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ABSTRACT  

 Histone Deacetylase Inhibitors (HDACi) are a new class of chemotherapeutics which 

have shown promise in pre-clinical and clinical settings.  HDACi have been shown to act by re-

programming gene expression, with the transcription of some genes such as p21
WAF1

 being 

activated, while others like SRC and BCL2L1 are repressed.  The mechanism behind HDACi 

gene expression changes remains unknown; although it has been shown to involve a direct 

interaction with gene promoters.  

 Using a quantitative qRT-PCR approach, the effect of various HDACi on the 

transcription of p21
WAF1

, SRC and BCL2L1 was examined. TSA and apicidin led to an up 

regulation of p21
WAF1

 mRNA levels while c-Src and Bcl-xL mRNA levels were downregulated. 

Short c-Src mRNA transcripts were unaffected following TSA and apicidin treatments, despite 

the full length transcripts being repressed.  Repression of full length c-Src and Bcl-xL mRNA 

transcripts was not seen following treatment with MS-275 and MGCD0103, although p21
WAF1

 

mRNA expression was induced. ChIP experiments revealed that following HDACi treatment, 

histone acetylation levels and RNA Polymerase II occupancy increased in the promoter regions 

of both the SRC and BCL2L1 genes. RNA Polymerase II occupancy lasted less than 15 

minutes in the 3’ regions of the gene following treatment with apicidin and TSA, but was more 

long-term following MS-275 and MGCD0103 treatment. The protein phosphatase inhibitor 

Calyculin A completely blocked HDACi mediated repression of c-Src and Bcl-xL mRNA, 

suggesting a role for protein phosphatases in the mechanism behind HDACi.   

 It is therefore hypothesized that HDACi work through at least two different 

mechanisms. Whether or not an HDACi leads to gene repression depends on its ability to 

disrupt an HDAC/protein phosphatase complex and not on their HDAC specificities. The 

disruption of the complex leads to the release of an active protein phosphatase. The released 

phosphatase can then presumably act on various factors changing a gene from an active to 

paused state, possibly through promoter proximal pausing.  HDACi unable to disrupt this 

complex are unable to induce gene repression.  Collectively, these studies highlight not only the 

complexity of HDACi mediated effects within the cell, but also present a new explanation 

behind HDACi mediated gene repression.  
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1. REVIEW OF THE LITERATURE 

1.1 Introduction 

 Histone deacetylase inhibitors (HDACi) are relatively new a class of chemotherapeutic 

agents which have shown considerable promise in both pre-clinical and clinical settings.  Not 

only are HDACi able to induce cell cycle arrest, differentiation, and apoptosis, but they do so 

with a selectivity towards cancerous cells (Rosato et al., 2005; Bolden et al., 2006; Minucci 

and Pelicci, 2006; Dokmanovic et al., 2007; Glaser et al., 2007;  Xu et al., 2007;   Marks and 

Xu, 2009).   Initially the mechanism was assumed to involve HDACi shifting the balance of 

histone acetylation-deacetylation towards a state of hyperacetylation; leading to an overall 

increase in gene expression (Ma et al., 2009).  However, recent studies have shown that not 

only do HDACi increase gene expression, but also cause selective gene repression (Bolden et 

al., 2006; Dokmanovic et al., 2007; Marks and Xu, 2009). The mechanism of this selective 

gene repression is unknown, but may involve protein phosphorylation (Galasinski et al., 2002; 

Brush et al., 2004; Gregoretti et al., 2004; Chen et al., 2005; Gou et al., 2007).  Therefore the 

aim of this thesis is to further investigate the mechanism behind HDACi mediated selective 

gene repression by examining the SRC and BCL2L1 genes; both of which are repressed 

following treatment with this class of chemotherapeutics.  The following literature review will 

summarize the current knowledge on chromatin modifications, transcriptional regulation, as 

well as introduce the human SRC and BCL2L1 genes.  

 

1.2 Chromatin Modifications 

 The eukaryotic genome is regulated through a series of tightly controlled steps allowing 

for the regulation of cellular function. The nucleosome is one of the key structures involved.  

The nucleosome consists of 147 base pairs of DNA wrapped around an octamer of histones, 

containing two copies each of histones H2A, H2B, H3 and H4 (Arents et al., 1991; Campos 

and Reinberg, 2009; Sivolob et al., 2009).  Each nucleosome is separated from the next by 10-

60 base pairs of DNA which interact with histone H1 (Hansen et al., 1998; Tolkunov et al., 

2010).  The interaction of the nucleosomes and DNA creates the characteristic “beads on a 

string” fiber which is 10 nm in diameter (McBryant et al., 2006; Fussner et al., 2011).  This 



2 
 

fiber undergoes further modifications and compaction to form a chromosome (Daban 2003; 

Fussner et al., 2011).  

 Carboxyl and amino terminal domains of each histone within the nucleosome are seen 

as protruding tails (Campos and Reinberg, 2009).  The protruding tails are around 40 amino 

acids in length and are subject to numerous post translational modification including lysine 

acetylation, methylation, ubiquitynation, SUMOylation, arginine methylation, and 

serine/threonine phosphorylation (Gelato and Fischle, 2008; Campos and Reinberg, 2009).  

These modifications allow for many protein-protein interactions, and determine the level of 

chromatin condensation which can vary from highly condensed heterochromatin to 

uncondensed euchromatin.  Euchromatin tends to be gene rich and transcriptionally active 

whereas heterochromatin is generally transcriptionally silent, rich in repetitive sequences, and 

necessary for the formation of chromosomal structures such as the centromere and telomeres 

(Santos-Rosa and Caldas, 2005; Campos and Reinberg, 2009).  Therefore the type of 

modifications present and the subsequent level of chromatin condensation, in a given region of 

the genome, will in part determine the level of gene transcription that is possible. 

Post translational modifications to the chromatin occurs in many ways including 

intrinsic, extrinsic, and effector mediated modifications (Gelato and Fischle, 2008; Campos and 

Reinberg, 2009).  Intrinsic effects include variations such as the incorporation of a variant 

histone protein.  This type of modification directly alters the properties of the nucleosome, 

including the number of DNA contacts, the size of the nucleosome, and its stability 

(Ruthenburg et al., 2007; Whitehouse et al., 2009).  Extrinsic modifications involve enzyme-

mediated remodeling of chromatin structure, and are one of the major methods by which 

euchromatin can be converted into heterochromatin. Remodeling enzymes responsible for 

extrinsic modifications include the switching/sucrose non fermenting (SWI/SNF) family, the 

imitation switch (ISWI) family, the inositol biosynthesis 80 containing (INO80) family, the 

SWI/SNF related factor (SWR1) family, and the nucleosome remodeling histone 

deacetylase/chromodomain for Mi2alpha/chromodomain (NURD/Mi-2/CHD) family (Campos 

and Reinberg, 2009).  These enzymes can change the location of the nucleosome along the 

DNA, as well as allow access for various transcription factors (Oki et al., 2004; Portela et al., 

2010). The third method of nucleosome modification, effector mediated, involves 
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modifications to the histone tails, and are classified as epigenetic modifications (Klose and 

Bird, 2006; Ballestar, 2011). 

Epigenetic modifications have been shown to facilitate the binding of nucleosome 

remodeling factors, many of which contain bromodomains and chromodomains binding to 

acetylated and methylated lysine residues respectively, as well as creating binding sites for 

various proteins (Gelato and Fischle, 2008; Portela et al., 2010).  Common modifications 

include acetylation, methylation, ubiquitination, and SUMOylation of lysine residues, arginine 

methylation, serine and threonine phosphorylation, glutamate ADP-ribosylation, and proline 

isomerization (Gelato and Fischle, 2008; Bannister et al., 2011).  The various modifications to 

the histone tails leads to a change in the net charge of the nucleosome, altering the electrostatic 

interactions and therefore the folding of the chromatin (Gelato and Fischle, 2008; Bannister et 

al., 2011).  The integration of all modifications present in a given region of the genome will 

determine whether or not the chromatin is in a transcriptionally active or inactive state, an idea 

termed the histone code (Strahl and Allis, 2000; Bannister et al., 2011).  One form of epigenetic 

modification, histone acetylation, has been shown to not only alter the interactions between 

histones and the associated DNA, but also the interactions of many non histone proteins. 

Acetylation is now thought to rival phosphorylation as a major means to regulate cellular 

events (Gelato and Fischle, 2008; Bannister et al., 2011).  

 

 

1.2.1 Histone Acetylation  

 Allfrey and colleagues first discovered in 1964 that the reversible addition of an acetyl 

group to lysine residues was important to both local and global gene expression (Allfrey et al., 

1964; Dekker and Haisma, 2009).  Since this initial discovery interest has grown substantially 

in determining how this epigenetic modification plays such an important role in gene 

expression.  The first histone acetyl transferase (HAT) was discovered in 1995 (Kleff et al., 

1995; Yang and Seto, 2007) with histone deacetylases (HDAC) first reported in 1996 (Taunton 

et al., 1996).  
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1.2.1.2 Histone Acetyl Transferases 

The addition of an acetyl group from acetyl CoA decreases the positive charge of the 

histone, decreasing the interaction with the DNA backbone, and therefore, allowing increased 

access to various transcription factors.  In addition to the role in chromatin modification, HATs 

have also been shown to play a role in post-transcriptional protein modification, pre-mRNA 

processing, mRNA stability, protein stability through increasing proteasomal degradation, 

regulation of folding mechanisms in the endoplasmic reticulum, cell cycle control, and cell 

metabolism  (Kouzarides, 2000; Sprange et al., 2009).  Acetylation of non histone proteins has 

also been shown to influence protein-protein interactions (Buchwald et al., 2009).  Therefore 

the acetylome now includes not only modifications to chromatin, but also modifications to 

many cellular proteins, and rivals phosphorylation for its role in cell regulation (Minucci and 

Pelicci, 2006; Choudhary et al., 2009; Norris et al., 2009).   HATs are subdivided into five 

different families the GCN5, MYST, p300/CBP, nuclear receptor co-activators, and general 

transcription factor family (Table 1.1). The overall level of acetylation in the cell is determined 

by the balance between the activity levels of HATs and HDACs. 

 

 

1.2.1.3 Histone Deacetylases  

 Like HATs, HDACs plays a role in epigenetic modification of the histone tail, as well 

as various non-histone protein substrates.  Eighteen HDACs have been identified in the human 

genome, which are classified into four families based upon their homology to the yeast HDACs 

reduced potassium dependency (Rpd3), histone Deacetylase 1 (Hda1), and silent information 

regulator 2 (sir2)  (Table 1.2) (Sengupta and Seto, 2004; Smith, 2007; Buchwald et al., 2009).   

The different families of HDAC show selectivity with respect to sub-cellular localization, 

substrates, and tissue dependent expression.  

 Although divided into different groups based upon their homology to yeast HDACs all 

of these enzymes remove acetyl groups from lysine residues on their target substrates.  When 

acting on the histone tail, the removal of an acetyl group increases the positive charge of the 

histone allowing for stronger interactions with the DNA backbone.  The subsequent tighter  
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Table 1.1 Histone Acetyl Transferase Families  

 

Family Members Function 

GCN5 GCN5, hGCN5, PCAF Transcription Initiation 

MYST MOZ, Ybf2/Sas3, Sas2, Tip60 Catalytic subunits found in large 

protein complexes 

p300/CBP p300, CBP Associate with proteins involved 

in transcription regulation and  

tumor suppression 

Nuclear receptor co-

activator 

 

Various proteins shown to contain intrinsic HAT activity but share 

low sequence similarity  

General Transcription 

Factors 

(Sterner and Berger, 2000; Schrump, 2009; Sprange et al., 2009; Sapountzi et al., 2011) 

 

Table 1.2 Classes of Histone Deacetylases 

Class Members Related Yeast 

HDAC 

Tissue Location Cell Location 

Class I 1, 2, 3, 8 Rpd3 All tissue types Nucleus 

Class IIa 4, 5, 7, 9 hda1 Heart, brain, skeletal muscle Nucleus and 

Cytoplasm 

Class IIb 6, 10 hda1 Heart, brain, skeletal muscle 6 – Cytoplasm 

10- Nucleus 

Class III Sirt 1-7 Sir2 All tissue types Nucleus and 

Mitochondria 

Class IV 11 Unknown Unknown Unknown 

(de Rujiter et al., 2003; Holbert and Marmorstein, 2005; Lin et al., 2006; Witt et al., 2009; 

Peserico et al., 2011) 
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wrapping around the histone, decreases the accessibility of DNA to transcription factors, 

leading to a decrease in gene transcription (Bolden et al., 2006; Bannister et al., 2011).   

 The role of the HDAC family members has recently been expanded and now includes 

modifications to the histone tail, as well as post translational modifications of various proteins 

as a method to regulate protein activity.  More than 1700 different protein targets have now 

been identified containing over 3600 acetylation sites (De Ruijter et al., 2003; Choudhary et al., 

2009; Bradner et al., 2010).  Protein targets include transcription factors, transcriptional co-

regulators, α-tubulin, acetyl-coA synthetase, Hsp90, MyoD, p53, and E2F (Kouzarides, 2000; 

Sprange et al., 2009).  The change in acetylation of proteins can lead to an increase or decrease 

in the proteins activity, change the subcellular localization, facilitate binding to other proteins, 

or can modify other post translational modifications such as ubiquitination and phosphorylation 

(Buchwald et al., 2009).  Due to the number of targets now identified as HDAC substrates, this 

class of enzymes may be more appropriately named lysine deacetylases (Kouzarides, 2000; 

Sprange et al., 2009).  

 Class I HDACs include HDAC 1, HDAC 2, HDAC 3, and HDAC 8 and are homologus 

to the yeast protein Rpd3 (Witt et al., 2009).  They are ubiquitously expressed throughout the 

body and are present mainly within the nucleus of the cell (Witt et al., 2009).  Enzymes in this 

class are characterized by their N-terminal catalytic domain which is utilized for the removal of 

acetyl groups through a two histidine-asparagine charge relay system co-ordinated by a zinc ion 

(de Rujiter et al., 2003; Holbert and Marmorstein, 2005; Lin et al., 2006; Peserico et al., 2011).   

Members of this family, particularly HDAC1 and HDAC2, are commonly found active only 

when incorporated into a multi protein complex (de Rujiter et al., 2003).  HDAC1 and HDAC2 

are associated with the switch independent 3 (Sin3), nucleosome remodeling histone 

deacetylase (NuRD), and co-repressor to RE1 silencing transcription factor (Co-REST) 

complexes (Yang and Seto, 2003; Peserico et al., 2011).  

 HDAC3 is somewhat distinct from the other members of Class I, in that it not only 

contains a nuclear localization signal, but also an export signal, allowing it to shuttle between 

the nucleus and cytoplasm (de Rujiter et al., 2003).  HDAC3 has been shown to belong to 

various complexes including the silencing mediator for retinoic acid, thyroid hormone receptor 

(SMRT), nuclear receptor co-repressor complexes (N-CoR),  and interacts with HDAC’s from 

other families including HDAC 4, 5, and 7 (Li et al., 2000; Gregoretti et al., 2004).   HDAC8, 
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the final and newest member of the Class I family, has not been identified in any complexes as 

to date (Yang and Seto, 2003; Somoza et al., 2004). 

Class II HDACs include HDAC4, HDAC5, HDAC6, HDAC7, HDAC9 and HDAC10 

and are homologous to the yeast protein hda1.  This class is commonly divided into two 

subclasses, class IIa including HDACs 4, 5, 7, and 9 and class IIb containing HDAC 6 and 10 

(Gregoretti et al., 2004; Bolden et al., 2006; Parra et al., 2010).  Expression of members in this 

class is more tissue specific than was seen with class I HDACs, with HDAC 4, 5, and 9 being 

observed mainly within the heart, brain and skeletal muscle.  HDAC 7 is found within the heart 

and lung, HDAC 6 in the testes, and HDAC 10 within the liver, kidney, and spleen (Verdin et 

al., 2003; Chang et al., 2004). 

HDACs belonging to the IIa family contain a single C-terminal catalytic domain, along 

with nuclear localization and nuclear export signals, while the N terminal domain contains 

various protein interacting domains (Verdin et al., 2003; Yang et al., 2005; Martin et al., 2007).  

Therefore, these HDACs are found within the nucleus and cytoplasm of their respective tissues, 

with their location being determined by the proteins with which they interact (de Rujiter et al., 

2003; Martin et al., 2007).   In contrast to class IIa, class IIb HDACs contain two separate 

catalytic domains (Gregoretti et al., 2004; Yang et al., 2005).  HDAC6 associates with the 

microtubule network and therefore is found mostly within the cytoplasm (Verdin et al., 2003).  

The second class IIb member, HDAC10, resides mainly within the nucleus and is known to 

associate with HDAC3 and the SMRT complex (Gregoretti et al., 2004; Yang et al., 2005).  

 Class III HDACs are both structurally and mechanistically very different from the 

previous two classes.  Class III HDAC are dependent on nicotinamide adenine dinucleotide 

(NAD+) for their deacetylase activity, instead of the charge relay system utilized by class I and 

II HDACs (Greiss and Gartner, 2009).  This class of enzymes works through a highly 

conserved catalytic core comprised of 250 amino acids (Greiss and Gartner, 2009).   The 

catalytic core is comprised of 2 domains, an NAD+ binding fold domain, and a zinc binding 

domain located within a hydrophobic channel.  In contrast to class I and II HDACs, class III 

HDACs use the zinc ion in a structural role rather than as a catalytic center.  The class III 

enzymes transfer the acetyl group from a lysine residue to the ribose of the NAD+ group 

(Greiss and Gartner, 2009). 
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 Class III HDACs are named Sirtuins (Sirt) one through seven; with Sirt 1, 6, and 7 

being found mainly within the nucleus, Sirt 3, 4, 5 within the mitochondria, and Sirt2 in the 

cytoplasm (Greiss and Gartner, 2009).  Sirt 1 is the member of this family that is best 

characterized to date, and has been shown to interact with various histone and non-histone 

proteins including p53 and NF-кB (Lou et al., 2001; Yeung et al., 2004; Dai et al., 2008).     

Class IV HDAC contains one member, HDAC11, of which very little is known. 

 HDACs have been found to have aberrant activity in various diseases including 

neurodegeneration, cardiovascular disorders, inflammatory lung diseases, as well as a large 

proportion of human malignancies including hematological and solid tumors (Dokmanovic et 

al., 2007; Sprange et al., 2009).  Although mutations within HDAC genes are rare, HDACs 

often show altered expression and aberrant recruitment.  Over expression has been seen with 

HDAC1, HDAC2, HDAC4, HDAC6, and SIRT7 in cancers of the colon, breast, prostate, and 

thyroid (Bolden et al., 2006; Mashall et al., 2010; Aldana-Masangkay et al., 2011; Park et al., 

2011).  The altered activity of HDACs will affect cell signaling and gene expression, and has 

been linked to not only the progression, but also the development of various cancers (Wang et 

al., 2009; Buchwald et al., 2009).  Based on the role HDACs play in a variety of cancers, drugs 

inhibiting their activity have become of great interest for their potential inin treating a wide 

variety of cancers.  

 

 

1.2.1.3.1 Histone Deacetylase Inhibitors 

 Histone deacetylase inhibitors (HDACi) are a relatively new group of chemotherapeutic 

agents, which aim to reverse the gene silencing observed in various cancers by altering the 

epigenetic landscape (Ma et al., 2009).  Many different HDACi have been identified ranging 

from natural products such as the fatty acid butyrate and the bacteria metabolite Trichostatin A 

(TSA), to newer, synthetic inhibitors.  The first HDACi approved for clinical use, 

suberoylanilide hydroxaimc acid (SAHA) or Vorinostat (Zolina), entered the clinic in 2006 for 

the treatment of cuteanous T-cell lymphoma (Epping and Bernards, 2009).  

HDACi are grouped into one of four classes based upon their structure with functional 

groups including hydroxamic acids, benzamides, cyclic tetrapeptides, and aliphatic acids (Table 

1.3) (Drummond et al., 2005; Chavan et al., 2010).   Despite their different classifications, in 
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general, all HDACi contain three conserved structural groups: a zinc binding moiety, a capping 

group, and a straight chain alkyl, vinyl or aryl linker group connecting the zinc binding and 

capping groups (Marks and Xu, 2009).  Crystal structures of HDACi bound to various HDACs 

have revealed that all three regions interact with the HDAC active site (Marks and Xu, 2009).          

Through the alteration of the pattern of acetylation HDACi have been shown to alter not 

only the level of gene expression, but to also lead to an induction of extrinsic and intrinsic 

apoptosis pathways, affect cell cycle progression, differentiation, cell division, DNA repair, 

down regulate growth factors, induce oxidative stress, autophagy, and angiogenesis (Rosato et 

al., 2005; Bolden et al., 2006; Minucci and Pelicci, 2006; Dokmanovic et al., 2007; Glaser et 

al., 2007;  Xu et al., 2007;   Marks and Xu, 2009).  The mechanisms of how HDACi lead to all 

of the above effects are complex and not fully understood.  However, HDACi have been shown 

to induce cell cycle arrest through the up regulation of the p21
WAF1

, p27, and p57 proteins, 

which are all members of the cip/kip family of cyclin-dependent kinase inhibitors (Denicourt et 

al., 2004).  HDACi have also been shown to regulate the cell cycle through the down regulation 

of various cyclin proteins including Cyclin D1 and A (Smith and Workman, 2009).  The 

HDACi mediated induction of apoptosis is thought to occur through up regulation of the pro-

apoptotic factors Bid and Bim, and the down regulation of anti-apoptotic factors such as Bcl-xL.  

Hypo-acetylation of proteins such as E2F is also thought to play a role (Peart et al., 2005).  

Apoptosis is also thought to result from an increase in caspase cleavage due to altered 

regulation of caspases 3 and 6 following HDACi treatments (Peart et al., 2005).  

 While HDACi may be expected to have a global effect on transcription, microarray 

studies have shown that only between 2% and 20% of all expressed genes are affected 

following HDACi treatments (Bolden et al., 2006; Dokmanovic et al., 2007; Marks and Xu, 

2009).  Of the genes affected, approximately equal numbers were found to have their 

expression increased as were repressed. This suggests that not only are HDACi able to target 

specific genes, but they can lead to differential effects of the genes targeted.  The mechanism 

behind such differential effects of HDACi is not well understood, but Marks and Xu have 

shown that the change in gene expression is a direct effect of the HDACi treatments (Marks 

and Xu, 2009).  Determining the exact mechanism of action is important, as these agents are in 

clinical and pre-clinical use for various cancers. 
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 Cancerous cells have been shown to contain a multitude of genetic defects that lead to 

the disruption of normal cellular function.  In general, genes involved with the negative 

regulation of the cell cycle and tumor suppressor genes are repressed or silenced. Whereas 

genes involved with the positive regulation of the cell cycle or cell survival, are over expressed 

(Croce, 2008).  These changes in gene expression allow for the continued proliferation of 

cancerous cells as well as their escape from apoptosis.  HDACi through their differential effects 

on gene expression, provide a possible mechanism to allow both the re-expression of 

previously silenced genes, and also the repression of over expressed genes.  In support of this, 

the SRC and BCL2L1 genes have been found to be over expressed in a wide variety of cancers 

and are both repressed following treatments with various different HDACi.  In contrast 

p21
WAF1

, a negative regulator of the cell cycle, is induced following HDACi treatment 

(Yeatman, 2004; Dehm and Bonham, 2004;  Rada-Iglesias et al., 2007; Sillars-Hardebol et al., 

2011).  The success of the HDACi Vorinostat (Zolina, SAHA) has led to a great deal of interest 

in the development of new HDACi.  Currently there are at least 16 different HDACi in clinical 

trials, which are being tested both as mono-therapies as well as in conjunction with other 

approved chemotherapeutics (Bolden et al., 2006; Glaser, 2007; Xu et al., 2007; Carew et al., 

2008; Ma et al., 2009).  Four representative HDACi, TSA, apicidin, MS-275, and MGCD0103 

are discussed in greater detail below (Table 1.3). 

 TSA (Figure 1.1 A) is a pan specific HDACi acting on all class I and II HDAC.  It is an 

antifungal derived from Streptomyces hygroscopious (Tsiji et al., 1976; Yoshida et al., 1990) 

and is one of the founding members of the hydroxamic acid class of HDACi.  TSA is very 

similar in structure to Vorinostat (Zolina, SAHA), which is currently in clinical use.  TSA has 

been shown to interact with the zinc ion at the bottom of the HDAC catalytic pocket thereby 

blocking the function of both class I and class II HDAC at nanomolar concentrations (Somoza 

et al., 2004).  It has been shown to inhibit G1 and G2 phases of the cell cycle and was shown to 

not only reduce or prevent tumorgenesis, but also to prevent metastasis (Alienberg and 

Silverman, 2002). TSA has a high level of cellular toxicity and therefore has never entered 

clinical trials (Lin et al., 2006). 

Apicidin (Figure 1.1 B) is a class I specific HDAC inhibitor with high specificity 

towards HDAC 2 and 3 (Witt et al., 2009).  It is a fungal metabolite produced from Fusarium 

species, with a cyclic tetrapeptide structure (Darkin-Rattray et al., 1996).  Apicidin has been  
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Table 1.3 Representative Histone Deacetylase Inhibitors 

 

Drug Class HDACs Affected 

TSA Hydroxamic Acid Class I and II 

Apicidin Cyclic Tetrapeptide HDAC 2 and 3 

MS-275 Synthetic Aminophenyl Benzamide HDAC 1 

MGCD0103 Synthetic Aminophenyl Benzamide HDAC 1 and 2 

(Somoza et al., 2004; Hess-Stump et al., 2007; Zhou et al., 2008;  Witt et al., 2009; Prince et 

al., 2009) 

 

 

shown to have anti-proliferative activity against a broad spectrum of cancerous cell lines, and 

induces apoptosis through a cytochrome c dependent pathway (Kwon et al., 2002).   It has also 

been shown to increase acetylation at H4 as well as inducing cell cycle arrest at the G1 stage of 

the cell cycle (Kwon et al., 2002).  Increased expression of p21
WAF1

, gelsolin, the FAS ligand, 

as well as Bax are seen following apicidin treatment (Kwon et al., 2002).  Activity is seen at 

nanomolar to low micromolar concentrations (Smith and Workman, 2009).  Apicidin has not 

yet entered into clinical trials, and is currently still in the preclinical stage of development 

(Smith and Workman, 2009). 

MS-275 (Entinostat) (Figure 1.1 C) is another class I specific HDACi, and is one of the 

synthetic aminophenyl benzamide inhibitors  (Hess-Stumpp et al., 2007).  MS-275 has been 

shown to have a high affinity specifically towards HDAC1 (Witt et al., 2009).  MS-275 has a 

long retention time within the cell and is able to induce cell cycle arrest at the G1 phase of the 

cell cycle at micromolar concentrations (Saito et al., 1998; Minucci and Pelicci, 2006; Garber, 

2007).  MS-275 also induces apoptosis in a dose-dependent manner through the up regulation 

of p21
WAF1

 and TRAIL receptors (Hess-Stumpp et al., 2007).   MS-275 is currently in phase I 

and II clinical trials and has been reported to inhibit tumor growth by up to seventy percent in 

some cases (Hess-Stumpp et al., 2007).  Originally being tested for acute myeloid leukemia 

treatment, MS-275 is now being tested against a variety of tumor types including prostate,  
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Figure 1.1: Chemical structure of histone deacetylase inhibitors. Structures of (A) Trichostatin 

A, a pan specific inhibitor belonging to the hydroxamic acid class (B) apicidin an HDAC 2 and 

3 inhibitor in the cyclic tetrapeptide class (C) MS-275 a HDAC 1 inhibitor in the synthetic 

inhibitor class and (D) MGCD0103 a synthetic histone deacetylase inhibitor targeting HDAC 1 

and 2.  
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breast, colon, solid pediatric tumors, and refractory and relapsed Hodgkin’s lymphoma (Hess-

Stumpp et al., 2007; Sabnis et al., 2011).   

 MGCD0103 (Mocetinostat) is a synthetic aminophenyl benzamide inhibitor (Figure 1.1 

D).  It is a class one specific inhibitor with a high affinity for HDAC 1 and HDAC 2 (Prince et 

al., 2009; Zhou et al., 2008).  MGCD0103 has been shown to not only induce expression of 

p21
WAF1

 as is commonly seen with HDACi, but induces histone hyper-acetylation as well as 

cell cycle arrest, all in a dose dependent manner (Fournel et al., 2008; Zhou et al., 2008).  

MGCD0103 is currently in phase II clinical trials for a variety of hematological malignancies 

including relapsed cases of Hodgkin’s lymphoma (Zhou et al., 2008; Younes et al., 2011). The 

most common side effect reported requiring discontinuation of therapy is neutropenia (Younes 

et al., 2011).   

 

1.2.1.3.2 Histone Deacetylase Inhibitors and their Relationship to Protein Phosphatases 

 A review of the literature provides abundant evidence that HDACs are commonly 

found as part of protein complexes (Minucci and Pelicci, 2006).  Research has revealed that 

these complexes often include various protein phosphatases (PP)  (Galasinski et al., 2002; 

Brush et al., 2004; Gregoretti et al., 2004; Chen et al., 2005; Gou et al., 2007).  The association 

between HDAC and PP has been suggested by some as a method to coordinate the activity of 

the two enzymes to a common substrate (Brush et al., 2004).  As such, an understanding of the 

major PP involved in these complexes is necessary as this could provide clues to the possible 

targets.  

PP are classified according to their target residue, either a tyrosine or serine/threonine 

phosphatase (Shi, 2009).  Serine/threonine phosphatases are further subdivided into three 

different classes, the phosphoprotein phosphatases (PPP), metal-dependent protein 

phosphatases (PPM), and aspartate based phosphatases (PPA) with the major PP members of 

the PPP family.  The family of PPP consists of protein phosphatases PP1, PP2A, PP2B, PP4, 

PP5, PP6, and PP7 (Shi, 2009).  PP1 and PP2A play major roles in the regulation of cellular 

function.  

Protein phosphatase 1 is ubiquitously expressed throughout the cell and has been shown 

to be involved in a wide variety of cellular processes including meiosis, cell division, apoptosis, 



14 
 

protein synthesis, cell metabolism, cytoskeleton reorganization, and the regulation of 

membrane channels and receptors (Cohen, 2002; Ceulemans and Bollen, 2004; Bollen et al., 

2010; Fardilha et al., 2010).  An active enzyme consists of the catalytic subunit bound to one of 

more than one hundred regulatory subunits which have been identified (Cohen, 2002; Bollen et 

al., 2010).  The regulatory subunit targets the catalytic unit of PP1 to a specific sub cellular 

compartment, as well as modulating substrate specificity (Shi, 2009).  

Protein phosphatase 2A has been shown to play an important role in cell development, 

proliferation, cell death, cell mobility, cytoskeleton dynamics, and control of the cell cycle 

(Janssens and Goris, 2001; Martin et al., 2010).  PP2A is found in high quantities in the cell, 

accounting for one percent of total cellular proteins (Shi, 2009).  The structure of PP2A is more 

complex than that of PP1, containing a catalytic core as well as a scaffold subunit (Shi, 2009; 

Martin et al., 2010).  Both the scaffold and catalytic subunits have 2 different isoforms, alpha 

and beta.  The scaffold subunit consists of 15 tandem Huntingtin Elongation Factor 3 Protein 

Phosphatase 2A (HEAT) repeats, creating a horseshoe like shape and allowing for recognition 

of the catalytic subunit (Groves et al., 1999; Martin et al., 2010).  Like PP1, the PP2A catalytic 

subunit interacts with various different regulatory subunits found within the cell.  

Protein phosphatases have widespread effects within the cell, affecting many cellular 

processes. Many PP preferentially target nuclear proteins which is not surprising as 

phosphorylation is thought of as the dominant method of regulation within the nucleus 

(Moorhead et al., 2007).  RNA interference and PP inhibitor studies have revealed that PP play 

a role in many nuclear processes including DNA replication, DNA repair, chromosome 

condensation, ribosome biogenesis, chromatin remodelling, as well as affecting various signal 

transduction pathways (Bollen and Beullens, 2002; Shi et al., 2006; Moorhead et al., 2007).  

For example, PP control the level of chromatin condensation by modifying the serine 10 and 28 

residues on histone 3 (H3Ser10 and H3Ser28) (Gurley et al., 1978; Goto et al., 1999; Kinney et 

al., 2008).  The H3Ser10 modification has been shown to be important not only in cell division 

(chromatin condensation), but also in gene transcription (chromatin de-condensation) (Prigent 

and Dimitrov 2003).  H3Ser10 phosphorylation status only affects a subset of genes in the 

immediate vicinity of H3, and has also been shown to be highly dependent on additional 

modifications in the surrounding area (Prigent and Dimitrov 2003).  For example, when Lysine 

9 is not methylated there is an increase in H3Ser10 phosphorylation, but when Lysine 9 
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becomes di-methylated H3Ser10 phosphorylation decreases (Rea et al., 2000).  Genes shown to 

be regulated by H3Ser10 phosphorylation include c-fos and c-jun, both of which are early 

response genes involved in responding to stimuli from cytokines, growth factors, stress, as well 

as bacterial or viral infections  (Barratt et al., 1994; Johansen and Johansen, 2006).   

In addition to PP playing an important in role in chromatin condensation and gene 

expression, they have also been shown to be involved in various protein complexes. Brush and 

colleagues have shown that PP1 is readily found in complex with HATs, CREB-binding 

protein, and HDAC1 and HDAC2 (Brush et al., 2004).  Complexes may also form between the 

CREB-binding protein, PP2A and PP4, as both have been found to immunoprecipite with 

HATs (Canettieri et al., 2003; Brush et al., 2004).   Complexes have also been found to occur 

directly between HDAC6 and PP1 during the regulation of microtubule function (Liao et al., 

1998; Bollen et al., 2010; Brush et al., 2004).  When the function of HDAC6 is disrupted by 

pharmacological inhibitors or mutagenesis it leads to a disruption of the complex (Brush et al., 

2004).  For example, TSA disrupts the HDAC6:PP1 complex leading to the release of an active 

PP1, which then associates with the Akt protein (Chen et al., 2005).   This finding suggests that 

HDACi are not only able to disrupt PP complexes but also lead to the release of a free PP 

which affects cellular function.   

Akt is a serine/threonine protein kinase which plays multiple regulatory roles in the cell 

including processes such as glucose metabolism, cell proliferation, and apoptosis (Brodeur, 

2010).   Akt is activated through the phosphoinositide 3’ kinase signaling pathway, which leads 

to phosphorylation of Akt at Ser 473 and Thr 308.  These two modifications are necessary for 

the full activation of the Akt protein (Duronio, 2008; Woodgett, 2005; Brodeur, 2010).   Akt 

has been shown to be activated in a wide variety of cancerous cells (Woodgett, 2005; Brodeur, 

2010).  The increased activation allows substrates such as Bad and Foxo, both pro apoptotic 

proteins to be phosphorylated and inactivated. This is one method by which cancer cells can 

avoid cell arrest and apoptosis (Woodgett, 2005; Brodeur, 2010).  Therefore the HDACi 

mediated disruption of complexes, such as the HDAC6:PP1 complex described above provides 

a possible mechanism to remove the block on apoptosis that is commonly seen in cancerous 

cells.  Similar effects could occur with cellular regulators other than Akt, further adding to the 

complexity of the HDACi (Duronio, 2008).  
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1.3 Regulation of Eukaryotic Transcription 

 The progression of gene transcription is a complex and highly regulated process.  

Transcription is generally broken down into four different phases; the pre-initiation complex, 

initiation, elongation and finally termination (Table 1.4 Figure 1.2).  This process begins with 

the ordered binding of various factors to a core promoter and ultimately leads to the production 

of a mature messenger RNA (mRNA).  Due to the importance of this process in the overall 

function of the cell, many regulatory points are incorporated into the process to ensure it occurs 

without error.  The steps involved in the production and maturation of mRNA are examined in 

the following sections. 

 The first step of transcription involves the recruitment and assembly of the pre-initiation 

complex (PIC) to the core promoter element of a gene.  Prior to the PIC assembly, chromatin 

remodeling must occur for the core promoter to be accessible to the PIC.  The PIC is composed 

of six general transcription factors, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, as well as 

RNA Polymerase II (RNA Pol II) (Boeger et al., 2005; Guermah et al., 2009).  A second 

complex, known as mediator, is also required and functions as an RNA Pol II activator 

(Szutorisz et al., 2005; Conaway et al., 2011).  The mediator complex communicates regulatory 

signals from enhancers and proximal promoter elements to the PIC, allowing the rate of RNA 

Pol II mediated transcription to be increased or decreased (Kornberg, 2005; Conaway et al., 

2011).  Currently there are two different models to describe how the PIC is assembled, the 

preassembly and the sequential assembly model.  The preassembly model proposes that TFIID 

and TFIIA are normally associated with the core promoter elements, and when transcription is 

required, a large complex containing RNA Pol II, TFIIB, TFIIE, TFIIF, and TFIIH is recruited 

by TF11D/TF11A positioning the PIC at the core promoter (Ossipow et al., 1995; Lemon and 

Tjian, 2000; Bing et al., 2007).   

The sequential assembly model proposes that the general transcription factors are all 

recruited to the core promoter element in a specific manner (Lemon and Tjian 2000); for 

example TFIID binds to the TATA box/Inr element, and only once it has bound will the 

recruitment of the other general transcription factors occur.  The order of recruitment is 

proposed to be: TFIIA, TFIIB, RNA Pol II/TFIIF, TFIIE and TFIIH and only when all 

components are present will transcription begin (Lemon and Tjian 2000).   Although neither 

model has been proven or disproven, the sequential model has gathered the most support and is 
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Figure 1.2: Phases of Eukaryotic Transcription. The pre-initiation complex assembles on a core 

promoter element and moves into productive elongation. Moving away from the core promoter, 

the elongating complex is stabilized by factors such as DSIF when present in a phosphorylated 

form.  When a poly-adenylation signal is reached the Pcf11 protein binds and tethers the Poly 

A machinery to the transcription complex. The synthesis of the Poly A signal is thought to lead 

to the dissociation of positive elongation factors subsequently leading to the release of RNA 

Pol II and transcription termination occurs.  
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the favored theory at the current time.  

 Although the exact method of PIC assembly is not fully understood, TFIID is the 

general transcription factor responsible for the actual binding to the core promoter.  TFIID is a 

large transcription factor, containing multiple subunits and is composed of a TATA binding 

protein as well as 13 TATA binding protein associated factors (Thomas and Chiang, 2006; 

Papai et al., 2011).  The subunit which contains the TATA binding protein recognizes and 

directly interacts with TATA boxes found in core promoters (Woychik and Hampsey, 2002; 

Papai et al., 2011).   If a promoter lacks a TATA box, the TATA binding protein associated 

factors 1 and 2 function in the identification of Initiator (Inr) elements, while TATA binding 

protein associated factors 6 through 9 recognize downstream promoter elements (Chalkley and 

Verrijzer, 1999; Papai  et al., 2011).  

TATA binding protein associated factor 1 (TAF1) has been shown to be a crucial part 

of the TFIID complex, responsible for binding the core promoter element, but also functioning 

as a co-activator of transcription (Thomas and Chiang, 2006).  TAF1 is capable of interacting 

with activator proteins including jun, Rb, MDM2, cyclin D, as well as other general 

transcription factors such as TFIIA, TFIIE, and TFIIF (Wassarman and Sauer, 2001).  TAF1 

also contains two bromodomains which are used to bind to acetylated H3K14, H4K16, H4K12, 

and H4K8 (Wasarman and Sauer, 2001).  Through all of the above interactions, TAF1 can 

modify histones as well as link the RNA Pol II complex to the core promoter by interacting 

with its component proteins. 

 TFIIB has also been shown to be an essential component of the PIC.  The C terminal of 

TFIIB interacts with sequences both up- and down-stream of the TATA box (Woychik and 

Hampsey, 2002; Deng et al., 2007).  This interaction stabilizes the interaction with the TATA 

box as well as creates a binding site within the N-terminal zinc binding domain of TFIIB, for 

RNA Pol II (Bushnell et al., 2004; Deng et al., 2007).  TFIIB is also involved in RNA Pol II’s 

identification of the transcription start site and entry of downstream DNA into the catalytic site 

(Thomas and Chiang, 2006; Deng et al., 2007).  The other general transcription factors 

involved in the PIC each play a distinct role.  TFIIF functions in the recruitment of RNA Pol II 

to complexes already containing the TFIIB transcription factor, as well as interacting with 

DNA sequences on both sides of a TATA box, thereby aiding in the stabilization of the 

complex (Woychick and Hampsey, 2002; Bernecky et al., 2011).  TFIIE interacts with the 
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promoter, TFIIB, RNA Pol II as well as TFIIF, and functions to recruit TFIIH to the PIC 

(Thomas and Chiang, 2006).  TFIIH is the largest general transcription factor, being comprised 

of ten different subunits which include the XBP and XPD subunits.  These subunits act as 

ATPase DNA helicases (Svejstrup et al., 1996; Conaway et al., 2000).  This helicase activity is 

required for the unwinding of DNA 11-15 base pairs at a time around the transcription start 

site, and allows for the formation of an open complex (Svejstrup et al., 1996; Saunders et al., 

2006).  The single stranded DNA in the open complex then enters the active site of RNA Pol II 

while the second non-template strand is bound by TFIIF (Bushnell et al., 2004).   

 In order for transcription to continue, the PIC must leave the initiation phase in the 

promoter region, and move downstream to function in elongation.  As previous stated, after the 

assembly of the PIC, TFIIH activity unwinds the double stranded DNA allowing a single 

stranded template to enter the active site of RNA Pol II (Saunders et al., 2006; Nechaev et al., 

2011).  The entry of the single stranded template is one of many factors that converts the PIC 

into a complex capable of transcription.  For transcription to occur, RNA Pol II must move 

away from the core promoter and move further downstream.  Whether or not RNA Pol II is 

able to escape the promoter region is dependent on the general transcription factor TFIIB.  In 

the early elongating complex the short transcripts that are produced are stabilized by interaction 

of TFIIB with the active site of RNA Pol II.   This interaction occurs through the RNA Pol II 

exit channel.  Therefore, for continued RNA synthesis to occur TFIIB must be forced out of the 

exit channel allowing the RNA transcript to leave the active site of RNA Pol II (Bushnell et al., 

2004; Nechaev et al., 2011).  If the transcript is unable to force TFIIB from the exit channel, 

transcription will be aborted and a new round of transcription initiation will occur.  If the 

transcript is able to force TFIIB from the exit channel transcription will continue allowing the 

RNA Pol II complex to escape the promoter, and conversion to an elongating complex can 

occur (Bushnell et al., 2004; Nechaev et al., 2011).  It is not until a PIC has escaped the 

promoter that a second PIC can be generated at the promoter (Sims et al., 2004; Nechaev et al., 

2011).   

 The phosphorylation state of RNA Pol IIs carboxyl-terminal domain (CTD) plays a 

major role in determining the phase of transcription (Saunders et al., 2006; Nechaev et al., 

2011).  Phosphorylation of serine 5 of the CTD by the cyclin dependent kinase 7 subunit of 

TFIIH is associated with transcription initiation and the presence of RNA Pol II at a promoter 
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(Conaway et al., 2000; Svejstrup, 2004; Phatnani and Greenleaf, 2006; Nechaev et al., 2011).  

Therefore, this modification is found at high levels at the 5’ end of genes.  In contrast to serine 

5, serine 2 CTD phosphorylation is found at high levels in the 3’ regions of genes and has been 

shown to be associated with productive elongation (Svejstrup, 2004; Phatnani and Greenleaf, 

2006).  Serine 2 is phosphorylated by positive transcription factor b (P-TEFb).  P-TEFb is a 

protein complex containing cyclin dependent kinase 9 (CDK9) as well as cyclin T (Peng et al., 

1998; Peterlin and Price, 2006; Zhou and Yik, 2006).  These different residues are thought to 

mediate protein complex interactions with RNA Pol II at the different stages of transcription 

(Svejstrup, 2004; Buratowski, 2009).  Serine 5 phosphorylation has been shown to recruit 

capping enzymes such as guanylyltransferase, while serine 2 phosphorylation is involved in 

recruiting polyadenylation factors (Ahn et al., 2004).  

The early elongating complex is very unstable until the first 30 nucleotides have been 

synthesized, and is prone to pausing or arrest (Saunders et al., 2006; Nechaev et al., 2011). 

Therefore, whether or not the early elongating complex continues into productive elongation is 

dependent on various elongation factors preventing a pause or arrest.  Stabilization of the 

complex is reliant on the elongation factors 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole 

(DRB) sensitivity inducing factor (DSIF) (Sims et al., 2004; Nechaev et al., 2011).  Through 

the interaction of DSIF with the negative elongation factor (NELF) an early pause occurs 

between the + 20 and +100 range, allowing for capping of the emerging RNA.  This early 

pause also acts as a checkpoint for the complex before it enters into productive elongation 

(Yamaguchi et al., 1999; Sims et al., 2004; Saunders et al., 2006; Nechaev et al., 2011).  To 

release the elongating complex from this check point, both NELF and DSIF become 

phosphorylated by P-TEFb.  The phosphorylation of NELF leads to its dissociation from DSIF 

and the elongating complex, which removes the inhibition. The phosphorylation of DSIF 

allows it to act as a positive elongation factor promoting productive elongation (Sims et al., 

2004; Nechaev et al., 2011).  P-TEFb has also been shown to phosphorylate the serine 2 

residue of RNA Pol IIs CTD domain, increasing the stability of the elongation complex (Hirose 

and Manley, 2000; Sims et al., 2004; Zhuoyu et al., 2008; Brookes et al., 2009).  An additional 

elongation factor, TFIIS, promotes productive elongation by realigning the active site of RNA 

Pol II with the correct 3’OH of the RNA transcript (Sims et al., 2004; Nechaev et al., 2011).   

The rate of productive elongation is controlled by many factors including TFIIS, TFIIF, as well 
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as proteins belonging to the eleven-nineteen lysine-rich in leukemia (ELL) and elongin families 

(Shilatifard et al., 2003; Nechaev et al., 2011).  In addition, through interaction with the H2A-

H2B dimers creating nucleosomal destabilization, FACT (facilitates chromatin transcription) 

facilitates RNA Pol II movement through chromatin, thereby allowing productive elongation to 

progress (Reinberg and Sins, 2006).  

 When RNA Pol II reaches the end of the DNA template transcription termination must 

occur.  Unlike transcription initiation, termination is not due to a precise consensus sequence, 

but is associated with the polyadenylation of the produced mRNA (Gromak et al., 2006).  As 

previously stated, the different modifications to the CTD domain of RNA Pol II, in different 

locations along the gene, allows for the recruitment of various protein complexes.  

Phosphorylation of serine 2 on the CTD domain of RNA Pol II allows a key polyadenylation 

factor, Pcf11, to bind and tether the rest of the polyA machinery (Buratowski, 2009).  Therefore 

the presence of serine 2 phosphorylation near the 3’ region of the gene is key for transcription 

termination.  

 Two different models have been proposed to explain the relationship between the 

synthesis of the poly-adenylation signal and transcription termination. The anti-terminator 

model explains this relationship through the synthesis of the polyadenylation signal leading to a 

change in RNA Pol II associated factors, and the dissociation of positive elongation factors 

(Proudfoot et al., 2002; Tollervey, 2004; Grohmann et al., 2010). This change effectively stops 

the activity of RNA Pol II leading to its release.  The second proposed model, the torpedo 

model, suggests that the cleavage of the mRNA leads to the production of a new uncapped 

RNA.  The degradation of this new RNA by various exonucleases leads to RNA Pol II 

dissociation (Proudfoot et al., 2002; Kim et al., 2004; Tollervey, 2004).  

 

1.3.1 Importance of Promoter Proximal Pausing 

 As previously described, gene transcription occurs in various phases, assembly of the 

PIC, initiation, elongation, and termination.  The recruitment and formation of the PIC is 

traditionally thought of as the rate limiting step of transcription, and therefore determines the 

level of gene expression (Fujita and Schlegel, 2010).  Recently, this assumption has been called 

into question, as genome wide studies have shown that regardless of the activation state of a 
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gene, the PIC as well as RNA Pol II are present on the core promoter, suggesting that PIC 

formation is not the rate limiting step (Kim et al., 2005; Guenther et al., 2007; Brookes et al., 

2009). 

A second proposed mechanism to control the rate of transcription, promoter proximal 

pausing, has been described (Brookes et al., 2009).  Promoter proximal pausing has been 

defined as a state where RNA Pol II is transcriptionally active, but becomes stalled by negative 

elongation factors (Brookes et al., 2009).  Promoter proximal pausing has been described at 

multiple genes including Hsp70 and c-Myc (Krumm et al., 1995; Core and Lis, 2008).  At the 

c-Myc gene, transcript levels have been shown to decrease despite an unchanged level of 

transcriptional initiation (Krumm et al., 1995).  Originally it was thought that promoter 

proximal pausing only occurred at rapidly induced genes such as c-Myc, c-Fos, Jun-B, as well 

as estrogen receptor target genes which are induced by external stimuli (Krumm et al., 1995; 

Uptain et al., 1997; Orphanides and Reinberg, 2002; Kinnis et al., 2009).  These rapidly 

induced genes were found to be held in a paused state, allowing for rapid induction of 

expression (Fujita and Schlegel, 2010).  Due to the small number of genes originally found to 

be regulated in this manner, it was thought that a specific DNA sequence, such as a stem-loop 

close to a poly-U rich region, was responsible for initiating the promoter proximal pausing; a 

system very similar to that seen in prokaryotes (Bentley and Groudine, 1988).  It is now 

thought, that like control over transcriptional initiation, promoter proximal pausing is regulated 

by the binding of specific transcription factors (Fujita and Schlegel, 2010).  

 It is important to note that promoter proximal pausing is distinct from transcriptional 

arrest.  In transcriptional arrest there is a decrease in RNA Pol II occupancy and short 

transcripts are recycled.  In promoter proximal pausing, RNA Pol II remains bound to the 

promoter region poised to resume transcription, but is undetectable farther downstream 

(Adelman et al., 2009; Fujita and Schlegel, 2010).  The transcripts produced during promoter 

proximal pausing are not recycled, but elongated when transcription re-commences.  The 

elongation of the previously started transcripts supports the idea that initiation of RNA Pol II 

has occurred, but that it is unable to transcribe the full gene (Fujita and Schlegel, 2010).  

In the search to determine the mechanism behind RNA Pol II switching from an active 

transcribing state to a paused state several negative elongation factors were identified (Gilmour, 

2009).  Among these DSIF and NELF appear particularly important with respect to promoter 
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proximal pausing.  Two proteins make up the DSIF complex, Spt4 and Spt5 (Zhu et al., 2007).  

DSIF has been shown to exert both negative and positive effects on elongation due to Spt5 

directly binding to RNA Pol II (Hartzog et al., 1998; Wada et al., 1998; Yamaguchi et al., 

1999).  When both DSIF and NELF are present, DSIF acts in a negative manner leading to 

promoter proximal pausing.  In the absence of NELF, DSIF acts in a positive manner on RNA 

Pol II (Zhu et al., 2007).  It is thought that the phosphorylation status of the C-terminal repeat 

domain of Spt5 determines whether DSIF acts in a positive or negative manner (Andrulis et al., 

2000; Invanov et al., 2000; Mason and Struhl, 2005; Aida et al., 2006; Yamada et al., 2006).  

DSIF has also been shown to associate with a number of other transcription regulatory factors 

such as TFIIF, TFIIS, and FACT suggesting it may play a role in other steps of transcription as 

well (Andrulis et al., 2002; Pei and Shuman, 2002; Lindstrom et al., 2003; Mandal  et al., 

2004). 

Like DSIF, NELF is also a protein complex consisting of four different subunits: A, B, 

C/D, and E (Fujita and Schlegel, 2010).  The NELF-C and NELF-D subunits are produced from 

the same mRNA but use different transcription start sites and therefore are redundant in 

function (Narita et al., 2003; Gilchist et al., 2008).   Mutational studies have suggested that the 

E subunit of NELF also interacts with the nascent RNA, creating a rigid body that restricts the 

movement of RNA Pol II, leading to the paused state (Fujita and Schlegel, 2010). The NELF 

complex has been shown to be capable of stalling RNA Pol II only when it is associated with 

the DSIF complex (Fujita and Schlegel, 2010).  When NELF and DSIF are together, RNA Pol 

II pauses between the +20 to +100 nucleotide range (Yamaguchi et al., 1999; Sims et al., 2004; 

Saunders et al., 2006; Nechaev et al., 2011).  This suggests that DSIF, NELF and RNA Pol II 

associate upstream of the promoter.     

Reverting RNA Pol II from a paused to active state requires phosphorylation. P-TEFb 

interacts with proteins which are key in promoter proximal pausing and, therefore, it may be 

involved in re-activating RNA Pol II.  In support of the involvement of P-TEFb, 

phosphorylation of DSIF has been shown in yeast to not only eliminate its negative function 

and relieve its inhibitory effect on RNA Pol II, but also to convert DSIF into an activating 

elongation factor (Wade et al., 1998; Ivanov et al., 2000).  The phosphorylation of NELF by P-

TEFb has also been shown to support the continuation of productive elongation by causing a 

complete dissociation from the proximal promoter region (Adelman et al., 2009). Binding to 
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DSIF and RNA Pol II only occurs when NELF is in the un-phosphorylated form (Adelman et 

al., 2009).  The current model by which RNA Pol II is released from its paused state is 

therefore thought to involve the recruitment of P-TEFb to the RNA Pol II complex, where it 

phosphorylates both DSIF and NELF, leading to a functional change of DSIF and the 

detachment of NELF (Fujita and Schlegel, 2010) (Figure 1.3). 

Many other factors have been suggested to play a role in releasing RNA Pol II from a 

paused state.  For example the transcription factor TFIIS has been shown to be recruited to the 

phosphorylated DSIF/NELF complex (Palangat et al., 2005; Fujita and Schlegel, 2010).  Once 

recruited, TFIIS promotes cleavage of any inverted transcripts produced from RNA Pol II 

backtracking while in a paused state.  The cleavage of the transcripts promotes productive 

elongation (Wind and Reines, 2000; Cheung et al., 2011).  Other factors such as FACT, and 

heat shock genes, have been shown to also play a role in releasing RNA Pol II in Drosophila 

(Kaplan et al., 2000; Saunders et al., 2003; Ni et al., 2008).   Data in Drosophila has also 

indicated that genes which exhibit promoter proximal pausing may contain common elements 

such as Initiator element (Inr), downstream promoter element (DPE) recognized by TFIIB, as 

well as a GAGA factor binding sequence (Hendrix et al., 2008; Lee et al, 2008).  

   Contrary to the data in Drosophila, it has been suggested that all genes may in fact 

undergo promoter proximal pausing.  This state may function as a check point in early 

transcription and may be a necessary step (Core and Lis, 2008).  Genome wide studies support 

this idea and have shown that there is a high occupancy of RNA Pol II on the 5’ end of 

mammalian and Drosophila genes (Kim et al., 2005; Guenther et al., 2007; Muse et al., 2007; 

Zeitlinger et al., 2007).   In a developmental sense, promoter proximal pausing would facilitate 

RNA Pol II switching from a poised to an active state very rapidly, and would allow rapid onset 

of gene expression (Price, 2008).  It has also been suggested that promoter proximal pausing 

may facilitate the assembly of RNA-processing factors and allow the coupling of transcription 

and mRNA processing (Glover-Cutter et al., 2008; Moore and Proudfoot, 2009).  In support of 

this, DSIF and the phosphorylated serine 5 residue in the CTD of RNA Pol II, both bind to 

mRNA capping enzymes to stimulate the capping of mRNA (McCracken et al., 1997; Mandal 

et al., 2004; Ghosh, et al., 2011).   The phosphorylated serine 2 residue on the CTD of RNA  
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Figure 1.3: Proposed mechanism for promoter proximal pausing. DSIF and NELF complexes 

bind to RNA Pol II creating a paused state, preventing productive elongation.  When active P-

TEFb phosphorylates both NELF and DSIF, NELF dissociates from RN Pol II and DSIF acts in 

a positive manner on RNA Pol II allowing productive elongation to occur. Adapted from 

Yamaguchi et al., 1999. 
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Pol II has also been shown to lead to the recruitment of splicing factor as well as 3’ end 

processing factors (Komarnitsky et al., 2000; Ahn et al., 2004; Egloff et al., 2008).   Promoter 

proximal pausing has also been suggested to be a mechanism to obtain transcripts from bi-

directional promoters, as the paused RNA Pol II has been shown to backtrack and produced 

inverted transcripts (Core and Lis, 2008; Seila et al., 2008).  The current accepted marker for 

promoter proximal pausing is the presence of a high  level of serine 5 phosphorylation (RNA 

Pol II initiation), in conjunction with low serine 2 phosphorylation (productive elongation) 

(Adelman et al., 2009).    

 

1.4 SRC 

SRC encodes the protein c-Src, a 60 kDa non-receptor tyrosine kinase and is the 

founding member of the SRC kinase (SFK) proteins. It is a homologue of the v-src gene from 

the Rous Sarcoma Virus (Rous, 1911).  Other members of the SFK include c-YES, FYN, LYN, 

LCK, HCK, FGR, and BLK (Thomas and Brugge, 1997; Ingley, 2008; Aleshin et al., 2010).  

Proteins in this family range in size from 52-62 kDa, and contain six conserved domains, the N-

terminal SRC homology 4 (SH4) domain, the SRC homology 3 (SH3) domain, SRC homology 

2 (SH2) domain, SRC homology 1 (SH1) or kinase domain, a unique domain, and a C terminal 

regulatory domain (Boggon and Eck, 2004; Ingley, 2008; Aleshin et al., 2010).  The SH4 

domain includes fourteen amino acids and is the location of a myristic or palmitic acid co-

translational modification which facilitates SFK localization to the plasma membrane (Biscardi 

et al., 1999).  Both the fifty amino acid SH2, and one hundred amino acid SH3 domains allow 

for various protein-protein interactions, through the pY and P-X-X-P consensus sequences 

respectively (Thomas and Bruge, 1997; Alvarez et al., 2006; Ingley, 2008).  The SH1 domain is 

a highly conserved two hundred and fifty amino acid catalytic domain (Brown and Cooper, 

1996; Ingley, 2008).  The unique domain contains 40-70 amino acids depending on the protein 

in question, and acts to mediate protein-protein interactions between members of the SFK 

family (Brown and Cooper, 1996; Ingley, 2008).  The C terminal regulatory domain contains 

an auto-regulatory inhibitory phosphorylation site, which allows for negative regulation of the 

SFK family members (Boggon and Eck, 2004; Ingley, 2008).  
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Activity of the SFK family members is determined by the level of phosphorylation as 

well as by intramolecular interactions (Frame, 2002; Ingley, 2008).  The c-Src protein is 

inactivated following the addition of a phosphate group on Y527, promoting intramolecular 

interactions between the pY527 and the SH2 domain.  This also positions a stretch of the c-Src 

protein containing proline rich sequences to bind to the SH3 domain, which leads to a closed, 

inactive, conformation of the protein (Okada and Nakagawa, 1989; Ayrapetov, 2006).  To 

convert c-Src to an open and active conformation Y527 is dephosphorylated by various 

phosphatases such as protein tyrosine phosphatase 1B (Bjorge et al., 2000; Roskoski, 2005). 

This dephosphorylation event disrupts the binding between Y527 and the SH2 domain. The 

resultant conformational change prevents binding to the SH3 domain, creating an open and 

active c-Src protein (Bjorge et al., 2000; Roskoski, 2005).  

c-Src plays an important role in many cell signaling pathways.  It has been shown to 

simultaneously activate various pathways that are involved in the cell cycle as well as 

cytoskeleton organization (Malek et al., 2002; Kim et al., 2009).  c-Src has also been linked to 

the development of many cancers (Malek et al., 2002; Kim et al., 2009).  Over-expression or 

increased activity of c-Src has been linked to cellular transformation, tumor progression and 

metastasis (Biscardi et al., 1999; Kim et al., 2009).  High kinase activity has been reported in 

various forms of cancer such as colon, breast, as well as occasionally in cancers of the 

pancreas, lung, brain, ovary, and bladder (Summy and Gallick, 2003; Zhang et al., 2009).   

 

1.4.1 SRC Gene Regulation 

SRC is located on chromosome 20q12.3 and contains 14 exons (Figure 1.4).  Exon 1A, 

1α, 1B, and 1C code for the 5’ region of c-Src mRNA, while exons 2-12 code for the c-Src 

protein and the 3’ regions.  SRC expression is regulated by two promoters, SRC1α and SRC1A, 

which are separated by 1 kb (Dehm et al., 2004).  Both promoters produce transcripts which are 

spliced onto the 1B exon and, therefore, produce almost identical transcripts which will only 

vary in their extreme 5’ ends (Figure 1.4).  SRC1A is a housekeeping like promoter with high 
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Figure 1.4: The SRC gene. SRC expression is regulated by two distinct promoters, SRC1α and 

SRC1A. The SRC1α promoter is dependent on HNF-1 factor for transcription while the 

SRC1A promoter is regulated by the Sp family of transcription factors. Identical transcripts are 

produced from each promoter varying only at the extreme 5’ region. (Bonham and Fujita, 1997, 

Bonham et al., 2000, Ritchie et al., 2000 and Dehm et al., 2004) 
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GC content and is regulated by the Sp family of transcription factors (Dehm et al., 2004).  The 

SRC1 promoter is more tissue specific and is expressed primarily in the stomach, prostate, 

liver, kidney, and pancreas (Bonham et al., 2000).  SRC1α is regulated by Hepatocyte Nuclear 

Factor-1 (HNF-1) (Dehm et al., 2004).  Although very different, both promoters utilize an 

Initiator element (Inr) and lack a TATA box (Dehm et al., 2004).  Both the SRC1α and SRC1A 

promoters have been shown to be directly repressed by various HDACi (Kostyniuk et al., 

2002). 

 

1.4.2 SRC and Cancer  

The best example of c-Src over expression in cancer is in cancers of the colon and 

breast.  Approximately 80% of all colorectal cancers show increased c-Src expression (Lieu 

and Kopetz, 2010) with up to 40-fold increases in c-Src activity observed (Rosen et al., 1986).  

c-Src activity has been shown to be an independent indicator for poor clinical prognosis in 

patients with colon cancer (Lieu and Lopetz, 2010).  This correlation is due to the fact that c-

Src over expression in colon cancers influences cell mobility and the spread of cells across the 

basement membrane (Brunton et al., 1997; Jones et al., 2002).   

c-Src expression has also been found to be increased in various cancers of the breast 

with levels ranging from 4 to 30 fold above that seen in normal breast tissue (Verbeek et al.,  

1996).  c-Src expression in breast cancer has also been shown to positively correlate with 

lymph node metastasis, disease recurrence and poor disease-free survival (Fleming et al., 2004; 

Myers et al., 2004).   In addition, the level of c-Src expression has consistently been shown to 

be a predictor of breast cancer recurrence following treatment (Redmond et al., 2009).  Like in 

colon cancer, c-Src expression has been related to the rate of growth and invasion (Xu et al., 

2009).  The level of c-Src expression has also been shown to relate to the level of expression of 

estrogen responsive genes (Tai et al., 2000).  

Based upon the important role c-Src appears to play in various cancers, as well as 

results from antisense and inhibitor experiments showing a decrease in c-Src activity leads to 

decreased tumor growth, it has been suggested that c-Src represents a  therapeutic target (Staley 

et al., 1997; Homsi et al., 2009; Purnell et al., 2009; Zhang et al., 2009).  SRC expression is 

directly repressed by HDACi treatments (Kostyniuk et al., 2002) suggesting that HDACi may 
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provide an effective treatment for cancers over expressing SRC.   Using a semi-quantitative 

ChIP approach, HDACi treatment was found to increase acetylation at both of the SRC 

promoters despite overall SRC expression decreasing (Ellis, 2007).  RNA Pol II was also lost 

from the 3’ region of the SRC gene while it remained  at the SRC promoters, suggesting that a 

block in productive elongation may be the mechanism of the repression seen following HDACi 

treatment (Ellis, 2007).   Further support for a mechanism of this variety is provided by the 

finding of the lysine 4 residue on histone 3 trimethylation (H3K4Me3), a marker for 

transcriptional activation, remains unaffected by HDACi treatment. In contrast, lysine 36 on 

histone 3 trimethylation (H3K36Me3), a marker for transcriptional elongation, is rapidly lost in 

the 3’ region of the SRC gene following HDACi treatment (Ellis, 2007).  Previous semi-

quantitative work in the Bonham lab has shown that short SRC transcripts, of 100 nucleotides 

in length are also unaffected by HDACi treatments (Bonham, personal communication).  This 

suggests that full length transcripts are rapidly down regulated by HDACi, but the production 

of short transcripts from the SRC promoters is unaffected.  This again further supports the idea 

that there may be a block in productive elongation occurring following HDACi treatment.  

 

1.5 BCL2L1 

Bcl-xL is an anti-apoptotic protein belonging to the B cell lymphoma 2 (Bcl-2) family of 

proteins, which has also been reported to be down regulated following HDACi treatment 

(Adams and Cory, 1998; Zhou et al., 2010).  At least fifteen different family members have 

been identified in mammalian cells (Chao and Korsmeyer, 1998; Zhou et al., 2010).  Members 

of this family possess at least one of four conserved domains known as the Bcl-2 homology 

domain (BH) 1 through 4 (Adams and Cory, 1998; Zhou et al., 2010).  Anti-apoptotic members 

of the family contain BH1 and BH2 domains, while pro-apoptotic family members may or may 

not contain these domains (Adams and Cory, 1998; Zhou et al., 2010).  Pro-apoptotic members 

are broken down into two different sub-groups, the MTD and BH3 groups.  The MTD group, 

has high similarity to the Bcl-xL protein, and includes Bax, Bak, and Bok, all of which contain 

a BH1, BH2, and BH3 domains (Adams and Cory, 1998; Zhou et al., 2010).  The BH3 sub-

group of pro-apoptotic proteins, includes Bik, and Blk, which only contain short (9-16 residues) 

BH3 domains (Adams and Cory, 1998; Shamas-Din et al., 2011).  
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 Both pro- and anti-apoptotic proteins in this family are capable of forming 

heterodimers with other family members to inhibit their activity (Oltval et al., 1993; Zhou et 

al., 2010).  The formation of heterodimers has been shown to be essential for the pro-apoptotic 

activities of the BH3 domain members; while heterodimerization is not required for activity of 

the MTD or anti-apoptotic family members (Cheng et al., 1996; Kelekar and Thompson. 1998; 

Zhou et al., 2010; Shamas-Din et al., 2011).  

The Bcl-xL protein is found on the cytosolic side of the mitochondrial, endoplasmic 

reticulum, and nuclear envelope membranes (Green and Reed, 1998; Zamzami et al., 1998; 

Bogner et al., 2010).  Bcl-xL contains a C-terminal hydrophobic tail which facilitates this 

membrane localization.  It is proposed that at the membrane Bcl-xL acts to detect damage in the 

sub-cellular organelles (Green and Reed, 1998; Zamzami et al., 1998; Leber et al., 2010).  In 

the absence of damage, Bcl-xL forms heterodimers with various pro-apoptotic proteins, 

inhibiting their activities.  Bcl-xL has also been shown to play a role in preventing Apaf-1 

associating with pro-caspase 9, thereby preventing caspase activation (Pan et al., 1998; Bogner 

et al., 2010; Shamas-Din et al., 2011).   

 

1.5.1 BCL2L1 Gene Regulation 

The gene for the Bcl-xL protein, BCL2L1, is located on chromosome 20q11.21 and 

codes for three different proteins.  The BCL2L1 gene is driven by a GC rich promoter 

approximately 3.8 kb in length.  It is a TATA-less promoter, but contains an Inr element, as 

well as binding sites for various transcription factors including Sp1, Ap1, NF-кB, and STATs 

(Fujio et al., 1997; Adams and Cory, 1998; Chen et al., 2000).  The three splice variants 

produced from the BCL2L1 gene consist of the full transcripts Bcl-xL and two truncated 

versions named Bcl-xS, and Bcl-x (Figure 1.5) (Huang, 2000).  

The Bcl-x protein is a 217 amino acid protein and is the product of an unspliced 

BCL2L1 transcript (Gonzalez-Garcia et al., 1994).  It is identical to the Bcl-xL protein, lacking  
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Figure 1.5:  Structure of mRNA splice variants produced from the BCL2L1 gene. Three splice 

variants are produced from the BCL2L1 gene including Bcl-xL and Bcl-xβ, which differ only in 

the 5’ end of the transcript, both of which act in an anti-apoptotic manner. Bcl-xS, the smallest 

variant acts in a pro-apoptotic manner due to differential splicing which eliminates the 

conserved anti-apoptotic domains.  
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only the C-terminal hydrophobic tail (Gonzalez-Garcia et al., 1994).  It is localized to the 

cytosol and has anti-apoptotic functions (Gonzalez-Garcia et al., 1994).  Bcl-xS is a 19.5 kDa 

protein that acts as a pro-apoptotic factor.  Due to differential splicing of the BCL2L1 gene, 

Bcl-xS lacks 63 amino acids, which contain the conserved BH1 and BH2 domains (Lindenboim 

et al., 2000).  The lack of these two domains is thought to account for the difference in function 

between the Bcl-xL and Bcl-xS proteins (Lindenboim et al., 2000).  Bcl-xS has been shown to 

lead to the induction of apoptosis through a caspase-dependent mechanism which is inhibited 

by Bcl-2 (Lindenboim et al., 2000). 

Bcl-xL, a 233 amino acid 27 kDa protein, contains all of the BH domains conserved in 

the Bcl-2 family.  Bcl-xL has a conserved hydrophobic surface pocket formed by the BH1, 

BH2, and BH3 domains.  This pocket has been shown through mutational studies to be 

essential for Bcl-xL binding to pro-apoptotic factors (Kim, 2005).  Bcl-xL has a C-terminal 

hydrophobic tail, which allows it to localize to various membranes (Shiraiwa et al., 1996; 

Leber et al., 2010; Zhou et al., 2010).  Heterodimers are formed with pro-apoptotic factors, 

including the Bax/Bak proteins at the mitochondrial membrane, preventing them from releasing 

cytochrome C (Boise et al., 1993; Leber et al., 2010; Zhou et al., 2010).  It has been recently 

demonstrated that the expression of Bcl-xL, like c-Src, is repressed following treatments with 

HDACi (Rada-Iglesias et al., 2007). 

 

1.6 p21
WAF1

 

 The CKDN1a gene, which encodes the p21
WAF1 

protein,
 
is the classic example of a 

gene up-regulated following HDACi treatment (Richon et al., 2000).  p21
WAF1 

is a cyclin 

dependent kinase inhibitor belonging to the Cip/Kip family of proteins, and has been shown to 

interact with Cdk2, Cdk4, and Cdk6 (Harper et al., 1995; Coqueret, 2003).  The ordered 

activation of cyclin/Cdk complexes allows for progression through the cell cycle.  p21
WAF1 

blocks the progression from the G1 stage to the synthesis stage of the cycle (Satyanarayana et 

al., 2007).  In the G1 phase, mitogenic signals lead to the up regulation of D type cyclins 

including D1, D2, and D3.  These cyclins are free to interact with either Cdk4 or Cdk6 to create 

a cyclin D-Cdk complex.  Active complexes are transported into the nucleus and activate Cdk-

activating kinases (Sherr and Roberts, 1999; Coqueret, 2003).  The activated complexes also 
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lead to the activation of cyclin E-Cdk2 complexes, which in turn lead to the phosphorylation of 

the Retinoblastoma (Rb) protein.  Phosphorylation of Rb disrupts the normal interaction 

between Rb and the E2F transcription factor, leading to its release. The freed E2F activates 

target genes which will then continue to move the cell through the cell cycle (Sherr and 

Roberts, 2004).  p21
WAF1

 inhibition of the Cdk kinases prevents the activation of cyclin E-Cdk2 

and cyclin A-Cdk2 complexes thereby preventing Rb phosphorylation and the release of E2F. 

p21
WAF1

 expression has been found to be up-regulated by the expression of the tumor 

suppressor gene p53 (el-Deiry et al., 1993; Conqueret, 2003; Brown et al., 2007).  Although 

p21
WAF1

 itself is rarely found to be mutated in human malignancies, its regulator p53 has had 

over 21,000 different mutations identified (Hollstein, 1991; Soussi and Lozano 2005). Most of 

these mutations are located within the DNA binding domain of the protein, thereby preventing 

its activating properties (Shiohara et al., 1994; Liu et al., 2006).  Therefore, any tumors 

containing mutations in p53 may have compromised p21
WAF1

 expression and decreased ability 

to arrest the cell cycle.  p21
WAF1

 can also be activated in a p53-independent manner including 

activation through the breast cancer gene 1 (BRCA1) and Sp binding elements (Gartel and 

Tyner, 1999; Promkain et al., 2009).  

HDACi have been shown to up-regulate the expression of p21
WAF1

 through the Sp1-3 

and Sp1-4 sites located within the p21
WAF1

 promoter (Nakano et al., 1997; Ocker et al., 2007).  

Through this up regulation HDACi can lead to an arrest of the cell cycle, indicative of 

chemotherapeutic potential.  Up regulation of p21
WAF1

 is seen as a requirement for the HDACi 

cell cycle arrest, differentiation, and apoptosis effects (Archer et al., 1998; Ocker et al., 2007).  

Due to the important role that p21
WAF1

 up regulation appears to have in the HDACi mechanism 

of action it is often used as a marker for HDACi activity within the cell. 
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2. SPECIFIC AIMS AND HYPOTHESIS 

Hypothesis:  Previous semi quantitative data from the Bonham lab revealed that full length Src 

and Bcl-xL gene expression is repressed following HDACi treatment, while short SRC 

transcripts remained unaffected.  The above repression was seen despite increased promoter 

histone acetylation at both gene loci.  Based upon these findings it was proposed that the above 

gene repression may require the inhibition of a certain HDAC. Therefore using a variety of 

HDACi and qRT-PCR the level of mRNA expression was examined. However through the 

course of investigations in this thesis evidence suggested that the HDACi mediated mRNA 

repression may involve activity of a phosphatase. To further explore the involvement of a 

phosphatase, the effect of phosphatase inhibitors along with HDACi was examined.  It is 

hypothesized that genes such as SRC and BCL2L1 are repressed by HDACi through a 

mechanism involving promoter proximal pausing. Other genes such as p21
WAF1

 are induced due 

to changes in histone acetylation following HDACi treatment.  As promoter proximal pausing 

is known to be regulated through phosphorylation, the mechanism of repression may involve 

PP activity, with a PP being released from an HDAC/PP complex following HDACi treatment.   

 

Specific Aims 

1) Determine the effect of various class I specific HDACi on SRC, BCL2L1, and p21
WAF1

 

expression 

2) Determine the effect of various class I specific HDACi on SRC and BCL2L1 promoter 

histone acetylation and RNA Pol II occupancy 

3) Determine the effect of Phosphatase Inhibitors on SRC Expression and RNA Pol II 

occupancy 
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3. MATERIALS AND METHODS 

3.1 Reagents, Equipment, Software and Distributors 

All of the reagents and commercially available kits used are listed in Tables 3.1 and 3.2.  

Equipment that has been used, as well as company of origin, is included in Tables 3.3 and 3.4.  

All cell lines used are listed in Table 3.5, while all DNA primers used were purchased from 

Invitrogen (Burlington, ON, Canada) and are listed in Table 3.6.  The location of primer 

binding is shown in Figure 3.0.  

 

Table 3.1 List of Reagents and Distributors  

Reagent Distributor 

Actinomycin D Sigma-Aldrich Co. 

Agarose EMD Chemicals Inc. 

Akt Antibody Abcam 

apicidin Sigma-Aldrich Co. 

Aps EMD Chemicals Inc. 

ß-mercaptoethanol EMD Chemicals Inc. 

Bis-acrylamide Biorad 

Cyclohexamide Sigma-Aldrich Co. 

DMEM Invitrogen Gibco- Cell Culture Systems 

DMSO Sigma-Aldrich Co. 

dNTPs New England Bio Labs Ltd. 

Ethanol EMD Chemicals 

Ethidium Bromide VWR 

Fetal Bovine Serum HyClone 

Formaldehyde EMD Chemicals 

Glycine EMD Chemicals 

H3K4 Acetylation Antibody Millipore 

HDAC1 Antibody Santa Cruz Biotechnology 

HDAC2 Antibody Santa Cruz Biotechnology 

HDAC3 Antibody Santa Cruz Biotechnology 

HDAC8 Antibody Santa Cruz Biotechnology 

Insulin Invitrogen Gibco- Cell Culture Systems 
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MGCD0103 Selleck Chemicals 

MgCl2 Qiagen 

MS-275 Selleck Chemicals 

Nitrocellulose Membrane Sigma-Aldrich Co. 

O’GeneRuler 50bp DNA ladder Fermentas Canada Inc 

Odyssey Blocking Buffer LICOR Technologies 

PageRuler Plus Pre-stained Protein Ladder Fermentas Canada Inc. 

Penicillin/ Streptomycin Invitrogen Gibco- Cell Culture Systems 

pSer476-Akt Antibody Cell Signaling 

Anti-rabbit Secondary Antibody LICOR Technologies 

RPMI  Invitrogen Gibco- Cell Culture Systems 

RNA Polymerase II Antibody Millipore 

Sybr Green Biorad Laboratories Ltd. 

Taq polymerase Qiagen 

Taq Buffer Qiagen 

TEMED EMD Chemicals 

Trypsin-EDTA 1x Invitrogen Gibco- Cell Culture Systems 

TSA Sigma-Aldrich Co. 

Tween-20 EMD Chemicals 

 

 

Table 3.2 Commercially Available Kits and Distributor 

Commercial Kit Distributor 

cDNA Synthesis Kit  Biorad 

Epigentek ChIP Kit  Epigentek 

RNeasy Plus  Mini Kit Qiagen 

Total Protein Kit, Micro Lowry Sigma-Aldrich Inc 
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Table 3.3 Equipment and Distributors 

Equipment Distributor 

Biofuge 13 Microcentrifuge Thermo Electron Corporation- Heraeus 

Bio-Rad IQ5 Real Time Detection System Bio-Rad Laboratories Ltd 

Bio-Rad IQ5 Image Software Bio-Rad Laboratories Ltd 

Branson Sonifier 450  Branson 

CO2 Incubator 3326 Forma Scientific, Inc. 

Coulter Counter ZM Coulter Electronics Ltd. 

Gel Doc 2000 Bio-Rad Laboratories Ltd. 

Gene Amp PCR System 2700 Applied Biosystems Canada 

LICOR Odyssey  LICOR Technologies 

Mac Vector 7.2.3 Accelrys Inc. 

OWL Transfer Apparatus Thermo Scientific 

Protein Electrophoresis System  Bio-Rad Laboratories Ltd 

Quantity One Software Version 4 Bio-Rad Laboratories Ltd 

SmartSpec3000  Spectrophotometer Bio-Rad Laboratories Ltd. 

Sorvall RT6000D Du Pont Canada Ltd. 

Step One Plus Real Time PCR Machine Applied Biosystems Canada 

Step One Plus Software Applied Biosystems Canada 

 

Table 3.4 Distributor Address 

Distributor Name Address 

Abcam Abcam, Cambridge, MA. USA 

Accerylrys Inc. Accerlrys Inc., San Diego, CA, USA 

Applied Biosystems Canada Applied Biosystems Canada, Streetsville, ON, Canada 

ATCC American Type  Culture  Collection, Manassas, VA,  

USA 

Bio-Rad Laboratories Ltd Bio-Rad Laboratories Ltd, Mississauga, ON, Canada 

Branson Branson, Danbury, CT, USA 

Cell Signaling Cell Signaling, Danvers, MA. USA 
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Coulter Electronics Ltd Coulter Electronics Ltd. Bath, UK 

Du Pont Canada Ltd Du Pont Canada Ltd, Mississauga, ON, Canada 

EMD Chemicals EMD Chemicals, Gibbstown, NJ, USA 

Epigentek Epigentek, Brooklyn, NY, USA 

Fermentas Canada Inc. Fermentas Canada Inc., Burlington ON  Canada 

Invitrogen Canada Inc Invitrogen Canada Inc., Burlington, ON, Canada 

LICOR Technologies LICOR Technologies, Lincoln, NB, USA 

Millipore Millipore, Billerica, MA, USA 

Qiagen Inc Qiagen Inc., Mississauga, ON, Canada 

Santa Cruz Biotechnology Inc. Santa Cruz Biotechnology Inc., Santa Cruz, CA,  USA 

Sigma-Aldrich Co. Sigma-Aldrich Co.,  Oakville, ON, Canada 

Thermo Scientific Thermo Scientific, Rochester, NY, USA 

VWR VWR, Mississauga, ON, Canada 

 

 

Table 3.5 Cell Lines and Distributor 

Cell Line Tissue Type Distributor 

Colo201 Colorectal Adenocarcinoma ATCC 

HepG2 Hepatocellular Carcinoma ATCC 

HT29 Colorectal Adenocarcinoma ATCC 

SW480 Colorectal Adenocarcinoma ATCC 

T47D Colorectal  Adenocarcinoma ATCC 
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Table 3.6 Primer Sets 

Primer Name Sequence Annealing 

Bcl-xL 3’ region Fwd TCGGGCCAGACACTGACCATCCACT 57°C 

Bcl-xL 3’ region Rev GAACTGCACTTTCACCTTCACA 57°C 

Bcl-xL Fwd GCAGGTATTGGTGAGTCGGATCGC 57.5°C 

Bcl-xL Rev CACAAAAGTATCCCAGCCGCCG 57.5°C 

Bcl-xL Promoter Fwd CGAGCAGTCAGCCAGGTAG   57°C 

Bcl-xL Promoter Rev GACGGCGAAGGCTCCTATTG 57°C 

p21
WAF1

 Fwd GCCTGCCGCCGCCTCTTC 55°C 

p21
WAF1

 Rev GCCGCCTGCCTCCTCCCAACTC 55°C 

RPL13A Fwd CAAGGTGTTTGACGGCATCC 55°C 

RPL13A Rev GCTTTCTCTTTCCTCTTCTCCTCC 55°C 

Src +10 Fwd GCGGCCATTTCACCAGCC 55°C 

Src +100 Rev GCGGTGATAAACTGAGGCTAG 55°C 

Src 3’ region Fwd TCAAACCCTGCCCTCCTTAGAC 57°C 

Src 3’ region Rev CATCACCCACAAGCCGATTG 57°C 

Src Fwd CAGAGGAGCCCATTTACATCGTC 55°C 

Src Rev CCCTTGAGAAAGTCCAGCAAACTC 55°C 

Src1A Fwd AGGCGGATCTGGGGCGTAG 57°C 

Src1A Rev ATTCCGGGCCGGGAGAGAC 57°C 

Src1α Fwd GACAAGTCGATCAGCTTCC 57°C 

Src1α Rev GCAAGTAGGTAAGGGCCAG 57°C 
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Figure 3.0: Location of Primer Binding in the Promoter and 3’ Region of the (A) SRC and (B) 

BCL2L1 genes. All primers were designed using the MacVector software program, and were 

designed to span introns when possible.  
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3.2 Culture of Cell Lines 

3.2.1 Culture and Maintenance of Cell Lines 

All cell lines used in this study were obtained from American Type Culture Collection 

(ATCC).  Cell media was purchased from Invitrogen-Gibco Cell Culture Systems.  HT29 and 

SW480 colorectal adenocarcinoma cells, and HepG2, a heptocellular carcinoma cell line, were 

cultured in Dulbeccos’s Modified Eagle’s Medium (DMEM). Colo201 a colorectal 

adenocarinoma cell line was cultured in RPMI-1640 medium. T47D, a breast cancer cell line 

was cultured in RPMI-1640 plus insulin medium.  All media was supplemented with 10% fetal 

bovine serum (FBS) as well as 1% penicillin-streptomycin.  Cells were grown in a CO2 

incubator with 5% carbon dioxide atmosphere at 37°C. 

 

3.2.2 Histone Deacetylase Inhibitors and Protein Phosphatase Inhibitor Treatments 

Prior to experiments, cells were grown to 60-70% confluency in 10 cm dishes.  When 

cells reached the required confluency the medium was removed by aspiration and the cells were 

washed with 5 mL of phosphate buffered saline (PBS).   For adherent cells PBS was removed 

by aspiration and 10mL of new media containing the appropriate inhibitor was added.  Semi-

adherent cells were placed into a 15 ml conical tube with their original medium and centrifuged 

in a Sorvall RT6000D centrifuge at 1500 rpm x 5 minutes.  The medium was then removed by 

aspiration, and cells were re-suspended in PBS.  Cells were again centrifuged with the PBS 

being removed and medium containing an inhibitor added.  

 Trichostatin A and MGCD0103 were used at a final concentration of 1 M.  Apicidin 

and MS-275 were used at a final concentration of 2 M.  Final drug concentrations were 

obtained from dilutions of a stock solution created using DMSO.  DMSO only controls were 

also used initially to rule out any affect DMSO may be having on the genes of interest.  Drug 

concentrations were chosen based upon literature values that lead to an induction of p21
WAF1

 

expression (Yoshida et al., 1990; Han et al., 2000; Siavoshian et al., 2000; Kwon et al., 2002; 

Rosato et al., 2003;  Zhang et al., 2007; Fournel et al., 2008; Duglio et al., 2010).   

 Cells were incubated in the inhibitor containing media for the indicated time periods. 

For adherent cells (HepG2, SW480, T47D and HT29) media was removed by aspiration and 
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cells washed with PBS.  The PBS was removed by aspiration and cells were removed from the 

plate by treatment with 1 x Trypsin-EDTA for 5 minutes at 37°C.  Cells were collected in 3 mL 

of media and placed in a 15 mL conical tube.  For semi-adherent cells (Colo201), the media 

and cells were placed directly into a 15 mL conical tube without washing.  Semi-adherent and 

adherent cells were centrifuged in a Sorvall RT6000D centrifuge at 1500 rpm x 5 minutes to 

pellet the cells.  Following removal of the supernatant cells were then placed in a -80°C freezer 

for future use. 

Experiments with HDACi and phosphatase inhibitors were performed with cells grown 

to 60-70% confluency.  Cell media was removed by aspiration and cells were washed in 10 mL 

of PBS.  Following aspiration of the PBS new media containing an HDACi was added as 

described above.  Thirty minutes after the addition of HDACi select plates had one of the 

phosphatase inhibitors (Calyculin A or Fostriecin) added to give a final concentration of 50nM 

(Ishihara et al. 1989; Zhang et al., 2005). Cells were then incubated at 37°C, 5% CO2 for 

varying time periods.  

At each time point media from adherent cells was removed by aspiration and cells were 

washed with PBS.  Following aspiration of the PBS, cells were then trypsinized with 1 x 

Trypsin-EDTA for 5 minutes at 37°C.  Cells were re-suspended with 3 mL of media and placed 

in a 15 mL conical tube.  Following centrifugation at 1500 rpm for 5 minutes and removal of 

the supernatant, cells were placed in a -80°C freezer for future use.  Semi adherent cells were 

placed along with their media into a 15 mL conical tube and cells were pelleted by 

centrifugation.  Cells pellets were stored in a -80°C freezer after appropriate washing as 

described above. 

  

3.3 General Molecular Biology Techniques 

3.3.1 Polymerase Chain Reaction 

 Primer sets were designed for the DNA fragments of interest using MacVector.  Primers 

were designed to span intronic sequences to avoid amplification of genomic DNA.   The DNA 

of interest was amplified using a mixture containing 1 µL  of  cDNA, 5 µL 10x reaction buffer, 

3 µL 25 mM MgCl2, 66 ng of each primer, 2 µL of each 10 mM dNTP, and 0.2 µL of Taq 
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Polymerase.  The Polymerase Chain Reaction (PCR) was completed in a GeneAmp PCR 

System 2700.  The DNA template strands were first denatured at 95°C for 5 minutes followed 

by 30 cycles of 30 seconds at 95°C for denaturation,  30 seconds at 55°C  for primer annealing, 

and finally 30 seconds at 72°C for extension.  Following the completion of the 30 cycles a final 

extension step was completed at 72°C for 10 minutes.  Agarose gel electrophoresis was 

completed on all PCR products to ensure specific amplification and to rule out any 

contamination. 

 

3.3.2 Agarose Gel Electrophoresis 

 DNA that was to be loaded in the agarose gel was mixed with a DNA gel loading buffer 

(0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol FF, and 30% (v/v) glycerol).  A 

2% agarose gel was prepared in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8.0) with 1 

µL of ethidium bromide added.  Gel electrophoresis was completed in a Horizontal Gel 

Electrophoresis System with the TAE buffer at 100 Volts.  DNA was visualized using a Gel 

Doc 2000 Gel Documentation System.  

 

3.4 RNA Isolation from Cultured Cells 

 RNA isolation was completed using an RNeasy Plus Kit obtained from Qiagen.  Cell 

pellets were thawed and lysed with RLT lysis buffer (guanidine thiocyanate) containing β-

mercaptoethanol.  Following cell lysis the cells were passed five times through a 4 gauge 

needle in order to homogenize the sample.  The homogenized cell lysate was then passed 

through a Qiagen DNA column to remove any genomic DNA that was present.  Samples were 

then added to the RNeasy Plus columns and manufactures instructions were followed for the 

purification of the sample RNA.  RNA quality was determined by the A260/A280 ratio using a 

SmartSpec 3000 Spectrophotometer. RNA was determined to be pure when the A260/280 ratio 

was between 1.8 and 2.0 (Barbas et al., 2007). RNA concentration was determined using the 

Beer-Lambert law.  
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3.5 Production of Complementary DNA 

 Complementary DNA was produced using a cDNA Synthesis Kit acquired from 

BioRad Laboratories Inc.  One µg of the RNA collected using the RNeasy Plus Kit as described 

above was added in addition to reverse transcriptase, 5x iscript master mix (dNTPs, randomly 

generated primers, and buffer) and RNase free water according to manufacturer’s instructions.  

Total sample volume was 20 µL.  The production of the cDNA was completed in a GeneAmp 

PCR System 2700 following the program: 25°C for 5 min, followed by 30 min at 42°C, 5 min 

at 85°C.  Complementary DNA which was produced was stored in a -20°C freezer until 

required. 

 

3.6 Chromatin Immunoprecipitation Assay 

 Chromatin Immunoprecipitation Assays were completed using an Epigentek Kit.   Cells 

were grown until there was a minimum of one million cells per 10 cm plate as determined by a 

Coulter Counter ZM.  Upon reaching a sufficient confluency, cells were treated with one of the 

HDACi for 0, 0.25, 0.5, 1, 3, or 6 hours.  After incubation cells were washed with 10 mL of 

PBS and pelleted by centrifugation at 1500 rpm for 8 minutes.  Cells were then re-suspended in 

their respective media containing 1% formaldehyde and left to incubate for 10 minutes.  

Following the 10 minute incubation, 1 mL of 1.25M glycine was added and the cells were once 

again pelleted by centrifugation.  Cells were washed once in cold PBS and pelleted by 

centrifugation.  The supernatant was removed and cell pellets were stored in a -80°C freezer 

until the following day.   

 Cells were re-suspended in the supplied lysis buffer with protease inhibitor cocktail and 

left to incubate on ice for 10 minutes.  The suspension was then sonicated using a Branson 

Sonifier 450 for 3 x 30 seconds (60% duty cycle and output three).  DNA fragments were 

confirmed to be between 200 and 1000 base pairs in length by running a 5 µL sample on an 

agarose gel.  Following sonication, cell debris was pelleted by centrifugation at 14 000 rpm for 

10 minutes.  The supernatant was collected and diluted in a 1:1 ratio with the supplied ChIP 

dilution buffer.  5 µL of this solution was then removed and used as the input DNA.   
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Following incubation of the provided strip wells with either 4 µg of anti-RNA 

Polymerase II or anti-acetylated H3K4 antibody, the wells were washed with TE buffer, and 

100 µL of the fragmented DNA was added to each well and left to incubate for 90 minutes on 

an orbital shaker (100 rpm).  Normal mouse IgG is included within the Epigentek Kit and was 

used as a negative control. GAPDH gene promoter primers are also included and are used as a 

positive control.  GAPDH was chosen as it is an actively transcribed gene in most mammalian 

cells.  At the completion of the incubation period on the orbital shaker, all wells were washed 

with TE buffer and 1 µL of proteinase K was then added to each well and left to incubate for 15 

minutes in a 65°C water bath.  Reverse buffer was added and the wells were left to incubate for 

90 minutes in the 65°C water bath.  DNA was then eluted from the strip wells by centrifugation 

with the included binding and elution buffers.  The collected DNA was stored at -20°C for 

future use. 

 

 

3.7 Real Time Polymerase Chain Reaction 

 Total RNA was collected from cell lines of interest. The quality of the collected RNA 

was determined by A260/A280 absorbance ratio as previously described in section 3.4. cDNA 

was subsequently produced, the details of which may be found in section 3.5.  ChIP DNA was 

also used, and details of the procedure can be found in section 3.6.  For all real time polymerase 

chain reactions (qRT-PCR) the DNA/cDNA of interest was combined with Sybr Green master 

mix purchased from BioRad Laboratories Inc.  The genes of interest were amplified using 

primers previously designed in our lab using the MacVector software program (Ellis, 2007).  

Products of all primers were visualized using agarose gel electrophoresis. 

 qRT-PCR reactions were carried out using the iQ5 Multi-colour real-time PCR 

Detection system, a fluorescence based detection system (BioRad Laboratories Inc.).  Prior to 

qRT-PCR experiments being completed primer efficiencies were tested to ensure equal 

amplification between the primer sets.  Manufactures’ instructions were followed for setting up 

the reactions and all samples were run in triplicate. Samples had a final volume of 20 L which 

contained either 0.6 L ChIP DNA or 1 L cDNA, 66 ng of each primer as well as 10 L of 

SYBR Green Supermix with the remainder of the volume constituted by water.   In addition to 

the genes of interest, RPL13A, a 60s ribosomal protein, was also examined. Previous 
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experiment in our lab have shown that RPL13A is unaffected by HDACi treatment, and 

therefore was used as an internal control in all experiments (Ellis, 2007).  The PCR cycling 

conditions included an initial denaturation of 95°C for 2 minutes followed by 45 cycles of 95°C 

for 15 seconds, annealing temperature for 20 seconds, and 72°C for 25 seconds.  A final 

extension time of 3 minutes at 65°C was performed at the end of each reaction.  Following each 

reaction, a melt curve analysis was done to ensure amplification specificity.  Data was analyzed 

by the ∆∆CT method (Livak and Schmittgen, 2001).   

 

3.8 Western Blot 

3.8.1 Lowry Method 

 Cells were harvested in 1 mL of  65°C SDS sample buffer containing 10% (v/v)  

glyercol, 5% (v/v) -mercaptoethanol, 2% (w/v) SDS, 65 mM Tris-HCl (pH 7.0)  and 0.05% 

(w/v) bromophenol blue.  Twenty five L of each sample was then used along with a Lowry kit 

purchased from Sigma-Aldrich.  The absorbance of each sample was determined at 750 nm 

using a spectrophotometer.  Protein concentration was determined by comparing the 

absorbance of the samples to a standard curve.  

 

3.8.2 Western Procedure 

 Samples collected were run on a 10% SDS-polyacrylamide resolving gel which 

contained 10% (w/v) acrylamide: bis-acrylamide (29.2%: 0.8%), 375 mM Tri-HCl pH 8.0, 

0.1% (v/v) SDS, 0.1% (w/v) ammonium persulfate and 0.4% (w/v) N,N,N’,N’-

tetramethylethylenediamine (TEMED) (Sambrook et al.,1989).  After the gel had polymerized  

a 5% (w/v) acrylamide stacking gel (29.2% acrylamide: 0.8% bis acrylamide, 130 mM Tris-

HCl, 0.1% (w/v) SDS, 0.1% (w/v) ammonium persulfate and 0.4% (w/v) TEMED) was added 

on top of the 10% acrylamide gel (Sanbrook et al., 1989).  Samples containing 30ug of protein 

were added to the gel and resolved by SDS-page using an SDS running buffer (25 mM  Tris-

Hcl,  200 mM glycine, 0.1% (w/v) SDS). Electrophoresis was carried out for 90 min at 160 

volts.  
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 Following electrophoresis, gels were washed in transfer buffer (10 mM Tris, 15 mM 

NaCl, 0.5%(v/v) TWEEN-20) for fifteen minutes.  Proteins were then transferred by 

electroblotting to a nitrocellulose membrane.  Membranes were washed twice with PBS  and 

then blocked for one hour at room temperature in Odyssey blocking buffer.  After blocking 

membranes were incubated in either anti-Akt rabbit monoclonal antibody, or anti-pSer473Akt 

rabbit monoclonal antibody, at a 1: 15,000 dilution for one hour at room temperature.  

Membranes were washed in PBS containing TWEEN-20, and incubated in IR680 labeled anti-

rabbit secondary antibodies at a 1: 15,000 dilution in Odyssey blocking buffer.  Membranes 

were visualized using fluorescence in a LICOR Odyssey visualization system 
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4. RESULTS  

4.1 Effect of Class Specific Histone Deacetylase Inhibitors on c-Src, Bcl-xL, and p21
WAF1

  

mRNA Expression 

4.1.1 Response of c-Src, Bcl-xL, and p21
WAF1

 mRNA to TSA and apicidin 

To determine whether repression of the examined mRNA was dependent on inhibition 

of a particular HDAC a variety of HDACi with varying specificities were examined to 

determine their effect on c-Src, Bcl-xL and p21
WAF1

 mRNA expression.  The expression of 

p21
WAF1

 mRNA was used as a marker for HDACi activity as it has been found to be universally 

upregulated by HDACi (Lu et al., 2004). Four different HDACi were surveyed over a 12 hour 

time course in the following cancerous cell lines: SW480, Colo201, and HT29, colorectal 

adenocarcinoma cell lines; HepG2, a hepatocellular carcinoma cell line, and T47D a breast 

cancer cell line (Figures 4.1, 4.2, 4.3).   A 12 hour time course was used, as previous research 

in the lab has shown that c-Src mRNA expression is consistently repressed within this time 

frame.  Four independent experiments were completed for each HDACi and cell line.  As the 

results of the independent experiments were highly consistent representative data is shown in 

this thesis.  

  TSA and apicidin, pan specific and HDAC2/HDAC3 specific inhibitors respectively, 

were found to repress c-Src mRNA expression in all cell lines tested (Figure 4.0, 4.1).   In 

Colo201, HepG2, and T47D cells, a transient induction of c-Src mRNA expression was 

observed followed by subsequent repression. p21
WAF1 

mRNA expression was found to increase 

following treatment with both TSA and apicidin, in all five cell lines tested, with the level of 

induction ranging from 10 to 40 fold of the control levels (Figure 4.2).  Based upon the results 

of the c-Src mRNA expression and p21
WAF1

 induction (Figure 4.2),  the Colo201 and T47D cell 

lines were chosen to examine the expression of Bcl-xL, as both cell lines showed consistent 

induction of p21
WAF1

 and repression of c-Src mRNA expression.   Expression of Bcl-xL mRNA 

was repressed following treatment with both TSA and apicidin (Figure 4.3).  In the Colo201 

cell line a transient increase in Bcl-xL mRNA expression was seen following treatment with 

TSA, while a transient increase was seen following treatments with both apicidin and TSA in 

the T47D cell line.  Although slight differences were present in individual cell lines, in general, 

TSA and apicidin act in a similar manner with respect to gene expression in each cell line. 
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Figure 4.0: c-Src mRNA expression following treatment with TSA. Colo201 cells were treated 

with 1 µM TSA for the indicated time periods. Following RNA isolation mRNA levels were 

determined using qRT-PCR. Four independent experiments were completed. Error bars 

represent standard deviation of three different replicates completed in each experiment.  
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Figure 4.1: c-Src mRNA expression following treatment with TSA or apicidin. Colo201, T47D, 

HT29, SW480, and HepG2 cells were treated with either (A) 1 µM TSA or (B) 2 µM apicidin 

for the indicated time periods. Following RNA isolation mRNA levels were determined using 

qRT-PCR. Data representative of at least four independent experiments. Error bars represent 

standard deviation of at least three different replicates. 
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Figure 4.2: p21
WAF1

 mRNA expression following treatment with TSA or apicidin. Colo201, 

T47D, HT29, SW480 and HepG2 cells were treated with either (A) 1µM TSA or (B) 2µM 

apicidin for the indicated time periods. Following RNA isolation mRNA levels were 

determined using qRT-PCR. Data representative of at least four independent experiments. Error 

bars represent standard deviation of at least three different replicates. 
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Figure 4.3: Bcl-xL mRNA expression following treatment with TSA or apicidin. Colo201 and 

T47D cells were treated with either (A) 1 µM TSA or (B) 2 µM apicidin for the indicated time 

periods. Following RNA isolation mRNA levels were determined using qRT-PCR. Data 

representative of at least four independent experiments. Error bars represent standard deviation 

of at least three different replicates. 
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4.1.2 Response of c-Src and Bcl-xL mRNA to MS-275 and MGCD0103 

 Colo201 and T47D cells were also used to determine the effect of two synthetic 

benzamide HDACi on c-Src, Bcl-xL, and p21
WAF1

 mRNA expression (Figure 4.4).  MS-275 has 

been shown to inhibit HDAC1 while MGCD0103 targets both HDAC 1 and HDAC 2 (Zhou et 

al., 2008; Prince et al., 2009; Witt et al., 2009).   Interestingly, it was determined that neither 

MS-275 nor MGCD0103 were capable of repressing c-Src or Bcl-xL mRNA expression.  

Following treatments with MS-275 c-Src mRNA levels were relatively unaffected in the 

Colo201 cell line, but were induced in the T47D line (Figure 4.4).  Bcl-xL mRNA expression 

remained unaffected or slightly induced in both cell lines following treatment with MS-275 

(Figure 4.4).  In contrast, treatment with MGCD0103 led to an induction of Bcl-xL mRNA 

while c-Src mRNA expression remained unchanged in both cell lines (Figure 4.4).   

The level of p21
WAF1 

mRNA expression increased following treatment with MS-275 and 

MGCD0103 but only to 3.5-4.0 fold of control levels (Figure 4.5).  This induction is rather low 

when compared to the level of induction seen with the TSA and apicidin treatments.  This 

raised the question of whether or not a higher drug concentration was required to lead to the 

repression of c-Src and Bcl-xL, and a subsequent larger induction of p21
WAF1

 mRNA.  To 

determine if this was in fact the case Colo201 cells were treated with a higher concentration of 

both MS-275 and MGCD0103 for 6 hours (Figure 4.6).  Longer incubation times were not 

possible due to the onset of cellular toxicity at the higher concentrations. The increased 

concentration of both HDACi led to a larger induction of p21
WAF1

 mRNA expression levels; 

however neither c-Src nor Bcl-xL mRNA levels were repressed (Figure 4.6).  Thus following 

treatment with benzamides HDACi c-Src and Bcl-xL mRNA expression remained unaffected or 

induced, while p21
waf1

 mRNA expression was induced.   
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Figure 4.4:  Expression of c-Src and Bcl-xL mRNA following treatment with MS-275 or 

MGCD0103.  Colo201 and T47D cells were treated with either (A) 1 µM MGCD0103 or (B) 2 

µM MS-275 for the indicated time periods. Following RNA isolation mRNA levels were 

determined using qRT-PCR. Data representative of at least two four independent experiments. 

Error bars represent standard deviation of at least three different replicates. 
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Figure 4.5: p21
WAF1

 mRNA expression following treatment with MS-275 and MGCD0103. 

Colo201 and T47D cells were treated with either (A) 1 µM MGCD0103 or (B) 2 µM MS-275 

for the indicated time periods. Following RNA isolation mRNA levels were determined using 

qRT-PCR. Data representative of at least four independent experiments. Error bars represent 

standard deviation of at least three different replicates. 
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Figure 4.6: Expression of (A) c-Src, (B) p21
WAF1,

 and (C) Bcl-xL mRNA following treatment 

with high dose MS-275 and MGCD0103.  Cells were treated with either 6 µM of MGCD0103 

or MS-275 for the indicated time periods. Following RNA isolation mRNA levels were 

determined using qRT-PCR. Data representative of at least four independent experiments. Error 

bars represent standard deviation of at least three different replicates. 
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4.2 Effect of Histone Deacetylase Inhibitors on Histone Acetylation, RNA Polymerase II 

Occupancy, and Akt Phosphorylation 

4.2.1 Effect of Histone Deacetylase Inhibitors on Histone Acetylation at the SRC and 

BCL2L1 Promoters 

 The effect of HDACi on histone acetylation, at the SRC and BCL2L1 promoters, was 

examined by ChIP analysis in two representative cell lines to confirm whether changes in 

acetylation were occurring.  An increase in histone acetylation should be observed if HDACs 

are being inhibited by the tested HDACi.  If this is true, it would suggest that TSA and apicidin 

work through a much more complicated mechanism of action, as they would be capable of gene 

repression while increasing histone acetylation; a state normally associated with increase gene 

expression. 

In the Colo201 cell line, promoter acetylation was found to increase at the BCL2L1 and 

SRC promoters following treatment with all four HDACi (Figure 4.7, 4.8).  Despite leading to 

both c-Src and Bcl-xL mRNA repression, treatment with TSA and apicidin led to an equal, if 

not larger increase in promoter histone acetylation than the two synthetic benzamides 

inhibitors. Comparing the two SRC promoters with the BCL2L1 promoter, the level of increase 

in the histone acetylation was much lower at BCL2L1.  It is also interesting to note that at all 

promoters tested in the Colo201 cell line, MGCD0103 led to the highest levels of promoter 

histone acetylation at the 6 hour time point, while MS-275 had the lowest.   

Similar trends in promoter histone acetylation were also seen in the T47D cell line 

(Figure 4.9, 4.10).  Following treatment with all four HDACi, promoter histone acetylation was 

found to increase at both SRC and BCL2L1 to varying degrees.  Based on the above findings 

all four HDACi treatments increase promoter histone acetylation. Therefore the mechanism of 

repression following TSA and apicidin treatments appears to be more complicated that a simple 

change in acetylation status or inhibition of a single HDAC.  To further examine the possible 

mechanism behind this repression, the level of RNA Pol II occupancy was next examined.  
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Figure 4.7: Histone acetylation at the (A) SRC1α and (B) SRC1A promoters in the Colo201 

cell line. Colo201 cells were treated with 1 µM of TSA or MGCD0103 or 2 µM apicidin or 

MS-275 for the indicated time periods. Following cell collection Chromatin 

Immunoprecipitation Assays were completed using an anti-acetyl H3 antibody. qRT-PCR was 

completed for the various regions of the gene.  Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.  
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Figure 4.8: Histone acetylation at the BCL2L1 promoter in the Colo201 cell line.  Colo201 

cells were treated with 1 µM of TSA or MGCD0103 or 2 µM apicidin or MS-275 for the 

indicated time periods. Following cell collection Chromatin Immunoprecipitation Assays were 

completed using an anti-acetyl H3 antibody. qRT-PCR was completed for the indicated region 

of the gene. Data representative of at least two independent experiments. Error bars represent 

standard deviation of at least three replicates.  
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Figure 4.9: Histone acetylation at the (A) Src1α and (B) SRC1A promoters in the T47D cell 

line.  T47D cells were treated with 1 µM of TSA or MGCD0103 or 2 µM of MS-275 or 

apicidin for the indicated time periods. Following cell collection Chromatin 

Immunoprecipitation Assays were completed using an anti-acetyl H3 antibody. qRT-PCR was 

completed for the various regions of the gene. Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.  
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Figure 4.10: Histone acetylation at the BCL2L1 promoter in the T47D cell line.  T47D cells 

were treated with 1 µM of TSA or MGCD0103 or 2 µM apicidin or MS-275 for the indicated 

time periods. Following cell collection Chromatin Immunoprecipitation Assays were completed 

using an anti-acetyl H3 antibody. qRT-PCR was completed for the various regions of the gene. 

Data representative of at least two independent experiments. Error bars represent standard 

deviation of at least three different experiments.  
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4.2.2 Effect of TSA and MS-275 on RNA Polymerase II Occupancy at the Promoter and 

3’ Regions of the SRC and BCL2L1 Genes 

 RNA Pol II occupancy was determined by ChIP analysis at the promoter and 3’ regions 

of the SRC and BCL2L1 genes in two representative cell lines (Figure 4.11, 4.12).  TSA and 

MS-275 were used as they had opposing effects on c-Src and Bcl-xL mRNA expression.  In 

Colo201 cells RNA Pol II occupancy was found to increase at both the SRC1α and SRC1A 

promoters following treatment with both TSA and MS-275 (Figure 4.11 A-B).   In stark 

contrast the occupancy of RNA Pol II was found to decrease dramatically in the 3’ region of 

the gene following treatment with TSA, but did not decrease following MS-275 treatment.  It is 

particularly interesting that this decrease in occupancy following TSA treatment occurred 

within fifteen minutes. Very similar results were obtained when examining the BCL2L1 gene: 

RNA Pol II occupancy increased in the promoter region following treatment with MS-275 

(Figure 4.12 B).  However, following treatment with TSA there was an initial decrease in RNA 

Pol II occupancy which returned to the control level 3 hours after the addition of the HDACi 

(Figure 4.12A).  When examining the 3’ region of the gene, treatment with TSA caused a rapid 

decrease in RNA Pol II occupancy while occupancy remained stable or increased slightly 

following MS-275 treatment.  Like the decrease seen at the SRC gene following treatment with 

TSA, the loss of RNA Pol II occupancy in the 3’ region of the BCL2L1 gene occurred within 

15 minutes of treatment (Figure 4.12A). 

The level of RNA Pol II occupancy was also examined at the SRC and BCL2L1 3’ 

regions in the T47D cell line (Figure 4.13).  Again, similar to the Colo201 cell line, RNA Pol II 

occupancy was found to decrease at the 3’ region of both SRC and BCL2L1 within 15 minutes 

of TSA treatment, while it increased following treatment with MS-275 (Figure 4.13). In 

contrast, TSA treatment has been shown to increase the occupancy at the promoter regions of 

both genes in the T47D cell line (Bonham, personal communication). 
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Figure 4.11: RNA Polymerase II occupancy at the SRC1α, SRC1A promoters, and 3’ region 

following treatment with (A) TSA and (B) MS-275. Colo201 Cells were treated with either 1 

µM of TSA or 2 µM MS-275 for the indicated time periods. Following cell collection 

Chromatin Immunoprecipitation assays were completed using at anti-RNA Polymerase II 

antibody. qRT-PCR was completed for the various regions of the gene. Data representative of 

at least three independent experiments. Error bars represent standard deviation of at least three 

different replicates.  
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Figure 4.12: RNA Polymerase II occupancy at the BCL2L1 promoter, and 3’ following 

treatment with (A) TSA and (B) MS-275. Colo201 cells were treated with either 1 µM TSA or 

2 µM MS-275 for the indicated time periods. Following cell collection Chromatin 

Immunoprecipitation assays were completed using anti-RNA Polymerase II antibody. qRT-

PCR was completed for the various regions of the gene. Data representative of at least three 

independent experiments. Error bars represent standard deviation of at least three different 

replicates. 
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Figure 4.13: RNA Polymerase II occupancy at the 3’ region of the (A) BCL2L1 and (B) SRC 

genes following treatment with TSA and MS-275 in the T47D cell line. T47D cells were 

treated with either 1 µM TSA or 2 µM MS-275 for the indicated time periods. Upon cell 

collection Chromatin Immunoprecipitation assays were completed using an anti- RNA Pol II 

antibody. qRT-PCR was completed for the various genes. Data representative of at least two 

independent experiments. Error bars represent standard deviation of at least three different 

replicates.  
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4.2.3 Short c-Src mRNA Transcripts Unaffected by Histone Deacetylase Inhibitor 

Treatments 

Results from the RNA Pol II occupancy experiments suggest that the HDACi mediated 

repression may involve either transcriptional arrest or a block in productive elongation, as RNA 

Pol II remained at the promoters but was lost in the 3’ regions of the genes.  If a transcriptional 

arrest is occurring, short mRNA transcripts should decrease following HDACi treatment, but if 

the mechanism involves a block in productive elongation such as promoter proximal pausing, 

short mRNA transcripts will be continually produced, and therefore should not decrease 

following HDACi treatments. Therefore production of 100 nucleotide long transcripts from the 

SRC1α promoter was examined by qRT-PCR following treatment with all four HDACi (Figure 

4.14, 4.15).   Short transcript expression was examined using the same input DNA used for the 

full length mRNA expression experiments. 100 nucleotides was chosen for the length of the 

short transcripts as DSIF and NELF pause the early elongating complex in this region during 

promoter proximal pausing (Yamaguchi et al., 1999; Sims et al., 2004; Saunders et al., 2006; 

Nechaev et al., 2011).  Following treatment with TSA in the Colo201 cell line the level of short 

c-Src mRNA transcripts was found to be unaffected (Figure 4.14).  Treatment with apicidin, 

MS-275, and MGCD0103 all led to a small increase in the level of transcript production 

(Figure 4.14).  The level of short transcript production was also examined in the SW480, HT29, 

and HepG2 cell lines following TSA or apicidin treatment (Figure 4.15).  Levels were again 

found to remain very similar to that of the control with the exception of an increase in transcript 

production in the HepG2 cell line following apicidin treatment (Figure 4.15B).  Processes such 

as transcriptional arrest and productive elongation, which may account for the observed gene 

repression, are both known to be regulated through RNA Pol II phosphorylation. Therefore 

although the inhibition of a certain HDAC may be involved in the observed repression, 

alternative mechanisms including the role of phosphorylation was examined.  A possible role 

for phosphorylation is supported by the findings of HDACs commonly co-precipitating with 

various phosphotases,  as well as the research completed by Chen and colleagues showing that 

TSA but not MS-275 leads to the release of an active PP (Chen et al., 2005). 
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Figure 4.14: Short c-Src mRNA transcripts following treatment with various HDACi in the 

Colo201 cell line. Colo201 cells were treated with 1 µM of TSA or MGCD0103 or 2 µM 

apicidin or MS-275 for the indicated time periods. Following RNA isolation qRT-PCR was 

completed for the c-Src mRNA transcript. Data representative of at least four independent 

experiments. Error bars represent standard deviation of at least three replicates.  
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Figure 4.15: Short c-Src mRNA transcripts following treatment with TSA and apicidin in the 

SW480, HT29, and HepG2 cell lines. Cells were treated with either (A) 1µM of TSA or (B) 2 

µM apicidin for the indicated time periods. Following RNA isolation qRT-PCR was completed 

for c-Src mRNA. Data representative of at least four independent experiments. Error bars 

represent standard deviation of at least three replicates.  
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4.2.4 Effect of Calyculin A and Fostriecin on c-Src and Bcl-xL mRNA Expression 

 To determine whether or not a protein phosphatase was involved in the repression 

following TSA/apicidin treatments, the effect of the protein phosphatase inhibitor, Calyculin A 

was examined.  The effect of Calyculin A, a PP1 and PP2A inhibitor was examined on c-Src  

and Bcl-xL mRNA transcription alone, as well as in combination with TSA and apicidin 

treatment (Figure 4.16, 4.17).   

The addition of Calyculin A to Colo201 cells treated with either TSA or apicidin led to 

a complete block in the previously observed repression of c-Src and Bcl-xL mRNA.  Further, an 

induction of mRNA was seen following treatment with the TSA/Calyculin A combination 

(Figure 4.16).  The block in repression occurred within half an hour of the Calyculin A 

addition.  Treatment of the Colo201 cells with Calyculin A alone also led to an induction of the 

c-Src and Bcl-xL mRNA levels, but at later time points than seen with the TSA/Calyculin A 

combination.  The effect of Calyculin A was also examined in the T47D cell line. The 

combination of the HDACi/Calyculin A treatment was extremely toxic to the T47D cells and 

studies could only be completed for a one hour period.   Despite having a shorter time course 

study the trend seen in the T47D cell line does mirror that seen in the Colo201 with a lower 

level of induction being observed.  Calyculin A appeared to be blocking the repression 

previously seen with both TSA and apicidin in both the Colo201 and T47D cell lines (Figure 

4.16, 4.17).  At the final time point, one hour, the expression of both c-Src and Bcl-xL mRNA 

was back to that of control levels.  Treatments involving only Calyculin A led to an increase in 

expression of both c-Src and Bcl-xL mRNA (Figure 4.16, 4.17).  The effects seen with TSA and 

apicidin were again compared to the effects of MS-275 and MGCD0103, which did not repress 

c-Src or Bcl-xL mRNA, in the presence of Calyculin A in the Colo201 cell line (Figure 4.18).  

Following the addition of Calyculin A the level of c-Src and Bcl-xL mRNA increased to a 

higher level that seen with the HDACi treatments alone, but lower than the treatment with only 

Calyculin A. 

A second PP inhibitor, Fostriecin, was also examined to determine if it had a similar 

effect to what was seen with Calyculin A.  Fostriecin is reported to be specific against PP2A 

and PP4 (Honkanen and Golden, 2002).  As before the effect of Fostriecin on TSA and apicidin 

responses in the Colo201 and T47D cell line was examined (Figure 4.19, 4.20).  In Colo201 

cells Fostriecin was found to also block the repression of the c-Src and Bcl-xL mRNA 
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Figure 4.16:  Expression of (A) c-Src and (B) Bcl-xL mRNA following treatment with TSA, 

apicidin, and Calyculin A in the Colo201 cell line.  Colo201 cells were treated with either 1 µM 

TSA or 2 µM apicidin for the indicated time periods. Calyculin A was introduced to some of 

the cells at the half hour time point shown by the arrow at a concentration of 50 nM. Following 

RNA isolation qRT-PCR was completed. Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.   
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Figure 4.17:  Expression of (A) c-Src and (B) Bcl-xL mRNA following treatment with TSA, 

apicidin and Calyculin A in the T47D cell line.  T47D cells were treated with either 1 µM TSA 

or 2 µM Apicidin for the indicated time points. Calyculin A was introduced to some of the cells 

at the half hour time point shown by the arrow at a concentration of 50 nM. Following RNA 

collection Real Time PCR was completed. Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.  



73 
 

 

 

Figure 4.18: Expression of (A) SRC and (B) Bcl-xL following treatments with MS-275, 

MGCD0103, and Calyculin A.  Colo201 cells were treated with either 1 µM MGCD0103 or 2 

µM MS-275 for the indicated time periods. Calyculin A was introduced to some of the cells at 

the half hour time point shown by the arrow at a concentration of 50 nM. Following RNA 

isolation qRT-PCR was completed. Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.  
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Figure 4.19: Expression of (A) c-Src and (B) Bcl-xL mRNA following treatment with TSA, 

apicidin, and Fostriecin in Colo201 cell line.  Colo201 cells were treated with either 1 µM TSA 

or 2 µM apicidin for the indicated time periods. Fostriecin was introduced to some of the cells 

at the half hour time point shown by the arrow at a concentration of 50 nM. Following RNA 

isolation qRT-PCR was completed. Data representative of at least two independent 

experiments. Error bars represent standard deviation of at least three different replicates.  
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Figure 4.20:  Expression of (A) c-Src and (B) Bcl-xL mRNA following TSA, apicidin and 

Fostriecin in the T47D cell line.  T47D cells were treated with either 1 µM TSA or 2 µM 

apicidin for the indicated time periods. Fostriecin was introduced to some of the cells at the half 

hour time point shown by the arrow at a concentration of 50 nM. Following RNA isolation 

qRT-PCR was completed. Data representative of at least two independent experiments. Error 

bars represent standard deviation of at least three different replicates.  
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following treatment with TSA and apicidin (Figure 4.19 A and B).  Fostriecin not only blocked 

the previously observed repression, but like Calyculin A, actually led to an induction of both 

genes with certain HDACi treatments.  Fostriecin treatments alone led to the induction of both 

the c-Src and Bcl-xL mRNA.   Results in the T47D cell line supported the data collected in the 

Colo201 cell line.  Fostriecin was found to again block the repression normally observed with 

both TSA and apicidin (Figure 4.20 A and B).  Fostriecin not only blocked the repression 

allowing expression levels to return to that of the control state, but also lead to their induction.   

 

4.2.5 Effect of Calyculin A on RNA Polymerase II Occupancy at the SRC Gene 

 The effect of HDACi and Calyculin A on RNA Pol II occupancy was next examined at 

the SRC 3’ region using a ChIP approach.  Colo201 cells were treated with either MS-275 or 

TSA with Calyculin A being added half an hour after the addition of the HDACi.  Following 

the addition of Calyculin A, to cells treated with either TSA or MS-275, the level of RNA Pol 

II occupancy increased in the 3’ region of the SRC gene (Figure 4.21).  The addition of 

Calyculin A reversed the loss of occupancy previously observed following TSA treatment, with 

occupancy returning close to that of the control (Figure 4.21).  Treatments with MS- 275 alone 

did not lead to a loss of RNA Pol II occupancy in the 3’ region, as previously observed, but 

upon the addition of Calyculin A the level of occupancy increased even further with levels 

reaching seven fold that of the control samples. 

 

4.2.6 Effect of Calyculin A and Histone Deacetylase Inhibitors on Akt Phosphorylation 

 Results of studies presented in this thesis suggest that class I specific HDACi have 

differential effects on c-Src and Bcl-xL mRNA expression.  The mechanism behind the 

observed mRNA repression appears to be potentially related to promoter proximal pausing as 

supported by short c-Src mRNA transcripts remaining unaffected by HDACi treatments which 

lead to repression of the full length transcript.  Further support for the involvement of promoter 

proximal pausing involves the finding of Calyculin A and Fostriecin blocking the previously 

observed repression.  This finding is significant as promoter proximal pausing is known to be 

regulated through phosphorylation.  The PP experiments are further supported by work  
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Figure 4.21: RNA Polymerase II occupancy at the SRC 3’ region following addition of 

Calyculin A.  Colo201 cells were treated with either 1 µM TSA or 2 µM MS-275 for the 

indicated time periods. Calyculin A was introduced to some of the cells at the half an hour time 

point shown by the arrow at a concentration of 50 nM. Following cell collection Chromatin 

Immunoprecipitation assays were completed using an anti-RNA Pol II antibody. Data 

representative of at least two independent experiments. Error bars represent standard deviation 

of at least three different replicates.  
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completed by Chen and colleagues which showed that a PP is released from a HDAC/PP 

complex following treatment with TSA, but not following treatment with MS-275 (Chen et al., 

2005). In these studies it was also reported that the PP released acts on the Akt protein within 

48 hours of being liberated from the HDAC/PP complex (Chen et al., 2005).  Although the data 

presented here is, in general, consistent with that of Chen et al. (1995), the timing of the effects 

observed following putative release of PP is different.  In the work completed by Chen and 

colleagues, the released PP acted on the Akt protein in 48 hours, while in studies presented in 

this thesis, affects of the PP can be seen as early as fifteen minutes.  However the ultimate 

substrates examined are different.  Therefore, the level of Akt phosphorylation was examined 

following various HDACi treatment as a method to monitor the activity of PP in the cell.  The 

following Western blots examining the level of Akt phosphorylation were completed by an 

undergraduate student, Robert Laprairie, working under my supervision. The level of Akt 

phosphorylation was examined in the Colo201 cell line following treatment with all four of the 

HDACi, the two PP inhibitors, as well as HDACi and PP inhibitors in combination. 

The level of Akt protein, assessed visually, was unchanged following treatment with all 

four of the HDACi tested (Figure 4.22 A-D).  In contrast, the level of Ser 473 phosphorylation 

of Akt (p-Akt), a modification necessary for Akt activity, was found to decrease following 

treatment with TSA and apicidin (Figure 4.22 A-B).  It is very interesting to note that the level 

of Ser473 decreases within fifteen minutes of HDACi treatment.  This is the same time frame 

that was required for both TSA and apicidin to represses c-Src and Bcl-xL mRNA expression 

(Figures 4.1, 4.3), as well as the time required for Calyculin A and Fostriecin to block the 

repression normally seen with TSA and apicidin (Figure 4.16, 4.17,  4.19, 4.20).  Cells which 

were treated with MS-275 showed a slight decrease of p-Akt at the fifteen minute mark with 

levels returning to that of the control and increasing by one hour (Figure 4.22 C).  Therefore 

following MS-275 treatment there is actually a transient increase in p-Akt levels.  The level of 

p-Akt also increased following treatment with MGCD0103 (Figure 4.22 D). Unlike MS-275 

there was no transient decrease in p-Akt levels.   

Colo201 cells were also treated with Calyculin A and Fostriecin alone to determine 

what effect if any they may have on Akt phosphorylation.  Calyculin A led to an increase in the 

level of p-Akt, while the level of Akt remained consistent across the time course (Figure 4.23 

A).  This suggests that either PP1 or PP2A alters the level of Akt phosphorylation.   
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Figure 4.22: Akt Ser473 phosphorylation following treatment with (A) TSA (B) apicidin, (C) 

MS-275 and (D) MGCD0103. Colo201 cells were treated with either 1 µM of TSA or 

MGCD0103 or 2 µM apicidin or MS-275 for the indicated time points. Following cell 

collection Western blotting was performed using an anti-Akt and anti-phosphoSer473Akt 

antibodies. Data representative of two independent experiments.  
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Figure 4.23: Akt Ser473 phosphorylation following treatment with (A) Calyculin A or (B) 

Fostriecin.  Colo201 cells were treated with 50 nM of either Calyculin A or Fostriecin 

beginning at the 30 minutes time point. Following cell collection Western blotting was 

performed using an anti-Akt and anti-phosphoSer473Akt antibodies. Data representative of at 

least two independent experiments. 
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Surprisingly, Fostriecin alone had little effect on the level of Akt phosphorylation (Figure 4.23 

B) suggesting that the PP inhibited by Fostriecin do not target Akt. 

The effect of the TSA and apicidin in combination with the two PP inhibitors was then 

examined in the Colo201 cell line.  Treatments with TSA and apicidin both led to a decrease in 

the p-Akt as previously seen, but following the addition of Calyculin A the level of 

phosphorylation increased markedly in both treatment groups (Figure 4.24 A and B).  When 

Calyculin A was replaced with Fostriecin, although a decrease in the level of p-Akt was again 

observed with both TSA and apicidin alone, no increase in p-Akt was observed following the 

PP inhibitor addition (Figure 4.25A and B).  Therefore although both PP inhibitors are capable 

of blocking c-Src and Bcl-xL mRNA repression, it appears that only Calyculin A is capable of 

preventing the loss of Akt phosphorylation. 
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Figure 4.24: Akt Ser473 phosphorylation following treatment with TSA or apicidin with 

Calyculin A.  Colo201 cells were treated with either 1 µM of (A) TSA or 2 µM (B) apicidin for 

the indicated time points. Calyculin A was added at the half an hour time point to some of the 

cells at a concentration of 50 nM.  Following cell collection Western blotting was performed 

using an anti-Akt and anti-phosphoSer473Akt antibodies. Data representative of at least two 

independent experiments.  
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Figure 4.25: Akt Ser473 phosphorylation following treatment with TSA or apicidin and 

Fostriecin. Colo201 cells were treated with either 1 µM of (A) TSA or 2 µM (B) apicidin for 

the indicated time points. Fostriecin was added at the half an hour time point to some of the 

cells at a concentration of 50 nM.  Following cell collection Western blotting was performed 

using an anti-Akt and anti-phosphoSer473Akt antibodies. Data representative of at least two 

independent experiments.  
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5. DISCUSSION 

Previous work completed in the Bonham lab has shown that the repression of c-Src 

mRNA following HDACi treatment was a direct effect occurring at both of the SRC promoters 

(Kostyniuk et al., 2002).  In addition to the direct transcriptional repression, the Bonham lab 

had shown that histone acetylation as well as RNA Pol II occupancy increases in the promoter 

region following HDACi treatment, while RNA Pol II occupancy decreases in the distal regions 

of the gene (Ellis, 2007).  In addition to examining the effect of HDACi on c-Src mRNA, the 

Bcl-xL locus was also examined.  Bcl-xL has been shown throughout the literature to also be 

down regulated following HDACi treatment, and shares common promoter elements with SRC, 

both of which lack a TATA box but contain Inr elements (Fujio et al., 1997; Adams and Cory, 

1998; Chen et al., 2000; Haiji et al., 2008).  In an attempt to determine whether the observed 

repression was dependent on inhibition of a particular HDAC, a variety of HDACi with varying 

class I specificities were examined.  

 

 

5.1 Inhibition of HDAC3 may play a role in the Histone Deacetylase Inhibitor Mediated 

Repression of c-Src and Bcl-xL mRNA 

 The mechanism by which HDACi act to reprogram gene expression is currently 

unknown.  Microarray data has shown that between 2 and 20% of genes are affected by 

HDACi, and that of the genes affected an equal number are induced as are repressed (Bolden et 

al., 2006; Dokmanovic et al., 2007; Marks and Xu, 2009).  Previous studies completed in the 

Bonham lab using HDACi and cyclohexamide, which blocks protein translation, have shown 

that the repression seen following TSA and apicidin treatment occurs through a direct effect on 

the SRC and BCL2L1 genes (Bonham, personal communication).  Therefore whether there was 

selectivity for which HDAC must be inhibited for the observed repression to occur was 

examined.  

 The studies presented here suggest that HDAC3 may be playing an important role in 

the HDACi mediated repression of c-Src and Bcl-xL mRNA.  This conclusion is drawn from 

the fact that the HDACs inhibited by both TSA and apicidin, includes HDAC3, and both 

HDACi led to the repression of c-Src and Bcl-xL mRNA.   
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In contrast, MS-275 and MGCD0103, which do not target HDAC3, were unable to repress 

mRNA levels.  In addition to repressing the mRNA level of the genes examined, TSA and 

apicidin were also found to lead to a large induction of p21
WAF1

 mRNA as was expected, 

indicating that HDAC inhibition is occurring.  In comparison, MS-275 and MGCD0103 did not 

lead to the large induction of p21
WAF1

 mRNA that is expected of HDAC inhibitors.   

The lack of the expected induction of p21
WAF1

 mRNA by MS-275 and MGCD0103 

suggested minimal HDAC inhibition and that a larger dose of the two synthetic inhibitors may 

be required.  Although a larger induction of p21
WAF1 

mRNA was seen at higher concentrations, 

no repression was observed in either c-Src or Bcl-xL mRNA.  Therefore the lack of repression 

was not due to a dosage problem, but the two synthetic inhibitors were simply unable to repress 

c-Src and Bcl-xL mRNA; lending further support to the hypothesis that these two inhibitors are 

unable to repress the examined genes due to their HDAC specificities. 

When comparing the levels of induction and repression observed with the tested 

HDACi a large amount of variability was seen.  This variability could be attributed to both cell 

line and gene variability.  Each gene may in fact contain its own combination of HATs and 

HDACs in the promoter regions.  The same can be said for the same gene when comparing cell 

line to cell line.  Therefore, a varying combination of HATs and HDACs at the promoter region 

could account for the variability in the level of repression and induction observed throughout 

the above experiments.  To further confirm the HDACi were functioning as expected within the 

cell, the level of histone acetylation following the four HDACi treatments was next examined.  

 

5.2 Histone Deacetylase Inhibitors Lead to an Increase in Promoter Histone Acetylation 

HDACi are generally thought to act by disrupting the balance of acetylation of histone 

and non histone targets in the cell leading to changes in gene expression.  However work 

presented in this thesis has revealed a differential effect of some of these inhibitors on SRC and 

BCL2L1 expression. Therefore the effect of these drugs on SRC and BCL2L1 promoter histone 

acetylation was examined.  Increased histone acetylation at the promoters of the SRC and 

BCL2L1 genes was seen following treatment with all four HDACi (Figures 4.7, 4.8, 4.9, 4.10), 

despite the fact the full length c-Src and Bcl-xL mRNA transcripts were repressed by treatment 

with TSA and apicidin (Figures 4.1, 4.3).  This indicates that despite the effect of HDACi on 
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gene expression, all HDACi do in fact disrupt the balance between HDAC and HATs, leading 

to the increased promoter histone acetylation observed.  This lends support to the idea that the 

mechanism(s) behind HDACi actions in the cell are much more complex than altered 

acetylation levels, and further investigation into the mechanism behind this class of drugs is 

required.  

 

5.3 Differential Effect of Histone Deacetylase Inhibitors on RNA Polymerase II 

Occupancy  

 While all HDACi examined were found to have a similar effect on promoter histone 

acetylation, only TSA and apicidin lead to a decrease in c-Src and Bcl-xL mRNA expression.  

To differentiate the mechanism behind the different HDACi, the level of RNA Pol II 

occupancy was examined in the promoter regions of SRC and BCL2L1, as well as in the 3’ 

regions of both genes.  Results of the RNA Pol II occupancy studies revealed that levels 

remained stable or increased in the promoter regions of the genes examined (Figures 4.11, 4.12, 

4.13).  This finding, along with result of the histone acetylation studies, suggests that an 

increase in gene expression should be seen.  Since this is not the case, the mechanism of 

repression must be occurring outside of the promoter region, as effects in this region favour 

transcription.   

Further support for a mechanism of repression occurring outside the promoter region 

can be seen in the results of the RNA Pol II occupancy experiments looking at the 3’ regions of 

the two genes.  RNA Pol II occupancy remains in the promoter region, but is lost rapidly in the 

3’ regions, suggesting that somewhere between the promoter and the 3’ region something is 

occurring leading to the loss of RNA Pol II, and subsequent mRNA repression.  This concept is 

further supported by the finding of TSA leading to both a loss of RNA Pol II occupancy in the 

3’ regions as well as repression of c-Src and Bcl-xL mRNA, while with MS-275, which was 

unable to repress c-Src and Bcl-xL mRNA, no loss of RNA Pol II occupancy was observed in 

the 3’ region.  Thus, TSA and apicidin appear to be acting through an additional effect, which 

leads to the loss of downstream RNA Pol II occupancy and subsequent gene repression. MS-

275 and MGCD0103 do not act through this additional effect, and therefore no gene repression 

is seen.  The question then becomes how are TSA and apicidin leading to the loss of RNA Pol 
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II occupancy? Two possible causes of this loss include a block in productive elongation, 

preventing RNA Pol II from reaching the 3’ region, and premature termination.  Either one of 

these two situations would explain the maintained or increase RNA Pol II occupancy found in 

the promoter region, as well as the loss of occupancy in the 3’ region.  If the mechanism behind 

the loss of RNA Pol II occupancy involved premature termination, TSA and apicidin may be 

leading to the dissociation of RNA Pol II from the SRC and BCL2L1 genes. Premature 

termination has been shown to occur independent of the 3’poly A tail sequence, but only in 

yeast (Chakraborty et al., 2002).   

 Based upon the lack of evidence outside of yeast supporting premature termination as 

the mechanism behind the RNA Pol II occupancy loss, the more likely explanation may involve 

a block in productive elongation. The finding of short c-Src mRNA transcripts being unaffected 

by HDACi treatment (Figures 4.14, 4.15) which lead to the repression of the full length mRNA 

(Figures 4.1, 4.3) lends further support to the mechanism involving a block in productive 

elongation.  When RNA Pol II arrests, short transcripts that have been produced are rapidly 

degraded, but when there is a block in productive elongation, such as through promoter 

proximal pausing; short transcripts remain in the cell and are not degraded (Adelman et al., 

2009; Fujita and Schlegel, 2010).  Promoter proximal pausing has been shown to occur at 

multiple gene loci in the human genome, especially that of early response genes, as a 

mechanism to allow for quick induction of gene expression (Fujita and Schlegel, 2010).  It is 

plausible, that this system could also work in the reverse; taking an active gene and converting 

it back to a paused state.  Further support for the involvement of promoter proximal pausing, 

comes from the fact that RNA Pol II is normally found to be stalled anywhere between the +20 

and +100 range (Yamaguchi et al., 1999; Sims et al., 2004; Saunders et al., 2006; Nechaev et 

al., 2011).  Therefore the continued production of short 100 nucleotide c-Src transcripts does fit 

with the model of SRC repression through promoter proximal pausing.  Further support for a 

mechanism involving promoter proximal pausing can also be found in the results of the PP 

inhibitor experiments.  
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5.4 Repression of c-Src and Bcl-xL mRNA Following Histone Deacetylase Inhibitor 

Treatment may be Controlled by Phosphorylation 

Results of experiments completed in this thesis have not only revealed a much more 

complicated HDACi mediated mechanism of mRNA repression, but have also suggested that 

the mechanism may not be dependent on the HDAC inhibitors specificity.  Experiments 

completed with PP inhibitors (Calyculin A and Fostriecin) suggest that the mechanism may 

involve phosphorylation, as the addition of the PP inhibitor was able to block the observed gene 

repression and loss of RNA Pol II occupancy in the 3’ region of the genes (Figure 4.16, 4.17, 

4.19, 4.20, 4.21).  Work by Chen and colleagues (2005) has shown that TSA, but not MS-275, 

is able to disrupt an HDAC/PP complex leading to the release of a free PP.  This finding as well 

as results from experiments in this thesis lends support to a new hypothesis involving TSA and 

apicidin leading to the disruption of an HDAC/PP complex leading to the release of a free PP.  

The released PP acts on various factors leading to a paused RNA Pol II possibly through 

promoter proximal pausing. 

  Factors important in promoter proximal pausing such as NELF and DSIF are known to 

be regulated through phosphorylation (Wade et al., 1998; Ivanov et al., 2000).  Therefore, 

through the activation of the PP, NELF may become dephosphorylated, allowing it to bind to 

the promoter regions, where as in the phosphorylated state it cannot. The removal of a 

phosphate from DSIF has also been shown to switch DSIF from a positive elongation factor to 

a negative one (Zhu et al., 2007).  Therefore if a PP is released by certain HDACi treatments, it 

could act on regulatory factors such as DSIF and NELF, converting RNA Pol II to a paused 

state.  The paused RNA Pol II would then only produce short transcripts and would not be able 

to move into full productive elongation.  Therefore a decrease in RNA Pol II occupancy at the 

3’ region of affected genes would be observed.  MS-275 and MGCD0103 are unable to disrupt 

the HDAC/PP complex and therefore RNA Pol II remains active.  This new hypothesis also 

suggests that despite the four HDACi having overlapping specificities it is not their ability to 

inhibit a specific HDAC that is important, but their ability to disrupt an HDAC/PP complex.  

This new hypothesis also presents the idea that the gene repression may be reversible, and that 

phosphorylation and not acetylation may play a role in HDACi mediated mRNA repression. 

  To further determine the possible role of a PP, the level of Akt phosphorylation was 

examined as a marker of PP activity within the cell.  Treatments with TSA and apicidin alone 
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both led to a decrease in the level of Ser 473 phosphorylation, supporting the idea of increased 

PP activity following the two treatments.  The level of Ser473 phosphorylation was unaffected 

or even increased slightly after treatment with MS-275 and MGCD0103, consistent with only 

certain HDACi activating PP.  Calyculin A alone, led to an increase in the level of Ser 473 

phosphorylation, and also blocked the loss of Ser 473 phosphorylation when combined with 

TSA or apicidin (Figures 4.23, 4.24).  Treatments with Fostriecin however, did not lead to an 

increase in Ser473 phosphorylation either alone (Figure 4.23) or in combination with either 

TSA or apicidin (Figure 4.25).  This was unexpected since Fostriecin was able to block the 

repression of c-Src and Bcl-xL mRNA following HDACi treatment (Figures 4.19, 4.20). 

Therefore, it may be that Fostriecin is capable of inhibiting the PP activated by TSA and 

apicidin treatment allowing it to block the repression seen at the SRC and BCL2L1 genes; but 

the phosphorylation of Akt at Ser473 is not Fostriecin sensitive.  Both PP1 and PP2A are 

dependent on the recruitment of a regulatory subunit for their activity and subcellular location 

(Shi, 2009).  Therefore it may be that the activated PP, be it PP1 or PP2A, recruits different 

regulatory subunits to act at the promoters of SRC and BCL2L1, than to target Akt 

dephosphorylation. In such a case, Calyculin A is capable of inhibiting both forms of the 

activated PP, while Fostriecin may not be capable of inhibiting the PP bound to the regulatory 

subunits associated with Akt dephosphorylation.   

In summary, the following model for HDACi mediated repression of the SRC and 

BCL2L1 genes is proposed.  All four HDACi act through binding to one or more HDAC, 

supported by the fact that promoter histone acetylation as well as RNA Pol II occupancy  

remain near control levels or increases following HDACi treatment.  Based upon these findings 

an increase in the target gene expression would be expected, and is in fact seen with the MS-

275 and MGCD0103 treatments.  However, TSA and apicidin interact with and are able to 

disrupt a putative HDAC/PP complex. Binding of these inhibitors releases an active Calyculin 

A/Fostriecin sensitive PP, through disruption of the HDAC/PP complex.  This mechanism is 

supported by the findings that PP inhibitors are capable of blocking the loss of RNA Pol II 

occupancy from the 3’ regions of genes and the subsequent mRNA repression.  The PP released 

by TSA and apicidin treatments, acts directly or indirectly through an unknown effect, 

proposed to involve promoter proximal pausing.  If promoter proximal pausing is involved, the 

released PP may be acting on regulatory factors such as NELF and DSIF.  Dephosphorylation 
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of NELF will allow it to bind in the promoter region of the genes involved and associated with 

DSIF.  On dephosphorylation, DSIF acts as a negative elongation factor, where as in its 

phosphorylated form it acts as a positive elongation factor  (Hirose and Manley, 2000; Sims et 

al., 2004; Zhuoyu, et al., 2008; Brookes et al., 2009).  These two factors together bring about 

promoter proximal pausing making RNA Pol II incapable of productive elongation, and mRNA 

repression occurs.  Under such a situation PP released following TSA/apicidin treatment will 

facilitate SRC and BCL2L1 genes conversion from an active transcribing state to a paused 

state, capable only of producing short transcripts (Figure 5.1). 

 

5.5 Scope and Significance 

HDACi represent a new group of chemotherapeutic agents, which have been shown to 

regulate the level of gene expression. Through the regulation of gene expression, HDACi 

prevent tumour growth, as well as lead to the induction of cell differentiation and apoptosis.  

HDACi are now in clinical use and have been shown to be very promising agents. It is 

therefore increasingly important to determine their mechanism of action in the cell. It was 

previously believed that HDACi functioned simply by increasing the level of histone 

acetylation within the cell, leading to an overall increase in gene expression.  This thesis 

provides evidence that certain HDACi act through an additional effect, not directly related to 

HDACi inhibition, which leads to the repression of c-Src and Bcl-xL mRNA.  This additional 

effect has been shown to involve a phosphorylation event, which is thought to occur by HDACi 

mediated disruption of an HDAC/PP complex.  The released PP acts through an unknown 

downstream effect, thought to involve promoter proximal pausing, resulting in gene repression.  

With the use of PP inhibitors, this repression can be reversed.  

The finding of only certain HDACi having the ability to repress genes such as SRC and 

BCL2L1 may become clinically relevant. When comparing drug such as apicidin to MS-275, 

both currently in clinical trials, both are able to up-regulate genes such as p21WAF1 making 

them valuable clinical tools in cancer treatment.  However, the ability of apicidin to also down 

regulate gene expression could be of additional clinical value.  Cancer of the colon and breast 

have both been shown to not only over express the SRC gene, but the level of over expression  
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Figure 5.1: Proposed model of HDACi mediated repression at the SRC and BCL2L1 genes. 

TSA and apicidin have an additional effect which leads to the disruption of an HDAC/PP 

complex. This disruption leads to the release and activation of a phosphatase, which acts on 

RNA Polymerase II or some other factor leading to RNA Polymerase II becoming stalled on 

the genes. By blocking the active phosphatase with Calyculin A/Fostriecin RNA Polymerase II 

remains active and the repression is prevented rescuing expression of the genes.  
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has been shown to be an important prognostic indicator (Fleming et al., 2004; Myers et al., 

2004; Lieu and Lopez, 2010).  Therefore a drug such as apicidin may be of more value and lead 

to better clinical outcomes than MS-275, which has been shown to be unable to repress the 

SRC or BCL2L1 gene.  The possible advantage that some HDACi may hold clinically over 

others makes research into the mechanism of action behind this additional effect even more 

crucial.  
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6. CONCLUSIONS AND FUTURE STUDIES 

 HDACi are a new group of chemotherapeutic agents which have received a great deal 

of attention due to their ability to stimulate cell cycle arrest, differentiation and apoptosis of 

cancerous cells, while leaving normal cells unaffected (Ma et al., 2009).  HDACi such as 

Vorinostat (Zolina, SAHA) have already entered the clinics, with many new inhibitors entering 

clinical trials being tested on their own or in combination with other approved treatments.  

 In this thesis, experiments have shown that only certain HDACi, including TSA and 

apicidin, are capable of decreasing expression of both the SRC and BCL2L1 genes in a variety 

of human tumor lines including colon, breast, and hepatic carcinoma cells.  This repression has 

been previously shown to occur without new protein synthesis (Bonham, personal 

communication).  Despite only certain HDACi being able to reduce gene expression, all four 

HDACi examined were shown to increase the acetylation of histones at the promoters of both 

the SRC and BCL2L1 genes.  This suggests that all of the HDACi are inhibiting one or more 

HDAC, which is also supported by the increase of RNA Pol II occupancy at the promoter 

region of both of the genes.  These finding suggest that, as previously proposed, an increase in 

gene expression should be seen. Such an effect was seen with MS-275 and MGCD0103 

treatments.   

 The ability of certain HDACi to repress gene expression appears to be occurring 

through an additional effect.  Based on the findings of histone acetylation and RNA Pol II 

occupancy in the promoter regions, it appears that these genes are originally active, but due to 

the second effect, the genes enter a paused state, allowing for gene repression to occur.   This 

hypothesis is supported from the finding that despite RNA Pol II occupancy being maintained 

or increase in the promoter region, it is decreased in the 3’ region following treatment with 

TSA/apicidin.  Work with the phosphatase inhibitors Calyculin A and Fostriecin, appears to 

indicate that this additional action involves the activation of a phosphatase, and may be due to 

TSA/apicidin disrupting an HDAC/PP complex, facilitating the release and activation of a PP.   

Through an unknown direct or indirect effect, the released PP dephosphorylates key residues 

such as Ser2 and Ser5 on RNA Pol II.  The PP may also act on transcription factors such as 

NELF or DSIF, allowing them to bind to target genes and stall RNA Pol II.  Through one (or 

more) of these methods, the SRC and BCL2L1 genes are converted from an active to a paused 

state.  
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To further investigate this hypothesis Chromatin Immunoprecipitation assays could be 

performed to determine the presence of Ser2 and Ser 5 phosphorylation on the CTD domain of 

RNA Pol II before, as well as after, treatments with TSA and apicidin.  These two 

modifications have been shown to be important for the transition of RNA Pol II from an 

initiation state to an active elongation state.  Therefore identification of the presence or absence 

of these post translational modifications after TSA/apicidin treatment will help determine the 

mechanism of repression.  siRNA studies could also be performed to determine which PP is 

necessary for the repression of SRC and BCL2L1 genes.  siRNA studies should be first 

attempted with PP1 and PP2A which have been shown to be involved in HDAC/PP complexes.  

Theoretically when the necessary PP is knocked down, c-Src and Bcl-xL mRNA expression 

should increase following TSA or apicidin treatments.  

Chromatin Immunoprecipitation Assays should also be completed looking at the 

H3Ser10 residue. H3Ser10 phosphorylation has been shown to control the level of chromatin 

condensation and the level of gene transcription, and has been shown to be a target for both 

PP1 and PP2A (Gurley et al., 1978; Goto et al., 1999; Prigent and Dimitrov 2003; Kinney et 

al., 2008).  Therefore based on the role that phosphorylation appears to be playing in the 

HDACi mediated gene repression, this residue may help in determining the mechanism of 

repression.  

 To further investigate whether promoter proximal pausing is involved in this 

mechanism of repression, the presence or absence of NELF can be examined at both of the 

SRC and BCL2L1 promoters, both before and after treatment with TSA and apicidin. This 

could be determined using a Chromatin Immunoprecipitation approach.  If in fact NELF is 

found to be present at the promoters after TSA/apicidin treatment but not before, it would 

suggest that promoter proximal pausing is involved, and that the activated PP may play a role 

in switching the genes to a paused state.  The presence of NELF at a promoter is generally 

acceptable evidence that a gene is experiencing promoter proximal pausing.  In further support 

of this idea the presence of DSIF in a phosphorylated or un-phosphorylated from could be 

determined using a Chromatin Immunoprecipitation approach before and after treatment with 

TSA and apicidin.  

 An attempt should also be made to try and determine the specificity of this mechanism 

of repression, to try and determine why it is seen at genes such as SRC and BCL2L1, but not 
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p21
WAF1

.  Promoter proximal pausing utilizes general transcription factors; therefore why only 

certain genes are targeted for promoter proximal pausing is of great interest.  This specificity 

may in fact come from common elements within the promoter regions of the genes repressed.  

For example, both the SRC and BCL2L1 genes lack a TATA box, but contain an Initiator 

element.  It has also been suggested that both promoter regions contain a GAGA element. 

Therefore, through the investigation of common promoter elements of repressed genes the 

mechanism of specificity may be elucidated.  

 The area of HDACi research has undergone a great deal of change in the past fifteen 

years and will continue to evolve due to their growing importance in the field of cancer.  As 

HDACi gain momentum with more inhibitors being approved for clinical use determination of 

their mechanism of action becomes more and more important.  Originally known for their anti-

tumor effects by changing gene expression through histone hyperacetylation, this thesis reveals 

that HDACi are much more complex than originally thought. HDACi are anti-cancer 

compounds which act through multiple mechanisms to control gene regulation.  These 

mechanisms ultimately work together to prevent tumor growth, as well as to facilitate cellular 

differentiation and apoptosis.  
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