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Abstract 

There is widespread interest in multicomputer parallelism. Functional languages 

with their inherent parallelism can form a basis for programming these machines. These 

languages dynamically allocate memory, objects are created when required and eventually 

objects may lose links with active objects and become unreachable garbage. The process of 

recovering these inactive objects is called garbage collection. Garbage collection in a 

multicomputer system has to manage objects in physically separated memories. This 

introduces consistency and synchronization problems with the shared data. 

The development of an algorithm for garbage collection in a multicomputer system 

is reported. A description of the algorithm is presented. The design of the simulator and 

the simulation experiments are presented. The application of Petri nets to the modelling of 

this algorithm is discussed. Verification of some properties of this algorithm using the 

invariants of the Petri net model are presented. 
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CHAPTER 1 

Introduction 

1.1 Models of Multicomputer Systems 

Recently there has been a shift in research interest from centralized serial computing 

machines to parallel machines in order to exploit potential parallelism in programs [33, 51]. 

There are two well known types of parallel computer systems namely SIMD (Single 

Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data). A SIMD 

computer consists of a control unit, N processors and N memory modules. Processors and 

memories are connected by an inter-connection network. The control unit broadcasts 

instructions to the processors, and all processors execute the same instruction at the same 

time on the data stored in their associated memory modules. There are two models of 

MIMD computer systems. In the shared-memory model (also called tightly-coupled), 

shown in Fig. 1.1, data is stored in a shared memory, which can be accessed by all 

processors through an inter-connection network (for example the Ultra Computer [24]). In 

a message-passing model (also called loosely-coupled), shown in Fig. 1.2, each 

processor has an associated local memory, and data is passed from the producing 

processors to the consuming processors through an inter-connection network. 

The parallelism that can be achieved in a shared memory multi-computer system is 

constrained because of the need to access shared data. Loosely-coupled multicomputer 

systems require slicing of problems into tasks that minimize communications between 

processors. Information is exchanged via message passing. Each task must be scheduled 

for execution on one or more processors. Synchronization of control and data flow is 

performed during execution. In this thesis we consider only a loosely-coupled message-

passing system. 

1 



2 

• • • 

Inter-Connection Network 

E PE 
2 

• • • PE 

Figure 1.1 Model of a Tightly Coupled Multicomputer System. 
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Figure 1.2 Model of a Loosely Coupled Multicomputer System. 

1.2 Introduction to basic Data Structures 

In this section we present definitions of some frequently mentioned data structures 

in the thesis. Graphs and trees are the most important data structures required for our 

purpose. 

1.2.1 Graphs 

Definition: A graph G = (V, E) consists of a set V of vertices (points) and a set 
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of E of edges (arcs) connecting pairs of vertices. Fig. 1.3 illustrates some examples of 

graphs. In Fig. 1.3(a), edges p and q form loops with vertex a. Another important 

concept in graphs is that of a path. In a graph G, a path from VotoVn is the sequence 

V0, E0, V1, E ,...V n_i, En-1, Vn where Ei = ( V i, Vi+1 ), an edge between vertices 

Vi and Vi+1. The length of a path is the number of edges traversed from the source 

vertex to the destination vertex. A path is a closed path (circuit) if Vo = Vn, i.e. the 

source and terminating vertices are the same. A path which is closed and repeats no edges 

or vertices is a cycle. A graph is directed, if every edge has direction. 

(a) (b) 

Figure 1.3 Examples of graphs: (a) Undirected graph (b) Directed Graph. 

1.2.2 Trees 

A connected and acyclic graph is called a tree. In a tree each pair of distinct 

vertices is connected by exactly one simple path (not circuit). A rooted tree is one in which 

exactly one vertex has been designated as its root. A binary tree is a rooted tree in which 

every interior vertex has at most two children. Fig. 1.4 shows some examples of trees, 

Fig. 1.4(d) shows a binary tree. 
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• 

(a) 

(c) 

(b) 

(d) 

Figure 1.4 Some examples of trees, (d) is a binary tree. 

1.3 Graph Reduction 

Functional programming languages appear to be a natural way to program multi-

computer systems. The main advantages of functional languages is their semantic 

simplicity and their avoidance of unnecessary sequentiality. This facilitates the 

implementation of multiple instruction, multiple-data (MIMD) parallelism. A functional 

programming language achieves this goal by separating the task that the program is to 

perform from the way that the computer is to do it. That is, unlike imperative languages, 

functional languages do not specify the flow of control but only the flow of data in the 

program. 

Most functional programming languages are quite similar to each other, and differ 

more in their syntax than their semantics. A functional language can be implemented in 

three steps. The first step is the translation of high level functional program into an 

intermediate language. The intermediate language is the notation of lambda calculus [44]. 
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Lambda expressions can be implemented in three ways: string reduction, environment 

interpretation and graph reduction. In string reduction, the program is represented as one 

long string of lambda expression, and numerous parts of the string can be evaluated at 

once. In an environment interpreter, the code sequence for the lambda abstraction has 

access to an environment which contains values for each of the variables. Binding of actual 

parameters to formal parameters is done in the environment. 

There are two strategies in the implementation of any functional programming 

language, strict (Normal Order) and non-strict (lazy) evaluation. In strict evaluation, the 

evaluation of arguments of a function is done first before the invocation of the function, 

whereas in lazy evaluation arguments are evaluated only when it is necessary. 

Environment interpretation approach is more suited for the implementation of languages 

with strict semantics (such as ML [23] and Hope [14] ). 

In graph reduction, lambda calculus expressions with variables are converted into 

CAF s (Constant Applicative Forms). These CAF expressions are also called 

combinators or supercombinators. The transformation to supercombinators is called 

lambda lifting. The transformed program is optimized and compiled into a linear 

instruction sequence. This compiled code is represented as a cyclic graph. Cycles appear 

in the graph because of recursive functions and data structures in the program. The 

evaluation of the program corresponds to the reduction of this graph. Hence this evaluation 

is called graph reduction. Graph reduction is the most natural way to implement 

languages with non-strict semantics (lazy evaluation). Examples of languages that use this 

strategy are SASL [52], Ponder [21, 22], LML [5], Miranda [53] and Orwell [54]. 

Suppose a function f is defined (e.g. in Miranda, a modern functional language 

[53] ) like this: 

f x y = (x + 3) * (y - 2) 
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This definition specifies that f , a function of two arguments x and y, computes 

(x + 3) * (y - 2). Let this function be evaluated for the values x = 3 and y = 5, i.e. 

function f applied to 3 and 5. The application of function f may be graphically 

represented as shown in Fig. 1.5. 

f x 

Figure 1.5 Graphical representation of application of f to x y 

This tree denotes the expression f x y (Fig. 1.5). The '@' sign is called the tag 

of the node, and indicates that the node is an application. The application of this function 

for the given values of x and y corresponds to the reduction of the graph shown in Fig. 

1.6. 

x 3 y 2 

Figure 1.6 Graph off x y = (x + 3) * (y - 2 ) 

We may execute the addition and subtraction in either order resulting in the graph 
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shown in Fig. 1.7. Finally we can execute the multiplication, to give the result 

6 3 

Result = 18 

Figure 1.7 Graph after reductions ( x + 3) and ( y - 2 ) 

The evaluation of a function has been transformed into graph reduction. Graph 

reduction gives an appealingly simple and elegant model for the execution of a functional 

program, and one that is radically different from the execution model of a conventional 

imperative language. Some of the salient features of graph reduction are: 

i) Executing a functional program consists of transforming an 

expression. 

ii) A functional program has a natural representation as a tree (or more 
generally a graph). 

iii) Evaluation proceeds by means of a sequence of simple steps, called 
reductions. Each reduction performs a local transformation of the 
graph (hence the term graph reduction). 

Reductions may safely take place in a variety of orders, or indeed in 
parallel, if they do not interfere with each other. 

v) Evaluation is complete when there are no further reducible 
expressions. Normally this results in the production of an answer. 

1.4 Storage Management 

As reduction proceeds we will need to build new pieces of graph, due to new 

function invocations. In order to do so we have to allocate new cells (each vertex in the 

graph is referred to as a cell or node). Cells are allocated from a (large) area of storage 

called a heap, which is simply an unordered collection of cells. As well as allocating new 
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cells, the reduction process discards cells, or rather it discards pointers to cells. A cell in 

the graph may have many pointers to it. A cell is declared unusable when all the pointers to 

it are deleted. Since storage is finite, it is necessary to reclaim these garbage cells. In the 

example shown in Fig. 1.6, on evaluation of the addition (x + 3), two cells x and 3 

loose their links with other nodes in the graph, and become garbage. Similarly, the 

reduction (y - 2) results in two garbage cells. Overall in the reduction of function f, six 

garbage cells are generated. The implementation of any functional language includes a 

garbage collector whose purpose is to identify and recycle garbage cells. The whole 

activity of cell allocation and garbage collection is called storage management. 

Storage management schemes including garbage collectors are needed in all 

declarative languages (functional and logic) that have dynamic heap semantics. The 

performance of implementations of these languages depends to a great extent on the 

efficiency of the storage management scheme. Also the implementation of a storage 

management scheme depends very much on the underlying system architecture. 

1.5 Garbage Collection in Uniprocessor Systems 

This section outlines some of the garbage collection methods available in the 

existing uniprocessor systems. There are two well known techniques namely mark and 

sweep method and reference counting [16]. In the mark and sweep technique, the 

system accumulates garbage cells until the heap storage is empty. Garbage collection is 

then initiated. In the first (marking) phase all reachable cells in the program graph are 

marked. Garbage cells are not marked. During the sweep phase, a linear search of the 

entire memory is done, detecting cells that are unmarked. A free list is built of these free 

cells. Generally the sweep phase is followed by a compaction phase wherein all the free 

cells are moved to one end of the address space. This scheme has the advantage that it can 
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reclaim detached cyclic structures in the program graph. But the main disadvantage of this 

scheme is that this algorithm is not real-time in nature as evaluation of the program halts 

during garbage collection. 

In the reference counting technique each cell has a count (reference count) of the 

number of pointers to it. All accessible cells in the program graph have a reference count 

greater than zero. A cell is declared garbage when all pointers to it are deleted, i.e. when its 

reference count decreases to zero. During each reduction operation reference counts of 

cells involved in the operation are updated and any cell whose reference count decreases to 

zero is reclaimed. This scheme has the advantage that it is real-time in nature as program 

evaluation is not halted and garbage collection proceeds concurrently with the program 

evaluation. But this scheme has the disadvantage that it can not reclaim cyclic structures 

and much time is spent updating reference counts during each graph operation. 

To overcome the disadvantages of both these techniques, hybrid techniques have 

been proposed [11, 16, 18]. These methods attempt to achieve real-time response as well 

as reclaim cyclic structures. Algorithms for systems with virtual memory are known as 

copying algorithms [8, 28, 30], here the virtual address space of the processor memory is 

logically partitioned into semispaces. Only one of the semispaces is active at a time, cells 

are created in the active semispace. When its space is exhausted, all active cells in the 

current semi space are copied to other semispace. The garbage cells in the current active 

semispace are automatically reclaimed. 

1.6 Parallel Graph Reduction 

One of the most attractive features of functional programming languages is that they 

are not inherently sequential, as are conventional imperative languages. At any moment 

there are a number of reducible expressions (or redexes) in the program graph and in 

principle they could all be reduced simultaneously. Writing parallel programs is easier in a 
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functional language. The following points can be stated to substantiate the above 

statement. 

i) In a functional language the parallelism can be dynamic; there is no 

static division of the problem into tasks. Maximal parallelism can be 

dynamically exploited. 

In a functional program the synchronization between different 

reductions is mediated entirely by the shared graph. A reduction is 
made known to the graph by the indivisible operation of overwriting 

the root of the redex with the result of the reduction, and no other 

synchronization is necessary. Procedural parallelism, however 
requires a large run-time investment in synchronization. 

iii) There are no extra language constructs required to write parallel 

functional programs. 

The above mentioned advantages apply to any parallel implementation of a 

functional language, but graph reduction is particularly attractive. A number of evaluator 

tasks simultaneously work on the graph. Each evaluator task reduces some particular sub-

graph. Each sub-graph is located in physically separated memories. During its execution, 

a task may anticipate that it will require the value of a certain sub-graph at some future time. 

In this case it may generate a new task to evaluate the sub-graph in parallel by sparking the 

root node of the sub-graph. The new (child) task will evaluate the graph rooted at the 

sparked node, concurrently with the continued execution of the (parent) task that sparked it. 

1.7 Garbage Collection in Multicomputer Systems 

The model of a parallel graph reduction machine is shown in Fig.l.8. The program 

graph is logically partitioned into sub-graphs and each sub-graph is located in the private 

memory of a processor. In the Fig. 1.8, we have partitioned a graph into four sub-graphs. 

Each sub-graph resides in the local memory of a processor. Each sub-graph has a root of 
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its own. Local links link nodes in the same sub-graph, remote links span across memory 

boundaries. With good locality in the graph partitioning and memory allocation, the 

number of remote links in the system are assumed to constitute a small fraction of the local 

links. Each processor has access to local links and nodes of its sub-graph. Remote 

nodes are accessed by sending messages through the inter-connection network. Cycles 

appear in the sub-graphs (because of recursive functions and data structures) that may be 

local or global. Local cycles reside in a single memory. Due to the partitioning of 

program graph among many physically separated memories, cycles in the graph may 

happen to span across different memories. Detecting these detached global cyclic structures 

is difficult and expensive in terms of communication and synchronization overhead. 

PE 0 PE 1 

''...... Root 

Root 

RemoteLink 

Cycle 

• 

Root 

Global 
Cycle 

Root 

PE 2 PE 3 

Figure 1.8 Model of a Parallel Graph Reduction Machine 

Implementation of storage management schemes in a multicomputer system is 
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complex because the garbage collection scheme has to manage objects in physically 

separated stores. This introduces consistency and synchronization problems with shared 

data. Message passing introduces communication overhead in the system. A simple 

extension of algorithms proposed for uniprocessor systems to the multicomputer systems is 

not practical due to the presence of these overheads. Many algorithms have been proposed 

[3, 4, 26, 27, 29]. These algorithms range from completely global schemes to parallel 

real-time algorithms. Not only are these algorithms complex, their analysis and proof of 

correctness is very hard. A detailed description and a comparison of these algorithms is 

given in Chapter Four. 

1.8 Goals of the Thesis 

The main thrust of this thesis is to develop a new storage management scheme for 

parallel multicomputer systems. The specific goals are: 

i) To study storage management schemes in multicomputer and 
uniprocessor systems. 

ii) To propose a new algorithm for garbage collection in a 
multicomputer system. 

iii) To perform a simulation study of our proposed algorithm, and 
thereby gain insight into the dynamic behavior of our algorithm. 

iv) To establish arguments for the correctness of the proposed algorithm 
using Petri Nets. 

This thesis presents a model for the development of any distributed algorithm. 

Analytic techniques are used to obtain approximate performance results. Simulator models 

with empirical loads provide insights into the behavior of the algorithm. A semi-formal 

proof of correctness based on modelling techniques gives confidence in the overall 

algorithm design. 
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1.9 Outline of the Thesis 

Chapter Two deals with the garbage collection algorithms used in uniprocessor 

systems. Mark and sweep algorithm and reference counting algorithms are studied. 

Hybrid techniques that attempt to combine the advantages of both these schemes and 

copying algorithms for systems with virtual memory are also presented. 

The Chapter Three deals with the garbage collection algorithms that have been 

proposed for multicomputer systems. Specific algorithms are presented and a comparison 

of these techniques is given. 

We present our proposed algorithm in the fourth chapter. Some of the advantages 

of our algorithm over existing techniques are highlighted by analytical modelling. In 

Chapter Five we report a simulation of our algorithm. Motivation for the simulator model 

is discussed. Experiments conducted to verify the algorithm are presented. 

In Chapter Six we discuss formal modelling of our algorithm using Petri Nets. 

Analysis of Petri Nets using Reachability trees and Linear Algebraic methods are 

presented. The motivation for using a linear algebraic method and verification of system 

properties using P and T invariants of the network is given. The thesis concludes with a 

chapter highlighting significance of the work and summary of results and conclusions 

drawn from the research conducted. 



CHAPTER 2 

Garbage Collection in Uniprocessor Systems 

2.1 Introduction 

This chapter surveys techniques for garbage collection in uniprocessor systems. A 

survey article by Cohen [16] gives an excellent overview of various garbage collection 

(GC) algorithms that have been proposed for uniprocessor systems. There are two 

traditional approaches for GC in uniprocessor systems, mark and sweep and reference 

counting. 

Mark and sweep collection is done whenever the free list is empty. First, all 

accessible cells are marked by traversing the entire accessible structure. Then a linear scan 

through memory recovers all unmarked cells. This algorithm is discussed in section 2.2. 

In reference-counting each cell has an extra field, called reference-count that holds 

the number of references (i.e. the number of pointers) to it [15]. The reference-count is 

incremented whenever a link is made to the cell and is decremented whenever a pointer is 

discarded. A cell whose reference-count drops to zero is reclaimed. These collectors can 

not reclaim cyclic structures. Modified reference-counting algorithms have been proposed 

that can reclaim cyclic structures [11, 12, 15, 28]. Hybrid systems, which have a limited-

width reference-count field have been suggested. These collectors use mark and sweep 

collection to reclaim cyclic structures. A discussion of these algorithms is presented in 

section 2.3. 

The main requirement of garbage collectors in virtual memory systems is the 

locality of references. Algorithms that improve locality and perform compaction are 

necessary for such systems. These are known as copying garbage collectors. These 

14 
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algorithms are presented in section 2.4. The approaches presented so far are not suited for 

systems with real-time constraints. Parallel algorithms have been proposed for these 

systems. In these schemes, two processors work in parallel, one processor (mutator) is 

responsible for graph mutation and the other (collector) is for garbage collection [19, 50]. 

Section 2.5 describes some of these algorithms. 

2.2 Mark and Sweep Algorithm 

In this approach the system consumes cells until the free list is empty. At this 

stage execution of the user's program is stopped and a garbage collection cycle is initiated. 

The mark and sweep garbage collection takes place in three phases, the first is the 

marking phase, its task is to identify the objects accessible from the root by traversing the 

graph, and marking each object encountered. As all active cells in the graph are accessible 

from the root, all these cells are marked. Inactive (garbage) cells are unmarked. The 

marking phase is followed by a sweep phase. Its task is to sweep the entire memory space 

and to examine each existing object: if the object is not marked, it is reclaimed by returning 

its space to free storage. A free list is built of these reclaimed cells. The sweep phase is 

followed by a compaction phase wherein all the active cells are pushed into contiguous 

locations of memory. The other end contains a contiguous area of unused space that can be 

used for creating new objects. 

From the above discussion, two points are obvious: the garbage collector is able to 

detect all inactive cells including cyclic structures, and collection halts program evaluation. 

The duration of garbage collection varies and it can not be predicted. Unpredictable 

program interruptions makes this algorithm unsuitable for real-time applications. The 

duration of the sweep phase is proportional to the size of the memory. Hence this scheme 

is not appropriate for systems with very large virtual address space. This has *prompted 

the development of copying algorithms for virtual memory systems. 
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The marking phase requires an explicit stack for storing pointers to the cells being 

marked. A pointer is pushed onto the stack just before marking the cells's right branch. 

Marking terminates when the stack is empty. Consequently each node in the graph is 

visited twice: once before marking the left field and once before marking the right field. A 

requirement of this technique is the need to have a stack space to hold at least n pointers, 

where n is the maximum possible depth of the graph (in the worst case this will be equal to 

the number of cells in the graph). To reserve this much additional space initially is 

uneconomical. Several algorithms have been proposed to circumvent this difficulty [18, 

49]. All these algorithms involve reducing the required storage by trading it for the time to 

perform marking. 

The algorithm proposed by Deutsch [18] and by Schorr and Waite [49] dispenses 

with the use of a stack but requires one additional bit per cell. The main idea of this 

algorithm is that the nodes of a tree or a directed graph can be inspected without using a 

stack by reversing successive links until leaves or already visited nodes are found. The 

link reversal can then be undone to restore the original structure of the graph. The 

additional bit per cell (called a tag bit) indicates the direction in which the restoration of 

reversed links should proceed (i.e. whether to follow the left or the right pointer). The 

disadvantage of this marking scheme is that the cells are visited three times. This additional 

visit and the overhead for restoring pointers and for checking and setting bits makes this 

algorithm less time efficient than the classical algorithm. The authors Schorr and Waite 

have suggested a modification in which there is a fixed-size stack with link reversal 

technique. The stack algorithm is used whenever possible. If the stack overflows, the 

tracing and marking proceed by the link reversal method. Many variations of this marking 

scheme using fixed-size stack and/or modifications of link reversal techniques have been 

proposed [16]. 



17 

2.3 Reference Counting 

In reference counting, each cell has a field having a count that indicates the number 

of pointers to it. All active have a reference count greater than or equal to one. Any 

unreferenced cell has a reference count equal to zero. The garbage collector becomes 

operational whenever a link is made or broken. Garbage collection in this case is 

incremental, the GC time is distributed over the entire program period. But the main 

drawback of this scheme is that it can not reclaim cyclic structures. 

Root A B 

-► 

E 

C D 

F 

Figure 2.1 Reference Counting can not detect Cyclic Structures 

The Fig. 2.1 illustrates the weakness of reference counting algorithm in detecting 

cyclic structures. In the figure is shown a section of a cyclic graph, cells A, B, C, E and 

F form a cyclic structure. All cells are accessible from the root only by traversing through 

the link (root, A). The reference count of A is equal to two and that of other cells is equal 

to one. Let us assume that the link (root, A) is deleted. The reference count of A 

decreases by one. The reference counts of all other nodes remain unaffected. This 

deletion of link (root, A) delinks the entire section of graph from the root, the entire 

structure is garbage now. But as the reference count of none of the objects in the structure 

is equal to 0, the algorithm fails to detect them as garbage. As recursion is a natural way to 

program in a functional language, cyclic structures are generated frequently in a functional 

program. This algorithm can not reclaim space used by these cyclic structures, resulting in 

continual loss of space. Modified reference counting algorithms have been proposed by 
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Hughes [28], Brownbridge [12] and Moon [36] that can reclaim cyclic structures. 

Section 2.3.2 discusses these algorithms in greater detail. 

D 

Root B

11111 111 . 1111111 
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G 

Figure 2.2 Reference Counting slows down graph mutations 

The other drawback of reference-counting is that it introduces extra overhead on 

every object operation slowing down graph mutations. This is illustrated in Fig. 2.2. The 

figure shows a section of graph with objects A, B, C, D, E, F and G. The reference 

counts of A, B, D, E, F and G are equal to one and that of C is equal to two. There is 

a pointer from cell A to B, cell B can be accessed from the root only by traversing 

through this pointer. Let us say this link is broken, the reference count of B decreases to 

zero. It is no more accessible from the root, it has become a garbage cell. Any outgoing 

pointers from a garbage cell must be deleted. This in turn may generate some more garbage 

cells. The process of pointer deletion is to be done recursively from garbage cells 

generated at every step. In the example shown above, the deletion of link AB results in 

the deletion of pointer BC. The reference count of C decreases to one, i.e. a single 

pointer operation resulted in the breaking of one additional link and updating of one 

reference count. If instead of one pointer from B there were many pointers, many 

reference count updates needs to be done. If these cells scatter across different parts of the 

memory, accessing these storage cells becomes very expensive. In a virtual memory 
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system this results in increased page faults slowing down graph operations. Hence an 

algorithm for garbage collection in virtual memory system must ensure good locality in the 

program graph. 

Reference-counting introduces space overhead per each cell. Theoretically the 

width of the reference-count field must be equal to the maximum number of cells in the 

address space (i.e. if every other cell in the system points to one single cell). But 

observations in practical Lisp systems have shown that 97% of cells have a reference count 

equal to one [16]. Modifications have been suggested to the reference counting algorithm 

to circumvent this space overhead. The idea is to have a limited width reference-count 

field. Reference counts are incremented until the maximum value is reached. Those 

reference-counts that have reached their maximum value are not updated any more; these 

cells are assumed to be permanently active. When the heap becomes empty, mark and 

sweep collection is initiated to reclaim these permanent cells. The logical extreme of the 

limited width reference-counting idea is a one-bit reference-count field. This idea was 

proposed by Wise and Friedman [16]. Any cell that has this bit set indicates that this cell is 

referenced once or more. As in the limited width reference-count algorithm, mark and 

sweep collection is resorted to reclaim circular structures and cells that are referenced more 

than once. 

2.3.1 Hardware Support for Reference Counting 

As seen in Fig. 2.2, reference-counting slows down graph mutation. Much of 

the time overhead of reference-counting would be alleviated if hardware support were 

available. Wise [56] proposes a 'smart' memory module that is capable of handling the 

increment/decrement operations on reference counts. The memory module translates 

read/write instructions into increment/decrement operations on reference counts. 

Increment/decrement reference-count messages are transmitted across memory modules. 
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In software reference-counting, the processor is responsible for reclaiming and updating 

the available heap space when a reference-count becomes zero. In this scheme, the 

memory module is responsible for maintaining this list. A cell is automatically included 

into the heap without interrupting processor operation. This hardware reference-counting 

scheme is also suitable for tightly-coupled multiprocessor systems wherein many 

processors share a common memory distributed across many modules. 

2.3.2 Cyclic Reference Counting Algorithms 

Bobrow [11], Hughes [28] and Brownbridge [12] have suggested extensions to the 

conventional reference counting algorithm that would allow it to reclaim circular structures. 

A brief description of the Brownbridge's algorithm is given below: 

In this algorithm, graph pointers are divided into two types, weak and strong, 

with their own separate reference counts. Each cell has two reference count fields. Strong 

reference counters are used whenever normal reference count pointers would be used. 

Weak reference counts are used when a pointer forms a cycle. Consequently the 

computation graph satisfies the following two rules: 

i) Cells in use are accessible from the root through a continuous chain of 
strong pointers. 

ii) No cycles are formed by a continuous chain of strong pointers. 

The process of creating and deleting a pointer is the same as in standard reference 

counting algorithm. When a pointer is created with the appropriate type, the relevant 

reference count of the cell is incremented. If the pointer created is of strong type, 

SRC(ptr_to) is incremented and if it is a weak pointer, WRC(ptr_to) is incremented. 

Here, SRC(ptr_to) represents the strong reference count and WRC(ptr_to) the weak 

reference count of the pointer object ptr_to. Deletion of a pointer is more complex than 
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creation, here four cases may arise: 

i) If the pointer is weak then, 
WRC(ptr_to) = WRC(ptrto) - 1 

ii) If the pointer is strong and SRC(ptr_to) > 1, then 

SRC(ptr_to) = SRC(ptr_to) - 1 

,iii) If the pointer is strong, SRC(ptr_to) = 1 and WRC(ptr_to) = 0, then delete 

ptr_to. This cell can be garbage collected. 

iv) If the pointer is strong, SRC(ptr_to) = 1 and WRC(ptr_to) > 0 then this is 

the case standard reference counting algorithm will fail and special action 

needs to be taken. 

In this case, it can not determined whether the cell is free or not. Brownbridge 

[12] in his paper suggests a method to handle this situation. The SRC(ptr_to) is set to 0. 

All weak pointers to ptr_to are inverted to strong pointers. To determine whether ptr_to 

is free, a recursive search is initiated by visiting sub-objects ofptr_to and undo any strong 

cycles created by pointer inversion. He proposes a routine suicide to do this recursive 

searching. If SRC(ptr_to) = 0, then recursively delete all objects reachable from ptr_to. 

He suggests an implementation method to handle this pointer inversion. Associated with 

each pointer is a status bit indicating what type of the pointer it is. The cell body also has 

an associated bit, and it is the relationship between the pointer status bit and its target cell 

body bit that determines the strength of the pointer, eg. if both bits are the same then the 

pointer is strong otherwise it is weak. 

In his thesis Salkild [48] has analyzed this algorithm. He observes that this 

suicide routine performs well in a graph with a high proportion of strong pointers, but 

with larger programs the algorithm fails. He analyzes the weakness of the suicide 

routine, saying that this routine changes all weak pointers to strong ones at any one site and 

it fails when more than one weak pointer needs to be turned into a strong one. The suicide 
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cell, having no strong pointers to it is now incorrectly collected. He also observes that the 

efficiency of the algorithm is critically dependent on the distribution of weak pointers. This 

strong dependency on graph structure makes this algorithm highly unpredictable. 

Moreover the algorithm expects the language implementation to know when a cycle is being 

created which is not always possible. 

2.4 Garbage Collection in Virtual Memory Systems 

A heap can be implemented in real-memory or virtual memory. In the case of real 

memory, the whole heap resides in the primary memory and all objects in the heap are 

directly accessible to a user program and the garbage collector. In the case of virtual 

memory, the heap resides in more than one level of memory hierarchy. For an efficient 

GC that operates in virtual memory, it is necessary to minimize page faults. Grouping 

related objects in one page (or a few pages) and compaction (to improve locality of 

references) are important properties of a GC that operates in such an environment. 

Many algorithms have been proposed for GC in these virtual memory systems. 

These are called copying algorithms [8, 30]. A copying algorithm performs all the three 

tasks of a mark and sweep GC in one phase. In Baker's algorithm, the memory space is 

divided into two areas called semispaces. At a given time, only one semispace is used for 

creating new objects. When garbage collection begins, all accessible objects are copied 

from the current semispace into the other semispace and the role of semispace is reversed. 

The new semispace contains only accessible objects. 

GC efficiency (by efficiency we mean the rate of collecting garbage cells) is 

enhanced by taking hardware assistance in the form of tagged memory architecture. In 

tagged memory, every word is divided into two parts: the data and the tag. The tag 

distinguishes words whose data part is an address from words whose data part is a number 
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or a bit pattern. Special conventions and machine instructions are provided for the efficient 

processing of these tagged words. As a copying garbage collector needs to distinguish 

addresses from numbers, the tagged architecture enables the garbage collector to scan 

memory without regard for object boundaries, hence it can scan non-sequentially through 

memory. 

In a typical functional programming environment, object life time is not uniform. 

A great percentage of the objects have been observed to have a very short life time [16, 30]. 

A GC that treats all objects equally does not perform very well. By concentrating garbage 

collection effort in the most productive places, the maximum amount of space can be 

reclaimed for the minimum cost of computation time, virtual memory paging and impaired 

interactive response. Objects may be classified into groups based on their life time. Most 

of the space can be reclaimed by concentrating GC effort on ephemeral objects. The older 

objects may be assumed to be permanent, they need to be garbage collected less frequently. 

The algorithm proposed by Lieberman and Hewitt [30] takes into account the life 

time of objects. Their algorithm is an extension to Baker's algorithm. In Baker's 

algorithm, the address space is logically divided into two semispaces, whereas in this 

algorithm, the address space is allocated in small regions. Objects recently created contain 

a larger percentage of garbage and will be garbage collected more frequently than older 

regions. The process of garbage collecting a region is initiated by condemning it. This is 

followed by scavenging, wherein all accessible objects in the region are evacuated. Many 

scavenging processes may be working in parallel on different regions. The rate of 

condemning regions is related to the age of regions. Older regions are condemned less 

frequently than recent ones. Inter-region pointers are maintained using entry and exit 

tables. To reduce space overhead of these tables and to cover-up the cost of scanning large 

numbers of regions, the older regions are merged and inter region pointers are deleted. 
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2.5 Real-Time Algorithms 

The mark/sweep GC algorithm introduces substantial program interruptions, 

ranging from any where between a few seconds to tens of minutes. These unpredictable 

program interruptions makes this algorithm unsuited for real-time applications. In 

reference counting, collector is active in parallel with the mutator, but each graph operation 

may be slowed down considerably. 

Several real-time garbage collection algorithms that work in parallel with a user 

program have been proposed [19, 50, 17]. These are based on two processors working in 

parallel: one is responsible for GC, called collector, and the other for program execution, 

called mutator. Two algorithms based on this approach have been proposed by Steele [50] 

and Dijkstra et al., [19]. In Steele's method, the collector has three phases: mark, sweep 

and relocate. During the mark phase, all accessible cells are marked. It uses a stack to 

hold objects that have been marked but whose children have not been examined. During 

the sweep phase, the storage space of inaccessible objects is picked up. The relocation 

phase relocates accessible objects to minimize the storage space required. Since the mutator 

is running in parallel with the collector, the free list must have enough free storage space to 

keep the mutator from starvation. Semaphores control mutual exclusion of shared object 

between the collector and mutator processors. 

In any parallel garbage collection method, the mutator must co-operate with the 

collector for performing the proper marking of accessible objects. Since the collector and 

mutator are running in parallel, the operation of these algorithms is much more difficult to 

understand or prove correct than any sequential GC. The algorithms proposed by Baker 

[8] and Lieberman and Hewitt [30], can also be considered as real-time GC algorithms. 

Here semispaces are simultaneously active. These approaches are less complex than the 

algorithms suggested by Dijkstra et.al., [19] and Steele [50], since normal activity and GC 
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represent only one sequential process. 

2.6 Summary 

An overview of uniprocessor garbage collection algorithms has been presented. A 

mark and sweep collector is able to detect all garbage cells, it has the disadvantage that it 

introduces arbitrarily long program interruptions. A reference-counting collector works in 

parallel with user's program. It is not able to detect cyclic structures in the program graph 

and it slows down graph operations. 

Copying collectors are used for garbage collection in virtual memory systems. 

Their main requirement is to improve locality in the program. Real-time algorithms use two 

processors, a mutator for graph reductions and a collector for garbage collection. Both 

mutator and collector work in parallel. 



CHAPTER 3 

Garbage Collection in Multicomputer Systems 

3.1 Introduction 

This chapter presents an overview of the important garbage collection algorithms 

proposed for loosely-coupled multicomputer systems. These algorithms are adaptations to 

the distributed environment of ideas that have been developed for uniprocessor systems. In 

a loosely-coupled multicomputer system, the heap is distributed over many physically 

separated PE (Processor Element) memories. This organization is called a distributed 

heap. Each PE has direct access only to objects that reside in its local memory. Due to 

parallel activities that take place in a distributed heap, its management is much more difficult 

than a single processor implementation. 

Parallel graph reduction places unique demands on the performance of a garbage 

collector. A distributed garbage collection scheme must address these issues — inter-

processor communications and utilization of communication network, synchronization 

and mutual exclusion of shared data, wastage of CPU cycles, and real-time response. 

With present day technology, the cost of communications between parallel 

processors is much higher than the cost of communications within a processor. Inter-

connection network bandwidth is a critical performance factor of a distributed system. 

Processors need to communicate with each other during garbage collection. Bandwidth of 

the communication network is limited, a garbage collector in a distributed environment 

must make optimal use of the network bandwidth. 

Protecting shared data in a parallel multicomputer system is quite complex. It is 

essential to maintain mutual exclusion (only one process has write access to the shared 

26 
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data [25]) and synchronization (allowing processes to exchange information and 

communicate with each other [25]) of shared data. Efficient schemes are needed to prevent 

race conditions (in which the outcome of a computation depends on the speeds of 

processes, i.e. parts of computation are time critical [25]), and deadlocks (in which 

process(s) wait for event(s) that can never occur [25]) in the system. The mechanisms to 

protect shared data should have minimal effect on the parallelism in application programs. 

A distributed garbage collection algorithm must not waste much computational 

power. Simple distributed GC algorithms (global algorithms) restrict parallelism in the 

system and thereby waste much of the computational power. These algorithms have a 

central synchronization and control point. They require less space, less communication 

bandwidth and synchronization overhead. As computation in the system comes to a halt 

during GC, maintaining data consistency and synchronization is straightforward. On the 

other hand, non-global GC algorithms allow greater parallelism and thereby do not waste 

much computational power. These schemes typically have high space requirement, and 

high communication and synchronization overheads. 

The design of a distributed garbage collection scheme must take all these factors 

into consideration. The designer has to make tradeoffs between these conflicting 

requirements. In addition to all these factors, the performance of a distributed garbage 

collector depends on the underlying system architecture and the application. 

We review a variety of previous solutions for parallel distributed garbage collection: 

• Distributed reference-counting has been suggested [40] for garbage 
collection in message-passing systems. This algorithm is presented in 
Section 3.2.1. 

• Hudak [26, 27] has presented a marking tree garbage collection 
algorithm that is an adaptation of the real-time mark and sweep 
algorithm proposed by Steele [50] and Dijkstra et. al., [19]. Section 3.3 
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presents this algorithm. 

• Ali [3, 4] has proposed four distributed garbage collection algorithms. 
These algorithms can be categorized as global, local-global, 
distributed-local and distributed real-time algorithms. These 
algorithms are presented in Section 3.4. 

• Hughes [29] presents a distributed garbage collection algorithm that 
attempts to overcome deficiencies of Hudak and Ali's algorithms. This 
algorithm is presented in Section 3.5. 

3.2 Reference Counting 

Nori [40] adapted the reference-counting approach to the distributed environment. 

In this scheme, all of the reference-counting operations are performed by spawning remote 

tasks on the appropriate processor. An increment-reference-count task is generated when 

a new object reference is generated. Similarly a decrement-reference-count task is 

generated and sent to the appropriate PE when an object reference is destroyed. A non-

trivial problem with Nori's approach is to guarantee that reference counting operations 

(increment/decrement of reference counts) are executed in the same order that they were 

generated, otherwise a reference count may reach zero prematurely, as illustrated in Fig. 

3.1(a, b). 

A 

C 

I 

Figure 3.1 Reference counting is order dependent. 
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Figure 3.2 After reference count operations. 

In Fig. 3.1 is shown a graph with objects A, B and C. There is a reference from 

object A to B and from A to C. In a distributed system these objects could be scattered 

across different memories. Let us say two tasks increment-reference-count CB and 

decrement-reference-count AB are spawned in that order. The resulting graph is 

dependent on the order in which these tasks are executed. If these tasks are executed in the 

order they are spawned, we get the graph shown in Fig. 3.2. If these tasks are executed in 

the reverse order (task decrement-reference-count AB executed before increment-

reference-count CB), B is reclaimed before the arrival of increment-reference-count CB 

task. The increment can not be executed, since B is non-existent. Hence the system 

must ensure that reference tasks are executed in the order they are spawned. A direct 

solution of this difficulty appears to require detection of distributed termination for every 

decrement reference-count; this is clearly infeasible. Nori [40] has not attempted to solve 

this problem. As discussed in Chapter 1, the reference counting approach has the 

additional disadvantage of being unable to detect and subsequently reclaim cyclic 

structures. The frequency of reference count updates requires many messages. 

3.2.1 Reference Weighting 

The main problem with Nori's scheme is that it is difficult to maintain reference-
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counting operations in the same order that they are generated. To overcome this problem, a 

reference weight scheme has been suggested [55]. The idea is as follows: when an 

object A creates a new object B, a weight is associated with B and this value becomes a 

part of the created object reference to B as shown in Fig. 3.3. 

A 

w 

B 

w 

Figure 3.3 An object reference using reference weights. 

This object reference may be represented by a tuple (W, addressB). When such an 

object reference is copied into object C, the weight W is split into two parts and the two 

object references will be represented by (WI, addressB) and (W2, addressB) such that 

W = WI + W2 as shown in Fig. 3.4. 
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Figure 3.4 Copying an object reference in reference weighting. 

Making a copy of an object reference does not require communicating with the PE 

that has the object in its local memory. On the other hand, destroying an object reference 

requires generating a reduce-reference-weight task and sending it to the PE that has-the 
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object to decrease the current object's weight by the weight associated with that object 

reference. An object will be identified as garbage only when its weight reaches zero. The 

advantage of this scheme is that it is not necessary to process reference weight tasks in the 

same order that they were generated. This scheme has less communication overhead than 

reference-counting as making a copy of an object reference does not require communicating 

with the PE that has the object. Intuitively this improves the communication performance 

by 50%. The disadvantage is that it requires more space in each object reference for saving 

the weight part. In addition when the weight of an object reference reaches one and that 

reference needs to be copied, the object's weight has to be increased before making a new 

copy of that object reference. An add-reference-weight task has to be generated and sent 

to that object to increase its weight by some value. Associating high weight with each 

newly created object minimizes such add-reference-weight tasks but requires more space 

for the weight field in each object and each object reference. 

3.3 Marking Tree Collector 

Hudak and Keller have proposed algorithms suited to highly parallel distributed 

multicomputer systems [26, 27]. Their algorithms are adaptations of the real-time GC 

algorithm proposed by Steele [50] and Dijkstra et. al., [19]. First, all processors co-

operate to mark all accessible cells, then all processors collect unmarked cells. The 

distributed graph marking represents the major effort in the GC process. A brief description 

of this algorithm is presented below. 

There are two issues involved in parallel graph reductions, namely, the connectivity 

of the computation graph and the propagation of work. A task is the smallest unit of 

work, and a process is a collection of tasks that accomplish some particular goal. Tasks 

propagate between adjacent vertices in the graph and may cross partition boundaries. A 

task t may be represented by a tuple <s ,d> where s is the source vertex and d is the 
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destination vertex. In this respect a task may be viewed as a message from one vertex of 

the graph to another. A key aspect in lazy evaluation graph reduction is the inclusion of 

mechanisms to eagerly invoke computations whose result may not be needed. This 

strategy is intended for increased parallelism. Vital tasks are those computations whose 

outcome is known to be needed. Eager tasks compete with vital ones for system 

resources. Vital tasks may be given higher priority than eager tasks. During the course 

of time, it may be observed that the outcome of an eager task is needed, in this case the 

priority of eager task is raised to that of a vital task. Similarly, the system may discover 

that the outcome of an eager task is not needed — this task and the tasks it spawned are 

now called irrelevant tasks. These tasks may be distributed through the system generating 

an arbitrarily large load in the system. It is necessary for the graph reduction system to 

identify and eliminate such tasks. 

For example, consider the evaluation of the expression if (B, T, F). The boolean 

expression B needs to be evaluated first, if the outcome is true, T is to be evaluated else 

F is to be evaluated. In lazy evaluation, the expressions T and F are evaluated in parallel 

with B. B is vital, T and F are eager. If B evaluates to true then T becomes a vital 

task and F becomes an irrelevant task. 

The other important issue in parallel graph reduction is the possibility of deadlock, 

which in graph reduction corresponds to an expression whose ultimate value is undefined 

(generally denoted 1) and is manifested by a subgraph whose task activity has ceased, yet 

the subgraph's value is being awaited by some other vertex. The language implementation 

needs to discover deadlocked regions of the graph. A deadlocked vertex v can be 

modelled as a vertex reachable from the root but not from any task, because this implies 

that the root depends on v's value yet no task can ever propagate there to compute it. 

Hudak and Keller's algorithm works by dynamically building a spanning tree on 
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the computation graph called the marking tree. Marking is initiated by spawning a mark 

task at the root, which propagates additional mark tasks to the children of the root. These 

mark tasks propagate in the forward direction until an already marked vertex or a leaf node 

is encountered. A return task is then spawned that works its way backward through the 

graph. When all the mark tasks spawned from a vertex v have returned in this manner, a 

return task is recursively spawned on v's parent in the marking tree. To implement this a 

count is maintained in each vertex v of the number of mark tasks that have been spawned 

from it but have not returned, in addition to a pointer to the vertex's parent in the marking 

tree. Marking is complete when a return task reaches the root. 

The main strength of this algorithm is that it is highly parallel and decentralized. 

The marking tree is embedded in the computation graph instead of a centralized stack. 

The other advantage of this algorithm is that it can detect deadlocked vertices and 

irrelevant tasks. Its main weakness is its space overhead. Each vertex needs to keep a 

count of the number of marking tasks spawned from it to the children vertices and a pointer 

to its parent vertex. The maximum number of marking tasks that could exist at any one 

instant of time should be determined and their required space should be reserved for the 

collector to avoid running out of space. In the worst case the number of marking tasks is 

equal to the number of arcs in the graph due to parallel breadth-first strategy of tracing the 

graph. In addition, memory contention due to the two processors (mutator and collector) 

working in parallel needs to be addressed. This scheme needs two messages per remote 

edge per garbage collection, hence the communication overhead of this scheme is quite 

high. 

3.4 Ali's Algorithms for GC in Multicomputer Systems 

In his dissertation, Ali [3] presents an object oriented storage system or OSS. He 

discusses the implementation of garbage collection schemes in a parallel distributed 
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multicomputer system. The primary functions of OSS is to provide the following facilities 

to user programs: create an object, access an object, update an object field and garbage 

collecting of the space of unused objects. The implementation of the OSS in a distributed 

processing environment should allow high parallelism in order to promote the efficient 

execution of parallel programs. The set of operations that provides the functions of the 

OSS defines the user interface to the system. The user does not need to know how these 

operations are implemented — the details of all network operations are invisible to the user. 

Ali proposes a number of distributed garbage collection algorithms. These 

algorithms are adaptations of the mark/sweep algorithm to distributed environments. These 

algorithms can be categorized into four classes: global, local-global, distributed-local and 

distributed real-time. A brief overview of each of these algorithms is given below. 

3.4.1 Global algorithm 

The main feature of Ali's global algorithm [3, 4] is that the execution of the user 

program halts over the whole system during the GC process. The marking phase spans all 

accessible objects in the system. Two global schemes have been proposed. In the first 

scheme, a master PE is responsible for starting GC and controlling the synchronization of 

GC phases. Any other PE that wishes to invoke GC sends a request to the master to start 

a GC. The master starts a global GC by sending a request to each PE to suspend its 

computation and to start marking its own roots and all objects reachable from them. The 

master waits until each PE in the system completes marking of all objects reachable from 

its roots. Then, the master requests each PE to perform a local sweeping and memory 

compaction before resuming normal computation. 

In the second global scheme, any PE can become the master. The PE that first 

runs out of space initiates global GC and becomes master. On initiating global GC normal 
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computation is halted and all PE's co-operate in marking accessible objects. This algorithm 

is faster and more optimal than the first one. 

The main characteristics of Ali's global schemes are: The whole system comes to a 

halt during GC, and these schemes can reclaim all garbage including global cyclic 

structures. They are suitable for loosely coupled multicomputer systems with few 

processors without real-time constraint. 

3.4.2 Local-Global Algorithm 

In this scheme, a combination of local and global GC techniques are used [3, 4]. 

Each PE that runs out of space does a local GC, if the space reclaimed is sufficient it 

continues with the normal computation, otherwise it will invoke global GC. To allow a PE 

to perform local garbage collection, it has to know locally which of its local objects may be 

reachable from remote objects that reside in other PE's. When a reference to a local object 

leaves the boundary of its PE's store, it is assumed accessible in each local garbage 

collection invocation until the next global garbage collection invocation. Assuming a high 

locality of data, the global GC's are rarely invoked. As local GC's are simple and do not 

require much computation time, this scheme is much more efficient than the global 

techniques. But in cases where locality is poor, the number of global GC's may be 

significant and in such a situation, the performance of this scheme will be as poor as the 

completely global scheme. 

3.4.3 Distributed-Local Algorithm 

In a distributed system with many PE's the rate of utilization of local space is not 

uniform. Forcing all PE's to co-operate in the global GC is inefficient, as even PE's that 

may not have any garbage will have to halt. In Ali's distributed-local algorithm, there is 
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no global garbage collection as in the previous schemes. Each PE independently and 

asynchronously performs a local garbage collection. A PE co-operates with the other PE's 

in the system only at the end of its local GC by informing them about remote objects still 

referred by it. Each PE keeps tables of the references to local objects referred from remote 

objects to allow any PE to independently perform its local GC. This scheme is suitable for 

loosely coupled multicomputer system that has many PE's, provides a high locality of 

reference and generates cyclic structures locally. 

3.4.4 Distributed Real-Time Algorithm 

This algorithm is an adaptation of Baker's real-time garbage collection algorithm [8] 

to the distributed environment. It is also an extension to the above distributed-local 

scheme. This algorithm is the last of Ali's algorithms. Since it suggests a real-time 

solution to garbage collection in any distributed system, it is described in greater detail. In 

this case, each memory operation performs a small set of the GC work. Each PE keeps 

tables of references to local objects referred from other objects. Also each PE sends GC 

messages to the other PE's in the system at the end of its local cycle of GC. 

A brief overview of this algorithm is given below. In this case each PE has the 

following: 

• a local heap which is divided into two semispaces (fromspace and 
tospace) whose roles interchange in each local GC cycle. 

• an ODT (Object Descriptor Table) with a fixed size, which keeps track 
of objects in a PE memory. 

• a set of local roots — an OutTable in which references to non-local 
objects are saved temporarily. 

• a MQ (Message Queue) which contains computation messages that 
have been received from the other PE's. 
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• a GQ (Garbage collection Queue) which contains GC messages that 

have been received from the other PE's. 

When local GC is invoked, the following actions are performed in one atomic 

operation: 

1) All local cells accessible from the local roots are moved into the other 

semispace (i.e. from fromspace to tospace). 

2) All moved cells are investigated as follows: 

i) If a cell refers to a local object, the object is moved only if it has 

not already been moved. 
ii) If a cell refers to a non-local object, a copy of the cell is saved on 

the respective entry of the OutTable only if it has not already been 

saved. 

3) When all moved cells are investigated, different sets of references to 

accessible remote objects are stored in their respective entries of the 
OutTable. 

4) All garbage entries in the ODT are collected by scanning the whole 
ODT. 

5) A garbage collection message containing the respective set of 
references to remote objects is sent to every other PE. 

6) Now the local collection is done and the computation can proceed and 
new cells can be allocated in the current semispace. 

The above large atomic operation of GC is partitioned into small operations that are 

interleaved with the primitive memory operations. The task of local GC can be divided 

into two sub-tasks that have to be performed in order. In the first task, all accessible cells 

are moved from fromspace to tospace. References to accessible remote objects are saved 

in the OutTable. In the other sub-task, ODT is scanned to collect garbage entries and send 

GC messages to the other PE's. At the local GC cycle all local accessible objects are in 
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tospace and all non-local accessible objects have copies of their references in the 

OutTable. 

This scheme has essentially the same space overhead as the global-local scheme. 

The most important problem that this algorithm addresses which is not taken care of in 

Baker's algorithm is the problem of how to guarantee moving all accessible objects from 

old semispace into the new semispace before running out of space. This problem has been 

solved by dynamically changing the amount of garbage collection work that has to be done 

by each memory operation to guarantee completion of each local garbage collection cycle. 

The consequence of this solution is that each local garbage collection cycle will be started 

earlier than the true flipping time (time of copying from fromspace to tospace). This 

requires additional space overhead, which is equal to the size of the free area at the end of 

each cycle. In this scheme a reference to an object may be investigated more than once 

since both computation and GC are simultaneously performed. The communication 

overhead here is equal to that in the distributed-local scheme, as messages are sent at the 

end of a garbage collection to all processors that have references to objects in the local 

memory. The other disadvantage of this algorithm is that it can not detect distributed cyclic 

structures. 

3.5 Hughes Distributed GC Algorithm 

Hughes [29] has presented a distributed garbage collection algorithm that is an 

adaptation of the mark/sweep algorithm. In this algorithm, many global garbage collections 

are executed in parallel. A global GC marks nodes by stamping them with the time it 

started, and treats a node marked if its time-stamp is the same as or later than this start time. 

A local GC propagates the time-stamps of root nodes on that processor to the leaves on that 

processor. At the end of a local GC marking messages are sent to remote objects whose 

time-stamps have increased. Each processor keeps track of the earliest global GC for 
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which it has more work to do. When no processor has more work to do for global 

collection T, all nodes with time-stamps less than T can be deleted. 

The system supports a global address space: i.e. it is possible for objects in one 

processor to contain pointers to objects in another. There are two kinds of pointer objects, 

local and remote. Local pointers refer to objects residing in the local memory. Remote 

pointers span across memory boundaries. A remote pointer consists of three indirections, a 

local pointer which points to a remote pointer object on the same processor, the remote 

pointer refers to a root on another processor, and the root contains a local pointer to the 

final object. Roots of a processor are organized off the heap in the form of a table. 

All roots and remote pointers contain a time-stamp. Time-stamps are propagated 

from remote pointers to roots, the time-stamp of a root is always greater than or equal to the 

time-stamp of any pointer to it. All the children of a root bear a time-stamp the same as or 

later than the time-stamp of the root. This is the condition that exists just after a local 

garbage collection, but time-stamps do become out of date until the next garbage collection. 

To keep track of how out of date time-stamps are, each processor maintains a variable redo 

which is the earliest time-stamp which may not have been properly propagated from the 

roots stored on that processor to the remote pointers. Time-stamps less than redo have 

properly propagated from roots to their children, and that greater time-stamps have 

propagated at least to the extent that the children have time-stamps greater or equal to redo. 

After a garbage collection, redo is set to the current time now which is greater than or 

equal to all time-stamps. Any root whose time-stamp is less than the global minimum 

value of redo (minredo) is garbage. All objects in the system whose time-stamp is less 

than minredo are inaccessible, these objects are garbage collected. All PE's co-operate 

in determining minredo. 

The proposed algorithm-is not truly real-time in nature — local computation comes to 
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a halt during local garbage collection. As compared to Hudak's algorithm [26, 27], it can 

not detect irrelevant tasks and deadlocked vertices. It may take a long time to detect 

garbage, but the Hudak and Keller's algorithm guarantees to recover garbage during the 

first GC after the last reference to an object is deleted. Compared to Ali's algorithm, this 

algorithm is efficient in storage utilization. Ali's algorithm has high space overhead as it 

does not distinguish between local and remote pointers, both are represented in the same 

manner increasing storage overhead. An ODT (Object Descriptor Table) is needed to keep 

track of objects in a PE memory in addition to an OutTable to keep references to non-local 

objects. This algorithm can detect and reclaim distributed cyclic structures. 

Since messages need to be sent only after a local garbage collection, these messages 

can be batched together for efficient utilization of the communication medium. The 

disadvantage of this algorithm is that all processors are required to communicate to 

determine the value of minredo. If the number of processors is large this process may take 

a long time delaying reclamation of garbage cells. In addition this introduces high 

communication overhead on the inter-connection network. Hence this algorithm is suited 

for multicomputer systems with small number of processors. 

3.6 Summary 

An overview of previous distributed garbage collection algorithms is presented in 

this chapter. These are adaptations of algorithms developed for uniprocessor systems 

namely mark and sweep, reference-counting and copying collectors. 

Distributed reference-counting has the advantage that it can recover garbage objects 

immediately, but it requires FIFO ordering of reference-count tasks which is difficult to 

satisfy and requires a lot of messages. The Reference-weighting algorithm overcomes this 

problem and also improves utilization of the communication medium. 
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Hudak's marking tree collector is truly real-time in nature. It can detect global 

garbage (including distributed cyclic structures) as well as irrelevant tasks and deadlocked 

nodes in the program graph. This algorithm has high space and communication overhead. 

Ali's algorithms are suited for loosely-coupled multicomputer systems ranging from 

few processors to a large number of processors. Global algorithms are simple to 

implement. Much computational power is wasted as all processors are halted during a 

global garbage collection. These algorithms are suited for systems with few processors 

that have no real-time requirements. Real-time distributed algorithm does not waste much 

computational power as garbage collection proceeds in parallel with graph mutations. This 

algorithm has high space overhead and is suited for systems with large number of 

processors with real-time constraints. Ali's global algorithms can detect global cyclic 

structures, but distributed-local and distributed real-time algorithms are unable to detect and 

reclaim them. 

Hughes algorithm permits global cyclic structures. This algorithm guarantees 

detection of all global garbage but it may take a long time to do so. This algorithm has 

high communication overhead and is suited for systems with a small number of processors. 



CHAPTER 4 

An Algorithm for Garbage Collection in a Distributed System 

4.1 Introduction 

This chapter presents our algorithm. The chapter begins by giving a statement of 

the problem. Then we describe the algorithm and present an informal proof. An analysis 

of distributed garbage collection algorithms is given. An analysis of this algorithm in 

comparison with a global distributed garbage collection algorithm is presented. Evaluation 

of the analytical models are presented. Section 4.2 describes the problem of garbage 

collection in multicomputer systems. Section 4.3 presents an overview of the algorithm. 

Section 4.4 presents a detailed description of the algorithm, the mutator and master 

algorithms and the various data structures used in the algorithm. Section 4.5 presents 

arguments for the correctness of the algorithm. An analysis of distributed garbage 

collection algorithms is presented in Section 4.6. A comparison of global garbage 

collection models with our proposed algorithm is presented. 

4.2 Statement of the Problem 

This algorithm supports a generalized model of a parallel graph reduction system 

(shown in Fig. 1.8). The program graph is partitioned into sub-graphs, each sub-graph 

residing in the local memory of a processor. Each processor evaluates the sub-graph in its 

local memory. During mutation, mutators read nodes, allocate nodes, and make or 

break local or remote edges. The problem is to reclaim local as well as global garbage 

cells with the minimum computational power and communication overhead. 

42 



43 

4.3 Overview of the Algorithm 

The algorithm is based on a loose, message-driven coordination of local garbage 

collections (lgc's) in mutating processors. A mark and sweep algorithm is used for a 

local garbage collection. In the marking phase all reachable nodes in the graph are 

marked. Unmarked local nodes are reclaimed. Nodes reachable from remote memories are 

painted with one of four phase colours. Active remote entries that are still reachable from a 

remote memory are painted with one of three colours (the active colours). These nodes are 

used as roots for further marking. Remote entry nodes which are painted the fourth colour 

(the erase or stale colour) are no longer reachable (i.e. remote entries are reclaimed two 

phases later after they are last referenced). We do not mark from these entries, so they and 

nodes reachable from them are collected as garbage. Thus nodes not reachable from the 

local root, nor from any active remote entry are garbage collected. 

As the system slowly cycles through colour phases, to keep the colour of remote 

nodes up to date with the phase colours, retrace messages are sent once in each phase. 

When the last reference to a remote entry is broken, retracing messages fail to flow, and 

eventually the remote entry's colour becomes stale. Hence the algorithm guarantees to 

reclaim all remote garbage including global cyclic structures. The rate of phase transitions 

determines the rate of collecting global garbage, a slower phase change results in slower 

collection. A master algorithm co-ordinates the system phase changes. The algorithm 

does not require Hro message delivery, but does require fair delivery to prevent deadlock. 

4.4 Algorithm 

The algorithm is described in terms of four-phase global cycles, the contents of 

each node, a set of inter-processor message types, an algorithm executed by a master 

processor(s), and algorithms executed by each mutator. 
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4.4.1 System Phases 

To avoid strict synchronization, four cyclic colour phases are used. Our loose 

synchronization implies that adjacent phases overlap in real-time, so the two colours 

adjacent to the current phase colour are used as protective buffers against erroneous 

collection. The phases are identified by a cyclical sequence of colours: red, blue, green 

and yellow. White implies the absence of any phase colour. The functions 

previousColour, nextColour, and eraseColour map from colour to colour. 

previousColour maps from currentColour to preceding phase colour whereas the function 

nextColour maps from currentColour to the succeeding phase colour. eraseColour(X) is 

equal to nextColour(nextColour(X)) or previousColour(previousColour(X)); 

eraseColour(currentColour) is the colour separated from currentColour by one phase in 

both directions in the colour cycle. Fig. 4.1 shows a pictorial representation of the cyclic 

colour phases. 

staleColour 

previousColour 

currentColour 

nextColour 

Figure 4.1 Pictorial representation of cyclic colour phases. 
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4.4.2 Data Structures and Node Contents 

The format of each node of a graph is shown in Fig. 4.2 in Pascal-like notation. 

Each node has a boolean one bit field (markBit) for marking during a local garbage 

collection. There is a field for the nodeColour. The nodeColour distinguishes locally 

reachable nodes from remotely reachable nodes. Local nodes are painted white, whereas 

remote nodes are painted with phase colours. We assume (with no loss of generality) that 

each node represents two outgoing edges, a left edge and a right edge. Local edges are 

painted white. Remote edges are painted with the phase colour in which it was created 

or last repainted. The destination mutator and the node address to which a link is being 

made are stored in each outgoing remote edge. 

type colour = (red, blue, green, yellow, white) 

type node = record (node definition} 
markBit : boolean; 

nodeColour : colour; 

edges : array [1..2] of record 

edgeColour:colour; 

mutator : 0..mutatorCount - 1; 

node : O..localNodeCount - 1; 
end record; 

end record; 

Figure 4.2 Representation of a node in the graph. 

4.4.3 Message Types 

There are six types of messages employed in our scheme, they are: 

changePhase — master signalling a phase change 
forceLgc — master requests that lgc's be undertaken, if none 

has been started on the phase indicated by the 
message. 

lgcStart — mutator reports that it is starting an lgc. 
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lgcDone — a mutator reports completion of an lgc. 

paintNewLink — a mutator creates a remote edge and requests the 

destination mutator that the destination node be 

painted. 
refreshLink — an lgc discovers a live remote edge and requests 

that the destination node be re-painted. 

The format of a message in Pascal-like notation is shown in Fig. 4.3. All 

messages carry a colour tag, the source and destination processor addresses, and message-

specific information. For every message type, there is a corresponding acknowledgement 

message. Every message sender increments a count for each type of message sent. When 

acknowledgements are received, the count is decremented. Acknowledgements return the 

original contents of the message with a modifier bit turned on. Thus the sender receives an 

echo of the information sent. 

type messageClass = (changePhase, forceLgc, IgcStart,IgcDone, paintNewLink, 

refreshLink); 

type message = record 

class : messageClass; 
phase : colour; 

source : 0..mutatorCount - 1; 

destination 

nodeAddress 

end record; 

: 0..mutatorCount - 1; 

: 0..nodeCount - 1; 

{ message type 

{ phase colour of mutator 

{ source mutator address 

( destination mutator address ) 

{ node address to paint 

Figure 4.3 Representation of a message. 

4.4.4 Master Algorithm 

One or more processors are specialized as a tree of masters. The number of master 

processors is dependent on the size of the system. Each master maintains the local garbage 

collection status of a subset of processors. Co-ordination exists among master processors 

to determine the overall lgc status of all processors. Assume for now without loss of 
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generality only one master is required. The master determines when phase changes occur. 

It keeps counts of outstanding changePhase and forceLgc messages, and maintains a table 

mutatorStatus which records the lgc status of each mutator in the current phase. 

A mutator notifies the master when it starts an lgc by sending an lgcStart message 

and an IgcDone message on completing lgc. No action is taken if the colour tag on the 

lgc message does not match with that of master (i.e. late lgcStart and lgcDone reports from 

the previous phase are ignored). 

There are three states for a mutator in mutatorStatus table. A processor is in the 

noLgcStart state if it has not yet started an lgc in the current phase. On receiving the first 

lgcStart message, its status is updated to lgcStart state. On completing the first lgc the 

master sets the processor status to lgcDone. The mutator status remains in the lgcDone 

state no matter how many lgc's it completes in the current phase. 

The master algorithm is shown in Fig. 4.4. A phase change can be initiated by the 

master if all mutators have reported lgcDone at least once during the current phase, i.e. they 

are not in the noLgcStart state and the counts of outstanding changePhase and forceLgc 

messages (of previous phase) are zero. To start a new phase, the master sets its 

masterColour variable to nextColour(masterColour), sets all mutatorStatus's to noLgcStart 

and broadcasts a changePhase message to every processor declaring the colour of the new 

phase. Although the master's phase change may be unblocked, it may wait some minimal 

time — expectedPhaseTime — before it starts a new phase. If elapsed time approaches 

expectedPhaseTime with initial lgc's not reported by some mutators, the master sends a 

forceLgc message to the delinquent mutators. The expectedPhaseTime and the forceLgc's 

are optional to the working of the algorithm. 
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algorithm master 

on arrival of IgcStart message ( receive an IgcStart message } 

begin 

case mutatorStatus[i] of 

noLgcStart mutatorStatus[i] = IgcStart; 

IgcDone mutatorStatus[i] = IgcDone 

end 

end; 

on arrival of IgcDone message ( receive an IgcDone message } 

begin 

case mutatorStatus[i] of 

IgcStart mutatorStatus[i] = IgcDone; 

IgcDone mutatorStatus[i] = IgcDone 

end 

checkMutatorStatus(); ( check mutators status } 

end; 

procedure checkMutatorStatus(); 

noOfMutatorsDoneLgc := 0; 

for i := 1 to mutatorCount do 

if mutatorStatus[i] = IgcDone) then { count mutators that have done at least one lgc 

noOfMutatorsDoneLgc := noOfMutatorsDoneLgc + 1; 

if (noOfMutatorsDoneLgc >= thresholdLevel) then 

changePePhase() ( change system phase } 

end; 

procedure changePePhase(); 

masterPhase = nextColour(masterPhase); 

for i := 1 to mutatorCount do 

sendMsg(changePhase, i) 

end; 

{ send phaseChange msgs } 

Figure 4.4 Master Algorithm. 

4.4.5 Mutator Algorithm 

Mutators are in one of two states, mutation or local garbage collection. Messages 
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from other processors periodically interrupt these activities. Fig. 4.5 illustrates the mutator 

algorithm. The mutation operations are illustrated in Fig. 4.6. Mutators maintain a local 

phase colour register (localColour), four outstanding message counters 

(paintNewLinkOut, refreshLinkOut, lgcStartOut and lgcDoneOut), a pointer to the local 

root of the graph (localRoot) and a pointer to the free list. 

When a node is allocated, its colour (node.nodeColour) is set to white. When a 

local edge is made, the colour of the edge (node.edge[x].edgeColour) is set to white. 

When a remote edge is constructed, the edge colour is set to the mutator's current colour 

(localColour), a paintNewLink message containing the current colour (localColour) is sent 

to the destination mutator, and the local counter — paintNewLinkOut — is incremented. 

New mutation phases block until the paintNewLinkOut message counter is zero. 

algorithm mutator 

while (true) { begin an infinite loop } 
if (freeList is not empty) then 

mutation; { mutation } 
else 

localGarbageCollection { garbage collection } 
end; ( end while loop ) 

procedure mutation(); 

wait (paintNewLinkOut = zero) { previous mutation messages unacknowledged } 

{ delay starting of mutation phase } 
mutate { do mutation } 

end; 

procedure localGarbageCollection(); 
wait (IgcDoneOut = zero and refreshLinkOut = zero) 

{ previous Igc messages unacknowledged } 

{ delay starting of local garbage collection } 
localGarbageCollect { do a local garbage collection } 

end; 

Figure 4.5 Mutator algorithm. 
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algorithm mutate 

procedure allocateNode(); 

begin 

if freeList is empty then 

localGarbageCollection(); 

else 

begin 

node := remove first node from freeList; 

node.nodeColour := colour.white 

end 

end; 

{ allocate a node } 

{ if free list is empty, start an lgc} 

remove a node from free list } 

{ paint node white } 

procedure makeLink(sourceNode, destinationNode); 

begin 

if destinationNode is in local memory then { destination node is in the same ) 

{ memory as source node } 

makeLocalLink(sourceNode, destinationNode); 

else 

begin 

makeRemoteLink(sourceNode, destinationNode); 

sendMsg(newLinkPaint, destinationProcessor) 

end {send a new link paint message } 

end; 

procedure breakLink(sourceNode, destinationNode); 
begin 

sourceNode.linkAddress := null 

end; 
{ replace link address by a null value } 

Figure 4.6 Mutation Operations. 
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algorithm localGarbageCollection 

procedure localGarbageCollection(); 

begin 

sendMsg(IgcStart, master); 

markPhase(); 

remotelyOwnedCells(); 

sweepPhase(); 

sendMsg(IgcDone, master) 

end; 

{ send start lgc message to master } 

( do marking } 

{ mark remotely owned nodes in graph } 

{ sweep memory and reclaim unmarked cells } 

{ send lgc done message to master } 

procedure markPhase(); 
begin 

for i := graph Root to allNodes do 

node.markBit := clear; 

for i := graph Root to allNodes do 
if node.nodeColour = colour.white then 

if node unmarked then 

node.markBit := true 

else 

sendMsg(refreshPaint, destinationProcessor) 
end; 

reset all mark bits } 

( an unmarked local node ) 

( set mark bit to true ) 

( send a refresh paint message } 

procedure remotelyOwnedCel Is(); 
begin 

for i := graph Root to allNodes do 
if (node.nodeColour not white) and ( node.nodeColour not equal to staleColour ) then 

mark from this node 
end; 

procedure sweepPhase(); 
begin 

for i := graph Root to allNodes do 
if node is unmarked then 

insert node into freeList 
end; 

( node is reachable from remote memory } 

{ mark from this node as root ) 

Figure 4.7 Local Garbage Collection Algorithm. 
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New lgc phases block until the counters lgcDoneOut and refreshLinkOut are zero. 

At the beginning of an lgc an lgcStart message is sent to the master. Almost any variant of 

non-compacting mark-sweep garbage collection can be adapted for the lgc's. We describe 

the simplest. 1) All markBit's are reset. 2) The graph is traversed from localRoot. The 

markBit's of all reachable local nodes are set. When the graph has an edge to another 

memory, if the colour of that edge is not equal to localColour, a refreshLink message is 

sent with the current localColour, refreshLinkOut is incremented, and the edge is marked 

with localColour. 3) The local memory is scanned for unmarked nodes with colour not 

equal to eraseColour(localColour), and the mark procedure (2) is carried out from all such 

nodes. Nodes not reachable at all, and nodes reachable only from nodes of the eraseColour 

are not marked. (4) All unmarked nodes are gathered in a linked free list. 

An lgcDone message is sent only when refreshLinkOut reverts to zero. This may 

occur after mutation has resumed. The lgcDone message carries the colour used in the lgc, 

even if the phase changes in the meantime. The local garbage collection algorithm is 

illustrated in Fig. 4.7. 

4.4.6 Response to Messages 

Mutator's respond to messages in the following manners: 1) paintNewLink and 

refreshLink: The specific local node is painted with the colour carried by the message. 2) 

changePhase: Mutators set their localColour register to nextColour(localColour), unless 

they are engaged in an lgc, in which case they defer the reset of localColour until the lgc 

is complete. 3) forceLgc: Mutators begin an lgc if they have not completed one in the 

phase indicated by the colour carried by the message. Acknowledgements to all message 

types are generated and received as described earlier. Fig. 4.8 illustrates the response to 

various messages. 
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algorithm responseToMessages 

on arrival of paintNewLink message 

begin 

node.nodeColour := paintNewLink.colour; 

sendMsg(ackPaintNewLlnk, i) 

end; 

on arrival of refreshLink message 

begin 

node.nodeColour := paintNewLink.colour; 

sendMsg(ackPaintNewLlnk, i) 

end; 

on arrival of changePhase message 

begin 

mutator.localColour := changePhase.colour; 

sendMsg(ackChangePhase, master) 

end; 

on arrival of forceLgc message 

begin 

if noLgcStarted in currentPhase then 

begin 

startLocalGarbageCollection; 

sendMsg(startLgc, master) 

end 

end; 

{ receiving a paintNewLink message 

( paint local node with message colour ) 

{ send acknowledgement message 

{ receiving a refreshLink message 

( paint local node with message colour 

{ send acknowledgement message 

( receiving a changePhase message 

change mutator colour to msg colour 

( receiving a forceLgc message 

{ if Igc not started in current phase 

{ start an Igc} 

Figure 4.8 Response to Messages. 

4.4.7 Initial Conditions 

Initially, the distributed memory is loaded with the graph to be processed, all 

processors are given red as their initial colour (it could as well be any of the other phase 

colours) and all remote edges and all remotely reachable nodes painted red. All message 

acknowledgement counts are set to zero, and the mutatorStatus array is set to all 



54 

noLgcStart. 

4.5 Arguments for Correctness of the Algorithm 

In this section we present an argument for the correctness of the algorithm. We 

need to establish three properties: 

1) no sub-graph that is reachable from any local root is collected as garbage 

2) all sub-graphs that are unreachable from any root are eventually 

collected as garbage. 

3) assuming fair delivery of messages, deadlock does not occur. 

To prove the above properties, recall the nature of phase cycles. The phase cycles 

are characterized by: 

i) The processors follow a loosely synchronized cycle of four colour 

phases. 
ii) It is possible for adjacent phases to overlap in the sense that local 

garbage collections from two phases are active at once. 
iii) It is not possible for non-adjacent phases to overlap. 

To prove the first two properties: Each processor performs a local garbage 

collection when it runs out of local heap space and reclaims all garbage cells that are locally 

referenced. Remote nodes (i.e. nodes referenced from remote processors) are painted with 

phase colours. refreshPaint messages are sent to remote processors for repainting all 

active nodes with the colour of the current phase. Hence it is ensured that every active 

remote link is painted in a phase. The next mutation phase is not begun until all the 

acknowledgement messages for these repaint messages are received. This guarantees that 

no active remote nodes are collected as garbage. 

Inactive remote nodes lose links with nodes in the graph. Their colour is not 

refreshed in ensuing phases. Any node that was last painted with the staleColour is 
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considered as garbage. These nodes and all nodes reachable only from them are reclaimed. 

Thus global cyclic structures having links spanning across memories are guaranteed to be 

reclaimed in two phases. Although adjacent phases can overlap, all of the repainting 

messages of a phase must have taken effect (i.e. painted the remote node) before the next 

phase begins. 

A process in a concurrent system is said to be in a deadlocked state if is waiting for 

an event that can never occur. A situation may arise with two concurrent processes in 

which both can not proceed as each of them is waiting for a resource the other is holding. 

In a distributed algorithm deadlocks can be expensive or disastrous, an algorithm must be 

free from deadlocks. We can prove that the present algorithm is free from deadlock from 

these observations: local garbage collection blocks only due to unacknowledged 

paintNewLink messages or an unacknowledged lgcDone message of the previous lgc. 

Similarly starting a mutation phase blocks until all refreshLink messages are 

acknowledged. Phase change by the master blocks until all phase change messages and 

forceLgc messages are acknowledged. Assuming that the message deliver is fair (not 

necessarily FIFO) none of the messages get blocked preventing proper operation of the 

overall algorithm. 

4.6 Analysis of the Algorithm 

In this section we present an analytical model of our algorithm. First we present a 

model of a globally synchronous garbage collection algorithm. This model motivates and 

justifies our present algorithm. A cost benefit analysis of our loosely-synchronous 

algorithm in comparison with the cost of A global algorithm is presented. The analytical 

results derived here serve as a basis for our simulator model and simulation experiments 

that are presented in the next chapter. 
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4.6.1 Cost of Global GC in a Distributed System. 

In globally synchronous garbage collection all processors collect garbage at once. 

Some processors may have run of space before the starting of a global garbage collection, 

these processors have to wait until a garbage collection is initiated. Other processors have 

remaining free space when the garbage collection begins. The times at which processors 

need to do a garbage collection can be assumed to be normally distributed as shown in the 

Fig. 4.9. 

The vertical line TGC (Time of Garbage Collection) is the starting time of a global 

garbage collection. The area under the curve to the left of TGC is a measure of the number 

of processors exhausting their storage before the start of a global garbage collection. This 

represents CPU cycles lost because of idling while waiting for a garbage collection. The 

area to the right of TGC is a measure of the proportion of processors that do a premature 

garbage collection. These processors do a garbage collection in spite of having free space. 

The extra free cells collected may not be utilized until the next garbage collection. This 

results in the loss of useful cycles spent in collecting these extra cells. If TGC is moved to 

left, i.e. garbage collection initiated as soon as one or a few processors have run out of 

space, the CPU cycles lost by idling processors decreases and the cycles lost by 

processors that do a premature garbage collection increases. Conversely by moving TGC 

to the right (i.e. delaying garbage collection until most of the processors have run out of 

space), more CPU cycles are lost by idling processors and cycles lost by premature 

garbage collection decreases. 

The cost of any global garbage collection depends on the following parameters: 

CCPC — Cells Consumed Per Cycle 
CRTC — Cycles required to reclaim a Cell 
TGC — Time of GC 
TOMi — Time Out of Memory for PE i 
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MRTC — Messages Required to Reclaim a Cell 

The total number of CPU cycles lost is the sum of the cycles lost by idling 

processors and the number of cycles lost because of premature garbage collection. The total 

number of CPU cycles lost is given by the following equation: 

N1 N2 

lost cycles =1, (TGC — TOM FE ) +1 (TOM FE — TGC) * CCPC *CRTC 
PE PE 

N1 = number of processors idling due to delayed garbage collection 

N2 = number of processors performing premature garbage collections. 

Population of 
Processors 

Processors 
idle waiting 
for collection 

TGC 

Free space 
collected 
& not used 

Distribution of Inter-GC Times 

Figure 4.9 Distribution of cost in a global Garbage Collection scheme. 

There is a cost associated with each garbage collection message that needs to be sent 

during garbage collection (due to remote edges). The cost of messages can be 

approximated by the following equation: 

N2 

wasted messages =1 (TOM FE — TGC) * CCPC * MRTR 
PE 

The total cost of garbage collection is the sum of the cost due to lost cycles as well 
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as the cost of wasted messages. An evaluation of the above model was conducted to 

observe the variation of the number of lost cycles with a varying TGC. The analysis was 

done on a system having a normal distribution (as shown in Fig. 4.9) with a mean time of 

3000 units and a standard deviation of 1000 and 750. TGC was varied from 1500 units to 

6500 units in increments of 50 units. The number of lost cycles for each value of TGC 

was recorded. Low (premature starting of GC) as well as high value of TGC 

(postponement of GC) increases the number of cycles lost during a global garbage 

collection. There is a range of TGC values for which the number of lost cycles is 

minimum. Irrespective of the time of starting a global collection a certain number of cycles 

is always lost. 

4.6.2 Lost memory model 

In this section we present a model to account for lost memory in our algorithm. As 

mentioned in the earlier discussions our algorithm is characterized by independent lgc's 

and global phases. Mutators perform a local garbage collection whenever they run out of 

local heap space. Assuming good locality in the program graph, mutators will recover 

most of the garbage during a local garbage collection. Local garbage is recovered 

independent of the phase changes. 

Two phases are required to recover global garbage. The remote garbage generated 

accumulates through a two phase length period. Assuming a uniform generation of remote 

edges, some percentage of memory is always lost due to unreclaimed remote garbage. 

A cost analysis of this algorithm is given below: 

Let, m = size of memory in each mutator. 
r = 0.5 = storage theoretically freeable in each lgc. 
x = proportion of memory not reclaimable due to remote garbage not 

being discovered 
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1 = memory lost till phase change. 

Then memory reclaimed per phase is given by (m — l) * 0.5 — 1 

An evaluation of the above model was conducted to observe the behaviour of the 

algorithm for varying values of x and phase lengths. The results are shown in Fig. 4.10. 

When x is low the percentage of local to remote links is high (i.e. only a few remote links 

are created). Memory loss due to accumulating remote garbage is low. The accumulating 

losses remain low even for longer phases. As x increases, the accumulating memory 

losses increase rapidly with increasing length of phases. 
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Figure 4.10 Variation of memory loss with phase length. 

The cost of messages (newLinkPaint and refreshPaint) is estimated next. Each 

newly created remote edge requires a newLinkPaint message. Once in a phase we need to 

send refreshPaint message for every active remote edge. Let us define r as the ratio of 
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newly created remote edges to the sum of new and static remote edges, i.e. 

newremote 
r — (newremote + static ) 

As mentioned earlier refreshPaint messages are sent only once in a phase during the 

first lgc. After the first lgc the message traffic in a the system is only due to 

newLinkPaint messages. The number of newLinkPaint messages sent depends on the 

number of new remote links made. For a given value of r, the number of messages per 

lgc decreases with an increasing phase length. A lower value of r decreases the rate of 

generation of new remote edges. Hence the number of newLinkPaint messages decreases. 

The analysis was conducted on a system with a memory size of 106 cells, for different 

values of r (ranging from 0.09 to 0.33) and phase lengths (from 1 to 48 lgc's per phase) 

to observe the variation of message load with phase length. The simulation results obtained 

are shown in Fig. 4.11. 
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Figure 4.11 Variation of number of messages/lgc with phase length. 
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4.7 Conclusions 

This chapter presented our algorithm for garbage collection in a parallel distributed 

system. This algorithm overcomes deficiencies present in the existing algorithms; it 

supports a generalized model of parallel graph reduction and guarantees to reclaim all global 

garbage including cyclic structures in two phases. 

The other major strength of the algorithm is the flexibility provided to the system 

designer in optimizing the performance by tuning certain parameters such as the phase 

length and the ratio of local to remote links in the collection scheme. 

A global garbage collection scheme has a cost associated with it in terms of the lost 

CPU cycles and wasted messages. A non-zero cost is always associated with this 

algorithm no matter when the global garbage collection is done. 

The lost memory model of our algorithm shows the dependency of the overall cost 

of the algorithm on the phase length and the percentage of generated remote links. The 

percentage of remote links created depends on the locality in the partitioning of the program 

graph. The algorithm and the analytical model presented here is validated by simulation. 

The next chapter presents the simulator and the results obtained. 



CHAPTER 5 

Simulation 

5.1 Introduction 

In this chapter we present simulations of our algorithm. The objective of the 

simulator is to validate the working of the proposed algorithm and to analyze its 

performance. The simulator models a generalized parallel graph reduction system that uses 

the proposed garbage collection algorithm for memory reclamation. Experiments were 

conducted to verify the algorithm, and observe phase transitions and other performance 

characteristics. A description of the experiments and their analysis is presented. 

The simulator was implemented in Turing-Plus, a concurrent programming 

language. Some key features of this language are presented in section 5.2. The design of 

the simulator is presented in section 5.3. Section 5.4 describes the implementation of the 

simulator. Section 5.5 presents the simulation experiments conducted and the results 

obtained. 

5.2 Turing-Plus language 

Turing-Plus is a concurrent programming language that is well-suited for writing 

operating systems, and low level kernel modules like device drivers. The key features of 

this language are its concise and expressive syntax, graceful and efficient treatment of 

errors, good software engineering features like modules and mathematically precise 

language definition. The language is free from various inconsistencies and insecurities that 

are prevalent in languages like Pascal and 'C'. The non-concurrent features of Turing Plus 

are similar to that of Pascal. Concurrency features include re-entrant procedures and 

functions, monitors (for mutual exclusion), wait and signal (for interprocess 
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communication) conditions. 

Sometimes several processes make use of similar algorithms. Processes can share 

algorithms by calling the same procedure. All procedures and functions in Turing-Plus are 

re-entrant. Re-entrant procedures and functions are essential for software such as 

operating systems as they make the software easier to understand, and make the code 

smaller. 

When processes need to update common data, the data may be corrupted if more 

than one update takes place in parallel. Monitors are provided in a concurrent 

programming language to guarantee mutually exclusive access to common data. A monitor 

can be considered to be a fence around the data; all code accessing the data is gathered into 

procedures and functions and moved inside the fence. Processes wishing to access the data 

do so by entering a gate or entry in the fence, to execute one of these procedures or 

functions. The monitor guarantees that only one process is active inside the fence at a 

given time. 

Concurrent processes must synchronize their activities. A typical situation occurs 

when processes compete for shared resources. Once a resource is allocated to one process, 

another process needing the resource should be blocked until the first process releases it. A 

processor blocks itself by executing the wait statement if the resource is not available. The 

process that is inside the monitor after relinquishing the shared data executes the signal 

statement to wake up one waiting process ( if there is one) before exiting the monitor. If 

there is no waiting process, the signaler just continues. 

5.3 Design of the Simulator Model 

In this section we present the simulator model of our algorithm. We model a 

parallel graph reduction system that uses our proposed garbage collection algorithm for 
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memory reclamation. The mutator and the master processors are represented as 

processes. Modelling a distributed algorithm is quite complex due to the parallel events 

that occur in a distributed system. The logical view of concurrent processes facilitated by 

the language makes the understanding of the simulator easier and expresses the underlying 

distributed system elegantly. The facility of modules simplifies the simulator design as it 

encourages good software engineering practices. 

One of the key elements in a simulation study is the load used. The data used for 

simulation must be representative of the real-world environment. Generally this data is 

acquired from real systems over long periods of time. These include reference strings 

(trace of the memory addresses generated by an executing computer program), process 

and work load statistics. The advantage of using such loads is that the results will be 

more realistic. The major drawback of real data is that they consume a great deal of 

storage. For example a reference string may represent millions of addresses referenced in 

a second of real execution time, and each reference may require several bytes of storage to 

record the address and the type of reference. This can result in a very unwieldy body of 

information that is both time and space consuming. 

Synthetic loads are generated from a model. They are generated on the fly hence 

do not require much storage. They have the advantage of being flexible (simple 

modifications to a few parameters can produce a load with different characteristics) and 

reproducible (the same load can be generated when needed by keeping the parameter 

settings the same). However, caution should be exercised before drawing conclusions 

based on these synthetic loads; their representativeness of real systems must be determined. 

Parallel graph reduction as a way of implementing functional languages is relatively 

a new idea. This concept is still in the research phase, many underlying practical issues 

have not yet been fully understood. Moreover, there is no literature available on existing 
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parallel graph reduction systems. In our simulations we had the option to use programs 

written in a functional language (such as Lisp or Miranda) as a working load. Translating 

these programs to an equivalent parallel graph reduction system is not simple. Moreover 

the results would be dependent on specific loads. To overcome these problems we use a 

synthetic load. As mentioned above this approach gives flexible and reproducible results as 

well as generalizes the model. 

5.4 Implementation of the Simulator 

As mentioned earlier each mutator and the master are implemented as processes. 

Each mutator has a local colour, a free list, a pointer to a local graph, counters for 

outstanding messages, and a local clock. The master process has the mutator status table 

(to keep track of the lgc status of mutators in the current phase), a local clock and 

counters for outstanding messages. All shared data such as message buffers are kept in a 

critical section and buffer operations are done inside a monitor. 

The simulator load is generated dynamically based on probability distributions. The 

random mutator model recognizes three basic graph reduction operations namely : 

i) Allocate a node. 
ii) Make a link 
iii) Break a link. 

Each of these random operations is associated with a probability of occurrence. 

There is a simulation time associated with each of these events required to execute it 

(relative times rather than absolute values). In the first operation of allocating a node, a 

cell is removed from the free list and inserted into the graph at some random location. The 

point of insertion in the graph is determined by a random walk through the graph. This is 

started from the root of the graph. The inserted cell is painted white. This random walk 
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ensures a uniformly grown graph. 

In the second operation, a link is made between two nodes of the graph. This 

operation may be either local or remote. As in the allocate operation, a random search 

through the graph is done to identify a source node. To make a link locally, a random 

destination node is identified in the same subgraph. For a remote link operation the 

destination node is identified in a remote subgraph. A newly made link may result in a 

cyclic structure. Even self cycles (a node having a link to itself) are permitted. 

In the case of making a remote link, a destination processor is randomly chosen. A 

random walk is done through the remote graph to identify a destination node. The 

destination processor address, destination node address, and the current phase colour is 

registered in the source node of the newly created remote link. A newLinkPaint message 

is sent from the source processor to the destination processor. The destination processor 

responds to this message by painting the destination node in its graph with the colour 

carried by the message and sends back an acknowledgement message. 

In the third operation, a link is broken. This could be either a local or a remote 

operation. A link is randomly selected in the graph, the destination processor and the node 

address is replaced by a null value to indicate a deleted edge. 

On executing a random event, a mutator's clock is advanced by the time associated 

with that event. Mutators (and the master processor) are scheduled based on their 

simulated timers. The scheduler compares the clocks of all processes and identifies a 

process with the lowest clock. This process is signalled, the signalled process wakes up 

and all other processes remain blocked in the waiting state. This scheduling imitates the 

parallel operations as the clock of a process is frozen until it is woken up and it advances 

only when it is being scheduled. Thus all processor clocks advance in a step-by-step. 
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fashion. 

In order to bypass initial transient behaviour, an initial graph is built in all mutators. 

This makes it possible to carry out random searches through the graph from the very 

beginning. This helps to bring the system to steady state more quickly. 

5.5 Simulation Experiments 

In this section we describe the simulation experiments that were conducted. The 

objective of the experiments were to: 

i) Verify the working of the algorithm 
ii) Determine the percentage of memory loss for varying phase lengths. 
iii) Observe the variation in the number of messages per lgc with different 

phase lengths. 
iv) Observe the effect of interprocessor communication delay on the cost of 

the algorithm. 

In each simulation run, the following statistics are generated: number of cells 

marked, number of cells reclaimed, number of newLinkPaint messages, number of 

refreshLinkPaint messages, the wait time to start an lgc (lgcWaitingTime) and mutation 

(mutationWaitingTime). Starting of a mutation phase is blocked until all the outstanding 

refreshLinkPaint messages are acknowledged and starting of lgc is blocked until all the 

outstanding newLinkPaint messages are acknowledged. The details of the experiments are 

given below. 

5.5.1 Verification of Phase Transitions 

As said before, the simulator load is determined by the probability distribution of 

graph operations. The percentage of local to remote links determines the number of remote 

edges created which also accounts for the number of messages generated in the system. 

The duration of a phase is determined by the average number of lgc's per processor in a 
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Figure 5.1 Illustration of phase changes (system with 16 processors, 

phase length of 5 lgc's/phase) 
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Figure 5.2 illustration of phase changes (system with 16 processors, 
phase length of 2.5 lgc's/phase). 

The simulator was run with a constant probability distributions and a fixed ratio of 

local to remote links for different varying phase lengths. The results obtained are illustrated 

in Fig. 5.1 and 5.2. The plots show the variation in memory reclamations with the phase 

transitions. Each point on the graph indicates completion of an lgc. The point with a bar 
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on top indicates a phase change. The number of cells reclaimed from lgc to lgc gradually 

declines in a phase. With a phase transition the number of reclaimed cells shoots up. This 

is due to the reclamation of global garbage. As mentioned earlier, remote garbage cells are 

reclaimed two phases after they are last painted. In the first phase transition there is no 

increase in the number of reclaimed cells. The number of reclaimed cells continues to 

decrease in the second phase since no global garbage is ready to be reclaimed in this phase. 

With an increasing phase length, the percentage of memory loss increases. During 

each local garbage collection, all local garbage is reclaimed but the remote garbage is not 

reclaimed. The unreclaimed global garbage contributes to the memory loss. In the steady 

state the percentage of memory loss remains approximately constant for a given phase 

length. The percentage memory loss increases with increasing phase length. A decrease 

in the percentage of remote links lowers the memory loss. This saw tooth response is in 

accordance with the expected response from the algorithm. These results are in accordance 

with the analytical model shown in Fig. 4.7 in Chapter 4. 

5.5.2 Variation of Message Load with Phase Length 

One of the key characteristics of our algorithm is that the number of messages 

required for each newly made remote link is constant. Each remote link contributes to two 

messages per phase. A refreshLinkPaint message is sent for every active remote link 

during the first lgc in a phase. During the subsequent lgc's these messages are not sent. 

For every new remote link created a newLinkPaint message is sent during the mutation 

phase. As the number of lgc's per phase i.e. the phase length increases, the message load 

is contributed mainly by the newly created remote edges (by newLinkPaint messages). The 

contribution of refreshLinkPaint messages is restricted to the first lgc. Hence the number 

of messages per phase per processor decreases with the increasing phase length. The 
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converse of this statement is that the number of cells reclaimed per message increases with 

an increasing phase length. 
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Figure 5.3 Variation of cells reclaimed per message with phase length. 

Simulations were conducted to observe the variation of message load (in terms of 

the number of cells reclaimed per message in a phase) with varying phase length. The 

results obtained with phase length varying from 1.5 to 5 lgc's per phase is shown in the 

Fig. 5.3. The number of cells reclaimed per message remained approximately constant. 

As stated before we expected the average number of cells per message to increase with 

increasing phase length. The discrepancy in the results may possibly be attributed to the 

simplifications assumed in the simulator design as well as the synthetic load. Nevertheless 

our argument remains convincing, but more work is needed to substantiate this claim. 

5.5.3 Effect of Network Delay on Waiting Time. 

The message transmission delay is dependent on the inter-connection network in the 

system. Delay in the communication network is due to circuit switching, limited network 

bandwidth, and congested and broken links. The design of an appropriate inter-

connection network is crucial to the performance of any loosely-coupled distributed 
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system. 

In a parallel graph reduction system, message delay plays an important role. 

Mutators communicate with the master processor at the beginning and end of every local 

garbage collection. Also the master processor needs to communicate with the mutators 

during phase transitions. The mutator messages undergo master processing delay in 

addition to the communication delay. The message delay affects the waiting time of 

mutators. A mutator will not begin a new mutation phase until it receives 

acknowledgement messages for all previous newLinkPaint messages. Similarly a local 

garbage collection is not begun until all acknowledgement messages for previous 

refreshLinkPaint messages are received. 
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Figure 5.4 Variation of waiting time with message transmission time (system 
with 16 processors, phase length varying from 1 to 5 lgc's per phase). 

An experiment was conducted to observe the effect of message transmission delay 

on the mutator waiting time. The simulator was run with a constant phase length with a 

varying message delay; the corresponding waiting times were observed. The experiment 
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was repeated for different memory sizes. The plots shown in Fig. 5.4 illustrate the results 

obtained. The waiting time increases non linearly with the message delay. Assuming 

good locality in the system we can say that most of the time mutators need to communicate 

with their neighbors so that the communication delay will be reduced significantly. The 

locality depends on the partitioning of program graph and is crucial to the performance of 

any parallel functional language. But the locality factor was not taken into consideration in 

our simulator model. 

5.6 Conclusions 

This chapter presented the design of the simulator model and discussed the 

experiments conducted. The simulation results are largely in accordance with the expected 

behaviour of the algorithm. The synthetic work load enabled us to verify the algorithm. 

The work load did not take into consideration the issues involved in a parallel graph 

reduction system such as partitioning of the program graph, locality and the nature of 

reduction scheduing. 

The results in Fig. 5.1 and 5.2 show the phase transition behaviour, reclamation of 

global garbage, and the resultant memory loss with varying phase lengths. From the 

simulations conducted on systems with different number of processors (4, 8, 16 and 32 

processors), memory sizes (1KBytes, 2KBytes, 4KBytes per processor), loads (different 

probability distributions) and phase lengths (from 1 to 5 lgc's per processor per phase) it 

seems that the algorithm is sound and robust. The experiments to observe the variation in 

the message load with increasing phase lengths did not give the results as expected (Fig. 

5.3). The results shown in Fig. 5.4 depict the effect of inter-communication network 

delay on the overall cost of the algorithm in terms of the waiting delays. These simulation 

results provide insight into the working of a parallel graph reduction system and must be 

taken into consideration for optimal performance. 



CHAPTER 6 

Petri Net Modelling of the Algorithm 

6.1 Introduction 

This chapter presents a Petri Net model of the algorithm. Petri nets are a tool for 

the study of systems [43]. Modelling refers to the study of a phenomenon indirectly 

through a simplified abstract representation of the phenomenon. Petri nets have been found 

to be useful in modelling systems exhibiting concurrency and parallelism. They have 

been used in the modelling of diverse systems ranging from computers to social and legal 

systems. Distributed algorithms are quite complex to model and analyze mainly due to the 

concurrent activities in a distributed system. Petri nets have been used in the modelling of 

distributed algorithms [9]. The analysis techniques of Petri nets can be applied to these 

models to verify the correctness of algorithms. This is the motivating factor in our 

approach. We model the proposed distributed garbage collection algorithm in Petri nets 

and apply some proof techniques to verify some properties of the algorithm. The Petri 

nets help to better understand and debug the algorithm. 

In Section 6.2 we describe the application of Petri net theory to modelling and 

analysis of systems. The definitions for the basic Petri net are presented in the Section 

6.2.1. In order to enhance the modelling and decision power of Petri nets, many 

extensions and modifications have been suggested to the basic Petri net model. These 

enhancements are discussed in the Section 6.2.2. Once the system under investigation 

has been modelled as a Petri net, it is to be analyzed. The analysis problems of Petri nets 

are presented in Section 6.3.1. There are two well known analysis techniques namely 

marked graphs and the linear algebraic method. Section 6.3.2 describes these 

techniques. The linear algebraic representation using matrices is presented in Section 

6.3.3. The concept of S and T invariants is introduced in Section 6.3.4. Section 6.5 

describes the Petri net model of our algorithm and a proof based on the S-invariants. 
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6.2 Petri Net Theory and Modelling 

Petri nets are abstract, formal models of information and control flow in systems 

exhibiting concurrency and asynchronous behaviour [41, 42, 47]. Petri net theory allows a 

system to be modelled by a Petri net, a mathematical representation of the system. The 

components of a system may exhibit concurrency or parallelism. Activities of one 

component may occur simultaneously with activities of other components. Petri nets are 

suited specifically to model systems with interacting concurrent components. Petri nets 

have been used in the modelling of systems in diverse fields such as computer hardware, 

computer software, operations research, chemical systems, biological systems, semantics 

for natural language representation, communication protocols, economics, political 

systems and social and legal systems. 

Revise Analyze 

Figure 6.1 Use of Petri nets for the modelling and analysis of systems. 

The application of Petri nets to the design and analysis of systems involves two 

basic steps: first the system under investigation is modelled as a Petri net, then this model is 

analyzed. The analysis of the Petri net may reveal important information about the structure 

and dynamic behaviour of the modelled system. Any problems encountered in the analysis 

points to flaws in the design. The design is modified to correct the flaws. The modified 
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design is then modelled and analyzed again. The modelling-analysis loop is repeated until 

the system meets the design specifications. The design cycle using Petri nets is shown in 

the Fig. 6.1. 

6.2.1 Definition of Petri Nets 

A Petri net may be defined as a bipartite, directed graph N = (P,T,A) [2], where, 

P = {p l' pn} a set of places, 

T = (t t2,... tm ) a set of transitions, 

A g_ {P x T} u {T x P }, a set of directed arcs, 

A marking, M of a Petri net is a mapping from the set of places P to natural 

numbers N. 

M : P —> N, where M(pi) = mi for 1 i n 

M assigns tokens to each place in the net. A Petri net N = (P, T, A) with 

marking M is called a marked Petri net PN = (P, T, A, M). Marking is also known as 

the state of Petri net. The marking M can also be defined as an n-vector M = (ml, m2, 

mn), where n = IP I and each mi E N, i = 1,...n. The vector M gives for each place 

pi in a Petri net the number of tokens in that place. The number of tokens in place pi is 

mi, = 1,...,n. 

Pictorially, in a Petri net graph, places are represented by circles, transitions as 

bars, and tokens as small dots inside the circles ( • ). Fig. 6.2 illustrates an example of a 

Petri net. 



76 

Concurrency Conflict 

Figure 6.2. An example of a Petri net. 

Figure 6.3 Network after the firing of transition ti 

Input and output functions relate transitions and places. The input function I is a 

mapping from a transition tj to a collection of places /(ti), known as the input places of the 

transition. The output function 0 maps a transition tj to a collection of places O(tj) 

known as the output places of the transition. 

/(ti) = {pi I (Pi.tj) E A} 

0(ti) = {pi I (ti,pi) E A] 
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The execution of a Petri net is controlled by the number and distribution of tokens. 

Tokens reside in places and control the execution of transitions of the net. A Petri net 

executes by firing transitions. A transition is enabled for firing if each of its input places 

has at least as many tokens in it as arcs from the place to the transition. For example in the 

Petri net shown in Fig. 6.2, transition ti  is enabled whenever there is one or more tokens 

in the place p1. A transition fires by removing an enabling token from each of its input 

places and depositing one token into each of its output places. For instance in Fig. 6.2 the 

firing of transition t1 removes a token from p1 and puts one token into places p2, p3

and p4. Firing a transition changes the marking M of the Petri net to a new marking M'. 

In the above example, once the transition t1 fires, the transitions t2, t3 and t4 are 

enabled, and can fire concurrently. As these transitions complete their firings, places p5, 

p6 and p7 receive a token each. Now both transition t6 and t7 are enabled, but the 

firing of one disables the other, for example if t6 fires t7 can not fire. This represents a 

conflict between two transitions. This ability to model both concurrency and conflict 

makes Petri nets a powerful modelling tool. 

6.2.2 Restrictions, Extensions and Modifications of Petri nets 

Extensions and modifications have been made to the basic Petri net model to 

overcome the two limitations, namely limitations on modelling power and decision 

power. 

The fundamental extension to Petri net is to allow zero testing using inhibitor arcs. 

A Petri net with inhibitor arcs is illustrated in Fig. 6.4. An inhibitor arc from a place pi

to a transition t•• has a small circle rather than an arrowhead at the transition. The transition 

ti can fire only if pi is empty [1, 2]. It has been shown that a Petri net with inhibitor arcs 

has the modelling power of a Turing machine [1, 2]. 
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Figure 6.4 An extended Petri net with inhibitor arcs. 

A Petri net is called an ordinary Petri net if no transition has more than one input 

arc from a place and more than one output arc to a place. In a self-loop free Petri net no 

place is allowed to be both input and output of a transition i.e. I(ti) n 0(ti) = 0. 

Petri nets having exclusive-OR transitions [38, 39] and switches [6, 7] have been 

suggested. An exclusive-OR transition tj with input I(tj) requires that one and only one 

of its inputs be nonzero to enable the transition. A switch is a special transition with a 

special input called the switch input and exactly two outputs, one labeled e for empty and 

another labeled f for full. A switch transition fires when it is enabled, ignoring the state 

of the switch input. When it fires, a token is put in the output labeled e if the switch input 

is empty, otherwise if the switch input has a token then a token is delivered to the f output. 

Thus, the firing of a switch transition results in only one of the two markings. 

Probabilistic arcs from a transition to a set of output places 0(ti) deposit a token 

in one and only one of the output places. The choice of which place receives the token is 

determined by the probability labeled on each arc [20] 

A counter arc from a place to a transition is labeled with an integer value k. The
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firing rule with a counter arc is changed such that a transition is enabled when tokens are 

present in its normal input places, and at least k tokens are present at the counter input 

place. When the transition fires, one token is removed from each of the normal input 

places and k tokens from the counter input place [20]. 

Another major extension of Petri nets is the association of time, either constant and 

probabilistic with transitions. In timed Petri nets a fixed firing time is associated with each 

transition [45, 46]. To overcome the fixed-time constraint in timed Petri nets, Stochastic 

Petri nets (SPN) were introduced [34, 35, 37]. In SPNs an exponential firing time 

distribution is associated with each transition of the Petri net. 

6.3 Analysis of Petri Nets 

Once a Petri net model is developed, it is to be analyzed to verify the properties of 

the system based on the model. This requires the understanding of various problems (or 

properties) of Petri nets. In the first section a brief mention of the various problems that 

need to be solved for Petri nets are presented. The second part concentrates on the analysis 

techniques to answer questions related to Petri net problems. 

6.3.1 Analysis Problems of Petri Nets 

Safeness : A place in a Petri net is safe if the number of tokens in that place 

never exceeds one. A Petri net is safe if all places in the net are safe [42]. 

Boundedness : A Petri net is said to be k-bounded if, for all possible markings, 

the maximum number of tokens in all places is less than or equal to k. 
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Conservativeness : A Petri net is said to be conservative if the total number of 

tokens in the net remains constant under all possible markings i.e. 

, 
Al (pi ) = Al (pi ) M is an initial marking and M' is all possible markings 

pi e P pi e P 

from M. For conservation, the number of inputs to each transition must equal the number 

of outputs 1/(ti)1 = 10(tpl. 

Liveness : A deadlock in a Petri net is a transition (or a set of transitions) which 

can not fire. A transition is live if it is not deadlocked. A Petri net is live if every 

transition is live. 

Reachability : The reachability problem is to find in a given Petri net with a 

marking M and a marking M , if M  is reachable from M by some sequence of 

transition firings. 

Coverabilitv : The coverability problem is : given a Petri net with initial marking 

M and a marking M' , is there a reachable marking m"E R(M), (R(M) is the set of 

all reachable markings) such that M" covers M i.e., M' is reachable from M and 

A4 is reachable from M . 

6.3.2 Analysis Techniques 

Two major Petri net analysis techniques have been suggested. They are 

reachability tree and the linear algebraic technique involving matrix equations. 
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Figure 6.5 A marked Petri net for illustrating the construction of a 

reachability tree. 

(1,0,0) 

t1 t2

(0,1,0) (0,0,1) 

ti 

(0,0,1) (0, (0,1) (0,1,0) 

\tc 

(0, 03,1) (0,1,0) 

Figure 6.6 The reachability tree of the Petri net shown in Figure 6.5. 

The reachability tree represents the reachability set of a Petri net. Consider the 

marked net of Fig. 6.5. The initial marking is (1,0,0) since there is a token in place p1

and zero tokens in p
2 

and p
3
. In the initial marking two transitions are enabled: ti  and 

t2. We define two nodes in the reachability tree for the (reachable) markings which result 

from firing both transitions. An arc leads from the initial marking to each of the new 
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markings and is labelled by the transition fired. From the marking (0,1,0) (a token present 

in p2 and no tokens in p1 and p3) only transition t3 can fire. This leads to the marking 

(0,0,1). A token in p3 enables two transitions : t4 and t5. For transition t4 , p3 is 

both an input place as well as an output place. The enabling of this transition leaves a token 

in p2 and p3. The transition t4 may fire continuously resulting in infinite number of 

tokens in place p2. This condition is represented by co in the graph. If instead of 

transition t4, t5 were to fire we get a new marking (0,1,0). Thus a Petri net with an 

infinite reachability set is represented by a finite number of nodes in the reachability tree. 

The reachability tree of the Petri Net in Fig. 6.5 is illustrated in Fig. 6.6. 

The reachability tree can be used to solve the safeness, boundedness, 

conservation and coverability problems. 

A Petri net is not safe if the symbol co appears in the reachability tree. The co 

symbol in the reachability tree indicates the places that are unbounded. A Petri net is 

bounded if and only if the symbol co never appears in its reachability tree. 

A Petri net is conservative if it does not lose or gain tokens but merely moves them 

around. There is no one-to-one mapping between tokens and resources. Some tokens 

may represent several resources with one token. This condition arises due to the firing of 

transitions with more outputs than inputs. In general, we may define a weighting of 

tokens. Tokens in each place are assigned some weight. A weighting vector w = (w1, 

w2, ...wn) defines a weight w i for each place pi E P . For conservativeness the 

weighted sum for all reachable markings should be constant. If any marking with 

nonzero weight is co , the net is not conservative. 

The coverability problem can be solved with the aid of the reachability tree. 
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Given an initial marking M, we construct the reachability tree. Then we search for any 

node x such than marking of x is greater than or equal to m' ( i.e. mix] ?. in ). If no 

node is found, the marking m' is not covered by any reachable marking; if such a node is 

found, mix] gives a reachable marking which covers m' . 

In general the reachability tree cannot be used to solve the reachability or liveness 

problems or to define or determine which firing sequences are possible. Solutions to these 

problems are limited by the existence of co symbol. 

6.3.3 Linear Algebraic Representation 

Reisig [47] presents a formal definition of a generalized Petri net with each place 

having a finite (or even infinite) capacity, and each arc having a weight (counter arcs) 

associated with it. The places in his notation are denoted by S and transitions by T, and 

F denotes the arcs between the places and transitions. A Petri net is defined as a 6 tuple 

N = (S, T; F, K, M, W) where, 

i) (5, T; F) is a finite net, the elements of S and T are called places and 
transitions, respectively, 

ii) K : S -p N u (co} , gives a (possibly unlimited) capacity for each place, 

(co denotes infinite capacity of a place). 

W F --> N\ (0 } , attaches a weight to each arc of the net. 
iv) M S > N u (co} is the initial marking, respecting the capacities, i.e. 

M (s) K (s ) for all s E S . 

The components of a net N are denoted by SN, TN, FN ,K N , W N, MN

respectively. 

A Petri net can also be represented using matrices. The matrix representation 

permits use of linear algebraic techniques for the analysis of Petri net problems. The linear 

algebraic representation of a Petri net is defined as: 

i) For transitions t E T , let the vector L: S Z be defined as 
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1.(s ) = 

W (t, s) iff s E (t) As e I (t) , 

I — W (t, s) iff s e 1(t) s e (t), 1

I W (t, s)— W (s, t) iff s E I (t) n 0(t), 

0 otherwise 

ii) Let the matrix X.:SxT--->Zbe defined as .46L(s,t ) = 

W(t,$) is the weight of arc from a transition t to a place s. The component of 

vector 1 corresponding to a place s is equal to the weight of the arc between a transition t 

and s, ifs is a member of the output function 0(t) but not a member of the input function 

1(t). It is equal to the negation of the weight of the arc, if s is a member of the input 

function 1(t) but not a member of the output function 0(t). Ifs is a member of both input 

and output functions then it is equal to the difference between the weights of output and 

input arcs. 

ti t2 t3 
t4 t5 t6 t7 

Si

MN

s
2 

S3 

S4 

S5 

s
6 

S

S8 

—1 0 0 0 1 0 0 

1 —1 0 0 0 0 0 

1 0 —1 0 0 0 0 

1 0 0 —1 0 0 0 

0 1 0 0 0 —1 0 

0 0 1 0 0 —1 —1 

0 0 0 1 0 0 —1 

0 0 0 0 —1 1 1 

1 

0 

0 

0 

0 

0 

0 

0 

Figure 6.7 Matrix Representation of Petri Net shown in Figure 6.2. 

Based on the above definition, the matrix representation of the Petri net in Fig. 6.2 

is illustrated in Fig. 6.7. MN denotes the initial marking of the net. It has the count of 

tokens present in each of the places initially. In the Petri net shown in Fig. 6.2, initially 
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one token is present in the place s1, and no tokens in other places. 

6.3.4 Net Invariants 

This section briefly describes the concept of net invariants. First we consider sets 

of places whose token count do not change during transition firings. Knowledge about 

any such set of places helps in analyzing liveness and also allows us to investigate other 

properties of systems. Such sets of places are called S-invariants. 

The derivation of S-invariants from the Petri net matrix E_ is given below. This 

derivation allows us to solve AY_ to determine all the invariants of a given net. Let N be a 

Petri net with places denoted by S. We want to characterize sets of places, S c SN of N 

which do not change their joint token count when transitions fire. If the token count on 

S c SN does not change when a transition t e TN fires then, 

W (s, t ) w (s,t 
s e l(t)nS s e 0(t) nS 

This condition is equivalent to, 

D(S) = — EL(s) L(s ) y Lfs 
s el(t)nS s e0(t)nS s el(t)nS s E0(t) nS 

E L(s ) = 0 
s e S 

If we replace S by its characteristic vector cs the condition becomes, 

E i(s ).c i(s) = 0 or by vector multiplication Ix s = 0 . 
seS, 

If the token count on S C SN never changes under arbitrary transition firings, the 

condition t..c s = 0 must be fulfilled for all transitions ti e TN , hence 
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EL. c, = 0 (.L:- denotes the transpose of the matrix £-) must hold. Conversely, 

each solution c of EL. x = 0 consisting of components from {0,1} is a characteristic 

vector of a set of places with a constant token count. So such sets are found by solving 

EL. x = 0 . For the Petri net shown in Fig. 6.2, we have one invariant i1 that is 

shown in Fig. 6.8. 

It can be shown that every Petri net which is finite, live and bounded is covered 

by S-invariants [47, 32]. Thus the verification of finiteness, liveness and boundedness 

problems of a Petri net reduces to the determination of all invariants of the net. 

ti t2 t3 t4 t5 t6 t7 

Si -1 0 0 0 1 0 0 1 1 
s
2 1 —1 0 0 0 0 0 0 0 

53 1 0 —1 0 0 0 0 0 

s4 1 0 0 —1 0 0 0 0 0 

s5 0 1 0 0 0 —1 0 0 0 
s
6 0 0 1 0 0 —1 —1 1 0 

7 0 0 0 1 0 0 —1 0 0 
s
8 0 0 0 0 —1 1 1 1 0 

Figure 6.8 Illustration of S-invariants of Petri net shown in Fig. 6.2. 

Similar to S-invariants, T-invariants are defined. Here we consider the sets of 

transitions ( v : TN ---> N ). The T-invariants are determined by the solutions of 

equations of the form x = 0 . A T-invariant indicates that if it is possible, starting 

from some marking M, to fire each transition t exactly v(t) times, to again yield the 

marking M. It can be proved that every P/T-net which is finite, live and bounded is 

covered by T-invariants [47]. 
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6.4 Modelling of the Algorithm 

In this section the stepwise development of the Petri net model of the algorithm is 

presented. The development of this model is based on the examples given by Reisig [47]. 

First the algorithm is represented as a net with inscriptions in English. Then it is refined so 

that its structure corresponds to a Petri net and its behaviour to the firing rule. 

The many processors are assumed to be in either of two states: mutation or local 

garbage collection (lgc). In mutation, graph operations (such as making and breaking 

links) are performed. Mutation is intermittently interrupted by incoming messages from 

other processors. These messages are processed and reply messages are sent. In addition 

for each newly created remote link a newLinkPaint message is sent. In the local garbage 

collection phase refreshLinkPaint messages are sent for every active remote edge. In 

addition to processing messages during mutation and lgc, processors communicate with 

the master processor at the time of starting and completion of an lgc. Master processor 

sends phaseChange messages to all processors at the time of system phase change. 

The first step in the development of a Petri net model is the construction of the 

model as an inscribed net. The inscriptions in the transitions denote instructions, which 

are executed when the transition fires. The conditions written into places have to be 

fulfilled to allow the associated transitions to fire. The instructions on one transition form 

an atomic operation. This means that during the execution of the instructions of some 

transition, the entities involved may not be changed by the firing of other transitions. The 

inscribed net represents a high level model of the system. This model is refined in a step-

by-step fashion to arrive at the final Petri net model. Fig. 6.9 shows the algorithm as an 

inscribed net. Messages from processors enter the system through the input place. Each 

message contains a processor identification and the type of message — it may be considered 
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a labelled token. A token in the place INL indicates that the processor is in the lgc state 

and a token in INM indicates that it is in the mutation phase. INM and INL are 

complements of INM and INL respectively. Introduction of complement /5 of a place p 

serves to test emptiness of p. The outstanding message lists are organized in a first-in-

first-out principle, first(M) denotes the first element of M. An instruction 

i M adds i to the end of the list M, skip(i,M) deletes i from the list M. 

Messages are sent out of the system through the output place. 

The graph operations taking place in the mutation phase are internal operations and 

do not account for a change in the token count of the system (except when a remote link is 

made). Hence they are not explicitly shown in the model. Similarly the mark and sweep 

of the lgc state are not shown. The model concentrates on message operations and the 

changing of system phases. The number of outstanding messages of each message type is 

maintained. On receiving an acknowledgement message the corresponding count is 

decremented. In order to simplify the modelling of the algorithm we assume that the 

system sends a certain fixed number of messages during each state. The state of the system 

changes as soon as that many messages have been sent. In the Fig. 6.9 x and y keep 

track of the number of mutation and lgc messages sent. The system changes from 

mutation to lgc state as soon as m mutation messages have been sent. Similarly the 

system changes from lgc to mutation state as soon as n lgc messages have been sent. M 

and N are the outstanding message lists. M is the list of outstanding mutation messages 

and N is the list of outstanding lgc messages. On receiving an acknowledgement for a 

mutation message, the count M is decremented. Similarly N is decremented on receiving 

an acknowledgement for an lgc message. 

For considerations of liveness and boundedness, the dependencies between x, 

y, m and n are crucial. Assuming that the transitions are invoked on satisfying the 

required conditions the network shown in the Fig. 6.9 can be simplified as shown in Fig. 



89 

6.10. This net is translated into a Petri net with complementary places for p and q. The 

self-loops in the system are decomposed and the simplified Petri net model is shown in 

Fig. 6.11. The matrix representation of this network is shown in Fig. 6.12. 

Well known linear algebraic techniques can be used to determine all the minimal 

support invariants (invariants having non-zero values) of a net. If the net is large, this may 

require enormous CPU time [31]. We developed a new Prolog algorithm that generates all 

the minimum support invariants of any generalized Petri net represented in the matrix form. 

The main advantage of this algorithm is that the determination of invariants of any Petri net 

is fully automated. This in turn simplifies the design cycle using Petri nets. Using this 

algorithm we obtained all the S-invariants of the net. The Fig. 6.13 illustrates the S-

invariants of the network. The properties of the system can be proved using these 

invariants. 
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INL input 

LGC 

C  INLD

  (N>0) 

ack Igo message in Igc 

i=c 

INM 

:= first(N) 
skip(i,N) 
q := q - 1 

ack Igc message in mutation 

mutate 

ack mutation message in Igc 

send Igc 
msg in Igc 

 ‹ ..,1=es) 

change phase 
from Igo to 
mutation 

y < n 

i-> N 
p := p + 1 
y:=y+1

=n 

:= first(M) 
skip(i, M) 
p := p - 1 

ack mutation message in mutation 

—A—

CM>0) C  i=d

INL := 0 
INM:=1 
x: 0 

X = M 

= b  

change phase 
from mutation 
to Igc 

V 
output 

INM := 
INL := 1 
y := 0 

Figure 6.9 High level Petri Net Model of the Algorithm. 

INL local garbage collection (lgc) state. 

INM — mutation state. 

N — outstanding lgc messages list. 
M — outstanding mutation messages list. 
n — capacity of lgc message list. 
m — capacity of mutation message list. 
q — number of messages in the lgc message list 
p — number of messages in the mutation message list. 

send 
mutation 
msg in 
mutation 
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y — total number of lgc messages sent so far in the current phase. 
x — total number of mutation messages sent so far in the current phase. 
i — incoming message token (acknowledgement or reply). 
c — receiving an lgc message acknowledgement. 
d — receiving a mutation message. 
b — sending a mutation message. 
e — sending a lgc message. 

INL 

y < n 

p := p + 1 
y:=y+1 

input 

q>0 

=n 

INL := 0 
INM := 1 
x 

INM 

q q 1 

p p - 1 

X = M 

INM := 
INL := 1 
y 

X < M 

ti

output 

Figure 6.10 Simplified Petri Net Model. 

q:=q+1 
x := x + 1 
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t 11 t12 t 21 t22 t 3 

Transitions 

t4 t 5 t6 t7 t81 t82 t91 t92 t10 

INL —1 1 0 0 0 0 0 0 0 —1 0 1 0 0 

INL 0 0 0 0 0 0 0 0 0 1 0 —1 0 0 

INM 0 0 —1 1 0 0 0 0 0 1 0 —1 0 0 

INM 0 0 0 0 0 0 0 0 0 —1 0 1 0 0 

Pa 1 —1 0 0 0 0 0 0 0 0 0 0 0 0 

P
b 0 0 1 —1 0 0 0 0 0 0 0 0 0 0 

PL 1 0 0 0 —1 0 —1 0 —1 —1 0 0 0 0 

P
I P M 

0 0 1 0 0 —1 0 —1 0 0 0 —1 0 —1 

a 0 0 0 0 —1 —1 0 0 1 0 0 0 0 0 
C 
e -
S q 0 0 0 0 1 1 0 0 —1 0 0 0 0 0 

0 0 0 0 0 0 —1 —1 0 0 0 0 0 1 

P 0 0 0 0 0 0 1 1 0 0 0 0 0 —1 

0 0 0 0 0 0 0 0 1 —n n —n 0 0 

0 0 0 0 0 0 0 0 —1 0 0 n 0 0 

x 0 0 0 0 0 0 0 0 0 —m 0 —m m 1 

0 0 0 0 0 0 0 0 0 m 0 0 0 —1 

Pc 0 0 0 0 0 0 0 0 0 1 —1 0 0 0 

P 
d 0 0 0 0 0 0 0 0 0 0 0 1 —1 0 

Figure 6.12 Matrix Representation of the Petri net model of the Algorithm. 
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1 1 

0 1 0 0 0 0 1 

1 0 1 0 0 0 0 0 

o 0 1 0 0 0 1 0 

1 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

o 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

n 

n 

1 

1 

o 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 m n 0 

0 0 0 0 0 0 0 m 

Figure 6.13 S-Invariants of the Petri Net Model. 
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6.4.1 Verification of Properties from the Model 

As mentioned earlier any system that is finite, bounded and live must have positive 

invariants. From the S-invariants obtained from the model we can conclude that the model 

is bound, finite and live. Some of the properties of the system can be verified from these 

invariants: 

i) Using the invariant i2, 
M (INL) + M (INM ) + M (AO+ M (pb) = 

MN (INL) + MN (INM ) + MN(pa ) + MN(pb) = 1 

From this invariant it is seen that the total token count in all these four places 
always remains to be 1. This implies that processor either remains in mutation 
or lgc state. 

ii) From the invariant i4, 

M (q) + M (.1") = MN (q) + MN (4")= n 

The total number of messages sent in lgc phase is constant and is equal to n. 

iii) From is , 

M (P) + M =MN (P) + Mig (in = m 

The total number of messages sent in the mutation phase is constant and is equal 
to m. 

6.5 Conclusions 

In this chapter we presented the application of Petri nets to the modelling and 

analysis of systems. The modelling and decision power of the Petri nets has been 

enhanced by extensions and modifications to the basic Petri net model. The zero testing 

which tests for the emptiness of a place is one of the most significant extensions. These 

modifications suggested have been motivated by the need to model diverse systems using 

Petri nets. 
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The flexibility and usefulness of analysis techniques is an equally important 

criterion for a modelling tool. In the present case, we have concentrated on using the 

existing analysis tools for the modelling and verification of properties. From the 

reachability tree we can solve the safeness, boundedness, conservation and coverability 

problems of a net. But reachability tree has the limitation that it can not be used to solve the 

reachability or liveness problems. 

Linear algebra provides the other well known analysis technique. This technique 

promises to be interesting as the tools available in solving linear equations may be applied 

to the analysis of Petri nets. S-invariants of a net correspond to the sets of places whose 

joint token count do not change on transition firings. The properties of systems such as 

liveness and boundedness can be verified from these invariants. A live and bounded net 

must have positive invariants. 

In this chapter we presented the Petri net modelling of the algorithm. The stepwise 

development of the model is shown. Some of the properties of the system have been 

proved using the S-invariants. The invariants obtained show that the model is sound. It is 

bounded, finite and live. Inability of the approach in modelling graph mutations and 

garbage collection operations limited the scope of the model. This also prevented us from 

completely proving the correctness of the algorithm. Inspite of this weakness the work 

enhanced our confidence in the algorithm. 



CHAPTER 7 

Summary and Conclusions 

The main objective of this thesis was to develop an algorithm for garbage collection 

in a distributed multicomputer system. This chapter summarizes the work performed in this 

thesis and discusses its contributions. Conclusions and directions for future research are 

given. 

A key feature of functional and declarative languages is their inherent parallelism. 

Functional languages seem especially suited to parallel architectures because they lack side 

effects. These languages have dynamic storage allocation. Evaluation of a program 

generates garbage cells. The performance of any functional language depends on the 

efficiency of its underlying garbage collection scheme. This strong dependency on 

garbage collection has motivated this study of distributed garbage collection algorithms. 

In Chapter 1, the general motivation for the study of storage reclamation schemes 

was given. The techniques of implementing a functional language were presented. The 

concept of graph reduction as a way of implementing functional languages was introduced. 

The model of parallel graph reduction which we assumed for the development of our 

algorithm was presented. 

Chapter 2 and 3 presented a review of garbage collection algorithms for 

uniprocessor and multicomputer systems. The distributed garbage collection algorithms 

are modifications of mark and sweep and reference counting algorithms. These vary 

from completely global to fully distributed real-time algorithms. Global algorithms are 

simple to implement but restrict parallelism as well as waste much computational power. 

The non-global algorithms are expensive to implement but they provide greater flexibility at 

97 
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lower cost of computational power. Algorithms proposed by Hudak, AR and Hughes 

were discussed. A comparison of these algorithms was presented. 

Chapter 4 presented our algorithm. The first section of this chapter described the 

algorithm. Data structures and the low level algorithms were discussed. The second 

section presented an analysis of distributed garbage collection algorithms. Analytical 

models of a global algorithm and the proposed algorithm were presented. 

Chapter 5 presented a simulator model of the algorithm. The design and 

implementation of the simulator model was discussed. The simulation experiments were 

designed to observe phase transitions, the effect of inter-connection network delay on the 

cost of the algorithm and the number of messages sent for different phase lengths. The 

results and analysis of these experiments were presented. 

Chapter 6 discussed the Petri net modelling of the algorithm. The first section of 

this chapter discussed the Petri net theory and modelling. The analysis techniques of Petri 

nets, marked tree and invariants were introduced. The step-wise development of the Petri 

net model was presented. The scope of the model was limited as graph operations and 

garbage collection operations could not be modelled in Petri nets. Some properties of the 

algorithm were verified using S-invariants. 

7.1 Contributions of the Thesis 

We have presented a new algorithm for memory reclamation in a parallel distributed 

system that is superior to the existing solutions. This algorithm is characterized by 

independent local garbage collections to reclaim local garbage and four cyclic colour phases 

for reclaiming global garbage cells. The idea of independent lgc's is an adaptation of ideas 

proposed by Ali [3, 4] in his local-global and distributed-local algorithms. As in the case 

of Ali's global algorithms any variation of mark and sweep algorithm can be used for a 
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local garbage collection. Our algorithm introduces a new idea of global colour phases. A 

master algorithm co-ordinates the global phase changes. In the Hughes algorithm [29] the 

time required for the reclamation of global garbage can be arbitrarily long and it requires the 

co-operation of all the processors. In the proposed scheme the reclamation of global 

garbage is dependent only on the rate of phase changes and it is guaranteed that all garbage 

cells including distributed cyclic structures are reclaimed in two phases. This schme has 

much less message and space requirements compared to both Ali's and Hughes algorithms. 

An analytical model of the algorithm was developed. The analysis of this model 

shows that this algorithm is superior to a global algorithm. A simulator model of a parallel 

graph reduction system that incorporates the proposed garbage collection algorithm was 

implemented. Simulation experiments verified the working of the algorithm. Experiments 

conducted on systems of different sizes and load distributions show that the algorithm is 

sound. The experimental results show that the algorithm is flexible, it permits the tuning of 

various system parameters like the phase length to suit the underlying architecture and the 

application program. 

Petri net modelling provided insight into the modelling of the proposed algorithm. 

Also the modelling helped in debugging the algorithm. Some of the properties of the 

algorithm were verified from this model using S-invariants. A new algorithm was 

developed to find the invariants of a Petri net. This Prolog algorithm automates the 

determination of invariants of any Petri net represented in a matrix form. This algorithm 

simplifies the Petri net design as the analysis becomes simpler and less time consuming. 

7.2 Extensions and Future Work 

The work performed in this thesis has much scope for extensions. The simulation 

experiments presented in this thesis are limited due to large computational time required for 
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each run. These experiments can be repeated for extended ranges of parameters — the 

length of a phase, number of processors in the system and different probability 

distributions of graph operations. Simulations may be conducted using practical loads 

based on programs written in parallel functional languages, these results can then be used 

to develop better synthetic loads to test distributed algorithms of this nature. The Petri net 

modelling can be extended by developing models concentrating on a specific aspect of the 

algorithm such as graph mutations and local garbage collections. These sub-modules may 

then be merged to model the overall algorithm. The proof techniques used in this thesis 

may then be used to prove the overall correctness of the algorithm. 
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APPENDIX 

The listing of simulator in Turing-Plus is given below. 

/********************************************************************** 

*********************************************************************** 

header file 'globals.h' 
This file has global variables, constants and 
record definitions 

* 
* 
* 

* * 
**********************************************************************/ 

const no0fMutators := 16 % total number of mutators in the 
const lastAddr := 4096 % size of memory in each mutator 
const getBuf := 1 % get buffer operation 
const freeBuf := 2 % release buffer operation 
const null := -1 % nil pointer 

system 

/********************************************************************** 
* * 

Time constants mutator operations 
* * 

const changePhaseTime 
const allocateObjectTime 
const makeLocalLinkTime 
const breakLocalLinkTime 
const memoryTouchTime 
const receiveMsgTime 
const sendMsgTime 
const msgAckTime 
const processGcMsgTime 
var MessageFlightTime 

1 
:= 1 
:= 1 
:= 1 
:= 1 
:= 1 
:= 10 
:= 5 

5 
: int 

% change phase time 
% allocate object time 
% make a local link time 
% break a local link time 
% time for each memory operation 
% time to receive a msg and process it 
% time for preparing a message 
% time for sending a message ack 
% time to process a GC message 
% message delay in the IC network 

/********************************************************************** 

* 

Type definitions 
* 

* 
* 
* 

**********************************************************************/ 

type peNumbers : 0..no0fMutators 
type memorySize : 1..lastAddr 
type lgcStat : enum(noStart,oneStart, oneDone, someDone, doneGoing) 
type colour : enum(white,red,blue,green,yellow) 
type msgClass : enum(newPleasePaint, lgcPleasePaint, newPaintAck, 

lgcPaintAck, remoteRead, readReply, lgcStart, 
lgcDone, ackLgcStart, ackLgcDone, phaseChange, 

lgcForce) 
type operation : enum(allocateNode, makeLink, breakLink) 

/********************************************************************** 

* 
Definition of messages 

* 

var msgs: collection of forward msgtype % the pool of messages 

* 

type msgtype: record 
class : msgClass % message type 
time : int % time sent, then time of arrival 

destination : int % who gets the msg 

source : int % who sent the msg 

address : int % address to read or paint 

phase : colour % colour of message 

nextMsg 
end record 

: pointer to msgs % next message in queue 

106 
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/********************************************************************** 

* * 
definition of a node in the graph 

* 

type cell: record 

* 
* 

cellAddress : int % cell address 
processorNo : int % processor number 
markbit : boolean % mark bit 
phase : colour % phase in which last painted 
leftPhase,rightPhase: colour % left cell phase 
leftPen,rightPen int % left and right processors 
leftAddr,rightAddr : 

end record 
int % left and right cell addresses 

/********************************************************************** 

* * 
Definition of mutator status record * 

* * 

type peState: record 
clock 
newPpsOut 
newPpsMsgsSent 
lgcPpsOut 
lgcPpsMsgsSent 
readsOut 
firstMsg 
pePhase 
lgcStartMsgSent 
lgcDoneMsgSent 
receivedAckLgcStart 
receivedAckLgcDone 
noLgcsDoneInCurrentPhase 
freeList : int 
root : int 
memory 

end record 

: int % system clock at present 
: int % unacknowledged new pl-paint messages 
: int % no of new pl paint msgs sent 
: int % unacknowledged lgc pl-paint messages 
: int % no of lgc pl paint msgs sent 
: int % unacknowledged please-read messages 
: pointer to msgs % header of message queue 
: colour % current phase of pe 
: boolean % sent lgc start message 
: boolean % sent lgc done message 
: boolean % received ack msg in reply to lgc start 
: boolean % received ack msg in reply to lgc done 

: int % no of lgcs done in current phase 
% pointer to cells, freelist header 
% pointer to cells, local graph root 

: array memorySize of cell % memory in each mutator 

/********************************************************************** 

* 

* 
Global variables 

* 

* 
**********************************************************************/ 

var state 

var centralLgcRecords 

var masterPhase 

var forcesSent 

var usingBuf 

var noOfCellzMarked 

var no0fCellsRecovered 

var noOfCellsAllocated 

: array peNumbers of peState 
% complete state of each pe 

: array peNumbers of lgcStat 
% master's records of state of lgc's in phase 

: colour 
% master's present colour 

: boolean := false 
% if forces not sent forcesSent is false 

: boolean := false 
% condition indicating some one using buffer 

: array 1..no0fMutators of int 
% no of cells marked in each lgc 

: array 1..no0fMutators of int 
% no of cells recovered in each lgc 

: array 1..no0fMutators of int 
% no of cells allocated before one lgc 
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var noOfLocalMakeLinks : array 

var noOfRemoteMakeLinks : array 

var no0fLocalBreakLinks : array 

var noOfRemoteBreakLinks: array 

var readyToStartLgc : array 

var readyToStartMutate 

var lgoPpsMsgsSentInPhase 

var 

var 

var 

var 

var 

var 

var 

var 

var 

var 

array 

nodeInsertionSuccessful 

updateGraphDepth 

lgcAttemptDone 

lgcAttemptTime 

IgcStartTime 

lgcCompletedTime 

mutateAttemptDone 

mutateAttemptTime 

mutateStartTime 

mutateStartTimeEntered 

1..no0fMutators of int 
% no of local links made before one lgc 
1..no0fMutators of int 
% no of remote links made before one lgc 
1..no0fMutators of int 
% no of local links broken 
1..no0fMutators of int 
% no of remote links broken 
1..no0fMutators of boolean 
% condition indicating if processor 
% can start an lgc. 
1..no0fMutators of boolean 
% condition indicating if processor 
% can start mutation. 

: array 1..no0fMutators of boolean 
% condition indicating if lgc messages have 
% been sent in the current phase 

array 1..no0fMutators of boolean 
% Is updating graph successful? 

array 1..no0fMutators of int 
% level reached while updating graph 

: array 1..no0fMutators of boolean 
% true if lgc already attempted 

: array 1..no0fMutators of int 
% time of attempting to do an lgc 

: array 1..no0fMutators of int 
% time at which lgc is started 

: array 1..no0fMutators of int 
% time of completing an lgc 

: array 1..no0fMutators of boolean 
% true if mutation is already attempted 

: array 1..no0fMutators of int 
% mutate attempted time 

: array 1..no0fMutators of int 
% mutation starting time 

: array 1..no0fMutators of boolean 
% indicates if mutation start time is entered 

/********************************************************************** 
* * 

Variables to choose a random operation 
* * 
**********************************************************************/ 

var 
var 
var 
var 
var 
var 
var 
var 
var 
var 

allocateNodeLowerLimit 
allocateNodeUpperLimit 
makeLinkLowerLimit 
makeLinkUpperLimit 
breakLinkLowerLimit 
breakLinkUpperLimit 
localOrRemoteLowerLimit 
localOrRemoteUpperLimit 
probabilityOfRemoteLinks 
averageNoOfLgcsLimit 

: int 
: int 
: int 
: int 
: int 
: int 
: int 
: int 
: int 
: real % average no. of lgc's per phase 
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/********************************************************************** 

/********************************************************************** 

* * 
Main file of the simulator 'nonstop.t' 
All modules are included into this file 

* * 

grant 
(var msgs, var state, msgAckTime, MessageFlightTime, usingBuf, 
getBuf, null, freeBuf, msgClass, peNumbers, noOfMutators, 
mailBox, memoryTouchTime, allocateObjectTime, colour, 
makeLocalLinkTime, sendMsgTime, breakLocalLinkTime, 
changePhaseTime, memorySize, var centralLgcRecords, lgcStat, 
processGcMsgTime, masterPhase,mutator, lastAddr, cell, 
localGarbageCollection, initialSetup, allocateNodeLowerLimit, 
allocateNodeUpperLimit, makeLinkLowerLimit, makeLinkUpperLimit, 
breakLinkLowerLimit, breakLinkUpperLimit, noOfCellsMarked, 
noOfCellsRecovered, noOfCellsAllocated, no0fLocalMakeLinks, 
noOfRemoteMakeLinks, noOfLocalBreakLinks, noOfRemoteBreakLinks, 
var forcesSent, var readyToStartLgc, var nodeInsertionSuccessful, 
var updateGraphDepth, var lgcPpsMsgsSentInPhase, 
var lgcAttemptDone, var mutateAttemptDone, var readyToStartMutate, 
var lgcAttemptTime, var lgcStartTime, var lgcCompletedTime, 
var mutateAttemptTime,var mutateStartTime, var mutateStartTimeEntered, 
probabilityOfRemoteLinks, localOrRemoteLowerLimit, 
localOrRemoteUpperLimit, averageNoOfLgcsLimit, receiveMsgTime) 

include "globals.h" 

child "messagehandler.t" 

child "initialsetup.t" 

child "lgc.t" 

child "mutator.t" 

child "master.t" 

/* include global header file 

/* include message handling module 

/* initial set up module 

/* include local garbage collection module 

/* include mutator routines module 

/* include master module 

/********************************************************************* 

* * 
Master Process program 

* * 

process monitorPhase 
const masterPe : int := 0 
bind var states to state(masterPe) 
var message : pointer to msgs 
var tempMsg : pointer to msgs 
states.pePhase := colour.red 
masterPhase := states.pePhase 

loop 
states.pePhase := masterPhase 
if ((states.firstMsg not= nil(msgs)) and 

(states.clock >= msgs(states.firstMsg).time)) 
tempMsg := msgs(states.firstMsg).nextMsg 
message := states.firstMsg 
states.firstMsg := tempMsg 

else 
message := nil(msgs) 

then 

* 

* 

* 

* 

* 

* 

* 
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end if 

loop 
exit when message = nil(msgs) 
assert ((msgs(message).class 

(msgs(message).class = 
case msgs(message).class of 

label msgClass.lgcStart : 
label msgClass.lgcDone : 

end case 

/* loop forever through colours 

= msgClass.lgcStart) or 
msgClass.lgcDone)) 

master.replyLgcStart(message) 
master.replyLgcDone(message) 
master.checkPeStatus 

if (states.firstMsg not= nil(msgs)) and 
(states.clock >= msgs(states.firstMsg).time) then 
tempMsg := msgs(states.firstMsg).nextMsg 
message := states.firstMsg 
states.firstMsg := tempMsg 

else 
message := nil(msgs) 

end if 
end loop 
states.clock += 1 
mailBox.scheduler(masterPe) 

end loop 
end monitorPhase 

* 

/* loop until current phase is over */ 

/********************************************************************* 

* 

* 
Mutator Process 

* 
* 
* 

*********************************************************************/ 

process processor(pen : int) 
var sourcePen : int := pen 
var message : pointer to msgs 
var tempMsg : pointer to msgs 
var opCode : operation 
var opChosen : int 
var lgcStartMsgSent, lgcDoneMsgSent : boolean 
bind var states to state(sourcePen) 

initialSetup.initially(sourcePen) 
initialSetup.setupFreeList(sourcePen) 
initialSetup.setupInitialGraph(sourcePen) 

loop 
if ((states.firstMsg not= nil(msgs)) and 

(states.clock >= msgs(states.firstMsg).time)) then 
tempMsg := msgs(states.firstMsg).nextMsg 
message := states.firstMsg 
states.firstMsg := tempMsg 

else 
message := nil(msgs) 

end if 

if message not= nil(msgs) then 
loop 

case msgs(message).class of 
label msgClass.phaseChange 
label msgClass.lgcForce 
label msgClass.newPleasePaint 
label msgClass.lgcPleasePaint 
label msgClass.remoteRead 
label msgClass.readReply 

mutator.changePePhase(sourcePen, message) 
localGarbageCollection.forceLgc(sourcePen) 
mutator.sendNewPaintAck(message) 
mutator.sendLgcPaintAck(message) 
mutator.sendReadReply(message) 
mutator.receiveReadReply(message) 
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label msgClass.newPaintAck : mutator.receiveNewPaintAck(message) 
label msgClass.IgcPaintAck : mutator.receiveLgcPaintAck(message) 
label msgClass.ackLgcStart : mutator.receiveAckLgcStart(message) 
label magClass.ackLgcDone : mutator.receiveAckLgcDone(message) 

end case 
if (states.firstMsg not= nil(msgs)) and 

(states.clock >= msgs(states.firstMsg).time) then 
tempMsg := msgs(states.firstMsg).nextMsg 
message := states.firstMsg 
states.firstMsg := tempMsg 

else 
message := nil(msgs) 

end if 
exit when message = nil(msgs) 

end loop 
else 

if not(mutateAttemptDone(pen)) then 
mutateAttemptTime(pen) := states.clock 
mutateAttemptDone(pen) := true 

end if 

if (readyToStartMutate(pen)) then 
if not(mutateStartTimeEntered(pen)) then 

mutateStartTime(pen) := states.clock 
mutateStartTimeEntered(pen) := true 

end if 
randint(opChosen, 1, 100) 
if (opChosen >= breakLinkLowerLimit and 

opChosen <= breakLinkUpperLimit) then 
opCode := operation.breakLink 

elsif (opChosen >= allocateNodeLowerLimit and 
opChosen <= allocateNodeUpperLimit) then 
opCode := operation.allocateNode 

elsif (opChosen >= makeLinkLowerLimit and 
opChosen <= makeLinkUpperLimit) then 
opCode := operation.makeLink 

end if 

assert (opCode = operation.allocateNode or 
opCode = operation.makeLink or 
opCode = operation.breakLink) 

case opCode of 
label operation.allocateNode : mutator.allocateNode(sourcePen) 
label operation.makeLink : mutator.makeLink(sourcePen) 
label operation.breakLink : mutator.breakLink(sourcePen) 

end case 
end if 

end if 
states.clock += 1 /* advance processor clock */ 
mailBox.scheduler(pen) 

end loop 
end processor 

/********************************************************************* 

* 
accept input parameters 

* 
*********************************************************************/ 

put "input the value of allocate node lower limit ".. 

get allocateNodeLowerLimit 
put "input the value of allocate node upper limit ".. 

get allocateNodeUpperLimit 
put "input the value of make link lower limit 
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get makeLinkLowerLimit 
put "input the value of make link upper limit 
get makeLinkUpperLimit 
put "input the value of break link lower limit 
get breakLinkLowerLimit 
put "input the value of break link upper limit 
get breakLinkUpperLimit 
put "input the value of remote link probability 0 
get probabilityOfRemoteLinks 
put "input value of average no of lgcs per phase 
get averageNoOfLgcsLimit 
put "in'ut value of message delay time 
get MessageFlightTime 

" . . 

/********************************************************************* 
* * 

fork all processeses 
* * 

for i: 1..no0fMutators 
fork processor(i) 

end for 
fork monitorPhase 
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/********************************************************************* 

********************************************************************** 

* 

This module is in file 'initialsetup.t' 
Initial setup routines module 

* 
* 
* 

*********************************************************************/ 

parent "nonstop.t" /* This module is inserted in 'nonstop.t' file 

stub module initialSetup 

* 

import(lastAddr, state, colour, null, msgs, allocateNodeLowerLimit, 
allocateNodeUpperLimit, makeLinkLowerLimit, makeLinkUpperLimit, 
breakLinkLowerLimit, breakLinkUpperLimit, centralLgcRecords, 
lgcStat, noOfMutators, noOfCellsMarked, noOfCellsRecovered, 
noOfCellsAllocated, no0fLocalMakeLinks,no0fRemoteMakeLinks, 
noOfLocalBreakLinks, no0fRemoteBreakLinks, cell, 
readyToStartLgc, nodeInsertionSuccessful, updateGraphDepth, 
lgcPpsMsgsSentInPhase, lgcAttemptDone, readyToStartMutate, 
mutateAttemptDone, lgcAttemptTime, lgcStartTime, 
lgcCompletedTime, mutateAttemptTime, mutateStartTime, 
mutateStartTimeEntered, probabilityOfRemoteLinks, 
localOrRemoteLowerLimit, localOrRemoteUpperLimit, 
averageNoOfLgcsLimit, MessageFlightTime) 

export(initially, setupFreeList, setupInitialGraph, pickFirstCell, 
updateGraph, insertlntoFreeList) 

procedure initially(pen : int) 
procedure setupFreeList(pen : int) 
procedure setupinitialGraph(pen : int) 
function pickFirstCell(pen : int):int 
procedure updateGraph(var graphRoot:int, cellToBeInserted:int,pen:int) 
procedure insertIntoFreeList(pen:int,cellToBeInserted:int) 

end initialSetup 

body module initialSetup 

const sizeOflnitialGraph := (lastAddr div 2) 
const left := 1 
const right := 2 
const maximumUpdateGraphDepth := 200 

/********************************************************************* 
* 

Initialization routine * 
* 

*************************************1i*******************************/ 

body procedure initially 
bind var states to state(pen) 

randomize 
for i : 1..lastAddr 

states.memory(i).cellAddress := i 
states.memory(i).processorNo := pen 
states.memory(i).markbit := true 
states.memory(i).phase := colour.white 
states.memory(i).1eftPen null 
states.memory(i).rightPen := null 
states.memory(i).1eftAddr null 
states.memory(i).rightAddr null 

end for 
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states.clock 0 
states.newPpsOut 0 
states.newPpsMsgsSent := 0 
states.lgcPpsOut := 0 
states.lgcPpsMsgsSent := 0 
states.readsOut := 0 
states.firstMsg nil(msgs) 
states.pePhase colour.red 
states.lgcStartMsgSent := false 
states.lgcDoneMsgSent := false 
states.receivedAckLgcStart := true /* ready to send lgc done message */ 
states.receivedAckLgcDone := true /* ready to send lgc start message */ 
states.freeList null 
states.root null 
centralLgcRecords(pen) := lgcStat noStart 
no0fCellsMarked(pen) := 0 
no0fCellsRecovered(pen) := 0 
noOfCellsAllocated(pen) 0 
no0fLocalMakeLinks(pen) := 0 
no0fRemoteMakeLinks(pen) := 0 
no0fLocalBreakLinks(pen) := 0 
no0fRemoteBreakLinks(pen) := 0 
readyToStartLgc(pen) := true 
readyToStartMutate(pen) := true 
lgcPpsMsgsSentInPhase(pen) := false 
nodeInsertionSuccessful(pen) := true 
updateGraphDepth(pen) 0 
lgcAttemptDone(pen) := false 
lgcAttemptTime(pen) := 0 
lgcStartTime(pen) 0 
lgcCompletedTime(pen) := 0 
mutateAttemptDone(pen) := false 
mutateAttemptTime(pen) := 0 
mutateStartTime(pen) 0 
mutateStartTimeEntered(pen) := false 

if (pen = 1) then 
localOrRemoteLowerLimit := 10 
localOrRemoteUpperLimit := (localOrRemoteLowerLimit + 

round((noOfMutators * probabilityOfRemoteLinks) / 
(noOfMutators - 1))) 

/* print the banner for output file */ 

put repeat(" ", 130) put repeat("*", 130) 
put repeat("*", 1), repeat(" ", 128), repeat("*",1) 
put repeat("*", 1), repeat(" ", 40), "NO OF MUTATORS ”, 

noOfMutators:6, repeat(" ",58), repeat("*",1) 
put repeat("*", 1), repeat(" ", 128), repeat("*",1) 
put repeat("*", 1), repeat(" ", 40), "NO OF NODES IN A GRAPH ", 

lastAddr:6, repeat(" ",58), repeat("*",1) 
put repeat("*", 1), repeat(" ", 128), repeat("*",1) 
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF ALLOC ", 

((allocateNodeUpperLimit - allocateNodeLowerLimit)/100):6:3, 
repeat(" ",58), repeat("*",1) 

put repeat("*", 1), repeat(" ", 128), repeat("*",1) 
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF MAKE ”, 

((makeLinkUpperLimit - makeLinkLowerLimit)/100):6:3, 
repeat(" ",58), repeat("*",1) 

put repeat("*", 1), repeat(" ", 128), repeat("*",1) 
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF BREAK 

((breakLinkUpperLimit - breakLinkLowerLimit)/100):6:3, 
repeat(" ",58), repeat("*",1) 
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put repeat ("*", 1), repeat (" ", 128), 
put repeat("*", 1), repeat(" ", 40), 

(probability0fRemoteLinks/100):6:3 
put repeat("*", 1), repeat(" ", 128), 
put repeat("*", 1), repeat(" ", 40), 

averageNo0fLgcsLimit:6:3, repeat(" 
put repeat("*", 1), repeat(" ", 128), 
put repeat("*", 1), repeat(" ", 40), 

MessageFlightTime:6, repeat(" ",58 
put repeat("*", 1), repeat(" ", 128). 
put repeat("*", 130) put repeat(" ", 

repeat("*",1) 
"PROS OF REMOTE MAKE 
,repeat(" ",58),repeat("*",1) 
repeat("*",1) 

"AVERAGE LGCS PER PE 
",58), repeat("*",1) 
repeat("*",1) 

"MESSAGE DELAY TIME 
), repeat("*",1) 
repeat("*",1) 

130) 

put " PEN "," PHASE ", " RECLAIM "," LO_MAKE "," RE MAKE 
" LO_BREAK "," RE_BREAK "," ALLOC ", " LGC_PPS ", 
" NEW PPS "," MU24_TIME "," LGC_W_TIME "," LGC_TIME" 

end if 

end initially 

/********************************************************************* 

* 

* 
Set up free list of a processor 

* 
* 
* 

*********************************************************************/ 

body procedure setupFreeList 
bind var states to state(pen) 
bind var freeListRoot to states.freeList 
freeListRoot := 1 
for cellAddress : 1..lastAddr 

states.memory(cellAddress).markbit 
states.memory(cellAddress).phase 
states.memory(cellAddress).1eftPhase 
states.memory(cellAddress).rightPhase 
states.memory(cellAddress).1eftPen 
states.memory(cellAddress).rightPen 
states.memory(cellAddress).1eftAddr 

:= false 
:= colour.white 
:= colour.white 
:= colour.white 
:= null 
:= pen 
:= null 

if (cellAddress = lastAddr) then 
states.memory(cellAddress).rightAddr := null 

else 
states.memory(cellAddress).rightAddr := (cellAddress + 1) 

end if 
end for 

end setupFreeList 

/********************************************************************* 

* * 
Set up initial graph 

* * 

body procedure setupInitialGraph 
bind var states to state(pen) 
var cellToBeInserted : int 
for cellAddress 1..sizeOfInitialGraph 

cellToBeInserted 
states.memory(cellToBeInserted).phase 
states.memory(cellToBeInserted).processorNo 
states.memory(cellToBeInserted).1eftPen 
states.memory(cellToBeInserted).rightPen 
states.memory(cellToBeInserted).1eftAddr 
states.memory(cellToBeInserted).rightAddr 
updateGraphDepth(pen) 0 

pickFirstCell(pen) 
colour. white 
pen 
null 
null 
null 
null 
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updateGraph(states.root, cellToBeInserted, pen) 
if not(nodeInsertionSuccessful(pen)) then 

insertIntoFreeList(pen,cellToBeInserted) 
nodeInsertionSuccessful(pen) true 

end if 
end for 

end setupInitialGraph 

/********************************************************************* 

* * 

Remove the first cell from a free list 
* * 
*********************************************************************/ 

body function pickFirstCell 
bind var states to state(pen) 
var currentPtr: int 
currentPtr := states.freeList 

if (currentPtr not= null) then 
states.freeList := states.memory(currentPtr).rightAddr 
result currentPtr 

else 
result null 

end if 
end pickFirstCell 

/********************************************************************* 
* * 

Insert a cell into free list 
* * 

body procedure insertIntoFreeList 
bind var states to state(pen) 
var currentPtr, previousPtr : int 
currentPtr := states.freeList 
previousPtr := null 

if currentPtr = null then 
states.freeList := cellToBeInserted 

else 
loop 

exit when (states.memory(currentPtr).rightAddr = null) 
currentPtr := states.memory(currentPtr).rightAddr 

end loop 
states.memory(currentPtr).rightAddr := cellToBeInserted 

end if 

end insertIntoFreeList 

/********************************************************************* 

* * 
Insert allocated cell into a graph 

* 

body procedure updateGraph 
bind var states to state(peh) 
var leftOrRight : int 
var currentPtr : int 

updateGraphDepth(pen) += 1 
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if (updateGraphDepth(pen) >= maximumUpdateGraphDepth) then 
nodeInsertionSuccessful(pen) := false 
return 

else 
if (graphRoot = null) then 

graphRoot := cellToBeInserted 
else 

currentPtr := graphRoot 
randint(leftOrRight, left, right) 

if (leftOrRight = left) then 
if (states.memory(currentPtr).1eftAddr = null) then 

states.memory(currentPtr).1eftPen := pen 
states.memory(currentPtr).1eftAddr := cellToBeInserted 

elsif (states.memory(currentetr).1eftPen = pen) and 
(states.memory(currentPtr).1eftPen not= null) then 
updateGraph(states.memory(currentPtr).1eftAddr, 

cellToBeInserted,pen) 
elsif (states.memory(currentPtr).rightPen = pen) and 

(states.memory(currentPtr).rightPen not= null) then 
updateGraph(states.memory(currentPtr).rightAddr, 

cellToBeInserted,pen) 
elsif (states.memory(currentPtr).rightAddr = null) then 

states.memory(currentPtr).rightPen := pen 
states.memory(currentPtr).rightAddr := cellToBeInserted 

else 
nodeInsertionSuccessful(pen) := false 
return 

end if 
end if 

if (leftOrRight = right) then 
if (states.memory(currentPtr).rightAddr = null) then 

states.memory(currentPtr).rightPen := pen 
states.memory(currentPtr).rightAddr := cellToBeInserted 

elsif (states.memory(currentPtr).rightPen = pen) and 
(states.memory(currentPtr).rightPen not= null) then 
updateGraph(states.memory(currentPtr).rightAddr, 

cellToBeInserted,pen) 
elsif (states.memory(currentPtr).1eftPen = pen) and 

(states.memory(currentPtr).1eftPen not- null) then 
updateGraph(states.memory(currentPtr).1eftAddr, 

cellToBeInserted,pen) 
elsif (states.memory(currentPtr).1eftAddr = null) then 

states.memory(currentPtr).1eftPen := pen 
states.memory(currentPtr).1eftAddr := cellToBeInserted 

else 
nodeInsertionSuccessful(pen) := false 
return 

end if 
end if 

end if 
end if 

end updateGraph 

end initialSetup 
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/********************************************************************** 

* ********************************************************************** 

This module is in file 'messagehandler.t' 
Monitor module. Has message transmission routines 
and mutator status table. 

* * 

* 
* 
* 

parent "nonstop.t" /* this module is included in 'nonstop.t' file */ 

stub monitor mailBox 
import(var msgs, var state, MessageFlightTime, usingBuf, getBuf, 

freeBuf, msgClass, peNumbers, noOfMutators) 
export(bufferManager, send, checkPreviousLgcDoneAck, 

checkPreviousLgcStartAck, scheduler) 

procedure 
procedure 
procedure 
procedure 
procedure 

end mailBox 

bufferManager(var inMsg:pointer to msgs, bufferOperation:int) 
send(inMsg: pointer to msgs) 
checkPreviousLgcDoneAck(pen : int) 
checkPreviousLgcStartAck(pen : int) 
scheduler(pen : int) 

body monitor mailBox 

var 

var 

var 

var 

busyBuf 

previousLgcDoneAckReceived 

previousLgcStartAckReceived 

wakeUpProcessor 

condition 
% event of some one using buffer 
array 1..no0fMutators of condition deferred 
% if the previous lgc done ack received 
array 1..no0fMutators of condition deferred 
% if the previous lgc start ack received 
array 0..no0fMutators of condition 
%processor waiting for its turn, signalled by 
% the scheduler 

/********************************************************************* 

* * 

Allocate and deallocate buffer for messages 
* * 
*********************************************************************/ 

body procedure bufferManager 
if usingBuf = true then 

wait busyBuf 
end if 
usingBuf := true 
if bufferOperation = getBuf then 

new msgs, inMsg 
else 
free msgs, inMsg 

end if 
usingBuf := false 
signal busyBuf 

end bufferManager 

/********************************************************************* 

* 
Scheduler routine, wakes up one processor and blocks others * 

* 
*********************************************************************/ 

body procedure scheduler 
var currentYoungestClock : int 
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var currentYoungestProcessor : int 

currentYoungestClock := state(0).clock 
currentYoungestProcessor := 0 
for i : 0..(no0fMutators ) 

if currentYoungestClock > state(i).clock then 
currentYoungestClock := state(i).clock 
currentYoungestProcessor 

end if 
end for 
if (state(pen).clock > currentYoungestClock) then 
signal wakeUpProcessor(currentYoungestProcessor) 
wait wakeUpProcessor(pen) 

end if 
end scheduler 

/********************************************************************* 
* * 

A processor wakes up another processor in case it has 
to wait for previous lgc done acknowledgement message 

* * 
*********************************************************************/ 

body procedure checkPreviousLgcDoneAck 
bind var states to state(pen) 

var currentYoungestClock : int := 0 
var currentYoungestProcessor : int := 0 
var nextYoungestClock : int := 0 
var nextYoungestProcessor : int := 0 

if ((states.lgcDoneMsgSent) and not(states.receivedAckLgcDone)) then 
currentYoungestClock := state(0).clock 
currentYoungestProcessor := 0 
for i : 1..(no0fMutators) 

if currentYoungestClock >= state(i).clock then 
nextYoungestClock := currentYoungestClock 
nextYoungestProcessor := currentYoungestProcessor 
currentYoungestClock := state(i).clock 
currentYoungestProcessor := i 

elsif (nextYoungestClock > state(i).clock) then 
nextYoungestClock := state(i).clock 
nextYoungestProcessor := i 

end if 
end for 

if ((state(pen).clock >= currentYoungestClock) and 
(pen not= currentYoungestProcessor)) then 
assert not(empty(wakeUpProcessor(currentYoungestProcessor)) 
signal wakeUpProcessor(currentYoungestProcessor) 
wait previousLgcDoneAckReceived(pen) 

elsif ((state(pen).clock >= nextYoungestClock) and 
(pen not= nextYoungestProcessor)) then 

assert not(empty(wakeUpProcessor(nextYoungestProcessor)) 
signal wakeUpProcessor(nextYoungestProcessor) 
wait previousLgoDoneAckReceived(pen) 

end if 
end if 

end checkPreviousLgcDoneAck 

/********************************************************************* 

* 

Check for the previous lgc start acknowledgement message 
* 

* 
* 
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body procedure checkPreviousLgcStartAck 
bind var states to state(pen) 
if ((states.lgcStartMsgSent) and not(states.receivedAckLgcStart)) then 

wait previousLgcStartAckReceived(pen) 
end if 

end checkPreviousLgcStartAck 

/********************************************************************* 

* 
Routine to send a message from one processor to another. 
Accepts a message and puts into the message queue of the 
destination processor 

* 
* 
* 

* * 

body procedure send 
var currentPtr, previousPtr : pointer to msgs 
var dest := msgs(inMsg).destination 
var source := msgs(inMsg).source 
var arrival := msgs(inMsg).time + MessageFlightTime 
bind var states to state(dest) 

/* print statements for debugging purpose 

case msgs(inMsg).class of 
label msgClass.lgcStart 
label msgClass.newPleasePaint 
label msgClass.lgcPleasePaint 
label msgClass.newPaintAck 
label msgClass.lgcPaintAck 
label msgClass.remoteRead 
label msgClass.readReply 
label magClass.lgcDone 
label msgClass.phaseChange 
label msgClass.lgcForce 
label msgClass.ackLgcStart 
label msgClass.ackLgcDone 

end case 
put " from source proc source," 

put "sending 
put "sending 
put "sending 
put "sending 
put "sending 

• put "sending 
• put "sending 

put "sending 
put "sending 
put "sending 

• put "sending 
• put "sending 

to dest 

msgs(inMsg).nextMsg := nil(msgs) 
msgs(inMsg).time := arrival 
if states.firstMsg = nil(msgs) then 
states.firstMsg := inMsg 

else 
if arrival <= msgs(states.firstMsg).time 

msgs(inMsg).nextMsg := states.firstMsg 
states.firstMsg := inMsg 

else 
currentPtr 
previousPtr 
loop 

previousPtr := currentPtr 
currentPtr := msgs(currentPtr).nextMsg 
exit when (currentPtr = nil(msgs) or arrival 

end loop 
if (currentPtr = nil(msgs)) then 
msgs(previousPtr).nextMsg := inMsg 

else 
msgs(inMsg).nextMsg 
msgs(previousPtr).nextMsg 

end if 
end if 

gc start message".. 
pl new paint message".. 
pl lgc paint message".. 
new paint ack message". 
lgc paint ack message". 
remote read message".. 
read reply message".. 
lgc done message".. 
phase change message ". 
lgc force message".. 
acknowledge lgc start message ".. 
acknowledge lgc done message ".. 

proc ", dest 

states.firstMsg 
:= nil(msgs) 

then 

currentPtr 
inMsg 

* 

/* Queue is empty */ 

/* Insert at the head */ 

/* Scan to find place */ 

<= msgs(currentPtr).time) 

/* Insert at the en' *1 

/* Insert in the mladle */ 
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end if 

case msgs(inMsg).class of 
label msgClass.ackLgcStart : signal previousLgcStartAckReceived(dest) 
label : /* do nothing */ 

end case 

end send 

end mailBox 
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/********************************************************************* 
********************************************************************** 

This module is in file 'mutator.t' 
Mutator routines module 

* 

parent "nonstop.t" /* include this module in 'nonstop.t' file 

stub module mutator 

* 

import(msgs, state, mailBox, freeBuf,getBuf, null, 
allocateObjectTime, colour, makeLocalLinkTime, msgClass, 
sendMsgTime, breakLocalLinkTime, changePhaseTime, 
lastAddr, cell, no0fMutators, localGarbageCollection, 
initialSetup, no0fCellsAllocated, no0fLocalMakeLinks, 
noOfRemoteMakeLinks, noOfLocalBreakLinks, noOfRemoteBreakLinks, 
readyToStartLgc, nodeInsertionSuccessful,receiveMsgTime, 
updateGraphDepth, lgcPpsMsgsSentInPhase, readyToStartMutate, 
localOrRemoteLowerLimit, localOrRemoteUpperLimit, msgAckTime) 

export(allocateNode, makeLocalLink,previousPhase, 
makeRemoteLink, makeLink, breakLink, changePePhase, 
sendNewPaintAck, sendLgcPaintAck,sendReadReply, 
receiveReadReply, receiveNewPaintAck,receiveLgcPaintAck, 
receiveAckLgcStart, receiveAckLgcDone, nextPhase) 

procedure allocateNode(pen:int) 
procedure makeLocalLink(pen:int) 
procedure makeRemoteLink(sourcePen:int, destPen:int) 
procedure makeLink(sourcePen: int) 
procedure breakLink(sourcePen:int) 
procedure changePePhase(pen:int, inMsg : pointer to msgs) 
procedure sendNewPaintAck(inMsg: pointer to msgs) 
procedure sendLgcPaintAck(inMsg: pointer to msgs) 
procedure sendReadReply(inMsg: pointer to msgs) 
procedure receiveReadReply(var inMsg: pointer to msgs) 
procedure receiveNewPaintAck(var inMsg: pointer to msgs) 
procedure receiveLgcPaintAck(var inMsg: pointer to msgs) 
procedure receiveAckLgcStart(var inMsg: pointer to msgs) 
procedure receiveAckLgcDone(var inMsg: pointer to msgs) 
function nextPhase(presentPhase:colour):colour 
function previousPhase(presentPhase:colour):colour 
function sourceRandomWalk(root : int, pen : int) : int 
function destRandomWalk(root : int, pen : int) : int 

end mutator 

body module mutator 

/* initially grown graph is half the full size */ 
const sizeOfInitialGraph := (lastAddr div 2) 
const left 1 
const right :- 2 
const remote 99 
var sourceDepthLevel : int 
var destDepthLevel : int 
var destDepth : int := 0 
var sourceDepth : int := 0 

/********************************************************************* 

* 
Routine to allocate a node 
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body procedure allocateNode 
bind var states to state(pen) 
var pickNode : int 

pickNode := initialSetup.pickFirstCell(pen) 
if (pickNode = null) then 
localGarbageCollection.lgc(pen) 

else 
states.memory(pickNode).phase := colour.white 
states.memory(pickNode).1eftPen := null 
states.memory(pickNode).rightPen := null 
states.memory(pickNode).1eftAddr := null 
states.memory(pickNode).rightAddr := null 
no0fCellsAllocated(pen) += 1 % increment no. of cells allocated 
states.clock += allocateObjectTime % advance processor's clock 

updateGraphDepth(pen) := 0 
initialSetup.updateGraph(states.root, pickNode, pen) 
if not (nodeInsertionSuccessful(pen)) then 

initialSetup.insertIntoFreeList(pen,pickNode) 
nodeInsertionSuccessful(pen) := true 
noOfCellsAllocated(pen) -= 1 

end if 
end if 

end allocateNode 

/********************************************************************* 

* 

* 
Procedure to make a local link between two cells 

body procedure makeLocalLink 
bind var states to state(pen) 
var leftOrRight : int 
var sourceNode, destNode : int 

randint(leftOrRight, left, right) 
sourceDepth := 0 
sourceNode := sourceRandomWalk(states.root, pen) 

/* identify a source node 
destDepth 
destNode 

* 
* 
* 

* 

0 
destRandomWalk(states.root, pen) 

/* identify a destination node 

if ((sourceNode not- null) and 
((states.memory(sourceNode).1eftAddr = null) or 
(states.memory(sourceNode).rightAddr = null)) and 
(destNode not= null) and (sourceNode not= destNode)) then 

if (leftOrRight - left) then 
if (states.memory(sourceNode).1eftAddr = null) then 

* 

states.memory(sourceNode).1eftPen pen 
states.memory(sourceNode).1eftAddr := destNode 
states.memory(sourceNode).1eftPhase colour.white 
no0fLocalMakeLinks(pen) += 1 
states.clock += makeLocalLinkTime /* advance processor clock 

elsif (states.memory(sourceNode).rightAddr = null) then 

* 
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sourceDepth := 
sourceNode 
destDepth 
destNode := 
if ((sourceNode 

states.memory(sourceNode).rightPen 
states.memory(sourceNode).rightAddr 
states.memory(sourceNode).rightPhase 
noOfLocalMakeLinks(pen) += 1 
states.clock += makeLocalLinkTime 

end if 
end if 

:- pen 
:= destNode 
:= colour.white 

/* advance processor clock */ 

if (leftOrRight = right) then 
if (states.memory(sourceNode).rightAddr = null) then 

states.memory(sourceNode).rightPen 
states.memory(sourceNode).rightAddr 
states.memory(sourceNode).rightPhase 
noOfLocalMakeLinks(pen) += 1 
states.clock makeLocalLinkTime 

pen 
destNode 
colour. white 

/* advance processor 

elsif (states.memory(sourceNode).1eftAddr = null) then 

states.memory(sourceNode).1eftPen 
states.memory(sourceNode).1eftAddr 
states.memory(sourceNode).1eftPhase 
noOfLocalMakeLinks(pen) += 1 
states.clock += makeLocalLinkTime 

end if 
end if 

end if 
end makeLocalLink 

:= 
pen 
destNode 
colour.white 

/* advance processor 

/********************************************************************* 

* 

Make a remote link, send a newLinkPaint message 
to the destination processor 

* 

* 
* 
* 
* 

************:********************************************************/ 

body procedure makeRemoteLink 
var pp : pointer to msgs 
bind far states to state(sourcePen) 
bind var Now to states.clock 
var sourceNode, destNode : int 
var leftOrRight : int 

randint(leftOrRight, left, 
0 
sourceRandomWalk(states.root, 
0 
destRandomWalk(states.root, destPen) 
not= null) and 

(((states.memory(sourceNode).1eftAddr = null) and 
(states.memory(sourceNode).1eftPen - null)) or 
((states.memory(sourceNode).rightAddr = null) and 
(states.memory(sourceNode).rightPen = null))) and 
(destNode not= null)) then 

right)

if (leftOrRight = left) then 
if (states.memory(sourceNode).1eftAddr 

states.memory(sourceNode) 
states.memory(sourceNode) 
states.memory(sourceNode) 

sourcePen) 

= null) then 

.leftPen := destPen 

.leftAddr destNode 

.leftPhase states.pePhase 

clock 

clock 

* 

* 
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no0fRemoteMakeLinks(sourcePen) += 1 
states.clock += makeLocalLinkTime 

elsif (states.memory(sourceNode).rightAddr 

states.memory(sourceNode).rightPen 
states.memory(sourceNode).rightAddr 
states.memory(sourceNode).rightPhase 
no0fRemoteMakeLinks(sourcePen) += 1 
states.clock += makeLocalLinkTime 

end if 
end if 

= null) then 

destPen 
destNode 
states.pePhase 

if (leftOrRight = right) then 
if (states.memory(sourceNode).rightAddr = null) then 

states.memory(sourceNode).rightPen := destPen 
states.memory(sourceNode).rightAddr := destNode 
states.memory(sourceNode).rightPhase := states.pePhase 
no0fRemoteMakeLinks(sourcePen) += 1 
states.clock += makeLocalLinkTime 

elsif (states.memory(sourceNode).1eftAddr = null) then 

states.memory(sourceNode).1eftPen := destPen 
states.memory(sourceNode).1eftAddr := destNode 
states.memory(sourceNode).1eftPhase := states.pePhase 
no0fRemoteMakeLinks(sourcePen) += 1 
states.clock += makeLocalLinkTime 

end if 
end if 

mailBox.bufferManager(pp,getBuf) 
state(destPen).memory(destNode).phase := states.pePhase 
states.newPpsOut += 1 

/* increment outstanding newLinkPaint message count 
states.newPpsMsgsSent += 1 

/* 
/* 

msgs(pp).time 
mags(pp).class 
msgs(pp).destination 
msgs(pp).source 
msgs(pp).address 
msgs(Pp).phase 
mailBox.send(pp) 
states.clock += sendMsgTime 

end if 
end makeRemoteLink 

increment number of newLinkPaint messages sent 
for statistics purpose */ 

Now /* Now is equal to present time 
msgClass.newPleasePaint 
destPen 
sourcePen 
destNode 
states pePhase 

/* time for remote message sending * 

/********************************************************************* 
* * 

Make a link either remote or local 
* 

body procedure makeLink 
var destPen : int 
var localOrRemote : int 
var sourceNode, destNode: int 

randint(localOrRemote, 1, 100) 

* 

* 

* 
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randint(destPen, 1, noOfMutators) 
/* choose a random destination processor */ 

randint(sourceDepthLevel,(round(ln(lastAddr)/1n(2.0)) div 3), 
round(ln(lastAddr)/ln(2.0)) + 2) 

/* choose a random depth, at least three levels deep 

if not((localOrRemote >= localOrRemoteLowerLimit) 
(localOrRemote <- localOrRemoteUpperLimit) 
(destPen not= sourcePen)) then 

destPen := sourcePen 
end if 

and 
and 

if sourcePen = destPen then 
makeLocalLink(sourcePen) /* call local make link routine */ 

else 
makeRemoteLink(sourcePen,destPen) /* call remote make link routine */ 

end if 
end makeLink 

/********************************************************************* 

* * 
break link between two given cells 

* * 

body procedure breakLink 
bind var states to state(sourcePen) 
var leftOrRight : int 
var sourceNode : int 
randint(sourceDepthLevel,(roundan(lastAddr)/1n(2.0)) div 3), 

round(ln(lastAddr)/ln(2.0)) + 2) 
/* choose a random depth, at least three levels deep 

destDepth := 0 
sourceNode := destRandomWalk(states.root, sourcePen) 

/* identify an edge for breaking */ 
if ((sourceNode not= null) and 

(((states.memory(sourceNode).1eftAddr not= null) and 
(states.memory(sourceNode).1eftPen not= null)) or 
((states.memory(sourceNode).rightAddr not= null) and 
(states.memory(sourceNode).1eftPen not= null)))) then 

randint(leftOrRight, left, right) 
if (leftOrRight = left) then 

if (states.memory(sourceNode).1eftAddr not= null) then 

if (states.memory(sourceNode).1eftPen = sourcePen) then 
no0fLocalBreakLinks(sourcePen) += 1 

else 
no0fRemoteBreakLinks(sourcePen) += 1 

end if 

states.memory(sourceNode).1eftPen := null 
states.memory(sourceNode).1eftAddr := null 
states.clock += breakLocalLinkTime /* advance processor clock 

elsif (states.memory(sourceNode).rightAddr not= null) then 

if (states.memory(sourceNode).rightPen = sourcePen) then 
no0fLocalBreakLinks(sourcePen) += 1 

else 
no0fRemoteBreakLinks(sourcePen) += 1 

end if 

states.memory(sourceNode).rightPen := null 

* 

* 

* 
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states.memory(sourceNode).rightAddr := null 
states.clock +- breakLocalLinkTime /* advance processor clock 

end if 
end if 

if (leftOrRight = right) then 
if (states.memory(sourceNode).rightAddr not= null) then 

if (states.memory(sourceNode).rightPen = sourcePen) then 
no0fLocalBreakLinks(sourcePen) += 1 

else 
no0fRemoteBreakLinks(sourcePen) += 1 

end if 

states.memory(sourceNode).rightPen 
states.memory(sourceNode).rightAddr 
states.clock += breakLocalLinkTime 

null 
null 
/* advance processor clock 

elsif (states.memory(sourceNode).1eftAddr not= null) then 

if (states.memory(sourceNode).1eftPen = sourcePen) then 
no0fLocalBreakLinks(sourcePen) += 1 

else 
no0fRemoteBreakLinks(sourcePen) += 1 

end if 

states.memory(sourceNode).1eftPen 
states.memory(sourceNode).1eftAddr 
states.clock += breakLocalLinkTime 

end if 
end if 

end if 
end breakLink 

Si 

null 
null 
/* advance processor clock 

/********************************************************************* 

* * 

Change processor phase 
* * 

body procedure changePePhase 
bind var states to state(pen) 
states.pePhase := nextPhase(states.pePhase) 
assert (states.pePhase = msgs(inMsg).phase) 
states.noLgcsDoneInCurrentPhase := 0 
lgcPpsMsgsSentInPhase(pen) := false 

end changePePhase 

/********************************************************************* 

* 

* 
Determine next phase colour 

* 
* 
* 

*********************************************************************/ 

body function nextPhase 
case presentPhase of 
label colour.red : result colour.blue 
label colour.blue : result colour.green 
label colour.green : result colour.yellow 
label colour.yellow : result colour.red 

end case 
end nextPhase 

/********************************************************************* 

* 

* 

* 
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* * 
Determine previous phase colour 

* * 

body function previousPhase 
case presentPhase of 

label colour.red : result 
label colour.blue : result 
label colour.green : result 
label colour.yellow : result 

end case 
end previousPhase 

colour. yellow 
colour. red 
colour.blue 
colour.green 

/********************************************************************* 

* * 
Send acknowledgement for new please paint message * 

* 
*********************************************************************/ 

body procedure sendNewPaintAck 
var tempSource, tempDest : int 
var reply : pointer to msgs 
tempSource := msgs(inMsg).source 
tempDest := msgs(inMsg).destination 
const pen := msgs(inMsg).destination 
bind var states to state(pen) 

reply := inMsg 
states.clock 
msgs(reply).class 
msgs(reply).destination 
msgs(reply).source 
msgs(reply).time 
mailBox.send(reply) 

end sendNewPaintAck 

+= msgAckTime 
msgClass.newPaintAck 
tempSource 
tempDest 
states.clock 

/********************************************************************* 
* * 

Send acknowledgement for lgc please paint message 
* * 
*********************************************************************/ 

body procedure sendLgcPaintAck 
var tempSource, tempDest : int 
tempSource := msgs(inMsg).source 
tempDest msgs(inMsg).destination 
var node := msgs(inMsg).address 
const pen := msgs(inMsg).destination 
bind var states to state(pen) 
var reply := inMsg 

if (states.memory(node).phase not= nextPhase(msgs(inMsg).phase)) then 
states.memory(node).phase := msgs(inMsg).phase 

end if 

states.clock 
msgs(reply).class 
msgs(reply).destination 
msgs(reply).source 
msgs(reply).time 
mailBox.send(reply) 

end sendLgcPaintAck 

+ msgAckTime 
msgClass.lgcPaintAck 
tempSource 
tempDest 
states.clock 
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/********************************************************************* 
* * 

Send an acknowledgement for a read message 
* * 
*********************************************************************/ 

body procedure sendReadReply 
const pen := msgs(inMsg).destination 
bind var states to state(pen) 
var node := msgs(inMsg).address 
var reply := inMsg 

if (states.memory(node).phase not= nextPhase(msgs(inMsg).phase)) then 
states.memory(node).phase := msgs(inMsg).phase 

end if 

states.clock += msgAckTime 
mags(reply).class := msgClass.readReply 
msgs(reply).source := msgs(inMsg).destination 
msgs(reply).destination := msgs(inMsg).source 
msgs(reply).time := states.clock 
mailBox.send(reply) 

end sendReadReply 

/********************************************************************* 

* 

Receive an acknowledgement for a remote read message 
* 

* 
* 
* 

*********************************************************************/ 

body procedure receiveReadReply 
var pen := msgs(inMsg).destination 
bind var states to state(pen) 
states.clock += receiveMsgTime 
states.readsOut -= 1 
mailBox.bufferManager(inMsg,freeBuf) 

end receiveReadReply 

/********************************************************************* 
* * 

Receive an acknowledgement for a new paint message 
* * 

body procedure receiveNewPaintAck 
var pen := msgs(inMsg).destination 
bind var states to state(pen) 
assert (states.newPpsOut > 0) 
states.clock += receiveMsgTime 
states.newPpsOut -= 1 
if ((states.newPpsOut = 0) and not(readyToStartMutate(pen))) then 

readyToStartMutate(pen) := true 
end if 
mailBox.bufferManager(inMsg,freeBuf) 

end receiveNewPaintAck 

/********************************************************************* 

* 

Receive an acknowledgement for a lgc paint message 
* 

body procedure receiveLgcPaintAck 
var pen := msgs(inMsg).destination 

* 
* 
* 
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bind var states to state(pen) 
assert (states.lgcPpsOut > 0) 
states.clock += receiveMsgTime 
states.lgcPpsOut -= 1 
if (states.lgcPpsOut = 0) then 

readyToStartLgc(pen) :- true 
end if 
mailBox.bufferManager(inMsg,freeBuf) 

end receiveLgcPaintAck 

/********************************************************************* 

* * 

Receive an acknowledgement for a lgc start message * 
* 

body procedure receiveAckLgcStart 

* 

var pen := msgs(inMsg).destination 
bind var states to state(pen) 
assert (states.lgcStartMsgSent) 
states.receivedAckLgcStart := true 
states.clock += receiveMsgTime 
mailBox.bufferManager(inMsg,freeBuf) 

end receiveAckLgcStart 

/********************************************************************* 
* * 

Receive an acknowledgement for a lgc done message 
* * 
*********************************************************************/ 

body procedure receiveAckLgcDone 
var pen := msgs(inMsg).destination 
bind var states to state(pen) 
assert (states.lgoDoneMsgSent) 
states.receivedAckLgcDone := true 
states.clock += receiveMsgTime 
mailBox.bufferManager(inMsg,freeBuf) 

end receiveAckLgcDone 

/********************************************************************* 
* * 

Random walk through graph to identify a source node 
* * 
*********************************************************************/ 

body function sourceRandomWalk 
bind var states to state(pen) 
var leftOrRight : int 

sourceDepth += 1 

if (root not= null) then 
if (sourceDepth > sourceDepthLevel) then 

result root 
else 

randint(leftOrRight, left, right) 

if (leftOrRight = left) then 
if (states.memory(root).1eftAddr = null) then 

result (root) 
elsif (states.memory(root).1eftPen = pen) and 

(states.memory(root).1eftPen not= null) then 
result (sourceRandomWalk(states.memory(root).1eftAddr, pen)) 
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elsif (states.memory(root).rightPen = pen) and 
(states.memory(root).rightPen not= null) then 
result (sourceRandomWalk(states.memory(root).rightAddr, pen)) 

else 
result null 

end if 
end if 

if (leftOrRight = right) then 
if (states.memory(root).rightAddr = null) then 

result (root) 
elsif (states.memory(root).rightPen = pen) and 

(states.memory(root).rightPen not= null) then 
result (sourceRandomWalk(states.memory(root).rightAddr, pen)) 

elsif (states.memory(root).1eftPen = pen) and 
(states.memory(root).1eftPen not= null) then 
result (sourceRandomWalk(states.memory(root).1eftAddr, pen)) 

else 
result null 

end if 
end if 

end if 
else 

result null 
end if 

end sourceRandomWalk 

/********************************************************************* 
* * 

Random walk through graph to identify a destination node 
* * 

body function destRandomWalk 
bind var states to state(pen) 
var leftOrRight : int 
destDepth += 1 

if (root not= null) then 
if (destDepth > sourceDepthLevel) then 

result (root) 
else 

randint(leftOrRight, left, right) 
randint(destDepthLevel,(sourceDepthLevel div 8), 

(sourceDepthLevel div 1.3)) 

if (leftOrRight = left) then • 
if ((states.memory(root).1eftAddx = null) and 

(destDepth > destDepthLevel)) then 
result (root) 

elsif (states.memory(root).1eftPen = pen) and 
(states.memory(root).1eftPen not= null) then 
result (destRandomWalk(states.memory(root).1eftAddr, pen)) 

elsif (states.memory(root).rightPen - pen) and 
(states.memory(root).rightPen not= null) then 

result (destRandomWalk(states.memory(root).rightAddr, pen)) 

else 
result null 

end if 
end if 

if (leftOrRight - right) then 
if ((states.memory(root).rightAddr = null) and 
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(destDepth > destDepthLevel)) then 
result (root) 

elsif (states.memory(root).rightPen = pen) and 
(states.memory(root).rightPen not= null) then 
result (destRandomWalk(states.memory(root).rightAddr, pen)) 

elsif (states.memory(root).1eftPen = pen) and 
(states.memory(root).1eftPen not= null) then 
result (destRandomWalk(states.memory(root).1eftAddr, pen)) 

else 
result null 

end if 
end if 

end if 
else 

result null 
end if 

end destRandomWalk 

end mutator 
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/********************************************************************* 

********************************************************************** 

This module is in file 'master.t' 
Module for master processor 

* 

* 
* 
* 

parent "nonstop.t" /* include this module in 'nonstop.t' file */ 

stub module master 
import(msgs, centralLgcRecords, lgcStat, state, 

colour, processGcMsgTime, msgClass, mailBox, 
noOfMutators, masterPhase, mutator, getBuf, forcesSent, 
averageNo0fLgcsLimit) 

export (replyLgcStart, replyLgcDone, checkPeStatus) 

procedure 
procedure 
procedure 

replyLgcStart(var inMsg: pointer to msgs) 
replyLgcDone(var inMsg: pointer to msgs) 
checkPeStatus 

end master 

body module master 

var nextForceTime : int := 400 

/********************************************************************* 

* 
Reply to an lgc start message 

* 

body procedure replyLgcStart 
var updatedLgcStatus : lgcStat 
var pen :- msgs(inMsg).source 
var phase := msgs(inMsg).phase 
bind var masterPe to state(0) 
bind lgcRec to centralLgcRecords(pen) 

if not(phase = mutator.previousPhase(masterPe.pePhase)) then 
assert ((lgcRec = lgcStat.noStart) or (1gcRec = lgcStat.oneDone) 

(1gcRec = lgcStat.someDone)) 
case lgcRec of 

* 

label lgcStat.noStart : updatedLgcStatus := lgcStat.oneStart 

label lgcStat.oneDone updatedLgcStatus := lgcStat.doneGoing 

label lgcStat.someDone : updatedLgcStatus := lgcStat.doneGoing 

end case 
lgcRec := updatedLgcStatus 
masterPe.clock 
msgs(inMsg).class 
msgs(inMsg).source 
msgs(inMsg).destination 
msgs(inMsg).time 
mailBox.send(inMsg) 

else 
/* ignore previous phase lgc start message */ 

msgs(inMsg).class :- msgClass.ackLgcStart 

msgs(inMsg).source := 0 
msgs(inMsg).destination := pen 
msgs(inMsg).time := masterPe.clock 

mailBox.send(inMsg) 
end if 

end replyLgcStart 

+= prcicessGcMsgTime 
:= msgClass.ackLgcStart 
:= 0 
:= pen 

masterPe.clock 

Or 
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assert ((lgcRec = lgcStat.oneStart) 
case lgcRec of 
label lgcStat.oneStart 
label lgcStat.doneGoing 

end case 
lgcRec := updatedLgcStatus 
masterPe.clock 
msgs(inMsg).class 
msgs(inMsg).source 
msgs(inMsg).destination 
msgs(inMsg).time 
mailBox.send(inMsg) 

else 
/* ignore previous phase 
msgs(inMsg).class 
msgs(inMsg).source 
msgs(inMsg).destination 
msgs(inMsg).time 
mailBox.send(inMsg) 

end if 
end replyLgcDone 

/********************************************************************* 

* * 
Respond to a lgc done message 

* 

body procedure replyLgcDone 
var updatedLgcStatus : lgcStat 
var pen := msgs(inMsg).source 
var phase := msgs(inMsg).phase 
bind var masterPe to state(0) 
bind lgcRec to centralLgcRecords(pen) 

if not(phase = mutator.previousPhase(masterPe.pePhase)) then 
or (1gcRec = lgcStat.doneGoing)) 

* 
* 

: updatedLgcStatus := lgcStat.oneDone 
: updatedLgcStatus := lgcStat.someDone 

+ processGcMsgTime 
msgClass.ackLgcDone 
0 
pen 
masterPe.clock 

lgc done message */ 
:= msgClass.ackLgcDone 
:= 0 

pen 
masterPe.clock 

/********************************************************************* 

check processor's status 
* * 

body procedure checkPeStatus 
bind var masterPe to state(0) 
var forceMessage : pointer to msgs 
var phaseMessage : pointer to msgs 
var lgcsDone : int := 0 
var averageNo0fLgcsInPhase : real 
var countOfLgcs : int :— 0 

for i:l..no0fMutators 
bind var states to state(i) 
if (centralLgcRecords(i) = lgcStat.someDone) or 

(centralLgcRecords(i) = lgcStat.doneGoing) or 
(centralLgcRecords(i) = lgcStat.oneDone) then 
lgcsDone += 1 
countOfLgcs := countOfLgcs + states.noLgcsDoneInCurrentPhase 

end if 
end for 

% check if current phase is done */ 

% examine mutator status records */ 

averageNo0fLgcsInPhase := (countofLgcs / noOfMutators) 

if (1gcsDone >= round(noOfMutators * 0.8) and (not forcesSent) 

and (averageNo0fLgcsInPhase >= averageNoOfLgcsLimit)) then 
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for i:1..no0fMutators 
if (centralLgcRecords(i) = lgcStat.noStart) then 

mailBox.bufferManager(forceMessage,getBuf) 
msgs(forceMessage).class msgClass.lgcForce 
msgs(forceMessage).time masterPe.clock 
msgs(forceMessage).destination 
msgs(forceMessage).source := 0 
msgs(forceMessage).phase masterPe.pePhase 
put "sending force lgc message to 
mailBox.send(forceMessage) 

end if 
end for 
forcesSent := true 

end if 

if ((lgcsDone = noOfMutators) and 
(averageNo0fLgcsInPhase >= averageNo0fLgcsLimit)) 

masterPhase 
masterPe.pePhase 

for i:l..no0fMutators 
centralLgcRecords(i) 

end for 

then 

mutator.nextPhase(masterPe.pePhase) 
masterPhase 

:= lgcStat.noStart 

for i:l..no0fMutators 
mailBox.bufferManager(phaseMessage, getBuf) 
msgs(phaseMessage).class := msgClass.phaseChange 
msgs(phaseMessage).time := masterPe.clock 
msgs(phaseMessage).destination := 
msgs(phaseMessage).source := 0 
msgs(phaseMessage).phase := masterPe.pePhase 
mailBox.send(phaseMessage) 

end for 
forcesSent := false 

end if 
end checkPeStatus 

end master 
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