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ABSTRACT 

 
 The Internet is a technological advance that provides access to information, and 

the ability to publish information, in revolutionary ways. There is also a major danger 

that provides the ability to corrupt and destroy information as well. When a computer is 

connected to the Internet, three things are put at risk: the data storage, the computing 

resources and the user’s reputation. In order to balance the advantages and risks, the 

contact between a computer and the Internet or the contact between different networks 

should be controlled carefully. 

 A firewall is a form of protection that allows a network to connect to the Internet 

or to another network while maintaining a degree of security. The firewall is an 

effective type of network security, and in most situations, it is the most effective tool for 

doing that. 

 With the availability of larger bandwidth, it is becoming more and more difficult 

for traditional software firewalls to function over a high-speed connection. In addition, 

the advances in network hardware technology, such as routers, and new applications of 

firewalls have caused the software firewall to be an impediment to high throughput. 

This network bottleneck leads to the requirement for new solutions to balance 

performance and security. Replacing software with hardware could lead to improved 

performance, enabling the firewalls to handle significantly larger amounts of data.  

 The goal of this project is to investigate if and how existing desktop computer 

firewall technology could be improved by replacing software functionality with 

hardware (i.e., silicon). A hardware-based Silicon Firewall system has been designed by 

choosing the appropriate architecture and implemented using Altera FPGA (Field 

Programmable Gate Array) on a SOPC (System On a Programmable Chip) Board. The 

performance of the Silicon Firewall is tested and compared with the software firewall. 
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Chapter 1 INTRODUCTION 

In this chapter, the Internet security problem is introduced and different kinds of risk 

types and attack types are discussed. A number of security models are presented. The 

firewall is introduced as the most effective method. Finally, Silicon Firewall feasibility 

and the objective of this research project are introduced.  

1.1 Internet Security 

The Internet is a technological advance that provides access to information, and the 

ability to publish information, in revolutionary ways [1]. The benefits include, but are 

not limited to, information gathering, customer service, and improved publicity. With 

the rapid development of the information superhighway, millions of people are 

exchanging information through the Internet. 

But it’s also a major danger that provides the ability to pollute and destroy information. 

This means the Internet is a two-edge sword and, because it influences millions of 

people, the risks are obviously high on the Internet. 

1.1.1 Risk Types 

When computers are connected to the Internet, three things are put at risk:

• The data stored on the computers 

• The computer system resources 

• The user’s reputation
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a. Data Storage 

1) Privacy: keeping it confidential.  

2) Integrity: preventing it from being changed by other people. 

3) Availability: accessing it freely. 

b. Computing Resources 

Computing resources will not be wasted or destroyed if they are not used, because 

they are neither natural resources, nor are they limited resources. Since people spend 

money and time on their computing resources, they should have the right to 

determine their computers are used. 

c. User’s Reputation 

Sometimes an intruder appears on the Internet with another person’s identity, and 

anything that is done appears to come from the stolen identity. Generally, people 

who choose to do this aim for maximum impact, rather than believability. However 

even if only a few people believe it, it will take a long time to clean up your 

reputation, and it can be humiliating. Even if an intruder doesn’t use another 

person’s identity, unauthorized access to computers is not good for any 

organization, because it shakes people’s confidence in that organization. In addition, 

most intruders will attempt to go from an organization they broke in to others. This 

is going to make their next victim think that the breached organization is a platform 

for computer criminals. 

1.1.2 Attack Types  

There are many types of attacks [1], and many ways of categorizing them. In this 

section, the attacks are broken down into three basic categories: 
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• Intrusion 

• Denial of service 

• Information theft 

a. Intrusion 

Intrusions are the most common attacks on systems. Intruders are actually able to 

control your computers as if they were legitimate users. 

b. Denial of Service 

A denial of service attack is such an attack that aimed entirely at preventing you 

from using your computer. 

c. Information Theft 

Usually these attacks exploit Internet services that are intended to give out 

information, including modifications to give out more information than was 

intended, or to give information to unauthorized users. The attacker can obtain 

information without ever having to directly use your computers. 

1.2 Security Models 

There are a variety of security models to protect against the kinds of attacks outlined in 

the previous section, ranging from no security through obscurity, host security, to 

network security. 

No security model can solve all the problems. Why bother then? Security may not 

prevent every single incident, but it can keep an incident from seriously damaging or 

even shutting down the whole system. 

1.2.1 Security through Obscurity 

With this model, a system is presumed to be secure provided nobody knows about it.
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This approach seldom works for long time because there are too many ways to find an 

attractive target. 

Many people presume that even though attackers can find them, they won’t bother to. 

They think that a small company or a home machine just isn’t going to be of interest to 

intruders. But the fact is that many intruders aren’t aiming at particular targets; their 

purpose is just breaking into as many machines as possible. They look at small 

companies and home machines as easy targets. Even if they won’t stay long, they will 

attempt to break in and they may do substantial damage if they do get in as they try to 

cover their tracks.  

A site has to do at least a minimal amount of registration in order to function on any 

network including the Internet. Intruders watch out for new connections, hoping that 

these sites won’t yet have security measures in place.  

The number of ways that someone can determine security-sensitive information is 

amazing. For example, knowing the hardware and software and the version of the 

operating system gives the intruders important clues about what security holes they 

might try. They can often get this information from the host registration, or by trying to 

connect to the computer. Sometime, an intruder even doesn’t need to access the 

computer to get it, since many computers disclose their type of operating system in the 

greeting you get before you log in.  

1.2.2 Host Security 

Host security probably is the most common model for computer security [1]. With this 

model, the security of each host machine is enforced separately, and the effort is made 

to avoid or alleviate all the known security problems that might affect that particular 
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host. However, the host security doesn’t scale to large numbers of machines, even 

though it does works on individual machines. 

The complexity and diversity are the major impediment to effective host security in 

modern computing environments. Machines from multiple vendors are included in most 

modern environments, each with its own operating system and its own set of security 

problems. Even if the site has machines from only one vendor, the security problems for 

different releases of the same operating system could be significantly different. Also, 

there could be a problem even if all these machines are from a single vendor and run a 

single release of the operating system, since different configurations (different services 

enabled, and so on) can bring different subsystems into play (and into conflict) and lead 

to different sets of security problems. 

Further more, even if the machines are completely identical, the sheer number of them 

at some sites can make securing all of them difficult. Thus, effectively implementing 

and maintaining host security takes a significant amount of upfront and ongoing work.  

Even if all that work has been done correctly, host security still often fails due to bugs 

in vendor software, or due to a lack of suitable software for some required functions. 

Also, host security relies on both the good intentions and the skill of everyone who has 

privileged access to any machine. With the increasing number of machines, the number 

of privileged users generally increases as well. Compared to attaching a machine to a 

network, securing a machine is much more difficult, therefore insecure machines may 

appear on your network as unexpected surprises.  

A host security model may be more appropriate for small sites, or sites with extreme 

security requirements. Indeed, some level of host security should be included in all the 
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site’s overall security plans. Even if a network security model is adopted, certain 

systems will benefit from the strongest host security. The problem is that making the 

host security model work requires too many restrictions and too many people, so this 

model alone isn’t cost-effective for any but small or simple sites. 

1.2.3 Network Security 

A network security model tries to control network access to local hosts and their 

services, rather than secure them individually. Network security models involve 

building firewalls to protect internal systems and networks and using strong 

authentication approaches and encryption to protect particularly sensitive data as it 

transits over the network. This model is an efficient and effective method to secure a 

larger and more diverse computer environment. 

1.3 Firewalls  

A firewall is a component or a set of components that restrict access between a 

protected network and the Internet, or between sets of networks [1]. It is a very effective 

type of network security. There are two kinds of firewalls: Internet firewalls and 

internal firewalls.  

1.3.1 Internet Firewalls 

A firewall is designed to keep a fire from spreading from one part of the building to 

another during building construction. A similar purpose is served by an Internet 

firewall. In theory: It prevents the dangers of the Internet from spreading to the internal 

network. In practice, an Internet firewall serves multiple purposes: 

• Restrict people to entering at a carefully controlled point. 

• Restrict people to leaving at a carefully controlled point. 
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• Prevent attackers from getting close to your other defenses. 

An Internet firewall is often installed at the point where the protected internal network 

connects to the Internet, as shown in Figure 1.1. 

 
 

 

 
Internet 

 

 

 

 

 

 

 

 

 

Desktop Desktop Desktop

Firewall 

Internal network 

Desktop

Figure 1.1 Internet Firewall 

All traffic coming from the Internet or going out from the internal network passes 

through the firewall. Consequently, the firewall has the opportunity to ensure that the 

traffic -- email, file transfer, remote logins, or any kinds of interaction between specific 

systems -- conform to the security policy. These security policies are set by each site; 

some are highly restrictive and others fairly open. 
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1.3.2 Internal Firewalls 

In some situations, parts of the internal network need to be protected from other parts. 

There are a number of reasons to do this: 

• There are test or lab networks with unpredictable things going on there. 

• There are networks that are less secure than the rest of the site.  

• There are networks that are more secure than the rest of the site. 

Firewalls are a useful technology in another situation. In some cases, a firewall sits 

between two parts of the same organization, or between two separate organizations that 

share a network, rather than between a single organization and the Internet. This kind of 

firewall is called an internal firewall. Figure 1.2 shows an internal firewall architecture 

within a laboratory network. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Desktop 

Laboratory Network 

Firewall 

Desktop Desktop

DesktopDesktop

Internal Network 

Figure 1.2 Internal Firewall
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Logically, a firewall is a restrictor, a separator, and an analyzer [1]. There are various 

ways to configure this equipment; the configuration will depend upon a site’s particular 

security policy, budget, and overall operation. 

1.4 Firewall Capability 

Firewalls can do a lot for site’s security, but they also have some drawbacks.  

1. What can a firewall do? 

a. A firewall is a focus for security decisions 

A firewall is a checkpoint through which all traffic in and out must pass. It lets 

you concentrate network security on this checkpoint where your network 

connects to the Internet. Focusing your security in this way is much more 

efficient than spreading security decisions and technologies around individual 

machines. 

b. A firewall can enforce security policy 

Many of the services that people need from the Internet are inherently not 

secure. The firewall enforces the site’s security policy, allowing only services 

defined by the security rules to pass through. 

c. A firewall can log Internet activity efficiently 

Because all traffic passes through the firewall, the single point of access, the 

firewall can record the interactions between the protected network and the 

external network. 

d. A firewall limits your exposure 

 A firewall will sometimes be used to keep one section of your site’s network
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from another section to prevent the problems that impact one section from 

spreading through the entire network (internal firewall). 

2. What can’t a firewall do? 

Although firewalls provide protection against most network threats, they are not a 

complete security solution. Certain threats are beyond the control of the firewall: 

a. A firewall can’t protect you against malicious insiders 

 An inside user can attack your systems without passing through the firewall. 

b. A firewall can’t protect against connections that don’t go through it 

 A firewall can’t control the traffic that doesn’t pass through it. 

c. A firewall can’t protect against new threats 

A firewall is designed to protect against known threats. However, no firewall 

can automatically defend every new threat that arises. You can’t set up a firewall 

once and expect it to protect you forever. 

d. A firewall can’t protect against viruses 

Firewalls can’t keep viruses out of a protected network. Firewalls scan all 

incoming traffic to determine whether it is allowed to pass through to the 

internal network. Nevertheless, the scanning is based on the source and 

destination addresses and port numbers, not on the content of data. 

As a consequence, you need to augment the firewall by incorporating function 

separation, physical security, host security, and user education into your overall 

security plan. 
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Given the limitations above, why bother to install a firewall? Because a firewall is 

the most effective way to connect a network to the Internet while maintaining a 

degree of security. And in most situations, it’s the most effective tool for doing that. 

1.5 Silicon Firewall Feasibility  

With the availability of bandwidth, it is becoming more and more difficult for a 

traditional software firewall to function with a high-speed connection. In addition, the 

advances in network hardware technology, such as routers and new applications of 

firewalls have caused the software firewall to be an impediment to high throughput. 

This network bottleneck leads to the requirement of new solutions to balance the 

performance and security. Replacing software with a hardware (silicon) firewall could 

lead to improved performance, enabling the firewall to handle significantly larger 

amount of data.  

1.6 Research Objectives 

The goal of this project is to investigate if and how existing desktop computer firewall 

technology could be improved by replacing software functionality with hardware 

(silicon). A microprocessor-based system has been designed by choosing the 

appropriate architecture and implemented using Altera FPGA (Field Programmable 

Gate Array) on a SOPC (System on a Programmable Chip) Board. Furthermore, the 

performance of the Silicon Firewall is tested and compared with the software firewall. 

1.7 Thesis Organization 

This thesis is organized into seven chapters: In Chapter 2, packet filtering is presented. 

In Chapter 3, hardware software system codesign is described. In Chapter 4, the Altera 

Nios embedded processor is introduced. NDK (Nios Development Kit) and NEDK 
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(Nios Ethernet Development Kit) are also presented. In Chapter 5, The Silicon Firewall 

design is introduced in detail. Two major peripherals, the CAM (Content Addressable 

Memory) and the CS8900A are introduced as well as the two operating modes of the 

Silicon Firewall, hardware mode and software mode. In Chapter 6, testing and results 

are explained. In Chapter 7, a summary of this research is presented and future work is 

suggested.  
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Chapter 2 INTERNET FIREWALL SECURITY SYSTEMS 

Basic Internet firewall security strategies are presented in this chapter. Packet filtering 

is introduced as the method selected by this research project to build the Silicon 

Firewall. For a good understanding of packet filtering, TCP/IP fundamentals are also 

presented. 

2.1 Security Strategies 

In this section some basic strategies employed in building firewalls and in enforcing 

security will be introduced. 

2.1.1 Least Privilege 

Least privilege is perhaps the most fundamental principle of any kind of security, not 

just computer and network security. Basically, the principle of least privilege means that 

any object (user, administrator, program, system, etc.) should have only the privilege 

the object needs to perform its assigned tasks—and no more [1]. Least privilege is an 

important principle for limiting the exposure to attacks and for limiting the damage 

caused by particular attacks. 

For example, probably not every user needs to access every Internet service, probably 

not every user needs to modify (or even read) every file on the system, probably not 

every user needs to know the machine’s root password, probably not every system 

administrator needs to know the root password for all the system, probably not every 

system needs to access every other system’s files. 
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In order to apply the principle of least privilege, ways should be explored to reduce the 

privilege required for various operations. 

2.1.2 Defense in Depth 

Defense in depth is another principle of any security system. It means not depending on 

just one security mechanism, instead, install multiple mechanisms that back each other 

up. The advantage of defense in depth is that the failure of any single security 

mechanism will not totally compromise the system. 

Any security system—even the most seemingly impenetrable firewall—can be breached 

by attackers who are willing to take enough risk [1]. Multiple mechanisms can be 

adopted to provide backup and redundancy for each other: network security, host 

security and human security. All of these mechanisms are important and can be highly 

effective.  

2.1.3 Choke Point 

A choke point forces attackers to use a narrow channel that can be monitored and 

controlled. In network security, the firewall between the Internet and the internal 

network is such a choke point (assuming that it’s the only connection between the 

Internet and the internal network). Any attacker who’s going to attack the internal 

network from the Internet is going to have to come through that channel. 

A choke point is useless if there’s an effective way for an attacker to go around it [1]. In 

this way, chances are that an adequate job of defending any of the avenues of attack 

can’t be done, or someone will slip through one while another is being defended.  
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2.1.4 Weakest Link 

A fundamental property of security is that a chain is only as strong as its weakest 

linkand a wall is only as strong as its weakest point. The weak points are always hunted 

by smart attackers, so attention should be paid evenly to all aspects of the security 

system. 

2.1.5 Fail-Safe Stance  

According to [1] 
 

“Another fundamental principle of security is that, to the extent possible, 
systems should fail safe, that is, if they’re going to fail, they should fail 
in such a way that they deny access to an attacker, rather than letting the 
attacker in. The failure may also result in denying access to legitimate 
users as well, until repairs are made, but this is usually an acceptable 
tradeoff.” 
 

2.1.6 Universal Participation 

Most security systems require the universal participation (or at least the absence of 

active opposition) of a site’s personnel in order to be fully effective. For example, 

everybody should report strange happenings that might be security-related, everybody 

should choose good passwords, change them regularly; and not to give them out to their 

friends, relatives, etc.. 

2.1.7 Diversity of Defense 

The idea behind diversity of defense is that using security systems from different 

vendors may reduce the chances of a common bug or configuration error that 

compromises them all [1].  Just as using a number of different systems to provide depth 

of defense gives additional security, using a number of different types of systems also 

gives additional security. However, there is a tradeoff between complexity and cost, so 

evaluation and decision need to be made by each site concerning this issue. 
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2.1.8 Simplicity 

There are two reasons for making simplicity a security strategy. First, it is easier to 

understand simpler things; second, nooks and crannies are provided by complexity for 

all sorts of things to hide in.  

2.2 TCP (Transmission Control Protocol) /IP (Internet Protocol) Fundamentals 

Today the two major approaches used to build firewalls are packet filtering and proxy 

services. The packet filtering method is selected for this research project. Since a good 

understanding of TCP /IP is needed to follow the details of the discussions of packet 

filtering, TCP/IP fundamentals will be presented. 

2.2.1 Introduction to TCP/IP 

TCP and IP are two of the most important protocols in the suite of data communications 

protocols, even though there are many other protocols. The TCP/IP protocol has the 

following features (according to [1]): 

• “Open protocol standards, freely available and developed independently from 

any specific computer hardware or operating system. Because it is so widely 

supported, TCP/IP is ideal for uniting different hardware and software. 

• Independence from specific physical network hardware. This allows TCP/IP to 

integrate many different kinds of networks. TCP/IP can be run over an Ethernet, 

a token ring, a dial-up line, an X.25 net, and virtually any other kind of physical 

transmission media. 

• A common addressing scheme that allows any TCP/IP device to uniquely 

addresses any other device in the entire network, even if the network is as large 

as the worldwide Internet. 
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• Standardized high-level protocols for consistent, widely available user services.” 

2.2.2 OSI (Open Systems Interconnection) Reference Model 

The International Standards Organization (ISO), began to develop its Open Systems 

Interconnection (OSI) networking suite in the 1980s [2]. There are two major 

components in OSI: an abstract model of networking (the Basic Reference Model, or 

seven-layer model) and a set of concrete protocols.  

There are seven layers in the OSI Reference Model as shown in table 2.1. One or more 

entities implement its functionality at each layer. Each entity interacts directly only with 

the layer below it, and provides facilities for use by the layer on top of it. Protocols 

enable an entity in one host to interact with a corresponding entity, which is at the same 

layer in a remote host. 

Table 2.1 Seven Layers of The OSI Basic Reference Model (after [2]) 

1. Physical Layer 
2. Data link Layer 
3. Network Layer 
4. Transport Layer 
5. Session Layer 
6. Presentation Layer 
7. Application Layer 

 
The seven layers of the OSI Basic Reference Model [2] are (from bottom to top): 

1. The Physical Layer describes the physical properties of the various 

communications media, as well as the electrical properties and interpretation of 

the exchanged signals. For example, this layer defines the size of Ethernet 

coaxial cable, the type of BNC connector used, and the termination method.  
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2. The Data Link Layer describes the logical organization of data bits transmitted 

on a particular medium. For example, this layer defines the framing, addressing 

and checksumming of Ethernet packets.  

3. The Network Layer describes how a series of exchanges over various data links 

can deliver data between any two nodes in a network. For example, this layer 

defines the addressing and routing structure of the Internet.  

4. The Transport Layer describes the quality and nature of the data delivery. For 

example, this layer defines if and how retransmissions will be used to ensure 

data delivery.  

5. The Session Layer describes the organization of data sequences larger than the 

packets handled by lower layers. For example, this layer describes how request 

and reply packets are paired in a remote procedure call.  

6. The Presentation Layer describes the syntax of data being transferred. For 

example, this layer describes how floating point numbers can be exchanged 

between hosts with different math formats.  

7. The Application Layer describes how real work actually gets done. For 

example, this layer would implement file system operations. 

2.2.3 TCP/IP Protocol Architecture 

There is no universal agreement about how to describe TCP/IP with a layered model. 

Generally, it is viewed as being composed of fewer than the seven layers used in the 

OSI model. Three to five functional levels in the protocol architecture are defined in 

most descriptions of TCP/IP. The four-level model illustrated in table 2.2 is based on 

the three layers (Application, Host-to-Host, and Network Access) shown in the 
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Department of Defense (DOD) Protocol Model in the Defense Data Network (DDN) 

Protocol Handbook - Volume 1, with the addition of a separate Internet layer [1]. This 

model provides a reasonable graphic representation of the layers in the TCP/IP protocol 

hierarchy. 

Table 2.2 Four Layers In The TCP/IP Protocol Architecture (after [3]) 

4. Application Layer Consists of applications and processes that use the 
network 

3. Host-to-Host Transport 
Layer 

Provides end-to-end data delivery services 

2. Internet Layer 
 

Defines the datagram and handles the routing of data 

1. Network Access Layer 
 

Consists of routines for accessing physical networks 

 

1. Network Access Layer 

The lowest layer of the TCP/IP protocol hierarchy is the Network Access Layer. In 

this layer, the protocols provide the ways for the system to transmit data to the other 

devices on a directly attached network. It defines how to use the network to deliver 

an IP datagram. Unlike higher-level protocols, the details of the underlying network 

(its packet structure, addressing, etc.) must be known by the Network Access Layer 

protocols to correctly format the data being transmitted to comply with the network 

constraints. The TCP/IP Network Access Layer can include the functions of all 

three lower layers of the OSI reference Model (Network, Data Link, and Physical). 

Functions performed at this level include encapsulation of IP datagrams into the 

frames transmitted by the network, and mapping of IP addresses to the physical 

addresses used by the network [4]. The universal addressing scheme is one of 
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TCP/IP's strengths. The IP address must be converted into an address that is suitable 

for the physical network over which the datagram is transmitted. 

2. Internet Layer 

The Internet Layer is the layer above the Network Access Layer in the protocol 

hierarchy. The Internet Protocol is the most significant protocol in the Internet 

Layer and is the heart of TCP/IP. IP provides the fundamental packet delivery 

service on which TCP/IP networks are built. All protocols, in the layers above and 

below IP, use the Internet Protocol to transmit data. All TCP/IP data flows through 

IP, incoming and outgoing, regardless of its ultimate destination. 

The Internet Protocol is the building block of the Internet [5]. Its functions include: 

• Defining the datagram, which is the basic unit of transmission in the Internet 

• Defining the Internet addressing scheme 

• Moving data between the Network Access Layer and the Host-to-Host 

Transport Layer 

• Routing datagrams to remote hosts 

• Performing fragmentation and re-assembly of datagrams 

The TCP/IP protocols were built to deliver data over the Advanced Research 

Projects Agency Network (ARPANET), which was a packet switching network)[5]. 

A packet is a block of data, which carries with it the information needed to deliver 

it - in a manner similar to a postal letter, which has an address written on its 

envelope. The addressing information in the packets is used by a packet switching 

network to switch packets from one physical network to another, moving them 

toward their final destination. Each packet travels the network separately. 
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The datagram is the packet format that defined by Internet Protocol [5]. Figure 2.1 

is a graphic representation of an IP datagram. The control information in the first 

five or six 32-bit words are called the header [5]. By default, the header is five 

words long; the sixth word is optional. There is a field called Internet Header Length 

(IHL) in the header that indicates the header's length in words, since the header's 

length is variable. All the information needed to deliver the packet is contained in 

the header. 
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Version IHL Type of Service 

Identification 

Protocol Time to Live 

Flags       Fragmentation Offset 

Header Checksum 

Total Length

0 
Bits

4 8 16 20 2412 28   31 

Data begins here... 

Options 

Padding 

Destination Address

Source Address

Figure 2.1 IP Datagram format (after [5])
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The Internet Protocol transmits the datagram by checking the Destination Address 

in word 5 of the header. The Destination Address is a standard 32-bit IP address that 

identifies the destination network and the particular host on that network. The 

packet is transmitted directly to the destination if the Destination Address is the 

address of a host on the local network. Otherwise, the packet is passed to a gateway 

for delivery. Gateways are devices that switch packets between the different 

physical networks [5]. Routing is deciding which gateway to use [5]. The routing 

decision is made by IP for each individual packet. Figure 2.2 shows routing through 

gateways.  
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Figure 2.2 Routing Through Gateways (after [1]) 

The Internet Control Message Protocol (ICMP) is an integral part of IP. This 

protocol is part of the Internet Layer and uses the IP datagram transmission facility 

to send its messages. ICMP delivers messages that perform the following control, 

error reporting, and informational functions for TCP/IP (according to [5]): 
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• Flow control  

When datagrams arrive too fast for processing, the destination host or an 

intermediate gateway sends an ICMP Source Quench Message back to the 

sender. This tells the source to stop sending datagrams temporarily. 

• Detecting unreachable destinations  
 

When a destination is unreachable, the system detecting the problem sends a 

Destination Unreachable Message to the datagram's source. If the 

unreachable destination is a network or host, the message is sent by an 

intermediate gateway. But if the destination is an unreachable port, the 

destination host sends the message.  

• Redirecting routes  
 

A gateway sends the ICMP Redirect Message to tell a host to use another 

gateway, presumably because the other gateway is a better choice. This 

message can be used only when the source host is on the same network as 

both gateways.  

• Checking remote hosts  

A host can send the ICMP Echo Message to see if a remote system's Internet 

Protocol is up and operational. When a system receives an echo message, it 

replies and sends the data from the packet back to the source host. The ping 

command uses this message [6]. 

3. Transport Layer 

The Host-to-Host Transport Layer is the protocol layer above the Internet Layer. 

This name is usually shortened to Transport Layer. The two most significant 

 24  



 

protocols in the Transport Layer are the User Datagram Protocol (UDP) and the 

Transmission Control Protocol (TCP). UDP provides low-overhead, connectionless 

datagram transmission service. Reliable data delivery service is provided by TCP 

with end-to-end error detection and correction [7]. Both protocols transmit data 

between the Application Layer and the Internet Layer. Applications programmers 

can choose whichever service is more suitable for a specific application. 

• User Datagram Protocol 

Like the transmission service that IP provides the User Datagram Protocol 

gives application programs direct access to a datagram delivery service. This 

allows applications to exchange messages over the network with a minimum 

of protocol overhead. 

UDP is an untrustworthy, connectionless datagram protocol. 

“Untrustworthy” merely means that there are no facilities in the protocol for 

verifying that the data reached the other end of the network correctly. Within 

your computer, UDP will transmit data correctly. The 16-bit Source Port and 

Destination Port numbers in word 1 of the message header is used by UDP 

to deliver data to the correct application process. Figure 2.3 shows the UDP 

message format. 

  

                        

 

 
 

Figure 2.3 UDP Message Format (after [7]) 
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Data begins here …
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Source Port
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There are a number of good reasons why UDP is chosen as a data transport 

service. If the amount of data being delivered is small, the overhead of 

creating connections and ensuring reliable delivery may be greater than the 

work of re-transmitting the entire data set. In this case, the most efficient 

choice for a Transport Layer protocol is UDP.  

• Transmission Control Protocol 

TCP is used by applications that require the transport protocol to provide 

reliable data delivery because it verifies that data is delivered across the 

network accurately and in the proper sequence. TCP is such a protocol that is 

reliable, connection-oriented, and byte-stream. 

a. Reliable 

Reliability is provided by TCP with a mechanism called Positive 

Acknowledgment with Re-transmission (PAR). Simply stated, a 

system using PAR sends the data again until it hears from the remote 

system that the data arrived okay. A segment is the unit of data 

exchanged between cooperating TCP modules (see figure 2.4). A 

checksum that the recipient uses to verify that the data is undamaged 

is contained in each segment. The receiver sends a positive 

acknowledgment back to the sender if the data segment is received 

undamaged. Otherwise the receiver discards it. After an appropriate 

time-out period, the sending TCP module re-delivers any segment for 

which no positive acknowledgment has been received. 
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Options 

Window 

Destination Port

Offset Reserved Flags 

Checksum Urgent Pointer 

Acknowledgment Number 

Padding 

Sequence Number 

Bits 

0 4 8 16 20 2412 28 

Source Port

Data begins here... 

Figure 2.4 TCP Segment Format (after [7])
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b. Connection-oriented  

TCP is connection-oriented. A logical end-to-end connection 

between the two communicating hosts is established by TCP. Control 

information, called a handshake, is exchanged between the two 

endpoints to establish a dialogue before data is delivered. The control 

function of a segment is indicated by setting the appropriate bit in the 

Flags field in word 4 of the segment header. 

c. Byte-stream 

The data sent by TCP is viewed as a continuous stream of bytes, not 

as independent packets. Thus, the sequence in which bytes are sent 

and received is maintained by TCP. Two fields in the TCP segment 

header, the Sequence Number and Acknowledgment Number, keep 

track of the bytes. 

4. Application Layer 

The Application Layer is at the top of the TCP/IP protocol architecture. All processes 

that use the Transport Layer protocols to deliver data are included in this layer. 

Following are the most widely known and implemented applications protocols [8]: 

Telnet: The Network Terminal Protocol that provides remote login over the 

network. 

FTP: The File Transfer Protocol that is used for interactive file transfer. 

 SMTP: The Simple Mail Transfer Protocol that delivers electronic mail. 

HTTP: The Hypertext Transfer Protocol that delivers Web pages over the 

network. 
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2.3 Packet Filtering 

To understand packet filtering, packets and how they are handled at each layer of the 

TCP/IP protocol stack must be understood. 

2.3.1 Packet Definition 

To transfer information across a network, the information has to be broken up into small 

pieces, each of which is sent separately. Breaking the information into pieces allows 

many systems to share the network, each sending pieces in turn. In IP networking, those 

small pieces of data are called packets. All data transfer across IP network happens in 

the form of packets. So the packet is the fundamental unit of communication on the 

Internet. 

2.3.2 Packet Structure 

Packets are constructed in such a way that layers for each protocol used for a 

particularly connection are wrapped around the packets. At each layer, a packet has two 

parts: the header and the body. The header contains protocol information relevant to that 

layer, while the body contains the data for that layer which often consists of a whole 

packet from the next layer in the stack. Each layer treats the information it gets from the 

layer above it as data, and applies its own header to this data. At each layer, the packet 

contains all of the information passed from the higher layer; nothing is lost. The process 

of preserving the data while attaching a new header is known as encapsulation. Figure 

2.5 shows how this works. 
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Figure 2.5 Data Encapsulation (after [3]) 

At the application layer, the packet consists simply of the data to be transferred. As it 

moves to the transport layer, the Transmission Control Protocol (TCP) or the User 

Datagram Protocol (UDP) preserves the data from the previous layer and attaches a 

header to it. At the next layer, IP considers the entire packet (composed now of the TCP 

or UDP header and the data) to be data, and now attaches its own IP header. Finally, at 

the network access layer, Ethernet or another network protocol considers the entire IP 

packet passed to it to be the data, and attaches its own header.  

2.3.3 Packet Filtering Definition 

Packet filtering is a network security mechanism that works by controlling what data 

can flow to and from a network. Packet filters allow or block packets, usually while 
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routing them from one network to another (most often from the Internet to an internal 

network, and vice versa). To accomplish packet filtering, a set of rules that specify what 

types of packets are to be allowed and what types are to be blocked is set up. 

2.3.4 Reasons for Packet Filtering 

Packet filtering controls (allows or disallows) data transfer based on: 

• The address the data is (supposedly) coming from 

• The address the data is going to  

• The session and application protocols being used to transfer the data 

2.3.5 Advantages of Packet Filtering 

Packet filtering has a number of advantages: 

• One router can help protect an entire network 

One of the key advantages of packet filtering is that a single, strategically placed 

packet-filtering router can help protect an entire network. If there is only one 

router that connects the internal network to the Internet, tremendous leverage on 

network security will be gained, regardless of the size of the internal network, 

by doing packet filtering on that router. 

• Packet filtering doesn’t require user knowledge or cooperation 

Packet filtering doesn’t require any custom software or configuration of client 

machines, nor does it require any special training or procedure for users. 

• Packet filtering is widely available in many routers 

Packet filtering capabilities are available in many hardware and software routing 

products. 

 31 



 

2.3.6 Types of Packet Filtering 

Every packet has a set of headers containing certain information as mentioned in the 

previous section. The main information is: 

• IP source address 

• IP destination address 

• Protocol (whether the packet is a TCP, UDP, or ICMP packet) 

• TCP or UDP source port 

• TCP or UDP destination port 

• ICMP message type 

The information above can be used to set up the specific policy, for example, filtering 

by service, filtering by source port and so on. In this project, the IP source address is 

used as the policy, that is to say filtering the packet by the source’s IP address. Filtering 

in this way restricts the flow of packets based on the source IP address of the packets, 

without having to consider what protocols are involved. However, all the information in 

the header could be used to do packet filtering. It should noted that while the source IP 

address is a popular choice for packet filtering, any or all of the information in the 

packet header may be used. This makes the Silicon Firewall can handle IP source 

address masquerading. Also, in the future the dynamic CAM will handle this issue 

better. 
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Chapter 3 HARDWARE/SOFTWARE SYSTEM CODESIGN 

The background of Internet security and Internet firewall security systems were 

presented in Chapter 1 and Chapter 2 respectively. Since the Silicon Firewall system is 

an embedded system, and the design of the Silicon Firewall is a hardware-software 

codesign, before introducing the design issues of the Silicon Firewall system, some 

background of embedded system and hardware-software codesign are given. Since the 

microprocessor is the common component between the hardware-software codesign 

processes, background information on embedded processor and embedded processor 

Programmable Logic Device (PLD) solutions are given. Finally, the Altera® 

Excalibur™ embedded processor programmable solutions are presented as the solution 

that was used in the Silicon Firewall system design. 

3.1  Embedded System Overview 

The Silicon Firewall system is an embedded real-time system. Embedded systems are 

quite diverse; no one statement applies to all cases. Basically, embedded systems are 

built to constantly respond to external events and to generate control outputs as a 

function of their current state and inputs from sensors, etc..  

Embedded-system specification and design consists of two tasks, the first is describing 

a system’s desired functionality; the second is mapping that functionality for 

implementation by a set of system components such as processors, FPGAs, memories, 

and buses [9]. Ever-increasing embedded-system design complexity combined with a 
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very tight time-to-market window has revolutionized the embedded system design 

process. The concurrent design of hardware and software has displaced traditional 

sequential design. Further more, hardware and software design now begins before the 

system architecture is finalized. Requirement definitions and system specifications are 

developed by system architectures, customers, and marketing departments together [10]. 

Embedded computing is unique because it is a codesign problem where the hardware 

and software architecture should be designed simultaneously. 

3.2 Hardware-Software Codesign 

The practice of concurrent hardware-software design can significantly cut the cost and 

cycle to build digital systems for embedded real-time applications. It has been proved 

that the traditional hardware-first, software-last development process is difficult and 

costly [11]. The codesign approach speeds up the intuitively serial design process by 

developing hardware and software concurrently. It helps the embedded system 

designers meet the design and development deadlines.  

According to [12] 
 

“In hardware-software codesign designers consider trade-offs in the way 
hardware and software components of a system work together to exhibit 
a specified behavior, given a set of performance goals and an 
implementation technology. Because of a wide range of possible system 
structures and design goals, the hardware-software codesign problem 
takes on many forms. One type of codesign seeks to accelerate 
application software by extracting portions for implementation in 
hardware. Programmable hardware may take this type of software 
acceleration common even in general-purpose computing. In this case, 
the codesign problem entails characterizing hardware and software 
performance, identifying a hardware-software partition, transforming the 
functional description into such a partition, and synthesizing the resulting 
hardware and software. High-level (or behavioral) synthesis can produce 
hardware implementations for functions described in a high-level 
software language such as C.” 
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 The Silicon Firewall system belongs to this type, the system hardware was written in 

behavioral and register-transfer-level Verilog HDL, while the software was written in 

C.  

The processor is the only piece in common between the hardware-software codesign 

processes, whether it is a microprocessor/microcontroller or digital signal processor. 

That is to say the processor is the common link that bridges the gap between software 

and hardware design. 

3.3 System-on-a-Chip Design 

Today’s submicron fabrication technologies enable designers to put large numbers of 

device on a single microchip. Along with this capability, a vast choice of hardware and 

software components makes system design and validation increasingly complex. As 

system design grows increasingly complex, the use of predesigned components, such as 

general-purpose microprocessors, can simplify synthesized hardware.  

3.4 Embedded Processor PLD (Programmable Logic Device) Solutions 

As digital systems progress towards higher levels of integration, system designers 

benefit from lower development costs, shorter design cycles, increased performance, 

and lower power consumption. Functions once performed by multiple, individual 

devices are now combined into more capable, higher density devices, achieving higher 

integration at the device level. Additionally, greater time-to-market pressures and 

frequent changes in system specifications require an increase in design flexibility. In 

particular, two types of programmable, off-the-shelf components maintain flexibility 

and increase system integration: microprocessors (software) and programmable logic 

(hardware). 
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Given the advantages above, the next logical step in system integration would be the 

combination of embedded processors and programmable logic. In addition to offering 

all of the traditional benefits of higher integration, embedded processor PLD solutions 

also provide unique advantages to the system designer because of the flexibility of 

programmable logic, it also give the system designer unprecedented freedom to 

determine which functions should be executed in software and which would benefit 

most from dedicated hardware. Table 3.1 compares the capabilities of embedded 

processor PLDs to other component-level solutions for system integration, such as 

application specific integrated circuits (ASICs) and application specific standard 

products (ASSPs). 

Table 3.1 Component-Level Solutions for System Integration (after [13]) 

 ASICs ASSPs Embedded 
Processor PLDs

Level of System Integration High Moderate High 
Development Cost High Low Low 
Unit Cost Low Low Moderate 
Design Flexibility Low Low High 
Total Time to Market Long Moderate Short 

 
3.5 Altera® Excalibur™ Embedded Processor Programmable Solutions 

Altera® Excalibur™ embedded processor solutions provided the tools needed to 

integrate an entire system on a single programmable logic device (PLD). The Excalibur 

solutions help speed the development and shorten time-to-market for the embedded 

processor applications by offering the ARM®-based hard core (fixed architecture) 

embedded processors and Nios™ soft core (configurable architecture) embedded 

processors. Combined with programmable and memory, the Excalibur solutions give all 

the programmable solutions needed with single-chip integration.  
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The advanced features of Excalibur Solutions include: 

• 200-MHz high performance RISC (Reduce Instruction Set Computer) processor 

• Support for a wide range of end applications 

• Integrated hardware and software development workflow  

• Optimized integration with Altera device architectures 

3.6 Soft Core vs. Hard Core 

The arguments for both soft and hard core processor implementation in PLDs are 

convincing [13]. Flexibility, scalability, and low absolute cost are offered by soft cores. 

Many applications that require moderate performance are fit by the soft cores, and they 

immediately benefit from process enhancements to their target hardware platform. On 

the other hand, maximum performance and cost effectiveness are offered by hard core 

processors, primarily for applications that require high performance. The Nios 

processor’s parameterizability allows users to make the performance/cost tradeoff 

quickly, without needing to be a processor architect. Regardless of the configuration, 

the same instruction set allows Altera to deliver fully-verified cores and industry-

standard software development tools such as C/C++ compilers [13].  The leading-edge, 

32-bit RISC processor performance and substantial system RAM are offered by the 

ARM-and MIPS-based products, integrated with industry-leading programmable logic 

architectures. These products bring the performance, memory capacity and gate density 

normally associated with ASICs within the reach of every software or hardware 

designer. Table 3.2 outlines the difference between the soft core and hard core 

Excalibur product families. 
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Table 3.2 Excalibur Product Comparison (after [13]) 

 Nios 
(Soft Core) 

ARM-&MIPS-Based 
(Hard Core) 

Flexibility High Moderate 

Performance 
 

Moderate High 

Multiprocessor 
Implementation 

Yes No 

Processor Enhancement 
Benefit 

Immediately Requires Mask Change 

 
3.7 Excalibur Workflow 

The Excalibur solutions are supported by a complete design workflow, which automates 

system design, incorporating familiar hardware and software (C/C++ code) 

methodologies [13]. 

All the tools necessary to develop Excalibur designs are provided by Altera, including 

an industry-standard C/C++ compiler and debugger, peripherals, and drivers, the 

Quartus™ II software for PLD design development, and download cables for device 

programming and verification. These tools provide a system-centric approach to 

development and allow hardware and software to be created concurrently. Figure 3.1 

illustrates the Excalibur workflow. 
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Figure 3.1 The Excalibur Workflow (after [13]) 

3.8 Silicon Firewall System 

Figure 3.2 is a simple diagram of the Silicon Firewall system. Basically in this hardware 

software codesign, the software and hardware are split as follows: the software does the 

initialization and configuration; the hardware does packet filtering. Using software to do 

configuration is easier, while using hardware to do packet filtering is faster, that is the 

reasons for splitting software and hardware in this way. 
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Figure 3.2 A Simple Diagram of The Silicon Firewall System 
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Chapter 4 ALTERA NIOS EMBEDDED PROCESSOR  

The Altera Nios™ soft core embedded processor was selected in the Silicon Firewall 

system based on the advantages of soft core processors described in section 3.6. The 

Nios processor will be introduced in more detail in this chapter. The Nios Development 

Kit (NDK) and the Nios Ethernet Development Kit (NEDK) are also presented. The 

Nios development board and the daughter card are introduced.  

4.1 Nios Embedded Processor Overview 

The Nios® embedded processor is a user-configurable, general-purpose RISC embedded 

processor [14]. It was designed to be a flexible and powerful processor solution. The 

ease-of-use and flexibility make the Nios processor's one of the most popular embedded 

processors in the world. Custom processor-based systems can be created using the 

SOPC Builder system development tool. One or more configurable Nios CPUs can be 

integrated by the SOPC Builder into an FPGA with any number of standard peripherals, 

“gluing” the system together with the automatically generated Avalon™ switch fabric. 

The Nios embedded processor is optimized for system-on-a-programmable-chip 

(SOPC) integration and Altera® programmable logic. The Nios processor and user 

logic can be combined together and programmed into an FPGA using SOPC Builder. 

The Nios embedded processor’s unique features such as custom instructions and the 

simultaneous multi-master Avalon switch fabric make it different from other soft core 

processor solutions. These features provide simple, yet non-traditional methods to 
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accelerate and optimize the designs. Table 4.1 shows a comparison of the 32-bit and 16-

bit Nios embedded processors in typical configurations. 

Table 4.1 Comparisons of Typical Nios Processor Configurations (after [14]) 

Feature 32-Bit Nios CPU 16-Bit Nios CPU 
Data bus size (bits) 32 16 
Arithmetic logic unit (ALU) width (bits) 32 16 
Internal register width (bits) 32 16 
Address bus size (bits) 32 16 
Instruction size (bits) 16 16 
Logic elements (LEs) (typical) Fewer than 1,500 Fewer than 1,000 
fMAX Over 125 MHz Over 125 MHz 

 

4.2 The Nios Soft Core Embedded Processor 

The Nios embedded processor is the first RISC processor soft core to be developed 

specially for programmable logic and can provide up to 50MIPS (Million Instructions 

Per Second) performance while being optimized for area in a PLD. Figure 4.1 shows a 

block diagram of the Nios embedded processor. 
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Figure 4.1 Block Diagram of the Nios Embedded Processor (after [13]) 

4.3 Nios Processor and Peripherals 

An address map with different types, widths, and speeds of memory and peripherals can 

be designed using a simple interface. The interface logic that connects all Nios 

peripherals as defined by the user is generated by the interface. Figure 4.2 diagrams the 

communication between the Nios embedded processor and the peripherals. The 

interface to each is specified as peripherals are added. The interface creates a peripheral 

bus module (PBM) according to the configuration specified. 
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Figure 4.2 Nios Processor and Peripherals (after [15]) 

4.4 Nios Development Kit  

Altera's Nios® development kit provides everything needed for system-on-a-

programmable-chip (SOPC) development.  

This kit includes: 

• Nios embedded processor configurable CPU soft core 

• Library of standard microprocessor peripherals 

• SOPC Builder system development tool  

• GNUPro compiler and debugger from Red Hat  

• Quartus® II Limited Edition development software  
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• Nios development board populated by an APEX™ 20KE device 

(EP20K200EFC484)  

• Multiple SOPC reference designs targeted to the Nios development board  

4.4.1 Nios Peripheral Library 

The Nios® embedded processor development kits include a library of standard 

peripherals that are available for use in Altera® programmable logic. These peripherals 

are provided to the user as Verilog HDL or VHDL source code and include all of the 

necessary software routines for easy system integration. The Nios peripheral library 

(Verilog or VHDL code) includes the peripherals listed in Table 4.2. 

Table 4.2 Nios Peripheral Library (after [16]) 

Peripheral Description 

UART Common serial interface; with variable baud rate, parity, stop 
and data bits, and optional flow control signals 

Timer 32-bit timer; can be used as periodic pulse generator or 
system watchdog timer 

Parallel I/O (PIO) 1- to 32-bit parallel I/O (input, output, and edge-capture) 
Serial Peripheral 
Interface (SPI) Serial peripheral interface, 3-wire, master/slave 

Direct Memory 
Access (DMA) 

The DMA peripheral allows for efficient bulk data transfer 
between peripherals and memory by removing the CPU from 
the data path 

Memory Interfaces 

• On-chip ROM and RAM  
• Off-chip SDRAM and SSRAM, SRAM, and flash  
• Off-chip Altera serial configuration device  

Ethernet Port 
• 10 Mbps Cirrus Logic CS8900A PHY/MAC chip 
• Interfaces supported by Plugs Ethernet Library  

Interface to User 
Logic 

Used to easily connect on-chip user logic or off-chip devices 
to an SOPC Builder-generated system 

 

 45



 

4.4.2 Development Tools 

All the necessary tools for effective embedded system development are contained in the 

Nios development kit. The NDK comprises the two kits previously known as the HDK 

(Hardware Development Kit) and the SDK (Software Development Kit). The HDK is 

used to create Nios embedded processor systems in APEX devices. The HDK consists 

of the Altera's SOPC Builder tool and the Quartus II development software that 

combine to create a hardware development tool flow. On the software side, the SDK 

allows compile, run, debug C and assembly language programs on the Nios embedded 

processors. Altera has chosen the GNUPro toolkit, which is a popular and well-known 

suite of embedded software development tools.  

The reader is referred to appendix D for more information about the three components 

of NDK: SOPC Builder system development tool, Quartus II development software and 

GNUPro Toolkit Compiler and Debugger. 

4.5 Nios Development Board 

The Altera Excalibur development board [14] is an advanced and integrated solution for 

creating embedded processor applications. It contains the following things:  

• An APEX EP20K200E programmable device 

•  8 Mbits (512K x 16) of on board Flash RAM 

•  Two 1 Mbit (64K x 16) on board SRAM devices 

•  An RS-232 communication port 

•  A JTAG port 

• A parallel port 

•  Multiple expansion ports 
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•  Two LEDs 

•  Two 7-Segment displays 

• miscellaneous other switches and components 

 Figure 4.3 shows a diagram of the Excalibur board. 

 

Figure 4.3 Nios Development Board (from [14]) 

The default Nios soft core processor can be loaded into the Altera FPGA, which 

contains a 16 bit instruction set, and the data bus is capable of operating with a 16 or 32 

bit. It can perform 50 million instructions per second with one instruction per clock 

cycle. 

The two internal SRAM devices can be used with 16 or 32 bit applications, the 16 bit is 

smaller, while the 32 bit is faster, thus in this research project the 32 bit data path is 
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selected. A 144-pin SODIMM memory expansion socket is also provided on the board 

if needed. Both the Nios processor and the APEX™ device share the flash memory. 

The flash memory is organized as follows: 

Table 4.3 Flash Memory Configurations (after [14]) 

Flash Address Size Comments 
0x1C00000 – 0x1FFFFF 256Kbyte Factory-default APEX 

configuration 
0x180000 – 0x1BFFFF 256 Kbyte User-defined APEX 

configuration data 
 

0x100000 – 0x17FFFF 512 Kbyte 
 

Nios instruction and 
nonvolatile data space 

 
 
There is a factory programmed controller chip on the board, which is a MAX7054 

device that loads data from the flash and clocks it into the APEX device. The beginning 

address for the user-defined configurations is 0x180000; for factory default the starting 

address is 0x1C0000. 

The Excalibur board provides 5 volt and 3.3 volt daughter cards for the purposes of 

expansion. Three connectors are provided for 5-volt cards: a 40-pin connector (JP11), a 

20-pin connector (JP13), and a 14-pin connector (JP12). The same applies to 3.3-volt 

cards, using JP8, JP10, and JP9, respectively. 

There are three programmable devices on the Excalibur board: the APEX device, the 

configuration controller, and the PCI Mezzanine Card (PMC) (devices for JNC1 and 

JNC2). SW8, SW9, and SW10 determine the ability to program each respectively. The 

corresponding device is added to the JTAG chain if a switch is positioned to the left 

(marked connect on the board); the device will be removed from the chain if each 

switch positioned to bypass. 
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SW1-SW7 are the seven remaining switches on the board. SW1 is an eight-pin user 

defined DIPswitch. SW2 is a special button used for resetting the board. The 

configuration controller reloads the flash memory into the APEX device upon a reset. 

SW3 is defined by the configuration controller (a CPU reset by factory default), which 

is the clear function. SW4-SW7 are user defined and may perform any function 

necessary. When pressed, the logic zero signals are provided. 

On the Excalibur board there are two clocks for use. The first one is provided by an 

onboard oscillator, which is a 33.3333 MHz signal. The second one can be used to 

allow the user to create the clock, utilizing the phase locked loop circuitry on the board. 

In this research project, the first one is used. 

4.6 Nios Ethernet Development Kit  

The Nios Ethernet Development Kit (NEDK)[17] is an add-on to the Nios Development 

Board. It includes a daughter card with an Ethernet interface chip, and make this 

peripheral available to Nios system built with Quartus.  

The Nios Ethernet Development Kit includes hardware and software components that 

provide network connectivity for the Nios-based embedded systems. The components 

included in this kit are (according to [17]): 

• A network-interface daughter card that can plug directly into the Nios 

development board. 

• An SOPC Builder library component that defines the logic and interface signals 

necessary to use the daughter card in a Nios system. 

• A C language library that provides a network-protocol stack. This library 

includes support for raw Ethernet, address resolution protocol (ARP), Internet 
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protocol (IP), Internet control message protocol (ICMP), user datagram protocol 

(UDP), and transmission control protocol (TCP) protocols and utility routines 

for controlling the daughter card hardware. 

APEX™ device hardware reference designs and example software application programs 

are included in this kit. These reference designs and application examples can be used 

as starting points to be modified for the specific network-enabled application.  

The following items are included in the Nios EDK: 

• Nios EDK daughter card based on the Cirrus Logic CS8900A PHY/MAC chip 

• Cabling 

• Nios EDK CD-ROM 

The Nios EDK CD-ROM contains the following files (according to [17]): 

• SOPC library components 

• PC-board schematic and layout files for the Nios EDK daughter card 

• Example hardware reference design configurations: 

- Nios 32-bit CPU for a single daughter card 

- Nios 16-bit CPU for a single daughter card 

- Nios 32-bit for dual-stacked daughter cards 

• Example software applications: 

- Library general demonstration and configuration programs 

- Example web server 

- Nios 32-bit CPU network-based GERMS monitor application example 
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4.7 Nios EDK Daughter Card 

The Nios EDK daughter card is a circuit board with the following components 

(according to [17]): 

• A Cirrus Logic CS8900A integrated Ethernet 10Mbit PHY/MAC chip 

• A RJ-45 network connector with integrated-transformer magnetics and    

Link/LAN LEDs 

• A 20 MHz crystal oscillator that is used by the CS8900A chip 

Figure 4.4 shows the picture of the daughter card. 

 

Figure 4.4 Nios EDK Daughter Card (from [17]) 

The CS8900A integrated PHY/MAC chip is a main functional component on the Nios 

EDK daughter card. An ISA-bus interface (not used in this research) is presented to the 

Nios CPU by the CS8900A. The set of female connectors provides the necessary 

electrical-interface signals. These connectors are compatible with the expansion 

connector groups on the Nios development board. The Nios EDK daughter card is 

compatible with either the 5-V (JP11, JP12, JP13) or the 3.3-V (JP8, JP9, JP10) 

expansion connector groups. The daughter card does not use any 5-V signals. 
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4.8 Plugs Library 

The Plugs Library is a software library included in the Nios EDK. It allows the software 

to use standard network protocols for transmitting and receiving data. The features of 

the plugs library are as follows (according to [17]): 

• Access to low-level packets 

• Access to high level-packet payloads 

• Conforms to RFCs 

• Allows opening connections and sending data with only a few lines of   code 

• Is similar to the Unix-standard sockets routines 

• Each plug can be set to print debug information for either transmit or receive 

data 

The protocols supported by the plugs library are (according to [17]): 

• Raw Ethernet 

• Address resolution protocol (ARP) 

• Internet protocol (IP) 

• Internet control message protocol (ICMP) 

• User datagram protocol (UDP) 

• Transmission control protocol (TCP) 

Figure 4.5 shows the relationships between the library-supported Nios EDK protocols. 
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Figure 4.5 Plugs Library-Supported Nios EDK Protocols (after [17]) 

The Ethernet and 802.3 packets are supported by the Nios EDK. Ethernet packets are 

sent and received by the library routines to and from arbitrary 48-bit Ethernet media 

access control (MAC) address. Higher level protocols (such as ICMP, UDP, and TCP) 

use Ethernet transparently. 
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Chapter 5 SILICON FIREWALL DESIGN  

In this chapter, the Silicon Firewall design is presented in detail. Details of the CAM 

and the CS8900A are discussed since they are the two major peripherals of the Nios 

CPU in the Silicon Firewall. 

5.1 Introduction to CS8900A 

The CS8900A [18] is a low-cost Ethernet Local Area Network (LAN) Controller that is 

optimized for Industry Standard Architecture (ISA) Personal Computers. It is a single 

chip, full-duplex, Ethernet solution, incorporating all of the analog and digital circuitry 

needed for a complete Ethernet circuit. The CS8900A, the most complicated peripheral 

in the Silicon Firewall system, will be introduced in this section. 

5.1.1 General Description 

Major functional blocks of the CS8900A [18] include: a direct ISA-bus interface, an 

802.3 Media Access Control (MAC) engine, integrated buffer memory, a serial 

Electrically Erasable Programmable Read-Only Memory (EEPROM) interface, and a 

complete analog front end with both 10BASE-T and AUI (Attachment Unit Interface). 

The CS8900A must be configured before it can perform its two basic functions, 

Ethernet packet transmission and reception. Various parameters such as Memory Base 

Address, Ethernet Physical Address, frame types to receive, and which media interface 

to use must be written to its internal Configuration and Control registers. There are two 

methods to do the configuration, the first is using the host to write the configuration 
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data to CS8900A across the ISA bus (or direct using register addressing) or to load the 

data automatically from an external EEPROM. 

The Silicon Firewall uses direct register addressing (I/O) mode to configure the 

CS8900A. 

5.1.2 Frame Encapsulation and Decapsulation 

After configuration is complete, operation can begin. All aspects of Ethernet frame 

transmission and reception are handled by the CS8900A’s MAC engine, which is fully 

compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.3 

Ethernet standard (ISO/IEC 8802-3,1993) and supports full-duplex operation. 

The main functions of the MAC are: frame encapsulation and decapsulation, error 

detection and handling, and, media access management. It assembles transmit packets 

and disassembles receive packets automatically. 

For transmission, when the proper number of bytes has been transferred to the 

CS8900A’s memory (either 5, 381, 1021 bytes, or 1518 bytes), and providing that 

access to the network is permitted, the MAC automatically transmits the 7-byte 

preamble (1010101b…), followed by the Start-of-Frame Delimiter (SFD, 10101011b), 

and then the serialized data.  

For reception, the MAC receives the incoming packet as a serial stream of Non-Return 

to Zero (NRZ) data. Then it checks for the SFD. If the SFD is detected, the MAC 

assumes all subsequent bits are frame data. The Destination Address (DA) is read and 

compared to the criteria programmed into the address filter by the MAC. The frame is 

loaded into the CS8900A’s memory if the DA passes the address filter. Figure 5.1 

shows the format of Ethernet frame. 
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 Packet 

                                                                 Frame      

           Up to 7 bytes        1 byte   6 bytes  6 bytes       2 bytes                                                        4 bytes                          

 

  
 Alternating 1s/0s    SFD    DA     SA       length Field       LLC data        Pad     FCS 

              Preamble                                                  frame length 

Direction of Transmission 

Figure 5.1 Ethernet Frame Format (after [18]) 

5.1.3 Two Basic Functions 

As mentioned in section 5.1.1, the two basic functions of CS8900A are Ethernet packet 

transmission and reception. They will be briefly introduced in this section. 

1. Packet Transmission 

There are two phases in packet transmission. In the first phase, the Ethernet frame  is 

moved into the CS8900A’s buffer memory by the host. In the second phase of 

transmission, the frame is converted into an Ethernet packet then transmitted onto the 

network by the CS8900A. 

2. Packet Reception 

Like packet transmission, there are two phases in packet reception. In the first phase, an 

Ethernet packet is received and stored in on-chip memory by the CS8900A. In the 

second phase, the received frame is transferred across the ISA bus and into host 

memory by the host. An alternative to using ISA bus transfer is to use direct register 

addressing (I/O mode). 
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5.1.4 CS8900A Operation Modes 

The receive frame can be transferred as Memory space operations, I/O space 

operations, or as DMA operations using host DMA (ISA bus).  

1 DMA Mode Operation 

A direct interface to ISA buses running at clock rates from 8 to 11 MHz is 

provided by CS8900A. Its on-chip bus drivers are able to deliver 24 mA of 

drive current, which allows the CS8900A to drive the ISA bus directly, without 

added external “glue logic”. 

In order to minimize missed frames, the ISA-bus operation below 8 MHz 

should use the CS8900A’s Receive DMA mode. 

2 Memory Mode Operation 

In Memory Mode operation, the CS8900A’s internal registers and frame buffers 

are mapped into a contiguous 4-Kbyte block of host memory, given that the host 

with direct access to the CS8900A’s internal registers and frame buffers. 

3 I/O Mode Operation 

In I/O Mode operation, the CS8900A is accessed through eight, 16-bit I/O ports, 

which are mapped into sixteen contiguous I/O locations in the host system’s I/O 

space. Being the default configuration for the CS8900A, the I/O Mode is always 

enabled. Table 5.1 illustrates I/O Mode mapping. 
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Table 5.1 I/O Mode Mapping (after [18]) 

Offset Type Description 
0000h Read/Write Receive/Transmit Data (port 0) 
0002h Read/Write Receive/Transmit Data (port 1) 
0004h Write-only TxCMD (Transmit Command) 
0006h Write-only Txlength (Transmit Length) 
0008h Read-only Interrupt Status Queue 
000Ah Read/Write PacketPage Pointer 
000Ch Read/Write PacketPage Data (Port 0) 
000Eh Read/Write PacketPage Data (Port 1) 

 
I/O Mode is 99.6% as fast as Memory Mode [19]. Cirrus Logic recommends the use of 

I/O Mode since the CS8900A defaults to I/O and no glue logic is needed in most 

systems in I/O mode. I/O mode is used in the Silicon Firewall. 

5.1.5 PacketPage   

PacketPage is a unique, highly-efficient method of accessing internal registers and 

buffer memory, which the CS8900A architecture is based on. A unified way of 

controlling the CS8900A in Memory mode or I/O mode that minimizes CPU overhead 

and simplifies software is provided by PacketPage. 

Central to the CS8900A architecture is PacketPage memory, which is a 4-Kbyte page 

of integrated RAM. Transmit and receive frames are stored in PacketPage memory 

temporarily, also PacketPage memory is used for internal registers. Table 5.2 presents 

the user-accessible portion of the PacketPage memory. 

Table 5.2 The User-Accessible Portion of The PacketPage Memory (after [18]) 

PacketPage Address Contents 
0000h-0045h Bus Interface Registers 
0100h-013Fh Status and Control Registers 
0140h-014Fh Initiate Transmit Registers 
0150h-015Dh Address Filter Registers 

0400h Receive Frame Location 
0A00h Transmit Frame Location 
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The following tables illustrate the packet page memory address map. 

Table 5.3 Bus Interface Registers (after [18]) 

PacketPage 
Address 

# of Bytes Type Description 

0000h 4 Read-only Product Identification Code 
0004h 28 - Reserved 
0020h 2 Read/Write I/O Base Address 
0022h 2 Read/Write Interrupt Number (0,1,2,3) 
0024h 2 Read/Write DMA Channel Number (0,1,2) 
0026h 2 Read/Only DMA Start of Frame 
0028h 2 Read-only DMA Frame Count (12 Bits) 
002Ah 2 Read-only RxDMA Byte Count 
002Ch 4 Read/Write Memory Base Address 

Register 
0030h 4 Read/Write Boot PROM Base Address 
0034h 4 Read/Write Boot PROM Address Mask 
0038h 8 - Reserved 
0040h 2 Read/Write EEPROM Command 
0042h 2 Read/Write EEPROM Data 
0044h 12 - Reserved 
0050h 2 Read only Received Frame Byte Counter 
0052h 174 - Reserved 

 
Table 5.4 Status and Control Registers (after [18]) 

PacketPage 
Address 

# of Bytes Type Description 

0100h 32 Read/Write Configuration&Control 
Registers (2 bytes per register) 

0120h 32 Read-only Status& Event Registers 
(2 bytes per register) 

0140h 4 - Reserved 

 
Table 5.5 Initiate Transmit Registers (after [18]) 

Packetpage 
Address 

# of Bytes Type Description 

0144h 2 Write-only TxCMD (transmit command) 
0146h 2 Write-only TxLength (transmit length) 
0148h 8 - Reserved 
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Table 5.6 Address Filter Register (after [18]) 

PacketPage 
Address 

# of Bytes Type Description 

0150h 8 Read/Write Logical Address Filter 
0158h 6 Read/Write Individule Address 
015Eh 674 - Reserved 

 
Table 5.7 Frame Location (after [18]) 

PacketPage 
Address 

# of Bytes Type Description 

0400h 2 Read-only RXStatus 
0402h 2 Read-only RxLength 
0404h - Read-only Receive Frame Location 
0A00 - Write-only Transmit Frame Location 

 
5.2 Using Content-Addressable Memory as an IP Packet Filter 

An Internet Protocol (IP) packet filter is a security feature that prohibits unauthorized 

users from accessing local-area network (LAN) resources. IP traffic over a wide-area 

network (WAN) link can also be restricted by such a filter. LAN users can be restricted 

to specific applications on the Internet (such as e-mail) with an IP packet filter as well. 

A Silicon Firewall serves to filter packet traffic by checking to determine if a packet is 

to be permitted or denied according to the desired polices and rules. Given the traffic 

rates now in place, for the Silicon Firewall to be effective, it must operate at high 

speed. The content-addressable memory (CAM) technology is incorporated to the 

Silicon Firewall in order to meet this goal. 

5.3 Content-Addressable Memory  

In the Silicon Firewall system, CAM is used as a filter to block all accesses except for 

packets that have permission. The source addresses that have permission are stored in 

CAM; when a source address is presented to the CAM, the CAM reports whether it 

contains the source address [20]. The source address(es) residing within CAM have 
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permission for a particular activity. Figure 5.2 shows an example of an IP filter where 

the ultimate action is to “pass” or “deny” the packet depending on the source address. 

                    CAM 

 

 

 

 

 

       

Data Address 

192.2.41.53 0 

192.63.12.3 1 

192.21.42.3 2 

      Packet Address                Status 
 

192.2.41.53 Pass 
 

192.21.42.3 Pass 
 

192.57.11.101 Denied 
 
        192.57.12.144               Denied 

Figure 5.2 Using CAM as an IP Filter (after [20]) 

5.3.1 CAM and Traditional Memory Devices 

Most memory devices address specific memory locations to store and retrieve data. For 

example, a system using RAM or ROM locates data by searching sequentially through 

memory. This technique can slow system performance because the search requires 

multiple clock cycles to complete. However, identifying stored data by content, rather 

than by its address can considerably reduce the time required finding an item stored in 

memory. CAM works in this way. CAM simultaneously compares the desired 

information against the entire list of pre-stored entries, so it offers a performance 

advantage over other memory search algorithms, such as binary-based searches, tree-

based searches, or lookaside tag buffers.  

RAM stores data at a particular address. Retrieving data from RAM, the system 

supplies the address and then receives the data. With CAM, the system supplies the 

data rather than the address, as shown in figure 5.3. 
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Figure 5.3 CAM vs. RAM (after [20]) 

CAM takes one clock cycle to search through all memory locations in parallel to locate 

stored data and returns the data’s address. CAM provided by Altera drives a match flag 

high if the data is found, or low if the data is not found. 

5.3.2 Advantages of CAM 

A performance advantage is offered by CAM over other memory search algorithms, 

because it compares the desired information against the entire list of pre-stored entries 

simultaneously. CAM provides orders-of-magnitude reduction in the search time and 

helps much in data analysis and updating. Its typical match time is less than 10 ns for 

the Altera CAM megafunction. 

To better understand the performance advantages of using CAM, the total time required 

to search for an item using both RAM and CAM can be compared. Locating an item in 

a 32-word, 32-bit RAM block running at 125 MHz requires up to 256 ns, as 32 clock 

cycles of 8 ns each may be needed to find a match. In contrast, the total time required to 

find an item in a similar-sized CAM block is only 4 ns, or 1 clock cycle of 8 ns. In this 

example, CAM is 32 times fast as RAM and has a latency of one clock cycle compared 
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to a maximum of 32 clock cycles for RAM [21]. Note that regardless of the size of the 

CAM, the latency is always one clock cycle. 

CAM is ideally suited for many applications, such as Ethernet address look-up, data 

compression, pattern recognition, cache tags, fast routing table look-up, high-

bandwidth address filtering, user privileges, and security and encryption information. 

5.3.3 Discrete CAM and Integrated CAM  

Currently, discrete CAM devices are mostly used for applications that require fast 

searches. It increases design time and reduces the amount of usable PCB (printed 

circuit board) space because designers have to add a separate CAM device to their 

printed circuit board (PCB). Discrete CAM also reduces system performance because 

of the introduction of additional on-chip and off-chip delays. However, reconfigurable 

devices containing on-chip CAM built into their embedded system blocks (ESBs) 

eliminate the disadvantages of discrete CAM. Altera on-chip CAM has an access time 

of 4 ns, however, the access time for a typical discrete CAM is 20 ns [20]. Because 

CAM is integrated inside an FPGA device, it provides faster system performance than 

traditional discrete CAM. In this project, there are 52 embedded system blocks (ESBs) 

in the Altera EP20K200E device, allowing a maximum of 53,248 CAM bits. In this 

project, 94% ESB bits are used, not only by the CAM, some ESB bits are used by other 

functions, such as the SignalTap embedded logic analyzer and the on-chip read only 

memory (ROM). There are large external CAMs available, for example, the SiberCAM 

[22] Ultra-2M is a CAM with 2,359,296 ternary storage elements. Up to 16 Ultra-2M 

devices can be connected together to provide increased storage depth without 
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performance degradation in search datapath throughput. Table 5.8 shows the 

comparison of discrete CAM and APEX CAM. 

Table 5.8 Comparison of Discrete CAM & APEX CAM (after [20]) 

Feature Discrete CAM APEX CAM 
Access time 20 ns 4 ns 
System performance Multi-device solution 

28.2 ns 
Single-device solution 

4.9 ns 
 

5.3.4 The Altcam Megafunction 

CAM is implemented in the Quartus II software through the altcam megafunction. In 

order to describe how CAM works in the Silicon Firewall clearly, CAM is introduced 

in detail in this section. 

5.3.4.1 Symbol  

The symbol for the altcam megafunction is as below: 
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inaclr                                      mcount[]
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outclock 
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outaclr 

Figure 5.4 Symbol for The Altcam Megfunction (after [20]) 

5.3.4.2 Input Pins  

Table 5.9 describes the input pins of the altcam megafunction. 

Table 5.9 Input Pins of The Altcam Megafunction (after [20]) 

Port Name 
 

Require Description Notes 

pattern [] Yes Input data pattern for 
searching or writing. 

Input port WIDTH wide. 

wrx [] No Pattern “don’t care” 
bits (indicated with 
1s), for writing only. 

Input port WIDTH wide. 

wrxused No Indicates whether 
wrx[] should be used. 

If false, writing takes two clock 
cycles to complete; if true, 
writing takes three clock cycles. 
If asserted during a write cycle, 
the value of the wrx [] port is 
used. Otherwise, the value of the 
wrx[] port has no effect. 

wrdelete No Indicates that the 
pattern at wraddress [] 

Deleting a pattern takes two clock 
cycles; pattern [], wrx[], and 
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should be deleted. wrxused are ignored during delete 
cycles. 

wraddress[] No Address for writing. Input port WIDTHAD wide. 
wren No Write enable. Assert wren to start to a write or 

delete operation. De-assert wren 
for a read (match) operation. 

inclock Yes Clock for most inputs.  
inclocken  No Clock enable for 

inclock. 
 

inaclr No Asynchronous clear 
for registers that use 
inclock. 

 

mstart No Multi-match mode 
only: indicates that a 
new CAM read is 
starting and forces 
maddress [] to first 
match. 

This port is not available for 
single-match mode but reauired 
for multiple-match modes. In fast 
multiple-match mode, this port is 
required if the mnext port is used. 

mnext No Multi-match mode 
only: advances 
maddress [] to next 
match. 

This port is not available for 
single-match mode. 

outclock No Clock for mstart, 
mnext, and outputs. 

Used only if 
“OUTPUT_REG=OUTCLOCK”. 
If 
“OUTPUT_REG=UNREGISTER
ED” or “INCLOCK” this port 
must remain unconnected. 

outclocken No Clock enable for 
outclock. 

Used only if 
“OUTPUT_REG=OUTCLOCK”. 
If 
“OUTPUT_REG=UNREGISTER
ED” or “INCLOCK” this port 
must remain unconnected. 

outaclr No Asynchronous clear 
for registers that use 
outclock. 

 

 
5.3.4.3 Output Pins  

Table 5.10 describes the output pins of the altcam megafunction. 
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Table 5.10 Output Pins of The Altcam Megafunction (after [20]) 

Port 
 

Required Description Comments 

maddress[] No Encoded address of 
current match. 

Output port WIDTHAD wide. One 
of the output ports must be used. 
Altera recommends using ether a 
combination of the maddress[] and 
mfound output ports, or the mbits [] 
output port. 

mbits[] No Address of the found 
match. 

Output port with width 
[NUMWORDS-1..0]. One of the 
output ports must be present. Altera 
recommends using either a 
combination of the maddress [] and 
mfound output ports, or the mbits [] 
output port. 

mfound No Indicates at least one 
match. 

Used with the maddress[] port. One 
of the output ports must be present. 
Altera recommends using either a 
combination of the maddress [] and 
mfound output ports, or the mbits [] 
output port. 

mcount[] No Total number of 
matches. 

Output port WIDTHAD wide. One 
of the output ports must be present. 
Altera recommends using either a 
output ports, or the mbits [] output 
port. 

rdbusy No Indicates that read 
input ports must hold 
their current value. 

One of the output ports must be 
present. 

wrbusy No Indicates that write 
input ports must hold 
their current value. 

One of the output ports must be 
present. 

 
As mentioned previously, to accomplish packet filtering, a set of rules has to set up to 

specify what types of packets (e.g., those to or from a particular IP address or port) are 

to be allowed and what types are to be blocked. Since CAM is used to do the packet 

filtering in this project, we need to write the reference source address patterns into and 

then read the match results from CAM. 
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5.3.4.4 Writing Patterns into CAM 

CAM can be pre-loaded with data either during configuration, or during 

systemoperation. In most cases, writing each word into CAM takes two clock cycles 

[20]. The “don’t care” bits can be written into CAM words and bits set to “don’t care” 

do not affect matching. A third clock cycle is required if “don’t care” bits are used [20]. 

5.3.4.5 Reading from CAM 

Altera CAM operates in one of three different modes: single-match mode, multiple-

match mode, and fast multiple-match mode. In each mode, the matched data’s location 

is outputted by an ESB as an encoded or unencoded address. In an encoded output, the 

address of the matched data is indicated. In an unencoded output, each output 

represents one word of the CAM block. The corresponding address is a match if an 

output goes high (e.g., if the data is located in address 14, the fourteenth output line 

goes high). 

Single match mode is more suited for designs without duplicate data in the memory. If 

multiple locations in the memory contain the same data, CAM should be used in 

multiple-match or fast multiple-match mode. In these two modes, CAM supports 

multiple-match data and the ESB outputs the locations of the matched data as an 

encoded or unencoded addresses. Also, the CAM only takes one clock cycle to acquire 

outputs in single match mode, while in multiple-match mode two clock cycles are 

needed and fast multiple match while taking one clock cycle need twice as much ESB 

memory. Since there are no duplicate patterns in the Silicon Firewall, and speed and 

size are important, the single match mode is used in this project. 
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5.4 Silicon Firewall Hardware Mode 

The hardware design is based on the Nios version 1.1 reference design. Basically, the 

hardware mode extracts the source IP address and uses a CAM to perform an address 

match. 

5.4.1 Source IP Address Extraction 

As mentioned previously, the source IP address is the policy of packet filtering in this 

research project, so source IP address extraction is the important part in this design. In 

this section, extraction of the source IP address will be discussed. 

5.4.1.1 CS8900A 

In software mode, the CS8900A is configured to interrupt mode. The interrupt signal 

from the CS8900A is very important in the hardware design, since all the actions are 

based on this signal. In the reference design, this signal is connected to the Nios CPU. 

In the Silicon Firewall system, it is connected to one of the Verilog modules. The 

function of this Verilog module is to read the incoming packet and extract the source IP 

address. It outputs this IP address to the CAM to perform an address match. This 

module communicates with both the CS8900A and the CAM megafunction. 

The CS8900A is one of the peripherals for the Nios CPU in the reference design, so all 

the pins are set up already, based on that usage. The Verilog module uses all these pins 

to communicate with CS8900A, and no more pins are necessary. 

When there is an interrupt, the hardware first reads a special register (the ISQ register) 

to cause the interrupt pin to go low. However, the interrupt pin will remain low until the 

null word (0000h) is read from the ISQ register, or for 1.6 us, whichever is longer. In 
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order to make sure the Silicon Firewall will not miss any packets, the first method (null 

word from ISQ) must be used.  

5.4.1.2 Source IP Address Generation 

Three things are considered in the source IP address generation part of the design: 

1. The source IP address is the only thing needed to make a decision, so reading 

the whole packet is not necessary. 

2. The packet data is made of header and data, and the format of the header is 

fixed (see Chapter 2). The method used in this design is to count the bytes. 

3. The two sets of 16-bit data are combined together to form a 32-bit IP address. 

5.4.2 CAM  

The function of CAM in this design is to do address matching, so both writing and 

matching CAM operations are needed. In software mode, the Nios CPU stores IP 

addresses in CAM  (write); in hardware mode, the previously described Verilog module 

feeds the extracted IP address to CAM (matching).  

Since the IP address is 32-bit, a 32 bit*32 words CAM is built through the Megawizard 

tool in Quartus II. It is then added to the system as a peripheral of the Nios CPU. In this 

design, since there are no don’t care bits written into CAM, only four inputs are needed 

to write the IP address: inclock, pattern, wren, wraddress. Three outputs pins are used: 

outclock, maddress and mfound. The inclock and the outclock are same. Both of them 

are from the Altera APEX board (33.3333 MHz). 

5.4.2.1 mfound 

mfound is one of the outputs from CAM. It is used to indicate if there is a match. In the 

Silicon Firewall system, if mfound goes high, it means a packet with the authorized 
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source IP address has arrived. In this case, the whole packet’s data is wanted. The 

mfound signal is used to interrupt the Nios CPU to process the packet data.  

In order to make sure mfound interrupts the Nios CPU properly (only goes high when 

there is a desired packet) two more input signals are added to CAM: inclocken and 

outclocken. When the Nios CPU initializes CAM, only the inclocken is high 

(activated). After the initialization, both of these two clock enable signals are set to 

high. Thus enables the CAM to perform source IP address matching.  

5.4.3 Packet Data Transfer 

In this design, both the Nios CPU and the hardware communicate with the CS8900A, 

and both the Nios CPU and the hardware communicate with the CAM. However, two 

signals cannot be connected to an output pin or input pin directly. Therefore there are 

two situations to deal with in the data transfer in this system. 

1. For the data bus of the CS8900A, two bi-directional, tri-state buffers are used, 

one is for the Nios CPU and the other one is for the hardware. 

2. For the other pins of the CS8900A and the “pattern” input pin of CAM, a bus 

multiplexer is used. 

5.5 Silicon Firewall Software Mode 

In the Silicon Firewall system, there are two operating modes: software mode and 

hardware mode. In this section, the software mode is introduced. 

As mentioned in section 3.8, basically the software mode does initialization and 

configuration. Other than that, since there are two modes in this system, the task of 

switching between the software mode and hardware mode is done by the software.  

 71



 

5.5.1 Initialization 

In order to make the Silicon Firewall system work properly, various parameters have to 

be written to the peripherals. In this specific system, there are two peripherals that need 

to be initialized, the CS8900A and the CAM. 

5.5.1.1 CS8900A Initialization 

The Silicon Firewall system design uses the example hardware Nios 32-bit CPU 

reference design for a single daughter card in the Nios EDK CD-ROM as the starting 

point. In the reference design, the CS8900A has been connected to the Nios CPU and 

configured already. After loading the reference design to the Altera FPGA, the Nios 

CPU can communicate with the CS8900A by running the example source file. In the 

SDK of the reference design, the “lib” folder contains the C program that initialized the 

CS8900A.  

In the Silicon Firewall design, the configuration of the CS8900A was changed. There 

are two differences between the reference design configuration and Silicon Firewall 

system configuration. 

1. In the reference design, the interrupt pin is not activated in the configuration 

program. However the interrupt from the CS8900A is a very important signal 

for the hardware in the Silicon Firewall system, so additional configuration data 

are written into the internal registers of the CS8900A to enable the interrupt pin. 

2. In the reference design, the CS8900A is configured for promiscuous mode, in 

which case it will accept all receive frames, irrespective of DA (Destination 

Address). In the Silicon Firewall system, the CS8900A is configured for only 

broadcast mode and individual address mode. When the individual address 
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mode is set, frames with a DA that matches the individual address are accepted, 

while in broadcast mode, all broadcast frames are accepted. This last mode is 

necessary since broadcast frame are required in a number of protocols (i.e. Ping 

command using the ICMP protocol). 

5.5.1.2 CAM Initialization 

The CAM is another important peripheral in the Silicon Firewall system (see figure 

3.2). CAM can be used to accelerate a variety of applications such as local-area 

networks (LANs), database management, file-storage management, table look up, 

pattern recognition, artificial intelligence, fully associative and processor-specific cache 

memories, and disk cache memories [20].  In the Silicon Firewall system, CAM is used 

to do address matching. In order to do that, the CAM has to be initialized, that is to say 

some data has to be stored in the CAM in advance. In this research project design, the 

Nios CPU writes a set of data (Source IP addresses) in the CAM before the operation of 

the system. 

A CAM megafunction is built through the MegaWizard in Quartus II, and then it is 

added to the system. Since the CAM is a complex peripheral, 48 parallel I/O 

(input/output) pins are used to make the CAM work properly. 

5.5.2 Polling vs. Interrupt 

This design used Nios version 1.1 to begin with. The reference design is also 1.1-based. 

However the 1.1-based designs have a problem with the interrupt circuitry. The 

interrupt arrives at the Nios core asynchronous to the main CLK (clock) signal, causing 

occasional spurious interrupts to other values than the assigned interrupt (irq) number.  
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However, in the Silicon Firewall design, the Nios CPU is not intended to read all the 

packet data, only the packet data with the permitted source IP address is read. In that 

case, a signal from CAM will interrupt the Nios CPU, thus the interrupt feature of the 

Nios CPU is very important for this design. Fortunately, the Nios 2.0 core fixes this 

with a D-Flip-Flop between the CS8900A and the Nios, clocked by CLK and 

implements this fix internally. 

Accordingly, there is a major change in the plugs library in Nios 2.0 CPU. That is the 

plugs library may now be run with interrupts enabled, polling is no longer necessary. 

From an CPU efficiency stand point this is very desirable. 

5.5.3 Mode Switching 

As mentioned previously, this design is a hardware and software codesign, so another 

concern is how to make the hardware and software work together properly and 

efficiently. After splitting the function of hardware and software in this system, a 

method to switch between hardware mode and software mode has to be provided. In 

this design, two PIOs (parallel input/output) are used to do this. One of the PIOs is 

defined as output by the Nios CPU and is connected to related hardware to make the 

hardware work correctly. The Nios CPU uses this signal as a control signal to switch 

between hardware mode and software mode. The other PIO is defined as input by the 

Nios CPU. In reality this input PIO is connected to the output PIO. The reason for 

doing this is as follows: the output PIO is used to control the hardware, however that is 

not enough since the Nios CPU will do different things in different modes. That is to 

say the Nios CPU has to “know” which mode it is in before it does something as 

requested. 
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After the interrupt is enabled in the Nios 2.0 CPU, there is an interrupt handler in the 

“lib” folder in the reference design. The interrupt service routine will check for events 

and dispatch packet when there is an interrupt. However, there are two modes in the 

Silicon Firewall design, so before the interrupt service routine does something, the 

current mode has to be determined. The input PIO is used to do this. 

5.5.4 Flow Chart 

The following is the flow chart of the software mode. In this figure, “Hw” means 

hardware mode, “Sw” means software mode. 

The Silicon Firewall system uses software mode to begin with. After the system 

initialization, the Silicon Firewall is ready to function. In the flow chart, the interrupt 

could come from two places, the first one is directly from the CS8900A; the second one 

is from the Silicon Firewall system hardware when there is an authorized packet 

coming in.  
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5.6 Silicon Firewall Design 

Based on the introduction to the CS8900A and the CAM, the implementation in the 

Silicon Firewall system will now be introduced in detail. 

5.6.1 Nios System to Daughter Card Pin Map 

Each Ethernet Interface (CS8900A) peripheral in the Nios system will have an 

associated set of I/O pins on the system module. This section describes how to connect 

the daughter card to the system-module I/O pins. In general, these connections are 

established by making pin-assignments in the PLD design. The Silicon Firewall design 

just uses the pin-assignment included in the reference designs that it is based on. 

The names given to the system-module I/O ports will depend on the name for the 

Ethernet Interface (CS8900A) peripheral. In Tables 5.11, <your_name> indicates the 

name assigned to this component, in the Silicon Firewall system it is “enet”. The name 

for some system-module I/O ports will also depend on the tri-state bus selected for this 

peripheral. In Tables 5.11, <your_bus_name> indicates the name of the bus assigned to 

this Ethernet Interface (CS8900A) peripheral, in the Silicon Firewall it is 

“nedk_card_bus”. 
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Table 5.11 Nios 32-bit CPU System Module I/O Port Name and Daughter Card 

Pin Name (after [17]) 

32-bit CPU System Module I/O Port 
Name 

Daughter Card Pin Name 
(Lower of Two Stacked Cards) 

<your_bus_name>_data SD [15..0] 
<your_bus_name>_address[4] SA [3] 
<your_bus_name>_address[3] SA [2] 
<your_bus_name>_address[2] SA [1] 
<your_bus_name>_byteenablen[1] SHBE_n 
ior_n_to_the <your_name> IOR_n (lower) 
iow_n_to_the <your_name> IOW_n (lower) 
irq_to_the_<your_name> INTRQ0 (lower) 
~(system module reset_n) RESET 
Constant Logic-1 MEMW_n 
Constant Logic-1 MEMR_n 
Constant Logic-1 SA [9..8] 
Constant Logic-0 SA [11..10] 
Constant Logic-0 SA [7..4] 
Constant Logic-0 SA [0] 
Constant Logic-0 CHIPSEL_n (lower) 
Constant Logic-0 CHIPSEL_n (upper) 

 
The descriptions for these pins are as follows (according to [18]): 

SD [0:15]: System Data Bus, Bi-Directional with 3-State Output pins 65-68, 71-74, 27-

24, 21-28. Bi-directional 16-bit System Data Bus used to transfer data 

between the CS8900A and the host. 

SA [0:19]: System Address Bus, Input pins 37-48, 50-54, 58-60. Lower 20 bits of the 

24-bit System Address Bus used to decode accesses to CS8900A I/O and 

Memory space, and attached Boot PROM. SA0-SA15 are used for I/O Read 

and Write operations. SA0-SA19 are used in conjunction with external 

decode logic for Memory Read and Write operations. 

SBHE_n: System Bus High Enable, Input pin 36. Active-low input indicates a data 

transfer on the high byte of the System Data Bus (SD8-SD15). After a 
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hardware or a software reset, provide a HIGH to LOW and then LOW to 

HIGH transition on SBHE signal before any I/O or memory access is done 

to the CS8900A. 

IOR_n: I/O Read, Input pin 61. When IOR_n is low and a valid address is detected, the 

CS8900A outputs the contents of the selected 16-bit I/O register onto the 

System Data Bus. IOR_n is ignored if REFRESH_n is low. 

IOW_n: I/O Write, Input pin 62. When IOW_n is low and a valid address is detected, 

the CS8900A writes the data on the system Data Bus into the selected 16-bit 

I/O register. IOW_n is ignored if REFRESH_n is low. 

INTRQ [0:3]: Interrupt Request, 3-State pins 30-32, 35. Active-high output indicates 

the presence of an interrupt event. Interrupt Request goes low once the 

Interrupt Status Queue (ISQ) is read as all 0’s. Only one Interrupt 

Request output is used (one is selected during configuration). All non-

selected Interrupt Request outputs are placed in a high-impedance state. 

RESET: Reset, Input pin 75. Active-high asynchronous input used to reset the 

CS8900A. Must be stable for at least 400 ns before the CS8900A recognizes 

the signal as a valid reset. 

MEMW_n: Memory_Read, Input pin 29. Active-low input indicates that the host is 

excecuting a Memory Read operation. 

MEMR_n: Memory Write, Input pin 28. Active-low input indicates that the host is 

excecuting a Memory Write operation. 

CHIPSEL_n: Chip Select, Input pin 7. Active-low input generated by external 

Latchable Address bus decode logic when a valid memory address is 
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present on the ISA bus. If Memory Mode operation is not needed, 

CHIPSEL_n should be tied low. The CHIPSEL_n is ignored for I/O 

and DMA mode of the CS8900A. 

In the Silicon Firewall system, the pins used are presented in table 5.12. 

Table 5.12 The Pins of CS8900A Used in The Silicon Firewall System 

CS8900A Pin Name Silicon Firewall Pin Name 
SD [0:15] NEDK_data [15..0] 
SA [0:19] NEDK_reg_address [2..0] 

IOR_n NEDK_L_IOR_n 
IOW_n NEDK_L_IOW_n 

SBHE_n /NEDK_SBHE_n 
INTRQ [0:3] NEDK_L_IRQ 

RESET NEDK_RESET 
 
In I/O mode all the register numbers are even numbers. That is to say the least 

significant bits are all “0”. Thus in the Silicon Firewall design the least significant bit is 

connected to ground, and only three bits are needed. The Silicon Firewall system uses 

“INTRQ0” as the interrupt pin. 

5.6.2 System Operation  

After compiling the Silicon Firewall design successfully, one programming file is 

generated by the Quartus II compiler, which can be used to program or configure the 

APEX device. The configuration data is downloaded into a flash memory device on the 

Nios development board over a serial port. Then the APEX device is configured using 

the data stored in flash memory. 

First start the “bash” shell, which is an UNIX command shell that allows running the 

“nios-build” and “nios-run” utility on the Nios development board provided with the 

GNUPro Nios software development tools. The “inc” and “lib” directories are 

subdirectories in the “SDK” folder, which contain a memory map and peripheral 
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structures based on the memory layout and particular peripherals of the Silicon Firewall 

system. Since the plugs library is changed, so it has to be rebuilt using the “make –s 

all” command in the “lib” directory. A typical session of library rebuild is shown 

below.  

[nios]$ make -s all 
2003.10.19.00:03:38 --- Deleting libnios32.a libnios32_debug.a 
2003.10.19.00:03:38 --- Removing objects 
2003.10.19.00:03:41 --- Compiling cs8900.c 
2003.10.19.00:03:43 --- Compiling flash_AMD29LV800.c 
2003.10.19.00:03:44 --- Assembling nios_atexit.s 
2003.10.19.00:03:44 --- Assembling nios_copyrange.s 
2003.10.19.00:03:45 --- Assembling nios_cstubs.s 
2003.10.19.00:03:45 --- Assembling nios_cwpmanager.s 
2003.10.19.00:03:45 --- Compiling nios_debug.c 
2003.10.19.00:03:46 --- Assembling nios_delay.s 
2003.10.19.00:03:46 --- Assembling nios_emulator.s 
2003.10.19.00:03:46 --- Compiling nios_gdb_stub.c 
2003.10.19.00:03:47 --- Compiling nios_gdb_stub_io.c 
2003.10.19.00:03:48 --- Assembling nios_gdb_stub_isr.s 
2003.10.19.00:03:48 --- Assembling nios_getctlreg.s 
2003.10.19.00:03:48 --- Compiling nios_gprof.c 
2003.10.19.00:03:49 --- Assembling nios_isrmanager.s 
2003.10.19.00:03:49 --- Assembling nios_jumptoreset.s 
2003.10.19.00:03:49 --- Assembling nios_jumptostart.s 
2003.10.19.00:03:50 --- Assembling nios_math1.s 
2003.10.19.00:03:50 --- Compiling nios_printf.c 
2003.10.19.00:03:50 --- Assembling nios_setjmp.s 
2003.10.19.00:03:50 --- Assembling nios_setup.s 
2003.10.19.00:03:51 --- Compiling nios_sprintf.c 
2003.10.19.00:03:51 --- Assembling nios_zerorange.s 
2003.10.19.00:03:52 --- Compiling pio_lcd16207.c 
2003.10.19.00:03:56 --- Assembling pio_showhex.s 
2003.10.19.00:03:56 --- Compiling plugs.c 
2003.10.19.00:03:59 --- Compiling plugs_print.c 
2003.10.19.00:04:00 --- Assembling timer_milliseconds.s 
2003.10.19.00:04:01 --- Assembling uart_rxchar.s 
2003.10.19.00:04:01 --- Assembling uart_txchar.s 
2003.10.19.00:04:01 --- Assembling uart_txcr.s 
2003.10.19.00:04:01 --- Assembling uart_txhex.s 
2003.10.19.00:04:01 --- Assembling uart_txhex16.s 
2003.10.19.00:04:01 --- Assembling uart_txhex32.s 
2003.10.19.00:04:02 --- Assembling uart_txstring.s 
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2003.10.19.00:04:02 --- Building libnios32.a 
2003.10.19.00:04:02 --- Compiling cs8900.c 

 
Then in the “src” directory, the “nios-build” utility compiles the C code in the “sfw.c” 

file. Finally an executable file “sfw.srec” is generated. A typical session of “nios-build 

sfw.c” is shown below.  

[nios]$ nios-build sfw.c 
 
-------------------- 
Beginning Build 
-------------------- 
 
Sources: 
     sfw_menu.c 
     sfw.c 
 
# 2003.10.24 21:24:52 (*) nios-elf-gcc  -I ../inc -I ../../inc -I ../../../inc - 
I ../../../../inc -I ../../../../../inc -g -O2 -m32 sfw_menu.c -o sfw_menu.c.o - 
c 
 
# 2003.10.24 21:24:52 (*) nios-elf-gcc  -I ../inc -I ../../inc -I ../../../inc - 
I ../../../../inc -I ../../../../../inc -g -O2 -m32 sfw.c -o sfw.c.o -c 
 
# 2003.10.24 21:24:53 (*) nios-elf-ld -e _start -u _start -g -T /cygdrive/c/alte 
ra/excalibur/sopc_builder_2_5/bin/nios.ld  ../lib/obj32/nios_jumptostart.s.o sfw 
_menu.c.o sfw.c.o --start-group -l nios32 -l c -l m -l gcc -l c -l nios32 --end- 
group -L/cygdrive/c/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro/nios-elf/l 
ib/m32 -L/cygdrive/c/altera/excalibur/sopc_builder_2_5/bin/nios-gnupro/lib/gcc-l 
ib/nios-elf/2.9-nios-010801-20020103/m32 -L../lib -L../../lib -L../../../lib -L. 
./../../../lib -L../../../../../lib -L../inc -L../../inc -L../../../inc -L../../ 
../../inc -L../../../../../inc -L. -o sfw.out 
 
# 2003.10.24 21:24:54 (*) nios-elf-objcopy -O srec sfw.out sfw.srec 
 
# 2003.10.24 21:24:54 (*) nios-elf-nm sfw.out | sort > sfw.nm 
# 2003.10.24 21:24:54 (*) nios-elf-objdump -D --source sfw.out > sfw.objdump 
 
-------------------- 
Finishing Build 
-------------------- 
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The “nios-run” utility download the “sfw.srec” program over the serial port and runs it 

in the Nios_based Silicon Firewall system module. For a second download, the “clear” 

button (SW2) has to be pressed first. In the Silicon Firewall design, the “sfw.srec” 

program is used to initialize the whole system and control the hardware-software mode 

switching. When downloading the “sfw.srec” program is complete, the Silicon Firewall 

system is ready to receive the packet data. By default the system is in software mode; it 

can be switched to hardware mode by press the “q” button of the keyboard. The 

program keeps running to receive packet data unless “ctrl+c” is pressed to stop it. 

Figure 5.6 shows the complete system; the Nios development board and the computer 

that the software (NDK, NEDK) is installed on. The big window on the screen is 

Quartus II window; the small black window is the “bash” shell window. Figure 5.7 

shows the picture of the Nios Development Board with the daughter card attached. 

Figure 5.8 illustrates the sequence of events of packet reception. 
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Figure 5.6 Silicon Firewall Design System 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.7 Nios Development Board With The Attached Daughter Card 
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Yes 

No 

Interrupt? 

Read the ISQ 

Read RxLength 

Read Part of the Frame 
Data

Generate the SA 

CAM Match?

Read the packet data 

Stop?

Ctrl+c 

Figure 5.8 Sequence of Events of Packet Reception 

5.6.3 Pin and Register Manipulation In The Software Configurations 

In the following only those bits in registers that are used are shown and discussed. The 

interested reader is referred to [18]. 
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The “sfw.c” implements the low-level routines for an adapter that the "plugs" 

embedded TCP/IP stack can use. This file resets the chip to a usable state. This 

involves some pin manipulation, and then some register manipulation. 

First, the reset pin is raised and lowered, and then the "byte high enable (bhe)" is forced 

to undergo multiple-transitions. Multiple logic-transitions on the SBHE_n (byte-enable) 

pin are used to set the CS8900A in the appropriate communications-mode. This is the 

first thing that needs to be done. This sequence (a group of byte-writes) results in 

multiple edge-transitions on the CS8900's byte-enable input. After this, some internal 

registers are written. 

1. RxCTL: Receiver Control (Read/Write) 

7 6 5 4 3 2 1 0 
        

F E D C B A 9 8 
    BroadcastA IndividualA  RxOKA 

 

The value is “0000_1101_0000_0000”. The three bits are set are as follows: 

• RxOKA 

When set, the CS8900A accepts frames with correct CRC and valid length 

(valid length is: 64 bytes<=length<= 1518 bytes). 

• BroadcastA 

When set, receive frames are accepted if the Destination Address is FFFF FFFF 

FFFFh. 
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• IndividualA 

When set, receive frames are accepted if the Destination Address matches the 

Individual address found at PacketPage base + 0158h to PacketPage base + 

015Dh. 

In the reference design, promiscuous mode is used. In the Silicon Firewall design, 

broadcast and individual address are used, because only the packet going to the Nios 

CPU will be examined, there is no concern about any other packets in the network. 

2. RxCFG: Receiver Configuration (Read/Write) 

7 6 5 4 3 2 1 0 
        

F E D C B A 9 8 
 ExtradataiE RuntiE CRCerroriE    RxOKiE 

 
The Value is” 0111_0001_0000_0000”. The four bits are set are as follows: 

• ExtradataiE 

When set, there is an Extradata Interrupt if a frame is longer than1518 bytes.  

The operation of this bit is independent of the received packet integrity (good or 

bad CRC). 

• RuntiE 

When set, there is a Runt Interrupt if a frame is received that is shorter than 64 

bytes. The CS8900A always discards any frame that is shorter than 8 bytes. 

• CRCerror iE 

 When set, there is a CRC error Interupt if a frame is received with a bad CRC. 

• RxOKiE 

When set, there is an RxOK Interrupt if a frame is received without errors. 

RxOK interrupt is not generated when DMA mode is used for frame reception. 
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3. LineCTL (Read/Write) 

7 6 5 4 3 2 1 0 
SerTxON SerRxON       

F E D C B A 9 8 
        

 
The value is “0000_0000_1100_0000”. The two bits are set are as follows: 

• SerRxON  

When set, the receiver is enabled. When clear, no incoming packets pass 

through the receiver. 

• SerTxON  

 When set, the transmitter is enabled. When clear, no transmissions are allowed. 

4. BusCTL (Read/Write) 

7 6 5 4 3 2 1 0 
        

F E D C B A 9 8 
EnableIRQ        

 

The value is “1000_0000_0000_0000”. The bit to be set is: 

• EnableIRQ 

When set, the CS8900A will generate an interrupt in response to an interrupt 

event. When clear, the CS8900A will not generate any interrupt. 

5.6.4 CS8900A Interrupt 

The interrupt request signal is a very important signal for use in the Silicon Firewall. It 

will be discussed in this section. 

5.6.4.1 Interrupt Activation 

The CS8900A has four interrupt request output pins that can be connected directly to 

any four of the ISA bus Interrupt Request signals. Only one interrupt output is used at a 
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time. It is selected by writing the interrupt number (0 to 3) into PacketPage 

Memorybase + 0022h. Unused interrupt request pins are placed in a high-impedance 

state. The selected interrupt request pin goes high when an enabled interrupt is 

triggered. The pin goes low after the first read of the Interrupt Status Queue (ISQ). In 

this research project design, INTRQ0 is used, so “0” is written into PacketPage 

Memorybase + 0022h to activate it.  

5.6.4.2 Interrupt Re-enable 

Enabling the interrupt is not enough, the interrupt only goes high once after that. In 

order to make the Silicon Firewall handle all the interrupts, the interrupt pin must be re-

enabled after each event. This is done when the Interrupt Status Queue (ISQ) is read as 

all 0’s. 

The Interrupt Status Queue (ISQ) is used by the CS8900A to communicate Event 

reports to the host processor. Whenever an event occurs that triggers an enabled 

interrupt, the CS8900A sets the appropriate bit(s) in one of the five registers, maps the 

contents of that register to the ISQ, and drives the selected interrupt request pin high. 

When the host services the interrupt, it must first read the ISQ to learn the nature of the 

interrupt. It can then process the interrupt. 

Three of the registers mapped into the ISQ are event registers: RxEvent, TxEvent, and 

BufEvent. The other two registers are counter-overflow reports: RxMISS and TxCOL. 

There may be more than one RxEvent report and/or more than one TxEvent report in 

the ISQ at a time. However, there may be only one BufEvent report, one RxMISS 

report and one TxCOL report in the ISQ at any one time. 
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Event reports stored in the ISQ are read out in the order of priority, with RxEvent first, 

followed by TxEvent, BufEvent, RxMiss, and the TxCOL. The host needs to read from 

the ISQ to get the interrupt currently at the front of the queue. In I/O mode, the ISQ is 

located at I/O base + 0008h. Each time the host reads the ISQ, the bits in the 

corresponding register are cleared and the next report in the queue moves to the front. 

When the host starts reading the ISQ, it must read and process all the event reports in 

the queue. A read out of a null word (0000h) indicates that all the interrupts have been 

read. After this null readout the interrupt is re-enabled. 

In this research project, RxEvent is the only event. There are different ways to reading 

out of a null word, for example, (a). read ISQ, read RxEvent, read ISQ; (b). read ISQ, 

read RxLength, read the packet based on the RxLength, read ISQ; (c) read ISQ, read 

RxLength or RxStatus, Set SKIP_1 bit in RxCFG, read ISQ. 

The condition in case (a) is called an “implied skip”, which is not recommended by 

Cirrus Logic. In the Silicon Firewall design, the hardware only extracts the IP address 

and the task of reading the whole packet is done by the Nios CPU. Therefore case (b) is 

not proper for this design. Case (c) is adopted in the hardware design. Note that the “Set 

SKIP_1 bit” will cause the last committed received frame to be deleted from the receive 

buffer, since the Nios CPU has not read the whole packet, the hardware ignores this 

part. As well, until the Nios CPU reads the whole packet, the RxEvent can not be 

cleared by reading the ISQ. Therefore the last “Read ISQ” is ignored by the hardware 

part since the Nios CPU will perform this function. 

5.6.5 CS8900A and Silicon Firewall Hardware 

The reader is referred to appendix A and appendix C. 
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When there is an interrupt, the hardware first reads the ISQ register, then it reads the 

RxLength Register, and then it reads the packet data 16 times continuously. The 

CS8900A’s internal architecture is based on a 16-bit data bus. Since the packet format 

is fixed and the source IP address is in words 15 and 16, a counter is used to count the 

16-bit data words, and the 15th and 16th 16-bit data will be combined together to form 

the 32-bit IP Source Address (SA). 

Reading the RxLength register means accessing the internal register. To access any of 

the CS8900A’s internal registers in I/O mode, the host must first setup the PacketPage 

Pointer [23]. It does this by writing the PacketPage address of the target register to the 

PacketPage Pointer Port (I/O base + 000A). The contents of the target register is then 

mapped into the PacketPage Data Port (I/O base + 000Ch). This has to be done 

according to the switching characteristics of the CS8900A. Table 5.13 and Figure 5.9 

show the 16-bit I/O read and write switching characteristics. The system clock is 

33.3333 MHz, so another counter is used to count the clock cycles, so that individual 

timing requirements can be met. 

Table 5.13 Switching Characteristics of CS8900A (from [18]) 

(a). 16-Bit I/O Read 
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(b). 16-Bit I/O Write 

 
 
 
 

 
(a) 16-Bit I/O Read 

 

(b) 16-Bit I/O Write 

Figure 5.9 Switching Characteristics of CS8900A (from [18]) 
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5.7 Nios System Components 

Table 5.14 lists the system components. 

Table 5.14 System Components of Silicon Firewall System 

Module Name Description Bus Type Base Width of 
PIO 

IRQ 

Ref_system_cpu Altera Nios 2.0 CPU Avalon 0x000   
Boot_monitor_rom On-Chip memory 

(RAM or ROM) 
Avalon 0x400   

UART_1 UART (RS-232 
serial port) 

Avalon 0x420  26 

Seven_seg_pio PIO (Parallel I/O) Avalon 0x440 16  
Timer1 Interval timer Avalon 0x460  25 
Led1_pio PIO (Parallel I/O) Avalon 0x470 1  
Button_pio PIO (Parallel I/O) Avalon 0x480 12 27 
Lcd_pio PIO (Parallel I/O) Avalon 0x40000 11  
Ext_ram SRAM (one or two 

IDT71V016 chips) 
Avalon_tristate 0x100000   

Ext_flash Flash memory Avalon_tristate 0x500   
enet Ethernet Interface 

(CS8900) 
Avalon_tristate 0x520  30 

Pattern_pio PIO (Parallel I/O) Avalon 0x530 32  
Cam_control_pio PIO (Parallel I/O) Avalon 0x540 6  
Mfound_pio PIO (Parallel I/O) Avalon 0x550 1  
Maddress_pio PIO (Parallel I/O) Avalon 0x560 5  
Sel_control_pio PIO (Parallel I/O) Avalon  1  
Ext_ram_bus Avalon Tri-state bus Avalon_tristate|avalon    

Nedk_card_bus Avalon Tri-state bus Avalon_tristate|avalon    
Clocken_pio PIO (Parallel I/O) Avalon 0x430 2  
Mode_pio PIO (Parallel I/O) Avalon 0x570 1  

 

In this table, Mfound_pio is used to interrupt the Nios CPU when there is a match. 

Sel_control_pio is used to control the mode of the Silicon Firewall in hardware. The 

Nios CPU also read the Sel_control_pio back when there is an interrupt. In this case it 

is called Mode_pio. 

5.8 Software-Hardware Switching Mechanism 

During the Silicon Firewall operation, both the Nios CPU and the “sfw” module need 

to communicate with the CS8900A. Both the Nios CPU and the “sfw” read packet data 

from CS8900A. Since only one signal can be connected to an output or bidirectional 
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pin, three 2-input bus multiplexers are used to connect the three pins 

(NEDK_reg_address[2..0], NEDK_L_IOR_n, NEDK_L_IOW_n) to the Nios CPU and 

the CS8900A. This is also true for the pattern input signal of CAM. The two inputs of 

the bus multiplexer are from Nios CPU and “sfw” respectively. 

Since the NEDK_data [15..0] pins are bi-directional pins, two tri-state bus 

megafunction were used for the connection. One is used for the Nios CPU, the other is 

used for the “sfw” module. There are four control signals: sw_r_enable, sw_w_enable; 

hw_r_enable, hw_w_enable. Four more 2-input bus multiplexers are used to generate 

these four control signals. For the two multiplexers output sw_r_enable and 

sw_w_enable, one of the inputs is from Nios, the other input is connected to “Vcc”; For 

the two multiplexers output hw_r_enable and hw_w_enable, one of the inputs is from 

“sfw”, the other input is connected to “Vcc”. In total eight 2-input bus-multiplexers are 

used in the Software-Hardware switching mechanism. All of them use the same control 

signal, which comes from Nios CPU through the “sel_control_pio” peripheral. In the 

Silicon Firewall design, “1” means hardware mode; “0” means software mode. 
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Chapter 6 TESTING AND RESULTS 

The SignalTap logic analyzer and Ethereal network analyzer are used to analyze the 

results of this project. The Ping command is used to test the Silicon Firewall system. 

All of them will be introduced before the further discussion of the testing and results. 

6.1 SignalTap Overview 

The SignalTap® logic analyzer [23] is a megafunction that captures signals from any 

internal node or I/O pin of an APEX II or APEX 20K device in real-time at system 

speed. Also, the SignalTap analysis eliminates the need for external probes and design 

file changes to capture signals from an internal node and works with all existing EDA 

synthesis tool design flows. Both the logic analyzer controls and signal capture display 

are accessible from the Quartus II design software. Data transfer between the APEX II 

or APEX 20K device and the Quartus II software for waveform display of signals 

captured by SignalTap logic analysis is supported by the MasterBlaster™ or 

ByteBlasterMV™ communications cables. Figure 6.1 shows the SignalTap logic 

analyzer.
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Figure 6.1 SignalTap Logic Analyzer (from [23]) 

6.1.1 Functional Description 

Generally, the SignalTap megafunction is an embedded logic analyzer that provides 

access to signals inside an APEX II or APEX 20K device. The embedded logic analyzer 

function can be parameterized to capture up to 128 signals from internal nodes or I/O 

pins in-system and at system speed. From within the Quartus II software, the following 

items can be selected: which signals will be captured, when signal capture starts, and 

how many samples of data are captured. Also, the captured data can be stored in APEX 

II or APEX 20K embedded system block (ESB) RAM, or be sent to I/O pins for capture 

by external analysis equipment. Two things will be done to the data stored in ESB 

RAM, first it is transferred to a host computer by using the MasterBlaster or 

ByteBlasterMV communication cable. then it can be displayed in the SignalTap 

waveform viewer. The SignalTap logic analyzer can be automatically instantiated by 

the Quartus II software without making changes to user design files. 

1. Assigning a Signal to the SignalTap File 

As mentioned previously, signals can be captured from any internal device node 

or I/O pins by the SignalTap analyzer. However, before signals capturing, the 
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internal nodes or I/O pins must be assigned to SignalTap analyzer input channel. 

The SignalTap analyzer can capture from 1 to 128 internal nodes or I/O signals. 

nalyzer uses more LEs as more signals are captured. 

2. 

. The signals that are 

 Control option. 

3. 

sing a global clock signal as the acquisition 

4. 

 are used as 

e sample buffer depth is increased. 

5. 

 

 setting the ratio of pre-trigger to post-

trigger data saved in the sample buffer. 

The SignalTap a

Filter Control 

The Filter Control dialog box allows selecting signals from a specific instance in 

the design to be displayed in the SignalTap window

displayed can be managed by the Filter

Selecting an Acquisition Clock Signal 

All input channels are sampled on the rising edge of the acquisition clock signal, 

which must be a device signal. U

signal is recommended by Altera. 

Setting the Sample Buffer Depth 

 The sample buffer depth controls the amount of data the SignalTap analyzer 

captures when using the internal RAM configuration. More ESBs

more signals are captured and th

Setting the Triggering Position 

A Trigger Position setting allows specifying the amount of data captured by the 

SignalTap logic analyzer that should be acquired before the trigger and the 

amount that should be acquired after the trigger. Figure 6.2 shows the circular 

buffer where the acquired data is placed in. The SignalTap logic analyzer 

continues sampling the input signals to capture post-trigger data when triggered. 

The settings shown in Table 6.1 allows

 97



 

 

              Figure 6.2 Circular Signal Capture Buffer (from [23]) 

 
Table 6.1 Trigger Position (from [24])  

Name Description 
Pre-trigger Captures signals immediately after triggering 

(12% pre-trigger, 88% post-trigger) 
Center Captures signals before and after triggering 

(50% pre-trigger, 50% post-trigger) 
Post-trigger Captures signals that occur immediately before 

triggering (88% pre-trigger, 12% post-trigger) 
Continuous 

trigger 
Captures signals indefinitely until stopped 
manually  

 
2. Setting the Trigger Pattern 

Signal pattern recognition is used for triggering by the SignalTap analyzer. 

Within the Quartus II software, the logic condition for each input signal to 

specify the trigger pattern is set. The SignalTap analyzer is triggered if the input 

signal matches the trigger pattern. Table 6.2 lists possible trigger patterns for 

each channel. 
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Table 6.2 Channel Trigger Patterns (from [23]) 

Trigger Pattern  Description 
 

Don’t Care Default trigger condition. The channel is not used to 
determine the trigger event. 

Low  The analyzer triggers when the channel is low. 

High  The analyzer triggers when the channel is high. 
 

 
Falling 

 
The analyzer triggers when the channel is falling. 
 

Rising The analyzer triggers when the channel is rising. 
 

Rising or Falling 
Edge 

The analyzer triggers when the channel is rising or falling. 
 

 
6.2 The Ethereal Network Analyzer 

Ethereal [25] is a network protocol analyzer for use on Unix and Windows operating 

systems. It allows examining data from a live network or from a capture file on disk. 

With Ethereal, the capture data can be browsed interactively by viewing summary and 

detail information for each packet. Also, Ethereal has several features, including the 

ability to view the reconstructed stream of a TCP session.  

6.3 Ping Command 

“Ping” is one of the most useful network debugging tools. It takes its name from a 

submarine sonar search - if a short sound burst is sent and an echo is listened- a ping - 

coming back.  

In an IP network, “ping” sends a short data burst (a single packet) and listens for a 

single packet in reply. The most basic function of an IP network (delivery of single 

packet) can be tested by a “ping”, which is implemented using the required ICMP Echo 
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function. The first two packets are broadcast packets, which are important for the 

following four ICMP packets going through. 

6.4 Testing Methodology 

In order to test the Silicon Firewall system easily, a small network that consists of three 

computers are made up: Mordor, Nios1 and Athlon2. The “Ethereal” was installed in 

the Mordor computer, and the “ping” command is issued from there. Nios1 is the name 

for the soft core Nios CPU in the Silicon Firewall system. The NDK and the NEDK are 

installed in Athlon2, also the testing result is displayed in the Quartus II software in this 

computer. 

Basically, the results will be discussed in two sections, in section 6.4.1, the Silicon 

Firewall results will be demonstrated; the results of software firewall will be 

demonstrated in section 6.4.2, and some comparison will be given. 

Before any detailed result is given, some configurations of SignalTap will be discussed. 

In this project, the “clock” for the SignalTap is the clock from the APEX board, which 

is “33.33333 MHz”. For the Silicon Firewall, the sample depth is “1K”samples due to 

the limitation of the ESBs included in the APEX EP20K200E device and the number of 

nodes. For the software firewall, the sample depth is “16K” because of fewer signals 

being traced. The “Pre” trigger position is used. In CAM initialization, the trigger 

pattern is the rising edge of the “wren” signal. For both the Silicon Firewall and 

software firewall, the rising edge of interrupt signal from “NEDK_L_IRQ” is used as 

the trigger pattern. 
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6.4.1 Silicon Firewall Results 

In this section, the results will be discussed in the following sequence. In section 

6.4.1.1, the IP address of Mordor is stored in CAM when CAM is initialized, after that, 

a “ping” command is issued from Mordor. In section 6.4.1.2, the CAM is initialized 

without the IP address of Morder. 

6.4.1.1 Results for an Authorized Packet 

Figure 6.3 shows the waveform of CAM initialization, the IP address (192.168.128.216) 

of Mordor is written into CAM as a pattern, the value of which is “a8c02381” in 

hexadecimal. 

Figure 6.4 demonstrates the result when the “ping” command is issued from Mordor. 

First of all, an interrupt is generated from the CS8900A, the “NEDK_L_IRQ” goes 

high, and the first read of “ISQ” make this signal goes low. After that, the interrupt is 

re-enabled by reading the “RxLength” and part of the packet data. Then the IP address 

of Morder is reconstructed and fed into CAM. Since there is such a pattern stored in 

CAM, “mfound” goes high corresponding to a match. Before this point, the system is 

running in “Hw” mode. The “mfound” signal interrupts the Nios CPU to switch to “Sw” 

mode, and the Nios reads the complete packet data. From figure 6.4, the time between 

the interrupt that comes from the CS8900A IRQ line going high and “mfound” going 

high is 284 clock cycles. 

Figure 6.5 shows the packet data captured by Ethereal. When the “ping” command is 

issued, four packets are sent out one after another. Figure 6.4 demonstrates what 

happens to one of them due to the buffer space limitation.
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Figure 6.3 CAM Initialization-1
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Figure 6.4 Results For an Authorized Packet In Hardware Mode
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Figure 6.5 Data Captured By Ethereal For Authorized Packets
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6.4.1.2 Results for Un-authorized Packet 

Figure 6.6 shows the CAM initialization without the pattern for Mordor’s IP address. In 

this case, when the “ping” command is issued from Mordor, the interrupt still goes high, 

however, “mfound” never goes high since there is not a match any more (figure 6.7 

demonstrates this), and the complete packet data will not be read by the Nios CPU. The 

“ping” command get timed out since there is no reply (figure 6.8 shows the data 

captured by Ethereal). 

6.4.2 Software vs. Hardware Implementations  

For the purpose of comparison, a software firewall is created using the same structure as 

the Silicon Firewall. For the software firewall, the CAM is initialized with the pattern of 

Athlon2’s IP address. Since the software firewall does table lookup sequentially, there 

are best case and worst case. For the best case, there is a match at the first address of the 

lookup table, the time interval is 9359 clock cycles (see figure 6.9); for the worst case, 

there is a match at the end of the lookup table, the time interval is 9598 clock cycles 

(see figure 6.10). Therefore, the Silicon Firewall is much faster than the software 

firewall (284 clock cycles vs. 9359 clock cycles). 
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Figure 6.6 CAM Initialization-2
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Figure 6.7 Results For an Un-authorized Packet
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Figure 6.8 Data Captured By Ethereal For Un-authorized Packets
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 Figure 6.9 Results of Software Firewall For an Authorized Packet (Best Case)
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Figure 6.10 Results of Software Firewall For an Authorized Packet (Worst Case) 
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Chapter 7 SUMMARY, CONCLUSION AND FUTURE WORK 

This thesis addresses issues related to a Silicon Firewall design and implementation in 

an Altera FPGA. The performance of this hardware firewall is tested using a real 

network, and compared with a software firewall design with silmilar architecture. This 

chapter summarizes the work that was done and presents future areas of research. 

7.1 Summary 

The Internet security problem was presented, and different security models were 

discussed. The firewall was identified as an effective type of network security. The 

possible inefficiency of the traditional software firewall technology was introduced, and 

the hardware firewall feasibility was reviewed. The research objective, an investigation 

of if and how existing software firewall technology could be improved by replacing 

software functionality with hardware (silicon) was then presented. 

The Internet security system was reviewed. Different security strategies were discussed, 

and the TCP/IP fundamentals were introduced as background. Packet filtering was also 

presented.  

Since the Silicon Firewall system is an embedded real-time system, and the design is a 

hardware-software codesign, some background on embedded system and hardware-

software codesign was discussed. The Silicon Firewall system design was then 

presented in detail. SOPC design and embedded processor PLD solutions were 

introduced as the background needed to understand the Silicon Firewall system design. 

The Altera Excalibur embedded PLD solutions were presented, and based on a 
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discussion of soft core and hard core implementations, the rationale for using the Nios 

soft core embedded processor in this research project was justified. 

The details of the Nios embedded processor and two development kits (NDK and 

NEDK) were introduced. The Nios development board and the Ethernet daughter card 

as well as the two libraries (Nios peripheral library and Ethernet plugs library) were 

introduced.  

The two most important components of the Silicon Firewall, the CS8900A Ethernet 

controller and the CAM implementation were reviewed. The Silicon Firewall design 

was described in detail, following the discussion of the CS8900A and CAM. 

The SignalTap embedded logic analyer and the Ethernet network analyzer were 

introduced as the two tools used to capture data in the Silicon Firewall system testing. 

Background of the “Ping” command was also given. The testing methodology used was 

introduced and the Silicon Firewall system test results were presented. 

7.2  Conclusions 

The objective of this research was to “investigate if and how existing desktop computer 

software firewall technology could be improved by replacing software functionality 

with hardware (silicon).” The results show that this research objective has been 

successfully achieved: 

1. Test results confirm that the Silicon Firewall system functions as an Internet 

firewall. 

2. Comparison of the hardware firewall and software firewall show that the Silicon 

Firewall system is much faster than the traditional software firewall (284 clock 

sysles vs. 9359 clock cycles). 
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It should be noted that since the research was started 3Com Corporation has announced 

[26] development of an embedded firewall with similar capabilities to the Silicon 

Firewall. It was not yet appeared as a consumer product at this time. 

7.3 Future Work 

While the project has been successful in reaching the goal of design of a Silicon 

Firewall, further improvements must be done for a viable system in the future: 

• Other CAMs 

Since the Silicon Firewall system in this research project does packet filtering 

only by the source IP address, only one CAM was included. However, the final 

Silicon Firewall may do other kinds of packet filtering, for example, by service, 

source port and so forth. Other CAMs may need to be added to the Silicon 

Firewall system. This may necessitate the need for external CAM. 

• Dynamic CAM 

This is another issue related to CAM in the future. The CAM is pre-loaded with 

a number of patterns in advance for now, but dynamically changing the patterns 

in the CAM is desirable. 

• Logging of IP addresses 

For the current Silicon Firewall system, an unauthorized packet will disappear 

after being blocked. In the future, logging of source IP address can be done for 

the purpose of determining who is attempting the attack. 
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• Remote Administration 

Currently, the Silicon Firewall only can be administrated in the local computer. 

A remote administration feature may be desirable in the future. This will allow 

system administrators to update individual user machines from a central site. 

• PC Integration 

The final purpose is integrating the Silicon Firewall system with a PC. This 

would include PC bus implementation and appropriate drivers for the Silicon 

Firewall system.
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APPENDIX A BLOCK DIAGRAM OF SILICON FIREWALL 

DESIGN 

(See CD) 
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APPENDIX B CAM INITIALIZATION 

 
void cam_initialize(void) 
 
//define three CAM initialization-related pios 
np_pio *pattern_in=na_pattern_pio; 
np_pio *cam_control=na_cam_control_pio; 
np_pio *clocken=na_clocken_pio; 
 
//define “input” or “output” of each pio 
clocken->np_piodirection=1;            //set "clocken" as output 
pattern_in->np_piodirection=1;        //set "pattern_in" as output 
cam_control->np_piodirection=1;    //set "cam_control" as output 
cam_control->np_piodata=0x00;     //initialize the cam_control pio data to be "0" 
clocken->np_piodata=2;                  //enable inclocken and disable outclocken 
 
//Initialize CAM with 32 patterns, two of them are IP address of Mordor and Athlon2, 
//the rest patterns can be any 32-bit numbers, in this file, all of them are “0x10101010”. 
//For each pattern, set up wren and wraddress first, and then pattern. The 32 addresses 
//can be written in any sequence.  
 
cam_control->np_piodata=0x23;    //set "wen=1","waddress=3" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf;          //set “wen=0” after each write 
cam_control->np_piodata=0x2b;            //set "wen=1","waddress=b" 
pattern_in->np_piodata=0xa8c02381;    //ip address of Mordor 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x2f;           //set "wen=1","waddress=f" 
pattern_in->np_piodata=0x10101010;    

 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x20;          //set "wen=1","waddress=0" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x21;          //set "wen=1","waddress=1" 
pattern_in->np_piodata=0x10101010;
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cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x22;         //set "wen=1","waddress=2" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x24;        //set "wen=1","waddress=4" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x25;       //set "wen=1","waddress=5" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x26;       //set "wen=1","waddress=6" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x27;       //set "wen=1","waddress=7" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x28;      //set "wen=1","waddress=8" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x29;     //set "wen=1","waddress=9" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x2a;    //set "wen=1","waddress=a" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x2c;    //set "wen=1","waddress=c" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x2d;   //set "wen=1","waddress=d" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x2e;   //set "wen=1","waddress=e" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x30;        //set "wen=1","waddress=16" 
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pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x31;      //set "wen=1","waddress=17" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x32;      //set "wen=1","waddress=18" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x33;      //set "wen=1","waddress=19" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x34;      //set "wen=1","waddress=20" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x35;     //set "wen=1","waddress=21" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x36;    //set "wen=1","waddress=22" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x37;    //set "wen=1","waddress=23" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x38;   //set "wen=1","waddress=24" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x39;   //set "wen=1","waddress=25" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3a;  //set "wen=1","waddress=26" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3b;  //set "wen=1","waddress=27" 
pattern_in->np_piodata=0x10101010; 
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cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3c;   //set "wen=1","waddress=28" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3d;   //set "wen=1","waddress=29" 
pattern_in->np_piodata=0x10101010; 
  
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3e;   //set "wen=1","waddress=30" 
pattern_in->np_piodata=0xa8c0d981;   // ip address of Athlon2 
 
cam_control->np_piodata&=0xdf; 
cam_control->np_piodata=0x3f;   //set "wen=1","waddress=31" 
pattern_in->np_piodata=0x10101010; 
 
cam_control->np_piodata&=0xdf; 
clocken->np_piodata=3;   //enable both input and output clock 
 
}
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APPENDIX C IP SOURCE ADDRESS RECONSTRUCTION 

MODULE 

//This Verilog module functions according to the interrupt from the CS8900A, for each 
//interrupt, the ISQ register is read first to make the interrupt go low, then the Rx_length 
//and part of the frame date are read to re-enable the interrupt. The first 14 words of 
//frame data are skipped, the 15th word and the 16th word are two parts of the source IP 
//address, they are reconstructed and form the 32 bits IP address. 
 
module sfw( clk, irq_from_the_enet, nedk_card_bus_address, ior_n_to_the_enet, 

iow_n_to_the_enet, sfw_nedk_card_bus_data, data_out, sel); 
 
input clk, irq_from_the_enet, sel; 
output [2:0] nedk_card_bus_address; 
output ior_n_to_the_enet; 
output iow_n_to_the_enet; 
output [31:0] data_out; 
inout [15:0] sfw_nedk_card_bus_data; 
reg IRQ; 
reg ior_n_to_the_enet, iow_n_to_the_enet; 
reg [2:0] nedk_card_bus_address; 
reg [3:0]timing_cycle;  // “timing_cycle” is the system clock cycle, which is counted to 

// meet the switching characteristics of the CS8900A 
reg [5:0]command_cycle;  //every read of the register or the frame data is called a  
                                           //“command_cycle” 
reg [15:0] data_from_cs8900; 
reg [15:0] data_to_cs8900; 
reg [15:0] data1; 
reg [15:0] data2; 
reg [31:0] data_out; 
 
parameter Rx_Tx_0=3'b000; 
parameter Rx_Tx_1=3'b001; 
parameter TxCMD=3'b010; 
parameter Txlength=3'b011; 
parameter ISQ=3'b100; 
parameter PPP=3'b101; 
parameter PPD_0=3'b110;parameter PPD_1=3'b111; 
parameter Rx_status=16'b0000_0100_0000_0000; 
parameter Rx_length=16'b0000_0100_0000_0010; 
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parameter Rx_config=16'b0000_0001_0000_0010; 
parameter Rx_event=16'b0000_0001_0010_0100; 
 
always @ (posedge clk) 
 
begin 
         if ((irq_from_the_enet==1) && (IRQ==0)) 
             begin 
                      command_cycle<=0; 
                      timing_cycle<=0; 
                      IRQ<=1; 
             end 
 
        else 
              begin  
                       case(command_cycle) 
                              6'b000000: 
                                   begin  //read ISQ 
                                             timing_cycle<=timing_cycle+1; 
                                             case(timing_cycle) 
                                                    4'b0001: nedk_card_bus_address<=ISQ; 
                                                    4'b0010: ior_n_to_the_enet<=0; 
                                                    4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;                                             

nedk_card_bus_address<=3'b011;  
                                                                  end 
                                                    4'b1111: begin       

command_cycle<=command_cycle+1;  
                                                                           timing_cycle<=0;  
                                                                  end 
                                             endcase 
                                   end 
               
                              6'b000001: 
                                   begin  //read Rx_length 
                                             timing_cycle<=timing_cycle+1; 
                                             case(timing_cycle) 
                                                    4'b0001:nedk_card_bus_address<=PPP; //set up 

//packetpage pointer first 
                                                    4'b0010: iow_n_to_the_enet<=0; 
                                                    4'b0011: data_to_cs8900<=Rx_length; 
                                                    4'b0111: begin  
                                                                           iow_n_to_the_enet<=1;                           

nedk_card_bus_address<=3'b011; 
                                                                           data_to_cs8900<=0;  

                                                                   end 
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                                                     4'b1001:nedk_card_bus_address<=PPD_0;  // read 
//data  from PPD_0                                                        

                                                     4'b1010: ior_n_to_the_enet<=0; 
                                                     4'b1111: begin  

ior_n_to_the_enet<=1;                              
nedk_card_bus_address<=3'b011; 

                                                                            data_to_cs8900<=0;  
                                                                            command_cycle<=command_cycle+1;  
                                                                            timing_cycle<=0; 
                                                                    end 
                                             endcase 
                                   end 
 
                              6'b000010:  //the frame data of the following 14 reads are skipped 
                                   begin //read data from Rx_Tx_0 
                                             timing_cycle<=timing_cycle+1; 
                                             case(timing_cycle) 
                                                    4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                    4'b0010: ior_n_to_the_enet<=0; 
                                                    4'b0111: begin 
                                                                            ior_n_to_the_enet<=1;                     

nedk_card_bus_address<=3'b011;  
                                                                   end 
                                     4'b1111: begin  
                                                             command_cycle<=command_cycle+1;  
                                                                             timing_cycle<=0;  
                                                                   end 
                                             endcase 
                                   end 
                          
                              6'b000011: 
                                   begin  //read data from Rx_Tx_0 
                                             timing_cycle<=timing_cycle+1; 
                                             case(timing_cycle) 
                                                    4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                    4'b0010: ior_n_to_the_enet<=0; 
                                                    4'b0111: begin  

ior_n_to_the_enet<=1; 
nedk_card_bus_address<=3'b011;  

                                                                   end 
                                                    4'b1111: begin 

command_cycle<=command_cycle+1; 
            timing_cycle<=0;  

                                                                  end 
                                             endcase 
                                   end 
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                              6'b000100: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin 
                                                                           ior_n_to_the_enet<=1;                                       

nedk_card_bus_address<=3'b011;  
                                                                  end 
                                                   4'b1111:begin                                                                          

command_cycle<=command_cycle+1;        
timing_cycle<=0;  

                                                                  end 
                                            endcase 
                                   end 
 
                              6'b000101: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;     

nedk_card_bus_address<=3'b011;  
                                                                  end 

                                                   4'b1111: begin  
                                                                             command_cycle<=command_cycle+1;            

timing_cycle<=0;  
                                                                   end 
                                             endcase 
                                   end 
 

               6'b000110: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;   

nedk_card_bus_address<=3'b011;  
                                                                  end 
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                                                   4'b1111: begin   
                                                                           command_cycle<=command_cycle+1;   

timing_cycle<=0;  
                                                                  end 
                                            endcase 
                                   end 
 
                              6'b000111: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;               

nedk_card_bus_address<=3'b011;  
                                                                  end 
                                                   4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;  

timing_cycle<=0;  
                                                                  end 
                                            endcase 
                                   end 
 

                6'b001000: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;           

nedk_card_bus_address<=3'b011; 
                                                                  end 
                                                   4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;           

timing_cycle<=0;  
                                                                  end 
                                            endcase 
                                   end 
 
                              6'b001001: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
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                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  

                                                              ior_n_to_the_enet<=1;   
nedk_card_bus_address<=3'b011;  

                                                                  end 
                                                   4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;      

timing_cycle<=0;  
                                                                  end 
                                            endcase 
                                   end 
 
                              6'b001010: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1;       

nedk_card_bus_address<=3'b011;  
                                                                  end 
                                                    4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;    

timing_cycle<=0;  
                                                                   end 
                                            endcase 
                                   end 
 
                              6'b001011: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin    
                                                                           ior_n_to_the_enet<=1;  

nedk_card_bus_address<=3'b011;  
                                                                 end 
                                                   4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;    

timing_cycle<=0;  
                                                                 end 
                                            endcase 
                                   end 
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                              6'b001100: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  

ior_n_to_the_enet<=1;  
nedk_card_bus_address<=3'b011;  

                                                                  end 
                           4'b1111: begin  

   command_cycle<=command_cycle+1; 
timing_cycle<=0;  

   end 
                                             endcase 

  end 
 

                              6'b001101: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  

ior_n_to_the_enet<=1; 
nedk_card_bus_address<=3'b011;  

                                                                  end  
                                                   4'b1111: begin  

command_cycle<=command_cycle+1; 
timing_cycle<=0;  

                                                                  end 
                                             endcase 
                                   end 
 
                              6'b001110: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  

ior_n_to_the_enet<=1; 
nedk_card_bus_address<=3'b011;  

                                                                  end 

                                                   4'b1111: begin  
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                                                                           command_cycle<=command_cycle+1;              
timing_cycle<=0;  

                                                                  end 
                                             endcase 
                                   end 
 
                              6'b001111: 
                                   begin  //read data from Rx_Tx_0 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           ior_n_to_the_enet<=1; 

nedk_card_bus_address<=3'b011;  
                                                                  end 
                                                   4'b1111: begin  
                                                                           command_cycle<=command_cycle+1;  

timing_cycle<=0;  
                                                                 end 
                                            endcase 
                                   end 
 
                              6'b010000: 
                                   begin  //read data from Rx_Tx_0, which is the first 16 bits of the  

//source IP address 
                                            timing_cycle<=timing_cycle+1; 
                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin 
                                                                          data1<=data_from_cs8900;  
                                                                          ior_n_to_the_enet<=1;                                         
                                                                          nedk_card_bus_address<=3'b011; 
                                                                  end 
                                                   4'b1111: begin  
                                                                          command_cycle<=command_cycle+1;    

timing_cycle<=0;  
                                                                 end 
                                            endcase 
                                   end 
 
                              6'b010001: 
                                   begin  //read data from Rx_Tx_0, which is the second 16 bits of 

//the source IP address 
                                            timing_cycle<=timing_cycle+1; 
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                                            case(timing_cycle) 
                                                   4'b0001: nedk_card_bus_address<=Rx_Tx_0; 
                                                   4'b0010: ior_n_to_the_enet<=0; 
                                                   4'b0111: begin  
                                                                           data2<=data_from_cs8900; 
                                                                           ior_n_to_the_enet<=1; 
                                                                           nedk_card_bus_address<=3'b011; 
                                                                  end 
                                                   4'b1000: data_out<=(data1<<16)|data2; 
                                                   4'b1111:begin                                                                 

command_cycle<=command_cycle+1;  
timing_cycle<=0;  

                                                                 end 
                                            endcase 
                                   end               
               
                              default: 
                                          begin 
                                                   nedk_card_bus_address<=3'b000; 
                                                   ior_n_to_the_enet<=1; 
                                                   iow_n_to_the_enet<=1; 
                                                   IRQ<=0; 

data_out<=32'b0000_0000_0000_0000_0000_0000_00          
00_0000; 

                                          end    
                          
          endcase 
     end 
end 
                        
     

     bustri bustri_inst1 ( 
                      .data ( data_to_cs8900), 
                      .enabledt ( ~iow_n_to_the_enet ), 
                      .enabletr ( ~ior_n_to_the_enet ), 
                      .tridata ( sfw_nedk_card_bus_data ), 
                      .result ( data_from_cs8900 ) 
                      ); 
 
endmodule 
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APPENDIX D  NDK COMPONENTS 

(See CD for Figure D.1 and Figure D.2) 

In this appendix, the three components of NDK: SOPC Builder system development 

tool, Quartus II development software and GNUPro Toolkit Compiler and Debugger 

will be discussed. 

D.1  SOPC Builder System Development Tool 

The SOPC Builder [27] system development tool simplifies the task of creating high-

performance system-on-a-programmable-chip (SOPC) designs by accelerating system 

definition and integration. Using SOPC Builder, a complete system can be defined and 

implemented, from hardware to software, within one tool and in a fraction of the time of 

traditional system-on-a-chip (SOC) design. SOPC Builder is integrated within the 

Altera Quartus II software to give Altera FPGA designers access to this development 

tool. 

SOPC Builder is a platform for composing bus-based systems from common system 

components placed inside or outside the FPGA. The SOPC Builder library components 

supplied by Altera or other third party developers range from simple blocks of fixed 

logic, to complex, parameterized, and dynamically generated subsystems. SOPC 

Builder library components include (according to [27]): 

• Processors 

• Microcontroller peripherals 

• Digital signal processing (DSP) cores 
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• Intellectual property (IP) cores 

• Communications peripherals 

• Interfaces 

- Memory (on-chip or off-chip) 

- Buses and bridges 

- ASSPs 

- ASICs 

• Software components 

- Header files 

- Generic C drivers 

- Operating system (OS) kernels 

- Middleware libraries 

D.1.1  SOPC Builder Interface 

After a Quartus II project is opened, the SOPC Builder user interface can be launched 

by choosing SOPC Builder (Tools menu) in the Quartus II software. The SOPC Builder 

user interface contains the following pages: 

• System Contents page 

• System dependency page(s) 

• System Generation page 

1. System Contents Page 

This page is where system is defined. A listing of all available library components is 

included in the module pool and all of the components that have been added to a system 
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are displayed in the module table. A single system module that includes components 

and specified interfaces is created when a system is generated with SOPC Builder. 

Additionally, automatically generated bus (interconnection) logic is contained in this 

single system module. Figure D.1 shows the System Contents page. 
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Figure D.1 The System Contents Page (from [27]) 
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1) Module Pool 

All available library components organized according to bus type and category 

is showed in the module pool. A colored dot is used to indicate each component 

appearing next to its name. 

2) Module Table 

The module table is where components are added to the system, including 

bridges, bus interfaces, CPUs, memory interfaces, peripherals, etc. 

Additionally, the following elements are described using the module table. 

• Master and slave connectivity 

• System address map 

• System IRQ assignments 

• Arbitration priorities for shared slaves 

2. System Dependency Page(s) 

When certain components are added to a system, such as a CPU like the Nios embedded 

processor, an additional page(s) appears in SOPC Builder. These page(s) allow setting 

additional parameters or associations of the component with respect to the other 

components in the system. For example, the relationship between a CPU and the 

memory components can be specified to indicate which portion is used as the program 

memory and which portion is used as data memory. For components that use system 

dependency pages, a separate system dependency page is created for each instance of 

the component that has been added to a system. 

Additionally, if the processor components have some associated software components, 

the software components will be shown on the system dependency pages. The software 
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components examples range from utility libraries to real-time-operating systems 

(RTOSs). Several software components are provided by Altera in development kits, 

such as the Plugs Library (a compact, full-featured TCP/IP protocol stacks) that comes 

with the Nios development kits. 

3. System Generation Page 

This page is where a system is generated. It includes options that can be set to control 

the generation process such as device family support and simulation. This page reports 

the system generation progress message(s) during system generation. Figure D.2 shows 

the System Generation page. 
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Figure D.2 The System Generation Page (from [27])
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1) SDK 

When the SDK option is turned on, SOPC Builder creates a custom SDK for 

each CPU in a system every time the system is generated. Software files 

(drivers, libraries, and utilities) for any system components that provide software 

support in their library definition is contained in the SDK.  

Software applications can be built as part of the generation process by the 

processor components, such as the Nios embedded processor and Excalibur™ 

devices. 

The following directories are the directories that the software files are arranged 

into: 

• inc—Three things are contained in this directory: header files with the 

definitions of memory maps, register declarations for the peripherals, 

and macros that can be used to create embedded software applications. 

• lib— The library files is contained in this directory. If the component 

supports GNU tools, the libraries are compiled by SOPC Builder during 

system generation. 

• src— The source code is contained in this directory. The source code can 

be written and modified for the system using any text editor, also the 

Quartus II Text Editor can be used, which supports syntax coloring for C 

and C++ source code. 
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2) HDL 
 

When the HDL option is turned on, SOPC Builder generates a system-level 

hardware description language (HDL) file in Verilog HDL or VHDL, depending 

on which language is specified when the system in SOPC Builder is first set up. 

 The HDL file contains (according to [25]): 

• An instance of every component in the system 

• Bus logic to interconnect the components, including the following items: 

- Address decoders 

- Data bus multiplexers 

- Arbiters for shared resources 

- Reset-generation and conditioning logic 

- Interrupt prioritization logic 

- Dynamic bus sizing (for adapting masters to slaves with wider or 

narrower data buses) 

- Passive interconnections between master and slave ports 

• A simulation testbench that: 

- Instantiates the system module 

- Drives clock and reset inputs with default behaviors 

- Instantiates and connects any simulation models for system external 

components if provided (e.g., memory models) 
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4. Generating a System 

After a system is built and generation options are specified, the system can be generated 

by clicking the Generate button. SOPC Builder creates the following items (according 

to [25]): 

• The SDK 

• HDL files for each component in the system 

• A Block Symbol File (.bsf) for the top-level system module 

• ModelSim files 

• A Tcl script that sets up all of the files needed for Quartus II compilation 

D.2  Quartus II Development Software 

The Quartus II development tool allows designers to process multi-million gate designs 

and streamline development flows. A comprehensive environment for SOPC design is 

provided by the Quartus II development software. Because of its interfaces to industry-

standard EDA tools the software integrates into nearly any design environment. Also, 

an embedded logic analysis feature provides the ability to verify chip functionality and 

timing by observing internal and I/O signal values at system clock speeds (SignalTap). 

This feature was used extensively in the development of the Silicon Firewall. 

The Nios development kit includes the Quartus II development software, which 

contains support for the EP20K200EFC484 device that populates the Nios development 

board.  

D.3  GNUPro Toolkit Compiler and Debugger 

The GNUPro toolkit from Red Hat is an industry-standard compiler and debugger tool 

suite, which is an open-source C/C++ development tool suite optimized for the Nios 
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embedded processor. An environment familiar to software design engineers is provided 

by the GNUPro toolkit. 
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