

Semantic Social Routing in Gnutella

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

By

Yamini Upadrashta

Keywords: social networks, peer-to-peer, semantic routing

© Copyright Yamini Upadrashta, January 2005. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226151673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of

this University may make it freely available for inspection. I further agree that

permission for copying of this thesis in any manner, in whole or in part, for scholarly

purposes may be granted by the professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College of Graduate Studies

and Research. It is understood that any copying or publication or use of this thesis or

parts thereof for financial gain shall not be allowed without my written permission. It is

also understood that due recognition shall be given to me and to the University of

Saskatchewan in any scholarly use which may be made of any material in my thesis.

 Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan, Canada

S7N 5C9

ii

ABSTRACT
The objective of this project is to improve the performance of the Gnutella peer-to-peer

protocol (version 0.4) by introducing a semantic-social routing model and several

categories of interest. The Gnutella protocol requires peers to broadcast messages to

their neighbours when they search files. The message passing generates a lot of traffic in

the network, which degrades the quality of service. We propose using social networks to

optimize the speed of search and to improve the quality of service in a Gnutella based

peer-to-peer environment. Each peer creates and updates a “friends list” from its past

experience, for each category of interest. Once peers generate their friends lists, they use

these lists to semantically route queries in the network. Search messages in a given

category are mainly sent to “friends” who have been useful in the past in finding files in

the same category. This helps to reduce the search time and to decrease the network

traffic by minimizing the number of messages circulating in the system as compared to

standard Gnutella. This project will demonstrate by simulating a peer-to-peer type of

environment with the JADE multi-agent system platform that by learning other peers’

interests, building and exploiting their social networks (friends lists) to route queries

semantically, peers can get more relevant resources faster and with less traffic

generated, i.e. that the performance of the Gnutella system can be improved.

iii

Acknowledgments

First of all I express my sincere thanks to my supervisors, Dr. Julita Vassileva and Dr.

Winfried Grassmann for their support, patience, guidance and financial assistance

throughout this project.

I would like to thank the members of my advisory committee: Dr. Ralph Deters,

Dr. Gord McCalla, and Dr.Chris Zhang (external) for their valuable advice and

suggestions.

I would also like to thank the students, staff and faculty of the Computer Science

Department and especially to the students of MADMUC lab for their support. Also

thank you to Ms. Jan Thompson for her help and support.

I would like to thank all my friends and family for their understanding and support. I

would like to express a very special thank you to my parents and to my husband without

whose support and encouragement this work would not have been possible.

I would like to dedicate this thesis to my parents and to my husband.

iv

Table Of Contents

Permission to Use i

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Figures vii

List of Tables ix

CHAPTER 1 Introduction 1

CHAPTER 2 Literature Survey 4

2.1 Review of the Area of File-sharing Peer-To-Peer Networks 4

2.1.1 Centralized P2P System: Napster 5

2.1.2 Fully Decentralized P2P System: Gnutella 6

2.1.3 Semi-Centralized P2P: KaZaA 8

2.1.4 Document Routing: FreeNet 9

 2.1.5 Summary 10

2.2 Optimizing the Performance of Gnutella Networks 11

2.2.1 Messages Contributing to Traffic in Gnutella 12

2.2.2 Improving Search in P2P Systems with Simple Approaches 13

2.2.3 Improving Search in P2P Systems with Semantic Routing Approaches 14

2.3 Social Networks 20

2.4 Summary 23

v

CHAPTER 3 Semantic-Social Routing Approach 25

3.1 Defining Semantics of Queries 25

3.2 Learning the Interests of Other Peers 27

3.3 Centralized versus Distributed Classification of Peers 30

3.3.1 Performance and Costs 30

3.3.2 Privacy, Anonymity, Vulnerability 31

3.3.3 Personalization / Subjectivity 32

3.4 Strength of Relationships 33

3.5 Updating the Strength of Relationship 34

3.6 Semantic Routing 37

3.7 Discovering New Friends 38

3.8 Summary and Discussion 40

CHAPTER 4 Experimental Model 42

4.1 Hypothesis 42

4.2 System Model 43

4.2.1 Protocol Modifications 43

4.2.2 System Model Design 44

 4.2.3 Static System 47

 4.2.4 Dynamic System 48

 4.2.5 Performance Measurement 53

4.3 Simulation 53

CHAPTER 5 Results and Discussion 56

5.1 Results of the static system 56

5.2 Results of the dynamic system 67

5.3 Summary 72

vi

CHAPTER 6 Conclusions and Future Work 74

6.1 Conclusions 75

6.2 Future Work 77

REFERENCES 79

Appendix A Results 85

Appendix B 95

vii

List of Figures

Figure 2.1: Napster’s centralized model 6

Figure 2.2: Gnutella’s decentralized model 7

Figure 3.1: Creating friends list for a category 28

Figure 3.2: Query Routing 29

Figure 3.3: Discovering New Friends 39

Figure 4.1: Graph obtained from the data for the total

 percentage of time peers are online in the system. 50

Figure 4.2: Graph obtained from the data for the total number

 of time peers are login into the system. 51

Figure 5.1: Average hops vs. percentage of peers in category for

 100 peers and 200 files 56

Figure 5.2: Average messages vs. percentage of peers in category for

 100 peers and 200 files 58

Figure 5.3: Average hops vs. percentage of peers in category for

 50 peers and 200 files 59

Figure 5.4: Average messages vs. percentage of peers in category for

 50 peers and 200 files 60

Figure 5.5: Average hops vs. percentage of peers in category for

 100 peers and 100 files 61

Figure 5.6: Average messages vs. percentage of peers in category for

 100 peers and 100 files 62

Figure 5.7: Average hops vs. percentage of peers in category for

 100 peers and 150 files 63

Figure 5.8: Average messages vs. percentage of peers in category for

 100 peers and 150 files 64

Figure 5.9: Average hops vs. percentage of peers in category for the uniform

 distribution dynamic system with 100 peers and 200 files 67

viii

Figure 5.10: Average messages vs. percentage of peers in category for the uniform

 distribution dynamic system with 100 peers and 200 files 68

Figure 5.11: Average hops vs. percentage of peers in category for the

 Zipf-distributed dynamic system with 100 peers and 200 files 70

Figure 5.12: Average messages vs. percentage of peers in category for the

 Zipf-distributed dynamic system with 100 peers and 200 files 71

ix

List of Tables

Table 2.1. Message Type Distribution (Vaucher et al., 2002) 12

Table 4.1. Details of the number of peers and files in the first set of experiments 47

Table 4.2. Details of the number of peers and files in the

 second set of experiments 48

Table 4.3. Data for the total percentage of time peers are online 49

Table 4.4. Data for the number of times (frequency) a peer logs in to the system 50

Table 5.1. Success of queries in the Uniform distribution system 69

Table 5.2. Success of queries in the Zipf-distribution system 72

1

CHAPTER 1

Introduction

The research area of Peer-to-Peer (P2P) systems is fairly new in the field of distributed

computing. P2P systems are typically decentralized, distributed and anonymous

systems. In contrast to client-server applications, there are no dedicated servers and

clients in a P2P system. In a client-server application, clients issue requests and the

server provides the client with the appropriate service. In contrast, each node in a P2P

system can take the role of both a server and of a client. Nodes in P2P systems are also

called servents, a combination from server and client. Each node shares some of its

resources with other peers, and it can use the shared resources of its peers. Current P2P

systems are used to share resources like storage space, CPU power and data files. The

data files shared are in domains such as music, academic / research communities and

computation systems. Some examples of P2P systems are Napster, KaZaA,

SETI@HOME, FreeNet and MojoNation.

One common protocol for file-sharing P2P applications is Gnutella 0.4 (Krishnamurthy

et al., 2001) (Sripanidkulchai, 2001). A querying peer sends a query to all of its

neighbour peers, who in turn send the query to all of their neighbour peers, and this

spreading broadcast continues until the query reaches a peer that has a file that matches

the query, or until a certain predefined maximal number of forwards is reached. If a peer

is reached, it sends back a reply containing its address, the size of the file, speed of

transfer, etc. The reply traverses the same path as the query but in reverse order back to

the querying peer. In this way each query is propagated to up to np other peers (some

peers may get the same message twice), where n is the number of neighbour peers and p

is the maximum number of forwards called “time to live” (or TTL) of the query. This

passing of messages generates much traffic in the network, often leading to congestion

2

and slow responses. Thus, the quality of service becomes poor, since the responses to

queries are delayed.

Peers in the P2P system interact with each other to find resources. If they can remember

which peers generated good responses for different types of queries, they can use this

knowledge to forward future queries of this type to those peers, and not to just a set of

random neighbours. This is similar to the way people use their knowledge from previous

interactions with other people to form social networks. Research studies in sociology

and in the area of social networks have found that social networks help in finding and

dissipating information quickly and efficiently.

We propose a query routing approach based on social networks and the semantics of

queries to alleviate the performance problems caused by the flooding algorithm in

Gnutella systems. This approach introduces the concept of friends lists (lists of peers

that have been shown to be useful) in different semantic areas so that queries can be

routed semantically to these peers. Using friends lists potentially helps in reducing

search time and decreasing traffic by minimizing the number of messages circulating in

the system as compared to standard Gnutella.

The goal of the thesis is to demonstrate that by learning the other peers’ interests,

building and exploiting their social networks (friends lists) to route queries semantically,

peers can get more relevant resources faster and with less traffic generated, i.e. the

performance of the Gnutella 0.4 system can be improved. The thesis also investigates

what conditions bring the greatest improvement. Methods of theoretical analysis and

simulation are used. The potential contribution of the thesis is a modified protocol and a

node architecture that allows reducing search time and decreasing traffic in the Gnutella

0.4 system.

This thesis is organized as follows. Chapter 2 gives an overview of the areas of peer-to-

peer file-sharing applications, focussing on Gnutella-based systems. It discusses other

approaches to improving the performance of Gnutella and gives a brief overview of the

area of social networks. The conceptual design of our social-semantic approach is

3

explained in chapter 3 and the design of the experimental model is described in chapter

4. Chapter 5 presents and discusses the results and Chapter 6 gives future directions and

conclusion.

4

CHAPTER 2

Literature Survey

Peer-to-Peer (P2P) systems are usually defined as distributed systems where peers or

entities share computer resources and services by direct interaction among themselves

(Milojicic et al., 2002). Unlike in client-server distributed systems, there is typically no

central server in P2P systems. Client-server systems are defined as a single or small

number of servers connected to many clients. Clients issue requests and the server

provides the client with the appropriate service. In P2P systems, in contrast, the

individual nodes can be both clients and servers, i.e., the node issues requests and also

provide services and/or resources. The resources that the peers share in the P2P systems

could be files, CPU power, and disk space. In client-server systems, the server needs to

be maintained so that the system works efficiently. This involves cost and resources, for

example, a system administrator to look after the server. The system can be scaled, in

regards to how many nodes can connect to the server, only to a certain limit depending

on the memory, CPU power and storage of the server. In P2P systems, since there is no

central server, no maintenance is required for the system to work and thus there is no

cost for up-keeping. This system has no limit on the number of nodes it can handle. An

example of a P2P system is the e-mail system. E-mail is autonomous, robust and

distributed. Sharing music and movies files is currently the area were most P2P

networks have grown. Efficient file-search is the key to achieve success in such

networks. The next section explains how search is performed in several popular P2P

systems.

2.1 Review of the Area of File-sharing Peer-To-Peer Networks
P2P systems are robust, anonymous, flexible and self-organized systems

(Milojicic et al., 2002). P2P can be classified as resource sharing systems and P2P

5

computing platforms (Milojicic et al., 2002). Resource sharing focuses on sharing data,

hard drives and files. Even though the area of sharing computing cycles is promising, we

will not discuss these approaches but will focus on file-sharing P2P systems.

File sharing systems are classified as Centralized P2P, Pure Distributed P2P, Semi-

Centralized P2P and document routing systems. Some of the most popular P2P systems

in these categories are Napster, Gnutella, FreeNet, KaZaA, and Limewire. Examples of

P2P systems that share computing resources are SETI@HOME and Avaki. There are

two main types of P2P file-sharing architectures: centralized and decentralized. In

addition, there are hybrid architectures and document-routing architectures. These are

presented below along with characteristic example systems.

2.1.1 Centralized P2P System: Napster

Napster (Napster, 2001) is a P2P system used mainly for music file sharing. It has a

central server that keeps track of all the peers in the system. When a peer joins the

network it advertises to the server the files it is sharing with other peers. Thus, the server

has information about all the peers and their files and maintains a centralized directory

of the shared files. Requests for files are sent to the server. The server looks up in its

directory the peer who has the file and sends the peer’s address to the querying peer.

The peers in the system can specify certain peers that they prefer to contact; for example

a peer can specify that only those peers with certain bandwidth B be returned. The server

takes the preferences into consideration before sending a list of peers’ addresses to the

querying peer. The querying peer then contacts any or all of the peers from the list. A

file transfer takes place between them if both of them are in agreement, for example if

the bandwidth is agreeable. The search is very fast since the central server has all the

information about the peers. The server thus only sends the addresses of the peers that

have the file. File transfer takes place without the server participating. As the files are

stored and transferred between peers, it is a P2P system. Fig. 2.1 shows the centralized

model of Napster.

6

Figure 2.1: Napster’s centralized model

Despite their excellent performance all centralized systems are plagued by the “single

point of failure” problem. One type of such problem is a bottleneck at the server. Since

the actual file transfer does not involve the server, a bottleneck happens only when there

are too many peers querying the system and the server is looking up its directory. The

second type of “central point of failure” problem is that there is no anonymity in the

system. The server holds all the peers’ ids (IP address) and an index of their shared files

in its directory. Since music copying is illegal under the copyright law, one could track

the peers involved in sharing and downloading music files by spoofing the server.

Therefore, it was possible to sue Napster for providing the service through the server; as

a result of the lawsuit, Napster was forced to shut down in 2001.

2.1.2 Fully Decentralized P2P System: Gnutella

Gnutella (version 0.4) (Gnutella, 2001) is a protocol for completely decentralized P2P

systems. Most of the file-sharing systems adopting Gnutella, e.g. Limewire and KaZaa,

are also music sharing systems. Gnutella uses a broadcast protocol to search for files in

the system. A peer has to know at least one other Gnutella peer to send requests to,

there is no central server or peer that can provide an index with peer addresses. When a

peer enters the network, it contacts a designated peer (the addresses of some designated

Gnutella peers are published on a website) and receives a list of other peers that have

Server

Peer1

Peer2
Peer4

Peer5
Peer3

Legends:
 Publish Information and search for files

Transferring of files

7

recently entered the network. It is important to note that a designated peer does not

maintain an index of all peers and / or their files, but only a list of some recently

activated peers within a certain time-framework. A certain number of these peers

(usually 7) become the neighbourhood of the new peer entering the network. When the

peer needs to send a query, it sends it to its neighbourhood. If those peers do not have

the file, they in turn forward the request to their neighbourhoods. Fig. 2 depicts a

simplified interaction of peers in the network. The different lines in the figure show the

different stages of query propagation. In Fig. 2.2, Query peer P1, in the top, initiates the

query and sends it to P2, P3, P4 and P6. P2 forwards the query to P7, P8 and P9. And so

on.

Figure 2.2: Gnutella’s decentralized model

Thus, it can be seen that a single query generates an exponential number of messages in

the system. To limit the number of messages going through the system, the protocol puts

Query
P1

P6 P2

P9
P8 P7

P3

P11
P12P10

P4

P14
P15P13

P18 P17

P16

P22 P23 P24 P19 P20 P21

Legend: Query Propagation
 hop 1 hop 2 hop 3

8

a limit on the depth to which a query can be propagated, or the number of hops the

query is forwarded, a parameter called “Time To Live” (TTL). The TTL of a query is

decremented with each forwarding and as soon as the TTL expires, the query is no

longer forwarded. Replies satisfying the query are sent back to the originator along the

same path that was traveled by the query. This ensures anonymity since no single peer

knows who requested and who responded to a particular query. At any time only queries

and replies are circulating in the system.

Gnutella is a robust protocol since the failure of any peer in the network does not affect

the system. However, Gnutella leads to a lot of traffic. As a consequence the responses

are slow and not guaranteed, which leads sometimes to poor quality of service. Even if a

file exists in the system some peers may not be able to find it, because the TTL restricts

the maximum number of hops along each path. Also, there is no way of knowing if a file

exists in the system since there is no directory of the shared files in the network.

2.1.3 Semi-Centralized P2P: KaZaA

KaZaA (KaZaA, 2002) is a Gnutella-based file-sharing application, which is currently

one of the most popular file-swapping P2P applications. KaZaA uses a newer version of

Gnutella using the notion of “Super” Peers, known as SuperNodes (Yang et al., 2003).

Peers self-define as SuperNodes and maintain an index of the files shared by the peers

connected to them. When a peer connects to a SuperNode, it sends a list of all the files it

shares. Querying peers send requests for files to the SuperNodes. The SuperNode checks

its index for the file requested and sends the addresses of peers found to be sharing that

file. If no match is found it forwards the request to other SuperNodes in the system.

Thus traffic and latency is reduced. But there is still the problem of bottlenecks and

servers failures. Also SuperNodes compromise to a certain extent the anonymity of the

Gnutella protocol, since a malicious peer may volunteer as a SuperNode so that it can

retrieve the IP address and shared files of the peers that are connected to it.

9

2.1.4 Document Routing: FreeNet

FreeNet (FreeNet, 2001) is an example of a document routing system. It is a

decentralized file sharing system in which the anonymity of the peers is maintained. If

the files exist in the system, they are located faster than in Gnutella. All peers in the

network have peer-ids and have to contribute some disk space to the network so that

files can be stored there. When a peer wants to store and share a file in the network, the

file is given an id computed from the name of the file and its description using a hash

function. The file, along with the file-id is propagated through the system. The file is

routed in the network and stored in the space contributed by the peer whose peer-id is

the closest to the id of the file being stored. Thus, files with similar or close ids are

clustered together in the network. Likewise when a query for a file is issued, the request

is forwarded to the peer whose id is closest to the file-id being searched. In this way the

peers do not know what files they are storing and no peer knows where exactly their

shared files are stored; therefore this system ensures full anonymity. Just like in the

Gnutella protocol, at least one peer in the network has to be known to a new peer so that

a query can be forwarded in the network. As in Gnutella, a few persistent peers in the

network are published on the FreeNet website. From the system design it can be seen

that searches are faster since the peers send their request directly to the peer whose id

matches closely the querying file-id. When a result of the query is found, the file is sent

through the query path and the file-id is stored in a local routing table. Subsequent

queries are first checked in the routing table and the query is routed to the peer closest to

that of the file-id. One problem in this system is that file storage is not persistent. Peers

contribute storage space from their resources. If a peer reaches its full capacity and a file

has to be stored at that location, then the system uses the Least Recently Used (LRU)

method to delete files and store the new one. There is a high probability that files not

frequently requested will be dropped from the system; therefore if all peers aren’t ready

to contribute a lot of storage space, the system will have to reduce the diversity of files

and users have no control and are not informed about what is being deleted. Also if a

peer is not online then the files stored in the disk space of that peer disappear, i.e., they

are not available for search by other peers. Another constraint is that in order to search,

10

the user has to know the exact file name or the keywords that were used when the file-id

was generated.

Chord (Stoica et al., 2001), CAN (Ratnasamy et al., 2001) and Pastry (Rowstron et al.,

2001) are some other research systems implemented for document routing (Aberer et al.,

2002). These systems differ only in the way documents are inserted and in the

information peers maintain in the system so that search can be done efficiently. Pastry is

one of the more popular systems, and it is presented below.

Pastry (Rowstron et al., 2001) is an object routing and location overlay network. In this

network each node maintains a ‘routing table’, ‘neighbourhood set’ and ‘leaf set’ that

are used to store the addresses of neighbouring nodes. Each node in the Pastry network

is assigned a unique 128-bit random node-Id. A 128-bit key accompanies each message.

This key is used to route the messages through the network. When a query arrives at a

node, that node sends the message to the node whose node-Id seems closer to the key.

Thus files are inserted at the node with the closest node-Id and also replicated in the

nodes with closer node-Id. Similarly files are also retrieved by routing messages to the

node with the closest node-Id as of the key. Thus if a node fails, the files are not lost

unless all the neighboring nodes, i.e., nodes with closer node-Id, fail simultaneously.

Thus the system is more robust in comparison with FreeNet. However, as in FreeNet, to

locate a file the exact key must be known and an arbitrary string is not sufficient.

2.1.5 Summary

P2P systems like Napster, Gnutella and FreeNet have been successful but there are some

common problems with all three systems. Napster provides good speed for searching

and retrieving music files but it is based on a centralized model and peers could be

tracked easily. Due to the centralization approach Napster eventually got shut down. The

Gnutella protocol is completely decentralized, but due to its flooding search algorithm,

systems using Gnutella have performance problems, like huge network traffic, slower

response and congestion. Using a routing-based algorithm, as in FreeNet, imposes

limitations on users; they have to know the exact file-ids of the files they are searching

11

for. Exact keywords (Tang et al., 2002) or identifiers’ (FreeNet, 2001) are required to

search in such systems.

Gnutella is a dynamic and self-configuring system (Jovanovic, 2001). Of all discussed

architectures, standard Gnutella imposes the least number of constraints. For example,

the peers that make up the system can differ in their operating systems, disk space for

shared files, memory allocated to the servent and in their connection bandwidth.

Standard Gnutella does not impose any specific topology for the network, for example

star, tree or graph topology. In contrast, document routing models, have a hierarchical

topology and need a uniform hashing function for both queries and documents. Also,

Gnutella requires no special information, like the naming keys or identifiers, to be

assigned to files or used for search by peers. Usually the users do not have complete

knowledge of the document or file they are searching for and hence the methods

described in CAN, Chord etc. are not suitable for searching new documents, while in

contrast Gnutella allows for searching unknown files with names that match only

partially the user query.

For all the above mentioned reasons, standard Gnutella was chosen for this thesis as a

powerful and least restrictive P2P file-sharing architecture. The rest of the thesis focuses

on improving the performance of Gnutella.

2.2 Optimizing the Performance of Gnutella Networks

A brief description of the protocol messages used in the Gnutella system is listed below

(Gnutella, 2003).

1) Ping: This message is used to actively discover nodes on the network. A

 node that receives this message generally responds with a Pong message.

2) Pong: This message is sent in response to a Ping message from a node. The

 message generally includes the address and the port number of the node.

12

 Additionally, information about the amount of data it shares is also sent.

3) Query: This is the main message used for searching the network. Generally, a

 node that receives this message responds with a QueryHit message if a

 match is found in its local resources.

4) QueryHit: This message is sent in response to Query message if a match is found

 in its local resources. It sends information on how to obtain the

 requested file.

 5) Push: This mechanism allows a node behind a firewall to contribute file-based

 data to the network.

2.2.1 Messages Contributing to Traffic in Gnutella

A study (Vaucher et al., 2002) showed that traffic in the Gnutella system is mainly due

to messages for initial connections and queries. From the table below it can be seen that

the pong messages and query messages were the majority of messages circulating in the

Gnutella system.

Table 2.1. Message Type Distribution (Vaucher et al., 2002)

--

Experiment C Experiment E Experiment F
(Nov. 28th, 2001) (Jan. 4th, 2002) (Dec. 18th, 2001)

--
Messages received 36,797,372 278,871 5,965,273

Pings 9% 11% 9%
Pongs 57% 26% 72%
Queries 30% 57% 15%
Replies 4% 5% 4%

13

Ripeanu (Ripeanu, 2001) reported that, after some changes to the Gnutella system, the

traffic generated in Gnutella now consists of 92% Query messages, 8% Ping messages

and the rest other messages.

Markatos (2002) in another study reports data from three clients, in three different

locations, on the average number of queries seen. Average query requests messages

measured per second by clients in Rochester, Crete and Norway are 45.9, 47.9 and 52.3

respectively. And the average query response messages measured per second are 32.2,

44.2 and 26.9 respectively. They report observing bursty traffic in both cases.

From the above two studies we note that queries still make up a significant proportion of

messages. It was found nodes with more connectivity, in a high traffic network, get

overloaded with queries and responses are delayed. Thus reducing query messages

would help in reducing traffic and not overload high-connectivity peers. Studies have

also found that Gnutella systems suffer from bandwidth, congestion and latency

problems (Jovanovic, 2001) (Markatos, 2002) (Portmann et al., 2001) (Saroiu et al.,

2002).

2.2.2 Improving Search in P2P Systems with Simple Approaches

When the TTL value was reduced, a “short-circuiting” problem was reported

(Jovanovic, 2001). The number of messages decreased but it was found that queries

could not get responses since the request did not go far enough in the system. So

decreasing the value of TTL by itself is certainly not the way to reduce messages and

limit the flooding problem.

The following approaches limit the broadcast space of the standard Gnutella. One

approach (Kalogeraki et al. 2002) broadcasts queries to only a subset of its neighbouring

peers and not all of its neighbours in order to reduce the number of messages circulating

in the system. The goal of finding the document may be achieved but the chance is

smaller than with standard Gnutella, since the generated search space is smaller. The

14

number of messages is reduced as compared to the standard Gnutella since the number

of peers querying are lower. The peers are not learning from their experiences.

(Lv et al. 2002) introduces two approaches. The first approach is an “expanding ring”

where the TTL value is increased gradually to find the resource. Initially the peer

assigns a small TTL value and starts the search. If no result is found then the peer

restarts the search with an increased TTL value. But the messages go through the same

peers once again. There is duplication of messages to the same peers and peers do not

learn from past experience to bypass previously forwarded peers. This approach still

floods the network with messages. The other approach is a “random walk” where the

peer sends a query to only one peer at a time at each hop and sequentially searches

through the system to get the results. Once the results are found the query terminates.

Thus, fewer messages are generated but the search time increases, as the search is

sequential rather than parallel. To limit the delay, the authors experimented with

different numbers of peers receiving the initial messages. The messages then traverse

similarly thereafter but each time the peer checks with the querying peer to see if the

result has been found and then the message is forwarded. There is still time delay, as

each peer that gets the request has to check if the request has already been fulfilled.

Here too the peers do not learn about resourceful peers and subsequent searches are

done again in the same sequential way.

A super-peer network as discussed in section 2.1.3 (Yang et al., 2003) improves

significantly the performance of standard Gnutella. A super-peer network is a hybrid

(semi-centralized) system containing few servers and many peers. Traffic and latency is

reduced, as broadcasting is limited to super-peers only. But there is still the problem of

bottleneck and failures when the super-peers fail.

2.2.3 Improving Search in P2P Systems with Semantic Routing Approaches

This section lists several approaches to optimizing the search for files based on the

semantics of the queries. Different authors and papers use different terms for the

semantics of a query. The terms are as listed: query type (Wang et al., 2002), search

15

criterion (Ramanathan et al., 2001), a category (Crespo et al., 2002.), semantic category

(Triantafillou et al., 2002) and category of data (Ng et al., 2002). Henceforth all the

terms are referred as semantic category in this section.

One approach called “Directed Breadth First Search” (DBFS) (Yang et al. 2002)

selectively forwards queries to peers who are seen to have returned good results for

previous queries. For this kind of intelligent routing, the peer has to keep information on

the neighbouring peers about how many hops that peer had to forward the query to

obtain results, the number of results returned by that peer, and the length of the message

queue of that peer. All this information has to be stored and processed by a peer when it

wants to request a file. Since the neighbouring peers do not change, the query message

travels the entire path until it finds the peer that has the document. This approach still

generates a lot of messages. The authors do not explain how a peer will know what

constitutes a good result. If the number of results is taken to be an indication of good

results, then a peer that returns irrelevant but many results would be considered a good

candidate.

In the “Buddy Web” approach (Wang et al., 2002), routing is done based on similarity

of interest. The main reason for building a “Buddy Web” was to reduce the amount of

traffic in and out of the university network, which costs the university money. For a

given query, there is always the possibility that someone else on campus has already

done the same query and has already received results for it. By caching previous search

results and searching first through them, the university can reduce cost and utilize the

network better. The similarity between the user’s interests and the files’ semantics that is

used for routing inside the network is calculated in several ways. One way is based on

the meta-data of the file, e.g. the title tags downloaded by the user. Another way is by

storing words that the user selected while browsing through its contents in a vector. By

summing up points for the words, which have already been assigned some weight by

some weighting scheme, a calculation expressing the value of interest is performed. A

few servers maintain the interest value along with the peer’s address. A peer calculates

similarity with other peers in the network by comparing its own interest value to those

16

of the others. When a peer is querying, the query is first sent to the underlying network,

called BestPeer. The system sends the query to those peers whose interest values are

close to the querying peer. Once results are found, they are sent to the querying peer. If

the system does not find any results then it sends the request outside the network. An

external search takes place in the traditional manner. A peer does not learn if the peers

who have been found to be similar are useful or not. The authors do not mention how

long a cache is stored. If a peer is searching vigorously, it may overwrite the cache with

new documents and older documents will not be found.

BestPeer (Ng, et al., 2002), mentioned above, is a P2P network prototype using the

Buddy Web approach, implemented in a university setting. The main aim of this

network is code-shipping and data-shipping. It is a decentralized network with many

peers and a few servers. These servers essentially work like naming servers, giving each

registered peer in its network a unique name so that the rest of the peers can identify it.

The peers that are deemed beneficial are kept in a list. A beneficial peer is defined as a

peer that answered a lot of queries or a peer providing the most amount of files. Also

distant peers (i.e., when the number of hops to reach a peer is large), who are found

beneficial, are kept in the list. Each peer has its own limit of the number of peers that it

can connect directly to. The authors found that the response time in this system is

shorter than in the Gnutella system. However, since beneficial peers were determined

based on how many queries they responded to or files downloaded from it, it doesn’t

mean that the files were of good quality or were found relevant by the querying peer. If

a peer changes its query type, the best peer list keeps changing as new peers deemed

beneficial are added and the older beneficial peers, of other query type(s), are lost. The

authors experimented on star, tree and line topologies in the network, and their results

are based on these topologies.

To provide better service in P2P systems, several research projects investigated how the

traffic generated due to the broadcast protocol in a Gnutella system could be minimized

while still preserving the quality of search results. One such approach is based on the

idea of learning who are the “good peers” in a P2P system (Ramanathan et al., 2001).

17

Peers that have sent a “good” response to a peer’s request are entered in a special list by

the peer, following the assumption that these peers may also have good resources for

subsequent queries in this area. Peers are deemed as “good peers” of peer C when these

peers have responded the most to queries of peer C, regardless of the semantics of the

query. The peer sends subsequent requests to the peers in its list. The authors found that

this reduces traffic in the network as peers now send queries selectively to other peers.

Also this selective dispatching of queries does not affect the search results at the end and

good responses are obtained in a short interval. This works when the user is consistently

searching in a single type of semantic query. However, users search often for more than

one semantic category at a time (Iamnitchi et al., 2002). So when the user changes its

query semantics, then these “good peers” will not be able to provide the responses. The

peer will find new “good peers” for this type of query again, but the peers of the old

query type will be dropped.

Some research explores the interest-based behaviour of peers. (Sripanidkulchai et al.,

2003) proposed a solution where peers loosely organize themselves into an interest-

based structure. Initially, the algorithm for querying is flooding or broadcast as in

Gnutella. When replies are returned, the peer chooses a peer randomly from all the peers

who replied and adds it to the “shortcut list”. Subsequent queries are sent to the peers in

the “shortcut list”. If there are no responses obtained by using this technique then the

peer uses the flooding algorithm again. Each peer assigns space for storage of this list.

The results show that the “shortcut list” is effective in finding both popular and

unpopular content (files), and that 45-90% of files are found quickly. But a drawback to

this approach is that it will create a lot of traffic and time delay as the search may keep

reverting back to the flooding algorithm when the document is not found through that

single peer chosen from the subset of peers responding to a similar query. The shortcut

list contains peers who have returned response regardless of the semantic category of

queries. A modification to the model that the authors suggest is to add to the list all the

peers who have replied to a query. But the benefit of using a short-cut list may be lost as

peers just keep getting added and deleted when the peer changes its interest for

searching since there is only a limited space in the list.

18

Another approach (Kalogeraki et al., 2002) proposes that the peer maintains a profile of

all other peers who answered its requests in a local repository by keeping a list

consisting of (query, peer) pairs. A query is defined by the set of keywords used for the

search. All peers that respond to a query are added, together with the query, to the pair-

list. When the peer initiates a new query q, it matches it with the previous ones stored in

its pair-list and picks out the peers that have answered similar queries. This is achieved

in the following way: In this model the neighbouring peers connected to the peer remain

the same from the start and only the profile is updated. Each query in the list is assigned

a similarity value relative to the present query q. It then adds up all the similarity values

for a peer and forwards the requests to only the subset of peers from its neighbourhood,

that are found to have the greatest value for similarity with respect to the present query.

A random peer, a peer not found to have answered similar queries, is also chosen for

forwarding to explore the network. The authors conclude that the traffic is reduced. The

amount of storage is limited and a node uses a Least Recently Used (LRU) policy to

decide which (query, peer) will remain in the local repository. Thus if a peer is

searching consistently in a query type then, older pairs of a different query type will be

deleted from the repository. If now the peer wants to search in a different query type, the

peer has lost the best peers for that query.

Some authors (Crespo et al., 2002) suggest creating groupings of peers, which advertise

together the resources available to each member of the group. The idea is similar to

creating super-peers like in KaZaA, but the index of files is not maintained by a super-

peer but by each member of the group. Peers use indices to keep track of the number of

documents that can be accessed through each of their connected peers in a semantic

category and communicate to neighbours the total number of documents that they can

access in a category. Thus each peer has information about which neighbouring peer to

choose when a query arrives, based on the total number of resources accessible through

the peer.

19

The approaches described above explore the semantics of queries and implicitly model

the interests of peers in different semantic areas. These approaches all selectively

forward queries to peers based on the knowledge obtained and stored. Some research

studies have used semantic routing of queries by classifying queries based on keywords.

Neurogrid (Joseph, 2002) uses keywords, derived from the file meta-data, for searching

and then matching a query. Peers are associated with keywords based on the contents

they store. When a peer issues a query, it looks for remote peers characterised by

keywords similar to the query and forwards the request to those peers. The peer also

changes its neighbourhood by adding remote peers that have answered its queries. Thus

peers learn about other peers, along with all the queries they have answered, and route

queries according to this knowledge. However, storing all this information is expensive

since the storage is bounded and there is a limit to how much information each node can

maintain.

In another approach (Triantafillou et al., 2002) documents are accompanied by

keywords, which semantically represent the contents of the documents, and these

keywords are classified according to semantic categories. The system is assumed to be

logically organized so that clusters of peers are formed based on semantic categories.

However, the researchers do not specify how this is achieved. Each category could have

one or more clusters associated with it. Peers have knowledge about all the categories

and the entire associated set or subset of peers in the system. When a search request

comes in, a peer forwards queries to the cluster associated with the semantic category of

the search keyword. If the document is not found, then the peer in the cluster sends the

queries to other peers in the same cluster or another cluster associated with the same

category. In this model each peer in the system has to know all the categories existing in

the system and clusters associated with them, which is hard to achieve without a central

server maintaining a list of categories and clusters and peers.

Semantic routing has also been used by (Ng et al., 2002) in a P2P system for sharing

images. The authors propose a search strategy based on clusters of peers with similar

20

properties. Each peer according to its interests calculates its signature value using a

certain function. When a peer joins a network it learns about a few peers, called

“random links”, through the Gnutella ping-pong messages and adds them to its list

representing a peer-cluster. Queries by the peer are forwarded through these “random

links”. A peer stores another peer in its peer-cluster list if the data they share are similar;

such peers are called “attractive links”. Peers thus get clustered according to similar

signature value. Thus, when a query is sent by a peer it gets checked against its signature

value and if no close match is found, the query is forwarded randomly to peers. Once the

query reaches the appropriate peer in a cluster, the query is broadcast using the peer’s

“attractive link” lists inside the cluster.

2.3 Social Networks
Concepts of social networks can be applied in conjunction with approaches based on

learning lists of peers, who have been useful in the past and seem to have interest in a

given area, for optimizing search in P2P systems. Social networks are groups of people,

be it in a social setting or an organization connected by relationships (Wellman, 1997).

According to (Newman, 2000), Stanley Milgram, in the late 1960’s, did one of the first

experiments to investigate social networks. In his experiment (Milgram, 1967), he

addressed letters to a particular stockbroker in New York and gave them to people

randomly picked at various locations in the United States, far away from the final

receiver. They had to send the letter so that it reached the addressee, but under the

condition that one could post the letter only to people one knew personally by first

name. Eventually, most of the letters reached the destination, and the average number of

hops was six. Thus the “six degrees of separation” phenomenon was postulated. This

characteristic, that nodes or people are connected to each other by only a few links is

known as the “small world networks” (Scharnhorst, 2003). These social network

approaches are not focussed on P2P networks.

Social science has shown that social networks benefit people in their everyday lives.

Social networks are useful in propagating information and also in finding information.

This fact was exploited to develop an expert system where experts in a subject are

21

located on the web (Kautz et al., 1997). The system was built to get expert advice in

some fields. Users who registered in the system had to fill out a form about their

publications. The system would also search and find information about co-authors in

these publications. In this way the system gained knowledge about social networks

based on co-authorship of papers. This allowed the system, even when some experts

themselves would not have the time or may not like to register in the system, to be

referred to as experts by the system, since they were found by co-authorship in other

expert’s publication. These social ties form the basis for information retrieval depending

upon the type of relation existing between the two people.

Definition 2.3.1 Social Relationships

Social relationships are defined as the interactions among a set or group of people. They

are characterized by how frequent the interactions happen and what type of interactions

occur (Waloszek, 2002).

Definition 2.3.2 Strong Ties

Strong ties are relationships that connect people within the same community and

involve frequent interactions. Due to the frequent interaction, people involved in strong

ties usually share the same body of knowledge and can find information quickly through

these strong ties. Waloszek (Waloszek, 2002) points out that strong ties let people

access information in a timely manner and information is given freely since these are

people who interact with each other very often. This behaviour can be used for

cooperating in the network. Other studies (White et al., 2003) on strength of ties also

found that information can be found quickly through strong ties as these ties have been

found to be connected to knowledgeable people in the community.

Definition 2.3.3 Weak Ties

Weak ties are relationships among people that are not in the same community or

coalitions. They are characterized with relatively infrequent interactions.

22

People with a large number of weak ties are like “Super-peers”. While they don’t

interact frequently with any individual peer, these peers provide referrals and expertise

in the form of forwarding requests to other peers capable of responding correctly

(Venkataraman et al., 2000). Weak ties give access to new information. These are

generally from remote sources.

The benefit of knowing people with weak ties is that they provide information about

experts or knowledgeable people that are not in the community (Granovetter, 1973). For

example, to get information about real estate the first step would be to find a person who

has knowledge in that area or someone who knows about a person in that area, so that

the query reaches that community.

Social networks are also used to study the interaction patterns between groups of people

in a certain context. They help in understanding to what degree the behaviour of an

individual is influenced by constraints in their environment and how individuals use

their social network for their benefit (Webster et al., 2001). It has been found that, if

given a possibility, people tend to manipulate circumstances so that they benefit in

socializing with their choice of people (Newcomb et al., 1965). A social network, once

established, can be used for ones’ own benefit.

Social networks can be studied through the evolution of societies of artificial agents

simulating real people. Simulations allow studying patterns, diversity and behavioural

changes in groups of people due to changes in the environment (Pearson et al., 2001).

Social networks can be visualized using graphs with nodes representing people and arcs

of different colours and thickness representing relationships with different strengths

(Freeman, 2000).

Studies of the qualities of social networks that allow faster transfer of information show

that social networks with varying tie strength are better than random networks, as

random networks have been found to lack the ability of finding a target or specific

person quickly (Waloszek, 2002). Thus interactions occurring between peers can be

23

exploited to find social networks or communities and use them to retrieve information in

the form of data or documents. Since each individual maintains her own personal

network that may contain different people specialized in the same field, this distributes

the load of dissipating information by these specialized people, as the same person may

not be contacted for every bit of information. Strong ties also indicate close relationship

and so it is easier to get close to the knowledge base once a person reaches a group with

strong ties, and this can be either through a weak tie or a strong tie. Weak ties are

credited with diffusion of knowledge and ideas (Granovetter, 1983).

2.4 Summary
Standard Gnutella-based P2P systems suffer from scalability problems like high traffic

and poor quality of service due to the flooding algorithm. Various approaches like

“random walk” and forwarding to only a subset of neighbouring peers try to limit

message traffic. But in those approaches the peers do not learn from their experiences.

In other approaches peers use their experiences to learn about peers to route queries

taking into consideration their similarity of interest. A drawback of these is that

keywords do not always adequately reflect the semantics of the data, and the quality of

results returned, is not used to learn if a peer is really similar or not, but only the number

of returned results is used as a measure of a peer’s similarity.

Other approaches use keywords to classify documents to categories and then classify

queries into categories based on words used. One or more clusters of peers are formed,

which belong to a semantic category, so that the peers in one cluster would forward

queries to peers of another cluster in that same semantic category. Peers store, compute

and maintain all the information of at least a few peers from each and every cluster of

every category so that these systems succeed. Typically the amount of information that

must be stored and the computation power needed to update information of the cluster

and the categories is a drawback of these approaches when peers have limited resources.

Social networks or personal networks also group users with similar interests. It has been

found that these social networks help people in finding information quickly. Thus by

24

maintaining contacts of peer(s) in one’s areas of interest, information can be found as

these peers would also maintain contacts with other peers in that area of interest. They

form clusters of similar peers and information can be found quicker. The relationships

inside a cluster, known as strong ties, are important to find information within the

cluster and obtain expert advice or help. On the other hand, weak ties help in finding

information outside the cluster, which could be other similar clusters in the network or

newly formed cluster in the network. Also weak ties help in finding information outside

the area of interest by linking peers to other clusters or peers who have expertise in that

area of interest.

We combine the concept of social networks and semantic routing to model a system that

reduces traffic and obtains good quality of service in the Gnutella system. The following

Chapter, Chapter 3, introduces our model and describes it in detail.

25

CHAPTER 3

Semantic-Social Routing Approach

Problems Addressed

This study focuses on systems based on Gnutella 0.4 protocol. As already noted in

Chapter 2, Gnutella–based systems suffer due to the flooding algorithm (Jovanovic,

2001). However, other scalability problems have been observed like latency, bandwidth

and congestion in the system (Jovanovic, 2001) (Markatos, 2002) (Sripanidkulchai,

2001) (Ramanathan et al., 2001). Ongoing research is trying to reduce traffic, relieve

congestion and improve the search capability of these systems.

 (Jovanovic, 2001) mentions that Gnutella systems exhibit “small-world network”

phenomena (ref. Pg. 19). This finding can be exploited to improve search, but it has not

been taken into consideration yet. On the other hand, semantic-based routing helps find

queries faster and without overloading the system with messages (Tang et al., 2003).

The model discussed in this thesis combines semantic routing with the concept of social

networks. Messages are routed to different contacts depending on the semantics of the

query. Each peer learns from experiences, its social networks in different semantic

areas.

3.1 Defining Semantics of Queries

There are different ways to define the semantics of a query. It can be expressed by the

keywords used in the query. Similarity between the keywords of the present query and

previous queries can be used to intelligently route the queries to the peers in the system.

The most successful search systems are based on keywords. However, in order to

identify the semantically meaningful words in a document, more complicated techniques

26

are needed like Latent Semantic Analysis (LSA). In our model “semantics” is defined by

a finite set of categories.

Definition 3.1.1: Category of interest

A category is defined as a semantic area characterized by a set of topics or keywords

(Vassileva, 2002). For example, topics like distributed databases, and peer-to-peer

systems characterize the area of distributed systems, which is a category in our model.

One can define hierarchical links among categories, resulting in category trees, or

subject classification schemes, similar to those used by the ACM or IEEE.

If files are assumed to have associated meta-data containing keywords (Joseph, 2002),

they can be categorized dynamically using the keywords from the meta-data of the

document. Since a document may contain keywords from different categories,

quantitative measures define how exactly a given document will be clustered.

Definition 3.1.2: Peer’s Interests

A Peer’s interests are defined as a list of categories in which the peer initiates queries or

shares files.

Users can be interested in one or more areas (corresponding to a set of categories). It is

possible to infer that a user may have interest in a more general category (according to

the category abstraction hierarchy) if s/he has shown interest in a specific sub-category.

However, when users search for documents in a given category or sub-category, they are

usually interested in narrowing down their search rather than generalizing it.

Definition 3.1.3: Friends list

The “friends list” of a peer contains the names/numbers of other peers that are assumed

by the peer to be interested in a given category.

27

The semantic categorizing of “friend”- peers creates a social network for a particular

area of interest which allows peers to benefit from previous experience by using their

relationship to other peers in the search for resources. Peers, which have shown interest

in a particular category by sharing a file in this category are likely to have and share

other files in this category, so future queries sent to these peers are more likely to yield

results than those sent to peers who haven’t shown interest in the category. Peers who

are in the friends list of a particular peer for a given category share files that have

matched the queries of the peer in the past, have proven useful and probably share

similar tastes or criteria for considering a paper interesting. Therefore the friends list

helps the peer bias its search according to its interests and tastes.

3.2 Learning the interests of other peers

There are two kinds of evidence about being interested in a given category: initiating

queries in this category and sharing files in this category. Peers can learn about another

peer’s interests by keeping track of all the peers who responded to a query in a given

category. The response obtained is taken as an indication of that peer’s interest because

the peer is keeping and sharing documents pertaining to the category being queried. A

peer can also learn about the interests of other peers by analyzing who initiated a query

in a category. Thus peers can be classified according to their interests and the queries

can be forwarded to peers in the same interest groups. A peer maintains separate lists of

friends for all of its interest categories and adds peers to the lists based on evidence

about their interests. When a peer queries and gets responses, it keeps track of all those

peers who returned the responses; they are assumed to be interested in that category. For

example, if peers, A, B and C responded to peer G’s query in category X, then G adds A,

B and C to its friends list related to category X. On the other hand, all the responding

peers A, B, C will know that G is interested in category X, since it generated a query in

this category, so they will add G to their lists of friends in category X.

This idea of keeping lists of friends for different categories is similar to social networks.

People maintain social contacts with individuals in different interest groups (McCarty,

2002). The reason behind the need to maintain these contacts is that these people are

28

good candidates for recommendation or advice in the interest area, if one ever needs

them. A person in a “friends” group about a given subject has more knowledge about

that subject than a randomly chosen person. He/she also knows other people with similar

interests, so if it can’t answer, it will be able to give a good referral. As seen in (Kautz et

al., 1997) people who were co-authors in a paper were seen as good referrals for advice

or contacts. Studies have shown that social networks are beneficial in contacting and

getting help (Granovetter, 1973).

In a similar manner, when we are seeking information we tend to first seek out

somebody who we know either has knowledge in the area or knows somebody who has

knowledge. This mechanism can be easily implemented in the Gnutella protocol.

For example, Peer A in Fig. 3.1 has created different friends lists for different categories:

X, Y, Z. When a query is initiated in a particular category (say X), peer A chooses to

forward the query to the first few (three in this case) peers with highest relationship

strength.

Figure 3.1: Creating friends list for a category.

P1

 P2

 P3

 Peer A

 P2

 P1

 P3

X

Y

Z

 A’s friends list for category X

friends list category

‘X’

29

If any of the “friend-peers” does not generate the response, then the friend-peers will use

its own friends list for the category of the query to propagate it further. Thus a combined

semantic-social network routing generates a chain of forwarding, eventually finding the

answer to the query with a higher likelihood. Figure 3.2 shows the forwarding to friends

list where peer A generates the query.

Figure 3.2: Query Routing

If the query is sent to random peers who have no interest in that category the query will

most likely not succeed. The peer will forward it to other peer(s), which most likely

won’t have interest in the category. If they don’t have the file, they will have to forward

it further. The query may get aborted due to exhausting its time to live. Also, replies will

be delayed as a result of this forwarding.

Peer A

P8

P3

P1 P1

 P2

 P3

 E1

 P4

 P5

 P6

 E2

 P7

 P8

 P9

 E3 P1

 P9

 P0

 E4

30

However, if a peer has the file, it will generate a response and it won’t forward the query

further, so there will be no more traffic generated further from this peer in the network.

Since the likelihood of a peer on a semantic routing chain to have the queried file is

higher (since the peer has interest in the category of the query and is more likely to keep

files in this category) responses will come with a higher likelihood, faster and will

generate less traffic. Thus, the benefit of this “semantic-social” routing approach is that

queries will travel less and will be more likely to achieve success with a smaller number

of hops.

Even though in this way, a peer will only send a query to other peers it knows, it will

never “discover” new friends. Thus, if none of the peers in the friends lists have the file,

then results are not obtained. Therefore, there is need for at least one “wildcard” or

random peer, to allow for discovery in the system. This peer could be any one of the

peers from other categories friends lists or an unknown peer.

3.3 Centralized versus Distributed Classification of Peers

3.3.1 Performance and Costs

Should we model a social network or a yellow page directory? Instead of having each

peer maintain its own friends list in each category it is interested in, we can have a

global central directory listing all peers and their interests. Thus, the central server will

be like a yellow page directory and have knowledge about all the interests of all peers

and this makes it easier for the peers in the system to retrieve information about peers

interested in a category. Such a solution has some advantages. To search for a document

the peer has to contact the server and get the list of peers interested in that category.

Afterwards, the peer can retrieve from the proxy server a list with those peers who are

currently on-line. Then it can query exclusively those peers that are strongly interested

in the category and are currently on-line. The server will update its lists using input from

many peers who have discovered peers interested in an area and it will be more reliable

(in terms of strength of evidence about the interests of peers). There are also not that

many messages circulating in the system and thus the system is not congested. A

centralized approach like this is similar to the Napster architecture. But the drawback of

31

such a centralized approach is that the entire system will stop working if the central

server fails because peers will be unable to get a list of peers from the server. Another

issue with using a central server is that it becomes the bottleneck in the system;

responses are delayed when an increased number of peers contacts the server for lists of

peers each time they are searching / forwarding a query for a document. A centralized

server needs some maintenance as well to ensure that it is always available, which

means monetary costs.

3.3.2 Privacy, Anonymity, Vulnerability

In the case of Napster (Napster, 2001), the centralized directory was the main reason for

its shutdown since it was easy for the server to be tracked down and charged with

copyright violation. It also gives malicious peers ways to bring down the system by

denial of service attacks.

A central server also stores information about the peer, its interest and the contact IP

address. Thus it becomes easy for any peer in the system to get an IP address and use it

for any malicious purpose, like spamming. Privacy cannot be maintained since the

central server interest directory is open for any peer to look up any other peer. Peers in

general may not be interested in revealing publicly their areas of interest.

In our model every peer maintains its own friends lists. If each peer maintains lists

locally then there will be no need for a central server to keep information about other

peers in the system for forwarding the query. The redundancy ensured in this way helps

the system to keep running in the event of any peer’s failure. Since each peer is

responsible for maintaining its list for the interest categories, its failure does not affect

other peers in their capability. Also when each peer maintains its own list of peers for a

category based on its own interactions, that peer keeps private the identity of all those

peers who interacted with it and no peer in the system will be able to keep track of all

other peers’ interactions. Hence the interaction is private with no third party involved.

However, complete anonymity, a desirable feature of Peer-to-Peer systems, is not

maintained in this system. The originator of the query in our model knows about the

32

responder of the query at the time of document download. A malicious peer can pretend

to be interested in a given category and quickly find a list of peers interested in this

category and the sources of the documents. However it will not be a complete list, but

only a local one based on the experience of the peer. So the social network approach is

less vulnerable than a centralized approach.

3.3.3 Personalization / Subjectivity

Another advantage of the “social network” approach is that it allows for subjectivity.

Each peer can choose the criteria according to which it adds or removes peers from its

friends list. When a peer maintains his/her friends lists individually, it can choose to add

or delete any peer from its list. The lists of friends reflect similarity of tastes in a

category between the peers. For example, a number of peers may be interested in a

particular category, but a peer may be interested in some specific topics in that category;

therefore, its friends lists will contain peers with interest in these topics only, while

another peer may be interested in another set of topics and will have a different list of

friends. Just like humans have their own criteria for quality and choose things

accordingly, each peer also has a certain threshold by which it judges the quality of

documents or the interestingness of resources. These are subjective criteria and are hard

to measure and sum up objectively; imposing any “objective” measure of similarity is

meaningless. In a centralized approach each peer sends the number of documents it

shares in each category to the central server when the peer joins the system. The server

keeps a list of all the peers it communicated with along with the number of documents it

shares. In this centralized approach, the usefulness of a peer would have to be an

objective measure, for example, the number of documents shared by a peer in a

category. Peers can also report their satisfaction with regards to any peer to the central

server, allowing it to compute a “reputation” value for each peer, which can be looked

up by other peers. The disadvantage of the centralized approach is that such “average”

objective measure cannot capture the specific needs of all peers. A peer that is highly

specialized won’t score very high on an objective measure since only a few peers would

use it. However, it may be invaluable for a specific peer who shares exactly these

special interests. As the heterogeneity of the user population grows, the meaning of the

33

“reputation” value will decrease and become a subject of emergent power-law effects

“the rich get richer” or “the popular become even more popular”, effects that reduces the

overall utility in the peer community. In a centralized approach, the list containing peers

is complete. In our model, where each peer maintains its own list, the list is not

complete as only those peers who responded in a category are kept. There is more work

to be done and less information about peers in a decentralized approach.

In summary, considering the mentioned above factors, it seems that the approach where

each peer maintains its own list is better suited than the centralized approach where all

the peers and their interests are listed in a central server.

3.4 Strength of Relationships

Definition 3.4.1 Strength of Relationship

 We define the strength of relationship S of peer A with peer B as a numeric value

S ∈ [0,1], computed by A, which represents the previous experience peer A has from

interacting with peer B.

From this definition it follows that if peer A and peer B are involved in a relationship,

each of them keeps a subjective value of the strength of the relationship, based on its

own experience with the other peer. Depending on the criteria for judging experience,

the values of the strengths they assign to the relationship can be different, which

parallels the asymmetry of relationships that exists in the real world, e.g., ‘A likes B, but

B dislikes A’.

Peer A computes the strength of relationship with another peer B in the system based on

evidence from interactions, e.g., the reliability and usefulness that the peer B showed in

its interactions with A. Reliability in the context of P2P systems means being frequently

online, having good resources and having a good connection. The strength of

relationship is updated after interactions with the other peer. The evidence taken into

consideration when updating the strength of relationship includes the success rate the

peer had with queries sent to the other peer, the reliability of the other peer while

34

downloading documents, (e.g., does it stay active or disconnects when document is

being downloaded), the quality and the usefulness of the resource.

A peer attaches a strength value to each relationship with a peer from its friends list for

each category. The strength of the relationship with a peer from a friends list related to

one category is independent of the strength of the relationship with the same peer if it

happens to be in a list for a different category. If x is the strength that peer P assigns to

its relationship with peer Q for category X and y is the strength that peer P assigns to the

relationship with peer Q in another category Y, y is independent of x. For example peer

P may have downloaded documents from Q in two different categories X and Y: many

times in X and only a couple of times in Y. Therefore x will be higher than y.

3.5 Updating the Strength of Relationship

To create friends lists in different areas of interests and use these lists for query routing,

peers need to learn about other peers’ interests. New friend-peers need to be discovered

in the interest categories of the peers. Adding new peers is important since these peers

may have some other resources and may also be connected to other unknown peers

interested in the same category; therefore discovering new friends will allow the peer to

access more resources in the system. Thus maintaining a long list of friends for each

category of interest is desirable, since in case of failure or inactivity of one of the

friends, the peer will still be able to route its queries to the remaining friends.

A peer can learn the interests of peers in the system in a variety of ways. One approach

is by asking its neighbours explicitly about their interests and storing them for future

use. This is of limited use since a peer will know only about its immediate neighbours’

interests and not that of other peers in the system. Also each peer has to be sure that the

relayed information is true (i.e., it must trust the source).

Another approach is by using “gossiping” as proposed in (Yu et al., 2000). Peers gossip

or send messages to each other about the interests of peers they have interacted with. For

this technique to work, each peer has to trust other peers in the system, so that from the

35

information obtained about the interests of other peers in the system it can compile a list

of peers that it can use for searching in that interest category. But peers have different

interests and quality of service criteria and so all the peers in the system cannot be

trusted equally. This requires extra knowledge about which peers are trustworthy. A

method for managing and propagating trust values has been proposed by (Wang et al.

2003). If the trust value of peers is also to be gossiped about then each peer has to also

decide which peer’s “gossip” weighs more and the trust problem shifts to a higher-

level.

Therefore, we propose that each peer should learn from its own experiences. The peer’s

own experiences are the most trusted source since each peer can judge by its own

criteria how to update the strength of relationship with another peer after an interaction

and which peers to keep in its friends lists. This technique does not require relying on

other peers for information (recommendations). When peer A gets a response and

downloads the document, the responding peer B, without giving explicit information

about its interests, is seen as interested in the category of the query. A will update the

strength of its relationship depending on its criteria for quality of service. If for some

reason a peer is not seen to be a good peer (e.g., file is corrupted, transfer is interrupted

etc.), the strength of the relationship will be decreased after an unsuccessful interaction,

again depending on peer A’s own criteria (judgement) for successfulness of interaction.

Some peers may have a higher tolerance while others may be more demanding.

Reinforcement learning is an appropriate technique for learning from experiences, and

can be used to update the strength of the relationships and thus learn about the interests

of other peers. The strength of a relationship can be calculated in two different ways,

depending on whether there is a need to take into account how recent experience with

the peer was (e.g., decay of old experiences). The first way can be used when it is

assumed that the interest and cooperativeness of the peers does not change over time.

The second way takes into consideration changes over time and allows the building of

more explorative vs. conservative (or reverse) attitude of the peer that computes the

strength.

36

The first way to calculate the strength of relationship computes the percentage of

responses in a given category produced by a peer, i.e.,

C
A

C
AXC

AX Q
RS = (3.1)

where, SAX

C is the relationship strength between peers A and X, RAX
C is number of

responses by peer X to queries in category C issued by peer A and QA
C is total number

of queries issued in that category by peer A.

In this way all responses received from are treated equally and are taken into

consideration in evaluating that peer’s performance, i.e., old experiences count as much

as new experiences. This is reasonable if peers are assumed to behave consistently in

time. In reality, however, peers change their interests and behaviour, so it may be more

reasonable to give more attention to recent experiences.

Another way of computing the strength of relationships allows taking into account

changes in the interests of peers and gives different weights to past and recent

experiences according to the following reinforcement learning formula

where, SAX
t
 is the relationship strength value between A and X at the present time t, SAX

t-

1
 is the relationship strength value at the previous time t-1 and eAX

t is the evaluation of

the current experience and α is a value between 0 and 1. The experience is evaluated as

a function of the quality of the service and/or resource obtained, e.g., bad format/good

quality, problems while obtaining the document, the speed of network connection at the

SAX
t
 = α * SAX

t-1
 + (1- α) * eAX

t (3.2)

37

time of obtaining the document. Each peer has its own function for computing the value

of experience depending on its preferences.

The formula above takes the relationship strength at time t-1 and the current experience

to calculate the relationship strength at the present time t. Depending on the value of α,

either

1) α > 0.5

the previous relationship strength is given more importance when calculating the

present relationship strength then current experience, i.e., the peer is

conservative, (appropriate if system changes slowly.)

 or

2) α < 0.5

the previous relationship strength gets rapidly discounted and current experience

is given more importance when calculating the present relationship strength, i.e.,

the peer is more explorative, which is appropriate if system changes rapidly.

Thus, if α < 0.5, e.g.,α = 0.2 new peers can have a chance to get involved in strong

relationships sooner and will be more likely to be chosen for forwarding queries.

It may be good to have smaller values for α in the beginning when a peer builds up new

relationships and increase it later, i.e., the peer will become more conservative in

changing already established relationships.

3.6 Semantic Routing

As argued in the previous sections, it would be good to use the knowledge of a peer,

which it had accumulated by experience to guide its future actions. Just like in social

networks where people request from other people services or information based on

knowing these people’s strengths or knowledge, a peer can request files or documents in

a given area from peers who it believes are more interested in the area. Therefore, we

propose to route queries semantically, i.e., to peers in the friends list in the appropriate

category.

38

When a query is initiated or is received by a peer, the query is classified into a category

and the request is sent to the peers from the friends list associated with that particular

category. Thus, the queries get forwarded to peers in similar interest category groups.

This is beneficial since the query is now circulating among peers who have shown

interest in that category and who may have the file with a greater probability, therefore

the chance of the document being found is higher and the likelihood of finding it faster

is higher than if the peer was searching among random peers.

 A peer can send a query to all peers in its friends list for the category of the query.

Depending on the length of the friends list a lot of traffic can be generated since it is in

fact again broadcasting, just on a smaller scale. Therefore, it is a better solution to

forward queries only to a small number of “best friends”, based on the “strength of

relationship”.

Peers with high relationship strength are chosen for forwarding queries. The high

relationship strength indicates those peers that have been most helpful, reliable and have

shown a greater success rate in the past.

Thus peers chosen from friends-list to route queries are like strong ties in social

networks, where the query in this social network finds the response, as queries now

circulate among the peers in the category. Random peers used to forward queries, in the

semantic model, are representative of weak ties found in social networks, as these peers

help in finding peers interested in the category of interest.

3.7 Discovering New Friends

A P2P system is highly dynamic: peers come and go and change their interests.

Consequently there is always a need by peers to discover new friends in the system. In

our model, new friends are discovered by sending queries to a few peers that do not

belong to the friends lists of the interest group of the querying category. That means that

the neighbourhood of a peer, i.e., the peer to which a new query is sent, is formed by m

39

unknown peers and n-m friends. n can have different values. The standard Gnutella

neighbourhood has size n = 7. For example in Fig. 3.3, Peer1 sends the request to seven

peers in total out of which five are from the friends list and two are random peers.

Through the random peer the peer explores the network: potentially new peers interested

in the same semantic category may be found and added to the friends list.

Figure 3.3: Discovering New Friends

An unknown peer once chosen will send the query to its friends (if it has any) in the

querying category. The peers chosen by this independent peer for forwarding the query

further may be new or not related to the querying peer. Thus, a peer chosen outside the

friends list group lets the query go to new or unrelated peers who may have either

entered the system recently or acquired document(s) of the interested category recently.

This enables discovering new friends with the trade-off that more messages will be

generated. The worst case will be that all the peers are chosen from outside the interest

group of the querying category since the peer doesn’t have friends yet and they have

completely different interests and have no friends lists in the category of the query. This

will result in a standard Gnutella routing based on the neighbours that are currently on

line. The result is no new friends are discovered but messages will be generated until the

query expires.

Peer1

P2

P4

P5

P6

L1

L2

P3
friends (n-m)

unknown (m)

n

40

The above scenario indicates that it is necessary to strike a balance between choosing

friends versus unknown peers for forwarding a query, i.e., choosing a good value for m.

This is necessary to derive benefits from past experience and still be able to explore the

network. Different policies can be implemented in the model for various situations. For

example: starting with m = n, i.e., queries will be sent initially to unknown peers until

enough interactions occur and the peer creates a friends list. Then the peer will forward

queries to a few peers from the querying category’s friends list and to a few unknown

peers. Afterwards it will gradually forward to friends, keeping only 1 or 2 unknown

peers in its neighbourhood to allow for exploration. If a query is unsuccessful then the

forwarding is reverted to the original policy i.e., sending to all unknown peers or to

peers outside the interest groups.

3.8 Summary and Discussion

A method for building friends lists and using these lists to semantically route queries for

an individual peer has been introduced in this chapter. This method specifies how

friends are discovered in the system, how the strength of relationship is calculated and

updated, how the query is routed through the system.

Similar to the BestPeer system (Ng, et al., 2002), our method also reconfigures the

network by connecting to different peers for different queries, but peers chosen in our

model are from the friends list of that category. In our method beneficial peers are

separated into different lists so that they are not lost if the query is from different

category. We have used the concept of semantic category that other approaches have

also used (Triantafillou et al., 2002) (Joseph, 2002).

As the number of peers in the system increase, the friends list will also grow in size.

This in turn translates into costs of maintaining friends lists, e.g., storage for keeping

friends list and computation and delay for calculating the strength of relationships of

friends. However, the benefits of peers keeping friends lists – the decreased network

traffic, increased speed of responses, success rate of queries, and amount of relevant

content – typically outweigh the costs, as computer memory and storage is getting

41

cheaper and computers are getting faster. In case peers have limited computational

resources, they can limit the size of their friends lists or implement specific policies for

updating the strength of relationships (e.g. after every second interaction with a given

peer rather than after every interaction) and still yield some benefits, depending on the

dynamics of the system.

To test our model we simulate a Gnutella-based system with peers using our method of

building friends lists and we compare it with a system where peers do not build and

exploit friends lists. The next chapters describe the experimental set-ups, hypotheses and

the results.

42

CHAPTER 4

Experimental Model

4.1 Hypothesis
In the previous chapter we have introduced the semantic-routing model and its

properties. To evaluate the benefits of this model we need to compare its performance

with a standard Gnutella system. For this purpose we simulate a peer-to-peer file-

sharing environment.

The aim of the experiments is to show that a friends list used to semantically route

queries reduces the search time for documents and decreases traffic by reducing the

number of messages circulating in the system.

Our hypotheses are that:

1) Peers who share a lot of files in the system will become top peers in the

 friends’ lists of every peer.

2) A system with a friends’ lists performs better in terms of time for search and

 number of messages generated than a system with no friends lists whatever

 combinations of factors mentioned below is used.

We want to investigate the quantitative impact of searching semantically on the traffic in

the network of the following factors:

1. Size of community;

2. Number of papers/files/documents shared in the system;

3. Distribution of files/queries in the system;

4. Number of neighbour peers the query is forwarded to.

43

We carry out experiments in two environments, static and dynamic. In the static

environment, all peers are active throughout the entire simulation whereas in the

dynamic environment the peers in the system can switch between online and offline

state which is characteristic for real systems. In either environment we do not deal or

take into account any network problems or delays in the system.

In the static system we compare the results of a system where peers use no friends with

a system where peers send requests to three friends from their friends list and with a

system where peers send requests to four friends. The experiments will be repeated for

different numbers of peers in the system and different sizes of the friends list. The

underlying peer system would be the same so that our comparisons is not affected by

any other factors. For this purpose, our experimental model contains some modifications

to the standard Gnutella 0.4 protocol in order to simplify the model and remove external

factors. The modifications are described in the next section.

In the dynamic system we will compare results between two systems where one has a

uniform distribution of queries and files kept by peers and the other has a

more realistic Zipf-distribution of queries and files. (Wang et al. 2004) (Tsoumakos et

al. 2003) (Lv et al. 2002).

4.2 System Model
Several modifications were made to the standard Gnutella 0.4 protocol, in order to allow

a comparison between the systems without the influence of random factors. These are

described in the next section. The system model design is described in section 4.2.2.

4.2.1 Protocol Modifications

The first modification to the standard Gnutella 0.4 protocol is that peers who have the

requested files send responses directly back to the peer who originated the query and not

through the queried path. The reason for this modification is that it allows us to focus on

the time for search rather than considering the entire transaction, which can be

influenced by a number of external factors, such as general network delays.

44

Following the same reasoning, a second modification has been introduced where the file

is sent back by the responding peer to the query initiating peer as the response instead of

the two process transaction in Gnutella: the responding peer sending a “query hit”

response first, followed by a request for downloading the file by the querying peer and

finally the transfer of the document. We assume here that the querying peer does not

replicate the file, so a peer can search for a file repeatedly. Also, we ignore the file size

as a parameter, i.e., we assume that all files take a constant amount of time to download.

A third modification is that once a peer sends a “hit”, the responding peer no longer

forwards the query. In this way we can focus on the traffic generated until the first

responses start coming and ignore the echo effects generated when this peer still

forwards the query in the system. Also if a peer has already forwarded a query, it does

not forward the message further if it gets the same query again.

The model of the system used for simulation is based on the assumption that the system

is a document file sharing system that contains a relatively small number of peers and

categories. Also, too many categories will lead to an increase in the calculation time

within each peer. A large number of peers lead to a very large runtime of the simulation.

Therefore we were able to experiment only with 100 peers.

4.2.2 System Model Design

The documents in the system are pre-classified into categories, represented as numbers.

This numeric representation does not affect the routing since both file-names

represented as strings and file-names represented as numbers have to be matched

exactly. Numbers are easier to match in the simulation. The files shared by peers are

also represented by numbers. The same rationale applies here: numbers are easier to

match in a simulation. The neighbours for any peer in the system are selected randomly;

the number of neighbouring peers is fixed. This applies to both systems: with and

without friends lists. The file numbers and their distribution are set at the start of the

simulation and remain unchanged during the course of the simulation.

45

We start with a baseline model of the system with the objective to determine how

quickly peers learn:

1) about resourceful peers in the system, and

2) about peers with similar tastes.

In the baseline model, we can further assume without loss of generality that there is only

one category of interest in the system. This assumption can be justified as follows.

Recall from section 3.5 that the friends lists for all the various categories are kept

separate by every peer. The peer’s relationship strength in a list is not influenced by the

strength of the relationship with same peer in any other lists it features in. Since the

peers in the friends lists are used to send queries only for the particular category for

which the peer has generated the query and there is no interaction between queries, the

speed of learning of new friend peers in a given category will not influence the speed of

learning of friends in a different category. Thus the system can be broken down into

several independent subsystems, each of which can be simulated independently. From

this we can assume that in the system there are some peers that are interested in a

category and the rest of peers in the system are not interested in that category. So, we

can consider without loss of generality a system that has only one category.

For exploring the system and learning about potential new friend peers in a category a

peer needs to send queries also to peers outside of the peer’s friends list of the category.

As explained in section 3.7, these peers can be new peers and/or peers that are not yet

known, or who share files in another category. We can assume also that there are peers

in the system that are not interested in any category and do not share any files (empty

peers) along with peers interested and sharing files in the category. The empty peers just

facilitate the infrastructure of the system, i.e. they forward queries.

In the beginning there are no relationships among the peers in the system, since there

have been no interactions among them yet. Interactions happen as queries are generated

and responses arrive. Queries are generated by randomly chosen peers in a fixed interval

46

of time. The file number to be queried is generated randomly. The query is sent to the

peer’s neighbourhood consisting of n-m friends and m random new peers. These peers

search through their resources and if they have the file, they return a “hit” message.

Each query is identified by a unique id and the id of the originator of the query so that

hits can be sent back to that peer. The unique id also helps to discard the query if the

query gets forwarded more than once to any peer. In this way the peers do not have to

process the same query once again. This reduces the number of messages circulating in

the system.

The peer originating the query keeps track of all peers that respond to each of its

queries. It then calculates the strength of the relationships with these peers and stores

them in its relationship list as tuples containing peer id and the relationship strength. In

the simple model all peers in the list are retained in the friends list and none are dropped

even if the strength of the relationship is very small. This helps to see the dynamics of

the relationship strength with the peers who once interacted with the initial querying

peer.

The simulation system contains a varying number of peers with and without files and a

single category of interest. The set-up of the system is such that the file distribution

varies among the peers sharing files. For example: 57% peers that share ten files, 29%

peers sharing twenty files and 14% peers sharing forty files. This file distribution

remains consistent, though the actual number of peers sharing files in the system

changes. The relationship strengths for all peers are calculated after a set time and sorted

so that the list is updated. Thus a peer can use the most recently updated value of

relationship strength to pick peers to forward queries.

We experimented with different proportions of peers sharing files (i.e., interested) in the

category: 8%, 10%, 15%, 30%, 50%, 70%, 90% and 100% of the total number of peers

simulated in the system. In each of these cases, the remaining peers are considered to be

not interested in the category and thus they do not share files in that category. They just

facilitate the circulating of messages in the system.

47

The number n of neighbour-peers to which a peer sends its requests is set to five (5).

Two sets of experiments were performed with different values of m, i.e., the number of

neighbours chosen from the friends list. In the first experiment n = 5, m = 4, i.e., a peer

has a neighbourhood of five out of which four peers are chosen from its friends list (the

top four with strongest relationship) and one peer is chosen randomly from the rest of

the peers in the system. This simulates a peer using 4 strong ties and 1 weak tie in its

search. In the other experiment n = 5, m = 3, i.e., a peer uses more weak ties (2) in its

search. The TTL (time to live) of the requests is 4 in both cases.

For the purpose of comparison, a baseline system with the same number of peers, all

interested in the same category, was implemented. The file distribution among peers

remains consistent with that described above. Here each peer at set-up picks five other

peers randomly and makes them its neighbours. The neighbourhood is fixed throughout

the length of the simulation, as in the standard Gnutella 0.4.

4.2.3 Static System

In the static system all the peers created at the start of the system are assumed to be

active during the entire simulation. The number of peers in the system does not change

during one simulation run but can be changed for different simulation runs. This

assumption makes the simulation less complex. Since we are interested to find the

performance at “snapshots” of time when queries are generated we can assume that the

system is static (i.e., no new peers or leaving peers).

The first set of experiments, in Table 4.1, finds the impact of the total number of peers

in the system on the average number of messages and hops.

Table 4.1: Details of the number of peers and files in the first set of experiments

With friends list Without friends list

Num. of peers Num. of files Num. of peers Num. of files

Figure Numbers

50 200 50 200 Fig. 5.1 and 5.2

100 200 100 200 Fig. 5.3 and 5.4

48

The second set of experiments, in Table 4.2, investigates the impact on the performance

of the total number of files shared in the system. Here the system that sends queries to

peers from its friends list is compared with the system that does not have friends list.

Each set was repeated thrice and the average is used to get the final graphs.

Table 4.2: Details of the number of peers and files in the second set of experiments

With friends list Without friends list

Num. of peers Num. of files Num. of peers Num. of files

Figure Numbers

100 200 100 200 Fig. 5.3 and 5.4

100 100 100 100 Fig. 5.5 and 5.6

100 150 100 150 Fig. 5.7 and 5.8

4.2.4 Dynamic System

In the dynamic system two experiments were performed. In the first one files shared by

the peers follow a uniform distribution and also the queries follow a uniform

distribution.

In the second experiment, the files shared by the peers are Zipf distributed, which

implies that a few popular files are shared by a large number of peers and some less

popular files are shared by very few peers. Also the queries were generated according to

the Zipf distribution, which means that peers generate more queries for popular files and

fewer queries for files that are not very popular. Files are ranked from 1 to i in order of

popularity, 1 being the most popular file and so on. The Zipf law states, “the occurrence

of an event is inversely proportional to its rank” (Adamic et al. 2002). The distribution

that follows this law is the Zipf-distribution. Popular files are copied often and shared by

a lot of peers in a Gnutella system (Wang et al. 2004) (Schlosser et al. 2003).

According to Zipf’s-law, the probability of file P being queried or chosen to share is

given as:

49

P(i) = 1/ ia (4.1)
where i is the rank of that file and a an exponent. In our simulation we use a = 0.82

(Wang et al. 2004) (Tsoumakos et al. 2003) (Lv et al. 2002).

The modifications described in section 4.2.1 to the standard Gnutella protocol hold also

for the dynamic system. Also the system model as described in section 4.2.2 applies

here. The query routing and the strength of relationship of each peer is calculated and

updated periodically. The only differences from the static system are that peers can go

offline and then re-enter the system and that the files and queries follow particular

distributions (uniform and Zipf). The data used for the times a peer is online were

obtained from real usage data of the COMTELLA system (Vassileva, 2002) and is given

in Table 4.1 and 4.2. The times when a peer is online and goes offline are exponentially

distributed. The data, from which one calculates the frequency of logging in and the

time that the peer is online, are given in Table 4.3 and Table 4.4. For calculating the

overall time a peer is online, we generate a random number and then find its upper and

lower bound from the graph.

Table 4.3: Data for the total percentage of time peers are online

Percentage interval of total

login time

Number of peers in the

interval

Cumulative total

0-10 25 25

10-20 1 26

20-30 1 27

30-50 4 31

50-70 2 33

70-100 2 35

50

Table 4.4: Data for the number of times (frequency) a peer logs in to the system

Frequency interval of

number of login

Number of peers in the

interval

Cumulative total

0-5 10 10

6-10 13 23

11-15 4 27

16-20 4 31

The exponential graphs obtained from this data given by Fig. 4.1 and 4.2 are used to

obtain the total time and frequency a peer is online at any time.

Total time online

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

% of time online

C
um

ul
at

iv
e

N
um

be
r

Figure 4.1: Graph obtained from the data for the total percentage of time peers

are online in the system.

51

Frequency of logins

0

5

10

15

20

25

30

35

0 5 10 15 20 25
Number of logins

C
um

ul
at

iv
e

N
um

be
r

Figure 4.2: Graph obtained from the data for the total number of time peers are

login into the system.

To obtain the actual time a peer is offline and online we assume that both times, i.e.,

online and offline, are exponential. The inverse-transform formula requires a uniformly

distributed random variable r, 0 ≤ r ≤ 1.

We use the inverse-transform formula (Law, et al. 2000):

)ln()(- rxEt =

Following from the above formula we calculate the time peer I is online at a single login

time as:

))ln(*)nI /))100dI(*(((- ctst = (4.2)

and the time the peer I is offline before logging in is:

))ln(*)nI /)))100dI(1(*(((- dtst −= (4.3)

52

where nI is the frequency a peer logs in, dI the percentage of time the peer is online, c

and d are random numbers between the interval [0-1] and ts is the total time of the

simulation.

We need the frequency, i.e., how many times a peer logs in, in a given time period and

the percentage of time it is online for the simulation. This is chosen randomly using the

empirical frequency and percentage of time online from the data obtained by

COMTELLA. The formulas used to calculate nI and dI are given below.

The data in Tables 4 and 5 were used to calculate dI and nI respectively. First we do a

table lookup and find the interval in the cumulative distribution where the uniform

random variable, uniformly distributed between 0 and the number of observations, fits

in. From the empirical distribution for uniform distribution formula (Law, et al., 2000),

we calculate the total time a peer I is online as:

))1(*))12/()12(((1 dI yayyxxx −−−+= (4.4)

where dI is the time a peer is online overall, a is the uniform random value between 0

and the number of observations, x1 and x2 are the class limits for a, and y1 and y2 are

the cumulative totals corresponding to x1 and x2.

The number of times a peers logs into the system, nI, is also calculated in a similar way

as given in equation 6.

The number of files shared by peers is according to the Zipf-distribution, since in reality

many peers share few files and few peers share a lot of files. It has been noted that in

Gnutella relatively few peers, e.g., 20% share most of the files, e.g., 90% (Adar et al.

2000) (Saroiu et al. 2002). For this reason, we have, as mentioned above, set up peers

such that 57% of peers share 10 files, 29 % share 20 files and 14 % share 40 files. We

define the distribution similarly to the distribution in the static system. Good peers, i.e.,

53

those peers that share the most and qualitatively good files, stay online about 45% of the

time or more (Wang et al. 2004) (Saroiu et al. 2002). This also has been taken note of

and modeled in the system. Thus, in the simulation peers that share 40 files are online at

least 50% or more of the time.

The reinforcement learning formula (2) to update the peer’s relationships strength used

here is from chapter 3. The value of α used is 0.1. This means peers give more weight to

current experiences than past experiences since the system is fairly dynamic. Both

experiments were repeated three times and the average of these runs was used to obtain

the final data and graphs.

4.2.5 Performance Measurement

We define performance of a given system as a measure consisting of: the average time

for a query to receive response (hit) (measured in hops) and the average number of

messages generated by a query. The average time is measured as the number of hops

and not the actual time in say, seconds. This is because there could be a delay in

processing the query and its responses due to long message queues at the peer in the

simulation environment. The time thus calculated in seconds or milliseconds is not

indicative of the actual time for the response to come back to the querying peer.

Therefore, the number of hops, which is not affected by delay times, is used to calculate

speed.

Since each query can get more than one hit, the average number of hops for each query

is calculated first and then the average number of hops for all queries is calculated.

Similarly, the number of messages for each query is summed up and then the average

number of messages for all queries is calculated.

4.3 Simulation
The simulation has been implemented in Java on JADE (JADE 2.61), a Multi-Agent

platform. There are other multi agent platforms that can be used, for example, FIPA-OS

54

and the Agent Development Kit (ADK), but JADE was chosen because of its ease of

use. JADE is a FIPA-Compliant, multi agent platform specification using Java. The

communication between the agents in Jade is through ACL (Agent Communication

Language). JADE (Bellifemine et al., 1999) has the abstract notion of behaviours

associated with each action. Each agent in Jade is a thread and the actions of the agents

are executed linearly. When an agent receives an ACL message, the agent retrieving the

relevant section of the message interprets the message and carries out appropriate

methods or tasks according to the interpretation of the message. Besides behaviours,

JADE also has timer tasks defined for its platform. A timer task is used to implement the

firing of a query. A timer event is also used to update the friends lists periodically so

that the peers in the simulation use these updated friends lists to semantically forward

the queries.

 The peers in the simulation are represented by Jade Agents. Peers were created in the

system, and these peers interacted among themselves by querying and responding. After

the set up, queries are fired at a fixed time interval. The main class in the simulation

chooses the peer, picked by a random generator that would initiate the query. The peer

then randomly generates a file number to query, with the constraint that it is not one of

its own resources. A peer can repeat queries since the peer does not replicate the file it

queried before. When a hit reply comes, the peer originating the query notes the number

of hops taken to get the result of that query. Also the number of messages circulating in

the system for each query in the system is tracked. These data are recorded in files.

The simulations runs were done on a MS Windows machine (Windows Server 2003

with intel pentium III Xeon 700 MHz) and on a Solaris machine. The total time for the

simulation includes:

1) an initial fixed time of 20 seconds for creating the peers and their resources

2) a variable time needed for the simulation to complete. The time to create a single

query is 20 seconds.

Since the percentages of peers in the category in each simulation differ, to obtain

comparable results, each peer on average is assumed to query files twenty (20) times.

55

That means, for example, that if the percentage of peers interested in a category is 10%,

the total queries in the system would be 200 i.e., 10 * 20 A query is fired approximately

every 20 seconds in the system, so the time for the 200 queries is 4000 seconds, and the

total time for the simulation in this case is: 20 + 4000 = 4020 seconds. Thus the time

taken for the simulation varies according to the percentage of peers in the category as

the total number of queries differs in each simulation. Each set of experiment was

repeated three times and the average of these three runs were used to obtain the final

data and graphs.

In addition to the main questions asked in the beginning of this chapter (section 4.1)

related to the evaluation of the semantic routing approach, the simulation allows also the

investigation of the following interesting questions:

1) Does the total number of peers in the system influence the average number of

hops and average number of messages generated?

2) Does the different percentage of peers interested in a category affect the

performance of the system? If so, what percentage of peers interested in a

category does the proposed semantic routing approach improve the performance

most?

56

CHAPTER 5

Results and Discussion

5.1 Results of the static system
Our goal here is to compare the systems: the system where peers send queries to friends

with the system where peers do not have friends. The TTL of the query is 4 and the total

number of neighbours that a peer forwards queries to is 5. In both systems, in the first

set, the number of active peers was 100 and they shared 200 files.

The graphs in Fig. 5.1 and Fig. 5.2 show the data gathered from this experiment.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 10 20 30 40 50 60 70 80 90 100

% of peers in a category

A
ve

ra
ge

 n
um

be
r o

f h
op

s

For 4 in fl
Without friends list
For 3 in fl

Figure 5.1: Average hops vs. percentage of peers in category for 100 peers and 200
files

57

In Fig. 5.1,

• the straight line indicates the average number of hops in the baseline system

where peers do not maintain friends lists,

• the lighter line with squares indicates the average number of hops in the systems

where the peers send queries to four peers from the friends list and one random

peer;

• the darker line with diamonds indicates the average number of hops in the

systems where peers send queries to three peers from their friends list and to two

random ones.

From Figure 5.1, we see that when four neighbours are chosen from the friends list,

the average number of hops increases from 1.75 (when 8% of the peers in the system

are interested in the category) to 2.68 (when 100% of peers are interested in the

category). When three neighbours are chosen from the friends list, there is a slight

increase in the number of messages and the average number of hops increases from

1.80 (when 8% of the peers are in the category) to 2.83 (when 90% of the peers are

in the category). Therefore, a system where peers send queries to 4 friends performs

better (by 0.05 – 0.15 hops) than a system with 3 friends. With respect to hops the

system where peers send queries to friends performs better than the system where

peers do not have friends.

58

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

0 10 20 30 40 50 60 70 80 90 100

% peers in categories

av
er

ag
e

nu
m

be
r o

f m
es

sa
ge

s

w ithout friends list

For 4 in f l

For 3 in f l

Figure 5.2: Average messages vs. percentage of peers in category for 100 peers and

200 files

In Fig. 5.2, the straight line indicates the average number of messages generated when

no friends list is maintained, the lighter line with squares indicates the average number

of messages when four peers from the friends list are used and the darker line with

diamonds indicates the average number of messages when three peers from the friends

list are used. Figure 5.2 indicates that when four peers are from the friends list the

average number of messages decreases from 209.66 (when 8% of the peers are

interested in the category) to 175.01 (when 100% of the peers are interested in the

category), with a slight increase in between to 180.11 (when 90% of the peers are

interested). Similarly when three peers are from the friends list the average number of

messages decreases from 241.83 at 8% in category to 201.92 for 100% in category. The

system with 4 peers from the friends list performs better (32.17 - 26.91 messages

difference) than the system with 3 peers from the friends list.

59

Additional graphs showing the percentage of benefits we obtain by using a friends list

are given in Appendix A. The standard deviation values, for the three runs done to

obtain the average number of messages, for all the static experiments are given in

Appendix B.

Our next goal is to investigate the influence of the number of peers. We compare here

systems with different size of peer community but the same number of shared files. So

in this system the number of peers active were 50 and the files shared were 200.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 10 20 30 40 50 60 70 80 90 100

% of peers in a category

A
ve

ra
ge

 n
um

be
r o

f h
op

s

For 4 in f l

Without friends list

For 3 in f l

Figure 5.3: Average hops vs. percentage of peers in category for 50 peers and 200
files

In Fig. 5.3 we see that when four neighbours are chosen from the friends list, the

average number of hops increases from 1.25 (when 8% of the peers in the system are

interested in the category) to 2.44 (when 100% of peers are interested in the category).

When three neighbours are chosen from the friends list, there is a slight increase in the

60

average number of hops from 1.22 (when 8% of the peers are in the category) to 2.48

(when 100% of the peers are in the category).

120.00

130.00

140.00

150.00

160.00

170.00

180.00

0 10 20 30 40 50 60 70 80 90 100

% of peers in a category

A
ve

ra
ge

 n
um

be
r o

f M
es

sa
ge

s

For 4 in fl
Without friends list
For 3 in fl

Figure 5.4: Average messages vs. percentage of peers in category for 50 peers and
200 files

In Fig. 5.4, it can be seen that when four peers from the friends list are used the average

number of messages varies from 169.01 (when 8% of the peers are interested in the

category) to 141.89 (when 100% of the peers are interested in the category), with a

slight increase in between to 142.48 (when 70% of the peers are interested). Similarly

when three peers from the friends list are used the average number of messages varies

from 165.62 at 8% in category to 153.52 for 100% in category, with a slight increase in

between to 157.25 for 70% in category.

When we compare the systems differing only in the number of peers, i.e., one system

with 50 peers and the other with 100 peers (results in Fig. 5.1 and 5.2) with the same

systems without friends list, we find that the hops follow a similar pattern. There is a

61

benefit of about 40% to 50% when the percentage of peers interested in a category is

small. The greatest benefit with respect to speed in obtaining a response is when the

peers choose four neighbours from their friends lists. Similarly the average number of

messages circulating in the system is less when peers choose four neighbours from their

friends list. From these observations we can say that when the system uses a friends list

to send queries the traffic (i.e., the number of messages generated) is smaller and the

speed of responses is increased compared to the system without friends list.

Our next goal is to investigate the influence of the number of files in the system. The

next experiment compares the same type of systems with 100 active peers in the system

and different number of files shared by the peers. There are three data sets for this

experiment. The first data set in this experiment is explained in Fig 5.1 and Fig. 5.2

where the peers share 200 files. The second data set, used for Fig 5.5 and Fig 5.6, in

here is with 100 peers and share 100 files.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 20 40 60 80 100

% of peers in a category

A
ve

ra
ge

 n
um

be
r o

f h
op

s

For 4 in f l
Without friends list

For 3 in f l

Figure 5.5: Average hops vs. percentage of peers in category for 100 peers and 100

files

62

In Fig. 5.5 we see that when four neighbours are chosen from the friends list, the

average number of hops increases from 1.58 (when 8% of the peers in the system are

interested in the category) to 2.50 (when 100% of peers are interested in the category).

When three neighbours are chosen from the friends list, there is a slight increase in the

average number of hops from 1.72 (when 8% of the peers are in the category) to 2.76

(when 100% of the peers are in the category).

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

0 10 20 30 40 50 60 70 80 90 100

% peers in categories

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s

without friends list
average 4fl
average 3fl

Figure 5.6: Average messages vs. percentage of peers in category for 100 peers and

100 files

In Fig. 5.6 we see that when four neighbours are chosen from the friends list the average

number of messages decreases from 189.93 (when 8% of the peers are interested in the

category) to 110.81 (when 100% of the peers are interested in the category). Similarly

when three neighbours are from the friends list the average number of messages

decreases from 227.40 at 8% in category to 139.51 for 100% in category.

63

The third data set, used for Fig. 5.7 and Fig. 5.8, in the second experiment is when the

peers shared 150 files.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 10 20 30 40 50 60 70 80 90 100

% of peers in a category

A
ve

ra
ge

 n
um

be
r o

f h
op

s

For 4 in f l

Without friends list

For 3 in f l

Figure 5.7: Average hops vs. percentage of peers in category for 100 peers and 150

files

In Fig. 5.7 we can see that when four neighbours are chosen from the friends list, the

average number of hops increases from 1.66 (when 8% of the peers in the system are

interested in the category) to 2.61 (when 100% of peers are interested in the category).

When three neighbours are chosen from the friends list, there is a slight increase in the

average number of hops from 1.70 (when 8% of the peers are in the category) to 2.81

(when 90% of the peers are in the category), followed by a slight decrease in the number

of hops to 2.79, when 100% of the peers are in the category.

64

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

0 10 20 30 40 50 60 70 80 90 100

% peers in category

A
ve

ra
ge

 N
um

be
r o

f m
es

sa
ge

s

w ithout friends list

For 4 in f l

For 3 in f l

Figure 5.8: Average messages vs. percentage of peers in category for 100 peers and

150 files

In Fig. 5.8 it can be seen that when four neighbours are chosen from the friends list the

average number of messages decreases from 231.61 (when 8% of the peers are

interested in the category) to 148.92 (when 100% of the peers are interested in the

category). Similarly when three neighbours are from the friends list the average number

of messages decreases from 258.19 at 8% in category to 179.87 for 100% in category.

When we look at the three data sets differing only in the number of shared files i.e., 100

files shared, 150 files shared and 200 files shared, but 100 active peers in the system, we

find that in general using a friends list is beneficial. It is clear, that the percentage of

peers interested in a category does influence the performance. The greatest benefit of

our model with respect to speed in obtaining response from all these data sets is when

the percentage of the peers interested in a category is small, i.e., about 8-15% and when

65

the peers choose four neighbours from their friends lists. In some cases when the

percentage of peers in a category is lower, for example from 8% to 30%, it is seen that

the number of messages circulating in the system when three peers are chosen from the

friends list is greater than the number of messages without a friends list. This is because

the random peers chosen keep finding more random peers thus querying most of the

peers in the system.

The reason for number of hops increasing as the percentage of peers in the category

increases is because as the growth of percentage of peers increases in the category, the

heterogeneity increases and ultimately with 100% it is the same as having no categories

at all. So we find that the number of hops in both the systems is similar. At this point the

friends list is not useful anymore, i.e., it does not bring any benefit to the system.

The decrease in number of messages as percentage of peers in the category increases can

be explained in the following way: When the percentage of peers in the category is

small, e.g., 8% peers are interested in the category, the queries fired by a peer obtain hits

at most in 2 hops. This is because in our system of 100 peers, 5 neighbours and TTL =

4, the friends lists of all the peers interested in the category will have typically the top

peers in their list. Thus, replies are obtained faster. Since only 8% of the peers are in the

category, the fifth random peer chosen will likely be outside the category and since

these peers do not have friends lists they send messages to random peers, which again

are more likely not to be in the category. Thus the probability that random peer will find

peers in the category is small. The messages will go on till the TTL of the query expires

or till the peer has already seen the query. Thus a lot of messages circulate in the system.

When the percentage of peers in a category increases, i.e., 90% of peers are interested in

the category, the random peer, chosen by each peer for forwarding the query would most

likely belong in this category, i.e., the probability that the random peer chooses peers

interested in the category is large, and will route the message using its friends list. Since

the likelihood of each peer to which a message is forwarded to select a random peer that

is outside the category is small, the query is propagated through peers that are in the

66

category and are therefore more likely to have the file, generate a response and not

forward the message further. Alternatively, if they don’t have the file, it is more likely

that those peers have already seen the query and will not forward it further. Therefore

the number of messages is smaller.

From both the experiments, one in which the number of peers differs and the number of

files shared remains the same and the other in which the number of peers active in the

system remains constant but the number of shared files differs, we can conclude that

generally, our model is always beneficial over the standard Gnutella in terms of speed

and number of messages circulating in the system regardless of what percentage of peers

are interested in the category and how many neighbours are chosen from the friends list.

Also from both experiments we can see that the system in which peer sends queries to 4

friends performs better than the system in which a peer sends queries to 3 friends.

67

5.2 Results of the dynamic system
We carried out two experiments: one where the file and query distribution is uniform,

and a more realistic one, where file and query distribution is Zipf.

Experiment with Uniform Distribution

For the first experiment of the dynamic system the distribution is uniform. Our goal is to

compare the uniform distribution system that maintains friends list to the system that

does not have friends list.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 10 20 30 40 50 60 70 80 90 100

% of peers in a category

N
um

be
r o

f h
op

s

For 4 in fl
Without friends list
For 3 in fl

Figure 5.9: Average hops vs. percentage of peers in category for the uniform

distribution dynamic system with 100 peers and 200 files

In Fig. 5.9 we can see that whether four neighbours are chosen or three neighbours are

chosen from the friends list, the average number of hops is less than in the systems when

no friends list is used. There is a slight benefit in the system when four neighbours are

chosen over three neighbours. But it can be seen that in both cases the average number

68

of hops is less than the hops in the system that does not use a friends list to forward

queries.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 20 40 60 80 100

% peers in categories

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s

without friends list
For 4 in fl
For 3 in fl

Figure 5.10: Average messages vs. percentage of peers in category for the uniform

distribution dynamic system with 100 peers and 200 files

In Fig. 5.10 we note that the system where four neighbours are chosen creates fewer

messages than the system where three neighbours are chosen from the friends list. But

we also see that the average number of messages in the system without friends is less

than in the system where peers send queries to peers from their friends list. It seems that

our model performs worse in terms of average messages in the system. However, this

conclusion is not correct and this behaviour can be explained as follows. In a dynamic

system, peers go offline. When the neighbourhood of a peer is fixed the queries are not

forwarded further if the neighbouring peers are offline. Thus, only few messages are

passed depending on which neighbour peers are still online and forwarding requests.

However, the overall success of queries is less when compared to the system using

69

friends lists. This can be seen from the data about the success of queries in both systems,

presented in Table 5.1.

Table 5.1: Success of queries in the Uniform distribution system

% of peers

in the

category

query success in %

(where queries are

forwarded to 4 friend

peers and 1 random

peer)

query success in %

(where queries are

forwarded to 3 friend

peers and 2 random

peers)

query success in %

(where no friends

list is maintained)

8 47.81 39.13

10 50.59 53.12

15 70.58 75.01

30 88.57 90.93

50 97.12 97.14

70 99.58 99.49

90 99.10 99.63

100 99.83 99.66 37.11

70

Experiments with Zipf-distribution

The following graphs show the results from the experiment were queries where fired

according to Zipf-distribution with 100 peers in the system and 200 shared files in total.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 20 40 60 80 100

% of peers in a category

Av
er

ag
e

nu
m

be
r

of
 h

op
s

For 4 in fl
Without friends list
For 3 in fl

Figure 5.11: Average hops vs. percentage of peers in category for the Zipf-

distributed dynamic system with 100 peers and 200 files

Fig. 5.11 shows that whether four neighbours are chosen or three neighbours are chosen

from the friends list, the average number of hops is less than when no friends list is

used. The performance is better in the system when four neighbours are chosen from the

friends list.

71

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0 10 20 30 40 50 60 70 80 90 100

% peers in categories

A
ve

ra
ge

 n
um

be
r o

f m
es

sa
ge

s
w ithout friends list

For 4 in f l

For 3 in f l

Figure 5.12: Average messages vs. percentage of peers in category for the Zipf-

distributed dynamic system with 100 peers and 200 files

Regarding the number of messages, from Fig. 5.12, the system where four neighbours

are chosen from the friends list performs also better than the system where three

neighbours are chosen from the friends list. But we see that the number of messages in

the baseline system with no friends list is lower than in both systems with a friends list.

The explanation is similar to that in the case of uniformly distributed files/queries

dynamic system. The neighbourhood of a peer is fixed in the system with no friends list.

If some of the neighbouring peers go offline the queries are not forwarded further

through them. Thus, only few messages are passed depending on which peers are online.

While the performance in terms of number of messages of the baseline system is

superior, the overall success rate of queries in this system is far smaller compared to the

systems where the neighbouring peers are chosen from friends list. This can be seen

from the success of queries given below in Table 5.2.

72

Table 5.2: Success of queries in the Zipf-distribution system

% of peers

in the

category

query success in %

(where queries are

forwarded to 4 friend

peers and 1 random

peer)

query success in %

(where queries are

forwarded to 3 friend

peers and 2 random

peers)

query success in %

(where no friends

list is maintained)

8 53.68 58.24

10 65.71 64.88

15 77.70 76.42

30 85.91 85.86

50 90.70 92.47

70 95.36 94.30

90 97.06 96.37

100 96.61 97.51 46.01

Comparing the data from Tables 5.1, and 5.2, we find that the success rate for queries is

higher when Zipf-distribution is used as compared to the uniform-distribution.

5.3 Summary
A static system and a dynamic system were implemented and studied to find the impact

of our approach of friends list and compare the results with that of the standard Gnutella

system, i.e., without friends list.

In the static experiment all peers were active throughout the simulation. The objective

was to compare the impact on the system when the number of peers in the system is

changed and also to see the impact when the number of files in the system was changed.

In both cases the system where peers chose four friends from their lists to forward

queries performed better than the system where peers chose three friends in terms of

number of hops required to get responses and the number of messages circulating in the

73

system. In general, the system with friends list performed better than the system where

the queries were forwarded without the use of friends list.

In the dynamic system peers can go offline and re-enter the system again. We compared

systems with different distributions for files and queries in the system: a uniform

distribution and a more realistic, Zipf-distribution. Here the system with Zipf-

distribution performed better than the system with uniform-distribution in regards with

getting responses for queries. Also the rate of success for queries was higher when Zipf-

distribution is used as compared to the uniform-distribution.

74

CHAPTER 6

Conclusions and Future Work

The aim of the thesis is to improve the performance of the Gnutella peer-to-peer

protocol (version 0.4) by introducing a semantic-social routing model. In the Gnutella

protocol peers broadcast messages to their neighbours when they search for files, i.e., a

querying peer sends the query to all of its neighbour peers, who in turn send the query to

all of their neighbour peers. This forwarding takes place until the query reaches a peer

that has a file matching the query or until a certain predefined maximal number of

forwards (hops) is reached. In this way each query is propagated to up to np peers, where

n is the number of neighbour peers and p is the maximum number of hops. This passing

of messages generates a lot of traffic in the network, which degrades the quality of

service.

To improve the quality of service in a Gnutella based peer-to-peer environment, we

proposed a model where peers increase their performance (speed of search) by using

social networks. We assume that there are a number of categories of interest. Each peer

in our model creates and updates a friends list from its past experience, for each

category of interest. Once peers generate their friends lists, they use these lists to

semantically route queries in the network. Search messages in a given category are

mainly sent to friends, i.e., peers who have been useful in the past in finding files in the

same category. This helps to reduce the search time and decreases the network traffic by

minimizing the number of messages circulating in the system as compared to standard

Gnutella 0.4.

The approach was evaluated in a simulated peer-to-peer environment using the JADE

multi-agent system platform. From the results obtained we can say that by learning other

75

peers’ interests, building and exploiting their social networks to route queries

semantically, peers get more relevant resources faster. The performance of the Gnutella

0.4 system is improved.

6.1 Conclusions
Two types of static experiments were performed. In the first there are two systems in

which the number of peers differed but the number of files shared remained the same. In

both systems, the performance was better when peers used their friends lists to forward

queries. Moreover, the performance improved when peers had more friends in their

neighbourhood.

The other static experiment involved systems in which the number of peers in the

system remained constant but the number of files shared by the peers differed. Here, too,

the system where queries are forwarded to friends performed better than a system where

the queries were forwarded to random peers. Also in this experiment the system

performed better when the peers used more friends (e.g. four versus three) as their

neighbours to forward queries.

Two types of dynamic experiments were done. The first had a uniform distribution of

shared files among peers and for queries generated by peers. In the second, the Zipf

distribution was used. In both experiments it was found that the system where four

neighbours were chosen from the friends list performed better than when three

neighbours were chosen from the friends list. The system with Zipf distribution, which

depicts more realistic system, performed better than one with the uniform distribution.

While the number of messages generated was lower in a system without friends list, this

was at the expense of the success of queries. Systems with friends lists performed

significantly better in terms of success of queries.

A general pattern was found in both the static and dynamic system.

1) The number of hops increases with the increasing percentage of peers in a

category.

76

2) The number of messages decreases with the increasing percentage of peers in a

category.

The number of hops increases with the increase of the percentage of peers in a category.

But there are fewer hops in the system where peers maintain friends lists versus in

standard Gnutella. This conclusion applies in general to systems with more than one

category of interest. Peers maintain separate friends lists for each category of interest

and are unaware of the possible overlaps in these lists (e.g. the same peer can occur in

two different friends lists for two different categories). Therefore the search in different

categories use different friends lists and different neighbourhoods and do not interfere

with each other. The messages related to any query in a system with many categories

circulate in the same way as when only one category of interest is present. Therefore,

the benefit obtained in decreased number of messages will be also seen in the systems

with more than one category of interest. Thus the performance of Gnutella-based

systems can be improved.

Thus, the friends list created here forms an abstract cluster of peers for a category. Once

a message reaches one of the peers interested in the category then subsequent messages

travel mostly to those peers that have interest in that category. This is similar to the

information travelling in social networks. The friends lists created by each peer are

based on its personal criteria and give the most benefit to that peer. Peers calculate the

strengths of relationships of peers in its list and forwards queries to those who are on top

of the lists since this helps in obtaining responses fast. We use a learning reinforcement

formula to calculate the strength of the relationship, and this helps in considering current

experiences against old experiences with other peers, depending on the value of α

chosen. Thus one can change the strength of relationship in a system such that the

friends list reflects a rapidly changing dynamic system or a slowly changing system. The

learning and discovery of new peers, through random peers, helps in finding files in the

interest category as either new peers enter the system with files or old peers acquire

files. Thus, messages forwarded through random peer(s) not only help in discovering

77

other peers in the interest group, they also helps in the message not circulating in a set of

peers. Thus the approach of social network benefits our model.

The creation and maintenance of friends list can also be used in other types of systems

like super-peer networks. Here the super-peer can maintain friends lists based on the

interests of its leaf peers.

6.2 Future Work
The model can be studied further. Some of the future works are as follows:

 One interesting issue is finding what value of α in the learning formula for the

strength of relationship makes the friends list the most useful, i.e., conservative

or explorative, in terms of speed and also in the number of messages. Thus

further experiments can be done to obtain the best value for α in the learning

formula for

 the strength of relationship.

 Another issue is to speed up the simulation run time and experiment on larger

systems, namely increasing the total number of peers.

 The topology of the network can be changed, i.e., the number of neighbours to

which a peer sends a query, can be changed. In this topology we can find the

ideal number of friends among the neighbours that a query can be forwarded to

so that responses to query are faster and the number of messages circulating in

the network are reduced.

 Further experiments can also be done such that peers send queries to a varying

number of peers from its friends list and not to a fixed number.

 The current approach is designed for the standard Gnutella (version 0.4). It

would be interesting to see if this approach would be suitable also for the newer

78

version of Gnutella, which uses super-peer networks [Gnutella 2.0] and see if the

friends list helps reduce the traffic and increase the speed in such a system. In

this case, it would be probably more appropriate for the friends list to be

maintained by the super-peer(s) rather than by all the peers.

Even though in the thesis the Gnutella 0.4 protocol was used, the proposed semantic

social routing approach can be extended to any version of the Gnutella protocol and

probably also to other P2P protocols. The model suggests that peers learn from

experience the interests of other peers and use this knowledge to search more

efficiently. If one substitutes the word “peers” with “users”, the same is shown to be

true on a highest level, in human society as shown by Milgram (1967). In fact our

approach addresses the application level on top of the P2P network protocol layer,

thus it can be applied to a wide class of decentralized applications of peer nature, for

example, web services and service oriented computing.

79

REFERENCES

Aberer, K. and Hauswirth, M. (2002), "An Overview on Peer-to-Peer Information
Systems", Workshop on Distributed Data and Structures, Paris, France.

Adamic, L. A. and Huberman, B. A. (2002), "Zipf’s law and the Internet", Glottometrics
3, 143-150.

Adar, E. and Huberman, B. A., (2000), "Free riding on gnutella", Technical report,
Xerox PARC, 10 Aug., 29 Nov. 2004. <http://citeseer.ist.psu.edu/adar00free.html>

Bellifemine, F., Poggi, A. and Rimassa, G. (Apr. 1999), “JADE – A FIPA- compliant
agent framework”, Proceedings of PAAM'99, London, 97-108.

Crespo, A. and Garcia-Molina, H. (2002), "Routing Indices For Peer-to-Peer Systems",
Proceedings of the International Conference on Distributed Computing Systems,
Vienna, Austria.

Freeman, L. C. (2000), “Visualizing Social Networks”, Journal of Social Structure, Vol.
1, No. 1, Nov. 29 2004.
<http://www.cmu.edu/joss/content/articles/volume1/Freeman.html >

FreeNet, 2001, Nov. 29 2004. <www.freenetproject.org>

Gnutella, 2001, Jan 13 2004. <http://gnutella.wego.com>

Gnutella Protocol, version 0.4 (2003), Nov. 29 2004.
< http://rfc-gnutella.sourceforge.net/developer/stable/index.html>

Granovetter, M. (1973), “The Strength of Weak Ties”, American Journal of Sociology,
Vol. 78, 1360-1380.

80

Granovetter, M. (1983), "The Strength of Weak Ties: A Network Theory Revisited",
Sociological Theory, Vol. 1, 203-233.

Iamnitchi, A., Ripeanu, M. and Foster, I. (2002), "Locating Data in (Small-World?)
Peer-to-Peer Scientific Collaborations", Proceedings of the First International Workshop
on Peer-to-Peer Systems, Massachusetts, USA.

JADE 2.61, 13 Jan 2004. <http://sharon.cselt.it/projects/jade/>

Joseph, S. (2002), "NeuroGrid: Semantically Routing Queries in Peer-to-Peer
Networks", Proceedings of the International Workshop on Peer-to-Peer Computing,
Pisa, Italy.

Jovanovic, M. (2001), “Modeling large-scale peer-to-peer networks and a case study of
gnutella”, M.S. thesis, University of Cincinnati.

Kalogeraki, V., Gunopulos, D. and Zeinalipour-Yazti, D. (2002), "A local search
mechanism for peer-to-peer networks", Proceedings of the Eleventh International
Conference on Information and Knowledge Management, McLean, USA.

Kautz, H., Selman, B. and Shah, M. (1997), “Referral Web: Combining Social
Networks and Collaborative Filtering”, Communications of the ACM, Vol. 40, No. 3,
63-65.

KaZaA (2002), Nov. 29 2004 <http://www.kazaa.com/us/index.htm>

Krishnamurthy, B., Wang, J. and Xie, Y. (2001), “Early Measurements of a Cluster-
based Architecture for P2P Systems”, Proceedings of the First ACM SIGCOMM
Workshop on Internet Measurement Workshop, San Francisco, CA, 105-109.

Law, A. and Kelton, W., (2000), “Simulation Modeling and Analysis”, 3rd Ed., McGraw
Hill.

Lv, Q., Cao, P., Cohen, E., Li, K. and Shenker, S. (2002), "Search and replication in
unstructured peer-to-peer networks", Proceedings of the 16th international conference
on Supercomputing, New York, USA, 84 – 95.

Markatos, E. (2002), "Tracing a large-scale Peer to Peer System: an hour in the life of
Gnutella", 2nd IEEE/ACM Symposium on Cluster Computing and the Grid, Berlin,
Germany.

81

McCarty, C. (2002), "Structure in Personal Networks", Journal of Social Structure, Vol.
3, No.1.

Milgram, S (1967), “The Small World Problem”, Psychology Today, 60-67.

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne J., and Richard, B.
(2002), “Peer-to-Peer Computing”, Internal Report, Hewlett Packard, March 8.

Napster, 2001, 29 Nov. 2004 < http://opennap.sourceforge.net/napster.txt >

Newman, M. E. J. (2000), “Models of the Small World: A Review”, Journal of
Statistical Physics, 101, 819-841.

Newcomb, T. M., Turner R. H. and Converse, P. E. (1965), “ Social Psychology: The
Study of Human Interaction”, Holt, Rinehart and Winston, New York.

Ng, W., Ooi, B. and Tan, K. (2002), “BestPeer: A Self-Configurable Peer-to-Peer
System”, Proceedings of the 18th International Conference on Data Engineering, San
Jose, CA, 272.

Ng, C. and Sia, K. (2002), "Peer Clustering and Firework Query Model", Poster
Proceedings of the 11th World Wide Web Conference, Honolulu, Hawaii.

Pearson, D. W. and Boudarel, M. R. (2001), “Pair Interactions: Real and Perceived
Attitudes”, Journal of Artificial Societies and Social Simulation, Vol. 4, No. 4, Nov. 29
2004 <http://www.soc.surrey.ac.uk/JASSS/4/4/4.html>

Portmann, M., Sookavatana, P., Ardon, S. and Seneviratne, A. (2001), "The cost of peer
discovery and searching in the gnutella peer-to-peer file sharing protocol", Proceedings
to the International Conference on Networks, Volume 1, Bangkok, Thailand.

Ramanathan, M. K., Kalogeraki, V. and Pruyne, J. (2001), “Finding Good Peers in Peer
to Peer Networks”, Hewlett Packard Technical Reports.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker S. (2001), "A scalable
content addressable network", Proceedings of ACM SIGCOMM, San Diego, USA.

82

Ripeanu, M. (2001), "Peer-to-Peer Architecture Case Study: Gnutella Network",
Proceedings of IEEE 1st International Conference on Peer-to-peer Computing,
Linkoping Sweden.

Rowstron, A. and Druschel, P. (2001), "Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems", Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms, Heidelberg, Germany.

Saroiu, S., Gummadi, P. and Gribble, S. (2002), “A measurement study of peer-to-peer
file sharing systems”, Proceedings of Multimedia Computing and Networking
(MMCN), San Jose, California.

Scharnhorst. A. (2003), “Complex Networks and the Web: Insights from Nonlinear
Physics”, Journal of Computer-Mediated Communication, Vol. 8 (4).

Schlosser, M. T., Condie, T. E. and Kamvar, S. D. (2003), "Simulating a File-Sharing
P2P Network", First Workshop on Semantics in P2P and Grid Computing, May 20,
Budapest, Hungary.

Sripanidkulchai, K. (2001), “The popularity of Gnutella queries and its implications on
scalability”, Featured on O'Reilly's www.openp2p.com website, February 2001.

Sripanidkulchai, K., Maggs, B. and Zhang, H. (2003), "Efficient Content Location
Using Interest-Based Locality in Peer-to-Peer Systems", Proceedings IEEE INFOCOM
2003, San Francisco, USA.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. and Balakrishnan, H. (2001), "Chord: A
scalable peer-to-peer lookup service for internet applications", Proceedings of ACM
SIGCOMM, San Diego, USA.

Tang, C., Xu, Z. and Dwarkadas, S. (2003), "Peer-to-peer information retrieval using
self-organizing semantic overlay networks", Proceedings of the 2003 conference on
"Applications, technologies, architectures, and protocols for computer
communications", Karlsruhe, Germany.

Tang, C., Xu, Z. and Mahalingam, M. (2002), "PeerSearch: Efficient Information
Retrieval in Peer-to-Peer Networks", Hewlett Packard Technical Reports.

Triantafillou, P., Xiruhaki, C. and Koubarakis, M. (2002), "Efficient Massive Sharing of
Content among Peers", IEEE Workshop on Resource Sharing in Massively Distributed
Systems, Vienna, Austria

83

Tsoumakos, D. and Roussopoulos, N. (2003), "A Comparison of Peer A Comparison of
Peer-to to-Peer Peer Search Methods Search Methods", Sixth International Workshop on
Web and Databases (WebDB 2003), June 12-13, San Diego, California, USA.

Vassileva, J. (2002), “Motivating Participation in Peer to Peer Communities”,
Proceedings of the Workshop on Emergent Societies in the Agent World, ESAW'02,
Madrid, Spain, Nov. 29 2004.
<http://www.ai.univie.ac.at/%7Epaolo/conf/esaw02/esaw02accpapers.html>

Vaucher, J., Babin, G., Kropf, P. and Jouve, Th. (2002), "Experimenting with Gnutella
Communities", Distributed Communities on the Web (DCW 2002), Sydney, Australia.
LNCS 2468, Springer Berlin, pp.85-99.

Venkataraman, M., Yu, B. and Singh, M. P. (2000), “Trust and Reputation
Management in a Small World Network”, Proceedings of Fourth International
Conference on MultiAgent Systems, 449-450.

Waloszek, G. 2002, "Personal Networks", SAP Design Guild, Ed. 5: Collaboration,
Nov. 29 2004.
<http://www.sapdesignguild.org/editions/edition5/personal_networks.asp>

Wang, H., Lin, T., Chen, C. H. and Shen, Y. (2004), "Dynamic Search and Performance
Analysis in Unstructured Peer-to-Peer Networks", Proceedings of the 13th World Wide
Web Conference, 17-22 May, New York, USA.

Wang, X., Ng, W., Ooi, B., Tan, K. and Zhou, A. (2002), “BuddyWeb: A P2P-based
Collaborative Web Caching System”, a position paper in Peer to Peer Computing
Workshop (Networking), Pisa, Italy, Nov. 29 2004.
<http://xena1.ddns.comp.nus.edu.sg/p2p/BuddyWeb.ps>

Wang, Y. and Vassileva, J. (2003), “Bayesian Network-Based Trust Model”,
Proceedings of IEEE/WIC International Conference on Web Intelligence (WI 2003),
Oct13-17, Halifax, Canada.

Webster, C. M., Freeman, L.C. and Aufdemberg, C. (2001), “The Impact of Social
Context on Interaction Patterns”, Journal of Social Structure, Vol. 2, No. 1, Nov. 29
2004. <http://moreno.ss.uci.edu/webster.pdf>

Wellman, B., “An Electronic Group is Virtually a Social Network”, In Sara Kiesler ed.
(1997), Culture of the Internet, Lawrence Erlbaum, Hillsdale, NJ, 179-205.

84

White, D. and Houseman, M. (2003), "The Navigability of Strong Ties: Small Worlds,
Tie Strength and Network Topology", Complexity Vol. 8, No.1

Yang B. and Garcia-Molina H. (2002), "Efficient Search in Peer-to-Peer Networks",
The 22nd International Conference on Distributed Computing Systems, Vienna, Austria.

Yang B. and Garcia-Molina H. (2003), “Designing a Super-Peer Network”, IEEE
International Conference on Data Engineering, Los Alamitos, CA.

Yu, B. and Singh, M. (2000), "A Social Mechanism of Reputation Management in
Electronic Communities", Proceedings of Fourth International Workshop on
Cooperative Information Agents, Boston, USA.

85

Appendix A

Results

The appendix shows the benefits, in percentages, for the average number of hops and

average number of messages for the static system.

The graphs in Figs. A.1 and A.2 are when 100 peers are sharing 200 files.

Benefits are calculated as follows:

 benefit (for hops) =

 average number of hops (when friends list is maintained) * 100

 average number of hops (when friends list is not maintained)

 benefit (for messages) =

 average number of messages (when friends list is maintained) * 100

 average number of messages (when friends list is not maintained)

Fig. A.1 shows the benefits with respect to hops, in percentage, gained by the system

where peers send queries to friends as compared to the system where peers have no

friends.

86

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 10 20 30 40 50 60 70 80 90 100

% peers in caetgory

be
ne

fit
 %

For 3 in f l

For 4 in f l

Figure A.1: Benefit with respect to hops in percentage for 100 peers and 200 files

From Fig. A.1 it can be seen that when four peers are chosen from the friends list,

illustrated by the lighter line with square, we get a benefit in the average number of hops

ranging from 43.25% to 12.97% as the percentage of peers in the category increases

from 8% to 100%. Similar benefit is noted when three peers are chosen from the friends

list, illustrated by the darker line with diamonds. Here the benefit ranges from 41.62% to

8.12% as the percentage of peers in the category increases from 8% to 100%.

Fig. A.2 shows the benefits with respect to messages, in percentage, gained by the

system where peers send queries to friends as compared to the system where peers have

no friends.

87

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 10 20 30 40 50 60 70 80 90 100

% of peers in category

be
ne

fit
 %

For 3 in fl

For 4 in fl

Figure A.2: Benefits with respect to number of messages in percentage for 100
peers and 200 files

From Fig. A.2, we see that the benefit in decrease of average number of messages is

between 17.16% and 30.85% when four neighbours are chosen from the friends list

(lighter line) and the benefit when three neighbours are from the friends list (darker line)

the benefit varies from 4.44% to 20.21% as the percentage of peers interested in the

category increases from 8% to 100%. The success of queries for this combination is

given in Tables A.1 and A.2. Similar trend is exhibited fro success of queries in all

combinations of experimented in the static system, namely, 100 peers sharing 100 files,

and 150 files and also for the combination where 50 peers share 200 files.

88

Table A.1: Success of queries for 100 peers and 200 files when three and four

neighbours from friends list are used to forward queries

% of peers in the

category

query success in %

(for three from friends list)

query success in %

(for four from friends list)

8 47.24 47.24

10 54.77 58.76

15 71.79 68.43

30 90.48 92.19

50 96.50 97.08

70 99.36 98.81

90 100.00 99.37

100 100.00 99.90

Table A.2: Success of queries for 100 peers and 200 files when no friends list is used

to forward queries

% of peers in the category query success in %

100 100

89

The graphs in Fig. A.3 and A.4 show the benefit in percentage for 50 peers sharing 200

files.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 10 20 30 40 50 60 70 80 90 100

% peers in category

be
ne

fit
 %

for 3fl
for 4 in fl

Figure A.3: Benefits with respect to hops in percentage for 50 peers and 200 files in

static system

In Fig. A.3 we see a benefit in the average number of hops ranging from 52.83% to

8.00% as the percentage of peers in the category increases from 8% to 100%. Similarly

when three peers are chosen from the friends list the benefit ranges from 54.09% to

6.31% as the percentage of peers in the category increases from 8%.

90

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

0 20 40 60 80 100

% peers in category

be
ne

fit
 %

For 3 in fl
For 4 in fl

Figure A.4: Benefits with respect to messages in percentage for 50 peers and 200

files in static system

From Fig. A.4, we see that for 8% peers in category the performance of the standard

Gnutella like system is better than our friends list model. But after that the benefit

increases in decrease of average number of messages between 7% to14% when four

neighbours are chosen from the friends list (lighter line) and the benefit when three

neighbours are from the friends list (darker line) the benefit varies from 2% to 7% as the

percentage of peers interested in the category increases from 8% to 100%.

91

The graphs in Fig. A.5 and A.6 show the benefit in percentage for 100 peers sharing 100

files.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 20 40 60 80 100

% peers in category

be
ne

fit
 %

For 3 in fl
For 4 in fl

Figure A.5: Benefits with respect to hops in percentage for 100 peers and 100 files

in static system

From the Fig. A.5 it can be seen that when four peers are chosen from the friends list we

get a benefit in the average number of hops ranging from 50% to 18% as the percentage

of peers in the category increases. Similar benefit is noted when three peers are chosen

from the friends list ranging from 45% to 10% as the percentage of peers in the category

increases.

92

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

0 20 40 60 80 100

% peers in category

be
ne

fit
 %

For 3 in fl
For 4 in fl

Figure A.6: Benefits with respect to messages in percentage for 100 peers and 100

files in static system

From Fig. A.6, we see that for 8% to 30% peers in category the performance of the

standard Gnutella like system is better than our friends list model when three neighbours

are chosen from the friends list. But the benefit in the decrease of average number of

messages increases from 2% to 42% when four neighbours are chosen from the friends

list (lighter line) and the benefit when three neighbours are from the friends list (darker

line) the benefit varies from 2% to 28% as the percentage of peers interested in the

category increases from 50% to 100%.

93

The graphs in Fig. A.7 and A.8 show the benefit in percentage for 100 peers sharing 150

files.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0 20 40 60 80 100

% peers in category

be
ne

fit
 %

For 3 in fl
For 4 in fl

Figure A.7: Benefits with respect to hops in percentage for 100 peers and 150 files

in static system

From the Fig. A.7 it can be seen that when four peers are chosen from the friends list we

get a benefit in the average number of hops ranging from 46% to 15% as the percentage

of peers in the category increases. Similar benefit is noted when three peers are chosen

from the friends list ranging from 45% to 9% as the percentage of peers in the category

increases.

94

-20

-10

0

10

20

30

40

0 20 40 60 80 100

% peers in cateory

be
ne

fit
 %

For 3 in fl
For 4 in fl

Figure A.8: Benefits with respect to messages in percentage for 100 peers and 150

files in static system

From Fig. A.8, we see that for 8% to 15% peers in category, the performance of the

standard Gnutella like system is better than our friends list model when three neighbours

are chosen from the friends list. The benefit in the decrease of average number of

messages increases from 1% to 38% when four neighbours are chosen from the friends

list (lighter line) and the benefit when three neighbours are from the friends list (darker

line) the benefit varies from 1% to 23% as the percentage of peers interested in the

category increases from 30% to 100%.

95

Appendix B

The following tables B.1, B.2, B.3 and B.4 show the values of the standard deviation

from the three runs for the number of messages in the system, in the different

experiments done in the static system.

Table B.1: Standard deviation for the number of messages when there are 100

active peers and 200 files in the system

% of peers in

category

Standard Deviation

when three peers

from the

friends list is chosen

Standard Deviation

when four peers

from the

friends list is chosen

8 2.419 6.796

10 3.871 4.729

15 1.578 3.416

30 3.022 2.760

50 0.453 4.709

70 1.665 2.150

90 3.365 2.350

100 8.607 3.184

96

Table B.2: Standard deviation for the number of messages when there are 50 active

peers and 200 files in the system

% of peers in

category

Standard Deviation

when three peers

from the

friends list is chosen

Standard Deviation

when four peers

from the

friends list is chosen

8 5.828 4.643

10 6.142 7.516

15 3.988 1.549

30 3.030 4.266

50 2.279 1.082

70 2.106 1.299

90 1.568 3.047

100 0.207 4.204

Table B.3: Standard deviation for the number of messages when there are 100

active peers and 100 files in the system

% of peers in

category

Standard Deviation

when three peers

from the

friends list is chosen

Standard Deviation

when four peers

from the

friends list is chosen

8 2.419 6.796

10 3.871 4.729

15 1.578 3.416

30 3.022 2.760

50 0.453 4.709

70 1.665 2.150

90 3.365 2.350

100 8.607 3.184

97

Table B.4: Standard deviation for the number of messages when there are 100

active peers and 150 files in the system

% of peers in

category

Standard Deviation

when three peers

from the

friends list is chosen

Standard Deviation

when four peers

from the

friends list is chosen

8 25.079 10.274

10 19.177 14.384

15 16.257 13.488

30 13.732 9.502

50 7.976 4.744

70 7.032 3.870

90 1.236 6.024

100 3.284 4.244

