
An Algorithm for Garbage Collection in Multicomputer Systems

A Thesis

Submitted to the Faculty of Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

in the

Department of Electrical Engineering

University of Saskatchewan

by

Eshwari Prasad Komarla

Saskatoon, Saskatchewan

September 1988

The author claims copyright. Use shall not be made of the material contained herein

without acknowledgement, as indicated on the following page.

Dedicated to my

beloved parents

Distribution Notice

The author has agreed that the Library, University of Saskatchewan, may make this

thesis freely available for inspection. Moreover, the author has agreed that permission for

extensive copying of this thesis for scholarly purposes may be granted by the professor or

professors who supervised the thesis work herein or, in their absence, by the Head of the

Department or the Dean of the College in which the thesis work was done. It is understood

that due recognition will be given to the author of this thesis and to the University of

Saskatchewan in any use of the material in this thesis. Copying or publication or any other

use of this thesis for financial gain without approval by the University of Saskatchewan

and the author's written permission is prohibited.

Requests for permission to copy or make any other use of material in this thesis in

whole or in part should be addressed to:

Head
Department of Electrical Engineering,
University of Saskatchewan,
Saskatoon, Saskatchewan,
S7N OWO, Canada.

Acknowledgements

I would like to take this opportunity to thank all those who were instrumental in

successfully completing this work. First and foremost I would like to thank my

supervisors Professors Carl McCrosky and Ron Bolton for their able guidance and useful

suggestions. My sincere regards to Professor Carl McCrosky who was more than a

supervisor. He was always ready for suggestions and advice, his informal discussions,

and all his help in the course of this work are thankfully acknowledged.

I would like to thank my family and friends for their encouragement and assistance

in pursuing my higher studies. I am grateful to my parents who always believed in my

strengths and encouraged me all through these years in building up my career. My thanks

to both my sisters for their help and good wishes. My thanks to all friends both here and

back home for their co-operation and useful suggestions.

Ii

University of Saskatchewan

Electrical Engineering Abstract 88A294

An Algorithm for Garbage Collection in Multicomputer Systems

Candidate: Eshwari Prasad Komarla

Supervisors: C.D. McCrosky and R.J. Bolton

M.Sc. Thesis presented to the College of Graduate Studies

University of Saskatchewan

September 1988

Abstract

There is widespread interest in multicomputer parallelism. Functional languages

with their inherent parallelism can form a basis for programming these machines. These

languages dynamically allocate memory, objects are created when required and eventually

objects may lose links with active objects and become unreachable garbage. The process of

recovering these inactive objects is called garbage collection. Garbage collection in a

multicomputer system has to manage objects in physically separated memories. This

introduces consistency and synchronization problems with the shared data.

The development of an algorithm for garbage collection in a multicomputer system

is reported. A description of the algorithm is presented. The design of the simulator and

the simulation experiments are presented. The application of Petri nets to the modelling of

this algorithm is discussed. Verification of some properties of this algorithm using the

invariants of the Petri net model are presented.

111

Table of Contents

1 Introduction 1

1.1 Models of Multicomputer Systems 1

1.2 Introduction to basic Data Structures 2

1.2.1 Graphs 2

1.2.2 Trees 3

1.3 Graph Reduction 4

1.4 Storage Management 7

1.5 Garbage Collection in Uniprocessor Systems 8

1.6 Parallel Graph Reduction 9

1.7 Garbage Collection in Multiprocessor Systems 10

1.8 Goals of the Thesis 12

1.9 Outline of the Thesis 13

2 Garbage Collection in Uniprocessor Systems 14

2.1. Introduction 14

2.2 Mark and Sweep Algorithm 15

2.3 Reference Counting 17

2.3.1 Hardware support for reference-counting 19

2.3.2 Cyclic Reference Counting Algorithms 20

2.4 Garbage Collection in Virtual Memory Systems 22

2.5 Real-Time Algorithms 24

2.6 Summary 25

3 Garbage Collection in Multicomputer Systems 2 6

3.1 Introduction 26

iv

V

3.2 Reference Counting 28

3.2.1 Reference Weighting 29

3.3 Marking Tree Collector 31

3.4 Ali's Algorithms for GC in Multiprocessor Systems 33

3.4.1 Global algorithm 34

3.4.2 Local-Global Algorithm 35

3.4.3 Distributed-Local Algorithm 35

3.4.4 Distributed Real-Time Algorithm 36

3.5 Hughes Distributed GC Algorithm 38

3.6 Summary 40

4 Algorithm for Garbage Collection in a

Distributed System 42

4.1 Introduction 42

4.2 Statement of the Problem 42

4.3 Overview of the Algorithm 43

4.4 Algorithm 43

4.4.1 System Phases 44

4.4.2 Data Structures and Node Contents 45

4.4.3 Message Types 45

4.4.4 Master Algorithm 46

- 4.4.5 Mutator Algorithm 48

4.4.6 Response to Messages 52

4.4.7 Initial Conditions 53

4.5 Arguments for Correctness of the Algorithm 54

4.6 Analysis of the Algorithm 55

4.6.1 Cost of Global GC in a Distributed System 56

vi

4.6.2 Lost memory model

4.7 Conclusions

5 Simulation

5.1 Introduction

5.2 Turing-Plus language

5.3 Design of the Simulator Model

5.4 Implementation of the Simulator

5.5 Simulation Experiments

5.5.1 Verification of Phase Transitions

5.5.2 Variation of Message Load with Phase Length

5.5.3 Effect of Network Delay on Waiting Time

5.6 Conclusions

6 Petri Net Modelling of the Algorithm

6.1 Introduction

6.2 Petri Net Theory and Modelling

6.2.1 Definition of Petri Nets

6.2.2 Restrictions, Extensions and Modifications of

Petri nets

6.3 Analysis of Petri Nets

6.3.1 Analysis Problems of Petri Nets

6.3.2 Analysis Techniques

6.3.3 Linear Algebraic Representation

6.3.4 Net Invariants

6.4 Petri Net Modelling of the Algorithm

6.4.1 Verification of Properties from the Model

6.5 Conclusions

58

61

62

62

62

63

65

67

67

69

70

72

73

73

74

75

77

79

79

80

83

85

87

95

95

vu

7 Summary and Conclusions 97

7.1 Contributions of the Thesis 98

7.2 Extensions and Future Work 99

References 101

Appendix 106

List of Figures

1.1 Model of a Tightly Coupled Multicomputer System 2

1.2 Model of a Loosely Coupled Multicomputer System 2

1.3 Examples of graphs (a) Undirected graph. (b) Directed Graph 3

1.4 Some examples of trees, (d) is a binary tree 4

1.5 Graphical representation of application of f to x y 6

1.6 Graph of f x y = (x + 3)* (y - 2) 6

1.7 Graph after reductions (x + 3) and (y - 2) 7

1.8 Model of a Parallel Graph Reduction Machine 11

2.1 Reference Counting can not detect Cyclic Structures 17

2.2 Reference Counting slows down graph mutations 18

3.1 Reference counting is order dependent 28

3.2 After reference count operations 29

3.3 An object reference using reference weights 30

3.4 Copying an object reference in reference weighting 30

4.1 Pictorial representation of cyclic colour phases 44

4.2 Representation of a node in the graph 45

4.3 Representation of a message 46

4.4 Master Algorithm 48

4.5 Mutator algorithm 49

4.6 Mutation Operations 50

4.7 Local Garbage Collection Algorithm 51

4.8 Response to Messages 53

4.9 Distribution of cost in a global garbage collection scheme 57

4.10 Variation of memory loss with phase length 59

4.11 Variation of number of messages/lgc with phase length 60

viii

ix

5.1 Illustration of phase changes
(system with 16 processors, phase length of 5 lgc's/phase) 68

5.2 Illustration of phase changes
(system with 16 processors, phase length of 2.5 lgc's/phase) 68

5.3 Variation of cells reclaimed per message with phase length 70

5.4 Variation of waiting time with network delay
(system with 16 processors, phase length varying from 1 to 5
lgc's per phase) 71

6.1 Use of Petri Nets for the modelling and analysis of systems 74

6.2 An example of a Petri Net 76

6.3 Network after the firing of transition ti 76

6.4 An extended Petri Net with inhibitor arcs 78

6.5 A marked Petri Net for illustrating the construction of a reachability tree 81

6.6 The teachability tree of the Petri Net shown in Figure 6.5 81

6.7 Matrix Representation of Petri Net shown in Figure 6.2 84

6.8 Illustration of S-invariants of Petri Net shown in Fig. 6.2 86

6.9 High level Petri Net Model of the Algorithm 90

6.10 Simplified Petri Net Model 91

6.11 Petri Net Modelling of the Algorithm 92

6.12 Matrix Representation of the Petri Net model of the Algorithm 93

6.13 S-Invariants of the Petri Net Model 94

CHAPTER 1

Introduction

1.1 Models of Multicomputer Systems

Recently there has been a shift in research interest from centralized serial computing

machines to parallel machines in order to exploit potential parallelism in programs [33, 51].

There are two well known types of parallel computer systems namely SIMD (Single

Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data). A SIMD

computer consists of a control unit, N processors and N memory modules. Processors and

memories are connected by an inter-connection network. The control unit broadcasts

instructions to the processors, and all processors execute the same instruction at the same

time on the data stored in their associated memory modules. There are two models of

MIMD computer systems. In the shared-memory model (also called tightly-coupled),

shown in Fig. 1.1, data is stored in a shared memory, which can be accessed by all

processors through an inter-connection network (for example the Ultra Computer [24]). In

a message-passing model (also called loosely-coupled), shown in Fig. 1.2, each

processor has an associated local memory, and data is passed from the producing

processors to the consuming processors through an inter-connection network.

The parallelism that can be achieved in a shared memory multi-computer system is

constrained because of the need to access shared data. Loosely-coupled multicomputer

systems require slicing of problems into tasks that minimize communications between

processors. Information is exchanged via message passing. Each task must be scheduled

for execution on one or more processors. Synchronization of control and data flow is

performed during execution. In this thesis we consider only a loosely-coupled message-

passing system.

1

2

• • •

Inter-Connection Network

E PE
2

• • • PE

Figure 1.1 Model of a Tightly Coupled Multicomputer System.

Inter-Connection Network

PE1

M1

PE2
 • • •

M2

PEn

Mn

Figure 1.2 Model of a Loosely Coupled Multicomputer System.

1.2 Introduction to basic Data Structures

In this section we present definitions of some frequently mentioned data structures

in the thesis. Graphs and trees are the most important data structures required for our

purpose.

1.2.1 Graphs

Definition: A graph G = (V, E) consists of a set V of vertices (points) and a set

3

of E of edges (arcs) connecting pairs of vertices. Fig. 1.3 illustrates some examples of

graphs. In Fig. 1.3(a), edges p and q form loops with vertex a. Another important

concept in graphs is that of a path. In a graph G, a path from VotoVn is the sequence

V0, E0, V1, E ,...V n_i, En-1, Vn where Ei = (V i, Vi+1), an edge between vertices

Vi and Vi+1. The length of a path is the number of edges traversed from the source

vertex to the destination vertex. A path is a closed path (circuit) if Vo = Vn, i.e. the

source and terminating vertices are the same. A path which is closed and repeats no edges

or vertices is a cycle. A graph is directed, if every edge has direction.

(a) (b)

Figure 1.3 Examples of graphs: (a) Undirected graph (b) Directed Graph.

1.2.2 Trees

A connected and acyclic graph is called a tree. In a tree each pair of distinct

vertices is connected by exactly one simple path (not circuit). A rooted tree is one in which

exactly one vertex has been designated as its root. A binary tree is a rooted tree in which

every interior vertex has at most two children. Fig. 1.4 shows some examples of trees,

Fig. 1.4(d) shows a binary tree.

4

•

(a)

(c)

(b)

(d)

Figure 1.4 Some examples of trees, (d) is a binary tree.

1.3 Graph Reduction

Functional programming languages appear to be a natural way to program multi-

computer systems. The main advantages of functional languages is their semantic

simplicity and their avoidance of unnecessary sequentiality. This facilitates the

implementation of multiple instruction, multiple-data (MIMD) parallelism. A functional

programming language achieves this goal by separating the task that the program is to

perform from the way that the computer is to do it. That is, unlike imperative languages,

functional languages do not specify the flow of control but only the flow of data in the

program.

Most functional programming languages are quite similar to each other, and differ

more in their syntax than their semantics. A functional language can be implemented in

three steps. The first step is the translation of high level functional program into an

intermediate language. The intermediate language is the notation of lambda calculus [44].

5

Lambda expressions can be implemented in three ways: string reduction, environment

interpretation and graph reduction. In string reduction, the program is represented as one

long string of lambda expression, and numerous parts of the string can be evaluated at

once. In an environment interpreter, the code sequence for the lambda abstraction has

access to an environment which contains values for each of the variables. Binding of actual

parameters to formal parameters is done in the environment.

There are two strategies in the implementation of any functional programming

language, strict (Normal Order) and non-strict (lazy) evaluation. In strict evaluation, the

evaluation of arguments of a function is done first before the invocation of the function,

whereas in lazy evaluation arguments are evaluated only when it is necessary.

Environment interpretation approach is more suited for the implementation of languages

with strict semantics (such as ML [23] and Hope [14]).

In graph reduction, lambda calculus expressions with variables are converted into

CAF s (Constant Applicative Forms). These CAF expressions are also called

combinators or supercombinators. The transformation to supercombinators is called

lambda lifting. The transformed program is optimized and compiled into a linear

instruction sequence. This compiled code is represented as a cyclic graph. Cycles appear

in the graph because of recursive functions and data structures in the program. The

evaluation of the program corresponds to the reduction of this graph. Hence this evaluation

is called graph reduction. Graph reduction is the most natural way to implement

languages with non-strict semantics (lazy evaluation). Examples of languages that use this

strategy are SASL [52], Ponder [21, 22], LML [5], Miranda [53] and Orwell [54].

Suppose a function f is defined (e.g. in Miranda, a modern functional language

[53]) like this:

f x y = (x + 3) * (y - 2)

6

This definition specifies that f , a function of two arguments x and y, computes

(x + 3) * (y - 2). Let this function be evaluated for the values x = 3 and y = 5, i.e.

function f applied to 3 and 5. The application of function f may be graphically

represented as shown in Fig. 1.5.

f x

Figure 1.5 Graphical representation of application of f to x y

This tree denotes the expression f x y (Fig. 1.5). The '@' sign is called the tag

of the node, and indicates that the node is an application. The application of this function

for the given values of x and y corresponds to the reduction of the graph shown in Fig.

1.6.

x 3 y 2

Figure 1.6 Graph off x y = (x + 3) * (y - 2)

We may execute the addition and subtraction in either order resulting in the graph

7

shown in Fig. 1.7. Finally we can execute the multiplication, to give the result

6 3

Result = 18

Figure 1.7 Graph after reductions (x + 3) and (y - 2)

The evaluation of a function has been transformed into graph reduction. Graph

reduction gives an appealingly simple and elegant model for the execution of a functional

program, and one that is radically different from the execution model of a conventional

imperative language. Some of the salient features of graph reduction are:

i) Executing a functional program consists of transforming an

expression.

ii) A functional program has a natural representation as a tree (or more
generally a graph).

iii) Evaluation proceeds by means of a sequence of simple steps, called
reductions. Each reduction performs a local transformation of the
graph (hence the term graph reduction).

Reductions may safely take place in a variety of orders, or indeed in
parallel, if they do not interfere with each other.

v) Evaluation is complete when there are no further reducible
expressions. Normally this results in the production of an answer.

1.4 Storage Management

As reduction proceeds we will need to build new pieces of graph, due to new

function invocations. In order to do so we have to allocate new cells (each vertex in the

graph is referred to as a cell or node). Cells are allocated from a (large) area of storage

called a heap, which is simply an unordered collection of cells. As well as allocating new

8

cells, the reduction process discards cells, or rather it discards pointers to cells. A cell in

the graph may have many pointers to it. A cell is declared unusable when all the pointers to

it are deleted. Since storage is finite, it is necessary to reclaim these garbage cells. In the

example shown in Fig. 1.6, on evaluation of the addition (x + 3), two cells x and 3

loose their links with other nodes in the graph, and become garbage. Similarly, the

reduction (y - 2) results in two garbage cells. Overall in the reduction of function f, six

garbage cells are generated. The implementation of any functional language includes a

garbage collector whose purpose is to identify and recycle garbage cells. The whole

activity of cell allocation and garbage collection is called storage management.

Storage management schemes including garbage collectors are needed in all

declarative languages (functional and logic) that have dynamic heap semantics. The

performance of implementations of these languages depends to a great extent on the

efficiency of the storage management scheme. Also the implementation of a storage

management scheme depends very much on the underlying system architecture.

1.5 Garbage Collection in Uniprocessor Systems

This section outlines some of the garbage collection methods available in the

existing uniprocessor systems. There are two well known techniques namely mark and

sweep method and reference counting [16]. In the mark and sweep technique, the

system accumulates garbage cells until the heap storage is empty. Garbage collection is

then initiated. In the first (marking) phase all reachable cells in the program graph are

marked. Garbage cells are not marked. During the sweep phase, a linear search of the

entire memory is done, detecting cells that are unmarked. A free list is built of these free

cells. Generally the sweep phase is followed by a compaction phase wherein all the free

cells are moved to one end of the address space. This scheme has the advantage that it can

9

reclaim detached cyclic structures in the program graph. But the main disadvantage of this

scheme is that this algorithm is not real-time in nature as evaluation of the program halts

during garbage collection.

In the reference counting technique each cell has a count (reference count) of the

number of pointers to it. All accessible cells in the program graph have a reference count

greater than zero. A cell is declared garbage when all pointers to it are deleted, i.e. when its

reference count decreases to zero. During each reduction operation reference counts of

cells involved in the operation are updated and any cell whose reference count decreases to

zero is reclaimed. This scheme has the advantage that it is real-time in nature as program

evaluation is not halted and garbage collection proceeds concurrently with the program

evaluation. But this scheme has the disadvantage that it can not reclaim cyclic structures

and much time is spent updating reference counts during each graph operation.

To overcome the disadvantages of both these techniques, hybrid techniques have

been proposed [11, 16, 18]. These methods attempt to achieve real-time response as well

as reclaim cyclic structures. Algorithms for systems with virtual memory are known as

copying algorithms [8, 28, 30], here the virtual address space of the processor memory is

logically partitioned into semispaces. Only one of the semispaces is active at a time, cells

are created in the active semispace. When its space is exhausted, all active cells in the

current semi space are copied to other semispace. The garbage cells in the current active

semispace are automatically reclaimed.

1.6 Parallel Graph Reduction

One of the most attractive features of functional programming languages is that they

are not inherently sequential, as are conventional imperative languages. At any moment

there are a number of reducible expressions (or redexes) in the program graph and in

principle they could all be reduced simultaneously. Writing parallel programs is easier in a

10

functional language. The following points can be stated to substantiate the above

statement.

i) In a functional language the parallelism can be dynamic; there is no

static division of the problem into tasks. Maximal parallelism can be

dynamically exploited.

In a functional program the synchronization between different

reductions is mediated entirely by the shared graph. A reduction is
made known to the graph by the indivisible operation of overwriting

the root of the redex with the result of the reduction, and no other

synchronization is necessary. Procedural parallelism, however
requires a large run-time investment in synchronization.

iii) There are no extra language constructs required to write parallel

functional programs.

The above mentioned advantages apply to any parallel implementation of a

functional language, but graph reduction is particularly attractive. A number of evaluator

tasks simultaneously work on the graph. Each evaluator task reduces some particular sub-

graph. Each sub-graph is located in physically separated memories. During its execution,

a task may anticipate that it will require the value of a certain sub-graph at some future time.

In this case it may generate a new task to evaluate the sub-graph in parallel by sparking the

root node of the sub-graph. The new (child) task will evaluate the graph rooted at the

sparked node, concurrently with the continued execution of the (parent) task that sparked it.

1.7 Garbage Collection in Multicomputer Systems

The model of a parallel graph reduction machine is shown in Fig.l.8. The program

graph is logically partitioned into sub-graphs and each sub-graph is located in the private

memory of a processor. In the Fig. 1.8, we have partitioned a graph into four sub-graphs.

Each sub-graph resides in the local memory of a processor. Each sub-graph has a root of

11

its own. Local links link nodes in the same sub-graph, remote links span across memory

boundaries. With good locality in the graph partitioning and memory allocation, the

number of remote links in the system are assumed to constitute a small fraction of the local

links. Each processor has access to local links and nodes of its sub-graph. Remote

nodes are accessed by sending messages through the inter-connection network. Cycles

appear in the sub-graphs (because of recursive functions and data structures) that may be

local or global. Local cycles reside in a single memory. Due to the partitioning of

program graph among many physically separated memories, cycles in the graph may

happen to span across different memories. Detecting these detached global cyclic structures

is difficult and expensive in terms of communication and synchronization overhead.

PE 0 PE 1

''...... Root

Root

RemoteLink

Cycle

•

Root

Global
Cycle

Root

PE 2 PE 3

Figure 1.8 Model of a Parallel Graph Reduction Machine

Implementation of storage management schemes in a multicomputer system is

12

complex because the garbage collection scheme has to manage objects in physically

separated stores. This introduces consistency and synchronization problems with shared

data. Message passing introduces communication overhead in the system. A simple

extension of algorithms proposed for uniprocessor systems to the multicomputer systems is

not practical due to the presence of these overheads. Many algorithms have been proposed

[3, 4, 26, 27, 29]. These algorithms range from completely global schemes to parallel

real-time algorithms. Not only are these algorithms complex, their analysis and proof of

correctness is very hard. A detailed description and a comparison of these algorithms is

given in Chapter Four.

1.8 Goals of the Thesis

The main thrust of this thesis is to develop a new storage management scheme for

parallel multicomputer systems. The specific goals are:

i) To study storage management schemes in multicomputer and
uniprocessor systems.

ii) To propose a new algorithm for garbage collection in a
multicomputer system.

iii) To perform a simulation study of our proposed algorithm, and
thereby gain insight into the dynamic behavior of our algorithm.

iv) To establish arguments for the correctness of the proposed algorithm
using Petri Nets.

This thesis presents a model for the development of any distributed algorithm.

Analytic techniques are used to obtain approximate performance results. Simulator models

with empirical loads provide insights into the behavior of the algorithm. A semi-formal

proof of correctness based on modelling techniques gives confidence in the overall

algorithm design.

13

1.9 Outline of the Thesis

Chapter Two deals with the garbage collection algorithms used in uniprocessor

systems. Mark and sweep algorithm and reference counting algorithms are studied.

Hybrid techniques that attempt to combine the advantages of both these schemes and

copying algorithms for systems with virtual memory are also presented.

The Chapter Three deals with the garbage collection algorithms that have been

proposed for multicomputer systems. Specific algorithms are presented and a comparison

of these techniques is given.

We present our proposed algorithm in the fourth chapter. Some of the advantages

of our algorithm over existing techniques are highlighted by analytical modelling. In

Chapter Five we report a simulation of our algorithm. Motivation for the simulator model

is discussed. Experiments conducted to verify the algorithm are presented.

In Chapter Six we discuss formal modelling of our algorithm using Petri Nets.

Analysis of Petri Nets using Reachability trees and Linear Algebraic methods are

presented. The motivation for using a linear algebraic method and verification of system

properties using P and T invariants of the network is given. The thesis concludes with a

chapter highlighting significance of the work and summary of results and conclusions

drawn from the research conducted.

CHAPTER 2

Garbage Collection in Uniprocessor Systems

2.1 Introduction

This chapter surveys techniques for garbage collection in uniprocessor systems. A

survey article by Cohen [16] gives an excellent overview of various garbage collection

(GC) algorithms that have been proposed for uniprocessor systems. There are two

traditional approaches for GC in uniprocessor systems, mark and sweep and reference

counting.

Mark and sweep collection is done whenever the free list is empty. First, all

accessible cells are marked by traversing the entire accessible structure. Then a linear scan

through memory recovers all unmarked cells. This algorithm is discussed in section 2.2.

In reference-counting each cell has an extra field, called reference-count that holds

the number of references (i.e. the number of pointers) to it [15]. The reference-count is

incremented whenever a link is made to the cell and is decremented whenever a pointer is

discarded. A cell whose reference-count drops to zero is reclaimed. These collectors can

not reclaim cyclic structures. Modified reference-counting algorithms have been proposed

that can reclaim cyclic structures [11, 12, 15, 28]. Hybrid systems, which have a limited-

width reference-count field have been suggested. These collectors use mark and sweep

collection to reclaim cyclic structures. A discussion of these algorithms is presented in

section 2.3.

The main requirement of garbage collectors in virtual memory systems is the

locality of references. Algorithms that improve locality and perform compaction are

necessary for such systems. These are known as copying garbage collectors. These

14

15

algorithms are presented in section 2.4. The approaches presented so far are not suited for

systems with real-time constraints. Parallel algorithms have been proposed for these

systems. In these schemes, two processors work in parallel, one processor (mutator) is

responsible for graph mutation and the other (collector) is for garbage collection [19, 50].

Section 2.5 describes some of these algorithms.

2.2 Mark and Sweep Algorithm

In this approach the system consumes cells until the free list is empty. At this

stage execution of the user's program is stopped and a garbage collection cycle is initiated.

The mark and sweep garbage collection takes place in three phases, the first is the

marking phase, its task is to identify the objects accessible from the root by traversing the

graph, and marking each object encountered. As all active cells in the graph are accessible

from the root, all these cells are marked. Inactive (garbage) cells are unmarked. The

marking phase is followed by a sweep phase. Its task is to sweep the entire memory space

and to examine each existing object: if the object is not marked, it is reclaimed by returning

its space to free storage. A free list is built of these reclaimed cells. The sweep phase is

followed by a compaction phase wherein all the active cells are pushed into contiguous

locations of memory. The other end contains a contiguous area of unused space that can be

used for creating new objects.

From the above discussion, two points are obvious: the garbage collector is able to

detect all inactive cells including cyclic structures, and collection halts program evaluation.

The duration of garbage collection varies and it can not be predicted. Unpredictable

program interruptions makes this algorithm unsuitable for real-time applications. The

duration of the sweep phase is proportional to the size of the memory. Hence this scheme

is not appropriate for systems with very large virtual address space. This has *prompted

the development of copying algorithms for virtual memory systems.

16

The marking phase requires an explicit stack for storing pointers to the cells being

marked. A pointer is pushed onto the stack just before marking the cells's right branch.

Marking terminates when the stack is empty. Consequently each node in the graph is

visited twice: once before marking the left field and once before marking the right field. A

requirement of this technique is the need to have a stack space to hold at least n pointers,

where n is the maximum possible depth of the graph (in the worst case this will be equal to

the number of cells in the graph). To reserve this much additional space initially is

uneconomical. Several algorithms have been proposed to circumvent this difficulty [18,

49]. All these algorithms involve reducing the required storage by trading it for the time to

perform marking.

The algorithm proposed by Deutsch [18] and by Schorr and Waite [49] dispenses

with the use of a stack but requires one additional bit per cell. The main idea of this

algorithm is that the nodes of a tree or a directed graph can be inspected without using a

stack by reversing successive links until leaves or already visited nodes are found. The

link reversal can then be undone to restore the original structure of the graph. The

additional bit per cell (called a tag bit) indicates the direction in which the restoration of

reversed links should proceed (i.e. whether to follow the left or the right pointer). The

disadvantage of this marking scheme is that the cells are visited three times. This additional

visit and the overhead for restoring pointers and for checking and setting bits makes this

algorithm less time efficient than the classical algorithm. The authors Schorr and Waite

have suggested a modification in which there is a fixed-size stack with link reversal

technique. The stack algorithm is used whenever possible. If the stack overflows, the

tracing and marking proceed by the link reversal method. Many variations of this marking

scheme using fixed-size stack and/or modifications of link reversal techniques have been

proposed [16].

17

2.3 Reference Counting

In reference counting, each cell has a field having a count that indicates the number

of pointers to it. All active have a reference count greater than or equal to one. Any

unreferenced cell has a reference count equal to zero. The garbage collector becomes

operational whenever a link is made or broken. Garbage collection in this case is

incremental, the GC time is distributed over the entire program period. But the main

drawback of this scheme is that it can not reclaim cyclic structures.

Root A B

-►

E

C D

F

Figure 2.1 Reference Counting can not detect Cyclic Structures

The Fig. 2.1 illustrates the weakness of reference counting algorithm in detecting

cyclic structures. In the figure is shown a section of a cyclic graph, cells A, B, C, E and

F form a cyclic structure. All cells are accessible from the root only by traversing through

the link (root, A). The reference count of A is equal to two and that of other cells is equal

to one. Let us assume that the link (root, A) is deleted. The reference count of A

decreases by one. The reference counts of all other nodes remain unaffected. This

deletion of link (root, A) delinks the entire section of graph from the root, the entire

structure is garbage now. But as the reference count of none of the objects in the structure

is equal to 0, the algorithm fails to detect them as garbage. As recursion is a natural way to

program in a functional language, cyclic structures are generated frequently in a functional

program. This algorithm can not reclaim space used by these cyclic structures, resulting in

continual loss of space. Modified reference counting algorithms have been proposed by

18

Hughes [28], Brownbridge [12] and Moon [36] that can reclaim cyclic structures.

Section 2.3.2 discusses these algorithms in greater detail.

D

Root B

11111 111 . 1111111

Ell

G

Figure 2.2 Reference Counting slows down graph mutations

The other drawback of reference-counting is that it introduces extra overhead on

every object operation slowing down graph mutations. This is illustrated in Fig. 2.2. The

figure shows a section of graph with objects A, B, C, D, E, F and G. The reference

counts of A, B, D, E, F and G are equal to one and that of C is equal to two. There is

a pointer from cell A to B, cell B can be accessed from the root only by traversing

through this pointer. Let us say this link is broken, the reference count of B decreases to

zero. It is no more accessible from the root, it has become a garbage cell. Any outgoing

pointers from a garbage cell must be deleted. This in turn may generate some more garbage

cells. The process of pointer deletion is to be done recursively from garbage cells

generated at every step. In the example shown above, the deletion of link AB results in

the deletion of pointer BC. The reference count of C decreases to one, i.e. a single

pointer operation resulted in the breaking of one additional link and updating of one

reference count. If instead of one pointer from B there were many pointers, many

reference count updates needs to be done. If these cells scatter across different parts of the

memory, accessing these storage cells becomes very expensive. In a virtual memory

19

system this results in increased page faults slowing down graph operations. Hence an

algorithm for garbage collection in virtual memory system must ensure good locality in the

program graph.

Reference-counting introduces space overhead per each cell. Theoretically the

width of the reference-count field must be equal to the maximum number of cells in the

address space (i.e. if every other cell in the system points to one single cell). But

observations in practical Lisp systems have shown that 97% of cells have a reference count

equal to one [16]. Modifications have been suggested to the reference counting algorithm

to circumvent this space overhead. The idea is to have a limited width reference-count

field. Reference counts are incremented until the maximum value is reached. Those

reference-counts that have reached their maximum value are not updated any more; these

cells are assumed to be permanently active. When the heap becomes empty, mark and

sweep collection is initiated to reclaim these permanent cells. The logical extreme of the

limited width reference-counting idea is a one-bit reference-count field. This idea was

proposed by Wise and Friedman [16]. Any cell that has this bit set indicates that this cell is

referenced once or more. As in the limited width reference-count algorithm, mark and

sweep collection is resorted to reclaim circular structures and cells that are referenced more

than once.

2.3.1 Hardware Support for Reference Counting

As seen in Fig. 2.2, reference-counting slows down graph mutation. Much of

the time overhead of reference-counting would be alleviated if hardware support were

available. Wise [56] proposes a 'smart' memory module that is capable of handling the

increment/decrement operations on reference counts. The memory module translates

read/write instructions into increment/decrement operations on reference counts.

Increment/decrement reference-count messages are transmitted across memory modules.

20

In software reference-counting, the processor is responsible for reclaiming and updating

the available heap space when a reference-count becomes zero. In this scheme, the

memory module is responsible for maintaining this list. A cell is automatically included

into the heap without interrupting processor operation. This hardware reference-counting

scheme is also suitable for tightly-coupled multiprocessor systems wherein many

processors share a common memory distributed across many modules.

2.3.2 Cyclic Reference Counting Algorithms

Bobrow [11], Hughes [28] and Brownbridge [12] have suggested extensions to the

conventional reference counting algorithm that would allow it to reclaim circular structures.

A brief description of the Brownbridge's algorithm is given below:

In this algorithm, graph pointers are divided into two types, weak and strong,

with their own separate reference counts. Each cell has two reference count fields. Strong

reference counters are used whenever normal reference count pointers would be used.

Weak reference counts are used when a pointer forms a cycle. Consequently the

computation graph satisfies the following two rules:

i) Cells in use are accessible from the root through a continuous chain of
strong pointers.

ii) No cycles are formed by a continuous chain of strong pointers.

The process of creating and deleting a pointer is the same as in standard reference

counting algorithm. When a pointer is created with the appropriate type, the relevant

reference count of the cell is incremented. If the pointer created is of strong type,

SRC(ptr_to) is incremented and if it is a weak pointer, WRC(ptr_to) is incremented.

Here, SRC(ptr_to) represents the strong reference count and WRC(ptr_to) the weak

reference count of the pointer object ptr_to. Deletion of a pointer is more complex than

21

creation, here four cases may arise:

i) If the pointer is weak then,
WRC(ptr_to) = WRC(ptrto) - 1

ii) If the pointer is strong and SRC(ptr_to) > 1, then

SRC(ptr_to) = SRC(ptr_to) - 1

,iii) If the pointer is strong, SRC(ptr_to) = 1 and WRC(ptr_to) = 0, then delete

ptr_to. This cell can be garbage collected.

iv) If the pointer is strong, SRC(ptr_to) = 1 and WRC(ptr_to) > 0 then this is

the case standard reference counting algorithm will fail and special action

needs to be taken.

In this case, it can not determined whether the cell is free or not. Brownbridge

[12] in his paper suggests a method to handle this situation. The SRC(ptr_to) is set to 0.

All weak pointers to ptr_to are inverted to strong pointers. To determine whether ptr_to

is free, a recursive search is initiated by visiting sub-objects ofptr_to and undo any strong

cycles created by pointer inversion. He proposes a routine suicide to do this recursive

searching. If SRC(ptr_to) = 0, then recursively delete all objects reachable from ptr_to.

He suggests an implementation method to handle this pointer inversion. Associated with

each pointer is a status bit indicating what type of the pointer it is. The cell body also has

an associated bit, and it is the relationship between the pointer status bit and its target cell

body bit that determines the strength of the pointer, eg. if both bits are the same then the

pointer is strong otherwise it is weak.

In his thesis Salkild [48] has analyzed this algorithm. He observes that this

suicide routine performs well in a graph with a high proportion of strong pointers, but

with larger programs the algorithm fails. He analyzes the weakness of the suicide

routine, saying that this routine changes all weak pointers to strong ones at any one site and

it fails when more than one weak pointer needs to be turned into a strong one. The suicide

22

cell, having no strong pointers to it is now incorrectly collected. He also observes that the

efficiency of the algorithm is critically dependent on the distribution of weak pointers. This

strong dependency on graph structure makes this algorithm highly unpredictable.

Moreover the algorithm expects the language implementation to know when a cycle is being

created which is not always possible.

2.4 Garbage Collection in Virtual Memory Systems

A heap can be implemented in real-memory or virtual memory. In the case of real

memory, the whole heap resides in the primary memory and all objects in the heap are

directly accessible to a user program and the garbage collector. In the case of virtual

memory, the heap resides in more than one level of memory hierarchy. For an efficient

GC that operates in virtual memory, it is necessary to minimize page faults. Grouping

related objects in one page (or a few pages) and compaction (to improve locality of

references) are important properties of a GC that operates in such an environment.

Many algorithms have been proposed for GC in these virtual memory systems.

These are called copying algorithms [8, 30]. A copying algorithm performs all the three

tasks of a mark and sweep GC in one phase. In Baker's algorithm, the memory space is

divided into two areas called semispaces. At a given time, only one semispace is used for

creating new objects. When garbage collection begins, all accessible objects are copied

from the current semispace into the other semispace and the role of semispace is reversed.

The new semispace contains only accessible objects.

GC efficiency (by efficiency we mean the rate of collecting garbage cells) is

enhanced by taking hardware assistance in the form of tagged memory architecture. In

tagged memory, every word is divided into two parts: the data and the tag. The tag

distinguishes words whose data part is an address from words whose data part is a number

23

or a bit pattern. Special conventions and machine instructions are provided for the efficient

processing of these tagged words. As a copying garbage collector needs to distinguish

addresses from numbers, the tagged architecture enables the garbage collector to scan

memory without regard for object boundaries, hence it can scan non-sequentially through

memory.

In a typical functional programming environment, object life time is not uniform.

A great percentage of the objects have been observed to have a very short life time [16, 30].

A GC that treats all objects equally does not perform very well. By concentrating garbage

collection effort in the most productive places, the maximum amount of space can be

reclaimed for the minimum cost of computation time, virtual memory paging and impaired

interactive response. Objects may be classified into groups based on their life time. Most

of the space can be reclaimed by concentrating GC effort on ephemeral objects. The older

objects may be assumed to be permanent, they need to be garbage collected less frequently.

The algorithm proposed by Lieberman and Hewitt [30] takes into account the life

time of objects. Their algorithm is an extension to Baker's algorithm. In Baker's

algorithm, the address space is logically divided into two semispaces, whereas in this

algorithm, the address space is allocated in small regions. Objects recently created contain

a larger percentage of garbage and will be garbage collected more frequently than older

regions. The process of garbage collecting a region is initiated by condemning it. This is

followed by scavenging, wherein all accessible objects in the region are evacuated. Many

scavenging processes may be working in parallel on different regions. The rate of

condemning regions is related to the age of regions. Older regions are condemned less

frequently than recent ones. Inter-region pointers are maintained using entry and exit

tables. To reduce space overhead of these tables and to cover-up the cost of scanning large

numbers of regions, the older regions are merged and inter region pointers are deleted.

24

2.5 Real-Time Algorithms

The mark/sweep GC algorithm introduces substantial program interruptions,

ranging from any where between a few seconds to tens of minutes. These unpredictable

program interruptions makes this algorithm unsuited for real-time applications. In

reference counting, collector is active in parallel with the mutator, but each graph operation

may be slowed down considerably.

Several real-time garbage collection algorithms that work in parallel with a user

program have been proposed [19, 50, 17]. These are based on two processors working in

parallel: one is responsible for GC, called collector, and the other for program execution,

called mutator. Two algorithms based on this approach have been proposed by Steele [50]

and Dijkstra et al., [19]. In Steele's method, the collector has three phases: mark, sweep

and relocate. During the mark phase, all accessible cells are marked. It uses a stack to

hold objects that have been marked but whose children have not been examined. During

the sweep phase, the storage space of inaccessible objects is picked up. The relocation

phase relocates accessible objects to minimize the storage space required. Since the mutator

is running in parallel with the collector, the free list must have enough free storage space to

keep the mutator from starvation. Semaphores control mutual exclusion of shared object

between the collector and mutator processors.

In any parallel garbage collection method, the mutator must co-operate with the

collector for performing the proper marking of accessible objects. Since the collector and

mutator are running in parallel, the operation of these algorithms is much more difficult to

understand or prove correct than any sequential GC. The algorithms proposed by Baker

[8] and Lieberman and Hewitt [30], can also be considered as real-time GC algorithms.

Here semispaces are simultaneously active. These approaches are less complex than the

algorithms suggested by Dijkstra et.al., [19] and Steele [50], since normal activity and GC

25

represent only one sequential process.

2.6 Summary

An overview of uniprocessor garbage collection algorithms has been presented. A

mark and sweep collector is able to detect all garbage cells, it has the disadvantage that it

introduces arbitrarily long program interruptions. A reference-counting collector works in

parallel with user's program. It is not able to detect cyclic structures in the program graph

and it slows down graph operations.

Copying collectors are used for garbage collection in virtual memory systems.

Their main requirement is to improve locality in the program. Real-time algorithms use two

processors, a mutator for graph reductions and a collector for garbage collection. Both

mutator and collector work in parallel.

CHAPTER 3

Garbage Collection in Multicomputer Systems

3.1 Introduction

This chapter presents an overview of the important garbage collection algorithms

proposed for loosely-coupled multicomputer systems. These algorithms are adaptations to

the distributed environment of ideas that have been developed for uniprocessor systems. In

a loosely-coupled multicomputer system, the heap is distributed over many physically

separated PE (Processor Element) memories. This organization is called a distributed

heap. Each PE has direct access only to objects that reside in its local memory. Due to

parallel activities that take place in a distributed heap, its management is much more difficult

than a single processor implementation.

Parallel graph reduction places unique demands on the performance of a garbage

collector. A distributed garbage collection scheme must address these issues — inter-

processor communications and utilization of communication network, synchronization

and mutual exclusion of shared data, wastage of CPU cycles, and real-time response.

With present day technology, the cost of communications between parallel

processors is much higher than the cost of communications within a processor. Inter-

connection network bandwidth is a critical performance factor of a distributed system.

Processors need to communicate with each other during garbage collection. Bandwidth of

the communication network is limited, a garbage collector in a distributed environment

must make optimal use of the network bandwidth.

Protecting shared data in a parallel multicomputer system is quite complex. It is

essential to maintain mutual exclusion (only one process has write access to the shared

26

27

data [25]) and synchronization (allowing processes to exchange information and

communicate with each other [25]) of shared data. Efficient schemes are needed to prevent

race conditions (in which the outcome of a computation depends on the speeds of

processes, i.e. parts of computation are time critical [25]), and deadlocks (in which

process(s) wait for event(s) that can never occur [25]) in the system. The mechanisms to

protect shared data should have minimal effect on the parallelism in application programs.

A distributed garbage collection algorithm must not waste much computational

power. Simple distributed GC algorithms (global algorithms) restrict parallelism in the

system and thereby waste much of the computational power. These algorithms have a

central synchronization and control point. They require less space, less communication

bandwidth and synchronization overhead. As computation in the system comes to a halt

during GC, maintaining data consistency and synchronization is straightforward. On the

other hand, non-global GC algorithms allow greater parallelism and thereby do not waste

much computational power. These schemes typically have high space requirement, and

high communication and synchronization overheads.

The design of a distributed garbage collection scheme must take all these factors

into consideration. The designer has to make tradeoffs between these conflicting

requirements. In addition to all these factors, the performance of a distributed garbage

collector depends on the underlying system architecture and the application.

We review a variety of previous solutions for parallel distributed garbage collection:

• Distributed reference-counting has been suggested [40] for garbage
collection in message-passing systems. This algorithm is presented in
Section 3.2.1.

• Hudak [26, 27] has presented a marking tree garbage collection
algorithm that is an adaptation of the real-time mark and sweep
algorithm proposed by Steele [50] and Dijkstra et. al., [19]. Section 3.3

28

presents this algorithm.

• Ali [3, 4] has proposed four distributed garbage collection algorithms.
These algorithms can be categorized as global, local-global,
distributed-local and distributed real-time algorithms. These
algorithms are presented in Section 3.4.

• Hughes [29] presents a distributed garbage collection algorithm that
attempts to overcome deficiencies of Hudak and Ali's algorithms. This
algorithm is presented in Section 3.5.

3.2 Reference Counting

Nori [40] adapted the reference-counting approach to the distributed environment.

In this scheme, all of the reference-counting operations are performed by spawning remote

tasks on the appropriate processor. An increment-reference-count task is generated when

a new object reference is generated. Similarly a decrement-reference-count task is

generated and sent to the appropriate PE when an object reference is destroyed. A non-

trivial problem with Nori's approach is to guarantee that reference counting operations

(increment/decrement of reference counts) are executed in the same order that they were

generated, otherwise a reference count may reach zero prematurely, as illustrated in Fig.

3.1(a, b).

A

C

I

Figure 3.1 Reference counting is order dependent.

29

B
1

Figure 3.2 After reference count operations.

In Fig. 3.1 is shown a graph with objects A, B and C. There is a reference from

object A to B and from A to C. In a distributed system these objects could be scattered

across different memories. Let us say two tasks increment-reference-count CB and

decrement-reference-count AB are spawned in that order. The resulting graph is

dependent on the order in which these tasks are executed. If these tasks are executed in the

order they are spawned, we get the graph shown in Fig. 3.2. If these tasks are executed in

the reverse order (task decrement-reference-count AB executed before increment-

reference-count CB), B is reclaimed before the arrival of increment-reference-count CB

task. The increment can not be executed, since B is non-existent. Hence the system

must ensure that reference tasks are executed in the order they are spawned. A direct

solution of this difficulty appears to require detection of distributed termination for every

decrement reference-count; this is clearly infeasible. Nori [40] has not attempted to solve

this problem. As discussed in Chapter 1, the reference counting approach has the

additional disadvantage of being unable to detect and subsequently reclaim cyclic

structures. The frequency of reference count updates requires many messages.

3.2.1 Reference Weighting

The main problem with Nori's scheme is that it is difficult to maintain reference-

30

counting operations in the same order that they are generated. To overcome this problem, a

reference weight scheme has been suggested [55]. The idea is as follows: when an

object A creates a new object B, a weight is associated with B and this value becomes a

part of the created object reference to B as shown in Fig. 3.3.

A

w

B

w

Figure 3.3 An object reference using reference weights.

This object reference may be represented by a tuple (W, addressB). When such an

object reference is copied into object C, the weight W is split into two parts and the two

object references will be represented by (WI, addressB) and (W2, addressB) such that

W = WI + W2 as shown in Fig. 3.4.

A

Wi

C

W2

 10

B

W

Figure 3.4 Copying an object reference in reference weighting.

Making a copy of an object reference does not require communicating with the PE

that has the object in its local memory. On the other hand, destroying an object reference

requires generating a reduce-reference-weight task and sending it to the PE that has-the

31

object to decrease the current object's weight by the weight associated with that object

reference. An object will be identified as garbage only when its weight reaches zero. The

advantage of this scheme is that it is not necessary to process reference weight tasks in the

same order that they were generated. This scheme has less communication overhead than

reference-counting as making a copy of an object reference does not require communicating

with the PE that has the object. Intuitively this improves the communication performance

by 50%. The disadvantage is that it requires more space in each object reference for saving

the weight part. In addition when the weight of an object reference reaches one and that

reference needs to be copied, the object's weight has to be increased before making a new

copy of that object reference. An add-reference-weight task has to be generated and sent

to that object to increase its weight by some value. Associating high weight with each

newly created object minimizes such add-reference-weight tasks but requires more space

for the weight field in each object and each object reference.

3.3 Marking Tree Collector

Hudak and Keller have proposed algorithms suited to highly parallel distributed

multicomputer systems [26, 27]. Their algorithms are adaptations of the real-time GC

algorithm proposed by Steele [50] and Dijkstra et. al., [19]. First, all processors co-

operate to mark all accessible cells, then all processors collect unmarked cells. The

distributed graph marking represents the major effort in the GC process. A brief description

of this algorithm is presented below.

There are two issues involved in parallel graph reductions, namely, the connectivity

of the computation graph and the propagation of work. A task is the smallest unit of

work, and a process is a collection of tasks that accomplish some particular goal. Tasks

propagate between adjacent vertices in the graph and may cross partition boundaries. A

task t may be represented by a tuple <s ,d> where s is the source vertex and d is the

32

destination vertex. In this respect a task may be viewed as a message from one vertex of

the graph to another. A key aspect in lazy evaluation graph reduction is the inclusion of

mechanisms to eagerly invoke computations whose result may not be needed. This

strategy is intended for increased parallelism. Vital tasks are those computations whose

outcome is known to be needed. Eager tasks compete with vital ones for system

resources. Vital tasks may be given higher priority than eager tasks. During the course

of time, it may be observed that the outcome of an eager task is needed, in this case the

priority of eager task is raised to that of a vital task. Similarly, the system may discover

that the outcome of an eager task is not needed — this task and the tasks it spawned are

now called irrelevant tasks. These tasks may be distributed through the system generating

an arbitrarily large load in the system. It is necessary for the graph reduction system to

identify and eliminate such tasks.

For example, consider the evaluation of the expression if (B, T, F). The boolean

expression B needs to be evaluated first, if the outcome is true, T is to be evaluated else

F is to be evaluated. In lazy evaluation, the expressions T and F are evaluated in parallel

with B. B is vital, T and F are eager. If B evaluates to true then T becomes a vital

task and F becomes an irrelevant task.

The other important issue in parallel graph reduction is the possibility of deadlock,

which in graph reduction corresponds to an expression whose ultimate value is undefined

(generally denoted 1) and is manifested by a subgraph whose task activity has ceased, yet

the subgraph's value is being awaited by some other vertex. The language implementation

needs to discover deadlocked regions of the graph. A deadlocked vertex v can be

modelled as a vertex reachable from the root but not from any task, because this implies

that the root depends on v's value yet no task can ever propagate there to compute it.

Hudak and Keller's algorithm works by dynamically building a spanning tree on

33

the computation graph called the marking tree. Marking is initiated by spawning a mark

task at the root, which propagates additional mark tasks to the children of the root. These

mark tasks propagate in the forward direction until an already marked vertex or a leaf node

is encountered. A return task is then spawned that works its way backward through the

graph. When all the mark tasks spawned from a vertex v have returned in this manner, a

return task is recursively spawned on v's parent in the marking tree. To implement this a

count is maintained in each vertex v of the number of mark tasks that have been spawned

from it but have not returned, in addition to a pointer to the vertex's parent in the marking

tree. Marking is complete when a return task reaches the root.

The main strength of this algorithm is that it is highly parallel and decentralized.

The marking tree is embedded in the computation graph instead of a centralized stack.

The other advantage of this algorithm is that it can detect deadlocked vertices and

irrelevant tasks. Its main weakness is its space overhead. Each vertex needs to keep a

count of the number of marking tasks spawned from it to the children vertices and a pointer

to its parent vertex. The maximum number of marking tasks that could exist at any one

instant of time should be determined and their required space should be reserved for the

collector to avoid running out of space. In the worst case the number of marking tasks is

equal to the number of arcs in the graph due to parallel breadth-first strategy of tracing the

graph. In addition, memory contention due to the two processors (mutator and collector)

working in parallel needs to be addressed. This scheme needs two messages per remote

edge per garbage collection, hence the communication overhead of this scheme is quite

high.

3.4 Ali's Algorithms for GC in Multicomputer Systems

In his dissertation, Ali [3] presents an object oriented storage system or OSS. He

discusses the implementation of garbage collection schemes in a parallel distributed

34

multicomputer system. The primary functions of OSS is to provide the following facilities

to user programs: create an object, access an object, update an object field and garbage

collecting of the space of unused objects. The implementation of the OSS in a distributed

processing environment should allow high parallelism in order to promote the efficient

execution of parallel programs. The set of operations that provides the functions of the

OSS defines the user interface to the system. The user does not need to know how these

operations are implemented — the details of all network operations are invisible to the user.

Ali proposes a number of distributed garbage collection algorithms. These

algorithms are adaptations of the mark/sweep algorithm to distributed environments. These

algorithms can be categorized into four classes: global, local-global, distributed-local and

distributed real-time. A brief overview of each of these algorithms is given below.

3.4.1 Global algorithm

The main feature of Ali's global algorithm [3, 4] is that the execution of the user

program halts over the whole system during the GC process. The marking phase spans all

accessible objects in the system. Two global schemes have been proposed. In the first

scheme, a master PE is responsible for starting GC and controlling the synchronization of

GC phases. Any other PE that wishes to invoke GC sends a request to the master to start

a GC. The master starts a global GC by sending a request to each PE to suspend its

computation and to start marking its own roots and all objects reachable from them. The

master waits until each PE in the system completes marking of all objects reachable from

its roots. Then, the master requests each PE to perform a local sweeping and memory

compaction before resuming normal computation.

In the second global scheme, any PE can become the master. The PE that first

runs out of space initiates global GC and becomes master. On initiating global GC normal

35

computation is halted and all PE's co-operate in marking accessible objects. This algorithm

is faster and more optimal than the first one.

The main characteristics of Ali's global schemes are: The whole system comes to a

halt during GC, and these schemes can reclaim all garbage including global cyclic

structures. They are suitable for loosely coupled multicomputer systems with few

processors without real-time constraint.

3.4.2 Local-Global Algorithm

In this scheme, a combination of local and global GC techniques are used [3, 4].

Each PE that runs out of space does a local GC, if the space reclaimed is sufficient it

continues with the normal computation, otherwise it will invoke global GC. To allow a PE

to perform local garbage collection, it has to know locally which of its local objects may be

reachable from remote objects that reside in other PE's. When a reference to a local object

leaves the boundary of its PE's store, it is assumed accessible in each local garbage

collection invocation until the next global garbage collection invocation. Assuming a high

locality of data, the global GC's are rarely invoked. As local GC's are simple and do not

require much computation time, this scheme is much more efficient than the global

techniques. But in cases where locality is poor, the number of global GC's may be

significant and in such a situation, the performance of this scheme will be as poor as the

completely global scheme.

3.4.3 Distributed-Local Algorithm

In a distributed system with many PE's the rate of utilization of local space is not

uniform. Forcing all PE's to co-operate in the global GC is inefficient, as even PE's that

may not have any garbage will have to halt. In Ali's distributed-local algorithm, there is

36

no global garbage collection as in the previous schemes. Each PE independently and

asynchronously performs a local garbage collection. A PE co-operates with the other PE's

in the system only at the end of its local GC by informing them about remote objects still

referred by it. Each PE keeps tables of the references to local objects referred from remote

objects to allow any PE to independently perform its local GC. This scheme is suitable for

loosely coupled multicomputer system that has many PE's, provides a high locality of

reference and generates cyclic structures locally.

3.4.4 Distributed Real-Time Algorithm

This algorithm is an adaptation of Baker's real-time garbage collection algorithm [8]

to the distributed environment. It is also an extension to the above distributed-local

scheme. This algorithm is the last of Ali's algorithms. Since it suggests a real-time

solution to garbage collection in any distributed system, it is described in greater detail. In

this case, each memory operation performs a small set of the GC work. Each PE keeps

tables of references to local objects referred from other objects. Also each PE sends GC

messages to the other PE's in the system at the end of its local cycle of GC.

A brief overview of this algorithm is given below. In this case each PE has the

following:

• a local heap which is divided into two semispaces (fromspace and
tospace) whose roles interchange in each local GC cycle.

• an ODT (Object Descriptor Table) with a fixed size, which keeps track
of objects in a PE memory.

• a set of local roots — an OutTable in which references to non-local
objects are saved temporarily.

• a MQ (Message Queue) which contains computation messages that
have been received from the other PE's.

37

• a GQ (Garbage collection Queue) which contains GC messages that

have been received from the other PE's.

When local GC is invoked, the following actions are performed in one atomic

operation:

1) All local cells accessible from the local roots are moved into the other

semispace (i.e. from fromspace to tospace).

2) All moved cells are investigated as follows:

i) If a cell refers to a local object, the object is moved only if it has

not already been moved.
ii) If a cell refers to a non-local object, a copy of the cell is saved on

the respective entry of the OutTable only if it has not already been

saved.

3) When all moved cells are investigated, different sets of references to

accessible remote objects are stored in their respective entries of the
OutTable.

4) All garbage entries in the ODT are collected by scanning the whole
ODT.

5) A garbage collection message containing the respective set of
references to remote objects is sent to every other PE.

6) Now the local collection is done and the computation can proceed and
new cells can be allocated in the current semispace.

The above large atomic operation of GC is partitioned into small operations that are

interleaved with the primitive memory operations. The task of local GC can be divided

into two sub-tasks that have to be performed in order. In the first task, all accessible cells

are moved from fromspace to tospace. References to accessible remote objects are saved

in the OutTable. In the other sub-task, ODT is scanned to collect garbage entries and send

GC messages to the other PE's. At the local GC cycle all local accessible objects are in

38

tospace and all non-local accessible objects have copies of their references in the

OutTable.

This scheme has essentially the same space overhead as the global-local scheme.

The most important problem that this algorithm addresses which is not taken care of in

Baker's algorithm is the problem of how to guarantee moving all accessible objects from

old semispace into the new semispace before running out of space. This problem has been

solved by dynamically changing the amount of garbage collection work that has to be done

by each memory operation to guarantee completion of each local garbage collection cycle.

The consequence of this solution is that each local garbage collection cycle will be started

earlier than the true flipping time (time of copying from fromspace to tospace). This

requires additional space overhead, which is equal to the size of the free area at the end of

each cycle. In this scheme a reference to an object may be investigated more than once

since both computation and GC are simultaneously performed. The communication

overhead here is equal to that in the distributed-local scheme, as messages are sent at the

end of a garbage collection to all processors that have references to objects in the local

memory. The other disadvantage of this algorithm is that it can not detect distributed cyclic

structures.

3.5 Hughes Distributed GC Algorithm

Hughes [29] has presented a distributed garbage collection algorithm that is an

adaptation of the mark/sweep algorithm. In this algorithm, many global garbage collections

are executed in parallel. A global GC marks nodes by stamping them with the time it

started, and treats a node marked if its time-stamp is the same as or later than this start time.

A local GC propagates the time-stamps of root nodes on that processor to the leaves on that

processor. At the end of a local GC marking messages are sent to remote objects whose

time-stamps have increased. Each processor keeps track of the earliest global GC for

39

which it has more work to do. When no processor has more work to do for global

collection T, all nodes with time-stamps less than T can be deleted.

The system supports a global address space: i.e. it is possible for objects in one

processor to contain pointers to objects in another. There are two kinds of pointer objects,

local and remote. Local pointers refer to objects residing in the local memory. Remote

pointers span across memory boundaries. A remote pointer consists of three indirections, a

local pointer which points to a remote pointer object on the same processor, the remote

pointer refers to a root on another processor, and the root contains a local pointer to the

final object. Roots of a processor are organized off the heap in the form of a table.

All roots and remote pointers contain a time-stamp. Time-stamps are propagated

from remote pointers to roots, the time-stamp of a root is always greater than or equal to the

time-stamp of any pointer to it. All the children of a root bear a time-stamp the same as or

later than the time-stamp of the root. This is the condition that exists just after a local

garbage collection, but time-stamps do become out of date until the next garbage collection.

To keep track of how out of date time-stamps are, each processor maintains a variable redo

which is the earliest time-stamp which may not have been properly propagated from the

roots stored on that processor to the remote pointers. Time-stamps less than redo have

properly propagated from roots to their children, and that greater time-stamps have

propagated at least to the extent that the children have time-stamps greater or equal to redo.

After a garbage collection, redo is set to the current time now which is greater than or

equal to all time-stamps. Any root whose time-stamp is less than the global minimum

value of redo (minredo) is garbage. All objects in the system whose time-stamp is less

than minredo are inaccessible, these objects are garbage collected. All PE's co-operate

in determining minredo.

The proposed algorithm-is not truly real-time in nature — local computation comes to

40

a halt during local garbage collection. As compared to Hudak's algorithm [26, 27], it can

not detect irrelevant tasks and deadlocked vertices. It may take a long time to detect

garbage, but the Hudak and Keller's algorithm guarantees to recover garbage during the

first GC after the last reference to an object is deleted. Compared to Ali's algorithm, this

algorithm is efficient in storage utilization. Ali's algorithm has high space overhead as it

does not distinguish between local and remote pointers, both are represented in the same

manner increasing storage overhead. An ODT (Object Descriptor Table) is needed to keep

track of objects in a PE memory in addition to an OutTable to keep references to non-local

objects. This algorithm can detect and reclaim distributed cyclic structures.

Since messages need to be sent only after a local garbage collection, these messages

can be batched together for efficient utilization of the communication medium. The

disadvantage of this algorithm is that all processors are required to communicate to

determine the value of minredo. If the number of processors is large this process may take

a long time delaying reclamation of garbage cells. In addition this introduces high

communication overhead on the inter-connection network. Hence this algorithm is suited

for multicomputer systems with small number of processors.

3.6 Summary

An overview of previous distributed garbage collection algorithms is presented in

this chapter. These are adaptations of algorithms developed for uniprocessor systems

namely mark and sweep, reference-counting and copying collectors.

Distributed reference-counting has the advantage that it can recover garbage objects

immediately, but it requires FIFO ordering of reference-count tasks which is difficult to

satisfy and requires a lot of messages. The Reference-weighting algorithm overcomes this

problem and also improves utilization of the communication medium.

41

Hudak's marking tree collector is truly real-time in nature. It can detect global

garbage (including distributed cyclic structures) as well as irrelevant tasks and deadlocked

nodes in the program graph. This algorithm has high space and communication overhead.

Ali's algorithms are suited for loosely-coupled multicomputer systems ranging from

few processors to a large number of processors. Global algorithms are simple to

implement. Much computational power is wasted as all processors are halted during a

global garbage collection. These algorithms are suited for systems with few processors

that have no real-time requirements. Real-time distributed algorithm does not waste much

computational power as garbage collection proceeds in parallel with graph mutations. This

algorithm has high space overhead and is suited for systems with large number of

processors with real-time constraints. Ali's global algorithms can detect global cyclic

structures, but distributed-local and distributed real-time algorithms are unable to detect and

reclaim them.

Hughes algorithm permits global cyclic structures. This algorithm guarantees

detection of all global garbage but it may take a long time to do so. This algorithm has

high communication overhead and is suited for systems with a small number of processors.

CHAPTER 4

An Algorithm for Garbage Collection in a Distributed System

4.1 Introduction

This chapter presents our algorithm. The chapter begins by giving a statement of

the problem. Then we describe the algorithm and present an informal proof. An analysis

of distributed garbage collection algorithms is given. An analysis of this algorithm in

comparison with a global distributed garbage collection algorithm is presented. Evaluation

of the analytical models are presented. Section 4.2 describes the problem of garbage

collection in multicomputer systems. Section 4.3 presents an overview of the algorithm.

Section 4.4 presents a detailed description of the algorithm, the mutator and master

algorithms and the various data structures used in the algorithm. Section 4.5 presents

arguments for the correctness of the algorithm. An analysis of distributed garbage

collection algorithms is presented in Section 4.6. A comparison of global garbage

collection models with our proposed algorithm is presented.

4.2 Statement of the Problem

This algorithm supports a generalized model of a parallel graph reduction system

(shown in Fig. 1.8). The program graph is partitioned into sub-graphs, each sub-graph

residing in the local memory of a processor. Each processor evaluates the sub-graph in its

local memory. During mutation, mutators read nodes, allocate nodes, and make or

break local or remote edges. The problem is to reclaim local as well as global garbage

cells with the minimum computational power and communication overhead.

42

43

4.3 Overview of the Algorithm

The algorithm is based on a loose, message-driven coordination of local garbage

collections (lgc's) in mutating processors. A mark and sweep algorithm is used for a

local garbage collection. In the marking phase all reachable nodes in the graph are

marked. Unmarked local nodes are reclaimed. Nodes reachable from remote memories are

painted with one of four phase colours. Active remote entries that are still reachable from a

remote memory are painted with one of three colours (the active colours). These nodes are

used as roots for further marking. Remote entry nodes which are painted the fourth colour

(the erase or stale colour) are no longer reachable (i.e. remote entries are reclaimed two

phases later after they are last referenced). We do not mark from these entries, so they and

nodes reachable from them are collected as garbage. Thus nodes not reachable from the

local root, nor from any active remote entry are garbage collected.

As the system slowly cycles through colour phases, to keep the colour of remote

nodes up to date with the phase colours, retrace messages are sent once in each phase.

When the last reference to a remote entry is broken, retracing messages fail to flow, and

eventually the remote entry's colour becomes stale. Hence the algorithm guarantees to

reclaim all remote garbage including global cyclic structures. The rate of phase transitions

determines the rate of collecting global garbage, a slower phase change results in slower

collection. A master algorithm co-ordinates the system phase changes. The algorithm

does not require Hro message delivery, but does require fair delivery to prevent deadlock.

4.4 Algorithm

The algorithm is described in terms of four-phase global cycles, the contents of

each node, a set of inter-processor message types, an algorithm executed by a master

processor(s), and algorithms executed by each mutator.

44

4.4.1 System Phases

To avoid strict synchronization, four cyclic colour phases are used. Our loose

synchronization implies that adjacent phases overlap in real-time, so the two colours

adjacent to the current phase colour are used as protective buffers against erroneous

collection. The phases are identified by a cyclical sequence of colours: red, blue, green

and yellow. White implies the absence of any phase colour. The functions

previousColour, nextColour, and eraseColour map from colour to colour.

previousColour maps from currentColour to preceding phase colour whereas the function

nextColour maps from currentColour to the succeeding phase colour. eraseColour(X) is

equal to nextColour(nextColour(X)) or previousColour(previousColour(X));

eraseColour(currentColour) is the colour separated from currentColour by one phase in

both directions in the colour cycle. Fig. 4.1 shows a pictorial representation of the cyclic

colour phases.

staleColour

previousColour

currentColour

nextColour

Figure 4.1 Pictorial representation of cyclic colour phases.

45

4.4.2 Data Structures and Node Contents

The format of each node of a graph is shown in Fig. 4.2 in Pascal-like notation.

Each node has a boolean one bit field (markBit) for marking during a local garbage

collection. There is a field for the nodeColour. The nodeColour distinguishes locally

reachable nodes from remotely reachable nodes. Local nodes are painted white, whereas

remote nodes are painted with phase colours. We assume (with no loss of generality) that

each node represents two outgoing edges, a left edge and a right edge. Local edges are

painted white. Remote edges are painted with the phase colour in which it was created

or last repainted. The destination mutator and the node address to which a link is being

made are stored in each outgoing remote edge.

type colour = (red, blue, green, yellow, white)

type node = record (node definition}
markBit : boolean;

nodeColour : colour;

edges : array [1..2] of record

edgeColour:colour;

mutator : 0..mutatorCount - 1;

node : O..localNodeCount - 1;
end record;

end record;

Figure 4.2 Representation of a node in the graph.

4.4.3 Message Types

There are six types of messages employed in our scheme, they are:

changePhase — master signalling a phase change
forceLgc — master requests that lgc's be undertaken, if none

has been started on the phase indicated by the
message.

lgcStart — mutator reports that it is starting an lgc.

46

lgcDone — a mutator reports completion of an lgc.

paintNewLink — a mutator creates a remote edge and requests the

destination mutator that the destination node be

painted.
refreshLink — an lgc discovers a live remote edge and requests

that the destination node be re-painted.

The format of a message in Pascal-like notation is shown in Fig. 4.3. All

messages carry a colour tag, the source and destination processor addresses, and message-

specific information. For every message type, there is a corresponding acknowledgement

message. Every message sender increments a count for each type of message sent. When

acknowledgements are received, the count is decremented. Acknowledgements return the

original contents of the message with a modifier bit turned on. Thus the sender receives an

echo of the information sent.

type messageClass = (changePhase, forceLgc, IgcStart,IgcDone, paintNewLink,

refreshLink);

type message = record

class : messageClass;
phase : colour;

source : 0..mutatorCount - 1;

destination

nodeAddress

end record;

: 0..mutatorCount - 1;

: 0..nodeCount - 1;

{ message type

{ phase colour of mutator

{ source mutator address

(destination mutator address)

{ node address to paint

Figure 4.3 Representation of a message.

4.4.4 Master Algorithm

One or more processors are specialized as a tree of masters. The number of master

processors is dependent on the size of the system. Each master maintains the local garbage

collection status of a subset of processors. Co-ordination exists among master processors

to determine the overall lgc status of all processors. Assume for now without loss of

47

generality only one master is required. The master determines when phase changes occur.

It keeps counts of outstanding changePhase and forceLgc messages, and maintains a table

mutatorStatus which records the lgc status of each mutator in the current phase.

A mutator notifies the master when it starts an lgc by sending an lgcStart message

and an IgcDone message on completing lgc. No action is taken if the colour tag on the

lgc message does not match with that of master (i.e. late lgcStart and lgcDone reports from

the previous phase are ignored).

There are three states for a mutator in mutatorStatus table. A processor is in the

noLgcStart state if it has not yet started an lgc in the current phase. On receiving the first

lgcStart message, its status is updated to lgcStart state. On completing the first lgc the

master sets the processor status to lgcDone. The mutator status remains in the lgcDone

state no matter how many lgc's it completes in the current phase.

The master algorithm is shown in Fig. 4.4. A phase change can be initiated by the

master if all mutators have reported lgcDone at least once during the current phase, i.e. they

are not in the noLgcStart state and the counts of outstanding changePhase and forceLgc

messages (of previous phase) are zero. To start a new phase, the master sets its

masterColour variable to nextColour(masterColour), sets all mutatorStatus's to noLgcStart

and broadcasts a changePhase message to every processor declaring the colour of the new

phase. Although the master's phase change may be unblocked, it may wait some minimal

time — expectedPhaseTime — before it starts a new phase. If elapsed time approaches

expectedPhaseTime with initial lgc's not reported by some mutators, the master sends a

forceLgc message to the delinquent mutators. The expectedPhaseTime and the forceLgc's

are optional to the working of the algorithm.

48

algorithm master

on arrival of IgcStart message (receive an IgcStart message }

begin

case mutatorStatus[i] of

noLgcStart mutatorStatus[i] = IgcStart;

IgcDone mutatorStatus[i] = IgcDone

end

end;

on arrival of IgcDone message (receive an IgcDone message }

begin

case mutatorStatus[i] of

IgcStart mutatorStatus[i] = IgcDone;

IgcDone mutatorStatus[i] = IgcDone

end

checkMutatorStatus(); (check mutators status }

end;

procedure checkMutatorStatus();

noOfMutatorsDoneLgc := 0;

for i := 1 to mutatorCount do

if mutatorStatus[i] = IgcDone) then { count mutators that have done at least one lgc

noOfMutatorsDoneLgc := noOfMutatorsDoneLgc + 1;

if (noOfMutatorsDoneLgc >= thresholdLevel) then

changePePhase() (change system phase }

end;

procedure changePePhase();

masterPhase = nextColour(masterPhase);

for i := 1 to mutatorCount do

sendMsg(changePhase, i)

end;

{ send phaseChange msgs }

Figure 4.4 Master Algorithm.

4.4.5 Mutator Algorithm

Mutators are in one of two states, mutation or local garbage collection. Messages

49

from other processors periodically interrupt these activities. Fig. 4.5 illustrates the mutator

algorithm. The mutation operations are illustrated in Fig. 4.6. Mutators maintain a local

phase colour register (localColour), four outstanding message counters

(paintNewLinkOut, refreshLinkOut, lgcStartOut and lgcDoneOut), a pointer to the local

root of the graph (localRoot) and a pointer to the free list.

When a node is allocated, its colour (node.nodeColour) is set to white. When a

local edge is made, the colour of the edge (node.edge[x].edgeColour) is set to white.

When a remote edge is constructed, the edge colour is set to the mutator's current colour

(localColour), a paintNewLink message containing the current colour (localColour) is sent

to the destination mutator, and the local counter — paintNewLinkOut — is incremented.

New mutation phases block until the paintNewLinkOut message counter is zero.

algorithm mutator

while (true) { begin an infinite loop }
if (freeList is not empty) then

mutation; { mutation }
else

localGarbageCollection { garbage collection }
end; (end while loop)

procedure mutation();

wait (paintNewLinkOut = zero) { previous mutation messages unacknowledged }

{ delay starting of mutation phase }
mutate { do mutation }

end;

procedure localGarbageCollection();
wait (IgcDoneOut = zero and refreshLinkOut = zero)

{ previous Igc messages unacknowledged }

{ delay starting of local garbage collection }
localGarbageCollect { do a local garbage collection }

end;

Figure 4.5 Mutator algorithm.

50

algorithm mutate

procedure allocateNode();

begin

if freeList is empty then

localGarbageCollection();

else

begin

node := remove first node from freeList;

node.nodeColour := colour.white

end

end;

{ allocate a node }

{ if free list is empty, start an lgc}

remove a node from free list }

{ paint node white }

procedure makeLink(sourceNode, destinationNode);

begin

if destinationNode is in local memory then { destination node is in the same)

{ memory as source node }

makeLocalLink(sourceNode, destinationNode);

else

begin

makeRemoteLink(sourceNode, destinationNode);

sendMsg(newLinkPaint, destinationProcessor)

end {send a new link paint message }

end;

procedure breakLink(sourceNode, destinationNode);
begin

sourceNode.linkAddress := null

end;
{ replace link address by a null value }

Figure 4.6 Mutation Operations.

51

algorithm localGarbageCollection

procedure localGarbageCollection();

begin

sendMsg(IgcStart, master);

markPhase();

remotelyOwnedCells();

sweepPhase();

sendMsg(IgcDone, master)

end;

{ send start lgc message to master }

(do marking }

{ mark remotely owned nodes in graph }

{ sweep memory and reclaim unmarked cells }

{ send lgc done message to master }

procedure markPhase();
begin

for i := graph Root to allNodes do

node.markBit := clear;

for i := graph Root to allNodes do
if node.nodeColour = colour.white then

if node unmarked then

node.markBit := true

else

sendMsg(refreshPaint, destinationProcessor)
end;

reset all mark bits }

(an unmarked local node)

(set mark bit to true)

(send a refresh paint message }

procedure remotelyOwnedCel Is();
begin

for i := graph Root to allNodes do
if (node.nodeColour not white) and (node.nodeColour not equal to staleColour) then

mark from this node
end;

procedure sweepPhase();
begin

for i := graph Root to allNodes do
if node is unmarked then

insert node into freeList
end;

(node is reachable from remote memory }

{ mark from this node as root)

Figure 4.7 Local Garbage Collection Algorithm.

52

New lgc phases block until the counters lgcDoneOut and refreshLinkOut are zero.

At the beginning of an lgc an lgcStart message is sent to the master. Almost any variant of

non-compacting mark-sweep garbage collection can be adapted for the lgc's. We describe

the simplest. 1) All markBit's are reset. 2) The graph is traversed from localRoot. The

markBit's of all reachable local nodes are set. When the graph has an edge to another

memory, if the colour of that edge is not equal to localColour, a refreshLink message is

sent with the current localColour, refreshLinkOut is incremented, and the edge is marked

with localColour. 3) The local memory is scanned for unmarked nodes with colour not

equal to eraseColour(localColour), and the mark procedure (2) is carried out from all such

nodes. Nodes not reachable at all, and nodes reachable only from nodes of the eraseColour

are not marked. (4) All unmarked nodes are gathered in a linked free list.

An lgcDone message is sent only when refreshLinkOut reverts to zero. This may

occur after mutation has resumed. The lgcDone message carries the colour used in the lgc,

even if the phase changes in the meantime. The local garbage collection algorithm is

illustrated in Fig. 4.7.

4.4.6 Response to Messages

Mutator's respond to messages in the following manners: 1) paintNewLink and

refreshLink: The specific local node is painted with the colour carried by the message. 2)

changePhase: Mutators set their localColour register to nextColour(localColour), unless

they are engaged in an lgc, in which case they defer the reset of localColour until the lgc

is complete. 3) forceLgc: Mutators begin an lgc if they have not completed one in the

phase indicated by the colour carried by the message. Acknowledgements to all message

types are generated and received as described earlier. Fig. 4.8 illustrates the response to

various messages.

53

algorithm responseToMessages

on arrival of paintNewLink message

begin

node.nodeColour := paintNewLink.colour;

sendMsg(ackPaintNewLlnk, i)

end;

on arrival of refreshLink message

begin

node.nodeColour := paintNewLink.colour;

sendMsg(ackPaintNewLlnk, i)

end;

on arrival of changePhase message

begin

mutator.localColour := changePhase.colour;

sendMsg(ackChangePhase, master)

end;

on arrival of forceLgc message

begin

if noLgcStarted in currentPhase then

begin

startLocalGarbageCollection;

sendMsg(startLgc, master)

end

end;

{ receiving a paintNewLink message

(paint local node with message colour)

{ send acknowledgement message

{ receiving a refreshLink message

(paint local node with message colour

{ send acknowledgement message

(receiving a changePhase message

change mutator colour to msg colour

(receiving a forceLgc message

{ if Igc not started in current phase

{ start an Igc}

Figure 4.8 Response to Messages.

4.4.7 Initial Conditions

Initially, the distributed memory is loaded with the graph to be processed, all

processors are given red as their initial colour (it could as well be any of the other phase

colours) and all remote edges and all remotely reachable nodes painted red. All message

acknowledgement counts are set to zero, and the mutatorStatus array is set to all

54

noLgcStart.

4.5 Arguments for Correctness of the Algorithm

In this section we present an argument for the correctness of the algorithm. We

need to establish three properties:

1) no sub-graph that is reachable from any local root is collected as garbage

2) all sub-graphs that are unreachable from any root are eventually

collected as garbage.

3) assuming fair delivery of messages, deadlock does not occur.

To prove the above properties, recall the nature of phase cycles. The phase cycles

are characterized by:

i) The processors follow a loosely synchronized cycle of four colour

phases.
ii) It is possible for adjacent phases to overlap in the sense that local

garbage collections from two phases are active at once.
iii) It is not possible for non-adjacent phases to overlap.

To prove the first two properties: Each processor performs a local garbage

collection when it runs out of local heap space and reclaims all garbage cells that are locally

referenced. Remote nodes (i.e. nodes referenced from remote processors) are painted with

phase colours. refreshPaint messages are sent to remote processors for repainting all

active nodes with the colour of the current phase. Hence it is ensured that every active

remote link is painted in a phase. The next mutation phase is not begun until all the

acknowledgement messages for these repaint messages are received. This guarantees that

no active remote nodes are collected as garbage.

Inactive remote nodes lose links with nodes in the graph. Their colour is not

refreshed in ensuing phases. Any node that was last painted with the staleColour is

55

considered as garbage. These nodes and all nodes reachable only from them are reclaimed.

Thus global cyclic structures having links spanning across memories are guaranteed to be

reclaimed in two phases. Although adjacent phases can overlap, all of the repainting

messages of a phase must have taken effect (i.e. painted the remote node) before the next

phase begins.

A process in a concurrent system is said to be in a deadlocked state if is waiting for

an event that can never occur. A situation may arise with two concurrent processes in

which both can not proceed as each of them is waiting for a resource the other is holding.

In a distributed algorithm deadlocks can be expensive or disastrous, an algorithm must be

free from deadlocks. We can prove that the present algorithm is free from deadlock from

these observations: local garbage collection blocks only due to unacknowledged

paintNewLink messages or an unacknowledged lgcDone message of the previous lgc.

Similarly starting a mutation phase blocks until all refreshLink messages are

acknowledged. Phase change by the master blocks until all phase change messages and

forceLgc messages are acknowledged. Assuming that the message deliver is fair (not

necessarily FIFO) none of the messages get blocked preventing proper operation of the

overall algorithm.

4.6 Analysis of the Algorithm

In this section we present an analytical model of our algorithm. First we present a

model of a globally synchronous garbage collection algorithm. This model motivates and

justifies our present algorithm. A cost benefit analysis of our loosely-synchronous

algorithm in comparison with the cost of A global algorithm is presented. The analytical

results derived here serve as a basis for our simulator model and simulation experiments

that are presented in the next chapter.

56

4.6.1 Cost of Global GC in a Distributed System.

In globally synchronous garbage collection all processors collect garbage at once.

Some processors may have run of space before the starting of a global garbage collection,

these processors have to wait until a garbage collection is initiated. Other processors have

remaining free space when the garbage collection begins. The times at which processors

need to do a garbage collection can be assumed to be normally distributed as shown in the

Fig. 4.9.

The vertical line TGC (Time of Garbage Collection) is the starting time of a global

garbage collection. The area under the curve to the left of TGC is a measure of the number

of processors exhausting their storage before the start of a global garbage collection. This

represents CPU cycles lost because of idling while waiting for a garbage collection. The

area to the right of TGC is a measure of the proportion of processors that do a premature

garbage collection. These processors do a garbage collection in spite of having free space.

The extra free cells collected may not be utilized until the next garbage collection. This

results in the loss of useful cycles spent in collecting these extra cells. If TGC is moved to

left, i.e. garbage collection initiated as soon as one or a few processors have run out of

space, the CPU cycles lost by idling processors decreases and the cycles lost by

processors that do a premature garbage collection increases. Conversely by moving TGC

to the right (i.e. delaying garbage collection until most of the processors have run out of

space), more CPU cycles are lost by idling processors and cycles lost by premature

garbage collection decreases.

The cost of any global garbage collection depends on the following parameters:

CCPC — Cells Consumed Per Cycle
CRTC — Cycles required to reclaim a Cell
TGC — Time of GC
TOMi — Time Out of Memory for PE i

57

MRTC — Messages Required to Reclaim a Cell

The total number of CPU cycles lost is the sum of the cycles lost by idling

processors and the number of cycles lost because of premature garbage collection. The total

number of CPU cycles lost is given by the following equation:

N1 N2

lost cycles =1, (TGC — TOM FE) +1 (TOM FE — TGC) * CCPC *CRTC
PE PE

N1 = number of processors idling due to delayed garbage collection

N2 = number of processors performing premature garbage collections.

Population of
Processors

Processors
idle waiting
for collection

TGC

Free space
collected
& not used

Distribution of Inter-GC Times

Figure 4.9 Distribution of cost in a global Garbage Collection scheme.

There is a cost associated with each garbage collection message that needs to be sent

during garbage collection (due to remote edges). The cost of messages can be

approximated by the following equation:

N2

wasted messages =1 (TOM FE — TGC) * CCPC * MRTR
PE

The total cost of garbage collection is the sum of the cost due to lost cycles as well

58

as the cost of wasted messages. An evaluation of the above model was conducted to

observe the variation of the number of lost cycles with a varying TGC. The analysis was

done on a system having a normal distribution (as shown in Fig. 4.9) with a mean time of

3000 units and a standard deviation of 1000 and 750. TGC was varied from 1500 units to

6500 units in increments of 50 units. The number of lost cycles for each value of TGC

was recorded. Low (premature starting of GC) as well as high value of TGC

(postponement of GC) increases the number of cycles lost during a global garbage

collection. There is a range of TGC values for which the number of lost cycles is

minimum. Irrespective of the time of starting a global collection a certain number of cycles

is always lost.

4.6.2 Lost memory model

In this section we present a model to account for lost memory in our algorithm. As

mentioned in the earlier discussions our algorithm is characterized by independent lgc's

and global phases. Mutators perform a local garbage collection whenever they run out of

local heap space. Assuming good locality in the program graph, mutators will recover

most of the garbage during a local garbage collection. Local garbage is recovered

independent of the phase changes.

Two phases are required to recover global garbage. The remote garbage generated

accumulates through a two phase length period. Assuming a uniform generation of remote

edges, some percentage of memory is always lost due to unreclaimed remote garbage.

A cost analysis of this algorithm is given below:

Let, m = size of memory in each mutator.
r = 0.5 = storage theoretically freeable in each lgc.
x = proportion of memory not reclaimable due to remote garbage not

being discovered

59

1 = memory lost till phase change.

Then memory reclaimed per phase is given by (m — l) * 0.5 — 1

An evaluation of the above model was conducted to observe the behaviour of the

algorithm for varying values of x and phase lengths. The results are shown in Fig. 4.10.

When x is low the percentage of local to remote links is high (i.e. only a few remote links

are created). Memory loss due to accumulating remote garbage is low. The accumulating

losses remain low even for longer phases. As x increases, the accumulating memory

losses increase rapidly with increasing length of phases.

m
e
m

0
r

y

0

0 10 20 30 40 50 60

Phase length (no of Igc's/phase)

70

-0- x = 0.0001

x = 0.0005

-0- x = 0.01

x = 0.05

-x- x = 0.1

x = 0.25

— x = 0.5

Figure 4.10 Variation of memory loss with phase length.

The cost of messages (newLinkPaint and refreshPaint) is estimated next. Each

newly created remote edge requires a newLinkPaint message. Once in a phase we need to

send refreshPaint message for every active remote edge. Let us define r as the ratio of

60

newly created remote edges to the sum of new and static remote edges, i.e.

newremote
r — (newremote + static)

As mentioned earlier refreshPaint messages are sent only once in a phase during the

first lgc. After the first lgc the message traffic in a the system is only due to

newLinkPaint messages. The number of newLinkPaint messages sent depends on the

number of new remote links made. For a given value of r, the number of messages per

lgc decreases with an increasing phase length. A lower value of r decreases the rate of

generation of new remote edges. Hence the number of newLinkPaint messages decreases.

The analysis was conducted on a system with a memory size of 106 cells, for different

values of r (ranging from 0.09 to 0.33) and phase lengths (from 1 to 48 lgc's per phase)

to observe the variation of message load with phase length. The simulation results obtained

are shown in Fig. 4.11.

35

30 -

25 -

Number of
messages/Igo 20

15 -

10 -

5 -

0
0

I I I

10 20 30 40 50
Phase length (no of Igc's/phase)

-o- r = 0.330

- 0- r = 0.250

-x- r = 0.166

r = 0.090

Figure 4.11 Variation of number of messages/lgc with phase length.

61

4.7 Conclusions

This chapter presented our algorithm for garbage collection in a parallel distributed

system. This algorithm overcomes deficiencies present in the existing algorithms; it

supports a generalized model of parallel graph reduction and guarantees to reclaim all global

garbage including cyclic structures in two phases.

The other major strength of the algorithm is the flexibility provided to the system

designer in optimizing the performance by tuning certain parameters such as the phase

length and the ratio of local to remote links in the collection scheme.

A global garbage collection scheme has a cost associated with it in terms of the lost

CPU cycles and wasted messages. A non-zero cost is always associated with this

algorithm no matter when the global garbage collection is done.

The lost memory model of our algorithm shows the dependency of the overall cost

of the algorithm on the phase length and the percentage of generated remote links. The

percentage of remote links created depends on the locality in the partitioning of the program

graph. The algorithm and the analytical model presented here is validated by simulation.

The next chapter presents the simulator and the results obtained.

CHAPTER 5

Simulation

5.1 Introduction

In this chapter we present simulations of our algorithm. The objective of the

simulator is to validate the working of the proposed algorithm and to analyze its

performance. The simulator models a generalized parallel graph reduction system that uses

the proposed garbage collection algorithm for memory reclamation. Experiments were

conducted to verify the algorithm, and observe phase transitions and other performance

characteristics. A description of the experiments and their analysis is presented.

The simulator was implemented in Turing-Plus, a concurrent programming

language. Some key features of this language are presented in section 5.2. The design of

the simulator is presented in section 5.3. Section 5.4 describes the implementation of the

simulator. Section 5.5 presents the simulation experiments conducted and the results

obtained.

5.2 Turing-Plus language

Turing-Plus is a concurrent programming language that is well-suited for writing

operating systems, and low level kernel modules like device drivers. The key features of

this language are its concise and expressive syntax, graceful and efficient treatment of

errors, good software engineering features like modules and mathematically precise

language definition. The language is free from various inconsistencies and insecurities that

are prevalent in languages like Pascal and 'C'. The non-concurrent features of Turing Plus

are similar to that of Pascal. Concurrency features include re-entrant procedures and

functions, monitors (for mutual exclusion), wait and signal (for interprocess

62

63

communication) conditions.

Sometimes several processes make use of similar algorithms. Processes can share

algorithms by calling the same procedure. All procedures and functions in Turing-Plus are

re-entrant. Re-entrant procedures and functions are essential for software such as

operating systems as they make the software easier to understand, and make the code

smaller.

When processes need to update common data, the data may be corrupted if more

than one update takes place in parallel. Monitors are provided in a concurrent

programming language to guarantee mutually exclusive access to common data. A monitor

can be considered to be a fence around the data; all code accessing the data is gathered into

procedures and functions and moved inside the fence. Processes wishing to access the data

do so by entering a gate or entry in the fence, to execute one of these procedures or

functions. The monitor guarantees that only one process is active inside the fence at a

given time.

Concurrent processes must synchronize their activities. A typical situation occurs

when processes compete for shared resources. Once a resource is allocated to one process,

another process needing the resource should be blocked until the first process releases it. A

processor blocks itself by executing the wait statement if the resource is not available. The

process that is inside the monitor after relinquishing the shared data executes the signal

statement to wake up one waiting process (if there is one) before exiting the monitor. If

there is no waiting process, the signaler just continues.

5.3 Design of the Simulator Model

In this section we present the simulator model of our algorithm. We model a

parallel graph reduction system that uses our proposed garbage collection algorithm for

64

memory reclamation. The mutator and the master processors are represented as

processes. Modelling a distributed algorithm is quite complex due to the parallel events

that occur in a distributed system. The logical view of concurrent processes facilitated by

the language makes the understanding of the simulator easier and expresses the underlying

distributed system elegantly. The facility of modules simplifies the simulator design as it

encourages good software engineering practices.

One of the key elements in a simulation study is the load used. The data used for

simulation must be representative of the real-world environment. Generally this data is

acquired from real systems over long periods of time. These include reference strings

(trace of the memory addresses generated by an executing computer program), process

and work load statistics. The advantage of using such loads is that the results will be

more realistic. The major drawback of real data is that they consume a great deal of

storage. For example a reference string may represent millions of addresses referenced in

a second of real execution time, and each reference may require several bytes of storage to

record the address and the type of reference. This can result in a very unwieldy body of

information that is both time and space consuming.

Synthetic loads are generated from a model. They are generated on the fly hence

do not require much storage. They have the advantage of being flexible (simple

modifications to a few parameters can produce a load with different characteristics) and

reproducible (the same load can be generated when needed by keeping the parameter

settings the same). However, caution should be exercised before drawing conclusions

based on these synthetic loads; their representativeness of real systems must be determined.

Parallel graph reduction as a way of implementing functional languages is relatively

a new idea. This concept is still in the research phase, many underlying practical issues

have not yet been fully understood. Moreover, there is no literature available on existing

65

parallel graph reduction systems. In our simulations we had the option to use programs

written in a functional language (such as Lisp or Miranda) as a working load. Translating

these programs to an equivalent parallel graph reduction system is not simple. Moreover

the results would be dependent on specific loads. To overcome these problems we use a

synthetic load. As mentioned above this approach gives flexible and reproducible results as

well as generalizes the model.

5.4 Implementation of the Simulator

As mentioned earlier each mutator and the master are implemented as processes.

Each mutator has a local colour, a free list, a pointer to a local graph, counters for

outstanding messages, and a local clock. The master process has the mutator status table

(to keep track of the lgc status of mutators in the current phase), a local clock and

counters for outstanding messages. All shared data such as message buffers are kept in a

critical section and buffer operations are done inside a monitor.

The simulator load is generated dynamically based on probability distributions. The

random mutator model recognizes three basic graph reduction operations namely :

i) Allocate a node.
ii) Make a link
iii) Break a link.

Each of these random operations is associated with a probability of occurrence.

There is a simulation time associated with each of these events required to execute it

(relative times rather than absolute values). In the first operation of allocating a node, a

cell is removed from the free list and inserted into the graph at some random location. The

point of insertion in the graph is determined by a random walk through the graph. This is

started from the root of the graph. The inserted cell is painted white. This random walk

66

ensures a uniformly grown graph.

In the second operation, a link is made between two nodes of the graph. This

operation may be either local or remote. As in the allocate operation, a random search

through the graph is done to identify a source node. To make a link locally, a random

destination node is identified in the same subgraph. For a remote link operation the

destination node is identified in a remote subgraph. A newly made link may result in a

cyclic structure. Even self cycles (a node having a link to itself) are permitted.

In the case of making a remote link, a destination processor is randomly chosen. A

random walk is done through the remote graph to identify a destination node. The

destination processor address, destination node address, and the current phase colour is

registered in the source node of the newly created remote link. A newLinkPaint message

is sent from the source processor to the destination processor. The destination processor

responds to this message by painting the destination node in its graph with the colour

carried by the message and sends back an acknowledgement message.

In the third operation, a link is broken. This could be either a local or a remote

operation. A link is randomly selected in the graph, the destination processor and the node

address is replaced by a null value to indicate a deleted edge.

On executing a random event, a mutator's clock is advanced by the time associated

with that event. Mutators (and the master processor) are scheduled based on their

simulated timers. The scheduler compares the clocks of all processes and identifies a

process with the lowest clock. This process is signalled, the signalled process wakes up

and all other processes remain blocked in the waiting state. This scheduling imitates the

parallel operations as the clock of a process is frozen until it is woken up and it advances

only when it is being scheduled. Thus all processor clocks advance in a step-by-step.

67

fashion.

In order to bypass initial transient behaviour, an initial graph is built in all mutators.

This makes it possible to carry out random searches through the graph from the very

beginning. This helps to bring the system to steady state more quickly.

5.5 Simulation Experiments

In this section we describe the simulation experiments that were conducted. The

objective of the experiments were to:

i) Verify the working of the algorithm
ii) Determine the percentage of memory loss for varying phase lengths.
iii) Observe the variation in the number of messages per lgc with different

phase lengths.
iv) Observe the effect of interprocessor communication delay on the cost of

the algorithm.

In each simulation run, the following statistics are generated: number of cells

marked, number of cells reclaimed, number of newLinkPaint messages, number of

refreshLinkPaint messages, the wait time to start an lgc (lgcWaitingTime) and mutation

(mutationWaitingTime). Starting of a mutation phase is blocked until all the outstanding

refreshLinkPaint messages are acknowledged and starting of lgc is blocked until all the

outstanding newLinkPaint messages are acknowledged. The details of the experiments are

given below.

5.5.1 Verification of Phase Transitions

As said before, the simulator load is determined by the probability distribution of

graph operations. The percentage of local to remote links determines the number of remote

edges created which also accounts for the number of messages generated in the system.

The duration of a phase is determined by the average number of lgc's per processor in a

68

phase.

ITs

100%

80% -

7.•
a

a 7

Percentage
of storage

60% -

40% -

N\ T V se\

/ •
■

\

n

7
■

[1.
■II \

a
\ ■ I

° /

■

•

.1101
■

• p.m
20% -

0% I I 1
0

■

10 20 30 40 50 60

Local garbage collections

Figure 5.1 Illustration of phase changes (system with 16 processors,

phase length of 5 lgc's/phase)

100% -

80% -

Percentage 60% -

of storage
40% -

20% -

0%

— • •
7 • _

\ • .• _ • .
e

• \
• IV

0 10 20 30 40 50 60

Local garbage collections

Figure 5.2 illustration of phase changes (system with 16 processors,
phase length of 2.5 lgc's/phase).

The simulator was run with a constant probability distributions and a fixed ratio of

local to remote links for different varying phase lengths. The results obtained are illustrated

in Fig. 5.1 and 5.2. The plots show the variation in memory reclamations with the phase

transitions. Each point on the graph indicates completion of an lgc. The point with a bar

69

on top indicates a phase change. The number of cells reclaimed from lgc to lgc gradually

declines in a phase. With a phase transition the number of reclaimed cells shoots up. This

is due to the reclamation of global garbage. As mentioned earlier, remote garbage cells are

reclaimed two phases after they are last painted. In the first phase transition there is no

increase in the number of reclaimed cells. The number of reclaimed cells continues to

decrease in the second phase since no global garbage is ready to be reclaimed in this phase.

With an increasing phase length, the percentage of memory loss increases. During

each local garbage collection, all local garbage is reclaimed but the remote garbage is not

reclaimed. The unreclaimed global garbage contributes to the memory loss. In the steady

state the percentage of memory loss remains approximately constant for a given phase

length. The percentage memory loss increases with increasing phase length. A decrease

in the percentage of remote links lowers the memory loss. This saw tooth response is in

accordance with the expected response from the algorithm. These results are in accordance

with the analytical model shown in Fig. 4.7 in Chapter 4.

5.5.2 Variation of Message Load with Phase Length

One of the key characteristics of our algorithm is that the number of messages

required for each newly made remote link is constant. Each remote link contributes to two

messages per phase. A refreshLinkPaint message is sent for every active remote link

during the first lgc in a phase. During the subsequent lgc's these messages are not sent.

For every new remote link created a newLinkPaint message is sent during the mutation

phase. As the number of lgc's per phase i.e. the phase length increases, the message load

is contributed mainly by the newly created remote edges (by newLinkPaint messages). The

contribution of refreshLinkPaint messages is restricted to the first lgc. Hence the number

of messages per phase per processor decreases with the increasing phase length. The

70

converse of this statement is that the number of cells reclaimed per message increases with

an increasing phase length.

80 -

70 -
Average
number of
cells/message 60 -

50 -

40
2 3 4

Phase length (no of Igc's/phase)

5

Figure 5.3 Variation of cells reclaimed per message with phase length.

Simulations were conducted to observe the variation of message load (in terms of

the number of cells reclaimed per message in a phase) with varying phase length. The

results obtained with phase length varying from 1.5 to 5 lgc's per phase is shown in the

Fig. 5.3. The number of cells reclaimed per message remained approximately constant.

As stated before we expected the average number of cells per message to increase with

increasing phase length. The discrepancy in the results may possibly be attributed to the

simplifications assumed in the simulator design as well as the synthetic load. Nevertheless

our argument remains convincing, but more work is needed to substantiate this claim.

5.5.3 Effect of Network Delay on Waiting Time.

The message transmission delay is dependent on the inter-connection network in the

system. Delay in the communication network is due to circuit switching, limited network

bandwidth, and congested and broken links. The design of an appropriate inter-

connection network is crucial to the performance of any loosely-coupled distributed

71

system.

In a parallel graph reduction system, message delay plays an important role.

Mutators communicate with the master processor at the beginning and end of every local

garbage collection. Also the master processor needs to communicate with the mutators

during phase transitions. The mutator messages undergo master processing delay in

addition to the communication delay. The message delay affects the waiting time of

mutators. A mutator will not begin a new mutation phase until it receives

acknowledgement messages for all previous newLinkPaint messages. Similarly a local

garbage collection is not begun until all acknowledgement messages for previous

refreshLinkPaint messages are received.

Average
waiting

time

2000

1500

1000

500

300 600 900 1200

Message transmission time

1500

- 1 KBytes

-x- 2 KBytes

-0- 4 KBytes

Figure 5.4 Variation of waiting time with message transmission time (system
with 16 processors, phase length varying from 1 to 5 lgc's per phase).

An experiment was conducted to observe the effect of message transmission delay

on the mutator waiting time. The simulator was run with a constant phase length with a

varying message delay; the corresponding waiting times were observed. The experiment

72

was repeated for different memory sizes. The plots shown in Fig. 5.4 illustrate the results

obtained. The waiting time increases non linearly with the message delay. Assuming

good locality in the system we can say that most of the time mutators need to communicate

with their neighbors so that the communication delay will be reduced significantly. The

locality depends on the partitioning of program graph and is crucial to the performance of

any parallel functional language. But the locality factor was not taken into consideration in

our simulator model.

5.6 Conclusions

This chapter presented the design of the simulator model and discussed the

experiments conducted. The simulation results are largely in accordance with the expected

behaviour of the algorithm. The synthetic work load enabled us to verify the algorithm.

The work load did not take into consideration the issues involved in a parallel graph

reduction system such as partitioning of the program graph, locality and the nature of

reduction scheduing.

The results in Fig. 5.1 and 5.2 show the phase transition behaviour, reclamation of

global garbage, and the resultant memory loss with varying phase lengths. From the

simulations conducted on systems with different number of processors (4, 8, 16 and 32

processors), memory sizes (1KBytes, 2KBytes, 4KBytes per processor), loads (different

probability distributions) and phase lengths (from 1 to 5 lgc's per processor per phase) it

seems that the algorithm is sound and robust. The experiments to observe the variation in

the message load with increasing phase lengths did not give the results as expected (Fig.

5.3). The results shown in Fig. 5.4 depict the effect of inter-communication network

delay on the overall cost of the algorithm in terms of the waiting delays. These simulation

results provide insight into the working of a parallel graph reduction system and must be

taken into consideration for optimal performance.

CHAPTER 6

Petri Net Modelling of the Algorithm

6.1 Introduction

This chapter presents a Petri Net model of the algorithm. Petri nets are a tool for

the study of systems [43]. Modelling refers to the study of a phenomenon indirectly

through a simplified abstract representation of the phenomenon. Petri nets have been found

to be useful in modelling systems exhibiting concurrency and parallelism. They have

been used in the modelling of diverse systems ranging from computers to social and legal

systems. Distributed algorithms are quite complex to model and analyze mainly due to the

concurrent activities in a distributed system. Petri nets have been used in the modelling of

distributed algorithms [9]. The analysis techniques of Petri nets can be applied to these

models to verify the correctness of algorithms. This is the motivating factor in our

approach. We model the proposed distributed garbage collection algorithm in Petri nets

and apply some proof techniques to verify some properties of the algorithm. The Petri

nets help to better understand and debug the algorithm.

In Section 6.2 we describe the application of Petri net theory to modelling and

analysis of systems. The definitions for the basic Petri net are presented in the Section

6.2.1. In order to enhance the modelling and decision power of Petri nets, many

extensions and modifications have been suggested to the basic Petri net model. These

enhancements are discussed in the Section 6.2.2. Once the system under investigation

has been modelled as a Petri net, it is to be analyzed. The analysis problems of Petri nets

are presented in Section 6.3.1. There are two well known analysis techniques namely

marked graphs and the linear algebraic method. Section 6.3.2 describes these

techniques. The linear algebraic representation using matrices is presented in Section

6.3.3. The concept of S and T invariants is introduced in Section 6.3.4. Section 6.5

describes the Petri net model of our algorithm and a proof based on the S-invariants.

73

74

6.2 Petri Net Theory and Modelling

Petri nets are abstract, formal models of information and control flow in systems

exhibiting concurrency and asynchronous behaviour [41, 42, 47]. Petri net theory allows a

system to be modelled by a Petri net, a mathematical representation of the system. The

components of a system may exhibit concurrency or parallelism. Activities of one

component may occur simultaneously with activities of other components. Petri nets are

suited specifically to model systems with interacting concurrent components. Petri nets

have been used in the modelling of systems in diverse fields such as computer hardware,

computer software, operations research, chemical systems, biological systems, semantics

for natural language representation, communication protocols, economics, political

systems and social and legal systems.

Revise Analyze

Figure 6.1 Use of Petri nets for the modelling and analysis of systems.

The application of Petri nets to the design and analysis of systems involves two

basic steps: first the system under investigation is modelled as a Petri net, then this model is

analyzed. The analysis of the Petri net may reveal important information about the structure

and dynamic behaviour of the modelled system. Any problems encountered in the analysis

points to flaws in the design. The design is modified to correct the flaws. The modified

75

design is then modelled and analyzed again. The modelling-analysis loop is repeated until

the system meets the design specifications. The design cycle using Petri nets is shown in

the Fig. 6.1.

6.2.1 Definition of Petri Nets

A Petri net may be defined as a bipartite, directed graph N = (P,T,A) [2], where,

P = {p l' pn} a set of places,

T = (t t2,... tm) a set of transitions,

A g_ {P x T} u {T x P }, a set of directed arcs,

A marking, M of a Petri net is a mapping from the set of places P to natural

numbers N.

M : P —> N, where M(pi) = mi for 1 i n

M assigns tokens to each place in the net. A Petri net N = (P, T, A) with

marking M is called a marked Petri net PN = (P, T, A, M). Marking is also known as

the state of Petri net. The marking M can also be defined as an n-vector M = (ml, m2,

mn), where n = IP I and each mi E N, i = 1,...n. The vector M gives for each place

pi in a Petri net the number of tokens in that place. The number of tokens in place pi is

mi, = 1,...,n.

Pictorially, in a Petri net graph, places are represented by circles, transitions as

bars, and tokens as small dots inside the circles (•). Fig. 6.2 illustrates an example of a

Petri net.

76

Concurrency Conflict

Figure 6.2. An example of a Petri net.

Figure 6.3 Network after the firing of transition ti

Input and output functions relate transitions and places. The input function I is a

mapping from a transition tj to a collection of places /(ti), known as the input places of the

transition. The output function 0 maps a transition tj to a collection of places O(tj)

known as the output places of the transition.

/(ti) = {pi I (Pi.tj) E A}

0(ti) = {pi I (ti,pi) E A]

77

The execution of a Petri net is controlled by the number and distribution of tokens.

Tokens reside in places and control the execution of transitions of the net. A Petri net

executes by firing transitions. A transition is enabled for firing if each of its input places

has at least as many tokens in it as arcs from the place to the transition. For example in the

Petri net shown in Fig. 6.2, transition ti is enabled whenever there is one or more tokens

in the place p1. A transition fires by removing an enabling token from each of its input

places and depositing one token into each of its output places. For instance in Fig. 6.2 the

firing of transition t1 removes a token from p1 and puts one token into places p2, p3

and p4. Firing a transition changes the marking M of the Petri net to a new marking M'.

In the above example, once the transition t1 fires, the transitions t2, t3 and t4 are

enabled, and can fire concurrently. As these transitions complete their firings, places p5,

p6 and p7 receive a token each. Now both transition t6 and t7 are enabled, but the

firing of one disables the other, for example if t6 fires t7 can not fire. This represents a

conflict between two transitions. This ability to model both concurrency and conflict

makes Petri nets a powerful modelling tool.

6.2.2 Restrictions, Extensions and Modifications of Petri nets

Extensions and modifications have been made to the basic Petri net model to

overcome the two limitations, namely limitations on modelling power and decision

power.

The fundamental extension to Petri net is to allow zero testing using inhibitor arcs.

A Petri net with inhibitor arcs is illustrated in Fig. 6.4. An inhibitor arc from a place pi

to a transition t•• has a small circle rather than an arrowhead at the transition. The transition

ti can fire only if pi is empty [1, 2]. It has been shown that a Petri net with inhibitor arcs

has the modelling power of a Turing machine [1, 2].

78

Figure 6.4 An extended Petri net with inhibitor arcs.

A Petri net is called an ordinary Petri net if no transition has more than one input

arc from a place and more than one output arc to a place. In a self-loop free Petri net no

place is allowed to be both input and output of a transition i.e. I(ti) n 0(ti) = 0.

Petri nets having exclusive-OR transitions [38, 39] and switches [6, 7] have been

suggested. An exclusive-OR transition tj with input I(tj) requires that one and only one

of its inputs be nonzero to enable the transition. A switch is a special transition with a

special input called the switch input and exactly two outputs, one labeled e for empty and

another labeled f for full. A switch transition fires when it is enabled, ignoring the state

of the switch input. When it fires, a token is put in the output labeled e if the switch input

is empty, otherwise if the switch input has a token then a token is delivered to the f output.

Thus, the firing of a switch transition results in only one of the two markings.

Probabilistic arcs from a transition to a set of output places 0(ti) deposit a token

in one and only one of the output places. The choice of which place receives the token is

determined by the probability labeled on each arc [20]

A counter arc from a place to a transition is labeled with an integer value k. The

79

firing rule with a counter arc is changed such that a transition is enabled when tokens are

present in its normal input places, and at least k tokens are present at the counter input

place. When the transition fires, one token is removed from each of the normal input

places and k tokens from the counter input place [20].

Another major extension of Petri nets is the association of time, either constant and

probabilistic with transitions. In timed Petri nets a fixed firing time is associated with each

transition [45, 46]. To overcome the fixed-time constraint in timed Petri nets, Stochastic

Petri nets (SPN) were introduced [34, 35, 37]. In SPNs an exponential firing time

distribution is associated with each transition of the Petri net.

6.3 Analysis of Petri Nets

Once a Petri net model is developed, it is to be analyzed to verify the properties of

the system based on the model. This requires the understanding of various problems (or

properties) of Petri nets. In the first section a brief mention of the various problems that

need to be solved for Petri nets are presented. The second part concentrates on the analysis

techniques to answer questions related to Petri net problems.

6.3.1 Analysis Problems of Petri Nets

Safeness : A place in a Petri net is safe if the number of tokens in that place

never exceeds one. A Petri net is safe if all places in the net are safe [42].

Boundedness : A Petri net is said to be k-bounded if, for all possible markings,

the maximum number of tokens in all places is less than or equal to k.

80

Conservativeness : A Petri net is said to be conservative if the total number of

tokens in the net remains constant under all possible markings i.e.

,
Al (pi) = Al (pi) M is an initial marking and M' is all possible markings

pi e P pi e P

from M. For conservation, the number of inputs to each transition must equal the number

of outputs 1/(ti)1 = 10(tpl.

Liveness : A deadlock in a Petri net is a transition (or a set of transitions) which

can not fire. A transition is live if it is not deadlocked. A Petri net is live if every

transition is live.

Reachability : The reachability problem is to find in a given Petri net with a

marking M and a marking M , if M is reachable from M by some sequence of

transition firings.

Coverabilitv : The coverability problem is : given a Petri net with initial marking

M and a marking M' , is there a reachable marking m"E R(M), (R(M) is the set of

all reachable markings) such that M" covers M i.e., M' is reachable from M and

A4 is reachable from M .

6.3.2 Analysis Techniques

Two major Petri net analysis techniques have been suggested. They are

reachability tree and the linear algebraic technique involving matrix equations.

81

Figure 6.5 A marked Petri net for illustrating the construction of a

reachability tree.

(1,0,0)

t1 t2

(0,1,0) (0,0,1)

ti

(0,0,1) (0, (0,1) (0,1,0)

\tc

(0, 03,1) (0,1,0)

Figure 6.6 The reachability tree of the Petri net shown in Figure 6.5.

The reachability tree represents the reachability set of a Petri net. Consider the

marked net of Fig. 6.5. The initial marking is (1,0,0) since there is a token in place p1

and zero tokens in p
2

and p
3
. In the initial marking two transitions are enabled: ti and

t2. We define two nodes in the reachability tree for the (reachable) markings which result

from firing both transitions. An arc leads from the initial marking to each of the new

82

markings and is labelled by the transition fired. From the marking (0,1,0) (a token present

in p2 and no tokens in p1 and p3) only transition t3 can fire. This leads to the marking

(0,0,1). A token in p3 enables two transitions : t4 and t5. For transition t4 , p3 is

both an input place as well as an output place. The enabling of this transition leaves a token

in p2 and p3. The transition t4 may fire continuously resulting in infinite number of

tokens in place p2. This condition is represented by co in the graph. If instead of

transition t4, t5 were to fire we get a new marking (0,1,0). Thus a Petri net with an

infinite reachability set is represented by a finite number of nodes in the reachability tree.

The reachability tree of the Petri Net in Fig. 6.5 is illustrated in Fig. 6.6.

The reachability tree can be used to solve the safeness, boundedness,

conservation and coverability problems.

A Petri net is not safe if the symbol co appears in the reachability tree. The co

symbol in the reachability tree indicates the places that are unbounded. A Petri net is

bounded if and only if the symbol co never appears in its reachability tree.

A Petri net is conservative if it does not lose or gain tokens but merely moves them

around. There is no one-to-one mapping between tokens and resources. Some tokens

may represent several resources with one token. This condition arises due to the firing of

transitions with more outputs than inputs. In general, we may define a weighting of

tokens. Tokens in each place are assigned some weight. A weighting vector w = (w1,

w2, ...wn) defines a weight w i for each place pi E P . For conservativeness the

weighted sum for all reachable markings should be constant. If any marking with

nonzero weight is co , the net is not conservative.

The coverability problem can be solved with the aid of the reachability tree.

83

Given an initial marking M, we construct the reachability tree. Then we search for any

node x such than marking of x is greater than or equal to m' (i.e. mix] ?. in). If no

node is found, the marking m' is not covered by any reachable marking; if such a node is

found, mix] gives a reachable marking which covers m' .

In general the reachability tree cannot be used to solve the reachability or liveness

problems or to define or determine which firing sequences are possible. Solutions to these

problems are limited by the existence of co symbol.

6.3.3 Linear Algebraic Representation

Reisig [47] presents a formal definition of a generalized Petri net with each place

having a finite (or even infinite) capacity, and each arc having a weight (counter arcs)

associated with it. The places in his notation are denoted by S and transitions by T, and

F denotes the arcs between the places and transitions. A Petri net is defined as a 6 tuple

N = (S, T; F, K, M, W) where,

i) (5, T; F) is a finite net, the elements of S and T are called places and
transitions, respectively,

ii) K : S -p N u (co} , gives a (possibly unlimited) capacity for each place,

(co denotes infinite capacity of a place).

W F --> N\ (0 } , attaches a weight to each arc of the net.
iv) M S > N u (co} is the initial marking, respecting the capacities, i.e.

M (s) K (s) for all s E S .

The components of a net N are denoted by SN, TN, FN ,K N , W N, MN

respectively.

A Petri net can also be represented using matrices. The matrix representation

permits use of linear algebraic techniques for the analysis of Petri net problems. The linear

algebraic representation of a Petri net is defined as:

i) For transitions t E T , let the vector L: S Z be defined as

84

1.(s) =

W (t, s) iff s E (t) As e I (t) ,

I — W (t, s) iff s e 1(t) s e (t), 1

I W (t, s)— W (s, t) iff s E I (t) n 0(t),

0 otherwise

ii) Let the matrix X.:SxT--->Zbe defined as .46L(s,t) =

W(t,$) is the weight of arc from a transition t to a place s. The component of

vector 1 corresponding to a place s is equal to the weight of the arc between a transition t

and s, ifs is a member of the output function 0(t) but not a member of the input function

1(t). It is equal to the negation of the weight of the arc, if s is a member of the input

function 1(t) but not a member of the output function 0(t). Ifs is a member of both input

and output functions then it is equal to the difference between the weights of output and

input arcs.

ti t2 t3
t4 t5 t6 t7

Si

MN

s
2

S3

S4

S5

s
6

S

S8

—1 0 0 0 1 0 0

1 —1 0 0 0 0 0

1 0 —1 0 0 0 0

1 0 0 —1 0 0 0

0 1 0 0 0 —1 0

0 0 1 0 0 —1 —1

0 0 0 1 0 0 —1

0 0 0 0 —1 1 1

1

0

0

0

0

0

0

0

Figure 6.7 Matrix Representation of Petri Net shown in Figure 6.2.

Based on the above definition, the matrix representation of the Petri net in Fig. 6.2

is illustrated in Fig. 6.7. MN denotes the initial marking of the net. It has the count of

tokens present in each of the places initially. In the Petri net shown in Fig. 6.2, initially

85

one token is present in the place s1, and no tokens in other places.

6.3.4 Net Invariants

This section briefly describes the concept of net invariants. First we consider sets

of places whose token count do not change during transition firings. Knowledge about

any such set of places helps in analyzing liveness and also allows us to investigate other

properties of systems. Such sets of places are called S-invariants.

The derivation of S-invariants from the Petri net matrix E_ is given below. This

derivation allows us to solve AY_ to determine all the invariants of a given net. Let N be a

Petri net with places denoted by S. We want to characterize sets of places, S c SN of N

which do not change their joint token count when transitions fire. If the token count on

S c SN does not change when a transition t e TN fires then,

W (s, t) w (s,t
s e l(t)nS s e 0(t) nS

This condition is equivalent to,

D(S) = — EL(s) L(s) y Lfs
s el(t)nS s e0(t)nS s el(t)nS s E0(t) nS

E L(s) = 0
s e S

If we replace S by its characteristic vector cs the condition becomes,

E i(s).c i(s) = 0 or by vector multiplication Ix s = 0 .
seS,

If the token count on S C SN never changes under arbitrary transition firings, the

condition t..c s = 0 must be fulfilled for all transitions ti e TN , hence

86

EL. c, = 0 (.L:- denotes the transpose of the matrix £-) must hold. Conversely,

each solution c of EL. x = 0 consisting of components from {0,1} is a characteristic

vector of a set of places with a constant token count. So such sets are found by solving

EL. x = 0 . For the Petri net shown in Fig. 6.2, we have one invariant i1 that is

shown in Fig. 6.8.

It can be shown that every Petri net which is finite, live and bounded is covered

by S-invariants [47, 32]. Thus the verification of finiteness, liveness and boundedness

problems of a Petri net reduces to the determination of all invariants of the net.

ti t2 t3 t4 t5 t6 t7

Si -1 0 0 0 1 0 0 1 1
s
2 1 —1 0 0 0 0 0 0 0

53 1 0 —1 0 0 0 0 0

s4 1 0 0 —1 0 0 0 0 0

s5 0 1 0 0 0 —1 0 0 0
s
6 0 0 1 0 0 —1 —1 1 0

7 0 0 0 1 0 0 —1 0 0
s
8 0 0 0 0 —1 1 1 1 0

Figure 6.8 Illustration of S-invariants of Petri net shown in Fig. 6.2.

Similar to S-invariants, T-invariants are defined. Here we consider the sets of

transitions (v : TN ---> N). The T-invariants are determined by the solutions of

equations of the form x = 0 . A T-invariant indicates that if it is possible, starting

from some marking M, to fire each transition t exactly v(t) times, to again yield the

marking M. It can be proved that every P/T-net which is finite, live and bounded is

covered by T-invariants [47].

87

6.4 Modelling of the Algorithm

In this section the stepwise development of the Petri net model of the algorithm is

presented. The development of this model is based on the examples given by Reisig [47].

First the algorithm is represented as a net with inscriptions in English. Then it is refined so

that its structure corresponds to a Petri net and its behaviour to the firing rule.

The many processors are assumed to be in either of two states: mutation or local

garbage collection (lgc). In mutation, graph operations (such as making and breaking

links) are performed. Mutation is intermittently interrupted by incoming messages from

other processors. These messages are processed and reply messages are sent. In addition

for each newly created remote link a newLinkPaint message is sent. In the local garbage

collection phase refreshLinkPaint messages are sent for every active remote edge. In

addition to processing messages during mutation and lgc, processors communicate with

the master processor at the time of starting and completion of an lgc. Master processor

sends phaseChange messages to all processors at the time of system phase change.

The first step in the development of a Petri net model is the construction of the

model as an inscribed net. The inscriptions in the transitions denote instructions, which

are executed when the transition fires. The conditions written into places have to be

fulfilled to allow the associated transitions to fire. The instructions on one transition form

an atomic operation. This means that during the execution of the instructions of some

transition, the entities involved may not be changed by the firing of other transitions. The

inscribed net represents a high level model of the system. This model is refined in a step-

by-step fashion to arrive at the final Petri net model. Fig. 6.9 shows the algorithm as an

inscribed net. Messages from processors enter the system through the input place. Each

message contains a processor identification and the type of message — it may be considered

88

a labelled token. A token in the place INL indicates that the processor is in the lgc state

and a token in INM indicates that it is in the mutation phase. INM and INL are

complements of INM and INL respectively. Introduction of complement /5 of a place p

serves to test emptiness of p. The outstanding message lists are organized in a first-in-

first-out principle, first(M) denotes the first element of M. An instruction

i M adds i to the end of the list M, skip(i,M) deletes i from the list M.

Messages are sent out of the system through the output place.

The graph operations taking place in the mutation phase are internal operations and

do not account for a change in the token count of the system (except when a remote link is

made). Hence they are not explicitly shown in the model. Similarly the mark and sweep

of the lgc state are not shown. The model concentrates on message operations and the

changing of system phases. The number of outstanding messages of each message type is

maintained. On receiving an acknowledgement message the corresponding count is

decremented. In order to simplify the modelling of the algorithm we assume that the

system sends a certain fixed number of messages during each state. The state of the system

changes as soon as that many messages have been sent. In the Fig. 6.9 x and y keep

track of the number of mutation and lgc messages sent. The system changes from

mutation to lgc state as soon as m mutation messages have been sent. Similarly the

system changes from lgc to mutation state as soon as n lgc messages have been sent. M

and N are the outstanding message lists. M is the list of outstanding mutation messages

and N is the list of outstanding lgc messages. On receiving an acknowledgement for a

mutation message, the count M is decremented. Similarly N is decremented on receiving

an acknowledgement for an lgc message.

For considerations of liveness and boundedness, the dependencies between x,

y, m and n are crucial. Assuming that the transitions are invoked on satisfying the

required conditions the network shown in the Fig. 6.9 can be simplified as shown in Fig.

89

6.10. This net is translated into a Petri net with complementary places for p and q. The

self-loops in the system are decomposed and the simplified Petri net model is shown in

Fig. 6.11. The matrix representation of this network is shown in Fig. 6.12.

Well known linear algebraic techniques can be used to determine all the minimal

support invariants (invariants having non-zero values) of a net. If the net is large, this may

require enormous CPU time [31]. We developed a new Prolog algorithm that generates all

the minimum support invariants of any generalized Petri net represented in the matrix form.

The main advantage of this algorithm is that the determination of invariants of any Petri net

is fully automated. This in turn simplifies the design cycle using Petri nets. Using this

algorithm we obtained all the S-invariants of the net. The Fig. 6.13 illustrates the S-

invariants of the network. The properties of the system can be proved using these

invariants.

90

INL input

LGC

C INLD

 (N>0)

ack Igo message in Igc

i=c

INM

:= first(N)
skip(i,N)
q := q - 1

ack Igc message in mutation

mutate

ack mutation message in Igc

send Igc
msg in Igc

 ‹ ..,1=es)

change phase
from Igo to
mutation

y < n

i-> N
p := p + 1
y:=y+1

=n

:= first(M)
skip(i, M)
p := p - 1

ack mutation message in mutation

—A—

CM>0) C i=d

INL := 0
INM:=1
x: 0

X = M

= b

change phase
from mutation
to Igc

V
output

INM :=
INL := 1
y := 0

Figure 6.9 High level Petri Net Model of the Algorithm.

INL local garbage collection (lgc) state.

INM — mutation state.

N — outstanding lgc messages list.
M — outstanding mutation messages list.
n — capacity of lgc message list.
m — capacity of mutation message list.
q — number of messages in the lgc message list
p — number of messages in the mutation message list.

send
mutation
msg in
mutation

91

y — total number of lgc messages sent so far in the current phase.
x — total number of mutation messages sent so far in the current phase.
i — incoming message token (acknowledgement or reply).
c — receiving an lgc message acknowledgement.
d — receiving a mutation message.
b — sending a mutation message.
e — sending a lgc message.

INL

y < n

p := p + 1
y:=y+1

input

q>0

=n

INL := 0
INM := 1
x

INM

q q 1

p p - 1

X = M

INM :=
INL := 1
y

X < M

ti

output

Figure 6.10 Simplified Petri Net Model.

q:=q+1
x := x + 1

IN
L

IN
M

F
ig

u
re

 6
.1

1
P

et
ri

 N
et

 M
od

el
 o

f
th

e
A

lg
or

it
hm

.

93

t 11 t12 t 21 t22 t 3

Transitions

t4 t 5 t6 t7 t81 t82 t91 t92 t10

INL —1 1 0 0 0 0 0 0 0 —1 0 1 0 0

INL 0 0 0 0 0 0 0 0 0 1 0 —1 0 0

INM 0 0 —1 1 0 0 0 0 0 1 0 —1 0 0

INM 0 0 0 0 0 0 0 0 0 —1 0 1 0 0

Pa 1 —1 0 0 0 0 0 0 0 0 0 0 0 0

P
b 0 0 1 —1 0 0 0 0 0 0 0 0 0 0

PL 1 0 0 0 —1 0 —1 0 —1 —1 0 0 0 0

P
I P M

0 0 1 0 0 —1 0 —1 0 0 0 —1 0 —1

a 0 0 0 0 —1 —1 0 0 1 0 0 0 0 0
C
e -
S q 0 0 0 0 1 1 0 0 —1 0 0 0 0 0

0 0 0 0 0 0 —1 —1 0 0 0 0 0 1

P 0 0 0 0 0 0 1 1 0 0 0 0 0 —1

0 0 0 0 0 0 0 0 1 —n n —n 0 0

0 0 0 0 0 0 0 0 —1 0 0 n 0 0

x 0 0 0 0 0 0 0 0 0 —m 0 —m m 1

0 0 0 0 0 0 0 0 0 m 0 0 0 —1

Pc 0 0 0 0 0 0 0 0 0 1 —1 0 0 0

P
d 0 0 0 0 0 0 0 0 0 0 0 1 —1 0

Figure 6.12 Matrix Representation of the Petri net model of the Algorithm.

94

M
N

S-invariants
1 i 2 1

3
i4 i

5
i6 i

7 i8

INL

INL

INM

INM

a

P
b

P
L

P pM

a
C
e q

pd

S
p

p

y

x

x

p C

0

1

1

0

0

0

0

0

0

n

0

m

n

0

0

m

0

0

1 1

0 1 0 0 0 0 1

1 0 1 0 0 0 0 0

o 0 1 0 0 0 1 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

n

n

1

1

o 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 m n 0

0 0 0 0 0 0 0 m

Figure 6.13 S-Invariants of the Petri Net Model.

95

6.4.1 Verification of Properties from the Model

As mentioned earlier any system that is finite, bounded and live must have positive

invariants. From the S-invariants obtained from the model we can conclude that the model

is bound, finite and live. Some of the properties of the system can be verified from these

invariants:

i) Using the invariant i2,
M (INL) + M (INM) + M (AO+ M (pb) =

MN (INL) + MN (INM) + MN(pa) + MN(pb) = 1

From this invariant it is seen that the total token count in all these four places
always remains to be 1. This implies that processor either remains in mutation
or lgc state.

ii) From the invariant i4,

M (q) + M (.1") = MN (q) + MN (4")= n

The total number of messages sent in lgc phase is constant and is equal to n.

iii) From is ,

M (P) + M =MN (P) + Mig (in = m

The total number of messages sent in the mutation phase is constant and is equal
to m.

6.5 Conclusions

In this chapter we presented the application of Petri nets to the modelling and

analysis of systems. The modelling and decision power of the Petri nets has been

enhanced by extensions and modifications to the basic Petri net model. The zero testing

which tests for the emptiness of a place is one of the most significant extensions. These

modifications suggested have been motivated by the need to model diverse systems using

Petri nets.

96

The flexibility and usefulness of analysis techniques is an equally important

criterion for a modelling tool. In the present case, we have concentrated on using the

existing analysis tools for the modelling and verification of properties. From the

reachability tree we can solve the safeness, boundedness, conservation and coverability

problems of a net. But reachability tree has the limitation that it can not be used to solve the

reachability or liveness problems.

Linear algebra provides the other well known analysis technique. This technique

promises to be interesting as the tools available in solving linear equations may be applied

to the analysis of Petri nets. S-invariants of a net correspond to the sets of places whose

joint token count do not change on transition firings. The properties of systems such as

liveness and boundedness can be verified from these invariants. A live and bounded net

must have positive invariants.

In this chapter we presented the Petri net modelling of the algorithm. The stepwise

development of the model is shown. Some of the properties of the system have been

proved using the S-invariants. The invariants obtained show that the model is sound. It is

bounded, finite and live. Inability of the approach in modelling graph mutations and

garbage collection operations limited the scope of the model. This also prevented us from

completely proving the correctness of the algorithm. Inspite of this weakness the work

enhanced our confidence in the algorithm.

CHAPTER 7

Summary and Conclusions

The main objective of this thesis was to develop an algorithm for garbage collection

in a distributed multicomputer system. This chapter summarizes the work performed in this

thesis and discusses its contributions. Conclusions and directions for future research are

given.

A key feature of functional and declarative languages is their inherent parallelism.

Functional languages seem especially suited to parallel architectures because they lack side

effects. These languages have dynamic storage allocation. Evaluation of a program

generates garbage cells. The performance of any functional language depends on the

efficiency of its underlying garbage collection scheme. This strong dependency on

garbage collection has motivated this study of distributed garbage collection algorithms.

In Chapter 1, the general motivation for the study of storage reclamation schemes

was given. The techniques of implementing a functional language were presented. The

concept of graph reduction as a way of implementing functional languages was introduced.

The model of parallel graph reduction which we assumed for the development of our

algorithm was presented.

Chapter 2 and 3 presented a review of garbage collection algorithms for

uniprocessor and multicomputer systems. The distributed garbage collection algorithms

are modifications of mark and sweep and reference counting algorithms. These vary

from completely global to fully distributed real-time algorithms. Global algorithms are

simple to implement but restrict parallelism as well as waste much computational power.

The non-global algorithms are expensive to implement but they provide greater flexibility at

97

98

lower cost of computational power. Algorithms proposed by Hudak, AR and Hughes

were discussed. A comparison of these algorithms was presented.

Chapter 4 presented our algorithm. The first section of this chapter described the

algorithm. Data structures and the low level algorithms were discussed. The second

section presented an analysis of distributed garbage collection algorithms. Analytical

models of a global algorithm and the proposed algorithm were presented.

Chapter 5 presented a simulator model of the algorithm. The design and

implementation of the simulator model was discussed. The simulation experiments were

designed to observe phase transitions, the effect of inter-connection network delay on the

cost of the algorithm and the number of messages sent for different phase lengths. The

results and analysis of these experiments were presented.

Chapter 6 discussed the Petri net modelling of the algorithm. The first section of

this chapter discussed the Petri net theory and modelling. The analysis techniques of Petri

nets, marked tree and invariants were introduced. The step-wise development of the Petri

net model was presented. The scope of the model was limited as graph operations and

garbage collection operations could not be modelled in Petri nets. Some properties of the

algorithm were verified using S-invariants.

7.1 Contributions of the Thesis

We have presented a new algorithm for memory reclamation in a parallel distributed

system that is superior to the existing solutions. This algorithm is characterized by

independent local garbage collections to reclaim local garbage and four cyclic colour phases

for reclaiming global garbage cells. The idea of independent lgc's is an adaptation of ideas

proposed by Ali [3, 4] in his local-global and distributed-local algorithms. As in the case

of Ali's global algorithms any variation of mark and sweep algorithm can be used for a

99

local garbage collection. Our algorithm introduces a new idea of global colour phases. A

master algorithm co-ordinates the global phase changes. In the Hughes algorithm [29] the

time required for the reclamation of global garbage can be arbitrarily long and it requires the

co-operation of all the processors. In the proposed scheme the reclamation of global

garbage is dependent only on the rate of phase changes and it is guaranteed that all garbage

cells including distributed cyclic structures are reclaimed in two phases. This schme has

much less message and space requirements compared to both Ali's and Hughes algorithms.

An analytical model of the algorithm was developed. The analysis of this model

shows that this algorithm is superior to a global algorithm. A simulator model of a parallel

graph reduction system that incorporates the proposed garbage collection algorithm was

implemented. Simulation experiments verified the working of the algorithm. Experiments

conducted on systems of different sizes and load distributions show that the algorithm is

sound. The experimental results show that the algorithm is flexible, it permits the tuning of

various system parameters like the phase length to suit the underlying architecture and the

application program.

Petri net modelling provided insight into the modelling of the proposed algorithm.

Also the modelling helped in debugging the algorithm. Some of the properties of the

algorithm were verified from this model using S-invariants. A new algorithm was

developed to find the invariants of a Petri net. This Prolog algorithm automates the

determination of invariants of any Petri net represented in a matrix form. This algorithm

simplifies the Petri net design as the analysis becomes simpler and less time consuming.

7.2 Extensions and Future Work

The work performed in this thesis has much scope for extensions. The simulation

experiments presented in this thesis are limited due to large computational time required for

100

each run. These experiments can be repeated for extended ranges of parameters — the

length of a phase, number of processors in the system and different probability

distributions of graph operations. Simulations may be conducted using practical loads

based on programs written in parallel functional languages, these results can then be used

to develop better synthetic loads to test distributed algorithms of this nature. The Petri net

modelling can be extended by developing models concentrating on a specific aspect of the

algorithm such as graph mutations and local garbage collections. These sub-modules may

then be merged to model the overall algorithm. The proof techniques used in this thesis

may then be used to prove the overall correctness of the algorithm.

References

[1] Agerwala, T. "A Complete Model for Representing the Coordination of

Asynchronous Processes", Hopkins Computer Research Report No. 32,

Computer Science Program, John Hopkins University, July 1974.

[2] Agerwala, T. "Putting Petri Nets to Work", Computer, December 1979, pp.
85-94.

[3] Ali, K.A.M. "Object-Oriented Storage Management and Garbage Collection in

Distributed Processing Systems", Ph.D. Dissertation, report TRITA-CS-8406,

Royal Institute of Technology, Stockholm, Sweden, December 1984.

[4] Ali, K.A.M. and Haridi, S. "Global Garbage Collection for Distributed Heap

Storage Systems", International Journal of Parallel Programming, Vol.15, No.5,
October 1986.

[5] Augustsson, L. "A Compiler for lazy ML", Proceedings of the ACM
Symposium on Lisp and Functional Programming, Austin, August 1984, pp.
218-127.

[6] Baer, J.L. "Modelling for Parallel Computation : A Case Study", Proceedings
1973 Sagamore Computer Conference on Parallel Processing.

[7] Baer, J.L. et.al., "The Two-Step Commitment Protocol : Modelling,
Specification and Proof Methodology", Proceedings of Fifth Conference on
Software Engineering, May 1980.

[8] Baker, H. "List Processing in real time on a serial computer", Communications
of ACM, Vol. 21, No. 4, April 1978, pp. 280-294.

[9] Berthelot, G. et.al., "Petri Net Modelling and Reliability of Distributed
Algorithms", Net Theory and Applications, Lecture Notes in Computer Science
— 84, Springer-Verlag, 1980.

[10] Bhuiyan, S.H. "Development of a Software Tool to Simulate Stochastic Petri
Nets", M.Sc. thesis, King Fand University of Petroleum and Minerals, Dhahran,
Saudi Arabia, June 1987.

101

102

[11] Bobrow, D.G. "Managing reentrant structures using reference-counts", ACM

TOPLAS, Vol. 2, No.3, March 1980, pp. 269-273.

[12] Brownbridge, D.R. "Cyclic Reference Counting for Combinator Machines",

Proceedings of the Functional Programming Languages and Computer

Architecture Conference, Nancy, France, LNCS 201, Springer-Verlag 1985,

pp. 273-288.

[13] Brownbridge, D.R. "Recursive Structures in Computer Systems", Ph.D.

Dissertation, Department of Computer Science, University of Newcastle Upon

Tyne, UK, September 1984.

[14] Burstall, R.M. et al., "Hope: an experimental applicative language", CSR-62-

80, Department of Computer Science, University of Edinburgh, UK, May 1980.

[15] Christopher, T.W. "Reference Count Garbage Collection", Software Practice
and Experience, Vol. 14, No. 6, June 1984, pp. 503-507.

[16] Cohen, J. "Garbage Collection of Linked Data Structures", Computing
Surveys, Vol. 13, No. 3, September 1981, pp. 341-367.

[17] Dawson, J.L. "Improved Effectiveness from a Real Time Lisp Garbage
Collector", Conference record of the ACM symposium on Lisp and Functional
Programming (1982), pp. 159-167.

[18] Deutsch, L.P. and Bobrow, D.G. "An efficient incremental automatic garbage
collector", Communications of ACM, Vol. 19, No. 9, September 1976, pp. 522-
526.

[19] Dijkstra, E.W. et al., "On-the-Fly Garbage Collection: An exercise in co-
operation", Communications of ACM , Vol. 21, No. 11, November 1978, pp.
966-975.

[20] Dugan, J.B. "Extended Stochastic Petri Nets : Application and Analysis", Ph.D.
Dissertation, Department of Electrical Engineering, Duke University, 1984.

[21] Fairbairn, J. "Ponder and its type system", Technical Report 31, Computer
Lab., Cambridge University, UK, November 1982.

[22] Fairbairn, J. "Design and implementation of a simple typed language based on

103

the lambda calculus", Technical Report 75, Computer Lab., Cambridge
University, UK, May 1985.

[23] Gordon, H. et al., Edinburgh LCF, LNCS 78, Springer-Verlag 1979.

[24] Gottlieb, A. et al., "The NYU Ultra Computer - Designing an MIMD shared
memory Parallel Computer", IEEE Transactions on Computers, Vol. 32, No.
2, February 1983, pp. 175-189.

[25]

[26]

Holt, R.C. and Cordy, J.R. "The Turing Plus Report", University of Toronto,
Computer Systems Research Institute, September 1987.

Hudak, P. and Keller, R.M. "Garbage Collection and Task Deletion in
Distributed Applicative Processing Systems", Proceedings of the ACM
symposium on Lisp and Functional Programming (1982), pp. 168-178.

[27] Hudak, P. "Distributed Task and Memory Management", Proceedings of
ACM Symposium on Principles of Distributed Computing (1983), pp. 277-289.

[28] Hughes, R.J.M. "Reference Counting with Circular Structures in Virtual
Memory Applicative Systems", Oxford University (1983).

[29] Hughes, R.J.M. "A Distributed Garbage Collection Algorithm", Proceedings
of the Functional Programming Languages and Computer Architecture
Conference, Nancy, France, LNCS 201, Springer-Verlag 1985, pp. 56-272.

[30] Lieberman , H. and Hewitt, C. "A Real Time Garbage Collector Based on the
Lifetime of Objects", Communications of ACM, Vol. 26, No. 6, June 1983,
pp. 419-429.

[31] Martinez, J. and Silva, M. "A Simple and Fast Algorithm to obtain all Invariants
of a Generalized Petri Net"-, Application and Theory of Petri Nets, Informatik
Fachbericht 52, Springer Publishing Company, 1982.

[32] Memmi, G. "Linear Algebra in Net Theory", Net Theory and Applications,
Lecture Notes in Computer Science — 84, Springer-Verlag, 1980.

[33] Milutinovic, V.M. Computer Architecture, Concepts and Systems, Reading,
North-Holland, 1988.

[34] Molloy, M.K. "On the Integration of Delay and Throughput Measures in

104

Distributed Processing Models", Ph.D. Dissertation, University of Los Angeles,

1981.

[35] Molloy, M.K. "Performance Analysis Using Stochastic Petri Nets", IEEE

Transactions on Computers, Vol. C-31(9), September 1982, pp. 913-917.

[36] Moon, D.A. "Garbage Collection in a Large Lisp System", ACM Symposium

on Lisp and Functional Programming (1984), pp. 235-246.

[37] Natkin, S. "Reseaus de Petri Stochastiques", Ph.D. Dissertation, CNAM, Paris,

June 1980.

[38] Noe, J.D. "A Petri Net Model of CDC6400", Technical Report 71-04-03,

Department of Computer Science, University of Washington, Seattle, April 1971,

16-pages.

[39] Noe, J.D. "Application of Net Based Models", Lecture Notes in Parallel Systems

84, Springer-Verlag 1979.

[40] Nori, A.K. "A Storage Reclamation Scheme for Applicative Multiprocessor

System", Master's thesis, Department of Computer Science, University of Utah,

December 1979.

[41] Peterson, J.L. "Petri Nets", Computing Surveys, Vol. 9, No. 3, September
1977, pp. 223-252.

[42] Peterson, J.L. Petri Net Theory and the Modeling of Systems, Prentice-Hall
Inc., Englewood Cliffs, N.J.07632 (1981)

[43] Petri, C.A. "Komrnunikation mit Automaten", Schriften des Institutes fur
Instrumentelle Mathematik, Bonn 1962.
(English Translation by Clifford F. Greene, Jr.)

[44] Peyton Jones, S.L. The Implementation of Functional Programming Languages,
Prentice-Hall International Series in Computer Science, Englewood Cliffs, N.J.
(1987).

[45] Ramchandani, C.V. "Analysis of Asynchronous Systems by Timed Petri Nets",
Ph.D. Dissertation, MIT, Cambridge, September 1973.

105

[46] Ramchandani, C.V. and Ho, G.S. "Performance Evaluation of Asynchronous

Concurrent Systems Using Petri Nets", IEEE Transactions on Software

Engineering, Vol. SE-6(5), September 1980, pp. 440-449.

[47] Reisig, W. Petri Nets, An Introduction, Springer-Verlag, Berlin 1985.

[48] Salkild, J.D. "Implementation and Analysis of two Cyclic Reference Counting

Algorithms", M.Sc. thesis, University College, London, June 1985.

[49] Schorr, H., and Waite, W. "An efficient machine-independent procedure for
garbage collection in various list structures", Communications of ACM, Vol. 10,
No. 8, August 1967, pp. 501-506.

[50] Steele, G.L. Jr, "Multiprocessing Compactifying Garbage Collection",
Communications of ACM, Vol. 18, No. 9, September 1975, pp. 495-508.

[51] Treleavan, P.C. et al., "Data Driven and Demand Driven Computer
Architecture", Computing Surveys, Vol. 14, No. 1, March 1982, pp. 93-143.

[52] Turner, D.A. "The SASL Language Manual", University of Kent, UK,
November 83.

[53] Turner, D.A. "Miranda - a non-strict functional language with polymorphic
types", Proceedings of the Functional Programming Languages and Computer
Architecture Conference, Nancy, France, LNCS 201, Springer-Verlag 1985,
pp. 1-16.

[54] Wadler, P. "Introduction to Orwell", Programming Research Group,
University of Oxford, UK, 1985.

[55] Weng, K.S. "An Abstract Implementation for a Generalized Data Flow
Language", Rep. TR-228, MIT Laboratory for Computer Science, 1979.

[56] Wise, D.S. "Design for a Multiprocessing heap with On-board Reference
Counting", Proceedings of the Functional Programming Languages and
Computer Architecture Conference, Nancy, France, LNCS 201, Springer-
Verlag 1985, pp. 289-303.

APPENDIX

The listing of simulator in Turing-Plus is given below.

/**

header file 'globals.h'
This file has global variables, constants and
record definitions

*
*
*

* *
**/

const no0fMutators := 16 % total number of mutators in the
const lastAddr := 4096 % size of memory in each mutator
const getBuf := 1 % get buffer operation
const freeBuf := 2 % release buffer operation
const null := -1 % nil pointer

system

/**
* *

Time constants mutator operations
* *

const changePhaseTime
const allocateObjectTime
const makeLocalLinkTime
const breakLocalLinkTime
const memoryTouchTime
const receiveMsgTime
const sendMsgTime
const msgAckTime
const processGcMsgTime
var MessageFlightTime

1
:= 1
:= 1
:= 1
:= 1
:= 1
:= 10
:= 5

5
: int

% change phase time
% allocate object time
% make a local link time
% break a local link time
% time for each memory operation
% time to receive a msg and process it
% time for preparing a message
% time for sending a message ack
% time to process a GC message
% message delay in the IC network

/**

*

Type definitions
*

*
*
*

**/

type peNumbers : 0..no0fMutators
type memorySize : 1..lastAddr
type lgcStat : enum(noStart,oneStart, oneDone, someDone, doneGoing)
type colour : enum(white,red,blue,green,yellow)
type msgClass : enum(newPleasePaint, lgcPleasePaint, newPaintAck,

lgcPaintAck, remoteRead, readReply, lgcStart,
lgcDone, ackLgcStart, ackLgcDone, phaseChange,

lgcForce)
type operation : enum(allocateNode, makeLink, breakLink)

/**

*
Definition of messages

*

var msgs: collection of forward msgtype % the pool of messages

*

type msgtype: record
class : msgClass % message type
time : int % time sent, then time of arrival

destination : int % who gets the msg

source : int % who sent the msg

address : int % address to read or paint

phase : colour % colour of message

nextMsg
end record

: pointer to msgs % next message in queue

106

107

/**

* *
definition of a node in the graph

*

type cell: record

*
*

cellAddress : int % cell address
processorNo : int % processor number
markbit : boolean % mark bit
phase : colour % phase in which last painted
leftPhase,rightPhase: colour % left cell phase
leftPen,rightPen int % left and right processors
leftAddr,rightAddr :

end record
int % left and right cell addresses

/**

* *
Definition of mutator status record *

* *

type peState: record
clock
newPpsOut
newPpsMsgsSent
lgcPpsOut
lgcPpsMsgsSent
readsOut
firstMsg
pePhase
lgcStartMsgSent
lgcDoneMsgSent
receivedAckLgcStart
receivedAckLgcDone
noLgcsDoneInCurrentPhase
freeList : int
root : int
memory

end record

: int % system clock at present
: int % unacknowledged new pl-paint messages
: int % no of new pl paint msgs sent
: int % unacknowledged lgc pl-paint messages
: int % no of lgc pl paint msgs sent
: int % unacknowledged please-read messages
: pointer to msgs % header of message queue
: colour % current phase of pe
: boolean % sent lgc start message
: boolean % sent lgc done message
: boolean % received ack msg in reply to lgc start
: boolean % received ack msg in reply to lgc done

: int % no of lgcs done in current phase
% pointer to cells, freelist header
% pointer to cells, local graph root

: array memorySize of cell % memory in each mutator

/**

*

*
Global variables

*

*
**/

var state

var centralLgcRecords

var masterPhase

var forcesSent

var usingBuf

var noOfCellzMarked

var no0fCellsRecovered

var noOfCellsAllocated

: array peNumbers of peState
% complete state of each pe

: array peNumbers of lgcStat
% master's records of state of lgc's in phase

: colour
% master's present colour

: boolean := false
% if forces not sent forcesSent is false

: boolean := false
% condition indicating some one using buffer

: array 1..no0fMutators of int
% no of cells marked in each lgc

: array 1..no0fMutators of int
% no of cells recovered in each lgc

: array 1..no0fMutators of int
% no of cells allocated before one lgc

108

var noOfLocalMakeLinks : array

var noOfRemoteMakeLinks : array

var no0fLocalBreakLinks : array

var noOfRemoteBreakLinks: array

var readyToStartLgc : array

var readyToStartMutate

var lgoPpsMsgsSentInPhase

var

var

var

var

var

var

var

var

var

var

array

nodeInsertionSuccessful

updateGraphDepth

lgcAttemptDone

lgcAttemptTime

IgcStartTime

lgcCompletedTime

mutateAttemptDone

mutateAttemptTime

mutateStartTime

mutateStartTimeEntered

1..no0fMutators of int
% no of local links made before one lgc
1..no0fMutators of int
% no of remote links made before one lgc
1..no0fMutators of int
% no of local links broken
1..no0fMutators of int
% no of remote links broken
1..no0fMutators of boolean
% condition indicating if processor
% can start an lgc.
1..no0fMutators of boolean
% condition indicating if processor
% can start mutation.

: array 1..no0fMutators of boolean
% condition indicating if lgc messages have
% been sent in the current phase

array 1..no0fMutators of boolean
% Is updating graph successful?

array 1..no0fMutators of int
% level reached while updating graph

: array 1..no0fMutators of boolean
% true if lgc already attempted

: array 1..no0fMutators of int
% time of attempting to do an lgc

: array 1..no0fMutators of int
% time at which lgc is started

: array 1..no0fMutators of int
% time of completing an lgc

: array 1..no0fMutators of boolean
% true if mutation is already attempted

: array 1..no0fMutators of int
% mutate attempted time

: array 1..no0fMutators of int
% mutation starting time

: array 1..no0fMutators of boolean
% indicates if mutation start time is entered

/**
* *

Variables to choose a random operation
* *
**/

var
var
var
var
var
var
var
var
var
var

allocateNodeLowerLimit
allocateNodeUpperLimit
makeLinkLowerLimit
makeLinkUpperLimit
breakLinkLowerLimit
breakLinkUpperLimit
localOrRemoteLowerLimit
localOrRemoteUpperLimit
probabilityOfRemoteLinks
averageNoOfLgcsLimit

: int
: int
: int
: int
: int
: int
: int
: int
: int
: real % average no. of lgc's per phase

109

/**

/**

* *
Main file of the simulator 'nonstop.t'
All modules are included into this file

* *

grant
(var msgs, var state, msgAckTime, MessageFlightTime, usingBuf,
getBuf, null, freeBuf, msgClass, peNumbers, noOfMutators,
mailBox, memoryTouchTime, allocateObjectTime, colour,
makeLocalLinkTime, sendMsgTime, breakLocalLinkTime,
changePhaseTime, memorySize, var centralLgcRecords, lgcStat,
processGcMsgTime, masterPhase,mutator, lastAddr, cell,
localGarbageCollection, initialSetup, allocateNodeLowerLimit,
allocateNodeUpperLimit, makeLinkLowerLimit, makeLinkUpperLimit,
breakLinkLowerLimit, breakLinkUpperLimit, noOfCellsMarked,
noOfCellsRecovered, noOfCellsAllocated, no0fLocalMakeLinks,
noOfRemoteMakeLinks, noOfLocalBreakLinks, noOfRemoteBreakLinks,
var forcesSent, var readyToStartLgc, var nodeInsertionSuccessful,
var updateGraphDepth, var lgcPpsMsgsSentInPhase,
var lgcAttemptDone, var mutateAttemptDone, var readyToStartMutate,
var lgcAttemptTime, var lgcStartTime, var lgcCompletedTime,
var mutateAttemptTime,var mutateStartTime, var mutateStartTimeEntered,
probabilityOfRemoteLinks, localOrRemoteLowerLimit,
localOrRemoteUpperLimit, averageNoOfLgcsLimit, receiveMsgTime)

include "globals.h"

child "messagehandler.t"

child "initialsetup.t"

child "lgc.t"

child "mutator.t"

child "master.t"

/* include global header file

/* include message handling module

/* initial set up module

/* include local garbage collection module

/* include mutator routines module

/* include master module

/***

* *
Master Process program

* *

process monitorPhase
const masterPe : int := 0
bind var states to state(masterPe)
var message : pointer to msgs
var tempMsg : pointer to msgs
states.pePhase := colour.red
masterPhase := states.pePhase

loop
states.pePhase := masterPhase
if ((states.firstMsg not= nil(msgs)) and

(states.clock >= msgs(states.firstMsg).time))
tempMsg := msgs(states.firstMsg).nextMsg
message := states.firstMsg
states.firstMsg := tempMsg

else
message := nil(msgs)

then

*

*

*

*

*

*

*

110

end if

loop
exit when message = nil(msgs)
assert ((msgs(message).class

(msgs(message).class =
case msgs(message).class of

label msgClass.lgcStart :
label msgClass.lgcDone :

end case

/* loop forever through colours

= msgClass.lgcStart) or
msgClass.lgcDone))

master.replyLgcStart(message)
master.replyLgcDone(message)
master.checkPeStatus

if (states.firstMsg not= nil(msgs)) and
(states.clock >= msgs(states.firstMsg).time) then
tempMsg := msgs(states.firstMsg).nextMsg
message := states.firstMsg
states.firstMsg := tempMsg

else
message := nil(msgs)

end if
end loop
states.clock += 1
mailBox.scheduler(masterPe)

end loop
end monitorPhase

*

/* loop until current phase is over */

/***

*

*
Mutator Process

*
*
*

***/

process processor(pen : int)
var sourcePen : int := pen
var message : pointer to msgs
var tempMsg : pointer to msgs
var opCode : operation
var opChosen : int
var lgcStartMsgSent, lgcDoneMsgSent : boolean
bind var states to state(sourcePen)

initialSetup.initially(sourcePen)
initialSetup.setupFreeList(sourcePen)
initialSetup.setupInitialGraph(sourcePen)

loop
if ((states.firstMsg not= nil(msgs)) and

(states.clock >= msgs(states.firstMsg).time)) then
tempMsg := msgs(states.firstMsg).nextMsg
message := states.firstMsg
states.firstMsg := tempMsg

else
message := nil(msgs)

end if

if message not= nil(msgs) then
loop

case msgs(message).class of
label msgClass.phaseChange
label msgClass.lgcForce
label msgClass.newPleasePaint
label msgClass.lgcPleasePaint
label msgClass.remoteRead
label msgClass.readReply

mutator.changePePhase(sourcePen, message)
localGarbageCollection.forceLgc(sourcePen)
mutator.sendNewPaintAck(message)
mutator.sendLgcPaintAck(message)
mutator.sendReadReply(message)
mutator.receiveReadReply(message)

111

label msgClass.newPaintAck : mutator.receiveNewPaintAck(message)
label msgClass.IgcPaintAck : mutator.receiveLgcPaintAck(message)
label msgClass.ackLgcStart : mutator.receiveAckLgcStart(message)
label magClass.ackLgcDone : mutator.receiveAckLgcDone(message)

end case
if (states.firstMsg not= nil(msgs)) and

(states.clock >= msgs(states.firstMsg).time) then
tempMsg := msgs(states.firstMsg).nextMsg
message := states.firstMsg
states.firstMsg := tempMsg

else
message := nil(msgs)

end if
exit when message = nil(msgs)

end loop
else

if not(mutateAttemptDone(pen)) then
mutateAttemptTime(pen) := states.clock
mutateAttemptDone(pen) := true

end if

if (readyToStartMutate(pen)) then
if not(mutateStartTimeEntered(pen)) then

mutateStartTime(pen) := states.clock
mutateStartTimeEntered(pen) := true

end if
randint(opChosen, 1, 100)
if (opChosen >= breakLinkLowerLimit and

opChosen <= breakLinkUpperLimit) then
opCode := operation.breakLink

elsif (opChosen >= allocateNodeLowerLimit and
opChosen <= allocateNodeUpperLimit) then
opCode := operation.allocateNode

elsif (opChosen >= makeLinkLowerLimit and
opChosen <= makeLinkUpperLimit) then
opCode := operation.makeLink

end if

assert (opCode = operation.allocateNode or
opCode = operation.makeLink or
opCode = operation.breakLink)

case opCode of
label operation.allocateNode : mutator.allocateNode(sourcePen)
label operation.makeLink : mutator.makeLink(sourcePen)
label operation.breakLink : mutator.breakLink(sourcePen)

end case
end if

end if
states.clock += 1 /* advance processor clock */
mailBox.scheduler(pen)

end loop
end processor

/***

*
accept input parameters

*
***/

put "input the value of allocate node lower limit "..

get allocateNodeLowerLimit
put "input the value of allocate node upper limit "..

get allocateNodeUpperLimit
put "input the value of make link lower limit

112

get makeLinkLowerLimit
put "input the value of make link upper limit
get makeLinkUpperLimit
put "input the value of break link lower limit
get breakLinkLowerLimit
put "input the value of break link upper limit
get breakLinkUpperLimit
put "input the value of remote link probability 0
get probabilityOfRemoteLinks
put "input value of average no of lgcs per phase
get averageNoOfLgcsLimit
put "in'ut value of message delay time
get MessageFlightTime

" . .

/***
* *

fork all processeses
* *

for i: 1..no0fMutators
fork processor(i)

end for
fork monitorPhase

113

/***

**

*

This module is in file 'initialsetup.t'
Initial setup routines module

*
*
*

***/

parent "nonstop.t" /* This module is inserted in 'nonstop.t' file

stub module initialSetup

*

import(lastAddr, state, colour, null, msgs, allocateNodeLowerLimit,
allocateNodeUpperLimit, makeLinkLowerLimit, makeLinkUpperLimit,
breakLinkLowerLimit, breakLinkUpperLimit, centralLgcRecords,
lgcStat, noOfMutators, noOfCellsMarked, noOfCellsRecovered,
noOfCellsAllocated, no0fLocalMakeLinks,no0fRemoteMakeLinks,
noOfLocalBreakLinks, no0fRemoteBreakLinks, cell,
readyToStartLgc, nodeInsertionSuccessful, updateGraphDepth,
lgcPpsMsgsSentInPhase, lgcAttemptDone, readyToStartMutate,
mutateAttemptDone, lgcAttemptTime, lgcStartTime,
lgcCompletedTime, mutateAttemptTime, mutateStartTime,
mutateStartTimeEntered, probabilityOfRemoteLinks,
localOrRemoteLowerLimit, localOrRemoteUpperLimit,
averageNoOfLgcsLimit, MessageFlightTime)

export(initially, setupFreeList, setupInitialGraph, pickFirstCell,
updateGraph, insertlntoFreeList)

procedure initially(pen : int)
procedure setupFreeList(pen : int)
procedure setupinitialGraph(pen : int)
function pickFirstCell(pen : int):int
procedure updateGraph(var graphRoot:int, cellToBeInserted:int,pen:int)
procedure insertIntoFreeList(pen:int,cellToBeInserted:int)

end initialSetup

body module initialSetup

const sizeOflnitialGraph := (lastAddr div 2)
const left := 1
const right := 2
const maximumUpdateGraphDepth := 200

/***
*

Initialization routine *
*

*************************************1i*******************************/

body procedure initially
bind var states to state(pen)

randomize
for i : 1..lastAddr

states.memory(i).cellAddress := i
states.memory(i).processorNo := pen
states.memory(i).markbit := true
states.memory(i).phase := colour.white
states.memory(i).1eftPen null
states.memory(i).rightPen := null
states.memory(i).1eftAddr null
states.memory(i).rightAddr null

end for

114

states.clock 0
states.newPpsOut 0
states.newPpsMsgsSent := 0
states.lgcPpsOut := 0
states.lgcPpsMsgsSent := 0
states.readsOut := 0
states.firstMsg nil(msgs)
states.pePhase colour.red
states.lgcStartMsgSent := false
states.lgcDoneMsgSent := false
states.receivedAckLgcStart := true /* ready to send lgc done message */
states.receivedAckLgcDone := true /* ready to send lgc start message */
states.freeList null
states.root null
centralLgcRecords(pen) := lgcStat noStart
no0fCellsMarked(pen) := 0
no0fCellsRecovered(pen) := 0
noOfCellsAllocated(pen) 0
no0fLocalMakeLinks(pen) := 0
no0fRemoteMakeLinks(pen) := 0
no0fLocalBreakLinks(pen) := 0
no0fRemoteBreakLinks(pen) := 0
readyToStartLgc(pen) := true
readyToStartMutate(pen) := true
lgcPpsMsgsSentInPhase(pen) := false
nodeInsertionSuccessful(pen) := true
updateGraphDepth(pen) 0
lgcAttemptDone(pen) := false
lgcAttemptTime(pen) := 0
lgcStartTime(pen) 0
lgcCompletedTime(pen) := 0
mutateAttemptDone(pen) := false
mutateAttemptTime(pen) := 0
mutateStartTime(pen) 0
mutateStartTimeEntered(pen) := false

if (pen = 1) then
localOrRemoteLowerLimit := 10
localOrRemoteUpperLimit := (localOrRemoteLowerLimit +

round((noOfMutators * probabilityOfRemoteLinks) /
(noOfMutators - 1)))

/* print the banner for output file */

put repeat(" ", 130) put repeat("*", 130)
put repeat("*", 1), repeat(" ", 128), repeat("*",1)
put repeat("*", 1), repeat(" ", 40), "NO OF MUTATORS ”,

noOfMutators:6, repeat(" ",58), repeat("*",1)
put repeat("*", 1), repeat(" ", 128), repeat("*",1)
put repeat("*", 1), repeat(" ", 40), "NO OF NODES IN A GRAPH ",

lastAddr:6, repeat(" ",58), repeat("*",1)
put repeat("*", 1), repeat(" ", 128), repeat("*",1)
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF ALLOC ",

((allocateNodeUpperLimit - allocateNodeLowerLimit)/100):6:3,
repeat(" ",58), repeat("*",1)

put repeat("*", 1), repeat(" ", 128), repeat("*",1)
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF MAKE ”,

((makeLinkUpperLimit - makeLinkLowerLimit)/100):6:3,
repeat(" ",58), repeat("*",1)

put repeat("*", 1), repeat(" ", 128), repeat("*",1)
put repeat("*", 1), repeat(" ", 40), "PROBABILITY OF BREAK

((breakLinkUpperLimit - breakLinkLowerLimit)/100):6:3,
repeat(" ",58), repeat("*",1)

115

put repeat ("*", 1), repeat (" ", 128),
put repeat("*", 1), repeat(" ", 40),

(probability0fRemoteLinks/100):6:3
put repeat("*", 1), repeat(" ", 128),
put repeat("*", 1), repeat(" ", 40),

averageNo0fLgcsLimit:6:3, repeat("
put repeat("*", 1), repeat(" ", 128),
put repeat("*", 1), repeat(" ", 40),

MessageFlightTime:6, repeat(" ",58
put repeat("*", 1), repeat(" ", 128).
put repeat("*", 130) put repeat(" ",

repeat("*",1)
"PROS OF REMOTE MAKE
,repeat(" ",58),repeat("*",1)
repeat("*",1)

"AVERAGE LGCS PER PE
",58), repeat("*",1)
repeat("*",1)

"MESSAGE DELAY TIME
), repeat("*",1)
repeat("*",1)

130)

put " PEN "," PHASE ", " RECLAIM "," LO_MAKE "," RE MAKE
" LO_BREAK "," RE_BREAK "," ALLOC ", " LGC_PPS ",
" NEW PPS "," MU24_TIME "," LGC_W_TIME "," LGC_TIME"

end if

end initially

/***

*

*
Set up free list of a processor

*
*
*

***/

body procedure setupFreeList
bind var states to state(pen)
bind var freeListRoot to states.freeList
freeListRoot := 1
for cellAddress : 1..lastAddr

states.memory(cellAddress).markbit
states.memory(cellAddress).phase
states.memory(cellAddress).1eftPhase
states.memory(cellAddress).rightPhase
states.memory(cellAddress).1eftPen
states.memory(cellAddress).rightPen
states.memory(cellAddress).1eftAddr

:= false
:= colour.white
:= colour.white
:= colour.white
:= null
:= pen
:= null

if (cellAddress = lastAddr) then
states.memory(cellAddress).rightAddr := null

else
states.memory(cellAddress).rightAddr := (cellAddress + 1)

end if
end for

end setupFreeList

/***

* *
Set up initial graph

* *

body procedure setupInitialGraph
bind var states to state(pen)
var cellToBeInserted : int
for cellAddress 1..sizeOfInitialGraph

cellToBeInserted
states.memory(cellToBeInserted).phase
states.memory(cellToBeInserted).processorNo
states.memory(cellToBeInserted).1eftPen
states.memory(cellToBeInserted).rightPen
states.memory(cellToBeInserted).1eftAddr
states.memory(cellToBeInserted).rightAddr
updateGraphDepth(pen) 0

pickFirstCell(pen)
colour. white
pen
null
null
null
null

116

updateGraph(states.root, cellToBeInserted, pen)
if not(nodeInsertionSuccessful(pen)) then

insertIntoFreeList(pen,cellToBeInserted)
nodeInsertionSuccessful(pen) true

end if
end for

end setupInitialGraph

/***

* *

Remove the first cell from a free list
* *
***/

body function pickFirstCell
bind var states to state(pen)
var currentPtr: int
currentPtr := states.freeList

if (currentPtr not= null) then
states.freeList := states.memory(currentPtr).rightAddr
result currentPtr

else
result null

end if
end pickFirstCell

/***
* *

Insert a cell into free list
* *

body procedure insertIntoFreeList
bind var states to state(pen)
var currentPtr, previousPtr : int
currentPtr := states.freeList
previousPtr := null

if currentPtr = null then
states.freeList := cellToBeInserted

else
loop

exit when (states.memory(currentPtr).rightAddr = null)
currentPtr := states.memory(currentPtr).rightAddr

end loop
states.memory(currentPtr).rightAddr := cellToBeInserted

end if

end insertIntoFreeList

/***

* *
Insert allocated cell into a graph

*

body procedure updateGraph
bind var states to state(peh)
var leftOrRight : int
var currentPtr : int

updateGraphDepth(pen) += 1

117

if (updateGraphDepth(pen) >= maximumUpdateGraphDepth) then
nodeInsertionSuccessful(pen) := false
return

else
if (graphRoot = null) then

graphRoot := cellToBeInserted
else

currentPtr := graphRoot
randint(leftOrRight, left, right)

if (leftOrRight = left) then
if (states.memory(currentPtr).1eftAddr = null) then

states.memory(currentPtr).1eftPen := pen
states.memory(currentPtr).1eftAddr := cellToBeInserted

elsif (states.memory(currentetr).1eftPen = pen) and
(states.memory(currentPtr).1eftPen not= null) then
updateGraph(states.memory(currentPtr).1eftAddr,

cellToBeInserted,pen)
elsif (states.memory(currentPtr).rightPen = pen) and

(states.memory(currentPtr).rightPen not= null) then
updateGraph(states.memory(currentPtr).rightAddr,

cellToBeInserted,pen)
elsif (states.memory(currentPtr).rightAddr = null) then

states.memory(currentPtr).rightPen := pen
states.memory(currentPtr).rightAddr := cellToBeInserted

else
nodeInsertionSuccessful(pen) := false
return

end if
end if

if (leftOrRight = right) then
if (states.memory(currentPtr).rightAddr = null) then

states.memory(currentPtr).rightPen := pen
states.memory(currentPtr).rightAddr := cellToBeInserted

elsif (states.memory(currentPtr).rightPen = pen) and
(states.memory(currentPtr).rightPen not= null) then
updateGraph(states.memory(currentPtr).rightAddr,

cellToBeInserted,pen)
elsif (states.memory(currentPtr).1eftPen = pen) and

(states.memory(currentPtr).1eftPen not- null) then
updateGraph(states.memory(currentPtr).1eftAddr,

cellToBeInserted,pen)
elsif (states.memory(currentPtr).1eftAddr = null) then

states.memory(currentPtr).1eftPen := pen
states.memory(currentPtr).1eftAddr := cellToBeInserted

else
nodeInsertionSuccessful(pen) := false
return

end if
end if

end if
end if

end updateGraph

end initialSetup

118

/**

* **

This module is in file 'messagehandler.t'
Monitor module. Has message transmission routines
and mutator status table.

* *

*
*
*

parent "nonstop.t" /* this module is included in 'nonstop.t' file */

stub monitor mailBox
import(var msgs, var state, MessageFlightTime, usingBuf, getBuf,

freeBuf, msgClass, peNumbers, noOfMutators)
export(bufferManager, send, checkPreviousLgcDoneAck,

checkPreviousLgcStartAck, scheduler)

procedure
procedure
procedure
procedure
procedure

end mailBox

bufferManager(var inMsg:pointer to msgs, bufferOperation:int)
send(inMsg: pointer to msgs)
checkPreviousLgcDoneAck(pen : int)
checkPreviousLgcStartAck(pen : int)
scheduler(pen : int)

body monitor mailBox

var

var

var

var

busyBuf

previousLgcDoneAckReceived

previousLgcStartAckReceived

wakeUpProcessor

condition
% event of some one using buffer
array 1..no0fMutators of condition deferred
% if the previous lgc done ack received
array 1..no0fMutators of condition deferred
% if the previous lgc start ack received
array 0..no0fMutators of condition
%processor waiting for its turn, signalled by
% the scheduler

/***

* *

Allocate and deallocate buffer for messages
* *
***/

body procedure bufferManager
if usingBuf = true then

wait busyBuf
end if
usingBuf := true
if bufferOperation = getBuf then

new msgs, inMsg
else
free msgs, inMsg

end if
usingBuf := false
signal busyBuf

end bufferManager

/***

*
Scheduler routine, wakes up one processor and blocks others *

*
***/

body procedure scheduler
var currentYoungestClock : int

119

var currentYoungestProcessor : int

currentYoungestClock := state(0).clock
currentYoungestProcessor := 0
for i : 0..(no0fMutators)

if currentYoungestClock > state(i).clock then
currentYoungestClock := state(i).clock
currentYoungestProcessor

end if
end for
if (state(pen).clock > currentYoungestClock) then
signal wakeUpProcessor(currentYoungestProcessor)
wait wakeUpProcessor(pen)

end if
end scheduler

/***
* *

A processor wakes up another processor in case it has
to wait for previous lgc done acknowledgement message

* *
***/

body procedure checkPreviousLgcDoneAck
bind var states to state(pen)

var currentYoungestClock : int := 0
var currentYoungestProcessor : int := 0
var nextYoungestClock : int := 0
var nextYoungestProcessor : int := 0

if ((states.lgcDoneMsgSent) and not(states.receivedAckLgcDone)) then
currentYoungestClock := state(0).clock
currentYoungestProcessor := 0
for i : 1..(no0fMutators)

if currentYoungestClock >= state(i).clock then
nextYoungestClock := currentYoungestClock
nextYoungestProcessor := currentYoungestProcessor
currentYoungestClock := state(i).clock
currentYoungestProcessor := i

elsif (nextYoungestClock > state(i).clock) then
nextYoungestClock := state(i).clock
nextYoungestProcessor := i

end if
end for

if ((state(pen).clock >= currentYoungestClock) and
(pen not= currentYoungestProcessor)) then
assert not(empty(wakeUpProcessor(currentYoungestProcessor))
signal wakeUpProcessor(currentYoungestProcessor)
wait previousLgcDoneAckReceived(pen)

elsif ((state(pen).clock >= nextYoungestClock) and
(pen not= nextYoungestProcessor)) then

assert not(empty(wakeUpProcessor(nextYoungestProcessor))
signal wakeUpProcessor(nextYoungestProcessor)
wait previousLgoDoneAckReceived(pen)

end if
end if

end checkPreviousLgcDoneAck

/***

*

Check for the previous lgc start acknowledgement message
*

*
*

120

body procedure checkPreviousLgcStartAck
bind var states to state(pen)
if ((states.lgcStartMsgSent) and not(states.receivedAckLgcStart)) then

wait previousLgcStartAckReceived(pen)
end if

end checkPreviousLgcStartAck

/***

*
Routine to send a message from one processor to another.
Accepts a message and puts into the message queue of the
destination processor

*
*
*

* *

body procedure send
var currentPtr, previousPtr : pointer to msgs
var dest := msgs(inMsg).destination
var source := msgs(inMsg).source
var arrival := msgs(inMsg).time + MessageFlightTime
bind var states to state(dest)

/* print statements for debugging purpose

case msgs(inMsg).class of
label msgClass.lgcStart
label msgClass.newPleasePaint
label msgClass.lgcPleasePaint
label msgClass.newPaintAck
label msgClass.lgcPaintAck
label msgClass.remoteRead
label msgClass.readReply
label magClass.lgcDone
label msgClass.phaseChange
label msgClass.lgcForce
label msgClass.ackLgcStart
label msgClass.ackLgcDone

end case
put " from source proc source,"

put "sending
put "sending
put "sending
put "sending
put "sending

• put "sending
• put "sending

put "sending
put "sending
put "sending

• put "sending
• put "sending

to dest

msgs(inMsg).nextMsg := nil(msgs)
msgs(inMsg).time := arrival
if states.firstMsg = nil(msgs) then
states.firstMsg := inMsg

else
if arrival <= msgs(states.firstMsg).time

msgs(inMsg).nextMsg := states.firstMsg
states.firstMsg := inMsg

else
currentPtr
previousPtr
loop

previousPtr := currentPtr
currentPtr := msgs(currentPtr).nextMsg
exit when (currentPtr = nil(msgs) or arrival

end loop
if (currentPtr = nil(msgs)) then
msgs(previousPtr).nextMsg := inMsg

else
msgs(inMsg).nextMsg
msgs(previousPtr).nextMsg

end if
end if

gc start message"..
pl new paint message"..
pl lgc paint message"..
new paint ack message".
lgc paint ack message".
remote read message"..
read reply message"..
lgc done message"..
phase change message ".
lgc force message"..
acknowledge lgc start message "..
acknowledge lgc done message "..

proc ", dest

states.firstMsg
:= nil(msgs)

then

currentPtr
inMsg

*

/* Queue is empty */

/* Insert at the head */

/* Scan to find place */

<= msgs(currentPtr).time)

/* Insert at the en' *1

/* Insert in the mladle */

121

end if

case msgs(inMsg).class of
label msgClass.ackLgcStart : signal previousLgcStartAckReceived(dest)
label : /* do nothing */

end case

end send

end mailBox

122

/***
**

This module is in file 'mutator.t'
Mutator routines module

*

parent "nonstop.t" /* include this module in 'nonstop.t' file

stub module mutator

*

import(msgs, state, mailBox, freeBuf,getBuf, null,
allocateObjectTime, colour, makeLocalLinkTime, msgClass,
sendMsgTime, breakLocalLinkTime, changePhaseTime,
lastAddr, cell, no0fMutators, localGarbageCollection,
initialSetup, no0fCellsAllocated, no0fLocalMakeLinks,
noOfRemoteMakeLinks, noOfLocalBreakLinks, noOfRemoteBreakLinks,
readyToStartLgc, nodeInsertionSuccessful,receiveMsgTime,
updateGraphDepth, lgcPpsMsgsSentInPhase, readyToStartMutate,
localOrRemoteLowerLimit, localOrRemoteUpperLimit, msgAckTime)

export(allocateNode, makeLocalLink,previousPhase,
makeRemoteLink, makeLink, breakLink, changePePhase,
sendNewPaintAck, sendLgcPaintAck,sendReadReply,
receiveReadReply, receiveNewPaintAck,receiveLgcPaintAck,
receiveAckLgcStart, receiveAckLgcDone, nextPhase)

procedure allocateNode(pen:int)
procedure makeLocalLink(pen:int)
procedure makeRemoteLink(sourcePen:int, destPen:int)
procedure makeLink(sourcePen: int)
procedure breakLink(sourcePen:int)
procedure changePePhase(pen:int, inMsg : pointer to msgs)
procedure sendNewPaintAck(inMsg: pointer to msgs)
procedure sendLgcPaintAck(inMsg: pointer to msgs)
procedure sendReadReply(inMsg: pointer to msgs)
procedure receiveReadReply(var inMsg: pointer to msgs)
procedure receiveNewPaintAck(var inMsg: pointer to msgs)
procedure receiveLgcPaintAck(var inMsg: pointer to msgs)
procedure receiveAckLgcStart(var inMsg: pointer to msgs)
procedure receiveAckLgcDone(var inMsg: pointer to msgs)
function nextPhase(presentPhase:colour):colour
function previousPhase(presentPhase:colour):colour
function sourceRandomWalk(root : int, pen : int) : int
function destRandomWalk(root : int, pen : int) : int

end mutator

body module mutator

/* initially grown graph is half the full size */
const sizeOfInitialGraph := (lastAddr div 2)
const left 1
const right :- 2
const remote 99
var sourceDepthLevel : int
var destDepthLevel : int
var destDepth : int := 0
var sourceDepth : int := 0

/***

*
Routine to allocate a node

123

body procedure allocateNode
bind var states to state(pen)
var pickNode : int

pickNode := initialSetup.pickFirstCell(pen)
if (pickNode = null) then
localGarbageCollection.lgc(pen)

else
states.memory(pickNode).phase := colour.white
states.memory(pickNode).1eftPen := null
states.memory(pickNode).rightPen := null
states.memory(pickNode).1eftAddr := null
states.memory(pickNode).rightAddr := null
no0fCellsAllocated(pen) += 1 % increment no. of cells allocated
states.clock += allocateObjectTime % advance processor's clock

updateGraphDepth(pen) := 0
initialSetup.updateGraph(states.root, pickNode, pen)
if not (nodeInsertionSuccessful(pen)) then

initialSetup.insertIntoFreeList(pen,pickNode)
nodeInsertionSuccessful(pen) := true
noOfCellsAllocated(pen) -= 1

end if
end if

end allocateNode

/***

*

*
Procedure to make a local link between two cells

body procedure makeLocalLink
bind var states to state(pen)
var leftOrRight : int
var sourceNode, destNode : int

randint(leftOrRight, left, right)
sourceDepth := 0
sourceNode := sourceRandomWalk(states.root, pen)

/* identify a source node
destDepth
destNode

*
*
*

*

0
destRandomWalk(states.root, pen)

/* identify a destination node

if ((sourceNode not- null) and
((states.memory(sourceNode).1eftAddr = null) or
(states.memory(sourceNode).rightAddr = null)) and
(destNode not= null) and (sourceNode not= destNode)) then

if (leftOrRight - left) then
if (states.memory(sourceNode).1eftAddr = null) then

*

states.memory(sourceNode).1eftPen pen
states.memory(sourceNode).1eftAddr := destNode
states.memory(sourceNode).1eftPhase colour.white
no0fLocalMakeLinks(pen) += 1
states.clock += makeLocalLinkTime /* advance processor clock

elsif (states.memory(sourceNode).rightAddr = null) then

*

124

sourceDepth :=
sourceNode
destDepth
destNode :=
if ((sourceNode

states.memory(sourceNode).rightPen
states.memory(sourceNode).rightAddr
states.memory(sourceNode).rightPhase
noOfLocalMakeLinks(pen) += 1
states.clock += makeLocalLinkTime

end if
end if

:- pen
:= destNode
:= colour.white

/* advance processor clock */

if (leftOrRight = right) then
if (states.memory(sourceNode).rightAddr = null) then

states.memory(sourceNode).rightPen
states.memory(sourceNode).rightAddr
states.memory(sourceNode).rightPhase
noOfLocalMakeLinks(pen) += 1
states.clock makeLocalLinkTime

pen
destNode
colour. white

/* advance processor

elsif (states.memory(sourceNode).1eftAddr = null) then

states.memory(sourceNode).1eftPen
states.memory(sourceNode).1eftAddr
states.memory(sourceNode).1eftPhase
noOfLocalMakeLinks(pen) += 1
states.clock += makeLocalLinkTime

end if
end if

end if
end makeLocalLink

:=
pen
destNode
colour.white

/* advance processor

/***

*

Make a remote link, send a newLinkPaint message
to the destination processor

*

*
*
*
*

************:**/

body procedure makeRemoteLink
var pp : pointer to msgs
bind far states to state(sourcePen)
bind var Now to states.clock
var sourceNode, destNode : int
var leftOrRight : int

randint(leftOrRight, left,
0
sourceRandomWalk(states.root,
0
destRandomWalk(states.root, destPen)
not= null) and

(((states.memory(sourceNode).1eftAddr = null) and
(states.memory(sourceNode).1eftPen - null)) or
((states.memory(sourceNode).rightAddr = null) and
(states.memory(sourceNode).rightPen = null))) and
(destNode not= null)) then

right)

if (leftOrRight = left) then
if (states.memory(sourceNode).1eftAddr

states.memory(sourceNode)
states.memory(sourceNode)
states.memory(sourceNode)

sourcePen)

= null) then

.leftPen := destPen

.leftAddr destNode

.leftPhase states.pePhase

clock

clock

*

*

125

no0fRemoteMakeLinks(sourcePen) += 1
states.clock += makeLocalLinkTime

elsif (states.memory(sourceNode).rightAddr

states.memory(sourceNode).rightPen
states.memory(sourceNode).rightAddr
states.memory(sourceNode).rightPhase
no0fRemoteMakeLinks(sourcePen) += 1
states.clock += makeLocalLinkTime

end if
end if

= null) then

destPen
destNode
states.pePhase

if (leftOrRight = right) then
if (states.memory(sourceNode).rightAddr = null) then

states.memory(sourceNode).rightPen := destPen
states.memory(sourceNode).rightAddr := destNode
states.memory(sourceNode).rightPhase := states.pePhase
no0fRemoteMakeLinks(sourcePen) += 1
states.clock += makeLocalLinkTime

elsif (states.memory(sourceNode).1eftAddr = null) then

states.memory(sourceNode).1eftPen := destPen
states.memory(sourceNode).1eftAddr := destNode
states.memory(sourceNode).1eftPhase := states.pePhase
no0fRemoteMakeLinks(sourcePen) += 1
states.clock += makeLocalLinkTime

end if
end if

mailBox.bufferManager(pp,getBuf)
state(destPen).memory(destNode).phase := states.pePhase
states.newPpsOut += 1

/* increment outstanding newLinkPaint message count
states.newPpsMsgsSent += 1

/*
/*

msgs(pp).time
mags(pp).class
msgs(pp).destination
msgs(pp).source
msgs(pp).address
msgs(Pp).phase
mailBox.send(pp)
states.clock += sendMsgTime

end if
end makeRemoteLink

increment number of newLinkPaint messages sent
for statistics purpose */

Now /* Now is equal to present time
msgClass.newPleasePaint
destPen
sourcePen
destNode
states pePhase

/* time for remote message sending *

/***
* *

Make a link either remote or local
*

body procedure makeLink
var destPen : int
var localOrRemote : int
var sourceNode, destNode: int

randint(localOrRemote, 1, 100)

*

*

*

126

randint(destPen, 1, noOfMutators)
/* choose a random destination processor */

randint(sourceDepthLevel,(round(ln(lastAddr)/1n(2.0)) div 3),
round(ln(lastAddr)/ln(2.0)) + 2)

/* choose a random depth, at least three levels deep

if not((localOrRemote >= localOrRemoteLowerLimit)
(localOrRemote <- localOrRemoteUpperLimit)
(destPen not= sourcePen)) then

destPen := sourcePen
end if

and
and

if sourcePen = destPen then
makeLocalLink(sourcePen) /* call local make link routine */

else
makeRemoteLink(sourcePen,destPen) /* call remote make link routine */

end if
end makeLink

/***

* *
break link between two given cells

* *

body procedure breakLink
bind var states to state(sourcePen)
var leftOrRight : int
var sourceNode : int
randint(sourceDepthLevel,(roundan(lastAddr)/1n(2.0)) div 3),

round(ln(lastAddr)/ln(2.0)) + 2)
/* choose a random depth, at least three levels deep

destDepth := 0
sourceNode := destRandomWalk(states.root, sourcePen)

/* identify an edge for breaking */
if ((sourceNode not= null) and

(((states.memory(sourceNode).1eftAddr not= null) and
(states.memory(sourceNode).1eftPen not= null)) or
((states.memory(sourceNode).rightAddr not= null) and
(states.memory(sourceNode).1eftPen not= null)))) then

randint(leftOrRight, left, right)
if (leftOrRight = left) then

if (states.memory(sourceNode).1eftAddr not= null) then

if (states.memory(sourceNode).1eftPen = sourcePen) then
no0fLocalBreakLinks(sourcePen) += 1

else
no0fRemoteBreakLinks(sourcePen) += 1

end if

states.memory(sourceNode).1eftPen := null
states.memory(sourceNode).1eftAddr := null
states.clock += breakLocalLinkTime /* advance processor clock

elsif (states.memory(sourceNode).rightAddr not= null) then

if (states.memory(sourceNode).rightPen = sourcePen) then
no0fLocalBreakLinks(sourcePen) += 1

else
no0fRemoteBreakLinks(sourcePen) += 1

end if

states.memory(sourceNode).rightPen := null

*

*

*

127

states.memory(sourceNode).rightAddr := null
states.clock +- breakLocalLinkTime /* advance processor clock

end if
end if

if (leftOrRight = right) then
if (states.memory(sourceNode).rightAddr not= null) then

if (states.memory(sourceNode).rightPen = sourcePen) then
no0fLocalBreakLinks(sourcePen) += 1

else
no0fRemoteBreakLinks(sourcePen) += 1

end if

states.memory(sourceNode).rightPen
states.memory(sourceNode).rightAddr
states.clock += breakLocalLinkTime

null
null
/* advance processor clock

elsif (states.memory(sourceNode).1eftAddr not= null) then

if (states.memory(sourceNode).1eftPen = sourcePen) then
no0fLocalBreakLinks(sourcePen) += 1

else
no0fRemoteBreakLinks(sourcePen) += 1

end if

states.memory(sourceNode).1eftPen
states.memory(sourceNode).1eftAddr
states.clock += breakLocalLinkTime

end if
end if

end if
end breakLink

Si

null
null
/* advance processor clock

/***

* *

Change processor phase
* *

body procedure changePePhase
bind var states to state(pen)
states.pePhase := nextPhase(states.pePhase)
assert (states.pePhase = msgs(inMsg).phase)
states.noLgcsDoneInCurrentPhase := 0
lgcPpsMsgsSentInPhase(pen) := false

end changePePhase

/***

*

*
Determine next phase colour

*
*
*

***/

body function nextPhase
case presentPhase of
label colour.red : result colour.blue
label colour.blue : result colour.green
label colour.green : result colour.yellow
label colour.yellow : result colour.red

end case
end nextPhase

/***

*

*

*

128

* *
Determine previous phase colour

* *

body function previousPhase
case presentPhase of

label colour.red : result
label colour.blue : result
label colour.green : result
label colour.yellow : result

end case
end previousPhase

colour. yellow
colour. red
colour.blue
colour.green

/***

* *
Send acknowledgement for new please paint message *

*
***/

body procedure sendNewPaintAck
var tempSource, tempDest : int
var reply : pointer to msgs
tempSource := msgs(inMsg).source
tempDest := msgs(inMsg).destination
const pen := msgs(inMsg).destination
bind var states to state(pen)

reply := inMsg
states.clock
msgs(reply).class
msgs(reply).destination
msgs(reply).source
msgs(reply).time
mailBox.send(reply)

end sendNewPaintAck

+= msgAckTime
msgClass.newPaintAck
tempSource
tempDest
states.clock

/***
* *

Send acknowledgement for lgc please paint message
* *
***/

body procedure sendLgcPaintAck
var tempSource, tempDest : int
tempSource := msgs(inMsg).source
tempDest msgs(inMsg).destination
var node := msgs(inMsg).address
const pen := msgs(inMsg).destination
bind var states to state(pen)
var reply := inMsg

if (states.memory(node).phase not= nextPhase(msgs(inMsg).phase)) then
states.memory(node).phase := msgs(inMsg).phase

end if

states.clock
msgs(reply).class
msgs(reply).destination
msgs(reply).source
msgs(reply).time
mailBox.send(reply)

end sendLgcPaintAck

+ msgAckTime
msgClass.lgcPaintAck
tempSource
tempDest
states.clock

129

/***
* *

Send an acknowledgement for a read message
* *
***/

body procedure sendReadReply
const pen := msgs(inMsg).destination
bind var states to state(pen)
var node := msgs(inMsg).address
var reply := inMsg

if (states.memory(node).phase not= nextPhase(msgs(inMsg).phase)) then
states.memory(node).phase := msgs(inMsg).phase

end if

states.clock += msgAckTime
mags(reply).class := msgClass.readReply
msgs(reply).source := msgs(inMsg).destination
msgs(reply).destination := msgs(inMsg).source
msgs(reply).time := states.clock
mailBox.send(reply)

end sendReadReply

/***

*

Receive an acknowledgement for a remote read message
*

*
*
*

***/

body procedure receiveReadReply
var pen := msgs(inMsg).destination
bind var states to state(pen)
states.clock += receiveMsgTime
states.readsOut -= 1
mailBox.bufferManager(inMsg,freeBuf)

end receiveReadReply

/***
* *

Receive an acknowledgement for a new paint message
* *

body procedure receiveNewPaintAck
var pen := msgs(inMsg).destination
bind var states to state(pen)
assert (states.newPpsOut > 0)
states.clock += receiveMsgTime
states.newPpsOut -= 1
if ((states.newPpsOut = 0) and not(readyToStartMutate(pen))) then

readyToStartMutate(pen) := true
end if
mailBox.bufferManager(inMsg,freeBuf)

end receiveNewPaintAck

/***

*

Receive an acknowledgement for a lgc paint message
*

body procedure receiveLgcPaintAck
var pen := msgs(inMsg).destination

*
*
*

1 30

bind var states to state(pen)
assert (states.lgcPpsOut > 0)
states.clock += receiveMsgTime
states.lgcPpsOut -= 1
if (states.lgcPpsOut = 0) then

readyToStartLgc(pen) :- true
end if
mailBox.bufferManager(inMsg,freeBuf)

end receiveLgcPaintAck

/***

* *

Receive an acknowledgement for a lgc start message *
*

body procedure receiveAckLgcStart

*

var pen := msgs(inMsg).destination
bind var states to state(pen)
assert (states.lgcStartMsgSent)
states.receivedAckLgcStart := true
states.clock += receiveMsgTime
mailBox.bufferManager(inMsg,freeBuf)

end receiveAckLgcStart

/***
* *

Receive an acknowledgement for a lgc done message
* *
***/

body procedure receiveAckLgcDone
var pen := msgs(inMsg).destination
bind var states to state(pen)
assert (states.lgoDoneMsgSent)
states.receivedAckLgcDone := true
states.clock += receiveMsgTime
mailBox.bufferManager(inMsg,freeBuf)

end receiveAckLgcDone

/***
* *

Random walk through graph to identify a source node
* *
***/

body function sourceRandomWalk
bind var states to state(pen)
var leftOrRight : int

sourceDepth += 1

if (root not= null) then
if (sourceDepth > sourceDepthLevel) then

result root
else

randint(leftOrRight, left, right)

if (leftOrRight = left) then
if (states.memory(root).1eftAddr = null) then

result (root)
elsif (states.memory(root).1eftPen = pen) and

(states.memory(root).1eftPen not= null) then
result (sourceRandomWalk(states.memory(root).1eftAddr, pen))

131

elsif (states.memory(root).rightPen = pen) and
(states.memory(root).rightPen not= null) then
result (sourceRandomWalk(states.memory(root).rightAddr, pen))

else
result null

end if
end if

if (leftOrRight = right) then
if (states.memory(root).rightAddr = null) then

result (root)
elsif (states.memory(root).rightPen = pen) and

(states.memory(root).rightPen not= null) then
result (sourceRandomWalk(states.memory(root).rightAddr, pen))

elsif (states.memory(root).1eftPen = pen) and
(states.memory(root).1eftPen not= null) then
result (sourceRandomWalk(states.memory(root).1eftAddr, pen))

else
result null

end if
end if

end if
else

result null
end if

end sourceRandomWalk

/***
* *

Random walk through graph to identify a destination node
* *

body function destRandomWalk
bind var states to state(pen)
var leftOrRight : int
destDepth += 1

if (root not= null) then
if (destDepth > sourceDepthLevel) then

result (root)
else

randint(leftOrRight, left, right)
randint(destDepthLevel,(sourceDepthLevel div 8),

(sourceDepthLevel div 1.3))

if (leftOrRight = left) then •
if ((states.memory(root).1eftAddx = null) and

(destDepth > destDepthLevel)) then
result (root)

elsif (states.memory(root).1eftPen = pen) and
(states.memory(root).1eftPen not= null) then
result (destRandomWalk(states.memory(root).1eftAddr, pen))

elsif (states.memory(root).rightPen - pen) and
(states.memory(root).rightPen not= null) then

result (destRandomWalk(states.memory(root).rightAddr, pen))

else
result null

end if
end if

if (leftOrRight - right) then
if ((states.memory(root).rightAddr = null) and

132

(destDepth > destDepthLevel)) then
result (root)

elsif (states.memory(root).rightPen = pen) and
(states.memory(root).rightPen not= null) then
result (destRandomWalk(states.memory(root).rightAddr, pen))

elsif (states.memory(root).1eftPen = pen) and
(states.memory(root).1eftPen not= null) then
result (destRandomWalk(states.memory(root).1eftAddr, pen))

else
result null

end if
end if

end if
else

result null
end if

end destRandomWalk

end mutator

133

/***

**

This module is in file 'master.t'
Module for master processor

*

*
*
*

parent "nonstop.t" /* include this module in 'nonstop.t' file */

stub module master
import(msgs, centralLgcRecords, lgcStat, state,

colour, processGcMsgTime, msgClass, mailBox,
noOfMutators, masterPhase, mutator, getBuf, forcesSent,
averageNo0fLgcsLimit)

export (replyLgcStart, replyLgcDone, checkPeStatus)

procedure
procedure
procedure

replyLgcStart(var inMsg: pointer to msgs)
replyLgcDone(var inMsg: pointer to msgs)
checkPeStatus

end master

body module master

var nextForceTime : int := 400

/***

*
Reply to an lgc start message

*

body procedure replyLgcStart
var updatedLgcStatus : lgcStat
var pen :- msgs(inMsg).source
var phase := msgs(inMsg).phase
bind var masterPe to state(0)
bind lgcRec to centralLgcRecords(pen)

if not(phase = mutator.previousPhase(masterPe.pePhase)) then
assert ((lgcRec = lgcStat.noStart) or (1gcRec = lgcStat.oneDone)

(1gcRec = lgcStat.someDone))
case lgcRec of

*

label lgcStat.noStart : updatedLgcStatus := lgcStat.oneStart

label lgcStat.oneDone updatedLgcStatus := lgcStat.doneGoing

label lgcStat.someDone : updatedLgcStatus := lgcStat.doneGoing

end case
lgcRec := updatedLgcStatus
masterPe.clock
msgs(inMsg).class
msgs(inMsg).source
msgs(inMsg).destination
msgs(inMsg).time
mailBox.send(inMsg)

else
/* ignore previous phase lgc start message */

msgs(inMsg).class :- msgClass.ackLgcStart

msgs(inMsg).source := 0
msgs(inMsg).destination := pen
msgs(inMsg).time := masterPe.clock

mailBox.send(inMsg)
end if

end replyLgcStart

+= prcicessGcMsgTime
:= msgClass.ackLgcStart
:= 0
:= pen

masterPe.clock

Or

134

assert ((lgcRec = lgcStat.oneStart)
case lgcRec of
label lgcStat.oneStart
label lgcStat.doneGoing

end case
lgcRec := updatedLgcStatus
masterPe.clock
msgs(inMsg).class
msgs(inMsg).source
msgs(inMsg).destination
msgs(inMsg).time
mailBox.send(inMsg)

else
/* ignore previous phase
msgs(inMsg).class
msgs(inMsg).source
msgs(inMsg).destination
msgs(inMsg).time
mailBox.send(inMsg)

end if
end replyLgcDone

/***

* *
Respond to a lgc done message

*

body procedure replyLgcDone
var updatedLgcStatus : lgcStat
var pen := msgs(inMsg).source
var phase := msgs(inMsg).phase
bind var masterPe to state(0)
bind lgcRec to centralLgcRecords(pen)

if not(phase = mutator.previousPhase(masterPe.pePhase)) then
or (1gcRec = lgcStat.doneGoing))

*
*

: updatedLgcStatus := lgcStat.oneDone
: updatedLgcStatus := lgcStat.someDone

+ processGcMsgTime
msgClass.ackLgcDone
0
pen
masterPe.clock

lgc done message */
:= msgClass.ackLgcDone
:= 0

pen
masterPe.clock

/***

check processor's status
* *

body procedure checkPeStatus
bind var masterPe to state(0)
var forceMessage : pointer to msgs
var phaseMessage : pointer to msgs
var lgcsDone : int := 0
var averageNo0fLgcsInPhase : real
var countOfLgcs : int :— 0

for i:l..no0fMutators
bind var states to state(i)
if (centralLgcRecords(i) = lgcStat.someDone) or

(centralLgcRecords(i) = lgcStat.doneGoing) or
(centralLgcRecords(i) = lgcStat.oneDone) then
lgcsDone += 1
countOfLgcs := countOfLgcs + states.noLgcsDoneInCurrentPhase

end if
end for

% check if current phase is done */

% examine mutator status records */

averageNo0fLgcsInPhase := (countofLgcs / noOfMutators)

if (1gcsDone >= round(noOfMutators * 0.8) and (not forcesSent)

and (averageNo0fLgcsInPhase >= averageNoOfLgcsLimit)) then

135

for i:1..no0fMutators
if (centralLgcRecords(i) = lgcStat.noStart) then

mailBox.bufferManager(forceMessage,getBuf)
msgs(forceMessage).class msgClass.lgcForce
msgs(forceMessage).time masterPe.clock
msgs(forceMessage).destination
msgs(forceMessage).source := 0
msgs(forceMessage).phase masterPe.pePhase
put "sending force lgc message to
mailBox.send(forceMessage)

end if
end for
forcesSent := true

end if

if ((lgcsDone = noOfMutators) and
(averageNo0fLgcsInPhase >= averageNo0fLgcsLimit))

masterPhase
masterPe.pePhase

for i:l..no0fMutators
centralLgcRecords(i)

end for

then

mutator.nextPhase(masterPe.pePhase)
masterPhase

:= lgcStat.noStart

for i:l..no0fMutators
mailBox.bufferManager(phaseMessage, getBuf)
msgs(phaseMessage).class := msgClass.phaseChange
msgs(phaseMessage).time := masterPe.clock
msgs(phaseMessage).destination :=
msgs(phaseMessage).source := 0
msgs(phaseMessage).phase := masterPe.pePhase
mailBox.send(phaseMessage)

end for
forcesSent := false

end if
end checkPeStatus

end master

	Title
	Dedication
	Copyright
	Acknowledgements
	Abstract
	Contents
	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

