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ABSTRACT 

There is concern regarding exposure of aquatic organisms to chemicals that interfere with 

the endocrine system. Disruption of the endocrine system can lead to impacts on sexual 

development, altered hormone levels, intersex, and ultimately reproductive failure. While effects 

of endocrine disrupting chemicals (EDCs) on standard laboratory species have been subject of 

intense study, to this day there is a large gap in knowledge and a high degree of uncertainty 

regarding the sensitivity of wild fish species to these compounds. One of the main concerns with 

current toxicity testing approaches is that they require the use of a large number of live animals, 

particularly when working with native species. Therefore, the aim of this study was to develop in 

vitro tissue explant assays that would enable the assessment of the sensitivity of different wild 

fish species native to North America to the exposure with EDCs. Specifically, two in vitro assays 

were developed: 1) A liver explant assay to assess effects of EDCs that can interact with the 

estrogen receptor (environmental estrogens), and 2) a gonadal explant assay to assess effects of 

EDCs on sex-steroid production. The test species selected were northern pike (Esox lucius), 

walleye (Sander vitreus), and white sucker (Catostomus commersoni) that were sampled from 

Lake Diefenbaker, Saskatchewan, Canada, and white sturgeon (Acipenser transmontanus) that 

were randomly selected from an in house stock reared from eggs. Liver tissue was excised from 

male fishes and exposed for 24 h to a synthetic estrogen, 17α- ethinylestradiol (EE2). Transcript 

abundance of vitellogenin (VTG), estrogen receptor (ER) α and β in liver tissue were quantified 

using qPCR. Gonad tissue from both male and female were excised and exposed for 24 h to a 

model inducer (forskolin) and inhibitor (prochloraz) of steroidogenesis. 11-ketotestosterone (11-

KT) and estradiol (E2) were quantified in media by use of ELISA. Exposure to EE2 resulted in a 

concentration dependent increase in VTG in all species, and an increase in ERα in northern pike. 
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Walleye males showed the greatest sensitivity to EE2. Gonad tissues exposed to forskolin 

showed a concentration dependent increase in 11-KT and E2. Exposure to prochloraz resulted in 

a decrease of 11-KTand E2. Male and female white sucker showed greatest sensitivity to 

forskolin, while male and female walleye showed greatest sensitivity to prochloraz. The seasonal 

time point during which gonad explants were excised and exposed had an impact on the potency 

and magnitude of response, resulting in a seasonal effect on sensitivity. Also, gonad explants 

from these species were found to have greater sensitivity than responses previously reported for 

in vitro explants of other fish species such as the fathead minnow (Pimephales promelas), and 

stable cell lines currently used as screening applications to detect chemicals that might disrupt 

the endocrine system.  Therefore, current approaches that use stable cell lines or tissue explants 

from standardized small bodied laboratory species might not be protective of some wild fish 

species.  These tissue explants represent a promising approach to help understand species 

sensitivity to EDCs, and if appropriately validated, could be a powerful tool for chemical 

screening. 
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PREFACE 

 

Chapter 1 of this thesis is a general introduction and Chapters 2 and 3 are organized as 

manuscripts for publication in scientific journals.  Thus, there is some repetition between the 

introduction and the materials and methods sections in each chapter.  Chapter 2 has been 

published in Aquatic Toxicology (2014) Volume 152, Pages 273-283.    
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CHAPTER 1 

1 GENERAL INTRODUCTION 

 

1.1 Endocrine disruption in the aquatic environment 

There is significant concern regarding chemicals in the environment that have the 

potential to disrupt normal endocrine functions and associated physiological processes in wildlife 

and humans (Tyler et al., 1996; Sumpter 1998; Hutchinson et al., 2005; Jobling et al., 2006).  

Numerous regulatory bodies including the United States Environmental Protection Agency (US-

EPA) have recognized the importance of identifying chemicals that can affect the endocrine 

systems of fish and other wildlife.  To address these needs, screening programs such as the US-

EPA Endocrine Disruptor Screening Program (EDSP) were developed and implemented 

(Fenner-Crisp et al., 2000).  These programs aim to identify chemicals with specific endocrine 

disrupting properties such as interaction with the estrogen receptor (ER), androgen receptor 

(AR), and steroidogenic pathways, which might ultimately cause an adverse effect on 

reproduction.  However, there is a lack of harmonized approaches and programs to assess 

environmental endocrine disruption, especially in aquatic systems.  

Fishes are predominantly at risk of being exposed to endocrine disrupting chemicals 

(EDCs) as many of these compounds are directly released into the aquatic environment through 

industrial and communal effluents, along with agricultural runoff, resulting in either an 

intermittent or continuous exposure.  Exposure to EDCs has been linked to a wide variety of 

developmental and reproductive effects in multiple fish species throughout the world (Vos et al., 
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2000; Jobling and Tyler, 2003; Palace et al., 2009; Scholz et al., 2013). Unfortunately, limited 

data is available regarding endocrine disruption in wild fishes, particularly species native to 

North America.  The sensitivity to the exposure with EDCs has only been studied in a small 

proportion of wild freshwater fish species, with the majority of data having been derived from 

few selected cyprinids and salmonids (Jobling and Tyler, 2003).  The majority of data used to 

date in support of environmental risk assessment of EDCs in aquatic systems relies on standard, 

small bodied, laboratory species such as the fathead minnow (Pimephales promelas), Japanese 

medaka (Oryzias latipes), and zebrafish (Danio rerio).  Unfortunately, it is not known whether 

these laboratory species are actually predictive of species that are indicators for the health of 

ecosystems, and it is unknown if these standard laboratory fish species can be used as a model 

for the most sensitive fish in an ecosystem.  This leaves a large gap in knowledge and a high 

degree of uncertainty regarding the sensitivity of fishes native to northern ecosystems such as 

pike (Esoxidae), perch (Percidae), suckers (Catostomidae), sturgeon (Acipenseride) and others to 

EDCs.  Therefore, to enable more objective risk assessments, it is critical to identify the 

sensitivity of species native to the environments of concern.   

1.2 Types of endocrine disruption  

Currently, the main focus in context with EDCs has been on exogenous chemicals 

causing endocrine disrupting effects by agonistically or antagonistically binding to sex steroid 

receptors, mainly the ER and AR.  However, there are a number of other equally relevant non-

receptor mediated processes that can significantly disrupt endocrine function.  These can include 

disruption of enzymes involved with synthesis, as well as transformation, transportation, 

metabolism, and elimination of steroid hormones (Hecker et al., 2002; Villeneuve et al., 2007, 

2009; Hecker and Giesy, 2008; Yeung et al., 2011).   
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1.2.1 Receptor mediated effects of endocrine disruption 

Steroid hormones exert their action through binding to specific receptors, and when 

bound by an agonist, a receptor-mediated response is initiated.  Steroid hormone receptors form a 

large family of receptors, which contain a ligand-binding domain and a DNA-binding domain 

(Boelsterli, 2007).  The two most well-researched receptors that have been investigated in 

context with receptor mediated effects of endocrine disruption are the ER and AR.  

1.2.1.1 Estrogen receptor 

 

The ER agonistically binds (xeno)estrogens and induces processes that are associated 

with female reproductive functions such as expression of primary female sexual characteristics 

and ovarian sexual maturation processes (Mills and Chichester, 2005).  There are two main types 

of ERs, membrane bound ERs and nuclear ERs.  Although much less is known regarding 

membrane bound ERs compared to nuclear ERs, it has been established that interaction with 

membrane bound ERs can result in rapid responses that can lead to cytoplasmic alterations, 

activation of signaling cascades and regulation of gene transcription (Marino et al., 2006).  In 

fact, in a study by Pang and Thomas, (2010), it was suggested that activation of membrane 

bound ERs by estrogens were responsible for a delay in spontaneous maturation of zebrafish 

oocytes.    Since the majority of research related to ER mediated effects of endocrine disruption 

in fishes focuses on the nuclear ER and associated trancriptional response, the background 

information presented in this section will focus on the nuclear ER.  

The nuclear ER is inactive within the nucleus where it is blocked from binding to DNA 

by heat shock proteins until it comes in contact with a ligand (Boelsterli, 2007; Fig. 1.1).  When 

a (xeno)estrogen binds to the nuclear ER, there is a conformational change of the receptor, 
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resulting in its activation and dissociation of heat shock proteins.  The activation can lead to the 

formation of a homodimer, followed by binding of a receptor-ligand complex to its DNA binding 

domain, promoting synthesis of mRNA, and ultimately leading to the translation of a specific 

protein, enzyme or receptor (Bolsterli, 2007; Fig. 1.1).  Teleost fishes express at least three 

distinct types of ERs, ERα, ERβ1 and ERβ2 (Lange et al, 2012; Yost et al., 2014).  Any chemical 

that resembles the structure of 17-β estradiol (E2) can bind to each of these receptors.  Along 

with the subtype of ERs differing in tissue distribution, ligand binding affinity and pattern of 

transcript regulation upon exposure to a ligand, they have been shown to differ in their role in the 

estrogenic response (Yost et al., 2014).   

 

Fig. 1.1. Mechanism of (xeno)estrogen-induced activation of the estrogen receptor (ER). The 

compounds diffuse across biomembranes into the nucleus, where it binds to the ER. The ER 

forms homodimers and binds to estrogen-response elements (ERE) on DNA, leading to 

transcriptional activation of estrogen-responsive genes, and an estrogenic response (Boelsterli, 

2007).   
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The role of the different ER subtypes regarding the regulation of vitellogenin (VTG) in 

response to estrogen exposure is not yet fully understood (Yost et al., 2014).  VTG is an egg-yolk 

precursor protein synthesized in the liver of female fishes that is under strict control of estrogens.  

Originally, it was thought that ERα was the primary subtype responsible for the regulation of 

VTG, as numerous studies illustrated an induction of VTG along with the induction of ERα 

transcript abundance, and no change in ERβ (Boyce-Derricott et al., 2009; Yost et al., 2014).  

Recently, there has been increased research into the role of ERβ in the estrogenic response of 

exposed male fishes (Nelson and Habibi, 2010; Yost et al. 2014).  Even with the abundance of 

ERβ not changing upon exposure of hepatocytes of goldfish (Carassius auratus) to E2, ERβ is 

thought to be responsible for induction of VTG and ERα, with ERβ1 having been hypothesized 

to be responsible for the maintenance of basal concentrations of ERα (Nelson and Habibi, 2010).  

In addition, a study conducted by Griffin et al. (2013) concluded ERβ2 was responsible for 

induction of ERα and VTG when exposed to estrogens, while the role of ERβ1 is unknown.  It 

appears that the role of the ER subtypes in response to environmental estrogen exposure is 

species specific and additional research is required to identify if there is a common underlying 

role of the ER subtypes among teleosts.  

The ER is known to bind numerous compounds that resemble E2, which can lead to 

unintended physiological responses.  These compounds, also known as environmental estrogens, 

enter the aquatic environment primarily through municipal wastewater treatment plant effluents, 

making exposure of fish a particular concern.  One environmental estrogen of great concern is 

17α-Ethinylestradiol (EE2).  EE2 is a synthetic estrogen and the active ingredient of most 

contraceptive pills.  Canadian wastewater treatment plant effluents have been found to have 

average concentrations of EE2 in the low ng/L range, with maximum concentrations as high as 
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42 ng/L (0.14 nM) (Ternes et al., 1999).  EE2 has a 10- to 50-fold greater potency than some 

natural estrogens and has the ability to bioconcentrate up to 332-fold in the body of a fish 

relative to concentrations in the surrounding water (Lai et al., 2002).  These attributes make 

environmentally relevant concentrations of EE2 a potential threat to populations of fishes.  

Exposure to EE2 has been shown to lead to feminization of male fish including the induction of 

VTG, reduced male secondary characteristics, intersex, reduced fertilization success, and altered 

sex ratios (Lange et al., 2001; Parrott and Blunt, 2005; Kidd et al., 2007).  Furthermore, a whole 

lake study conducted in the Experimental Lakes Area in Ontario, Canada, demonstrated that 

treatment with an environmentally relevant concentration of 5 ng EE2/L resulted in the collapse 

in populations of resident fathead minnow (Kidd et al., 2007; Palace et al., 2009).   

VTG is one specific gene that is inducible upon binding of an environmental estrogen to 

the ER. The VTG gene resides in the male genome as well.  However, very little, if any, VTG is 

produced in male fishes under natural conditions, as circulating estrogen levels are too low to 

trigger significant expression of the VTG gene (Sumpter and Jobling, 1995).  It is, however, 

inducible upon exposure to low concentrations of estrogens, making it one of the most utilized 

and sensitive biomarkers of exposure to these compounds.  

1.2.1.2  Androgen receptor 

 

The AR binds androgens and compounds with structural similarities to natural androgens 

to promote a receptor mediated response.  In fish, the endogenous ligand testosterone (T), and 

more importantly 11-ketotestosterone (11-KT), are responsible for testes development, and the 

expression of male secondary sexual characteristics.  This receptor, like the ER, is a ligand-

activated nuclear receptor.  The AR is primarily located in the cytosol in an inactive state.  Once 

a ligand associates with the ligand binding domain on the AR, the complex translocates into the 
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nucleus, is phosphorylated and dimerises, followed by binding to a specific androgen response 

element on the DNA (Boelsterli, 2007).  The AR is regulated at the transcriptional level and 

protein level, mainly by androgens.  However, other hormones and growth factors are involved 

in this process as well (Boelsterli, 2007).  There are many xenobiotics that cause their endocrine 

disruptive effects by interacting with the AR receptor.  One of the most famous examples is a 

metabolite of the pesticide DDT, DDE.  DDE has been shown to interfere with sexual 

differentiation and maturation of alligators in the contaminated Lake Apopka, Florida, USA.  It 

was demonstrated that DDE antagonistically interacts with the AR, making the complex unstable 

and unable to translocate into the nucleus to bind with the androgen response element.  This 

leads to an inhibition of AR-mediated gene activation and associated downstream effects 

(Guillette et al., 1994).  It therefore must be acknowledged that interaction of a sex steroid 

receptor does not just lead to an enhanced response.  Interaction with the receptor of its 

associated ligand or response elements can also lead to a lesser or inhibited response, having 

alternate downstream effects. 

1.2.2 Non-receptor mediated effects of endocrine disruption 

There are multiple mechanisms within an organism which aid in regulating the 

concentrations of circulating sex steroid hormones responsible for normal growth, development 

and reproduction. A few of these processes involved in maintaining this homeostasis are 

synthesis, metabolism, transportation, and elimination.  Synthesis of sex steroid hormones, also 

known as steroidogenesis, is required to increase the total concentration of sex steroid hormones 

within the body.   Sex steroids are transported throughout the body by transporter proteins, 

namely sex steroid binding protein (SBPs), and to a lesser extent by albumin (Burton and 

Westphal, 1972).  When bound to a binding protein, the steroid is inactive and thus cannot 
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interact with its target receptor.  When functioning properly, SBPs protect against hormone 

metabolism and excretion, along with buffer against sudden changes in active concentrations of 

hormones (Burton and Westphal, 1972).  Metabolism and excretion of steroid hormones are 

responsible for maintaining optimal concentrations, along with eliminating hormones when a 

lesser total concentration is required.  It is important to note that all of these processes work 

together to maintain homeostasis of the concentrations of steroid hormones, and disruption of 

any of these processes could lead to negative effects.  

 

There is a misconception that exogenous chemicals cause their reproductive endocrine 

disrupting effects by solely acting on sex steroid receptors, mainly the ER and AR.  In fact, many 

additional non-receptor mediated processes can alter endocrine function, including disruption of 

processes involved in synthesis, metabolism, transportation, and elimination of steroid hormones 

(Baker 2001; Hecker and Giesy, 2008).  Specifically related to sex steroid hormone metabolism, 

compounds such polychlorinated biphenyls and polyhalogenated aromatic hydrocarbons have 

been shown to inhibit estrogen sulfonotransferase, an enzyme responsible for metabolism of 

estrogens (Song 2006; Diamanti-Kandarakis et al., 2009).  Disruption of these metabolizing 

enzymes could lead to elevated concentrations of sex steroid hormones.  Xenobiotics have been 

shown to interact with SBPs, resulting in the release of bound steroid hormones and elevated 

concentrations of circulating steroid hormones (Danzo et al., 1997).  Since disruption of sex 

steroid synthesis is a focus of this thesis, a more thorough description of this process is given 

below.  
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1.2.2.1 Disruption of steroidogenesis 

 

Steroidogenesis is a critical process in context with sexual development, growth and 

reproduction.  Sex steroid hormones need to be at proper concentrations at specific times during 

development and maturation, with disruption being detrimental for normal development and 

reproductive success.  Sex steroid hormone homeostasis is regulated through the hypothalamic-

pituitary-gonadal (HPG) axis (Fig. 1.2).  Signals from the brain, resulting from external seasonal 

or local cues, are translated by the hypothalamic-pituitary system into changes in hormone 

secretion.  Secretion of gonadotropin releasing hormone (GnRH) from the hypothalamus causes 

release of gonadotropins from the pituitary gland into the blood stream.  Specifically, luteinizing 

hormone (LH) and follicle stimulating hormone (FSH), two peptide hormones, are released from 

the pituitary in response to GnRH signalling, and act on the gonad to stimulate secretion of sex 

steroid hormones (Kime, 1998). These in turn initiate changes in secondary sexual characteristics 

(if present), behaviour and courtship patterns, and regulate development of the gametes, their 

maturation and eventually spawning (Kime, 1998).   
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Fig. 1.2. Overview of the teleost hypothalamic pituitary gonadal axis.  The linkages between the 

components of the axis show how homeostasis is regulated. Solid arrows indicate synthesis, 

dashed arrows indicate positive and negative feedback mechanisms. 

 

Steroidogenesis is one part of the HPG axis.  It regulates synthesis of circulating steroid 

hormones responsible for reproduction and development.  These sex steroids are produced in the 

gonads from cholesterol in a process involving many intermediates and enzymatic reactions (Fig. 

1.3) (Leusch and MacLatchy, 2003; Arukwe, 2008; Hogan et al., 2010).  The steroidogenic 

pathway has feedback loops that tightly regulate the circulating hormone concentrations and their 

homeostasis.  These feedback loops can act at the hypothalamus level by either inhibiting GnRH 
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secretion in times of increased sex steroid concentrations, or decreasing inhibition on GnRH 

secretion if circulating sex steroid hormone concentrations are low.  Feedback loops also regulate 

the secretion of FSH and LH from the pituitary, which in turn regulate the synthesis of sex 

steroid hormones.  The complexity of this pathway encompasses numerous potential targets for 

disruption.  Disruption of certain enzymes involved in the steroidogenic pathway can result in 

alteration of the production of the primary sex steroid hormones E2, T, and 11-KT.  Proper 

homeostasis of these sex steroid hormones is critical for successful growth, development, and 

reproduction in fishes (Noris, 1997).  Therefore, alterations in hormone levels due to effects on 

steroidogenesis can lead to disruption of gonadal maturation, abnormal gonad morphology, 

impaired sexual development, and ultimately reproductive failure (Kime, 1998; Cooper and 

Kavlock, 2001; Hecker et al., 2002; Nadzialek et al., 2011).  Numerous compounds, including 

fadrozole, ketoconazole, prochloraz, forskolin, and vinclozolin (Gray et al., 1997; Powlin et al., 

1998; Hecker et al., 2006; Villeneuve et al., 2007), are known to alter steroid hormone synthesis 

through induction or inhibition of specific or multiple enzymes in the steroidogenic pathway.  

Forskolin and prochloraz were chosen as chemicals of interest for this study due to their previous 

use as model and reference substances in context with the assessment of effects of contaminants 

on steroidogenesis (Hecker et al. 2011), and therefore, are discussed in further detail below.   

Forskolin is a compound produced from the Indian coleus plant Coleus forskohlii.  

Although this is a natural compound, it is not an environmentally relevant contaminant, as it is 

metabolized quickly in vivo.  It is, however, used in numerous in vitro assays as it is a well 

known general inducer of steroidogenesis that acts via the activation of cAMP pathways (Hecker 

et al, 2006), and has been shown to induce the production of steroid hormones with the same 

processes and pattern as luteinizing hormone (LH) (Hedin and Rosberg, 1983).  Considering that 
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forskolin induces steroidogenesis in the same manner as LH does through the HPG axis, it 

provides a useful tool as a positive control substance for gonad explant tests that are isolated 

from the HPG axis.   

Prochloraz is a fungicide that is used as a model compound in studies focusing on 

different mechanisms of action, due to the effects it has on the vertebrate HPG axis (Gray et al., 

2006; Ankley et al., 2009). Prochloraz is known to inhibit multiple enzymes in the steroidogenic 

pathway, including aromatase (CYP19) and cytochrome P450 c17α-hydroxylase/17,20-lyase 

(CYP17), resulting in decreased E2 and T production, respectively (Ankley et al., 2009; Nielsen 

et al., 2012).  In addition to a decrease in concentrations of circulating sex steroid hormones, 

subsequent effects can manifest.  For instance, exposure of prepubertal trout to prochloraz 

resulted in spermatogenesis being significantly inhibited (Skolness et al., 2011).  In addition, 

female fathead minnows exposed to prochloraz exhibited decreased gonadal E2 production, 

decreased plasma concentrations of VTG, and reduced fecundity (Ankley et al., 2005, 2009).  
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Fig. 1.3. Steroidogenic pathway in teleost fish, depicting the formation of estrogens and 

androgens and the enzymes involved. 1) cholesterol side chain cleavage enzyme (P450scc); 2) 

3β-hydroxysteroid dehydrogenase (3β-HSD); 3) 17α-hydroxylase; 4) C17,20-lyase; 5) 17β-

hydroxysteroid dehydrogenase (17β-HSD); 6) P450 aromatase (CYP19A); 7) 11β-hydroxylase 

(CYP11B); 8) 11β-hydroxysteroid dehydrogenase (11β-HSD); 9) 21-hydroxlase (P450c21). 

Boxes indicate major circulating hormones.   



14 

 

1.3 Fish species of interest  

Northern pike (Esox lucius), walleye (Sander vitreus), white sucker (Catostomus 

commersoni), and white sturgeon (Acipenser transmontanus) are ecologically, economically and 

culturally relevant species present in northern ecosystems, and are at risk of exposure to EDCs.  

These species, are found throughout North America, are from four different taxonomic orders 

(Esoxidae, Percidae, Catostomidae, Acipenseridae), and comprise two trophic levels (predator, 

bottom feeder).  Northern pike and walleye are predatory fish positioned high in the food chain. 

While they fill an important ecological niche, they can be at a greater risk of accumulation of 

contaminants.  Along with their ecological relevance, pike and walleye are fished for sport, 

adding economic value to these species.  White sucker and white sturgeon are bottom feeders, 

which, through close contact with the sediment, can have an increased risk of exposure to 

contaminants that accumulate in sediments and/or sediment dwelling organisms.  White sturgeon 

are classified as endangered within Canada, which renders them of great interest in context with 

ecological risk assessment.  White sturgeon can live to be over 100 years old, reaching sexual 

maturity later in life compared to most fish species. This prolonged time prior to reaching sexual 

maturity allows more time for individuals to become exposed to toxicants that could impact 

sexual differentiation and cause other potential complications in their reproduction (LeBreton et 

al, 2004).  Therefore, these are excellent test species for the assessment of the sensitivity of 

North American fish species to EDCs.     

1.4 In vivo versus in vitro   

Current approaches involved in environmental risk assessment primarily assess the risk 

of a chemical based on live animal testing.  These approaches are primarily used because 



15 

 

exposure of live animals accounts for toxicokinetic processes such as adsorption, distribution, 

metabolism and excretion (ADME), and effects observed in individuals can be translated or 

extrapolated to populations (Gray et al., 1997).  However, there are many challenges with 

assessing the effects of contaminants on native species of interest.  These challenges include 

difficulties in maintaining wild fish species under laboratory conditions, ethical concerns when 

working with endangered species (which can be of particular interest with regard to their 

sensitivity to environmental contaminants), and high investments in time, labour and cost.  In 

vivo studies often require large animal numbers to fulfil statistical requirements, which can be 

difficult to obtain for some wild species, especially if one is dealing with species that are 

endangered or threatened in their environment.   

 In vitro approaches use cells, tissues, or organ systems outside their natural environment 

(within an organism) as a surrogate of the targeted system within an organism.   In vitro tests 

have a number of advantages over in vivo approaches because they often have greater specificity 

in their response, are amendable to higher throughput, and have a lesser cost (Gray et al., 1997).  

They also address current animal welfare concerns associated with toxicity testing approaches 

that use large numbers of live animals.  In addition, multiple compounds, concentrations and 

species can be tested with ease using an in vitro approach.  However, while in vitro approaches 

are promising, it should be noted that there are still a number of uncertainties regarding the use 

of in vitro tests as a replacement of in vivo assays.  In vitro systems often represent simplified 

systems that lack the complexity of an organism with its feedback loops, cross-talk between 

different biological pathways, realistic representation of ADME, etc.  Some of these issues can 

be circumvented through use of tissue cultures that typically maintain some of the organismal 

properties such as paracrine interactions and tissue specific metabolic process.  In fact, gonad 
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tissue explants have been found to be reasonably predictive of in vivo effects in the fathead 

minnow (Villeneuve et al., 2007).  In vitro and in vivo approaches can use similar endpoints 

when identifying an exposure or potential indicator of an adverse effect to estrogenic EDCs, 

including transcript abundances, or concentrations of proteins or hormones, among others.  The 

ability to compare the sensitivity of some endpoints between in vitro and in vivo approaches, 

especially when using an indicator of an adverse effect, makes in vitro approaches increasingly 

attractive and relevant to chemical risk assessment.  Therefore, the overall purpose of this study 

was to establish and validate tissue explant based in vitro assays to aid in the assessment of the 

sensitivity of native fishes to EDCs.  

1.5 Objectives 

Since little is known regarding the sensitivity of fishes native to North America to the 

exposure with EDCs, there is a need for efficient and objective methods to elucidate differences 

in sensitivity among such species and compare this information to standard laboratory model 

species.  Therefore, the overall objective of the research in this M.Sc. thesis was to develop in 

vitro approaches that enable the assessment of species-specific sensitivity of native fish species 

to selected EDCs.  The specific research objectives, hypotheses and the experimental approaches 

employed are outlined below: 

1. Assessment of the sensitivity of three North American fish species to disruptors of 

steroidogenesis using in vitro tissue explants (Chapter 2).  

Disruption of sex steroid hormone synthesis can lead to disruption of gonadal 

maturation, abnormal gonad morphology, impaired sexual development, and ultimately 

reproductive failure (Kime, 1998; Cooper and Kavlock, 2001; Hecker et al., 2002; 

Nadzialek et al., 2011).  It is uncertain whether small bodied laboratory fish species 
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currently used in risk assessments are protective of fish species native to northern 

ecosystems, as there is little known about the sensitivity of wild fish species to disruptors 

of steroidogenesis.  In addition, there are ethical concerns along with great investments of 

time, labour and cost with in vivo studies.  Therefore, the main objective of this portion of 

the study was to establish an in vitro gonadal explant test that enabled assessment of 

effects on sex-steroid production in northern pike, walleye and white sucker.  The 

specific objectives and associated null hypotheses were:  

1)  To determine whether the gonad explant assay responded in a manner 

previously reported for various other in vitro steroidogenesis test systems 

exposed to forskolin and prochloraz by inducing and inhibiting, respectively, 

sex steroid hormone production (E2 and 11-KT). 

 H0: Exposure of gonad explants to forskolin or prochloraz does not change 

sex steroid hormone production (E2 and 11-KT) compared to controls.   

2)  To determine whether seasonality of reproductive function represented a 

critical factor in the magnitude of response and sensitivity of the in vitro 

assay.  

  H0: Seasonality of reproductive function does not change the magnitude of 

response or sensitivity of the in vitro assay. 

 3) To determine whether there was a species specific sensitivity of gonad explants 

of northern pike, walleye and white sucker to the exposure with disruptors of 

steroidogenesis. 
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  H0: There is no difference in sensitivity among northern pike, walleye and 

white sucker gonad explants to the exposure with disruptors of 

steroidogenesis.  

   

2. Comparison of the sensitivity of four native Canadian fish species to 17-α 

Ethinylestradiol, using an in vitro liver explant assay (Chapter 3). 

Exposure to environmental estrogens and other endocrine-active chemicals have 

been shown to impact reproduction of freshwater fish species.  One estrogenic endocrine 

disrupting chemical of particular concern is the synthetic estrogen EE2.  Little is known 

about the potential adverse effects of estrogenic EDCs to freshwater fish species native to 

North America or their sensitivity to these effects.  Therefore, an investigation of the 

sensitivity of four native Canadian species, namely northern pike, walleye, white sucker, 

and white sturgeon to EE2 using an in vitro liver explant approach was conducted.  Liver 

explants were exposed to increasing concentrations of EE2, with abundance of transcripts 

of VTG, ERα and ERβ being the endpoints. The objectives and associated null 

hypotheses of this study were: 

1) To determine the transcript abundances of VTG, ERα and ERβ in liver explants 

of northern pike, walleye, white sucker and white sturgeon upon exposure to EE2. 

H0: There is no change in transcript abundance of VTG, ERα and ERβ of 

liver explants of northern pike, walleye, white sucker, or white sturgeon 

upon exposure to EE2.  

2) To determine whether there was a difference in species specific sensitivity of 

liver explants to the exposure with the potent environmental estrogen EE2.  
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 H0: There is no difference in sensitivity among northern pike, walleye, 

white sucker, and white sturgeon liver explants exposed to EE2. 
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CHAPTER 2 

2 ASSESSMENT OF THE SENSITIVITY OF THREE NORTH 

AMERICAN FISH SPECIES TO DISRUPTORS OF 

STEROIDOGENESIS USING IN VITRO TISSUE EXPLANTS
1
 

 

 

 

 

 

 

 

1
This chapter has been published in Aquatic Toxicology (2014) Volume 152, Pages 273-283, 

under joint authorship with Jon A. Doering (University of Saskatchewan), Sarah E. Patterson 

(University of Saskatchewan) and Markus Hecker (University of Saskatchewan).  The tables, 

figures and references cited in this article have been re-formatted here to the thesis style.  

References cited in this chapter are listed in the reference section of this thesis. A brief 

description of the methods development for this chapter is illustrated in the Appendix.  
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2.1 Abstract 

There is concern regarding exposure of aquatic organisms to chemicals that interfere with 

the endocrine system.  One critical mechanism of endocrine disruption is impairment of 

steroidogenesis that can lead to altered hormone levels, altered or delayed sexual development, 

and ultimately reproductive failure.  With the current large gap in knowledge and a high degree 

of uncertainty regarding the sensitivity of fishes native to northern ecosystems to endocrine 

disrupting chemicals (EDCs), the aim of this study was to develop an in vitro gonadal explant 

assay enabling the assessment of endocrine disrupting chemicals on sex-steroid production in 

wild fish species native to North America.  Northern pike (Esox lucius), walleye (Sander 

vitreus), and white sucker (Catostomus commersoni) were sampled from a reference location in 

Lake Diefenbaker, Saskatchewan, Canada, at spawn and multiple post-spawn time-points. 

Gonads were excised and immediately exposed for 24 h to a model inducer (forskolin) or 

inhibitor (prochloraz) of steroidogenesis in L-15 supplemented media.  Furthermore, seasonal 

profiles of plasma 11-ketotestosterone (11-KT) and estradiol (E2) concentrations were 

characterized.  Enzyme-linked immunosorbent assays were used to quantify hormone 

concentrations in plasma and media.  The seasonal profile of plasma hormones was significantly 

correlated with basal in vitro hormone production.  Gonad tissue exposed to forskolin showed a 

concentration-dependent increase in E2 and a general increase in 11-KT.  Gonad tissue exposed 

to prochloraz resulted in a decrease of concentrations of 11-KT and E2.  These results illustrated 

that gonadal tissue is undergoing steroidogenesis in an in vitro setting that is comparable to in 

vivo hormone profiles, and is responsive to chemical exposure in a concentration-dependent 

manner.  The seasonal time point during which gonad explants were excised and exposed had an 

impact on the potency and magnitude of response, resulting in a seasonal effect on sensitivity.  
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Male and female white sucker showed greatest sensitivity to forskolin, while male and female 

walleye showed greatest sensitivity to prochloraz.  Also, gonad explants from these species were 

found to have greater sensitivity than responses previously reported for in vitro explants of other 

fish species such as the fathead minnow (Pimephales promelas), and stable cell lines currently 

used as screening applications to detect chemicals that might disrupt the endocrine system.  

Therefore, current approaches that use stable cell lines or tissue explants from standardized small 

bodied laboratory species might not be protective of some wild fish species.  Future research is 

required that investigates whether this in vitro gonadal explant assay is predictive of in vivo 

effects in wild species of fishes.  
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2.2 Introduction 

Numerous chemicals in the aquatic environment are known to interact with the endocrine 

system of aquatic vertebrates (Kavlock et al., 1996; McMaster et al., 2005; Tyler et al., 2005; 

Jobling et al., 2006; Gerbron et al., 2010).  Exposure to these endocrine disrupting chemicals 

(EDCs) has been linked to a wide variety of developmental and reproductive effects in multiple 

fish species throughout the world (Vos et al., 2000; Jobling and Tyler, 2003; Palace et al., 2009; 

Scholz et al., 2013).  Numerous regulatory bodies including the United States Environmental 

Protection Agency (US-EPA) have recognized the importance of identifying chemicals that can 

affect the endocrine systems of fish and other wildlife.  To address these needs, screening 

programs such as the US-EPA Endocrine Disruptor Screening Program (EDSP) were developed 

and implemented (Fenner-Crisp et al., 2000).  These programs aim to identify chemicals with 

specific endocrine disrupting properties such as interaction with the estrogen receptor (ER), 

androgen receptor (AR), and steroidogenic pathways, which might ultimately cause an adverse 

effect on reproduction.   

To enable more objective risk assessments of EDCs, it is critical to identify the sensitivity 

of species native to the environments of concern.  However, the majority of data used to date in 

support of environmental risk assessments of EDCs in aquatic systems relies on standard, small 

bodied, laboratory species such as the fathead minnow (Pimephales promelas), Japanese medaka 

(Oryzias latipes), and zebrafish (Danio rerio) that often are not representative of the 

environments of concern.  The sensitivity to the exposure with EDCs has only been studied in a 

small proportion of wild freshwater fish species, with the majority of the data having been 

derived from few selected cyprinids and salmonids (Jobling and Tyler, 2003).  This leaves a 

large gap in knowledge and a high degree of uncertainty regarding the sensitivity to EDCs of 
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fishes native to northern ecosystems such as pike (Esoxidae), perch (Percidae), suckers 

(Catostomidae), and others.  

 To date, most focus in context with EDCs has been on exogenous chemicals causing 

endocrine disrupting effects by agonistically or antagonistically binding to sex steroid receptors, 

mainly the estrogen and androgen receptor (Snyder et al., 2001; Goksoyr, 2006; Hecker and 

Giesy, 2008).  However, there are a number of other equally relevant non-receptor mediated 

processes that are known to significantly disrupt endocrine functions.  These can include 

disruption of enzymes involved in synthesis, as well as transformation, transportation, and 

elimination of steroid hormones (Hecker et al., 2002; Villeneuve et al., 2007, 2009; Hecker and 

Giesy, 2008; Yeung et al., 2011).  

The steroidogenic pathway involves the production of a number of different steroid 

hormones, including sex steroids, glucocorticoids and mineralocorticoids.  During production of 

sex steroid hormones, the precursor compound cholesterol is being converted into active 

hormones through a series of enzymatic reactions involving multiple cytochrome P450 enzymes 

and hydroxysteroid dehydrogenases (Parker and Schimmer, 1995; Leusch and MacLatchy, 2003; 

Arukwe, 2008; Hogan et al., 2010; Skolness et al., 2013).  This process is tightly regulated 

through the hypothalamus-pituitary-gonadal (HPG) axis with positive and negative feedback 

loops (Ankley et al., 2009; Yeung et al., 2011).  The complexity of this pathway encompasses 

numerous potential targets for disruption.  Disruption of certain steroidogenic enzymes can result 

in alteration of the production of the primary sex steroid hormones 17-estradiol (E2), testosterone 

(T), and 11-ketotestosterone (11-KT).  Proper homeostasis of sex steroid hormones is critical for 

successful growth, development, and reproduction in fishes (Noris, 1997).  Therefore, alterations 

in hormone levels due to disruption of steroidogenesis can lead to disruption of gonadal 
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maturation, abnormal gonad morphology, impaired sexual development, and ultimately 

reproductive failure (Kime, 1998; Cooper and Kavlock., 2001; Hecker et al., 2002; Nadzialek et 

al., 2011).  There are numerous compounds known to alter steroid hormone synthesis through 

induction or inhibition of specific or multiple enzymes in the steroidogenic pathway, including 

fadrozole, ketoconazole, prochloraz, forskolin, and vinclozolin (Gray et al., 1997; Powlin et al., 

1998; Hecker et al., 2006; Villeneuve et al., 2007).   

There are multiple challenges in assessing the effects of contaminants to native species of 

interest.  These challenges include difficulties in maintaining wild fish species under laboratory 

conditions, ethical concerns when working with endangered species (which can be of particular 

interest with regard to their sensitivity to environmental contaminants), and high investments in 

time, labour and cost involved with in vivo assays.  Therefore, in vitro assays are increasingly 

used as tools to investigate the toxicity of chemicals because they often have greater sensitivity 

to low concentrations, specificity of response, high throughput, and have a lesser cost than in 

vivo assays (Gray et al., 1997).  Additionally, in vitro assays require fewer numbers of animals 

compared to in vivo assays, which is of growing interest in toxicity testing.  One method for in 

vitro testing involves the use of tissue explants.  Testes and ovarian tissues maintain some of 

their natural functions, including steroidogenesis, outside their natural environment (e.g. the 

body of the fish), as all the necessary machinery required for the cell- or tissue-specific function 

is present (Gray et al., 1997; Powlin et al., 1998).  It is hypothesized that species-specific tissue 

function is preserved within these tissues, and therefore, a test system using gonad explants could 

be used to identify sensitivity to EDCs which disrupt steroid synthesis.  It should be 

acknowledged, however, that though numerous advantages exist for in vitro assays, there are 

remaining uncertainties regarding their use as surrogates for in vivo assays.  For example, 
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adsorption, distribution, metabolism and excretion of the test chemical are often not, or only 

partially, accounted for by in vitro assays.  This can lead to false positive or false negative results 

(Gray et al., 1997).   

Northern pike (Esox lucius), walleye (Sander vitreus), and white sucker (Catostomus 

commersoni) are ecologically and economically relevant species in northern ecosystems that are 

at risk of exposure to EDCs.  These three species are found throughout North America, are from 

three different orders (Esoxidae, Percidae, Catostomidae), and comprise two trophic levels 

(predator, bottom feeder).  Northern pike and walleye are predatory fish positioned high in the 

food chain.  While they fill an important ecological niche, they can be at a greater risk of 

accumulation of contaminants.  Along with their ecological relevance, pike and walleye are 

fished for sport, adding economic value to these species.  White sucker are bottom feeders, 

which through close contact with the sediment can have an increased risk of exposure to 

contaminants that accumulate in sediment and/or sediment dwelling organisms.  Little is known 

about the sensitivity of northern pike, walleye or white sucker to exposure to EDCs.  Therefore, 

the aim of this study was to develop an in vitro assay to enable the assessment of species-specific 

sensitivity of these three wild species of fish to disruptors of steroidogenesis.  Specifically, 

gonads were excised and exposed to forskolin or prochloraz, model inducers and inhibitors of 

steroidogenesis (Hecker et al., 2011), respectively.  Sex–steroid production (E2, 11-KT) was 

used as the endpoint to identify differences in species sensitivity by use of gonad explants. The 

ultimate goal of this research is to generate information that will allow more objective future risk 

assessments of EDCs to wild fish species native to northern ecosystems.   
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2.3 Materials and methods 

2.3.1 Chemicals 

Forskolin from Coleus forskohlii, (CAS 66575-29-9; purity:     ), and prochloraz 

(CAS 67747-09-5; grade: analytical standard), were purchased from Sigma Aldrich (Oakville, 

ON, Canada).  Serial dilutions of forskolin and prochloraz were prepared in dimethyl sulfoxide 

(DMSO).  

2.3.2 Field sampling and tissue collection 

Sexually mature northern pike (E. lucius), walleye (S. vitreus), and white sucker (C. 

commersoni)  ranging from 0.5 to 6.1 kg, 0.6 to 4.7 kg, 0.6 to 1.6 kg in mass, respectively, were 

sampled using gill nets from a reference location in Lake Diefenbaker, Saskatchewan, Canada. 

The reference location had water quality indices that ranged from good to excellent as monitored 

by the Water Security Agency (Water Security Agency 2012).  Sample collection occurred 

between May 2012 and September 2013 during spawn, 8-10 weeks post spawn (WPS), 16-18 

WPS, and 24 WPS.  During certain sampling events it was not possible to collect the desired 

numbers of male and female fishes (see Appendix, Fig. C2.S1).  Mass (  0.1 kg) and fork length 

( 0.5 cm) were measured and recorded for each individual.  Immediately after catching, blood 

was sampled from the caudal vein of each fish using a sterile, heparinised 18-gauge needle and 

syringe.  Blood was stored in microcentrifuge tubes on ice.  Gonad tissue was excised, weighed 

( 1.0 g) and recorded in order to calculate gonadosomatic indices (GSI) (GSI = gonad 

weight/body weight x 100).  Gonad tissues were sliced into smaller pieces and immediately 

transported to the Toxicology Centre, University of Saskatchewan in ice cold supplemented 
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Leibovitz L-15 media (13.8 g of L-15 powder per litre medium, 420 mg NaHCO3/L, 1% 

antibiotic-antimicotic solution [100 units penicillin, 0.1 mg streptomycin and 0.25 µg 

amphotericin B per mL], pH 7.6) (Sigma Aldrich).  The time between sampling of fish and 

initiation of the exposure did not exceed 5 h.  Plasma was separated by centrifugation (6000 rpm 

for 5 min) and frozen at -80 °C for subsequent hormone analysis.   

2.3.3 Exposure protocol 

Gonad tissue was sliced into 1mm
3
 pieces and rinsed several times with supplemented L-

15 media.  Multiple pieces of gonad, approximately 100 mg total, were placed into each well of a 

24-well culture plate containing 999µL of supplemented L-15 media with 1 mg cholesterol/L.  

Test chemicals and the solvent control were added to the sample wells to a final concentration of 

0.1% DMSO, 0.3, 1.0, 3.0, 10.0 µM forskolin, or 0.03, 0.1, 0.3, 1.0 µM prochloraz for the 2012 

season, and 0.1% DMSO, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 µM forskolin, or 0.003, 0.01, 0.03, 0.1, 

0.3, 1.0 µM prochloraz for the 2013 season.  Each concentration was dosed in quadruplicate 

(2012 season) or triplicate (2013 season) for each individual.  Samples were incubated at 15 °C 

for 24 h on a platform rocker.  Upon termination of the exposure, tissue was removed from each 

well and placed into pre-weighted microcentrifuge tubes, weighed and frozen at -80 °C for 

subsequent analysis as part of a parallel study that will be reported on elsewhere.  Media was 

placed into microcentrifuge tubes and frozen at -80 °C for subsequent analysis of steroid 

hormones.  

2.3.4 Hormone extraction and quantification 

Steroid hormones were quantified using enzyme-linked immunosorbant assay (ELISA) 

purchased from Cayman Chemical (Ann Arbor, MI, USA).  Steroid hormones were extracted 



29 

 

from the media and plasma using a liquid-liquid extraction method in accordance with Chang et 

al. (2009) with minor modifications.  Briefly, 700 µL of sample and 700 µL nanopure water 

were combined and extracted twice with 2 mL of a 1:1 Hexane:Ethyl Acetate mixture by 

vortexing the sample mixture for 1 min, followed by centrifugation at 2000 rpm for 3 min.  The 

supernatant was collected and evaporated to dryness under a stream of nitrogen and brought up 

into a buffer provided by the manufacturer (Cayman Chemical) for quantification of steroid 

hormones.  11-KT and E2 were quantified in accordance with protocols provided by the 

manufacturer (Cayman Chemical).  Intra- and inter-assay variation did not exceed 20%.  

Hormone concentrations were expressed as ng per mL plasma (ng/mL; plasma) and ng per mL 

medium per g tissue (ng/mL-g; gonadal explant).   

2.3.5 Statistical analysis 

Statistical analyses were performed using SPSS version 20.0 (SPSS, Chicago, IL, USA) 

and data were expressed as mean   standard error of the mean (S.E.M).  Data was analyzed by 

one-sample Kolmogorov-Smirnov test for normality, and was analyzed by Levene’s test for 

homogeneity of variance.  Parametric data was analyzed by analysis of variance (ANOVA), 

followed by a 2-tailed Dunnett’s test or Tukey’s test.  Non-parametric data was analyzed by 

Kruskal Wallis test followed by Mann Whitney-U test with Bonferroni adjustment to correct for 

ties.  A probability of p   0.05 was considered statistically significant.  The concentrations of 

50% maximal effect (EC50) were calculated using Graph Pad Prism version 6.0 (GraphPad, La 

Jolla, CA, USA) by fitting data to a four-parameter logistic model. 
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2.4 Results 

2.4.1 Seasonal profiles of GSI and plasma sex steroid hormones  

GSI changed with season, generally being greatest during spawning season (Fig. 2.1).  

GSI decreased to its minimum after spawning (8-10 weeks post spawn [WPS]), followed by an 

increase at later sampling times (Fig. 2.1).  No data was generated for female northern pike 

during the spawning season as no fish could be collected during this time point.  The increase in 

GSI of females post spawn was slower than in males for all species, with female walleye and 

white sucker reaching approximately 5 % and 42 % of the spawning GSI, respectively, during 

the final sampling time point (Fig. 2.1A).  Male northern pike, walleye and white sucker had 

reached a GSI similar to the GSI observed during spawning by 16-18 WPS (Fig. 2.1B).   

Plasma E2 and 11-KT concentrations were detectable in all species at all sampling times, 

and showed distinct seasonal profiles in all fish with exception of male northern pike and male 

walleye (Fig. 2.2).  Plasma E2 concentrations in female northern pike, walleye and white sucker 

were lowest at time of spawn and 8-10 WPS, (1.4, 1.1 and 0.4 ng/mL, respectively), followed by 

an increase reaching maximum concentrations at 16-18 WPS (2.5, 7.2 and 4.9 ng/mL, 

respectively) (Fig. 2.2A).  Male walleye and white sucker plasma 11-KT concentrations had a 

similar seasonal trend, with absolute plasma 11-KT being greatest at spawn (8.5 and 56.9 ng/mL, 

respectively) and least during 8-10 WPS (0.1 and 0.4 ng/mL, respectively) (Fig. 2.2C).     

Basal E2 production by female northern pike gonad explants showed no statistically 

significant difference between the 8-10 and 16-18 WPS time points with an average of 10.3 

ng/mL-g (Fig. 2.2B).  Female walleye and white sucker gonad explants had the least basal E2 

production at spawn (0.5 and 2.3 ng/mL-g, respectively), and increased through 16-18 WPS to 
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maximum concentrations (8.3 and 9.7 ng/mL-g, respectively) (Fig. 2.2B).  Basal 11-KT 

production by gonadal explants of male northern pike, walleye and white sucker showed similar 

trends among species, with a general decrease in production from their maximal production at 

spawn (65.3, 79.5 and 171 ng/mL-g, respectively) until reaching the least production at 16-18 

WPS (10.6, 4.0 and 56.7 ng/mLg, respectively), followed by an increase in production after 16-

18 WPS (Fig. 2.2D).  

There was a statistically significant correlation between seasonal plasma E2 

concentrations and basal in vitro E2 production in females (  = 0.498, n = 37, p = 0.002).  A 

statistically significant correlation was also found between GSI and plasma E2 in females (  = 

0.401, n = 55, p = 0.002).  However, there was no correlation between GSI and basal in vitro E2 

production in females (  = 0.095, n = 27, p = 0.637).  In males, there was a significant 

correlation between seasonal plasma 11-KT concentrations and basal in vitro 11-KT production (

 = 0.497, n = 35, p = 0.002).  Furthermore, a statistically significant correlation occurred 

between GSI and basal in vitro 11-KT production in males (  = 0.466, n = 25, p = 0.019) but not 

plasma 11-KT production (  = 0.305, n = 29, p = 0.107).  

http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
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Fig. 2.1.(A) Gonadosomatic indices (GSI) of female northern pike (n = 5,3 individuals), walleye 

(n = 3, 21, 4 individuals) and white sucker (n = 3, 25, 8, 7 individuals) collected during spawn, 

10-16, 16-18, and 24 weeks post spawn (WPS). (B) GSI of male northern pike (n = 3, 12, 3 

individuals), walleye (n = 2, 3, 4, 6 individuals), and white sucker (n = 2, 5, 4, 3 individuals) 

collected during the spawn, 8-10, 16-18, and 24 WPS. Data represented as mean    S.E.M. 

Different letters indicate significant difference (Tukey’s test; p ≤ 0.05). 
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Female 11-KT plasma and basal in vitro hormone production (Fig. 2.3) and male E2 

plasma and basal in vitro hormone production (see Appendix, Fig. C2.S1), were also quantified.  

Plasma E2 was approximately 10- to 30-fold greater in females than in males, whereas plasma 

11-KT was approximately 35- to 100-fold greater in males than in females.  Plasma 11-KT in 

female walleye and white sucker had significant seasonal changes where concentrations were 

greatest at spawn, decreasing to their minimum at 16-18 WPS for walleye and 8-10 WPS for 

white sucker, followed by an increase for white sucker at later sampling times (Fig. 2.3).  There 

were no significant seasonal changes in plasma 11-KT concentrations and basal in vitro 11-KT 

production for female northern pike (Fig. 2.3).  However, a statistically significant correlation 

occurred between seasonal plasma 11-KT concentrations and basal in vitro 11-KT production in 

females (  = 0.516, n = 32, p = 0.002).  A statistically significant correlation was found between 

GSI and plasma 11-KT in females (  = 0.764, n = 54, p < 0.001), and between GSI and basal in 

vitro 11-KT production in females (  = 0.491, n = 22, p = 0.02).   

There were significant seasonal changes in plasma E2 concentrations in male northern 

pike; however, no significant seasonal changes occurred in walleye or white sucker.  There was a 

seasonal trend for all species, where concentrations decreased from spawn to their lowest point at 

8-10 WPS, increased to their maximum concentration at 16-18 WPS, followed by another 

decrease (see Appendix, Fig. C2.S1).  There were significant seasonal changes in basal in vitro 

E2 production in male walleye, but not in northern pike or white sucker (see Appendix, Fig. 

S2.C1).  There was no significant correlation found among seasonal plasma E2 concentrations, 

basal in vitro E2 production, and GSI in males.  

  

http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
http://en.wikipedia.org/wiki/Rho_(letter)
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Fig. 2.2. (A) Plasma E2 concentrations of female northern pike (n = 5, 3 individuals), walleye (n 

= 3, 18, 4 individuals), and white sucker (n = 5, 17, 8, 7 individuals) collected at spawn, 8-10 

weeks post spawn (WPS), 16-18 WPS, and 24 WPS. (B) Basal in vitro E2 production by gonadal 

explants of female northern pike (n = 3, 3 individuals), walleye (n = 3, 7, 3 individuals) and 

white sucker (n = 6, 2, 8, 3 individuals) at spawn, 8-10, 16-18 and 24 WPS time points. (C) 

Plasma 11-KT concentrations of male northern pike (n = 3, 11, 3 individuals), walleye (n = 4, 3, 

4, 5 individuals), and white sucker (n =2, 5, 4, 3 individuals) collected at spawn, 8-10 WPS, 16-

18 WPS, and 24 WPS. (D) Basal in vitro 11-KT production by gonadal explants of male northern 

pike (n = 3, 4, 3 individuals), walleye (n = 4, 2, 4, 5 individuals) and white sucker (n = 3, 3, 4, 2 

individuals) at spawn, 8-10, 16-18 and 24 WPS time points. Plasma data represented as mean   

S.E.M in ng/ml plasma. Basal in vitro hormone production data represented mean   S.E.M in 

ng/ml-g.  Different letters indicate significant difference (Tukey’s test; p ≤ 0.05). 
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Fig. 2.3. (A) Plasma 11-KT concentrations of female northern pike (n = 5, 3 individuals), 

walleye (n = 3, 18, 4 individuals), and white sucker (n = 5, 16, 8, 7 individuals) collected at 

spawn, 8-10 weeks post spawn (WPS), 16-18 WPS, and 24 WPS. (B) Basal in vitro 11-KT 

production by gonadal explants of female northern pike (n = 3, 3 individuals), walleye (n = 4, 2, 

4 individuals) and white sucker (n = 4, 2, 4, 3 individuals) at spawn, 8-10, 16-18 and 24 WPS 

time points. Plasma data represented as mean   S.E.M in ng/ml plasma. Basal in vitro hormone 

production data represented mean   S.E.M in ng/ml-g. Different letters indicate significant 

difference (Tukey’s test; p ≤ 0.05). 
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2.4.2 Effects of forskolin and prochloraz on in vitro steroid hormone production 

 Exposure to forskolin and prochloraz resulted in significant and chemical-specific effects 

on sex steroid hormone production by gonadal explants (Fig. 2.4 & 2.5).  Exposure of female 

walleye and white sucker gonad tissues to forskolin resulted in a concentration dependent 

increase in E2 (Fig. 2.4A-C).  Sampling and exposing female tissues to forskolin at different 

states of maturation had a significant effect on the capacity of gonad tissue to produce hormones 

in all species (Fig. 2.4A-C).  The lowest observable effect concentrations (LOEC) of female 

gonad explants exposed to forskolin were 3.0, 0.1, and 0.03 µM forskolin for northern pike, 

walleye and white sucker, respectively (Fig. 2.4A-C).  All LOECs occurred during the 16-18 

WPS time point.  The lowest EC50 values for induction of E2 production in female gonad 

explants were at 16-18 WPS for walleye (0.115 µM) and white sucker (0.136 µM) (Table 2.1).  

EC50 values for northern pike could not be calculated because of the absence of concentration 

dependent response. 

Exposure of female gonad tissue to prochloraz resulted in a decrease in E2 during all 

sampling times except 24 WPS for white sucker (Fig. 2.4D-F).  Maturation state had a significant 

effect on the capacity of gonad tissue to produce hormones for all species, except northern pike 

(Fig. 2.4D-F).  The LOECs of female gonad explants exposed to prochloraz were 0.1, 0.03 and 

0.1 µM prochloraz for northern pike, walleye and white sucker, respectively, at 16-18, 8-10 and 

8-10 WPS time points.  The lowest EC50 values for inhibition of E2 production occurred during 

8-10 WPS in female northern pike (0.029 µM), walleye (0.017 µM) and white sucker (<0.1 µM) 

(Table 2.1).    
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Fig. 2.4. Comparison of fold-change in hormone production of females at spawn, 8-10 weeks 

post spawn (WPS), 16-18 WPS, and 24 WPS compared to the average response in the solvent 

controls exposed to forskolin and prochloraz. (A) Northern pike (n = 8, 8 wells) (B) walleye (n = 

6-8, 6-18, 6 wells) and (C) white sucker (n = 8, 8, 6-18, 8 wells) exposed to forskolin. (D) 

Northern pike (n = 8, 8 wells) (E) walleye (n = 6-8, 6-18, 6 wells) and (F) white sucker (n = 8, 8, 

18, 8 wells) exposed to prochloraz. Data were normalized for tissue mass following exposure for 

24 hours. The range of doses is a result of the year in which fish were collected and dosed. 

Results are reported as the mean ± S.E.M.     * statistically different from solvent controls 

(Dunnett’s test; p ≤ 0.05). 
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Fig. 2.5. Comparison of fold-change in hormone production of males at spawn, 8-10 weeks post 

spawn (WPS), 16-18 WPS, and 24 WPS compared to the average response in the solvent 

controls exposed to forskolin and prochloraz. (A) Northern pike (n = 4, 7, 8 wells) (B) walleye (n 

= 8, 6, 6, 8 wells) and (C) white sucker (n = 8, 8, 6-8, 8 wells) exposed to forskolin. (D) Northern 

pike (n = 4, 7, 8 wells) (E) walleye (n = 8, 6, 6, 8 wells) and (F) white sucker (n = 8, 8, 6-8, 8 

wells) exposed to prochloraz.  Data were normalized for tissue mass following exposure for 24 h. 

The range of doses is a result of the year in which fish were collected and dosed.  Results are 

reported as the mean ± S.E.M.        * statistically different from solvent controls (Dunnett’s test; 

p ≤ 0.05). 
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Table 2.1. Concentrations of 50 % maximal effect (EC50) and lowest observable effect 

concentration (LOEC) values of hormone production from male and female gonad explants 

exposed to forskolin and prochloraz. All concentrations are presented in µM.  LOEC or EC50 

values which were unable to be calculated are represented with ‘-’. ‘*’
 
indicates EC50 values were 

approximated based on three doses. 

Species Chemical   Spawn 8-10 WPS 16-18 WPS 24 WPS 

   
Female Male Female Male Female Male Female Male 

Northern 

Pike 

Forskolin 
EC50 - - - <0.3 - 0.298

* - - 

LOEC - - - 0.3 3.0 0.3 - - 

Prochloraz 
EC50 - - 0.029 0.282

* 0.034 0.745
* - - 

LOEC - - 0.3 1.0 0.1 1.0 - - 

Walleye 

Forskolin 
EC50 - 4.518 0.486 - 0.115 <0.3 - - 

LOEC - - 0.3 - 0.1 0.3 - - 

Prochloraz 
EC50 - 0.010 0.017 0.044 0.033 0.097 - 0.096 

LOEC - 0.03 0.03 0.1 0.1 1.0 - 0.1 

White 

Sucker 

Forskolin 
EC50 - 0.339 0.638 0.313 0.136 0.100 <0.3 0.320 

LOEC - 0.3 1.0 0.3 0.03 0.03 0.3 0.3 

Prochloraz 
EC50 - 0.088

*
 0.03<0.1 1.088

*
 - - - 0.298

*
 

LOEC - - 0.1 - 1.0 - - - 
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Exposure of male gonad tissue to forskolin resulted in a general increase in 11-KT 

production for all species (Fig. 2.5A-C).  Maturation state had a significant effect on the capacity 

of the gonad tissue to produce hormones for all species (Fig. 2.5A-C).  The LOECs of male 

gonad explants exposed to forskolin at 8-10 and 16-18 WPS, 16-18 WPS, and 16-18 WPS for 

northern pike, walleye and white sucker were 0.3 µM, 0.3 µM and 0.03 µM, respectively (Fig. 

2.5A-C).  The lowest EC50 values for induction of 11-KT production occurred at 16-18 WPS for 

northern pike (0.298 µM), walleye (<0.300 µM) and white sucker (0.100 µM) (Table 2.1).  

Exposure of male gonad tissue to prochloraz resulted in a decrease of 11-KT production 

in all species (Fig. 2.5D-F).  Maturation state had a significant effect on the capacity of the gonad 

tissue to produce hormones for all species except northern pike (Fig. 2.5A-C).  Maturation stage 

did not have as great of an effect on the capacity of gonad tissue to produce hormones with 

prochloraz exposure compared to forskolin exposure (Fig. 2.5).  The LOEC of male gonad 

explants exposed to prochloraz was 1.0 µM at 8-10 and 16-18 WPS for northern pike, and 0.03 

µM at spawn, for walleye (Fig. 2.5D-E).  No LOEC could be calculated for white sucker males.  

The lowest EC50 values for inhibition of 11-KT production in northern pike, walleye and white 

sucker occurred at 8-10 WPS (0.282 µM), spawn (0.010 µM) and spawn (0.088 µM), 

respectively (Table 2.1).  

2.5 Discussion 

This study illustrated that in vitro gonad explant assays represent a useful tool to evaluate 

disruption of steroidogenesis in wild fish species including northern pike, walleye and white 

sucker.  The explant assay responded in a manner expected by inducing or inhibiting sex steroid 

hormone production (E2 and 11-KT) in a concentration dependent manner when exposed to 
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forskolin or prochloraz, respectively (Hecker et al., 2006).  Furthermore, this study demonstrated 

that gonadal maturation stage represents an important factor with regard to the capacity of gonad 

tissue to produce hormones, as well as its responsiveness and sensitivity to exposure to 

disruptors of steroidogenesis.  It should be noted that in a few cases the data are based on a 

limited sample size due to constraints naturally associated with the type of field work conducted 

here.  

2.5.1 Capacity of hormone production 

 Fishes were sampled and exposed throughout their reproductive and gonadal maturation 

season to identify if reproductive cycling influenced the capacity of the gonad tissue to produce 

hormones in vitro, along with their sensitivity to exposure to a model inducer and inhibitor of 

steroidogenesis.  GSI and plasma hormone concentrations were used to illustrate reproductive 

cycling throughout the season, along with characterization of in vivo profiles of basal hormone 

production at the various sampling time points.  Northern pike, walleye and white sucker spawn 

during spring, and like most spring-spawning freshwater fish, males undergo gonadal growth 

throughout the summer, with females continuing through autumn and winter (Medford and 

Mackay, 1977; Malison et al., 1994).  GSI changed with season, generally being greatest during 

spawning season.  GSI decreased to its minimum after spawning, followed by an increase at later 

sampling times.  Although the current study did not sample fish beyond 24 WPS, studies within 

the literature illustrate a gonad maturation profile of spring-spawning freshwater fish (Medford 

and Mackay, 1977; Malison et al., 1994) similar to what was observed in this study (Fig. 2.1).   

This study revealed that maturation stage was important for the capacity of the exposed 

gonad tissue to produce hormones.  Gonad tissue develops at different rates in different species, 
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and since maturation stage was found to be important with regards to capacity to produce 

hormones, the use of histology in identifying maturation stage would be desirable in future 

studies as it would give more detailed insights into the specific maturation stage at which 

capacity of hormone production is the greatest for a particular species.  To the best of the 

author’s knowledge, previous gonad explant assays, including common laboratory models such 

as the fathead minnow, have not considered reproductive seasonality as a factor in the 

assessment of effects of EDCs on steroidogenesis.  Thus, data obtained by these assays can be 

variable among experiments and might not be indicative of the most sensitive maturation stage.  

If a specific maturation stage proves to have greatest sensitivity for multiple species, additional 

research would need to be done to identify whether the maturation stage currently used with 

fathead minnow gonad explant assays in risk assessments is representative of the most sensitive 

maturation stage.  

Increasing sex-steroid hormone concentrations have been associated with the onset and 

regulation of gonad maturation, along with increase in GSI (Lee and Yang, 2002; Schulz et al., 

2010).   The increase in plasma E2 observed in female northern pike, walleye and white sucker 

within this study is similar to previously observed increases in E2 associated with the onset of 

vitellogenesis in most teleosts (Malison et al., 1994).  The gradual increase in plasma E2 

observed in northern pike is similar to that of rainbow trout (Oncorhynchus mykiss) and striped 

mullet (Mugil cephalus) (Whitehead et al., 1978; Tamaru et al., 1991), whereas the rapid 

increase of E2 in walleye and white sucker is similar to the increase observed in another study 

involving walleye (Malison et al., 1994).  Since a full seasonal profile of plasma hormones was 

not attained in this study, it should be noted that plasma E2 concentrations in most spring-

spawning teleost species reach a maximum around the beginning of winter, and gradually 
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decrease through the course of spawning as final maturation of gonadal tissue continues, 

mediated by progestins (Fitzpatrick et al., 1986; King et al., 1994; Malison et al., 1994).  This 

decrease in E2 production at later stages of gonad maturation could result in a decreased capacity 

to produce hormones in the in vitro model.   

The pattern of plasma 11-KT decreasing from spawn through 8-10 WPS in walleye and 

white sucker males (Fig. 2.2) corresponds to the decreasing pattern of 11-KT observed 

previously in pre-spawn, spawn and spent rainbow trout and white sucker (Scott et al., 1984; 

Baynes and Scott, 1985).  A correlation between increasing 11-KT and maturation state has been 

shown in this study and in other fishes, including coho salmon (Oncorhynchus kisutch) 

(Fitzpatrick et al., 1986).  However, some studies reported that T was better correlated with 

increasing GSI since 11-KT had a lesser increase compared to T relative to GSI, and prior to 

spawn, there was a major increase in 11-KT where GSI maintained stable (Baynes and Scott, 

1985; Fitzpatrick et al., 1986; Malison et al., 1994).  Although T has been found to increase prior 

to 11-KT, the concentrations of 11-KT were greater than T throughout the entire reproductive 

season (Baynes and Scott, 1985; Fitzpatrick et al., 1986; Malison et al., 1994).  The pattern of 

plasma 11-KT reaching the greatest concentration during spawn in female walleye and white 

sucker, followed by a decrease post-spawn  (Fig. 2.3), corresponds to the pattern of plasma T 

observed in pre-spawning, spawning and spent female white sucker and coho salmon (Scott et 

al., 1984; Fitzpatrick et al., 1986).  It has been suggested that the peak of T prior to 11-KT might 

serve to stimulate secondary sexual behaviours, or serve as a precursor to other steroids 

including 11-KT and E2 (Malison et al., 1994). 

In most cases the least responsive time point after exposure to forskolin was during the 

spawning season (no such characterization could be conducted for female northern pike).  An 
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increase in hormone production capacity was identified with an increase in GSI, peaking at 16-

18 WPS for males, and the final exposure time point for females.  It is hypothesized that when 

steroid hormones and GSI have reached their maximum level (16-18 WPS for males) a negative 

feedback mechanism was initiated to reduce the ability of gonadotropins to further induce 

hormone production and subsequent gonad growth and development.  Therefore, during gonad 

development, the ability to induce steroidogenesis to aid in development increases with gonadal 

maturation, resulting in the observed increase in capacity of hormone production with GSI when 

stimulated.  At 24 WPS, male walleye and white sucker gonad explants had a decreased capacity 

similar to the spawning time point (Fig. 2.3), aiding in the hypothesis that a negative feedback 

mechanism was initiated to pause gonad development.  Unfortunately, exposure time points 

beyond 16-18 WPS for northern pike and walleye, and 24 WPS for white sucker were not tested 

as no fish could be collected during these time points.  Therefore, for females, it is uncertain if 

capacity of gonad tissues to produce hormones in the presence of forskolin would have continued 

to increase or decrease in a similar manner as in males, once maximum E2 concentrations were 

attained.  In vitro gonad explant studies conducted with female spotted seatrout (Cynoscion 

nebulosus) and rainbow trout during mid-vitellogenesis had approximately 7- and 10-fold 

increases in E2 production, respectively, when exposed to 10 µM forskolin (Singh and Thomas, 

1993; Leatherland et al., 2005).  Post-vitellogenic common carp (Cyprinus carpio) gonad 

explants were exposed to 10 µM forskolin, resulting in approximately 6.5-fold increase in E2 

production (Paul et al., 2010).  Another gonad explant study involving female white sucker 

during spawn resulted in a maximum induction of T production of approximately 2-fold when 

exposed to 1.0 µM forskolin (Van der Kraak et al., 1992).  This low capacity to induce hormone 

production is in accordance with the conclusions that during spawning the capacity for sex 
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steroid production is the least compared to other maturation stages in fishes (Fig. 2.4).  An in 

vitro gonad explant study conducted with male coho salmon resulted in a maximum induction of 

11-KT of 8-fold (Planas et al., 1993).  The coho salmon in the study by Planas et al., (1993) were 

sampled when testes were at the same maturation stage as male coho salmon exhibiting 

maximum 11-KT levels (Fitzpatrick et al., 1986).  This is in accordance with the hypothesis that 

during times of gonad maturation there is the potential for greatest induction of hormone 

production in explant assays.  It is uncertain if maturation stage is of similar importance in other 

species of fishes with regard to capacity of hormone production, as previously published in vitro 

gonad explant studies were only conducted at a single maturation time point.  

Effects of the exposure of gonad explants to prochloraz were in accordance with results 

obtained by previous in vitro studies (Hecker et al., 2006), with a concentration dependent 

decrease in E2 and 11-KT production by gonadal explants of northern pike, walleye and white 

sucker (Fig. 2.4 & 2.5).  Maturation stage was found to significantly impact the responsiveness 

of gonads to the exposure with prochloraz, as was also seen with forskolin.  Unlike forskolin, the 

maximum response resulting from exposure to prochloraz was observed during multiple sample 

time points with most species, and a similar maximum response of approximately a 4-fold 

inhibition compared to control was found with most species.  This maximum response is similar 

to that previously seen in fathead minnow and brown trout (Salmo trutta) gonad explants 

(Villeneuve et al., 2007; Marca Pereira et al., 2011). 

2.5.2 Species sensitivity 

Assessment of sensitivity of fishes for the purpose of this study was based on LOEC and 

EC50 values (Table 2.1).  The use of these two measurements for comparing sensitivity among 
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species and time points of exposure is somewhat limited, as the range of exposure concentrations 

differed in some cases.  This is especially true for scenarios where the LOEC was the lowest 

dose tested.  EC50 values could only be calculated when a concentration dependent response was 

attained. Unfortunately, there were cases where the maximum response was observed at the 

lowest exposure concentration leading to the inability to calculate an EC50 value.  In these cases, 

a range was stated.  Since the time point of exposure was found to have an effect on sensitivity, 

the most sensitive time point for each species was used to compare among species.  

This study found male and female white sucker gonad explants to be the most sensitive to 

the exposure with forskolin, with LOECs of 0.03 µM and EC50 values of 0.102 and 0.136 µM, 

respectively.  Species of greatest to least sensitivity for female gonad explants exposed to 

forskolin were white sucker (this study), common carp (Paul et al., 2010), walleye (this study), 

northern pike (this study), and rainbow trout (Leatherland et al., 2005) with LOECs of 0.03, 0.1, 

0.1, 1.0, 3.0, and 10.0 µM, respectively.  Species of greatest to least sensitivity for male gonad 

explants exposed to forskolin were white sucker (this study), coho salmon (Planas et al., 1993), 

northern pike and walleye (both this study) with LOECs of 0.03, 0.1, 0.3 and 0.3 µM, 

respectively.  It should be noted the lowest dose studied for carp and rainbow trout showed 

significant results, and therefore, they could have greater sensitivity to forskolin than what was 

illustrated within the study.  An alternative in vitro steroidogenesis assay using an immortal 

human adenocarcinoma cell line (H295R) was previously conducted with forskolin (Hecker et 

al., 2007).  Within that study, mean EC50 values for T and E2 production were 0.71 and 0.56 µM 

forskolin, respectively (Hecker et al., 2007).  These results suggest white sucker and walleye 

male and female, along with northern pike male gonad explants have a greater sensitivity to 

forskolin than H295R cells, which are currently used as a screening application for identifying 
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endocrine active compounds.  Therefore, the H295R test would underestimate in vitro toxicity of 

forskolin to these species.   

Walleye gonad explants were found to be the most sensitive when exposed to prochloraz, 

resulting in LOEC values of 0.03 and 0.03 µM, and EC50 values of 0.017 and 0.010 µM for 

females and males, respectively.  Other studies involving fish gonadal explants exposed to 

prochloraz reported lesser sensitivities for gonad explants of fathead minnows and brown trout.  

Female fathead minnow gonad explants exposed to prochloraz had an LOEC of 3.0 µM 

(Villeneuve et al., 2007), and female and male brown trout gonad explants exposed to prochloraz 

had an LOEC of 0.66 µM (250 ng/L) (Marca Pereira et al., 2011).  Of the species that have been 

tested, walleye was found to have greatest sensitivity to prochloraz, followed by northern pike, 

white sucker, brown trout, and fathead minnow, having approximately 3-, 3-, 20- and 100-fold 

greater LOEC values, respectively.  These data clearly indicate that current fish models such as 

the fathead minnow that is commonly used in risk assessments of endocrine active chemicals 

might  not be protective of wild fish species of concern such as northern pike, walleye and white 

sucker.  However, it should be noted that there was only one time point used for the studies 

involving fathead minnows and brown trout, and juvenile brown trout gonad tissue was used.  

Since it was found that maturation stage plays an important role in the sensitivity of the gonad 

explants, the time point tested might not have represented the greatest sensitivity.   In addition, 

the brown trout study consisted of a limited range of concentrations, of which the lowest 

concentration showed significant effects.  Therefore, brown trout might have greater sensitivity 

to prochloraz than what was illustrated within the study, making sensitivity less comparable to 

the fathead minnow.  
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When compared to the H295R steroidogenesis assay (Hecker et al., 2007), it could be 

shown that female walleye gonad explants had greater sensitivity in detecting steroidogenesis 

inhibition after exposure to prochloraz, whereas male walleye had equal sensitivity based on the 

EC50s, but were less sensitive based on the LOEC.  The H295R test would underestimate in vitro 

toxicity of prochloraz to some of these species.  

2.5.3 In vitro versus in vivo 

It is often difficult to compare in vitro and in vivo studies because the organ system being 

tested is isolated and tested independent of other tissues that can interact under in vivo 

conditions.  However, unlike some immortal cell-based in vitro assays, which deal with only one 

cell type, gonad explants include multiple cell types that comprise all the enzymes required to 

produce sex steroid hormones.  Furthermore, gonad explants comprise paracrine properties and a 

greater level of organization than some other in vitro assays, and have been found to be 

reasonably predictive of in vivo effects in fathead minnows (Villeneuve et al., 2007).  Although 

no in vivo testing was conducted as it was beyond the scope of the presented study, the 

correlation between basal hormone production and plasma hormone concentrations provides 

evidence that the gonad tissue was undergoing steroidogenesis in an in vitro setting that is 

reflective of reproductive seasonality, indicating a connection between responses in vitro and in 

vivo.  In vivo endpoints of fathead minnows exposed to prochloraz, including alterations in 

hormone production and decreased fecundity, had LOECs of approximately10-fold less than 

alterations in hormone production by in vitro gonad explants (Ankley et al., 2005).  The fish 

sexual development test (FSDT) has also been conducted with fathead minnow and zebrafish 

exposed to prochloraz.  Effects of prochloraz included alterations in sexual differentiation, 

plasma vitellogenin concentrations and delayed maturation (Kinnberg et al., 2007; Thorpe et al., 
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2011; Baumann et al., 2013).  The FSDT resulted in LOECs approximately 10-fold less than 

alterations in hormone production by in vitro gonad explants for fathead minnow, similar to 

other observed in vivo endpoints.  Zebrafish were found to have greater sensitivity to prochloraz 

in the FSDT than fathead minnow, with a LOEC of 0.042 µM (Kinnberg et al., 2007), which is 

of similar sensitivity as alterations in hormone production by walleye in vitro gonad explants as 

determined in this study.  Since fathead minnows were found to be the least sensitive species 

with regard to endocrine disrupting effects following in vitro gonad explants exposed to 

prochloraz, in vivo testing could reveal even greater sensitivity of wild fish species including 

northern pike, walleye and white sucker, assuming that the in vitro responses in these species 

would also be less sensitive than in vivo effects.  Although in vitro gonad explants were shown to 

be reasonably predictive of in vivo effects, some in vivo endpoints have been seen to be of 

greater sensitivity, and thus, more research is needed to identify how predictive this in vitro 

gonadal explant assay is for in vivo effects in wild fish species.  

2.6 Conclusion 

This study successfully established an in vitro gonadal explant assay for wild fish species 

found in northern ecosystems to assess the effects of EDCs on sex steroid production.  The 

gonad explant assays responded in a manner previously reported for various other in vitro 

systems exposed to forskolin and prochloraz by inducing and inhibiting, respectively, sex steroid 

hormone production (E2 and 11-KT).  Seasonality of reproductive function represented a critical 

factor that needs to be considered when using an in vitro gonad explant assay to enable objective 

assessment of responses of wild fish species to disruptors of steroidogenesis.  Gonad explants of 

male and female white sucker, and male and female walleye were found to have the greatest 
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sensitivity to forskolin and prochloraz, respectively.  Gonad explants from these species were 

found to have greater sensitivity than the H295R assay which is currently used as a screening 

application to detect potential EDCs.  It is likely the H295R assay is not protective of fish of all 

species or of both sexes, and thus, the H295R test could underestimate in vitro toxicity for some 

species.  It is recommended to increase the sample size in future studies to have greater statistical 

power to aid in the statistical confirmation of observed sensitivities and correlations.  Finally, 

additional research into identifying how predictive this in vitro gonadal explant assay is for in 

vivo effects in wild fish species should be the focus of future research.    
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CHAPTER 3 

3 COMPARISON OF THE SENSITIVITY OF FOUR NATIVE FISH 

SPECIES TO 17-α ETHINYLESTRADIOL, USING AN IN VITRO 

LIVER EXPLANT ASSAY
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This chapter will be submitted to Environmental Science and Pollution Research under joint 

authorship with Jon A. Doering (University of Saskatchewan), Bryanna K. Eisner (University of 

Saskatchewan) and Markus Hecker (University of Saskatchewan).  The tables, figures and 

references cited in this article have been re-formatted here to the thesis style.  References cited in 

this chapter are listed in the reference section of this thesis. A brief description of the methods 

development for this chapter is illustrated in the Appendix.  
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3.1 Abstract 

Exposure to environmental estrogens and other endocrine disrupting chemicals (EDCs) has 

been shown to impact reproduction of freshwater fish species.  One compound of particular 

concern in this context is the synthetic estrogen 17α-Ethinylestradiol (EE2).  While estrogenic 

EDCs have been extensively researched in standard laboratory fish models, little is known about 

the sensitivity of freshwater fish species native to North America to these compounds.  With 

numerous economical and ethical challenges in assessing the effects of contaminants on native 

species in vivo, in vitro assays are increasingly being used for their high throughput, specificity, 

and lesser cost compared to in vivo assays.  The aim of this study was to investigate the 

sensitivity of four native Canadian species, namely northern pike (Esox lucius), walleye (Sander 

vitreus), white sucker (Catostomus commersoni), and white sturgeon (Acipenser transmontanus) 

to EE2 using an in vitro liver explant approach.  Transcript abundances of vitellogenin (VTG) as 

well as the estrogen receptors (ER) α and β were used as the measuring endpoints as they are 

known biomarkers previously used to assess exposure to environmental estrogens.  The assay 

responded in a manner previously reported in other in vitro liver explant and hepatocyte assays, 

as well as in vivo assays.  Specifically, transcript abundance of VTG was up-regulated in a 

concentration dependent manner in each species.  Liver explants of male walleye were found to 

have the greatest sensitivity to EE2, with a LOEC of 300 ng/L (1.0 nM) for VTG transcript 

abundance, with juvenile white sturgeon having the greatest magnitude of VTG transcript 

induction in exposed tissue (15-fold relative to control).  Exposure of liver explants to EE2 

resulted in no alteration in transcript abundance of ERβ, whereas induction of ERα was observed 

in northern pike only.  Based on in vitro expression of VTG, northern pike, walleye, white 

sucker, and white sturgeon were among the species with greatest sensitivity to estrogenic EDCs 
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of the species studied to date with sensitivities similar to those previously reported for rainbow 

trout and roach in vitro and in vivo. Although tissue slices have been shown to be a relatively 

realistic in vitro model with comparable response profiles to those previously observed in in vivo 

studies, more research is needed to identify how predictive this in vitro liver explant assay is to 

in vivo effects in wild fish species.  
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3.2 Introduction 

Numerous natural and synthetic chemicals present in the aquatic environment have been 

shown to interact with the endocrine system of humans and wildlife (Tyler et al., 1996; Sumpter 

1998; Hutchinson et al., 2005; Jobling et al., 2006).  Among these endocrine disrupting 

chemicals (EDCs), environmental estrogens have received particular attention over the past 

decades (Scholz et al., 2004; Flick et al., 2013).   Environmental estrogens are chemicals that 

agonistically bind to the estrogen receptor (ER), and can disrupt male sexual development and 

reproductive functions by inducing processes associated with female reproductive functions.  

The primary sources for estrogenic EDCs to the environment are municipal wastewater treatment 

plant effluents, rendering exposure of aquatic organisms including fish a particular concern.  In 

fact, it has been shown by numerous authors that exposure of fish to estrogenic EDCs can result 

in disruption of normal gonad development, feminization of males, and a decrease in 

reproductive success (Sumpter 1998; Jobling and Tyler., 2003; Tyler et al., 2005). 

One estrogenic EDC of particular environmental concern is 17α-Ethinylestradiol (EE2).  

EE2 is a synthetic estrogen and the active ingredient of most contraceptive pills.  Canadian waste 

water treatment plant effluents have been found to have average concentrations of EE2 in the 

low ng/L range, with maximum concentrations as high as 42 ng/L (0.14 nM) (Ternes et al., 

1999).  EE2 has a 10- to 50-fold greater potency than some natural estrogens and has the ability 

to bioconcentrate up to 332-fold in the body of a fish relative to concentrations in the 

surrounding water (Lai et al., 2002).  These attributes make environmentally relevant 

concentrations of EE2 a potential threat to populations of fishes.  Exposure to EE2 has been 

shown to lead to feminization of male fish including the induction of vitellogenin (VTG), 

reduced male secondary characteristics, intersex, reduced fertilization success, and altered sex 
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ratios (Lange et al., 2001; Parrott and Blunt, 2005; Kidd et al., 2007).  Furthermore, a whole lake 

study conducted in the Experimental Lakes Area in Ontario, Canada, demonstrated that treatment 

with an environmentally relevant concentration of 5 ng EE2/L resulted in the collapse in 

populations of resident fathead minnow (Pimephales promelas) (Kidd et al., 2007; Palace et al., 

2009).   

There is a host of information on the effects of EE2 and other estrogenic EDCs on 

standard laboratory fish species such as the fathead minnow, Japanese medaka (Oryzias latipes), 

and zebrafish (Danio rerio).  However, little is known regarding the sensitivity of the large 

number of freshwater fish species native to water bodies in North America, Europe, or other 

parts of the world that could be at risk to exposure with estrogenic EDCs.  With risk assessments 

for fresh water fish species currently being based on extrapolation from responses to EDCs of 

standard laboratory fish species, it is uncertain whether the majority of wild fish species are 

adequately protected (Jobling and Tyler, 2003).  Therefore, there is a need to assess the 

sensitivities of species native to the environments in question to enable more objective risk 

assessments of estrogenic EDCs.  

There are several challenges in assessing the effects of contaminants to native species of 

concern.  These challenges include difficulties in maintaining wild fish species under laboratory 

conditions, ethical concerns when working for example with endangered species, and the high 

investments in time, labour and cost associated with in vivo testing.  In an effort to address some 

of these concerns, in vitro approaches are increasingly used as tools to assess toxicity of 

chemicals.  In vitro tests have a number of advantages over in vivo approaches because they 

often have greater specificity in their response, have higher throughput, and have a lesser cost 

(Gray et al., 1997).  They also address current animal welfare concerns associated with toxicity 
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testing approaches that use large numbers of live animals.  In vitro tests can be based on the use 

of stable cell lines or primary cell cultures and tissue explants.  While primary tissue explants 

can show some greater variability in their responses relative to immortalized and/or stably 

transfected cell lines, they have the advantage that they can maintain some of their natural 

functions outside their natural environment (e.g. the body of the fish) because all necessary 

machinery required for cell- or tissue-specific functioning is present (Gray et al., 1997; Powlin et 

al., 1998).  An earlier study by our group demonstrated that in a gonadal explant assay, species-

specific tissue functions were well preserved, which enabled distinguishing sensitivities to 

disruptors of steroidogenesis among three native fish species (Beitel et al., 2014).  It is 

hypothesized that similar species-specific properties occur for other tissues, suggesting that a test 

system using liver explants could be used to identify differences in sensitivity to estrogenic 

EDCs among different native fish species.  

One of the most utilized and sensitive biomarker of exposure to environmental estrogens 

is the induction of VTG in male fish.  VTG is an egg-yolk precursor protein synthesized in the 

liver of female fishes that is under strict control of estrogens.  The VTG gene resides in the male 

genome as well.  However, very little, if any, VTG is produced in male fishes under natural 

conditions, as circulating estrogen levels are too low to trigger significant expression of the VTG 

gene (Sumpter and Jobling, 1995).  It is, however, inducible upon exposure to low concentrations 

of estrogens, making it a powerful biomarker of exposure to these chemicals.  Studies have 

revealed correlations between increased VTG and decreased egg production, effects on ovarian 

structure, and inhibition and disruption of testicular growth and development, respectively 

(Panter et al., 1998; Van den Belt et al., 2004).  However, uncertainty remains regarding the 

capacity of up-regulation of VTG in vitro to predict endocrine-mediated responses in vivo 
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(Segner et al., 2002).  Induction of transcript and protein abundance of VTG have been endpoints 

of interest for exposure studies with both in vivo and in vitro systems (Van den Belt et al., 2004; 

Gerbron et al., 2010; Nagler et al., 2010; Woods and Kumar., 2011).  In fact, transcript 

abundance of VTG has been shown to be as effective in detecting exposure to estrogens as the 

abundance of VTG protein (Thomas-Jones et al., 2003; Hutchinson et al., 2006; Flick et al., 

2014), making transcript abundance an ideal endpoint for short term in vitro assays, as up-

regulation can be observed within a few hours of exposure compared to a few days that are 

required when quantifying protein abundance (Flouriot et al., 1996; Hutchinson et al., 2006).  In 

addition to VTG being the most commonly used biomarker of exposure to estrogenic EDCs, it 

has also been used to quantify the potency of various environmental estrogens (Thomas-Jones et 

al., 2003; Woods and Kumar, 2011).  Investigation into the expression of the ER has been of 

interest regarding exposure to estrogenic EDCs (Skillman et al., 2006; Humble et al., 2014).  

Along with using the ER as a biomarker of estrogen exposure, there has been recent interest in 

the role of the ER subtypes regulating VTG and other estrogenic responses (Humble et al., 2014; 

Yost et al., 2014).   

The main objective of this study was to develop an in vitro approach to enable the 

assessment of species-specific sensitivity of four native species of fish to estrogenic EDCs using 

the model compound EE2.  The species used in this study were northern pike (Esox lucius), 

walleye (Sander vitreus), white sucker (Catostomus commersoni), and white sturgeon (Acipenser 

transmontanus).  These species were selected based on their presence in northern ecosystems, 

risk of exposure to estrogenic EDCs, economic, cultural and ecological relevance, along with the 

limited knowledge about the sensitivity of these fishes to EDCs.  Specifically, liver explants 

from northern pike, walleye, white sucker, and white sturgeon were excised and exposed to the 
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synthetic estrogen, EE2, with transcript abundance of VTG, ER alpha (ERα) and ER beta (ERβ) 

used as endpoints to identify potential differences in sensitivity among liver explants of these 

species.   

3.3 Materials and methods 

3.3.1 Chemicals 

Leibovitz L-15media, and antibiotic antimicotic solution were purchased from Sigma 

Aldrich (Oakville, ON, Canada).  Fetal Bovine Serum (FBS) was purchased from Life 

Technologies (Burlington, ON, Canada). 17-α Ethinylestradiol was purchased from Sigma 

Aldrich and serial dilutions were prepared in dimethyl sulfoxide (DMSO) from a stock 

concentration.  

3.3.2  Field sampling and tissue collection 

Sexually mature male northern pike (E. lucius), walleye (S. vitreus), and white sucker (C. 

commersoni) ranging from 0.8-1.2 kg, 0.8-2.4 kg, and 0.8-1.2 kg, respectively, were sampled 

with gill nets (Lakefish Net and Twine Ltd., Edmonton, AB, Canada) from a reference location 

in Lake Diefenbaker, SK, Canada.  Sample collection occurred between July 2013 and 

September 2013.  Juvenile, non-sexually differentiated white sturgeon (A. transmontanus) 

ranging from 2.9-4.7 kg were randomly selected from an in-house stock reared from eggs 

acquired from the Kootenay Trout Hatchery (Fort Steele, BC, Canada).  Mass (  0.1 kg) and 

fork length ( 0.5 cm) were measured and recorded for each individual.  Livers were excised and 

weighed ( 1.0 g) to quantify hepatosomatic indices (HSIs).  Liver tissue was sliced into pieces 

and placed in ice cold supplemented Leibovitz L-15 media (13.8 g of L-15 powder per litre 
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medium, 420 mg NaHCO3/L, 10% FBS, 1% antibiotic-antimicotic solution  [100 units penicillin, 

0.1 mg streptomycin and 0.25 ug amphotericin B per mL], pH 7.6).  With exception of white 

sturgeon that were raised in house, tissues from wild-caught species were extracted and 

transferred to medium in the field and then immediately transported on ice to the Toxicology 

Centre, University of Saskatchewan (Saskatoon, SK, Canada).  The time between sampling of 

fish and initiation of the experiment did not exceed 5 h.   

3.3.3 Exposure protocol 

Liver tissue was sliced into 1mm
3
 sections and rinsed several times with supplemented L-

15 media.  Two to three pieces of liver were added to each well of a 24-well plate containing L-

15 medium.  EE2 was added to the sample wells to a final concentration of 0, 3, 10, 30, 100, 300, 

1000, 3000 ng/L in 0.1% DMSO.  Each concentration was dosed for each of northern pike (n = 

4), walleye (n = 5), white sucker (n = 4) and white sturgeon (n = 7), respectively.  Samples were 

incubated at 15 °C for 24 h on a platform rocker.  Upon termination of the exposure, tissue was 

removed from each well and placed into microcentrifuge tubes and stored frozen at -80 °C for 

subsequent analysis of transcript abundance.   

3.3.4 Transcriptome assembly and primer design 

 Little information about gene sequences, including VTG and ER, was available for the 

four fish species investigated in this study.  Since the development of degenerate primers for 

these species was unsuccessful, a de novo approach to sequencing was utilized similar to that 

described by Wiseman et al. (2013) and Tompsett et al. (2013).  Briefly, a complementary DNA 

(cDNA) library was created for each species by use of a TruSeq RNA Sample Prep Kit 

(Illumina, San Diego, CA, USA), according to the protocol provided by the manufacturer.  Each 
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cDNA library began with 4 µg of pooled mRNA from liver tissue of northern pike, walleye or 

white sucker, where tissues from 2, 3, and 2 individuals of each species, respectively, were 

pooled.  The cDNA library for northern pike, walleye and white sucker was sequenced using an 

Illumina MiSeq sequencer (Illumina, San Diego, CA, USA) at the Toxicology Centre, University 

of Saskatchewan.  Transcriptomes were de novo assembled using CLC Genomics Workbench 

5.0 (CLC Bio, Aarhus, Denmark). The transcriptome used to acquire receptor primers for white 

sturgeon was generated by paired-end sequencing by use of the Illumina HiSeq 2000 platform 

(Illumina) according to methods described in Doering et al. ( 2014).  Contigs of each of the four 

species were identified using Blast2Go 2.5.0 software (Conesa et al., 2005), and primers were 

designed for the desired genes and receptors using the obtained sequences (see Appendix, Table 

C3.S1; Fig. C2S1-C2S11).  Primers for β-actin of white sturgeon have been published previously 

(Doering et al, 2012).  Primers for VTG of white sturgeon were based off of primers of VTG for 

Chinese sturgeon (Acipenser sinensis) (Zhang et al., 2005).  Primers for β-actin of northern pike 

were based off of primers of β-actin for rainbow trout (Wiseman et al, 2011).  All primers were 

synthesized by Invitrogen (Burlington, ON, Canada) and validated using efficiency curves to 

ensure their suitability for real-time polymerase chain reaction (qPCR).  

3.3.5 Quantitative real-time PCR 

Approximately 30 mg of tissue was used to extract total RNA by use of the RNeasy Lipid 

Tissue Mini Kit (Qiagen, Mississauga, ON, Canada), according to the protocol provided by the 

manufacturer.  Concentrations of RNA were determined by use of a NanoDrop ND-1000 

Spectrophotometer (Nanodrop Technologies, Welmington, DE, USA).  Samples of RNA were 

stored at −80 
◦
C until first-strand cDNA was synthesised by use of the QuantiTect Reverse 
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Transcription Kit (Qiagen) with 1 µg of total RNA according to the protocol recommended by 

the manufacturer.  Samples of cDNA were stored at −20 
◦
C until analyzed.   

Transcript abundances of VTG, ERα and ERβ were quantified by qPCR.  qPCR was performed 

in 96-well plates by use of an ABI 7300 Real-Time PCR System (Applied Biosystems, Foster 

City, CA, USA).  A 50 μL master mix consisting of  25 μL of 2x QuantiFast SYBR Green 

Master Mix (Qiagen), 2.5 μL of gene-specific primers at a concentration of 10 pmol, 2.5 μL of 

cDNA, and 20 μL of molecular grade water was prepared for each sample of cDNA and primer 

combination.  All reactions were performed in duplicate with 20 µL per well.  The thermal cycle 

profile was the same as detailed in Doering et al. (2014). Abundances of transcripts were 

quantified by normalizing to β-actin according to the method of Simon (2003).  Nucleotide 

sequences of primers and efficiency of each qPCR assay (determined by construction of standard 

curves of serially diluted cDNA) are presented in Appendix, Table C3.S1.  Walleye ERα and 

ERβ primers that resulted in a single product could not be successfully designed. 

3.4 Statistical analysis  

All statistical analyses were performed with SPSS version 20.0 (SPSS, Chicago, IL, 

USA) and data were expressed as mean   standard error of the mean (S.E.M).  Data were 

analyzed by one-sample Kolmogorov-Smirnov test for normality, and by Levene’s test for 

homogeneity of variance.  Parametric data was analyzed by analysis of variance (ANOVA), 

followed by a 2-tailed Dunnett’s test.  Non-parametric data were analyzed by Kruskal Wallis test 

followed by Mann Whitney-U test with Bonferroni adjustment to correct for ties.  A probability 

of P   0.05 was considered statistically significant.   
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3.5 Results 

3.5.1 Assay performance and validation 

Hepatocyte isolation was attempted for all species, however, was unsuccessful for white 

sucker and white sturgeon.  Since exposure of liver explants has been shown to have similar 

sensitivity and response to estrogenic EDCs as primary hepatocytes (Gerbron et al., 2010), liver 

explants were chosen to maintain the same exposure procedure among all species tested to 

compare relative sensitivities.  Concentration related induction of transcript abundance of VTG 

in EE2 exposed liver explants indicated the assay was functional in its ability to respond to 

exposure to EE2 (Fig. 3.1).  β-actin did not change upon exposure of EE2, confirming it was a 

valid housekeeping gene for these species.  

3.5.2 Basal expression of VTG and ERs 

Transcripts of VTG, ERα and ERβ were amplified from liver explants exposed to the 

solvent control (Fig. 3.2).  Abundance of transcripts of VTG was 96-, 192- and 235-fold greater 

in walleye males relative to northern pike, white sucker and white sturgeon, respectively (Fig. 

3.2).  There were no significant differences in basal transcript abundances of ERα among the 

species tested (Fig. 3.2).  Abundance of transcripts of basal ERβ was 17- and 21-fold greater in 

white sucker and white sturgeon relative to northern pike, respectively (Fig. 3.2).   

3.5.3  Effects of EE2 on expression of VTG and ERs 

Exposure of liver explants to EE2 resulted in a significant and concentration-dependent 

up-regulation of transcript abundance of VTG in all species tested (Fig. 3.1).  The lowest 

observable effect concentrations (LOECs) of liver explants exposed to EE2 within this study 
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were 300 ng/L (1.0 nM), 1000ng/L (3.4 nM), 1000 ng/L (3.4 nM), and 3000 ng/L (10 nM) for 

walleye, northern pike, white sturgeon, and white sucker, respectively (Fig. 3.1; Table 3.1).  The 

maximum up-regulation of transcript abundance of VTG compared to controls was 

approximately 3.5-, 2.75-, 4.0-, and 15- fold for northern pike, walleye, white sucker, and white 

sturgeon, respectively.  

Exposure to EE2 resulted in a statistically significant induction of transcript abundance of 

ERα in male northern pike liver explants, while no change was observed in liver explants of male 

white sucker or juvenile white sturgeon (Fig. 3.3).  The LOEC of male northern pike liver 

explants exposed to EE2 was 1000 ng/L (3.4 nM) (Fig. 3.3).  Exposure of EE2 resulted in no 

statistical difference in transcript abundance of ERβ compared to control in liver explants of 

male northern pike, male white sucker, or juvenile white sturgeon (Fig. 4). Walleye ERα and 

ERβ primers could not be successfully designed.   
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Fig. 3.1. Abundances of transcripts of VTG in liver explants of northern pike (n = 4 individuals), 

walleye (n = 5 individuals), white sucker (n = 4 individuals), and white sturgeon (n =7 

individuals), following exposure to DMSO or serial concentrations of EE2. Data are reported as 

the mean   S.E.M. * statistically different (p   0.05) from solvent controls. 



65 

 

 

 

 

 

 

Fig. 3.2. Basal expression of VTG, ERα and ERβ in liver explants of northern pike (n = 4 

individuals), white sucker (n = 4 individuals), white sturgeon (n = 4-7 individuals), and walleye 

(n = 5 individuals) following exposure to DMSO. Data are reported as the mean   S.E.M. 

Different letters indicate significant difference among species within VTG, ERα, or ERβ.  

Walleye data is not included for ERs as design of ERα and ERβ primers was unsuccessful. 
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Table 3.1. Lowest observable effect concentration (LOEC) of VTG induction from male fishes 

exposed to estrogenic EDCs.  All concentrations are presented as nM, with the exposure 

compound. '*' indicates LOEC values that were the lowest concentration tested.    

In vitro tissue explants 

Species LOEC (compound) Endpoint Reference 

Rainbow Trout 

(Oncorhynchus mykiss) 

0.1 (E2) protein Shilling and Williams, 2000 

1.0 (E2) mRNA Schmieder et al., 2004 

Roach  

(Rutilus rutilus) 

1.0 (E2) protein Gerbron et al., 2010 

Walleye 

( Sander vitreus) 

1.0 (EE2) mRNA This Study 

White Sturgeon          

(Acipenser transmontanus) 

3.4 (EE2) mRNA This Study 

Northern Pike 

 (Esox lucius) 

3.4 (EE2) mRNA This Study 

White Sucker  

(Catostomus commersoni) 

10 (EE2) mRNA This Study 

Atlantic Cod 

(Gadus morhua) 

100 (EE2) mRNA Eide et al., 2014a 

Three-Spined Stickleback  

(Gasterosteus aculeatus) 

10,000 (E2) protein Bjorkblom et al., 2007 

In vitro hepatocytes 

Species LOEC (compound)  Reference 

Atlantic Salmon 

( Salmo salar) 

0.001 (E2) * protein Tollefsen et al., 2003 

1000 (EE2) mRNA Braathen et al., 2009 

Rainbow Trout 

(Oncorhynchus mykiss) 

0.01 (E2) protein Jobling and Sumpter, 1993 

0.1 (E2) protein Tollefsen et al., 2008 

1.0 (E2) mRNA Flouriot et al., 1996 

1.0 (E2) mRNA Islinger et al., 1999 

10 (EE2) * mRNA Finne et al., 2007 

10 (E2) protein Marlatt et al., 2006 

Carp  

( Cyprinus carpio) 

2.0 (E2) protein Smeets et al., 1999 

10 (E2) * protein Bickley et al., 2009 

100 (EE2) protein Rankouhi et al., 2004 

Goldfish 

( Carassius auratus) 

10 (E2) * mRNA Nelson and Habibi, 2010 

Brown Trout 

( Salmo trutta) 

50 (E2) protein Christianson-Heiska and 

Isomaa, 2008 

Zebrafish 

( Danio rerio) 

100 (EE2) * mRNA Eide et al., 2014b 

Tilapia 

( Oreochromis niloticus) 

100 (E2) * protein Riley et al., 2004 

180 (E2) protein Liu et al., 2007 

Three-Spined Stickleback 

(Gasterosteus aculeatus) 

200 (EE2) protein Bjorkblom et al., 2007 

Bream  

(Abramis brama) 

1000 (EE2) protein Rankouhi et al., 2004 
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In vivo 

Species LOEC (compound)  Reference 

Fathead Minnow 

(Pimephales promelas) 

0.002 (EE2) protein Flick et al., 2014 

0.010 (EE2) mRNA Lange et al., 2012 

Rainbow Trout 

(Oncorhynchus mykiss) 

0.005 (EE2) * mRNA Lange et al., 2012 

0.017 (EE2) mRNA Veldhoen et al., 2013 

Roach 

(Rutilus rutilus) 

0.010 (EE2) mRNA Lange et al., 2012 

Atlantic Salmon 0.017 (EE2) protein Mortensen and Arukwe, 2007 

 0.169 (EE2) mRNA Mortensen and Arukwe, 2007 

Zebrafish 

(Danio rerio) 

0.031 (EE2) mRNA Lange et al., 2012 

Medaka 

(Oryzias latipes) 

0.031 (EE2) mRNA Lange et al., 2012 

0.169 (EE2) mRNA Zhang et al., 2008 

0.337 (E2) mRNA Yamaguchi et al., 2005 

Three-Spined Stickleback 

(Gasterosteus aculeatus) 

0.032 (EE2) mRNA Lange et al., 2012 

Sand Goby  

(Pomatoschistus minutus) 

0.037 (EE2) mRNA Humble et al., 2014 

Killifish  

(Fundulus heteroclitus) 

0.236 (EE2) * mRNA Hogan et al., 2010 
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Fig. 3.3. Abundances of transcripts of ERα in liver explants of northern pike (n = 4 individuals), 

white sucker (n = 4 individuals), and white sturgeon (n = 4 individuals), following exposure to 

DMSO or EE2. Data are reported as the mean   S.E.M. * statistically different (p   0.05) from 

solvent controls.  Walleye data is not included as design of ERα primers was unsuccessful. 
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Fig. 3.4. Abundances of transcripts of ERβ in liver explants of northern pike (n = 4 individuals), 

white sucker (n = 4 individuals), and white sturgeon (n = 4 individuals), following exposure to 

DMSO or EE2. Data are reported as the mean   S.E.M. * statistically different (p   0.05) from 

solvent controls.  Walleye data is not included as design of ERβ primers was unsuccessful. 

 



70 

 

3.6 Discussion 

This study successfully established an in vitro assay enabling comparison of relative 

responses to the exposure with estrogens among different fish species native to North America, 

with the potential to predict species sensitivity in vivo.  The assay responded in a manner 

previously reported in other in vitro liver explant and hepatocyte assays, as well as in vivo assays 

through up-regulation of transcript abundance of VTG in a concentration dependent manner 

when exposed to EE2 (Braathen et al., 2009; Veldhoen et al., 2013; Eide et al., 2014a, 2014b; 

Humble et al., 2014).  While VTG was a sensitive and clear marker for exposure to estrogenic 

EDCs, ERα and ERβ were not good indicators for EE2 exposure in these species.  

3.6.1 Transcript abundance of VTG and ERs in the presence of EE2 

Liver explants of four North American fish species were exposed to increasing 

concentrations of EE2 to identify whether changes in transcript abundance profiles could be used 

to identify their sensitivity to the exposure with estrogenic EDCs.  Effects observed were in 

accordance with previous reports of significant induction of transcript abundance of VTG upon 

exposure to estrogenic EDCs (Schmieder et al., 2004; Braathen et al., 2009; Nelson and Habibi, 

2010; Veldhoen et al., 2013; Eide et al., 2014a, 2014b).  When comparing LOECs obtained for 

walleye liver explants to those of other studies, responses obtained within this study were 

comparable to results obtained with liver explants of rainbow trout (Oncorhynchus mykiss) and 

roach (Rutilus rutilus) exposed to E2 (17-β estradiol), which were among the most sensitive 

species tested using liver explants (Table 3.1).  Northern pike, white sturgeon and white sucker 

liver explants had LOEC values between 3- to 100-times greater than rainbow trout, roach and 
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walleye, but they showed a greater sensitivity to estrogenic EDCs than Atlantic cod (Gadus 

morhua) and three-spined stickleback (Gasterosteus aculeatus)(Table 3.1). 

The up-regulation of northern pike liver ERα transcript upon exposure to EE2 was 

consistent with other teleost species exposed to estrogenic EDCs in vitro (Flouriot et al., 1996; 

Grans et al., 2010; Nelson and Habibi, 2010) and in vivo (Menuet et al., 2004; Skillman et al., 

2006; Zhang et al., 2008; Boyce-Derricott et al., 2009; Hogan et al., 2010; Humble et al., 2014).  

In contrast, transcript abundance of liver ERα in Atlantic salmon (Salmo salar) exposed to 

estrogenic EDCs decreased (not statistically) in comparison to control when exposed in vitro 

(Braathen et al., 2009) and statistically decreased in comparison to control when exposed in vivo 

(Mortensen and Arukwe, 2007).  However, the reasons for these differences in responses are 

unclear. The LOEC of male northern pike liver explants exposed to EE2 was 1000 ng/L (3.4 nM) 

(Fig. 3.3).  Species from greatest to least sensitivity for in vitro exposures to estrogenic EDCs 

were rainbow trout (Flouriot et al., 1996), northern pike (this study) and goldfish (Carassius 

auratus) (Nelson and Habibi, 2010), with LOECs of 1.0 nM E2, 3.4 nM EE2 and 100 nM E2, 

respectively.  It should be noted that the lowest dose studied for goldfish showed significant 

results.  Therefore, this species is likely to have a greater sensitivity to E2 than what was 

reported.  The lack of response of ERα of white sucker and white sturgeon might be due to 

concentrations tested not being high enough to induce a response, as previous studies identifying 

an induction of ERα in teleosts upon exposure to estrogenic EDCs have used concentrations 

beyond 100-fold greater than the maximum concentrations used in this study.   Future research 

involving an ERα antagonist in association with an estrogen exposure could give insight into the 

role of ERα in the estrogenic response.  
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Exposure of EE2 resulted in no statistical difference in transcript abundance of ERβ 

compared to control in liver explants of male northern pike, male white sucker, or juvenile white 

sturgeon (Fig. 3.4).  These results are consistent with results obtained for numerous other species 

exposed to estrogenic EDCs in vitro (Grans et al., 2010; Nelson and Habibi, 2010) and in vivo 

(Sabo-Attwood et al., 2007; Zhang et al., 2008; Boyce-Derricotte et al., 2009).  In contrast, 

transcript abundance of ERβ in the liver of some species, including Atlantic salmon, zebrafish 

and Japanese medaka has been observed to significantly decrease relative to control when 

exposed to estrogenic EDCs in vivo (Mortensen and Arukwe, 2007; Menuet et al., 2004; Yost et 

al., 2014). However, there is some discrepancy with Atlantic salmon as in one study the in vitro 

exposure of hepatocytes to EE2 resulted in an increase in transcript abundance of ERβ relative to 

control (Braathen et al., 2009).  It should also be noted that the LOEC of EE2 to cause a 

significant increase in the transcript abundance of ERβ in Atlantic salmon hepatocytes was 100-

fold greater than the maximum concentration used in this study.  Recently, there has been 

increased attention into the role of ERβ in the estrogenic response of exposed male fishes 

(Nelson and Habibi, 2010; Yost et al., 2014).  Even with the abundance of ERβ having not 

changed upon exposure of E2 to hepatocytes of goldfish, ERβ was believed to be responsible for 

induction of VTG and ERα, with ERβ1 believed to be responsible for the maintenance of basal 

concentrations of ERα (Nelson and Habibi, 2010).  In addition, a study conducted by Griffin et 

al. (2013) concluded ERβ2 was responsible for induction of ERα and VTG when exposed to 

estrogens, while the role of ERβ1 is unknown.   Therefore, the lack of response of ERβ in 

northern pike, white sucker and white sturgeon liver explants exposed to EE2 does not provide 

evidence that ERβ is not involved in the estrogenic response in these species.  More research 
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with these species would be needed to identify the specific role of ERβ in the estrogenic response 

of these species.  

3.6.2 Differences of species sensitivity 

The in vitro sensitivities of the four species tested in this study rank among the fish 

species with the greatest sensitivity to exposure to environmental estrogens when compared to 

other in vitro studies (Table 3.1). Numerous reasons have been hypothesized to help explain 

differences in sensitivity among species exposed to EE2, including differences in chemical 

uptake rates, distribution profiles, abundances of nuclear receptor co-activators, and differences 

in receptor specificity and abundance (Blewett et al., 2014; Yost et al., 2014).  As indicated 

above, abundance of transcripts of VTG was significantly greater in walleye males relative to 

other species tested (Fig. 3.2).  Walleye males had the greatest basal transcript abundance of 

VTG and the least magnitude of response (3-fold), and juvenile white sturgeon, which had the 

least basal transcript abundance of VTG had the greatest magnitude of response (15-fold) in the 

induction of VTG in response to EE2.  Along with walleye males having the greatest basal 

transcript abundance of VTG, they were also found to have the greatest sensitivity to VTG.  

However, it is uncertain whether basal expression of VTG has implications in context with the 

sensitivity or the maximum induction potential of the tissue investigated.  It has been suggested, 

particularly with Atlantic salmon, that the greater basal expression of liver ER might explain the 

high level of sensitivity to estrogenic EDCs (Tollefsen et al., 2003).  Within the species tested, 

white sucker and white sturgeon had significantly greater basal expression of ERβ than northern 

pike (Fig. 3.2); however, no trend regarding the basal expression of the ER and sensitivity was 

observed.  Since we were unable to design a primer with a single product for walleye ERα or 
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ERβ, the basal levels of the ER in the most sensitive species tested in this study cannot be 

compared among the other species tested.  

3.6.3 Comparison of in vitro responses with in vivo studies 

With increasing ethical and economic concerns regarding the use of whole bodied 

animals in toxicity studies, the use of in vitro approaches is becoming increasingly attractive and 

relevant in support of chemical risk assessment.  In vitro and in vivo approaches can use similar 

endpoints when identifying an exposure or potential indicator of an effect to estrogenic EDCs, 

including transcript and protein abundance of VTG.  Since the transcript abundance profiles of 

VTG, ERα and ERβ among the species tested within this study were similar to other species 

tested using both in vitro and in vivo approaches, it is suggested that responses obtained with in 

vitro assays are predictive of in vivo effects with regard to these endpoints.   

Differences between in vitro and in vivo sensitivities could be explained by the lack of 

toxicokinetic processes, including chemical uptake rates, for in vitro assays compared to in vivo 

assays, which can have a significant influence on species specific sensitivity.  When comparing 

the LOEC values for the induction of VTG between in vivo and in vitro approaches, in vivo 

approaches had a greater sensitivity, ranging from 10- to 320 000- fold, with the exception of 

Atlantic salmon, in which in vitro approaches were 6000-fold greater or 6000-fold less sensitive 

depending on the study conducted (Table 3.1).  Despite the greater sensitivity of in vivo 

approaches, there were similarities among the greatest and least sensitive species when 

comparing between in vitro and in vivo studies (Table 3.1).  Rainbow trout (LOEC: 0.01 to 10 

nM; 0.005 to 0.017 nM) and roach (LOEC: 1.0 and 0.01 nM) are among the species with greatest 

sensitivity, with three-spined stickleback (LOEC: 200 to 10,000 nM and 0.032 nM) being among 
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the least sensitive species to the exposure with estrogens in vitro and in vivo, respectively (Table 

3.1).  With walleye (LOEC: 1.0 nM), white sturgeon (LOEC: 3.4 nM), northern pike (LOEC: 3.4 

nM), and white sucker (LOEC: 10 nM) having a similar sensitivity to estrogens as rainbow trout 

and roach in vitro, it is hypothesized that their sensitivity in vivo would rank them among the 

more sensitive fish species as well, and therefore, could be at risk of exposure to estrogenic 

EDCs found in the environment if this greater sensitivity translates to the whole organism.  

Future research should include in vivo exposures with these species investigating VTG induction, 

along with other common markers of exposure to estrogen EDCs.  In addition, this in vitro assay 

should be conducted with fathead minnow, which is a standard test organism for endocrine 

disruption testing.   To date, no in vitro assays have been conducted with the fathead minnow, 

and since this species has the greatest sensitivity to estrogenic EDCs in vivo (Table 3.1), 

comparison to this species would allow anchoring the data obtained with other species.   While 

more research is needed to further validate this tissue explant assay for its ability to predict in 

vivo responses in wild fish species, it represents a promising first step in developing an 

alternative model for the prediction of the potential sensitivity of wild fish species to estrogenic 

EDCs.   

3.7 Conclusion 

This study successfully established an in vitro liver explant assay for wild fish species 

found in northern ecosystems to assess the effects of an estrogenic EDC, EE2, on transcript 

abundance of VTG.  The assay responded in a manner previously reported in other in vitro and in 

vivo assays by up-regulation of transcript abundance of VTG in a concentration dependent 

manner when exposed to EE2.  Liver explants of male walleye were found to have the greatest 

sensitivity to EE2, with an LOEC of 300 ng/L (1.0 nM).  The liver explants from the species 
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tested within this study were found to have similar sensitivity to rainbow trout and roach, which 

are among the most sensitive species tested in vitro.   Although tissue slices have been shown to 

be a relatively realistic in vitro model, with comparable response profiles to those previously 

observed in vivo, more research is needed to identify how predictive this in vitro liver explant 

assay is to in vivo effects in wild fish species.  
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CHAPTER 4 

4 GENERAL DISCUSSION   

4.1 Introduction 

There is increasing concern regarding the numerous compounds that enter the aquatic 

environment, and have the potential to affect the endocrine system of fish and other aquatic 

wildlife.  Exposure to these EDCs has lead to a variety of developmental and reproductive effects 

in fish including, but not limited to: disruption of gonad maturation, normal gonad development, 

circulating hormone concentrations, feminization of males, impaired sexual development, and 

reproductive failure (Sumpter 1998; Kime 1998; Cooper and Kavlock, 2001; Hecker et al., 2002; 

Jobling and Tyler, 2004; Tyler et al., 2005; Nadzialek et al., 2011).  Small-bodied laboratory 

species have been, and still are, primarily being used to gather information in support of 

ecological risk assessment of these EDCs, as there are economic and ethical challenges when 

studying wild fish species.  Unfortunately, these laboratory species are often not representative 

of the native species present in environments of concern.  In fact, there is a large gap in 

knowledge related the sensitivity of native fish species to EDCs, and due to this gap in 

knowledge, it is uncertain whether current risk assessment approaches are sufficiently protective 

of these native species of concern.  

The main objective of the research conducted in this thesis was to develop in vitro 

approaches to enable the assessment of species-specific sensitivity of native fish species to 

EDCs.  The first study was designed to investigate the ability of an in vitro gonad explant assay 

to assess the sensitivity of native fish species to EDCs whose mechanism of action is through the 
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disruption of steroidogenesis.  The results of this study illustrated that in vitro gonad explant 

assays represent a useful tool to evaluate disruption of steroidogenesis in wild fish species 

including northern pike, walleye and white sucker.  The explant assay responded in a manner 

expected by inducing or inhibiting sex steroid hormone production (E2 and 11-KT) in a 

concentration dependent manner when exposed to forskolin or prochloraz, respectively.  

Furthermore, this study demonstrated that gonadal maturation stage represents an important 

factor with regard to the capacity of gonad tissue to produce hormones, as well as its 

responsiveness and sensitivity to exposure to disruptors of steroidogenesis.  The second study 

was designed to investigate the ability of an in vitro liver explant assay to assess the sensitivity 

of native fish species to estrogenic EDCs, with EE2 used as the model compound. From this 

study, it was concluded that liver explants of northern pike, walleye, white sucker, and white 

sturgeon responded to EE2 in a similar manner as other fish species tested in vitro and in vivo, 

through the up-regulation of VTG.  It was also concluded that while VTG was a sensitive and 

clear marker for exposure to estrogenic EDCs, ERα and ERβ were not good indicators for EE2 

exposure in these species.  Within both studies, it was illustrated that the native fish species 

explants tested ranked among the species with the greatest sensitivity to the EDC of interest, 

when compared to in vitro studies within the literature.  In fact, in some cases the native fish 

explant assays tested had greater sensitivity to EDCs than laboratory species or other in vitro 

screening methods that are currently used in national and international regulatory EDC screening 

programs. 

4.2 Differences in species sensitivity 

Current environmental risk assessments rely on the use of laboratory species to predict if 

there would be a risk associated with the exposure to an environmental contaminant to cause 
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adverse effects in wild fishes.  It has been discussed within this thesis that in order to enable 

more objective ecological risk assessments there is a need to identify the sensitivity of native fish 

species to environmental contaminants, and to compare these with sensitivities of common 

laboratory model species and other standardized testing tools.  Therefore, the main objective of 

this study was to investigate the sensitivity of fish species of concern in North American 

freshwater systems including northern pike, walleye, white sucker, and white sturgeon to 

different types of EDCs.  Of the species tested, it was found that the species with the greatest 

sensitivity differed depending on the mechanism of action of the EDC.  Female and male white 

sucker and walleye gonad explants were found to have the greatest sensitivity to forskolin and 

prochloraz, respectively, with walleye male liver explants having the greatest sensitivity to EE2.  

Several reasons have been hypothesized to help explain differences in sensitivities among 

species exposed to environmental estrogens, including differences in chemical uptake rates, 

distribution profiles, abundances of nuclear receptor coactivators, and differences in receptor 

specificity and abundance (Blewett et al., 2014; Yost et al., 2014).  Similarly, differences in 

chemical uptake rates, distribution profiles, metabolism, and steroidogenic enzyme abundance 

could explain some differences in sensitivity among species exposed to steroidogenic disruptive 

EDCs.   

One of the objectives of this thesis was to compare the sensitivity of these native fish 

species with previously tested fish species.  Within both gonad and liver explant assays, it was 

determined that the in vitro sensitivities of the species tested were among the fish species with 

the greatest sensitivity to exposure to the corresponding EDC when compared to other in vitro 

studies.  For the gonad explant assay, white sucker was found to have the greatest sensitivity to 

forskolin relative to all other fish species tested.  When comparing species sensitivities to 
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prochloraz, walleye, northern pike and white sucker gonad explants had greater sensitivities than 

all other fish species tested previously and in this study.  It should be noted that amphotericin B, 

which was present in the media as part of the antibiotic-antimicotic solution, has been previously 

shown to be a weak inhibitor of steroidogenesis in mammals (Poff et al., 1988).  Therefore, its 

presence could have resulted in an underestimation of the sensitivity of the gonadal explant assay 

in these species, and which render these species possibly even more sensitive as reported here.  

Future research should identify if the sensitivity of the gonad explant assay could be increased 

without amphotericin B in the media.  In the liver explant assay (Chapter 3), it was determined 

that all four species tested were among those with the greatest sensitivity to EE2 in vitro and in 

vivo, with walleye males having similar sensitivity to rainbow trout and roach.  

When comparing the data generated by this study to the H295R steroidogenesis assay, 

which is currently used as a mandatory screening application to identify endocrine active 

compounds by the US-EPA (Hecker et al., 2007; U.S. EPA. 2011), white sucker, walleye male 

and female, along with northern pike male gonad explants had a greater sensitivity to the 

exposure with forskolin.  Furthermore, gonad explants from walleye females had a greater 

sensitivity in detecting inhibition of steroidogenesis after exposure to prochloraz than the H295R 

assay, with walleye male explants having equal or less sensitivity to prochloraz depending on the 

endpoint used.  Therefore, the H295R assay would likely underestimate in vitro toxicity of 

forskolin and prochloraz to some of the native species.  

  Taken together, current in vitro screening assays used for regulatory purposes might not 

be protective of these native fish species.  It was thoroughly illustrated that gonad tissue explants 

from some of the species tested within this study had a greater sensitivity than the H295R 

Steroidogenesis Assay at detecting disruptors of steroidogenesis.  However, the H295R assay is 
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only one assay used in risk assessment; laboratory fish species are also used.  It was 

demonstrated that fathead minnow gonad explants were less sensitive to prochloraz than gonad 

explants of the native fish species tested in this study.  Unfortunately, forskolin was not tested on 

fathead minnow gonad explants, or any other laboratory fish species commonly used in risk 

assessment.  Therefore, more research is needed to identify how sensitive in vitro gonad explants 

of laboratory fish species are to inducers of steroidogenesis.   

4.3 Relating in vitro to in vivo 

In vitro approaches are becoming increasingly attractive and relevant in support of 

chemical risk assessment to address the numerous ethical and economic concerns regarding the 

use of live animals.  However, additional concerns have been raised over how predictive in vitro 

tests are of in vivo effects, along with differences between the sensitivity of in vitro and in vivo 

tests.  It is often difficult to compare in vitro and in vivo studies because the organ system being 

tested is isolated and tested independently of other tissues that interact under in vivo conditions.  

Although no in vivo testing was conducted as it was beyond the scope of the presented research, 

when consulting studies within the literature, there is evidence of a correlation between 

responses observed with in vitro and in vivo systems.  Within the gonad explant study (Chapter 

2), there was a correlation between basal hormone production and plasma hormone 

concentrations, which provides evidence that gonad tissues were undergoing steroidogenesis in 

an in vitro setting that is reflective of reproductive seasonality in whole fish.  Within the liver 

explant study (Chapter 3), transcript abundance profiles of VTG, ERα and ERβ among the 

species tested within this study were similar to other species tested using both in vitro and in vivo 

approaches.  Therefore, it is suggested that responses obtained with these in vitro assays can be 
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predictive of in vivo effects with regard to the specific endpoints tested in this study, namely 

alterations in hormone production and transcript profiles of VTG.   

 Similar endpoints can be used for in vitro and in vivo approaches when identifying an 

exposure or potential indicator of an adverse effect to EDCs, allowing comparison between the 

sensitivity of these different approaches.  It was concluded that zebrafish (Kinnberg et al., 2007) 

and fathead minnow (Thorpe et al., 2011) exposed to prochloraz in the FSDT were of similar 

sensitivity, and approximately 10-fold less sensitive, respectively, than alterations in hormone 

production by walleye in vitro gonad explants.   It was also concluded that in vivo approaches 

had 10- to 320 000-fold greater sensitivity of VTG induction upon exposure to environmental 

estrogens compared to in vitro approaches (Table 3.1).  These differences in the sensitivity 

between in vitro and in vivo approaches could in part be explained by in vitro approaches lacking 

various toxicokinetic processes and mechanisms involved in the regulation of steroid hormone 

homeostasis, including feedback loops.  Additional research involving rates of absorption and 

metabolism of potential EDCs in native fishes could give a better prediction of sensitivity in 

vivo, if combined with in vitro toxicity data. 

Despite the greater sensitivity of in vivo approaches with regard to environmental 

estrogen exposure, there were similarities among the greatest and least sensitive species when 

comparing between in vitro and in vivo studies (Table 3.1).  Since the native fish species tested 

within this study were among the species with the greatest sensitivity to environmental estrogens 

in vitro (Chapter 3), it is hypothesized their sensitivity in vivo would rank them among the more 

sensitive fish species.  Taken together, the native fish species tested within these studies rank 

among the species with the greatest sensitivity to both environmental estrogen exposure and 

exposure to disruptors of steroidogenesis, in vitro.  Thus, they could be at increased risk 
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concerning the exposure to these compounds in the environment if this greater sensitivity 

translates to the whole organism.   

4.4 Future research 

There are a number of areas within the studies conducted within this thesis that could be 

expanded to provide further insights into the sensitivity of native fish species to EDCs: 

In the gonad explant assay (Chapter 2), it was identified that maturation stage influenced 

both the sensitivity and capacity of the gonad explants to produce hormones when exposed to 

disruptors of steroidogenesis.  Concentrations of plasma hormones, basal hormone production 

and WPS were used to illustrate changes in maturation stage; however, the use of histology in 

identifying maturation stage would be desirable in future studies as it would give more detailed 

insights into the specific maturation stage at which capacity of hormone production is the 

greatest for a particular species.  In a few cases, data are based on a limited sample size due to 

the constraints naturally associated with the type of field work conducted here.  Future research 

could increase the sample size, especially for time points where fish were unable to be collected 

during this study.  In addition, one could expand the range of doses tested to focus in on the 

LOEC and EC50 values.   

Previous gonad explant assays, including common laboratory models such as the fathead 

minnow have not investigated maturation stage as a factor in the assessment of effects of EDCs 

on steroidogenesis.  Therefore, data presented might not be representative of the maturation stage 

with greatest sensitivity.  Additional research would need to identify if the maturation stage used 

with the fathead minnow gonad explant assay in current risk assessments is representative of the 

most sensitive maturation stage.  Once the maturation stage with greatest sensitivity is identified 
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for the fathead minnow, direct comparisons of the in vitro sensitivity of other species, including 

the species tested within this thesis can be conducted.  Finally, since this gonad explant assay 

responded in a manner predicted when tested with model compounds, future research could use 

other environmentally relevant EDCs to test the capacity and general applicability of this in vitro 

assay.   

Within the liver explant assay (Chapter 3), the native fish species tested were among the species 

with greatest sensitivity to environmental estrogens in vitro (Table 3.1.).  There were similarities 

among the species with the greatest sensitivity in vitro and in vivo.  However, no in vitro data on 

exposure to environmental estrogens exists for the fathead minnow.  In order to anchor this in 

vitro data to the literature, future research should include a study on the sensitivity of fathead 

minnow liver explants to EE2.  This would be valuable information as the fathead minnow was 

found to be the most sensitive species to environmental estrogens in vivo.  

 With current uncertainties regarding the predictive nature of in vitro studies to in vivo 

effects, additional research is needed to investigate how effective these in vitro assays presented 

here are at predicting in vivo sensitivity.  Future research could include in vivo exposures of EE2, 

looking at VTG induction, along with other common biomarkers of estrogenic EDC exposure in 

these native fishes.  Additional research into the differences in absorption and metabolism among 

native species would give insight into how much these influence the differences in in vitro and in 

vivo sensitivity.  Overall, these in vitro tissue explant assays represent a promising step towards 

the development of alternative models for the prediction of the potential sensitivity of wild fish 

species to EDCs.  
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4.5 Conclusion 

This thesis successfully established two in vitro explant assays for wild fish species found 

in northern ecosystems, to assess the effects of various classes of EDCs.  The gonad explant 

assays responded in a manner previously reported for various other in vitro systems exposed to 

forskolin and prochloraz by inducing and inhibiting, respectively, sex steroid hormone 

production (E2 and 11-KT).  Seasonality of reproductive functions represented a critical factor 

that needs to be considered when using an in vitro gonad explant assay to enable objective 

assessment of responses of wild fish species to disruptors of steroidogenesis.  Gonad explants of 

male and female white sucker, and male and female walleye were found to have the greatest 

sensitivity to forskolin and prochloraz, respectively.  Gonad explants from these species were 

found to have greater sensitivity than the H295R Steroidogenesis Assay, which is currently used 

as a screening application to detect potential EDCs.  It is likely the H295R Steroidogenesis 

Assay is not protective of fish of all species or of both sexes, and thus, it could underestimate 

toxicity for some species.  The in vitro liver assay responded in a manner previously reported in 

other in vitro and in vivo assays by up-regulation of transcript abundance of VTG in a 

concentration dependent manner when exposed to EE2.  Liver explants of male walleye were 

found to have the greatest sensitivity to EE2, with an LOEC of 300 ng/L (1.0 nM).  The liver 

explants from the species tested within this study were found to have similar sensitivity to 

rainbow trout and roach, which are among the most sensitive species tested in vitro to date.  

Overall, these in vitro tissue explant assays represent advancement in the development of 

alternative models for the prediction of the potential sensitivity of wild fish species to EDCs.  

The gonadal explant assay could be used in place of the H295R Steroidogenesis Assay to detect 

potential disruptors of steroidogenesis as it was found to have a greater sensitivity along with 
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having greater environmental relevance.   In addition, both in vitro assays could be used as a risk 

assessment tool to identify species with the greatest in vitro sensitivity to EDCs in an 

environment in question.  This would allow not only the identification of native species with a 

potentially greater sensitivity in vivo, but also allow regulators to focus on these species and 

hopefully protect the greatest number of species, with less investment in time, cost and use of 

live animals.  
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Table C2.S1. Number of individuals collected and dosed for each sampling period. 

Species Sex Spawn 8-10 WPS 16-18 WPS 24 WPS 

Northern Pike 
Female 0 2 2

 
0 

Male 1 2 2 0 

Walleye 
Female 2 5 2 0 

Male 2 2 2
 

2 

White Sucker 
Female 2 2 5 2 

Male 2 2 2 2 

 

 

 

 

 

Fig. C2.S1. (A) Plasma E2 concentrations of male northern pike (n = 3, 11, 3 individuals), 

walleye (n = 3, 3, 4, 4 individuals), and white sucker (n = 2, 3, 4, 3 individuals) collected at 

spawn, 8-10 WPS, 16-18 WPS, and 24 WPS. (B) Basal in vitro 11-KT production by gonadal 

explants of male northern pike (n = 3, 4, 3 individuals), walleye (n = 3, 2, 4, 5 individuals) and 

white sucker (n = 3, 3, 4, 2 individuals) at spawn, 8-10, 16-18 and 24 WPS time points. Plasma 

data represented as mean   S.E.M in ng/ml plasma. Basal in vitro hormone production data 

represented mean   S.E.M in ng/ml-g.  Different letters indicate significant difference within 

each species (Tukey’s test; p ≤ 0.05). 
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Table C3.S1. Sequence, annealing temperature, efficiency, and corresponding target gene 

Genbank accession number of northern pike (NP), walleye (WA), white sucker (WSU), and 

white sturgeon (WS) oligonucleotide primers used in quantitative real-time PCR.  

Species Target Gene Accession 

# 

Primer Sequence (5’-3’) Efficiency (%) Annealing 

Temp (C) 

NP Β-actin AF157514 F:  AGAGCTACGAGCTGCCTGAC 

R:  GCAAGACTCCATACCGAGGA 

99 60 

 

NP VTG NA F:  CGTGCAGTGAGAAAAGACCA 

R:  GCCAGTTGTCATCTTCAGCA 

99 60 

 

NP ERα NA F:  ATGTGGTAGATGAGGCGTC 

R:  TGTTAAACTCCGGTGCCTTC 

100 60 

 

NP ERβ NA F:  ACATCTGTCCCGCTACCAAC 

R:  CATTCCACACTTGGTCATGC 

103 60 

 

WA Β-actin NA F:  GTGCCCATCTACGAGGGTTA 

R:  CTCTCAGCTGTGGTGA 

101 60 

 

WA VTG NA F:  TATTTGCCCCTGCAGAAGTC 

R:  CCTTGAACTCCAGCCTCTTG 

99 60 

 

WSU Β-actin NA F:  GTGCCCATCTACGAGGGTTA 

R:  TCTCAGCTGTGGTGGTGAAG 

91 60 

 

WSU VTG NA F:  GGAAGTTGTCATGCTCGGAT 

R:  TGCCCAGAACTTTTAGAGCC 

93 60 

 

WSU ERα NA F:  TGTCTGATGTGGGAGAGCAG 

R:  ACATGCTCTTGGCAACTGTG 

93 60 

 

WSU ERβ  NA F:  CAACTTTGCATGAGCAAGGA 

R:  GTCCCACTCAGTCCGACAAT 

94 60 

 

WS B-actin FJ205611 F: CCGAGCACAATGAAAATCAA 

R: ACATCTGCTGGAAGGTGGAC 

96 60 

WS VTG AJ745099 F: GCACCAGCTCACTCCATTCAA 

R: CCTCCAAAACAAGCTTCTGCC 

102 60 

WS ERα NA F: GCGCCAGATAAAGACCGATCA 

R: ACTCACCAGTTTGGCTGACA 

90 60 

WS ERβ NA F: TACCGTCAGTGAGCAGCAAG 

R:CCGTAGGGTACAGGAGTCCA 

96 60 
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Fig. C3.S1. Contig for northern pike VTG. 

AACCGCAATTTCACCAGGAATCACAAGGTCTCTCAAGCAATCTCCAAGACAAGTGT

CTCGAAAAGCAGGAGCAGTGGCTCTAGCTTCCAGCACATTTACAATGAGGCCAGAT

TCCTTGGCGAGACTCTTGCCCCTGAGGTGGTCATTCTGGTCCGTGCAGTGAGAAAAG

ACCAGAAGCAGGCTGGATACCAGGTGGCTGCTTACTTGGACAAAGCTACTTCCAGA

CTTCAGATCATTCTGGCTGCCATTGCTGAAGATGACAACTGGCAATTATGTGCTGAT

GGTGTTCTGCTCAGCAAACACAAAGTCAATGCCAAGATTGCTTGGGGTGCAGAGTG

CAAGGAATATAAGACCTTCATCACTGCAG 

Fig. C3.S2. Contig for northern pike ERα. 

CATATGTCGGATATGAGAGAGCAGGAGAAGGAGCTGTGCCTGCCGTCTGGACTGCT

GCTGCACCAAGGCTCCCGATTGGCCGATGTGGTAGATGAGGGCGTCAGTGATGTTGT

CCAGCATGTTCTGCACAGCCGGGCGGTTGTGTAGAGACTCCACTACGTTGGAACAGA

AGGAGAAGGCACCGGAGTTTAACAGGATGATGGCTTTGAGACACACAAACTCCTCC

GGCTTTAATCTGAGCGTGCGGAAACGAGAAACAGTGGCCAGGAGCATGTCAAAAAT

CTCACCGAAGCCCTCCACGCAATCCCCTTCACTCCGGTCCAGAATGAGGTCCTGGGC

GAAGATCAGTTTCCCTGGGCAATGGATGGACCTCCAAATGAGTCCGATCATCAGAA

CCTCAAGCCAGGAGCTCTCCAGCAATTGCACCTGGTCATGGAGGGACAGCTCCTGG

AATCCTGGTACTTTCTTGGCCCAGGCAATCATGTGTACAAGCTCCTTGTCGGCCATG

CTGGTAAGCAGAGTCATCACGGTGATCTCTGTGTAGGGCCGGGCCATCTTCTGGCGA

GAACACACGGCTGGAGGCTCTGCACCCTGCAGCTGGAACAACACCTGCTCAGGTGG

CATGGAAACCCTGGGCCTGACTCCTGGTCCTCCAGCACTGAGACTGCTGTTCCTGCT

ACTGTCCTGAGAGGGCGCTGTGCTTTGCTCCAGGACGCTGCTGTCAGCAGTAGGGCC

ATAACGCCGCTTATCCCTCCGGAGAACCCGCCCACCGCGGTCCTTACGCAAGCCTCC

TTTCATCATGCCAACTTCGTAACACTTTCTGAGACGGCATGCCTGGCAGCTCTTCCTG

CGGTTCCGGTCAATGGTACACTGGTTGGTCGCAGGGCACATATAGTCATTGTGACCT 

Fig. C3.S3. Contig for northern pike ERβ. 

AGGGCTGCAAGGCTTTCTTCAAAAGAAGTGTCCAAGGACACAATGACTACATCTGTC

CCGCTACCAACCAGTGCACTATTGACAAGAACCGTCGCAAGAGCTGCCAGGCCTGC

CGCCTCCGCAAATGCTATGAAGTTGGCATGACCAAGTGTGGAATGCGTCGCGA 
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Fig. C3.S4. Contig for walleye β-actin. 

ATCTTCTACCTGTAACACATTCTCTTAAGTCGAAAAAAAACCAAACCTAAGTTGAGC

CATGGATGATGAAATTGCCGCACTGGTGGTTGACAACGGATCTGGTATGTGCAAAG

CCGGATTTGCTGGAGATGATGCTCCCCGTGCTGTCTTCCCATCAATCGTCGGTCGCC

CCAGACATCAGGGTGTGATGGTTGGTATGGGACAGAAGGACAGCTATGTTGGTGAT

GAAGCTCAGAGCAAGAGAGGTATCCTGACCCTGAAGTATCCCATCGAGCACGGTAT

TGTCACCAATTGGGATGATATGGAGAAGATCTGGCATCACACCTTCTACAATGAGCT

GCGTGTTGCACCTGAGGAGCACCCCGTCCTGCTCACAGAGGCCCCCCTGAACCCCAA

GGCCAACAGGGAAAAGATGACACAGATCATGTTCGAGACCTTCAACACCCCTGCCA

TGTACGTTGCCATCCAGGCTGTGCTGTCCCTGTATGCCTCTGGTCGTACCACTGGTAT

CGTGATGGACTCTGGTGATGGTGTCACCCACACTGTGCCCATCTACGAGGGTTACGC

ACTCCCCCATGCCATCCTTCGTCTGGACTTGGCTGGCCGTGACCTGACTGACTACCTC

ATGAAGATCCTGACCGAGAGAGGCTACAGCTTCACCACCACAGCTGAGAGGGAAAT

TGTCCGTGACATCAAGGAGAAGCTCTGCTACGTTGCCCTCGACTTTGAGCAGGAGAT

GGGCACTGCTGCTTCCTCCTCCTCCCTGGAGAAGAGCTATGAGCTGCCTGATGGACA

GGTCATCACCATTGGCAATGAGAGGTTCAGGTGCCCAGAGGCCCTGTTCCAGCCATC

ATTCCTGGGTATGGAGTCTTGCGGTATCCATGAGACAACCTTCAACTCCATCATGAA

GTGTGATGTGGACATCCGTAAGGATCTGTATGCCAACACCGTATTGTCTGGTGGCAC

CACCATGTACCCTGGCATTGCTGATAGGATGCAGAAGGAGATCACATCCCTGGCCCC

TAGCACAATGAAAATCAAGATCATTGCCCCACCTGAGCGTAAATACTCCGTCTGGAT

CGGAGGCTCCATCCTAGCTTCACTGTCCACCTTCCAGCAGATGTGGATTAGCAAGCA

AGAGTACGATGAGTCTGGGCCATCTATTGTCCACCGCAAATGCTTCTAAACGGACTG

TTACCACTTCACGCCGACTCAAACTGCGCAGAGAGGAAAAATTTCAAACGACAACA

TTGGCATGGCTTGTTATTTTTGGCGCTTGACTCAGGATCTAAAAACTGGAACGGTGA

AGGTGACGGCAATGTTTTTGGCAAATAAGCATCCCCGAAGTTCTACAATGCATCTGA

G   

Fig. C3.S5. Contig for walleye VTG. 

ACACGAACGGGACTGACATCGGGAACACCGCTCAGTTGTCTAGTTGGAACAAGGAC

TTAAACGGGAACTATTCTGGATACACATGTTCATACTCCGAGACGAAAACCCGCCAG

AGGGAGTACTTCCAGACCGGTCTCGACCAAATTTTCAGTCGTCGTTCCAAGAGGAGT

CACGACACTGTCTCTTATGGATGGACTACGTCGAGTACCTAAGAGTTTAGATACTCA

TGTCACCGTAGACCGGGCTCCTAAGAAAACGAGGTCGGTGATTTGAGTGGAGTCGT

GACCGAGGAGTTGAAGTCTAAGGGTAGTTCAAACTCATAAGATTACCACACCAACC

TTTCCATAAACGGGGACGTCTTCAGAGGGGATGANNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNAAGTCGAGTTGGATTTCTTCTGGGTNNNNNNNNNACTTGACGT

TCTCCGACCTCAAGTTCCTCACACATCCTGGGTGATATAGTAGTTACTTCTAAGTTTT

CGGTTGGTGTAATAACAGTGGTTTAGATTCCTAGACTCGGTGACGGTCCTCTCTTAG

TACTTCCTTCAGCCGAACCGTATGTGTCTCTTCACACAACTTACGTGGGTCTCCCAGT

TCCCAGACTAACTTCGCCGTTGAATGTTGATGTAGTNNNNNNNNCGACGGTTACCAC

ATGACTAGAGTCTCCGTTGTCAACTCCTTGACATAGTCAAGAGTGGGAAGTTACTCT

AGGTACCACNNNNNNNNNACCTTCGTTTTGTTTGGAACTGAATATAACTTTAACTCT

TCTGGGGGTAACGAGGGTAGGTTAGCCTAATAAACCGGGCACCTAGGGACGTCATA

CTCAAACGTAGACTTTAAGAAGTCTGAGGGTAAGATGAGGACTTCTAGTTACTACGT

GGTCGGGTCTAACACCTCCAGGATTTAGTGAACCAACTTTTGT 
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Fig. C3.S6. Contig for white sucker β-actin. 

ATCTTCTACCTGTAACACATTCTCTTAAGTCGAAAAAAAACCAAACCTAAGTTGAGC

CATGGATGATGAAATTGCCGCACTGGTGGTTGACAACGGATCTGGTATGTGCAAAG

CCGGATTTGCTGGAGATGATGCTCCCCGTGCTGTCTTCCCATCAATCGTCGGTCGCC

CCAGACATCAGGGTGTGATGGTTGGTATGGGACAGAAGGACAGCTATGTTGGTGAT

GAAGCTCAGAGCAAGAGAGGTATCCTGACCCTGAAGTATCCCATCGAGCACGGTAT

TGTCACCAATTGGGATGATATGGAGAAGATCTGGCATCACACCTTCTACAATGAGCT

GCGTGTTGCACCTGAGGAGCACCCCGTCCTGCTCACAGAGGCCCCCCTGAACCCCAA

GGCCAACAGGGAAAAGATGACACAGATCATGTTCGAGACCTTCAACACCCCTGCCA

TGTACGTTGCCATCCAGGCTGTGCTGTCCCTGTATGCCTCTGGTCGTACCACTGGTAT

CGTGATGGACTCTGGTGATGGTGTCACCCACACTGTGCCCATCTACGAGGGTTACGC

ACTCCCCCATGCCATCCTTCGTCTGGACTTGGCTGGCCGTGACCTGACTGACTACCTC

ATGAAGATCCTGACCGAGAGAGGCTACAGCTTCACCACCACAGCTGAGAGGGAAAT

TGTCCGTGACATCAAGGAGAAGCTCTGCTACGTTGCCCTCGACTTTGAGCAGGAGAT

GGGCACTGCTGCTTCCTCCTCCTCCCTGGAGAAGAGCTATGAGCTGCCTGATGGACA

GGTCATCACCATTGGCAATGAGAGGTTCAGGTGCCCAGAGGCCCTGTTCCAGCCATC

ATTCCTGGGTATGGAGTCTTGCGGTATCCATGAGACAACCTTCAACTCCATCATGAA

GTGTGATGTGGACATCCGTAAGGATCTGTATGCCAACACCGTATTGTCTGGTGGCAC

CACCATGTACCCTGGCATTGCTGATAGGATGCAGAAGGAGATCACATCCCTGGCCCC

TAGCACAATGAAAATCAAGATCATTGCCCCACCTGAGCGTAAATACTCCGTCTGGAT

CGGAGGCTCCATCCTAGCTTCACTGTCCACCTTCCAGCAGATGTGGATTAGCAAGCA

AGAGTACGATGAGTCTGGGCCATCTATTGTCCACCGCAAATGCTTCTAAACGGACTG

TTACCACTTCACGCCGACTCAAACTGCGCAGAGAGGAAAAATTTCAAACGACAACA

TTGGCATGGCTTGTTATTTTTGGCGCTTGACT 

 

Fig. C3.S7. Contig for white sucker VTG. 

CACACCTGAATCAATTCAGGCTCTTGTAGTTGCTATGCNNNNNNNNNNNNNTGATTT

GGACACCATCAAGTTGACCGCTNNNNNNNNNNNNNNNNNNNNNNNNNNNNCAATT

CCAGCTCTCCGGGAAGTTGTCATGCTCGGATATGGTTCCATGANNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNTCTCCTCAGGCCCCTCCATGAAATTGCTG

CAGANNNNNNNNNNAAGAATGATATCTATGAAATCACTTTGGCTCTAAAAGTTCTG

GGCAAT 

  



109 

 

Fig. C3.S8. Contig for white sucker ERα. 

TGGGATGGGCTGCATGACTCCGGGGCCTCTGGAGAGACTACTGCTGCTGGCTGTAGG

TGTAGAGGGTAAATTTTTCTCACTTGGTGCCCAGGGTCGCTGCACCTTGCCTGTGGA

GTGGAATCGTTGTGCATCCAGCATCTCCAGCAATAGATCGTACAGTGGTACTCGATT

CTTGCATTTCATTCTGTACAAGTGCTCCATTCCTTTGTTGCTCATGTGTCTGATGTGG

GAGAGCAGCAGCAGAAGTTGCGCCTGGCGTCGGGACTGCAGCTGCACTGAGGCACC

TGATTTACTGATGCAGTAAATGAGGACATCAGTGATGTTGTCCAGCATGCACTGCAC

CATAAAGCTGTCCGACTGGGGCGCCACGGGACTGGAGCAGAATGAAAATGCACCAG

AATTGAGAAGTATGATGGCTTTGAGACACACAAATTCCTCTGACTTGAGTTTAAGAC

TGTGGAATCGAGCCACAGTTGCCAAGAGCATGTCAAAAATCTCAGCCATCCCCTCA

ACGCATTCACCTTCATTCCTATCAAGAATAAGATCCTGA  
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Fig. C3.S9. Contig for white sucker ERβ. 

CAAATTTTGTTTTGTTGAAGCAGGACTGAGAGTTGTATGTAAGCCCTGTTTGGTTCA

GGTTGTCGTTTGTCATTAAGTTCCATTCTGCAAAGTCCAAATCCAGTTCTGGATCCAG

GGAGGTTATTTCCCACAAAAGGGATATTGACAGTCTGTGCCCATGTCCTCTAGGTTC

AGCCTAGCATGCAACGTCTCTTCCACTCACTACTCGGGTTGTGAACTTTGGAGGATC

ACTGGGTCGCTCTCTTTCAGTGCAGGCTGCTGTCTGTATGTGTGGTGGGTTTCGGGG

ATCTGTTGAGTGTCTGGCCGGGTGAAGGTGTCTGTGTGAGCAGGAAGCATGTGGCTG

CTCTGAGATGTGTTCGCGTCCAGCATCTCCAGCAGAAGATCGTACAGAAGCACCAC

GTTTTTTCTCTTCATGCTCGACAGATGCTCAATACCTTTGTTGCTGAGGTGTCGTATA

TGTGACAGCAGCATCAGCAGGTGGGCGAGCCGAATGGATTGCTGCTGTGTGGACAG

CCCGGTTTTGGAAATGGCCCAAACCAGAGCATCAGTCACAGAGTCCAGCAGCCTCA

GAACCTTCCCACGACTCTCCACATCATCAGGGGTCTGTGGTGAGCTTGAACAGTTAT

TGGAGTTTAGAAGGATTACGGCTTTGAGACAGACATATTCCTCTCTTTGCAGCTTCA

GTTCTCTGAATCTGGAGGTGGTAGCCAGCAGCATGTCAAAGATCTCCATGATGCCTT

CAACACAGTTGCCCTCATCCCGGTTGAGTTTGAGGTCTGGTGAGAAGATGAGTTTCC

CGGGATGATCCACAGATCTCCACATTAATCCCAACATAAGAATATCCAGCCAGCAG

CATTCCAACAGATGCACCTGATCTGACAAACTCAGCTCCACAAAACCTGGTATCTTC

TTAGCCCAACTGATCATGAGCACCAACTCCTTGTCAGCGAGGTTGGTTAGGGACATC

ATCATGCTGGCCTCTGTATACGGCTTCTTTGCTGGATCTCGCAGGTAAATCTGAGGA

GGCTCCGCCTCCATTATACGGTTTACCAACTGCTCAGGGGAGAGGTTTAGGCCACAC

TGCTCAGCTTCGCCCCCTGAAGGGAAAAGGTGATGAGGGGGGTTGAGGGGAAATTC

TAGATGATGCTGGGAGTGACATTTGACCCCTATTGCTCCACCAGAGCTGTCTCTGAT

CTGGGGGGTACGCCGATGCCGAGCACCACGGTAACTGCAGCGTTCCCGCCTTACAC

CACACTTCATCATGCCCACTTCATAGCACTTGCGCAGTCGACAGGCCTGGCAGCTCT

TGCGTCTGCTCTTGTCGATAGTGCACTGGTTGGTGGCTGGACAAATGTAGTCATTGT

GTCCTTGAATGCTCCTTTTGAAGAAAGCCTTGCACCCCTCACATGACCAGACACCAT

AGTGATACCCAGAAGCGTAGTCATGACACACAGCACAGAACTGTTTGTCTCCTTTAC

TCACAATCCCTGGCAAAGGATTCAAGCCATCATCAACTTCCAGCTGCTGCCCTAACA

ACTTTGCATGAGCAAGGACAGAACTGCTCTGGTTAAGGCTGATTGTCTTAGCATCTT

CCCATCCGGTGTGTGCGTGAATTTCACTGTAATCCAGTGGATGCGGGCGGTGTAGAG

AGATTGCTGTGTGTGTGGTATGGGGAGGCCAGAAGATTGTCGGACTGAGTGGGACC

AGGCTTTCGGATACAGGAGGATGGGTGTACCCTAGCGCTGTGTAGGACATTGGGCT

GTAGAGTGTTAGGGCCCCGTGTGGTGGTGAGTAATCCTGACTGGCCTCCACATAGGG

AGATGGAATGCAGATGGTATGGTTGTAGAGCGGGGAGGAGTAGACAGAGGAGGAA

AGTTGAGGTGAGTCCCCTCGACTGGCCTTGCCAGAGTCCAGCTCCTGGTGCAGGGTA

GGGGTGGCAGACTCGGGGACTGGCCCAGGGGAGGAGCTCATTCTAGGGATGAGAAC

TCAAGCGAGGTCCTGGCTTAACACACTACAGCATCACAGGCCCAACTGATTGAGAG

GACGTTTGTGCAGTAGCAGGCAGCAGGTGATGTGGAGCTCGATTGTGTGTGTTTGAT

CGGCCGTGCACACGCTGCG 
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Fig. C3.S610. Contig for white sturgeon ERα. 

TCCACCATACCCTCAACACAGCTTCCTTCATTCCTGTCAAAAGACAGATCTGGGGCA

AAAATTAACTTCCCAGGGAATTCCACAGAGCGCCAGATAAGACCGATCATTAGGAC

CTCTAACCAAGAGCATTCCAGCAGCTGTACCTGGTCATGGAGCGACAAATCCACAA

ACCCTGGTATCTTTTTTGCCCATGCTATCATGTGTACCAGTTCCTTGTCAGCCAAACT

GGTGAGTATATTCATCATGGAACTCTCAGTGTAGGGTCTATTTTGGTTCTGTTTTGAG

TATTGTGTTGGCGGTTCCGCTTCTAACAAATGGATGAGGACCTGATCAATCGACAGA

CCCAGTGCGCTGTTCTTCTTCCCATTGTTGATAGGTGTGGGCTCCAGGGTCAGAGTTA

GCCTTCTGTCATTGCCATTGACGTGGCTCTTCTCATCCTGCTCACTTGCTGTGCGCTT

CACTTTCAGCATGTGTCGCCCCCTACGGTCTTTACGCACTCCACCTTTCATCATCCCG

ACTTCATTGCACTTGCGCAGCCTGCATGCCTGGCAGCTCTTTCTCCGGTTCTTGTCGA

TGGTGCACTGGTTTGTAGCTGGGCACATGTAGTCATTGTGTCCTTGGATGCTTCTCTT

AAAGAAGGCCTTGCAGCCTTCACAGGACCAGACTCCATAATGGTAGCCGGAGGCGT

AGTCACTGCACACCGCACAGAACCTCATCTCCTTGCTCAATTTGGACGGGCCGCTGG

ATGGACTGCCTTTCTGCCCCATGTCGGAGAGCTGTTCCCTGACACCCTGATATCTGC

CTTCCATACTTGGCCTGAAAATAGGTTCAGGGGTGGCTTCCCT 

Fig. C3.S11. Contig for white sturgeon ERβ. 

ATGACAGCTTTGTCAAATAAAGAACCGCACTTGCTGCAGCTACAAGATGTTGGACCA

AGCAAAGTGTCAGGAATGACCTGCTCACCGGGAATCAGTTGCCCTGTTTCGTGCCGC

GGGGCGATGCCTGCATTGATGATGGAACGACATGCTGTTTGCATCCCTTCCCCGTAC

AGGGATAGCAACCACGATTACACAGCAGTGGCATTTTATAGTCCTTCGATGCGTGGG

TACAGTGGGCACAGTAATGGCAGCATTCCGGACAGCCCGACAGTAAGGCCGTGTTT

GAGCCCCTCTGCATTCTGGCCTCCACCAAGCCATATTTCATCATTAGCCCTTCAGTGC

CAGCAGATGCATACAGATCCTCCAAGGAGCCCTTGGAACGAGGAGAGATCAAGAAG

AGAGCAAATACCGTCAGTGAGCAGCAAGGAAAGCAACAGAATAAAGGAAAATTCA

GAAGATCCCACTGGACGCTGCTCAGGTTCAAAACAGGCCATGCACTACTGCGCGGT

GTGCAGTGACTTTGCCTCGGGTTATCACTACGGGGTCTGGTCATGTGAGGGGTGCAA

AGCGTTCTTTAAAAGGAGCATCCAAGGGCATAATGATTATATCTGCCCCGCTACAAA

CCAGTGCACCATAGACAAGAACAGAAGGAAAAGCTGCCAAGCCTGCCGACTAAGA

AAGTGCAATGAAGTTGGAATGATGAAATGCGGTACAAGAAGAGAGCGTTCTAATTA

TCGCATTGTACGACACAGGCGTCTTTCTCAAGGCCAAGGGCAGCCCAGTAGTAAAG

CCAGCAAAACCAGTGAAAGTGGCTTACTGCAGACAAGGAGGATTCACTTCAGTTCT

CTGAGCCCTGAAATGCTCATGTCTTCAGTAATAGAGGCTGAACCGCCTGAGATTTAT

TTGATGAGCTATCTCATGAAGCCATTCACTGAGGCCACCATGATGACATCATTAACC

ACCCTTGCAGACAAGGAACTCGTTTACATGGTCAGCTGGGCCAAAAAAATTCCAGG

GTTTGTGGAGCTCAGTGTGTATGACCAGGTATGCCTATTGGAGTGTTGCTGGTTAGA

GGTGCTGATGGTAGGGCTGATGTGGAGATCTATTAATCATCCAGGGAATCTCGTGTT

TGCATCTGACCTTATTTTAAACAGGGACGACGGCAACAGCGTGGAAGGATTACTGG

AGGTTTTCGACATGCTTTTGGCTCTAACTTCAAAGTTTCGAGAGCTGAATCTGCAGC
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GAGAGGAGTATCTCTGCCTCAAGGTCATGGTCCTCCTCAACTCCACTATGTTCCCCG

GTCCCTCAGAGAAGCAAGAAAAAAGTGAAAGTAGAGATAATCTGCTTAAACTTCTG

GATGCAATCACTGATGCTTTAGCCTGGGTTATTTCGAAGAAAGGACTCTCTTTACAG

CAGCAGTCAGCACGCCTGGCTAACCTCCTGATGCTGCTCCCCCACATCAGACATGCA

AGTAACAAAGGTATTGAGCACCTCTACAGCATGAAGTGTAAAAATATAGTGCCTTTG

CGTGAATTGCTGCTGGAGATGCTGCACGCGCACACTCTACACTTCCCCAGAATGCCA

GCCATCACATCATCAGAATACAGCCCAAAGGAACAAACCAAGGAGCCTGTCACCTG

TTCAAAGCCAGAAGTATTTTGA  
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Methods development 

Gonad explant assay 

Sexually mature northern pike, walleye, white sucker and lake whitefish were sampled 

using gill nets from Lake Diefenbaker, Saskatchewan, Canada during September of 2011. Mass 

(  0.1 kg) and fork length (   0.5 cm) were measured and recorded for each individual. Gonad 

tissue was excised and weighted (   1.0 g) and recorded to calculate GSI. Gonad tissues were 

sliced into smaller pieces and immediately transported to the Toxicology Centre, University of 

Saskatchewan in ice cold supplemented Leibovit L-15 media (13.8g of L-15 powder per litre 

medium, 420 mg NaHCO3/L, 1% antibiotic-antimicotic [100 units penicillin, 0.1 mg 

streptomycin and 0.25 µg amphotericin B per mL], pH 7.6) (Sigma Aldrich).  The time between 

sampling of fish and initiation of the exposure did not exceed 5 h.  

Gonad tissue was sliced into 1 mm
3
 pieces and rinsed several times with supplemented L-

15 media. Multiple pieces of gonad, approximately 100 mg total, were placed into each well of a 

24-well culture plate containing 999 µL of supplemented L-15 media with 1 mg cholesterol/L. 

Test chemicals and the solvent control were added to the sample wells to a final concentration of 

0.1% DMSO, 0.1, 1.0, 10.0 µM forskolin, or 0.1, 1.0, 10.0 µM prochloraz. Each concentration 

was dosed in quadruplicate.  Samples were incubated at 15 °C for 12, 24 or 36 h.  Upon 

termination of the exposure, tissue was removed from each well and placed into pre-weighted 

microcentrifuge tubes, weighed and frozen at -80 °C.  Media was placed into microcentrifuge 

tubes and frozen at -80 °C for subsequent analysis of steroid hormones. 

Steroid hormones were quantified using liquid chromatography tandem mass 

spectrometry (LC/MS/MS). Steroid hormones were extracted from the media and plasma using a 

liquid-liquid extraction method in accordance with Chang et al. (2009).  Briefly, 500 µL of 
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sample media and 500 µL nanopure water were combined with an internal standard consisting of 

deuterated 17β-estradiol and testosterone.  This mixture was extracted twice with 2 mL of a 1:1 

Hexane:Ethyl Acetate mixture by vortexing the sample mixture for 1 min, followed by 

centrifugation at 2000 rpm for 3 min.  The supernatant was collected and evaporated to dryness 

under a stream of nitrogen and brought up into 200 µL methanol.  100 µL of this sample was 

placed into a GC vial to quantify testosterone via a developed protocol for testosterone.  The 

remaining 100 µL was dried under a stream of nitrogen, 100 µL of 1 mg/mL dansyl chloride 

(Sigma Aldrich) solution in acetone was added to the dried sample along with 100 µL of 0.1ml 

NaHCO3/Na2NO3 (PH 10.5) buffer. The solution was mixed for 1 min and incubated at 60 °C 

for 5 min. 1 mL of nanopure water was added, and the solution was extracted twice as described 

above. The extracted sample was evaporated to dryness under a stream of nitrogen and brought 

up into 100 µL acetone, transferred to a GC vial and quantified for 17β-estradiol.  

 

Exposure of gonad explants to forskolin and prochloraz resulted in a concentration 

dependent increase and decrease, respectively for northern pike, walleye and white sucker (data 

not shown).  Exposure of lake whitefish gonad explants showed no significant change in 

hormone production compared to control (data not shown).  Among the different time points 

tested, the 24 h incubation time resulted in significant changes in hormone production, with less 

variation compared to the 36 h incubation.  Therefore, 24 h was chosen as the incubation time for 

the future exposures. Due to the minimal response in lake whitefish, along with lake whitefish 

having a different reproductive cycle compared to the other three species tested (lake whitefish 

spawn in the fall), lake whitefish were removed from the study design and were not tested in 

future studies.  Finally, due to the response of the tissues to the three concentrations of each 
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chemical, 0.3 to 10 µM forskolin and 0.03 to 1.0 µM was chosen as the range of concentrations 

to be tested in future studies.   

 

Liver explant assay 

  

Sexually mature northern pike, walleye, and white sucker were sampled using gill nets 

from Lake Diefenbaker, Saskatchewan, Canada during July of 2012. Mass (  0.1 kg) and fork 

length (   0.5 cm) were measured and recorded for each individual. Gonad tissue was excised 

and weighted (   1.0 g) and recorded to calculate GSI. Gonad tissues were sliced into smaller 

pieces and immediately transported to the Toxicology Centre, University of Saskatchewan in ice 

cold supplemented Leibovit L-15 media (13.8g of L-15 powder per litre medium, 420 mg 

NaHCO3/L, 1% antibiotic-antimicotic [100 units penicillin, 0.1 mg streptomycin and 0.25 µg 

amphotericin B per mL], pH 7.6) (Sigma Aldrich).  The time between sampling of fish and 

initiation of the exposure did not exceed 5 h.  

Liver tissue was sliced into 1mm
3
 sections and rinsed several times with supplemented L-

15 media.  Two to three pieces of liver were added to each well of a 24-well plate containing L-

15 medium.  EE2 was added to the sample wells to a final concentration of 0, 3, 10, 30, 100, 300, 

1000, 3000 ng/L in 0.1% DMSO.  Each concentration was dosed in triplicate for each of 

northern pike, walleye and white sucker.  Samples were incubated at 15 °C for 24 or 48 h on a 

platform rocker.  Upon termination of the exposure, tissue was removed from each well and 

placed into microcentrifuge tubes and stored frozen at -80 °C for subsequent analysis of 

transcript abundance. The same procedure was used to isolate total RNA, make cDNA and 

quantify transcript abundance VTG, ERα and ERβ of interest as described in section 3.35. 
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Exposure of liver explants to EE2 resulted in a concentration related increase in transcript 

abundance of VTG for the 24 and 48h incubation times (data not shown). The 48 h incubation 

time resulted in a greater increase in transcript abundance of VTG compared to the 24 h time 

point, however, there was greater variation among the replicates within the 48 h incubation time.  

Therefore, 24 h was chosen as the incubation time point for the future exposures.  To keep the 

methods consistent among species tested and allow comparison among species, 24 h was chosen 

for the white sturgeon exposure as well.  

 

 

 


