Phosphorus export as influenced by placement method in two contrasting sites in south-central Saskatchewan

J.T. Wiens, B. Weiseth, B.J. Cade-Menun, J.J. Schoenau

P Placement

- Most P placed in-soil
 - Plant access
 - Low quantities
- Broadcast considered for higher rates of P application
 - Speed of application
 - Replenish soil P after large crop
- Want to maximize crop P uptake and minimize off-site export in water, limit environmental effect

P Runoff

- Concern of P runoff due to eutrophication
- P loss usually agronomically negligible (< 1 kg P / ha)</p>
 - Load from watershed can create concern for concentrations in surface waters
- Research conducted primarily on manure, little information on inorganic amendments
 - What research has been done in other jurisdictions suggests in-soil P placement is better in reducing P export in water.

Experimental Design

Combination of 2 M.Sc. Projects : Blake Weiseth , Jordan Wiens

2 field sites at Central Butte

- **CT** 2014, soybean (Weiseth study)
 - ▶ No P fertilizer added, low P levels
 - Conventional tillage past 25 years, wheat-tillage fallow
- NT-2015-16, wheat ('15) canola ('16) (Wiens study)
 - > P fertilizer added to recommended rates (~20 kg P_2O_5 ha⁻¹ y⁻¹), moderate P levels
 - No-till, pea-wheat-canola continuous crop

Experimental Design

RCBD

- 4 replicates at each site
- 4 placement strategies
 - $\blacktriangleright \text{ seed placed} \qquad 20 \text{ kg } P_2 O_5 \text{ ha}^{-1}$
 - $\blacktriangleright \text{ deep banded} \qquad 20 \text{ kg } P_2 O_5 \text{ has}$
 - broadcast with incorporation 20 kg
 - broadcast at 3 rates:
- 20 kg P₂O₅ ha⁻¹
- n 20 kg P_2O_5 ha⁻¹
 - 20, 40, 80 kg P₂O₅ ha⁻¹

Experimental Design

Data collection

- Yield and crop P uptake
- Post-harvest extractable P
- Simulated snowmelt
 - Fractionated into P pools in 2016, not replicated, analyzed with NMR
 - Replicated in 2014

Results

Figure 1:Mean (n=4) above ground P uptake at NT site for wheat (2015) and canola (2016). P treatments: C: Control (no P); SP: Seed-placed (20 kg P_2O_5 ha⁻¹); DB: Deep band (20 kg P_2O_5 ha⁻¹); B/I: Broadcast with incorporation (20 kg P_2O_5 ha⁻¹); B(20): Broadcast (20 kg P_2O_5 ha⁻¹); B(40): Broadcast (40 kg P_2O_5 ha⁻¹); and B(80): Broadcast (80 kg P_2O_5 ha⁻¹). For each crop, column means with the same letter are significantly different (*p*<0.05) using Tukey's HSD.

Results

Dissolved Inorganic P in Simulated Snowmelt Runoff at CT ('14) and NT ('15,'16) Sites

Fig. 2. Mean (n=4) dissolved molybdate-reactive phosphorus (DMRP) export as a function of fertilizer P application method and rate in a simulated snowmelt runoff experiment. The value above each bar represents mean concentration in the runoff (mg L⁻¹) of dissolved P_i in the runoff water collected. Error bars represent the standard error of the mean. Means with different letters are significantly different (Tukey's HSD, p < 0.05)

Results

Table 1: Distribution of P among forms in snowmelt runoff water from the NT site as determined by quantitative ³¹P NMR. The upper portion of the table shows percentage composition while the lower portion of the table provides the concentration of the compound category in the runoff.

Treatment [†]	Fraction	P _i	P _o	Polyphosphate	IHP	Monoester	Diester	M:D	C Monoester [‡]	C Diester	Deg	cM:D
							%					
Control	Dissolved	85.0	15.0	3.0	4.0	12.0	1.5	8.0	8.7	4.8	3.3	1.8
	Particulate	46.5	53.5	10.6	7.2	44.3	7.1	6.2	18.9	32.5	25.4	0.6
SP	Particulate	45.2	54.8	11.8	4.6	40.2	13.9	2.9	14.1	40.0	26.1	0.4
B(80)	Particulate	52.8	47.2	8.4	5.4	33.9	12.6	2.7	13.9	32.6	20.0	0.4
Treatment	Fraction	P _i	Po	Polyphosphate	IHP	Monoester	Diester	M:D	C Monoester	C Diester	Deg	cM:D
							mg P L ⁻¹					
Control	Dissolved	0.170	0.030	0.006	0.008	0.024	0.003	8.0	0.017	0.010	0.007	1.8
	Particulate	0.093	0.107	0.021	0.014	0.089	0.014	6.2	0.038	0.065	0.051	0.6
SP	Particulate	0.054	0.066	0.014	0.006	0.048	0.017	2.9	0.017	0.048	0.031	0.4
B(80)	Particulate	0.164	0.146	0.026	0.017	0.105	0.039	2.7	0.043	0.101	0.062	0.4

[†] Control=no added P, SP=seed placed at 20 kg P_2O_5 ha⁻¹, B(80)=broadcast at 80 kg P_2O_5 ha⁻¹

[‡] Corrected mono- and diesters, as well as the degradation coefficient and corrected mono- to diester ratio.

Discussion

- In-soil placement better than broadcasting in reducing P export in snowmelt runoff
- No yield response to P placement at NT site
 - > Yield response at CT site
 - High crop P uptake, removal helps to address surface P loading issues from broadcasting
- Changes in form of P may be influenced by application method
 - High rate of broadcast P had higher proportion of P in dissolved reactive form
 - Increase in P of microbial origin at high application rates due to immobilization

Conclusion

- In-soil P placement preferred
 - Agronomic benefit when soil P fertility is low
 - Reduces potential for export in runoff water
 - No difference between types of in-soil placement
- Broadcast application may be used to supply increased P, but rate of application should be limited, matched to crop removal to avoid surface loading and export

Acknowledgments

Team Schoenau

Cory, Ranjan, Ben, Stephen, Lindsey, Paul, Serena, Tom, Ryan, Blake, Jing, Noabur, Nancy, Katya, Wali, Raul

Drs. Peak and Knight

Funding Agencies

Fertilizer Canada- AAFC: Agricultural Innovation Program

FERTILIZER CANADA

FERTILISANTS CANADA