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ABSTRACT 
  

 

The objective of this project was to design and implement an experimental hydraulic 

system that simulates joint flexibility of a single rigid link flexible joint robot 

manipulator, with the ability of changing the joint flexibility’s parameters. Such a 

system could facilitate future control studies of robot manipulators by reducing 

investigation time and implementation cost of research. It could also be used to test the 

performance of different strategies to control the movement of flexible joint 

manipulators. 

 

A hydraulic rotary servo motor was used to simulate the action of a flexible joint robot 

manipulator. It was a challenging task, since the control of angular acceleration was 

required.  

  

A single-rigid-link, elastic-joint robot manipulator was mathematically modeled and 

implemented using Matlab. Joint flexibility parameters such as stiffness and damping, 

could be easily changed. This simulation was considered as a “function generator” to 

drive the hydraulic flexible joint robot. In this study the desired angular acceleration of 

the manipulator was used as the input to the hydraulic rotary motor and the objective 

was to make the hydraulic system follow the desired acceleration in the frequency range 

specified. The hydraulic system consisted of a servovalve and rotary motor.  

 

A hydraulic actuator robot was built and tested. The results indicated that if the input 

signal had a frequency in the range of 5 to 15 Hz and damping ratio of 0.1, the 

experimental setup was able to reproduce the input signal with acceptable accuracy. 

Because of the inherent noise associated with the measurement of acceleration and some 

severe non-linearities in the rotary motor, control of the experimental test system using 

classical methods was not as successful as had been anticipated. This was a first stage in 

a series of studies and the results provide insight for the future application of more 

sophisticated control schemes. 

 



 iii 

ACKNOWLEDGEMENTS 

 

 

 
I would like to express my deepest appreciation to Professors R. T. Burton  

 

and R. Fotouhi for their advices, encouragement and patience. My special  

 

thanks go to Mr. D. V. Bitner for his technical support and never-ending   

 

help and arrangements. 

 

I would also like to acknowledge the long-lasting support and love offered  

 

by my parents, Fraidoon Dezfulian and Afagh Delfani, my wife, Kathy Abrishami and  

 

my daughter, Shery Dezfulian.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

CONTENTS 

 

 

 

Permission to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii 

 

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii     

 

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv   

 

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .   vi           

 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 

 

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii  

 

1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

 1.1   Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

 1.2   Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

 1.3   Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

 1.4   Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

  

2   Function Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

     2.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

     2.2   Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

      

3   Hydraulic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

     3.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

     3.2   Hydraulic System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

     3.3   Controller Design (Theoretical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 

             3.3.1   Closed-Loop Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

             3.3.2   Open-Loop Inverse Compensation Controller . . . . . . . . . . . . . . . . . . . . 37 

 

4   Experimental System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

     4.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

     4.2   Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 

     4.3   Pressure Control Servovalve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

     4.4   Hydraulic Rotary Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

     4.5   Robot Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

     4.6   Personal Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

     4.7   Signal Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

     4.8   Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

     4.9   Accelerometer Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

 



 v 

5   Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

     5.1   Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

     5.2   Pressure Control Servovalve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

     5.3   Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

     5.4   Hydraulic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

             5.4.1   Open-Loop Frequency Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

             5.4.2   Closed-Loop Frequency Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

             5.4.3   Open-Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

             5.4.4   Transient Acceleration Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

                        5.4.4.1   Frequency 5 Hz and Damping Ratio 0.1 . . . . . . . . . . . . . . . . .  75 

                        5.4.4.2   Frequency 10 Hz and Damping Ratio 0.1 . . . . . . . . . . . . . . . .  78 

                        5.4.4.3   Frequency 15 Hz and Damping Ratio 0.1 . . . . . . . . . . . . . . . .  80 

             5.4.5   Transient Response Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

 

6   Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

     6.1   Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

     6.2   Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

LIST OF TABLES 

 
 

2.1   Simulation parameters adopted from [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  

 

3.1   Parameters summary of open-loop and closed-loop transfer functions . . . . . . . . . 32 

 

4.1   Specification of Moog servovalve model 15-010 . . . . . . . . . . . . . . . . . . . . . . . . .  43 

 

4.2   Specifications of Micromatic rotary motor MPJ-22-1V . . . . . . . . . . . . . . . . . . . .  44 

 

4.3   Important manipulator measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

 

4.4   Matlab-Simulink setup for experimental system control . . . . . . . . . . . . . . . . . . . . 49 

 

5.1   Mean squared error values of transient response errors in different cases . . . . . .  87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

LIST OF FIGURES 

 

 
2.1    Schematic of a single-link manipulator with flexible joint . . . . . . . . . . . . . . . . . . . 8 

 

2.2    The open-loop block diagram of single link manipulator with flexible joint . . . . 11 
 

2.3    Simulation results for impulse inputs to the single link manipulator  . . . . . . . . .  14 

 

2.4    Plot of equation 2.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

 

3.1    Schematic of the hydraulic simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
 

3.2    Block diagram of equation 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
 

3.3    Reduced block diagram of equation 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

3.4    Typical magnitude Bode plot of equation 3.11 when nvω
τ

〈
1

1
 . . . . . . . . . . . . .  26 

3.5    Typical magnitude Bode plot of equation 3.11 when nvω
τ

〉
1

1
 . . . . . . . . . . . . .  26 

 

3.6    Open-loop magnitude frequency response of the hydraulic  

         simulator (points) with superimposed asymptotic lines  

         (experimental: solid line based on 40 dB per decade  and  

         theoretical: dashed line based on 20dB per decade). . . . . . . . . . . . . . . . . . . . . . .  27   

 

3.7    Simplified open-loop block diagram of the system . . . . . . . . . . . . . . . . . . . . . . .  28 

 

3.8    Block diagram of the simplified transfer function with influence of 

         the accelerometer sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

 

3.9    Block diagram of closed-loop control system with proportional gain . . . . . . . . .  31 

3.10   Magnitude frequency response 
)(

)(

sV

s

e

vα
 of the open-loop and  

          closed-loop systems with proportional controller . . . . . . . . . . . . . . . . . . . . . . . .  32 

 

3.11   Transient response of vα in the open-loop and closed-loop models  

          with 2=PK to the function generator dα of 10 Hz signal . . . . . . . . . . . . . . . . . . 33 

 

3.12   Block diagram of closed-loop control system with proportional  

          and integral gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

 

 



 viii 

3.13   Magnitude frequency response 
)(

)(

sV

s

e

vα
 of open-loop and  

           closed-loop systems with PI controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

 

3.14   Transient response of vα in the open-loop and closed-loop models  

          with 2=PK and 10=IK to the function generator dα  of 10 Hz signal . . . . . . .  36 

 

3.15   Block diagram of open-loop compensator controller . . . . . . . . . . . . . . . . . . . . .  37 

 

3.16   Transient response of vα in the open-loop compensated model to the  

          function generator dα of 10 Hz signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

 

4.1    Schematic of the hydraulic simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   39 

 

4.2    Schematic of the pressure control servovalve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

 

4.3    Schematic of the two-link rigid manipulator in which the  

         shoulder link was fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  46 

 

4.4    Photo of the manipulator setup used in the experiment . . . . . . . . . . . . . . . . . . . .  47 

 

4.5    Schematic of “Shaker Table” test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

 

4.6   Magnitude and phase Bode plots of the shaker table test (points 

        are data from the analyzer and the solid line is the straight line  

        approximation based on a 20 dB per decade slope) . . . . . . . . . . . . . . . . . . . . . . .   52 

  

4.7    Block diagram of the system with the accelerometer compensator . . . . . . . . . . .  54 

 

5.1a   Magnitude frequency response of the pressure control servovalve  

          with a blocked load (points are data from the analyzer and the solid 

          line is the straight line approximation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

 

5.1b   Phase frequency response of the pressure control servovalve  

          with a blocked load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  

 

5.2a   Magnitude frequency response of pressure control servovalve with  

          actual hydraulic simulator load (points are data from the analyzer  

          and the solid line is the straight line approximation) . . . . . . . . . . . . . . . . . . . . .   58 

 

5.2b   Phase frequency response of pressure control servovalve with  

          actual hydraulic simulator load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 

 



 ix

5.3a   Magnitude ratio  
ω

ω

ja

ja

po

ac

(

)(  versus frequency of the accelerometer with  

          proposed accelerometer compensator (points are data from the  

          analyzer and the solid line is the straight line approximation) . . . . . . . . . . . . . . .61 

 

5.3b   Phase 
)(

)(

ω

ω

ja

ja

po

ac∠  versus frequency of the accelerometer with  

          proposed   accelerometer compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61   

 

5.4    Open-loop magnitude frequency response of the hydraulic simulator  

          before applying the accelerometer compensator (points are data from  

          the analyzer and the solid line is the best fit straight line approximation; 

          40 dB per decade slope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

 

5.5    Open-loop magnitude frequency response of the hydraulic simulator  

         after applying accelerometer compensator (points are data from the  

         analyzer and the solid line is the expected straight line approximation  

         of the plant; 20 dB per decade slope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63  

 

5.6a   Open-loop magnitude frequency response of the hydraulic simulator  

          with input amplitude of 0.5v or 2/5.11 srad (solid line is the ideal  

          theoretical frequency response) . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .    65 

 

5.6b   Open-loop phase frequency response of the hydraulic simulator  

          with input amplitude of 0.5v ( 2/5.11 srad ) . . . . . . . . . . . . . . . . . . . . . . . . . . .    65 

 

5.7a   Open-loop magnitude frequency response of the hydraulic simulator  

          with input amplitude of 0.1v ( 2/3.2 srad ) . . . . . . . . . . . . . . . . . . . . . . . . . . . .   66 

 

5.7b   Open-loop phase frequency response of the hydraulic simulator 

          with input amplitude of 0.1v ( 2/3.2 srad ) . . . . . . . . . . . . . . . . . . . . . . . . . . .     66 

 

5.8    Closed-loop magnitude frequency response of the hydraulic simulator  

         with input amplitude 1.0v or 2/0.23 srad  (points are data from the  

         analyzer and the solid line is the straight line approximation,  

         20 dB per decade slope) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

 

5.9   Closed-loop magnitude frequency response of the hydraulic  

          simulator (input amplitude 0.5v or 2/5.11 srad ) . . . . . . . . . . . . . . . . . . . . . . . .   68 

 

5.10   Closed-loop magnitude frequency response of the hydraulic  

          simulator (input amplitude 0.1v or 2/3.2 srad ) . . . . . . . . . . . . . . . . . . . . . . . . .  68 

 

 



 x

5.11   Open-loop transient response of the hydraulic simulator to a  

          unit step input with amplitude of 1v ( 2/0.23 srad ). . . . . . . . . . . . . . . . . . . . . . .  69  

5.12   Transient response of the model (
71.15

4.0

+s

s
) to the step input  

          signal (red line is the input and blue line is the output) . . . . . . . . . . . . . . . . . . . . 70 

 

5.13a   Open-loop transient response of the hydraulic simulator to 5 Hz  

            sine wave with amplitude of 1v (compensation
s

s

8.0

71.15+
) . . . . . . . . . . . . . . . . .72 

 

5.13b   Open-loop transient response of the hydraulic simulator to 5 Hz  

            sine wave with amplitude of 2v (compensation
s

s

8.0

71.15+
) . . . . . . . . . . . . . . . . .72 

 

5.14a   Open-loop transient response of the hydraulic simulator to 15 Hz  

            sine wave with amplitude of 1v (compensation
s

s

8.0

71.15+
) . . . . . . . . . . . . . . . . .73 

5.14b   Open-loop transient response of the hydraulic simulator to 15 Hz  

            sine wave with amplitude of 2v (compensation
s

s

8.0

71.15+
) . . . . . . . . . . . . . . . . .74 

 

5.15   Open-loop transient response of the hydraulic simulator to the function  

           generator 5 Hz and 0.1 damping ratio signal (not compensated) . . . . . . . . . . . . .76 

 

 

5.16   Open-loop transient response of the hydraulic simulator to the function  

          generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

4+
) . . . . . . . .  76 

 

5.17   Open-loop transient response of the hydraulic simulator to the function  

          generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

8+
) . . . . . . . .  77 

 

5.18   Open-loop transient response of the hydraulic simulator to the function  

          generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
) . . . . .  77 

 

5.19   Open-loop transient response of the hydraulic simulator to the function  

          generator 10 Hz and 0.1 damping ratio signal (not compensated) . . . . . . . . . . . . 78  

 

5.20   Open-loop transient response of the hydraulic simulator to the function  

          generator 10 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

4+
) . . . . . . .  79 

 



 xi

5.21   Open-loop transient response of the hydraulic simulator to the function  

          generator 10 Hz and 0.1 damping signal (compensated by
s

s

8.0

8+
) . . . . . . . . . . . . 79 

 

5.22   Open-loop transient response of the hydraulic simulator to the function  

          generator 10 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
) . . . .  80 

 

5.23   Open-loop transient response of the hydraulic simulator to the function  

          generator 15 Hz and 0.1 damping ratio signal (not compensated) . . . . . . . . . . . . 81 

 

5.24   Open-loop transient response of the hydraulic simulator to the function  

          generator 15 Hz and 0.1 damping signal (compensated by
s

s

8.0

4+
) . . . . . . . . . . . . 81 

 

5.25   Open-loop transient response of the hydraulic simulator to the function  

          generator 15 Hz and 0.1 damping signal (compensated by
s

s

8.0

8+
) . . . . . . . . . . . . 82 

 

5.26   Open-loop transient response of the hydraulic simulator to the function  

          generator 15 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
) . . . .  82 

 

5.27   Tracking error of Figure 5.15 (frequency 5 Hz and damping ratio 0.1, 

           not compensated). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  

 

5.28   Tracking error of Figure 5.18 (frequency 5 Hz and damping ratio 0.1,  

          compensated by
s

s

8.0

71.15+
),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  

 

5.29    Tracking error of Figure 5.19 (frequency 10 Hz and damping ratio 0.1,  

           not compensated),.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  

 

5.30   Tracking error of Figure 5.22 (frequency 10 Hz and damping ratio 0.1, 

          compensated by
s

s

8.0

71.15+
)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85  

 

5.31   Tracking error of Figure 5.23 (frequency 15 Hz and damping ratio 0.1,  

          not compensated) . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

 

5.32   Tracking error of Figure 5.26 (frequency 15 Hz and damping ratio 0.1, 

          compensated by
s

s

8.0

71.15+
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86  

 



 xii

NOMENCLATURE 
 

 

α         link angular acceleration )/( 2srad  

dα       desired angular acceleration (function generator output)   ( 2/ srad ) 

vα       link angular acceleration in volts   (v) 

vcα      link angular acceleration in volt with compensator (v) 

β        motor viscous damping )/( radsmN ⋅⋅  

12P∆    nozzle pressure difference (Pa) 

ABP∆    load pressure difference (Pa) 

ζ        joint damping ratio  

vζ       valve damping ratio  

θ         link angular position (rad) 

θ&         link angular velocity (rad/s) 

θ&&        link angular acceleration ( 2/ srad ) 

Θ       Laplace transform of θ  (rad) 

τ        transfer function time constant (s) 

1τ        load time constant (s) 

aτ       servo-amplifier time constant (s) 

1CLτ    closed-loop time constant with P controller (s) 

oτ       open-loop time constant   (s) 

φ        motor angular position (rad) 

φ&        motor angular velocity (rad/s) 

φ&&       motor angular acceleration ( 2/ srad ) 

Φ       Laplace transform of φ  (rad) 

ω       link angular velocity (rad/s) 

nω      joint natural frequency (rad/s or Hz)   

nvω     valve undamped natural frequency (rad/s or Hz) 

1a       partial-fraction expansion parameter  

2a      partial-fraction expansion parameter 

3a      partial-fraction expansion parameter 

4a      partial-fraction expansion parameter 

aca     measured accelerometer’s acceleration    (v) 

poa     calculated acceleration by double differentiation of position   (v) 

AA      spool ring area ( 2
m ) 

SA      spool end area ( 2
m ) 

 D      joint viscous damping ( radsmN /⋅⋅ ) 

mD     motor volumetric displacement )/( 3 radm  



 xiii 

 

ie     acceleration error (v) 

1F       first term of equation 2.19 

2F      second term of equation 2.19 

acG     accelerometer transfer function  

1G      ideal accelerometer compensator 
'

ei       servo-amplifier output current (a) 

 I        link moment of inertia ( radsmN /2⋅⋅ ) 

eI       input current (ma)  

'

eI      Laplace transform of 
'

ei  (a) 

LI       link moment of inertia )/( 2 radsmN ⋅⋅  

J        motor moment of inertia ( radsmN /2⋅⋅ ) 

1k       transfer function gain ( 4/ smNrad ⋅⋅ ) 

 K      joint stiffness ( radmN /⋅ ) 

1K      load gain ( sParad ⋅/ ) 

aK     servo-amplifier gain (a/v) 

1CLK    closed-loop gain with P controller (s) 

conK    conversion gain factor   (
2/ srad

v
) 

eK      servo-amplifier conversion gain (ma/a) 

IK      integral gain    (1/s) 

oK      open-loop gain   ( svrad ⋅/ ) 

OLK     open-loop overall gain   (s) 

PK      proportional gain    

vK      valve gain (Pa/ma) 

 l        rotation arm (m) 

L        servo-amplifier inductance (H) 

MSE   mean squared error value ( 2
v ) 

LP       load differential pressure (Pa) 

SP       supply pressure (Pa) 

 R       servo-amplifier resistance (Ώ) 

 s        Laplace operator (1/s) 

lS       accelerometer linear calibrated rating (
2/ sm

v
) 

 t        time (s) 

LT      motor torque ( mN ⋅ ) 

 u       motor input torque ( mN ⋅ ) 

U       Laplace transform of u ( mN ⋅ ) 

ev       servo-amplifier input voltage (v)  



 xiv

eV       Laplace transform of ev  (v) 

pox     measured position    (v) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

 

A robot manipulator consists of links, joints, and drive components. In order to achieve 

accurate robot positioning, the links and joints are usually made as rigid as possible. 

Rigid robot manipulators are based on the assumption that the transmissions are stiff 

and that the links are rigid. Such manipulators are heavy (e.g., load-carrying capacity is 

typically only 5% to 10% of their own weight), consume considerable power, and are 

generally impractical for high speed maneuvers. On the other hand, flexible 

manipulators have several advantages over rigid manipulators, such as smaller size and 

mass, rapid response, lower peak power requirements, and energy use. Light weight 

manipulators have links that deflect significantly in high speed operations so their 

flexibility cannot be ignored. Flexibility, however, can also be present in the joints.  

 

Joint flexibility exists when there is a difference between the angular position of the 

driving actuator and that of the driven link. It is known that the joint flexibility can 

cause oscillations in robot manipulators. Therefore, when an accurate trajectory tracking 

of the end-effecter is needed, joint flexibility is considered as a problem [1]. In other 

words, joint elasticity is the main source of compliance in most current manipulator 

design. Joint elasticity originates from several transmitting components, such as 

elasticity in the gears, belts, hydraulic lines, etc. [2].  
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The control tasks, in case of the elastic joint manipulators, are more complicated than 

the equivalent rigid joint manipulators. This is true due to the fact that in the elastic joint  

manipulators, the number of control input torques applied by the actuators, is less than 

the number of degrees of freedom (DOF), also known as under-actuated systems. This 

happens because for each joint there is one actuator, and two degrees of freedom. This 

condition implies that the implementation of a “full state” feedback control task needs 

additional sensors for measuring the state variables of the actuator as well as the links.  

 

The purpose of control is to appropriately deal with the oscillation created by the joint 

elasticity in order to get fast positioning and accurate trajectory tracking of the 

manipulator end-effecter. Therefore, proper control of elastic joint robot manipulators, 

with different characteristic expectations, and with a reasonable number of sensors, is 

still a challenging problem that needs to be addressed and indeed, is one of the 

motivating factors for this research project. 

 

    

1.2 Literature Review  

 

In this section several papers associated with three different topics are investigated. First 

dynamic modeling of flexible joint robot manipulators is brought into focus. Then  

different strategies for control of flexible joint robot manipulators are briefly studied. 

Finally a few papers regarding the analysis of hydraulic actuated robots are reviewed. It 

should be noted that there are other papers published on the topic of control of flexible 

and stiff manipulators but these are only marginally related to the topic of this thesis. 

The following represents a sample of the publications in this area.   

  

Mario and Spong stated that recent experimental works showed that joint elasticity was 

the main source of compliance in most current manipulator designs [2]. This joint 

elasticity originated from several motion transmitting components, such as elasticity in 

the gears, belts, hydraulic lines, etc. In this paper, a single rigid link manipulator with an 

elastic joint was modeled. Two control solutions were derived and compared: one was 
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based on the feedback linearization technique, and the other one based on the nonlinear 

composite technique. The results indicated that the feedback linearization control 

needed a full state feedback (the positions and velocities of the link and motor); 

however, the nonlinear composite control required only the position and velocity of the 

link as the state feedback.  

 

Nicosia et al examined some problems of dynamical control of manipulators with high 

speed continuous displacement [3]. First the rigid model was developed and then elastic 

and dissipative joints were included. A control strategy based on a nonlinear feedback of 

a model of the local joint variables was applied, and then the performance of the  

controlled manipulator was evaluated by means of simulation. The results showed that 

the use of elastic joints induced vibrations. The results were not verified experimentally. 

 

Spong derived a simple model to represent the dynamics of elastic joint manipulators 

[4]. Two basic assumptions about the dynamic coupling between the motor and the link 

were used to derive the equations. First, it was assumed that the kinetic energy of the 

rotor was due to its own rotation; the second assumption was that the rotor / gear inertia 

was symmetric about the rotor axis of rotation. Two different control laws were then 

examined. The first one was the feedback linearization control, and the second one was 

corrective control, based on the “integral manifold law”. The results indicated that the 

corrective control law demonstrated better trajectory tracking.  

 

Yu et al pointed out that their experimental investigations indicated that the joint 

elasticity had to be considered in the dynamics of manipulators, especially when some 

components, such as harmonic drives were included in the joint [5]. On the other hand, 

consideration of joint elasticity complicated the dynamic equations in such a manner 

that the current strategies for rigid joint robots control could not be used directly. In this 

paper, the model developed by Spong [4] was adopted. An adaptive observer control 

was then applied for the trajectory tracking of the robot manipulators with flexible joint. 

The simulation results showed that the estimated and actual link positions were well 

matched with the desired link position.  
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Albu-Schaffer and Hirzinger included the damping effects of the transmission devices in 

the dynamic model proposed by Spong [6]. Different control techniques were briefly 

discussed. It was pointed out that some techniques, such as feedback linearization, were 

theoretically complete, but their implementation were extremely difficult due to the 

measuring and / or computing of all the state variables. The proposed control strategy 

started using the state feedback controller; the controller gradually was extended by 

adding more detailed robot dynamics. The results proved that the vibrations caused by 

joint flexibility were effectively damped by using the proposed control technique.  

 

Thummel et al showed that vibration induced by elastic joints could be significantly 

reduced by using feed forward control, based on inverse dynamic models [7]. The 

model consisted of the inertia of motor and link connecting by the means of a spring and 

a damper that described the elasticity and damping of the gearbox, respectively. Also 

velocity dependent, friction torques in the bearings for both motor side and link side 

were included. Introducing a more realistic model, the elasticity in the joint was 

modeled as a nonlinear spring. Some control algorithms were then reviewed. By 

extending the feed forward part of the controller and using the more complete robot 

dynamics, smaller amplitude of vibration was experienced.  

 

Habibi et al modeled a large hydraulic robot to derive a general mathematical function 

for hydraulic actuation manipulators [8]. The paper focused on the dynamics of 

servovalve and actuator by writing the flow equations related to these components. A 

comparison was made among the different flow terms. It was concluded that the 

compression flows were significant and subsequently, they were included in the derived 

model.   

 

In summary, it can be seen that some research work has been devoted to the control of 

the flexible joint manipulators, but more work needs to be done to fully understand the 

performance of the flexible joint manipulators. It is anticipated that significant 

advancements in this area might occur in next decades, in advancing the understanding 
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of the fundamentals of flexible joints and in developing practical and cost effective 

control laws for such manipulators.  

          

One of the constraints that researchers have in developing control algorithms for flexible 

joints is verifying the approaches experimentally. At present, commercial flexible joints  

have either no adjustment capability or if they do, require mechanical devices which 

must be replaced externally. It is highly desirable to have a flexible joint in which the 

operating characteristics of the joint such as damping ratio and natural frequency can be 

adjusted “on the fly”. This would allow control algorithms which have been designed to 

reduce the effects of flexibility in joints, to be tested under a wide range of conditions 

and to conditions which change in time continuously. Designing a robotic joint which 

would allow adjustable flexibility thus became the focus of this research. 

  

 

1.3 Objectives 

 

The objective of this research project was to design and implement an experimental 

hydraulic actuated robot manipulator that simulates robot joint flexibility in the specific 

range of frequencies and damping ratio with the ability of changing the joint flexibility’s 

parameters. The damping ratio for such manipulators is normally less than 0.1 and the 

natural frequency between 5 to 15 Hz [9]. The approach that was taken in this research 

is as follows. A model based transfer function which represents the dynamics of flexible 

joint manipulators was modeled. Applying input impulse signals to the transfer function, 

an oscillatory angular acceleration output signal was derived by using computer based 

simulation. For this research project, this model based arrangement was defined as a 

“function generator”. The output of the function generator was employed to drive an 

experimental hydraulic system which consisted of a servovalve and a rotary hydraulic 

actuator connected to a single-rigid-link manipulator. This experimental arrangement  

was defined as a “hydraulic simulator”. The aim of the controller which drives the 

system was to make the hydraulic simulator reproduce the function generator signal in 

the specific range of frequencies and damping ratio of the function generator signal.  
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1.4 Thesis Outline 

 

This section includes an outline of this thesis. Chapter 2 introduces the dynamic model 

and simulation of a flexible joint robot. Chapter 3 analyzes theoretically an actual 

hydraulic actuated manipulator. In Chapter 4 the experimental setup is included. 

Chapter 5 shows and discusses the experimental results and finally Chapter 6 concludes 

the results and recommends possible future works.     
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CHAPTER 2 

 

FUNCTION GENERATOR   

 

 

2.1 Introduction 

 

Critical to the development of the flexible joint simulator was the “function generator” 

which input the appropriate signal to the hydraulic joint. The governing equations which 

describe the behavior of the flexible joint are considered in this Chapter.  The objective 

of this chapter, then, is to present dynamic modeling of a single-rigid-link robot 

manipulator with flexible joint. The model is then simulated using typical parameters 

for a flexible joint in order to demonstrate the behavior of the link angular position, 

velocity, and acceleration for a specified torque input.      

 

 

2.2 Governing Equations 

 

A single-rigid-link manipulator with a revolute flexible joint is shown in Figure 2.1.  In 

this figure, the flexible joint is modeled as a torsional spring and a torsional damper in 

parallel to each other (for simplicity, linear equivalent symbols of springs and dampers 

are adopted). I and J are the link and the motor moments of inertia (with respect to the 

center of rotation), respectively, u is the motor input torque, K is the joint stiffness, and 

D is the joint viscous damping. The angles θ  and φ  are the angular positions of the link  
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(a) Linear equivalent schematic of the single-link manipulator 

 

(b) Dynamic equivalent schematic of the single-link manipulator 

 

Figure 2.1- Schematic of a single-link manipulator with flexible joint 

 



 9 

and the motor, respectively. The link and motor angular positions are chosen as the 

generalized coordinates. The link motion is assumed to be in the horizontal plane. 

 

Joint stiffness and damping are included in the dynamics of the model presented here. 

For simplicity, gravity effects are not considered in the model; this is consistent with the 

experimental setup (hydraulic simulator) used in this study which is a horizontal planar 

robot manipulator. 

 

For the link shown in Figure 2.1 the dynamic equations are as follow: 

 

0)()( =−+−+ φθφθθ KDI &&&&  ,                                                                                    (2.1)                                 

uKDJ =−+−+ )()( θφθφφ &&&&  ,                                                                                     (2.2) 

                                                                                                     

or: 
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   .                                         (2.3)   

 

 

The input to the single link manipulator is torque u which is assumed to be an impulse 

signal. Taking the Laplace transform of equations (2.1) and (2.2), and assuming zero 

initial conditions, yields: 

 

0)]()([)]()([)(2 =Φ−Θ+Φ−Θ+Θ ssKssssDsIs     ,                                                 (2.4) 

 

)()]()([)]()([)(2 sUssKssssDsJs =Θ−Φ+Θ−Φ+Φ .                                               (2.5) 

 

Rearranging equations (2.4) and (2.5) gives: 
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0)()()()( 2 =Φ+−Θ++ sKDssKDsIs     ,                                                                 (2.6) 

 

)()()()()( 2 sUsKDssKDsJs =Θ+−Φ++ .                                                              (2.7) 

 

Solving for )(sΦ  in equation (2.6):                      

 

)(
)(

)(
2

s
KDs

KDsIs
s Θ

+

++
=Φ  .                                                                                       (2.8) 

 

Substituting equation (2.8) into equation (2.7), yields: 

 

)()()()(
))(( 22

sUsKDss
KDs

KDsIsKDsJs
=Θ+−Θ

+

++++
,                                      (2.9) 

 

)()()(])())([( 222 sUKDssKDsKDsJsKDsIs +=Θ+−++++ ,                          (2.10) 

 

)()()(])()([ 234 sUKDssKsJIDsJIIJs +=Θ++++  .                                           (2.11) 

 

 

 

Finally, the transfer function which relates link’s rotation θ  to input torque u is as 

follows: 

 

])()([)(

)(
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KJIDsJIIJss

KDs
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s
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+
=

Θ
  ,                                                                (2.12) 

 

or: 
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  .                                                                 (2.13) 

 

This indicates that the undamped natural frequencies of the system are zero and 

)(
J

K

I

K
+ . Zero natural frequency represents the rigid body motion of the base and the 

link.                                                                 

 

The block diagram of the open-loop system based on equation (2.13) is shown in Figure 

2.2. In this figure:  
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 Figure 2.2- The open-loop block diagram of single link manipulator with flexible joint 

 

 

It is evident that the system has two integrators which will significantly filter out any 

higher frequency perturbations which might be introduced by the joint.  

 

The equations were implemented using MATLAB ®. In this simulation, the 

manipulator’s physical parameters have been taken from [9] and are listed in Table 2.1: 

 

 

 

22

1

2

)1(

nn ss

sk

ωζω

τ

++

+
 

s

1
 

s

1
 



 12 

Table 2.1- Simulation parameters adopted from [9] 

 

Symbol Description Quantity Unit 

I Link moment of inertia 5.000 radsmN /
2⋅⋅  

J Motor moment of inertia 5.000 radsmN /
2⋅⋅  

K Joint stiffness 1.000E4 radmN /⋅  

D Joint viscous damping 31.63 radsmN /⋅⋅  

 

   

Applying these parameters to equation 2.13 yields: 

 

22

1
*

400065.12

)100316.0(400

)(

)(

sss

s

sU

s

++

+
=

Θ
 .                                                                              (2.14) 

 

Comparing with the standard transfer function  

 

222

1 1
*

2

)1(

)(

)(

sss

sk

sU

s

nn ωζω

τ

++

+
=

Θ
 ,                                                                                  (2.15) 

 

the natural frequency and damping ratio are as follows: 

 

sradn /25.634000 ==ω  = 10.00 Hz and 1.0=ζ 0 

 

 

It should be emphasized that the range of values used in this project are quite common 

for flexible joint robot manipulators. 

 

The input to the simulation was an approximate impulse (representing a torque 

impulse). Some of the simulation results are shown in Figure 2.3. In this particular 

simulation two time delayed pulse input torques with zero and 1.5s phase delay, period 
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of 3s,  pulse width of 0.1% of period, and amplitude of  u = +3000 mN ⋅ and  u = -3000 

mN ⋅  have been used. The output results shown in the figure are the link angular 

position, velocity, and acceleration, respectively. It should be noted that a continuous-

time integration solver of Runge-Kutta method with zero initial condition and a fixed-

step size of 0.001 in seconds has been applied. 
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(a) Angular position 
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(c) Angular acceleration 

Figure 2.3- Simulation results for impulse inputs to the single-link manipulator  
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The results show that by applying an impulse torque input, a damped oscillation is 

observable in angular acceleration and velocity, but the magnitude is highly filtered in 

angular position of the link. These vibrations may be felt, but not observed visually. 

Since torque on the joint is directly related to angular acceleration, the low damping can 

have significant implications when control is implemented.  

 

A closed form solution of equations 2.14 or 2.15 does exist and can be solved by 

applying Partial-Fraction Expansion. Consider equation 2.14:  

 

400065.12

)100316.0(400
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   ,                                                                                (2.16) 

or 
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=Θ .                                                                            (2.17) 

 

In order to create the same form of the input signal as the simulation (an approximate 

impulse), two separate step inputs are used: the first a step of 3000N.m at zero step time 

and a second step at 0.003s (0.1% of the 3s period time) step time and final value of  

-3000 N.m. In this case,
s

e

s
sU

s003.030003000
)(

−

−= and equation 2.17 becomes: 
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or: 
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Knowing that; 

)9285.62325.6)(9285.62325.6(400065.122 jsjsss −+++=++  ,                       (2.20) 
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and the Partial-Fraction Expansion of first term of equation 2.19: 

400065.12)400065.12(

12000003795
2

321

2 ++

+
+=

++

+

ss

asa

s

a

sss

s
   ,                                                  (2.21) 

multiplying both sides by the denominator of its left hand side of equation 2.20 yields: 

 

sasassas 3

2

2

2

1 )400065.12(12000003795 ++++=+ ,                                            (2.22) 

or 

131

2

21 4000)65.12()(12000003795 asaasaas ++++=+ .                                        (2.23) 

                                                                                                                                     

Comparing both sides of equation 2.23, it can be shown that: 

 

021 =+ aa ,                                                                                                                (2.24) 

 

379565.12 31 =+ aa ,                                                                                                   (2.25) 

 

12000004000 1 =a ,                                                                                                    (2.26) 

 

.                                                                                                                                                                         

Solving, the parameters are found to be: 

 

3001 =a , 3002 −=a and 03 =a . 

 

Therefore: 
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or: 
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Considering )()( 1

003.

2 sFesF s−= , using equation 2.28 and applying the inverse Laplace 

transform to equation 2.19 yields: 
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                                                                                                                                    (2.29) 

Figure 2.4 shows the plot of the analytical solution of equation 2.29.  
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Figure 2.4- Plot of equation 2.29. 
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The two solutions for acceleration response using the computer solver and the closed 

solution form yield the same the results as would be expected. The function generator 

can be realized either from the simulation using Matlab or by implementing the closed 

solution form of equation 2.29. In this work, the simulation form was used because of 

the ease of changing the parameter values. 
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CHAPTER 3 

 

HYDRAULIC SIMULATOR 

 

 

3.1 Introduction 

 

The hydraulic simulator is essentially the experimental hydraulic system which receives 

the input signal from the function generator and outputs an acceleration which is 

controlled to follow the desired input signal. The main reason for choosing a hydraulic 

actuation system was because of the higher value of its natural frequency in comparison 

to the usual robot manipulators’ natural frequency. Hydraulic systems are also readily 

found in many robotic applications which make compatibility issues marginalized. It 

was recognized that the design of a system to reproduce accurately such waveforms 

would be a challenging process, given that acceleration tends to be noisy and difficult to 

control. As will be illustrated later, the presence of a severe nonlinearity (suspected to 

be dead-band) in the rotary motor compounded the control problem. Figure 3.1 shows 

the overall arrangement of the system. 
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Figure 3.1- Schematic of the hydraulic simulator 

 

The system shown in Figure 3.1 consisted of a pressure compensated hydraulic pump 

driven by an electric motor, a pressure control servovalve (MOOG® model 15-010), 

and a rotary motor (MICRO-PRECISION® ROTAC model MPJ-22-1V), which drove a 

single-link manipulator. The rotary motor could rotate the link 270º in the horizontal 

plane. 

 

The measuring instruments consisted of an acceleration sensor (Bruel & Kjaer® model 

4370) and amplifier (Bruel & Kjaer® charge amplifier type 2635). The experimental 

system was controlled by a PC computer using Matlab-Simulink® software. 

A flow control servovalve was initially considered but because the flow rates were very 

small, because the cut-off frequency of pressure servovalves is known to be very high 

(relative to a flow control servovalve), and because pressure (force) is directly related to 

acceleration, a pressure control servovalve was chosen as the hydraulic controlling 

device. All components were “off the shelf” from the Fluid Power Laboratory at the 

University of Saskatchewan and hence, this became a constraint for the hydraulic 

system design. 
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3.2 Hydraulic System Analysis 

 

As stated above, the function of the hydraulic simulator was to be able to reproduce the 

input signal which in this particular case was the angular acceleration signal created by 

the function generator. To facilitate the design of a controller, an analysis of the 

hydraulic system was performed.  

 

A common form of a transfer function approximation of the relationship between the 

load differential pressure and the input current to the servovalve has been derived to be 

[10]: 
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 ,                                                                                     (3.1) 

 

in which: 

 

LP      load differential pressure    (Pa)  

 eI      input current     (ma) 

vK      valve gain     (Pa/ma) 

nvω      valve undamped natural frequency     (Hz) 

vζ      valve damping ratio      

s     Laplace operator     (1/s). 

 

 

The torque on the hydraulic rotary motor is given by; 

 

ωβα +== LmLL IDPT  ,                                                                                               (3.2) 
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in which: 

 

LT     motor torque     ( mN ⋅ ) 

mD      motor volumetric displacement     )/( 3 radm  

LI      link moment of inertia      )/( 2 radsmN ⋅⋅  

β      motor viscous damping      )/( radsmN ⋅⋅  

ω      link angular velocity      (rad/s) 

α      link angular acceleration     )/( 2srad , 

 

Taking the Laplace transform of equation 3.2 yields; 
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or: 
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let; 

β
mD

K =1  and    
β

τ LI
=1   

 

therefore; 
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in which; 

 

1K     load gain   ( sParad ⋅/ ) 
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1τ     load time constant   (s). 

 

Multiplying equations 3.1 and 3.5, gives;  
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The following equation is valid for the servo-amplifier which should provide DC current 

into the servovalve:   

L
dt

di
Riv e

ee

'
'

+= ,                                                                                                           (3.7) 

in which:  

ev     servo-amplifier input voltage (v)  

'

ei     servo-amplifier output current (a) 

R     servo-amplifier resistance (Ώ) 

L     servo-amplifier inductance (H). 

 

Taking the Laplace transform of the equation 3.7 yields; 
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Let 
R

Ka
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=  and 

R

L
a =τ , therefore; 
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in which; 
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aK     servo-amplifier gain   (a/v) 

aτ     servo-amplifier time constant   (s) 

 

It should be noted that according to [11] for the servo-amplifier, R=2000 Ώ, L=9.7 H. 

Therefore vaKa /0005.0=  and sa 00485.0=τ . 

 

Since the unit of servo-amplifier output current ( )(
'

sIe ) is ampere and that of servovalve 

input current ( )(sIe ) is milliampere, a conversion gain of eK  is introduced to convert 

the units. Therefore, amaKe /1000= . Applying the gain to equation 3.9 gives;  
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in which; 

 

eK      servo-amplifier conversion gain   (ma/a). 

 

Multiplying equations 3.6 and 3.10 yields;  
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The block diagram of equation 3.11 is shown in Figure 3.2. 
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Figure 3.2- Block diagram of equation 3.11. 

 

It should be noted that )(sα has units of rad/s
2
.  

Since aττ 〉〉1 , the servo-amplifier transfer function can be reduced to eaKK . This reduced 

form is illustrated in Figure 3.3: 

 

 

 

 

Figure 3.3- Reduced block diagram of equation 3.11 

 

 

Now two possible scenarios are expected with respect to the transfer functions of the 

servovalve and the load. The first scenario occurs when nvω
τ

〈
1

1
, where nvω is now in 

Hz to ensure unit consistency. A typical magnitude asymptotic approximation 

(magnitude Bode plot) for this first case is shown in Figure 3.4. 
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Figure 3.4- Typical magnitude Bode plot of equation 3.11 when nvω
τ

〈
1

1
 

The second scenario happens when nvω
τ

〉
1

1
; a typical Bode plot for this case is 

demonstrated in Figure 3.5. 

 

Figure 3.5- Typical magnitude Bode plot of equation 3.11 when nvω
τ

〉
1

1
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The actual frequency response of the hydraulic simulator is shown in Figure 3.6, where 

the input is the signal from the analyzer unit and the output is the measured signal from 

the accelerometer. Details on obtaining this plot are given in Chapter 5. 
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Figure 3.6- Open-loop magnitude frequency response of the hydraulic simulator 

(points) with superimposed asymptotic lines (experimental: solid line based on 40 dB 

per decade and theoretical: dashed line based on 20dB per decade)  

 

It should be noted that the two odd points at lower frequencies were ignored in Figure 

3.6. 

 

A comparison between the experimental result and the theoretical scenarios shows that 

the first possible scenario ( nvω
τ

〈
1

1
) better describes the actual experimental setup for 

frequencies less than 20 Hz.  

 

It should be noted that the slope of asymptotic line (solid line) in Figure 3.6 is +40 dB 

per decade which is different from that of the theoretical model (dashed line) of Figure 

3.6. Measurement of the output angular acceleration was accomplished using an 

accelerometer (to be discussed in greater detail below and in Chapter 4). It was believed 
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that the poor performance of the accelerometer at low frequencies caused the 

discrepancy. In the next two chapters it will be shown that an acceleration compensator 

could be used to correct the performance of the accelerometer at low frequencies.   

These results imply that,
1

1

τ
ω 〉〉nv , and therefore the model could be easily reduced to 

the first order term of the transfer function of equation 3.11 Hence, 
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OLe τ

α
 ,     (OL in this case means open-loop.)                                     (3.12)                          

 

in which; 

oK     open-loop gain   ( svrad ⋅/ )  

oτ     open-loop time constant   (s). 

It should be noted that 1KKKKK veao =  and 1ττ =o . Therefore the open-loop block 

diagram is simplified to that shown in Figure 3.7. 

 

Figure 3.7- Simplified open-loop block diagram of the system 

 

In the aforementioned equations, α  has a unit of rad/s
2
. Since a linear accelerometer 

was used to indirectly measure the angular acceleration of the joint, a linear sensitivity 

and calibration factor which converts rad/s
2
 to voltage was introduced. The calibrated 

output rating of the linear accelerometer was determined to be )
/

(1.0
2

sm

v
S l = . The 

linear accelerometer was capable of measuring tangential acceleration. However, it was 

the angular acceleration that was desired. Since the distance between the center of the 

installed linear accelerometer and the axis of the rotation (rotation arm) was known very 

accurately (l = 0.435 m), it was possible to convert the linear tangential acceleration to 
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angular acceleration. By multiplying the linear sensitivity lS by l, the angular sensitivity 

(the conversion gain) of the accelerometer was obtained as: 
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lSK lcon ===                                             (3.13) 

                                       

The effect of the conK  is shown in the block diagram of Figure 3.8; 

 

Figure 3.8- Block diagram of the simplified transfer function with influence of the 

accelerometer sensitivity 

 

In the block diagram of Figure 3.8; 

conK    conversion gain factor   (
2/ srad

v
) 

dα    desired angular acceleration (function generator output)   ( 2/ srad ) 

α     link angular acceleration    ( 2/ srad ) 

vα    link angular acceleration in volts  (v), 

therefore; 
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in which; 

OLK     open-loop overall gain   (s). 

 It should be noted that conoOL KKK = . 
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3.3 Controller Design (Theoretical)      

 

To design the controller which would provide the required closed-loop response, the 

first step was to consider the hydraulic simulator in a mathematical form and to design 

the controller for this system.  The second step was to apply this controller to the 

experimental hydraulic simulator and to “tune” the controller to optimize the 

performance (see Chapter 5).   

 

In this section, a closed-loop control system based on a theoretical model is studied. The 

closed-loop transfer function is derived and its parameters are compared with the open-

loop transfer function. An approach of cascade inverse compensation for improving the 

open-loop system rather than using a closed-loop controller is introduced.                                                 

 

 

3.3.1 Closed-Loop Controller 

 

The objective of any controller is to force the output to follow the input such that 

CLe

v

sV

s









)(

)(α
= 1 (CL in this case means closed-loop). This means the hydraulic simulator 

would follow exactly the desired signal from the function generator. This section 

considers the implementation of several classical controllers in an attempt to meet the 

above objective. For all analysis, the simplified open-loop transfer function of Equation 

3.14 is assumed. 

 

A simple proportional controller was first examined. The closed-loop block diagram is 

illustrated in Figure 3.9. 
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Figure 3.9- Block diagram of closed-loop control system with proportional gain 

 

In Figure 3.9; 

 

PK     proportional gain    

 

The closed-loop transfer function is derived with respect to the block diagram shown in 

Figure 3.9 as follows;                                                                                  
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which simplifies to:  
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in which;  OLpCL KKK =
1

 , and   OLpoCL KK+= ττ
1

 . 

It is clear that the objective of having 1
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 is not satisfied at all frequencies 

with this controller.  Table 3.1 provides a comparison of the open-loop and closed-loop 

transfer function parameters.  
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Table 3.1- Parameters summary of open-loop and closed-loop transfer functions 

 

 Open-loop Closed-loop 

Gain 
conoOL KKK =  OLPCL KKK =

1
 

Time constant 
oτ  OLPoCL KK+= ττ

1
 

 

Theoretically this Table illustrates that the closed-loop control gain (if 1〉PK ) and time 

constant are increased in comparison to the open-loop system. Using typical parameter 

values, a comparison of the open-loop and closed-loop frequency responses (magnitude) 

for two controller gains is shown in Figure 3.10. 
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Figure 3.10- Magnitude frequency response 
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 of the open-loop and closed-loop 

systems with proportional controller 

 

Figure 3.10 indicates that the closed-loop control with proportional gain increased the 

bandwidth of the system, but only marginally improved the magnitude ratio. It should 
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be noted that in experiments, there was a limited room for increasing the proportional 

gain because of servovalve saturation.   

 

Typical values of KOL and oτ were extracted from the experimental frequency response 

of the actual system (Figure 3.6): sKOL 025.0=  and so 064.0=τ . 

 

The ability of the system (open-loop and closed-loop) to follow the input was 

demonstrated in the time domain by inputting a 10 Hz. “joint vibration” (the output from 

the function generator) into the system. Figure 3.11 compares the responses of the open-

loop and closed-loop models. It is evident that the closed-loop controller marginally 

increases the amplitude of the output acceleration when compared to the open-loop 

system. This is consistent with the gain increase in the frequency response shown in 

Figure 3.10 at 10 Hz. Increasing the gain eventually saturates the input signal to the 

servovalve and no further improvement was possible.  It is clear that this is not an 

acceptable response. 
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Figure 3.11- Transient response of vα in the open-loop and closed-loop models with 

2=PK to the function generator dα of 10 Hz signal  
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A classical PI controller was then implemented. The closed-loop block diagram is 

shown in Figure 3.12. 

 

 

 

 

 

 

 

Figure 3.12- Block diagram of closed-loop control system with proportional and 

integral gains 

 

In Figure 3.12; 

 

PK     proportional gain     

IK     integral gain    (1/s) 

 

The closed-loop transfer function in this case is derived with respect to the block 

diagram shown in Figure 3.12 as follows; 
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which is simplified to; 
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Using the same gain and time constant values as before, 

i.e. sKOL 025.0= and so 064.0=τ , a comparison of the open-loop and closed-loop 

frequency responses (magnitude) for two controller gains is shown in Figure 3.13. 
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Figure 3.13- Magnitude frequency response 
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 of open-loop and closed-loop 

systems with PI controller. 

 

It can be observed from Figure 3.13 that the proposed PI controller could improve the 

response at lower frequencies better than the proportional controller, but the magnitude 

ratio was still a problem. 

 

Figure 3.14 compares the time responses of the open-loop and closed-loop models for a 

10 Hz joint function generator signal. 
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Figure 3.14- Transient response of vα in the open-loop and closed-loop models with 

2=PK and 10=IK to the function generator dα  of 10 Hz signal 

 

 

It is evident from Figure 3.14 that the PI controller also marginally improves that 

amplitude of the output but was not sufficient for the frequency range of interest in this 

study.  

 

In Chapter 5 it will be shown that the P (proportional) or PI (proportional-integrator) 

closed-loop controllers could not be implemented physically because of noise in the 

accelerometer (sensor), significant nonlinearities in the rotary motor and high system 

internal gains. Therefore an alternate approach was proposed and is now considered. 
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3.3.2 Open-Loop Inverse Compensation Controller  

 

To achieve the stated objective at the beginning of this section, a cascade compensator 

controller was proposed whose form was simply the inverse of the open-loop transfer 

function shown in equation 3.14. On the other hand, since the plant transfer function 

included a zero at the origin (Root-locus approach), the controller deemed to be an 

example of “marginally stable pole-zero cancellation” which might make the system 

unstable in some conditions (e.g. with constant disturbance or noise in the input signal). 

Therefore the controller pole was designed to be on the real axes, at the left hand side of 

imaginary axes and very close to the origin. This pole usually should be about 

oτε /1.0= away from the origin so that the magnifying signal does not exceed more 

than 10 times of the constant input noise. The block diagram of the controller is 

illustrated in Figure 3.15. 

 

Figure 3.15- Block diagram of open-loop compensator controller 

 

It should be noted that the open-loop pure inverse compensator which was proposed 

earlier might saturate the hydraulic simulator in frequencies lower than 
oτ

1
 (2.5 Hz or 

15.71 rad/s based on actual system magnitude Bode plot shown in Figure 3.6), however   

it was proved by simulation that the pure inverse controller worked properly in the 

frequency range of interest which was 5 to 15 Hz. Therefore ε  was set to zero and the 

controller was adopted to be in the form of
sK
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. The transfer function of the system 
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output a signal which would saturate the input to the hydraulic simulator. The form of 

the controller is quite ideal in that it inherently limits the input signal to the plant 

(assuming of course that the limit is less than saturation values). The disadvantage of 

this controller is that it is open-loop and any small drift in the plant input would be 

integrated twice by the plant resulting in substantial output position drift. To 

demonstrate the time response of the system with this inverse controller, the same signal 

from the function generator was input to the compensated servo system and as expected, 

the output acceleration follows the desired input signal perfectly. This is shown in 

Figure 3.16. 
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Figure 3.16- Transient response of vα in the open-loop compensated model to the 

function generator dα of 10 Hz signal 
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CHAPTER 4 

 

Experimental System Setup 

 

 

4.1 Introduction 

 

In Chapter 2, the development of the “function generator” was considered. In this 

chapter the experimental system (hydraulic simulator) setup is explained in detail. 

Figure 4.1 illustrates the schematic of the experimental system which includes the 

power supply, pressure servovalve, hydraulic rotary motor, and a single link 

manipulator. 

 

Figure 4.1- Schematic of the hydraulic simulator 
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The system was controlled by means of a personal computer using Matlab-Simulink 

software which submitted controlled input signals to the pressure servovalve. For 

analyzing the experimental system, a “Signal Analyzer Unit” was used. Also the angular 

acceleration of the link was measured by an accelerometer. In the following sections, 

each part and component is considered in detail.  

 

 

4.2 Power Supply 

 

The power supply consisted of a hydraulic pump and a pressure reducing valve. The 

hydraulic pump was a variable displacement, pressure compensated Sundstrand 22 

series pump which delivered a maximum flow rate of 121.28 L/min. (32 GPM US) at 

1740 RPM. The dead-head pressure of the pump was set at 172.5 bar (2500 psi). A 

Denison® model RR12535 pressure reducing valve limited the downstream system 

pressure to 86.25 bar (1250 psi).  

 

 

4.3 Pressure Control Servovalve 

 

As discussed in Chapter 3, a pressure servovalve was used because of its high frequency 

response, an important design criterion in this system. The Electrohydraulic, two-stage, 

four-way, nozzle-flapper type pressure control servovalve of Moog® model 15-010 was 

utilized to direct the flow from the power supply to the rotary motor. Figure 4.2 shows a 

schematic of the servovalve. 
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Figure 4.2- Schematic of pressure control servovalve 

 

The servovalve consisted of three main parts: torque motor, hydraulic amplifier and 

valve spool assembly. This type of servovalve is designed to control load pressure 

difference ( ABP∆  ). A summary of its operation is as follows. 

 

The input current creates magnetic forces on the ends of the armature in the torque 

motor coils. This causes the armature and flapper assembly to rotate about a flexure tube 

support (not shown in Figure 4.2). The flapper moves between the nozzles and builds up 

a differential pressure 12P∆  which is proportional to torque created by the input current. 

The flapper restricts flow passing through one of the nozzles, for example nozzle (1) in 

Figure 4.2. Because of the fixed orifice upstream to the nozzle, a reduction in flow 
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results in an increase in the pressure just downstream of the fixed orifice which is 

sensed at the end of the spool (left hand side). Meanwhile, flow on the other side of the 

nozzle increases (wider opening and less restriction) which means that the pressure on 

the upstream side of the nozzle (downstream from the fixed orifice on the right hand  

side) decreases and is sensed by the right hand side of the spool. A pressure differential 

across the ends of the spool now exists and hence, the spool moves to the right (in this 

case). Fluid from the supply pressure ( SP ) is now ported to one control port and fluid in 

the second outlet is ported to the tank (T). As flow is ported to the load from SP , the 

pressure builds up (decreases on the other side of the actuator) and is fed back to the 

right hand side of the spool (the downstream side pressure is fed back to the left hand 

side of the spool). The load pressure difference ( ABP∆ ) builds up a feedback force which 

eventually becomes equal to SAB AP ⋅∆  on the spool end. When ASAB APAP ⋅∆=⋅∆ 12  the 

spool stops moving and the output pressure differential is controlled. In Table 4.1 some 

specifications for the servovalve are presented [11].  
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Table 4.1- Specification of Moog servovalve model 15-010 

 

Input current ±10.00 ma (rated) 

 

Torque on Armature/Flapper 

 

±0.0100 mN ⋅ (rated) 

Hydraulic Amplifier Flow to Drive the 

Spool 

±3.770 scm /3  (max.) 

Servovalve Flow, No-Load 

 

±902.0 scm /3  (rated)  

Spool Displacement 

 

±0.5080 mm (rated) 

Hydraulic Amplifier Differential Pressure 

 

±61.41 bar (rated) 

Load Differential Pressure 

 

±207.0 bar (rated) 

Spool Driving Area 

 

26.45 2
mm  

Spool Feedback End Area 

 

7.871 2
mm  

 

 

A pressure servovalve was chosen because of its high cutoff frequency characteristics 

and the fact that relatively small flow rates were required. The servovalve was installed 

as close as possible to the rotary motor in order to minimize the effects of 

compressibility of the hydraulic fluid and to maximize the stiffness of the system by 

reducing the volume of fluid (load side).  
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4.4 Hydraulic Rotary Motor  

 

A single vane hydraulic rotary motor (Micromatic® model MPJ-22-1V) was used as the 

actuator. Table 4.2 illustrates some specification of this motor [12].    

 

Table 4.2- Specifications of Micromatic rotary motor MPJ-22-1V 

 

6.330 @ 6.90 bar 

 

37.63 @ 34.5 bar 

 

Torque  

( mN ⋅ ) 

76.73 @69.0 bar 

 

62.61  per 270º 

 

Volumetric Displacement 

( 3
cm ) 

13.36   per  radian 

 

Max. Operating Pressure 

(bar) 

69.00 

Max. Rotating Angle 

 

270.0º 

 

 

As will be presented in Chapter 5, this rotary motor displayed significant nonlinear 

characteristics.  Since it was the only one available in the laboratory, it had to be used. 

This certainly posed some interesting challenges for the controller design. 
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4.5 Robot Manipulator 

 

The original manipulator used in this research project was designed, constructed and 

reported in a thesis entitled “Planar Manipulator with Three Revolute Joints” [13]. The 

schematic front view is shown in Figure 4.3 and a photo is shown in Figure 4.4. Some 

modifications were made to the original manipulator to prepare it for the purpose of the 

project. This was a two-degree-of-freedom rigid link manipulator, which included two 

hydraulic rotary motors at the shoulder and elbow joints, and two rigid shoulder and 

elbow links. Due to the fact that the “shoulder” actuator (a Char-Lynn series 2000) was 

a disc valve type rotary motor with significant viscous friction and a narrow range of 

motion (180º), the decision was made not to use this actuator. Instead, the elbow 

actuator was used which had less viscous friction and a wider range of motion (270º).  

To stabilize the manipulator, the shoulder link was fixed and secured by utilizing a 

number of cables and plates with bolts and nuts. The wrist actuator was subsequently 

used as a load at the end of the elbow link.  Figure 4.3 illustrates the schematic of the 

manipulator. 
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Figure 4.3- Schematic of the two-link rigid manipulator in which the shoulder link was 

fixed 
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Figure 4.4- Photo of the manipulator setup used in the experiment 

 

 

The pressure control servovalve was installed at the top of the fixed shoulder link which 

was the shortest distance to the operating actuator (elbow actuator) to minimize the 

compressibility effect of the hydraulic fluid. 

 

Table 4.3 lists some particulars of the manipulator [13]. As indicated in the Table 4.3, 

the construction of the robot manipulator was strong enough to be considered as a rigid 

manipulator. 

 

 

 

 

Pressure Servovalve 

Rotary Motor 

Accelerometer 
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Table 4.3- Important manipulator measurements 

 

Shoulder link length 

 

0.6100 m 

Shoulder link cross section 

 

0.0760 m square steel tube 

0.0060 m wall thickness 

Elbow link length 

 

0.4600 m 

 

Elbow link cross section 

 

0.0750 m square steel tube 

0.0050 m wall thickness 

Shoulder link weight 

(without servovalve) 

15.90 kg 

Elbow link weight 

 

8.600 kg 

 

 

 

4.6 Personal Computer 

 

In addition to using a personal computer with Matlab-Simulink Real Time Windows 

Target for software algorithm programming, a National Instruments PCI-6025e data 

acquisition card with a 12bit A/D and D/A was used to interface the input signal from 

the computer to the servovalve and the accelerometer signal back to the computer.  The 

“function generator” in the Simulink program was utilized to provide the input signal to 

the “hydraulic simulator”. Table 4.4 presents some the pertinent settings that were used 

in the Matlab-Simulink algorithm. 
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Table 4.4- Matlab-Simulink setup for experimental system control 

 

Solver Type 

 

Fixed-step 

Solver 

 

ode4 (Runge-Kutta) 

Fixed-Step Size (Fundamental Sample 

Time) 

0.001 s 

Analog input National Instruments® PCI-6025E 

(auto), input range ±10 v 

Analog output National Instruments® PCI-6025E 

(auto), output range ±10 v 

 

 

 

 

 

 

4.7 Signal Analyzer 

 

A signal analyzer unit (Bruel & Kjaer® type 2035) was used to obtain the frequency 

response data of the system. The analyzer provided the actual Bode magnitude and 

phase plots of the experimental system.  

 

The analyzer generates a random signal of various frequencies ranging from 0 Hz to 200 

Hz (for this test). Other frequency ranges were possible with this unit. The signal was 

interfaced to the servovalve via one channel as the system input signal. The measured 

acceleration (output signal) was returned to the analyzer via another channel.  
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4.8 Accelerometer 

 

A piezoelectric charge accelerometer of Bruel & Kjaer® type 4370 was attached to the 

linkage (see Figures 4.3 and 4.4). The accelerometer was connected to a charge 

amplifier of Bruel & Kjaer type 2635. The calibrated output rating of the charge 

amplifier was adjusted to )
/

(1.0
2

sm

v
. 

 

The accelerometer was capable of measuring tangential acceleration. However, it was 

the angular acceleration that was desired. Since the distance between the center of the 

installed accelerometer and the vertical axis of the rotary motor (rotation arm) was 

known, it was possible to convert the linear (tangential) acceleration to angular 

acceleration (details were provided in Chapter 3).  

                                                         

 

   

4.9 Accelerometer Compensator 

 

In Chapter 3 it was mentioned that the actual frequency response of the experimental 

system, shown in Figure 3.6, was best approximated by the theoretical frequency 

response illustrated in Figure 3.4. In reality, the slope of the actual Bode plot (Figure 

3.6) was greater than the theoretical plot at low frequencies. It was believed that the 

poor performance of the accelerometer and amplifier at low frequencies was a possible 

reason for this discrepancy. Upon further testing, (as follows) it was determined that the 

accelerometer/amplifier displayed the characteristics of a high-pass filter.  

 

An accelerometer test was performed on a “shaker table” utilizing an accurate linear 

position sensor (Schaevitz® DCLVDT) along with the test accelerometer (B&K 4370) 

which were both installed on the same plane of motion. The random signal generated by 

the signal analyzer was interfaced to the shaker table. The output signal of the position 

transducer was connected to the analyzer. The analyzer was set to convert the position 
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signal to an acceleration signal by differentiating it twice. The output signal of the test 

accelerometer was also interfaced to the analyzer.  The analyzer was utilized to compare 

amplitude and phase angle of acceleration (derived from the position signal) with those 

of the test accelerometer signal. Figure 4.5 illustrates the schematic of the test 

arrangement.  

       

 

Figure 4.5- Schematic of “Shaker Table” test 

 

 

In Figure 4.5;  

 

aca     measured accelerometer’s acceleration    (v)  

pox     measured position    (v) 

poa     calculated acceleration by double differentiation of measured position   (v) 

 

Figure 4.6 shows the magnitude and phase Bode diagram of twice differentiated 

position signal and the test accelerometer signal. 

 

pox  

aca

Random Signal  

Analyzer Unit 

 

                  

 

                 poa  

Shaker Table 

Accelerometer 

2
s  

Position 

(DCLVDT) 
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Figure 4.6- Magnitude and phase Bode plots of the shaker table test (points are data 

from the analyzer and the solid line is the straight line approximation based on a 20 dB 

per decade slope). 
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An approximated transfer function of the two acceleration signals can be extracted from 

an asymptotic analysis of the magnitude Bode plot which is shown in Figure 4.6. It is 

evident that at low frequencies, the accelerometer produced results which were 

attenuated. This attenuation could be approximated by a transfer function. Analysis of 

Figure 4.6 indicates that the corner frequency was 1.25 Hz (7.85 rad/s). Therefore the 

transfer function which reflected this low frequency attenuation was estimated to be;  

 

85.7+
=

s

s
Gac                                                                               (4.1) 

 

To compensate for this attenuation, a compensator was chosen to be
00.5

85.7

+

+

s

s
in order to 

expand the lower end of bandwidth of the accelerometer.  

 It should be noted that an ideal compensator should be 
s

s 85.7+
but as will be discussed 

in Chapter 5, the form 
00.5

85.7

+

+

s

s
provided better compensation. More details will be 

discussed on this matter in the following chapter in which experimental data is 

considered. 

 In implementing this accelerometer compensator experimentally, the proposed 

compensator was installed after the plant and physical accelerometer. Figure 4.7 

illustrates the placement of the compensator to a theoretical approximation of the 

accelerometer frequency characteristics. Chapter 5 will consider the implementation of 

the compensator from an experimental point of view. 

 

 

 

 

 

 



 54 

 

    

  

 

 

 

Figure 4.7- Block diagram of the system with the accelerometer compensator  

 

 

It should be noted that this compensator was utilized for all experimental tests. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 

5.1 Introduction 

 

The objective of this chapter is to present and discuss the results of the tests performed 

on the experimental system with the setup explained in Chapter 4. Generally, the tests 

made use of “swept” frequencies (a process in which the input frequency was 

systematically increased over a selected frequency range) and function generator inputs 

to produce both frequency and time domain results. For many of the tests, magnitude 

and phase Bode diagrams were developed from the data to illustrate the dynamic 

performance of the system and compensation schemes. To demonstrate the desired use 

of the hydraulic simulator, the temporal responses to the output from the function 

generator were considered. The Chapter will then illustrate the transient response 

tracking errors and “mean squared error” values.    

 

 

5.2 Pressure Control Servovalve 

 

The pressure control servovalve was used in the hydraulic simulator because of its 

superior frequency bandwidth at low flow rates when compared to a flow control 

servovalve [14]. The pressure control servovalve dynamic performance (the frequency 

response data) is generally presented in two forms; one in which the load ports of the  
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servovalve are blocked (blocked load) and the other when the ports are connected to a 

load. The blocked load test is normally conduced by “plugging” the load ports (for 

example ports A and B in Figure 4.2). The load pressure difference ( ABP∆ ) and the input 

voltage are measured for a wide range of sinusoidal frequencies (in the following case 

between 0.5 to 400 Hz).  In the blocked load case the servovalve should demonstrate a 

high stiffness because of the very small fluid volume on the load side resulting in a 

higher natural frequency.    

 

Figures 5.1a and b illustrate the relationship of blocked load differential pressure to 

input voltage to the servo-amplifier. As can be observed in the Bode plot, the bandwidth 

of the valve was approximately zero to 60 Hz which was somewhat less than that stated 

in the manufacturer’s specifications [11]. At higher frequencies, a slope of -

60dB/decade in the magnitude plot indicated that the system was approximately third-

order. 
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Figure 5.1a– Magnitude frequency response of the pressure control servovalve with a 

blocked load (points are data from the analyzer and the solid line is the straight line 

approximation).  
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Figure 5.1b– Phase frequency response of the pressure control servovalve with a 

blocked load.  

 

When the pressure control servovalve was connected to the experimental system, the 

frequency response was determined and is shown in Figures 5.2a and b. 
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Figure 5.2a- Magnitude frequency response of pressure control servovalve with actual 

hydraulic simulator load (points are data from the analyzer and the solid line is the 

straight line approximation). 
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Figure 5.2b- Phase frequency response of pressure control servovalve with actual 

hydraulic simulator load.  
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It is observed that the bandwidth is about 40 Hz and the order of the system has changed 

from third to second. The influence of the load is thus apparent. The high frequency 

affects of the servo-amplifier are not visible from these results and hence the assumption 

that the servo-amplifier could be approximated by a simple gain in Chapter 3 was 

justified. 

 

The frequency response of the actual load pressure to input voltage (Figure 5.2a and b) 

demonstrates that the selected pressure control servovalve was capable of an appropriate 

performance in the frequency range of interest (5-15 Hz). 

 

 

5.3 Accelerometer 

 

In Chapter 4 it was stated that the accelerometer was demonstrating poor performance at 

the lower frequencies. It was believed that some method of calibrating the accelerator at  

low frequencies was necessary. As discussed in Chapter 4, a “shaker table” test facility 

was available in the laboratory which could be used to provide a calibrated position 

measurement and hence a reliable acceleration calculation. Both the accelerometer and 

position transducer were mounted on the table and the shaker table frequency range 

swept from 1 to 25 Hz. The “calibrated” acceleration was determined by a double 

differentiation of the position signal. The magnitude and phase ratio of the 

accelerometer aca output to the calculated acceleration poa  from the position transducer 

were shown in Figure 4.6. Ideally the magnitude ratio should be unity and the phase 

shift zero. Observation of Figure 4.6 illustrates that the performance of the 

accelerometer deteriorates at frequencies less than 7.85 rad/s (1.25 Hz).  

 

As discussed in Chapter 4, an ideal compensator of the form 
s

s
G

85.7
1

+
=  should 

extend the lower frequency range of the accelerometer. When applied to the actual 

system, the results were not satisfactory in that the compensator “overcompensated” the 

accelerometer’s signals at frequencies below 7.85 rad/s (1.25 Hz). The assumption that 
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the actual data followed the transfer function 1G  is only approximate in that the slopes 

are comparable but in the transition regions between the two slopes, the experiential 

data was found to be larger than that predicted by the transfer function 1G . Thus data in 

that region was amplified beyond that required; thus overcompensated.  In addition, the 

data for frequencies less than 1 Hz was very erratic and the use of 1G would only 

amplify the scatter at lower frequencies (see Figure 4.6). Thus a compensator of the 

form 
bs

as

+

+
 which would not amplify the lower frequencies but compensate at the break 

point was used. This compensator was tuned to be in the form of 
00.5

85.7

+

+

s

s
 which was 

then applied to all measured acceleration data. 

 

 Figures 5.3a and b indicate the relationship between the accelerometer output signal 

and double differentiated signal from the position transducer, with the proposed 

compensator. A comparison of Figure 5.3 to Figure 4.6 in Chapter 4 shows that the 

lower end of bandwidth of the accelerometer has been extended from 3 Hz to about 1 

Hz. However, there is still a slight affect on the amplitude ratio in the range from 1 to 10 

Hz, which is not desirable. The overall improvement using this compensator was 

considered marginal but was still implemented in all subsequent studies. 
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Figure 5.3a- Magnitude ratio  
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Figure 5.3b- Phase 
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The compensator was then applied to the acceleration data from the hydraulic simulator 

and the dynamic performance (magnitude wise only) before and after compensation is 

compared in Figures 5.4 and 5.5. It is apparent that in the lower frequency range (less 

than 2 Hz), the slope of the frequency response after applying the compensator is now 

20 db per decade which is consistent with what was predicted from the theoretical 

model of the system (Chapter 3). However, consistent with the “overcompensating” 

nature of the accelerometer in the frequency range of 1 to 10 Hz, there appears some 

distortion to the frequency response in the plant data as well. However, because in the 

lower frequency range, the slope with the compensated accelerometer approached that 

which was predicted analytically, it was concluded that the accelerometer compensation 

was acceptable for this study.  
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Figure 5.4- Open-loop magnitude frequency response of the hydraulic simulator before 

applying the accelerometer compensator (points are data from the analyzer and the solid 

line is the best fit straight line approximation; 40 dB per decade slope).  

)(

)(

)(

dB

jV

j

e

v

ω

ωα
 



 63 

-40

-30

-20

-10

0

10

20

0.1 1 10 100

Frequency (Hz)

 

Figure 5.5- Open-loop magnitude frequency response of the hydraulic simulator after 

applying accelerometer compensator (points are data from the analyzer and the solid 

line is the expected straight line approximation of the plant, 20 dB per decade slope).  

 

 

5.4 Hydraulic Simulator 

 

The experimental results of the “hydraulic simulator” such as open-loop and closed-loop 

frequency responses, open-loop compensated frequency response, open-loop transient 

responses and transient response errors are presented and discussed in this section. 

 

 

5.4.1 Open-Loop Frequency Responses 

 

The open-loop behavior of the hydraulic simulator is shown in Figure 5.5. It is observed 

that the gain is -8 dB and has a bandwidth of approximately 2 to 30 Hz. An unknown 

dip in the magnitude occurs at 25 Hz; at this point no reasonable explanation can be 

forwarded for this behavior.  
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The frequency response of the open-loop hydraulic simulator for smaller input 

amplitudes of 0.5v (a small acceleration of 2/5.11 srad ) is shown in Figure 5.6a and b. 

It is evident that the performance deteriorates in that the lower cutoff frequency is 

increased to 5 Hz and the magnitude dips at 25 Hz significantly.  The performance 

continues to deteriorate significantly as the input voltage (desired acceleration) 

decreases to 0.1v ( 2/3.2 srad ). The frequency response at 0.1v ( 2/3.2 srad ) is shown 

in Figures 5.7a and b. It is clear that the presence of some nonlinear phenomenon has a 

significant effect on the frequency response. The importance of this result will be seen 

in the acceleration transient responses, especially at small input amplitudes. These 

results will have an effect on the open-loop cascade compensator that was proposed in 

Chapter 3. 
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Figure 5.6a- Open-loop magnitude frequency response of the hydraulic simulator with 

input amplitude of 0.5v or 2/5.11 srad (solid line is the ideal theoretical frequency 

response). 
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Figure 5.6b- Open-loop phase frequency response of the hydraulic simulator with input 

amplitude of 0.5v ( 2/5.11 srad )  

 

 

)(

)(

)(

Degrees

jV

j

e

vc

ω

ωα
∠  

)(

)(

)(

dB

jV

j

e

vc

ω

ωα
 



 66 

 

-40

-30

-20

-10

0

10

20

0.1 1 10 100

Frequency (Hz)

 

Figure 5.7a- Open-loop magnitude frequency response of the hydraulic simulator with 

input amplitude of 0.1v ( 2/3.2 srad ) 
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Figure 5.7b- Open-loop phase frequency response of the hydraulic simulator with input 

amplitude of 0.1v ( 2/3.2 srad ) 
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5.4.2 Closed-Loop Frequency Responses 

 

It was of interest to apply a closed-loop proportional control system to demonstrate the 

results predicted in Chapter 3.  Figure 5.8 indicates the closed-loop dynamics 

(magnitude Bode plot only) of the hydraulic simulator. The gain is -10dB which means 

the amplitude ratio of 1 (0dB) was not achieved as predicted by theory in Chapter 3. 

There was however, a marginal improvement in the bandwidth at lower frequencies. 

What this would translate to in the transient response studies is that the amplitude of the 

output waveform would be attenuated compared to the desired waveform. The input 

amplitude of the desired acceleration was 1v ( 2/0.23 srad ).   
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Figure 5.8- Closed-loop magnitude frequency response of the hydraulic simulator with 

input amplitude 1.0v or 2/0.23 srad  (points are data from the analyzer and the solid line 

is the straight line approximation, 20 dB per decade). 
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only). Similar to the open-loop results, the dynamic performance of the closed-loop 

frequency responses deteriorates significantly as the amplitude of input signal decreases.  
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Figure 5.9- Closed-loop magnitude frequency response of the hydraulic simulator 

(input amplitude 0.5v or 2/5.11 srad ).  
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Figure 5.10- Closed-loop magnitude frequency response of the hydraulic simulator 

(input amplitude 0.1v or 2/3.2 srad ).  
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5.4.3 Open-Loop Compensation 

 

For the open-loop compensation study, a change in the approach of viewing data was 

made, that is testing shifted immediately to using the transient output waveform from 

the function generator as the input to the hydraulic simulator. This minimized the effects 

of drifting in the motor due to leakage and open-loop control. This became the 

procedure for the remaining tests and hence a frequency response was not done for the 

compensated open-loop system. Because the system was dismantled when this oversight 

was discovered, it was too late to do the open-loop compensated frequency response 

test. Thus the remaining results are presented in either a single frequency form or time 

response due to the transient form of the input signal. 

 

In order to verify the model of the hydraulic simulator, a step input signal with the 

amplitude of 1v ( 2/0.23 srad ) was applied to the system. The transient response of the 

hydraulic simulator is illustrated in Figure 5.11.   
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Figure 5.11- Open-loop transient response of the hydraulic simulator to a unit step input 

with amplitude of 1v ( 2/0.23 srad ) 
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Using the step response of the hydraulic simulator (shown in Figure 5.11) and the gain 

and lower cutoff frequency of the amplitude frequency response of the open-loop 

system (Figure 5.5), a first order transfer function was obtained and approximated to 

be
71.15

4.0

+s

s
. The response of this transfer function to the same input of Figure 5.11 is 

shown in Figure. 5.12. This model is consistent with the theoretical model proposed in 

Chapter 3 (
1+s

sK

o

OL

τ
). It should be noted that the experimental response does show an 

overshoot of the steady state value which the identified model does not. However,  

because the form of 
71.15

4.0

+s

s
was consistent with the theoretical model, it was decided 

to use this form to do initial designs of the compensator. 
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Figure 5.12- Transient response of the model (
71.15

4.0

+s

s
) to a unit step input signal (red 

line is the input and blue line is the output). 
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In this case, the open-loop compensator (inverse of the model of the hydraulic 

simulator) shown in Figure 3.15 was in the form of 






 +

s

s

4.0

71.15
or 








+

s

28.39
50.2 . The 

test was performed by applying the compensator to the hydraulic simulator, but the 

system showed very erratic behavior. This indicated that the compensator gains were 

too high. 

 

The compensator gains were then reduced and the tuned compensator which 

demonstrated reliable performance was in the form of 






 +

s

s

8.0

71.15
or 








+

s

64.19
25.1 .   

 

A set of tests was performed utilizing sine waves as the input signals with different 

amplitudes and frequencies and applying the open-loop compensator in the form 

of 






 +

s

s

8.0

71.15
. Figures 5.13a and b illustrate the transient responses of the hydraulic 

simulator to the sine waves with frequency of 5 Hz and amplitudes of 1 and 2v 

respectively. The results showed acceptable responses for both two cases.  
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Figure 5.13a- Open-loop transient response of the hydraulic simulator to 5 Hz sine 

wave with amplitude of 1v (compensation
s

s

8.0

71.15+
) 
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Figure 5.13b- Open-loop transient response of the hydraulic simulator to 5 Hz sine 

wave with amplitude of 2v (compensation
s

s

8.0

71.15+
) 
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Figures 5.14a and b demonstrate the transient responses of the hydraulic simulator to the 

sine wave input signals with frequency of 15 Hz and amplitudes of 1 and 2v 

respectively. The compensator in the form of 
s

s

8.0

71.15+
 was used for both cases.   
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Figure 5.14a- Open-loop transient response of the hydraulic simulator to 15 Hz sine 

wave with amplitude of 1v (compensation
s

s

8.0

71.15+
) 
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Figure 5.14b- Open-loop transient response of the hydraulic simulator to 15 Hz sine 

wave with amplitude of 2v (compensation
s

s

8.0

71.15+
) 

 

It can be observed that the amplitude ratio for 1v input (Figure 5.14a) was not 

acceptable in comparison to the 2v input signal due to the significant nonlinearities in 

the rotary motor.  

 

It may be concluded that the hydraulic simulator performance deteriorates at higher 

frequencies with the same input amplitude.  

 

   

5.4.4 Transient Acceleration Responses 

 

As mentioned in the previous section, the inverse compensator 






 +

s

s

4.0

71.15
could not be 

used due to the system erratic motion. Therefore a tuned compensator of the form 








 +

s

s

8.0

71.15
 was applied to the system. In addition, two other compensators were tested 
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and compared with the lower gains. The compensators were in the form 

of 






 +

s

s

8.0

8
and 







 +

s

s

8.0

4
.  

 

In this section the transient responses of the hydraulic simulator to the function 

generator signals are shown. For each frequency, first the response of the system 

without applying any compensator is indicated. Then the responses of the system were 

illustrated by using the compensators 






 +

s

s

8.0

4
, 







 +

s

s

8.0

8
and 







 +

s

s

8.0

71.15
respectively.       

 

 

5.4.4.1 Frequency 5 Hz and Damping Ratio 0.1  

 

Figures 5.15 to 5.18 show the experimental transient response of the hydraulic simulator 

to the desired acceleration for flexible joint manipulator for damping ratio of 0.1 and  

natural frequency of 5 Hz. Figure 5.15 does not contain any plant compensator. Figure 

5.16 includes the compensator
s

s

8.0

4+
. Figure 5.17 includes the compensator

s

s

8.0

8+
. 

Finally, Figure 5.18 includes the compensator
s

s

8.0

71.15+
. In all cases, the manipulator 

follows the desired acceleration in an acceptable fashion but the addition of various 

compensators did not improve the responses at all. This is further demonstrated by 

calculating the tracking error and comparing the means squared error (MSE) of the 

tracking error. This comparison is tabulated in Table 5.1 at the end of the chapter. 
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Figure 5.15- Open-loop transient response of the hydraulic simulator to the function 

generator 5 Hz and 0.1 damping ratio signal (not compensated). 
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Figure 5.16- Open-loop transient response of the hydraulic simulator to the function 

generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

4+
) 
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Figure 5.17- Open-loop transient response of the hydraulic simulator to the function 

generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

8+
). 
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Figure 5.18- Open-loop transient response of the hydraulic simulator to the function 

generator 5 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
) 
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5.4.4.2 Frequency 10 Hz and Damping Ratio 0.1 

 

The same procedure used in 5.4.4.1 was repeated with an input frequency of 10 Hz and 

a damping ratio of 0.1.  The transient responses are shown in Figure 5.19 for no 

compensation, Figure 5.20 for
s

s

8.0

4+
, Figure 5.21 for

s

s

8.0

8+
, and Figure 5.22 

for
s

s

8.0

71.15+
. It is quite evident that the tracking capability of the hydraulic simulator 

deteriorates at this frequency. It was also noted that the addition of the compensators did 

not improve the responses which was consistent with that found in Section 5.4.4.1. The 

MSE was also determined for the tracking error and the results tabulated in Table 5.1 
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Figure 5.19- Open-loop transient response of the hydraulic simulator to the function 

generator 10 Hz and 0.1 damping ratio signal (not compensated). 
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Figure 5.20- Open-loop transient response of the hydraulic simulator to the function 

generator 10 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

4+
). 
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Figure 5.21- Open-loop transient response of the hydraulic simulator to the function 

generator 10 Hz and 0.1 damping signal (compensated by
s

s

8.0

8+
). 
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Figure 5.22- Open-loop transient response of the hydraulic simulator to the function 

generator 10 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
) 

 

 

5.4.4.3 Frequency 15 Hz and Damping Ratio 0.1 

 

The same procedure used in 5.4.4.1 was repeated with an input frequency of 15 Hz and 

a damping ratio of 0.1.  The transient responses are shown in Figure 5.23 for no 

compensation, Figure 5.24 for
s

s

8.0

4+
, Figure 5.25 for

s

s

8.0

8+
, and Figure 5.26 

for
s

s

8.0

71.15+
. It is evident that the tracking capability of the hydraulic simulator 

deteriorates at this frequency but is similar to the results at 10 Hz. It was also noted that 

the addition of the compensators did not improve the responses which was consistent 

with that found in Sections 5.4.4.1 and 5.4.4.2. The MSE was also determined for the 

tracking error and the results tabulated in Table 5.1 
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Figure 5.23- Open-loop transient response of the hydraulic simulator to the function 

generator 15 Hz and 0.1 damping ratio signal (not compensated). 

 

 

-3

-2

-1

0

1

2

3

1.4 1.6 1.8 2

Time (s)

A
c
c
e
le

ra
ti

o
n

 (
v
)

Output

Input

 

Figure 5.24- Open-loop transient response of the hydraulic simulator to the function 

generator 15 Hz and 0.1 damping signal (compensated by
s

s

8.0

4+
). 
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Figure 5.25- Open-loop transient response of the hydraulic simulator to the function 

generator 15 Hz and 0.1 damping signal (compensated by
s

s

8.0

8+
). 

 

-3

-2

-1

0

1

2

3

1.4 1.6 1.8 2

Time (s)

A
c
c
e
le

ra
ti

o
n

 (
V

)

Output

Input

 

Figure 5.26- Open-loop transient response of the hydraulic simulator to the function 

generator 15 Hz and 0.1 damping ratio signal (compensated by
s

s

8.0

71.15+
).  
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5.4.5 Transient Response Errors 

 

The acceleration tracking error is defined as the “actual acceleration – desired 

acceleration” or “output – input” of the hydraulic simulator transient response. The 

tracking error of the “not compensated” and “compensated by
s

s

8.0

71.15+
” plants for the 

transient responses presented in Sections 5.4.4.1, 5.4.4.2, and 5.4.4.3 are shown in 

Figures 5.27 to 5.32.  
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Figure 5.27- Tracking error of Figure 5.15 (frequency 5 Hz and damping ratio 0.1, not 

compensated)  
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Figure 5.28- Tracking error of Figure 5.18 (frequency 5 Hz and damping ratio 0.1, 

compensated by
s

s

8.0

71.15+
)  
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Figure 5.29- Tracking error of Figure 5.19 (frequency 10 Hz and damping ratio 0.1, not 

compensated)  
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Figure 5.30- Tracking error of Figure 5.22 (frequency 10 Hz and damping ratio 0.1, 

compensated by
s

s

8.0

71.15+
)  
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Figure 5.31- Tracking error of Figure 5.23 (frequency 15 Hz and damping ratio 0.1, not 

compensated)  
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Figure 5.32- Tracking error of Figure 5.26 (frequency 15 Hz and damping ratio 0.1, 

compensated by
s

s

8.0

71.15+
)  

 

 

 

The “Mean Squared Error” (MSE) values of the transient responses shown in Sections 

5.4.4.1, 5.4.4.2, and 5.4.4.3 were calculated by using equation 5.1: 

 

∑
=

=
n

i

ie
n

MSE
1

21
                                                                                                             (5.1) 

 

In this equation ie is the difference between the output and input of each data point and 

n is the number of data. The MSE values are presented in Table 5.1: 
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Table 5.1- Mean squared error values of transient response errors in different cases 

 

Frequency 

(Hz) 

Compensator Duration Time 

(s) 

MSE  

( 2
v ) 

5 

 

1 1.4 to 2.0 0.162 

5 

s

s

8.0

4+
 

1.4 to 2.0 0.169 

5 

s

s

8.0

8+
 

1.4 to 2.0 0.193 

5 

s

s

8.0

71.15+
 

1.4 to 2.0 0.240 

    

10 

 

1 1.4 to 2.0 0.253 

10 

s

s

8.0

4+
 

1.4 to 2.0 0.310 

10 

s

s

8.0

8+
 

1.4 to 2.0 0.304 

10 

s

s

8.0

71.15+
 

1.4 to 2.0 0.321 

    

15 

 

1 1.4 to 2.0 0.238 

15 

s

s

8.0

4+
 

1.4 to 2.0 0.236 

15 

s

s

8.0

8+
 

1.4 to 2.0 0.268 

15 

s

s

8.0

71.15+
 

1.4 to 2.0 0.276 
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It is interesting to note that the MSE at 10 Hz was greater than at 5 or 15 Hz. However, 

the MSE of the uncompensated system was consistently better than for any of the 

compensated plants. This perhaps reflects the concern flagged in the frequency response 

results in which the compensators “over compensated” the mid frequency range.  

 

The transient and frequency responses clearly indicate the presence of very significant 

nonlinearities. Vandenberghe, who used the same system, identified the existence of 

severe dead-zone in the rotary motors [13]. The transient responses in this study give 

further evidence of dead-zone whose influence becomes more dominant as the 

amplitude of the input signal decreases. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 
 

6.1 Conclusions 

 

As presented in section 1.3, the objective of this thesis was to design and implement an 

experimental hydraulic actuated robot manipulator that simulates robot joint flexibility 

in the specific range of frequencies and damping ratio with the ability of changing the 

joint flexibility’s parameters. In other words, the main purpose of this research project 

was to analyze and control the “hydraulic simulator” in order to follow the signals 

produced by the “function generator” in a specific range of frequencies and damping 

ratio. 

 

The attempt to apply closed-loop control was partially successful in the frequency 

response tests but when the transient response tests were conducted, the system behaved 

very erratically.  

    

The approach for closed-loop control was based on classical PI techniques and clearly 

demonstrated that another more complex control strategy should be contemplated.  

Trying to control acceleration is a major challenge in the first place due to noise in the 

output signals. This when combined with the nonlinear behavior of the motor, severely 

limited the classical control approach. The study did, however, show that it was  

possible to compensate for poor transducer performance in the low frequency ranges, a 

problem which would have to be addressed regardless of the control approach used. 
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The open-loop transient response tests did not show the same erratic behavior as the 

closed-loop tests did. As a result only open-loop transient studies could be conducted. 

From the results presented in Chapter 5, it is evident that the addition of the 

compensators did little to improve the actual waveform of the experimental setup. Quite 

simply, nonlinearities “swamped” the behavior of the rotary motor.  It was believed that 

the main contributing factor to these nonlinearities was due to dead-zone and quite 

possibly, the presence of stiction, hysteresis or material damping in the rotary motor. 

 

The results shown in Chapter 5 are in fact acceptable given that the amplitude and 

frequency of the desired waveform can be reproduced by the hydraulic joint. There is a 

time delay in some of the peaks (further evidence of the dead-zone) and some distortion 

of the actual waveform but even these are considered acceptable for the prime users of 

the flexible joint simulator.  Further, the range of frequencies (5 to 15 Hz) and damping 

ratio (0.1) was quite acceptable for flexible joint studies. Indeed, the ability to readily 

change these parameters is something that no known joint commercial simulator can 

readily do at present time.   

 

In summary, although the ability of the proposed hydraulic joint to reproduce the 

desired waveforms was limited, it was concluded that the system was acceptable to 

conduct control studies for flexible joint robot manipulators.  
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6.2 Future Work 

 

The objective of this research project was to initiate a study on the dynamic 

performance and to apply a control scheme to a robot manipulators with joint 

flexibilities by using a hydraulic actuated manipulator. 

 

Since nonlinearities usually occur in hydraulic systems, the idea of utilizing more 

complex control strategies, especially nonlinear compensators rather than the classic 

strategies, could extend the acceptable performance range of the simulator. It is 

suggested that future studies involve more sophisticated controllers to overcome the 

effects that were experienced in this study if the existing components and transducers 

cannot be replaced. 

 

It is further recommended that high precision rotary motors and measuring instruments 

such as accelerometers be used to replace those used in this study. This would expand 

the bandwidth of the hydraulic system, would reduce the noise associated with the 

measurements, and would increase the quality of the frequency response diagrams. 

Replacement would improve the capabilities of the hydraulic simulator; therefore a 

greater range of flexible joint robot manipulators could be studied.   

 

Further to study of the joint flexibility in robot manipulators which was the purpose of 

this study, the hydraulic simulator can be used as a “general simulator” which is capable 

of following any input signals in a specific range of frequencies.    
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