRA = −9RA/(2Q
2
A).

Although the restricted Euler equation is much simplified, as pointed out by
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Cantwell [63,186], it is rather “remarkable” that its solution is close to DNS results for

the N-S equations in terms of turbulence topology, which suggests that “the restricted

Euler equation plays a role in real flows”. The above statement of Cantwell is strongly

supported by various DNS based studies [57,64,66–68,190]. In the LES approach, an

additional term Bij related to the SGS stress due to the filtering process appears in

Eq.(8.5) which becomes [70]

Dt(Āij) + (ĀikĀkj)
∗ = H̄ij − B∗

ij (8.10)

where

Bij = τkj,ik (8.11)

Based on data analysis of the HPIV measurements of Tao et al. [29], van der Bos et

al. [70] examined the effects of this additional SGS term. They concluded that the

SGS stress has a certain influence on the discriminant and the slope of the solution

trajectory (described as a “streamline” that follows the tangential direction of the

resolved vector map in their paper), which deviates from the pattern admissible by

the previously mentioned restricted Euler equation (sketched in Fig. 8.1). However,

other features such as the resolved enstrophy generation, strain-skewness and energy

flux quantified from the HPIV data agree with the previously reported DNS results

of Chertkov et al. [191].

8.3 Numerical Results on Turbulence Topologies

8.3.1 Flow Topologies Related to Invariants of the Resolved

Velocity Gradient Tensor

For LES of incompressible flows, the previously discussed three tensorial invariants

of the velocity gradient tensor defined by Eq.(8.2) take the following forms at the
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filtered scales: 
PA∆ ≡ 0

QA∆ = −1

2
ĀikĀki =

1

4
(ω̄iω̄i − 2S̄ijS̄ji)

RA∆ = −1

3
ĀikĀknĀni = −1

3
(S̄ijS̄jkS̄ki +

3

4
ω̄iω̄jS̄ij)

(8.12)

Similar to Eq.(8.4), the Eulerian discriminant can be defined as

DA∆ =
27

4
R2

A∆ +Q3
A∆ (8.13)

The tensorial invariants appearing in the above definitions of QA∆ and RA∆ are the

resolved enstrophy ω̄2 = ω̄iω̄i = −2Ω̄ijΩ̄ji, resolved strain product ĪS2 = S̄ijS̄ji,

resolved strain skewness ĪS3 = S̄ijS̄jkS̄ki, and resolved enstrophy generation σ̄ =

ω̄iω̄jS̄ij . Before analyzing the statistical characteristics related to the QA∆–RA∆ phase

plane, it is beneficial to explain some implications of these two invariants (i.e. QA∆

and RA∆) and their connections to the local flow structures and physical processes. In

addition to the previous introduction to the methodology of Perry and Chong [56,58]

for classifying the flow topologies using these two invariants and the concept of critical

points, it is worthwhile to note the following flow mechanisms for further clarification:

• It is well known that the resolved strain product relates to the resolved vis-

cous dissipation, i.e. εr = 2νS̄ijS̄ji = 2νĪS2, which is different than the local

rotational excitation (or the activity of concentrated vortical “worms” [78, 92])

due to the resolved enstrophy. Thus, it is clear from its definition (Eq.(8.12))

that the invariant QA∆ is a measure of the relative weights of both the local

straining and rotational parts of the resolved velocity gradient tensor: a large

positive QA∆ corresponds to a large resolved enstrophy ω̄2 dominating the re-

solved strain product (dissipation), while the reverse is true for the opposite

case when QA∆ is large and negative [73].

• The invariant RA∆ by definition accounts for the combined effects of two third

order tensorial invariants, i.e. the resolved strain skewness ĪS3 and the resolved
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enstrophy generation σ̄. According to the study of Tsinober et al. [81,82], both

resolved strain skewness and enstrophy generation are related to the transport

equation of the resolved strain product ĪS2 (equivalent to the dissipation equa-

tion, see Eq.(C.4) in Appendix C). The rate of energy dissipation εr is primarily

associated with a negatively valued resolved strain skewness or ĪS3 < 0. Lo-

cal vortex stretching (σ̄ > 0) suppresses the cascade of dissipation, however,

vortex compression (σ̄ < 0) contributes to it. Although both negatively val-

ued resolved strain skewness and enstrophy generation contribute to the local

dissipation, they seem to counteract each other, since overall the resolved en-

strophy generation is positively skewed (as discussed in detail previously in

subsection 7.4.3) while the resolved strain skewness is negatively skewed (which

will be discussed later in the QS∆–RS∆ phase plane based on the filtered strain

rate tensor).

The above issues qualitatively characterize some fundamental statistical features of

the flow topologies exhibited in the QA∆–RA∆ phase plane, which include the local

straining process, (vortical) rotational excitation, vortex stretching/compression, and

cascade of dissipation. Since all these features are based on tensorial invariants, they

are expected to be generic to turbulence, independent of the observer/coordinate

system and likely to be universal from one flow to another.

In presenting the results, the invariants QA∆ and RA∆ for the resolved velocity

gradient tensor (as well as those for the resolved strain rate tensor to be discussed

later) are non-dimensionalized using ν and uτ in analogy to the canonical wall coor-

dinates u+ and x+
2 for wall flows:

Q+
A∆ = QA∆/(u

2
τ/ν)

2

R+
A∆ = RA∆/(u

2
τ/ν)

3
(8.14)

Figures 8.2(a)–(f) illustrate the JPF between QA∆ and RA∆ for the sublayer,

buffer zone and logarithmic region. A prototypical self-similar “pear-shape” [68]

(also referred to as a “teardrop-shape” [67] or “elongated/roughly elliptical shape”
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(a) Logarithmic layer (b) Logarithmic layer (2-D contour)

(c) Buffer layer (d) Buffer layer (2-D contour)

(e) Viscous sublayer (f) Viscous sublayer (2-D contour)

FIGURE 8.2: Time-averaged JPF between invariants Q+
A∆ and R+

A∆ of the filtered
velocity gradient tensor (Re = 2600).
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[64, 186, 190]) centered on the origin is apparent in all cases. It is evident from the

figures that the most probable state is located at the origin. Apart from the origin,

the 2-D pear-shape JPF contour has a preference for the 2nd and 4th quadrants,

indicating the prevalence of stable-focus/stretching and unstable-node/saddle/saddle

topologies, respectively. A comparison of Figs. 8.2(b), (d) and (f) based on the same

minimum cut-off JPF contour level of 0.0004, indicates that the preference of the

JPF for the origin is the most intense in the sublayer. This is also indicated by the

largest 3-D JPF peak, which occurs in Fig. 8.2(e). Moving away from the wall, the

pear-shape contour spreads out in the 2nd and 4th quadrants, and the magnitude

of the corresponding peaks reduces. The dominance of the 2nd and 4th quadrants

is the greatest in the buffer layer. Both the self-similarity of the JPF contour shape

in different layers and the anisotropic effect due to the existence of the wall agree

with the results reported by Blackburn et al. [73]. As pointed out by Cantwell [186],

neither the commonly observed preference for QA∆ and RA∆ to lie near the origin,

nor the extension away from the origin along the “ridgeline” in the 2nd quadrant

reported in earlier studies [57,64,186], are admissible to the restricted Euler equation

(see Fig. 8.1).

As is apparent in Figs. 8.2(b), (d) and (f), there is a strong tendency for the

JPF contour to gather around the right Vieillefosse line (DA∆ = 0 for RA∆ ≥ 0),

which in Figs. 8.2(a), (c) and (e) is represented by a 3-D ridge descending into the

region of DA∆ ≤ 0 and RA∆ > 0. Such a statistical phenomenological pattern is

sometimes [70, 191] referred to as the “Vieillefosse tail ”. Similar observations were

reported in the a posteriori LES analysis of HPIV measurements of quasi-isotropic

turbulence at the center of a square duct flow by van der Bos et al. [70], and various

DNS studies of mixing layers by Chen et al. [57] and Soria et al. [64], channel flow

by Blackburn et al. [73], turbulent boundary layer flow by Chong et al. [67] and

Chaćın et al. [190], stratified homogeneous shear flow by Diamessis and Nomura

[74], homogeneous isotropic turbulent flow by Martin et al. [66], and forced isotropic

turbulence by Ooi et al. [68]. It is very interesting to note that although the large

scale motions of these flows differ, the statistical features in the QA∆–RA∆ phase
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plane are similar. This suggests that the topological features shown in the QA∆–RA∆

phase plane are self-similar not only between different layers of a wall-bounded flow,

but also between different types of flows as well, which according to Ooi et al. [68]

and Martin et al. [66] indicates “a kind of universality for all turbulence flows, be

they homogeneous or inhomogeneous”.

8.3.2 Flow Topologies Related to the Invariants of the Re-

solved Strain Rate Tensor

In the previous subsection, statistical features of the flow topology were investigated

using the invariants of the resolved velocity gradient tensor for incompressible flows,

i.e. QA∆ and RA∆. As indicated earlier, both QA∆ and RA∆ consider the combined

effect of local resolved straining and vortical rotational processes, or to be more spe-

cific, the effects due to four invariants: the resolved enstrophy, strain product, strain

skewness and enstrophy generation. In their roadmap paper, Chen et al. [57] also

studied flow topology using the invariants of the strain rate tensor, which excludes

(in a direct manner) the vorticity information (i.e. enstrophy and enstrophy genera-

tion) from the set of invariants. As such, the relation between the local flow topology

and the straining process is highlighted, which in some cases is advantageous for clar-

ifying flow topologies and processes. For instance, it will soon be demonstrated that

this optional method is qualitatively more desirable when applied for illustrating the

previously introduced relative eigenvalue ratio of the strain rate tensor and the local

kinetic energy dissipation rate. The invariants of the filtered strain rate tensor for

incompressible flows are 
PS∆ = S̄ii ≡ 0

QS∆ = −1

2
S̄ikS̄ki

RS∆ = −1

3
S̄ikS̄knS̄ni

(8.15)
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Clearly, the invariant QS∆ is a measure of the resolved viscous dissipation, i.e.

εr = 2νS̄ijS̄ji ≡ −4νQS∆ (8.16)

and RS∆ is a measure of the resolved strain skewness, as well as an indicator for the

sign of the intermediate eigenvalue of the resolved strain rate tensor, since

ĪS3 = S̄ikS̄knS̄ni ≡ α3
S + β3

S + γ3
S ≡ 3αSβSγS (8.17)

Given the convention αS > βS > γS, it is straightforward from continuity that αS > 0

and γS < 0 are valid for any nontrivial situations (the trivial situation refers to

αS = βS = γS = 0). Therefore, if RS∆ > 0, then S̄ikS̄knS̄ni < 0 and βS > 0, and the

local structure is sheetlike. This relation is one-to-one and the reverse is also true

corresponding to a local tubelike structure. From the result presented previously in

subsection 7.3.2, it is known that for the most probable ratios of either αS : βS : γS =

1 : 1 : −2 (antisymmetric expansion) [29,59] or the classical result 3 : 1 : −4 [55,62,76],

βS is positively skewed statistically, which in turn determines the invariant RS∆ to

be overall positively skewed and the resolved strain skewness to be overall negatively

skewed. As discussed previously, it is known that an instantaneous negative value of

the resolved strain skewness contributes to an increase of transient local dissipation

rate εr (see Eq.(C.4)).

The discriminant for the QS∆–RS∆ phase plane is

DS∆ =
27

4
R2

S∆ +Q3
S∆ (8.18)

Since S̄ij is a real symmetric tensor, all of its three eigenvalues must be real. There-

fore, according to the previous discussion in section 8.2, only the region corresponding

to DS∆ ≤ 0 in the QS∆–RS∆ phase plane is realistic for flow topological classifica-

tion, which is significantly different than the property of the QA∆–RA∆ phase plane.

As discussed earlier, the use of the invariant QS∆ is helpful to explicitly classify the

different scales of motions according to the local dissipation rate. According to Black-
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burn et al. [73], the QS∆–RS∆ phase plane is also very convenient for visualizing the

relative eigenvalue ratio of the resolved strain rate tensor. Suppose that ra = βS/αS,

then the curves corresponding to different eigenvalue ratios can be represented by

RS∆ = (−QS∆)3/2ra(1 + ra)(1 + ra + r2
a)

−3/2 (8.19)

Using the above relation, curves corresponding to αS : βS : γS = 1 : 1 : 2 (axisym-

metric expansion, the “right limiting” flow configuration), 2 : 1 : −3, 3 : 1 : −4 (the

“classical ratio”), 1 : 0 : −1 (2-D flow), and −1 : −1 : 2 (axisymmetric compression,

the “left limiting” flow configuration) are illustrated in Fig. 8.3(b). The previously

discussed preferred QTD state of flow configuration (related to small ra) is also shown

in the QS∆–RS∆ phase plane.

Figures 8.3(a)–(f) illustrate both the 3-D and 2-D JPF contours of the invariants

QS∆ and RS∆ for three different flow layers. All states of flow topologies are generally

bounded by DS∆ ≤ 0. However, some contours slightly extend across the boundary,

which is an graphical error due to the limited number of bins (30 × 30) used for

processing the statistics, and also the interpolating property of the software package

available for graphic visualization. Generally, the flow topologies for the three layers

shown in Fig. 8.3 are prototypical, and consistent with those reported in other studies

of wall-bounded flows using DNS by Chong et al. [67] and Blackburn et al. [73]. The

flow topology in the logarithmic region as shown in both Figures 8.3(a) and (b),

shows a strong preference for the 4th quadrant (RS∆ > 0 and QS∆ < 0), which

according to previous discussion relates to a local dissipative pattern and positively

skewed intermediate eigenvalue βS. A general tendency towards the axisymmetric

expansion pattern is also evident in Fig. 8.3(b), especially at low JPF value levels.

As the JPF value increases, a state of eigenvalue ratio of 3 : 1 : −4 becomes more

probable. However, as the JPF value approaches its peak level, the contour patterns

for determining the eigenvalue ratio become much smaller and less distinguishable.

The above method for visualizing the eigenvalue ratio using theQS∆–RS∆ phase plane,

which is very convenient and intuitive, was introduced by Blackburn et al. [73]. Howe-
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(a) Logarithmic layer (b) Logarithmic layer (2-D contour)

(c) Buffer layer (d) Buffer layer (2-D contour)

(e) Viscous sublayer (f) Viscous sublayer (2-D contour)

FIGURE 8.3: Time-averaged JPF between invariants Q+
S∆ and R+

S∆ of the filtered
strain rate tensor (Re = 2600).
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ver, it is argued in this dissertation that it is inadequate to establish any quantita-

tive analysis on the most probable eigenvalue ratio based on the JPF contour pattern

exhibited in the QS∆–RS∆ phase plane. This is because all states of high probability

cluster around the peak location, where the different eigenvalue ratio curves spec-

ified by Eq.(8.19) are hardly distinguishable. In the regions away from the origin,

the curves corresponding to different eigenvalue ratios become more distinguishable,

however, the JPF value in these regions corresponding to lower probabilities. Thus,

one cannot really rely on this method to quantify the most probable eigenvalue ratio

of S̄ij in a manner as precise as the methodologies employed previously in chapter 7.

From Figs. 8.3(b), (d) and (f), it is observed that the most probable state is

located around the origin, however, there is a shift of this location away from the

origin along the negative QS∆ axis. From these three figures, it is observed that this

negative shift from the origin enlarges as the wall is approached. The magnitude of

the negative shift in the sublayer becomes as large as Q+
S∆ ≈ −0.08 in Fig. 8.3(f),

which according to Blackburn et al. [73] is contributed by the wall anisotropic effect.

Right at the wall, the boundary condition for S̄ij is given by Eq.(3.4), which results

in 
QS∆|wall = −1

4
(ū2

1,2 + ū2
3,2)|wall

RS∆|wall ≡ 0

(8.20)

Since QS∆ is a direct indicator of local dissipation (see Eq.(8.16)), the term near-

wall dissipation shift in the QS∆–RS∆ phase plane is coined here to describe this

phenomenon. A more detailed discussion of this negative shifting effect will be ex-

plored in the next subsection together with the boundary condition and near-wall

flow topology.

Also, the value of RS∆ ≡ 0 at the wall helps to explain the special pattern of

the projection of the probable JPF contour ridge (the dash-dot-dot line) shown in

Fig. 8.3(f), which becomes more and more “vertical” to the horizontal axis (thus more

and more 2-D, see Fig. 8.3(b)) as the origin is approached. This feature is important,

which demonstrates a generally understood characteristic of the near-wall flow: in
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the sublayer the most probable states are very close to a 2-D pattern, whereas the

two limiting flow configurations, i.e. axisymmetric compression/expansion, are the

least probable due to their 3-D physical nature. This is in sharp contrast to the flow

topology of the logarithmic layer where a state of axisymmetric expansion is highly

probable as also concluded previously in chapter 7. The time-averaged JPF contour

shown in Fig. 8.3(d) exhibits an interesting pattern: although the JPF contour for the

buffer zone slightly prefers the 4th quadrant, none of the states from axisymmetric

compression to 2D configuration and to axisymmetric expansion can be ignored. It

is very desirable to see such a regular and universal flow topology for the buffer zone

from Figs. 8.3(c) and (d) as well as previously from Figs. 8.2(c) and (d), with the aid

of the phase plane of the tensorial invariants, since the buffer zone is still considered

to be one of the most controversial flow regimes in wall-bounded turbulence.

8.3.3 Statistical Expectations of Resolved Quantities and Flow

Topology

In this subsection, flow topologies related to the resolved quantities such as the re-

solved enstrophy, enstrophy generation and rate of SGS TKE production will be

investigated. Since these quantities by their nature are scalars, a method is needed

to relate them to the previously introduced invariant phase planes. Following van

der Bos et al. [70], the expectation of a resolved scalar Π can be determined using

P (R∆, Q∆,Π), the JPF of a scalar quantity and two tensorial invariants, i.e.

E(Π̆) =
∑
Π

Π · P (R∆, Q∆,Π) (8.21)

Here, (̆ ) is used to represent the actual random variable, and R∆ and Q∆ are generally

used to indicate the invariants of either Āij or S̄ij . Based on Bayes’s theorem [185],
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the above equation can be further expressed as

E(Π̆) = P (R∆, Q∆)
∑
Π

Π · P (Π|R∆, Q∆)

= P (R∆, Q∆)〈Π|R∆, Q∆〉c
(8.22)

where P (Π|R∆, Q∆) is the joint conditional distribution [185] of Π̆ given R̆∆ = R∆ and

Q̆∆ = Q∆, and 〈Π|R∆, Q∆〉c is the conditional expectation of the resolved scalar ran-

dom variable Π̆. As such, the expectation of the non-dimensional resolved enstrophy

generation takes the following form:

σE
def
= NB · E(σ̆) = NB · P (R∆, Q∆) · 〈 σ̄n|R∆, Q∆〉c (8.23)

where σ̄n = σ̄/|σ̄| = cos(ω̄, w̄) is the resolved relative enstrophy generation. In the

above equation NB = 30 × 30 is an arbitrary parameter, which is the number of

the bins used for calculating statisticsa. In a similar way, the expectations of the

normalized resolved enstrophy and SGS TKE production rate can be defined as

(ω̄2)E
def
= NB · P (R∆, Q∆) ·

〈
ω̄2

(u2
τ/ν)

2

∣∣∣∣R∆, Q∆

〉
c

(8.24)

and

PrE
def
= NB · P (R∆, Q∆) ·

〈 Pr

u4
τ/ν

∣∣∣∣R∆, Q∆

〉
c

(8.25)

8.3.3.1 Characteristics of the Expectation of Resolved Enstrophy

Figures 8.4(a), (b) and (c) illustrate the expectation of the resolved non-dimensional

enstrophy, i.e. (ω̄2)E, in the QA∆–RA∆ phase plane. Generally speaking, the charac-

teristics of the contour for (ω̄2)E for the three different layers are similar to those of

the JPF between QA∆ and RA∆ shown previously in Figs. 8.2(b), (d) and (f). How-

ever, the contour of (ω̄2)E in the viscous sublayer is more spread out than those in

aThe constant multiplier NB in the computer code is due to the consideration of amplifying some
resultant effects. However, such a choice is optional.
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 8.4: Time-averaged expectation of resolved non-dimensional enstrophy
(ω̄2)E associated with invariants Q+

A∆ and R+
A∆ (Re = 2600).

the buffer zone and logarithmic layer (based on the same minimum threshold of 0.1),

whereas, as discussed previously, the contour in the buffer zone is the most spread

out for the JPF between QA∆ and RA∆. From Figs. 8.4(a), (b) and (c), it is observed

that (ω̄2)E peaks near the origin.

Figures 8.5(a), (b) and (c) replot (ω̄2)E in the QS∆–RS∆ phase plane based

on the invariants of the resolved strain rate tensor. The general patterns shown in

these three figures for the three layers of wall-bounded Couette flow are very similar

to those of the JPF between QS∆ and RS∆ shown previously in Figs. 8.3(b), (d) and

(f). As shown in Fig. 8.5(a), the contour of (ω̄2)E in the logarithmic layer spreads out
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(a) Logarithmic layer

(b) Buffer layer (c) Viscous sublayer

FIGURE 8.5: Time-averaged expectation of resolved non-dimensional enstrophy
(ω̄2)E associated with invariants Q+

S∆ and R+
S∆ (Re = 2600).

in the 4th quadrant and exhibits a strong preference for the axisymmetric expansion

line (DS∆ = 0), while it peaks around the origin. This indicates that the strongest

vorticity excitation is predominantly associated with a low local dissipation state,

i.e. εr = −4νQS∆ is preferentially positive but close to zero. From Fig. 8.5(b), it

is observed that (ω̄2)E is more associated with the QTD states located in the 4th

quadrant, but in general the contributions of all states ranging from the limiting 3-D

axisymmetric compression pattern to the 2-D flow configuration and to the limiting

3-D axisymmetric expansion pattern on (ω̄2)E are nontrivial. Figure 8.5(c) indicates
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that the value of (ω̄2)E is preferentially associated with the 2-D and QTD flow config-

urations in the viscous sublayer, with negligible contributions from the two limiting

3-D flow configurations. This again demonstrates the generic (quasi) 2-D feature of

near-wall flow.

In contrast to the Figs. 8.4(b),(d) and (f) which have the highest (ω̄2)E contour

centered at the origin, it is obvious from Figs. 8.5(a), (b) and (c) that the contour

corresponding to the largest value of (ω̄2)E shifts vertically below the origin along

the negative QS∆ axis, which is a familiar pattern that has been briefly discussed in

the previous subsection 8.3.2 regarding the JPF contour. Previously, the discussion

of this phenomenon only focused on the largest near-wall negative shift following

Blackburn et al. [73]. It will now be discussed in a more general manner. From the

definitions of the invariants, i.e. Eqs.(8.12) and (8.15), the following relations between

the invariants of Āij and S̄ij can be obtained:


QS∆ = QA∆ − 1

4
ω̄iω̄i = QA∆ − 1

4
ω̄2

RS∆ = RA∆ +
1

4
ω̄iω̄jS̄ij = RA∆ +

1

4
σ̄

(8.26)

whence, the origin condition in the QA∆–RA∆ plane, i.e. QA∆ = 0 and RA∆ = 0,

leads to 
QS∆ = −1

4
ω̄2

RS∆ =
1

4
σ̄

(8.27)

Since ω̄2 ≥ 0, it is clear QS∆ ≤ 0 under the condition considered. Furthermore, since

QS∆ is a measure of the local dissipation as show by Eq.(8.16), such a negative shift

relates to a local dissipation magnitude of

εr = −4νQS∆ = νω̄2 (8.28)

Thus, it can be concluded that the origin of the QA∆–RA∆ phase plane, when mapped

into the QS∆–RS∆ phase plane, corresponds to a negative shift along QS∆ axis, which

is in the form of a local dissipation due to vortical excitations (enstrophy).
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Now, we discuss the meaning of the second equation of (8.27). Although it

is observed that σ̄ is positively skewed in the logarithmic flow regime as well as in

isotropic turbulence, both vortex stretching and compression are two realistic flow

configurations and the sign of the instantaneous resolved enstrophy generation σ̄ is

undetermined (see Fig. 7.8). Therefore, the origin of the QA∆–RA∆ phase plane,

when mapped into the QS∆–RS∆ phase plane, generates a horizontal coordinate, i.e.

RS∆ = 1
4
σ̄, whose sign can be either positive or negative. To summarize, a property

is given as follows:

• In an incompressible flow regime where the resolved enstrophy is nontrivial, the

origin of the QA∆–RA∆ phase plane when mapped into the QS∆–RS∆ phase

plane, corresponds to RS∆ = 1
4
σ̄ and QS∆ = −1

4
ω̄2; the former can be either

positive or negative, whereas the latter indicates a negative shift from the origin

of the QS∆–RS∆ phase plane along the QS∆ axis in the form of a local dissipation

due to the vortical activity quantified as εr = νω̄2.

The above conclusion holds generally for any incompressible flow regime with

vorticity excitations including the near-wall region. This conclusion is useful since the

origin of the QA∆–RA∆ phase plane is found [57, 64, 67, 68, 70, 73, 191] to be a special

point that corresponds to the highest JPF level of the invariants QA∆ and RA∆, and

the largest value of the expectation of the resolved enstrophy, i.e. (ω̄2)E as well.

We now focus on the near-wall behavior. Previously in subsection 8.3.2, the

enlargement of the negative shift of the JPF in the QS∆–RS∆ phase plane as the wall is

approached, was reported and briefly explained following Blackburn et al. [73]. From

Fig. 8.5, it is also observed that for (ω̄2)E , the negative shift in the sublayer is also

larger than those in the buffer and logarithmic regions. However, a fine distinction

between the two observed largest negative shifts of the JPF (i.e. P (RS∆, QS∆)) and

(ω̄2)E must be noted. From Eq.(8.24), it is clear that the value of (ω̄2)E is decided

not only by the JPF but also by the conditional expectation
〈

ω̄2

(u2
τ /ν)2

∣∣∣RS∆, QS∆

〉
c
. At
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FIGURE 8.6: Plane and time-averaged profile for non-dimensional enstrophy.

the wall, the boundary condition for Ω̄ is given by

Ω̄ij

∣∣
wall

=
1

2


0 −ū1,2 0

ū1,2 0 ū3,2

0 −ū3,2 0


wall

(8.29)

whence,

ω̄2
∣∣
wall

= 2(Ω̄ijΩ̄ij)|wall = (ū2
1,2 + ū2

3,2)|wall > 0 (8.30)

Furthermore, Fig. 8.6 indicates that the plane and time averaged value of ω̄2 is overall

maximum at the wall. From the boundary condition of S̄ij and Ω̄ij given by Eqs.(3.4)

and (8.29), respectively, it can be determined that at the wall QA∆|wall = 0 and

RA∆|wall = 0. From the above analysis, it is concluded that:

• The state corresponding to the fluid regime right at the wall must occur at

the origin of the QA∆–RA∆ phase plane, i.e. QA∆|wall = 0 and RA∆|wall = 0.

However, the reverse is not necessarily true, since it is clear from Eq.(8.26) that

any states of QS∆ = −ω̄2/4 and RS∆ = σ̄/4 are sufficient for QA∆| = 0 and

RA∆ = 0.

• Among the contributions to the negative shift of the peak location of the en-

strophy expectation from the origin along the QS∆ axis in the QS∆–RS∆ phase

plane, that due to the wall condition is QS∆|wall = −(ū2
1,2 + ū2

3,2)|wall/4, which
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is linked to a wall dissipation rate through Eq.(8.16).

8.3.3.2 Characteristics of the Expectation of Resolved Enstrophy Gener-

ation

As we know, the resolved enstrophy generation σ̄ is closely related to the process

of local vortex stretching/compression and the cascade of kinetic energy dissipation.

Currently, studies on the enstrophy and enstrophy generation using the method of

turbulence geometrical statistics are popular, and numerical results based on this

methodology have been presented systematically in chapter 7. Several research works

on enstrophy and enstrophy generation based on the methodology of tensorial invari-

ants and turbulence topology have also been seen in the literature, including the work

of Chertkov et al. [191] based on a new special tetrad model and DNS analysis, and

that of van der Bos et al. [70] based a priori LES analysis of HPIV measurements. In

this subsection, some interesting phenomenological results on the resolved enstrophy

generation and associated flow topologies will be discussed using the invariant phase

planes. However, different than the approaches of Chertkov et al. [191] and van der

Bos et al. [70], the method adopted in this study is based on a posteriori LES using

the proposed DNM.

(i) Phenomenological Observation and the Flow Topology Classification

Figures 8.7(a)–(f) illustrate the expectation of resolved enstrophy generation σE (de-

fined in Eq.(8.23)) in the QA∆–RA∆ phase plane. Compared with the features previ-

ously discussed for (ω̄2)E , the pattern of the σE contour is much more complex. For

example, in Fig. 8.7(b) a “dragonfly-shape” contour is observed in the logarithmic

layer rather than the previous pear-shape contour. Similar patterns of the σE expec-

tation contour were also observed by Chertkov et al. [191] and van der Bos et al. [70].

The value of σE has two positive peaks corresponding to local vortex stretching flow

configuration. Both positive peaks are close to the origin. The predominant positive

peak in the region of DA∆ > 0 and RA∆ < 0 relates to the stable-focus/stretching
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(a) Logarithmic layer (b) Logarithmic layer (2-D contour)

(c) Buffer layer (d) Buffer layer (2-D contour)

(e) Viscous sublayer (f) Viscous sublayer (2-D contour)

FIGURE 8.7: Time-averaged expectation of resolved non-dimensional enstrophy gen-
eration σE associated with invariants Q+

A∆ and R+
A∆ for Re = 2600 (positive values:

solid lines, negative values: dashed line).
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(a) Logarithmic layer (b) Logarithmic layer (2-D contour)

(c) Buffer layer (d) Buffer layer (2-D contour)

(e) Viscous sublayer (f) Viscous sublayer (2-D contour)

FIGURE 8.8: Time-averaged expectation of the resolved non-dimensional enstrophy
generation σE associated with invariants Q+

S∆ and R+
S∆ for Re = 2600 (positive values:

solid lines, negative values: dashed line).
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flow topology, and the secondary positive peak in the 4th quadrant gathers around

the right Vieillefosse line (DA∆ = 0). A negative σE peak is observed in the region

of DA∆ > 0 and RA∆ > 0, which relates to the unstable-focus/compressing topol-

ogy. Both the predominant positive contours and the predominant negative contours

vividly form the shape of a pair of “eyes” of the “dragonfly”, while the secondary

positive peak clinging to the Vieillefosse tail forms the “body” of the “dragonfly”.

Figures 8.7(c) and (d) for the buffer zone are generally similar to Figs. 8.7(a) and

(b) for the logarithmic region. However, there are three differences: (1) the sequence

of the two positive peaks is switched, i.e. the predominant peak is now located in the

4th quadrant along the right Vieillefosse line; (2) the “neck” of the dragonfly becomes

thinner, indicating that the largest and the secondary positive peaks become more

separate, although they are still connected at a low contour magnitude level; and (3)

a small “mouth” of the dragonfly appears as a negative σE peak in the 3rd quadrant,

corresponding to local vortex compression. In comparison with the topologies of the

buffer zone, the above three tendencies are further amplified in the viscous sublayer,

as shown in Figs. 8.7(e) and (f). The predominant peak located in the 4th quadrant

increases in amplitude, and shifts away from the origin along the right Vieillefosse line

DA∆ = 0. The neck of the dragonfly is now totally broken and in fact the four peaks

(two positive and two negative) shown in Fig. 8.7(e) are entirely detached around the

origin. Furthermore, the size of the “negative mouth” grows much larger.

Figures 8.8(a)–(f) show the expectation of the resolved enstrophy generation

σE in the QS∆–RS∆ phase plane based on the resolved strain rate tensor. The pattern

of the σE contour exhibited is very interesting. Generally, the previous “dragonfly-

shape” contour with three or four peaks in the QA∆–RA∆ phase plane has now degen-

erated into a pair of “wings” in the QS∆–RS∆ phase plane: a negative wing located

in the region of DS∆ < 0 and RS∆ < 0, and a positive wing located in the region of

DS∆ < 0 and RS∆ > 0. The three limiting lines that separate the two wings cor-

respond to: the left Vieillefosse line DS∆ = 0 (axisymmetric compression pattern),

R+
S∆ = 0 (2-D flow pattern), and right Vieillefosse line DS∆ = 0 (axisymmetric ex-

pansion pattern). In the logarithmic region, the positive peak dominates the negative
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one as shown in Fig. 8.8(a), and the positive wing is longer than the negative one as

shown in Fig. 8.8(b) (given the same threshold of |σE| = 0.1). Also in the logarith-

mic layer, the positive wing of the σE contour has a strong tendency toward the right

Vieillefosse line which represents axisymmetric expansion, whereas, the negative wing

shows a weak preference toward the left Vieillefosse line which represents axisymmet-

ric compression. As shown in Figs. 8.8(c) and (d), in the buffer region, the negative

and positive peaks for σE are about the same magnitude and therefore the two wings

are more symmetric. It is observed that all flow topological states ranging from the

axisymmetric compression pattern to the 2-D pattern for the negative wing, and from

the 2-D pattern to the axisymmetric expansion pattern for the positive wing, are im-

portant for the σE distribution the QS∆–RS∆ phase plane. From Figs. 8.8(e) and (f),

it is clear that in the viscous sublayer, the negative peak becomes dominant, and both

wings move closer to the central 2-D line (R+
S∆ = 0) and away from the left and right

Vieillefosse lines. This indicates that in the sublayer, the local vortex compressing

flow configuration becomes more significant. Also, both the vortex stretching and

compressing configurations are preferentially associated with the 2-D and QTD flow

patterns, with little influence from the 3-D axisymmetric expansion and compression

patterns.

(ii) Further Discussion on the Contour Pattern of σE

From the above discussion on the statistical phenomenological results of σE , it is

observed that there are generally two positive peaks, and one or two negative peaks

of σE in the QA∆–RA∆ phase plane. It is also observed that there is always only

one positive and one negative σE peak in the QS∆–RS∆ phase plane. As discussed

earlier, all the positive and negative peaks shown in Fig. 8.7(a)–(f) gather around

the origin of the QA∆–RA∆ phase plane. Considering Eq.(8.26), it is clear that the

origin condition of QA∆ → 0 and RA∆ → 0 corresponds to QS∆ → −1
4
ω̄2 < 0 and

RS∆ → 1
4
σ̄. Thus, the states related to the largest σE values in the QA∆–RA∆ phase

plane, when mapped into the QS∆–RS∆ phase plane must be within the region of

QS∆ < 0, while a further classification depends on the sign of σ̄. Therefore, under
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the considered condition, RS∆ → 1
4
σ̄, states of vortex stretching with large positive

σE in the QA∆–RA∆ phase plane preferentially fall into the 4th quadrant of the QS∆–

RS∆ phase plane, while states of vortex compression with large negative σE in the

QA∆–RA∆ phase plane preferentially go into the 3rd quadrant of the QS∆–RS∆ phase

plane. This explains the contour pattern of a pair of wings for the expectation of the

resolved enstrophy generation in the QS∆–RS∆ phase plane.

8.3.3.3 Characteristics of the Expectation of Resolved SGS TKE Produc-

tion Rate

In chapter 6, the characteristics of backscatter due to a negative rate of SGS TKE

production (Pr = −τ ∗ijS̄ij) for the proposed DNM were investigated. In their paper,

van der Bos et al. [70] proposed an interesting statistical technique for visualizing

the forward and backward scatters of SGS TKE production rate in the invariant

phase plane. The expectations for the forward scatter and backward scatter of non-

dimensionalized SGS TKE (denoted as P+
rE and P−

rE , respectively) can be defined by

splitting Eq.(8.25) into two parts according to the sign of Pr

P+
rE

def
=NB ·

∑
( Pr

u4
τ /ν

)

[ Pr

u4
τ/ν

· P
( Pr

u4
τ/ν

,Pr > 0, R∆, Q∆

)]

=NB · P (R∆, Q∆) ·
〈 Pr

u4
τ/ν

∣∣∣∣Pr > 0, R∆, Q∆

〉
c

· P (Pr > 0|R∆, Q∆)

(8.31)

and

P−
rE

def
=NB ·

∑
( Pr

u4
τ /ν

)

[ Pr

u4
τ/ν

· P
( Pr

u4
τ/ν

,Pr ≤ 0, R∆, Q∆

)]

=NB · P (R∆, Q∆) ·
〈 Pr

u4
τ/ν

∣∣∣∣Pr ≤ 0, R∆, Q∆

〉
c

· P (Pr ≤ 0|R∆, Q∆)

(8.32)

Again, the constant NB = 30 × 30 is arbitrary and both definitions can be used in

accordance with the invariants of either Āij or S̄ij. From the above definitions, it is

understood that PrE = P+
rE + P−

rE .
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(a) In the QA∆–RA∆ phase plane (b) In the QS∆–RS∆ phase plane

FIGURE 8.9: Time-averaged expectation of the resolved non-dimensional SGS TKE
production rate PrE in the logarithmic region for Re = 2600.

(a) In the QA∆–RA∆ phase plane (b) In the QS∆–RS∆ phase plane

FIGURE 8.10: Time-averaged expectation of the resolved non-dimensional SGS TKE
production rate PrE in the logarithmic region for Re = 2600 (Forward scatter P+

rE

and backward scatter P−
rE have been separated indicated by the solid and dashed

contours, respectively).

Figures 8.9(a) and (b) illustrate the time-averaged expectation of the resolved

PrE for the logarithmic region based on the DNM SGS stress model. Consistent with

the previous illustration of Pr in Fig. 6.17 based on plane and time averages, the

overall SGS TKE transfer shown in Figs. 8.9(a) and (b) is positive, which indicates a

net forward scattering of TKE from the filtered to the subgrid scales of motions. The
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(a) Forward scatter (b) Backscatter

FIGURE 8.11: Time-averaged expectation of the resolved SGS TKE production rate
PrE in the QA∆–RA∆ phase plane (x+

2 = 77.2, Re = 2600).

(a) Forward scatter (b) Backscatter

FIGURE 8.12: Time-averaged expectation of the resolved SGS TKE production rate
PrE in the QS∆–RS∆ phase plane (x+

2 = 77.2, Re = 2600).

PrE contours shown in both Figs. 8.9(a) and (b) have a strong tendency to follow

the right Vieillefosse lines of DA∆ = 0 and DS∆ = 0, and the latter indicates a local

axisymmetric expansion flow configuration. Using Eqs.(8.31) and (8.32), the SGS

TKE transfer rate is split into forward and backward scatters. Figures 8.10 (a) and

(b) plot both net forward scatter and net backscatter contours in the two phase planes

based on the invariants of both the resolved velocity gradient and strain rate tensors.
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Clearly, the patterns of both the forward scatter and backscatter contours are similar

to those of the general SGS TKE production rate shown in Figs. 8.9(a) and (b).

These predicted features are consistent with the results reported by van der Bos et

al. [70] based on a priori LES analysis of HPIV measurements. The net forward and

backward scatters of SGS TKE in the logarithmic region are shown in Figs. 8.11 and

8.12 in a 3-D manner. From these 3-D figures, it clear that, although the magnitude

of the peak value of backscatter is only about half of that of forward scatter, the

effect of backscatter is significant. This in turn confirms the sound performance of

the proposed DNM in terms of its capability of simulating the process of TKE transfer

between the resolved and subgrid scales of motions.

8.4 Conclusions

In this chapter, turbulence flow topologies related to the invariants of both the re-

solved velocity gradient and strain rate tensors are studied. The analysis is based

on a posteriori LES of turbulent Couette flow (Re = 2600) using the previously

proposed DNM SGS stress model. As a further examination of the DNM in terms

of its performance for predicting turbulence topological features, the obtained phe-

nomenological results are compared with the reported conclusions based on DNS

analysis [57,64,66–68,73,74,190] and a priori LES process of experimental data [70].

Since tensorial invariants are used in the research, the results presented in the QA∆–

RA∆ and QS∆–RS∆ phase planes are expected to be universal. The characteristics of

the statistical expectation of enstrophy, enstrophy generation and SGS TKE transfer

rate are also investigated and related to the local flow topologies.

(i) Summary of Flow Topologies in the Phase Plane of Tensorial Invariants

In the 2-D JPF contour diagram of QA∆ and RA∆, a typical pear-shape contour pat-

tern is observed in all three regimes: viscous sublayer, buffer zone, and logarithmic re-

gion. This pear-shape contour is centered at the origin and preferentially spreads into

the 2nd and 4th quadrants, indicating the predominance of stable-focus/stretching
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and unstable-node/saddle/saddle topologies, respectively. The preference of the JPF

contour for the 2nd and 4th quadrants becomes the strongest in the buffer zone.

There is a strong tendency for the JPF contour to cluster around the right Vieille-

fosse line (DA∆ = 0). These features are as expected and consistent with the reported

results [57, 64, 66–68,70, 73, 74, 186, 190].

The QS∆–RS∆ phase plane based on the invariants of the filtered strain rate

tensor is also useful for revealing the flow topology and geometrical characteristics,

especially in visualizing local dissipation and relating flow topologies to the relative

eigenvalue ratio of the filtered strain rate tensor, e.g. the axisymmetric expansion

and compression, and 2-D and QTD flow patterns. On the other hand, it should

be pointed out that the QS∆–RS∆ phase plane is not reliable for demonstrating the

most probable eigenvalue ratio of S̄ij in a quantitative manner, since all states of

high probability cluster around the origin, where the difference between the curves

corresponding to different flow patterns is hardly distinguishable. Since S̄ij is a real

symmetric tensor, all three eigenvalues must be real, which explains why all states of

flow topologies identified in the simulations are bounded by DS∆ ≤ 0. It is observed

that in the logarithmic region, there is a strong tendency for axisymmetric expansion;

in the buffer zone, all the states of flow configurations ranging from the axisymmetric

compression pattern to the 2-D configuration and to the axisymmetric expansion

pattern exist; in the sublayer, the most probable state of flow configuration is close

to 2-D and deviates from the limiting 3-D patterns of axisymmetric expansion and

compression. Such a feature of the sublayer profoundly reveals the (quasi) 2-D nature

of near-wall turbulent flow.

(ii) Summary of the Characteristics of Enstrophy in the Phase Plane of

Tensorial Invariants

The expectation of enstrophy (ω̄2)E based on the JPF P (R∆, Q∆, ω̄
2) is calculated

and illustrated in both the QA∆–RA∆ and QS∆–RS∆ phase planes. Generally in the

QA∆–RA∆ phase plane, a pear-shape contour of (ω̄2)E is observed, which is consistent

with the reported results [191]. In the QS∆–RS∆ phase plane, the contour of (ω̄2)E for
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the logarithmic layer spreads out in the 4th quadrant and shows a strong preference

for the axisymmetric expansion line (DS∆ = 0); in the buffer zone, (ω̄2)E is in general

more associated with the QTD states located in the 4th quadrant of the QS∆–RS∆

phase plane, however, the effects of all states of flow configurations are noticeable;

finally in the sublayer, (ω̄2)E is preferentially associated with the QTD and 2-D flow

configurations, which again validates the generic (quasi) 2-D nature of the near-wall

flow.

It is concluded during the research that for a flow regime where the resolved

enstrophy is nontrivial, the origin of the QA∆–RA∆ phase plane when mapped into

the QS∆–RS∆ phase plane, corresponds to RS∆ = 1
4
σ̄ and QS∆ = −1

4
ω̄2, the latter

indicating a negative shift from the origin along the QS∆ axis in the QS∆–RS∆ phase

plane associated with a local dissipation due to vorticity excitations. The above

conclusion holds generally for any flow regime with vorticity “worms”.

It is also concluded that the state corresponding to the fluid regime right at the

wall must be located at the origin of the QA∆–RA∆ phase plane, i.e. QA∆|wall = 0

and RA∆|wall = 0; however, the reverse is not necessarily true. Also, among the

contributions to the negative shift of the peak location of the enstrophy expectation

from the origin along the QS∆ axis in the QS∆–RS∆ phase plane, that due to the

wall condition is QS∆|wall = −(ū2
1,2 + ū2

3,2)|wall/4, which is linked directly to the wall

dissipation.

(iii) Summary of the Characteristics of Enstrophy Generation in the Phase

Plane of Tensorial Invariants

The expectation of the non-dimensionalized enstrophy generation σE is studied in

both the QA∆–RA∆ and QS∆–RS∆ phase planes. In the QA∆–RA∆ phase plane, the

value of σE has two positive peaks, both close to the origin in the logarithmic region.

The predominant positive peak is located in the region of DA∆ > 0 and RA∆ < 0

and is related to a stable-focus/stretching flow topology, while the secondary positive

peak is in the 4th quadrant preferentially gathering around the right Vieillefosse
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line (DA∆ = 0). The region of DA∆ > 0 and RA∆ > 0 is linked to an unstable-

focus/compressing topology and is characterized by a negative σE peak. Generally,

in the logarithmic layer, a “dragonfly-shape” contour is observed which agrees with

the reported pattern [70, 191]. As the wall is approached, the magnitudes of the two

positive peaks switch, i.e. the location for the largest one changes to the 4th quadrant

of the QA∆–RA∆ phase plane. Also, a secondary negative σE peak begins to appear

in the 3rd quadrant in the buffer zone and becomes strongest in the sublayer.

It is found that the sign of the resolved enstrophy generation plays an important

role in the mapping relation between the QA∆–RA∆ phase plane and the QS∆–RS∆

phase plane in terms of the positive or negative σE peaks. In the QS∆–RS∆ phase

plane, the σE contours have the shape of a pair of “wings”: the negative contours

are confined between the left Vieillefosse line DS∆ = 0 (related to axisymmetric com-

pression) and RS∆ = 0 (related to 2-D flow configuration), while the positive contour

is confined between RS∆ = 0 and the right Vieillefosse line DS∆ = 0 (related to

axisymmetric expansion). In the logarithmic region, the positive peak dominates the

negative one and shows a strong tendency toward the right Vieillefosse line, whereas,

the negative wing shows a weak preference for the left Vieillefosse line. In the buffer

zone, both the negative and positive peaks for σE are about the same magnitude, and

all states ranging from the limiting axisymmetric compression pattern to the 2-D pat-

tern and to the limiting axisymmetric expansion pattern are important to σE . In the

viscous sublayer, the negative σE peak becomes dominant and both wings approach

closer to the 2-D line (RS∆ = 0) moving away from both the left and right limit-

ing Vieillefosse lines, which again indicates the generic 2-D nature of near-wall flow.

The wing-shape contours of σE in the QS∆–RS∆ phase plane and the 2-D topology

of near-wall flow are very interesting and considered as important phenomenological

results observed in this research.

(iv) Summary of the Characteristics of Forward and Backward Scatter of

SGS TKE Transfer in the Phase Plane of Tensorial Invariants

The expectations for the forward and backward scatters of non-dimensional SGS TKE
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are separated from each other and illustrated using both the QA∆–RA∆ and QS∆–RS∆

phase planes. The research focuses on turbulence in the core region of the channel. In

both types of phase planes, the overall net TKE transfer rate from the resolved to the

SGS scales is observed to be positive. In the QA∆–RA∆ phase plane, a prototypical

pear-shape contour of the general term PrE is observed; furthermore, the contours of

both the net forward and net backward scatters, i.e. P+
rE and P−

rE , also show the pear-

shape pattern independently and a strong tendency to follow the right Vieillefosse

line (DA∆ = 0 for RA∆ > 0). In the QS∆–RS∆ phase plane, a similar tendency is

observed that the contours corresponding to larger values of PrE, P+
rE and P−

rE all

cling to the right Vieillefosse line (DS∆ = 0 for RS∆ > 0), which explicitly indicates

that SGS TKE flux is preferentially associated with the axisymmetric expansion flow

configuration in the logarithmic region. Generally, the magnitude of the backscatter

level is about half that of forward scatter in the invariant phase planes, indicating

that the effect of backscatter is significant in a LES approach based on the proposed

DNM SGS stress model.
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Chapter 9

Conclusions and Future Work

This dissertation focuses on studying dynamic SGS stress models and the turbulence

phenomenology of the resolved scale motions. It is based on six inter-related research

topics, which were performed as independent research projects during the author’s

Ph.D. program. Due to the broad coverage of the subjects, these six topics are

organized in a coherent as well as self-contained manner presented in chapters 3—8.

In each of these six chapters, a detailed literature review and concluding remarks

have been presented for the specific topic. In this chapter, a general review on the

contributions of this dissertation and comments on future studies will be presented.

9.1 Review of Major Contributions

(i) A Direct Solution Scheme for the Integral Type Dynamic Localization

SGS Model

In chapter 3, the integral type dynamic localization model in the form of a Fredholm

integral equation of the second kind introduced by Ghosal et al. [40] has been applied

for simulating turbulent Couette flow. Two efficient direct solution schemes, i.e. a

penta-diagonal banded linear system (PDS) and a tri-diagonal banded linear system

(TDS) based on the 3-D and 2-D discrete filters of Sagaut and Grohens [35] have been

developed to solve the Fredholm integral equation of the second kind (FIE2). These

two efficient solution schemes are applicable to turbulence with two homogeneous
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dimensions. The computational cost for solving the FIE2 using the TDS and PDS is

reduced to the same order as that for the DM of Lilly [20], which is substantially less

than a conventional iterative solver [49, 137].

(ii) An Integral Type Dynamic Localization Two-Parameter Mixed Subgrid-

Scale Model

In the current approaches using the CL–CS type dynamic two-parameter mixed SGS

stress model (DMM2), a mathematical inconsistency exists due to the conventional

assumption of incomplete spatial invariance (ISI) adopted in the procedure for de-

veloping the modelling formulation [37,44,48,50,143]. In chapter 4, the CL–CS type

DMM2 has been localized using functional variational methods and the mathemat-

ical inconsistency has been avoided. A system of two integral equations has been

obtained, which governs the instantaneous optimal spatial distribution of the two

model coefficients of the DMM2. The proposed new modelling procedure is demon-

strated to work very well in the numerical simulation of turbulent Couette flow using

a relatively coarse grid. It can successfully predict many pertinent features such as the

logarithmic velocity profile and the correct level of the friction coefficient. Attributed

to both the scale similarity and SGS viscosity parts of the model, the new modelling

approach has the desirable feature of self-adjusting forward and backward scatters of

the SGS turbulence kinetic energy (TKE) between the resolved and subgrid scales of

motions.

(iii) Consistent Localization and Constitutive Relation of the Dynamic

Smagorinsky SGS Stress Model

Previous integral type dynamic localization SGS models [40,137,155] achieved the goal

of localization by minimizing a globally integrated residual functional. In chapter 5, a

consistent mathematical treatment is proposed for localizing the coefficient CS of the

dynamic Smagorinsky SGS stress model, and the Smagorinsky constitutive relation is

revisited from the viewpoint of functional variation and function approximation. The

proposed approach minimizes the local error density functional Q directly without
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resorting to a global integration. A theorem on the sufficient and necessary condition

for localizing the dynamic Smagorinsky model has been obtained, which is in the

form of an orthogonal condition (OC) and controls the localization model coefficient

for the dynamic Smagorinsky SGS model. The OC is a useful tool for dynamic SGS

modelling optimization, which unifies some conventional modelling formulations as

its special theoretical derivatives under different restrictions, including the DM of

Germano et al. [19] and Lilly [20], and the FIE2 of Ghosal et al. [40]. The OC also

results in a new dynamic SGS stress model in the form of Picard’s integral equation

(PIE). The new PIE is necessary to make the local error density Q minimum. Since

the new PIE has one less convolution operation than the FIE2 introduced earlier by

Ghosal et al. [40], it is less expensive to compute.

Physical meanings for such grid and test-grid level tensors as αij, βij, Mij , M
′
ij ,

Lappr∗
ij and Lproj∗

ij have been proposed by identifying their role in various constitutive

and constructive relations. The construction of the tensorial approximation space

for the projection of the Leonard stress has also been discussed. These tensorial ap-

proximation spaces for the Leonard stress are essential to the optimization methods

adopted for deriving the dynamic localization models. It is observed that the mod-

ulus of the filtered strain rate tensor |S̄| has a significant influence on the relative

magnitudes of the SGS stress τij , SGS TKE production rate Pr, SGS viscosity νsgs,

and model coefficient CS.

Chapter 5 attempts to investigate the properties of the localization SGS stress

model within the framework of the Smagorinsky constitutive relation. It is under-

stood that many drawbacks of the (dynamic) Smagorinsky models originate from the

simplicity of its adopted Boussinesq hypothesis, e.g. a strict requirement that the

principal axes of the SGS stress tensor be aligned with those of the filtered strain

rate tensor. The work presented in chapters 6—8 is motivated by a desire to find

an improved non-Smagorinsky constitutive relation, which allows the dynamic SGS

model to be able to simulate flows in a more realistic way in terms of the conventional

scaling behavior, e.g. the velocity profile and resolved Reynolds shear stress distri-

bution, as well as the advanced turbulence geometrical and topological properties of
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the resolved scale motions.

(iv) A Novel Dynamic Nonlinear Subgrid-Scale Stress Model

In chapter 6, the explicit quadratic tensorial polynomial constitutive relation of

Speziale [108,109] is considered for building a dynamic nonlinear SGS model (DNM).

The proposed DNM is observed to be more robust than the conventional DM [19,20]

and can be applied locally in a stable way without the need for the ‘standard’ plane

averaging technique to avoid a potential singularity problem. The proposed DNM

demonstrates a variety of self-calibrating mechanisms through its three coefficients

and the tensorial geometric relations between the SGS stress and the three con-

stituent tensors, which in turn provides more degrees of freedom for predicting the

forward and backward scattering processes of the TKE flux between the resolved and

subgrid scales. This is in contrast to the conventional DM, which can only reflect

the SGS TKE scatter in two extreme ways: either fully forward or fully backward

scatter, and thus can result in a numerical instability due to an unrealistic excessive

prediction of backscatter.

Although the first and third nonlinear constituent terms are independent, they

share the same set of eigenvectors and thus the alignment between the principal axes

of these two constituent tensors can only be either parallel or orthogonal. An identity

is found to relate the eigenvalues of their effective tensorial parts. If the roots of

the characteristic equation of S and Γ are distinct, the local flow configuration cor-

responds to tubelike and sheetlike structures; however, if the characteristic equations

have dual roots, additional flow configurations of local axisymmetric expansion and

compression, and local degenerate 2-D flow pattern (for Γ only) are included. The

first constituent term (the Smagorinsky component), βij , predominates forward scat-

ter of TKE from the resolved to the subgrid scales of motions. The second nonlinear

constituent term, γij, is strictly orthogonal to the resolved strain rate tensor, S̄ij , and

thus, it does not make any contribution to the rate of SGS TKE production. In gen-

eral, the backscatter phenomenon is preferentially associated with the third nonlinear

constituent term, ηij . The rate of SGS TKE production due to the third constituent
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term is proportional to the resolved strain skewness, i.e. ĪS3 = α3
S +β3

S +γ3
S, for both

scenarios of local tubelike and sheetlike structures.

(v) Turbulence Geometrical Statistics

In chapter 7, the recently developed research methodology of geometrical statis-

tics has been utilized for examining the characteristics of the resolved scale motions of

Couette flow. The research approach presented is new and featured by the concepts of

a posteriori LES prediction, dynamic nonlinear SGS model, geometrical statistics and

near-wall anisotropy, following the recent a priori LES reports by Tao et al. [29, 99]

and Horiuti [100] on (quasi) isotropic flows. The a posteriori LES results obtained us-

ing the proposed DNM have been compared with those based on DNS, experimental

and a priori LES approaches reported in the literature, and the sound performance

of the DNM is further confirmed in terms of the predicted turbulence geometrical

features.

In the logarithmic region, a prevalence of helical structures and a pattern of

streamwise aligned resolved vorticity vector is observed. As the wall is approached, a

state of ω̄ being perpendicular to the resolved velocity vector becomes highly prob-

able. In the simulation, several important prototypical features are reproduced, e.g.

the preferred alignment between the resolved vorticity vector ω̄ and the intermediate

eigenvector of S̄ij. In general, as x+
2 decreases, the peak of the PF corresponding to

the most probable states increases drastically. An interesting pattern of a “triangle

shape” 2-D JPF contour is observed in the Θ(ω̄, eSβ)–Θ(ω̄, eSγ) plane, which repre-

sents a general characteristic inherent to the relative orientation between a vector and

an orthonormal triad. It is argued in this dissertation that the preferred alignment

pattern, i.e. Θ(ω̄, eSβ) = 0o and Θ(ω̄, eSγ) = 90o is not limited to (quasi) isotropic

turbulence as is popularly reported, but instead observed to be even more generic to

the viscous sublayer.

In the logarithmic layer, a strong alignment between ω̄ and the resolved vor-

tex stretching vector w̄ is predicted by the simulation, which suggests a dominant
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local vortex stretching flow configuration associated with positively skewed resolved

enstrophy generation. However, in the viscous sublayer, both local vortex stretching

and compressing flow configurations are highly probable. It is confirmed in this re-

search that the local QTD state of turbulence is intrinsically different than a pure

2-D turbulence since it possesses non-vanishing enstrophy generation and a nontriv-

ial intermediate eigenvalue of the filtered strain rate tensor [77]. It is observed that

the alignment between ω̄ and eSβ and that between ω̄ and w̄ both become highly

probable when the excitation of vorticity is the weakest, which indicates that the

background turbulence is not locally a “structureless random sea”. Various local

structure patterns exist in all regions with or without high excitation of the resolved

vorticity.

Plane and time-averaged profiles and three different statistical methods, i.e.

s∗-PF, β∗-PF and (β/α)-PF, are used to investigate the relative eigenvalue ratio of

the negative SGS stress and three constituent tensors. Generally from the 1-D PFs

of the eigenvalue ratio of the filtered strain rate tensor, an obvious “viscous-shift”

of the most probable state is observed as x+
2 decreases, which is due to the wall-

normal anisotropic effect. The β∗-PF profile shows that the most probable state

corresponds to αS : βS : γS = 3.6 : 1 : −4.6 in the core region, which matches

very well with the experimental result [76]. The most probable value of s∗ = 0.9

obtained from s∗-PF, agrees very well with the DNS result reported by Lund et al. [59],

indicating that the most probable flow configuration in the core region is close to the

axisymmetric expansion pattern. It is found during the research that in the case

when βS is close to 0 (especially in the viscous sublayer), all three statistical methods

based on β∗-PF, s∗-PF and (β/α)-PF tend to become singular and the calculation

of the relative eigenvalue ratio becomes unstable. A 2-D JPF is used to investigate

the eigenvalue ratio for −τ ∗ij , which avoids the singularity problem encountered in the

1-D PF. The most probable ratio predicted using the 2-D JPF for −τ ∗ij is found to be

α−τ : β−τ : γ−τ = 3 : 0.75 : −4.75 in the core region.
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(vi) Turbulence Topology

As a further examination of the performance of the DNM, turbulence flow topologies

related to the invariants of both the resolved velocity gradient and strain rate tensors

have been studied in chapter 8. The research work presented in this chapter is novel

since it proposes an approach to study turbulence topologies through a posteriori

LES based on the SGS model. Some of the obtained phenomenological results are

compared to those available in the literature. Besides these results, some new phe-

nomenological results are also observed during the study, e.g. a contour pattern of a

pair of wings for the expectation of the resolved enstrophy generation and the nega-

tive shift of the expectation of the resolved enstrophy in the tensorial invariant phase

plane of S̄ij. These new results are very interesting and efforts have been made by the

author for their analytical explanations. The observation of these new phenomeno-

logical results are to some extent, not surprising, since turbulence topology itself, as

a newly developed research methodology, was introduced into the fluids community

only about a decade ago marked by the pioneering works of Chong and Perry [58],

Chen et al. [57] and Cantwell [63]; and its implementation into LES has even a shorter

history following the a priori LES works of Borue and Orszag [165] and van der Bos

et al. [70].

In the 2-D JPF contour diagram of QA∆ and RA∆ (invariants of the resolved

velocity gradient tensor), a typical pear-shape contour is observed in all three regimes:

viscous sublayer, buffer zone and logarithmic region. The pear-shape contour is cen-

tered at the origin and preferentially spreads into the 2nd and 4th quadrants, indicat-

ing a prevalence of stable-focus/stretching and unstable-node/saddle/saddle topolo-

gies, respectively. It is also observed that the JPF contour is predominant along the

right Vieillefosse line (DA∆ = 0 for RA∆ > 0). The QS∆–RS∆ phase plane (based on

the invariants of the filtered strain rate tensor) is useful for visualizing local dissipa-

tion and relating flow topologies to the relative eigenvalue ratio of the filtered strain

rate tensor in a qualitative manner. However, it is argued in this dissertation that the

QS∆–RS∆ phase plane is not reliable for determining the most probable eigenvalue

ratio of S̄ij , since all states of high probability cluster around the origin.
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The expectation of the resolved normalized enstrophy (ω̄2)E based on the JPF

P (R∆, Q∆, ω̄
2) has been investigated in both the QA∆–RA∆ and QS∆–RS∆ phase

planes. Generally in the QA∆–RA∆ phase plane, a pear-shape contour of (ω̄2)E is

observed. It is concluded in this dissertation that in a flow regime where the re-

solved enstrophy is nontrivial, the origin of the QA∆–RA∆ phase plane if mapped

into the QS∆–RS∆ phase plane, corresponds to RS∆ = 1
4
σ̄ and QS∆ = −1

4
ω̄2; the

latter indicates a negative shift from the origin along the QS∆ axis in the QS∆–RS∆

phase plane in the form of a local dissipation due to vorticity excitations. The above

conclusion holds generally for any flow regime with active vorticity excitations. It is

also concluded that a state corresponding to the fluid regime right at the wall must

be located at the origin of the QA∆–RA∆ phase plane, however, the reverse is not

necessarily true.

For the logarithmic region, the expectation of the non-dimensional enstrophy

generation σE has two positive peaks, both close to the origin of the QA∆–RA∆ phase

plane. The predominant positive peak is located in the region of DA∆ > 0 and

RA∆ < 0 and is related to a stable-focus/stretching flow topology; while the secondary

positive peak is in the fourth quadrant of the QA∆–RA∆ phase plane and relates

to the local vortex stretching flow configuration. A negative σn peak is located in

the region of DA∆ > 0 and RA∆ > 0 and linked to an unstable-focus/compressing

topology. Generally, in the logarithmic layer, a “dragonfly-shape” contour is observed.

As the wall is approached, the magnitudes of the two positive peaks switch. Also,

a secondary negative σE peak begins to appear in the 3rd quadrant in the buffer

zone and becomes strongest in the sublayer. In the QS∆–RS∆ phase plane, the σE

contours are found to possess a pattern of a pair of “wings” restricted by the three

limiting flow configurations, i.e. the axisymmetric compression, 2-D flow pattern,

and axisymmetric expansion. In the logarithmic region, the positive wing dominates

the negative one and shows a strong tendency to approach the right Vieillefosse line

(DS∆ = 0 for RS∆ > 0), whereas the negative wing shows a weak preference for the

left Vieillefosse line (DS∆ = 0 for RS∆ < 0). In the buffer zone, all states ranging from

the limiting axisymmetric compression pattern to the 2-D pattern and to the limiting
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axisymmetric expansion pattern are significant to the σE distribution. In the viscous

sublayer, the negative σE peak becomes dominant and both wings strongly approach

the 2-D flow line, moving away from the curves corresponding to 3-D axisymmetric

compression and expansion flow configurations. Such a feature in the sublayer is

found to be important, since it reflects the 2-D nature of near-wall flows.

The expectation of the SGS TKE production rate (PrE) in the central loga-

rithmic region has been studied using the invariant phase planes. Overall, PrE is

observed to be positive indicating a general net TKE flux from the resolved to the

subgrid scales. In the QA∆–RA∆ phase plane, a prototypical pear-shape contour is

observed for PrE. The net forward and net backward scatters, i.e. P+
rE and P−

rE , can

be obtained by splitting Pr into the positive and negative parts using the conditional

probability function. The contours of both P+
rE and P−

rE also show the pear-shape

pattern independently and a strong tendency to follow the right Vieillefosse line. In

the QS∆–RS∆ phase plane, a similar tendency is observed and the contours corre-

sponding to larger values of PrE , P+
rE and P−

rE cling to the right Vieillefosse line,

which indicates that the possess of SGS TKE production is preferentially associated

with the axisymmetric expansion flow configuration in the core region of the channel.

9.2 Comments on Future Studies

In this study, the proposed new SGS stress models were tested using turbulent Cou-

ette flow for a limited number of Reynolds numbers. Although good results have been

obtained in the numerical simulations, it is understood that a thorough examination

of these SGS modelling approaches should be based on a variety of flows with and

without a homogeneous plane. Other canonical test flows such as the lid-driven cavity

flow, Poiseuille channel flow, and flow passing over a cylinder can be considered in

future studies. Also this dissertation only considers the fluid dynamics characteris-

tics of the SGS models; it would also be of interest to examine their performance in

turbulent flows involving scalar transport processes such as heat transfer and concen-
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tration dispersion. The numerical results presented are based on a sequential code

as described in chapter 2, and all computations were carried out using a personal

computer. In future studies, a parallel code and high performance computation can

be considered for applications in the areas such as boundary layer meteorology and

environmental flows.

Based on the observation that the dynamic Smagorinsky type SGS model [19,20]

has some drawbacks due to its overly simplified constitutive relation, an increasing

body of research [44, 48, 50, 143, 148, 155, 160–162, 192] has proposed SGS modelling

approaches based on nonlinear constitutive relations. The nonlinear feature of the

SGS constitutive relations becomes very important from the modern viewpoint of

turbulence geometrical statistics and topology, since the linear Smagorinsky relation

fails to capture some advanced turbulence features such as the relative geometrical

orientation between the tensorial eigenframes as demonstrated in chapter 6. Further

research on nonlinear constitutive relations is anticipated to be introduced into LES

in the future. It is suggested by this thesis and some recent work [70] that in the

future the CFD community should consider an improved criterion for turbulence

(SGS) models, i.e. being able to predict both conventional scaling characteristics

such as the log law, and also the geometrical and topological features of turbulent

flow, such as the alignment between the vorticity and vortex stretching vectors and

the pear-shape JPF contour in the QA∆–RA∆ invariant phase plane. In addition to

the numerical validation of the proposed DNM performed in chapters 6–8, further

diagnose of this dynamic nonlinear SGS stress model may consider the approach of a

priori process of DNS and experimental data.

Turbulence geometrical statistics and topology are two relatively new research

areas with only a short history of about twenty and ten years, respectively. The

a posteriori LES applications of turbulence geometrical statistics include the recent

works of Saffman, Pullin, Misra, Voelkl and Chan [101–107], while the a priori LES

applications of both turbulence geometrical statistics and turbulence topology are

found in the recent works by Borue and Orszag [165], Tao et al. [29,99] and van der Bos

et al. [70]. Some new interesting phenomenological results on turbulence geometrical
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statistics and topology have been observed in this study. For example, the dragonfly-

shape and wing-shape contours of the expectation of the resolved enstrophy generation

are found in the tensorial invariant phase planes; it is observed that in the buffer

zone, all the states of flow configurations ranging from axisymmetric compression to

2-D pattern and to axisymmetric expansion have a significant influence on the flow

topology; and the preferred alignment pattern, i.e. Θ(ω̄, eSβ) = 0o and Θ(ω̄, eSγ) =

90o is found to be not unique for (quasi-)isotropic turbulence, but instead, even more

characteristic for the viscous sublayer. Whether these new properties observed in

this research are generic and universal for turbulence still needs further support from

other LES, DNS, and experimental examinations.
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Appendix A

Formulations and Singularity Condition
for the DNM

In this appendix, the modelling formulation for the DNM will be first developed using

the least squares method, and then its local singularity condition will be investigated.

(1) The DNM Formulation

The mathematical procedure to obtain the DNM follows the least squares approach

introduced by Lilly [20], which uses the assumption that C̃Sβij ≈ CSβ̃ij . For the three-

parameter DNM, this assumption needs to be extended to treat C̃Wγij and C̃Nηij in a

similar way. On substituting Eqs.(6.7) and (6.8) into the Germano identity Eq.(1.17),

the following relation is obtained as an approximation to the deviatoric part of the

Leonard stress tensor:

L∗
ij ≈ Lappr∗

ij = −CSαij − CWλij − CNζij + C̃Sβij + C̃Wγij + C̃Nηij (A.1)

Using the assumptions above and the previously introduced expressions for the dif-

ferential tensorial functions Mij , Wij and Nij , the above equation can be simplified

to

Lappr∗
ij = −CS(αij − β̃ij) − CW (λij − γ̃ij) − CN(ζij − η̃ij)

= −CSMij − CWWij − CNNij

(A.2)
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Thus, the local error tensor has the following specific form:

Eij = L∗
ij − Lappr∗

ij

= L∗
ij + CSMij + CWWij + CNNij

= L∗
ij + CmF

m
ij

(A.3)

where the index m runs from 1 to 3 (replacing subscripts S, W and N) to indicate

the three nonlinear terms, and the tensor Fm
ij is used to represent Mij , Wij and Nij .

The local error density function defined by Eq.(1.21) becomes

Q = EijEij = CmCnF
m
ij F

n
ij + 2CmF

m
ij L∗

ij + L∗
ijL∗

ij (A.4)

Define the inner product of two tensors as their tensorial contraction, i.e.

(Fm
ij , F

n
ij) = Fm

ij F
n
ij (A.5)

It is well known from algebra that for an extremum value of Q determined by the

least squares method, it is necessary for ∂Q/∂Ci to vanish (i = 1, 2, 3), which requires

Eij to be orthogonal to F n
ij [193], i.e.

(Eij , F
n
ij) = EijF

n
ij = 0 (A.6)

for n = 1, 2, 3. By substituting Eq.(A.3) into the above equation, the following normal

equations for the coefficients are obtained:

(Fm
ij , F

n
ij)Cm = −L∗

ijF
n
ij (A.7)

for m,n = 1, 2, 3. This is the modelling formulation for the DNM, which is necessary

for Q to be minimal. It can be equivalently expressed using matrices as
MijMij MijWij MijNij

WijMij WijWij WijNij

NijMij NijWij NijNij

 ·


CS

CW

CN

 = −


L∗

ijMij

L∗
ijWij

L∗
ijNij

 (A.8)

or AC = B for brevity.
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(2) Singularity Condition

At this stage, one may naturally ask the question: is the system of the DNM, i.e.

Eq.(A.7) or (A.8), singular? We have shown that the DNM is necessary for a locally

minimum Q. Furthermore, since it is well understood that such a solution of the

DNM can also be a maximum or inflection ‘point’ for Q, is the DNM also sufficient

for Q to be minimal? Fortunately, both questions can be answered using the following

proposition:

Proposition: The set of model coefficients as the solution to the DNM must exist

and be unique iff the differential tensorial functions Mij(x), Wij(x) and Nij(x) are

linearly independent, such that the local error density function Q(x) is minimal.

Proof:

Consider the quadratic form (Fm
ij , F

n
ij)CmCn for the DNM coefficients Cm for

m = 1, 2, 3. We have

(Fm
ij , F

n
ij)CmCn = (CmF

m
ij , CnF

n
ij) = (CmF

m
ij , CmF

m
ij ) ≥ 0 (A.9)

which indicates that the quadratic form is positive semidefinite. It can be zero, iff

CmF
m
ij = 0 and its linear combination is nontrivial (i.e. the DNM coefficients Cm for

m = 1, 2, 3 are not all zero). Actually, given that the tensorial functions are linearly

independent,

CmF
m
ij 	= 0 (A.10)

if the linear combination is nontrivial. As such, we obtain

(Fm
ij , F

n
ij)CmCn > 0 (A.11)

which further indicates that the quadratic form is positive definite, and thus

det(A) = det([Fm
ij F

n
ij ]) > 0 (A.12)

So far, we have proven that the DNM is locally non-singular with a unique solu-

tion set for the model coefficients at each time step, iff the three differential tensorial
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functions are linearly independent. Now we continue to answer the second question

by demonstrating that the DNM is also sufficient for Q to be minimum. Supposing

the Leonard stress can also be approximated using a different set of coefficients Dm

for m = 1, 2, 3, i.e.

L∗
ij ≈ L̊appr∗

ij = −DmF
m
ij (A.13)

the local error tensor then is expressed as

E̊ij = L∗
ij − L̊appr∗

ij = L∗
ij +DmF

m
ij (A.14)

and the local error density function is

Q̊ = E̊ijE̊ij

= (L∗
ij − L̊appr∗

ij ,L∗
ij − L̊appr∗

ij )

= (L∗
ij − Lappr∗

ij + Lappr∗
ij − L̊appr∗

ij ,L∗
ij −Lappr∗

ij + Lappr∗
ij − L̊appr∗

ij )

= (L∗
ij − Lappr∗

ij ,L∗
ij − Lappr∗

ij ) + 2(L∗
ij − Lappr∗

ij ,Lappr∗
ij − L̊appr∗

ij )

+ (Lappr∗
ij − L̊appr∗

ij ,Lappr∗
ij − L̊appr∗

ij )

(A.15)

Considering that

Lappr∗
ij − L̊appr∗

ij = (Dm − Cm)Fm
ij (A.16)

and from the orthogonal condition (Eq.(A.6)), we obtain

(L∗
ij − Lappr∗

ij ,Lappr∗
ij − L̊appr∗

ij ) = (Dm − Cm)(Fm
ij , Eij) ≡ 0 (A.17)

Thus from Eq.(A.15), the following relation holds

Q̊ = (L∗
ij −Lappr∗

ij ,L∗
ij −Lappr∗

ij ) + (Lappr∗
ij − L̊appr∗

ij ,Lappr∗
ij − L̊appr∗

ij )

= Q+ (Lappr∗
ij − L̊appr∗

ij ,Lappr∗
ij − L̊appr∗

ij )

≥ Q

(A.18)

As such, it has been shown that the DNM is not only necessary but also sufficient for

Q to be minimum and the proof of the proposition is hereby completed.
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Appendix B

Orthogonal and Rotation Matrices

B.1 Similar and Orthogonal Transformations

In the following section, we limit our discussion mainly to be within the set of real

numbers R. We use the symbol Vn(R) to represent the n-dimensional vector space

associated with R and symbol Rn to represent the set for all n× n matrices over R.

If only a second order tensor is involved, n = 3. The material presented are basically

from textbooks [193–196].

Definition B.1: Two matrices A and B are similar if there exists a nonsingular

matrix C, such that B = C−1BC.

Definition B.2: A ∈ Rn is called an orthogonal matrix if ATA = Id, where Id is the

identity matrix.

Definition B.3: Matrices A and B ∈ Rn are orthogonally similar if there exists an

orthogonal matrix R such that B = RTAR.

Property B.1: Every symmetric matrix is orthogonally similar to a diagonal matrix.

Property B.2: A matrix T ∈ Rn is similar to a diagonal matrix iff there exists a

basis for Vn(R) consisting of eigenvectors of T.

Property B.3: A real symmetric matrix has only real eigenvalues.

Property B.4: For a real symmetric matrix, its eigenvectors, associated with distinct

eigenvalues, are orthogonal to each other.

Property B.5: Similar matrices have the same eigenvalues, i.e. if A = C−1BC,
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λA = λB.

Property B.6: The trace of a matrix A equals to the summation of its eigenvalues,

i.e. tr(A) =
∑n

i=1(λA)i.

From Property B.5 and B.6, it is straightforward [193] that similar matrices

share the same trace.

Corollary B.1: The trace of a matrix is an invariant under similar transformation,

i.e. if A = C−1BC, then tr(A) = tr(B).

B.2 Rotation Matrix

Let E = [e1, e2, e3] and E ′ = [e′
1, e

′
2, e

′
3] represent two orthonormal frame bases, such

that a vector can be represented using either of the frames: v = xiei = x′ie
′
i, where

xi and x′i are the corresponding coordinates. The direction-cosine matrix R ∈ R3 is

formed by the bases E and E ′ by

Rij = e′
i · ej (B.1)

which is the co-called rotation matrix, a typical orthonormal matrix linking the frame

E and E ′ via orthogonal transformations. Therefore,

RRT = Id, R−1 = RT , det(R) = ±1 (B.2)

x′i = Rijxj , xi = Rjix
′
j (B.3)

and

e′
i = Rijej, ei = Rjie

′
j (B.4)

An orthonormal matrix corresponding to det(R) = +1 is called proper, otherwise,

improper. An proper R represents rotations, while an improper one involves reflec-

tions.

A rotation matrix R can be used for representing the frame attitude, how-

ever, it has 6 extra redundant parameters. An second method, i.e. Euler axis/angle
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representation is based the on the famous Euler Theorem [178,197],

The Theorem of Euler (1776): Any proper orientation R ∈ R3 is equivalent to a

rotation about a fixed axis q through an angle χ.

The fixed axis q is not a free vector, and is known as the Euler equivalent

axis. Euler’s theorem can be understood from its eigensystem [180]: Re = λe. The

characteristic equation for R is [198]:

|R − λId| = −λ3 + tr(R)λ2 − tr(R)λ+ Id = 0 (B.5)

which results in three eigenvalues:

λ = +1, eiχ, e−iχ (B.6)

where i =
√−1. The Euler equivalent axis q corresponds to the eigenvector of

the proper real eigenvalue λ = +1. However, χ the angle of rotation (or Euler

rotational angle introduced here for clarity) is characterized by the phase of the other

two eigenvalues. From Eq.(B.6), we obtain

tr(R) = λ1 + λ2 + λ3 = 1 + 2 cosχ (B.7)

Thus, if the trace tr(R) 	= +3 or −1, the Euler rotational angle χ can be uniquely

determined from it. Furthermore, it can be shown [180] that

q× =
1

2 sinχ
(RT − R) (B.8)

The rotation matrix R can be inversely calculated using the Euler axis/angle as

R = cosχId + (1 − cosχ)qqT − sinχq× (B.9)

The operation q× used above is defined as

q× =


0 −q3 q2

q3 0 −q1
−q2 q1 0

 (B.10)
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Appendix C

Transport Equations for the Moments of
the Strain Rate Tensor and Vorticity
Vector

In this appendix, the transport equations for vorticity vector ωi, enstrophy ω2 = ωiωi,

strain rate tensor Sij, strain product IS2 = SijSji, enstrophy generation σ = ωiωjSij ,

and strain skewness IS3 = SijSjkSki from Refs. [81, 82] are listed, which is helpful to

understand the mechanism of these quantities in a both quantitative and qualitative

manner.

Dt(ωi) = ωjSij + νωi,kk (C.1)

1

2
Dt(ωiωi) = ωiωjSij + νωjωj,kk (C.2)

Dt(Sij) = −SikSkj − 1

4
(ωiωj − ωkωkδij) − p,ij +νSij ,kk (C.3)

1

2
Dt(2SijSji) = −2

(
SikSkjSji +

1

4
ωiωjSij + Sijp,ij

)
+ 2νSijSij ,kk (C.4)

Dt(ωiωjSij) = ωjSijωkSik − ωiωjp,ij +ν(2ωiSijωj,kk + ωiωjSij ,kk ) (C.5)

Dt(SijSjkSki) = 3

[
− SikSkjSilSlj +

1

4
(SijSijωkωk − ωjSijωkSik)

− p,ij +νSikSkjSij,kk

] (C.6)

where Dt( ) = ˙( ) + uj · ( ),j is the material derivative.
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