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ABSTRACT

A design approach for an aircraft takeoff performance monitoring system (TOPMS) is

described.  In this approach, it is proposed that the Global Positioning System (GPS) in

conjunction with a discrete Kalman Filter be used to determine aircraft acceleration,

ground speed, and position relative to the end of the runway.  A practical evaluation of the

feasibility of this proposal showed clear superiority of a GPS-derived acceleration over a

more traditional method employing accelerometers.  This study found that, when

compared to observations from carefully mounted accelerometers, the GPS-derived

observation agreed to within 0.10 metres per second squared ninety percent of the time.

Advantages of the GPS-derived observation included a modest noise level, insusceptibility

to gravity and temperature-influenced variations, and far simplified mounting criteria.

A theoretical dynamic model of an aircraft in contact with the ground was developed in

consideration of factors pertaining to runways at far-northern Canadian airports.  In the

model, factors such as runway slope, wind velocity, wheel friction coefficient, and aircraft

control settings were considered constant.  While variability in any parameter considered

constant by the model could influence the performance of a TOPMS, such variability was

deemed beyond the scope of this preliminary investigation of a TOPMS designed

specifically for the far-northern environment.  A device containing a GPS receiver and

data acquisition system was designed and certified, then installed in an aircraft operated by

an airline servicing far-northern Canadian airports.  The data collected in this manner were

used to validate the theoretical model.  It was concluded that a projection of displacement

can be determined to within an uncertainty of fifteen metres in sufficient time to alert the

pilot of an unsafe situation.
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CONVENTIONS USED

In the presentation of equations within this document, two conventions have been used to
incorporate equations within the narrative.  When a variable is first defined, the first
convention applies.  In subsequent uses, the second convention applies.  The following
examples illustrate the two conventions.

EXAMPLE OF FIRST CONVENTION

The force on an object,

,F ma=

where: is the mass of the object, and;m
is the acceleration of the object.a

Read as:

The force on an object, , is equal to multiplied by , where: is the mass of theF m a m
object, and; is the acceleration of the object.a

EXAMPLE OF SECOND CONVENTION

In the instance where only gravity acts on an object,

,F mg=

where: is the gravitational constant.g

Read as:

In the instance where only gravity acts on an object, is equal to multiplied by ,F m g
where: is the gravitational constant.g
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Chapter 1 - Introduction

1.1 Aircraft Landing and Takeoff Performance Monitoring

Aircraft landing and takeoff performance monitoring is an area of research aimed at

improving the information available to the pilot for decision making during takeoff or

landing.  A system capable of instantaneously determining the stopping distance of an

aircraft could form an integral component of a monitoring system.  Particularly difficult to

quantify is the frictional coefficient between the runway and the aircraft tires, should such

a measurement be necessary.  In secluded far-northern regions, where a monitoring system

would be particularly useful given extreme weather conditions, few airports are equipped

to attempt frictional measurements.  In such instances, a monitoring system would need to

be totally self-contained and able to determine aircraft ground speed, acceleration, and

position relative to the end of the runway with reference to a theoretical dynamic model

relating these parameters.  Prediction of the aircraft's location at rest would then be

possible.

Landing and takeoff performance monitoring systems are aimed at averting runway

overrun when an aircraft is in contact with the ground.  Typical causes of runway overrun

include engine failure on takeoff and reduced braking resulting from runway

contamination.  In Canada in the 1990s, engine failures occurred during one in every

76,000 jet takeoffs1.
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The “critical engine failure recognition speed” (V1) is defined as the speed above which

takeoff could continue safely if the most critical engine failed,2 assuming the runway length

is sufficient.  V1 is often calculated prior to startup based on aircraft parameters and

estimation of runway and weather conditions. Choosing a throttle setting to reach V1 is a

more complicated matter.  With a low throttle setting, takeoff rejection initiated at a speed

slightly below V1 may result in runway overrun, while a high power setting increases the

likelihood of an engine failure on takeoff.  As well, engine service life depends largely on

its peak power setting.

In a theoretical rejected takeoff, the aircraft accelerates gradually until the rejection is

initiated.  Drag increases with airspeed, giving rise to lower accelerations at higher

airspeed.  Once the rejection is initiated, the aircraft decelerates gradually to rest.  In

practicality, there would be a measurable reaction time delaying the application of braking

and reverse thrust.

Operators often use the so called “balanced field concept” to calculate the lowest possible

power setting for use during takeoff.  Then, at speeds below V1, there is mathematically

enough runway remaining to abort the takeoff.  Once V1 is reached, the aircraft could

safely takeoff even in the event of the failure of one engine.  With this in mind, V1

becomes a “decision” speed.  Figure 1.1 shows this scenario with a takeoff rejection

initiated at a decision speed of eighty metres per second on a 2400-metre runway.  In

reality, pilots refer to performance charts to determine power settings and decision speeds. 

The degree of uncertainty present in this method is substantial.  Consequently, some pilots
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have little confidence in the utility of such charts at times when decisions must be made

quickly.3

Figure 1.1 Speed and Acceleration vs Displacement in a Theoretical Rejected Takeoff

Figure 1.2 shows the results of a takeoff rejected less than a second after reaching V1. 

The full report regarding this accident appears in Appendix 1.01 (CD-ROM) under the

“CAI Flight 17" directory.  Performance monitoring systems4 that could provide to the

pilot information pertaining to the level of safety with which a takeoff is proceeding are

currently in existence, but have yet to be adopted by manufacturers.  In such prototype
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systems, the pilot is required to provide overall runway length information as well as

runway frictional coefficient data based on observations from ground-based vehicle-

mounted measurement systems.  The level of error in such data can be substantial.

Figure 1.2 Aftermath of Canadian Airlines International Flight 17 Takeoff Rejection

A similar system for use during approach and landing is currently unavailable because of

the inability for the pilot to provide remaining runway length.  The Global Positioning

System (GPS) could be used in conjunction with a database of runway information to

determine remaining runway length.  The same observer system could then be used for

both takeoff and landing.
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1.2 The Far-Northern Environment

The runway overrun problem is further aggravated in inclement weather, where runway

surfaces are contaminated by water or ice.  Far-northern regions experience this sort of

climate over six months of the year.  Further, as such regions are relatively less populated,

facilities may receive infrequent maintenance.  Accounting for these factors in the landing

or takeoff decision-making process represents a considerable challenge for pilots.

Many airport runways in far-northern regions are gravel surfaced.  The behaviour of a

gravel runway may be unpredictable, especially when temperatures are near the freezing

point.  Measurements of runway friction attempted in such conditions would be relatively

unreliable.

The availability of radio navigation systems in far-northern regions is also an issue.  While

such facilities exist, they are sparsely distributed and tend to service the airports of major

population centres.  Air carriers that service airports in support of mining and forestry are

less likely to have reliable access to radio navigation facilities.  Navigational information

provided by GPS receivers is now available in these areas and has enhanced or, in some

cases, replaced existing facilities.  Appendix 1.02 (CD-ROM) contains data regarding a

few airports in northern regions in the “airports” directory.
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Chapter 2 - Literature Review

2.1 Background - Aircraft Landing and Takeoff Safety

One of the most common aviation accident events continues to be runway overrun during

takeoff or landing.5  In the case of takeoff runway overrun, the problem is often associated

with engine power loss.  This problem is further aggravated in inclement weather where

runway surfaces are contaminated by water or ice.  Pilots of multi-engine aircraft must

evaluate a complex set of variables in situations involving varying winds, limited control of

ground traction, and necessary application of reverse thrust.

2.1.1 Early Research in Takeoff Performance Monitoring

In 1984, the Society of Automotive Engineers began drafting a specification6 to govern

the design standards for takeoff performance monitors.  In 1985,  Raghavachari Srivatsan

authored a doctoral thesis7 at the University of Kansas regarding the design of a Takeoff

Performance Monitoring System (TOPMS).  He continued work on this project and, by

1987, such a system was developed at NASA’s Langley Research Centre for potential

implementation in Boeing’s B-777 shown in Figure 2.1.  The B-777 is a massive and

complicated aircraft.  Devices installed in such aircraft must withstand considerable

scrutiny prior to acceptance.  Simulator evaluations8 were completed in 1992, and flight

testing9 was performed in 1994.  The proposal to include the instrument in the B-777 was

inevitably rejected due to practical shortcomings.10  Specifically, there was concern over
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the non-predictability and variability of wind and runway conditions and the manner in

which the device would compensate for this lack of information.  Manufacturers feared

that the device may do more harm than good, possibly distracting the pilot unnecessarily.

Figure 2.1 The Boeing B-777, a Massive Commercial Airliner 

Concern over unpredictable conditions is understandable.  On dry, paved runways, the

primary means of deceleration for a large jet aircraft is the application of wheel braking. 

Reverse thrust is available, but accounts for only about twenty percent of the force

required for deceleration.  Estimating the maximum braking force available is by no means

trivial.  While the condition of the runway is a factor, several factors unique to each

aircraft are important.  This adds to the uncertainty in any projected stopping distance.

™ & © Boeing.  Used under license.
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In the design of his TOPMS,11 Srivatsan accounted for a litany of variables that influence

the distance required for an aircraft to accelerate or decelerate, as appropriate.  These

included the ambient air pressure and temperature, the weight of the aircraft and its centre

of gravity, the flap setting, the pitch attitude, the throttle setting and engine pressure ratio,

the wind speed and direction, the rolling friction coefficient, the acceleration of the

aircraft, and the calibrated airspeed.  Additionally, those parameters that change

throughout the takeoff roll were referenced to theoretical models.  The net result of this

treatment was a large uncertainty in the predicted takeoff roll, as much as five percent of

the overall displacement of the aircraft.  Moreover, the required instrumentation limited

the applicability of the design to large passenger jet aircraft.

Several other performance monitoring systems12,13 have been devised.  In most designs, the

pilot would have been required to manually supply runway length information as well as

the runway frictional coefficient provided by ground based observers.  No large-scale

implementation of such a device has been published.  There would be much more

likelihood of implementation were the system completely self-contained.  More

importantly, there has been no published work on a monitor specifically intended for use in

the unique far-northern environment.

2.1.2 Regulatory Issues

In Canada, there are currently no regulations regarding the procedures to be followed

when conducting a takeoff or landing on a gravel runway.  Some aircraft performance

charts include information pertaining to gravel runways, but manufacturers are not
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required to provide such information.  As a result, operators are left with performance

charts pertaining to dry, paved runways.  Moreover, in compiling such performance charts

it is typically assumed that reverse thrust is unavailable.  While it would be prudent to

account for the reduced utility of wheel brakes on gravel runways by extending the

required runway length or reducing the aircraft payload, such measures carry financial

implications for operators.

At a preliminary meeting14 of officials at Transport Canada, some guidelines were

established in pursuit of regulations specifically intended to govern the use of gravel

runways.  While it is common knowledge in the industry that the primary means of

deceleration on gravel runways is through the application of reverse thrust, the preliminary

guidelines state that “no credit for propeller reverse may be used in calculation of

Accelerate - Stop Distance Required (ASDR) or Landing Distance Required (LDR).”  To

paraphrase, only wheel braking may be considered in a determination of the required

runway length for takeoff or landing.

2.2 The Global Positioning System

The Global Positioning System is a satellite navigation system that provides a means of

calculating time, position, and velocity data using coded signals which can be processed

using a receiver.15  Four equations are required to solve for four unknowns: time and three

components of three-dimensional position.  Thus, signals from a minimum of four

satellites are used to compute the three-dimensional position of the receiver.  A GPS

receiver derives position information by measuring the time required for a signal to be
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transmitted from a satellite at a known position.  The distance observations to each

satellite are the product of the speed of light, , and the transit time for the signal,c

, (2.1)( ) ( ) ( ) ( )2 2 2

1 1 1 1c t t x x y y z z− = − + − + −

, (2.2)( ) ( ) ( ) ( )2 2 2

2 2 2 2c t t x x y y z z− = − + − + −

, (2.3)( ) ( ) ( ) ( )2 2 2

3 3 3 3c t t x x y y z z− = − + − + −

, (2.4)( ) ( ) ( ) ( )2 2 2

4 4 4 4c t t x x y y z z− = − + − + −

where: are known satellite positions and times of signal transmission,, , ,n n n nx y z t

and;

are the receiver location and times of receipt of each signal., , ,x y z t

There are several sources of inaccuracy in this process including receiver noise,

tropospheric delay, multipath error, satellite clock errors, orbit errors, and ionospheric

delay.  Until May 1, 2000 the United States Department of Defense injected intentional

degradation or Selective Availability (SA) into the transmitted signal for security reasons. 

At the beginning of this project, SA was by far the largest contribution to position error,

on the order of one hundred metres.  However, this error could be described as a slow

wandering bias error.  The resulting velocity error from time differentiation was less than

one metre per second.  Further, the velocity error changed slowly resulting in a virtually

negligible acceleration error.  Tropospheric delay, satellite clock errors, orbit errors, and

ionospheric delay contribute a relatively steady bias error on the order of a few metres and
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are highly repeatable when considering time intervals of less than one second.  Multipath

error occurs when reflected GPS signals are misinterpreted by the GPS receiver as having

come directly from the satellite.  Airport runways are typically low-multipath

environments as a clear view of the sky is generally available and because buildings are not

within close proximity.  With no multipath error in the absence of SA, position accuracy of

less than ten metres is possible.

It is possible to compensate for errors other than multipath and receiver noise using

Differential GPS (DGPS).  The concept of DGPS involves the use of a stationary GPS

receiver at a known location that is capable of transmitting corrections to a mobile

receiver.  Alternatively, such corrections can be stored and later used to improve data

collected by a mobile receiver.  Position accuracy of less than one metre, not considering

the contribution of multipath error, can be achieved with DGPS if the distance between

the two receivers is less than a few hundred kilometres.

The foundation for the determination of satellite range is the speed of light and the time

required for transmission.  The speed of light varies slightly as it passes through regions of

the atmosphere, most importantly the ionosphere.  The amount of the variability in speed

of light also depends on the frequency of the transmitted signal.  As a result of this

physical property, a GPS receiver can account for the ionospheric effect if it can receive

GPS signals on two different frequencies.  This capability was built into the GPS design

from the beginning.
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2.2.1 GPS Signal Structure

Originally intended for military use, the structure of the GPS transmitted signal was

designed to provide a rapid means of calculating position and velocity.  Two radio carrier

frequencies were selected to carry signals from GPS satellites.  The primary frequency,

termed L1, is centred at 1575.42 MHz.  The secondary frequency, L2, is centred at

1227.60 MHz.  Each satellite transmits a unique signal at both frequencies, with a

characteristic repeating digital code modulated on the carrier frequency.  An example of

the first one hundred chips of one of the codes transmitted by space vehicle (SV) 24 is

shown in Figure 2.2.  Each element in a code sequence is called a “chip” as opposed to a

data bit because it is not actually data being transmitted in the code.  The number of chips

per second is called the chipping rate.  The composition of the repeating digital code

generated by each satellite can be varied based on operational requirements.  Normal

operation is described here.

Each satellite transmits satellite navigation data pertaining to all satellites at a rate of fifty

bits per second.  Part of these data represent the parameters in the equations of motion for

each satellite.  Typically, both the L1 and L2 signals contain this satellite navigation

message.  This information is used by the receiver to determine the positions of the

satellites and to provide a rough approximation of the time and date, which can in turn be

used to determine which satellites should be in view from an approximate geographic

location.  Because the satellite navigation message is transmitted at a relatively slow rate,

it takes 12.5 minutes to receive the entire message.  Each frame, corresponding to an

individual satellite, takes thirty seconds to transmit.  Consequently, it can take several
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minutes for a position fix to be calculated the first time a GPS receiver is activated.

Figure 2.2 PRN Code: a Repeating Series, Characteristic of the Transmitter Satellite

The L1 signal is also modulated with a repeating code, characteristic of the satellite from

which it was sent, the purpose of which is to provide a  coarse position determination. 

This code, called the coarse/acquisition (C/A) code, is a binary stream of 1023 chips

transmitted at a rate of 1.023 Mcps so that the signal repeats once every millisecond.  It is

the code that allows the GPS receiver to determine the time at which the signal was sent

from the satellite.  A GPS receiver generates a reference signal to which the incoming

signal is compared.  The receiver then adjusts its estimate of time of receipt until the

incoming signal and the reference signal are aligned.  When this process is complete, the

receiver has determined the time, accurate to less than a microsecond, but with an

ambiguity of an integer multiple of a millisecond.  One millisecond represents the time
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required for light to travel 300 kilometres, so having observations from multiple satellites

resolves this ambiguity.

Both the L1 and the L2 signals are also modulated with another repeating code,

characteristic of the satellite from which it was sent, the purpose of which is to provide a

precise determination of position.  This binary data stream, called the P-code, is

transmitted at 10.23 Mcps and repeats once every week.  The receiver uses this code in a

similar manner to that described for the C/A-code.  Receiving the signal on two different

frequencies allows the receiver to compensate for the change of the speed of light through

the atmosphere.  The length of a P-code chip is also one tenth the length of a C/A-code

chip, which provides greater resolution.

The relative length of the individual constituent parts of the GPS signal provides an

indication of the available accuracy.  The wavelength of the L1 signal is 19.04 centimetres. 

One P-code chip is 154 wavelengths or 29.33 metres.  One C/A-code chip is 1540

wavelengths or 293.3 metres.  Available accuracy is typically ten to fifty times better than

the chip size, so C/A-code tracking leads to P-code acquisition and P-code tracking leads

to resolution of the carrier cycle.

2.2.2 GPS Signal Tracking

A GPS receiver determines velocity by measuring the Doppler shift of the incoming signal

from the satellite.  Because the range to each satellite is continuously changing, the

frequency of the received signal is slightly different for each satellite.  Important to note,
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for the purpose of later discussion, is the manner in which the incoming frequency is

measured.  A Frequency Locked Loop (FLL) is a signal tracking loop where the incoming

signal is compared to a reference signal to arrive at an estimate of the incoming frequency. 

A Phase Locked Loop (PLL) is a signal tracking loop that incorporates the FLL capability

but is intended to arrive at an estimate of the phase of the incoming signal.  If the receiver

has locked on to the phase of the incoming signal, then it has also locked on to the

frequency.  A block diagram for a PLL is shown in Figure 2.3.  Phase error is fed back to

a numerically controlled oscillator (NCO), which is essentially a firmware oscillator that

estimates the carrier frequency and phase.  The carrier frequency is the transmitted carrier

frequency plus the Doppler shift resulting from the relative motion between the satellite

and the receiver.  The observed Doppler frequency can therefore be used to estimate

receiver velocity and aid in propagating position observations from one time step to the

next.

Unless the signal tracking loop is aided by some external inertial sensor, the PLL (or FLL)

treats any acceleration or higher order dynamics as an unmodelled disturbance.  As a

result, using GPS-derived observations to determine higher order parameters may result in

a performance penalty.

Once the PLL has removed the carrier from the signal, the resulting signal is the code from

the satellite plus any remaining phase error.  To determine range to each satellite, the GPS

receiver generates the same code that the satellite has superimposed on the carrier signal. 

This reference code is then compared with the incoming signal in the Delay Locked Loop
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(DLL) shown in Figure 2.4.  The purpose of the DLL is to determine the amount of time

by which the code is delayed from the receiver’s reference time.  This observation is used

to determine the actual time with reference to the GPS datum, which is in turn used to

determine the location of the satellite at the time of transmission.  The location of the

satellite and the time required for signal transmission is used to determine the range to the

satellite and the receiver position using equations (2.1) through (2.4).

Figure 2.3 Phase Locked Loop Block Diagram

Figure 2.4 Delay Locked Loop Block Diagram
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2.3 State Observers

It is not always possible to directly measure parameters of importance to a particular

system of states.  For example, there is no means to directly measure the acceleration of a

vehicle.  It is possible to measure the net force applied to a vehicle, the orientation of that

force with respect to the gravity vector, and the weight of the vehicle, and then infer the

magnitude and direction of the acceleration of the vehicle.  Alternatively, the speed or

position of a vehicle can be measured over time and the acceleration can be determined

through differentiation.  However, direct differentiation amplifies any noise present in the

measured quantity.  “There are methods available to estimate unmeasurable state variables

without a differentiation process.  Estimation of unmeasurable state variables is commonly

called observation.”16*  A system of states is observable if the available measurements

allow all states to be determined in a finite amount of time.

2.4 The Discrete Kalman Filter** 17

The purpose of a Kalman Filter is to optimally estimate states in a theoretical model based

on sensor measurements.  In a state-space representation such as the following, the state

vector, , represents the actual condition of the system being observed, which includesx

process noise.  The state transition matrix, , need not be constant18.  Rather, it is theA

matrix which, multiplied by the states at a time, , would result in a noiseless state vectork
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at a time, .  Adding process noise, the states at ,1k + 1k +

, (2.5)1 1: 1k k kx x w+ += +A

are found, where the zero-mean process noise, , is described by the covariance matrix,1w

. (2.6){ }1 1
TE w w=Q

The measurements,

, (2.7)2y x w= +C

relate to the states through the matrix, , in combination with zero-mean sensor noise,C

, described by the covariance matrix,2w

. (2.8){ }2 2
TE w w=R

Once sensor measurements are taken, the state estimates computed in the prior time step,

, can be improved based on how the measurements deviate from those the statex̂−

transition matrix would project,

, (2.9)( )ˆ ˆ ˆx x y y− −= + −K

or

, (2.10)( )ˆ ˆ ˆx x y Cx− −= + −K

where the observer gain matrix, , remains to be chosen.  The optimal gain matrix isK

defined as that which would provide state estimates that deviate from the actual states by

the least square error.  To find this optimal gain, it is necessary to mathematically
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determine the variance of the state error.  It is assumed that the process noise and the

sensor noise are zero-mean random processes, so the variance of the state error should

also be a zero-mean process.

The state error,

, (2.11)ˆe x x= −

expanded using (2.10),

, (2.12)( )ˆ ˆe x x y x− −= − − −K C

and (2.7),

(2.13)( )2ˆ ˆe x x x w x− −= − − + −K C C

then rearranging,

(2.14)( ) ( ) 2ˆ ˆe x x x x w− −= − − − −KC K

and collecting terms,

(2.15)( )( ) 2ˆe x x w−= − − −I KC K

or

(2.16)( ) 2e e w−= − −I KC K

provides a means to determine the error covariance,
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. (2.17){ }TE ee=P

If there is no correlation between the process noise and the sensor noise, the expected

values* of the terms in (2.16) are separable.  Thus,19

, (2.18)( ) ( ){ } { }2 2

TT T TE e e E w w− −= − − +P I KC I KC K K

or

. (2.19)( ) ( )T T−= − − +P I KC P I KC KRK

Expanding,

. (2.20)( ) ( )T T T T T− − − −= − − + +P P KCP P C K KCP C K KRK

Because the covariance matrix is symmetric, it is equal to its transpose.  The third term

can be rewritten, which provides the error covariance matrix,

. (2.21)( ) ( ) ( )TT T T T T− − − −= − − + +P P KCP KCP K CP C K K R K

This represents the covariance of the state estimate error regardless of the observer gain

chosen.  It is desirable to minimize the state error, so the trace of the covariance matrix

must be minimized.

Using the matrix differentiation formulae,
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, (2.22)
( ) Td trace

d
=

FG
G

F

, (2.23)
( )( )T

T
d trace

d
=

FG
G

F

and

, (2.24)
( )

2
Td trace

d
=

FGF
FG

F

the derivative of the trace of the covariance matrix with respect to the observer gain

matrix,

(2.25)( ) ( ) ( )( )
2 2 2

TT Td trace

d
− −= − + +P

CP K CP C K R
K

is determined.

Setting the result of (2.25) to zero provides a relationship defining the point at which the

trace of the covariance matrix is a minimum,

. (2.26)( )T T− −= +P C K CP C R

Rearranging, the observer gain,

, (2.27)( ) 1T T −− −= +K P C CP C R

is found.  This is the optimal observer or Kalman Gain Matrix.
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In a recursive state estimator, state estimate projections,

, (2.28)1ˆ ˆk k kx x−
+ = A

are based on the current state estimate and state transition matrix.  Error projections,

, (2.29)ˆe x x− −= −

can be used to determine an error covariance projection.  Incorporating (2.5), and (2.28),

, (2.30)1 1: 1 ˆk k k k k ke x w x−
+ += + −A A

gathering terms,

, (2.31)( )1 1: 1ˆk k k k ke x x w−
+ += − +A

and using (2.11),

, (2.32)1 1: 1k k k ke e w−
+ += +A

a representation of the error projection vector is determined.  This function can be used to

determine an error covariance projection,

. (2.33){ }TE e e− − −=P

Note that the first term on the right side in (2.32) includes the process noise and sensor

noise from the current step, , while the second term includes the process noise that willk

be present in the next step, .  If there is no correlation between the process noise1k +

from one step to the next, the expected values of the terms in (2.32) are separable.  Thus,

, (2.34){ } { }1 1 1 1

T T T
k k k

E ee E w w−
+ +

= +P A A
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or

. (2.35)1 1
T

k k k k k
−
+ += +P A P A Q

Equations (2.10), (2.19), (2.27), (2.28), and (2.35) are used in the recursive Kalman Filter. 

The recursion algorithm is shown graphically in Figure 2.5.

Figure 2.5 Recursive Kalman Filter Algorithm

In the recursive Kalman Filter algorithm, state estimates determined in the prior time step

are improved by comparing sensor measurements with those expected from the system

model.  The mean square state estimate error is computed, then estimates of the expected

error and states are determined for the following time step.

2.5 Applied Kalman Filtering, an Example

To demonstrate the use of a Discrete Kalman Filter, consider the interesting problem of
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fusing data generated by a GPS receiver with inertial navigation systems (INS).  INS

instrumentation is based on the observation of linear acceleration and rotational velocity. 

These data can be integrated to determine position and velocity which are generally used

for navigation purposes.  The problem with INS instrumentation is that the error present

in the sensor data is also integrated, which results in errors in position and velocity which

grow over time.  The error associated with GPS-derived observations of position do not

grow over time, but may not be as accurate as necessary for a particular application.  The

fusion of data from both sources using a Kalman Filter can result in an optimal

determination of position and velocity.  Note that the approach described here is far

simplified from common methods20 of implementing a Kalman Filter for GPS/INS

integration.

To construct the state vector and the state transition matrix, it is necessary to have an

understanding of the dynamic range of the vehicle being navigated.  Where an automobile

may experience acceleration of less than eight metres per second squared and the driver

may be capable of making control adjustments resulting in jerk of less than fifty metres per

second cubed, a high-performance jet fighter may be capable of acceleration in excess of

fifty metres per second squared and jerk in excess of one hundred metres per second

cubed.  In the latter instance, it may be necessary to consider higher order dynamics.  For

the following example, it is assumed that higher order dynamics are negligible.  The

kinematic equation relating position, , velocity, , acceleration, , and jerk, , froms v a j

one time step to the next,
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, (2.36)1
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is governed by the zero-mean random variable, .  This means that jerk is treated as aq

random process.  In the implementation of this filter, the variance of this process noise

must be chosen.  In practice, assuming jerk to be a random process will be an

approximation of reality.  Arriving at a model to describe the system dynamics is, in the

opinion of the author, the most important aspect in the design of a Kalman Filter.  In this

example, whether or not the system dynamics can be described by assuming jerk to be a

random process is pivotal.  In practice, the approach taken in the identification of noise

variance in a Kalman Filter, a strategy called “tuning”, is more or less arbitrary21 and based

primarily on the resulting performance as judged by the designer rather than adherence to

the stipulations set forth in the original development of the Kalman Filter algorithm.  The

Kalman Filter derivation requires that the process noise be uncorrelated in time.

The measurements from a GPS receiver and from an INS,

, (2.37)1

2

1 0 0 0

0 0 1 0

rs
y x

ra
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= = + � 	� 	 � 	
 � 
 � 
 �

also include sensor noise represented by  and .  As with process noise, the variance of1r 2r

the sensor noise must be known or approximated.  Based on these simple equations and

the identification of process noise and sensor noise variances, the implementation of the
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Kalman Filter is carried out through the use of the Discrete Kalman Filter equations

developed earlier.

In the application described, the position, velocity, and acceleration of the vehicle is

overdefined.  Either sensor alone could be used to sub-optimally identify all states.  The

Kalman Filter essentially treats the noise variances as weighting factors to determine an

improved estimate of the state variables.
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Chapter 3 - Objectives

3.1 Introduction

The successful development of a system that could reduce the frequency of air

transportation accidents where runway friction coefficient or limited length of runway is a

critical factor would be a major achievement.  In the development of such a system, a

number of major studies would have to be undertaken.  These could include computer

modelling of the dynamics of aircraft pertaining to both flight and ground operations, and

the on-board instantaneous observation of both the runway friction coefficient and the

length of runway remaining.  The incorporation of this and other information such as

aircraft mass, measurements of inertia, and wind direction and speed, could lead in time to

the development of a safe stopping distance warning system.

The specific purpose of the proposed research was to investigate the feasibility of using an

observer system during the roll and takeoff phase of aircraft operation to provide to the

pilot the information that is needed to manoeuver safely.  If feasible, such an observer

system could be later incorporated within a takeoff performance monitoring system.

While previous work in this field focussed on the design of a takeoff performance

monitoring system for use on dry, paved runways, this project examined the factors

pertaining to gravel runways where reverse thrust, rather than braking, is the primary
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means of deceleration.

3.2 Project Objectives

The objectives of this thesis project were:

1. to investigate, with the aid of a theoretical model, the relative importance of the

various parameters influencing the estimation of stopping distance for a specific

aircraft type, the British Aerospace Jetstream 31, through installation and flight

testing in a typical aircraft, and;

2. to explore the sensing technologies that would be required to measure the required

parameters, with special consideration for the application of the Global Positioning

System in determination of aircraft acceleration, velocity, and position with respect

to the end of the runway.

3.3 Methodology

To achieve the project objectives, a theoretical dynamic model of an aircraft during takeoff

or landing was first determined.  A practical examination using accelerometers as the

source of reference data was performed to evaluate the feasibility of using Global

Positioning System to measure vehicle acceleration.  Finally, validation of the theoretical

model was pursued through installation of a data acquisition system in an aircraft operated

by a regional airline.
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3.4 Scope

In this preliminary investigation of a TOPMS designed specifically for the far-northern

environment, factors such as runway slope, wind velocity, wheel friction coefficient, and

aircraft control settings were considered constant in the theoretical dynamic model of an

aircraft in contact with the ground.  While variability in any parameter considered constant

by the model could influence the performance of a TOPMS, such variability was deemed

beyond the scope of this project.  In essence, the goal of this project was to assess the

feasibility of using a GPS receiver as the sole sensor in a TOPMS.
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Chapter 4 - Theoretical Prototype System

4.1 Background

Assuming that all necessary quantities can be measured, a takeoff performance monitor

would require a method to project how the speed, position, and acceleration of an aircraft

might change in the future based on measurements taken in the past.  This necessitates the

availability of a mathematical model describing how these parameters vary with respect to

one another.

4.2 Parametric Model of an Aircraft During Takeoff

In the construction of such a model, each parameter need not be independently

measurable, so long as the system can be observed.

The force of drag on an aircraft,

, (4.1)2
3 /aD D v=

where:  is a constant parameter for a given aircraft geometry, and;3D

 is the speed of the aircraft relative to the air./ av

Applying the convention that a headwind is positive while aircraft speed is positive

forward,

. (4.2)2
3( )aD D v v= +
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Expanding,

, (4.3)2 2
3 3 32a aD D v D v v D v= + +

or

, (4.4)2
1 2 3D D D v D v= + +

where:  are constant parameters for a given aircraft geometry,nD

 is the component of aerodynamic drag at rest,1D

 is the component of aerodynamic drag proportional to speed,2D

 is the component of aerodynamic drag proportional to speed squared,3D

 is the component of wind in the direction of the runway, and;av

 is the speed of the aircraft relative to the ground.v

Similarly, thrust,

, (4.5)2
0 3 /aT T T v= +

where:  is a parameter representing the throttle setting, and;0T

 is a parameter to account for increased thrust at higher engine inlet pressures.3T

As in the derivation for drag,

. (4.6)2
0 3( )aT T T v v= + +

Expanding,

, (4.7)2 2
0 3 3 32a aT T T v T v v T v= + + +
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or

, (4.8)2
1 2 3T T T v T v= + +

where:  are constant parameters for a given throttle setting,nT

 is the component of engine thrust at rest,1T

 is the component of engine thrust proportional to speed, and;2T

 is the component of engine thrust proportional to speed squared.3T

Simple relationships exist for viscous friction,

, (4.9)2F F v=

and for the component of weight in the direction of motion,

, (4.10)1W W=

where:  and  are constants provided that the runway slope is constant.2F 1W

Note that this model applies equally to the situation that exists on both paved and gravel

runways, so long as no wheel braking is used.  Grouping similar parameters and applying

Newton’s Second Law,

, (4.11)21 1 1 2 2 2 3 3F D T W D T F D T
a v v

m m m m

Σ + + + + += = + +

or

, (4.12)2
1 2 3a P P v P v= + +
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where:  are parameters representing the net force per unit mass acting on the aircraft,nP

 is the component of vehicle acceleration at rest,1P

 is the component of vehicle acceleration proportional to speed,2P

 is the component of vehicle acceleration proportional to speed squared, and;3P

 is the acceleration of the aircraft in the direction of motion.a

4.3 Projection of Displacement

To use this model for the prediction of later displacement requires an equation describing

the displacement as a function of speed.  From fundamental kinematics,

 , and; (4.13)
ds

v
dt

=

, (4.14)
dv

a
dt

=

which can be solved to describe the differential time,

. (4.15)
ds dv

dt
v a

= =

Rearranging, an equation describing the differential displacement,

, (4.16)
v dv

ds
a

=

is found.

Incorporating the model,
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. (4.17)
2

1 2 3

v dv
ds

P P v P v
=

+ +

If the instantaneous position and speed are known, the displacement at a reference speed

can be determined through integration.  The displacement,

, (4.18)
2

1

2 1 2
1 2 3

v

v

v dv
s s

P P v P v
− =

+ +

�

where:  is the instantaneous position;1s

 is the predicted position at the reference speed;2s

 is the instantaneous speed, and;1v

 is the reference speed.2v

The solution to this integral,

, (4.19)
2

1

2 1
3

ln ln

( )

v

v

c v c d v d
s s

P c d

+ − +
− =

−

where: , (4.20)
2

2 2 1 3

3

4

2

P P P P
c

P

+ −
=

and; , (4.21)
2

2 2 1 3

3

4

2

P P P P
d

P

− −
=

can be used to conduct an uncertainty analysis for the measured quantities in the model. 

Appendix 1.03 (CD-ROM) contains the mathematical development of this solution under

the “integral solution” directory.
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4.4 Signal Processing Technique

Customarily, the states in a Kalman Filter are time derivatives of one another.  This stems

from the rigidity of the continuous Kalman Filter, which requires that all states be related

to one another through differentiation in a homogeneous domain.   The discrete Kalman

Filter is not limited in this way, as shown earlier in section 2.4.

4.4.1 Standard Treatment of the Discrete Kalman Filter

Based on the dynamics pertaining to the particular application, the designer typically

assigns a high derivative to be a random process.  The lower states are then dependent on

the random variable.  Each state may also be assigned some random variability to

uncouple neighbouring states.  For instance, it would not be uncommon to describe the

dynamics of an aircraft during its takeoff roll based on its position, , speed, ,s v

acceleration, , and jerk, ,a j

, (4.22)1

1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

k k

k k

s t

v t
x x

a t

j q

+

+ +

∆
� � � � � �
� � � � � �

∆� � � � � �
= = +� � � � � �

∆� � � � � �
� � � � � �� � � � � �

where:  is the difference in time between  and , and;t∆ k 1k +

 is a zero-mean random variable.jq

Such a filter functions best when jerk most closely resembles a zero-mean random process,

though this is usually an approximation of reality.  For small time steps, it may be

considered a reasonable approximation.
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4.4.2 Non-linear Manipulation of the Discrete Kalman Filter

In the model,

, (4.23)2
1 2 3a P P v P v= + +

jerk can be found through differentiation,

, (4.24)2 32
da

j P a P va
dt

= = +

or,

, (4.25)( )2 2 2 3
1 2 2 1 3 2 3 32 3 2j P P P P P v P P v P v= + + + +

and is clearly not a zero-mean process.  The higher derivatives are also non-zero.

On the other hand, velocity derivatives of the model,

, (4.26)2 32
da

P P v
dv

= +

, and; (4.27)
2

32
2

d a
P

dv
=

, (4.28)
3

3
0

d a

dv
=

provide an alternative method of observer construction.  The third velocity derivative of

acceleration is a zero-mean process.  Without approximation, this can be considered a

random process because the sole source of variation in the observation of this quantity



*The importance of this contribution is the subject of an article in draft at the time of
completion of this manuscript, formed in part by the combination of two previously
published refereed conference papers.22,23

37

would be process noise.

Based on this knowledge, an observer* built with the state transition equation,2223

, (4.29)

2 2

2 2

4

5 11

01 0 0 0

00 1 0 0

00 0 1 0

0 0 0 1

0 0 0 0 1

da da
dv dv

d a d a
dv dv kk k

s st

v vt

a av

qv

q
++

∆
� � � � � �� �
� � � � � �� �

∆� � � � � �� �
� � � � � �� �

= +∆� � � � � �� �

∆
� � � � � �� �
� � � � � �� �� � � �� � � �

was constructed.  This is a model for a Kalman Filter that is capable of an optimal

estimation despite reference to a non-linear model.  This treatment cannot be examined in

the continuous Kalman Filter.

4.5 Required Accuracy

In an operative takeoff performance monitor, the device would project the displacement

that would occur while accelerating to a decision speed, V1.  This displacement would be

added to the projected displacement that would occur when decelerating from V1 to rest. 

The total displacement would be compared to the instantaneous observation of the

remaining runway length, and the difference would be displayed to the pilot as a margin of

safety in units of distance.  There are several factors that could affect the actual margin of

safety, most notably the reaction time of the pilot.
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Assuming that the pilot would compensate for reaction time by selecting a comfortable

margin of safety, the required accuracy of the margin measurement must be selected.  For

larger aircraft, a larger margin would be selected.  It is therefore appropriate to establish

required accuracy based on the length of the aircraft.  In the extreme case, a takeoff

rejection is initiated at V1 and the pilot has selected a margin of safety that would be

completely consumed by the displacement of the aircraft during the reaction time of the

pilot.  This is explained further in the section 4.7.  In the instance where no margin of

safety remains, it is desirable that the runway remaining when the aircraft has come to rest

is no less than one aircraft length, measured from the nose of the aircraft.  The author has

therefore selected the length of the aircraft, measured from nose to tail, as the required

accuracy in the observation of projected displacement.  The aircraft used in this

experimental investigation measured fifteen metres from nose to tail.

4.6 Uncertainty Analysis

To assess the sensitivity of the theoretical model to uncertainties in the measured

quantities, an uncertainty analysis was conducted.

The partial derivatives of displacement with respect to the measured quantities,

, (4.30)2 1 2 1
2

1 1 2 1 3 1

( )s s v v

v P P v P v

∂
∂

− −=
+ +
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, (4.31)

2 1 2
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, (4.33)
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together with partial derivatives,

, (4.34)( )
1

2 2
2 1 3

1

4
c

P PP
P

∂
∂

−
= − −
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, (4.36)
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form the basis of the uncertainty analysis.

To establish approximate parameter values for use in the uncertainty analysis, an empirical

analysis was conducted.  From (4.11) and (4.12),  is a function of , , and the3P 3T 3D

mass of the aircraft.  As a conservative approximation, the contribution of  can be3T

neglected.  The drag force acting on an object24 at high Reynolds numbers,

, (4.40)2
/0.22 air airD A vρ=

where:  is the frontal area of the object;A

 is the density of air, and;airρ

 is the speed of the object relative to the air./ airv
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The frontal area of the Jetstream 31 aircraft is 14.3 metres squared.  The density of air

under standard sea-level conditions is 1.225 kilograms per metre cubed.  The maximum

allowable takeoff mass of the aircraft is 7000 kilograms.  Neglecting ,3T

[m-1]. (4.41)3 2
/

0.00055
air

D
P

mv

−≈ = −

Similarly, a conservative approximation of  can be determined by neglecting the2P

variability of thrust and the contribution of viscous friction in the aircraft tires.  This

requires an approximation of a typical yet conservatively large value for the wind speed,

.  If this value for wind speed is chosen to be equal to fifteen metres per second,av

[s-1]. (4.42)2 32 0.0165aP P v≈ = −

Finally, a value for initial thrust, must be chosen.  This value would depend totally on the

length of the runway.  Choosing a typical value for initial thrust,

 [m/s2]. (4.43)1 3.0P =

Based on these conservative parameter values, partial derivative values,

[s], (4.44)1

1

1.21 10
c

P

∂
∂

= − ×

[s], (4.45)1

1

1.21 10
d

P

∂
∂

= ×

[m], (4.46)2

2

7.28 10
c

P

∂
∂

= − ×
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[m], (4.47)3

2

1.09 10
d

P

∂
∂

= − ×

[m2/s], and; (4.48)4

3

4.40 10
c

P

∂
∂

= − ×

[m2/s], (4.49)5

3

9.85 10
d

P

∂
∂

= − ×

are obtained.

Suppose the aircraft in question has an instantaneous speed of thirty metres per second,

and the reference speed is fifty metres per second.  Evaluating (4.30) through (4.33), these

quantities result in partial derivatives of displacement with respect to observed quantities,

[s], (4.50)
1

12 1

1

( ) 2.00 10
1.00 10

2.01
s s

v

∂
∂

− ×= = ×

[s2], (4.51)22 1

1 1 1
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s s c d

P P P

∂ ∂ ∂
∂ ∂ ∂

− = − = − ×

[s·m], and; (4.52)42 1
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∂ ∂ ∂
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− = − = − ×

[m2]. (4.53)6 52 1

3 3 3

( )
37.4 4.65 1.12 10 9.83 10

s s c d

P P P
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∂ ∂ ∂

− = − + × = − ×

The equations can be used to determine the effect of errors in the measured quantities. 
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The GPS receiver’s manufacturer specified maximum speed error is 0.20 metres per

second.  As a result of (4.50), there will exist two metres of error in the projected

displacement due to this speed error at the conditions outlined.  This error will decrease as

the reference speed is approached.

In a conventional uncertainty analysis, each measured quantity is treated independently. 

However, in this particular case, there exists only one real measurement, that of speed

provided by the GPS receiver.  The Kalman Filter described earlier observes the

parameters based on a measurement of speed.  As a result, any error in a single parameter

will result in corresponding errors in the remaining parameters.

The worst case scenario corresponds to a sudden change in drag coefficient or wind speed

that would affect one or both of the parameters  and  more quickly than the filter2P 3P

can respond.  Figure 4.1 shows the resulting error in the projection of displacement that

would occur as the aircraft accelerates from an instantaneous speed of thirty metres per

second to a reference speed of fifty metres per second as a function of percent error in the

parameters  and .2P 3P
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Figure 4.1 Error in Projection of Displacement as a Function of Error in  and 2P 3P

Figure 4.2 shows the error in projected displacement as a function of speed resulting from

ten percent error in both  and .  Naturally, as the reference speed is approached, the2P 3P

error in the projection of the displacement that will have occurred at the reference speed

approaches zero.
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Figure 4.2 Error in Projected Displacement as a Function of Speed

In most cases, the actual error in the quantities determined by the Kalman Filter should be

much less than what has been described here, because the estimation of parameters should

result in observation error of far less than ten percent.  Note, however, that if separate

measurement systems were used to directly measure each quantity, the uncertainty in each

measurement would result in a projected displacement error orders of magnitude higher. 

This is a clear advantage of the signal processing technique earlier described.

4.7 Takeoff Rejection Simulation using a Theoretical Model

Using the theoretical model developed in the section 4.2, a simulation routine was
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developed.  The purpose of this simulation was to demonstrate a simple interface that

could provide information to a pilot regarding the margin of safety associated with a

takeoff rejection at or near V1.  The margin of safety is defined as the amount of runway

that would remain in front of the aircraft once decelerated to rest.

The simulation routine allowed the author to examine the ability to project displacement

with known parameters, and to evaluate whether the Kalman Filter introduced in the

section 4.2 could, in fact, converge to the parameters in the presence of sensor and

process noise.  Flexibility in the simulation algorithm also allowed the author to examine

the robustness of the Kalman Filter to higher order disturbances not considered in the

theoretical model, such as variations in runway slope or wind velocity.  The Kalman Filter

was also shown to be able to converge to the parameters and thus became a candidate

signal processing technique for experimental data.

Figure 4.3 shows the result of the simulation routine prior to initiation of the simulated

rejection.  The routine estimated a margin of safety of 380 metres.  If the rejection

occurred prior to reaching V1, a margin of safety of more than 380 metres would have

existed.  If the rejection occurred at or near V1, some of the margin of safety would have

been consumed in the time required for the pilot to react.
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Figure 4.3 Simulation Results: Projected Displacement and Margin of Safety

Figure 4.4 depicts a simulated takeoff rejection initiated just prior to reaching V1.  A

fraction of a second later the pilot reduced thrust to idle, but some of the margin of safety

had already been consumed.  A couple of seconds later, reverse thrust was applied.  By

this time, the margin of safety had decreased to 115 metres.  In the simulation routine, the

availability of braking is not considered in the projection of displacement.  Simulated

braking is available, in the event that the pilot requires additional deceleration to improve

the margin of safety after the takeoff has been rejected.
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Figure 4.4 Margin of Safety during the Response to a Simulated Takeoff Rejection

The simulation is available in Appendix 1.04 (CD-ROM) under the “simulation” directory. 

Note that, to completely reject a simulated takeoff, it is necessary to first call “reject” by

clicking the button marked “REJECT”, then set the throttle to idle by clicking the button

marked “IDLE”, then reverse thrust by clicking the button marked “REVERSE”. 

Optionally, the “BRAKES OFF / BRAKES” button may be toggled to increase the margin

of safety.  These steps have been included to simulate the required reaction mechanism.



*A significant portion of this chapter was previously published.25
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*Chapter 5 - Sensor Selection

5.1 Background

At a minimum, the sensors in a takeoff performance monitor must be able to measure

acceleration, speed, and position relative to a known location.  This information could be

used, with reference to a theoretical model, to predict how the aircraft will behave in the

future.25

In aircraft landing and takeoff performance monitoring, the desired acceleration

observation should reflect the overall vehicular acceleration as opposed to vibration of

sub-components.  Accelerometers have been typically used to measure acceleration. 

However, because accelerometers measure gravity in addition to acceleration, some

method of determining the orientation of the accelerometer with respect to the gravity

vector has been required.  Typically, this required the use of a gyroscope, which measured

the rate of change of orientation.  With time, the accuracy of a gyroscope-derived

determination of orientation becomes inaccurate because small errors in the raw

measurement are integrated over time to determine orientation.

The measurement from an airspeed indicator together with a recently acquired

measurement of the component of wind speed in the direction of motion has been used to
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determine aircraft speed, with shortcomings in accuracy due mostly to the time varying

nature of wind and the associated delay in obtaining updated measurements.  Alternatively,

a time-integrated observation of acceleration could be used.  This leads to an accumulation

of error over time, requiring re-initialization.

With the recent widespread availability of highly accurate position observations from the

Global Positioning System, a GPS receiver was identified as a sensor that would provide

information regarding the position of the aircraft relative to the end of the runway.  A GPS

receiver can also be used to measure speed relative to the ground.  Of course, during a

takeoff roll, speed changes.  If a GPS receiver can also be used to measure acceleration

with accuracy comparable to accelerometers, there is the possibility that one sensor can be

used as the sole source of kinematic information for a takeoff performance monitor.

It may be necessary to include instrumentation capable of measuring the forces present in

the landing gear.  Such forces could reveal the magnitude of the instantaneous rolling

friction, the weight of the aircraft, and the instantaneous normal force.  It was decided that

the need for such additional sensors would be governed by experimental results.  Whether

such instrumentation would be necessary would depend on the sensitivity of the system to

changes in these parameters.

5.2 Acceleration From GPS

The notion of acquiring an observation of acceleration from GPS is not new.  When

compared to the observation obtained from an accelerometer, a GPS-derived observation
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of acceleration can be used to determine the gravity vector.  This technique has been used

in airborne gravimetry to determine the gravitational constant with accuracies26 on the

order of  10-5 metres per second squared, but requires a substantial amount of data to filter

out vibrational disturbances.  More recently, it has been proposed that a GPS-derived

observation of acceleration together with an accelerometer could yield a representation of

the gravity vector27 to be used as an attitude reference.  Such an application would require

a real time GPS-derived observation of acceleration if used on vehicles with rapidly

changing attitude.

Although accelerometers have been historically used to determine aircraft acceleration,

additional instrumentation is required to accurately measure aircraft attitude to remove the

significant and adverse influence of the gravity vector.  Accelerometers do not respond

only to acceleration, but rather the force per unit mass on an element of known mass.  The

accelerometer measurement is therefore a combination of the components of gravity and

acceleration in the direction of the sensing axis of the accelerometer.  With reference to

Figure 5.2, the accelerometer measurement,

, (5.1)*
x xa a g= +

where:  is the component of acceleration in the accelerometer’s direction of sensitivity,xa

and;

 is the component of gravity in the sense-direction of the accelerometer.xg
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Figure 5.1 Unknown Sensor Inclination Results in “Accelerometer Gravity Error”

“Accelerometer Gravity Error” results from an accelerometer measuring a component of

the gravity vector that cannot be determined without an accurate observation of the sensor

inclination with respect to horizontal.  Observation of inclination always requires

additional instrumentation.  Depending on the sensor used to measure inclination, the

accuracy of the observation usually degrades over time.

The component of gravity in the direction of sensitivity,

, (5.2)sinxg g θ=

where:  is the angle between the direction of sensitivity and horizontal.θ

Thus, for small angles, the gravity vector introduces an error of 0.171 metres per second

squared per degree of inclination.  This problem is avoided through the use of a GPS-

derived observation.  The selection of a GPS receiver as the primary source of kinematic

information is an especially appropriate choice given the need to determine the location of

the aircraft with respect to the end of the runway, an application to which a GPS receiver
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is well suited.

5.3 Required Accuracy

The level of uncertainty in a GPS-derived observation of acceleration depends on the type

of filter used to remove noise that is amplified by differentiation.  In any case, the amount

of error will not depend on the magnitude of the instantaneous signal.  Rather, the

standard deviation of noise depends primarily on the number of satellites in view.

Assuming constant deceleration, the instantaneous stopping distance of a vehicle,

, (5.3)
2

2

v
s

a
=

where:  is the instantaneous speed of the vehicle, and;v

 is the magnitude of acceleration of the vehicle.a

The sensitivity of the stopping distance,

, (5.4)
s s

s v a
v a

∂ ∂
∂ ∂

∆ = ∆ + ∆

where:  is the error in the observation of speed, and;v∆

 is the error in the observation of acceleration.a∆

Substituting expressions for partial derivatives,
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. (5.5)
2

22

v v
s v a

a a
∆ = ∆ − ∆

Rearranging (5.3) to solve for deceleration, substituting into (5.5), and solving for

deceleration uncertainty gives:

. (5.6)
2

22

v v
a v s

s s
∆ = ∆ − ∆

Instances where deceleration uncertainty has the most impact occur when the forward

speed is high and when the rearward acceleration is low.  To establish an acceptable level

of uncertainty in the observation of deceleration, consider a modest V1 on a long runway. 

Runways are seldom longer than 4000 metres.  Over half of the length of the runway

would be required to reach V1, so assume = 2000 metres and = V1 = 90 metres pers v

second.

The margin of safety in the stopping distance would need to be larger than the length of

the aircraft, so the error in the estimation of stopping distance can be conservatively

chosen as = 150 metres.  From GPS, a typical speed error determined using constants∆

speed trials, as described in section 5.4, was = 1.12 metres per second.  Note that atv∆

the time of this preliminary experimental investigation, the intentional degradation

described in section 2.2 was present in the GPS signal structure resulting in position errors

of approximately one hundred metres.  

Substituting these values into equation (5.6) yields a conservative maximum acceptable
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uncertainty in the observation of deceleration:

m/s2. (5.7)0.101a∆ =

While a lower speed may apply to many aircraft, the runway length should be considered

very conservative.  In many cases, higher uncertainty may be acceptable.  This analysis

was intended only to provide a nominal uncertainty to which results could be compared.

5.4 Experimental Investigation

An experimental investigation was conducted to determine the accuracy with which a GPS

receiver could measure acceleration.  The GPS-derived observations collected during this

investigation were compared to observations derived from carefully mounted

accelerometers.  A 400-metre segment of railway track together with a rail-mounted

gasoline-powered vehicle having no suspension system was used in this investigation. 

Because the vehicle had no suspension system, the orientation of the vehicle was a

function of the slope of the track at any given location.  Accelerometers were used during

constant-speed trials to determine the slope of the track.  During trials where the vehicle

speed varied, the accelerometer data were corrected for the influence of minor pitch

changes by subtracting the known slope at the instantaneous position.  These corrected

accelerometer data were then used as truth data to which GPS-derived observations of

acceleration could be compared.

A GPS receiver (NovAtel 3151RE)  capable of collecting satellite range observations at a

rate of twenty samples per second was selected for use in the test apparatus.  Appendix
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1.05 (CD-ROM) contains operating instructions for the GPS receiver* under the “novatel”

directory.  The receiver logged position and velocity at ten samples per second.  The

velocity observation from the GPS receiver in the test apparatus was derived from time

differentiation of position or carrier phase Doppler observations owing to the

manufacturer's proprietary algorithm.  The acceleration observation was a filtered time

differentiation of this velocity observation, obtained using a Kalman Filter.  In this Kalman

Filter, the third derivative of position was considered to be a random process.  This is of

course untrue, but was a reasonable approximation of the dynamics.

In state-space form, the system dynamics,

, (5.8)

1
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00 0 1

0 0 0 0 kk k

s t s
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a t a

qj j+
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and the measurements,

, (5.9)
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where: , , , and  are position, speed, acceleration, and jerk, respectively,s v a j

form the foundation of the Kalman Filter.  This filter requires identification of the variance

of the two random variables.  The measurement noise is easily approximated during
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constant speed trials as later discussed.  This leaves one variance, that of the process

noise, to be chosen.

Testing was undertaken to verify the accuracy of the acceleration observation derived

from GPS data.  The apparatus consisted of a rail-mounted GPS receiver, a bank of

accelerometers (Analog Devices ADXL 202) mounted with parallel axes of measurement,

and a data acquisition system.  Appendix 1.06 (CD-ROM) contains specifications for the

accelerometers under the “accelerometer” directory.  Four identical accelerometers were

used to provide a confident measure of the acceleration.

The data acquisition system collected these data at a rate of twenty samples per second,

electrically synchronized with the GPS receiver’s collection of raw satellite signals.  The

data acquisition system for the accelerometers, which used an analog-to-digital data

acquisition computer card, was separate from the data collection system for the GPS

receiver, which used serial communications.  The GPS receiver was equipped with strobe

pins for both input and output triggering.  One of these strobes fired on receipt of raw

satellite data.  This strobe was used to trigger the collection of data from the

accelerometers.  Another strobe connection allowed the GPS receiver to log the time at

which it received an input voltage step.  This strobe was used to record the times at which

accelerometer data collection began and ended.  In this way, the data from both the

accelerometers and from the GPS receiver could be synchronized in time.

During constant-speed trials, the accelerometers were used to determine the slope of the



59

Accelerometer

GPS

DGPS

Accelerometer

DGPS

a* at Position

gx at Position

Speed
differentiation

Varied Speed

Constant Speed

Acceleration

Acceleration

from GPS

from accelerometers

filter

ax

rail surface so that the influence of the gravity vector could be calculated.  This slope

information was cross matched with geographic location through the use of differential

GPS.  Twenty constant-speed trials were conducted, yielding a reliable observation of

slope.  This method of accounting for rail slope implicitly accounted for any bias errors

present in the accelerometers.  During trials where the vehicle speed was varied, the

accelerometer data were corrected for the influence of minor pitch changes by subtracting

the known slope at the instantaneous position.  Both observations of acceleration were

filtered using the same algorithm.  The GPS-derived acceleration observation was then

compared with acceleration data from the bank of accelerometers, after accounting for the

effect of gravity.  This is shown schematically in Figure 5.2.

Figure 5.2 Accelerometer and GPS-derived Acceleration Observation Processing

5.5 Results and Discussion

Figure 5.3 shows the speed of the vehicle obtained from a GPS receiver, in the presence of

selective availability, and acceleration computed using the Kalman Filter.  This observation

of acceleration can be compared to an observation obtained from a bank of
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accelerometers.

Figure 5.3 Speed and Acceleration of the Test Vehicle vs Time

Speed and acceleration of a test vehicle were derived from GPS data in the presence of

selective availability.  The observation of acceleration required filtering to remove noise

due to differentiation.

The use of redundant accelerometers provided increased confidence in the observation of

acceleration.  Measurements from each of the four accelerometers used in the

experimental apparatus agreed with one another very well.  The covariance matrix
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describes how the data collected from each sensor varied from one another.  In completely

uncorrelated data, off diagonal values would be zero.  In completely correlated data, all

values would be equal.  For the collected accelerometer data, a covariance matrix,

m2/s4, (5.10)

1.779 1.776 1.775 1.772

1.776 1.779 1.775 1.776
cov

1.775 1.775 1.779 1.773

1.772 1.776 1.773 1.779

� �
� �
� �

= � �
� �
� �

was determined.

It can be concluded that the accelerometer data, while being variable with a standard

deviation on the order of 1.33 metres per second squared, were highly correlated.  This

demonstrated that the accelerometer data represented a confident measure of the

acceleration of the vehicle component to which the accelerometers were attached.

Figure 5.4 shows a comparison of the GPS-derived acceleration with that from the

accelerometers for one of ten trials where the speed of the vehicle was varied.  Other trials

yielded similar results.  While both observations of acceleration were filtered in exactly the

same manner, there is clearly no superiority in the accelerometer observation over the

GPS-derived observation of acceleration.  It had been expected that given the care with

which the accelerometer data were corrected, an approach that would not be feasible in

practice, the GPS-derived acceleration would be notably time-delayed and would contain

noise.  Conversely, it would appear that in those instances where the vehicle acceleration

changed quickly, such at the period between twenty seconds and twenty-five seconds, the
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two observations were in agreement.

Figure 5.4 GPS-derived Acceleration Data Agree with Accelerometer Data

Observations of the acceleration of the test vehicle derived from GPS data were compared

with accelerometer-derived observations.  While the GPS-derived observation required

filtering to remove noise due to differentiation, the accelerometer-derived observation

required filtering to remove measurements of vibration.

Figure 5.5 shows the calculated difference, for the same trial, between the two

observations of acceleration.  This does not represent the error in the GPS-derived

observation, as the accelerometer observation also lags the “real” acceleration because of

filtering.  The standard deviation of the difference was 0.054 metres per second squared. 
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This falls well within the established conservative maximum uncertainty of 0.101 metres

per second squared.  Closer analysis showed that the calculated difference falls within the

maximum uncertainty over ninety percent of the time.

Figure 5.5 Difference between GPS-derived Acceleration and Accelerometer Data

With regard to the dynamic range of this investigation, it should be noted that the

acceleration and speed associated with aircraft takeoff and landing are typically larger than

those investigated.  In the investigation, speeds in excess of ten metres per second were

not experienced and acceleration was typically 0.5 metres per second squared.  This

difference in dynamic range should have little effect on the accuracy or resolution of the

GPS-derived speed observation, which is governed by jerk.  Because the corresponding

accuracy of the acceleration observation was dependent on the ratio of speed accuracy to
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the change in speed, this accuracy should improve at higher accelerations.

It has been demonstrated that the Global Positioning System is able to provide an

observation of vehicle speed that is sufficiently reliable to determine acceleration with an

uncertainty of under 0.10 metres per second squared.  This accuracy should be achievable

for acceleration in excess of 0.5 metres per second squared.  Accelerometers are well

suited to measurement of vibration, where the influence of gravity need not be removed

from the measurement, but a GPS-based observation is clearly superior in stable, slowly

changing vehicular acceleration.  Clear advantages in using a GPS receiver over the more

conventional sensor, an accelerometer, include insusceptibilities to the gravity vector,

vibrational disturbances, and temperature fluctuations.
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Chapter 6 - Model Validation through Experimental Investigation

6.1 Introduction

For the experimental investigation in this phase of the project, the data collected

represented normal operating conditions aboard an aircraft.  Tranwest Airlines cooperated

in the research project.  The airline operated four twin turboprop Jetstream 31 aircraft. 

The airports visited by these aircraft on a daily basis included locations as far north as

Uranium City, Saskatchewan, located at north latitude of 59.56 degrees, and as secluded

and underserviced as Wollaston Lake, Saskatchewan, shown in Figure 6.1.

Figure 6.1 Wollaston Lake Airport: an Unmonitored and Uncontrolled Airport
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The model developed in section 4.2 applies theoretically to any turboprop aircraft

operated in the absence of braking during takeoff or landing on a constant slope runway

with fixed control settings.  The runway surface type would affect whether the pilot would

elect to use wheel braking during a normal landing or during the rejection of a takeoff. 

The Jetstream 31, also known as the British Aerospace 3112, is a nineteen-passenger

pressurized turboprop aircraft.  One of the four aircraft operated by the airline was already

equipped with a navigational GPS receiver where the antenna was mounted above the

cockpit on the exterior of the aircraft.  Appendix 1.07 (CD-ROM) contains photographs

of this aircraft under the “c-fsew” directory.  Because the principle of operation of a GPS

receiver requires a straight line view of GPS satellites, such an externally mounted antenna

was very useful in collecting data for this experiment, if not an absolute necessity.

6.2 Materials and Methods

A fundamental principle in dealing with a commercial airline was established very early in

the project.  It was absolutely crucial that the design of the experimental system require

minimal modification to existing aircraft systems.  Adherence to this principle would not

only minimize the time required to install the necessary components, but would also

simplify the process of obtaining permission from Transport Canada.

A more detailed examination of the selected aircraft revealed the existence of a docking

station for a processor in a traffic collision avoidance system (TCAS), that had been

removed due to serviceability problems.  Appendix 1.08 (CD-ROM) contains excerpts

from the TCAS installation manual under the “tcas manual” directory.  While needed in
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more populated areas, the use of such a device in Canada in the 1990s was not a

regulatory requirement.  Upon further examination,28 it was determined that the TCAS

docking station was equipped with a dedicated circuit breaker as well as connections to

antennas both on the belly of the aircraft and over the cockpit a short distance behind the

antenna for the GPS receiver.  The radio frequency used by the TCAS was in the same

band as that used by the GPS receiver, and the characteristic attenuation of the coaxial

cable between the TCAS docking station and the overhead antenna was similar to GPS

receiver requirements.  It was decided that a commercially available GPS antenna signal

splitter would be used to share the signal from the existing GPS antenna with the

navigational GPS receiver and the project test equipment.  Appendix II, the type

certificate application, describes this in further detail.

With the physical and electrical constraints for the test equipment dictated by the existing

hardware in the aircraft, a data collection system was designed and constructed.  The only

modifications required in the aircraft were the insertion of a GPS antenna signal splitter

and the reconnection of a TCAS antenna cable.

The design and implementation of test equipment for this phase of the project required

considerable care.  With the knowledge that the most invasive aspect of the project would

be the sharing of a navigational GPS antenna, testing was undertaken to verify that no

adverse effects would be experienced.  The process of obtaining Transport Canada

certification for the installation required adherence to airworthiness regulations and

conformity testing.
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6.2.1 Certification

The certification process involved showing compliance with airworthiness regulations

through testing or evaluation.  Transport Canada provided a list of regulations to which

adherence would have to be demonstrated.  As well, an explanation of the purpose of the

modification, together with an outline of mechanical and electrical considerations, was

required.

The basis of certification for the test aircraft was the United States Federal Aviation

Administration’s Federal Airworthiness Regulation Part 23, which applies to commuter

aircraft that are “propeller-driven, multiengine airplanes that have a seating configuration,

excluding pilot seats, of 19 or less, and a maximum certificated takeoff weight of 19,000

pounds or less.”29

The purpose of the modification was to collect position and velocity data during takeoff of

a Jetstream 31.  These data were to be used to investigate the feasibility of a landing and

takeoff performance monitoring system for passenger aircraft that frequently travel to

airports with gravel runways in the Far North.  The required equipment consisted of a unit

containing a portable computer and a GPS receiver (NovAtel OEM2), and an antenna

splitter used to acquire the signal from an existing GPS antenna.

Under this effort, the Global Positioning Data Recorder (GPDR) system was designed to

be minimally invasive and to take advantage of existing equipment wherever possible. 

Transwest Airlines (formerly Air Sask Aviation) agreed to carry the equipment onboard
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the aircraft registered C-FSEW, a Jetstream 31 equipped with a GPS receiver (Bendix /

King KLN 0089B).  Appendix 1.09 (CD-ROM) contains excerpts from the installation

manual for this GPS receiver under the “nav gps” directory.  A GPS antenna splitter was

employed to acquire the signal from the existing GPS antenna.

The existing configuration of the aircraft included the hardware for a TCAS (Bendix /

King CAS 66) installation.  The TCAS processor had been removed due to serviceability

problems as it was not a required instrument.  It was decided that the tray for the TCAS

processor would be used as the station for the data recorder.  The TCAS infrastructure

was used to supply power to the unit.  There was coaxial cable running from the TCAS

tray to an unused antenna mounted at station 130,30 just aft of the cockpit bulkhead as

shown in Figure 6.2.  The existing GPS antenna was within a few centimetres of this

location.

6.2.2 Mechanical Considerations

An aluminum enclosure was constructed that contained the portable computer and the

GPS receiver.  The unit weighed 5.0 kilograms.  It was secured in place using hold down

pins on the existing TCAS processor tray, located just aft of the rear right side passenger

seats, as shown in Figure 6.3.
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Figure 6.2 Left Side View of Aircraft

The positions of the navigational GPS antenna and the TCAS antenna are shown.  The GPDR processor was installed inside the aircraft

behind the rear passenger seats as indicated.  Numbers along the bottom of the photograph indicate distances, in inches, from the nose

of the aircraft.  These distances are also known as “stations” for purposes of weight and balance.
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Figure 6.3 GPDR Installed in the Tray belonging to the Removed TCAS Processor

The GPS antenna splitter, shown in Figure 6.4, weighed 0.15 kilograms and was attached

to the GPS antenna using a TNC male-to-male elbow adaptor.  The coaxial cable

supplying the navigational GPS receiver was connected to the primary branch of the

splitter using the existing TNC connector.  One of four coaxial cables that ran between the

TCAS tray and the TCAS directional antenna was connected to the secondary branch of

the splitter using the existing TNC connector.

6.2.3 Electrical Considerations

There was a dedicated five-Ampere circuit breaker for the TCAS tray at the auxiliary

avionics circuit breaker panel.  This circuit drew power from the 28 VDC main avionics

bus.  The recorder unit drew 1.8 Amperes at 28 VDC and was internally protected with a
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three-Ampere normal blow fuse.  This level of power consumption was identical to that of

the removed TCAS processor.

Figure 6.4 Antenna Splitter used to Share the Signal of the Existing GPS Antenna

Power was supplied to the GPS antenna internal amplifier circuitry by the existing GPS

receiver through the primary branch of the antenna splitter which allowed DC current to

pass.  The second receiver acquired the antenna signal from the secondary branch.  The

splitter provided isolation in excess of twenty decibels between the primary and secondary

branches.  Testing that was completed to prove non-interference of the antenna splitter is

found in Appendix III.
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6.2.4 Installation

The navigational GPS antenna was located just forward of the cockpit bulkhead, directly

overhead.  The overhead cockpit circuit breaker panel was removed to gain access to the

antenna.  There was one coaxial cable attached to the GPS antenna with a TNC-male

connector.  This cable led to the navigational GPS receiver.  The receiver coaxial cable

was detached.  The TNC-male adaptor of the antenna splitter assembly was attached to

the GPS antenna.  Test C2 was then successfully performed.  Test C2 required that, when

installed, the combined structure of the antenna splitter, TNC male-to-male elbow adaptor,

and GPS antenna be shown to withstand a force applied vertically down at the centre of

the antenna splitter of no less than 7.0 Newtons without permanent deformation of the

structure at any location.  The purpose of this test was to show that the new hardware

would be able to withstand the maximum certified acceleration that the aircraft might

experience.  A small test mass was used for this purpose.

The receiver coaxial cable was then attached to the “Primary GPS” connector on the

antenna splitter.  The TCAS directional antenna was located just aft of the cockpit

bulkhead, directly overhead.  The overhead cabin panelling was removed to gain access to

the antenna.  There were four coaxial cables attached to the TCAS directional antenna

with TNC-male connectors.  The forward connector was colour-coded yellow.  The

yellow coaxial cable was detached, drawn forward, then attached to the “Secondary GPS”

connector on the antenna splitter.  The overhead cabin panelling and the circuit breaker

panel were then replaced.
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The GPDR processor was installed in the TCAS processor tray just aft of the right side

passenger seats.  The TCAS processor hold-downs were used to secure the GPDR

processor in place.  Test C1 was then successfully performed.  Test C1 required that,

when installed, the GPDR processor be shown to withstand a force applied vertically

down of no less than 230 Newtons without permanent deformation of the processor

structure or separation from the tray.  The purpose of this test was to show that the new

hardware would be able to withstand the maximum certified acceleration that the aircraft

might experience.

6.2.5 System Summary

The prototype monitor was certified31 for use as a Global Positioning Data Recorder

(GPDR) and was installed in a nineteen-passenger British Aerospace 3112 operated by an

airline servicing far-northern Canadian airports.  The full text of the Supplemental Type

Certificate Application including instructions for the installation and testing of the GPDR

is available in Appendix II.  Appendix 1.10 (CD-ROM) contains the basis of certification

under the “type certificates” directory.  Appendix 1.11 (CD-ROM) contains the full text of

the type certificate application together with all appendices under the “gpdr lstc”

directory.  The particular aircraft was equipped with a navigational GPS receiver (Bendix

King KLN 89B) with a permanent active patch antenna (Bendix King KA 92) installed

over the cockpit with a clear view of the sky.  A signal splitter (Starlink BT-2DGPS) was

installed that allowed the GPS antenna signal to be shared by the navigational GPS

receiver and the GPDR.  Figure 6.5 depicts the electrical configuration of the complete

system.  Figure 6.6 shows the internal configuration of the GPDR.  The receiver contained
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in the GPDR logged position and velocity at a rate of ten samples per second to a portable

computer that stored the data to a disk drive.  Appendix 1.12 (CD-ROM) contains

information regarding the portable computer under the “laptop manual” directory.  The

velocity observation from the GPS receiver in the test apparatus was derived from time

differentiation of position or carrier phase Doppler observations owing to the

manufacturer's proprietary algorithm.

6.2.6 Data Collection Software

Custom serial data collection software was programmed to extract the necessary

information from the GPS receiver in the GPDR.  When an aircraft is taxied before takeoff

or after landing, speeds can be similar to the first few seconds of a takeoff.  The amount of

time spent taxiing, however, is nearly one hundred times more than the amount of time

spent accelerating for takeoff.  To avoid excess data collection, a technique for recording

only data pertaining to takeoff and landing was required.

It was necessary to develop logic that would decide, based on speed and acceleration,

whether a takeoff or landing was occurring.  Only takeoff and landing information was

recorded.  The software functioned in a completely autonomous mode, capable of

collecting several months of data at a time without human intervention.  Appendix 1.13

(CD-ROM) contains source code and executables for all software used to collect and

process data under the “software” directory.
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Figure 6.5 Global Positioning Data Recorder - System Electrical Schematic
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Figure 6.6 Internal Configuration of Global Positioning Data Recorder
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6.3 Results and Discussion

The test aircraft used for this project visited several airports on a daily basis.  Of the 175

takeoffs recorded, eighteen took place from gravel runways.  The remainder took place on

paved runways.  The model developed in section 4.2 does not account for the use of

wheel brakes during deceleration.  Data pertaining to landings on paved runways cannot

be modelled using a theoretical model developed without consideration for wheel braking,

because pilots typically elect to make use of wheel braking during deceleration on paved

runways.  This did not affect the utility of the data collected during the takeoff phase,

where the model applies equally well to both paved and gravel surfaced runways.

Between September 15, 2000 and December 12, 2000, data pertaining to 175 takeoffs

were recorded.  Raw data for all takeoffs are contained in Appendix 1.14 (CD-ROM)

under the “data” directory. During a typical takeoff, the pilot adjusted control settings

until the aircraft reached a speed of twenty-five metres per second.  In view of this, the

signal processing technique was designed to determine model parameters with iterations

beginning after the aircraft reached a speed of thirty metres per second.  This allowed the

dynamics of the aircraft to be reasonably determined with reference to the theoretical

model.  Once this speed had been reached, the signal processing algorithm continuously

projected the displacement that the aircraft would have at an arbitrary speed of fifty metres

per second.  This speed was chosen as a common reference for all takeoffs as it was

always less than the takeoff speed of the aircraft.  The projected displacement was then

compared with the actual displacement of the aircraft once it reached a speed of fifty

metres per second.  Figure 6.7 shows the projected displacement as a function of the
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instantaneous speed for a typical takeoff.  Note that the algorithm continued to calculate a

value for “projected” displacement after the speed of the aircraft exceeded fifty metres per

second.  This was included to demonstrate that the performance of the algorithm would

not be affected if a different arbitrary speed were chosen.

Figure 6.7 The projection of displacement in a typical takeoff converged to within ten
metres of the actual future displacement a few seconds after control settings were fixed.

The projected displacement converged to a value accurate to within ten metres before the



80

aircraft had reached a speed of thirty-five metres per second.  The projected displacement

error was the amount by which the displacement at a speed of fifty metres per second

differed from the instantaneous predicted displacement as a function of speed.

Figure 6.8 shows the results of parameter estimation and stopping distance projection for

another typical takeoff.  Note that variations in the projected displacement corresponded

to variations caused by noisy segments in the acceleration filter.  Note also that the noise

present in the unfiltered acceleration appears to have been correlated in time.  This

indicates that either sensor noise or process noise was time correlated.  Recall from the

discussion of the discrete Kalman Filter in section 2.4 that process noise must be

uncorrelated in time for the Kalman Filter to yield an optimal result.  There is no such

restriction on sensor noise.

With regard to the parameter values, note that the model developed in section 4.2

specified that each of the parameters are influenced by factors that are constant for each

takeoff, such as control settings, runway slope, wind speed, and aircraft mass. 

Consequently, the value of each parameter should be expected to change from one takeoff

to the next, but should be relatively constant for a given takeoff.  A change in the value of

a parameter during a takeoff could indicate a change in a control setting by the pilot, a

sudden change in wind direction or speed, or a change in runway slope as the aircraft

displaced.
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Figure 6.8 Parameter Estimation in a Typical Takeoff

Figure 6.9 shows the results of parameter estimation for another typical takeoff.  Note that

there was a gradual decrease in the estimated value for the parameter, , corresponding2P
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to the convergence of the prediction of displacement to the actual displacement that

occurred when the aircraft reached fifty metres per second.  Note also that the unfiltered

acceleration observations were again time correlated.  Finally, note the lack of variation in

the estimation of the value of the parameter, , which was calculated each iteration after1P

all other parameters were determined.  This indicated that the theoretical model was

consistent with the measurement data.

Figure 6.10 shows the results of parameter estimation for another typical takeoff.  Most

notable in this example is the level of noise present in the unfiltered acceleration values. 

This resulted in slow convergence of the parameter, , which in turn resulted in slow2P

convergence of the projection of aircraft displacement.  Note that in this far less than ideal

situation, the projection of displacement was in error by twenty metres when the aircraft

was travelling at thirty metres per second.  By the time the aircraft had reached a speed of

thirty-seven metres per second, the error in the projection of displacement was less than

fifteen metres.
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Figure 6.9 Parameter Estimation in a Typical Takeoff - Model Validation
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Figure 6.10 Parameter Estimation in a Typical Takeoff - Acceleration Noise
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Data were collected over several months.  Figure 6.11 shows a scatter plot of all data

collected during 175 takeoffs.  The solid lines represent the standard deviation of error as

a function of speed.  Note that, in all cases, the error in projection of displacement was

less than fifteen metres by the time the aircraft reached forty-one metres per second. 

Figure 6.12 shows a histogram indicating the number of takeoffs in which the fifteen-

metre standard is met as a function of aircraft speed.  Data pertaining to a subset of

individual takeoffs are contained in Appendix IV.  Data for all takeoffs are contained in

Appendix 1.15 (CD-ROM) in the “parameters” directory.

Figure 6.11 Scatter Plot of All Projections of Displacement over 175 Takeoffs
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Figure 6.12 The number of takeoffs in which the error in projection of displacement was
less than fifteen metres increased to 175 by a speed of forty-one metres per second.

With regard to the parametric model, it was hypothesized that the parameter, , would3P

be a characteristic of the aircraft engines and is therefore a parameter that would change

slowly, rendering this parameter a constant for any single takeoff.  A filter with an

effective time constant of several takeoffs in length was used to identify this parameter.  In

theory, the parameter, , combines the effects of runway characteristics, weather2P

conditions, and wheel bearing friction.  A filter with a time constant a few seconds in

length was used to identify this parameter.  The convergence of the remaining parameter,

, showed that this was an entirely acceptable treatment of the parameters,  and .1P 3P 2P
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The aircraft used in this experimental investigation measured fifteen metres from nose to

tail.  From the data collected, it was concluded that a projection of displacement can be

determined to within an uncertainty of fifteen metres in sufficient time to alert the pilot of

an unsafe situation.
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Chapter 7 - Major Conclusions and Recommendations

The feasibility of constructing a takeoff performance monitor that can project the

displacement of an aircraft has been demonstrated.  Improvements in the theoretical model

should result in an improvement of the accuracy of the projection and an associated

improvement in the time to convergence of a solution.

7.1 Major Findings

It was demonstrated that the Global Positioning System is able to provide an observation

of vehicle speed that is sufficiently reliable to determine acceleration with an uncertainty of

less than 0.10 metres per second squared.  This accuracy should be achievable for

acceleration in excess of 0.5 metres per second squared.  Clear advantages in using a GPS

receiver over the more conventional sensor, an accelerometer, include insusceptibilities to

the gravity vector, vibrational disturbances, and temperature fluctuations.

The theoretical dynamic model derived in section 4.2 was validated using data collected

under normal operating conditions of a nineteen-passenger turboprop aircraft.  The signal

processing technique that was used performed well enough to project the displacement of

the aircraft to within fifteen metres, a distance equal to the length of the aircraft, in

sufficient time to alert the pilot of an unsafe situation.  If separate observation systems

were used to directly measure each quantity in the theoretical model as has been the case
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in earlier work in this field, the uncertainty in each measurement would result in a

projected displacement error orders of magnitude higher.  This improvement in the

observation of projected displacement is a clear advantage of both the modelling of the

combined effect of multiple factors in the grouped parameter approach described in

section 4.2 and of the signal processing technique that was described in section 4.4.2.

7.2 Takeoff Performance Monitoring - Future Work

It has been demonstrated that the development of a TOPMS for use in the far-northern

region using a GPS receiver as the sole sensor is technically feasible.  To assess the

feasibility of large-scale implementation of such a device, the following recommendations

are put forward.

7.2.1 Modular Device Development

It is recommended that a prototype TOPMS be constructed for potential integration in

candidate test aircraft.  The hardware for such a device could be a commercial aviation

GPS receiver which would include a display.  The integration of TOPMS algorithms could

be performed through modification of existing firmware within the GPS receiver.  Such a

device would include a graphical user interface which would alert the pilot of the

instantaneous margin of safety.

7.2.2 Target Environment Testing

Medical ambulance aircraft in the far-northern region encounter marginal conditions more

often than commercial airlines.  This arises primarily due to the varied airports that are
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visited by medical ambulance aircraft, and the infrequency with which the same airport is

visited.  In some cases, the length of the runway would not allow acceleration to V1

followed by safe deceleration to rest.  It is recommended that medical ambulance aircraft

be used in target environment testing.  It is expected that the data that could be collected

on such a platform would represent a worst case scenario from which refinements to the

TOPMS algorithm could be made.

7.3 Device Development - Future Work

There are likely many refinements that could be made to the proposed device

configuration that could result in a technically improved TOPMS.  For example, a fully

integrated commercial INS could easily improve the performance of a TOPMS, but at

prohibitively excessive expense.  The following recommendations are put forward as areas

where cost effective refinements could be most easily realized and where safety

improvement is most significantly addressed.

7.3.1 GPS/INS Sensor Integration

The integration of GPS with inertial sensors is by no means new technology.  While

inertial measurements can provide an accurate determination of acceleration and angular

rate, the time integration of these measurements required for positioning results in drift

error due to the inevitable time integration of measurement errors.  On the other hand,

GPS measurements can provide bounded position and velocity information, but do not

respond quickly to platform acceleration.  In extreme cases, platform acceleration can

cause a GPS receiver to lose signal lock.
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The fusion of measurements from GPS and inertial sources results in an improvement over

the measurements from either source alone.  To date, the successful fusion of GPS with

INS measurements has been confined to system level integration.  In other words, the

output from GPS and the output from an INS are combined in a separate observer.

Since the original design of GPS technology, it has been hypothesized that an improved

measurement could be obtained if inertial aiding from an inertial measurement unit (IMU)

were used within the tracking loops in the GPS receiver, as shown in Figure 7.1.

As described in section 2.2.2, a GPS receiver typically treats any acceleration as an

unmodelled disturbance within the tracking loops.  As a result, the tracking loops filter

away the effects of acceleration and any higher order dynamics.  In extreme cases, such as

when high acceleration is experienced, this can cause the receiver to lose signal lock

because the receiver expects that it is moving at a constant speed.  If inertial aiding of the

tracking loops were successful, this loss of lock could be avoided.

Inertial aiding of GPS tracking loops would also improve the estimation of parameters

within the takeoff performance monitoring algorithm.  Like acceleration, higher order

dynamics such as the velocity derivatives of acceleration are also filtered away by the

tracking loops in a typical GPS receiver.
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Figure 7.1 Phase Locked Loop with Inertial Aiding

7.3.2 Actuator Integration - Automatic Deceleration Systems

In the long term, the successful development of a system that could reduce the frequency

of air transportation accidents where runway friction coefficient or limited length of

runway is a significant problem would be a major achievement.  Such a system may

require a fully automated deceleration system to overcome problems associated with pilot

reaction time.  This would effectively remove the pilot from the control loop at a time

when an immediate procedural response is required.  The development of such a system

would require significant industrial support, which is not currently available.  There are,

however, other applications where a similar system would be advantageous.

7.4 Other Applications - Unmanned Aerial Vehicles (UAVs)

UAVs are currently used in military applications for aerial surveillance and, in limited
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capacity, as an attack vehicle.  The Altus II, similar in design to the Predator UAV, is

shown in Figure 7.2.  Aircraft of this sort are piloted remotely into hostile environments.

Figure 7.2 Altus II: an Operational Unmanned Aerial Vehicle

The next generation of military UAVs will extend the attack capability to the extent

available from fighter aircraft.  Unmanned Combat Air Vehicles (UCAVs), such as

Boeing’s X-45A shown in Figure 7.3, are similar in size, instrumentation, and cost to a

typical fighter aircraft and are almost completely autonomous.  Consequently, onboard

control systems will have the capability to reproduce the control reliability of a human

pilot during all phases of flight, including takeoff and landing.  This would be the ideal

proving ground for a fully automated takeoff performance monitor and control system. 

As well, given the high dynamics that such a vehicle would exhibit, inertial aiding of GPS

tracking loops will be essential.
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If the development of UCAV technology progresses as expected, the spinoffs will benefit

commercial aviation.  Once proven in an unmanned vehicle, the adoption of takeoff

performance monitoring technology in passenger aircraft will be able to proceed with

much less skepticism than is currently attached to such devices.

Figure 7.3 Boeing X-45A UCAV: the Next Generation of Unmanned Air Vehicle
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Appendix I - CD-ROM

Directory Contents

1.01 CAI Flight 17 description of a rejected takeoff at Vancouver Airport
1.02 airports flight supplement sheets for airports in dataset
1.03 integral solution derivation of the integral used to project displacement
1.04 simulation interactive takeoff performance monitor simulation
1.05 novatel user’s manual for the GPS receiver contained in the GPDR
1.06 accelerometer datasheet for accelerometers used in railway testing
1.07 c-fsew photographs of the test aircraft containing the GPDR
1.08 tcas manual install manual for the TCAS contained in the test aircraft
1.09 nav gps user’s manual for the aircraft GPS receiver
1.10 type certificates Canadian and U.S. type certificates for the Jetstream 31
1.11 gpdr lstc supplemental type certificate application for the GPDR
1.12 laptop manual user’s manual for the laptop computer used in the GPDR
1.13 software source code for GPDR and post-processing algorithms
1.14 data raw and formatted data collected from the GPDR
1.15 parameters post-processing datasheets for 175 takeoffs
1.16 publications publications resulting from studies within this project
1.17 copyright_releases copyright releases for various reproduced materials
1.18 manuscript searchable copy of manuscript
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Appendix II - Limited Supplemental Type Certificate Application

This appendix contains the original Limited Supplemental Type Certificate Application
that was submitted to Transport Canada for approval prior to the installation of the Global
Positioning Data Recorder and the subsequent period of data collection.  This document
outlines the rationale used to show compliance with various airworthiness regulations
pertaining to the design, construction, and installation of the device as well as any
potential interference with existing aircraft systems.
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Compliance Program  - Rev. 1, 23 Aug 00

Purpose and Scope

The purpose of the proposed modification is to collect position and velocity data during
takeoff and landing of a Jetstream 31.  These data will be used in support of a research
project at the University of Saskatchewan investigating the feasibility of a landing and
takeoff performance monitoring system for passenger aircraft that frequently travel to
airports with gravel runways in the Far North.  The equipment required consists of a unit
containing a portable computer and a NovAtel GPS receiver, and an antenna splitter used
to acquire the signal from an existing GPS antenna.

The proposed Global Positioning Data Recorder (GPDR) system is designed to be
minimally invasive and to take advantage of existing equipment wherever possible.  Air
Sask Aviation has agreed to carry the proposed equipment onboard C-FSEW, a Jetstream
31 equipped with a Bendix / King KLN 0089B GPS receiver.  A GPS antenna splitter
would be employed to acquire the signal from the existing GPS antenna.

The existing configuration of the aircraft includes the hardware for a Bendix / King CAS
66 TCAS I installation.  The TCAS processor has been removed due to serviceability
problems as it was not a required instrument.  It is proposed that the existing tray for the
TCAS processor be used as the station for the proposed data recorder.  The existing
infrastructure would be used to supply power to the unit.  There is existing coaxial cabling
that runs from the TCAS tray to an unused antenna mounted at station 130, just aft of the
cockpit bulkhead.  The existing GPS antenna lies within a few inches of this location.

Table 1: GPDR Processor Specifications

CHARACTERISTIC DESCRIPTION

Form Factor 4 MCU (1/2 long ATR)

Overall Dimensions 12.750" x 9.125" x 5.000"

Weight 11 pounds

Power Requirements

Voltage

Current

Power

Nominal: +28 Vdc
Range: +17 to +40 Vdc

Nominal: 1.8 A
Maximum Operating: 2.0 A
Bootup: 2.2 A

56 watts

Temperature Range

Operating
Storage

10 ° C to +35 ° C
-30 ° C to +60 ° C

Cooling Convection

2/14
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Mechanical Considerations

An aluminum enclosure has been constructed that will contain the portable computer and
the GPS receiver.  The unit weighs 11 pounds.  It will be secured in place using hold down
pins on the existing TCAS processor tray, located just aft of the rear R/H passenger seats.

The GPS antenna splitter, which weighs 0.3 pounds, will be attached to the GPS antenna
using a TNC male to male elbow adaptor.  The coaxial cable supplying the navigational
GPS receiver will be connected to the primary branch of the splitter using the existing
TNC connector.  One of four coaxial cables that run between the TCAS tray and the
TCAS directional antenna will be connected to the secondary branch of the splitter using
the existing TNC connector.

Electrical Considerations

There is a dedicated 5 A circuit breaker for the TCAS tray at the auxiliary avionics circuit
breaker panel.  This circuit draws power from the 28 VDC main avionics bus.  The
recorder unit draws 1.8 A at 28 VDC, internally protected with a 3 A normal blow fuse. 
This level of power consumption is identical to that of the removed TCAS processor.

Power is supplied to the GPS antenna internal amplifier circuitry by the existing GPS
receiver through the primary branch of the antenna splitter which allows DC current to
pass.  The second receiver acquires the antenna signal from the secondary branch.  The
splitter provides isolation in excess of 20 dB between the primary and secondary branches.

Table 2: Compliance Matrix

Item Reference Title Means of Compliance

1 23.303 Factors of Safety Test

2 23.305 Strength and Deformation Test

3 23.307 (a) Proof of Structure Test

4 23.603 Materials & Workmanship Evaluation

5 23.605 Fabrication Methods Evaluation

6 23.1301 (a-c) Function and Installation Evaluation

7 23.1301 (d) Function and Installation Test

8 23.1309 (a) Equipment, Systems & Installations Test

9 23.1309 (b) Equipment, Systems & Installations Analysis

10 23.1357 (a) Circuit Protective Devices Evaluation

11 23.1365 (a) Electric Cables and Equipment Analysis

12 23.1431 (a-b) Electronic Equipment Test

3/14
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Substantiation Report  - Rev. 1, 23 Aug 00

Subpart D, Design and Construction
Sec. 23.603
Sec. 23.605

The enclosure for the GPDR processor is
constructed with 1/16" aluminum, in
accordance with ARINC 404A material and
dimension requirements.  The processor will
be tested in accordance with Subpart C as
described in the Test Plan, Test C1.

The TNC male to male elbow adaptor will be
tested in accordance with Subpart C as
described in the Test Plan, Test C2.

Subpart F, Equipment
Sec. 23.1301

The GPDR processor consists of a portable
computer and a GPS receiver contained in a
removable module.  The manufacturer’s
specifications have been used to determine
specific operating limitations as described in
Table 1.

The antenna splitter is a commercial product
designed for the purpose of providing two
GPS receivers with the signal from a
common antenna.  Tests have been
performed to verify the continued proper
function of the navigational GPS receiver. 
Further tests will be performed in accordance
with Subpart and F as described in the Test
Plan, Test F1.

Applicable Regulations

Sec. 23.603

Materials and workmanship.

(a) The suitability and durability of materials
used for parts, the failure of which could
adversely affect safety, must--

(1) Be established by experience or
tests;

(2) Meet approved specifications that
ensure their having the strength
and other properties assumed in
the design data, and;

(3) Take into account the effects of
environmental conditions, such as
temperature and humidity,
expected in service.

(b) Workmanship must be of a high standard.

Sec. 23.605

Fabrication methods.

(a) The methods of fabrication used must produce
consistently sound structures.  If a fabrication
process (such as gluing, spot welding, or
heat-treating) requires close control to reach
this objective, the process must be performed
under an approved process specification.

(b) Each new aircraft fabrication method must be
substantiated by a test program.

Sec. 23.1301

Function and installation.

Each item of installed equipment must--

(a) Be of a kind and design appropriate to its
intended function;

(b) Be labeled as to its identification, function, or
operating limitations, or any applicable
combination of these factors, and;

(c) Be installed according to limitations specified
for that equipment.

4/14
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Substantiation Report (continued)

Subpart F, Equipment
Sec. 23.1309

The Global Positioning Data Recorder is
designed purely for the purpose of collecting
kinematic data for empirical research.  It will
not be used to provide information to the
crew.  It will not be used as a safety device. 
Compliance with Sec. 23.1309 is therefore
limited to any possible effects that the GPDR
may have on other aircraft systems.

Possible Modes of Failure

(a) electromagnetic interference with
navigational or communication
equipment

(b) interruption of the operation of the
navigational GPS receiver through
structural failure of the cable
assembly

Electromagnetic interference will be assessed
through ground testing in accordance with
Subpart F as described in the Test Plan, Test
F1.

The integrity of the cable assembly, including
the strength of the TNC male to male
adaptor, will be assessed through loading in
accordance with Subpart C as described in
the Test Plan, Test C2.

Applicable Regulations (continued)

Sec. 23.1309

Equipment, systems, and installations.

(b) The design of each item of equipment, each
system, and each installation must be
examined separately and in relationship to
other airplane systems and installations to
determine if the airplane is dependent upon its
function for continued safe flight and landing
and, for airplanes not limited to VFR
conditions, if failure of a system would
significantly reduce the capability of the
airplane or the ability of the crew to cope with
adverse operating conditions.  Each item of
equipment, each system, and each installation
identified by this examination as one upon
which the airplane is dependent for proper
functioning to ensure continued safe flight and
landing, or whose failure would significantly
reduce the capability of the airplane or the
ability of the crew to cope with adverse
operating conditions, must be designed to
comply with the following additional
requirements:

(1) It must perform its intended
function under any foreseeable
operating condition.

(2) When systems and associated
components are considered
separately and in relation to other
systems--

(i) The occurrence of any
failure condition that
would prevent the
continued safe flight
and landing of the
airplane must be
extremely improbable,
and;

(ii) The occurrence of any
other failure condition
that would
significantly reduce
the capability of the
airplane or the ability
of the crew to cope
with adverse operating
conditions must be
improbable.

(3) Warning information must be
provided to alert the crew to
unsafe system operating
conditions and to enable them to
take appropriate corrective action.
Systems, controls, and associated
monitoring and warning means
must be designed to minimize
crew errors that could create
additional hazards.

5/14
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Substantiation Report (continued)

Other Possible Modes of Failure

(a) GPDR software failure

(b) GPDR disk write error due to
vibration or excessive loading

These possible modes of failure pertain
primarily to the intended operation of the
GPDR.  While some refinement of the
operation of the portable computer may be
required, this will in no way affect other
aircraft systems.

Subpart F, Equipment
Sec. 23.1357
Sec. 23.1365

The GPDR processor will draw power
through a 5 A dedicated circuit breaker and
associated electric connecting cable
originally installed to provide power to a
TCAS processor that drew nominally 1.8 A. 
The GPDR processor will draw an identical
amount of power through the existing cable. 
The GPDR processor includes redundant
internal fuses for added protection.

Applicable Regulations (continued)

(4) Compliance with the requirements
of paragraph (b)(2) of this section
may be shown by analysis and,
where necessary, by appropriate
ground, flight, or simulator test. 
The analysis must consider--

(i) Possible modes of
failure, including
malfunctions and
damage from external
sources;

(ii) The probability of
multiple failures and
the probability or
undetected faults;

(iii) The resulting effects of
the airplane and
occupants, considering
the stage of flight and
operating conditions,
and;

(iv) The crew warning
cues, corrective action
required, and the
crew's capability of
determining faults.

Sec. 23.1357

Circuit protective devices.

(a) Protective devices, such as fuses or circuit
breakers, must be installed in all electrical
circuits other than--

(1) Main circuits of starter motors
used during starting only, and;

(2) Circuits in which no hazard is
presented by their omission.

Sec. 23.1365

Electric cables and equipment.

(a) Each electric connecting cable must be of
adequate capacity.

6/14



114

Test Plan  - Rev. 1, 23 Aug 00

Subpart C, Structure
Sec. 23.303
Sec. 23.305
Sec. 23.307

The maximum positive vertical load factor of
the Jetstream 31 is 3.05g.  The weight of the
GPDR processor is 11 pounds.  The weight
of the antenna splitter is 0.3 pounds.

Test C1: When installed, the GPDR
processor will be shown to withstand a force
applied vertically down of no less than 50
pounds without permanent deformation of
the processor structure or separation from
the tray.

Test C2: When installed, the combined
structure of the antenna splitter, TNC male
to male elbow adaptor, and GPS antenna will
be shown to withstand a force applied
vertically down at the centre of the antenna
splitter of no less than 1.5 pounds without
permanent deformation of the structure at
any location.

Tests C1 and C2 will be performed at the
time of installation.

Applicable Regulations

Sec. 23.303

Factor of safety.

Unless otherwise provided, a factor of safety of 1.5 must
be used.

Sec. 23.305

Strength and deformation.

(a) The structure must be able to support limit
loads without detrimental, permanent
deformation.  At any load up to limit loads,
the deformation may not interfere with safe
operation.

(b) The structure must be able to support ultimate
loads without failure for at least three seconds,
except local failures or structural instabilities
between limit and ultimate load are
acceptable only if the structure can sustain the
required ultimate load for at least three
seconds.  However, when proof of strength is
shown by dynamic tests simulating actual
load conditions, the three second limit does
not apply.

Sec. 23.307

Proof of structure.

(a) Compliance with the strength and deformation
requirements of Sec. 23.305 must be shown
for each critical load condition.  Structural
analysis may be used only if the structure
conforms to those for which experience has
shown this method to be reliable.  In other
cases, substantiating load tests must be made. 
Dynamic tests, including structural flight
tests, are acceptable if the design load
conditions have been simulated.

7/14
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Test Plan (continued)

Subpart F, Equipment
Sec. 23.1301
Sec. 23.1309
Sec. 23.1431

Test F1: After installation of the GPDR
equipment, the normal operation of the
navigational GPS receiver will be verified in
accordance with chapter 2.4 of the Bendix /
King KLN 89/89B GPS RNAV Installation
Manual, Revision 3, May, 1999.

Test F2: This test has been deleted.

Test F3: After the first flight, the data
collected by the GPDR processor will be
examined to verify its intended function.

Applicable Regulations (continued)

Sec. 23.1301

Function and installation.

Each item of installed equipment must--

(d) Function properly when installed.

Sec. 23.1309

Equipment, systems, and installations.

(a) Each item of equipment, each system, and
each installation:

(1) When performing its intended
function, may not adversely affect
the response, operation, or
accuracy of any--

(i) Equipment essential to
safe operation, or;

(ii) Other equipment
unless there is a means
to inform the pilot of
the effect.

(2) In a single-engine airplane, must
be designed to minimize hazards
to the airplane in the event of a
probable malfunction or failure.

(3) In a multi-engine airplane, must
be designed to prevent hazards to
the airplane in the event of a
probable malfunction or failure.

(4) In a commuter category airplane,
must be designed to safeguard
against hazards to the airplane in
the event of their malfunction or
failure.

Sec. 23.1431

Electronic equipment.

(a) In showing compliance with Sec.
23.1309(b)(1) and (2) with respect to radio
and electronic equipment and their
installations, critical environmental conditions
must be considered.

(b) Radio and electronic equipment, controls, and
wiring must be installed so that operation of
any unit or system of units will not adversely
affect the simultaneous operation of any other
radio or electronic unit, or system of units,
required by this chapter.

8/14
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Antenna Splitter Assembly

Installation Instructions - Global Positioning Data Recorder  - Rev. 1, 12 Jul 00

1. The GPS antenna is located just forward of the
cockpit bulkhead, directly overhead.  Remove the
overhead cockpit circuit breaker panel to gain
access to the antenna.

2. There is one coaxial cable attached to the GPS
antenna with a male TNC connector.  This cable
leads to the GPS receiver.  Detach the receiver
coaxial cable.

3. Attach the TNC male adaptor of the antenna splitter assembly to the GPS antenna.

Test C2: When installed, the combined structure of the antenna splitter, TNC male to
male elbow adaptor, and GPS antenna will be shown to withstand a force applied
vertically down at the centre of the antenna splitter of no less than 1.5 pounds without
permanent deformation of the structure at any location.

4. Perform Test C2.  (Refer to Detailed Test Plan.) Pass / Fail:                

5. Attach the receiver coaxial cable to the antenna splitter “Primary GPS” connector.

6. The TCAS directional antenna is located just aft of the cockpit bulkhead, directly
overhead.  Remove the overhead cabin panelling to gain access to the antenna.

7. There are four coaxial cables attached to the TCAS directional antenna with male
TNC connectors.  The forward connector is colour coded yellow.  Detach the
yellow coaxial cable.

8. Draw the yellow coaxial cable forward.  Attach the yellow coaxial cable to the
“Secondary GPS” connector on the antenna splitter.

9. Replace the overhead cabin panelling and the circuit breaker panel.

10. Install the GPDR processor in the TCAS processor tray just aft of the R/H
passenger seats.  Use the TCAS processor hold-downs to secure the GPDR
processor in place.

Test C1: When installed, the GPDR processor will be shown to withstand a force applied
vertically down of no less than 50 pounds without permanent deformation of the processor
structure or separation from the tray.

11. Perform Test C1.  (Refer to Detailed Test Plan.) Pass / Fail:                
9/14
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Detailed Test Plan  - Rev. 1, 23 Aug 00

Tests C1 and C2 are to be conducted during the installation procedure.  (Refer to
Installation Instructions.)

Test C1: When installed, the GPDR processor will be shown to withstand a force applied
vertically down of no less than 50 pounds without permanent deformation of the processor
structure or separation from the tray.

Place the 50 pound distributed test mass (P/N SP-T01120700) on the top surface of the
GPDR processor.  Verify that no permanent deformation results.  Remove the test mass
and examine the structure for signs of deformation.

Pass / Fail:                
Comments:

Test C2: When installed, the combined structure of the antenna splitter, TNC male to
male elbow adaptor, and GPS antenna will be shown to withstand a force applied
vertically down at the centre of the antenna splitter of no less than 1.5 pounds without
permanent deformation of the structure at any location.

Attach the 1.5 pound inline test mass (P/N SP-T02120700) to the primary and secondary
outputs of the antenna splitter.  Allow the test mass to hang supported only by the antenna
and splitter assembly.  Verify that no permanent deformation results.  Remove the test
mass and examine the structure for signs of deformation.

Pass / Fail:                
Comments:

Test F1 will be conducted after the installation is complete with the aircraft parked in a
location offering a clear view of the sky.

Test F1: After installation of the GPDR equipment, the normal operation of the
navigational GPS receiver will be verified in accordance with chapter 2.4 of the Bendix /
King KLN 89/89B GPS RNAV Installation Manual, Revision 3, May, 1999.

The following tests will be conducted with the GPDR equipment installed and energized. 
These tests include provisions to verify the absence of EMI/RFI and to verify the proper
function of the GPS receiver and associated peripherals.

10/14
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The following is an excerpt from chapter 2.4 of the Bendix / King KLN 89/89B GPS
RNAV Installation Manual, Revision 3, May, 1999:

----------------------------------------------------------------------------------------------------------------------------------------------------------------

2.4.3 INSTALLATION CHECK OUT

C. Manipulate the controls as necessary to display the Set 1 Page on the right half
of the screen.

On the Set 1 Page, enter the airport name or the present position (latitude and
longitude) for the installation location accurate to within 60 nautical miles.

Display the Set 2 Page.  Verify that the date and time are correct to within 10
minutes and update if necessary.

Pass / Fail:                
Comments:

D. At this point the aircraft will have to be moved to a location known to have
reasonable GPS signal coverage.  This implies an outside location away from
tall structures that could mask low elevation satellites. (To speed up the next
test it is helpful to turn unit power off then on again once the system is away
from structures.)

E. Proceed to the 0TH 1 page. The State shown on the display should change to
Acquire (ACQ) from INIT and after a period of not more than 5 minutes,
(typically two minutes depending on the satellite coverage,) the unit should
display Latitude and Longitude values on the Nav 2 Page that are correct for the
installation location.  If the unit has not been turned on for 6 months, the unit will
take up to 20 minutes to calculate a position.

Pass / Fail:                
Comments:

F. Select the 0TH 2 page, verify that no asterisks appear next to any satellite with
an elevation greater than 25�.  Select 121.15 MHz on COMM 1.  Transmit on
COMM 1 for a period of 20 seconds and verify that no asterisks appear
indicating satellites with an elevation of greater than 25�.  Repeat for the
following frequencies 121.175,121 .20,131.250,131.275 and 131.30 MHz. 
Repeat the above procedure for all VHF COMM's on board the aircraft.

Pass / Fail:                
Comments:
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2.4.4 INTEGRATED INSTALLATION CHECK OUT

The following paragraphs define checkout procedures for all possible Input/Output
signals that can be connected to the KLN 89/89B.  It should be clearly determined
which of the signals are intended to be used in any given installation and then only the
paragraphs pertaining to those signals should be performed.

2.4.4.1 All Installations

Perform all steps defined in Paragraph 2.4.3 and leave the system energized with a
valid GPS signal being received.

2.4.4.2 CDI/HSI Interface

Cycle the power on the KLN 89/89B which will cause the self test page to be displayed. 
Verify that the CDI needle, after it has settled, is indicating half scale right deflection. 
Verify that the TO/FROM flag is indicating FROM.  Verify that the nav flag is pulled from
view.

Pass / Fail:                
Comments:

Verify the selected course from the CDI/HSI is interfaced properly to the KLN 89/89B in
the OBS Mode.

Pass / Fail:                
Comments:

You must create an active waypoint on the Flightplan 0 page to check the following
function.  The OBS/LEG selection is controlled through the OBS button located on the
front panel of the KLN 89/89B.  Pressing this button toggles between LEG and OBS
with the normal position being LEG.  During OBS mode, the LEG indication (located left
of the vertical page divider) will change to a three digit course value.

Pass / Fail:                
Comments:

Verify that the selected course value agrees with the value displayed on the HSI
Course Pointer.  Change the selected course value on the HSI or CDI using the OBS
knob. Verify that the selected course value displayed on the KLN 89/89B tracks the
new value selected.

Pass / Fail:                
Comments:
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In the OBS mode with the GPS displayed on the CDI/HSI, the resolver is disconnected
from the NAV converter.  Verify that the KNS 80 or 81 groundspeed is still functional
and the Radial display for the KX 165 or KNS 81 is still functional.  These units must
have jumpers or resistors across them when the resolver is removed.

Pass / Fail:                
Comments:

In the OBS mode with the GPS not displayed on the CDI/HSI the resolver is
reconnected to the NAV converter.  Verify that change in the OBS resolver will not
affect the selected OBS on the KLN 89/89B.

Pass / Fail:                
Comments:

2.4.4.3 Gray Code Altitude Inputs

With gray code altitude being supplied by a compatible encoding altimeter, verify that
the proper. altitude is indicated on the ALT page (provided no other altitude sources are
active and that proper baro setting has been entered).

Pass / Fail:                
Comments:

Verify that there is no interference between the KLN 89/89B, transponder, and any
other loads on the encoding altimeter output.  Remove power from each of the loads on
the encoder to verify that the remaining equipment still performs properly.  If
interference exists, one or more of the units are not diode isolated and isolation diodes
will need to be added to the aircraft wiring.

Pass / Fail:                
Comments:

2.4.4.7 External Annunciators

Recycle the power on the KLN 89/898 which will cause the Self Test Page to be
displayed.  Verify that all external annunciators are energized.  Cycle the KLN 89/89B
display past all initialization pages.  Verify all external annunciators are extinguished.  If
the message light comes on, view the Message Page to verify that there is a message. 
If any other annunciator remains lighted, review the status of the KLN 89/89B to
determine if the lighted annunciator is justified.
----------------------------------------------------------------------------------------------------------------------------------------------------------------
This concludes the reference to chapter 2.4 of the Bendix / King KLN 89/89B GPS RNAV Installation Manual, Revision 3, May, 1999

Pass / Fail:                
Comments:
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Test F2: This test has been deleted.

Test F3: After the first flight, the data collected by the GPDR processor will be examined
to verify its intended function.

This test will be performed at the University of Saskatchewan.

Pass / Fail:                
Comments:
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Appendix III - Antenna Splitter Evaluation

A critical component of the Global Positioning Data Recorder system was a signal splitter
that was used to share the signal from the existing aircraft GPS antenna.  Because a failure
of this component could result in the loss of the navigational GPS receiver used by the
pilot, it was necessary to show that the use of the signal splitter would not risk degraded
performance.  This appendix describes the test that was performed to evaluate the antenna
signal splitter.
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Antenna

Splitter

Receivers

Computer

Introduction

A simple test was performed to evaluate the integrity of a GPS antenna signal when split

between two GPS receivers.  The carrier to noise ratio pertaining to individual satellites

was measured by two GPS receivers.  A comparison was made between the carrier to

noise ratio obtained while employing the signal splitter to that obtained in a single receiver

configuration.

Materials and Methods

A schematic of the experimental apparatus is shown in Figure II.1.

Figure II.1 Splitter Evaluation Experimental Apparatus
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The equipment used for this test included two GPS receivers (NovAtel OEM2, NovAtel

OEM3), a GPS antenna (NovAtel Model 531), an antenna signal splitter (Starlink BT-

2DGPS), and the necessary cabling.  One five-metre TNC male-to-male RG223/U coaxial

cable assembly was used to connect the OEM2 receiver to the secondary GPS connection

of the antenna splitter.  One five-metre TNC male-to-male RG223/U coaxial cable

assembly was used to connect the OEM3 receiver to the primary GPS connection of the

antenna splitter.  Power from this receiver was used to activate the amplification circuitry

in the GPS antenna.

The GPS antenna was connected to the splitter using a TNC male-to-male adaptor.  Data

pertaining to channel tracking status were collected from the OEM3 receiver.  After

approximately ten minutes, the splitter was quickly removed from the configuration so that

the OEM3 receiver was connected directly to the GPS antenna.  Data collection was not

interrupted during this period.  After approximately ten minutes, the apparatus was

returned to its original configuration.  Data collection was not interrupted during this

period.  Data were collected for yet another ten minute period.

Results

The carrier to noise ratio pertaining to three different satellites measured by the primary

GPS receiver is shown in Figures II.2, II.3, and II.4.  The carrier to noise ratio was not

affected by the inclusion of a GPS antenna signal splitter.  From the time marked ‘A’ to

the time marked ‘B’, the splitter was used to provide the signal to both receivers.  From

the time marked ‘B’ to the time marked ‘C”, the signal was provided directly to the
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primary receiver.  From the time marked ‘C’ to the time marked ‘D’, the splitter was again

used to provide the signal to both receivers.  Note that the carrier to noise ratio fluctuated

somewhat throughout the entire period of data collection for each satellite, but that there

was no appreciable difference between the period where the signal was provided directly

to a single receiver and the period where the signal power was divided between to

receivers.

Interpretation and Discussion

The inclusion of a signal splitter results in a theoretical signal attenuation of three decibels. 

The results show that this attenuation is not manifested in the measurement of the carrier

to noise ratio.  It was concluded that the noise present in the signal was equally

attenuated, and the carrier to noise ratio was unaffected.  The carrier to noise ratio

pertaining to individual satellites governs the signal rejection decision in a GPS receiver. 

As long as the total signal attenuation between the antenna and the receiver does not

exceed the manufacturer’s specification, the use of a signal splitter will not adversely

affect receiver performance.
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Figure II.2 The carrier to noise ratio for satellite PRN 23 was unaffected by the presence of a signal splitter
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Figure II.3 The carrier to noise ratio for satellite PRN 17 was unaffected by the presence of a signal splitter
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Figure II.4 The carrier to noise ratio for satellite PRN 26 was unaffected by the presence of a signal splitter
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Appendix IV - Takeoffs from Runway 15, Saskatoon Airport

This appendix contains data pertaining to a subset of takeoffs that were recorded using the
Global Positioning Data Recorder.  All takeoffs within this subset took place from the
same runway at Saskatoon Airport, with the same direction of departure.  When
comparing individual takeoffs, note that the model developed in section 4.2 specifies that
each of the parameters are influenced by factors that are constant for each takeoff, such as
control settings, runway slope, wind speed, and aircraft mass.  Consequently, the value of
each parameter should be expected to change from one takeoff to the next, but should be
relatively constant for a given takeoff.  A change in the value of a parameter during a
takeoff could indicate a change in a control setting by the pilot, a sudden change in wind
direction or speed, or a change in runway slope as the aircraft displaces.
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COMMERCIAL USE LICENSE AGREEMENT

PLEASE READ CAREFULLY:  This Commercial Use License Agreement (the "Agreement") is an agreement between You (either an individual or a single entity) and the Boeing Management Company ("Boeing").  It governs Your
rights and obligations for photographs, images, graphics and other informational materials (collectively, "Images") licensed and delivered to You by Boeing in the format requested by You or downloaded by You from the Boeing
licensing site located at  (the "Site").  Your rights and obligations regarding the Images selected and purchased by You are subject to terms of the options selected by You during the ordering process (the "Order").  The terms of the
Order are hereby incorporated by reference into this Agreement.  You must agree to the terms of this Agreement to use the Images downloaded by You from this Site or delivered to You by Boeing pursuant to Your Order.

BY CLICKING ON THE "I ACCEPT" BUTTON BELOW OR DOWNLOADING OR TAKING DELIVERY OF THE IMAGES, YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT AND AGREE TO BE
BOUND BY ITS TERMS AND CONDITIONS.  IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT CLICK THE "I ACCEPT" BUTTON, DOWNLOAD OR OTHERWISE ACCEPT DELIVERY OF
THE IMAGES.  IF, AFTER YOU ACCEPT THIS AGREEMENT, YOU NO LONGER AGREE TO THE TERMS AND CONDITIONS AND WISH TO TERMINATE THIS AGREEMENT, YOU MUST PROMPTLY DELETE THE
LICENSED IMAGE(S) FROM YOUR COMPUTER AND DESTROY ANY COPIES THEREOF, WHETHER IN PRINTED OR ELECTRONIC FORM.

1. License Grant.  Subject to the terms of the Agreement and Your payment of any applicable royalties and taxes, Boeing grants to You a limited, non-exclusive, non-transferable, non-sublicensable license to use a copy
of the Image(s), whether in electronic or other form, selected by and licensed to You from the Site for commercial use in accordance with the terms of this Agreement and the Order only.  The license granted is personal
to You and not to any other person or entity.

2. Use Limitations.  Unless expressly authorized by the Order and then only to the extent permitted by the Order, You must adhere to the following limitations and restrictions regarding Your use of the Image(s):
a. No Sublicense.  You may not transfer, sublicense, rent, lease, network, distribute, or grant Your rights in the Image(s) to any other person or entity except with the express, prior written consent of

Boeing.
b. Permitted Copies.  During the term of this Agreement, You may make commercial use only in accordance with the terms of this Agreement of each copy of an Image licensed under this Agreement. 

Every copy of an Image must be separately downloaded through the Site.  For example, if, pursuant to Your Order, You are licensed to use and download an Image on Your commercial web site and
wish to use an additional copy in Your annual report, You must license both copies in separate transactions.  You may make a limited number of physical copies from the electronic copy of the Image(s)
only for Your internal purposes in accordance with the terms of this Agreement.  Any reproduction or distribution of copies for external purposes must be specifically authorized by Your Order.

c. Unauthorized Copies.  Except as provided by this Agreement, You may not (1) copy, display or distribute the Image(s) to others; (2) publish, display or post any Images on any computer network or
broadcast or publications media; or (3) systematically download, copy or place or use the Image(s) in or as part of a clipart or stock photography collection or compilation of any sort.

d. No Modifications.  You may not alter, modify or prepare derivative works of the Image(s).  Without limiting the foregoing, You may not use or otherwise incorporate the Image(s) in another work,
regardless of format or medium, unless authorized by Your Order.

e. Commercial Use.  Except as explicitly authorized under the terms of this Agreement and Your Order, You may not use the Image(s) to develop any product for distribution, sell any product produced
through use of the Image(s), or otherwise make any commercial use whatsoever of the Image(s), including, without limitation, using the Image(s) on a commercial web site.

f. Notices; Attribution.  You may not remove or alter any copyright and other proprietary notices contained in the Image(s).  You agree to add the following legal notice wherever the Image(s) is/are used,
including all printed versions:  "™ & © Boeing.  Used under license".

g. Integrity.  You may not use the Image(s) in any manner or context that reflects unfavorably or adversely on Boeing, or that is distasteful or objectionable to Boeing, or that otherwise casts Boeing in a
poor light.  Without limiting the foregoing, You may not use the Image(s) on any web site or with any product or service associated with alcohol, tobacco, firearms, drugs, nudity, pornography or
obscene materials.

3. Proprietary Rights.
a. Reservation of Rights.  The Image(s) are licensed, not sold, to You.  Except for the limited license granted to You, Boeing reserves all right, title and interest to the Image(s), including ownership of the

Image(s) and all copyrights, trademark, or other intellectual property rights in the Image(s).  Without limiting the foregoing, Boeing expressly reverses all moral rights in the Image(s), including the right of
attribution and integrity expressed in this Agreement.

b. Copyright.  All Images are ALL RIGHTS RESERVED Copyright ©  Boeing Management Company.  The Image(s) are protected under U.S. and international copyright laws.
c. Trademarks.  Boeing, McDonnell Douglas, McDonnell Aircraft, Douglas Aircraft, North American Aviation, their distinctive airplane liveries and product markings, and the products and services

described in this website are trademarks, service marks or registered trademarks owned by Boeing, and may not be copied, imitated or used, in whole or in part, other than in accordance with the terms of
this Agreement without the express, prior written permission of Boeing.  You agree that You will not display, disparage, dilute, or taint Boeing's trademarks and service marks or use any confusingly
similar marks or use our marks in such a way that would misrepresent the ownership of such marks.  Any permitted use of our service marks or trademarks by You shall inure to the benefit of Boeing.

d. No Sponsorship.  Nothing in this Agreement shall be interpreted as Boeing's sponsorship, aff ili ation or endorsement of any product or service for which the Image(s) are used pursuant to Your Order. 
You may not suggest or imply any sponsorship, aff ili ation or endorsement in the sale, promotion, or use of Your goods or services.

4. Royalties.  As a condition of the license grant above, You agree to pay all applicable royalties and taxes associated with the Image(s) selected by You in accordance with the terms of the Order.  Any failure of You to
make timely payment shall result in the immediate termination of this Agreement.

5. Term and Termination.
a. Term.  The license granted in this Agreement is effective upon acceptance by You of the terms and conditions set forth in the Agreement.  The Agreement shall continue until terminated.
b. Termination.  The Agreement will terminate immediately without notice by Boeing if you fail to comply with the terms and conditions of this Agreement. Upon termination of this Agreement, You shall

immediately discontinue all use of the Image(s), and destroy the original and all copies, print or electronic, of such Image(s).  Further, Boeing has the unqualified right to terminate this Agreement if, at
any time during the term of this Agreement (i) You breach the terms or conditions of this Agreement; or (ii) any unfavorable publicity or claim should arise or be made in relation to any particular use of
the Image(s) which use reflects adversely or unfavorably on Boeing or its trademarks, copyrights or other intellectual property.  Termination of this Agreement under this section shall be without
prejudice to any rights that Boeing may otherwise have against You and shall not preclude the exercise by Boeing of any other right or remedy that it may have by law against You.  The following
provisions shall survive the termination of this Agreement:  2, 3, and 5(b) through 9.

6. Disclaimer.  ANY AND ALL IMAGES ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.  BOEING HEREBY DISCLAIMS ALL EXPRESS OR IMPLIED WARRANTIES REGARDING THE
IMAGES OR ANY OTHER MATERIALS ACCESSIBLE FROM THE SITE, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, IMPLIED WARRANTY OR CONDITION ARISING FROM COURSE OF PERFORMANCE, COURSE OF DEALING, OR USAGE OF TRADE, AND ANY IMPLIED WARRANTY OF
NONINFRINGEMENT.  BOEING DOES NOT REPRESENT OR WARRANT THAT THE IMAGES OR OTHER MATERIALS OBTAINED FROM THE SITE ARE ACCURATE, COMPLETE, RELIABLE,
CURRENT, OR ERROR FREE.  ANY WRITTEN OR ORAL INFORMATION OR ADVICE GIVEN BY BOEING, ITS EMPLOYEES, AGENTS AND/OR REPRESENTATIVES SHALL NOT IN ANY WAY BE
CONSTRUED AS GRANTING OR CREATING A WARRANTY.

7. Limitation of Liabili ty.  BOEING SHALL NOT BE LIABLE UNDER ANY THEORY FOR ANY DAMAGES SUFFERED BY YOU, ANY OTHER USER OF THE IMAGE(S), OR ANY THIRD PARTY.  UNDER
NO CIRCUMSTANCES SHALL BOEING BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE USE OR INABILITY TO USE THE IMAGE(S) OR
OTHER DEALINGS IN CONNECTION WITH THE IMAGE(S), EVEN IF BOEING WAS INFORMED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY THIRD-PARTY CLAIMS.  THIS
DISCLAIMER OF LIABILITY APPLIES TO ANY DAMAGES OR INJURY CAUSED BY ANY FAILURE OF PERFORMANCE, ERROR, OMISSION, INTERRUPTION, DELETION, DEFECT, DELAY IN
OPERATION OR TRANSMISSION, COMPUTER VIRUS, COMMUNICATION LINE FAILURE, THEFT OR DESTRUCTION OR UNAUTHORIZED ACCESS TO, ALTERATION OF, OR USE OF THE
IMAGE(S) WHETHER FOR BREACH OF CONTRACT, TORT, OR  NEGLIGENCE, OR UNDER ANY OTHER CAUSE OF ACTION.  BOEING’S ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY
WITH RESPECT TO THE USE OF THE SITE OR IMAGE(S) SHALL BE LIMITED TO THE REPLACEMENT OF ANY IMAGE FOUND TO BE DEFECTIVE OR RETURN OF THE ROYALTIES PAID BY YOU. 
YOUR SOLE AND EXCLUSIVE REMEDY FOR ANY OTHER DISPUTE WITH BOEING IS THE TERMINATION OF THIS AGREEMENT.

8. Indemnification.  You agree to hold harmless, indemnify, and defend Boeing, its off icers, employees, directors, agents, and any users from and against any loss, damage, liabili ty, claim of loss, lawsuit, cause of action,
or other claim asserted against them or any of them arising out of, or in any way connected with, Your use of the Image(s) in violation of this Agreement.

9. General Provisions.
a. Export Controls.  You agree that the Image(s) will not be shipped, transferred, or exported into any country or used in any manner prohibited by the United States Export Administration Act or any other

export laws, restrictions, or regulations.   You will be solely responsible for Your compliance with all applicable United States and foreign laws and regulations and international treaties with respect to the
export, import or use of the Image(s).  By entering into this Agreement, You represent and warrant that (1) no U.S. federal agency has suspended, revoked, or denied You export privileges (a "Prohibited
Person"), (2) You are not located in or under the control of a national or resident of any country subject to a U.S. embargo or trade restrictions applicable to the Image(s), including Iraq, (a "Prohibited
Country"), and (3) You will not export or re-export the Image(s) to any Prohibited Country, or to any Prohibited Person as specified by U.S. law.

b. Requests for Expanded License.  This Agreement and Your Order set forth Your entire right to use the Image(s) posted on the Site.  Any other use, such as the duplication or distribution of  Image(s)
beyond the limitations expressed in this Agreement or Your Order, requires the prior written consent of or a further license from Boeing, which may be granted or denied in its sole discretion.

c. Governing Law; Entire Agreement.  This Agreement: (1) will be governed by the law of the State of Washington, exclusive of Washington's choice of law rules; (2) constitutes the entire Agreement, and
supersedes any and all other Agreements, understandings, and communications between the parties related to Images; and (3) may only be amended or otherwise modified by a written instrument
executed by an authorized representative of Boeing.  All parties hereto consent to the jurisdiction and venue of the federal and state courts of the State of Washington, located in King County,
Washington, for any action arising under this Agreement.
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Debor a,

I  am a Ph. D.  st udent  at  t he Uni ver s i t y  of  Saskat chewan.   My t hesi s  i nvol ved
t he use of  a NovAt el  GPS r ecei ver  as t he cor e devi ce i n a pr ot ot ype ai r cr af t
i nst r ument .

I  woul d l i ke t o i nc l ude el ect r oni c  ( . pdf )  copi es of  f our  document s i n a
CD- ROM appendi x t o my t hesi s  manuscr i pt .   These i ncl ude:

1.  OM- 20000032 Rev 2,  15 June 1999,  t he Speci f i cat i on Sheet  f or  t he Model
531 Ant enna
2.  OM- 20000007 Rev 2. 0,  01 May 1995,  t he OEM Ser i es GPSCar d I nst al l at i on and
Oper at i ng Manual
3.  OM- 20000004 Rev 3. 0,  28 November  1994,  t he GPSCar d Power Pak User  Manual
4.  OM- 20000008 Rev 3,  02 Febr uar y 1999,  t he GPSCar d Command Descr i pt i ons
Manual  f or  Sof t war e Ver si on 3. 36

I  wi l l  i nc l ude any acknowl edgement  you wi sh i n t he pr ef ace t o my t hesi s
manuscr i pt .   Pl ease i ndi cat e whet her  you r equi r e mor e i nf or mat i on t o
aut hor i ze t he r epr oduct i on of  t hese el ect r oni c  document s.

Best  r egar ds,

Shane Pi nder
( 719) 481- 4877 x138
53 Bandi t  Cr eek Dr i ve
Monument ,  CO 80132



PERMISSION TO REPRODUCE MAPS AND CHARTS

Date Thursday, April 4, 2002

Attn : Shane Pinder
University of Saskatchewan

Geomatics Canada (GC) of Natural Resources Canada (NRCan) authorizes Shane Pinder to reproduce map and
charts for the reasons attached herein and subject to the following conditions:

1) that this authorization does not restrict NRCan in any way from authorizing other parties to use the same
information in the same kind of products or in different products;

2) that the maps and charts reproduced are solely for use with:
Takeoff Performance Monitoring in Far-northern Regions: An Application of the Global Positioning
System, Ph.D. Thesis, Author: Shane Pinder;

3) that the maps and charts reproduced shall not be reproduced for resale purposes;

4) that this authorization applies solely to the Wollaston Lake plate from the Canada Flight Supplement;

5) that this authorization may be changed including but not limited to change in NRCan policy, and/or non
compliance with conditions in this letter;

6) that the following copyright authorization must appear in Takeoff Performance Monitoring in Far-
northern Regions: An Application of the Global Positioning System, Ph.D. Thesis, Author: Shane Pinder
in an acknowledgements section:

Aeronautical charts are based on information taken from Canada Flight Supplement .
© 2002  Her Majesty the Queen in Right of Canada with permission of Natural Resources Canada.

7) that Shane Pinder will maintain adequate records in case of audit to confirm compliance with the
conditions herein;

8) that no royalty fee will be payable by Shane Pinder to GC;

9) The Data is provided on an "as is" basis and Canada makes no guarantees, representations or warranties
respecting the Data, either expressed or implied, arising by law or otherwise, including but not limited to,
effectiveness, completeness, accuracy or fitness for a particular purpose;

10) Canada shall not be liable in respect of any claim, demand or action, irrespective of the nature of the cause
of the claim, demand or action alleging any loss, injury or damages, direct or indirect, which may result
from the End-User's use or possession of the Data or in any way relating to this Agreement.  Canada shall
not be liable in any way for loss of profits or contracts, or any other consequential loss of any kind
resulting from the End-User's use or possession of the Data or in any way attributable to this Agreement;

11) The End-User shall i ndemnify and save harmless Canada and its Ministers from and against any claim,
demand or action, irrespective of the nature of the cause of the claim, demand or action, alleging loss,
costs, expenses, damages or injuries (including injuries resulting in death) arising out of the End-User's
use or possession of the Data or in any way relating to this Agreement.
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This authorization will come into effect upon receipt of a copy of this letter signed with an acceptance by Shane
Pinder.




