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Abstract

The goal of this work is to provide a detailed description of the freezing mech-

anism in gold clusters. This is accomplished by using constrained Monte Carlo sim-

ulations combined with parallel tempering algorithms to evaluate the Free Energy

barriers for various temperatures with respect to crystalline order parameters on a

456 atom cluster.

Our simulation results help us to challenge the usual assumption of classic nu-

cleation theory where nucleation starts at the center of a cluster, showing instead

that nucleation is favored by freezing started at the surface. We study simplistic

phenomenological models for surface freezing and find that the three phase contact

line free energy term must be included in order to properly describe the features of

the free energy barriers.

Furthermore, we propose an alternative free energy parameter with which we are

able to identify a kinetic spinodal temperature where the nucleation barrier disappears

and find that the critical cluster size remains finite at the limit of stability of the

fluid phase. This result is supported by Molecular Dynamics simulations.
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Chapter I.

Introduction

Nanometer-sized clusters contain from a few tens to several thousand atoms and

exhibit phase transitions and a variety of structures not present in their bulk coun-

terparts that result from quantum mechanical confinement effects, fluctuation of

thermodynamic quantities, and large surface to volume ratios. For instance, the

difference in chemical environments of the atoms in the surface compared to those

in the interior leads to surface reconstruction, a reordering of the surface atoms,

which impacts the overall optical properties of these systems [1, 2, 3, 4].

Theoretical interest in the properties of nano-clusters is motivated by fundamen-

tal questions regarding the role of system size on the properties of matter and by

the underlying desire to harness their special characteristics in the rational design

of novel materials and devices [5]. Furthermore, aerosol particles composed of SiO2,

Al2O3, NaCl and (NH4)2SO4, in the 8nm to 100nm diameter size range, are ubiq-

uitous in the lower troposphere and play a fundamental role in the microphysics

of clouds by providing heterogeneous nucleation sites for the formation of liquid

droplets or ice crystals, as well as serving as reactants and catalysts in important

atmospheric chemical cycles [6]. Recent atmospheric studies on nucleation [7, 8, 9]

suggest that the mechanism of freezing in clusters has the effect of changing nucle-

ation rates by orders of magnitude. Understanding how nucleation occurs at the

molecular level is a topic of fundamental relevance by its own right. Finally, the

crystallization of solids in the bulk phase, starts with the formation of small embryos

in the nanometer size range, and hence, their structure determines to great extent

the structure of the final solid [10].
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In this thesis, we address two important questions:

1. What is the structural mechanism involved in the freezing of

nanoparticles? To this end we have used computer simulation techniques to di-

rectly calculate the free energy barrier to freezing and examine the properties of the

embryos of the solid phase as they form within the fluid nanoparticle. This work

represents the first calculations of nucleation free energy barriers for a nanoparticle

system.

2. Is there a limit of stability to the fluid phase in a nanometer sized

cluster? This is a fundamental question regarding the nature of the fluid phase in

general. While it is known that there is a liquid-gas spinodal in single component

systems and that fluid mixtures exhibit spinodals with respect to phase separation,

the notion that the fluid phase has a limit of stability with respect to a solid phase

has not been explored. This work will introduce a new free energy work function to

investigate the stability of the fluid in a deeply supercooled nanoparticle.

Gold has traditionally been selected as a preferred system of study mainly be-

cause of its stability in colloidal sols and the relative ease with which it can be used

to test light scattering theories [11]. Furthermore, the rich variety of methods that

have been devised to create gold nanoparticles in the laboratory [12, 13], including

nucleation in an inert gas-atmosphere[14] and the deposition of metallic vapor on

many substrates [15] makes gold one of the most versatile metals available to the

experimentalist.

Properties of gold clusters have been studied extensively by a host of other au-

thors [16, 17], including phenomenology such as solid to solid transformations [18],

optics [19], and quantum effects on spectra [20]. Bartlett et al. [21] report melting

and freezing phenomena of gold nanoclusters of different sizes and test different phe-

nomenological models predicting size dependent melting points, and also calculate

dynamic rates of nucleation [22]. In regards to free energies to nucleation, Nam
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et al. [23] studied the free energy of a gold cluster with respect to a global order

parameter. So far, detailed models have addressed the problem of testing the limits

of validity of Classic Nucleation Theory (CNT) in hard sphere colloids [24, 25], and

silica [26] to name two examples. Efforts have also been directed at studying nucle-

ation in surfaces [27], however the problem of testing the limits of CNT theory on

metallic clusters has not been addressed.

The content on this thesis work is organized as follows:

In the first chapter we discuss the fundamentals of phase behavior and classic

nucleation theories, and then discuss the problem of defining the stability of the

liquid phase. This is followed by a review of the most relevant computational meth-

ods used to optimize the sampling of states that lead to an efficient calculation of

free energy barriers for the crystallization of gold clusters. Finally, we provide an

overview of the previous and current research developments in the area of cluster

science and in particular the simulation of gold nanoclusters.

The second chapter is devoted to the description of our calculations and models

for the nucleation of gold clusters. We start by describing the effective mass ap-

proximation (EMA) molecular potential, followed by an assessment of the n-sized

embryo order parameter, which is tested extensively as to produce an appropriate

measure of nucleation. We then proceed to show the calculations involved in the pre-

diction of free energy barriers and compare the result with bulk and surface models

of nucleation.

In the third chapter, we introduce a new work function to describe the limit of

stability of the liquid clusters. We also use a dynamic calculation of the rate to

support our suggestion that there is a spinodal for the liquid phase of the cluster.

This thesis is complemented with appendices providing a description of the prob-

lem of thermodynamic stability, followed by a detailed justification about the order

parameters employed, and at last, a description of the computer algorithms that we

implemented.
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1.1 Nucleation Theory

The relaxation of a metastable system towards stable equilibrium involves the

formation of a new phase and is generally characterized by a nucleation rate which

measures the number of growing embryos formed per unit time per unit volume.

Localized fuctuations in the metastable phase lead to the formation of small embryos,

but because the process is activated, i.e. there is a free energy barrier, and only those

embryos greater than the critical size grow spontaneously into the new stable phase

while smaller fluctuations dissolve back into the metastable state.

In the usual case scenario, the presence of impurities in the nucleating phase, and

the presence of solid interfaces, provides preferential sites for heterogeneous nucle-

ation. In the absence of such nucleating agents, however, homogeneous nucleation

becomes the fundamental process for phase transitions [28].

While metastable systems relax via nucleation, unstable systems relax to the

new phase by spinodal decomposition. Once the system has reached its limit of

metastability and becomes unstable the free energy barrier has disappeared and

any fluctuation will cause spontaneous phase separation. Consequently, unstable

phase transitions are characterized by the spontaneous growth of long-wavelength

fluctuations while metastable phase transitions are characterized by the activated

growth of localized embryo growth.

The focus of theoretical studies of nucleation is to understand the molecular

mechanisms involved in phase transformations and to relate these to experimentally

measured nucleation rates. The different theories used to describe nucleation fall

into two categories. Kinetic theories whose aim is to directly evaluate the coefficients

governing the growth of embryos in the new phase and phenomenological nucleation

theories where nucleation rates are derived from the thermodynamics of embryo

formation.
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1.1.1 Classical Nucleation Theory

The subject matter of any given nucleation theory is to describe the evolution of

the population of embryos in the new forming phase. For example, in a supercooled

fluid, the continuous creation and destruction of small embryos results from density

fluctuations. These embryos are assumed to shrink and grow in size by gaining or

losing single molecules -or atoms-, hence a description of the population change of

embryos of size n at time t may be written in the form given by the master equation

∂f(n, t)

∂t
= k+

n−1f(n− 1, t) + k−n+1f(n + 1, t)− k+
n f(n, t)− k−n f(n, t), (1.1)

where f(n, t) is the number density of embryos containing n monomers at time t,

while k+
n and k−n are the rates at which the n-size embryo gains and looses monomers

respectively. This equation may be cast in the form:

∂f(n, t)

∂t
= J(n− 1, t)− J(n, t), (1.2)

where

J(n) = k+
n f(n, t)− k−n+1f(n + 1, t), (1.3)

is the net rate at which embryos of size n become embryos of size n + 1 at time t.

In the case of gas phase nucleation, the value of the kinetic constant k+
n for the

attachment of monomers is usually taken from kinetic theory of gasses, while the

value of the detachment rate constant k−n is more difficult to obtain in an independent

way. To avoid this difficulty, classical nucleation theory (CNT) makes use of what

is known as the constrained equilibrium hypothesis to obtain a relationship between

the coefficients k+ and k−. By assuming detailed balance at equilibrium, the flux

J(n) must vanish and Eq (1.3) becomes

J(n) = k+
n feq(n)− k−n+1feq(n + 1) = 0, (1.4)

5



where the equilibrium distribution of n-sized embryos, denoted feq(n), has replaced

the nonequilibrium distribution. Rearranging eqn. (1.4) gives

k−n+1 =
feq(n)

feq(n + 1)
k+

n , (1.5)

which, when substituted back into eqn. (1.3) yields

J(n) = k+
n feq(n)

[
f(n, t)

feq(n)
− f(n + 1, t)

feq(n + 1)

]
. (1.6)

CNT assumes steady state conditions where the populations of different clus-

ter sizes is no longer dependent on time. Consequently, ∂f(n, t)/∂t = 0 so from

eqn. (1.2), the flux is neither dependent on the size of the cluster, i.e. J(n) = J .

The total steady state nucleation rate is then obtained by doing a recurrent sum

over eqn. (1.6),

J = Ntot

[
nmax∑
nmin

1

k+
n feq(n)

]−1

, (1.7)

where Ntot is the total number density of embryos, and the limits of the sum are taken

from the smallest nmin to the largest embryo in the cluster nmax. The properties of

the sum are such that for n ≥ nmin, f(n) = feq(n) and for n > nmax, f(n) = 0. The

nucleation rate has been shown to be insensitive to the boundaries of the sum [29].

The equilibrium embryo size distribution feq(n) is obtained directly from the theory

of thermodynamic fluctuations [30]

feq(n) = feq(0) exp

(
−∆G(n)

kBT

)
, (1.8)

where G(n) is formally the work or free energy required to form an n-sized embryo

from monomers, kB is the Boltzmann constant and T is the temperature.

The summation (1.7) is replaced by an integral 1 and the expression (1.8) sub-

1This is a good approximation for 1/N small, where N is the number of atoms in the system
and it is strictly valid in the thermodynamic limit

6



stituted to yield

J ≈ Ntot

[∫ nmax

n=nmin

1

k+
n feq(1)

exp

(
∆G(n)

kBT

)
dn

]−1

. (1.9)

When the free energy barrier is high, this expression may be approximated by

the steepest descent approximation in which the overwhelming contribution to the

integral comes from values centered around the location of the critical embryo size

n∗. We can then assume that k+(n) ∼= k+(n) and replace the limits of integration

from 0 to ∞. Further, we approximate the free energy around the critical embryo

n∗ to obtain.

∆G(n) ≈ ∆G(n∗) + 1
2

d2∆G(n)
dn2

∣∣∣
n∗

(n− n∗)2. (1.10)

The nucleation rate can now be written as

J ≈ k+
n∗feq(1) exp

(
−∆G(n∗)

kBT

) ∫ ∞

0

exp (
−1

2
d2∆G(n)

dn2

∣∣∣
n∗

(n− n∗)2

2kBT
)dn

−1

.

(1.11)

Evaluation of the integral in eqn. (1.11) yields the Zeldovich factor [31]

Z =

√
−∂2∆G

∂n2 |n∗
2πkBT

, (1.12)

and the final form of the CNT nucleation rate is given by:

JCNT = k+
n∗ZNtot exp

(
−∆G(n∗)

kBT

)
. (1.13)

The key point concerning classical nucleation theory is that, by invoking detailed

balance to eliminate one of the kinetic coefficients, the calculation of the nucleation

process which is inherently a nonequilibrium process, has been turned into a problem

of equilibrium thermodynamics. The main focus of nucleation theories is to develop

expressions for ∆G(n∗), the work of formation of a critical embryo.

In arriving at eqn. (1.13), two important assumptions were required. First, that

7



the steady state is reached quickly. This is usually true but in some specific cases

involving crystallization in complex systems, the lag time associated with reaching

the steady state can be on the same order of magnitude as the measurement. Second,

the need for the barrier to be high means that CNT is useful in the regime where

the system is only mildly supercooled, but may become unreliable as the degree of

supercooling increases and the nucleation barrier becomes lower.

The limitations of classical nucleation theory revealed by experiments have lead

to an extensive search for better models with which free energies and nucleation

rates can be properly evaluated. Due to the difficulties of performing experiments

accurately and the nature of the assumptions required to make nucleation theory

tractable, nucleation is an important and active area of research [32].

1.1.2 The Spinodal Envelope

The spinodal behavior in a system is observed when the conditions of thermo-

dynamic stability are first violated. In the systems subject of the present thesis

work, we seek to find the spinodal temperature for the liquid phase, defined as the

temperature at which the nucleation barrier goes away. A detailed description of

stability criteria is included in Appendix A-I.

To illustrate the physical nature of the spinodal process, let us consider the

Pressure-Volume phase diagram of the Van der Waals gas illustrated in fig. (1.1).

The critical point is denoted as point c. The isotherm Tc, shown with a dashed line,

is a temperature beyond which the liquid phase is not thermodynamically possible.

For temperatures below Tc, we show a typical isotherm T1 defined by the dash dotted

line. The collection of all isotherms below the critical point defines a coexistance

boundary (binodal line) connecting points bcb′. The spinodal envelope is defined

as the boundary where the isothermal compresibility is zero, shown in blue color

in the figure and connecting points ecf . The spinodal line is the region where the

thermodynamic stability requirement of a positive isothermal compressibility is first

violated, i.e. κ = − 1
V

(
dV
dp

)
T

< 0. fc is the supercooled vapor spinodal envelope,
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and ec is the superheated liquid spinodal envelope. b and b′ are the equilibrium

states of the binodal. e and f are the spinodal points for isotherm T1.

In the shadowed region between the spinodal and the coexistence line the system

is metastable and the phase transformation occurs by overcoming the nucleation

barrier (see fig. 1.1.a) that we described in the preceding section. In the region

beneath the spinodal line the vapour phase is in a state of thermodynamic instability

and the nucleation occurs through a barrierless and spontaneous mechanism. This

phenomena is known as the spinodal decomposition.(see fig. 1.1.b)

 

P 

V 

P1 

c 

 d b‘  b 

e 

f 

T1 

Tc 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

n 

n 

ΔF 

ΔF 

(a) 

(b) 

n* 

Figure 1.1: Pressure vs. Volume phase diagram for the Van der Waals vapor.

According to mean field theory, as we approach the limit of stability of the

metastable phase we will find a sharp boundary between the unstable and the

metastable regimens. If we try to quench the system closer to the unstable reg-

imen, the system decays to equilibrium by condensation of droplets (nucleation),

hence it is not possible to reach the spinodal on a finite time. Furthermore, as the

barrier goes to zero, the size of fluctuations diverges [33, 34].

The basic underlying principle of Mean Field theories (MFTs) is the replacement

of complicated many body interactions with an effective (or mean) field, this simpli-
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fies problems greatly by removing the role played by fluctuations [34]. MFTs provide

the simplified models with which the study of the spinodal behavior in systems may

be undertaken [35].

Although defined in theory, reportedly no realistic system with short range forces

have been shown to exhibit spinodal decomposition and instead, systems nucleate

through small finite nucleation barriers, with the lifetime of the metastable state

decreasing in a monotonic fashion [36].

One of the goals of our simulations is to test if a common system such as a gold

cluster on nearly ideal experimental conditions is able to crystallize via spinodal

decomposition.

1.1.3 Free energy of embryo formation:

Phenomenological Approaches

Phenomenological models capture the intuitive idea that the embryo will have

the same basic properties as the bulk phase it is forming. Consequently, the embryo

is usually characterized using the densities and surface properties of the bulk system

despite the fact that the embryo may only contain a few hundred atoms.

The thermodynamics of embryo formation can be derived using the Gibbs droplet

model [33, 37, 38], in which the additional cost of building the interfaces of a cluster

is considered by adding surface dependent free energy terms (cf. Gibbs droplet

model, appendix A-I). In such a case the minimum work of formation of an n-sized

embryo in an isothermal process is given by the expression

∆Gmin = σA + (P − P ′)v′ + n[µ′(T, P ′)− µ(T, P )], (1.14)

where σ is the surface tension, A the interfacial area between the embryo and the

liquid phase, P−P ′ is the difference in pressures between the bulk phase pressure P ′

and the pressure P inside the embryo, v′ is the volume per atom of the solid embryo,

and µ′ and µ the chemical potentials in the embryo and liquid phase respectively.
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For a supercooled vapor away from the critical point, we may consider the case

of an incompressible embryo, thus we can write:

µ′(T, P ′)− µ′(T, P ) = v′(P ′ − P ). (1.15)

Here v′ is the volume per molecule in the embryo phase. Equation (1.14) then

becomes

∆Gmin = σA + n[µ′(T, P )− µ(T, P )] = σA + n∆µ, (1.16)

where the chemical potential difference ∆µ between the stable and metastable phases

at bulk conditions {T, P} is negative valued.

The critical size n∗ is defined as the size at which the critical embryo has a

maximum, and is obtained from the condition ∂∆G
∂n
|n∗ = 0, while the critical free

energy ∆Gcrit is the energy at which this embryo size is reached.

While embryos smaller than the critical size tend to shrink and reincorporate

into the liquid phase, embryos larger than the critical value grow as a result of

the subsequent reduction in free energy to form the new phase (see fig. 1.2 left).

The critical size is thus a system in unstable equilibrium. For n < n∗ work can be

recovered during the process, whereas for embryos larger than n∗, the embryo grows

spontaneously.

In the case of a crystalline nuclei growing from the liquid phase, eqn. (1.16)

takes the form:

∆Gmin =
∑

i

σiAi(ni) + n∆µ. (1.17)

Here the surface free energy density term is given by the sum of the contributions of

a model structure with i facets, each with their associated surface area Ai, and free

energy density σi. An interesting case of such polyhedra is the Icosahedron, which

having 12 FCC [111] facets, is a very compact structure.

Eqn. (1.17) is the general expression for homogeneous crystallization in the bulk

phase. In the case of heterogeneous nucleation we have to consider crystallization at

an interface and therefore need to include additional free energy terms. For example,
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if a solid embryo forms at a wall interface we can write:

∆Gmin =
∑

i

σcv
i Acv

i + Awc(σwc − σcv) + τLl − |n∆µ|. (1.18)

Where σcv
i is the crystal-vapor free energy density for facet i, with an associated

surface Avc
i , σwc and σcv are the crystal-wall, and crystal vapor free energy densities

respectively, and τ is the line tension along the 3 phase contact boundary.

Even though it is possible to find the most likely minimal free energy structure by

means of the Wulff construction [39] in which the cost of adding high energy facets

is reduced by increasing the surface occupied by low free energy ones, it is easier in

practice to simply assume that the nucleated crystal is spherically symmetric. The

model for a nucleation mechanism with spherical symmetry is a central assumption

for the Classical Nucleation Theory (CNT) model. The validity of such an approxi-

mation rests in the idea that a sphere is a structure with the minimum surface for a

given volume, the validity of such an approximation however, is hampered when the

granular effect of arranging atoms in a crystalline pattern inside a volume is further

considered. (i.e. the approximation is better in principle, for large systems).

The work of formation of an embryo may be expressed as a function of the number

of atoms in it, or in terms of the radius of the embryo:

∆G = an2/3 − bn = cr2 − dr3, (1.19)

where a, b, c, d are constants. n2/3 is the surface term, and n is the volume contribu-

tion to the free energy ( with respect to the radius of the critical embryo,r3 is the

volume term, and r2 is the surface contribution). Eqn. (1.19) (see fig. 1.2 right)

has a maximum at the critical size n∗ where:

n∗ =

(
2a

3b

)3

=
32π

3

[
(v′)2/3σ

(−∆µ)

]3

. (1.20)
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Alternatively, the critical embryo radius is given by:

r∗ =
2c

3d
=

2σv′

−∆µ
, (1.21)

The free energy barrier needed to form an n∗ − sized embryo is given by,

∆G∗ =
4a3

27b2
=

16π

3

[
v′σ32

−∆µ

]2

. (1.22)
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Figure 1.2: liquid-solid transition in the bulk phase. Left: Small embryos tend to
decompose back into the native phase, while large embryos tend to increase in size
beyond a critical embryo size n∗. Right: According to CNT, at the critical embryo
size, there is a balance between the energy gained by changing the chemical potential
of a system of particles, and the cost of building an interface.

The free energy cost associated with the formation of the critical embryo de-

creases as (−∆µ)2 and the size of the nucleus n∗ as (−∆µ)3 meaning that as the

degree of metastability increases, nuclei get smaller, and the barrier gets lower.

No matter what the model of nucleation is (homogeneous or heterogeneous), a

system has to overcome a free energy barrier and form the critical nucleus up to a

critical point after which growth becomes spontaneous.
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1.1.4 Free energy of embryo formation:

Molecular Approach

Whereas phenomenological models define an embryo in terms of bulk properties,

molecular theories are a bottom up approach to nucleation theory, and aim to define

an embryo based on the local environment of the individual atoms or molecules

involved. For example, in the case of freezing, the first step is to identify which

atoms appear to be liquid-like and which atoms appear to be solid-like. Then,

those solid-like atoms that are all close to each other can be grouped into distinct n-

sized embryos. The different criteria for identifying solid-like particles are somewhat

arbitrary but are designed to capture the intuitive idea that the local environments

around a solid-like atom should be ordered and that this order should be structurally

correlated with its neighbours. The details of the embryo criteria used in this thesis

are covered in Section (2.4).

Once an n-sized embryo can be identified within the cluster, the work required

to form the embryo W = ∆G(n), can be obtained from the probability of its ap-

pearance. According to Landau [30], the probability of finding the system in the

state defined by an order parameter q, is linked to its free energy via the relation

P (q) ∝ exp(−∆G/kBT ), (1.23)

where P (q) is the probability distribution of the system at the state defined by

q, G(q) is the corresponding free energy, and c is a constant. The change in free

energies (work of formation) from the state q to state q′ is given by:

W (q → q′)

kT
=

G(q′)−G(q)

kT
= ln

[
P (q)

P (q′)

]
. (1.24)

Eqn. (1.23) provides the key connection between the probability of the appear-

ance of a fluctuation, which in this case is the embryo of size n, and its free energy,

and forms the basis for developing a molecular approach to nucleation. Frenkel and
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coworkers [40] introduced an intensive Gibbs free energy function defined as

Neq(n)

N
≈ Pn

N
= exp

(
−∆G(n)

kBT

)
, (1.25)

where N is the total number of particles in the system, ∆G(n) = G(n) − G(0) is

the free energy of forming an n-sized embryo within the liquid phase, and Pn is the

probability associated with the appearance of the embryo. Pn is a quantity which

we can obtain from Monte Carlo simulation techniques. Note that this is essentially

eqn. (1.8) with feq(0) = N . Later, Bowles et al. [41] established the rigourous

foundation for this simulation technique, showing that the approximation on the

left of eqn. (1.25) only holds in the case where the embryos are rare as follows:

Pn = pn(1) + pn(2) + pn(3) + · · · ≈ pn(1), (1.26)

where pn(i) is probability of observing exactly i embryos of size n. If the formation

of different embryos is independent then pn(i) = [pn(1)]i and the higher order terms

in eqn. (1.26) can be ignored if pn(1) � 1 i.e. if embryos are rare. Similarly, the

average number of n-sized embryos is

Neq(n) = 1pn(1) + 2pn(2) + 3pn(3) + · · · , (1.27)

and again the higher order terms disappear for rare embryos to give Neq(n) ≈ Pn.

A detailed derivation of this approach starting from the partition function is pre-

sented in Appendix A-II. The challenge now is to find effective computer simulation

techniques that allow the calculation of Pn since these fluctuations are by definition

rare and would not be seen in a standard simulation. Section (1.2) introduces the

biased Monte Carlo and tempering simulation techniques used in the present work.

This molecular approach to calculating the free energy of forming a critical nucleus

through eqn. (1.25) is now well established and it has been applied to a variety

of systems including the condensation of argon vapour [40], the crystallization of

hard-sphere colloids[24] and the crystallization of molten sodium chloride [42]. A
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comparision between experiment and these simulations suggest mixed results with

the calculated rates being some orders of magnitude away from experiment. How-

ever, to be fair, experiments measuring nucleation rates are very difficult because

the rates are extremely sensitive to external conditions. For example, a variation

of a few degrees in temperature may cause a rate to change by several orders of

magnitude and so, agreements between experiment and simulation are not as bad as

they may first appear to be. Also, it can be argued that molecular potentials may

not exactly reproduce realistic systems.

The main problem with the simulation approach is the need for an appropriate

order parameter and cluster criteria. What defines an embryo in the simulation is

the result of intuition and requires a priori assumptions that may not be correct

[25]. The role of the order parameter and its effect on barrier calculations is still

open to question.

Steinhard et al. [43] introduced empirical order parameters as functions of spher-

ical harmonics Ylm(θ(r̂), φ(r̂)) with the idea of sensing the symmetry of bond orien-

tations regardless of the bond lengths. The scheme starts with choosing a spherical

harmonic Ylm(θ, φ) with the angles θ and φ defined by the radial vectors between

atoms i and j, with Ylm(θ(r̂), φ(r̂)) = Ylm(rij). A sum is taken over a suitable num-

ber of neighbors and averaged over the total number of neighbors Nnb(i) for every

particle.

q̂lm(i) =
1

Nnb(i)

Nnb(i)∑
j=1

Ylm(rij). (1.28)

Previous models for nucleation phenomena at the molecular level, notably [23]

use the configurational q̂lm vector to construct rotationally invariant order parame-

ters, in particular Q6 which is defined by:

Q6 =

√√√√4π

13

6∑
m=−6

|q6m|2. (1.29)

The disadvantage of such an order parameter however, is that it gives a measure

of the global order in all the structure, and hence is incompatible with the idea that
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a cluster may be defined as a system containing a well ordered embryo, surrounded

by disordered atoms, and instead produces an averaged version of this measurement.

Other authors use variations of the Q6 order parameter, defining alternative order

parameters by modifying the index in the sum (1.29) to Ql =
√

4π
2l+1

∑l
m=−l |qlm|2.

The choice of order parameter depends on the properties of the system one is

aiming to study. Each order parameter has characteristic signature values which are

structure dependent. Table (1.1) summarizes the values of these signature values for

some common periodic crystals. Fig. (1.3) shows distributions for these functions.

Analytical expressions for all these order parameters, can be found in literature [25],

their description however, is beyond the scope of the present work.

Structure Nb Q4 Q6 Q8 cij

ICO (bulk) 12 0 0.199 - 0.50
ICO(surf) 6 0 0.207 - 0.50
FCC 12 0.19 0.57 0.40 0.7
BCC 12 0.08 0.54 0.38 -
HCP 12 0.10 0.48 0.32 0.7
SC 6 0.76 0.35 0.72 -
SC 10 0.40 0.02 0.60 -
LIQ 12 0.02 0.03 0.02 0.3

Table 1.1: Characterstic signatures for Liquid, and various crystals. From left to right,
number of neighbors around a particle i, corresponding distribution functions for q4, q6,
q8 and at last, the dot product between two neighboring atoms ci,j (taken from ref. [25])

Figure 1.3: Characterstic signatures for Liquid, BCC, FCC and HCP crystals. From left
to right, distribution functions for q4, q6, cij , and at last, the number of connections for
periodic cells (taken from ref. [25])
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1.2 Computer simulation techniques

Studying the formation of the solid phase as the liquid freezes is a formidable

challenge from the experimental point of view because it is difficult to identify

the critical density fluctuations and the nucleation process is so rapid. However,

recent advances suggest that the critical nuclei size can be determined from neutron

scattering structure factors [44].

Computer simulation provides a useful tool as it allows us to examine the nucle-

ation process at the molecular level. In particular Monte Carlo (MC) and Molecular

Dynamics (MD) methods can be used to calculate energy barriers to nucleation.

Other methods that stem from combinations of these methods are described else-

where in the literature [45].

1.2.1 Monte Carlo Methods

Boltzmann Sampling

Let us introduce the canonical partition function, which uses the NV T ensemble,

Q(N, V, T ) =
1

h3NN !

∫ ∫
dpNdrNexp[−βH(pN , rN)],

where β = 1
kBT

, h =Planck’s constant, rN are the generalized positions and pN are

the generalized momenta that represent the phase space. H is the Hamiltonian of

the system defined to be equal to the kinetic energy Ek, plus potential energy of the

system U .

The probability density is thus given by the expression:

π(pN , rN) =
exp[−βH(pN , rN)]∫ ∫

exp[−βH(pN , rN)]dpNdrN
.
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The expectation value of a thermodynamic quantity A may be cast as:

< A >=

∫ ∫
π(pN , rN)A(pN , rN)dpNdrN (1.30)

Eqn. (1.30) is an integral that depends on 6N variables for an N particle system. A

way to evaluate this intergral is the Monte Carlo method (MC), using the Metropolis

criterion. We will now briefly describe the MC scheme.

Figure 1.4: Monte Carlo sampling process.

• The energy of the initial configuration Uold is first computed.

• A particle is selected at random from this configuration, and given a random

displacement (see fig. 1.4), the displacement is given by choosing a random

displacement between 0 and 1, such that. rold 7→ rold + δ(Rand− 0.5).

The parameter δ should be chosen in such a way that the sampling is optimal.

The Energy of the new configuration is calculated and denoted by Unew.

• The test move is accepted with a probability Pacc = min [1, exp(−∆E/kT )],

with ∆E = Unew − Uold.

• If the new configuration is rejected, we reload the old configuration and reset

the new energy Enew to the old value Eold. In either case we measure the

property A.

With this in mind, the integral of the expression (1.30) may be computed as an

average of the property A(pN , rN) measured at every configuration pN , rN

< A >NV T≈
1

NMC

NMC∑
i=1

A(pN , rN), (1.31)
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where NMC is the total number of measurements, and A(pN , rN) is the thermody-

namic property associated with the configuration {pN , rN}.

The errors associated with the evaluation of eqn. (1.31) may be reduced by in-

creasing the sampling, in which the associated error is proportional to the inverse

of the square root of the number of measurements of a given property Ai , i.e.

error ∝ 1√
NMC

.

In the next sections we explain some of the methods with which sampling can be

increased in regions of the space phase of our interest.

Statistical Mechanics and Thermodynamics

The link between statistical mechanics and thermodynamics is established by

relating the partition function Q and its derivatives to thermodynamic parameters

such as the Helmholtz free energy F , internal energy U , and entropy S.

F = U − TS = −kBT ln Q

= constant + kB ln

∫ ∫
π(pN , rN)exp(βH(pN , rN))dpNdrN (1.32)

= constant + kBT ln < exp(βH(pN , rN)) > .

The internal energy of the system is given by:

U = kBT 2

(
∂ ln Q

∂T

)
N,V

=

∫ ∫
exp[H(pN , rN)π(pN , rN)]dpNdrN =< H(pN , rN) > . (1.33)
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The entropy S can be expressed in terms of phase space probabilities π(pN , rN) as:

S = kB ln Q + kBT

(
∂ ln Q

∂T

)
N,V

= constant− kB

∫ ∫
π(pN , rN) ln π(pN , rN)dpNdrN

= constant− kB < ln π(pN , rN) > .

An extension to systems that incorporate other variables is straightforward.

Umbrella Sampling

The Umbrella Sampling scheme [46] is usually proposed as an alternative to

the Metropolis sampling to handle situations where important contributions to the

ensemble average come from configurations which have small Boltzmann factors.

The critical nucleus in nucleation appears at the top of a free energy barrier and is

intrinsically rare, and a normal Boltzmann sampling would result in measurements

with poor statistical accuracy.

If we multiply the ensemble by a weighted probability W that depends on an

arbitrary potential, then we can force the system to remain in a region of our interest.

In the NV T ensemble, we write the average <> of a thermodynamic property A as:

< A >NV T =

∫
drNA(rN)e−βU(rN )∫

drNe−βU(rN )

=

∫
drNA(rN)W (rN)−1e−βUW (rN)∫

drNe−βUW (rN)−1W (rN)
(1.34)

=
< A/W (rN) >W

< W (rN)−1 >W

.

Here we have assumed a thermodynamic property A, which depends only on the

generalized coordinates and not the generalized momenta, and hence are able to

avoid the integral with respect to the generalized momenta.
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In the case of nucleation, we need to calculate integral (1.34) numerically with

respect to the property A(rN) = Nn, the distribution of embryos of size n in a cluster

containing N atoms .This results in the following expression:

< Nn >NV T≈
∑M

i [Nn(rN)/W (rN)]∑M
i [W (rN)−1]

. (1.35)

The weighting function is defined for convenience as W (rN) = exp[−βω(rN)]. Since

the probability of the formation of a large embryo is so small, it may be approximated

by the probability to find one embryo of certain size in the system. For this reason

a bias potential is frequently used to control the size of the largest embryo in the

system. A bias potential of the harmonic type is given by:

ω[n(rN)] =
1

2
kn[n(rN)− n0]

2. (1.36)

This harmonic potential is centered around the embryo with largest size n0. The

constant kn determines the range of sizes sampled in the simulation, whereas the

minimum n0 determines which cluster sizes are sampled most.

Parallel Tempering

Condensed phases generally exhibit a complex potential energy landscape con-

sisting of a large number of potential energy basins associated with the potential

energy minimum which are separated by energy basins and saddle points. At low

temperatures, a system can become trapped in one or a small number of closely

related basins and fails to comply with the condition of ergodicity.

The way to sort out these problems is by creating an extended partition func-

tion in such a way that many states are sampled at the same time, with different

Thermodynamic parameters. We can then provide additional pathways for the sys-

tem to escape from a local minima by allowing it to swap between different the
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different thermodynamic states (see fig. 1.5 left). In the XMC code we developed

for the present thesis work (cf. appendix A-III), one processor is used to sample

configurations around every umbrella window.

Figure 1.5: Parallel Tempering Scheme: Left, interchanging sampling parameters
helps to improve sampling.Right, umbrella center and temperature parallel temper-
ing grid.

Let us define a system i with temperature Ti. A collection of k of these systems

ordered according to an increasing temperature scale, T1 < T2 < T3 · · · < Tk form

a system whose partition function Qext is defined as the product of the individual

NV Ti ensembles:

Qext =
N∏

i=1

QNV Ti
=

N∏
i=1

1

Λ3N
i N !

∫
· · ·

∫
drNexp[−βiu(rN

i )],

where rN
i denotes the positions of N particles in system i. In order to sample

this ensemble, it is in principle sufficient to perform simulations in all individual

ensembles. But it is also feasible to introduce a MC move consisting in the swapping

of configurations between two given ensembles with an acceptance rule for this swap

obeying the detailed balance condition (cf. appendix A-IV). If the configuration of
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system i is denoted as i = rN
i , this condition may be written as:

acc[(i, βi), (j, βj) → (j, βi), (i, βj)]

acc[(i, βj), (j, βi) → (i, βi), (j, βj)]
=

exp[−βiU(j)− βjU(i)]

exp[−βiU(i)− βjU(j)]

= exp(βi − βj)[U(i)− U(j)].

Computationally, swap moves are very inexpensive, involving only the inter-

processor communication time required to interchange parameters in the simulation,

rather than configurations. To sumarize, a chain of MC moves for every configuration

is accepted according to

Pacc(o → n) = min[1, exp(−β(U(n)− U(o)],

while swapping between i and j configurations is made according to

Pacc(i → j) = min[1, exp((βj − βi)(U(i)− U(j))].

The parallel tempering scheme is especially useful for cases where many local

minimum are present. Swaping between a state in the system with higher energy and

that of a lower energy, will allow for more smooth statistics, since simulations may

avoid being confined to definite regions in the space of configurations. In the context

of cluster nucleation for example, a low temperature Tlow can be trapped on a region

where the characteristic embryo size is nmax = 0. Interchanging configurations with

a system equilibrated at a higher temperature Thigh is going to allow the sampling

to proceed at another local energy minima. (see fig. 1.5 right.)

24



1.2.2 Molecular Dynamics Methods

Molecular Dynamics (MD) is a scheme for studying the natural time evolution

of a system of N particles in a volume V. In classical molecular dynamics forces are

calculated through Newton’s Laws. If Fi is a force acting on particle i, with a mass

equal to mi then the force is given as Fi = miai, with ai the acceleration of the

particle. MD is a deterministic scheme unlike MC which we have already discussed.

In order to evolve the system in time, equations of motion have to be integrated.

One such scheme is the velocity Verlet algorithm [47], given by:

ri(t + h) = ri + hvi(t) +
h2

2

Fi

mi

, (1.37)

vi(t + h) = vi + h

[
Fi(t) + Fi(t + h)

2mi

]
. (1.38)

Here vi, Fi, ri are the velocity, force and position corresponding to the ith particle,

the time step h, is in the order of a few femtoseconds which is typical for a liquid,

and in all cases should be chosen in such a way that the total energy is conserved on

each iteration step. This integration scheme, conserves the energy of the system and

is known as a constant energy molecular dynamics, and appropriate for simulations

in the {N, V, E} ensemble.

The expression for the forces Fi is obtained through the relationship between a

force and the gradient of the potential Fi = −∇Vi, where the interaction potential

Vi for our system is that described by the EMA potential [48, 49].

Since the integration of the Verlet equations (1.38) depends on the time increment

h with an error size of the fourth order, i.e. O(n4) we have to find an appropriate

constant h. If this increment in time is too small we will need more time steps to

produce longer simulation times, which will require too many calculations, in the

other hand increasing this number too much, may lead to considerable errors.
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1.3 Freezing in small clusters

Intensive computational studies aimed at finding minimal energy configurations,

show that structures with five fold symmetries, namely Icosahedral (ICO), Decahe-

dral(Dh) and their variants, are prevalent in clusters with diameters smaller than 2

nm (∼250 atoms), while larger cluster sizes, have optimal structures with hexagonal

symmetries, such as truncated Octahedra (TO) and variants [50]. These structures

(see fig. 1.6) have been observed in samples of gold clusters, synthesized by different

techniques and analyzed via electron transmision spectrocopy[12, 13]. The transi-

tion between Icosahedral, Decahedral and FCC structures has strong dependence

on the number of atoms being considered, as for some of these structures a deter-

minate number of atoms forms compact structures, i.e. The plots of total energies

versus cluster sizes are not thoroughly uniform. This is especially marked on the

Icosahedral structures, that form closed shell structures at magic numbers.

Figure 1.6: Typical structures materializing spontaneously during the solidification
of supercooled gold clusters. The first two columns depict representations of ’perfect
structures’ (taken from ref.[51]). In the central pictures, Dark gray spheres represent
gold atoms with an FCC local structure, light gray spheres are atoms in an HCP
environment, and black atoms indicate sites with 5-fold (Dh) symmetry.(Taken from
ref.[21])

Fig. (1.7 left), shows the relative energy of different structures with respect

to the cuboctahedral arrangement, fig. (1.7 right ), compares the energies of a

series of icosahedra type structures. One must however consider that not only

26



Figure 1.7: Left: Relative energies with respect to the cuboctahedral shapes. Right:
Comparison of total energies per atom. Both figs. were taken from ref. [16].

thermodynamics but kinetic factors may determine the crystalline structure in which

a cluster freezes.

Surface phenomena may play an important role in the freezing of nanoparticles.

For example, the phase transitions observed in MD simulations on gold clusters up

to sizes of about 3000 atoms for example, show that different cooling conditions lead

to the spontaneous formation of various structrual patterns (ICO, Dh and TO), al-

though Icosahedra were found to be most prevalent[21]. Yet, in another theoretical

work, it is shown that the prevailing structure for clusters larger than 450 atoms,

is a more energetically favorable TO structure, while other structures such as ICO

and Dh did appear as well (see fig. 1.6) despite the fact that the FCC structure

is the most stable for the particle sizes under consideration[52]. These simulations

nevertheless, suggest that the formation of solid structures proceeds through charac-

teristic stages. In particular the phase transition from liquid to Icosahedral crystals

is thought to be started by a reordering of the atoms in the surface which propagates

to the inner core of the cluster, pointing to the possibility of rationally directing the

process of crystallization by actively changing the thermodynamic conditions at

which such transformations take place (see fig.1.8).

In a recent atmospheric study, nucleation rates for the freezing of water droplets

containing nitric acid, and suspended in the trophosphere [8] were compared against
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Figure 1.8: Cluster configurations at different cooling stages (a) in a liquid state
(at 750◦K), (b) just after freezing (at 700◦K), (c) after complete rearrangement (at
650◦K), and (d) an ideal icosahedron for comparison. In the upper row, only surface
atoms are shown, while in the middle row, all the atoms are shown at a smaller size
to display their inner arrangement. In the lower row, solidlike atoms with a well-
defined local symmetry are shown in two-crosssectioned views by a ball-and-stick
model. Blue, gold, and red balls represent atoms with hcp, fcc, and fivefold local
symmetries, respectively. (taken from ref. [52])

the model provided by the classic theory of homogeneus crystallization, where nu-

cleation starts at the interior of the droplet (see fig. 1.9.a). When the laboratory

data was reinterpreted and the alternative surface nucleation was proposed, the

correlation between experiment and the new model was dramatically improved. A

phenomenological model, using surface thermodynamics consistent with the capil-

larity approximation[9], showed that the work required to form a critical nucleus

for the crystal within a liquid droplet was greater than that for a crystal embryo

formed at the surface (see fig. 1.9.b) and hence had a solid-vapor interface, com-

pared to a critical nucleus forming in the centre of the droplet, when the inequality

σvs − σvl < σls, is satisfied, where σvs, σvl and σls stand for vapour-solid, vapour-

liquid and liquid-solid surface free energy densities respectively. This corresponds

to the condition where the liquid partially wets its crystal.

Free energy computer simulations for a gold cluster comprising around 500 atoms,

and using an atomistic model [23] show that a TO structure is the most stable for
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temperatures below the melting point. However, the energy barrier between liquid

and an Icosahedron structures is much smaller (∼ kBT ) than that between the liquid

and a TO structure (∼ 7kBT ), proving the ubiquitous prevalence in simulations and

experiments, of the Icosahedral form , in spite of its energetic metastability at this

cluster size. This work, however, does not show a detailed account of the mechanism

of freezing for the structures for which the free energies were computed, and neither

does ref.[52]. Moreover, another problem brought into question is the fact that these

previous works have employed a global order parameter Q6 instead of the definition

of an n-sized embryo that we introduce in the present work, which is the central

quantity in most nucleation theories.
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Figure 1.9: Possible nucleation schemes. a) transversal cut of a volume nucleation
model embryo growing in a liquid droplet. b) transversal cut of a cluster where
surface nucleation takes place. The symbols S, L, V, stand for each of the three
phases, namely solid, liquid and vapor.
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Chapter II.

Nucleation in Gold Clusters

Our first goal is to study nucleation at the molecular level, in the freezing of gold

nanoclusters. To achieve this, we will focus on the calculating the free energy barrier

to nucleation using the molecular simulation techniques outlined in the introduction

(section 1.2). These techniques also allow use to examine the molecular properties of

the n-sized embryos responsible for freezing which will help us address the question

of whether freezing occurs in the surface of the cluster or in the core of the cluster,

as suggested by classical nucleation models.

This chapter is organised as follows: We begin by defining our model and describ-

ing the molecular potential in Section (2.1). To identify the freezing temperatures

for a number of clusters of different size, we calculate their caloric curves in Section

(2.2). We describe the algorithms used to identify surface atoms in the cluster and

identify the n-sized embryo in Sections (2.3) and (2.4) respectively. In Section (2.5)

we present our free energy barrier calculations for a 456 atom gold cluster. Section

(2.6) uses the classical nucleation model for core nucleation model to calculate the

liquid-solid surface free energy density while in Section (2.7) we present evidence

suggesting surface nucleation is in fact the preferred nucleation method. At the end

of the chapter, we also suggest a phenomenological surface nucleation model.

2.1 Model Definition and Molecular Potential

At temperatures near the melting temperatures of the clusters, the vapour pres-

sure of gold is very low and simulations rarely show any evidence of evaporation

events where atoms escape from the cluster. This allows us to treat our system of
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an N sized gold cluster in a vacuum as a canonical ensemble with {N, V, T} all held

constant. In both the molecular dynamics and Monte Carlo simulations, we use a

square simulation cell with periodic boundary conditions where the cell volumes are

selected so that they are large enough to prevent periodic images from interacting,

but small enough to prevent the liquid cluster from evaporating.

The use of pair potentials to describe atomic interactions has proved to be suc-

cessful in the case of liquified noble gases, on which the Lenard-Jones interaction

constitutes an important paradigm of simplicity[53]. However, when the complexity

of the atomic interactions is increased, and the atoms are no longer weakly bounded,

the nature of the chemical bond on every atom, and its particular chemical environ-

ment must be accounted for.

Our model makes use of the Effective Mass Approximation (EMA) methodology

[48, 49]. The EMA potential is built upon the ideas provided by density functional

theory (DFT) which uses the local electron density to deduce the energy of a sys-

tem. This approach starts by assuming that the total-electron density in a metal

is reasonably approximated by the linear superposition from individual atoms. The

electronic density in the vicinity of each atom, can then be expressed as a sum of the

density contributed by the atom in question plus the constant background density.

The total energy of every particle is then given by

Ei = Fi(ρi) +
1

2

Nnb(i)∑
j,(i6=j)

Vi,j(rij). (2.1)

Here the pair potential between atom i and a neighbor j is given by

Vi,j(rij) = 1
4πε0

Za
i (rij)Z

a
j (rij)/rij, where Za

i (rij) stands for the screened nuclear charge

of atom i of type a, and ri,j is the inter-atomic distance for the atom pair. The elec-

tron density ρ for atom i, is defined by

ρi =
∑
j( 6=i)

ρa
j (rij). (2.2)

The values for the parameters in the electron densities ρa
j (rij), the repulsive pair po-
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tential Vij and the embeded atomic potential functional Fi(ρi), are obtained by fit-

ting experimental data to experimentally obtained information. (i.e. lattice param-

eters, elastic constants, cohesive energies, vacancy formation energy and so forth).

Figure 2.1: EMA potentials for gold: From left to right, pair density, Embeded Potential
and Atomic pair potential Vij . Distances are given in Å units.
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Figure 2.2: Atom dimer potential energy plot using the EMA interaction potential.

It is worthwhile to mention that in eqn. (2.1), the sum runs first over the
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neighbors of every atom i defined as those atoms within a cutoff radius rc, which

means that the chemical environment of every atom is described in detail, hence

this method allows for an accurate description of surfaces and defects, a matter of

fundamental importance in cluster simulations.

Finally, the energy of the entire structure is given by:

Etot =
N∑
i

Ei. (2.3)

Total Energy calculations for bulk crystalline structures were carrierd out to

verify the accuracy of our Monte Carlo and Molecular Dynamics simulations. The

elastic coefficient B was obtained by means of the universal equation of state for

solids [54, 55]. Table (2.1) summarizes our results and proves the accuracy of our

code. We note that the closeness of our results to those from the experiments are not

surprising as the potential was especially designed to fit the available experimental

information.

Quantity Exp. [49] Fit [49] Current Work ±(error) *

Interatomic distance: d(Å) 4.07 4.07 4.07± (1× 10−2)
Cohesive energy (eV/atom) 3.78 3.78 3.78± (1× 10−2)

Bulk modulus B(1012dyn/cm2) 1.803 1.803 1.803± (1× 10−3)
EBCC − EFCC(eV ) 0.04 - 0.038± (3× 10−3)
EHCP − EFCC(eV ) 0.05 - 0.048± (2× 10−3)

νT (X) (THz) 2.75 2.75 -
Thermal expansion 15.2 13.8 -

coefficient at 773K(10−6K−1)

Table 2.1: Comparison between experimental and theoretical values for gold: Lattice
parameter for FCC lattice, cohesive energy, Bulk modulus, BCC versus FCC energy,
and HCP versus FCC energy. Ref. [49] contains a full account of both, experimental
measurements and fits. * Current work errors compared to experimental fit data.
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2.2 Caloric Curves

Once bulk energies and other parameters have been found to be satisfactory, we

turn our attention to the study of the phase behavior of small clusters. In particular,

we need to identify the freezing temperatures of the clusters, which we expect to

be different from the bulk due to size effects. We compute the caloric curves for

different cluster sizes to find a range of temperatures in which the caloric plots show

a marked discontinuity that can be associated with a phase transition.

Initial cluster configurations were produced by trimming a FCC crystalline struc-

ture into spherical like shapes with different raddi. In this way we can produce

clusters of arbitrary size ranging from a few hundred to several thousand atoms.

In order to produce reliable caloric plots using molecular dynamic simulations, we

need to ensure that the integration step size for the Verlet algorithm (cf. subsection

1.2.2) produces energy conserving results. This is achieved by computing long time

constant energy simulations for different trial step sizes and observing the differences

in energies after a determined number of iteration steps.
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Figure 2.3: Determination of the optimal time step size.

Fig. (2.3) shows adiabatic calculations for two cluster sizes. The key is to

select a time step that establish a balance between the error tolerance, and the time

need for the computer simulation is to be carried out. Smaller time steps mean

more calculations are needed for a simulation of a given length. For example, for a

146 atom cluster, by using a time step of 0.1fs, (1fs = 1 × 10−15seconds) we lose
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30kJ/mol of energy on a simulation time of 10ns, (1ns = 1× 10−9seconds), clearly

an inappropriate time step. On the other hand, the loss is below 1 × 10−3kJ/mol

for the same simulation time on a cluster with 276 atoms, resulting in a choice that

could probably be too stringent due to the requirement of simulating producing long

time simulations to ensure that the system has been thermally equilibrated.

Simulating a constant temperature equilibration for a structure comprising around

5000 atoms on a simulated time of 200 million simulation steps, last about 48 hours

of computer time, 1. For a time step of 1.5 fs we can run a simulation time of about

1 × 10−4s on real computer time of 12 hours. This underscores the importance of

choosing the appropriate time step size and the need for efficient numerical codes.

In the present simulations for gold clusters, we choose time steps of 0.05fs for

the cluster sizes below 150 atoms, time steps of 0.25fs for clusters sizes from 150 to

300 atoms, 0.5fs for systems between 300 and 500 atoms, and 1fs for systems larger

than 500 atoms. The square simulation cell has a dimension of 1000×1000×1000Å3

for clusters smaller than 1000 atoms, and dimensions of 1500 × 1500 × 1500Å3 for

larger structures.

Fig. (2.4) illustrates the drop in total energy as a function of number of time

steps for four different temperatures. In this example we equilibrated the cluster to a

temperature of 750◦K for about 1×106 steps, and then reset the temperature drops

to 300, 350, 400, 450 and 500 degrees Kelvin. It is apparent from this figure that the

most dramatical changes in energy occur during the first two hundred nanoseconds.

However, to obtain the caloric plots we need to go to a point of detailed equilibrium,

i.e. the system evolves with a characteristic average temperature and a well defined

standard deviation (fluctuations in energy).

To obtain our caloric plots, the clusters were initially heated to some temperature

Tmax as to produce completely disordered structures. To generate the caloric curve,

we measure the energy at a temperature, and then decrease this by ∆T = 50◦K, until

a minimum temperature Tmin had been reached. At each temperature, we run the

system for 10 ns, until the system is thermally equilibrated to the new temperature.

1Using a westgrid machine, see http://www.westgrid.ca

35



We then collect data for the last ten thousand time steps, and divide the accepted

data into 100 sections, from where the standard deviations are calculated. The error

bars are equal to two times the width of the average standard deviation and shown

along the data in fig. (2.5).

Fig. (2.5) shows the caloric curves for cluster sizes with 90, 276, 456, 1220 and

3892 atoms. The temperatures Tmax and Tmin for each cluster are shown in the plot,

where the approximate location of the transition zone can be seen as a discontinuity

which broadens for atoms with fewer number of atoms. When the system has less

than 100 atoms the transition zone can no longer be distinguished from the caloric

plots, in consistency with the behavior observed in the freezing of small clusters

reported elsewhere (cf. section 1.3).

We also observe hysteresis effects in the transition region, which depends on

the rate and the direction with which temperature is increased. In fig. (2.6) we

illustrate this effect for a 1220 atom cluster on which heating/cooling takes place

at the rate of 50 ◦K/100fs. When the rate is further reduced the transition point

difference between a cooling and a heating process will be increased. Details of this

phenomena are described in ref. [56].

The main goal of this section was to locate the freezing temperatures of a number

Figure 2.4: Total energy equilibration at constant temperature for a 456 atom clus-
ter. Step size is 0.5fs

36



of clusters since we will need to study the nucleation process below this temperature.

Most of the work that follows focuses on nucleation in the 456 atom cluster. From

fig. (2.5), we can locate the freezing temperature to be approximately T = 750◦K.
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Figure 2.5: Caloric plots for various cluster sizes. Error bars are included in the
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2.3 Surface and Core atoms

The singular size dependent phase behavior attained by clusters on the caloric

plots shown in the preceding section, suggests that surfaces play a mayor role in the

phase transition behavior of clusters. An analysis of the energetics of clusters with

different structures, shows that as the number of atoms in the core of the cluster

increases, the energy per atom is greatly reduced.

Fig. (2.7 left), shows the dependence of the energy per atom on three different

structural arrangements for clusters as a function of number of gold atoms. The high

energy of the simple cubic structure with respect to the FCC and Icosahedra is part

of the reasons why this structure is not found in nature for gold. On the other hand,

the closeness in energies between the FCC and Icosahedra like structures suggests

a competition between the two possible structural patterns. Fig. (2.7 right), shows

that as the number of particles in a cluster is increased, the fraction of atoms in the

surface is going to be reduced, with the inverse effect occurring for the number of

atoms in the core of the cluster. In the limit, when the number of atoms is infinite,

we reach the conditions of a periodic infinite structure, and therefore the fraction

of atoms in surface is zero, with the number of atoms in the core equal to unity.

Clearly, the number of neighbours surrounding the core atoms in greater than that

at the surface, thus leading to a lower energy structure.

In this work we employed the cone algorithm [57], to calculate the number of

atoms in the core and surface of the different structures considered. The apex of

a cone, with azimutal angle θ = 60◦, and probe distance rc = 5.7Å (see fig. 2.8),

is placed at the centre of each atom. If, having tested all possible orientations,

there exists at least one orientation in which the cone does not contain the centre

of a neighbouring atom, then we declare such an atom a surface atom. To reduce

the computing time employed in identifying the surface atoms in a cluster, we only

test for the surface condition those atoms with less than fourteen neighbors. In the

bulk, atoms usually have at most 12 neighbors. We expand this number to consider

situations in which atoms are loosely bounded.
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Figure 2.8: Left: A cone defined by an aperture angle θ and a probe distance rc

samples wether an atom in a cluster has a surface or a core-like environment. Right:
Snapshot of a liquid 456 atom cluster. Core atoms are dark, and surface atoms light.
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2.4 Solid Embryo Criteria

A molecular based approach to nucleation requires the identification of an n-

sized embryo, constructed atom by atom from the liquid phase. We want the solid

definition to be as broad as possible so that our constrained simulations do not

preferentially select a particular crystal structure, e.g. FCC or icosahedron, over

another. In addition to this, we require the order parameter to work when it en-

counters the surface of a cluster, where an atom has roughly half the number of

neighbouring atoms as compared to an atom in a bulk-like environment.

The key to building an appropriate n-sized embryo algorithm lies in the idea

that in a crystalline solid, the contiguous environment of two atoms i and j in close

contact with each other is very similar, while the order in a liquid is uncorrelated.

Also atoms at a grain boundary are characterized by their lack of correlation with

respect to the neighboring atoms which are oriented with respect to the crystalline

grains in which they belong.

2.4.1 Order Parameter

Following the ideas introduced by Steinhardt et al. [43], we propose the use of

the dot product ci,j parameter to define the n-sized embryo, in the manner of Frenkl

et al. [25]. Further, we implement a criteria for a threshold number of connections

per neighbor to take into account the local environment of atoms in the surface of

the cluster.

Dot product definition

To define the dot product parameter we start with a spherical harmonic Ylm(θ, φ)

with the angles θ and φ defined by the radial vectors between atoms i and j

Ylm(θ(r̂), φ(r̂)) = Ylm(rij). A sum is taken over a suitable number of neighbors

and averaged over the total number of neighbors Nnb(i) for every particle.
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q̂lm(i) =
1

Nnb(i)

Nnb(i)∑
j=1

Ylm(rij). (2.4)

The next step is to define a complex vector of order l = 6 and size unity. We

therefore divide this complex vector q̂6m by its magnitude,

q̃6m ≡
q̂6m(i)

(
∑6

m=−6 |q̂6m(i)|2)1/2
.

Finally, the inner complex dot product is defined, this is the order parameter we

use in our cluster algorithms and subsequent calculation of free energies.

cij = qi · qj =
6∑

m=−6

q̃(i)6m · q̃(j)6m (2.5)

The dot product between atoms i,j has the characteristics of having a value close

to one when two atoms have similar environment, otherwise its value is small. This

idea is inspired in the crystalline order of solids which starts at the microscopic scale,

and is extended over the network of surrounding atoms, until -in the case of a bulk

crystal- a fundamental periodic unit is repeated throughout space.

Below we describe the procedure followed to choose the three parameters that de-

fine the dot product order parameter needed to construct the distribution of embryos

within a cluster, these parameters are a neighbor distance radius rb, a threshold dot

product cmin, and last, the threshold number of connections per neighbor CxNT .

Neighboring distance

To calculate the dot product cij, we need to identify the neighbours for each

atom. Neighbor distances are usually defined as the local minima in between peaks

of a distribution function. In fig. (2.9), we show the effect of probing the number of

neighbors for various distances on a 3892 cluster, this cluster size was chosen because

above 70% of its atoms are in a bulk-like environment and we wished to obtain a

quick estimate of the proper neighboring distance. Plots were obtained by counting
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the number of atoms within a distance rb for any given atom on a crystalline cluster

and the best value was set to rb = 3.5Å from probing different radii with 0.5Å

differences.
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Figure 2.9: Left, histogram for the distance of the nearest neighbors as a function of
a probe radius rb. Filled circles show a peak value in 12 atoms, therefore we choose
rb = 3.5Å as the optimal first neighbor distance.

It was found that as the probe distance is increased, the maximum number of

neighbors around some atoms starts to increase and as a counterpart, if the probe

distance is reduced, the number of neighbor atoms is consequently reduced. The

fraction of atoms in the surface of the cluster is characterized by the small tail of

the histogram plot for sizes 4 to 10. The optimal probe radii was chosen in base

to the number twelve, which corresponds to a close packed structure (FCC, HCP,

ICO). Choosing a neighboring distance beyond the first neighbors would impose

an undesirable long order correlation to our solid embryo algorithm. Incidentally,

the fraction of atoms with 12 neighbors equals the fraction of atoms in bulk like

environment, as computed by the cone algorithm method, which shows that the
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elected distance is appropriate.

In figs. (2.10) we analyze more rigorously the optimal neighboring distance.

With aid of the cone algorithm, the histograms of the number of neighbors for

atoms in the surface and the core of the clusters. In order to produce these plots, we

carried out temperature equilibrations starting from a solid icosahedra-like structure

2. Simulations were run for 1 × 109 iteration steps, with a 1fs step size. The

initial temperature was 100◦K and was increased by amounts of 25◦K at the end

of every simulation on an iterative process until the equilibration for a temperature

of 1500◦K was completed. The reference point in figs. (2.10) is the temperature

T = 725◦K which indicates a cluster that is not completely melted. Histograms were

generated by analyzing 150 configurations obtained by saving configurations every

one thousand steps (i.e. saved every 10 ns on simulation time). Similar figures are

Figure 2.10: Neighboring distance for the 456 atom cluster at temperature intervals
of 25◦K. A reference temperature of T = 725◦K in the figure is a temperature
at which solid/liquid character of the cluster is undetermined. Dark (Blue on-
line): Temperatures below melting point. Ligth (Red on-line): Temperatures above
melting point. Both histograms have been normalized.

obtained from the melting of an FCC like structure for the same number of atoms,

and also for other different structures and sizes.

2A 456 atoms cluster can not be a perfect Icosahedra
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Threshold dot product

We computed the dot product distributions from the last one hundred config-

urations for each one of the temperature equilibrations described in the preceding

section, and obtained the histograms shown in figs. (2.11) and (2.12).

Figure 2.11: Cumulative dot product distribution for the melting of a small Icosa-
hedra structure with 456 atoms. The plot shows the combined dot products of all
the atoms in 100 cluster configurations for every temperature.

In fig. (2.11) we show the ordered dot pairs in increasing value, showing that

larger values are more prevalent for clusters below the melting point. The tem-

peratures 700◦K and 750◦K seem to be the limits for a liquid-like and solid-like

behavior. Fig. (2.11) makes emphasis on the fact that for a range of temperatures a

threshold value between 0.6 and 0.7 for the dot produce defines the transition from

the solid to the liquid phase. Thus we use the threshold value of 0.65 as appropriate

for our 456 atom gold cluster. We observe that for temperatures larger than the

melting point, taken to be 750◦K all the distributions look alike, i.e. the clusters

are disordered. For temperatures bellow 700◦K in the other hand we notice that

the structure retains its crystalline like character with fewer liquid like atoms. The

change of phase is evidenced in the breaking of the trend in the distributions from
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the solid to the liquid like histograms in either figure.

We further investigated the threshold value for the minimum dot product cMIN

for a cluster structure comprising 3892 atoms and with an initial FCC structure

(see fig. 2.13 ). MD calculations were performed independently for many different

configurations at constant temperature until the energies converged. In particular,

we choose a time step of 1.5×10−12s = 1.5ps, and performed 50 million equilibration

steps. Each of these equilibration steps was repeated 4 times, totaling 200 million

equilibration steps. The final results for the reported energies were averaged over

one hundred MD iterations. The temperatures were chosen from 50◦K to 1950◦K

in intervals of 50◦K.

Mainly it was found that for larger cluster sizes, the threshold value for the

dot product is easier to define, as compared to small clusters, where fluctuations in

energy are much larger. One would expect that in the thermodynamic limit (i.e.

for a bulk like system), the histograms for the temperatures before and after the

transition temperature interpenetrate at a minimum, a direct consequence of the

Figure 2.12: Normalized dot product histogram for the dot products shown in fig.
(2.11), for the 456 atom cluster.
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sharp phase transition for bulk materials, however, in a cluster we observe always

atoms with solid or liquid like character.

Moreover, although we can see size dependent effects when comparing the caloric
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Figure 2.13: Calculation of the threshold dot product for the solid embryo criteria
on a 3892 atom cluster. Top left, caloric plot. Top right, ordered dot product
distribution. Bottom, dot product histogram for all temperatures in the caloric
plot. The inset shows a crossing between the distributions of the temperatures where
limits of stability are observed. i.e.T = 900◦K and T = 950◦K. The horizontal axis
is the dot product and the vertical axis has been normalized so that the area under
the curves is equal to one.
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plots of clusters with different atom sizes, the threshold dotproduct does not seem

to vary greatly as a function of cluster size, suggesting this may be a constant for a

wide range of clusters. In our simulations for the 456 atom gold cluster we choose a

threshold dot product equal to 0.65.

Threshold number of connections per neighbor

The threshold number of connections per neighbor was introduced by a need to

take into account case scenarios in which atoms in a cluster are located in the surface.

Since these atoms will naturally have a smaller number of connections, these can

not be characterized with the same criterion as atoms surrounded in all directions,

which can form more connections. Furthermore, the spheroidal-like shape of clusters

produces atoms with a very sparse number of neighbors in surface and bulk atoms

(see figs. 2.10), with the distribution of number of neighbors varying more for highly

disordered structures. We need therefore to account for cases in which atoms have

a lesser number of connections for every neighbor they are interacting with.

Once again, we take the 150 configuration files for every temperature, from our

456 atom MD simulations, to generate plots for the number of connections per

neighbor on surface and core-like atoms. This number is given by:

cxn(i) =

∑Nnb(i)
k=1 Θ(cT )

Nnb(i)
, (2.6)

where Θ is the heaviside function equal to one when the value of the dot product

is larger than the minimum threshold Cmin. Eqn. (2.6) simply expresses a count

of the number of atoms which are connected to an atom i in function of the dot

product pairs cij, this measurement is normalized when dividing by the number of

neighbors of such an atom.

Fig. (2.14 left), shows the distribution of the number of connections per neighbor

for atoms with core-like environment. Atoms were selected from the ensemble of

150 configurations by means of the cone algorithm, and the number of connections

per neighbor arranged in increasing order and plotted for every temperature. For
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temperatures lower than T = 725◦K, most of the atoms have large values for the

cxn(i) quantity, while for temperatures larger than this value, most atoms have

small values. Fig. (2.14 right), shows the normalized histogram, obtained from the

distribution in fig. (2.14 left), with a vertical line defining the threshold criteria for

declaring an atom liquid or solid. Since the largest number of neighbors per atom

has a maximum value of fourteen, increments in the number of connections are given

by fractions of 1/14, as can be seen from the histogram generated by the clusters

equilibrated at T = 725◦K. We choose a threshold value CxNT = 0.5, for values

larger than this threshold, atoms are declared solid-like, irrespective of their local

environment.

Figs. (2.15) are complementary to figs. (2.14), and describe in turn, the phase

behavior reflected in terms of the number of connections per neighbor for atoms

with a surface-like environment. A comparison of the distributions of (2.14 left),

and (2.15 left), for temperatures slightly below the melting point T = 725◦K, show

that as temperature approaches the melting of the structure, disorder starts in the

surface of the cluster.

Our inclusion of the number of connections per neighbor serves to introduce a

measure independent of the environment of the atoms and serves to calculate the

embryo distribution in a cluster as described in the embryo algorithm from section

(2.4.2).
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Figure 2.14: Left: Cumulative distribution of the number of connections per neigh-
bor for atoms in a core-like environment for the 456 atom cluster. Data was obtained
from 150 cluster configurations equilibrated at various temperatures. Right: Nor-
malized histogram for the number of connections per neighbor for the figure in the
left hand side.
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Figure 2.15: This figure is complementary to fig. (2.14). Left: Cumulative his-
tograms for the number of connections per neighbor for atoms with surface-like en-
vironment. Right: Normalized histogram for the number of connections per neighbor
for the figure in the left.
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2.4.2 Summary: Solid embryo algorithm

The distribution of solid embryos is computed as as follows (see fig. 2.16):

(a) First we start by finding the distance d(i, j) between an atom i and a candidate

neighbor j, if this distance is less or equal than a minimum distance rb then

atoms i and j are said to share a bond.

(b) For all the bonded atoms of an “i” atom, a threshold dot product cMIN discrim-

inates those atoms which are connected from those which are non connected.

i.e. for cij ≥ cMIN two bonded atoms are connected.

(c) When a critical number of bonds for an atom are declared as connected, the

atom is declared a solid, otherwise it remains classified as a liquid atom. This

critical number of connections per neighbor is defined as cxn(i) = Ncon(i)/NNb(i)

and compared to the threshold value CxNT i.e. For cxn(i) ≥ CxNT atom i is

a solid.

(d) Two solid atoms that are connected are considered to be in the same embryo.

In this way it is possible to extend the network of solid atoms.

The neighbor distance rb, minimum dot product cMIN and threshold number of

connections per neighbor CxNT used in the present work are 3.85 Å, 0.65 and 0.5

respectively. The dependence of these parameters with cluster size is not significant.

a b c d

Figure 2.16: Building an order parameter to measure crystallinity. a) Neighbor
Identification. b) Finding connections. c) Solid and Liquid definition. d) Computing
embryo distribution.
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2.5 Free Energy Barrier to Crystallization

In the present section, we investigate the freezing of gold nanoparticles by calcu-

lating the free energy barrier to nucleation using Monte Carlo simulation techniques.

Nucleation phenomena is a process activated through the overcoming of a barrier

to nucleation. However, since the probability of appearance of the critical embryo

size is very small on a system under mild supercooling, an appropriate method to

generate statistics has to be applied. We employ umbrella sampling plus the parallel

tempering schemes described in Section (1.2). Our implementation of these methods

is described in detail as follows:.

Let us denote by HEMA a Hamiltonian defined by the sum of the kinetic plus

potential energies of a system of particles, HEMA = EEMA + EK . The EMA poten-

tial energy EEMA is described in section (2.1), and the kinetic energy of a cluster

containing N particles at a temperature Ti is obtained by means of the relation

Ek = N 3
2
kBTi.

According to the umbrella sampling scheme (cf. section 1.2), we take an uncon-

strained hamiltonian HEMA and add a potential to create a constrained Hamiltonian

HC,

HC = HEMA + φ(nmax), (2.7)

the bias potential φ depends on two parameters and is function of the largest embryo

in a distribution of solid embryos taken on a system containing N atoms:

φ(nmax; κ, n0) =
κ

2
(nmax − n0)

2 . (2.8)

The parameter κ is termed of as the “umbrella constant” and n0 is known as

the “umbrella center”. With this harmonic form for the bias potential, the umbrella

center will force the sampling to be in the direction of the umbrella center while

the size of the parameter κ limits the likelihood of sampling embryo distributions

for values far away from the umbrella center. Umbrella centers were chosen with

values located at intervals ∆n = 10, i.e. n0,ν = {0, 10, 20, 30, 40, 50, 60, 70} and the
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optimal value for the κ constant was fixed to a value of 0.001. With this choice

of n0,ν and κ parameters, swapping of configurations with common temperature

and neighboring umbrella centers n0, fluctuated between 60% and 70% of efficiency,

which guaranteed efficient sampling without having to rely on the choice of a tem-

perature or umbrella center dependency for the κ parameter. The choice of umbrella

parameters is described on Appendix A-V.

In addition to the umbrella sampling method, we improved sampling by im-

plementing the parallel tempering algorithm with eight simulated temperatures,

Tµ = {650, 660, 670, 680, 690, 710, 730, 750} (in degrees Kelvin). The highest tem-

perature in the simulation (T = 750◦K ) was chosen in such a way that the critical

size of the system is well beyond the range covered by the sampling interval, (i.e.

n∗ > 80), this choice satisfies the requirement of the parallel tempering scheme that

at least one temperature be chosen in such a way that for the sampling region the

system can move freely between all the potential energy minima. This does not

mean, however that the system will not nucleate for some critical size beyond the

range that is it is being sampled.

The temperatures below 750◦K were chosen in such a way that the swapping be-

tween configurations with the same umbrella center parameter n0,ν and neighboring

temperatures was roughly 60%. MD simulations were initially used as a guidance

to select the range of temperatures at which the simulation of nucleation was more

convenient to study.

The biased ensemble we are sampling is given by the product of all the subsystems

with a number totaling the product of the total number of temperatures by the total

number of umbrella centers. In our simulations we have 8 different umbrella centers,

and 8 different temperatures, i.e. 8× 8 = 64 nodes:

QC =
8∏

µ=1

8∏
ν=1

QN,V,Tµ,Hc(µ,ν) (2.9)

=
8∏

µ=1

8∏
ν=1

1

Λ3N
µ N !

∫
· · ·

∫
drNexp[−βµHC(µ, ν}].
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The averaged embryo distribution < N(n) > in the unconstrained space is ob-

tained from the embryo distribution Nn in the constrained system via the relation:

〈N(n)〉 =
〈Nn exp [φ(nmax)/kBT ]〉C
〈exp [φ(nmax)/kBT ]〉C

(2.10)

∼=
∑XMC

k=1

∑nmax

n=0 Nn exp [φ(nmax)/kBT ]∑XMC

k=1

∑nmax

n=0 exp [φ(nmax)/kBT ]
, (2.11)

where 〈.〉C in eqn. (2.10) denotes an average in the constrained ensemble. The

averaged embryo distribution in the simulation is measured via the sum in eqn.

(2.11), where Nn represents the number of embryos of size n in the constrained

MC sampling iteration k, and φk is the biased potential for the k-esim sampling

event, with the largest embryo having a size nmax and an associated biased potential

φk, which multiplies the distribution of embryos on the entire configuration. The

simulation is run for a total of number of XMC Monte Carlo trajectories.

A MC step is defined as the process of selecting particles at random on a system

and attempting to displace them by a random displacement ∆R a total number of N

times in a system comprising N atoms. At the end of 10 MC steps, we test the final

atomic configuration for the largest embryo size and only then apply the constrained

potential. The process of performing 10 MC energy equilibrations, followed by a

sampling under the constrained potential is termed of as one trajectory. The largest

embryo distribution is only tested at the end of the trajectory instead of every MC

step due to the computational effort required in the evaluation of the distribution

of embryos in a cluster configuration.

We performed swapping attempts in umbrella centers every 10 trajectories, and

swapping attempts every 10 trajectories, in temperatures for configurations with

neighboring temperatures and same umbrella centers. The simulation was run for a

total of about to 456,000 trajectories for every node, and repeated for four different

initial conditions to ensure reliability of results. Further, we dropped out the initial

20, 000 MC steps for every node, from the ensemble statistics that produced the final

free energy diagrams since the system has to be initially equilibrated. Three out of
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four of the simulation runs were started from equilibrated configurations, however, in

spite of this, the initial 20, 000 trajectories were not taken into account to build free

energy plots, this was made to ensure independency on each of the simulation runs.

We ran, therefore, the system for a total of (456, 000 − 20, 000) trayectories/node,

which multiplied by 8 different umbrella centers and 4 independent simulations leaves

a total of about 14 million trajectories for every temperature.

Once we have obtained the piecewise histograms with respect to every node, we

extract the free energies via the relation,

∆G(n)

kBT
= − ln (< N(n) >) + b. (2.12)

The constant b, the temperature, and the average embryo distributions < N(n) >

are different for each one of the nodes in the simulation, i.e. b = b(Tµ, n0,ν) , T = Tµ,

and < N(n) >=< N(n; Tµ, n0,ν) >.
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Figure 2.17: Left: Distribution of embryo sizes for every one of the umbrella cen-
ters at the simulated temperature of T = 750◦K. This histogram is taken in the
constrained ensemble. Right: Piecewise free energy of crystallization obtained from
every simulated bin in the constrained embryo distribution.

In fig. (2.17 left), we show the constrained embryo distribution for all the statis-

tics in the nodes with temperature T = 750◦K for the 456 atom cluster, the resulting

piecewise free energies from these statistics once relation (2.12) has been applied are

shown on fig. (2.17 right).
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The optimal alignment of the common temperature free energy segments is

achieved by obtaining the coefficients of the polynomial [25]:

Γ(n) =
kmax∑
k=1

akn
k + c, (2.13)

according to:

Ω =

max(n)∑
n=0

{ nw∑
i=1

wi(n)

[
∆Gi(n)

kBTi

− Γ(n)

]2 }
. (2.14)

Eqn. (2.14) is the squared error of the difference between the “measurements”

obtained by the simulation (see eqn. 2.12) and the “expected” values given by the

function Γ(n). This difference is further multiplied by a weight equal to the inverse

of the square of the standard deviation for the measurements in every simulation

window. i.e. wi(n) = 1/σ2
∆Gi(n). The standard deviation σ was estimated from the

four independent simulations which were cut down in halves to produce a total of

eight sets from which σ could be computed. The estimate of this error is below

0.6 kBT for statistical measurements around the umbrella center , and grows up

to 1 kBT if the extremes of the umbrella sections are considered. In any case the

extremes are not taken into account beyond a difference |nmax−n0|, this is due to the

fact that not enough sampling can be made in the constrained space for cases where

the embryos are far from the umbrella center. This is taken care of, by defining the

standard error as infinite in such events, i.e. the inverse of the square of the variance

is zero. The sum in eqn. (2.14) is made for all the possible embryo sizes, from n = 0

to n = max(n) = 90, and for i = 1 to nw, the number of umbrella windows, equal

to 8.

Fig. (2.18) shows the free energy barriers to crystallization taking the liquid

cluster as a reference. It is shown that as the temperature is lowered, the Helmholtz

free energy barrier and the critical embryo size are reduced, with the solid phase

increasing its relative stability. It is important to note that for small embryo sizes,

the features of the free energy curves for all temperatures can not be explained via

classic nucleation theory.
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Table (2.2) contains a summary of the free energy barriers in fig. (2.18), with

respect to every one of the eight temperatures in the simulation.

T [◦K] n∗[atoms] ∆G(n∗)/kT []

650 23 10.0
660 30 10.2
670 37 10.4
680 42 10.5
690 47 10.7
710 58 11.6
730 70 13.0

Table 2.2: Free energy barriers with respect to the critical embryo size n∗ as a
function of temperatures. These results were obtained via MC calculations for a 456
atom cluster.

The plot for fig. (2.19 left), shows a seemingly linear-like relationship of the
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Figure 2.18: Free Energy barriers for various temperatures. 456 atom cluster. The
filled circles indicate the maximum in the free energy for each temperature.
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Figure 2.19: Barrier height as function of nmax. 456 atom cluster.

critical embryo size n∗ with respect to temperature for all the temperatures in the

simulation. Fig. (2.19 right), in the other hand, shows that a linear relationship

of the free energy with respect to the critical embryo is only observed for high

supercooling, i.e. at low temperatures. The size of the free energy barrier after

temperature T = 690◦K follows a polynomial-like growth.

In any case if we are to follow the linear like trend in the prediction of the free

energy with respect to the critical size at high supercoolings (i.e. at temperature

lower than 690◦K), we find that the free energy barrier to nucleation for a critical

size equal to zero will have an extrapolated free energy difference larger than 9.5kTB.
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2.6 Core Dependent Nucleation.

Phenomenological models for nucleation provide a useful method for the calcu-

lation of surface free energy densities. In this section, to calculate the solid-liquid

surface free energy density, we assume that nucleation obeys the CNT ansatz, i.e.

nucleation is a process started at the core of the cluster.

Within the classical nucleation theory approximation and assuming a spherical

cluster, ∆G∗ is given by the expression:

∆G∗ =
16π

3

σ3
sl

∆µ2 . (2.15)

Here σsl is the interfacial free energy between the solid and liquid, and ∆µ is the

difference in chemical potentials between the cluster on the liquid state and the

cluster with a solid embryo of critical size n∗.

The difference in chemical potentials is in turn given by

∆µ = ∆Gv + w′, (2.16)

where ∆Gv represents the free energy of freezing per unit volume, and w′ the work

per unit volume against the Laplace pressure, given by the expression:

w′ = PL(ρl − ρs)/ρl, (2.17)

where the ρ′s are the densities of the liquid and solid phase in the clusters and

PL = 2σl/r0 is the Laplace pressure 3 inside the cluster with surface tension σ1 and

radii r0. Our goal now is to obtain an estimate for the chemical potential ∆µ by

means of thermodynamic approximations, and to use eqn. (2.15) with σsl as a fitting

parameter. Our fit will be made against the data for the now known values for the

free energy barriers ∆G∗.

The free energy of freezing ∆Gv may be derived from the Gibbs-Helmoltz rela-

3The Lapplace pressure describes the difference in pressure between the inside and the outside
of a droplet due to the curvature of the interface
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tion, which reads:

(
∂∆G

∂T
)
p

= −∆H

T 2
. (2.18)

The change in free energy from solid to liquid state can be obtained by integration

of the change in enthalpies between the supercooled cluster with a solid embryo

n∗ and the cluster on the liquid state, hence we have ∆G = Gl(T ) − Gs(T ) and

∆H = Hl(T )−Hs(T ).

A relation between enthalpy and temperature may be fit to a polynomial obtained

from simulations. This is usually approximated well enough with a first or second

order polynomial.

Entalphy is defined as H = U +P V . For an incompressible droplet and zero

pressure the difference in enthalpies will be equal to the difference in internal ener-

gies. For the liquid branch in the caloric plot of the 456 atom cluster (see fig. 2.20),

we obtained a second order polynomial fit for the internal energy Ul:

Ul(T ) = a0 + a1T + a2T
2 = −360.16 + 0.036878T − 0.20037× 10−5T 2, (2.19)

whereas for the solid branch, the internal energy as a function of temperature is

given by:

Us(T ) = b0 + b1T + b2T
2 = −356.66 + 0.025692T − 0.21146× 10−5T 2, (2.20)

The heat capacity at constant pressure is given by the relation Cp = ∂H
∂T

. From

the derivatives of the internal energy functions (2.19), (2.20) we obtain

Cpl(T ) = b1 + 2b2T = 0.036878− 0.40074× 10−5T, (2.21)

Cps(T ) = a1 + 2a2T = 0.025692− 0.42292× 10−5T. (2.22)
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Now, the difference in entalphies is obtained with respect to a reference state Tm.

∆H = Hl(T )−Hs(T )

=

[∫ T

Tm

Cpl(T
′)dT ′ + Hl(Tm)

]
−

[∫ T

Tm

Cps(T
′)dT ′ + Hs(Tm)

]
(2.23)

The difference in heat capacities under the integrals in eqn. (2.23) is positive for

any temperature and is given in units of kJmol−1K−1. This difference may in turn

be expressed as another polynomial,

∆Cp = Cpl(T )− Cps(T ) = c1 + c2T. (2.24)

Further, we define the reference state Tm as the melting point of the system and

hence we may define the entalphy of fusion as the change in entalphies between the

solid and the liquid phase at the melting point: ∆Hfus = Hl(Tm) − Hs(Tm). We

may thus recast eqn. (2.23) as:

∆H = Hl(T )−Hs(T ) =

∫ T

Tm

∆Cp(T
′)dT ′ + ∆Hfus, (2.25)
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Figure 2.20: Entalphy of fusion ∆Hfus, 456 atom cluster
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One would expect to have a sharp phase transition only in the thermodynamic

limit. In the case of finite size systems the phase transition occurs in a transition

zone and hence the melting point can not be uniquely determined [58].

Now, by substituting expression (2.24) into expression (2.25) we get

∆H = Hl(T )−Hs(T ) = c1(T − Tm) +
1

2
c2(T − Tm)2 + ∆Hfus. (2.26)

Integration of the expression (2.26) according to the Gibbs-Helmoltz relation (2.18).

∆G = −T

∫ T

Tm

c1(T
′ − Tm) + 1

2
c2(T

′ − Tm)2 + ∆Hfus

T ′2 dt. (2.27)

Substitution by a reduced temperature T ∗ = T/Tm, yields:

∆G = c1Tm{1− T ∗ + T ∗ ln(T ∗)}

−c2T
2
m{1− T ∗2 + 2T ∗ ln(T ∗)} (2.28)

−∆Hfus[1− T ∗]

Quantity Symbol EMA potential exp.
liquid ρl[kg/m3] 17 280 17 280
solid ρs[kg/m3] 19 000 18 400

surface tension
liquid σl[J/m2] 0.74 1.13

−dσ/dT [mJ/m2K] 0.14
solid σs[J/m2] 0.90 1.40

−dσ/dT [mJ/m2K] 0.14
solid-liquid σsl[J/m2] 0.13-0.15 0.27

Table 2.3: EMA potential predictions for bulk gold vs. Experimental values. Ob-
tained from ref. [21]

We set the value of the melting temperature as Tm = 750◦K with constants

c1 = 11.186Jmol−1K−1, c2 = 2.218×10−4Jmol−1K−2 and ∆Hfus = 4951.881Jmol−1.

A plot of expression (2.27) is shown on fig. (2.21 left). This function is zero at

T ≈ 151◦K and T = 750◦K with a global minimum at T ≈ 414◦K. It should be
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stressed out that for temperatures below the global minimum, this approximation

produces two temperatures for the same chemical potential, which is unrealistic,

however, the approximation is valid for temperatures near the melting point of the

system, i.e. T ≈ 750◦K.
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Figure 2.21: Left: Free energy of embryo freezing. Right: Chemical potential, 456
atom cluster.

To obtain the free energy of freezing per unit volume we divide by the volume of

the cluster and multiply by the number of moles in the system (i.e. ∆Gv = n
AV

∆G),

with n the number of atoms in the cluster and A Avogadro’s number, and the volume

of the system in the liquid phase with a value V = 7.0× 10−27m3.

Taking the volume V we approximate a radii for a spherically averaged cluster

to be r0 = 11.8668×10−10m and the surface tension from the reference [21] in which

the EMA potential used in the present work has been previously used to predict

bulk quantities [21] (cf. table 2.4 )

With the values in table (2.3) we obtain a value for the Laplace pressure PL =

11.8668 × 10−10(1.9786 × 1010[J/m3]) and the work per unit volume as defined by

eqn. (2.17) is w′ = −0.1969× 1010J/m3(−18.2024509[kJ/mol]). This work term is

added to equation (2.28) to get a difference in chemical potentials:

∆µ = c1Tm{1− T ∗ + T ∗ ln(T ∗)} (2.29)

−c2T
2
m{1− T ∗2 + 2T ∗ ln(T ∗)} −∆Hfus[1− T ∗] + w′.

Table (2.4) shows the MC predicted values for the free energy barrier (third
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column) along with temperature and size of the critical embryo (first and second

columns respectively).

T [◦K] n∗[atoms] ∆G(n∗)/kT [] σsl[J/m2] (fitted values)

650 23 10.0 0.1247
660 30 10.2 0.1237
670 37 10.4 0.1224
680 42 10.5 0.1205
690 47 10.7 0.1190
710 58 11.6 0.1166
730 70 13.0 0.1146

Table 2.4: Table with calculated solid/liquid surface free energy densities using the
MD approach. The first three rows correspond to calculated MC simulations data.

Each one of the σsl values in the fourth column of table (2.4) was calculated by

fitting the function

∆G∗ =
16π

3

σ3
sl

∆µ2 , (2.30)

to the Monte Carlo values listed on table (2.4) and by using σsl as a fitting parameter

for each temperature set, and assuming the temperature dependent chemical from

expression (2.29). The optimal value of the fits for each temperature is shown in fig.

(2.22 left).

The values of the free energy density σsl as a function of temperature are

listed in fig. ((2.22), right ), with a linear dependent temperature relationship

σsl(T ) = −0.0001315× T + 0.2102. The correlation coefficient for this relationship

is r = 0.9958828.

A plot comparing the MC values with those of the CNT like model with tem-

perature dependent surface density σsl is shown on fig. (2.23).

The quadratic fit shown in fig. (2.23) has a temperature dependent functional

form ∆G∗/kBT = 203.04− 0.59275×T +0.00045526×T 2, and predicts a minimum

nucleation barrier for T = 651◦K with the size of the barrier equal to 10.1±0.5kBT ,

and the CNT like model from eqn. (2.30) in dimensionless units is given by the
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expression:
∆G∗

kBT
= 1.037130× 107 σ3

sl

T∆µ2
, (2.31)

where σsl and ∆µ have the temperature dependence given above. This model pre-

dicts a minimum for the nucleation barrier in the order of 9.799kBT , for a temper-

ature equal to 615◦K.
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Figure 2.22: Left: calculated temperature dependent solid/liquid surface tension.
Right: fits to the ∆F (n∗)/kT data. 456 atom cluster.
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Figure 2.23: CNT fits to the ∆F (n∗)/kT data. The inset shows the temperature
dependence of the free energy barrier for small temperatures under the temperature
dependent surface tension approximation. 456 atom cluster.
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2.7 Surface Nucleation

The usual model for classical nucleation in a cluster assumes that the embryo of

the solid phase grows in the core of the nanoparticle. In terms of surface wetting

phenomena, this assumes that the solid is completely wet by its liquid. We can test

this assumption by examining configurations obtained from our MC simulations

described in Section (2.5). Figs. (2.24) and (2.25) show one such configuration in

different orientations as identified by the axis indicators. Fig. (2.24) shows just those

atoms belonging to the largest embryo in the cluster while fig. (2.25) shows how the

embryo is embedded in the cluster. Clearly, this embryo sits on the surface of the

cluster suggesting that the solid phase may only be partially wet by its liquid. This

contradicts the assumptions made in the previous section ( see section 2.6) in which

the CNT assumption of nucleation at the core of the cluster and a temperature

dependent solid-liquid free energy tension σsl was proposed as a way to match a

phenomenological model with our simulations.

In Section (2.7.1) we carry out a quantitative analysis of the wetting behaviour

in the nucleation of clusters, and in Section (2.7.2) we propose an alternative phe-

nomenological model that accounts for surface nucleation in a cluster, and with

which we are able to explain the free energy features of our detailed molecular sim-

ulations.

2.7.1 Simulation Results

A simple measure of the degree of wetting can be obtained by counting the

number of atoms in embryo of a given size that are on the surface of the cluster. If

the embryo is completely wet there should be no embryo atoms (or very few) at the

surface. We collect configurations every 1×103 trajectories from our MC simulations

described in Section (2.5). This ensures that each configuration is independent

from the previous one. As a result, we have a total of 3000 configurations at each

temperature. We measure the number of surface atoms, nmax,surface, contained

within the largest nmax-sized embryo in the cluster. This gives us between 20 and
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50 configurations for each embryo size nmax at each temperature. Fig. (2.26) shows

that nmax,surface vs nmax can be fit to a straight line for all temperatures, for the

data between nmax = 15 and 80. Table (2.6) shows that fit parameters and error

estimates.

T[K] nnmax,surf = m× nmax + b Correlation slope
m b coefficient. std. error

750 0.47176 1.7639 0.9734 0.012898
730 0.43613 2.7985 0.9605 0.014885
710 0.46634 2.2349 0.9733 0.012533
690 0.50749 0.8902 0.9620 0.017092
680 0.50175 1.7298 0.9714 0.015187
670 0.43789 4.3382 0.9282 0.022110
660 0.47946 3.0887 0.9540 0.018543
650 0.47509 3.4498 0.9651 0.016623

Table 2.5: Linear fit for the number of atoms in the surface vs. total number of
atoms for the nmax embryo.

Figure 2.24: Snapshot of an nmax embryo. Left, topview from the X axis, center a
topview from the Y axis, and right hand side, top view from the Z axis.

Figure 2.25: Snapshot of a cluster with the nmax embryo in the surface. Left, topview
from the X axis, center a topview from the Y axis, and right hand side ,a top view
from the Z axis.

66



0 10 20 30 40 50 60 70 80
n

max

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=650 K

0 10 20 30 40 50 60 70 80
n

max

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=660 K

0 10 20 30 40 50 60 70 80
n

max

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=680 K

0 10 20 30 40 50 60 70 80
n

max

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=690 K

0 10 20 30 40 50 60 70 80
n

max

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=710 K

0 10 20 30 40 50 60 70 80
n

max 

0

10

20

30

40

50

n m
ax

,s
ur

fa
ce

T=750 K

Figure 2.26: Fraction of atoms in the surface of the cluster nmax,surface that belong
to the largest embryo size nmax for various temperatures. The linear fits are taken
over a distribution from about 100 sample points for every temperature to show the
scatter of the data. 456 atom cluster.

Given the scatter of the data, the fraction of embryo atoms in the surface (ob-

tained from the slope) appears to be independent of temperature (see figs. 2.26). To

obtain better statistics, we averaged over all temperatures. The results, shown in

fig. (2.27), suggests that smaller embryos have a higher fraction of atoms in the sur-

face than larger embryos. Both large and small embryo regions can be fit by linear

curves (see table 2.5). The data collected for the simulations at each temperature
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has been overlapped on fig. (2.27) (shown with plus symbols), the averaged data

appears in filled circles, while the dashed line, both in the main fig. and the inset

corresponds to the linear fit for small embryos. The data for the fits for both large

and small embryos is shown in table (2.6).

Our results clearly indicate that a significant fraction of atom in the embryo, 47%

for large embryos and 64% for small embryos, appear in the surface of the cluster.

This supports the notion that in gold nanoparticles, nucleation occurs in the surface

and that the solid is only partially wet by its liquid.

Region nnmax,surf = m× nmax + b Correlation slope
m b coefficient. std. error

n < 20 0.63519 0.66038 0.9939599 0.0058186
n ≥ 20 0.46842 2.42550 0.9892535 0.0227692

Table 2.6: Linear fit for the number of atoms in the surface vs. total number of
atoms for the nmax embryo.
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Figure 2.27: Number of atoms in the surface belonging to the nmax embryo vs nmax

embryo size for the 456 atom cluster.
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2.7.2 Lens Model

The condition of partial wetting places thermodynamic limits on the surface free

energy densities σij of the three phases such that σsv − σlv < σsl, where the sub-

scripts s,l and v denote the solid, liquid and vapor phases respectively. For the EAM

potential, σsv = 0.90J/m2 and σlv = 0.74J/m2 [59] which requires σsl > 0.16J/m2.

Bartell et al. [21] found that a number of thermodynamic theories and empirical re-

lations gave estimates of σsl within the range of 0.11 to 0.16J/m2. In the same work,

the authors used a CNT model that assumes complete wetting of the solid embryo

by the liquid (core nucleation) to predict the solid-liquid surface tension based on

fitting the rate of nucleation obtained from molecular dynamics simulations. For a

cluster of N = 459, at T = 700◦K, they found σsl = 0.084J/m2 which is well below

the wetting threshold.

To obtain an estimate of σsl under the conditions of partial wetting, we assume

the solid embryo grows at a planar liquid-vapour interface in the shape of a lens (see

fig. 2.28). The free energy required to form an embryo containing n atoms, from

Solid
     Liquid

Vapor

σLV

σSL

σSV

θSV

θSL

R

Asv

Asl

τ/R

Figure 2.28: Schematic cross section of a solid lens nucleus forming at the liquid-
vapour interface. Asl and Asv are the solid-liquid and solid-vapour interfacial surface
areas respectively and R is the radius of the lens. The three arrows originating from
the 3-phase contact are the force vectors of the surface tensions σij.

the liquid phase, can be expressed by:

∆G = n∆µ + σslAsl + σsvAsv − σlvAlv , (2.32)
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where ∆µ is the difference in chemical potential between the metastable liquid phase

and the stable solid, σij is the surface tension between phase i and phase j and Aij

is the respective surface area. The minus sign in front of the liquid-vapour surface

free energy term accounts for the surface area lost due to the appearance of the

embryo. Under the condition of mechanical equilibrium, the contact angles θsl and

θsv can be obtained from Neumann’s triangle construction[60] as

cos θsl =
σ2

lv + σ2
sl − σ2

sv

2σslσlv

, cos θsv =
σ2

lv + σ2
sv − σ2

sl

2σsvσlv

. (2.33)

The volume of the solid embryo containing n atoms is

nv =
π

3
R3A(θsl, θsv), (2.34)

where R is the radius of the lens, v is the volume per molecule in the crystal and

A(θsv, θsv) =
sin θsl(2 + cos θsl)

(1 + cos θsl)2
+

sin θsv(2 + cos θsv)

(1 + cos θsv)2
. (2.35)

The interfacial surface areas are given by

Asl =
2πR2

1 + cos θsl

, Asv =
2πR2

1 + cos θsv

, (2.36)

where

R = n1/3

[
3v

πA(θsl, θsv)

]1/3

(2.37)

is obtained by solving Eqs. (2.34) and (2.35). The lens model was originally in-

troduced to study droplet formation of the liquid vapor interface without the line

tension [61]. A fit without a line tension contribution only provides a fit similar to

that of CNT, and only if we significantly reduce the difference between σsv and σlv.

To fit the shape of the free energy curves calculated in our simulations we need to

account for both the line tension τ and its curvature correction, τ0. Auer and Frenkel

[27], also found that these terms played an important role in the heterogeneous

freezing of hard sphere colloids at a wall. By including the line tension term in
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the mechanical equilibrium analysis at the three phase contact line we obtain size

dependent contact angles such that:

cos θsl =
σ2

lv + σ2
sl − σ2

sv − 2σlvτ/R + (τ/R)2

2σsl(σlv − τ/R)
, (2.38)

and:

cos θsv =
σ2

lv − σ2
sl + σ2

sv − 2σlvτ/R + (τ/R)2

2σsv(σlv − τ/R)
. (2.39)

The free energy may be cast as

∆G(n) = n∆µ + R2

[
2πσsl

1 + cosθsl

+
2πσsv

1 + cosθsv

− πσlv

]
+ 2πR

[
τ +

τ0

R

]
. (2.40)
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Figure 2.29: Phenomenological model data fits to the calculated free energies for
the 456 atom cluster at T = 710◦K. The lens model with the line tension included
(solid line) and the CNT model (dashed line)

By fitting function (2.40) to our data at 710◦K, and using ∆µ, σsl, τ and τ0
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as fitting parameters, we obtained: σlv = 0.18J/m2, τ = −1.17 × 10−11J/m and

τ0 = 3.92× 10−21J . Due to the non linear nature of the numerical fit, we cant

guarantee that the values for these three parameters are those at the global minimum

for the data fit and there is nothing in the equations that excluding the possibility

of finding a positive line tension. Nevertheless, a negative value of this parameter

would help to explain why smaller embryos have a greater fraction of atoms in the

cluster surface. A negative line tension acts to expand a lens of a given volume or

number of particles. This negative line tension thus, flattens the lens and pulls more

particles into the surface of the solid embryo. The inset of fig. (2.27), relates the

number of atoms in the surface of the largest solid embryo. At larger embryo sizes,

the line tension becomes less dominant and the surface terms will act to make the

lens more spherical-like reduces the number of surface atoms.

For matters of comparison, we also fit the CNT core nucleation model to our

data at the same temperature of 710◦K using the chemical potential µ and σsl

as adjustable parameters and assuming a spherical geometry for the embryo. The

resulting σsl = 0.085J/m2 is the same as that obtained from direct measurements of

the rate [21]. We see in Fig (2.29) that the CNT model clearly fails to predict the

correct shape of the barrier but does obtain a close estimate of the barrier height.

In contrast the lens model captures the essential features of the free energy plots.

2.8 Summary

We have used computer simulation techniques to calculate the nucleation free

energy barrier to freezing in gold nanoparticles and show that the solid embryos

form at the liquid-vapour interface. While we use a partial wetting model at a bulk

interface to fit our data, adjusting the model for a realistic nanoparticle model that

includes the curved liquid-vapour is only likely to change the quantitative values and

the shape of the free energy curve for small embryos is still going to be dominated

by the line tension. The present thesis work represents the first direct calculation

of a free energy barrier for the nucleation process in a nanoparticle.
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Chapter III.

Thermodynamic Stability of the Liquid Phase

In this chapter we address the question: Is there a limit of stability to the liquid

phase of a cluster? This is a fundamental question that goes to the very heart of our

understanding of what a liquid is, and has important implications for understand-

ing freezing mechanisms and aspects of the glass transition in deeply supercooled

liquids. The spinodal of a phase is usually described in terms of the stability criteria

outlined in Section 1.1.2 and Appendix A-I, but in terms of nucleation the limit

of stability is defined as the point at which the nucleation barrier goes to zero. In

Chapter II, we saw that the nucleation barrier remained finite at all temperatures,

which is consistent with the predictions of classical nucleation theory and suggests

there is no spinodal. However, we also note that the simulation techniques used to

obtain the free energy barrier for nucleation are really only appropriate for systems

that are only mildly metastable where the appearance of an embryo is rare. To over-

come this we introduce a free energy work function to describe the stability of the

cluster in section (3.1). In subsection ((3.2)) we use molecular dynamics simulations

to search for a kinetic signature of the limit of stability.

3.1 Free energy barrier from the largest

embryo distribution.

We will use the size of the largest embryo in the cluster, nmax as our Landau type

order parameter to define the state of the cluster. Clearly, if nmax = 0, the cluster

must consist of only liquid-like atoms while at the other extreme, if nmax = N , then
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the cluster must be completely frozen. The advantage of using this order parameter

is that the state of the cluster is uniquely defined by the largest embryo and hence

we can rigourously define a free energy based on the probability P (nmax), of finding

the cluster with the largest embryo nmax, given by the relation [26]

∆F (nmax)/kT = − ln P (nmax) . (3.1)

In particular, we do not have to rely on arguments involving the rarity of the embryo

in order to write eqn. (3.1) as was required in the case of Nn and eqn. (1.25). If we

set F (nmax)/kT = 0 at nmax = 0 then ∆F (nmax)/kT is the work required to take

the cluster to a state where the largest embryo is of size nmax.

An important distinction between F (nmax) and the work required to form an embryo

of size n, F (n), is that F (nmax) is the work required to change the state of the entire

cluster, rather than a work associated with the formation of a particular sized embryo

within the cluster.

We can in fact relate P (nmax) and Nn using the rarity of clusters as follows [26]:

Let Pn be the probability that there is at least one cluster of size n in the system,

and Pn(i) be the probability that there are exactly i clusters of size n. Then,

Pn = Pn(1) + Pn(2) + Pn(3) . . . (3.2)

N(n) = Pn(1) + 2Pn(2) + 3Pn(3) . . . . (3.3)

A rare cluster of size r is defined such that that Pr(1) is small, and additionally,

the appearance of a rare cluster is independent of prescense of other embryos in the

clusters, i.e. Pr(2) ≈ Pr(1)×Pr(1) ≈ 0. As a result, Pn = N(n). [25, 41]. Also, two

rare clusters of different sizes appearing at the same time, occurs with a vanishing

probability Pr+m(1) × Pr(1) ≈ 0 [assuming Pr+m(1) < Pr for m > 0, i.e. larger

clusters are rarer], and so a rare cluster will also be the largest cluster in the system.

Finally, we obtain Pn(1) = Pn = N(n) = P (nmax), for n ≥ r (the equality holds up

to a normalization constant that is irrelevant in determining the free energy).
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To calculate P (nmax) we use the same simulation techniques, conditions and

simulation run lengths used in Section (2.5) to calculate the nucleation free energy

barriers. Using eqn. (1.35) with the biasing potential given by eqn. (2.8) we have

〈P (nmax)〉 =
〈P (nmax)〉C exp [φ(nmax)/kBT ]

〈exp [φ(nmax)/kBT ]〉C
. (3.4)

In fig. (3.1 left) , we show the histograms in the constrained space, for a simula-

tion equilibrated at 750◦K. Each fragment of the piecewise distribution belongs to

a node with umbrella centers n0,ν = {0, 10, 20, 30, 40, 50, 60, 70}, part of a parallel

tempering plus umbrella sampling scheme comprising eight different temperatures.

Tµ[◦K] = {650, 660, 670, 680, 690, 710, 730, 750}. Fig. (3.1 right), is the result of

applying eqn. (3.4) to the respective series of constrained embryo distributions.
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Figure 3.1: Left: Biased piecewise histogram with respect to the nmax and umbrella
centers. Right: Piecewise construction of the free energy from the histograms in the
left. The system is a 456 atom cluster at a temperature T = 750◦K

The alignment of free energies in each sampling window was made according to

eqn. (2.14), using a 20 order polynomial for the function Γ(n) =
∑kmax

k=1 akn
k + c,

however excellent fits can be obtained by simply adjusting the “c” constants for

every node. Figs. (3.3) compare the free energies calculated using eqn. (3.1) and

eqn. (2.12). We can see that at high temperatures, where the system is only mildly

supercooled, the two free energies are equivalent over a significant portion of the
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curves as we expected, and where the two free energies only differ for very small

embryo sizes. However, at T = 660◦K the curves are very different.

In fig. (3.2) we show ∆F (nmax)/kT over a range of temperatures. At high

temperatures, we see an initial decrease in the free energy to a minimum at a small

nmax indicating that the supercooled liquid cluster only contains a small solid-like

embryo. Beyond the minimum, it requires work to increase the size of the largest

solid embryo in the cluster which suggests that the cluster is in fact metastable. That

is, small fluctuations on nmax around the minimum, are locally stable. However,

larger scale fluctuations, that take the system beyond the critical embryo size cause

the cluster to freeze since the cluster can lower its free energy by increasing the size

of the largest embryo and moving towards the crystal state.
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Figure 3.2: Free Energy barriers for various temperatures, for the 456 atom cluster.
The spinodal temperature is shown with dark full circles, the light dark circles on
each free energy curve signal the position of the critical largest embryo size n∗max.
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As the temperature is lowered the free energy barrier separating the metastable

liquid state and the crystal becomes lower and the maximum moves towards smaller

values of nmax. Eventually, we reach a temperature below which there is no barrier.

At this temperature any fluctuation in the cluster that increases the size of the

largest embryo decreases the free energy. This represents the limit of stability of the

liquid phase of the cluster.

To clearly identify the spinodal point we define a free energy barrier ∆F (n∗max)

as the difference in free energy between the maximum in the free energy occurring

at n∗max and the free energy at the minimum as described in fig. (3.4 top left). In

table (3.1), we show that the barrier goes to zero at T = 660◦K while the critical

size of the largest cluster at the spinodal remains finite as the spinodal temperature

is approached (also see fig. 3.4 right). Fig. (3.3 right), compares ∆F (nmax)/kT

with ∆F (n)/kT , obtained in Section (2.5) at the spinodal temperature T = 660◦K.

Clearly there appears to be a significant barrier to embryo formation as calculated

from the equilibrium distribution at the point our present work suggests the liquid

phase is unstable. We should stress that as previously described, these two free

energies are fundamentally different, except in the regime of rare embryos.

Figure 3.3: Comparison of free energy barriers for nucleation with respect to the
nmax and embryo distribution n with respect to two different temperatures. The
relative position of the ∆F (nmax)/kT curves has been adjusted to maximize overlap
with respect to the ∆F (n)/kT plots.
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Figure 3.4: Top left. Barrier heights are computer with respect to the minimum
in the curve, for small embryo sizes. Left, down. Linear like relationship for the
embryo size as a function of temperature. Right. Barrier height as function of the
largest embryo size, nmax. for the 456 atom cluster.

T [◦K] n∗max[atoms] ∆F (n∗max)/kT []

650 - -
660 12 0.0
670 19 0.16
680 28 0.60
690 36 1.18
710 50 2.40
730 70 4.22
750 - -

Table 3.1: Free energy barriers to nucleation with respect to the critical largest
embryo size n∗max. The first to this data are shown in fig. (3.4).
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3.2 Molecular dynamics calculation of nucleation

rate.

The objective of the present section is to provide additional support to the idea

that there is a limit of stability to the liquid phase of cluster. To this effect, we em-

ployed molecular dynamics simulations to calculate the nucleation rate in a fashion

that is independent of the free energy barrier calculations carried out in Sections

(2.5) and (3.1).

If a liquid cluster, equilibrated at a temperature above the freezing temperature

is instantaneously quenched to a temperature below freezing, then the system will

eventually nucleate to form the solid. We can calculate the nucleation rate by

considering an ensemble of such runs. Assuming this process is described by a first-

order rate law, the rate of nucleation J can be obtained from the relation [22, 63]

ln [Rx(t)] = −JVc (t− t0) , (3.5)

where Rx(t) is the fraction of un-nucleated systems at time t, Vc is the volume of

the system and t0 is the lag time, i.e. the time required to achieve a steady state of

precritical nuclei.

To make use of eqn. (3.5), we need to identify when a cluster has nucleated.

While a number of different criteria have been used [26], to be consistent with our

barrier calculation work we will follow the size of the largest embryo in the system

as a function of time and say the crystal has nucleated once nmax has crossed some

critical size, denoted nc, for the last time in the simulation. We selected nc = 75 as

this size is larger than any of the critical embryo sizes calculated in this study.

We prepared a set of starting configurations by equilibrating a cluster to an initial

temperature Ti = 900◦K, which is well above the freezing temperature and save

configurations every 5 × 105 time steps. The simulation time between one starting

structure and another serves to ensure that the initial configurations are independent

from each other. Our MD simulation uses a fifth order Verlet predictor corrector
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MD algorithm with a time step of 0.25 × 10−12 seconds in the {N, V, T} ensemble

using velocity re-scaling every 10 time steps so constant temperature simulations

could be carried out. The starting configurations were quenched to one of the final

temperatures Tf [
◦K] = {600, 630, 640, 660, 680, 700, 720, 740, 760}, and the largest

embryo size was calculated at every picosecond of the simulation. A total of 3× 102

quenches were carried out at each temperature. The simulations were terminated

after a total time of 500ps.

Fig. (3.5) shows three sample time series where Tf = 660◦K. The runs A, B

and C, from fig. (3.5) have nucleation times 52,190, and 343 ps respectively. In

particular, run C highlights the need to select the last time the system crosses nc as

the nucleation time. The growth of the embryo is a stochastic process with atoms

randomly adding to and leaving from the embryo. As a result, in run C, the embryo

appears to grow beyond the critical size at an early time but it then dissolves later

before finally crossing the barrier into the solid state. In general, it turns out that

the nucleation rate is relatively insensitive to the exact selection of the nucleation

criteria used to define the nucleation time, while the lag time obtained from the

same calculation is very sensitive[26]. We are however, only interested in the rate

to nucleation.

Fig. (3.6 left), shows the fraction of un-nucleated clusters as a function of time

for all the temperatures studied. Even at the slowest rate, less than 5 − 7% of the

clusters remained liquid by the end of the simulation run. Fig. (3.6), on the right

shows the linear fits to the plots of the negative of the logaritm of un-nucleated

systems as a function of time. By using eqn. (3.5), we notice that the slope of these

plots is equal to JVc. This data is summarized on table (3.2) and shown in fig. (3.7).

The width of the error bars in the figure is equal to two standard deviations.

To extract the rate of nucleation from table (3.2), we need to factor out the

volume of the cluster. Estimates for this volume were obtained via the Voronoi

tessellation method [64], which is essentially a space-filling partition of space among

a given set of points (in this case the atom coordinates), and where convex polyhedral

regions are assigned to each point to find which atoms are in the surface. The
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Figure 3.5: Evolution of the largest embryo size for three different configurations of
the 456 atom cluster.

Figure 3.6: Left: Fraction of Un-nucleated systems. 456 atom cluster. Right: Taking
the logarithm of the fraction of un-nucleated. The plot shows the linear fits from
which the nucleation rate may be extracted by using eqn. (3.5).

total volume is therefore, the sum of the volumes of many individual polyhedra.

The estimates for the volume are further refined by means of the “rolling sphere

algorithm” [65] in which a probe sphere is rolled against a cluster consisting of

hard spheres, resulting in a smooth surface from which the volume may be refined.

A radius of 1.5Å was employed for both, the gold atoms and the probe sphere.
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Temperature [◦K] JVc[ps
−1] stdev

600 0.0710 0.002
610 0.0700 0.003
620 0.0660 0.002
630 0.0610 0.002
640 0.0577 0.002
650 0.0529 0.002
670 0.0395 0.002
680 0.0343 0.002
690 0.0291 0.002
700 0.0229 0.002
710 0.0180 0.002
720 0.0155 0.002
730 0.0122 0.003
740 0.0102 0.003
750 0.0078 0.004
760 0.0056 0.003

Table 3.2: Calculation of the rate of nucleation from the slope of the logaritm of
un-nucleated systems vs time. The slopes are obtained from the slopes of the first
order approximations to data illustrated in fig. (3.2), right hand side.
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Figure 3.7: Left. Estimates of the dynamic rate from the slope of the logarithm of
un-nucleated clusters. Right. Estimate of the volume of the cluster.

An average of over 100 configurations around the melting temperature of 750◦K,

resulted in a volume estimate of 7 × 103 ± 250Å3, for which the resulting averaged

structure is spherical-like.

From the error deviations in the volume of the cluster Vc, and the quantity JVc,
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from table (3.2), the largest error for the nucleation rate is less than 6×1035m−3s−1.

Finally, fig. (3.8) shows the rate of nucleation as a function of temperature, over a

range of temperatures from T = 760− 600◦K.
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Figure 3.8: Estimates of the dynamic rate to nucleation as a function of tem-
peratures for the 456 atom cluster. The volume of the cluster has been fac-
tored out from the data shown on table (3.2) and shown on fig. (3.7) left.
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3.3 Summary

The rate of nucleation generally increases with decreasing temperature, as ex-

pected, since the nucleation barrier is getting lower as the system becomes more

supercooled. This does assume that kinetic factors are not strongly temperature

dependent. However, we see a marked change in the temperature dependence of J

around T = 700◦K with the rate increasing more rapidly than expected. Such a

trend would not be predicted on the basis of the free energy barriers calculated in

Section (2.5). In fact, the temperature dependence of ∆F (n)/kT would suggest the

rate of nucleation would become constant. i.e. the derivative of the rate with respect

to temperature would become less negative with decreasing temperature. While the

increase in the slope of the J vs T curve at T = 700◦K occurs at a temperature

above our predicted spinodal point, it does coincide with the point where the barrier

in ∆F (nmax)/kT is in the order of kT , at which point the system can easily go over

the barrier. This might explain the temperature dependence of the rate and support

the idea that there is a limit of stability for the liquid at around T = 660◦K.

An interesting feature of the spinodal predicted in our study is that the size of

the critical embryo remains finite as the free energy barrier goes to zero. Mean field

theories [35, 62] of the spinodal suggest that the critical embryo should diverge in

size as the limit of stability is approached because of the ensuring very long range

fluctuations. However, our results are consistent with recent simulations of Pan et

al [44] who studied nucleation in a deep supercooled bulk Ising model.
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CONCLUSIONS

Constrained Monte Carlo simulations, combined with parallel tempering, are

used to calculate the free energy barriers to freezing in gold nano-clusters as a

function of temperature.

First, we are able to prove that the difference between classic nucleation theory

and our simulations is due to surface nucleation effects in which the solid embryo

wets the surface of the cluster. This phenomena is incorporated in different phe-

nomenological models which are built taking a series of refinements over classic

nucleation theory and incorporating different surface and linear free energy terms.

Second, we propose a nucleation parameter with which we are able to iden-

tify a kinetic spinodal temperature where the nucleation barrier goes to zero and

find that the critical cluster size remains finite at the limit of stability of the fluid

phase. Molecular Dynamics simulations are used to examine the dynamics of freez-

ing around kinetic spinodal temperatures, supporting the predictions of our Monte

Carlo calculations.
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Appendix I. Thermodynamic Stability

A phase transition is the transformation of a system from one thermodynamic

phase into another. The distinguishing characteristic of a phase transition is the

change in one or more physical properties with little change on the others, for ex-

ample the abrupt change in heat capacity with respect to a small change in a ther-

modynamic variable such as the temperature signals a first order phase transition.

In order to define stability from a thermodynamic standpoint, let us first consider

a system confined to a definite volume “V”, with a constant number of particles “N”

and no interchange of heat with the surroundings, i.e. the entropy “S” is constant.

The conditions for stability of this system with respect to an initial state may be

established by testing the changes with respect to all the possible variations under

constant {S, V, N} parameters:

[∆U ]S,V,N ≥ 0. (A-1)

If we expand L.H.S. of eqn. (A-1) as a variational of the changes in energies we

obtain,

[δU +
1

2!
δ2U +

1

3!
δ3U + . . . ]S,V,N ≥ 0. (A-2)

A vanishing linear term and a positive second order variation δ2U ensure that the

minimum is stable for all variations subject to constant {S, V, N}:

Stable equilibrium δU |S,V,N = 0, δ2U |S,V,N > 0. (A-3)

while for both terms equal to zero we will have reached the limit of stability:

Unstable equilibrium δU |S,V,N = 0, δ2U |S,V,N = 0. (A-4)

The vanishing of the first order term δU constitutes therefore the equilibrium cri-

terion, the positiveness of the second order variational δ2U constitutes the stability

criterion. Thus to test the limit of stability, we require that the lowest order, non-

vanishing energy variational of the energy functional be positive.
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Stability of Pure Fluids

The internal energy for a fluid at constant temperature “T”, pressure “P” and

chemical potential “µ” is given by the expression:

dU = TdS − PdV + µdN, (A-5)

since energy and entropy are not controlled experimental variables an alternative

formulation of stability needs to be sought. By making changes of variables via

Legendre transformations1 we define the Gibbs free energy as

G = U − TS + PV. (A-6)

Substitution of eqn. (A-5) into the eqn. (A-6) yields:

dG = −SdT + V dP + µdN. (A-7)

Relation (A-5) is employed to define the conditions for stability in a manner

analogous to eqs.(A-3) and (A-4). If we further impose the condition that we move

along an isotherm, we are left with:

∆G = −V ∆P + N∆µ. (A-8)

The new equilibrium conditions are formulated as [∆G]T,P,N ≥ 0 and the variational

formulation similar to that in eqn. (A-2) can be used to test for stability criteria.

When we have a multiphase system it is possible to write the expression for the

internal energy in a more general way:

dU = TdS − PdV +
k∑

j=1

µjdNj, (A-9)

Eqn. (A-9) describes changes in energy, entropy, volume and number of molecules

1These changes of variables are Legendre transformations, for example the Helmoltz free energy
F is defined as F = U − TS, i.e. we change the variable entropy “S” by the variable temperature
“T”. i.e. The total derivative will now be a function of the changes in temperature, instead of the
changes in temperature.

87



of a pure fluid along reversible quasistatic paths with k different fluids in thermo-

dynamic equilibrium. We can further simplify eqn. (A-9) by writing:

dU =
k+2∑
j=1

YjdXj, (A-10)

with

Yj =

(
∂U

∂Xj

)
X1,X2,...,Xj=1,Xj+1,Xj+2,...,Xk+2

(A-11)

The condition for stability δ2U |S,V,N > 0 can be written as:(
∂Yk+1

∂Xk+1

)
Y1,Y2,...,Yk,Xk+2

> 0, (A-12)

for a system in stable equilibrium (or metastable). For the limit of stability we have:(
∂Yk+1

∂Xk+1

)
Y1,Y2,...,Yk,Xk+2

= 0, (A-13)

These equations may only be used when the first variational is zero, i.e. δU |S,V,N = 0.

A detailed proof of eqs. (A-12) and (A-13) may be obtained from the literature. [33]

Gibbs Droplet Model

When we are dealing with interfaces where the number of particles in the system

is fixed, we can no longer use eqn. (A-5) for the energy. Let us define the internal

energy for this system : U = TS − PV + µN + σA. Under constant T , P , σ and N

we obtain:

dU = TdS − PdV + Ndµ + σdA, (A-14)

where µ is the chemical potential of the system, σ is the energy cost of building

an interface, and A is the surface of the interface. By taking the differential of the

Gibbs free energy function G = U −TS + PV and substitution of the differential of

the internal energy in eqn. (A-14) we obtain:

dG = SdT + V dP + Ndµ + σdA, (A-15)
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furthermore, the change in free energies between an initial and a final state taken

along the isotherm may be expressed by:

∆G = V ∆P + N∆µ + σA. (A-16)

We may write in the manner of eqs. (A-13) and (A-10), an expression for the limit

of stability for the Gibbs condition [∆G]|Xi
≥ 0 as follows:

(
∂Y2

∂X2

)
Y1,X3,T

> 0, (A-17)

for X = {σ, V, N}, and {A, P, µ}.

(µ, A, P ) ⇒
(

∂σ

∂A

)
N,P,T

> 0 (P, A, µ) ⇒
(

∂σ

∂A

)
V,µ,T

> 0 (A-18)

(µ, P, A) ⇒
(

∂V

∂P

)
N,A,T

> 0 (A, P, µ) ⇒
(

∂V

∂P

)
σ,µ,T

> 0 (A-19)

(P, µ, A) ⇒
(

∂N

∂µ

)
V,A,T

> 0 (A, µ, P ) ⇒
(

∂N

∂µ

)
σ,P,T

> 0 (A-20)

Eqn. (A-19 right), is especially useful for the experimentalist, since it may be

compared to the isothermal compresibility κT . To get the condition on the limit of

stability, with the spinodal temperature defined as the temperature at which:

κT = − 1

V

(
∂V

∂P

)
T

= 0. (A-21)

For our detailed models, the variational expansion in the manner of eqn. (A-2) is

preferred:

[δG +
1

2!
δ2G +

1

3!
δ3G + . . . ]Xi

≥ 0. (A-22)

If we construct a polynomial expression dependent solely on nmax, the condition of

equilibrium is reduced to testing the points where the first derivative respect to the

order parameter is zero, and the condition of stability will be given by the second

order derivative at the points where the equilibrium condition is met.
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Appendix II. Equilibrium cluster distribution

Embryo size distribution vs Largest embryo probability.

The partition function for a system of N particles on a fixed volume and con-

stant temperature T, is given by the expression

Q(N, V, T ) =
1

Λ3NN !

∫
drNexp[−βU(rn))], (A-23)

where U(rn) is the potential energy of a configuration of atoms with positions defined

by rn and Λ = h/
√

2πmkT is the thermal Broglie wavelength. For now, we are to

assume a criterion with which identification of embryos within a cluster of atoms is

known, hence we define a special delta function as follows.

δn(rn) =

1 if all n particles belong to the embryo,

0 otherwise.

(A-24)

In addition to this, we define the function δr(r
n), which ensures that all the other

particles do not belong to the embryo.

δr(r
n) =

1 if no other particle belongs to the embryo,

0 if any other particle belongs to the embryo.

(A-25)

These two special delta functions are connected via the relation.

δr(r
n) =

N∏
i=n+1

[1− δn+1(r
n, ri)] (A-26)

We are now, in position to define a partition function for a system that contains
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at least one n-particle embryo

Qn(N, V, T ) =
1

Λ3nn!

1

Λ3(N−n)(N − n)!

×
∫

drn

∫
drN−nδn(rn)δr(r

N) (A-27)

×exp[−βU(rn, rN−n)],

where is should be noted that there are as many as N !/(n!(N − n)!) ways to select

an n-particle embryo,

Qn(N, V, T ) =
1

Λ3nn!

1

Λ3(N−n)(N − n)!

×
∫

drN−nexp[−βUN−n(rN−n)] (A-28)

×
∫

drnδnδrexp[−βUn(rn)]

×exp[−βUn,N−n(rn, rN−n)].

The effective potential for all the particles in the n− sized embryo is defined as

U ′
n = Un − kT ln[δn], (A-29)

and the interaction between the particles in the largest embryo size and the others

U ′
n,N−n = Un,N−n − kT ln[δr]. (A-30)

Substitutions of eqs. (A-29), (A-30) into eqn. (A-28) leads to

Qn(N, V, T ) =
1

Λ3nn!

1

Λ3(N−n)(N − n)!

×
∫

drN−nexp[−βUN−n(rN−n)] (A-31)

×
∫

drnexp[−βU ′
n]exp[−βU ′

n,N−n].

Multiplication of the right-hand side of (A-31) by Q(N − n, V, T )/Q(N − n, V, T )
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leads to:

Qn(N, V, T ) =
1

n!Λ3n
Q(N − n, V, T ) (A-32)

×
∫

drn < exp[−βU ′
n,N−n] > exp[−βU ′

n],

where we have defined the mean force potential:

< exp[−βU ′
n,N−n] >=

∫
drN−nexp[−βU ′

n,N−n]exp[−βUN−n(rN−n)]

(N − n)!Λ3(N−n)Q(N − n, V, T )
. (A-33)

The partition function for an n-particle embryo is defined as

Qn(N, V, T ) = Q(N − n, V, T )qn(V, T ). (A-34)

The probability to find an embryo of size n in the N particle cluster is given by

Pn =
Qn(N, V, T )

Q(N, V, T )
=

Q(N − n, V, T )

Q(N, V, T )
qn(V, T ).

Since the free energy of the system is given by F = −kT ln[Q], the above equation

may be written as

Pn = qn(V, T )exp[+βµn],

qn(V, T ) =
1

n!Λ3n

∫
drnexp[−βUeff ].

Where the effective potential Ueff is defined as Ueff =< Un,N−n > +U ′
n, thus we

have:

qn(V, T ) =
1

n!Λ3n

∫
dRcm

∫
dr′

n−1
exp[−βUeff ],

qn =
V

Λ3
n

× qinternal
n ,

and the de Broglie wavelength for the embryo is defined by Λn = h/
√

2πnmkT and:

qinternal
n =

n3/2

Λ
3(n−1)
n

∫
dr′

n−1
exp[−βUe].

An intensive probability distribution will be defined as:

Pn

N
=

1

ρΛ3
nn!

qinternal
n exp[−βµn],
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where ρ is the number density of the system. For rare embryos the probability can

be written as

Pn = pn(1) + pn(2) + · · · ≈ pn(1),

where pn(i) is the probability that there are exactly i embryos of size n. Furthermore,

if we assume that the formation of different embryos is uncorrelated then it follows

that pn(i) = [pn(1)]i, then we can choose to neglect higher order terms as long as

the probabilities associated are small, therefore the average number of embryos of

size n in a cluster with N atoms equal to

Nn = 1pn(1) + 2pn(2) + 3pn(3) + . . .

For rare clusters we have the following approximation,

Pn

N
≈ Nn

N
=

1

ρΛ3
n

qinternal
n exp[−βµn]. (A-35)

At this point, it is important to stress that this quantity is classical, and hence

should not depend on Planck’s constant h, and in fact it does not, as the ideal gas

part of the chemical potential µ = µex + kT ln[Λ] cancels Plancks constant:

Nn

N
= exp[−∆F (n)/kBT ]. (A-36)

Eqn. (A-36) is used to obtain the free energy to crystallization ∆F (n) with

respect to the liquid phase. The quantity Nn is obtained via ensemble averages, i.e.

< Nn >

N
=< exp[−∆F (n)/kBT ] > . (A-37)
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Appendix III. Nucleation Program

This section describes the computer code used to compute the free energy barriers

for small clusters. The thermodynamic justification for such an algorithm has been

described on section (1.2) and appendix A-II. The order parameter was introduced

on section (2.4). The program consists on four main sections:

• Initialize.

• Distribute Workload.

• Check Point.

• Parallel Tempering.

We have implemented this code (see fig. A-2) in the fortran 90 programing language,

and have used Message Passing Interface Libraries(MPI).

III.A Initialization

We start by reading the options.in input file which specifies the thermodynamic

parameters for the simulation. The first two lines of the file define the size of the

temperature array containing all the temperatures for the parallel tempering process.

The third line defines the dimensions of the periodic boundaries at which the sim-

ulation is carried out ( Angstrong units). Rows four, five and six are loop variables

for number of cycles, the number of trajectories per cycle and the number of Monte

Carlo steps per trajectory. Line number seven defines the number of configurations

to be saved for post-processing. Line eight defines a value for the umbrella sampling

parameter and the last two input lines are unused flags. A sample input file is shown

on fig. (A-1). Once the data in the input file has been read, the program processes

the pseudopotential file, setting cluster criteria parameters. It is straightforward
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Figure A-1: Typical options.in configuration file.

to change these parameters as well as the corresponding pseudopotential to recom-

pile the code and carry out simulations for other unicomponent cluster systems.

Furthermore, the code can be easily modified to study multicomponent systems.

Ideally, the number of processors required by a simulation would be chosen de-

pending on the number of temperatures r and umbrella centers s that one requires,

with the number of processors np given by np = r × s. However, the computers at

which we ran calculations require the specification of a restricted number of process-

ing elements, therefore in practice one chooses a range of temperatures and a specific

number of processors. From these, the number of umbrella centers is calculated for

s = np/r.

The elements of the umbrella center vector are preset to start at n0 = 0 with in-

crements of ∆n = 10, although again, it is straightforward to recompile the program

to produce increments in any integer number.

III.B Workload Distribution

When the MPI directive is used to call the parallel program, every processor

is identified with a unique ID number, a processor number ipe ranging from 0 to

np− 1. We associate every processor ID to an element of the r× s square grid with

coordinates (n0, T0).

Once the umbrella center and temperature pair (n0, T0) for a processor has been

defined, the processor seeks to load atomic configurations from a file containing

the most recent configuration for the respective temperature and umbrella centers,
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   DISTRIBUTE         
   WORKLOAD 

Processor ip:         n0(ip), T0(ip) 
    
   

1 Trajectory 
1 MC step=nats moves 

Pacc=min[1,exp(-ΔE/kT)] 

Pacc=min[1,exp(-Δϕ/kT] 

Measure nmax       ϕ(nmax) 

  1 Cycle 

Write Statistics 

    All Nodes 

   PARALLEL       
  TEMPERING 

Pswap(i,j)=min[1,exp(-[1/kTi-1/kTj][Ui-Uj])] 

Pswap(i,j)=min[1,exp(-{ΔWold-ΔWnew}/kT)] 

            Master Node 

Temperature Tempering 

Umbrella Center Tempering  COUNT 

INITIALIZE 
                 All Nodes 

- Read initial configuration/ Make replicas. 
 - Initialize nmax vector.{nmax1,nmax2, …nmax,r} 

- Set up grid {n01,n02, …n0r}x{T01,T02,…T0s} 

  CHECK POINT 
All Nodes 

- Write files for post-processing. 
- Write last accepted step. 

 R 

 R 

Figure A-2: Flow diagram for our Monte Carlo algorithm. Sampling techniques are
discussed on the first chapter of this thesis work. Appendix (I) justifies the order
parameter.

96



i.e. the simulation is restarted with the latest available coordinates. When the

simulation runs for the first time, every processor loads a replica of the atomic

coordinates located at the atoms.xyz file.

On the xyz format of the configuration files, the first line specifies the number

of atoms and the second line is used to provide a short description , -usually text-

describing the file contents. The rest of the file contains a four element listing that

consists of atom type, and the X, Y, Z coordinates for each atom.

When the atomic coordinates for all the configurations for a cluster have been

read, total energies are computed along with the largest embryo sizes and the

corresponding embryo distribution. It is the task of every processor, to sample

its own configuration according to the parameters specified in their individual-

ized versions of a four dimensional vector which contains umbrella center n0(ipe),

largest embryo size nmax(ipe), temperature T0(ipe), and energy E0(ipe). This vec-

tor Vin(ipe) = (n0, nmax, T0, E0), may have its second and fourth elements modified

based on the Monte Carlo algorithm.

Trajectory Loop.

The Monte Carlo scheme followed by every processor has two main loops, namely

the Monte Carlo steps loop and a Monte Carlo trajectory loop, with the former,

nested inside the later.

Once the MC steps loop has been completed we evaluate the largest embryo

size nmax. Ideally we would like to measure this order parameter every Boltzmann

step on a single loop, we chose to make use of the fact that the largest embryo size

fluctuates slowly as compared to the total energy, and hence we are able to avoid

the need of making repeated nmax measurements.

The evaluation of the nmax order parameter in fact, requires computational time

that scales as a polynomial ratio with respect to the number of atoms in the cluster.

Unlike the total energy with which we can employ a range of computational algo-

rithms to evaluate a difference in total energies made by a single Boltzmann move

97



(see section 1.2) to make efficient calculations we require to process information from

all the atoms to compute nmax.

The criteria for acceptance of a new cluster configuration is a function of the old

and new largest embryo sizes and is given by:

Pacc = min[1, exp(−∆W/kT )], (A-38)

with ∆W = Φ(nmax,old)− Φ(nmax,new).

The umbrella potentials have harmonic forms, and are function of the umbrella

parameter κ and the umbrella center n0(ipe).

Φ(nmax) =
1

2
κ(n0 − nmax)

2. (A-39)

When a trajectory has been accepted the embryo distribution and largest embryo

size is updated, otherwise we reset the simulation to the values of the last accepted

configuration, this includes retrieving old atomic coordinates as well as last embryo

size and total cluster energy.

The combined effect of evaluating a chain of MC steps, followed by testing the

embryo size and writing down the output to log files is termed of as one trajectory.

The number of trajectories that a processor performs is controlled by the fifth

flag in the options.in file, “Number of trajectories per cycle”. The whole chain of

trajectories is termed of as once cycle.

When a cycle has been completed, the four dimension vector

Vout(ipe) = (n0(ipe), nmax(ipe), T0(ipe), E0(ipe)) is turned over to the master node for

purposes of tempering.

Monte Carlo Steps Loop.

In the Monte Carlo steps process, we perform a series of individual Monte Carlo

moves (MC moves) with one MC move defined as the attempt to randomly select

and move N atoms in an N -atom cluster. The acceptance of every atomic move-

ment is ruled by Boltzmann sampling statistics where the probability of acceptance
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is given by:

Pacc = min[1, exp(−∆E/kT )], (A-40)

with ∆E = Enew −Eold the difference in the configurational energies of the systems

once the Boltzmann step has been made. The number of MC moves attempted in

every MC steps loop is controlled by the flag specified in the sixth row of the op-

tions.in file. “Number of MC step/traj”2. At the end of every MC step, we adjust

the magnitude of the random largest possible displacement ∆R in such a way that

the acceptance rate is kept around 50%.

Log files.

The information of every trajectory is committed to two different files.

Nmax .n0.T0 : The purpose of this file is to store information for the largest solid

embryo at every accepted/rejected trajectory. The file contains information with

accepted/rejected configurations, largest embryo size accepted, and cluster energy.

From this file it is possible to evaluate the free energy from the ensemble average

< Nnmax >.

Nn.n0.T0 : This file contains detailed information on the last accepted embryo dis-

tribution. It contains embryo sizes, number of embryos, and largest embryo. From

this file the free energy for the ensemble average < Nn > may be computed. It

is also possible to obtain < Nnmax > as well, with the former file still required to

provide an ensembe average on the energies. i.e. < Enmax > .

III.C Check Point

The checkpoint section of the code was devised as a means to continue a sim-

ulation indefinitely. The idea behind this is to sample the system with the same

thermodynamic conditions until some accuracy criteria in the resulting thermody-

namic property being sampled has been reached. This usually requires much more

time than the largest running time (usually 24:00 hrs) allowed by the high perfor-

2i.e. for nmcsxt = 10 we perform 10 MC steps
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mance facilities we employed 3.

How many times a simulation ought to be executed, depends on the accuracy

with which one desires to compute free energies. For any given Monte Carlo process,

the variance of a sample is related to the number of sampling iterations by an inverse

square root relationship, i.e. σ(P (k)) = 1/
√

(k), with k the number of elements in

the sample, P the measurement, and σ the standard deviation. In practice we

performed calculations until the resulting standard deviations for free energies cold

be set below 1 kT.

In addition to merely computational issues, it is not uncommon that the system

may improperly terminate the execution of a simulation due to scheduled system

maintenance. To this effect we save data in the binary format and update at the

next check point. The files containing the latest accepted configurations have the

generic name ctmp.n0.T0, with n0.T0 the umbrella center and temperature of the

respective processor. Data is saved using binary format on files called ctmp.n0.T0.

In addition to the ctmp files, the program saves information into config.n0.T0

files with the intention of making post-processing of information available. The flag

that controls how many cycles are to pass in between config saving events is defined

by the seventh line in the options.in file.

III.D Parallel Tempering

Once every node has completed a cycle, the master node receives np four dimen-

sional vectors Vout(ipe) = (n0(ipe), nmax(ipe), T0(ipe), E0(ipe)) for parallel tempering,

i.e. the interchange of conditions of simulation may be made based on temperature

or based on umbrella centers. We chose to interchange thermodynamic parameters

instead of atomic configurations for obvious reasons: Swapping configurations would

cost us transferring at least nats× 3× np variables, notwithstanding the amount of

time spent transferring data. Instead we just need to transfer np× 4 parameters.

Our parallel program was preset in such a way that a counter rules that all pro-

3see http:www.westgrid.ca to whom we are grateful for the computing time that made this
project possible
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cessors alternate between trying 10 temperature tempering attempts followed by an

equal number of umbrella center attempts. To this effect I follow a “double-ladder”

approach that I describe below.

Umbrella Center Swaps

We start by selecting a pair of processors with ID’s i = 0, and j = 1, and obtain

all the elements allocated on the respective vectors Vin(i) and Vin(j).

We then move the j flag upwards, i.e. by increments of 1, until we find that the

temperatures of the vector pair are the same, and in such a case we attempt an

umbrella center swap with probability:

Pswap(i, j) = min[1, exp(−[∆Wnew −∆Wold]/kT )], (A-41)

where

Wold = −1

2
κ[nmax(i)− n0(i)]

2 − 1

2
κ[nmax(j)− n0(j)]

2,

Wnew = −1

2
κ[nmax(j)− n0(i)]

2 − 1

2
κ[nmax(i)− n0(j)]

2.

If the acceptance criteria is met, we swap the umbrella centers of the vectors Vin(i),

Vin(j). In such a case the value of the i flag has to be increased, with the flag j reset

to i + 1, this is made to avoid repetition of swapping attempts.

We repeat the raising of the i flag until it reaches a value of i = np− 2 with the flag

j in the interval from i + 1 to np− 1.

Temperature Swaps

Temperature swaps follow an analogous process to that described above. This

time only we are sweeping Vin vectors until we find pairs with the same umbrella cen-

ters. Once we encounter an appropriate pair of vectors, we extract their parameters

and evaluate the acceptance rule:

Pswap(i, j) = min[1, exp((1/kTi − 1/kTj)(Ei − Ej))], (A-42)
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where Ei is the energy of the cluster with ID number i, simulated at the temperature

Tj whereas the cluster with ID number j is being simulated at a temperature Tj and

possesses an energy Ej. The process is followed until we have tried all possible pairs

for tempering. Finally we transfer control to all the processors by feeding to these

the updated versions of the state vectors Vin(ipe). The procedure outlined so far

completes a cycle, which in practice is scheduled to run for twenty four hours, until

the system manager terminates it.

The idea of running the process indefinitely is chosen instead of the alternative

procedure of running a certain amount of cycles for a set amount of time. The

purpose of this is to complete as many cycles as possible and avoid estimating

computation time with the subsequent possibility of reducing available resources. It

will be always possible to restart the program from the last available configurations

until the statistics to guarantee a target degree of accuracy have been accumulated.
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Appendix IV. Detailed Balance.

The general approach followed to demonstrate the validity of a MC algorithm is

outlined below.

• A distribution function π has to be defined. This distribution depends on the

thermodynamic constants of the system.

• The detailed balance condition is imposed, this condition states that the prob-

ability of a system to evolve from an initial state q = o to a final state q = n

must be equal to that from the similar system evolving from state n to state

o. In other words we require:

Φ(o 7→ n) = Φ(n 7→ o), (A-43)

where Φ is the flow of configuration o to n given by the products of the prob-

ability π(o) to be in the configuration o, the probability α of generating the

configuration n, and acc(o 7→ n), the probability of accepting the move.

Φ(o 7→ n) = π(o)× α(o 7→ n)× acc(o 7→ n), (A-44)

• Probabilities of generating a configuration are determined.

• The acceptance rule condition is evaluated until enough statistics are accumu-

lated.

In particular, for the canonical ensemble {N, V, T} the distribution function is

given by

π(rN) =
exp[−βU(rN)]∫

exp[−βU(rN)]drN
. (A-45)

The probability of generating a particular configuration should be independent

of the conformation of the system, hence we have with aid of the detailed equilibrium

condition:

α(o 7→ n) = α(n 7→ o) = α, (A-46)
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Substitution of eqn. (A-46) into the detailed balance condition, eqn. (A-43) and

the further substitution of the sampling distribution (A-45), into expression (A-44),

yields the acceptance rule condition for the {N, V, T} ensemble, already introduced

in section (1.2):
acc(o 7→ n)

acc(n 7→ o)
= exp {−β[U(n)− U(o)]}, (A-47)

The detailed balance condition implies that enough MC energy sampling steps

must be carried out once two configurations equilibrated to different thermodynamic

conditions have been interchanged, this is to ensure that the sampling of embryo

configurations is sampled under equilibrium conditions.

The umbrella sampling plus parallel tempering algorithm utilized in our calcula-

tions consists of 64 nodes, each one with its umbrella center and temperature, and

an associated partition function given by (see section 2.5 ):

QC =
8∏

µ=1

8∏
ν=1

QN,V,Tµ,Hc(µ,ν).

Let us denote the configuration of node i by i = rN
i , and its associated constrained

hamiltonian by H(i) = H(i)0 + φi, where H(i)0 is the unconstrained Hamiltonian

and φi is the bias potential, with an associated Boltzmann parameter βi = 1
kBTi

.

The acceptance rule for a swap between ensembles i, and j, follows from the

condition of detailed balance (A-43) and is given by the expression:

π(i, βi)π(j, βj)× α[(i, βi), (j, βj) 7→ (j, βi), (i, βj)]

×acc[(i, βi), (j, βj) 7→ (j, βi), (i, βj)]

= π(i, βj)π(j, βi)× α[(i, βj), (j, βi) 7→ (i, βi), (j, βj)]

×acc[(i, βj), (j, βi) 7→ (i, βi), (j, βj)]

If we perform simulations in such a way that the probability of swapping umbrella

centers and temperatures occurs with a sampling probability α, we obtain as accep-
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tance rules:

acc[(i, βi), (j, βj) 7→ (j, βi), (i, βj)]

acc[(i, βj), (j, βi) 7→ (i, βi), (j, βj)]

=
[−βiH(j)− βjH(i)]

[−βiH(j)− βjH(i)]
(A-48)

= exp{(βi − βj)[H(i)−H)j)]}.

Since the rate of exchange of umbrella centers and temperatures is not the same

in the course of the simulation, we set different rules for swapping umbrella centers

(umbrella sampling) than for exchanging temperatures (parallel tempering). It is

straightforward to show that eqn. (A-41) and (A-42) correspond to these two case

scenarios respectively.
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Appendix V.

Estimation of parameters and efficient sampling.

In a typical MC simulation, we begin calculations with structures which do not

comply with the detailed balance condition (A-43), and therefore the acceptance

rule condition (A-47) is not valid. To avoid this problem we require the system

to evolve for a reasonable number of time steps, until it settles to thermodynamic

equilibrium. This requirement hinders the choice of appropriate umbrella sampling

plus parallel tempering parameters.

Fig. (A-3) shows the effects of cutting down a number of initial trajectories in

a simulation. Clearly, convergence in the calculated free energies to crystallization

is reached only after around 2 × 104 trajectories have been cut down from the

calculations of the free energy.
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15

20

25

30

∆F
(n

)/
kT

Skip 10000 
Skip 15000 
Skip 20000 
Skip 5000 

N=276, T=620 K 
First bin.

Figure A-3: This figure illustrates the need to skipping non equilibrated configura-
tions to ensure convergence. The free energy appears to be convergent only after the
initial 1× 103 trajectories are ignored. With the further condition that sampling is
being made uniformly over all n, the free energy will be more accurate for increasing
sampling.

In order to produce an ensemble of configurations, each equilibrated to its respec-

tive umbrella center n0,µ and temperature Tν , we need to find appropriate umbrella
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sampling constants, as well as temperatures, and definitions of trajectory as to com-

ply with the following conditions:

1. Local equilibrium. When the swapping of two adjacent configurations takes

place, long enough energy equilibrations should be carried out, before the

embryo distribution is computed. This will enable the system to evolve to the

new thermodynamic conditions.

2. Uniform swapping. Swapping of configurations with different temperatures

occurs at a comparable rate than swapping of configurations with different

umbrella centers.

It is not unusual to have to test different combinations of temperatures and um-

brella sampling constants, to produce long time energy simulations, only to discover

that even when cutting down a large number of trajectories in the simulation the

system does not converge properly. In such a case the simulation has to be repeated

for the new conditions. A quick estimate for the appropriate umbrella center pa-

rameters may be obtained by assuming that the clusters of two neighboring systems

i and j behave as an harmonic crystals, and hence eqn. (A-4) can be used to derive

a targeted swapping acceptance probability. This is achieved by assuming some

threshold value of acceptance for the quantity ∆Wnew −∆Wold and computing the

approximate umbrella parameter κ. In practice, when the umbrella constant is too

large, the acceptance rate will be too high, and the system will evolve towards local

energy minima. If the umbrella constant is too small, each one of the nodes will

behave as an uncoupled Metropolis MC simulation.

Finally, the temperatures for the parallel tempering scheme, ought to be spaced

in such a way, that the swapping acceptance rate for interchanging temperatures is

close to the swapping acceptance rate for the interchange of umbrella centers.

In our simulation we achieved sampling rates for all nodes between 40% and in

some instances about 75%, for an umbrella constant equal to 0.001. The efficiency

of the algorithm is further justified, when one obtains smooth histograms for the

n and nnmax embryo distributions in the constrained space. In fig. (A-4 left),
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we illustrate the process of exchange of configurations (see Appendix A-III), for

nodes with the same temperature and different umbrella centers, that correspond

to successful exchange attempts under the umbrella sampling scheme. Fig. (A-4

right), illustrates the process of exchange of configurations for nodes with the same

umbrella center n0 = 40, but different temperatures. All the rest of the histograms,

whether for the exchange at constant temperatures, or constant umbrella centers, are

distributed in a similarly sparse fashion. The combination of the umbrella sampling

and parallel tempering algorithm provides robustness to the sampling algorithm.

The sampling rules of the algorithm were defined in appendix A-IV.

Figure A-4: Left: exchange of configurations with different umbrella centers, and
the same temperature T = 690◦K, along 1.3× 105 trajectories. Right: Exchange of
configurations with different temperature for an umbrella center equal to n0 = 40.

Fig. (A-5) is a closeup of the parallel tempering exchange of configurations from

fig. (A-4 right), showing that exchange is regular at long and in the local scale.

The data sets in the figure have been displaced vertically, just to show clearly the

exchange. The umbrella sampling exchange behaves likewise.
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Figure A-5: Umbrella sampling: Switching configurations.
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