

SILICON FIREWALL PROTOTYPE

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical Engineering

University of Saskatchewan

Saskatoon

by

Jin Cheng

© Copyright Jin Cheng, Spring 2004. All rights reserved.

PERMISSION TO USE

 In presenting this thesis in partial fulfillment of the requirements for a

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of

this University may make it freely available for inspection. I further agree that

permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professor or professors who supervised my thesis work

or, in their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of this

thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material in

my thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Electrical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan (S7N 5A9)

 i

ABSTRACT

 The Internet is a technological advance that provides access to information, and

the ability to publish information, in revolutionary ways. There is also a major danger

that provides the ability to corrupt and destroy information as well. When a computer is

connected to the Internet, three things are put at risk: the data storage, the computing

resources and the user’s reputation. In order to balance the advantages and risks, the

contact between a computer and the Internet or the contact between different networks

should be controlled carefully.

 A firewall is a form of protection that allows a network to connect to the Internet

or to another network while maintaining a degree of security. The firewall is an

effective type of network security, and in most situations, it is the most effective tool for

doing that.

 With the availability of larger bandwidth, it is becoming more and more difficult

for traditional software firewalls to function over a high-speed connection. In addition,

the advances in network hardware technology, such as routers, and new applications of

firewalls have caused the software firewall to be an impediment to high throughput.

This network bottleneck leads to the requirement for new solutions to balance

performance and security. Replacing software with hardware could lead to improved

performance, enabling the firewalls to handle significantly larger amounts of data.

 The goal of this project is to investigate if and how existing desktop computer

firewall technology could be improved by replacing software functionality with

hardware (i.e., silicon). A hardware-based Silicon Firewall system has been designed by

choosing the appropriate architecture and implemented using Altera FPGA (Field

Programmable Gate Array) on a SOPC (System On a Programmable Chip) Board. The

performance of the Silicon Firewall is tested and compared with the software firewall.

 ii

ACKNOWLEDGEMENTS

 I would like to express my sincere appreciation and gratitude to my supervisor,

Dr. Ron. Bolton, for his guidance, support and encouragement throughout this project

and preparation of this thesis.

 I would also like to thank the management and staff of Telecommunications

Research Laboratories (TRLabs) for providing financial assistance and the use of their

facilities during my research.

 Finally, I would like to express my special thanks to my husband, Xiang Li,

thanks for your love and patience. Also, my special thanks go to my family. My parents

have always been supportive in my education and always been there when I need them.

 iii

DEDICATION

To my parents, Guangan Cheng and Suting Yang, and my brother, Yang Cheng.

 iv

TABLE OF CONTENTS

PERMISSION TO USE i

ABSTRACT ii

ACKNOWLEDGEMENTS iii

DEDICATION iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xiii

Chapter 1 INTRODUCTION 1

1.1 Internet Security ... 1
1.1.1 Risk Types .. 1
1.1.2 Attack Types... 2

1.2 Security Models.. 3
1.2.1 Security through Obscurity... 3
1.2.2 Host Security .. 4
1.2.3 Network Security.. 6

1.3 Firewalls ... 6
1.3.1 Internet Firewalls.. 6
1.3.2 Internal Firewalls.. 8

1.4 Firewall Capability ... 9
1.5 Silicon Firewall Feasibility... 11
1.6 Research Objectives ... 11
1.7 Thesis Organization.. 11

Chapter 2 INTERNET FIREWALL SECURITY SYSTEMS 13

2.1 Security Strategies .. 13
2.1.1 Least Privilege .. 13
2.1.2 Defense in Depth .. 14
2.1.3 Choke Point .. 14
2.1.4 Weakest Link.. 15
2.1.5 Fail-Safe Stance.. 15
2.1.6 Universal Participation ... 15

 v

2.1.7 Diversity of Defense... 15
2.1.8 Simplicity ... 16

2.2 TCP (Transmission Control Protocol) /IP (Internet Protocol) Fundamentals 16
2.2.1 Introduction to TCP/IP ... 16
2.2.2 OSI (Open Systems Interconnection) Reference Model 17
2.2.3 TCP/IP Protocol Architecture... 18

2.3 Packet Filtering... 29
2.3.1 Packet Definition .. 29
2.3.2 Packet Structure.. 29
2.3.3 Packet Filtering Definition ... 30
2.3.4 Reasons for Packet Filtering... 31
2.3.5 Advantages of Packet Filtering .. 31
2.3.6 Types of Packet Filtering.. 32

Chapter 3 HARDWARE/SOFTWARE SYSTEM CODESIGN 33

3.1 Embedded System Overview ... 33
3.2 Hardware-Software Codesign .. 34
3.3 System-on-a-Chip Design .. 35
3.4 Embedded Processor PLD (Programmable Logic Device) Solutions............ 35
3.5 Altera® Excalibur™ Embedded Processor Programmable Solutions 36
3.6 Soft Core vs. Hard Core ... 37
3.7 Excalibur Workflow ... 38
3.8 Silicon Firewall System.. 39

Chapter 4 ALTERA NIOS EMBEDDED PROCESSOR 41

4.1 Nios Embedded Processor Overview ... 41
4.2 The Nios Soft Core Embedded Processor .. 42
4.3 Nios Processor and Peripherals .. 43
4.4 Nios Development Kit .. 44

4.4.1 Nios Peripheral Library .. 45
4.4.2 Development Tools .. 46

4.5 Nios Development Board ... 46
4.6 Nios Ethernet Development Kit ... 49
4.7 Nios EDK Daughter Card... 51
4.8 Plugs Library .. 52

Chapter 5 SILICON FIREWALL DESIGN 54

5.1 Introduction to CS8900A ... 54
5.1.1 General Description.. 54
5.1.2 Frame Encapsulation and Decapsulation.. 55
5.1.3 Two Basic Functions .. 56
5.1.4 CS8900A Operation Modes ... 57
5.1.5 PacketPage.. 58

 vi

5.2 Using Content-Addressable Memory as an IP Packet Filter 60
5.3 Content-Addressable Memory.. 60

5.3.1 CAM and Traditional Memory Devices... 61
5.3.2 Advantages of CAM... 62
5.3.3 Discrete CAM and Integrated CAM... 63
5.3.4 The Altcam Megafunction.. 64

5.3.4.1 Symbol.. 64
5.3.4.2 Input Pins.. 65
5.3.4.3 Output Pins ... 66
5.3.4.4 Writing Patterns into CAM .. 68
5.3.4.5 Reading from CAM.. 68

5.4 Silicon Firewall Hardware Mode ... 69
5.4.1 Source IP Address Extraction... 69

5.4.1.1 CS8900A .. 69
5.4.1.2 Source IP Address Generation.. 70

5.4.2 CAM ... 70
5.4.2.1 mfound.. 70

5.4.3 Packet Data Transfer .. 71
5.5 Silicon Firewall Software Mode... 71

5.5.1 Initialization.. 72
5.5.1.1 CS8900A Initialization... 72
5.5.1.2 CAM Initialization.. 73

5.5.2 Polling vs. Interrupt .. 73
5.5.3 Mode Switching.. 74
5.5.4 Flow Chart .. 75

5.6 Silicon Firewall Design .. 77
5.6.1 Nios System to Daughter Card Pin Map .. 77
5.6.2 System Operation ... 80
5.6.3 Pin and Register Manipulation In The Software Configurations 85
5.6.4 CS8900A Interrupt ... 88

5.6.4.1 Interrupt Activation .. 88
5.6.4.2 Interrupt Re-enable... 89

5.6.5 CS8900A and Silicon Firewall Hardware .. 90
5.7 Nios System Components... 93
5.8 Software-Hardware Switching Mechanism.. 93

Chapter 6 TESTING AND RESULTS 95

6.1 SignalTap Overview... 95
6.1.1 Functional Description ... 96

6.2 The Ethereal Network Analyzer... 99
6.3 Ping Command ... 99
6.4 Testing Methodology.. 100

6.4.1 Silicon Firewall Results.. 101
6.4.1.1 Results for an Authorized Packet ... 101
6.4.1.2 Results for Un-authorized Packet ... 105

 vii

6.4.2 Software vs. Hardware Implementations ... 105

Chapter 7 SUMMARY, CONCLUSION AND FUTURE WORK 111

7.1 Summary... 111
7.2 Conclusions .. 112
7.3 Future Work.. 113

Bibliography 115

Appendix A Block Diagram of Silicon Firewall Design 117

Appendix B CAM Initialization 118

Appendix C IP Source Address Reconstruction Module 123

Appendix D NDK Components 132

D.1 SOPC Builder System Development Tool ... 132
D.1.1 SOPC Builder Interface.. 133

D.2 Quartus II Development Software.. 141
D.3 GNUPro Toolkit Compiler and Debugger ... 141

 viii

LIST OF FIGURES

Figure 1.1 Internet Firewall .. 7

Figure 1.2 Internal Firewall .. 8

Figure 2.1 IP Datagram format... 22

Figure 2.2 Routing Through Gateways .. 23

Figure 2.3 UDP Message Format ... 25

Figure 2.4 TCP Segment Format.. 27

Figure 2.5 Data Encapsulation ... 30

Figure 3.1 The Excalibur Workflow .. 39

Figure 3.2 A Simple Diagram of The Silicon Firewall System 40

Figure 4.1 Block Diagram of the Nios Embedded Processor... 43

Figure 4.2 Nios Processor and Peripherals... 44

Figure 4.3 Nios Development Board.. 47

Figure 4.4 Nios EDK Daughter Card ... 51

Figure 4.5 Plugs Library-Supported Nios EDK Protocols ... 53

Figure 5.1 Ethernet Frame Format ... 56

Figure 5.2 Using CAM as an IP Filter.. 61

Figure 5.3 CAM vs. RAM.. 62

Figure 5.4 Symbol for The Altcam Megfunction... 65

Figure 5.5 Software Mode Flow Chart... 76

Figure 5.6 Silicon Firewall Design System.. 84

Figure 5.7 Nios Development Board With The Attached Daughter Card 84

Figure 5.8 Sequence of Events of Packet Reception.. 85

 ix

Figure 5.9 Switching Characteristics of CS8900A... 92

Figure 6.1 SignalTap Logic Analyzer .. 96

Figure 6.2 Circular Signal Capture Buffer ... 98

Figure 6.3 CAM Initialization-1... 102

Figure 6.4 Results For an Authorized Packet In Hardware Mode 103

Figure 6.5 Data Captured By Ethereal For Authorized Packets................................... 104

Figure 6.6 CAM Initialization-2... 106

Figure 6.7 Results For an Un-authorized Packet.. 107

Figure 6.8 Data Captured By Ethereal For Un-authorized Packets.............................. 108

Figure 6.9 Results of Software Firewall For an Authorized Packet (Best Case) 109

Figure 6.10 Results of Software Firewall For an Authorized Packet (Worst Case)..... 110

Figure D.1 The System Contents Page... 135

Figure D.2 The System Generation Page ... 138

 x

LIST OF TABLES

Table 2.1 Seven Layers of The OSI Basic Reference Model... 17

Table 2.2 Four Layers In The TCP/IP Protocol Architecture .. 19

Table 3.1 Component-Level Solutions for System Integration...................................... 36

Table 3.2 Excalibur Product Comparison .. 38

Table 4.1 Comparisons of Typical Nios Processor Configurations 42

Table 4.2 Nios Peripheral Library .. 45

Table 4.3 Flash Memory Configurations.. 48

Table 5.1 I/O Mode Mapping... 58

Table 5.2 The User-Accessible Portion of The PacketPage Memory 58

Table 5.3 Bus Interface Registers... 59

Table 5.4 Status and Control Registers .. 59

Table 5.5 Initiate Transmit Registers ... 59

Table 5.6 Address Filter Register ... 60

Table 5.7 Frame Location... 60

Table 5.8 Comparison of Discrete CAM & APEX CAM .. 64

Table 5.9 Input Pins of The Altcam Megafunction.. 65

Table 5.10 Output Pins of The Altcam Megafunction ... 67

Table 5.11 Nios 32-bit CPU System Module I/O Port Name and Daughter Card......... 78

Table 5.12 The Pins of CS8900A Used in The Silicon Firewall System....................... 80

Table 5.13 Switching Characteristics of CS8900A.. 91

Table 5.14 System Components of Silicon Firewall System ... 93

 xi

Table 6.1 Trigger Position.. 98

Table 6.2 Channel Trigger Patterns.. 99

 xii

LIST OF ABBREVIATIONS

ALU

ARM

ARP

ARPANET

ASIC

ASSP

AUI

Arithmetic logic unit

Advanced RISC Machines

Address Resolution Protocol

Advanced Research Projects Agency Network

Application Specific Integrated Circuit

Application Specific Standard Product

Attachment Unit Interface

BNC

British Naval Connector

CAM

Content Addressable Memory

CPU Central Processing Unit

DA

DDN

DMA

Destination Address

Defense Data Network

Direct Memory Access

DOD

DSP

EDA

EDK

EEPROM

ESB

FCS

FPGA

GERMS

Department of Defense

Digital Signal Processing

Electronic Design Automation

Ethernet Development Kit

Electrically Erasable Programmable Read-Only Memory

Embedded System Blocks

Frame Check Sequence

Field Programmable Gate Array

G—Go, E—Erase flash, R—Relocate next download,

 xiii

HDK

HDL

ICMP

IEC

IEEE

IHL

I/O

IP

IRQ

ISA

ISO

ISQ

JTAG

LAN

LCD

LE

LED

LLC

MAC

MHz

MIPS

NDK

M—Memory set and dump, S—S-records

Hardware Development Kit

Hardware Description Language

Internet Control Message Protocol

International Electrotechnical Commission

Institute of Electrical and Electronics Engineers

Internet Header Length

Input/Output

Internet Protocol

Interrupt

Industry Standard Architecture

International Organization for Standardization

Interrupt Status Queue

Joint Test Action Group

Local Area Network

Liquid Crystal Display

Logic Elements

Light-Emitting Diode

Logical Link Control

Media Access Control

Megahertz

Million Instructions Per Second

Nios Development Kit

 xiv

NEDK

NRZ

OS

OSI

PAR

PBM

PC

PCB

PCI

PHY

PIO

PLD

PMC

PROM

RAM

RFC

RISC

ROM

RTOS

SA

SDK

SDRAM

SFD

Nios Ethernet Development Kit

Non-Return to Zero

Operating system

Open Systems Interconnection

Positive Acknowledgment with Re-transmission

Peripheral Bus Module

Personal Computer

Printed Circuit Board

Peripheral Component Interconnect

Physical

Parallel Input Output

Programmable Logic Device

PCI Mezzanine Card

Programmable Read-Only Memory

Random Access Memory

Requests For Comment

Reduce Instruction Set Computer

Read Only Memory

Real-Time Operating System

Source Address

Software Development Kit

Synchronous Dynamic Random Access Memory

Start-of-Frame Delimiter

 xv

SOC

SODIMM

SOPC

SPI

SRAM

SSRAM

TCP

UART

UDP

VHDL

WAN

System-On-a-Chip

Small Outline Dual In-line Memory Module

System-On-a-Programmable-Chip

Serial Peripheral Interface

Static Random Access Memory

Synchronous Static Random Access Memory

Transmission Control Protocol

Universal Asynchronous Receiver/Transmitter

User Datagram Protocol

Very High Speed Integrated Circuit Hardware Description

Wide-Area Network

 xvi

Chapter 1 INTRODUCTION

In this chapter, the Internet security problem is introduced and different kinds of risk

types and attack types are discussed. A number of security models are presented. The

firewall is introduced as the most effective method. Finally, Silicon Firewall feasibility

and the objective of this research project are introduced.

1.1 Internet Security

The Internet is a technological advance that provides access to information, and the

ability to publish information, in revolutionary ways [1]. The benefits include, but are

not limited to, information gathering, customer service, and improved publicity. With

the rapid development of the information superhighway, millions of people are

exchanging information through the Internet.

But it’s also a major danger that provides the ability to pollute and destroy information.

This means the Internet is a two-edge sword and, because it influences millions of

people, the risks are obviously high on the Internet.

1.1.1 Risk Types

When computers are connected to the Internet, three things are put at risk:

• The data stored on the computers

• The computer system resources

• The user’s reputation

 1

a. Data Storage

1) Privacy: keeping it confidential.

2) Integrity: preventing it from being changed by other people.

3) Availability: accessing it freely.

b. Computing Resources

Computing resources will not be wasted or destroyed if they are not used, because

they are neither natural resources, nor are they limited resources. Since people spend

money and time on their computing resources, they should have the right to

determine their computers are used.

c. User’s Reputation

Sometimes an intruder appears on the Internet with another person’s identity, and

anything that is done appears to come from the stolen identity. Generally, people

who choose to do this aim for maximum impact, rather than believability. However

even if only a few people believe it, it will take a long time to clean up your

reputation, and it can be humiliating. Even if an intruder doesn’t use another

person’s identity, unauthorized access to computers is not good for any

organization, because it shakes people’s confidence in that organization. In addition,

most intruders will attempt to go from an organization they broke in to others. This

is going to make their next victim think that the breached organization is a platform

for computer criminals.

1.1.2 Attack Types

There are many types of attacks [1], and many ways of categorizing them. In this

section, the attacks are broken down into three basic categories:

 2

• Intrusion

• Denial of service

• Information theft

a. Intrusion

Intrusions are the most common attacks on systems. Intruders are actually able to

control your computers as if they were legitimate users.

b. Denial of Service

A denial of service attack is such an attack that aimed entirely at preventing you

from using your computer.

c. Information Theft

Usually these attacks exploit Internet services that are intended to give out

information, including modifications to give out more information than was

intended, or to give information to unauthorized users. The attacker can obtain

information without ever having to directly use your computers.

1.2 Security Models

There are a variety of security models to protect against the kinds of attacks outlined in

the previous section, ranging from no security through obscurity, host security, to

network security.

No security model can solve all the problems. Why bother then? Security may not

prevent every single incident, but it can keep an incident from seriously damaging or

even shutting down the whole system.

1.2.1 Security through Obscurity

With this model, a system is presumed to be secure provided nobody knows about it.

 3

This approach seldom works for long time because there are too many ways to find an

attractive target.

Many people presume that even though attackers can find them, they won’t bother to.

They think that a small company or a home machine just isn’t going to be of interest to

intruders. But the fact is that many intruders aren’t aiming at particular targets; their

purpose is just breaking into as many machines as possible. They look at small

companies and home machines as easy targets. Even if they won’t stay long, they will

attempt to break in and they may do substantial damage if they do get in as they try to

cover their tracks.

A site has to do at least a minimal amount of registration in order to function on any

network including the Internet. Intruders watch out for new connections, hoping that

these sites won’t yet have security measures in place.

The number of ways that someone can determine security-sensitive information is

amazing. For example, knowing the hardware and software and the version of the

operating system gives the intruders important clues about what security holes they

might try. They can often get this information from the host registration, or by trying to

connect to the computer. Sometime, an intruder even doesn’t need to access the

computer to get it, since many computers disclose their type of operating system in the

greeting you get before you log in.

1.2.2 Host Security

Host security probably is the most common model for computer security [1]. With this

model, the security of each host machine is enforced separately, and the effort is made

to avoid or alleviate all the known security problems that might affect that particular

 4

host. However, the host security doesn’t scale to large numbers of machines, even

though it does works on individual machines.

The complexity and diversity are the major impediment to effective host security in

modern computing environments. Machines from multiple vendors are included in most

modern environments, each with its own operating system and its own set of security

problems. Even if the site has machines from only one vendor, the security problems for

different releases of the same operating system could be significantly different. Also,

there could be a problem even if all these machines are from a single vendor and run a

single release of the operating system, since different configurations (different services

enabled, and so on) can bring different subsystems into play (and into conflict) and lead

to different sets of security problems.

Further more, even if the machines are completely identical, the sheer number of them

at some sites can make securing all of them difficult. Thus, effectively implementing

and maintaining host security takes a significant amount of upfront and ongoing work.

Even if all that work has been done correctly, host security still often fails due to bugs

in vendor software, or due to a lack of suitable software for some required functions.

Also, host security relies on both the good intentions and the skill of everyone who has

privileged access to any machine. With the increasing number of machines, the number

of privileged users generally increases as well. Compared to attaching a machine to a

network, securing a machine is much more difficult, therefore insecure machines may

appear on your network as unexpected surprises.

A host security model may be more appropriate for small sites, or sites with extreme

security requirements. Indeed, some level of host security should be included in all the

 5

site’s overall security plans. Even if a network security model is adopted, certain

systems will benefit from the strongest host security. The problem is that making the

host security model work requires too many restrictions and too many people, so this

model alone isn’t cost-effective for any but small or simple sites.

1.2.3 Network Security

A network security model tries to control network access to local hosts and their

services, rather than secure them individually. Network security models involve

building firewalls to protect internal systems and networks and using strong

authentication approaches and encryption to protect particularly sensitive data as it

transits over the network. This model is an efficient and effective method to secure a

larger and more diverse computer environment.

1.3 Firewalls

A firewall is a component or a set of components that restrict access between a

protected network and the Internet, or between sets of networks [1]. It is a very effective

type of network security. There are two kinds of firewalls: Internet firewalls and

internal firewalls.

1.3.1 Internet Firewalls

A firewall is designed to keep a fire from spreading from one part of the building to

another during building construction. A similar purpose is served by an Internet

firewall. In theory: It prevents the dangers of the Internet from spreading to the internal

network. In practice, an Internet firewall serves multiple purposes:

• Restrict people to entering at a carefully controlled point.

• Restrict people to leaving at a carefully controlled point.

 6

• Prevent attackers from getting close to your other defenses.

An Internet firewall is often installed at the point where the protected internal network

connects to the Internet, as shown in Figure 1.1.

Internet

Desktop Desktop Desktop

Firewall

Internal network

Desktop

Figure 1.1 Internet Firewall

All traffic coming from the Internet or going out from the internal network passes

through the firewall. Consequently, the firewall has the opportunity to ensure that the

traffic -- email, file transfer, remote logins, or any kinds of interaction between specific

systems -- conform to the security policy. These security policies are set by each site;

some are highly restrictive and others fairly open.

 7

1.3.2 Internal Firewalls

In some situations, parts of the internal network need to be protected from other parts.

There are a number of reasons to do this:

• There are test or lab networks with unpredictable things going on there.

• There are networks that are less secure than the rest of the site.

• There are networks that are more secure than the rest of the site.

Firewalls are a useful technology in another situation. In some cases, a firewall sits

between two parts of the same organization, or between two separate organizations that

share a network, rather than between a single organization and the Internet. This kind of

firewall is called an internal firewall. Figure 1.2 shows an internal firewall architecture

within a laboratory network.

Desktop

Laboratory Network

Firewall

Desktop Desktop

DesktopDesktop

Internal Network

Figure 1.2 Internal Firewall

 8

Logically, a firewall is a restrictor, a separator, and an analyzer [1]. There are various

ways to configure this equipment; the configuration will depend upon a site’s particular

security policy, budget, and overall operation.

1.4 Firewall Capability

Firewalls can do a lot for site’s security, but they also have some drawbacks.

1. What can a firewall do?

a. A firewall is a focus for security decisions

A firewall is a checkpoint through which all traffic in and out must pass. It lets

you concentrate network security on this checkpoint where your network

connects to the Internet. Focusing your security in this way is much more

efficient than spreading security decisions and technologies around individual

machines.

b. A firewall can enforce security policy

Many of the services that people need from the Internet are inherently not

secure. The firewall enforces the site’s security policy, allowing only services

defined by the security rules to pass through.

c. A firewall can log Internet activity efficiently

Because all traffic passes through the firewall, the single point of access, the

firewall can record the interactions between the protected network and the

external network.

d. A firewall limits your exposure

 A firewall will sometimes be used to keep one section of your site’s network

 9

from another section to prevent the problems that impact one section from

spreading through the entire network (internal firewall).

2. What can’t a firewall do?

Although firewalls provide protection against most network threats, they are not a

complete security solution. Certain threats are beyond the control of the firewall:

a. A firewall can’t protect you against malicious insiders

 An inside user can attack your systems without passing through the firewall.

b. A firewall can’t protect against connections that don’t go through it

 A firewall can’t control the traffic that doesn’t pass through it.

c. A firewall can’t protect against new threats

A firewall is designed to protect against known threats. However, no firewall

can automatically defend every new threat that arises. You can’t set up a firewall

once and expect it to protect you forever.

d. A firewall can’t protect against viruses

Firewalls can’t keep viruses out of a protected network. Firewalls scan all

incoming traffic to determine whether it is allowed to pass through to the

internal network. Nevertheless, the scanning is based on the source and

destination addresses and port numbers, not on the content of data.

As a consequence, you need to augment the firewall by incorporating function

separation, physical security, host security, and user education into your overall

security plan.

 10

Given the limitations above, why bother to install a firewall? Because a firewall is

the most effective way to connect a network to the Internet while maintaining a

degree of security. And in most situations, it’s the most effective tool for doing that.

1.5 Silicon Firewall Feasibility

With the availability of bandwidth, it is becoming more and more difficult for a

traditional software firewall to function with a high-speed connection. In addition, the

advances in network hardware technology, such as routers and new applications of

firewalls have caused the software firewall to be an impediment to high throughput.

This network bottleneck leads to the requirement of new solutions to balance the

performance and security. Replacing software with a hardware (silicon) firewall could

lead to improved performance, enabling the firewall to handle significantly larger

amount of data.

1.6 Research Objectives

The goal of this project is to investigate if and how existing desktop computer firewall

technology could be improved by replacing software functionality with hardware

(silicon). A microprocessor-based system has been designed by choosing the

appropriate architecture and implemented using Altera FPGA (Field Programmable

Gate Array) on a SOPC (System on a Programmable Chip) Board. Furthermore, the

performance of the Silicon Firewall is tested and compared with the software firewall.

1.7 Thesis Organization

This thesis is organized into seven chapters: In Chapter 2, packet filtering is presented.

In Chapter 3, hardware software system codesign is described. In Chapter 4, the Altera

Nios embedded processor is introduced. NDK (Nios Development Kit) and NEDK

 11

(Nios Ethernet Development Kit) are also presented. In Chapter 5, The Silicon Firewall

design is introduced in detail. Two major peripherals, the CAM (Content Addressable

Memory) and the CS8900A are introduced as well as the two operating modes of the

Silicon Firewall, hardware mode and software mode. In Chapter 6, testing and results

are explained. In Chapter 7, a summary of this research is presented and future work is

suggested.

 12

Chapter 2 INTERNET FIREWALL SECURITY SYSTEMS

Basic Internet firewall security strategies are presented in this chapter. Packet filtering

is introduced as the method selected by this research project to build the Silicon

Firewall. For a good understanding of packet filtering, TCP/IP fundamentals are also

presented.

2.1 Security Strategies

In this section some basic strategies employed in building firewalls and in enforcing

security will be introduced.

2.1.1 Least Privilege

Least privilege is perhaps the most fundamental principle of any kind of security, not

just computer and network security. Basically, the principle of least privilege means that

any object (user, administrator, program, system, etc.) should have only the privilege

the object needs to perform its assigned tasks—and no more [1]. Least privilege is an

important principle for limiting the exposure to attacks and for limiting the damage

caused by particular attacks.

For example, probably not every user needs to access every Internet service, probably

not every user needs to modify (or even read) every file on the system, probably not

every user needs to know the machine’s root password, probably not every system

administrator needs to know the root password for all the system, probably not every

system needs to access every other system’s files.

 13

In order to apply the principle of least privilege, ways should be explored to reduce the

privilege required for various operations.

2.1.2 Defense in Depth

Defense in depth is another principle of any security system. It means not depending on

just one security mechanism, instead, install multiple mechanisms that back each other

up. The advantage of defense in depth is that the failure of any single security

mechanism will not totally compromise the system.

Any security system—even the most seemingly impenetrable firewall—can be breached

by attackers who are willing to take enough risk [1]. Multiple mechanisms can be

adopted to provide backup and redundancy for each other: network security, host

security and human security. All of these mechanisms are important and can be highly

effective.

2.1.3 Choke Point

A choke point forces attackers to use a narrow channel that can be monitored and

controlled. In network security, the firewall between the Internet and the internal

network is such a choke point (assuming that it’s the only connection between the

Internet and the internal network). Any attacker who’s going to attack the internal

network from the Internet is going to have to come through that channel.

A choke point is useless if there’s an effective way for an attacker to go around it [1]. In

this way, chances are that an adequate job of defending any of the avenues of attack

can’t be done, or someone will slip through one while another is being defended.

 14

2.1.4 Weakest Link

A fundamental property of security is that a chain is only as strong as its weakest

linkand a wall is only as strong as its weakest point. The weak points are always hunted

by smart attackers, so attention should be paid evenly to all aspects of the security

system.

2.1.5 Fail-Safe Stance

According to [1]

“Another fundamental principle of security is that, to the extent possible,
systems should fail safe, that is, if they’re going to fail, they should fail
in such a way that they deny access to an attacker, rather than letting the
attacker in. The failure may also result in denying access to legitimate
users as well, until repairs are made, but this is usually an acceptable
tradeoff.”

2.1.6 Universal Participation

Most security systems require the universal participation (or at least the absence of

active opposition) of a site’s personnel in order to be fully effective. For example,

everybody should report strange happenings that might be security-related, everybody

should choose good passwords, change them regularly; and not to give them out to their

friends, relatives, etc..

2.1.7 Diversity of Defense

The idea behind diversity of defense is that using security systems from different

vendors may reduce the chances of a common bug or configuration error that

compromises them all [1]. Just as using a number of different systems to provide depth

of defense gives additional security, using a number of different types of systems also

gives additional security. However, there is a tradeoff between complexity and cost, so

evaluation and decision need to be made by each site concerning this issue.

 15

2.1.8 Simplicity

There are two reasons for making simplicity a security strategy. First, it is easier to

understand simpler things; second, nooks and crannies are provided by complexity for

all sorts of things to hide in.

2.2 TCP (Transmission Control Protocol) /IP (Internet Protocol) Fundamentals

Today the two major approaches used to build firewalls are packet filtering and proxy

services. The packet filtering method is selected for this research project. Since a good

understanding of TCP /IP is needed to follow the details of the discussions of packet

filtering, TCP/IP fundamentals will be presented.

2.2.1 Introduction to TCP/IP

TCP and IP are two of the most important protocols in the suite of data communications

protocols, even though there are many other protocols. The TCP/IP protocol has the

following features (according to [1]):

• “Open protocol standards, freely available and developed independently from

any specific computer hardware or operating system. Because it is so widely

supported, TCP/IP is ideal for uniting different hardware and software.

• Independence from specific physical network hardware. This allows TCP/IP to

integrate many different kinds of networks. TCP/IP can be run over an Ethernet,

a token ring, a dial-up line, an X.25 net, and virtually any other kind of physical

transmission media.

• A common addressing scheme that allows any TCP/IP device to uniquely

addresses any other device in the entire network, even if the network is as large

as the worldwide Internet.

 16

• Standardized high-level protocols for consistent, widely available user services.”

2.2.2 OSI (Open Systems Interconnection) Reference Model

The International Standards Organization (ISO), began to develop its Open Systems

Interconnection (OSI) networking suite in the 1980s [2]. There are two major

components in OSI: an abstract model of networking (the Basic Reference Model, or

seven-layer model) and a set of concrete protocols.

There are seven layers in the OSI Reference Model as shown in table 2.1. One or more

entities implement its functionality at each layer. Each entity interacts directly only with

the layer below it, and provides facilities for use by the layer on top of it. Protocols

enable an entity in one host to interact with a corresponding entity, which is at the same

layer in a remote host.

Table 2.1 Seven Layers of The OSI Basic Reference Model (after [2])

1. Physical Layer
2. Data link Layer
3. Network Layer
4. Transport Layer
5. Session Layer
6. Presentation Layer
7. Application Layer

The seven layers of the OSI Basic Reference Model [2] are (from bottom to top):

1. The Physical Layer describes the physical properties of the various

communications media, as well as the electrical properties and interpretation of

the exchanged signals. For example, this layer defines the size of Ethernet

coaxial cable, the type of BNC connector used, and the termination method.

 17

2. The Data Link Layer describes the logical organization of data bits transmitted

on a particular medium. For example, this layer defines the framing, addressing

and checksumming of Ethernet packets.

3. The Network Layer describes how a series of exchanges over various data links

can deliver data between any two nodes in a network. For example, this layer

defines the addressing and routing structure of the Internet.

4. The Transport Layer describes the quality and nature of the data delivery. For

example, this layer defines if and how retransmissions will be used to ensure

data delivery.

5. The Session Layer describes the organization of data sequences larger than the

packets handled by lower layers. For example, this layer describes how request

and reply packets are paired in a remote procedure call.

6. The Presentation Layer describes the syntax of data being transferred. For

example, this layer describes how floating point numbers can be exchanged

between hosts with different math formats.

7. The Application Layer describes how real work actually gets done. For

example, this layer would implement file system operations.

2.2.3 TCP/IP Protocol Architecture

There is no universal agreement about how to describe TCP/IP with a layered model.

Generally, it is viewed as being composed of fewer than the seven layers used in the

OSI model. Three to five functional levels in the protocol architecture are defined in

most descriptions of TCP/IP. The four-level model illustrated in table 2.2 is based on

the three layers (Application, Host-to-Host, and Network Access) shown in the

 18

Department of Defense (DOD) Protocol Model in the Defense Data Network (DDN)

Protocol Handbook - Volume 1, with the addition of a separate Internet layer [1]. This

model provides a reasonable graphic representation of the layers in the TCP/IP protocol

hierarchy.

Table 2.2 Four Layers In The TCP/IP Protocol Architecture (after [3])

4. Application Layer Consists of applications and processes that use the
network

3. Host-to-Host Transport
Layer

Provides end-to-end data delivery services

2. Internet Layer

Defines the datagram and handles the routing of data

1. Network Access Layer

Consists of routines for accessing physical networks

1. Network Access Layer

The lowest layer of the TCP/IP protocol hierarchy is the Network Access Layer. In

this layer, the protocols provide the ways for the system to transmit data to the other

devices on a directly attached network. It defines how to use the network to deliver

an IP datagram. Unlike higher-level protocols, the details of the underlying network

(its packet structure, addressing, etc.) must be known by the Network Access Layer

protocols to correctly format the data being transmitted to comply with the network

constraints. The TCP/IP Network Access Layer can include the functions of all

three lower layers of the OSI reference Model (Network, Data Link, and Physical).

Functions performed at this level include encapsulation of IP datagrams into the

frames transmitted by the network, and mapping of IP addresses to the physical

addresses used by the network [4]. The universal addressing scheme is one of

 19

TCP/IP's strengths. The IP address must be converted into an address that is suitable

for the physical network over which the datagram is transmitted.

2. Internet Layer

The Internet Layer is the layer above the Network Access Layer in the protocol

hierarchy. The Internet Protocol is the most significant protocol in the Internet

Layer and is the heart of TCP/IP. IP provides the fundamental packet delivery

service on which TCP/IP networks are built. All protocols, in the layers above and

below IP, use the Internet Protocol to transmit data. All TCP/IP data flows through

IP, incoming and outgoing, regardless of its ultimate destination.

The Internet Protocol is the building block of the Internet [5]. Its functions include:

• Defining the datagram, which is the basic unit of transmission in the Internet

• Defining the Internet addressing scheme

• Moving data between the Network Access Layer and the Host-to-Host

Transport Layer

• Routing datagrams to remote hosts

• Performing fragmentation and re-assembly of datagrams

The TCP/IP protocols were built to deliver data over the Advanced Research

Projects Agency Network (ARPANET), which was a packet switching network)[5].

A packet is a block of data, which carries with it the information needed to deliver

it - in a manner similar to a postal letter, which has an address written on its

envelope. The addressing information in the packets is used by a packet switching

network to switch packets from one physical network to another, moving them

toward their final destination. Each packet travels the network separately.

 20

The datagram is the packet format that defined by Internet Protocol [5]. Figure 2.1

is a graphic representation of an IP datagram. The control information in the first

five or six 32-bit words are called the header [5]. By default, the header is five

words long; the sixth word is optional. There is a field called Internet Header Length

(IHL) in the header that indicates the header's length in words, since the header's

length is variable. All the information needed to deliver the packet is contained in

the header.

 21

Version IHL Type of Service

Identification

Protocol Time to Live

Flags Fragmentation Offset

Header Checksum

Total Length

0
Bits

4 8 16 20 2412 28 31

Data begins here...

Options

Padding

Destination Address

Source Address

Figure 2.1 IP Datagram format (after [5])

 22

The Internet Protocol transmits the datagram by checking the Destination Address

in word 5 of the header. The Destination Address is a standard 32-bit IP address that

identifies the destination network and the particular host on that network. The

packet is transmitted directly to the destination if the Destination Address is the

address of a host on the local network. Otherwise, the packet is passed to a gateway

for delivery. Gateways are devices that switch packets between the different

physical networks [5]. Routing is deciding which gateway to use [5]. The routing

decision is made by IP for each individual packet. Figure 2.2 shows routing through

gateways.

 Host A1 Host C1

 Gateway G1 Gateway G2

G 1 G ateway G ateway G2

 Network A Network B Network C

Application
Layer

Transport
Layer

Internet
Layer

Network
Access
Layer

Application
Layer

Transport
Layer

Internet
Layer

Network
Access
Layer

Internet
Layer

Network
Access
Layer

Internet
Layer

Network
Access
Layer

Figure 2.2 Routing Through Gateways (after [1])

The Internet Control Message Protocol (ICMP) is an integral part of IP. This

protocol is part of the Internet Layer and uses the IP datagram transmission facility

to send its messages. ICMP delivers messages that perform the following control,

error reporting, and informational functions for TCP/IP (according to [5]):

 23

• Flow control

When datagrams arrive too fast for processing, the destination host or an

intermediate gateway sends an ICMP Source Quench Message back to the

sender. This tells the source to stop sending datagrams temporarily.

• Detecting unreachable destinations

When a destination is unreachable, the system detecting the problem sends a

Destination Unreachable Message to the datagram's source. If the

unreachable destination is a network or host, the message is sent by an

intermediate gateway. But if the destination is an unreachable port, the

destination host sends the message.

• Redirecting routes

A gateway sends the ICMP Redirect Message to tell a host to use another

gateway, presumably because the other gateway is a better choice. This

message can be used only when the source host is on the same network as

both gateways.

• Checking remote hosts

A host can send the ICMP Echo Message to see if a remote system's Internet

Protocol is up and operational. When a system receives an echo message, it

replies and sends the data from the packet back to the source host. The ping

command uses this message [6].

3. Transport Layer

The Host-to-Host Transport Layer is the protocol layer above the Internet Layer.

This name is usually shortened to Transport Layer. The two most significant

 24

protocols in the Transport Layer are the User Datagram Protocol (UDP) and the

Transmission Control Protocol (TCP). UDP provides low-overhead, connectionless

datagram transmission service. Reliable data delivery service is provided by TCP

with end-to-end error detection and correction [7]. Both protocols transmit data

between the Application Layer and the Internet Layer. Applications programmers

can choose whichever service is more suitable for a specific application.

• User Datagram Protocol

Like the transmission service that IP provides the User Datagram Protocol

gives application programs direct access to a datagram delivery service. This

allows applications to exchange messages over the network with a minimum

of protocol overhead.

UDP is an untrustworthy, connectionless datagram protocol.

“Untrustworthy” merely means that there are no facilities in the protocol for

verifying that the data reached the other end of the network correctly. Within

your computer, UDP will transmit data correctly. The 16-bit Source Port and

Destination Port numbers in word 1 of the message header is used by UDP

to deliver data to the correct application process. Figure 2.3 shows the UDP

message format.

Figure 2.3 UDP Message Format (after [7])

31 0

Data begins here …

16
Bits

Destination Port

ChecksumLength

Source Port

 25

There are a number of good reasons why UDP is chosen as a data transport

service. If the amount of data being delivered is small, the overhead of

creating connections and ensuring reliable delivery may be greater than the

work of re-transmitting the entire data set. In this case, the most efficient

choice for a Transport Layer protocol is UDP.

• Transmission Control Protocol

TCP is used by applications that require the transport protocol to provide

reliable data delivery because it verifies that data is delivered across the

network accurately and in the proper sequence. TCP is such a protocol that is

reliable, connection-oriented, and byte-stream.

a. Reliable

Reliability is provided by TCP with a mechanism called Positive

Acknowledgment with Re-transmission (PAR). Simply stated, a

system using PAR sends the data again until it hears from the remote

system that the data arrived okay. A segment is the unit of data

exchanged between cooperating TCP modules (see figure 2.4). A

checksum that the recipient uses to verify that the data is undamaged

is contained in each segment. The receiver sends a positive

acknowledgment back to the sender if the data segment is received

undamaged. Otherwise the receiver discards it. After an appropriate

time-out period, the sending TCP module re-delivers any segment for

which no positive acknowledgment has been received.

 26

Options

Window

Destination Port

Offset Reserved Flags

Checksum Urgent Pointer

Acknowledgment Number

Padding

Sequence Number

Bits

0 4 8 16 20 2412 28

Source Port

Data begins here...

Figure 2.4 TCP Segment Format (after [7])

 27

b. Connection-oriented

TCP is connection-oriented. A logical end-to-end connection

between the two communicating hosts is established by TCP. Control

information, called a handshake, is exchanged between the two

endpoints to establish a dialogue before data is delivered. The control

function of a segment is indicated by setting the appropriate bit in the

Flags field in word 4 of the segment header.

c. Byte-stream

The data sent by TCP is viewed as a continuous stream of bytes, not

as independent packets. Thus, the sequence in which bytes are sent

and received is maintained by TCP. Two fields in the TCP segment

header, the Sequence Number and Acknowledgment Number, keep

track of the bytes.

4. Application Layer

The Application Layer is at the top of the TCP/IP protocol architecture. All processes

that use the Transport Layer protocols to deliver data are included in this layer.

Following are the most widely known and implemented applications protocols [8]:

Telnet: The Network Terminal Protocol that provides remote login over the

network.

FTP: The File Transfer Protocol that is used for interactive file transfer.

 SMTP: The Simple Mail Transfer Protocol that delivers electronic mail.

HTTP: The Hypertext Transfer Protocol that delivers Web pages over the

network.

 28

2.3 Packet Filtering

To understand packet filtering, packets and how they are handled at each layer of the

TCP/IP protocol stack must be understood.

2.3.1 Packet Definition

To transfer information across a network, the information has to be broken up into small

pieces, each of which is sent separately. Breaking the information into pieces allows

many systems to share the network, each sending pieces in turn. In IP networking, those

small pieces of data are called packets. All data transfer across IP network happens in

the form of packets. So the packet is the fundamental unit of communication on the

Internet.

2.3.2 Packet Structure

Packets are constructed in such a way that layers for each protocol used for a

particularly connection are wrapped around the packets. At each layer, a packet has two

parts: the header and the body. The header contains protocol information relevant to that

layer, while the body contains the data for that layer which often consists of a whole

packet from the next layer in the stack. Each layer treats the information it gets from the

layer above it as data, and applies its own header to this data. At each layer, the packet

contains all of the information passed from the higher layer; nothing is lost. The process

of preserving the data while attaching a new header is known as encapsulation. Figure

2.5 shows how this works.

 29

 Send

Network Access Layer
“Frame”
(See figure 5.1)

Data

Data

Data

Header

Header

Data Header

Header

HeaderHeader

Internet Layer
“Datagram”
(See figure 2.1)

Transport Layer
“Segment”
(See figure 2.3 and 2.4)

Application Layer

Figure 2.5 Data Encapsulation (after [3])

At the application layer, the packet consists simply of the data to be transferred. As it

moves to the transport layer, the Transmission Control Protocol (TCP) or the User

Datagram Protocol (UDP) preserves the data from the previous layer and attaches a

header to it. At the next layer, IP considers the entire packet (composed now of the TCP

or UDP header and the data) to be data, and now attaches its own IP header. Finally, at

the network access layer, Ethernet or another network protocol considers the entire IP

packet passed to it to be the data, and attaches its own header.

2.3.3 Packet Filtering Definition

Packet filtering is a network security mechanism that works by controlling what data

can flow to and from a network. Packet filters allow or block packets, usually while

 30

routing them from one network to another (most often from the Internet to an internal

network, and vice versa). To accomplish packet filtering, a set of rules that specify what

types of packets are to be allowed and what types are to be blocked is set up.

2.3.4 Reasons for Packet Filtering

Packet filtering controls (allows or disallows) data transfer based on:

• The address the data is (supposedly) coming from

• The address the data is going to

• The session and application protocols being used to transfer the data

2.3.5 Advantages of Packet Filtering

Packet filtering has a number of advantages:

• One router can help protect an entire network

One of the key advantages of packet filtering is that a single, strategically placed

packet-filtering router can help protect an entire network. If there is only one

router that connects the internal network to the Internet, tremendous leverage on

network security will be gained, regardless of the size of the internal network,

by doing packet filtering on that router.

• Packet filtering doesn’t require user knowledge or cooperation

Packet filtering doesn’t require any custom software or configuration of client

machines, nor does it require any special training or procedure for users.

• Packet filtering is widely available in many routers

Packet filtering capabilities are available in many hardware and software routing

products.

 31

2.3.6 Types of Packet Filtering

Every packet has a set of headers containing certain information as mentioned in the

previous section. The main information is:

• IP source address

• IP destination address

• Protocol (whether the packet is a TCP, UDP, or ICMP packet)

• TCP or UDP source port

• TCP or UDP destination port

• ICMP message type

The information above can be used to set up the specific policy, for example, filtering

by service, filtering by source port and so on. In this project, the IP source address is

used as the policy, that is to say filtering the packet by the source’s IP address. Filtering

in this way restricts the flow of packets based on the source IP address of the packets,

without having to consider what protocols are involved. However, all the information in

the header could be used to do packet filtering. It should noted that while the source IP

address is a popular choice for packet filtering, any or all of the information in the

packet header may be used. This makes the Silicon Firewall can handle IP source

address masquerading. Also, in the future the dynamic CAM will handle this issue

better.

 32

Chapter 3 HARDWARE/SOFTWARE SYSTEM CODESIGN

The background of Internet security and Internet firewall security systems were

presented in Chapter 1 and Chapter 2 respectively. Since the Silicon Firewall system is

an embedded system, and the design of the Silicon Firewall is a hardware-software

codesign, before introducing the design issues of the Silicon Firewall system, some

background of embedded system and hardware-software codesign are given. Since the

microprocessor is the common component between the hardware-software codesign

processes, background information on embedded processor and embedded processor

Programmable Logic Device (PLD) solutions are given. Finally, the Altera®

Excalibur™ embedded processor programmable solutions are presented as the solution

that was used in the Silicon Firewall system design.

3.1 Embedded System Overview

The Silicon Firewall system is an embedded real-time system. Embedded systems are

quite diverse; no one statement applies to all cases. Basically, embedded systems are

built to constantly respond to external events and to generate control outputs as a

function of their current state and inputs from sensors, etc..

Embedded-system specification and design consists of two tasks, the first is describing

a system’s desired functionality; the second is mapping that functionality for

implementation by a set of system components such as processors, FPGAs, memories,

and buses [9]. Ever-increasing embedded-system design complexity combined with a

 33

very tight time-to-market window has revolutionized the embedded system design

process. The concurrent design of hardware and software has displaced traditional

sequential design. Further more, hardware and software design now begins before the

system architecture is finalized. Requirement definitions and system specifications are

developed by system architectures, customers, and marketing departments together [10].

Embedded computing is unique because it is a codesign problem where the hardware

and software architecture should be designed simultaneously.

3.2 Hardware-Software Codesign

The practice of concurrent hardware-software design can significantly cut the cost and

cycle to build digital systems for embedded real-time applications. It has been proved

that the traditional hardware-first, software-last development process is difficult and

costly [11]. The codesign approach speeds up the intuitively serial design process by

developing hardware and software concurrently. It helps the embedded system

designers meet the design and development deadlines.

According to [12]

“In hardware-software codesign designers consider trade-offs in the way
hardware and software components of a system work together to exhibit
a specified behavior, given a set of performance goals and an
implementation technology. Because of a wide range of possible system
structures and design goals, the hardware-software codesign problem
takes on many forms. One type of codesign seeks to accelerate
application software by extracting portions for implementation in
hardware. Programmable hardware may take this type of software
acceleration common even in general-purpose computing. In this case,
the codesign problem entails characterizing hardware and software
performance, identifying a hardware-software partition, transforming the
functional description into such a partition, and synthesizing the resulting
hardware and software. High-level (or behavioral) synthesis can produce
hardware implementations for functions described in a high-level
software language such as C.”

 34

 The Silicon Firewall system belongs to this type, the system hardware was written in

behavioral and register-transfer-level Verilog HDL, while the software was written in

C.

The processor is the only piece in common between the hardware-software codesign

processes, whether it is a microprocessor/microcontroller or digital signal processor.

That is to say the processor is the common link that bridges the gap between software

and hardware design.

3.3 System-on-a-Chip Design

Today’s submicron fabrication technologies enable designers to put large numbers of

device on a single microchip. Along with this capability, a vast choice of hardware and

software components makes system design and validation increasingly complex. As

system design grows increasingly complex, the use of predesigned components, such as

general-purpose microprocessors, can simplify synthesized hardware.

3.4 Embedded Processor PLD (Programmable Logic Device) Solutions

As digital systems progress towards higher levels of integration, system designers

benefit from lower development costs, shorter design cycles, increased performance,

and lower power consumption. Functions once performed by multiple, individual

devices are now combined into more capable, higher density devices, achieving higher

integration at the device level. Additionally, greater time-to-market pressures and

frequent changes in system specifications require an increase in design flexibility. In

particular, two types of programmable, off-the-shelf components maintain flexibility

and increase system integration: microprocessors (software) and programmable logic

(hardware).

 35

Given the advantages above, the next logical step in system integration would be the

combination of embedded processors and programmable logic. In addition to offering

all of the traditional benefits of higher integration, embedded processor PLD solutions

also provide unique advantages to the system designer because of the flexibility of

programmable logic, it also give the system designer unprecedented freedom to

determine which functions should be executed in software and which would benefit

most from dedicated hardware. Table 3.1 compares the capabilities of embedded

processor PLDs to other component-level solutions for system integration, such as

application specific integrated circuits (ASICs) and application specific standard

products (ASSPs).

Table 3.1 Component-Level Solutions for System Integration (after [13])

 ASICs ASSPs Embedded
Processor PLDs

Level of System Integration High Moderate High
Development Cost High Low Low
Unit Cost Low Low Moderate
Design Flexibility Low Low High
Total Time to Market Long Moderate Short

3.5 Altera® Excalibur™ Embedded Processor Programmable Solutions

Altera® Excalibur™ embedded processor solutions provided the tools needed to

integrate an entire system on a single programmable logic device (PLD). The Excalibur

solutions help speed the development and shorten time-to-market for the embedded

processor applications by offering the ARM®-based hard core (fixed architecture)

embedded processors and Nios™ soft core (configurable architecture) embedded

processors. Combined with programmable and memory, the Excalibur solutions give all

the programmable solutions needed with single-chip integration.

 36

The advanced features of Excalibur Solutions include:

• 200-MHz high performance RISC (Reduce Instruction Set Computer) processor

• Support for a wide range of end applications

• Integrated hardware and software development workflow

• Optimized integration with Altera device architectures

3.6 Soft Core vs. Hard Core

The arguments for both soft and hard core processor implementation in PLDs are

convincing [13]. Flexibility, scalability, and low absolute cost are offered by soft cores.

Many applications that require moderate performance are fit by the soft cores, and they

immediately benefit from process enhancements to their target hardware platform. On

the other hand, maximum performance and cost effectiveness are offered by hard core

processors, primarily for applications that require high performance. The Nios

processor’s parameterizability allows users to make the performance/cost tradeoff

quickly, without needing to be a processor architect. Regardless of the configuration,

the same instruction set allows Altera to deliver fully-verified cores and industry-

standard software development tools such as C/C++ compilers [13]. The leading-edge,

32-bit RISC processor performance and substantial system RAM are offered by the

ARM-and MIPS-based products, integrated with industry-leading programmable logic

architectures. These products bring the performance, memory capacity and gate density

normally associated with ASICs within the reach of every software or hardware

designer. Table 3.2 outlines the difference between the soft core and hard core

Excalibur product families.

 37

Table 3.2 Excalibur Product Comparison (after [13])

 Nios
(Soft Core)

ARM-&MIPS-Based
(Hard Core)

Flexibility High Moderate

Performance

Moderate High

Multiprocessor
Implementation

Yes No

Processor Enhancement
Benefit

Immediately Requires Mask Change

3.7 Excalibur Workflow

The Excalibur solutions are supported by a complete design workflow, which automates

system design, incorporating familiar hardware and software (C/C++ code)

methodologies [13].

All the tools necessary to develop Excalibur designs are provided by Altera, including

an industry-standard C/C++ compiler and debugger, peripherals, and drivers, the

Quartus™ II software for PLD design development, and download cables for device

programming and verification. These tools provide a system-centric approach to

development and allow hardware and software to be created concurrently. Figure 3.1

illustrates the Excalibur workflow.

 38

JTAG

C Code Verilog

Select/Configure
Peripherals

Generate Peripheral
Bus Module

SignalTap™
Plus

C/C++ Compiler
&Debugger

Quartus Software
&Industry-Standard

EDA Tools

Select/Configure
Processor

PCTrace

ALTERA

Figure 3.1 The Excalibur Workflow (after [13])

3.8 Silicon Firewall System

Figure 3.2 is a simple diagram of the Silicon Firewall system. Basically in this hardware

software codesign, the software and hardware are split as follows: the software does the

initialization and configuration; the hardware does packet filtering. Using software to do

configuration is easier, while using hardware to do packet filtering is faster, that is the

reasons for splitting software and hardware in this way.

 39

Ethernet
PHY

(CS8900A)

Nios
Processor

PIO

Silicon
Firewall
(CAM)

FPGA

E
t
h
e
r
n
e
t

P
C

B
u
s

Figure 3.2 A Simple Diagram of The Silicon Firewall System

 40

Chapter 4 ALTERA NIOS EMBEDDED PROCESSOR

The Altera Nios™ soft core embedded processor was selected in the Silicon Firewall

system based on the advantages of soft core processors described in section 3.6. The

Nios processor will be introduced in more detail in this chapter. The Nios Development

Kit (NDK) and the Nios Ethernet Development Kit (NEDK) are also presented. The

Nios development board and the daughter card are introduced.

4.1 Nios Embedded Processor Overview

The Nios® embedded processor is a user-configurable, general-purpose RISC embedded

processor [14]. It was designed to be a flexible and powerful processor solution. The

ease-of-use and flexibility make the Nios processor's one of the most popular embedded

processors in the world. Custom processor-based systems can be created using the

SOPC Builder system development tool. One or more configurable Nios CPUs can be

integrated by the SOPC Builder into an FPGA with any number of standard peripherals,

“gluing” the system together with the automatically generated Avalon™ switch fabric.

The Nios embedded processor is optimized for system-on-a-programmable-chip

(SOPC) integration and Altera® programmable logic. The Nios processor and user

logic can be combined together and programmed into an FPGA using SOPC Builder.

The Nios embedded processor’s unique features such as custom instructions and the

simultaneous multi-master Avalon switch fabric make it different from other soft core

processor solutions. These features provide simple, yet non-traditional methods to

 41

accelerate and optimize the designs. Table 4.1 shows a comparison of the 32-bit and 16-

bit Nios embedded processors in typical configurations.

Table 4.1 Comparisons of Typical Nios Processor Configurations (after [14])

Feature 32-Bit Nios CPU 16-Bit Nios CPU
Data bus size (bits) 32 16
Arithmetic logic unit (ALU) width (bits) 32 16
Internal register width (bits) 32 16
Address bus size (bits) 32 16
Instruction size (bits) 16 16
Logic elements (LEs) (typical) Fewer than 1,500 Fewer than 1,000
fMAX Over 125 MHz Over 125 MHz

4.2 The Nios Soft Core Embedded Processor

The Nios embedded processor is the first RISC processor soft core to be developed

specially for programmable logic and can provide up to 50MIPS (Million Instructions

Per Second) performance while being optimized for area in a PLD. Figure 4.1 shows a

block diagram of the Nios embedded processor.

 42

Serial
Port

Timer

I
R
Q

UART

SRAM C
P
U

P
B
M

FLASH

Figure 4.1 Block Diagram of the Nios Embedded Processor (after [13])

4.3 Nios Processor and Peripherals

An address map with different types, widths, and speeds of memory and peripherals can

be designed using a simple interface. The interface logic that connects all Nios

peripherals as defined by the user is generated by the interface. Figure 4.2 diagrams the

communication between the Nios embedded processor and the peripherals. The

interface to each is specified as peripherals are added. The interface creates a peripheral

bus module (PBM) according to the configuration specified.

 43

Address
Decode

Data In
Multiplexer

Port
Interface

Interrupt
Control

Wait State
Generator

Bus Sizing
(Optional)

User-Defined
Peripheral

User-Defined
Peripheral

UART

Timer

External
Memory

Internal
Memory

Nios
Embedded
Processor

Figure 4.2 Nios Processor and Peripherals (after [15])

4.4 Nios Development Kit

Altera's Nios® development kit provides everything needed for system-on-a-

programmable-chip (SOPC) development.

This kit includes:

• Nios embedded processor configurable CPU soft core

• Library of standard microprocessor peripherals

• SOPC Builder system development tool

• GNUPro compiler and debugger from Red Hat

• Quartus® II Limited Edition development software

 44

• Nios development board populated by an APEX™ 20KE device

(EP20K200EFC484)

• Multiple SOPC reference designs targeted to the Nios development board

4.4.1 Nios Peripheral Library

The Nios® embedded processor development kits include a library of standard

peripherals that are available for use in Altera® programmable logic. These peripherals

are provided to the user as Verilog HDL or VHDL source code and include all of the

necessary software routines for easy system integration. The Nios peripheral library

(Verilog or VHDL code) includes the peripherals listed in Table 4.2.

Table 4.2 Nios Peripheral Library (after [16])

Peripheral Description

UART Common serial interface; with variable baud rate, parity, stop
and data bits, and optional flow control signals

Timer 32-bit timer; can be used as periodic pulse generator or
system watchdog timer

Parallel I/O (PIO) 1- to 32-bit parallel I/O (input, output, and edge-capture)
Serial Peripheral
Interface (SPI) Serial peripheral interface, 3-wire, master/slave

Direct Memory
Access (DMA)

The DMA peripheral allows for efficient bulk data transfer
between peripherals and memory by removing the CPU from
the data path

Memory Interfaces

• On-chip ROM and RAM
• Off-chip SDRAM and SSRAM, SRAM, and flash
• Off-chip Altera serial configuration device

Ethernet Port
• 10 Mbps Cirrus Logic CS8900A PHY/MAC chip
• Interfaces supported by Plugs Ethernet Library

Interface to User
Logic

Used to easily connect on-chip user logic or off-chip devices
to an SOPC Builder-generated system

 45

4.4.2 Development Tools

All the necessary tools for effective embedded system development are contained in the

Nios development kit. The NDK comprises the two kits previously known as the HDK

(Hardware Development Kit) and the SDK (Software Development Kit). The HDK is

used to create Nios embedded processor systems in APEX devices. The HDK consists

of the Altera's SOPC Builder tool and the Quartus II development software that

combine to create a hardware development tool flow. On the software side, the SDK

allows compile, run, debug C and assembly language programs on the Nios embedded

processors. Altera has chosen the GNUPro toolkit, which is a popular and well-known

suite of embedded software development tools.

The reader is referred to appendix D for more information about the three components

of NDK: SOPC Builder system development tool, Quartus II development software and

GNUPro Toolkit Compiler and Debugger.

4.5 Nios Development Board

The Altera Excalibur development board [14] is an advanced and integrated solution for

creating embedded processor applications. It contains the following things:

• An APEX EP20K200E programmable device

• 8 Mbits (512K x 16) of on board Flash RAM

• Two 1 Mbit (64K x 16) on board SRAM devices

• An RS-232 communication port

• A JTAG port

• A parallel port

• Multiple expansion ports

 46

• Two LEDs

• Two 7-Segment displays

• miscellaneous other switches and components

 Figure 4.3 shows a diagram of the Excalibur board.

Figure 4.3 Nios Development Board (from [14])

The default Nios soft core processor can be loaded into the Altera FPGA, which

contains a 16 bit instruction set, and the data bus is capable of operating with a 16 or 32

bit. It can perform 50 million instructions per second with one instruction per clock

cycle.

The two internal SRAM devices can be used with 16 or 32 bit applications, the 16 bit is

smaller, while the 32 bit is faster, thus in this research project the 32 bit data path is

 47

selected. A 144-pin SODIMM memory expansion socket is also provided on the board

if needed. Both the Nios processor and the APEX™ device share the flash memory.

The flash memory is organized as follows:

Table 4.3 Flash Memory Configurations (after [14])

Flash Address Size Comments
0x1C00000 – 0x1FFFFF 256Kbyte Factory-default APEX

configuration
0x180000 – 0x1BFFFF 256 Kbyte User-defined APEX

configuration data

0x100000 – 0x17FFFF 512 Kbyte

Nios instruction and
nonvolatile data space

There is a factory programmed controller chip on the board, which is a MAX7054

device that loads data from the flash and clocks it into the APEX device. The beginning

address for the user-defined configurations is 0x180000; for factory default the starting

address is 0x1C0000.

The Excalibur board provides 5 volt and 3.3 volt daughter cards for the purposes of

expansion. Three connectors are provided for 5-volt cards: a 40-pin connector (JP11), a

20-pin connector (JP13), and a 14-pin connector (JP12). The same applies to 3.3-volt

cards, using JP8, JP10, and JP9, respectively.

There are three programmable devices on the Excalibur board: the APEX device, the

configuration controller, and the PCI Mezzanine Card (PMC) (devices for JNC1 and

JNC2). SW8, SW9, and SW10 determine the ability to program each respectively. The

corresponding device is added to the JTAG chain if a switch is positioned to the left

(marked connect on the board); the device will be removed from the chain if each

switch positioned to bypass.

 48

SW1-SW7 are the seven remaining switches on the board. SW1 is an eight-pin user

defined DIPswitch. SW2 is a special button used for resetting the board. The

configuration controller reloads the flash memory into the APEX device upon a reset.

SW3 is defined by the configuration controller (a CPU reset by factory default), which

is the clear function. SW4-SW7 are user defined and may perform any function

necessary. When pressed, the logic zero signals are provided.

On the Excalibur board there are two clocks for use. The first one is provided by an

onboard oscillator, which is a 33.3333 MHz signal. The second one can be used to

allow the user to create the clock, utilizing the phase locked loop circuitry on the board.

In this research project, the first one is used.

4.6 Nios Ethernet Development Kit

The Nios Ethernet Development Kit (NEDK)[17] is an add-on to the Nios Development

Board. It includes a daughter card with an Ethernet interface chip, and make this

peripheral available to Nios system built with Quartus.

The Nios Ethernet Development Kit includes hardware and software components that

provide network connectivity for the Nios-based embedded systems. The components

included in this kit are (according to [17]):

• A network-interface daughter card that can plug directly into the Nios

development board.

• An SOPC Builder library component that defines the logic and interface signals

necessary to use the daughter card in a Nios system.

• A C language library that provides a network-protocol stack. This library

includes support for raw Ethernet, address resolution protocol (ARP), Internet

 49

protocol (IP), Internet control message protocol (ICMP), user datagram protocol

(UDP), and transmission control protocol (TCP) protocols and utility routines

for controlling the daughter card hardware.

APEX™ device hardware reference designs and example software application programs

are included in this kit. These reference designs and application examples can be used

as starting points to be modified for the specific network-enabled application.

The following items are included in the Nios EDK:

• Nios EDK daughter card based on the Cirrus Logic CS8900A PHY/MAC chip

• Cabling

• Nios EDK CD-ROM

The Nios EDK CD-ROM contains the following files (according to [17]):

• SOPC library components

• PC-board schematic and layout files for the Nios EDK daughter card

• Example hardware reference design configurations:

- Nios 32-bit CPU for a single daughter card

- Nios 16-bit CPU for a single daughter card

- Nios 32-bit for dual-stacked daughter cards

• Example software applications:

- Library general demonstration and configuration programs

- Example web server

- Nios 32-bit CPU network-based GERMS monitor application example

 50

4.7 Nios EDK Daughter Card

The Nios EDK daughter card is a circuit board with the following components

(according to [17]):

• A Cirrus Logic CS8900A integrated Ethernet 10Mbit PHY/MAC chip

• A RJ-45 network connector with integrated-transformer magnetics and

Link/LAN LEDs

• A 20 MHz crystal oscillator that is used by the CS8900A chip

Figure 4.4 shows the picture of the daughter card.

Figure 4.4 Nios EDK Daughter Card (from [17])

The CS8900A integrated PHY/MAC chip is a main functional component on the Nios

EDK daughter card. An ISA-bus interface (not used in this research) is presented to the

Nios CPU by the CS8900A. The set of female connectors provides the necessary

electrical-interface signals. These connectors are compatible with the expansion

connector groups on the Nios development board. The Nios EDK daughter card is

compatible with either the 5-V (JP11, JP12, JP13) or the 3.3-V (JP8, JP9, JP10)

expansion connector groups. The daughter card does not use any 5-V signals.

 51

4.8 Plugs Library

The Plugs Library is a software library included in the Nios EDK. It allows the software

to use standard network protocols for transmitting and receiving data. The features of

the plugs library are as follows (according to [17]):

• Access to low-level packets

• Access to high level-packet payloads

• Conforms to RFCs

• Allows opening connections and sending data with only a few lines of code

• Is similar to the Unix-standard sockets routines

• Each plug can be set to print debug information for either transmit or receive

data

The protocols supported by the plugs library are (according to [17]):

• Raw Ethernet

• Address resolution protocol (ARP)

• Internet protocol (IP)

• Internet control message protocol (ICMP)

• User datagram protocol (UDP)

• Transmission control protocol (TCP)

Figure 4.5 shows the relationships between the library-supported Nios EDK protocols.

 52

Example Web Server

ARP Scanner PING TELNET

ICMP UDP TCP

IP ARP

Raw Ethernet

WWW

Hello Plugs

Figure 4.5 Plugs Library-Supported Nios EDK Protocols (after [17])

The Ethernet and 802.3 packets are supported by the Nios EDK. Ethernet packets are

sent and received by the library routines to and from arbitrary 48-bit Ethernet media

access control (MAC) address. Higher level protocols (such as ICMP, UDP, and TCP)

use Ethernet transparently.

 53

Chapter 5 SILICON FIREWALL DESIGN

In this chapter, the Silicon Firewall design is presented in detail. Details of the CAM

and the CS8900A are discussed since they are the two major peripherals of the Nios

CPU in the Silicon Firewall.

5.1 Introduction to CS8900A

The CS8900A [18] is a low-cost Ethernet Local Area Network (LAN) Controller that is

optimized for Industry Standard Architecture (ISA) Personal Computers. It is a single

chip, full-duplex, Ethernet solution, incorporating all of the analog and digital circuitry

needed for a complete Ethernet circuit. The CS8900A, the most complicated peripheral

in the Silicon Firewall system, will be introduced in this section.

5.1.1 General Description

Major functional blocks of the CS8900A [18] include: a direct ISA-bus interface, an

802.3 Media Access Control (MAC) engine, integrated buffer memory, a serial

Electrically Erasable Programmable Read-Only Memory (EEPROM) interface, and a

complete analog front end with both 10BASE-T and AUI (Attachment Unit Interface).

The CS8900A must be configured before it can perform its two basic functions,

Ethernet packet transmission and reception. Various parameters such as Memory Base

Address, Ethernet Physical Address, frame types to receive, and which media interface

to use must be written to its internal Configuration and Control registers. There are two

methods to do the configuration, the first is using the host to write the configuration

 54

data to CS8900A across the ISA bus (or direct using register addressing) or to load the

data automatically from an external EEPROM.

The Silicon Firewall uses direct register addressing (I/O) mode to configure the

CS8900A.

5.1.2 Frame Encapsulation and Decapsulation

After configuration is complete, operation can begin. All aspects of Ethernet frame

transmission and reception are handled by the CS8900A’s MAC engine, which is fully

compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.3

Ethernet standard (ISO/IEC 8802-3,1993) and supports full-duplex operation.

The main functions of the MAC are: frame encapsulation and decapsulation, error

detection and handling, and, media access management. It assembles transmit packets

and disassembles receive packets automatically.

For transmission, when the proper number of bytes has been transferred to the

CS8900A’s memory (either 5, 381, 1021 bytes, or 1518 bytes), and providing that

access to the network is permitted, the MAC automatically transmits the 7-byte

preamble (1010101b…), followed by the Start-of-Frame Delimiter (SFD, 10101011b),

and then the serialized data.

For reception, the MAC receives the incoming packet as a serial stream of Non-Return

to Zero (NRZ) data. Then it checks for the SFD. If the SFD is detected, the MAC

assumes all subsequent bits are frame data. The Destination Address (DA) is read and

compared to the criteria programmed into the address filter by the MAC. The frame is

loaded into the CS8900A’s memory if the DA passes the address filter. Figure 5.1

shows the format of Ethernet frame.

 55

 Packet

 Frame

 Up to 7 bytes 1 byte 6 bytes 6 bytes 2 bytes 4 bytes

 Alternating 1s/0s SFD DA SA length Field LLC data Pad FCS

 Preamble frame length

Direction of Transmission

Figure 5.1 Ethernet Frame Format (after [18])

5.1.3 Two Basic Functions

As mentioned in section 5.1.1, the two basic functions of CS8900A are Ethernet packet

transmission and reception. They will be briefly introduced in this section.

1. Packet Transmission

There are two phases in packet transmission. In the first phase, the Ethernet frame is

moved into the CS8900A’s buffer memory by the host. In the second phase of

transmission, the frame is converted into an Ethernet packet then transmitted onto the

network by the CS8900A.

2. Packet Reception

Like packet transmission, there are two phases in packet reception. In the first phase, an

Ethernet packet is received and stored in on-chip memory by the CS8900A. In the

second phase, the received frame is transferred across the ISA bus and into host

memory by the host. An alternative to using ISA bus transfer is to use direct register

addressing (I/O mode).

 56

5.1.4 CS8900A Operation Modes

The receive frame can be transferred as Memory space operations, I/O space

operations, or as DMA operations using host DMA (ISA bus).

1 DMA Mode Operation

A direct interface to ISA buses running at clock rates from 8 to 11 MHz is

provided by CS8900A. Its on-chip bus drivers are able to deliver 24 mA of

drive current, which allows the CS8900A to drive the ISA bus directly, without

added external “glue logic”.

In order to minimize missed frames, the ISA-bus operation below 8 MHz

should use the CS8900A’s Receive DMA mode.

2 Memory Mode Operation

In Memory Mode operation, the CS8900A’s internal registers and frame buffers

are mapped into a contiguous 4-Kbyte block of host memory, given that the host

with direct access to the CS8900A’s internal registers and frame buffers.

3 I/O Mode Operation

In I/O Mode operation, the CS8900A is accessed through eight, 16-bit I/O ports,

which are mapped into sixteen contiguous I/O locations in the host system’s I/O

space. Being the default configuration for the CS8900A, the I/O Mode is always

enabled. Table 5.1 illustrates I/O Mode mapping.

 57

Table 5.1 I/O Mode Mapping (after [18])

Offset Type Description
0000h Read/Write Receive/Transmit Data (port 0)
0002h Read/Write Receive/Transmit Data (port 1)
0004h Write-only TxCMD (Transmit Command)
0006h Write-only Txlength (Transmit Length)
0008h Read-only Interrupt Status Queue
000Ah Read/Write PacketPage Pointer
000Ch Read/Write PacketPage Data (Port 0)
000Eh Read/Write PacketPage Data (Port 1)

I/O Mode is 99.6% as fast as Memory Mode [19]. Cirrus Logic recommends the use of

I/O Mode since the CS8900A defaults to I/O and no glue logic is needed in most

systems in I/O mode. I/O mode is used in the Silicon Firewall.

5.1.5 PacketPage

PacketPage is a unique, highly-efficient method of accessing internal registers and

buffer memory, which the CS8900A architecture is based on. A unified way of

controlling the CS8900A in Memory mode or I/O mode that minimizes CPU overhead

and simplifies software is provided by PacketPage.

Central to the CS8900A architecture is PacketPage memory, which is a 4-Kbyte page

of integrated RAM. Transmit and receive frames are stored in PacketPage memory

temporarily, also PacketPage memory is used for internal registers. Table 5.2 presents

the user-accessible portion of the PacketPage memory.

Table 5.2 The User-Accessible Portion of The PacketPage Memory (after [18])

PacketPage Address Contents
0000h-0045h Bus Interface Registers
0100h-013Fh Status and Control Registers
0140h-014Fh Initiate Transmit Registers
0150h-015Dh Address Filter Registers

0400h Receive Frame Location
0A00h Transmit Frame Location

 58

The following tables illustrate the packet page memory address map.

Table 5.3 Bus Interface Registers (after [18])

PacketPage
Address

of Bytes Type Description

0000h 4 Read-only Product Identification Code
0004h 28 - Reserved
0020h 2 Read/Write I/O Base Address
0022h 2 Read/Write Interrupt Number (0,1,2,3)
0024h 2 Read/Write DMA Channel Number (0,1,2)
0026h 2 Read/Only DMA Start of Frame
0028h 2 Read-only DMA Frame Count (12 Bits)
002Ah 2 Read-only RxDMA Byte Count
002Ch 4 Read/Write Memory Base Address

Register
0030h 4 Read/Write Boot PROM Base Address
0034h 4 Read/Write Boot PROM Address Mask
0038h 8 - Reserved
0040h 2 Read/Write EEPROM Command
0042h 2 Read/Write EEPROM Data
0044h 12 - Reserved
0050h 2 Read only Received Frame Byte Counter
0052h 174 - Reserved

Table 5.4 Status and Control Registers (after [18])

PacketPage
Address

of Bytes Type Description

0100h 32 Read/Write Configuration&Control
Registers (2 bytes per register)

0120h 32 Read-only Status& Event Registers
(2 bytes per register)

0140h 4 - Reserved

Table 5.5 Initiate Transmit Registers (after [18])

Packetpage
Address

of Bytes Type Description

0144h 2 Write-only TxCMD (transmit command)
0146h 2 Write-only TxLength (transmit length)
0148h 8 - Reserved

 59

Table 5.6 Address Filter Register (after [18])

PacketPage
Address

of Bytes Type Description

0150h 8 Read/Write Logical Address Filter
0158h 6 Read/Write Individule Address
015Eh 674 - Reserved

Table 5.7 Frame Location (after [18])

PacketPage
Address

of Bytes Type Description

0400h 2 Read-only RXStatus
0402h 2 Read-only RxLength
0404h - Read-only Receive Frame Location
0A00 - Write-only Transmit Frame Location

5.2 Using Content-Addressable Memory as an IP Packet Filter

An Internet Protocol (IP) packet filter is a security feature that prohibits unauthorized

users from accessing local-area network (LAN) resources. IP traffic over a wide-area

network (WAN) link can also be restricted by such a filter. LAN users can be restricted

to specific applications on the Internet (such as e-mail) with an IP packet filter as well.

A Silicon Firewall serves to filter packet traffic by checking to determine if a packet is

to be permitted or denied according to the desired polices and rules. Given the traffic

rates now in place, for the Silicon Firewall to be effective, it must operate at high

speed. The content-addressable memory (CAM) technology is incorporated to the

Silicon Firewall in order to meet this goal.

5.3 Content-Addressable Memory

In the Silicon Firewall system, CAM is used as a filter to block all accesses except for

packets that have permission. The source addresses that have permission are stored in

CAM; when a source address is presented to the CAM, the CAM reports whether it

contains the source address [20]. The source address(es) residing within CAM have

 60

permission for a particular activity. Figure 5.2 shows an example of an IP filter where

the ultimate action is to “pass” or “deny” the packet depending on the source address.

 CAM

Data Address

192.2.41.53 0

192.63.12.3 1

192.21.42.3 2

 Packet Address Status

192.2.41.53 Pass

192.21.42.3 Pass

192.57.11.101 Denied

 192.57.12.144 Denied

Figure 5.2 Using CAM as an IP Filter (after [20])

5.3.1 CAM and Traditional Memory Devices

Most memory devices address specific memory locations to store and retrieve data. For

example, a system using RAM or ROM locates data by searching sequentially through

memory. This technique can slow system performance because the search requires

multiple clock cycles to complete. However, identifying stored data by content, rather

than by its address can considerably reduce the time required finding an item stored in

memory. CAM works in this way. CAM simultaneously compares the desired

information against the entire list of pre-stored entries, so it offers a performance

advantage over other memory search algorithms, such as binary-based searches, tree-

based searches, or lookaside tag buffers.

RAM stores data at a particular address. Retrieving data from RAM, the system

supplies the address and then receives the data. With CAM, the system supplies the

data rather than the address, as shown in figure 5.3.

 61

 CAM RAM

 2

2C
HighMatch

Flag

AddressData Address

 A7 0

 B3 1

 2C 2

 4F 3

2
 Address Data

0 A7

1 B3

2 2C

3 4F

2C

Figure 5.3 CAM vs. RAM (after [20])

CAM takes one clock cycle to search through all memory locations in parallel to locate

stored data and returns the data’s address. CAM provided by Altera drives a match flag

high if the data is found, or low if the data is not found.

5.3.2 Advantages of CAM

A performance advantage is offered by CAM over other memory search algorithms,

because it compares the desired information against the entire list of pre-stored entries

simultaneously. CAM provides orders-of-magnitude reduction in the search time and

helps much in data analysis and updating. Its typical match time is less than 10 ns for

the Altera CAM megafunction.

To better understand the performance advantages of using CAM, the total time required

to search for an item using both RAM and CAM can be compared. Locating an item in

a 32-word, 32-bit RAM block running at 125 MHz requires up to 256 ns, as 32 clock

cycles of 8 ns each may be needed to find a match. In contrast, the total time required to

find an item in a similar-sized CAM block is only 4 ns, or 1 clock cycle of 8 ns. In this

example, CAM is 32 times fast as RAM and has a latency of one clock cycle compared

 62

to a maximum of 32 clock cycles for RAM [21]. Note that regardless of the size of the

CAM, the latency is always one clock cycle.

CAM is ideally suited for many applications, such as Ethernet address look-up, data

compression, pattern recognition, cache tags, fast routing table look-up, high-

bandwidth address filtering, user privileges, and security and encryption information.

5.3.3 Discrete CAM and Integrated CAM

Currently, discrete CAM devices are mostly used for applications that require fast

searches. It increases design time and reduces the amount of usable PCB (printed

circuit board) space because designers have to add a separate CAM device to their

printed circuit board (PCB). Discrete CAM also reduces system performance because

of the introduction of additional on-chip and off-chip delays. However, reconfigurable

devices containing on-chip CAM built into their embedded system blocks (ESBs)

eliminate the disadvantages of discrete CAM. Altera on-chip CAM has an access time

of 4 ns, however, the access time for a typical discrete CAM is 20 ns [20]. Because

CAM is integrated inside an FPGA device, it provides faster system performance than

traditional discrete CAM. In this project, there are 52 embedded system blocks (ESBs)

in the Altera EP20K200E device, allowing a maximum of 53,248 CAM bits. In this

project, 94% ESB bits are used, not only by the CAM, some ESB bits are used by other

functions, such as the SignalTap embedded logic analyzer and the on-chip read only

memory (ROM). There are large external CAMs available, for example, the SiberCAM

[22] Ultra-2M is a CAM with 2,359,296 ternary storage elements. Up to 16 Ultra-2M

devices can be connected together to provide increased storage depth without

 63

performance degradation in search datapath throughput. Table 5.8 shows the

comparison of discrete CAM and APEX CAM.

Table 5.8 Comparison of Discrete CAM & APEX CAM (after [20])

Feature Discrete CAM APEX CAM
Access time 20 ns 4 ns
System performance Multi-device solution

28.2 ns
Single-device solution

4.9 ns

5.3.4 The Altcam Megafunction

CAM is implemented in the Quartus II software through the altcam megafunction. In

order to describe how CAM works in the Silicon Firewall clearly, CAM is introduced

in detail in this section.

5.3.4.1 Symbol

The symbol for the altcam megafunction is as below:

 64

altcam

pattern[]

wrx[]
wrxused[]
wrdelete[]
wraddress[]
wren[]
 maddress[]
inclock mbits[]
inclocken mfound
inaclr mcount[]

mstart rdbusy
mnext wrbusy

outclock
outclocken
outaclr

Figure 5.4 Symbol for The Altcam Megfunction (after [20])

5.3.4.2 Input Pins

Table 5.9 describes the input pins of the altcam megafunction.

Table 5.9 Input Pins of The Altcam Megafunction (after [20])

Port Name

Require Description Notes

pattern [] Yes Input data pattern for
searching or writing.

Input port WIDTH wide.

wrx [] No Pattern “don’t care”
bits (indicated with
1s), for writing only.

Input port WIDTH wide.

wrxused No Indicates whether
wrx[] should be used.

If false, writing takes two clock
cycles to complete; if true,
writing takes three clock cycles.
If asserted during a write cycle,
the value of the wrx [] port is
used. Otherwise, the value of the
wrx[] port has no effect.

wrdelete No Indicates that the
pattern at wraddress []

Deleting a pattern takes two clock
cycles; pattern [], wrx[], and

 65

should be deleted. wrxused are ignored during delete
cycles.

wraddress[] No Address for writing. Input port WIDTHAD wide.
wren No Write enable. Assert wren to start to a write or

delete operation. De-assert wren
for a read (match) operation.

inclock Yes Clock for most inputs.
inclocken No Clock enable for

inclock.

inaclr No Asynchronous clear
for registers that use
inclock.

mstart No Multi-match mode
only: indicates that a
new CAM read is
starting and forces
maddress [] to first
match.

This port is not available for
single-match mode but reauired
for multiple-match modes. In fast
multiple-match mode, this port is
required if the mnext port is used.

mnext No Multi-match mode
only: advances
maddress [] to next
match.

This port is not available for
single-match mode.

outclock No Clock for mstart,
mnext, and outputs.

Used only if
“OUTPUT_REG=OUTCLOCK”.
If
“OUTPUT_REG=UNREGISTER
ED” or “INCLOCK” this port
must remain unconnected.

outclocken No Clock enable for
outclock.

Used only if
“OUTPUT_REG=OUTCLOCK”.
If
“OUTPUT_REG=UNREGISTER
ED” or “INCLOCK” this port
must remain unconnected.

outaclr No Asynchronous clear
for registers that use
outclock.

5.3.4.3 Output Pins

Table 5.10 describes the output pins of the altcam megafunction.

 66

Table 5.10 Output Pins of The Altcam Megafunction (after [20])

Port

Required Description Comments

maddress[] No Encoded address of
current match.

Output port WIDTHAD wide. One
of the output ports must be used.
Altera recommends using ether a
combination of the maddress[] and
mfound output ports, or the mbits []
output port.

mbits[] No Address of the found
match.

Output port with width
[NUMWORDS-1..0]. One of the
output ports must be present. Altera
recommends using either a
combination of the maddress [] and
mfound output ports, or the mbits []
output port.

mfound No Indicates at least one
match.

Used with the maddress[] port. One
of the output ports must be present.
Altera recommends using either a
combination of the maddress [] and
mfound output ports, or the mbits []
output port.

mcount[] No Total number of
matches.

Output port WIDTHAD wide. One
of the output ports must be present.
Altera recommends using either a
output ports, or the mbits [] output
port.

rdbusy No Indicates that read
input ports must hold
their current value.

One of the output ports must be
present.

wrbusy No Indicates that write
input ports must hold
their current value.

One of the output ports must be
present.

As mentioned previously, to accomplish packet filtering, a set of rules has to set up to

specify what types of packets (e.g., those to or from a particular IP address or port) are

to be allowed and what types are to be blocked. Since CAM is used to do the packet

filtering in this project, we need to write the reference source address patterns into and

then read the match results from CAM.

 67

5.3.4.4 Writing Patterns into CAM

CAM can be pre-loaded with data either during configuration, or during

systemoperation. In most cases, writing each word into CAM takes two clock cycles

[20]. The “don’t care” bits can be written into CAM words and bits set to “don’t care”

do not affect matching. A third clock cycle is required if “don’t care” bits are used [20].

5.3.4.5 Reading from CAM

Altera CAM operates in one of three different modes: single-match mode, multiple-

match mode, and fast multiple-match mode. In each mode, the matched data’s location

is outputted by an ESB as an encoded or unencoded address. In an encoded output, the

address of the matched data is indicated. In an unencoded output, each output

represents one word of the CAM block. The corresponding address is a match if an

output goes high (e.g., if the data is located in address 14, the fourteenth output line

goes high).

Single match mode is more suited for designs without duplicate data in the memory. If

multiple locations in the memory contain the same data, CAM should be used in

multiple-match or fast multiple-match mode. In these two modes, CAM supports

multiple-match data and the ESB outputs the locations of the matched data as an

encoded or unencoded addresses. Also, the CAM only takes one clock cycle to acquire

outputs in single match mode, while in multiple-match mode two clock cycles are

needed and fast multiple match while taking one clock cycle need twice as much ESB

memory. Since there are no duplicate patterns in the Silicon Firewall, and speed and

size are important, the single match mode is used in this project.

 68

5.4 Silicon Firewall Hardware Mode

The hardware design is based on the Nios version 1.1 reference design. Basically, the

hardware mode extracts the source IP address and uses a CAM to perform an address

match.

5.4.1 Source IP Address Extraction

As mentioned previously, the source IP address is the policy of packet filtering in this

research project, so source IP address extraction is the important part in this design. In

this section, extraction of the source IP address will be discussed.

5.4.1.1 CS8900A

In software mode, the CS8900A is configured to interrupt mode. The interrupt signal

from the CS8900A is very important in the hardware design, since all the actions are

based on this signal. In the reference design, this signal is connected to the Nios CPU.

In the Silicon Firewall system, it is connected to one of the Verilog modules. The

function of this Verilog module is to read the incoming packet and extract the source IP

address. It outputs this IP address to the CAM to perform an address match. This

module communicates with both the CS8900A and the CAM megafunction.

The CS8900A is one of the peripherals for the Nios CPU in the reference design, so all

the pins are set up already, based on that usage. The Verilog module uses all these pins

to communicate with CS8900A, and no more pins are necessary.

When there is an interrupt, the hardware first reads a special register (the ISQ register)

to cause the interrupt pin to go low. However, the interrupt pin will remain low until the

null word (0000h) is read from the ISQ register, or for 1.6 us, whichever is longer. In

 69

order to make sure the Silicon Firewall will not miss any packets, the first method (null

word from ISQ) must be used.

5.4.1.2 Source IP Address Generation

Three things are considered in the source IP address generation part of the design:

1. The source IP address is the only thing needed to make a decision, so reading

the whole packet is not necessary.

2. The packet data is made of header and data, and the format of the header is

fixed (see Chapter 2). The method used in this design is to count the bytes.

3. The two sets of 16-bit data are combined together to form a 32-bit IP address.

5.4.2 CAM

The function of CAM in this design is to do address matching, so both writing and

matching CAM operations are needed. In software mode, the Nios CPU stores IP

addresses in CAM (write); in hardware mode, the previously described Verilog module

feeds the extracted IP address to CAM (matching).

Since the IP address is 32-bit, a 32 bit*32 words CAM is built through the Megawizard

tool in Quartus II. It is then added to the system as a peripheral of the Nios CPU. In this

design, since there are no don’t care bits written into CAM, only four inputs are needed

to write the IP address: inclock, pattern, wren, wraddress. Three outputs pins are used:

outclock, maddress and mfound. The inclock and the outclock are same. Both of them

are from the Altera APEX board (33.3333 MHz).

5.4.2.1 mfound

mfound is one of the outputs from CAM. It is used to indicate if there is a match. In the

Silicon Firewall system, if mfound goes high, it means a packet with the authorized

 70

source IP address has arrived. In this case, the whole packet’s data is wanted. The

mfound signal is used to interrupt the Nios CPU to process the packet data.

In order to make sure mfound interrupts the Nios CPU properly (only goes high when

there is a desired packet) two more input signals are added to CAM: inclocken and

outclocken. When the Nios CPU initializes CAM, only the inclocken is high

(activated). After the initialization, both of these two clock enable signals are set to

high. Thus enables the CAM to perform source IP address matching.

5.4.3 Packet Data Transfer

In this design, both the Nios CPU and the hardware communicate with the CS8900A,

and both the Nios CPU and the hardware communicate with the CAM. However, two

signals cannot be connected to an output pin or input pin directly. Therefore there are

two situations to deal with in the data transfer in this system.

1. For the data bus of the CS8900A, two bi-directional, tri-state buffers are used,

one is for the Nios CPU and the other one is for the hardware.

2. For the other pins of the CS8900A and the “pattern” input pin of CAM, a bus

multiplexer is used.

5.5 Silicon Firewall Software Mode

In the Silicon Firewall system, there are two operating modes: software mode and

hardware mode. In this section, the software mode is introduced.

As mentioned in section 3.8, basically the software mode does initialization and

configuration. Other than that, since there are two modes in this system, the task of

switching between the software mode and hardware mode is done by the software.

 71

5.5.1 Initialization

In order to make the Silicon Firewall system work properly, various parameters have to

be written to the peripherals. In this specific system, there are two peripherals that need

to be initialized, the CS8900A and the CAM.

5.5.1.1 CS8900A Initialization

The Silicon Firewall system design uses the example hardware Nios 32-bit CPU

reference design for a single daughter card in the Nios EDK CD-ROM as the starting

point. In the reference design, the CS8900A has been connected to the Nios CPU and

configured already. After loading the reference design to the Altera FPGA, the Nios

CPU can communicate with the CS8900A by running the example source file. In the

SDK of the reference design, the “lib” folder contains the C program that initialized the

CS8900A.

In the Silicon Firewall design, the configuration of the CS8900A was changed. There

are two differences between the reference design configuration and Silicon Firewall

system configuration.

1. In the reference design, the interrupt pin is not activated in the configuration

program. However the interrupt from the CS8900A is a very important signal

for the hardware in the Silicon Firewall system, so additional configuration data

are written into the internal registers of the CS8900A to enable the interrupt pin.

2. In the reference design, the CS8900A is configured for promiscuous mode, in

which case it will accept all receive frames, irrespective of DA (Destination

Address). In the Silicon Firewall system, the CS8900A is configured for only

broadcast mode and individual address mode. When the individual address

 72

mode is set, frames with a DA that matches the individual address are accepted,

while in broadcast mode, all broadcast frames are accepted. This last mode is

necessary since broadcast frame are required in a number of protocols (i.e. Ping

command using the ICMP protocol).

5.5.1.2 CAM Initialization

The CAM is another important peripheral in the Silicon Firewall system (see figure

3.2). CAM can be used to accelerate a variety of applications such as local-area

networks (LANs), database management, file-storage management, table look up,

pattern recognition, artificial intelligence, fully associative and processor-specific cache

memories, and disk cache memories [20]. In the Silicon Firewall system, CAM is used

to do address matching. In order to do that, the CAM has to be initialized, that is to say

some data has to be stored in the CAM in advance. In this research project design, the

Nios CPU writes a set of data (Source IP addresses) in the CAM before the operation of

the system.

A CAM megafunction is built through the MegaWizard in Quartus II, and then it is

added to the system. Since the CAM is a complex peripheral, 48 parallel I/O

(input/output) pins are used to make the CAM work properly.

5.5.2 Polling vs. Interrupt

This design used Nios version 1.1 to begin with. The reference design is also 1.1-based.

However the 1.1-based designs have a problem with the interrupt circuitry. The

interrupt arrives at the Nios core asynchronous to the main CLK (clock) signal, causing

occasional spurious interrupts to other values than the assigned interrupt (irq) number.

 73

However, in the Silicon Firewall design, the Nios CPU is not intended to read all the

packet data, only the packet data with the permitted source IP address is read. In that

case, a signal from CAM will interrupt the Nios CPU, thus the interrupt feature of the

Nios CPU is very important for this design. Fortunately, the Nios 2.0 core fixes this

with a D-Flip-Flop between the CS8900A and the Nios, clocked by CLK and

implements this fix internally.

Accordingly, there is a major change in the plugs library in Nios 2.0 CPU. That is the

plugs library may now be run with interrupts enabled, polling is no longer necessary.

From an CPU efficiency stand point this is very desirable.

5.5.3 Mode Switching

As mentioned previously, this design is a hardware and software codesign, so another

concern is how to make the hardware and software work together properly and

efficiently. After splitting the function of hardware and software in this system, a

method to switch between hardware mode and software mode has to be provided. In

this design, two PIOs (parallel input/output) are used to do this. One of the PIOs is

defined as output by the Nios CPU and is connected to related hardware to make the

hardware work correctly. The Nios CPU uses this signal as a control signal to switch

between hardware mode and software mode. The other PIO is defined as input by the

Nios CPU. In reality this input PIO is connected to the output PIO. The reason for

doing this is as follows: the output PIO is used to control the hardware, however that is

not enough since the Nios CPU will do different things in different modes. That is to

say the Nios CPU has to “know” which mode it is in before it does something as

requested.

 74

After the interrupt is enabled in the Nios 2.0 CPU, there is an interrupt handler in the

“lib” folder in the reference design. The interrupt service routine will check for events

and dispatch packet when there is an interrupt. However, there are two modes in the

Silicon Firewall design, so before the interrupt service routine does something, the

current mode has to be determined. The input PIO is used to do this.

5.5.4 Flow Chart

The following is the flow chart of the software mode. In this figure, “Hw” means

hardware mode, “Sw” means software mode.

The Silicon Firewall system uses software mode to begin with. After the system

initialization, the Silicon Firewall is ready to function. In the flow chart, the interrupt

could come from two places, the first one is directly from the CS8900A; the second one

is from the Silicon Firewall system hardware when there is an authorized packet

coming in.

 75

Hw

Sw

No

Yes

Interrupt?

Interrupt Service
Routine

Read Packet
Data

Switch to Sw

Read Packet
Data

Switch to Hw

Hw or Sw?

Software Mode
(Peripheral Initialization)

Figure 5.5 Software Mode Flow Chart

 76

5.6 Silicon Firewall Design

Based on the introduction to the CS8900A and the CAM, the implementation in the

Silicon Firewall system will now be introduced in detail.

5.6.1 Nios System to Daughter Card Pin Map

Each Ethernet Interface (CS8900A) peripheral in the Nios system will have an

associated set of I/O pins on the system module. This section describes how to connect

the daughter card to the system-module I/O pins. In general, these connections are

established by making pin-assignments in the PLD design. The Silicon Firewall design

just uses the pin-assignment included in the reference designs that it is based on.

The names given to the system-module I/O ports will depend on the name for the

Ethernet Interface (CS8900A) peripheral. In Tables 5.11, <your_name> indicates the

name assigned to this component, in the Silicon Firewall system it is “enet”. The name

for some system-module I/O ports will also depend on the tri-state bus selected for this

peripheral. In Tables 5.11, <your_bus_name> indicates the name of the bus assigned to

this Ethernet Interface (CS8900A) peripheral, in the Silicon Firewall it is

“nedk_card_bus”.

 77

Table 5.11 Nios 32-bit CPU System Module I/O Port Name and Daughter Card

Pin Name (after [17])

32-bit CPU System Module I/O Port
Name

Daughter Card Pin Name
(Lower of Two Stacked Cards)

<your_bus_name>_data SD [15..0]
<your_bus_name>_address[4] SA [3]
<your_bus_name>_address[3] SA [2]
<your_bus_name>_address[2] SA [1]
<your_bus_name>_byteenablen[1] SHBE_n
ior_n_to_the <your_name> IOR_n (lower)
iow_n_to_the <your_name> IOW_n (lower)
irq_to_the_<your_name> INTRQ0 (lower)
~(system module reset_n) RESET
Constant Logic-1 MEMW_n
Constant Logic-1 MEMR_n
Constant Logic-1 SA [9..8]
Constant Logic-0 SA [11..10]
Constant Logic-0 SA [7..4]
Constant Logic-0 SA [0]
Constant Logic-0 CHIPSEL_n (lower)
Constant Logic-0 CHIPSEL_n (upper)

The descriptions for these pins are as follows (according to [18]):

SD [0:15]: System Data Bus, Bi-Directional with 3-State Output pins 65-68, 71-74, 27-

24, 21-28. Bi-directional 16-bit System Data Bus used to transfer data

between the CS8900A and the host.

SA [0:19]: System Address Bus, Input pins 37-48, 50-54, 58-60. Lower 20 bits of the

24-bit System Address Bus used to decode accesses to CS8900A I/O and

Memory space, and attached Boot PROM. SA0-SA15 are used for I/O Read

and Write operations. SA0-SA19 are used in conjunction with external

decode logic for Memory Read and Write operations.

SBHE_n: System Bus High Enable, Input pin 36. Active-low input indicates a data

transfer on the high byte of the System Data Bus (SD8-SD15). After a

 78

hardware or a software reset, provide a HIGH to LOW and then LOW to

HIGH transition on SBHE signal before any I/O or memory access is done

to the CS8900A.

IOR_n: I/O Read, Input pin 61. When IOR_n is low and a valid address is detected, the

CS8900A outputs the contents of the selected 16-bit I/O register onto the

System Data Bus. IOR_n is ignored if REFRESH_n is low.

IOW_n: I/O Write, Input pin 62. When IOW_n is low and a valid address is detected,

the CS8900A writes the data on the system Data Bus into the selected 16-bit

I/O register. IOW_n is ignored if REFRESH_n is low.

INTRQ [0:3]: Interrupt Request, 3-State pins 30-32, 35. Active-high output indicates

the presence of an interrupt event. Interrupt Request goes low once the

Interrupt Status Queue (ISQ) is read as all 0’s. Only one Interrupt

Request output is used (one is selected during configuration). All non-

selected Interrupt Request outputs are placed in a high-impedance state.

RESET: Reset, Input pin 75. Active-high asynchronous input used to reset the

CS8900A. Must be stable for at least 400 ns before the CS8900A recognizes

the signal as a valid reset.

MEMW_n: Memory_Read, Input pin 29. Active-low input indicates that the host is

excecuting a Memory Read operation.

MEMR_n: Memory Write, Input pin 28. Active-low input indicates that the host is

excecuting a Memory Write operation.

CHIPSEL_n: Chip Select, Input pin 7. Active-low input generated by external

Latchable Address bus decode logic when a valid memory address is

 79

present on the ISA bus. If Memory Mode operation is not needed,

CHIPSEL_n should be tied low. The CHIPSEL_n is ignored for I/O

and DMA mode of the CS8900A.

In the Silicon Firewall system, the pins used are presented in table 5.12.

Table 5.12 The Pins of CS8900A Used in The Silicon Firewall System

CS8900A Pin Name Silicon Firewall Pin Name
SD [0:15] NEDK_data [15..0]
SA [0:19] NEDK_reg_address [2..0]

IOR_n NEDK_L_IOR_n
IOW_n NEDK_L_IOW_n

SBHE_n /NEDK_SBHE_n
INTRQ [0:3] NEDK_L_IRQ

RESET NEDK_RESET

In I/O mode all the register numbers are even numbers. That is to say the least

significant bits are all “0”. Thus in the Silicon Firewall design the least significant bit is

connected to ground, and only three bits are needed. The Silicon Firewall system uses

“INTRQ0” as the interrupt pin.

5.6.2 System Operation

After compiling the Silicon Firewall design successfully, one programming file is

generated by the Quartus II compiler, which can be used to program or configure the

APEX device. The configuration data is downloaded into a flash memory device on the

Nios development board over a serial port. Then the APEX device is configured using

the data stored in flash memory.

First start the “bash” shell, which is an UNIX command shell that allows running the

“nios-build” and “nios-run” utility on the Nios development board provided with the

GNUPro Nios software development tools. The “inc” and “lib” directories are

subdirectories in the “SDK” folder, which contain a memory map and peripheral

 80

structures based on the memory layout and particular peripherals of the Silicon Firewall

system. Since the plugs library is changed, so it has to be rebuilt using the “make –s

all” command in the “lib” directory. A typical session of library rebuild is shown

below.

[nios]$ make -s all
2003.10.19.00:03:38 --- Deleting libnios32.a libnios32_debug.a
2003.10.19.00:03:38 --- Removing objects
2003.10.19.00:03:41 --- Compiling cs8900.c
2003.10.19.00:03:43 --- Compiling flash_AMD29LV800.c
2003.10.19.00:03:44 --- Assembling nios_atexit.s
2003.10.19.00:03:44 --- Assembling nios_copyrange.s
2003.10.19.00:03:45 --- Assembling nios_cstubs.s
2003.10.19.00:03:45 --- Assembling nios_cwpmanager.s
2003.10.19.00:03:45 --- Compiling nios_debug.c
2003.10.19.00:03:46 --- Assembling nios_delay.s
2003.10.19.00:03:46 --- Assembling nios_emulator.s
2003.10.19.00:03:46 --- Compiling nios_gdb_stub.c
2003.10.19.00:03:47 --- Compiling nios_gdb_stub_io.c
2003.10.19.00:03:48 --- Assembling nios_gdb_stub_isr.s
2003.10.19.00:03:48 --- Assembling nios_getctlreg.s
2003.10.19.00:03:48 --- Compiling nios_gprof.c
2003.10.19.00:03:49 --- Assembling nios_isrmanager.s
2003.10.19.00:03:49 --- Assembling nios_jumptoreset.s
2003.10.19.00:03:49 --- Assembling nios_jumptostart.s
2003.10.19.00:03:50 --- Assembling nios_math1.s
2003.10.19.00:03:50 --- Compiling nios_printf.c
2003.10.19.00:03:50 --- Assembling nios_setjmp.s
2003.10.19.00:03:50 --- Assembling nios_setup.s
2003.10.19.00:03:51 --- Compiling nios_sprintf.c
2003.10.19.00:03:51 --- Assembling nios_zerorange.s
2003.10.19.00:03:52 --- Compiling pio_lcd16207.c
2003.10.19.00:03:56 --- Assembling pio_showhex.s
2003.10.19.00:03:56 --- Compiling plugs.c
2003.10.19.00:03:59 --- Compiling plugs_print.c
2003.10.19.00:04:00 --- Assembling timer_milliseconds.s
2003.10.19.00:04:01 --- Assembling uart_rxchar.s
2003.10.19.00:04:01 --- Assembling uart_txchar.s
2003.10.19.00:04:01 --- Assembling uart_txcr.s
2003.10.19.00:04:01 --- Assembling uart_txhex.s
2003.10.19.00:04:01 --- Assembling uart_txhex16.s
2003.10.19.00:04:01 --- Assembling uart_txhex32.s
2003.10.19.00:04:02 --- Assembling uart_txstring.s

 81

2003.10.19.00:04:02 --- Building libnios32.a
2003.10.19.00:04:02 --- Compiling cs8900.c

Then in the “src” directory, the “nios-build” utility compiles the C code in the “sfw.c”

file. Finally an executable file “sfw.srec” is generated. A typical session of “nios-build

sfw.c” is shown below.

[nios]$ nios-build sfw.c

Beginning Build

Sources:
 sfw_menu.c
 sfw.c

2003.10.24 21:24:52 (*) nios-elf-gcc -I ../inc -I ../../inc -I ../../../inc -
I ../../../../inc -I ../../../../../inc -g -O2 -m32 sfw_menu.c -o sfw_menu.c.o -
c

2003.10.24 21:24:52 (*) nios-elf-gcc -I ../inc -I ../../inc -I ../../../inc -
I ../../../../inc -I ../../../../../inc -g -O2 -m32 sfw.c -o sfw.c.o -c

2003.10.24 21:24:53 (*) nios-elf-ld -e _start -u _start -g -T /cygdrive/c/alte
ra/excalibur/sopc_builder_2_5/bin/nios.ld ../lib/obj32/nios_jumptostart.s.o sfw
_menu.c.o sfw.c.o --start-group -l nios32 -l c -l m -l gcc -l c -l nios32 --end-
group -L/cygdrive/c/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro/nios-elf/l
ib/m32 -L/cygdrive/c/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro/lib/gcc-l
ib/nios-elf/2.9-nios-010801-20020103/m32 -L../lib -L../../lib -L../../../lib -L.
./../../../lib -L../../../../../lib -L../inc -L../../inc -L../../../inc -L../../
../../inc -L../../../../../inc -L. -o sfw.out

2003.10.24 21:24:54 (*) nios-elf-objcopy -O srec sfw.out sfw.srec

2003.10.24 21:24:54 (*) nios-elf-nm sfw.out | sort > sfw.nm
2003.10.24 21:24:54 (*) nios-elf-objdump -D --source sfw.out > sfw.objdump

Finishing Build

 82

The “nios-run” utility download the “sfw.srec” program over the serial port and runs it

in the Nios_based Silicon Firewall system module. For a second download, the “clear”

button (SW2) has to be pressed first. In the Silicon Firewall design, the “sfw.srec”

program is used to initialize the whole system and control the hardware-software mode

switching. When downloading the “sfw.srec” program is complete, the Silicon Firewall

system is ready to receive the packet data. By default the system is in software mode; it

can be switched to hardware mode by press the “q” button of the keyboard. The

program keeps running to receive packet data unless “ctrl+c” is pressed to stop it.

Figure 5.6 shows the complete system; the Nios development board and the computer

that the software (NDK, NEDK) is installed on. The big window on the screen is

Quartus II window; the small black window is the “bash” shell window. Figure 5.7

shows the picture of the Nios Development Board with the daughter card attached.

Figure 5.8 illustrates the sequence of events of packet reception.

 83

Figure 5.6 Silicon Firewall Design System

Figure 5.7 Nios Development Board With The Attached Daughter Card

 84

No

Yes

Yes

No

Yes

No

Interrupt?

Read the ISQ

Read RxLength

Read Part of the Frame
Data

Generate the SA

CAM Match?

Read the packet data

Stop?

Ctrl+c

Figure 5.8 Sequence of Events of Packet Reception

5.6.3 Pin and Register Manipulation In The Software Configurations

In the following only those bits in registers that are used are shown and discussed. The

interested reader is referred to [18].

 85

The “sfw.c” implements the low-level routines for an adapter that the "plugs"

embedded TCP/IP stack can use. This file resets the chip to a usable state. This

involves some pin manipulation, and then some register manipulation.

First, the reset pin is raised and lowered, and then the "byte high enable (bhe)" is forced

to undergo multiple-transitions. Multiple logic-transitions on the SBHE_n (byte-enable)

pin are used to set the CS8900A in the appropriate communications-mode. This is the

first thing that needs to be done. This sequence (a group of byte-writes) results in

multiple edge-transitions on the CS8900's byte-enable input. After this, some internal

registers are written.

1. RxCTL: Receiver Control (Read/Write)

7 6 5 4 3 2 1 0

F E D C B A 9 8
 BroadcastA IndividualA RxOKA

The value is “0000_1101_0000_0000”. The three bits are set are as follows:

• RxOKA

When set, the CS8900A accepts frames with correct CRC and valid length

(valid length is: 64 bytes<=length<= 1518 bytes).

• BroadcastA

When set, receive frames are accepted if the Destination Address is FFFF FFFF

FFFFh.

 86

• IndividualA

When set, receive frames are accepted if the Destination Address matches the

Individual address found at PacketPage base + 0158h to PacketPage base +

015Dh.

In the reference design, promiscuous mode is used. In the Silicon Firewall design,

broadcast and individual address are used, because only the packet going to the Nios

CPU will be examined, there is no concern about any other packets in the network.

2. RxCFG: Receiver Configuration (Read/Write)

7 6 5 4 3 2 1 0

F E D C B A 9 8
 ExtradataiE RuntiE CRCerroriE RxOKiE

The Value is” 0111_0001_0000_0000”. The four bits are set are as follows:

• ExtradataiE

When set, there is an Extradata Interrupt if a frame is longer than1518 bytes.

The operation of this bit is independent of the received packet integrity (good or

bad CRC).

• RuntiE

When set, there is a Runt Interrupt if a frame is received that is shorter than 64

bytes. The CS8900A always discards any frame that is shorter than 8 bytes.

• CRCerror iE

 When set, there is a CRC error Interupt if a frame is received with a bad CRC.

• RxOKiE

When set, there is an RxOK Interrupt if a frame is received without errors.

RxOK interrupt is not generated when DMA mode is used for frame reception.

 87

3. LineCTL (Read/Write)

7 6 5 4 3 2 1 0
SerTxON SerRxON

F E D C B A 9 8

The value is “0000_0000_1100_0000”. The two bits are set are as follows:

• SerRxON

When set, the receiver is enabled. When clear, no incoming packets pass

through the receiver.

• SerTxON

 When set, the transmitter is enabled. When clear, no transmissions are allowed.

4. BusCTL (Read/Write)

7 6 5 4 3 2 1 0

F E D C B A 9 8
EnableIRQ

The value is “1000_0000_0000_0000”. The bit to be set is:

• EnableIRQ

When set, the CS8900A will generate an interrupt in response to an interrupt

event. When clear, the CS8900A will not generate any interrupt.

5.6.4 CS8900A Interrupt

The interrupt request signal is a very important signal for use in the Silicon Firewall. It

will be discussed in this section.

5.6.4.1 Interrupt Activation

The CS8900A has four interrupt request output pins that can be connected directly to

any four of the ISA bus Interrupt Request signals. Only one interrupt output is used at a

 88

time. It is selected by writing the interrupt number (0 to 3) into PacketPage

Memorybase + 0022h. Unused interrupt request pins are placed in a high-impedance

state. The selected interrupt request pin goes high when an enabled interrupt is

triggered. The pin goes low after the first read of the Interrupt Status Queue (ISQ). In

this research project design, INTRQ0 is used, so “0” is written into PacketPage

Memorybase + 0022h to activate it.

5.6.4.2 Interrupt Re-enable

Enabling the interrupt is not enough, the interrupt only goes high once after that. In

order to make the Silicon Firewall handle all the interrupts, the interrupt pin must be re-

enabled after each event. This is done when the Interrupt Status Queue (ISQ) is read as

all 0’s.

The Interrupt Status Queue (ISQ) is used by the CS8900A to communicate Event

reports to the host processor. Whenever an event occurs that triggers an enabled

interrupt, the CS8900A sets the appropriate bit(s) in one of the five registers, maps the

contents of that register to the ISQ, and drives the selected interrupt request pin high.

When the host services the interrupt, it must first read the ISQ to learn the nature of the

interrupt. It can then process the interrupt.

Three of the registers mapped into the ISQ are event registers: RxEvent, TxEvent, and

BufEvent. The other two registers are counter-overflow reports: RxMISS and TxCOL.

There may be more than one RxEvent report and/or more than one TxEvent report in

the ISQ at a time. However, there may be only one BufEvent report, one RxMISS

report and one TxCOL report in the ISQ at any one time.

 89

Event reports stored in the ISQ are read out in the order of priority, with RxEvent first,

followed by TxEvent, BufEvent, RxMiss, and the TxCOL. The host needs to read from

the ISQ to get the interrupt currently at the front of the queue. In I/O mode, the ISQ is

located at I/O base + 0008h. Each time the host reads the ISQ, the bits in the

corresponding register are cleared and the next report in the queue moves to the front.

When the host starts reading the ISQ, it must read and process all the event reports in

the queue. A read out of a null word (0000h) indicates that all the interrupts have been

read. After this null readout the interrupt is re-enabled.

In this research project, RxEvent is the only event. There are different ways to reading

out of a null word, for example, (a). read ISQ, read RxEvent, read ISQ; (b). read ISQ,

read RxLength, read the packet based on the RxLength, read ISQ; (c) read ISQ, read

RxLength or RxStatus, Set SKIP_1 bit in RxCFG, read ISQ.

The condition in case (a) is called an “implied skip”, which is not recommended by

Cirrus Logic. In the Silicon Firewall design, the hardware only extracts the IP address

and the task of reading the whole packet is done by the Nios CPU. Therefore case (b) is

not proper for this design. Case (c) is adopted in the hardware design. Note that the “Set

SKIP_1 bit” will cause the last committed received frame to be deleted from the receive

buffer, since the Nios CPU has not read the whole packet, the hardware ignores this

part. As well, until the Nios CPU reads the whole packet, the RxEvent can not be

cleared by reading the ISQ. Therefore the last “Read ISQ” is ignored by the hardware

part since the Nios CPU will perform this function.

5.6.5 CS8900A and Silicon Firewall Hardware

The reader is referred to appendix A and appendix C.

 90

When there is an interrupt, the hardware first reads the ISQ register, then it reads the

RxLength Register, and then it reads the packet data 16 times continuously. The

CS8900A’s internal architecture is based on a 16-bit data bus. Since the packet format

is fixed and the source IP address is in words 15 and 16, a counter is used to count the

16-bit data words, and the 15th and 16th 16-bit data will be combined together to form

the 32-bit IP Source Address (SA).

Reading the RxLength register means accessing the internal register. To access any of

the CS8900A’s internal registers in I/O mode, the host must first setup the PacketPage

Pointer [23]. It does this by writing the PacketPage address of the target register to the

PacketPage Pointer Port (I/O base + 000A). The contents of the target register is then

mapped into the PacketPage Data Port (I/O base + 000Ch). This has to be done

according to the switching characteristics of the CS8900A. Table 5.13 and Figure 5.9

show the 16-bit I/O read and write switching characteristics. The system clock is

33.3333 MHz, so another counter is used to count the clock cycles, so that individual

timing requirements can be met.

Table 5.13 Switching Characteristics of CS8900A (from [18])

(a). 16-Bit I/O Read

 91

(b). 16-Bit I/O Write

(a) 16-Bit I/O Read

(b) 16-Bit I/O Write

Figure 5.9 Switching Characteristics of CS8900A (from [18])

 92

5.7 Nios System Components

Table 5.14 lists the system components.

Table 5.14 System Components of Silicon Firewall System

Module Name Description Bus Type Base Width of
PIO

IRQ

Ref_system_cpu Altera Nios 2.0 CPU Avalon 0x000
Boot_monitor_rom On-Chip memory

(RAM or ROM)
Avalon 0x400

UART_1 UART (RS-232
serial port)

Avalon 0x420 26

Seven_seg_pio PIO (Parallel I/O) Avalon 0x440 16
Timer1 Interval timer Avalon 0x460 25
Led1_pio PIO (Parallel I/O) Avalon 0x470 1
Button_pio PIO (Parallel I/O) Avalon 0x480 12 27
Lcd_pio PIO (Parallel I/O) Avalon 0x40000 11
Ext_ram SRAM (one or two

IDT71V016 chips)
Avalon_tristate 0x100000

Ext_flash Flash memory Avalon_tristate 0x500
enet Ethernet Interface

(CS8900)
Avalon_tristate 0x520 30

Pattern_pio PIO (Parallel I/O) Avalon 0x530 32
Cam_control_pio PIO (Parallel I/O) Avalon 0x540 6
Mfound_pio PIO (Parallel I/O) Avalon 0x550 1
Maddress_pio PIO (Parallel I/O) Avalon 0x560 5
Sel_control_pio PIO (Parallel I/O) Avalon 1
Ext_ram_bus Avalon Tri-state bus Avalon_tristate|avalon

Nedk_card_bus Avalon Tri-state bus Avalon_tristate|avalon
Clocken_pio PIO (Parallel I/O) Avalon 0x430 2
Mode_pio PIO (Parallel I/O) Avalon 0x570 1

In this table, Mfound_pio is used to interrupt the Nios CPU when there is a match.

Sel_control_pio is used to control the mode of the Silicon Firewall in hardware. The

Nios CPU also read the Sel_control_pio back when there is an interrupt. In this case it

is called Mode_pio.

5.8 Software-Hardware Switching Mechanism

During the Silicon Firewall operation, both the Nios CPU and the “sfw” module need

to communicate with the CS8900A. Both the Nios CPU and the “sfw” read packet data

from CS8900A. Since only one signal can be connected to an output or bidirectional

 93

pin, three 2-input bus multiplexers are used to connect the three pins

(NEDK_reg_address[2..0], NEDK_L_IOR_n, NEDK_L_IOW_n) to the Nios CPU and

the CS8900A. This is also true for the pattern input signal of CAM. The two inputs of

the bus multiplexer are from Nios CPU and “sfw” respectively.

Since the NEDK_data [15..0] pins are bi-directional pins, two tri-state bus

megafunction were used for the connection. One is used for the Nios CPU, the other is

used for the “sfw” module. There are four control signals: sw_r_enable, sw_w_enable;

hw_r_enable, hw_w_enable. Four more 2-input bus multiplexers are used to generate

these four control signals. For the two multiplexers output sw_r_enable and

sw_w_enable, one of the inputs is from Nios, the other input is connected to “Vcc”; For

the two multiplexers output hw_r_enable and hw_w_enable, one of the inputs is from

“sfw”, the other input is connected to “Vcc”. In total eight 2-input bus-multiplexers are

used in the Software-Hardware switching mechanism. All of them use the same control

signal, which comes from Nios CPU through the “sel_control_pio” peripheral. In the

Silicon Firewall design, “1” means hardware mode; “0” means software mode.

 94

Chapter 6 TESTING AND RESULTS

The SignalTap logic analyzer and Ethereal network analyzer are used to analyze the

results of this project. The Ping command is used to test the Silicon Firewall system.

All of them will be introduced before the further discussion of the testing and results.

6.1 SignalTap Overview

The SignalTap® logic analyzer [23] is a megafunction that captures signals from any

internal node or I/O pin of an APEX II or APEX 20K device in real-time at system

speed. Also, the SignalTap analysis eliminates the need for external probes and design

file changes to capture signals from an internal node and works with all existing EDA

synthesis tool design flows. Both the logic analyzer controls and signal capture display

are accessible from the Quartus II design software. Data transfer between the APEX II

or APEX 20K device and the Quartus II software for waveform display of signals

captured by SignalTap logic analysis is supported by the MasterBlaster™ or

ByteBlasterMV™ communications cables. Figure 6.1 shows the SignalTap logic

analyzer.

 95

Figure 6.1 SignalTap Logic Analyzer (from [23])

6.1.1 Functional Description

Generally, the SignalTap megafunction is an embedded logic analyzer that provides

access to signals inside an APEX II or APEX 20K device. The embedded logic analyzer

function can be parameterized to capture up to 128 signals from internal nodes or I/O

pins in-system and at system speed. From within the Quartus II software, the following

items can be selected: which signals will be captured, when signal capture starts, and

how many samples of data are captured. Also, the captured data can be stored in APEX

II or APEX 20K embedded system block (ESB) RAM, or be sent to I/O pins for capture

by external analysis equipment. Two things will be done to the data stored in ESB

RAM, first it is transferred to a host computer by using the MasterBlaster or

ByteBlasterMV communication cable. then it can be displayed in the SignalTap

waveform viewer. The SignalTap logic analyzer can be automatically instantiated by

the Quartus II software without making changes to user design files.

1. Assigning a Signal to the SignalTap File

As mentioned previously, signals can be captured from any internal device node

or I/O pins by the SignalTap analyzer. However, before signals capturing, the

 96

internal nodes or I/O pins must be assigned to SignalTap analyzer input channel.

The SignalTap analyzer can capture from 1 to 128 internal nodes or I/O signals.

nalyzer uses more LEs as more signals are captured.

2.

. The signals that are

 Control option.

3.

sing a global clock signal as the acquisition

4.

 are used as

e sample buffer depth is increased.

5.

 setting the ratio of pre-trigger to post-

trigger data saved in the sample buffer.

The SignalTap a

Filter Control

The Filter Control dialog box allows selecting signals from a specific instance in

the design to be displayed in the SignalTap window

displayed can be managed by the Filter

Selecting an Acquisition Clock Signal

All input channels are sampled on the rising edge of the acquisition clock signal,

which must be a device signal. U

signal is recommended by Altera.

Setting the Sample Buffer Depth

 The sample buffer depth controls the amount of data the SignalTap analyzer

captures when using the internal RAM configuration. More ESBs

more signals are captured and th

Setting the Triggering Position

A Trigger Position setting allows specifying the amount of data captured by the

SignalTap logic analyzer that should be acquired before the trigger and the

amount that should be acquired after the trigger. Figure 6.2 shows the circular

buffer where the acquired data is placed in. The SignalTap logic analyzer

continues sampling the input signals to capture post-trigger data when triggered.

The settings shown in Table 6.1 allows

 97

 Figure 6.2 Circular Signal Capture Buffer (from [23])

Table 6.1 Trigger Position (from [24])

Name Description
Pre-trigger Captures signals immediately after triggering

(12% pre-trigger, 88% post-trigger)
Center Captures signals before and after triggering

(50% pre-trigger, 50% post-trigger)
Post-trigger Captures signals that occur immediately before

triggering (88% pre-trigger, 12% post-trigger)
Continuous

trigger
Captures signals indefinitely until stopped
manually

2. Setting the Trigger Pattern

Signal pattern recognition is used for triggering by the SignalTap analyzer.

Within the Quartus II software, the logic condition for each input signal to

specify the trigger pattern is set. The SignalTap analyzer is triggered if the input

signal matches the trigger pattern. Table 6.2 lists possible trigger patterns for

each channel.

 98

Table 6.2 Channel Trigger Patterns (from [23])

Trigger Pattern Description

Don’t Care Default trigger condition. The channel is not used to
determine the trigger event.

Low The analyzer triggers when the channel is low.

High The analyzer triggers when the channel is high.

Falling

The analyzer triggers when the channel is falling.

Rising The analyzer triggers when the channel is rising.

Rising or Falling
Edge

The analyzer triggers when the channel is rising or falling.

6.2 The Ethereal Network Analyzer

Ethereal [25] is a network protocol analyzer for use on Unix and Windows operating

systems. It allows examining data from a live network or from a capture file on disk.

With Ethereal, the capture data can be browsed interactively by viewing summary and

detail information for each packet. Also, Ethereal has several features, including the

ability to view the reconstructed stream of a TCP session.

6.3 Ping Command

“Ping” is one of the most useful network debugging tools. It takes its name from a

submarine sonar search - if a short sound burst is sent and an echo is listened- a ping -

coming back.

In an IP network, “ping” sends a short data burst (a single packet) and listens for a

single packet in reply. The most basic function of an IP network (delivery of single

packet) can be tested by a “ping”, which is implemented using the required ICMP Echo

 99

function. The first two packets are broadcast packets, which are important for the

following four ICMP packets going through.

6.4 Testing Methodology

In order to test the Silicon Firewall system easily, a small network that consists of three

computers are made up: Mordor, Nios1 and Athlon2. The “Ethereal” was installed in

the Mordor computer, and the “ping” command is issued from there. Nios1 is the name

for the soft core Nios CPU in the Silicon Firewall system. The NDK and the NEDK are

installed in Athlon2, also the testing result is displayed in the Quartus II software in this

computer.

Basically, the results will be discussed in two sections, in section 6.4.1, the Silicon

Firewall results will be demonstrated; the results of software firewall will be

demonstrated in section 6.4.2, and some comparison will be given.

Before any detailed result is given, some configurations of SignalTap will be discussed.

In this project, the “clock” for the SignalTap is the clock from the APEX board, which

is “33.33333 MHz”. For the Silicon Firewall, the sample depth is “1K”samples due to

the limitation of the ESBs included in the APEX EP20K200E device and the number of

nodes. For the software firewall, the sample depth is “16K” because of fewer signals

being traced. The “Pre” trigger position is used. In CAM initialization, the trigger

pattern is the rising edge of the “wren” signal. For both the Silicon Firewall and

software firewall, the rising edge of interrupt signal from “NEDK_L_IRQ” is used as

the trigger pattern.

 100

6.4.1 Silicon Firewall Results

In this section, the results will be discussed in the following sequence. In section

6.4.1.1, the IP address of Mordor is stored in CAM when CAM is initialized, after that,

a “ping” command is issued from Mordor. In section 6.4.1.2, the CAM is initialized

without the IP address of Morder.

6.4.1.1 Results for an Authorized Packet

Figure 6.3 shows the waveform of CAM initialization, the IP address (192.168.128.216)

of Mordor is written into CAM as a pattern, the value of which is “a8c02381” in

hexadecimal.

Figure 6.4 demonstrates the result when the “ping” command is issued from Mordor.

First of all, an interrupt is generated from the CS8900A, the “NEDK_L_IRQ” goes

high, and the first read of “ISQ” make this signal goes low. After that, the interrupt is

re-enabled by reading the “RxLength” and part of the packet data. Then the IP address

of Morder is reconstructed and fed into CAM. Since there is such a pattern stored in

CAM, “mfound” goes high corresponding to a match. Before this point, the system is

running in “Hw” mode. The “mfound” signal interrupts the Nios CPU to switch to “Sw”

mode, and the Nios reads the complete packet data. From figure 6.4, the time between

the interrupt that comes from the CS8900A IRQ line going high and “mfound” going

high is 284 clock cycles.

Figure 6.5 shows the packet data captured by Ethereal. When the “ping” command is

issued, four packets are sent out one after another. Figure 6.4 demonstrates what

happens to one of them due to the buffer space limitation.

 101

Figure 6.3 CAM Initialization-1

 102

Figure 6.4 Results For an Authorized Packet In Hardware Mode

 103

Figure 6.5 Data Captured By Ethereal For Authorized Packets

 104

6.4.1.2 Results for Un-authorized Packet

Figure 6.6 shows the CAM initialization without the pattern for Mordor’s IP address. In

this case, when the “ping” command is issued from Mordor, the interrupt still goes high,

however, “mfound” never goes high since there is not a match any more (figure 6.7

demonstrates this), and the complete packet data will not be read by the Nios CPU. The

“ping” command get timed out since there is no reply (figure 6.8 shows the data

captured by Ethereal).

6.4.2 Software vs. Hardware Implementations

For the purpose of comparison, a software firewall is created using the same structure as

the Silicon Firewall. For the software firewall, the CAM is initialized with the pattern of

Athlon2’s IP address. Since the software firewall does table lookup sequentially, there

are best case and worst case. For the best case, there is a match at the first address of the

lookup table, the time interval is 9359 clock cycles (see figure 6.9); for the worst case,

there is a match at the end of the lookup table, the time interval is 9598 clock cycles

(see figure 6.10). Therefore, the Silicon Firewall is much faster than the software

firewall (284 clock cycles vs. 9359 clock cycles).

 105

Figure 6.6 CAM Initialization-2

 106

Figure 6.7 Results For an Un-authorized Packet

 107

Figure 6.8 Data Captured By Ethereal For Un-authorized Packets

 108

 Figure 6.9 Results of Software Firewall For an Authorized Packet (Best Case)

 109

Figure 6.10 Results of Software Firewall For an Authorized Packet (Worst Case)

 110

Chapter 7 SUMMARY, CONCLUSION AND FUTURE WORK

This thesis addresses issues related to a Silicon Firewall design and implementation in

an Altera FPGA. The performance of this hardware firewall is tested using a real

network, and compared with a software firewall design with silmilar architecture. This

chapter summarizes the work that was done and presents future areas of research.

7.1 Summary

The Internet security problem was presented, and different security models were

discussed. The firewall was identified as an effective type of network security. The

possible inefficiency of the traditional software firewall technology was introduced, and

the hardware firewall feasibility was reviewed. The research objective, an investigation

of if and how existing software firewall technology could be improved by replacing

software functionality with hardware (silicon) was then presented.

The Internet security system was reviewed. Different security strategies were discussed,

and the TCP/IP fundamentals were introduced as background. Packet filtering was also

presented.

Since the Silicon Firewall system is an embedded real-time system, and the design is a

hardware-software codesign, some background on embedded system and hardware-

software codesign was discussed. The Silicon Firewall system design was then

presented in detail. SOPC design and embedded processor PLD solutions were

introduced as the background needed to understand the Silicon Firewall system design.

The Altera Excalibur embedded PLD solutions were presented, and based on a

 111

discussion of soft core and hard core implementations, the rationale for using the Nios

soft core embedded processor in this research project was justified.

The details of the Nios embedded processor and two development kits (NDK and

NEDK) were introduced. The Nios development board and the Ethernet daughter card

as well as the two libraries (Nios peripheral library and Ethernet plugs library) were

introduced.

The two most important components of the Silicon Firewall, the CS8900A Ethernet

controller and the CAM implementation were reviewed. The Silicon Firewall design

was described in detail, following the discussion of the CS8900A and CAM.

The SignalTap embedded logic analyer and the Ethernet network analyzer were

introduced as the two tools used to capture data in the Silicon Firewall system testing.

Background of the “Ping” command was also given. The testing methodology used was

introduced and the Silicon Firewall system test results were presented.

7.2 Conclusions

The objective of this research was to “investigate if and how existing desktop computer

software firewall technology could be improved by replacing software functionality

with hardware (silicon).” The results show that this research objective has been

successfully achieved:

1. Test results confirm that the Silicon Firewall system functions as an Internet

firewall.

2. Comparison of the hardware firewall and software firewall show that the Silicon

Firewall system is much faster than the traditional software firewall (284 clock

sysles vs. 9359 clock cycles).

 112

It should be noted that since the research was started 3Com Corporation has announced

[26] development of an embedded firewall with similar capabilities to the Silicon

Firewall. It was not yet appeared as a consumer product at this time.

7.3 Future Work

While the project has been successful in reaching the goal of design of a Silicon

Firewall, further improvements must be done for a viable system in the future:

• Other CAMs

Since the Silicon Firewall system in this research project does packet filtering

only by the source IP address, only one CAM was included. However, the final

Silicon Firewall may do other kinds of packet filtering, for example, by service,

source port and so forth. Other CAMs may need to be added to the Silicon

Firewall system. This may necessitate the need for external CAM.

• Dynamic CAM

This is another issue related to CAM in the future. The CAM is pre-loaded with

a number of patterns in advance for now, but dynamically changing the patterns

in the CAM is desirable.

• Logging of IP addresses

For the current Silicon Firewall system, an unauthorized packet will disappear

after being blocked. In the future, logging of source IP address can be done for

the purpose of determining who is attempting the attack.

 113

• Remote Administration

Currently, the Silicon Firewall only can be administrated in the local computer.

A remote administration feature may be desirable in the future. This will allow

system administrators to update individual user machines from a central site.

• PC Integration

The final purpose is integrating the Silicon Firewall system with a PC. This

would include PC bus implementation and appropriate drivers for the Silicon

Firewall system.

 114

Bibliography

 (See CD for World Wide Web HTM files)

1. D. B. Chapman and Elizabeth D. Zwicky, Building Internet Firewalls, O’Reilly
& Associates, Inc., 1995.

2. OSI Seven Layer Model, at http://www.freesoft.org/CIE/Topics/15.htm
3. TCP/IP Protocol Architecture, at

http://www.soldierx.com/books/networking/tcpip/ch01_03.htm
4. Network Access Layer, at

http://www.soldierx.com/books/networking/tcpip/ch01_04.htm
5. Internet Layer, at

http://www.soldierx.com/books/networking/tcpip/ch01_05.htm
6. Ping, at http://www.freesoft.org/CIE/Topics/53.htm
7. Transport Layer, at

http://www.soldierx.com/books/networking/tcpip/ch01_06.htm
8. Application Layer, at

http://www.soldierx.com/books/networking/tcpip/ch01_07.htm
9. D. D. Gajski and F. Vahid, “Specification and Design of Embedded Hardware-

software Systems”, IEEE Design and Test of Computers, Vol. 12, No. 1. Spring
1995, pp. 53-67.

10. R. Ernst, “Codesign of Embedded Systems: Status and Trends”, IEEE Design
and Test of Computers, Vol. 15, No. 2. April-June 1998, pp. 45-54.

11. C. Kuttner, TRW Space and Electronics Group, “Hardware-Software Codesign
Using Processor Synthesis”, IEEE Design and Test of Computers, Vol. 13, No.
3. Fall 1996, pp. 43-53.

12. D. E. Thomas, J. K. Adams and H. Schmit, “A Model and Methodology for
Hardware-Software Codesign”, IEEE Design and Test of Computers, Vol. 10,
No. 3. July-September 1993, pp. 6-15.

13. Altera Corporation. Excalibur Backgrounder White Paper.
14. Altera Corporation. Nios Embedded Processor Development Board Data Sheet,

Ver. 2.1, April 2002.
15. Altera Corporation. Excalibur Development Kit with the Nios Embedded

Processor Data Sheet, Ver. 1.0, June 2000.
16. Nios Peripheral Library, at

http://www.altera.com/products/devices/nios/features/nio-peripherals.html
17. Altera Corporation. Nios Ethernet Development Kit User Guide, Ver. 1.0, July

2001.
18. Cirrus Logic, CS8900A Product Data Sheet.

 115

19. Cirrus Logic, Application Note 83: Crystal LAN™ CS8900A Ethernet Controller
Technical Reference Manual.

20. Altera Corporation. Application Note 119: Implementing High-Speed Search
Applications with Altera CAM, Ver. 2.1, July 2001.

21. Altera Corporation. Using APEX 20KE CAM for Fast Search Applications, Ver.
1.0, August 1999.

22. SiberCore Technologies. Cascading The SiberCAM Ulter-2M SCT2000B
Application Note SCAN204, 3-00034-006.1-November 2000.

23. Altera Corporation. SignalTap Embedded Logic Analyzer Megafunction Data,
Ver. 2.0, April 2001.

24. Altera Corporation. SignalTap Embedded Logic Analyzer Megafunction Data,
Ver. 2.1, September 2002.

25. The Ethereal Network Analyzer, at http://www.ethereal.com/
26. 3Com. Corporation, 3Com® Embedded Firewall Architecture for E-business:

Stronger Security for Open Networks, Technical Brief, 100969-001, 04/01.
27. Altera Corporation. SOPC Builder User Guide, Ver. 1.0, June 2003.

 116

APPENDIX A BLOCK DIAGRAM OF SILICON FIREWALL

DESIGN

(See CD)

 117

 118

APPENDIX B CAM INITIALIZATION

void cam_initialize(void)

//define three CAM initialization-related pios
np_pio *pattern_in=na_pattern_pio;
np_pio *cam_control=na_cam_control_pio;
np_pio *clocken=na_clocken_pio;

//define “input” or “output” of each pio
clocken->np_piodirection=1; //set "clocken" as output
pattern_in->np_piodirection=1; //set "pattern_in" as output
cam_control->np_piodirection=1; //set "cam_control" as output
cam_control->np_piodata=0x00; //initialize the cam_control pio data to be "0"
clocken->np_piodata=2; //enable inclocken and disable outclocken

//Initialize CAM with 32 patterns, two of them are IP address of Mordor and Athlon2,
//the rest patterns can be any 32-bit numbers, in this file, all of them are “0x10101010”.
//For each pattern, set up wren and wraddress first, and then pattern. The 32 addresses
//can be written in any sequence.

cam_control->np_piodata=0x23; //set "wen=1","waddress=3"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf; //set “wen=0” after each write
cam_control->np_piodata=0x2b; //set "wen=1","waddress=b"
pattern_in->np_piodata=0xa8c02381; //ip address of Mordor

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x2f; //set "wen=1","waddress=f"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x20; //set "wen=1","waddress=0"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x21; //set "wen=1","waddress=1"
pattern_in->np_piodata=0x10101010;

 119

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x22; //set "wen=1","waddress=2"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x24; //set "wen=1","waddress=4"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x25; //set "wen=1","waddress=5"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x26; //set "wen=1","waddress=6"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x27; //set "wen=1","waddress=7"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x28; //set "wen=1","waddress=8"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x29; //set "wen=1","waddress=9"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x2a; //set "wen=1","waddress=a"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x2c; //set "wen=1","waddress=c"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x2d; //set "wen=1","waddress=d"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x2e; //set "wen=1","waddress=e"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x30; //set "wen=1","waddress=16"

 120

pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x31; //set "wen=1","waddress=17"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x32; //set "wen=1","waddress=18"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x33; //set "wen=1","waddress=19"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x34; //set "wen=1","waddress=20"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x35; //set "wen=1","waddress=21"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x36; //set "wen=1","waddress=22"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x37; //set "wen=1","waddress=23"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x38; //set "wen=1","waddress=24"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x39; //set "wen=1","waddress=25"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3a; //set "wen=1","waddress=26"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3b; //set "wen=1","waddress=27"
pattern_in->np_piodata=0x10101010;

 121

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3c; //set "wen=1","waddress=28"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3d; //set "wen=1","waddress=29"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3e; //set "wen=1","waddress=30"
pattern_in->np_piodata=0xa8c0d981; // ip address of Athlon2

cam_control->np_piodata&=0xdf;
cam_control->np_piodata=0x3f; //set "wen=1","waddress=31"
pattern_in->np_piodata=0x10101010;

cam_control->np_piodata&=0xdf;
clocken->np_piodata=3; //enable both input and output clock

}

 122

APPENDIX C IP SOURCE ADDRESS RECONSTRUCTION

MODULE

//This Verilog module functions according to the interrupt from the CS8900A, for each
//interrupt, the ISQ register is read first to make the interrupt go low, then the Rx_length
//and part of the frame date are read to re-enable the interrupt. The first 14 words of
//frame data are skipped, the 15th word and the 16th word are two parts of the source IP
//address, they are reconstructed and form the 32 bits IP address.

module sfw(clk, irq_from_the_enet, nedk_card_bus_address, ior_n_to_the_enet,

iow_n_to_the_enet, sfw_nedk_card_bus_data, data_out, sel);

input clk, irq_from_the_enet, sel;
output [2:0] nedk_card_bus_address;
output ior_n_to_the_enet;
output iow_n_to_the_enet;
output [31:0] data_out;
inout [15:0] sfw_nedk_card_bus_data;
reg IRQ;
reg ior_n_to_the_enet, iow_n_to_the_enet;
reg [2:0] nedk_card_bus_address;
reg [3:0]timing_cycle; // “timing_cycle” is the system clock cycle, which is counted to

// meet the switching characteristics of the CS8900A
reg [5:0]command_cycle; //every read of the register or the frame data is called a
 //“command_cycle”
reg [15:0] data_from_cs8900;
reg [15:0] data_to_cs8900;
reg [15:0] data1;
reg [15:0] data2;
reg [31:0] data_out;

parameter Rx_Tx_0=3'b000;
parameter Rx_Tx_1=3'b001;
parameter TxCMD=3'b010;
parameter Txlength=3'b011;
parameter ISQ=3'b100;
parameter PPP=3'b101;
parameter PPD_0=3'b110;parameter PPD_1=3'b111;
parameter Rx_status=16'b0000_0100_0000_0000;
parameter Rx_length=16'b0000_0100_0000_0010;

 123

parameter Rx_config=16'b0000_0001_0000_0010;
parameter Rx_event=16'b0000_0001_0010_0100;

always @ (posedge clk)

begin
 if ((irq_from_the_enet==1) && (IRQ==0))
 begin
 command_cycle<=0;
 timing_cycle<=0;
 IRQ<=1;
 end

 else
 begin
 case(command_cycle)
 6'b000000:
 begin //read ISQ
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=ISQ;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin

command_cycle<=command_cycle+1;
 timing_cycle<=0;
 end
 endcase
 end

 6'b000001:
 begin //read Rx_length
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001:nedk_card_bus_address<=PPP; //set up

//packetpage pointer first
 4'b0010: iow_n_to_the_enet<=0;
 4'b0011: data_to_cs8900<=Rx_length;
 4'b0111: begin
 iow_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 data_to_cs8900<=0;

 end

 124

 4'b1001:nedk_card_bus_address<=PPD_0; // read
//data from PPD_0

 4'b1010: ior_n_to_the_enet<=0;
 4'b1111: begin

ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 data_to_cs8900<=0;
 command_cycle<=command_cycle+1;
 timing_cycle<=0;
 end
 endcase
 end

 6'b000010: //the frame data of the following 14 reads are skipped
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;
 timing_cycle<=0;
 end
 endcase
 end

 6'b000011:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin

ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 end
 4'b1111: begin

command_cycle<=command_cycle+1;
 timing_cycle<=0;

 end
 endcase
 end

 125

 6'b000100:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111:begin

command_cycle<=command_cycle+1;
timing_cycle<=0;

 end
 endcase
 end

 6'b000101:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end

 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b000110:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end

 126

 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b000111:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b001000:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b001001:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;

 127

 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin

 ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b001010:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b001011:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 128

 6'b001100:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin

ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 end
 4'b1111: begin

 command_cycle<=command_cycle+1;
timing_cycle<=0;

 end
 endcase

 end

 6'b001101:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin

ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 end
 4'b1111: begin

command_cycle<=command_cycle+1;
timing_cycle<=0;

 end
 endcase
 end

 6'b001110:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin

ior_n_to_the_enet<=1;
nedk_card_bus_address<=3'b011;

 end

 4'b1111: begin

 129

 command_cycle<=command_cycle+1;
timing_cycle<=0;

 end
 endcase
 end

 6'b001111:
 begin //read data from Rx_Tx_0
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 ior_n_to_the_enet<=1;

nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b010000:
 begin //read data from Rx_Tx_0, which is the first 16 bits of the

//source IP address
 timing_cycle<=timing_cycle+1;
 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 data1<=data_from_cs8900;
 ior_n_to_the_enet<=1;
 nedk_card_bus_address<=3'b011;
 end
 4'b1111: begin
 command_cycle<=command_cycle+1;

timing_cycle<=0;
 end
 endcase
 end

 6'b010001:
 begin //read data from Rx_Tx_0, which is the second 16 bits of

//the source IP address
 timing_cycle<=timing_cycle+1;

 130

 case(timing_cycle)
 4'b0001: nedk_card_bus_address<=Rx_Tx_0;
 4'b0010: ior_n_to_the_enet<=0;
 4'b0111: begin
 data2<=data_from_cs8900;
 ior_n_to_the_enet<=1;
 nedk_card_bus_address<=3'b011;
 end
 4'b1000: data_out<=(data1<<16)|data2;
 4'b1111:begin

command_cycle<=command_cycle+1;
timing_cycle<=0;

 end
 endcase
 end

 default:
 begin
 nedk_card_bus_address<=3'b000;
 ior_n_to_the_enet<=1;
 iow_n_to_the_enet<=1;
 IRQ<=0;

data_out<=32'b0000_0000_0000_0000_0000_0000_00
00_0000;

 end

 endcase
 end
end

 bustri bustri_inst1 (
 .data (data_to_cs8900),
 .enabledt (~iow_n_to_the_enet),
 .enabletr (~ior_n_to_the_enet),
 .tridata (sfw_nedk_card_bus_data),
 .result (data_from_cs8900)
);

endmodule

 131

APPENDIX D NDK COMPONENTS

(See CD for Figure D.1 and Figure D.2)

In this appendix, the three components of NDK: SOPC Builder system development

tool, Quartus II development software and GNUPro Toolkit Compiler and Debugger

will be discussed.

D.1 SOPC Builder System Development Tool

The SOPC Builder [27] system development tool simplifies the task of creating high-

performance system-on-a-programmable-chip (SOPC) designs by accelerating system

definition and integration. Using SOPC Builder, a complete system can be defined and

implemented, from hardware to software, within one tool and in a fraction of the time of

traditional system-on-a-chip (SOC) design. SOPC Builder is integrated within the

Altera Quartus II software to give Altera FPGA designers access to this development

tool.

SOPC Builder is a platform for composing bus-based systems from common system

components placed inside or outside the FPGA. The SOPC Builder library components

supplied by Altera or other third party developers range from simple blocks of fixed

logic, to complex, parameterized, and dynamically generated subsystems. SOPC

Builder library components include (according to [27]):

• Processors

• Microcontroller peripherals

• Digital signal processing (DSP) cores

 132

• Intellectual property (IP) cores

• Communications peripherals

• Interfaces

- Memory (on-chip or off-chip)

- Buses and bridges

- ASSPs

- ASICs

• Software components

- Header files

- Generic C drivers

- Operating system (OS) kernels

- Middleware libraries

D.1.1 SOPC Builder Interface

After a Quartus II project is opened, the SOPC Builder user interface can be launched

by choosing SOPC Builder (Tools menu) in the Quartus II software. The SOPC Builder

user interface contains the following pages:

• System Contents page

• System dependency page(s)

• System Generation page

1. System Contents Page

This page is where system is defined. A listing of all available library components is

included in the module pool and all of the components that have been added to a system

 133

are displayed in the module table. A single system module that includes components

and specified interfaces is created when a system is generated with SOPC Builder.

Additionally, automatically generated bus (interconnection) logic is contained in this

single system module. Figure D.1 shows the System Contents page.

 134

Figure D.1 The System Contents Page (from [27])

 135

1) Module Pool

All available library components organized according to bus type and category

is showed in the module pool. A colored dot is used to indicate each component

appearing next to its name.

2) Module Table

The module table is where components are added to the system, including

bridges, bus interfaces, CPUs, memory interfaces, peripherals, etc.

Additionally, the following elements are described using the module table.

• Master and slave connectivity

• System address map

• System IRQ assignments

• Arbitration priorities for shared slaves

2. System Dependency Page(s)

When certain components are added to a system, such as a CPU like the Nios embedded

processor, an additional page(s) appears in SOPC Builder. These page(s) allow setting

additional parameters or associations of the component with respect to the other

components in the system. For example, the relationship between a CPU and the

memory components can be specified to indicate which portion is used as the program

memory and which portion is used as data memory. For components that use system

dependency pages, a separate system dependency page is created for each instance of

the component that has been added to a system.

Additionally, if the processor components have some associated software components,

the software components will be shown on the system dependency pages. The software

 136

components examples range from utility libraries to real-time-operating systems

(RTOSs). Several software components are provided by Altera in development kits,

such as the Plugs Library (a compact, full-featured TCP/IP protocol stacks) that comes

with the Nios development kits.

3. System Generation Page

This page is where a system is generated. It includes options that can be set to control

the generation process such as device family support and simulation. This page reports

the system generation progress message(s) during system generation. Figure D.2 shows

the System Generation page.

 137

Figure D.2 The System Generation Page (from [27])

 138

1) SDK

When the SDK option is turned on, SOPC Builder creates a custom SDK for

each CPU in a system every time the system is generated. Software files

(drivers, libraries, and utilities) for any system components that provide software

support in their library definition is contained in the SDK.

Software applications can be built as part of the generation process by the

processor components, such as the Nios embedded processor and Excalibur™

devices.

The following directories are the directories that the software files are arranged

into:

• inc—Three things are contained in this directory: header files with the

definitions of memory maps, register declarations for the peripherals,

and macros that can be used to create embedded software applications.

• lib— The library files is contained in this directory. If the component

supports GNU tools, the libraries are compiled by SOPC Builder during

system generation.

• src— The source code is contained in this directory. The source code can

be written and modified for the system using any text editor, also the

Quartus II Text Editor can be used, which supports syntax coloring for C

and C++ source code.

 139

2) HDL

When the HDL option is turned on, SOPC Builder generates a system-level

hardware description language (HDL) file in Verilog HDL or VHDL, depending

on which language is specified when the system in SOPC Builder is first set up.

 The HDL file contains (according to [25]):

• An instance of every component in the system

• Bus logic to interconnect the components, including the following items:

- Address decoders

- Data bus multiplexers

- Arbiters for shared resources

- Reset-generation and conditioning logic

- Interrupt prioritization logic

- Dynamic bus sizing (for adapting masters to slaves with wider or

narrower data buses)

- Passive interconnections between master and slave ports

• A simulation testbench that:

- Instantiates the system module

- Drives clock and reset inputs with default behaviors

- Instantiates and connects any simulation models for system external

components if provided (e.g., memory models)

 140

4. Generating a System

After a system is built and generation options are specified, the system can be generated

by clicking the Generate button. SOPC Builder creates the following items (according

to [25]):

• The SDK

• HDL files for each component in the system

• A Block Symbol File (.bsf) for the top-level system module

• ModelSim files

• A Tcl script that sets up all of the files needed for Quartus II compilation

D.2 Quartus II Development Software

The Quartus II development tool allows designers to process multi-million gate designs

and streamline development flows. A comprehensive environment for SOPC design is

provided by the Quartus II development software. Because of its interfaces to industry-

standard EDA tools the software integrates into nearly any design environment. Also,

an embedded logic analysis feature provides the ability to verify chip functionality and

timing by observing internal and I/O signal values at system clock speeds (SignalTap).

This feature was used extensively in the development of the Silicon Firewall.

The Nios development kit includes the Quartus II development software, which

contains support for the EP20K200EFC484 device that populates the Nios development

board.

D.3 GNUPro Toolkit Compiler and Debugger

The GNUPro toolkit from Red Hat is an industry-standard compiler and debugger tool

suite, which is an open-source C/C++ development tool suite optimized for the Nios

 141

embedded processor. An environment familiar to software design engineers is provided

by the GNUPro toolkit.

 142

 143

