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1 Introduction

One of the most interesting properties of supersymmetric gauge theories is the existence

of non-perturbative S-dualities that relate their weak- and strong-coupling behaviour.1

Recently, there has been much progress in understanding these dualities in conformally

invariant N = 2 supersymmetric gauge theories in four dimensions, especially following

the seminal work of Gaiotto [2]. In that work, the four-dimensional N = 2 theories were

realized as compactifications of the six-dimensional (2, 0) theory on a punctured Riemann

surface Σ. One of the important results of this approach was to identify the complex

structure moduli space of Σ with the space of gauge couplings modulo the action of the

S-duality group. For linear quiver gauge theories in the weak coupling limit, the Riemann

surface degenerates into a collection of three-punctured spheres connected by long thin

tubes, and the sewing parameters are identified with the bare coupling constants of the

superconformal gauge theory.

This approach is fruitfully contrasted with the original solution of N = 2 gauge theo-

ries due to Seiberg and Witten [3, 4], where the quantum effective action on the Coulomb

branch is obtained from an algebraic curve describing a Riemann surface, and an associated

holomorphic differential. For generic vacuum expectation values of the scalar fields in the

adjoint gauge multiplet, the quantum effective action describes a N = 2 supersymmetric

theory with gauge group U(1)r, where r is the rank of the original non-abelian gauge group.

The matrix of effective couplings τij between the various U(1)’s is identified with the period

matrix of the Seiberg-Witten curve. For gauge groups with large r, it becomes difficult to

use the Seiberg-Witten curve and the corresponding differential to do explicit calculations.

In such cases, however, it is possible to make progress using equivariant localization meth-

ods [5–8] which allow one to compute the prepotential, the dual periods and the period

matrix of the effective action order by order in an instanton expansion. Interestingly, the

1For a recent review we refer the reader to [1].

– 1 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
8

instanton counting parameters in this expansion have a natural interpretation as the bare

coupling constants of the superconformal gauge theory [2, 9].

Whichever approach one uses to study the low-energy theory, a natural question to ask

is whether the non-perturbative S-duality group can be used to solve for the effective action.

For N = 2? theories (i.e. mass deformed N = 4 theories) with unitary gauge groups it has

been shown [10–13] that the constraints coming from S-duality take the form of a modular

anomaly equation whose solution allows one to reconstruct the prepotential on the Coulomb

branch order by order in the mass of the adjoint hypermultiplet to all orders in the gauge

coupling. To achieve this result one has to organize the low-energy effective prepotential

as a semi-classical expansion in inverse powers of the vacuum expectation values of the

scalar fields in the gauge vector multiplet and realize that the coefficients of this expansion

satisfy a recursion relation whose solution can be written in terms of quasi-modular forms

of PSL(2,Z) acting on the bare gauge coupling. These modular forms resum the instanton

series and therefore provide an exact result. It is of particular importance that N = 2?

theories are characterized by the absence of any renormalization of the coupling constant,

even non-perturbatively; thus, the bare coupling is the only coupling that is present in the

effective theory. This procedure has been applied also to N = 2? theories with arbitrary

gauge groups in [14–16], where it has been observed that for non-simply laced algebras the

effective prepotential is expressed in terms of quasi-modular forms of congruence subgroups

of PSL(2,Z).

In this work we study N = 2 gauge theories with gauge group SU(N) and 2N fun-

damental flavours, generalizing the analysis of the SU(3) gauge theory with six flavours

recently presented in [17]. When all flavours are massless, these SQCD theories are super-

conformal. However, unlike the case of N = 2? theories, the bare gauge coupling in N = 2

SQCD is renormalized by quantum corrections which arise from a finite 1-loop contribution

as well as from an infinite series of non-perturbative contributions due to instantons. In

general these corrections are different for the various U(1) factors and thus one expects to

find several effective couplings in the low-energy theory.

This paper is divided into two parts. In the first part, we work in the limit where

all flavours are massless, and calculate various observables of the effective theory such as

the prepotential, the period integrals and the period matrix, using equivariant localization.

In particular, we work in a special locus of the Coulomb branch which possesses a ZN
symmetry and which we call “special vacuum” [18]. In this special vacuum, the period

matrix has fewer independent components than it does at a generic point of the moduli

space. More precisely, when all quantum corrections are taken into account there are
[
N
2

]
distinct matrix structures which correspond to

[
N
2

]
renormalized coupling constants in the

effective theory.2 Of course, at leading order such renormalized couplings are all equal to

the bare coupling, but when 1-loop and instanton corrections are taken into account, they

begin to differ from one another. Given that the S-duality group naturally acts on the bare

coupling, an obvious question to ask is how S-duality is realized on the various parameters of

the quantum theory. The answer we provide in this paper is that on each individual effective

2Here [ · ] denotes the floor function.
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coupling S-duality acts as a generalized triangle group (see for example [19]). Moreover,

using this insight, we propose a non-perturbatively exact relation between the bare coupling

and the renormalized ones that takes a universal form in terms of the j-invariants of the

triangle groups. We perform several successful checks of this proposal by comparing the

instanton contributions predicted by the exact relation with the explicit results obtained

from multi-instanton localization. As a further evidence in favour of our proposal, we show

that the action of S-duality on the renormalized couplings is fully consistent with the action

on the bare coupling as obtained from Gaiotto’s analysis [2]. We believe that our results,

and in particular the exact relation we propose, can play an important role in the study

of these SQCD theories at strong coupling [20]. This is because the j-invariants have a

well-understood behaviour near those cusp points where the coupling constants become

large and the usual weak-coupling expansion cannot be used.

In the second part of the paper we consider the case where the fundamental flavour

hypermultiplets are massive. For generic masses the ZN symmetry of the special vacuum

is broken; to avoid this, we restrict our analysis to ZN -symmetric mass configurations so

that the modular structure uncovered in the massless limit gets deformed in a natural and

smooth manner. In particular, with these ZN -symmetric mass configurations we find that

the
[
N
2

]
matrix structures of the massless theories are preserved, while the

[
N
2

]
effective

couplings simply receive further contributions proportional to the hypermultiplet masses.

Building on earlier literature [21, 22], this analysis was already carried out for the SU(2)

theory in [11, 12], where it was shown that the prepotential can be written in terms

of quasi-modular forms of the modular group PSL(2,Z). Moreover, after expanding the

prepotential in powers of the flavour masses, it was realized that the coefficients of this

expansion satisfy a modular anomaly equation that takes the form of a recursion relation,

similar to that of the N = 2? case. These results have been recently extended to the SU(3)

theory with six massive flavours in [17], where it has been shown that the prepotential, the

dual periods and the period matrix are constrained by S-duality to obey again a recursion

relation that can be written as a modular anomaly equation. In this case, the solutions of

this equation are quasi-modular forms of Γ1(3), which is a subgroup of the S-duality group

that is also a congruence subgroup of PSL(2,Z).3 Here we further extend these results

to the general SU(N) theory with 2N massive flavours and show that the constraints

arising from S-duality can always be written as a recursion relation for any N . However,

beyond this step, the analysis crucially depends on the arithmetic properties of the S-

duality group. It turns out that for N = 2, 3, 4 and 6, the S-duality group acting on each

quantum coupling always has a subgroup which is a congruence subgroup of PSL(2,Z).

For these theories, which we call arithmetic, the discussion proceeds along the same lines

described in [17] for the SU(3) theory, with one important modification: in the higher rank

cases, the S-duality constraints are written as coupled modular anomaly equations. These

coupled equations are nevertheless integrable and their solutions turn out to be polynomials

in meromorphic quasi-modular forms of congruence subgroups of PSL(2,Z). For all non-

3The relevance of Γ1(3) and of its modular forms for the effective SU(3) theory with six flavours was

already observed long ago in [23–25].
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arithmetic theories, instead, S-duality acts as generalized triangle groups and one would

need to use their automorphic forms to solve for various observables. Here, we restrict our

analysis only to the massive arithmetic cases, leaving the study of the non-arithmetic cases

for the future.

The paper ends with a discussion of the results and some future directions for work,

and with two technical appendices.
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Part I

Massless N = 2 SQCD and duality groups

In this part, we discuss N = 2 SQCD theories with massless fundamental hypermultiplets.

2 Massless superconformal QCD theories and special vacuum

We begin by reviewing the main features of N = 2 SQCD theories with unitary gauge

groups U(N). These theories are superconformal invariant if the number of flavours is 2N .

As usual, we can combine the bare Yang-Mills coupling g and the θ-angle into the

complex variable

τ0 =
θ

2π
+ i

4π

g2
, (2.1)

so that the instanton counting parameter q0 is defined as

q0 = e2πiτ0 . (2.2)

The low-energy effective dynamics of these N = 2 theories is completely determined by

the prepotential, which we now describe.

2.1 The prepotential

The prepotential F admits a decomposition into classical (tree-level), perturbative (1-loop),

and non- perturbative (instanton) contributions:

F = Fclass + F1-loop + Finst . (2.3)

2.1.1 Classical contribution

For the U(N) gauge theory the classical prepotential is given by

Fclass = iπτ0 tr 〈A〉2 = iπτ0

N∑
u=1

A2
u , (2.4)

where the vacuum expectation value of the adjoint scalar A is

〈A〉 = diag (A1, · · · , AN ) . (2.5)

For unitary gauge groups the Au’s are unrestricted, while for special unitary groups we

have to impose the tracelessness condition

N∑
u=1

Au = 0 . (2.6)

Throughout this paper we satisfy this constraint by taking

Au =

{
au for u = 1, · · · , N − 1 ,

− (a1 + · · ·+ aN−1) for u = N .
(2.7)

When referring to the SU(N) theory we will use the indices i, j, · · · ∈ {1, · · · , N − 1} to

label the Cartan directions.
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2.1.2 Perturbative contribution

The perturbative (1-loop) contribution to the prepotential is independent of the bare cou-

pling τ0 and is given by

F1-loop =
N∑

u 6=v=1

γ(Au −Av)− 2N
N∑
u=1

γ(Au) , (2.8)

where (see for example [26])

γ(x) = −x
2

4
log

(
x2

Λ2

)
. (2.9)

Here Λ is an arbitrary mass scale, which actually drops out from F1-loop due to conformal

invariance.

2.1.3 Instanton contribution

The non-perturbative contributions to the prepotential can be explicitly calculated using

the methods of equivariant localization [5–8] (see also [27] for technical details) and are of

the form

Finst. =

∞∑
k=1

Fk(ur) q
k
0 (2.10)

where

ur =

N∑
u=1

A r
u (2.11)

for r = 1, · · · , N are the Casimir invariants of the gauge group. The function Fk represents

the k-instanton contribution to the prepotential and, on dimensional grounds, must have

mass dimension 2.

2.2 The special vacuum

In the following we will study the massless SQCD theories in the so-called special vac-

uum [18] which is defined as the locus of points on the moduli space where

ur = 0 for r = 1, · · · , N − 1 . (2.12)

For SU(N) theories the condition u1 = 0 is nothing but (2.7), while the other conditions

select vacuum configurations with special properties.4

The special vacuum restriction (2.12) can be implemented by choosing the vacuum

expectation values of the adjoint SU(N) scalar as

ai = ωi−1a (2.13)

for i = 1, · · · , N − 1, where

ω = e
2πi
N . (2.14)

We thus see that the special vacuum can be parametrized by a single scale a and that it

possesses a ZN symmetry.

4In the SU(2) theory there is clearly only one condition, namely u1 = 0 and the notion of special vacuum

does not apply in this case. Despite this fact, most of the subsequent formulas formally hold also for SU(2).
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2.3 Observables in the special vacuum

We now discuss the properties of some observables in the special vacuum, starting with

the prepotential.

2.3.1 The prepotential

In the special vacuum several simplifications occur when one evaluates the prepotential.

For instance, the classical prepotential (2.4) vanishes and the ZN -invariance of the special

vacuum implies that for large a the prepotential has a semi-classical expansion of the form

F =

∞∑
n=1

fn
(
q0
)

anN
. (2.15)

The coefficients fn’s must have mass dimension equal to (nN + 2); however, since the

flavours are massless, the only available scale is a and it is not possible to give fn the re-

quired mass dimensions. Thus the prepotential identically vanishes in the special vacuum.5

2.3.2 Dual periods

In the SU(N) theory the dual periods aDi are defined by

aDi =
1

2πi

∂F

∂ai
. (2.16)

As in the special vacuum all ai’s are proportional to each other, this is also true of the dual

periods. For example one can verify that

aDi = −
(
ω + ω2 + · · ·+ ωi

)
aDN−1 (2.17)

for any i = 1, · · · , N − 1. Therefore, in the special vacuum without any loss of generality

we can choose the following conjugate pair of variables: (aDN−1, a1). To simplify notation,

we will omit the subscripts and denote these just by (aD, a).

The classical contribution to aD is given by

aDclass = τ0 (a1 + a2 + · · ·+ 2aN−1)

= cN τ0 a , (2.18)

where the second line follows upon using the special vacuum values (2.13) which lead to

cN =
(1− ω)

ω2
. (2.19)

The classical dual period receives both 1-loop and instanton corrections, even in the mass-

less theory. Physically, this corresponds to a non-perturbative redefinition of the bare

coupling constant τ0 into a new renormalized coupling constant that we denote τ . This

5The case N = 2 is clearly an exception. Indeed, the prepotential of the massless SU(2) theory is

proportional to a2, which has the right mass dimension and is Z2-symmetric (see for instance [11, 12]).
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renormalized coupling constant is defined in such a way that the quantum corrected dual

period takes the simple form

aD = cN τ a , (2.20)

namely the same classical expression (2.18) with τ0 replaced by τ . The latter admits the

following non-perturbative expansion

2πi τ = 2πi τ0 + iπ + log b0 +
∞∑
k=1

bk q
k
0 . (2.21)

In this expression, the logarithmic term represents a finite contribution at 1-loop, while

the term proportional to qk0 is the k-instanton contribution.

2.3.3 The period matrix

In the SU(N) theory the period matrix Ω is the (N − 1)× (N − 1) matrix defined as

Ωij =
1

2πi

∂2F

∂ai∂aj
. (2.22)

The classical part of the period matrix is simply given by

Ωclass = τ0 C (2.23)

where

C =


2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 . . . 2

 (2.24)

is the Cartan matrix corresponding to our parametrization of SU(N).

For N > 3 this simple structure is lost [24, 28] when perturbative and instanton

contributions are taken into account, even in the special vacuum. For example, at 1-loop

from (2.8) one finds

Ω1-loop =
i

π

(
log(2N) C + G

)
(2.25)

where the matrix elements of G are given by [24]

Gii = 2 log sin

(
iπ

N

)
,

Gij = log sin

(
iπ

N

)
+ log sin

(
jπ

N

)
− log sin

(
|i− j|π
N

)
for i 6= j .

(2.26)

For N = 3 it is easy to see that G is proportional to the Cartan matrix C, but this relation

does not hold for N > 3. Indeed, a closer inspection of (2.26) reveals that it is possible to

identify
[
N
2

]
different matrix structures. A similar result is found even after the instanton

contributions are taken into account. Thus, in general the complete period matrix Ω can

be written as

Ω = τ1 M1 + τ2 M2 + · · ·︸ ︷︷ ︸[
N
2

]
terms

(2.27)

– 8 –
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where theMk’s are independent matrix structures and the τk are distinct complex couplings

that characterize the effective theory. Of course, one could in principle use any basis of

matrices Mk to write Ω, but a particularly insightful choice is the one that “diagonalizes”

the action of the S-duality group. In such a basis, under S-duality each Mk stays invariant

and each τk transforms individually as

τk → −
1

λk τk
(2.28)

for some positive λk. We will explicitly show in a series of examples that the spectrum of

λk is given by

λk = 4 sin2

(
k π

N

)
. (2.29)

Note that for N ∈ {2, 3, 4, 6} all the λk’s take integer values. We call these cases arithmetic.

If instead N 6∈ {2, 3, 4, 6}, then the λk’s are not necessarily integer. We refer to the latter

as the non-arithmetic cases. Moreover, we will find that for any N the coupling τ1 in (2.27)

coincides with the coupling τ that appears in the expression (2.20) for the dual period aD.

In order to show these facts, we now turn to a detailed discussion of the S-duality group.

3 The S-duality group

The S-duality group of N = 2 SQCD has been derived in [29]. Here, we focus on the

massless case in the special vacuum, for which the Seiberg-Witten curve takes the following

hyperelliptic form

y2 = (xN − uN )2 − hx2N . (3.1)

Here uN is the only non-zero Coulomb modulus labeling the special vacuum and h is a

function of the gauge coupling given by (see for example [17, 27])

h =
4q0

(1 + q0)2
. (3.2)

The Seiberg-Witten curve degenerates when its discriminant vanishes and from (3.1) it

is easy to see that this happens at h = 0, 1,∞. The monodromies around these points

generate the S-duality group [29]. We will take this to be our working definition of the

S-duality group in what follows. In section 5 we will rederive this result by a completely

different method.

We begin by choosing a canonical homology basis of cycles for the U(N) theory de-

scribed by (3.1), which we denote by hatted variables. Specifically, we introduce α̂ and β̂

cycles with the following intersections

α̂u ∩ α̂v = β̂u ∩ β̂v = 0 ,

(
α̂u ∩ β̂v

)
=


1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1

 ,
(3.3)

– 9 –
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for u, v = 1, · · · , N . These cycles are not linearly independent since

N∑
u=1

α̂u = 0 and
N∑
v=1

β̂v = 0 . (3.4)

In the special vacuum there is a natural ZN symmetry that rotates this basis clockwise

and is generated by

Φ :

{
α̂u −→ α̂u−1 ,

β̂v −→ β̂v−1 .
(3.5)

Physical observables are insensitive to this ZN rotation.

The action of S- and T -transformations on this basis of cycles has been determined

in [29] from the monodromy around the points h = ∞ and h = 0, respectively, and is

given by

S :

α̂u → β̂u ,

β̂v → α̂v−1 ,
and T :

α̂u → α̂u ,

β̂v → β̂v + α̂v − α̂v−1 .
(3.6)

In the SU(N) theory we can choose the independent cycles as follows:

αi = α̂i and βj =

j∑
i=1

β̂i (3.7)

for i, j = 1, · · · , N − 1. Using (3.3) one can easily check that this basis is symplectic, in

the sense that αi ∩ αj = βi ∩ βj = 0 and αi ∩ βj = δij .

The restriction of the S and T transformations to the SU(N) basis (3.7) follows directly

from (3.6). If we represent them as (2N − 2)× (2N − 2) matrices acting on the (2N − 2)

vector
(
β
α

)
, we find

S =

(
0 B

−(B t)−1 0

)
and T =

(
1l C
0 1l

)
(3.8)

where

B =


−1 −1 −1 · · · −1

0 −1 −1 · · · −1

0 0 −1 · · · −1
...

...
...

. . .
...

0 0 0 · · · −1

 , (3.9)

and C is the Cartan matrix (2.24). It is interesting to observe that

S2 = V , (3.10)

where V is an Sp(2N − 2,Z) matrix that implements the ZN transformation (3.5) on the

SU(N) basis of cycles (αi, βj), given by

V =

(
(V t)−1 0

0 V

)
(3.11)

– 10 –
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where

V =


−1 −1 −1 · · · −1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (3.12)

Notice that VN = 1. Such a transformation leaves the period matrix invariant and is a

symmetry of the theory. This means that S effectively squares to the identity.

3.1 S-action on period integrals and gauge coupling

From the transformations (3.8) on the homology cycles we can straightforwardly deduce

how S and T act on the periods ai and their duals aDj , which are the integrals of the Seiberg-

Witten differential associated to the curve (3.1) over the cycles αi and βj respectively.

Focusing in particular on the S-transformation, we find

S(aDj ) =
(
B · a

)
j
,

S(ai) = −
(
(B t)−1 · aD

)
i

(3.13)

where B is the matrix in (3.9). Thus, for our conjugate pair of variables (aDN−1, a1) ≡ (aD, a)

we have

S(aD) = −aN−1 = − 1

ω2
a ,

S(a) = aD1 = −ω aD ,
(3.14)

where in each line the second equality follows upon using the special vacuum relations (2.13)

and (2.17). As expected, the period and dual period integrals are exchanged under

S-duality.

This result is quite useful since it allows us to deduce how S-duality acts on the gauge

coupling τ . Indeed, if we take into account the link (2.20) between aD and a, and apply to

it the S-duality transformations, we find

S(aD) = −cN S(τ)ω aD = −c2N S(τ) τ ω a . (3.15)

Consistency with (3.14) implies that

τ → − 1

λ τ
(3.16)

with

λ = −c2N ω3 = −(1− ω)2

ω
= 4 sin2 π

N
. (3.17)

Here we have used (2.19) and (2.14). This is precisely the case k = 1 of the general

formula (2.29), and thus we conclude that the coupling τ that appears in the relation

between a and aD is actually τ1, according to our definition in (2.28). As we have already

noticed, in the arithmetic cases N ∈ {2, 3, 4, 6}, the constant λ in (3.17) takes integer values.
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4 The arithmetic theories

In this section, we collect the results obtained from localization calculations for the lower

rank SQCD models and accumulate evidence for our conjecture regarding the form of

the period matrix and the S-duality transformations of the quantum couplings that we

anticipated at the end of section 2.3. While the SU(2) and SU(3) theories have already

been studied in the literature, for completeness we start by briefly recalling the main results

for these cases.

4.1 N = 2

In this case, the period matrix is just a complex constant given by

Ω = 2τ1 (4.1)

where τ1 is the only effective coupling of this theory. Using multi-instanton calculations

(see for example [9, 27]), one can show that

2πi τ1 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q20 +

23

192
q30 · · · , (4.2)

which can be inverted order by order to give

q0 = −16 q1 (1 + 8 q1 + 44 q21 + · · · ) = −16

(
η(4τ1)

η(τ1)

)8

, (4.3)

where q1 = e2πiτ1 and η is the Dedekind η-function. The non-trivial relation between q0
and the effective coupling for the SU(2) theory was first noticed in [30, 31].

The analysis of the previous section shows that under the S-transformation, the period

matrix transforms under a symplectic Sp(2,Z) transformation:6

S : Ω→ − 1

Ω
. (4.4)

From this it follows that the effective coupling τ1 transforms as

S : τ1 → −
1

4τ1
, (4.5)

in agreement with (2.28) since λ1 = 4 for N = 2. Using this in (4.3), we get

S : q0 →
1

q0
. (4.6)

Furthermore, by computing the dual period we find

aD = 2τ1a (4.7)

in agreement with the general formula (2.20) for ω = −1.

6See section 5.1 for a more detailed discussion of S-duality for the SU(2) theory.
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4.2 N = 3

In this case the period matrix turns out to be proportional to the SU(3) Cartan matrix

Ω = τ1

(
2 1

1 2

)
(4.8)

where τ1 has the following instanton expansion (see for example [17, 27])

2πi τ1 = log q0 + iπ − log 27 +
4

9
q0 +

14

81
q20 +

1948

19683
q30 · · · . (4.9)

As for the SU(2) case, the SU(3) theory in the special vacuum has a single τ1-parameter even

after the quantum corrections are taken into account. On inverting the above expansion,

we get

q0 = −27 q1 (1 + 12 q1 + 90 q21 + · · · ) = −27

(
η(3τ1)

η(τ1)

)12

(4.10)

where, as before, q1 = e2πiτ1 . Again, we have provided a non-perturbatively exact expres-

sion in terms of η-quotients. Using the Sp(4,Z) matrices derived in section 3, one can check

that S-duality leaves the SU(3) Cartan matrix invariant and acts on τ1 as [17]:

S : τ1 → −
1

3τ1
. (4.11)

in agreement with (2.29) since λ1 = 3 for N = 3; using this in (4.10), we easily see

again that

S : q0 →
1

q0
. (4.12)

Finally, on computing the dual period in this case we find

aD = i
√

3τ1a (4.13)

which confirms the general formula (2.20) since for SU(3) ω = e
2πi
3 .

4.3 N = 4

We now turn to the SU(4) theory. As always, the classical period matrix is proportional

to the Cartan matrix of the gauge Lie algebra but this time another independent matrix

structure appears when one takes into account the 1-loop and the instanton corrections.

We have explicitly checked up to three instantons that it is possible to write the quantum

period matrix as

Ω = τ1M1 + τ2M2 , (4.14)

where M1 and M2 are two 3× 3 matrices given by

M1 =

 1 1 0

1 2 1

0 1 1

 and M2 =

 1 0 1

0 0 0

1 0 1

 , (4.15)
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and the two couplings τ1 and τ2 have the following instanton expansions

2πi τ1 = log q0 + iπ − log 64 +
3

8
q0 +

141

1024
q20 +

311

4096
q30 + · · · , (4.16a)

2πi τ2 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q20 +

23

192
q30 + · · · . (4.16b)

On inverting these expansions we find

q0 = −64 q1 (1 + 24 q1 + 300 q21 + · · · ) = −64

(
η(2τ1)

η(τ1)

)24

, (4.17a)

q0 = −16 q2 (1 + 8 q2 + 44 q22 + · · · ) = −16

(
η(4τ2)

η(τ2)

)8

, (4.17b)

where we have introduced the notation

qk = e2πiτk (4.18)

for k = 1, 2. Once again, as for N = 2 and 3, the bare coupling can be expressed as a

quotient of η- functions of the renormalized couplings. Notice that the q0-expansion of τ2 is

the same as that of the effective coupling of the SU(2) theory (see (4.2)). Although this co-

incidence may appear surprising at first glance, it is actually a consequence of the fact that

this pair of couplings transform in the same way under S-duality. We will explicitly show

this below, but this result can be anticipated by noticing that the general formula (2.29)

implies that λ2 for N = 4 and λ1 for N = 2 are both equal to 4.7

Let us now consider the action of S-duality on the period matrix (4.14). Using the

Sp(6,Z) transformations (3.8), we find that M1 and M2 are left invariant while

S : τk → −
1

λk τk
(4.19)

with λ1 = 2 and λ2 = 4, exactly as predicted by (2.28) and (2.29). Using these transfor-

mations in (4.17), we can check also in this case that

S : q0 →
1

q0
. (4.20)

By computing the dual period aD ≡ aD3 in terms of a ≡ a1, we find

aD = (i− 1)τ1a (4.21)

in agreement with (2.20) for ω = i.

4.4 N = 6

We now turn to the last arithmetic case, namely the SU(6) theory. We have verified using

localization techniques up to two instantons that in the special vacuum the period matrix

can be written as a sum of three independent structures as follows

Ω = τ1M1 + τ2M2 + τ3M3 , (4.22)

7Indeed, for all even N , λN
2

= 4.
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where

M1 =


1
3

1
2

1
3 0 −1

6
1
2 1 1 1

2 0
1
3 1 4

3 1 1
3

0 1
2 1 1 1

2

−1
6 0 1

3
1
2

1
3

 , M2 =


1 1

2 0 1 1
2

1
2 1 0 1

2 1

0 0 0 0 0

1 1
2 0 1 1

2
1
2 1 0 1

2 1

 , M3 =


2
3 0 2

3 0 2
3

0 0 0 0 0
2
3 0 2

3 0 2
3

0 0 0 0 0
2
3 0 2

3 0 2
3

 (4.23)

and

2πi τ1 = log q0 + iπ − log 432 +
5

18
q0 +

485

5184
q20 + · · · , (4.24a)

2πi τ2 = log q0 + iπ − log 27 +
4

9
q0 +

14

81
q20 + · · · , (4.24b)

2πi τ3 = log q0 + iπ − log 16 +
1

2
q0 +

13

64
q20 + · · · . (4.24c)

We easily recognize that the q0-expansion of τ2 is the same as that of the effective coupling

of the SU(3) theory (see (4.9)), and that the q0-expansion of τ3 is the same as that of

the coupling τ2 appearing in the SU(4) theory which, as we already remarked, is also the

same as the coupling τ1 of the SU(2) theory. Again these facts are a consequence of the

symmetries of the formula (2.29) which imply that these pairs of couplings have the same

transformations under S-duality.

Inverting the expansions (4.24), we obtain

q0 = −432 q1 (1 + 120 q1 + 4140 q21 + · · · ) , (4.25a)

q0 = −27 q2 (1 + 12 q2 + 90 q22 + · · · ) = −27

(
η(3τ2)

η(τ2)

)12

, (4.25b)

q0 = −16 q3 (1 + 8 q23 + 44 q23 + · · · ) = −16

(
η(4τ3)

η(τ3)

)8

, (4.25c)

where we have used the notation (4.18). We observe that there appears to be no simple way

to express q0 in terms of η-quotients of τ1. However, we will revisit this issue in section 5

where we will provide for all SU(N) models a universal formula for q0 in terms of modular

functions of any renormalized couplings τk, thus including also the τ1 of the SU(6) theory.

Let us now consider the S-duality action on the period matrix (4.22). Under the

Sp(10,Z) transformation given in (3.8), we find that the three matrices (4.23) remain

invariant while the couplings transform as

S : τk → −
1

λk τk
(4.26)

with λ1 = 1, λ2 = 3 and λ3 = 4 in full agreement with (2.29). Exploiting the η-quotient

expressions in (4.25), one can easily prove that the S-transformations of τ2 and τ3 lead

again to

S : q0 →
1

q0
. (4.27)
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Finally, by computing the dual period aD ≡ aD5 in terms of a ≡ a1 in the special vacuum,

we obtain

aD = −aτ1 (4.28)

which confirms once more (2.20), since for SU(6) we have ω = eπi/3.

Besides the S-duality action we should also consider the T-duality transformation of

the effective couplings which is simply8

T : τk → τk + 1 . (4.29)

Thus the previous results can be summarized by saying that in the arithmetic cases the

duality transformations act as fractional linear transformations on each of the τk and form

a subgroup of PSL(2,R) generated by

S =

(
0 1/

√
λk

−
√
λk 0

)
and T =

(
1 1

0 1

)
(4.30)

with λk ∈ {1, 2, 3, 4} as given by (2.29). We call this subgroup Γ∗(λk). For λk = 1 this is

the usual modular group PSL(2,Z).

5 S-duality and j-invariants for the arithmetic theories

In this section we collect the results obtained so far and explain how our definition of S-

duality fits in the general discussion presented in [2]. If we describe the SU(N) theory in

the special vacuum by the Seiberg-Witten curve in the Gaiotto form

xN =
uN

tN−1(t− 1)(t− q0)
, (5.1)

then S-duality can be described as an action on the (x, t) variables given by [2]

S : (x , t)→
(
−t2x , 1

t

)
, (5.2)

which effectively amounts to an inversion of the bare coupling:9

S : q0 →
1

q0
. (5.3)

We have already seen in various explicit examples that the rule (5.3) is implied by the S-

duality transformations of the renormalized couplings τk of the arithmetic theories, namely

S : τk → −
1

λk τk
(5.4)

8See section 5.1 for the SU(2) case, which has a distinct T -transformation.
9The curve (5.1) retains its form if (5.3) is accompanied by uN → (−1)NuN/q0.
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with λk ∈ {2, 3, 4}. Actually, all these cases can be combined together by observing that

the η-quotients in (4.3), (4.10), (4.17), (4.25) can be written as

q0 = −(λk)
6

λk−1

(
η(λk τk)

η(τk)

) 24
λk−1

, (5.5)

from which the inversion rule (5.3) immediately follows upon using the transformation

properties of the Dedekind η-function under (5.4). The only case that is not covered by

this formula is the relation between q0 and τ1 in the SU(6) theory, given by the first line

of (4.25), for which there seems to be no simple expression in terms of η-quotients.10 How-

ever, the argument based on the transformation properties of the curve (5.1) is completely

general; thus, also in this case the S-duality transformation τ1 → −1/τ1 should imply, for

consistency, an inversion of q0. We will solve this problem in the following subsections,

and in doing so we will actually find a new way of writing a non-perturbatively exact re-

lation between the bare coupling and the effective ones. This will turn out to be valid not

only in all arithmetic cases, including the SU(6) theory mentioned above, but also in the

non-arithmetic theories, thus opening the way to make further progress. Before doing this,

however, we briefly revisit the SU(2) theory in order to clarify some issues that are specific

to the N = 2 case.

5.1 The S-duality group of the SU(2) gauge theory

In the SU(2) gauge theory with four fundamental flavours there is only one renormalized

coupling constant τ1, which is related to the bare coupling constant by the non-perturbative

relation (5.5) with λ1 = 4. This might seem unfamiliar, given that it was already proven

in [4] that the S-duality group for this theory is the full modular group PSL(2,Z). We now

explain how this enhancement takes place within the formalism of our paper.

Let us rewrite the non-perturbative relation between the bare coupling and the renor-

malized coupling using the standard Jacobi θ-functions as follows:

q0 = −
(
θ2(2τ1)

θ4(2τ1)

)4

. (5.6)

One can check that this coincides with the η-quotient expression in (4.3). We have already

seen that the S-transformation acts as follows on the renormalized coupling τ1:

S : τ1 → −
1

4τ1
. (5.7)

The key point is that only for the SU(2) theory, there is a shift symmetry of the form

T : τ1 → τ1 +
1

2
. (5.8)

This is because, in the presence of massless hypermultiplets in the doublet pseudoreal

representation, the SU(2) theory enjoys a shift symmetry of the effective θ-angle:

θ → θ + π , (5.9)

10Note that in this case we have λ1 = 1 which cannot be used in (5.5).
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which implies (5.8) (see for example appendix B.3 of [32]). Defining τ̃ = 2τ1, we see

that (5.7) and the above shift become, respectively, τ̃ → −1/τ̃ and τ̃ → τ̃ + 1, which

generate the modular group PSL(2,Z) in full agreement with the original analysis of [4].

Using the non-perturbative relation (5.6), the T -transformation (5.8) leads to the fol-

lowing action on the bare coupling constant:

T : q0 →
q0

q0 − 1
. (5.10)

Note that this symmetry transformation exists only for the SU(2) gauge theory because

in all other cases the T -action leaves the bare coupling invariant, since it shifts τ by an

integer. Combined with the S-transformation, which inverts q0, one can check that

TST : q0 → 1− q0 . (5.11)

We now show that this is completely consistent with the Gaiotto formulation of the

S-duality group on the bare coupling constant. The Gaiotto curve for the SU(2) case is [2]:

x2 =
u2

t(t− 1)(t− q0)
. (5.12)

In this expression there is a symmetry between the poles at t = 0 and t = 1.11 Thus,

besides (5.2), there is another transformation which leaves the curve invariant, namely [2]

T̃ : (x , t)→ (x , 1− t) . (5.13)

It is easy to check that T̃ precisely generates the transformation (5.11). Therefore, in

the SU(2) theory the S-duality group is enhanced to the full modular group PSL(2,Z), on

account of the half-integer shift of the τ -parameter.

5.2 Renormalized couplings and j-invariants

Let us now return to the issue of finding a non-perturbative relation between the renor-

malized coupling τ1 of the SU(6) theory and the bare coupling constant. The new and key

ingredient is the Klein j- invariant function j(τ1) for the modular group PSL(2,Z) which

is the S-duality group for the τ1 coupling of the SU(6) theory. The j-invariant has the

following weak-coupling expansion

j(τ1) =
1

q1
+ 744 + 196844 q1 + 21493760 q21 + · · · , (5.14)

with q1 = e2πiτ1 , and is such that

j(i) = 1728 , j
(
e

2πi
3
)

= 0 and j(i∞) =∞ . (5.15)

The j-invariant is also called hauptmodul (see for example [33]), and is such that all rational

functions of j are modular.

11For generic N , there is a higher order pole at t = 0.
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Using (5.14), it is possible to verify that√
j(τ1)− 1728−

√
j(τ1)√

j(τ1)− 1728 +
√
j(τ1)

= −432 q1 (1 + 120q1 + 4140q21 + · · · ) (5.16)

which is precisely the same expansion appearing in the first line of (4.25) that was obtained

by inverting the instanton series. Based on this evidence, we propose that the exact relation

between the bare coupling q0 and the renormalized coupling τ1 is

q0 =

√
j(τ1)− 1728−

√
j(τ1)√

j(τ1)− 1728 +
√
j(τ1)

. (5.17)

Further evidence in support of this proposal is its behaviour under τ1 → −1/τ1. This is

derived from the monodromy of j around the fixed point of this action, i.e. τ1 = i, namely(
j(τ1)− 1728

)
→ e2πi

(
j(τ1)− 1728

)
, (5.18)

which implies the inversion of q0 as it should be.

This approach is easily generalized, since hauptmoduln have been studied for the du-

ality groups Γ∗(λk) of the arithmetic theories.12 Indeed, following [34] for λk ∈ {1, 2, 3, 4}
we introduce the functions jλk given by

j1(τ) =

(
E4(τ)

η8(τ)

)3

, (5.19a)

j2(τ) =

[(
η(τ)

η(2τ)

)12

+ 64

(
η(2τ)

η(τ)

)12
]2

, (5.19b)

j3(τ) =

[(
η(τ)

η(3τ)

)6

+ 27

(
η(3τ)

η(τ)

)6
]2

, (5.19c)

j4(τ) =

[(
η(τ)

η(4τ)

)4

+ 16

(
η(4τ)

η(τ)

)4
]2

. (5.19d)

where in the first line E4 is the Eisenstein series of weight 4. It is possible to check that

j1 coincides with the j-invariant introduced above, while j2, j3 and j4 are generalizations

thereof.13 Notice that in (5.19b)–(5.19d) we find precisely the η-quotients appearing in the

relations between the bare coupling q0 and the renormalized couplings τk. Solving for these

quotients in terms of the jλk ’s and inserting the result in (5.5), we obtain

q0 =

√
jλk(τk)− d−1λk −

√
jλk(τk)√

jλk(τk)− d−1λk +
√
jλk(τk)

(5.20)

where

d−12 = 256 , d−13 = 108 , d−14 = 64 . (5.21)

12Recall that the duality group is generated by S and T as defined in (4.30).
13Our definition of the j-invariants differ from those in [34] by a constant term, which does not affect its

invariance under the duality group.
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F′

τAk

τBk τBk

τCk

− 1√
λk

− 1
2

0

+ 1
2

+ 1√
λk

Figure 1. The fundamental domain F ′ of Γ∗(λk). The point τAk is the fixed point of the S, τBk is

the fixed point of ST−1, while τCk is the fixed point of T .

Eq. (5.20) has the same structure as (5.17); however, this is more than a formal analogy.

On consulting figure 1, one sees that the location of the corners of the fundamental domain

— which are the fixed points of the S, ST−1, and T transformations — are given by

τAk =
i√
λk

, τBk =
1

2
+

i

2

√
4− λk
λk

, τCk = i∞ , (5.22)

respectively. Furthermore, one can show that [34]

jλk(τAk ) = d−1λk , jλk(τBk ) = 0 , and jλk(τCk ) =∞ , (5.23)

which is a direct generalization of (5.15), while from the monodromy of jλk around the

fixed points of S, namely(
j(τλk)− d−1λk

)
→ e2πi

(
j(τλk)− d−1λk

)
, (5.24)

one easily deduces from (5.20) that q0 gets inverted under S-duality, as expected.

In table 1 we collect the relevant properties of these j-invariants together with their

expansions around the cusp point at infinity. In particular we observe in the last column

that the weak-coupling expansions of the bare coupling q0 are in perfect agreement with

the results presented in section 4.

6 SU(N) theories and triangle groups

We now proceed to generalize the discussion of the previous sections to SU(N) SQCD

theories with arbitrary N . To this end, we note that for the arithmetic cases — λk ∈
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λk d−1λk q-expansion of jλk 4dλk q0

1 1728 q−1 + 744 + 196884 q + 21493760 q2 + · · · q(1 + 120 q + 4140 q2 + · · · )

2 256 q−1 + 104 + 4372 q + 96256 q2 + · · · q(1 + 24 q + 300 q2 + · · · )

3 108 q−1 + 42 + 783 q + 8672 q2 + · · · q(1 + 12 q + 90 q2 + · · · )

4 64 q−1 + 24 + 276 q + 2048 q2 + · · · q(1 + 8 q + 44 q2 + · · · )

Table 1. Relevant parameters for the jλk
functions, their q-expansions, and the weak-coupling

expansion of the bare coupling q0 defined in (5.20).

λk 1 2 3 4

pk 3 4 6 ∞

Table 2. The correspondence between λk and pk according to (6.2) in the arithmetic cases.

{1, 2, 3, 4}— the S-duality groups Γ∗(λk) are particular instances of Hecke groups. A Hecke

group H(p) is a discrete subgroup of PSL(2,R) whose generators T and S satisfy

S2 = 1 ,
(
ST
)p

= 1 (6.1)

where p is an integer ≥ 3.14 When p = 3 the Hecke group is the modular group PSL(2,Z).

Using the results of section 4, it is not difficult to realize that Γ∗(λk) = H(pk) where

λk = 4 cos2
(
π

pk

)
. (6.2)

For the four arithmetic cases the correspondence between λk and pk is summarized in

table 2.

Notice that these are the only cases in which both λk and pk are integers. By combin-

ing (2.29) and (6.2), we find
1

pk
=

1

2
− k

N
(6.3)

for k = 1, . . . ,
[
N
2

]
. This formula can be formally extended beyond the arithmetic cases

where, in general, pk becomes a rational number.

The Hecke groups H(p) also exist when p 6∈ {3, 4, 6,∞}; moreover they admit a general-

ization into the so-called triangle groups [19] which we conjecture can be further extended

for rational p. In the following we show that the action of the S-duality group on the

renormalized couplings of the SU(N) SQCD theories for arbitrary N is precisely that of

a generalized triangle group. Furthermore, we show that the j-invariant or hauptmodul

associated to these triangle groups appears in the non-perturbative relation between the

bare coupling and the renormalized ones, exactly as in the arithmetic cases.

14The constraints (6.1) are usually implemented by

S : τ̃ → − 1

τ̃
and T : τ̃ → τ̃ + 2 cos

(
π

p

)
.

By setting τ̃ = 2 cos
(
π
p

)
τ , we see that on τ the group H(p) coincides with Γ∗(λ) with λ = 4 cos2(π

p
).

– 21 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
8

6.1 A short digression on triangle groups

We follow closely the presentation of [19], often considering special cases of their formulas

for our purposes.

Triangle groups are defined by a triple of integer numbers mi that form the so-called

type t = (m1,m2,m3) and correspond to the orders of the stabilizers. These groups

are Fuchsian, i.e. they are discrete subgroups of PSL(2,R). The type t defines a set of

angular parameters vi = 1/mi, which are related to deficit angles πvi at the cusps of the

corresponding fundamental domain. In what follows, we will analyze in particular types

of the form t = (2, p,∞) corresponding to the Hecke groups H(p) if p is an integer, and

to their generalizations if p is a rational number. In the latter case the associated triangle

groups are not discrete.

Let us first consider a type t = (m1,m2,∞). Using Theorem 1 of [19], we define the

parameter dt according to

d−1t = b′d′
b′−1∏
k=1

(
2− 2 cos

(
2π
k

b′

))− 1
2
cos

(
2πka′
b′

)
d′−1∏
`=1

(
2− 2 cos

(
2π`

d′

))− 1
2
cos

(
2π lc

′
d′

)

(6.4)

where the primed variables are given by

a′

b′
=

1 + v1 − v2
2

and
c′

d′
=

1 + v1 + v2
2

(6.5)

with vi = 1/mi. Introducing the rescaled variable

q̃ =
q

dt
(6.6)

with q = e2πiτ , the hauptmodul Jt for this triangle group has a weak-coupling expansion

in q̃ of the form

Jt (τ) =
1

q̃
+
∞∑
k=0

ck q̃
k . (6.7)

The coefficients ck are uniquely determined by the following Schwarzian equation

− 2
...
Jt J̇t + 3J̈t

2
= J̇t

4
(

1− v22
J2
t

+
1− v21

(Jt − 1)2
+
v21 + v22 − 1

Jt(Jt − 1)

)
. (6.8)

Here the dots denote the logarithmic τ -derivatives. The hauptmodul that will be relevant

for us is the one whose weak-coupling expansion begins with q−1. This is simply obtained

by rescaling Jt according to

jt(τ) =
Jt(τ)

dt
. (6.9)

Let us check these formulas for t = (2, 3,∞) which corresponds to H(3) = PSL(2,Z).

When p = 3 the corresponding λ is 1 as we see from table 2, and thus instead of the

subscript t we can use the subscript 1 in all relevant quantities. In this case we have

v1 =
1

2
and v2 =

1

3
, (6.10)
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and
a′

b′
=

7

12

c′

d′
=

11

12
. (6.11)

Substituting this into (6.4), we find

d−11 = 1728 , (6.12)

while the Schwarzian equation (6.8) becomes

− 2
...
J1 J̇1 + 3J̈1

2
= J̇1

4
(

32− 41J1 + 36J 2
1

36J 2
1 (J 2

1 − 1)

)
. (6.13)

Solving for J1 and rescaling the solution with d1 according to (6.9), one gets

j1(τ) = 1728 J1(τ) =
1

q
+ 744 + 196884 q + · · · (6.14)

which exactly matches the expansion of the absolute j-invariant of the modular group

(see (5.14)).

In a similar way one can check that for t = (2, p,∞) with p ∈ {4, 6,∞}, the above

formulas correctly lead to the expressions of the j-invariants and the d parameters of

the other arithmetic cases that are summarized in table 1. However, as we have already

mentioned, these same formulas can be used also for other integer values of p and formally

extended to the case in which p is a rational number. As a first example of this extension

we consider the SU(5) SQCD theory.

6.2 N = 5

Using localization techniques we have computed the prepotential and the period matrix of

the SU(5) theory with 10 massless flavours up to 2 instantons. In the special vacuum we

find that the period matrix Ω can be conveniently written as a sum of two independent

structures, in agreement with the general formula (2.27). Defining

λ1 = 4 sin2 π

5
= 4 cos2

3π

10
=

√
5

2

(√
5− 1

)
,

λ2 = 4 sin2 2π

5
= 4 cos2

π

10
=

√
5

2

(√
5 + 1

)
,

(6.15)

the quantum corrected period matrix can be written as

Ω = τ1M1 + τ2M2 (6.16)

where

M1 =



2λ1
5

1
λ1

λ1
5 −

λ21
5
√
5

1
λ1

2
λ1

√
5

λ21

λ1
5

λ1
5

√
5

λ21

2
λ1

1
λ1

− λ21
5
√
5

λ1
5

1
λ1

2λ1
5

 , M2 =



2
λ1

λ1
5

1
λ1

√
5

λ21
λ1
5

2λ1
5 − λ21

5
√
5

1
λ1

1
λ1
− λ21

5
√
5

2λ1
5

λ1
5√

5
λ21

1
λ1

λ1
5

2
λ1

 , (6.17)
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and

2πi τ1 = log q0 + iπ − log

[
25
√

5

(
2√

5− 1

)√5 ]
+

8q0
25

+
14q20
125

+ · · · , (6.18)

2πi τ2 = log q0 + iπ − log

[
25
√

5

(
2√

5 + 1

)√5 ]
+

12q0
25

+
24q20
125

+ · · · . (6.19)

This structure is less cumbersome than it appears at first sight. Indeed, one can check

that the parameters λ1 and λ2 in (6.15) are another instance of the general formula (2.29)

and that

M1 +M2 = C (6.20)

where C is the Cartan matrix of SU(5). Moreover, the classical and the logarithmic terms of

τ1 and τ2 exactly coincide with the results already reported in [24]. But, most importantly,

using the S-duality transformations described in section 3, one finds that the matricesM1

and M2 remain invariant while the effective couplings transform simply as

τ1 → −
1

λ1 τ1
and τ2 → −

1

λ2 τ2
. (6.21)

These observations show that the SU(5) theory has the same general features we encoun-

tered in the arithmetic cases. Therefore it is natural to expect that also this theory can

be understood along the same lines, and in particular that it is possible to write non-

perturbatively exact expressions for the relations between the bare coupling and the renor-

malized ones in terms of hauptmoduln. We now confirm that these expectations are correct.

Let us first put k = 2. The form of λ2 in (6.15) indicates to us that the relevant Hecke

group is H(10). Indeed, for k = 2 and N = 5, equation (6.3) yields p2 = 10 so that the

type of the triangle group is t2 = (2, 10,∞). Using this in (6.4), with a little bit of algebra

we obtain

d−1λ2 = 4

[
25
√

5

(
2√

5 + 1

)√5 ]
= 76.2385 · · · , (6.22)

while from (6.8) we get the following rescaled hauptmodul

jλ2(τ2) =
1

q2
+

19

50

1

dλ2
+

673

10000

q2
d2λ2

+
701

93750

q22
d3λ2

+ · · · (6.23)

with q2 = e2πiτ2 . This function is such that

jλ2(τA2 ) = d−1λ2 , jλ2(τB2 ) = 0 and jλ2(τC2 ) =∞ (6.24)

where τA,B,C2 are the cusp locations in the τ2-plane given by (5.22) with the current value

of λ2. Notice also that the quantity in square brackets in (6.22) also appears in the 1-loop

logarithmic term of (6.19).

These facts and our experience with the arithmetic theories indicate that it is in fact

not too bold to propose that the relation between the bare coupling q0 and the renormalized
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coupling τ2 be of the general form (5.20), namely

q0 =

√
jλ2(τ2)− d−1λ2 −

√
jλ2(τ2)√

jλ2(τ2)− d−1λ2 +
√
jλ2(τ2)

= − q2
4dλ2

(
1 +

3

25

q2
dλ2

+
6

625

q22
d2λ2

+ · · ·

)
. (6.25)

Inverting this series and taking the logarithm, we obtain

2πi τ2 = log q0 + iπ + log
(
4dλ2

)
+

12

25
q0 +

25

125
q20 + · · · (6.26)

which precisely matches the instanton expansion for τ2 in (6.19) obtained using equivariant

localization! Furthermore, from the monodromy around τA2 which is the fixed point under

S, namely (
j(τλ2)− d−1λ2

)
→ e2πi

(
j(τλ2)− d−1λ2

)
, (6.27)

we see that q0 gets inverted, in agreement with the general expectations. This analysis

shows that the action of the S-duality group on the effective coupling τ2 of the SU(5)

theory is that of the Hecke group H(10).

We now turn to k = 1 and the quantum coupling τ1. The form of λ1 in (6.15) indicates

that we are dealing with a non-Hecke group. Indeed, setting k = 1 and N = 5 in (6.3),

we get p1 = 10
3 which leads to the type t1 = (2, 103 ,∞). Despite the non-integer entry of

t1, we still proceed and apply the formulas we have described in the previous subsection

to obtain dλ1 and the hauptmodul jλ1(τ1). Specifically, from (6.4) after some algebraic

manipulations we get

d−1λ1 = 4

[
25
√

5

(
2√

5− 1

)√5 ]
= 655.8364 · · · , (6.28)

while from the Schwarzian equation (6.8) we find the following rescaled hauptmodul

jλ1(τ1) =
1

q1
+

21

50

1

dλ1
+

663

10000

q1
d2λ1

+
227

46875

q21
d3λ1

+ · · · (6.29)

with q1 = e2πiτ1 . This function is such that

jλ1(τA1 ) = d−1λ1 , jλ1(τB1 ) = 0 and jλ1(τC1 ) =∞ (6.30)

where τA,B,C1 are the three cusps in the τ1-plane (see (5.22)). Plugging these results into

our universal formula (5.20), we get

q0 =

√
jλ1(τ1)− d−1λ1 −

√
jλ1(τ1)√

jλ1(τ1)− d−1λ1 +
√
jλ1(τ1)

= − q1
4dλ1

(
1 +

2

25

q1
dλ1

+
13

5000

q21
d2λ1

+ · · ·

)
. (6.31)

Inverting this and taking the logarithm of q1, we obtain

2πi τ1 = log q0 + iπ + log
(
4dλ1

)
+

8

25
q0 +

14

125
q20 + · · · (6.32)
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which is in perfect agreement with the explicit result (6.18) derived from localization!

Again, from the monodromy around τA1 , which is the fixed point of S, we easily see that

under S-duality q0 is correctly mapped into its inverse.

In conclusion, the SU(5) theory has two non-arithmetic couplings which are related to

the bare coupling by the same universal formula that holds in the arithmetic theories.

6.3 Generalization to higher N

The analysis of the previous subsection can be extended to arbitrary values of N . Even if

the algebraic manipulations become more and more involved as N increases, it is possible

to prove that the quantum period matrix can always be written as

Ω =

[
N
2

]∑
k=1

τkMk (6.33)

where each individual coefficient τk transforms under the duality group according to

S : τk → −
1

λk τk
and T : τk → τk + 1 (6.34)

for some positive λk.

To show this, let us first consider N to be an odd number. In this case a careful

analysis [25] of the duality transformations on the homology cycles of the Seiberg-Witten

curve shows that S and T have to satisfy the constraint(
S T S−1 T

)N
= 1 . (6.35)

Given (6.34), it is not difficult to show that

S T S−1 T =

(
1 1

−λk 1− λk

)
. (6.36)

The N th power of this matrix projectively equals the identity, as required by (6.35), if

λk = 4 sin2

(
k π

N

)
= 4 cos2

(
(N − 2k)π

2N

)
(6.37)

or

λk = 4 cos2
(
k π

N

)
. (6.38)

The latter solution, however, leads to an additional constraint of the form (S T )N = −1,

which is not found in the explicit realization of the S and T transformations as Sp(2N−2,Z)

matrices [25]. This leaves us with the solution (6.37) which is precisely the spectrum we

conjectured and found to be true in all cases we have considered so far.

The matrices Mk can be given an explicit expression too. The key ingredient for this

is the matrix G appearing at 1-loop (see (2.26)). Decomposing it into its
[
N
2

]
independent

components according to

G =

[
N
2

]∑
k=1

log sin

(
k π

N

)
Gk , (6.39)
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it turns out that the matrices

Mk =

[
N
2

]∑
`=1

λk` G` = 4

[
N
2

]∑
`=1

sin2

(
k ` π

N

)
G` (6.40)

satisfy the required properties. Notice also that these matrices add up to the Cartan matrix:[
N
2

]∑
k=1

Mk = C . (6.41)

We have explicitly checked and verified these statements up to N = 15.

Having the spectrum of the allowed λk’s, from the cosine expression in (6.37) we see

that the type of the generalized triangle group that we should consider is

tk =

(
2,

2N

N − 2k
,∞
)

(6.42)

whose second entry is in general a rational number. As we have seen in the SU(5) theory,

there are no obstructions in extending the formulas (6.4), (6.7) and (6.9) to types with

a rational entry. Thus, proceeding as we described in the previous subsections, we can

determine dtk and the hauptmoduln jtk corresponding to (6.42) and use the resulting

expressions into the universal formula (5.20) to find the exact relation between the bare

coupling q0 and the renormalized one τk. If this procedure is correct, inverting this map

order by order in q0 we should retrieve the multi-instanton expansion produced by the

localization method, exactly as we showed for N = 5. In appendix B we give some details

for the case N = 7, where again we finding perfect agreement. At this point, it should be

clear that our procedure works for arbitrary values of N . We regard the complete agreement

between these two approaches as a highly non-trivial and quite remarkable check on the

consistency of the procedure.

The above results are valid also when N is even. In this case, the spectrum of λk is

still given by (6.37) while the matrices Gk and Mk are defined by (6.39) and (6.40) with

the caveat that for k = N
2 one should use

GN
2

= C −

N
2
−1∑

k=1

Gk and MN
2

= C −

N
2
−1∑

k=1

Mk . (6.43)

We have checked this is indeed the case up to N = 14.

6.4 Relation to earlier work

We now show that our analysis is consistent with earlier discussions of S-duality in con-

formal SQCD theories and that it extends them in several aspects. Consider the Seiberg-

Witten curve (3.1) for the massless case and in the special vacuum:

y2 = (xN − uN )2 − hx2N . (6.44)
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Using our results, we can write the function h in terms of the renormalized couplings

as follows:

h =
4q0

(1 + q0)2
=

1

1− dλk jλk(τk)
. (6.45)

This shows that for any N the Seiberg-Witten curve can be expressed in terms of j-

invariants. Of course, any of the renormalized couplings can be chosen as long as the

appropriate j-invariant is used.

Let us now consider the behaviour of h near the cusp points (5.22). Using (5.23), it is

easy to find that
h(τk)→∞ near τAk ,

h(τk)→ 1 near τBk ,

h(τk)→ 0 near τCk .

(6.46)

Given the meaning of the fixed points, we conclude that the monodromy of h around ∞,

1 and 0 yields, respectively, the behaviour under S, ST−1 and T . This is precisely what

we began with in section 3. There, we obtained the T and S matrices by associating them

with monodromies around the points h = 0 and h =∞, respectively, and by following their

effects on the α̂- and β̂-cycles of the Seiberg-Witten curve. It is reassuring to rederive this

very same result by studying the action of the duality group on the quantum couplings τk.

This provides additional confirmation for our proposal (5.20).

There are a number of novel elements in our discussion compared with earlier works [24,

25, 29]. To begin with, we note that (5.20) represents a non-perturbatively exact relation

between the bare and renormalized coupling constants. As we have shown in a case-by-

case study, this completely specifies the manner in which all
[
N
2

]
coupling constants are

renormalized for all SU(N) theories in the special vacuum.

Furthermore, we observe that previous investigations have focused on a specific renor-

malized coupling, which in our notation, is τ[N2 ]. For odd N , the type (6.42) corresponding

to k =
[
N
2

]
is (2, 2N,∞), which identifies the Hecke group H(2N), while for even N , the

type becomes (2,∞,∞) corresponding to the Hecke group H(∞) which is isomorphic to

Γ̃0(2). Thus, we have successfully reproduced the observations of [25, 35, 36] that these

Hecke groups are relevant when considering the duality properties of SU(N) theories. How-

ever, as we have tried to emphasize, one does not need to single out any specific quantum

coupling τk in order to understand the S-duality group. Indeed, one could choose to express

q0 in terms of any of the τk’s since the behaviour of the curve near the cusps is universal

and independent of this choice.

While this remains true away from the massless limit (provided the mass deformations

are turned on in a controlled manner), we find that expressing the observables in terms

of specific effective coupling constants τk instead of the bare coupling q0 expedites the

identification of modular structures. In particular, the choice of which effective couplings

to consider follows solely from S-duality constraints. This, in turn, makes it possible to

resum the non-perturbative data of the gauge theory into modular forms associated to

congruence subgroups of the full modular group. This analysis is the subject of part II.
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Part II

Massive N = 2 SQCD and modular

anomaly equations

In this part, we discuss N = 2 SQCD theories with 2N massive fundamental hypermulti-

plets in the special vacuum. In order to retain the ZN symmetry of the special vacuum,

we will consider only mass configurations that preserve this symmetry. Furthermore, we

will restrict our attention to the arithmetic theories. The reason for this is just a matter

of simplicity. Indeed, as we will see, in the arithmetic theories the S-duality groups Γ∗(λk)
contain subgroups that are also congruence subgroups of the modular group PSL(2,Z), so

that the analysis of the modular properties of the various observables can be done using

standard modular forms, without the need of introducing the more involved theory of au-

tomorphic forms. Since the SU(2) and SU(3) SQCD theories have already been considered

from this point of view in [11, 12] and in [17] respectively, we will discuss in detail the other

two arithmetic cases, namely N = 4 and N = 6, even if many of the subsequent formulas

are valid for arbitrary N .

7 Mass deformations and observables

While the classical prepotential (2.4) is unaffected by mass deformations, the 1-loop pre-

potential (2.8) becomes

F1-loop =

N∑
u 6=v=1

γ(Au −Av)−
N∑
u=1

2N∑
f=1

γ(Au +mf ) . (7.1)

Expanding for small masses, one obtains an expression in which the 2N fundamental masses

appear through the Casimir invariants of the flavour group, namely

T` =

2N∑
f=1

(
mf

)`
(7.2)

for ` = 1, . . . , 2N . As we mentioned above, in order not to spoil the ZN symmetry of the

special vacuum, we turn on only those flavour Casimirs that are ZN -symmetric. This can

be done by choosing the following mass configuration

mf =

{
ωf−1 m , f ∈ {1, · · · , N} ,
ωf−1 m̃ , f ∈ {N + 1, · · · , 2N} ,

(7.3)

where ω = e
2πi
N , which in turn implies

TN = N
(
mN + m̃N

)
and T2N = N

(
m2N + m̃2N

)
, (7.4)

with all other T` vanishing. In what follows, by special vacuum we will mean both the

restriction (2.12) on the scalar vacuum expectation values and the above choice of masses.
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As discussed in section 2.3, the ZN -invariance of the special vacuum implies that the

prepotential has a semi-classical expansion of the form (2.15), but now the coefficients fn
depend also on the mass invariants (7.4), namely

F =
∑
n

fn (q0;TN , T2N )

aNn
. (7.5)

The fn’s must have mass-dimension equal to (nN + 2), but since q0 is dimensionless and

TN and T2N have dimensions N and 2N respectively, it is not possible to satisfy this

requirement. As a result, in the massive case as well, the special vacuum prepotential

vanishes identically.

Let us now turn to the dual period aD. When the 1-loop and instanton corrections are

taken into account, we find

aD = cN a τ1 +
cN
2πi

∞∑
n=0

g
(1)
n (τ1;TN , T2N )

aNn+N−1
(7.6)

where cN is defined in (2.19). This form, which will be confirmed by the explicit examples

worked out in the later sections, can be argued simply using dimensional analysis because

g
(1)
n has mass dimension (Nn+N) and can be constructed out of the ZN -invariant Casimirs

TN and T2N .

Finally, we consider the period matrix Ω. Its decomposition in terms of the matrices

Mk that diagonalize the S-action remains valid

Ω = τ̃1M1 + τ̃2M2 + · · · , (7.7)

but now the coefficients acquire terms proportional to the flavour Casimirs. In particular

one finds

τ̃k = τk −
1

2πi

∞∑
n=0

(Nn+N − 1)
g
(k)
n (τk;TN , T2N )

aNn+N
(7.8)

for k = 1, · · · ,
[
N
2

]
. Detailed examples will be given in the following sections.

8 S-duality in massive SQCD

To see the implications of S-duality in massive SQCD theories, we use the same approach

described in [17] for the SU(3) theory and introduce the following combination

X := aD − cN a τ1

=
cN
2πi

∑
n

gn
aNn+N−1

(8.1)

where gn ≡ g(1)n (τ1;TN , T2N ). We now perform an S-duality transformation on the first line

of (8.1) and use (3.14), (3.16) and (3.17); after some simple algebra we get

S(X) =
1

cN ω2 τ1
X . (8.2)
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On the other hand, applying S-duality to the second line of (8.1) we get

S(X) =
cN
2πi

∑
n

S(gn)

(−ω aD)Nn+N−1
. (8.3)

If we now substitute the expression (7.6) for aD and equate the two different expressions

for S(X) order by order in the large-a expansion, we can deduce how the coefficients gn
transform under S. From the leading term, we simply find

S(g0) =
(

i
√
λ1τ1

)N−2
g0 , (8.4)

where λ1 is as in (3.17). For the higher order terms, however, we find non-linear contribu-

tions that lead to a recursion relation

S(gn) = (−1)n
(

i
√
λ1τ1

)Nn+N−2 (
gn +

1

2πiτ1

∑
m

(Nm+N − 1)gmgn−m−1 + · · ·

)
.

(8.5)

The summand on the right hand side is symmetric under m→ (n−m−1), and thus S(gn)

can be more conveniently written as

S(gn) = (−1)n
(

i
√
λ1τ1

)Nn+N−2(
gn +

(Nn+N − 2)

4πiτ1

∑
m

gm gn−m−1 + · · ·

)
. (8.6)

The presence of the (−1)n factor suggest to us that the notion of S-parity or charge under

S-duality will be a useful one. We define it to be (+1) when n is even and (−1) when

n is odd.

So far N has been generic, but to make further progress from now on we will restrict

our attention to the arithmetic cases for which λ1 is an integer. In fact, in these cases the

S- duality group Γ∗(λ1) contains a subgroup, denoted as Γ1(λ1), which is also a congruence

subgroup of PSL(2,Z). The modular forms of such a subgroup, which are well-known and

classified (see for instance [37, 38]), will play a crucial role in our analysis and will appear

in the exact expressions of the coefficients gn. To see this, let us first recall that Γ1(λ1) is

generated by T and S′ = STS−1, the latter acting on the effective coupling as

S′ : τ1 →
τ1

1− λ1τ1
. (8.7)

When λ1 is an integer, this is indeed an element of PSL(2,Z). Combining the actions of S

and T , we can easily deduce how the conjugate periods a and aD transform under S′. The

result is

S′(aD) = aD and S′(a) = a+ ω(1− ω)aD . (8.8)

Using these rules on X, from the first line of (8.1) we get

S′(X) =
1

1− λ1τ1
X , (8.9)
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while from the second line of (8.1) we find

S′(X) =
cN
2πi

∑
n

S′(gn)

((1− λ1τ1)a)Nn+N−1

(
1 +

cN
2πi(1− λ1τ1)

∑
m

gm
aNm+N−2

)Nn+N−1
.

(8.10)

Equating these two expressions, to leading order we obtain

S′(g0) = (1− λ1τ1)N−2 g0 , (8.11)

while at higher orders we get a recursion relation very similar to the one obtained before

for S, namely

S′(gn) = (1− λ1τ1)Nn+N−2
(
gn +

(Nn+N − 2)

4πiτ1

∑
m

gm gn−m−1 + · · ·

)
. (8.12)

Eq. (8.11) shows that g0 is a modular form of Γ1(λ1) with weight (N − 2). As we will see

in the specific examples in the next section, such a modular form behaves under S exactly

as required by (8.4), thus proving the consistency of our analysis. On the other hand, the

presence of non-linear terms in the right hand side of (8.12) implies that the coefficients

gn for n > 0 are quasi -modular forms of Γ1(λ1) with weight (Nn + N − 2) that satisfy a

modular anomaly equation to which we now turn.

8.1 The modular anomaly equation

In [11, 12, 17] it has been shown that in the massive SU(2) and SU(3) theories the quasi-

modularity is due to the presence of the anomalous Eisenstein series E2. The same con-

clusion has been reached for the N = 2? theories with arbitrary gauge groups in [13–15].

Therefore it is very natural to expect that for the massive higher rank SQCD theories too,

the Eisenstein series E2 plays a fundamental role.

Let us recall that E2 is a quasi-modular form of weight 2 such that

E2

(
− 1

τ1

)
= −

(
iτ1
)2(

E2(τ1) +
6

iπτ1

)
. (8.13)

In the arithmetic cases under consideration, it is always possible to form a linear combina-

tion of E2 and a modular form of Γ1(λ1), which under the S transformation τ1 → − 1
λ1τ1

transforms in a way similar to (8.13). More precisely, if we denote such a combination by

Ẽ
(λ1)
2 , we will have

Ẽ
(λ1)
2

(
− 1

λ1τ1

)
= −

(
i
√
λ1τ1

)2(
Ẽ

(λ1)
2 (τ1) +

6

iπτ1

)
. (8.14)

Notice that the existence of such a combination is a priori not obvious since the S-

transformation lies outside both the modular group and its congruence subgroup Γ1(λ1).

Nevertheless this combination exists and the explicit examples for the relevant cases are

given in appendix A (see in particular (A.15), (A.24) and (A.30)).

Following [11, 12, 17] we propose that the coefficients gn depend on τ1 only through

Ẽ
(λ1)
2 and the modular forms of Γ1(λ1), in such a way that they are globally quasi-modular
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forms of Γ1(λ1) with total weight (Nn + N − 2). For simplicity, in the following we will

only exhibit the dependence on Ẽ
(λ1)
2 and just write gn

[
Ẽ

(λ1)
2

]
. Then, applying S-duality,

we have

S
(
gn
[
Ẽ

(λ1)
2

])
= (−1)n(i

√
λ1τ1)

Nn+N−2 gn

[
Ẽ

(λ1)
2 +

6

iπτ1

]
= (−1)n(i

√
λ1τ1)

Nn+N−2
(
gn
[
Ẽ

(λ1)
2

]
+

6

iπτ1

∂gn

∂Ẽ
(λ1)
2

+ · · ·

) (8.15)

where the second line follows upon expanding for large τ1. Comparing with (8.6) we obtain

the modular anomaly equation

∂gn

∂Ẽ
(λ1)
2

=
Nn+N − 2

24

n−1∑
m=0

gm gn−m−1 (8.16)

which has the form of a recursion relation. Indeed, given the initial condition that specifies

g0 as a modular form, the Ẽ2-dependent part of g1 can be unambiguously obtained by

integrating the modular anomaly equation. This leaves room for a truly modular piece,

which can be fixed by comparing with the explicit instanton expansion obtained using

localization. Once g1 is fully fixed, we can use it in (8.16) to find g2, and recursively

proceed in this way for the higher gn’s. This approach has been successfully applied to

the SU(3) theory in [17]. In the next sections we complete the analysis for the SU(4) and

SU(6) theories.

8.2 Coupled modular anomaly equations

We now consider the period matrix Ω. As we mentioned in section 7, after including the

quantum corrections it can be decomposed as in (7.7) where, under S-duality, the flavour

deformed couplings τ̃k transform as

S : τ̃k → −
1

λkτ̃k
. (8.17)

The fact that τ̃k behave like τk is a simple consequence of the algebraic properties of the

matrices Mk. Applying S-duality to both sides of (7.8), we get

− 1

λkτk

(
1− 1

2πiτk

∞∑
m=1

Nm+N − 1

aNm
g
(k)
m−1

)−1
= − 1

λkτk
− 1

2πi

∞∑
n=1

Nn+N − 1

(−ωaD)Nn
S
(
g
(k)
n−1
)

(8.18)

which, after inserting the semi-classical expansion (7.6) for the dual period, yields the S-

duality transformation rules for the coefficients g
(k)
n . In particular, at leading order we find

S
(
g
(k)
0

)
=

(
i
√
λ1τ1

)N(
i
√
λkτk

)2 g(k)0 , (8.19)
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while at higher orders we get

S
(
g(k)n

)
=

(−1)n
(
i
√
λ1τ1

)Nn+N(
i
√
λkτk

)2
[
g(k)n

+
1

2πiτk

∑
m

(
(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)m g

(k)
n−m−1

)

+
1

2πiτ1

∑
m

(
(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)m gn−m−1

)
+ · · ·

]
.

(8.20)

When k = 1, both (8.19) and (8.20) reduce to (8.4) and (8.6), respectively. This is a simple

but important consistency check of our analysis.

We now perform a similar analysis for the S′ transformation under which each effective

coupling τ̃k changes as

τ̃k →
τ̃k

1− λk τ̃k
. (8.21)

Since in the arithmetic theories the λk’s are integers, this is a PSL(2,Z) transformation.

Using the general technique of comparing coefficients in the semi-classical expansions, we

obtain the following constraint for g
(k)
0 :

S′
(
g
(k)
0

)
=

(1− λ1τ1)N

(1− λkτk)2
g
(k)
0 , (8.22)

while for the higher coefficients g
(k)
n we get

S′
(
g(k)n

)
=

(1− λ1τ1)Nn+N

(1− λkτk)2

[
g(k)n

+
1

2πiτk

∑
m

(
(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)m g

(k)
n−m−1

)

+
1

2πiτ1

∑
m

(
(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)m gn−m−1

)
+ · · ·

]
.

(8.23)

Again it is not difficult to check that for k = 1 these two equations reduce respectively

to (8.11) and (8.12), as it should be.

From (8.22) combined with (8.19), we can infer that g
(k)
0 is a ratio of a modular

form of Γ1(λ1) with weight N and a modular form of Γ1(λk) with weight 2. Likewise,

by combining (8.23) with (8.20) we deduce that for n > 0 the coefficients g
(k)
n are quasi-

modular meromorphic forms of Γ1(λ1) and Γ1(λk) which receive contributions from both

Ẽ
(λ1)
2 and Ẽ

(λk)
2 . Taking into account the factors multiplying the square brackets in (8.20)

and (8.23), we are led to the following ansatz:

g(k)n =

n∑
`=0

GnN+N−2`;2+2n−2`
n (τ1, τk)

(
Ẽ

(λ1)
2 (τ1)

)` (
Ẽ

(λk)
2 (τk)

)n−`
(8.24)
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where the coefficients Gr1;rkn (τ1, τk) are made of modular forms of Γ1(λ1) and Γ1(λk) with

weights r1 and rk respectively. Using the anomalous transformation properties of the

second Eisenstein series, from (8.24) we get

S
(
g(k)n

)
=

(−1)n
(
i
√
λ1τ1

)Nn+N(
i
√
λkτk

)2
(
g(k)n +

6

πiτ1

∂g
(k)
n

∂Ẽ
(λ1)
2

+
6

πiτk

∂g
(k)
n

∂Ẽ
(λk)
2

+ · · ·

)
, (8.25)

and, after comparison with (8.20), we arrive at the following coupled equations

∂g
(k)
n

∂Ẽ
(λk)
2

=
1

12

n−1∑
m=0

(Nm+N − 1)(N(n−m)− 1)

Nn+N − 1
g(k)m g

(k)
n−m−1 ,

∂g
(k)
n

∂Ẽ
(λ1)
2

=
1

12

n−1∑
m=0

(Nm+N)(Nm+N − 1)

Nn+N − 1
g(k)m gn−m−1 .

(8.26)

In order for these equations to be consistent and integrable, it is necessary that the mixed

second derivatives computed from either line of (8.26) match. We find that this is indeed

the case, since we have

∂

∂Ẽ
(λ1)
2

(
∂g

(k)
n

∂Ẽ
(λk)
2

)
− ∂

∂Ẽ
(λk)
2

(
∂g

(k)
n

∂Ẽ
(λ1)
2

)
= 0 . (8.27)

Given the structure of the modular anomaly equations (8.26), this is a non-trivial check

which makes it possible to “integrate-in” the quasi-modular terms in a consistent manner.

9 Resummation: the cases N = 4 and N = 6

In this section we study in detail the SU(4) and SU(6) gauge theories along the lines

discussed before. Throughout this section, we use special cases of the formulas derived in

the previous section, i.e. setting N = 4 or N = 6 as the case may be.

9.1 N = 4

For the SU(4) theory the relevant parameters are:

ω = i , c4 = i− 1 , k = 1, 2 , λ1 = 2 , λ2 = 4 . (9.1)

9.1.1 The dual period

We have computed the SU(4) prepotential, the dual periods, and the period matrix up

to three instantons using localization methods. From these results, after using the rela-

tion (4.17a) to rewrite the instanton counting parameter q0 in terms of the renormalized

coupling q1, we find that the dual period can be written as

aD = (i− 1) a τ1 +
(i− 1)

2πi

∞∑
n=0

gn(q1;T4, T8)

a4n+3
(9.2)
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in agreement with the general form (7.6). The first coefficients gn are

g0 =
T4
12

(
1 + 24 q1 + 24 q21 + 96 q31 + · · ·

)
, (9.3a)

g1 =
T 2
4

4

(
q1 + 26 q21 + 84 q31 + · · ·

)
+
T8
56

(
1− 56 q1 − 2296 q21 − 13664 q31 + · · ·

)
, (9.3b)

where, as usual, we have set q1 = e2πiτ1 .

Our goal is to show that these expressions arise from a weak-coupling expansion of

quasi-modular forms of Γ1(2). Indeed, according to the discussion of the previous section,

we should have

S(gn) = (−1)n
(
i
√

2τ1
)4n+2 [

gn + · · ·
]
,

S′(gn) = (1− 2τ1)
4n+2

[
gn + · · ·

]
.

(9.4)

In particular for n = 0 when there are no extra terms beyond leading order, these equations

tell us that g0 should be a modular form of Γ1(2) with weight 2 and S-parity (+1). As shown

in appendix A there is only one such form, namely f
(2)
2,+ whose weak-coupling expansion is

f
(2)
2,+ = 1 + 24q1 + 24q21 + 96q31 + 24q41 + 144q51 · · · . (9.5)

Comparing with (9.3a), we are led to conclude

g0 =
T4
12
f
(2)
2,+ , (9.6)

which, to be consistent with (9.4), implies also that T4 is invariant under both S and

S′ transformations, namely S(T4) = S′(T4) = T4. We would like to stress that once we

assume that g0 is a modular form Γ1(2) of weight 2, the only freedom we have is the

overall coefficient which is fixed by matching with the perturbative contribution. After

this is done, all non-perturbative terms are fixed by the Fourier expansion of the modular

form. The fact that these terms perfectly match the explicit multi-instanton results coming

from localization up to three instantons is a very strong and highly non-trivial test of our

general strategy.

To obtain the coefficients gn for n > 0 we can use the recursion relation (8.16), which

in the present case is

∂gn

∂Ẽ
(2)
2

=
2n+ 1

12

n−1∑
m=0

gm gn−m−1 (9.7)

where Ẽ
(2)
2 is the quasi-modular form introduced in appendix A (see in particular (A.15)).

Let us now determine g1 which according to our general analysis should be a quasi-modular

form of of Γ1(2) with weight 6 and with S-parity (−1) that solves the above modular

anomaly equation for n = 1, namely

∂g1

∂Ẽ
(2)
2

=
1

4
g20 . (9.8)
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Integrating with respect to Ẽ
(2)
2 and using the exact expression for g0 obtained above,

we find

g1 =
T 2
4

576

(
f
(2)
2,+

)2
Ẽ

(2)
2 + modular piece , (9.9)

where by ‘modular piece’ we mean a modular form of Γ1(2) with weight 6 and with S-parity

(−1). As shown in appendix A there is only one such form, namely

f
(2)
2,+ f

(2)
4,− = 1− 56q1 − 2296q21 − 13664q31 + · · · . (9.10)

Comparing with the localization result (9.3b), obtain the following exact expression

g1 =
T 2
4

576

[(
f
(2)
2,+

)2
Ẽ

(2)
2 −

3

2
f
(2)
2,+ f

(2)
4,−

]
+
T8
56
f
(2)
2,+ f

(2)
4,− . (9.11)

As before, all coefficients are fixed by matching with the perturbative terms and fol-

lowing that, all non- perturbative contributions follow from the Fourier expansions of

the modular forms. The agreement with the explicit multi-instanton results in (9.3b)

is rather remarkable.

The above procedure can be iteratively used to determine the higher coefficients gn.

In this way we have determined up to g3, always finding perfect agreement with the local-

ization results.

9.1.2 The period matrix

In the special vacuum the period matrix Ω of the massive SU(4) theory can be compactly

written as

Ω = τ̃1M1 + τ̃2M2 (9.12)

where the two matrices Mk are given in (4.15) and

τ̃k = τk −
1

2πi

∞∑
n=0

4n+ 3

a4n+4
ĝ(k)n (q0;T4, T8) . (9.13)

This has the same form as (7.8), except that the coefficients are expressed in terms of the

bare coupling q0 instead of the renormalized ones; this is the meaning of the ĝ
(n)
k notation.

From our explicit calculations, using the non-perturbative relation (4.17a) we find

ĝ(1)n (q0;T4, T8) = gn (q1;T4, T8) (9.14)

where the gn’s are the same coefficients appearing in the dual period, for which we have al-

ready given exact expressions. On the other hand, we find that the first ĝ
(2)
n coefficients are

ĝ
(2)
0 =

T4
12

(
1− 1

4
q0 −

25

256
q20 −

29

512
q30 + · · ·

)
, (9.15a)

ĝ
(2)
1 = − T

2
4

224

(
q0 +

7

64
q20 +

7

512
q30 + · · ·

)
+
T8
56

(
1− q0 −

5

128
q20 −

39

512
q30 + · · ·

)
.

(9.15b)

– 37 –



J
H
E
P
0
4
(
2
0
1
6
)
1
1
8

The challenge is now to show that, once the bare coupling is mapped into the renormalized

ones, the resulting expressions g
(2)
n have good modular properties. In particular for g

(2)
0 ,

according to the general analysis of the previous section (see (8.19) and (8.22) for N = 4

and k = 2), we should have

S
(
g
(2)
0

)
=

(√
2 i τ1

)4(
2 i τ2

)2 g
(2)
0 and S′

(
g
(2)
0

)
=

(
1− 2τ1

)4(
1− 4τ2

)2 g(2)0 . (9.16)

These equations tell us that g
(2)
0 is the ratio of a modular form of Γ1(2) in τ1 with weight

4 and a modular form of Γ1(4) in τ2 with weight 2, with total S-parity (+1). From the list

of the modular forms presented in appendices A for Γ1(2) and Γ1(4), we see that the most

general ansatz which satisfies these properties is

g
(2)
0 =

T4
12

[
x

(
f
(2)
2,+

)2
f
(4)
2,+

+
(
1− x

) f (2)4,−

f
(4)
2,−

]
, (9.17)

where the overall coefficient has been fixed to match with the perturbative result in (9.15a)

and x is a free parameter. By Fourier expanding the modular forms and expressing the

result in terms of the bare coupling q0, one sees that both meromorphic forms within

square brackets are identical and both match the q0 expansion in (9.15a). In the following

we choose for simplicity x = 1, so that15

g
(2)
0 =

T4
12

(
f
(2)
2,+

)2
f
(4)
2,+

. (9.18)

For the higher coefficients g
(2)
n , we have to use the coupled modular anomaly equa-

tions (8.26). For n = 1 they become

∂g
(2)
1

∂Ẽ
(4)
2

=
3

28

(
g
(2)
0

)2
and

∂g
(2)
1

∂Ẽ
(2)
2

=
1

7
g
(2)
0 g0 , (9.19)

where Ẽ
(2)
2 and Ẽ

(4)
2 are the quasi-modular forms of Γ1(2) and Γ1(4) defined in (A.15)

and (A.30) respectively. Integrating (9.19) we find

g
(2)
1 =

3

28

(
g
(2)
0

)2
Ẽ

(4)
2 +

1

7
g
(2)
0 g0 Ẽ

(2)
2 + modular piece . (9.20)

As before, the ‘modular piece’ is determined by considerations of weight and S-parity and

by demanding agreement with the perturbative terms in (9.15b). Explicitly, we find

g
(2)
1 =

T 2
4

1344

((
f
(2)
2,+

)4
Ẽ

(4)
2(

f
(4)
2,+

)2 +
4

3

(
f
(2)
2,+

)3
Ẽ

(2)
2

f
(4)
2,+

− 9

2

(
f
(2)
2,+

)2
f
(2)
4,−

f
(4)
2,+

)
+
T8
56

(
f
(2)
2,+

)2
f
(2)
4,−

f
(4)
2,+

. (9.21)

15We could just as well have picked x = 0; the Fourier expansions do not distinguish between these

choices, and it is clear that the modular anomaly equations are not affected by this choice.
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Once again, the perturbative terms are enough to fix all coefficients that are not determined

by the modular anomaly equations; then, the instanton contributions follow by Fourier

expanding the modular forms. The perfect agreement with the explicit result (9.15b)

obtained from localization confirms in a very non-trivial way the validity of our procedure.

Using this approach iteratively, we have computed higher g
(2)
k coefficients, finding

complete agreement with the multi-instanton results.

9.2 N = 6

We now repeat the above analysis for the massive SU(6) theory. In this case the relevant

parameters are:

ω = e
πi
3 , c6 = −1 , k = 1, 2, 3 , λ1 = 1 , λ2 = 3 , λ3 = 4 . (9.22)

9.2.1 The dual period

The large-a expansion of dual period of the massive SU(6) theory takes the form

aD = −a τ1 −
1

2πi

∑
n

gn(q1;T6, T12)

a6n+5
. (9.23)

Using localization methods we have computed the coefficients gn up to two instantons and

rewritten them in terms of the effective parameter q1 by means the relation (5.17). The

explicit expressions of the first coefficients are

g0 =
T6
5

(
1 + 240q1 + 2160q21 + · · ·

)
, (9.24a)

g1 = 12T 2
6

(
q1 + 258q21 + · · ·

)
+
T12
22

(
1− 264q1 − 135432q21 + · · ·

)
. (9.24b)

Since λ1 = 1 we expect to resum these expansions into standard modular forms of

PSL(2,Z). In particular, from (8.4) and (8.11) we have

S(g0) =
(
i τ1
)4
g0 and S′(g0) =

(
1− τ1

)4
g0 , (9.25)

which tell us that g0 is a modular form of weight 4 with positive S-parity. The unique

form of this kind is the Eisenstein series E4; thus, matching the perturbative contribution

we find

g0 =
T6
5
E4 . (9.26)

Again, all instanton terms are dictated by the Fourier expansion of E4 and are in per-

fect agreement with the localization result (9.24a). We also verify that g0 satisfies (9.25)

provided that T6 is invariant under S-duality, namely S(T6) = S′(T6) = T6.

To obtain the coefficients gn with n > 0, we use the modular anomaly equation (8.16)

which in this case becomes

∂gn
∂E2

=
3n+ 2

12

n−1∑
m=0

gm gn−m−1 . (9.27)
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For example, integrating this equation for n = 1 and fixing the E2-independent part by

comparing with the perturbative contributions, we get

g1 =
T 2
6

60

(
E2

4 E2 − E4E6

)
+
T12
22

E4E6 . (9.28)

Using the Fourier expansion of the Eisenstein series it is easy to check that the instanton

terms precisely match those in (9.24b). Proceeding iteratively in this manner one can

derive the exact expressions of the higher coefficients gn. In particular we have explicitly

computed a few higher gn, always finding perfect agreement with the localization results.

9.2.2 The period matrix

In the special vacuum the period matrix Ω of the massive SU(6) theory can be written

compactly as

Ω = τ̃1M1 + τ̃2M2 + τ̃3M3 (9.29)

where the three matrices Mk are given in (4.23) while, using a notation similar to that of

the SU(4) theory, the three effective couplings turn out to have the following semi-classical

expansion

τ̃k = τk −
1

2πi

∞∑
n=0

6n+ 5

a6n+6
ĝ(k)n (q0;T6, T12) . (9.30)

The coefficients ĝ
(1)
n coincide with the gn’s already discussed, while the first coefficients for

k = 2 are

ĝ
(2)
0 =

T6
5

(
1− 7

18
q0 −

319

2592
q20 + · · ·

)
, (9.31a)

ĝ
(2)
1 = −7T 2

6

198

(
q0 −

65

504
q20 + · · ·

)
+
T12
22

(
1 +

7

9
q0 −

443

1296
q20 + · · ·

)
, (9.31b)

and for k = 3 are

ĝ
(3)
0 =

T6
5

(
1− 1

3
q0 −

47

432
q20 + · · ·

)
, (9.32a)

ĝ
(3)
1 = −5T 2

6

132

(
q0 −

23

360
q20 + · · ·

)
+
T12
22

(
1 +

5

6
q0 −

227

864
q20 + · · ·

)
. (9.32b)

We now show that these are the first few terms in the semi-classical expansion of rational

functions of quasi-modular forms. Since the procedure is similar to that of the SU(4)

theory, we will be brief in our discussion.

Let us first consider g
(2)
0 and g

(3)
0 , whose S and S′ transformations are

S
(
g
(2)
0

)
=

(i τ1)
6(√

3 i τ2
)2 g(2)0 , S′

(
g
(2)
0

)
=

(1− τ1)6(
1− 3τ2

)2 g(2)0 ,

S
(
g
(3)
0

)
=

(i τ1)
6(

2 i τ3
)2 g(3)0 , S′

(
g
(3)
0

)
=

(1− τ1)6(
1− 4τ3

)2 g(3)0 .

(9.33)
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These formulas suggest that g
(2)
0 should be expressed as a ratio of a modular form in τ1

with weight 6 and a modular form of Γ1(3) in τ2 with weight 2, with an overall S-parity

equal to (+1). Likewise, g
(3)
0 should be expressed as a ratio of a modular form in τ1 with

weight 6 and a modular form of Γ1(4) in τ3 with weight 2, with an overall S-parity equal

to (+1). Using the results collected in appendix A, matching the weights and S-parities

and fixing the overall normalization in agreement with the perturbative contributions, we

find that a solution is

g
(2)
0 =

T6
5

f
(1)
2,+E4(
f
(3)
1,−
)2 and g

(3)
0 =

T6
5

E6

f
(4)
2,−

. (9.34)

By Fourier expanding the modular forms and expressing the result with bare coupling q0,

we do not only recover the multi-instanton terms in (9.31a) and (9.32a) but also predict

all other higher instanton contributions.

As before, the coefficients g
(k)
n with n > 0 are obtained from the coupled modular

anomaly equations (8.26), which in this case become

∂g
(k)
1

∂E2
=

5

22
g
(k)
0 g0 and

∂g
(k)
1

∂Ẽ
(λk)
2

=
25

132

(
g
(k)
0

)2
(9.35)

where the quasi-modular forms Ẽ
(3)
2 for k = 2 and Ẽ

(4)
2 for k = 3 are given in (A.24)

and (A.30), respectively. These equations can be solved in a straightforward manner and

the undetermined modular terms can be fixed by comparing with the perturbative contri-

butions in (9.31b) and (9.32b). In this way one obtains

g
(2)
1 =

T 2
6

110

(
f
(1)
2,+E

2
4 E2(

f
(3)
1,−
)2 +

5

6

E3
4 Ẽ

(3)
2(

f
(3)
1,−
)4 − 8

3

f
(1)
2,+E4E6(
f
(3)
1,−
)2

)
+
T12
22

f
(1)
2,+E4E6(
f
(3)
1,−
)2 , (9.36a)

g
(3)
1 =

T 2
6

110

(
E4E6E2

f
(4)
2,−

+
5

6

E2
6 Ẽ

(4)
2(

f
(4)
2,−
)2 − 37

12

E2
6

f
(4)
2,−

)
+
T12
22

E2
6

f
(4)
2,−

. (9.36b)

Again, by Fourier expanding the right hand sides and expressing everything in terms of

the bare coupling q0, we retrieve the first instanton corrections in perfect agreement with

the localization results (9.31) and (9.32), and predict all successive non-perturbative con-

tributions. A similar analysis can be performed at the next orders; indeed we have checked

that the higher coefficients g
(k)
n are successfully determined by these methods.

10 Discussion and outlook

In this paper we have obtained two sets of largely independent, but complementary re-

sults. In the first part, we calculated the period matrix for massless N = 2 SQCD theories

with gauge group SU(N) in the massless limit in a locus of vacua possessing a ZN sym-

metry. We uncovered an interesting modular structure that becomes manifest only when

the observables are written in terms of the
[
N
2

]
renormalized couplings τk. In particular,
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we have shown that on each of these couplings, the S-duality group acts as a (general-

ized) triangle group. We also proposed a non-perturbatively exact relation between the

bare coupling and the renormalized ones in terms of the hauptmodul of the corresponding

triangle group, namely

q0 =

√
jλk(τk)− d−1λk −

√
jλk(τk)√

jλk(τk)− d−1λk +
√
jλk(τk)

. (10.1)

This relation correctly reproduces the instanton expansion and we showed that it is consis-

tent with expectations from S-duality. While previous investigations [25, 29] concentrated

essentially on only one of these effective couplings, which in our notation is τ[N
2

], our anal-

ysis shows that S-duality is more transparent if we consider all individual couplings τk. Of

course, we could select one of them and express all the others in terms of it using the exact

relation (10.1) via the bare coupling q0, but then the modular structure we have described

is hidden.

There are many questions that remain to be explored. For example, it would be

interesting to understand from “first principles” the spectrum of λk, for which our case-

by-case analysis provides the simple answer

λk = 4 sin2 kπ

N
. (10.2)

Using the universal formula (10.1), questions about the strong coupling properties

of the gauge theory could be addressed in an explicit way because the behaviour of the

hauptmodul jλk around the strong coupling cusps in the τk plane is well understood [19].

As an interesting curiosity, we observe that if we define

j∗λk = − 1

4dλk q0
(10.3)

then, in the arithmetic cases (see table 1) the pairs (jλk , j
∗
λk

) satisfy remarkable identities,

called the Ramanujan-Sato identities, that take the form [39]:

∞∑
k=0

sAλk(k)
1

(jλk)k+1/2
= ±

∞∑
k=0

sBλk(k)
1

(j∗λk)k+1/2
, (10.4)

where the sA,Bλk
(k) are integers. It would be interesting to understand if these mathematical

identities hold also in the non-arithmetic cases and if they have any interpretation within

the gauge theory.

In the second part, we considered massive SQCD theories with SU(N) gauge groups,

and restricted our analysis to mass configurations that respect the ZN symmetry of the

special vacuum. We then showed that in this case the modular structure of the massless

theory is deformed in an interesting manner. In particular we have proved that the pe-

riod matrix maintains the same structure as in the massless case, while the renormalized

couplings have a semiclassical expansion with mass dependent coefficients. In the arith-

metic theories, these coefficients are constrained by S-duality to satisfy coupled modular
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anomaly equations whose solutions are meromorphic functions of quasi-modular forms of

the congruence subgroups of the modular group.

A natural question to pose is whether these results can be extended to all SU(N)

theories. Since in the non-arithmetic cases the S-duality group has no subset in common

with the modular group, we expect that the automorphic forms and Eisenstein series of

the (generalized) triangle groups should play an important role. This subject seems to be

of recent interest in the mathematical literature [19] and it might be worthwhile to explore

this possibility.

Another extension of our work would be to study the modular structure in the special

vacuum with generic masses or in the Ω-deformed theory [5, 6]. An incentive to study

this problem comes from the AGT correspondence [32, 40]. Indeed, in the SU(2) theory

with four flavours the non-perturbative relation between the bare and renormalized cou-

pling plays an important role in writing the prepotential as quasi-modular functions. The

quantum-corrected coupling constant is used to rewrite the null- vector decoupling equa-

tion as an elliptic equation [41–43]. This in turn can be used to obtain the Ω-dependent

corrections to the prepotential in terms of modular functions in the Nekrasov-Shatashvili

limit [44]. It would be nice to extend this approach to higher rank gauge theories using

the non-perturbative relation (10.1). In [45, 46] it was observed that for the SU(2) theory

the relation between the bare and the effective coupling is encoded in the Zamolodchikov

asymptotic recursion relation satisfied by the 4-point conformal blocks of the associated

two-dimensional Liouville theory. It would be interesting to extend this analysis to higher

rank theories in order to provide further checks on our formulas.

A more difficult but very interesting problem is to release the special vacuum con-

straints and analyse the theory at a generic point on the Coulomb moduli space, to see

how the modular structures we have obtained are generalized. We hope to return to some

of these issues in the near future.
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A Quasi-modular forms

In this appendix we collect a few results on the (quasi-)modular forms of the modular

group PSL(2,Z) and its congruence subgroups Γ1(2), Γ1(3) and Γ1(4) which occur in the

arithmetic theories. We refer to the literature for the proofs of the various statements (see

for example [37, 38]) and only quote the main results that are relevant for the calculations

described in the main text.

The modular group PSL(2,Z) and Eisenstein series. The Eisenstein series E2n are

holomorphic functions of τ (with Im(τ) ≥ 0), defined as

E2n =
1

2ζ(2n)

∑
m,n∈Z2\{0,0}

1

(m+ nτ)2n
(A.1)

where ζ denotes the Riemann ζ-function. For n > 1, the E2n’s are modular forms of degree

2n. In particular, under τ → −1/τ they transform as

E2n

(
− 1

τ

)
= τ2nE2n(τ) = (−1)n

(
iτ
)2n

E2n(τ) . (A.2)

This shows that the S-parity of E2n is (−1)n. The E2 series is instead quasi-modular:

E2

(
− 1

τ

)
= −

(
iτ
)2(

E2(τ) +
6

iπτ

)
, (A.3)

and has odd S-parity.

All modular forms of degree 2n > 6 can be expressed in terms of E4 and E6; the quasi-

modular forms instead can be expressed as polynomials in E2, E4 and E6. The Fourier

expansions of the first Eisenstein series are

E2 = 1− 24q − 72q2 − 96q3 + · · · ,
E4 = 1 + 240q + 2160q2 + 6720q3 + · · · ,
E6 = 1− 504q − 16632q2 − 122976q3 + · · ·

(A.4)

where q = e2πiτ .

Let us now consider the subgroup Γ′ generated by T and S′ = STS−1. As the results

on the SU(6) theory reported in section 9 explicitly indicate, the following expression

f
(1)
2,+ = 1 + 120q − 6120q2 + 737760q3 + · · · (A.5)

plays a crucial role in matching the modular structure of the period matrix with the multi-

instanton calculations. We notice that this expansion is accounted for if we write

f
(1)
2,+ =

(
E4

) 1
2 . (A.6)

The presence of the square root seems to suggest that the modular group can be viewed as

a two-sheeted cover of Γ′. Moreover we observe that everything is consistent by requiring

that f
(1)
2,+ be a modular form of weight 2 under Γ′ and with positive S-parity. This also

explains the notation we have used.
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The congruence subgroup Γ1(2). To construct the modular forms of Γ1(2) we first

define the following functions

f
(2)
4,±(τ) =

(
η2(τ)

η(2τ)

)8

± 64

(
η2(2τ)

η(τ)

)8

(A.7)

where η(τ) is the Dedekind η-function. Their Fourier expansions are

f
(2)
4,+ = 1 + 48q + 624q2 + 1344q3 + · · · ,

f
(2)
4,− = 1− 80q − 400q2 − 2240q3 + · · · ,

(A.8)

where as usual q = e2πiτ . These functions are modular forms Γ1(2) of weight 4 [37, 38], as

evinced by their behavior under the S′-transformation:

f
(2)
4,±

(
τ

1− 2τ

)
= (1− 2τ)4f

(2)
4,±(τ) . (A.9)

In addition, using the modular transformation properties of the Dedekind η-function and

in particular

η

(
− 1

τ

)
=
√
−iτ η(τ) , (A.10)

one can easily check that

f
(2)
4,±

(
− 1

2τ

)
= ±

(
i
√

2τ
)4
f
(2)
4,±(τ) . (A.11)

Thus f
(2)
4,± have weight 4 and S-parity (+1) and (−1) respectively, as the notation itself

suggests.

Now consider the square-root of f
(2)
4,+, namely

f
(2)
2,+ :=

(
f
(2)
4,+

) 1
2 = 1 + 24q + 24q2 + 96q3 + · · · . (A.12)

This is a modular form of Γ1(2) with weight 2 and positive S-parity. Indeed,

f
(2)
2,+

(
− 1

2τ

)
=
(
i
√

2τ
)2
f
(2)
2,+(τ) . (A.13)

The modular forms of Γ1(2) form a ring generated by f
(2)
2,+ and f

(2)
4,−.

In order to study quasi-modular forms of Γ1(2) let us consider the second Eisenstein

series E2 which satisfies

E2

(
− 1

2τ

)
=
(
4τ2
)
E2(2τ) +

12τ

iπ
,

E2(2τ) =
1

2
E2(τ) +

1

2
f
(2)
2,+(τ) .

(A.14)

These equations naturally lead us to introduce the following combination

Ẽ
(2)
2 = E2 +

1

2
f
(2)
2,+ =

3

2
− 12q − 60q2 − 48q3 + · · · . (A.15)

Using (A.13), it is easy to check that

Ẽ
(2)
2

(
− 1

2τ

)
= −

(√
2iτ
)2(

Ẽ
(2)
2 (τ) +

6

iπτ

)
, (A.16)

which shows that Ẽ
(2)
2 transforms under S-duality similarly to E2 and has negative S-parity.
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The congruence subgroup Γ1(3). To construct the modular forms of Γ1(3) we first

define the following functions

f
(3)
3,±(τ) =

(
η3(τ)

η(3τ)

)3

∓ 27

(
η3(3τ)

η(τ)

)3

(A.17)

whose Fourier expansions are

f
(3)
3,+ = 1− 36q − 54q2 − 252q3 + · · · ,

f
(3)
3,− = 1 + 18q + 108q2 + 234q3 + · · · ,

(A.18)

where as usual q = e2πiτ . These functions are modular forms Γ1(3) of weight 3 [37, 38].

Under the S′- transformation, they behave as

f
(3)
3,±

(
τ

1− 3τ

)
= (1− 3τ)3f

(3)
3,±(τ) , (A.19)

while under the S-transformation they change as

f
(3)
3,±

(
− 1

3τ

)
= ±

(
i
√

3τ
)3
f
(3)
3,±(τ) , (A.20)

as one can easily check using the modular properties of the Dedekind function. The last

equation shows that f
(3)
3,± have S-parity (+1) and (−1), respectively, as also the notation

suggests.

Now consider the cube-root of f
(3)
3,−, namely

f
(3)
1,− :=

(
f
(3)
3,−
) 1

3 = 1 + 6q + 6q3 + · · · . (A.21)

This is a modular form of Γ1(3) with weight 1 and negative S-parity. Indeed,

f
(3)
1,−

(
− 1

3τ

)
= −

(
i
√

3τ
)
f
(3)
1,−(τ) . (A.22)

The modular forms of Γ1(3) form a ring generated by f
(3)
1,− and f

(3)
3,+.

In order to study quasi-modular forms of Γ1(3) we have to consider the second Eisen-

stein series E2 which satisfies

E2

(
− 1

3τ

)
=
(
9τ2
)
E2(3τ) +

18τ

iπ
,

E2(3τ) =
1

3
E2(τ) +

2

3

(
f
(3)
1,−(τ)

)2
.

(A.23)

These equations naturally lead us to introduce the following combination

Ẽ
(3)
2 = E2 +

(
f
(3)
1,−
)2

= 2− 12q − 36q2 − 84q3 + · · · . (A.24)

Using (A.22), it is easy to check that

Ẽ
(3)
2

(
− 1

3τ

)
= −

(√
3iτ
)2(

Ẽ
(3)
2 (τ) +

6

iπτ

)
, (A.25)

which shows that Ẽ
(3)
2 transforms under S-duality similarly to E2 and has negative S-parity.
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The congruence subgroup Γ1(4). The ring of modular forms of Γ1(4) is generated by

the weight-2 modular forms which we denote f
(4)
2,±. They are defined as

f
(4)
2,+(τ) := θ43(2τ) = 1 + 8q + 24q2 + 32q3 + · · · ,

f
(4)
2,−(τ) := θ44(2τ)− θ42(2τ) = 1− 24q + 24q2 − 96q3 + · · · ,

(A.26)

where the θa’s are the standard Jacobi θ-functions and as usual q = e2πiτ . Using the

modular properties of the θ-functions and in particular

θ2

(
− 1

τ

)
=
√
−iτ θ4(τ) , θ3

(
− 1

τ

)
=
√
−iτ θ3(τ) , θ4

(
− 1

τ

)
=
√
−iτ θ2(τ) , (A.27)

it is easy to show that

f
(4)
2,±

(
− 1

4τ

)
= ±(2iτ)2 f

(4)
2,±(τ) . (A.28)

Thus f
(4)
2,± have S-parity (+1) and (−1) respectively.

In order to study quasi-modular forms of Γ1(4) we have to consider the second Eisen-

stein series E2 which satisfies

E2

(
− 1

4τ

)
=
(
4τ
)2
E2(4τ) +

24τ

iπ
,

E2(4τ) =
1

4
E2(τ) +

3

4
f
(4)
2,+(τ) .

(A.29)

These equations suggest to introduce the following combination

Ẽ
(4)
2 = E2 +

3

2
f
(4)
2,+ =

5

2
− 12q − 36q2 − 48q3 + · · · , (A.30)

which under S-duality transforms in a way similar to E2, namely

Ẽ
(4)
2

(
− 1

4τ

)
= −

(
2iτ
)2(

Ẽ
(4)
2 +

6

iπτ

)
. (A.31)

This equation shows that Ẽ
(4)
2 is a quasi-modular form with weight 2 and negative S-parity.

B N = 7

In this appendix we briefly report the results for the massless SU(7) SQCD theory in the

special vacuum.

The quantum corrected period matrix takes the form

Ω = τ1M1 + τ2M2 + τ3M4 (B.1)

where

Mk =

3∑
`=1

λk` G` (B.2)
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with

λk = 4 sin2 kπ

7
= 4 cos2

(7− 2k)π

14
(B.3)

and

G1 =



2 0 1 1 1 2

0 0 −1 0 0 1

1 −1 0 −1 0 1

1 0 −1 0 −1 1

1 0 0 −1 0 0

2 1 1 1 0 2


G2 =



0 1 −1 0 1 −1

1 2 1 0 2 1

−1 1 0 0 0 0

0 0 0 0 1 −1

1 2 0 1 2 1

−1 1 0 −1 1 0


G3 =



0 0 1 0 −1 0

0 0 1 1 −1 −1

1 1 2 2 1 0

0 1 2 2 1 1

−1 −1 1 1 0 0

0 −1 0 1 0 0


.

(B.4)

These are specific examples of the matrices defined through eq. (6.39) of the main text.

Finally, up to two instantons we find that the three renormalized couplings are given by

2πi τ1 = log q0 + iπ + log
(
4dλ1

)
+

12

49
q0 +

192

2401
q20 + · · · ,

2πi τ2 = log q0 + iπ + log
(
4dλ2

)
+

20

49
q0 +

370

2401
q20 + · · · ,

2πi τ3 = log q0 + iπ + log
(
4dλ3

)
+

24

49
q0 +

474

2401
q20 + · · · ,

(B.5)

with

dλ1 = 4611.1803 · · · , dλ2 = 163.6225 · · · , dλ3 = 69.8572 · · · . (B.6)

It is worth noticing that all coefficients in the instanton expansion of the renormalized

couplings are rational. According to the general discussion of section 6, these formulas

should follow upon using the hauptmoduln of certain (generalized) triangle groups in the

universal formula (5.20). We now show that this is indeed the case for the SU(7) theory.

Let us start from k = 3. Here we have λ3 = 4 cos2 π
14 and thus the S-duality group

is simply the Hecke group H(14) whose type is t = (2, 14,∞). Applying the formulas of

section 6.1, it is not difficult to find that the corresponding hauptmodul is

jλ3 =
1

q3
+

37

98

1

dλ3
+

2587

38416

q3
d2λ3

+
899

117649

q23
d3λ3

+ · · · (B.7)

where dλ3 is precisely the same number given in (B.6).

Now let us put k = 2. In this case we have λ2 = 4 cos2 3π
14 which implies that the

S-duality group is a generalized triangle group with type t =
(
2, 143 ,∞

)
. As we observed

in the main text, the formulas for the hauptmoduln can be formally extended also when

the type has a rational entry. In this case we find

jλ2 =
1

q2
+

39

98

1

dλ2
+

2571

38416

q2
d2λ2

+
4435

705894

q22
d3λ2

+ · · · (B.8)

where dλ2 is exactly as in (B.6).

Finally for k = 1, we have λ1 = 4 cos2 5π
14 leading to a generalized triangle group with

type t =
(
2, 145 ,∞

)
. In this case the corresponding hauptmodul is

jλ1 =
1

q1
+

43

98

1

dλ1
+

2521

38416

q1
d2λ1

+
2573

705894

q21
d3λ1

+ · · · (B.9)

with dλ1 given in (B.6).
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If we now plug these expansions in the universal formula (5.20) and invert the resulting

series, we perfectly match the instanton results (B.5) obtained from localization, thus

confirming also in this case the consistency of our proposal.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[9] S.K. Ashok, M. Billò, E. Dell’Aquila, M. Frau, R.R. John and A. Lerda, Non-perturbative

studies of N = 2 conformal quiver gauge theories, Fortsch. Phys. 63 (2015) 259

[arXiv:1502.05581] [INSPIRE].

[10] J.A. Minahan, D. Nemeschansky and N.P. Warner, Instanton expansions for mass deformed

N = 4 super Yang-Mills theories, Nucl. Phys. B 528 (1998) 109 [hep-th/9710146] [INSPIRE].
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[14] M. Billò, M. Frau, F. Fucito, A. Lerda and J.F. Morales, S-duality and the prepotential of

N = 2? theories (II): the non-simply laced algebras, JHEP 11 (2015) 026

[arXiv:1507.08027] [INSPIRE].

[15] M. Billò, M. Frau, F. Fucito, A. Lerda and J.F. Morales, S-duality and the prepotential in

N = 2? theories (I): the ADE algebras, JHEP 11 (2015) 024 [arXiv:1507.07709] [INSPIRE].

– 49 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2715
http://dx.doi.org/10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408099
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://dx.doi.org/10.1007/0-8176-4467-9_15
http://dx.doi.org/10.1007/0-8176-4467-9_15
http://arxiv.org/abs/hep-th/0306238
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306238
http://dx.doi.org/10.1088/1126-6708/2003/05/054
http://arxiv.org/abs/hep-th/0211108
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211108
http://dx.doi.org/10.1016/j.nuclphysb.2004.09.014
http://dx.doi.org/10.1016/j.nuclphysb.2004.09.014
http://arxiv.org/abs/hep-th/0406243
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406243
http://dx.doi.org/10.1002/prop.201500012
http://arxiv.org/abs/1502.05581
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05581
http://dx.doi.org/10.1016/S0550-3213(98)00314-9
http://arxiv.org/abs/hep-th/9710146
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710146
http://dx.doi.org/10.1007/JHEP11(2013)123
http://arxiv.org/abs/1307.6648
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6648
http://dx.doi.org/10.1007/JHEP04(2013)039
http://arxiv.org/abs/1302.0686
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0686
http://dx.doi.org/10.1007/JHEP10(2014)131
http://dx.doi.org/10.1007/JHEP10(2014)131
http://arxiv.org/abs/1406.7255
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.7255
http://dx.doi.org/10.1007/JHEP11(2015)026
http://arxiv.org/abs/1507.08027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08027
http://dx.doi.org/10.1007/JHEP11(2015)024
http://arxiv.org/abs/1507.07709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07709


J
H
E
P
0
4
(
2
0
1
6
)
1
1
8
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