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Abstract

A nontraditional approach for active structural vibration attenuation was
proposed using mass redistribution. The focus was on penduium structures
where the objective was to examine the effectiveness of mass reconfiguration
along or within a structure to attenuate its vibrational energy.

The mechanics associated with a transiating mass along a rotating
structure give rise to a Coriolis inertia force which either opposes or increases
angular oscillations, thereby producing positive or negative damping,
respectively. A strategy of cycling the mass to maximize attenuation and
minimize amplification required the mass be moved at twice the frequency of
the structural vibrations and be properly coordinated with the angular
oscillations. The desired coordination involved moving the mass away from
the pivot as the pendulum nears its vertical position and moving the mass
towards the pivot when the pendulum nears its maximum angular excursion.

System mass reconfiguration was analyzed by studying various mass
displacement profiles including sinusoidal, piece-wise constant velocity and
modified proportional and derivative action patterns. These strategies were
optimized for various time intervals to maximize the rate of energy attenuation
or minimize the final energy state. For small amplitude oscillations with
sinusoidal mass motion, the dynamic behavior was modeled by Mathieu-Hill
equations to explain the beating phenomenon that occurred when the
frequency of the mass motion remained constant.

Several control systems were designed to generate aforementioned
mass reconfiguration profiles. The methodologies included human operator,
modified proportional and derivative action, knowledge or rule based and
artificial neural network controllers. The human operator system improved
with experience and was the most effective. Other systems depended on the
chosen parmeterization or the implementation of self-adjusting parameters.

Several unique tools were developed during the course of this
research, including simulation, optimization and control software.

iii
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1. Introduction

1.1 Vibrations and Attenuation Techniques

Vibration is defined as the oscillatory behavior that all bodies
possessing mass and stiffness exhibit when disturbed by either an internal or
extermal force. Unchecked vibration in a structure is usually unwanted and
may lead to wear, premature failure due to fatigue or even catastrophic
failure. A classic example of the latter is the Tacoma Narrows Bridge where
failure has been attributed to wind induced vibrations near the resonant
torsion frequency.

There are several undesirabie features of vibrations. Vibrations
generally resuit in either large displacements and severe stresses in a
structure or produce fluctuating moderate stresses causing material fatigue
and wear. Oscillations transmit forces and cause noise that result in
discomfort or medical complications for human operators. Energy losses and
deteriorating performance due to vibrations can reduce service usefulness
and service life. Maifunction or destruction of delicate mechanisms or
instrumentation attached to a structure may aiso occur.

Engineering designs continue to increase strength and reduce material
consumption which result in structures that are more susceptible to vibrations.
Structures are being developed from high strength, light weight materiais with
low internal damping. These structures tend to be more flexible and possess
lower energy dissipation abilities resulting in more intense vibration
responses. Secondly, the efficiency and speed of the systems have
increased so that vibration exciting forces tend to be relatively high and the



dynamic systems often contain high energy sources that may create intense
vibration problems. Thirdly, dynamic performance requirements are
increasingly more stringent, for example, automation in robotic motion for
medical laser surgery requires precise trajectories with strict tolerance limits.
The resulting design geometry often renders the structure more susceptible to
vibrations. Lastly, the protection of operators from harmful vibrations remains
critical. Human tolerance of vibrations is affected by several factors, such as
subject position, vibration direction, amplitude of acceleration and velocity,
range frequency spectrum and duration. {Irwin and Graf, 1979, Bosweli and
D'Mello, 1993].

The potential engineering applications for attenuating unwanted
vibrations are numerous. For example, maintaining structural integrity when
subjected to excitation forces (such as: space structures in coupling and de-
coupling operations, tall buildings in earthquake regions, off-share rigs in tidal
waters and overhead transmission lines subject to wind and environmental
disturbances) requires prompt attenuation of the structural, vibrational energy.
For these externally excited vibrations, the structure or system must dissipate
the unwanted energy and be retuned to its stable, static state.

Previous efforts have tackied the problem of vibration attenuation in a
variety of ways ranging from applying rigorous, standard controi theory or
using advanced material science products (Miura, 1989]. Although this thesis
is not intended to provide a treatise on all of the techniques used to reduce or
eliminate vibrations, a review of a few of the techniques serves to provide an
appreciation for the diversity and richness of this field. Traditionaily, vibration
attenuation or control generally addressed the source [Irwin and Graf, 1979).
Typically, the system parameters were adjusted to prevent unacceptable
vibrations thorough designing a more rigid structure, balancing moving parts,
employing enhanced manufacturing techniques or using improved leveling of
the structures. This type of engineering has had a reasonable range of
application in detuning the system and is followed for systems subjected to
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known forcing functions so that the frequency of the forcing function does not
coincide with the natural frequency of the structure. Altematively, vibrations
may be isolated in a passive mode using isolation pads, elastomeric mounts
or other isolation units. The system can be constrained by applying external
forces or boundary conditions to limit deformation and motion. Many
solutions along this venue have been and continue to be explored.

Ancther damping mechanism, a dynamic absorber, offers the
advantage of being relatively low cost and assures the required reduction in
vibration ratios at resonant frequency by generating inertia. By adding
damping, the design of a dynamic absorber can be further enhanced; that is,
the response spectrum is broadened in forming an auxiliary mass-damper
absorber. Early vibration absorbers included masses that swing like a
pendulum, elastic structures or containers filled with separate weights or
granular material or fluids, and weights attached with elastic elements in the
form of steel springs, rubber members or elastic rods/plates [Korenev and
Reznikov, 1993). Another possibility is employing active vibration control
using feedback control [Inman, 1996].

Adaptability of structural properties from recent material advances
promises further advancement to this field [Librescu, 1997]. Material
advances have aiso led to the development of materials with good energy
dissipation properties [Bert, 1980}, especially polymeric material [Henderson,
1980]. Also, coliocated sensors/actuators have been embedded within
structures to control dynamic behavior [Crawley, 1994). Variable geometric or
configurable structures employing advances in sensor and actuator
technoiogy may be applied to this field [Wada et al., 1989]. The active,
internal members have controlled extension and contraction abiiities
producing a vibrational damper. Preliminary results indicate improved
efficiency, when compared to conventional inertia systems consisting merely
of amass [Lu et al., 1992].



The research reported herein examines the challenging problem of
attenuating vibrations in the absence of any physical damping either by
internal or external friction. The damping-like effects are achieved by using a
technique of mass reconfiguration. By coordinating the motion of an auxiliary
mass or slider along or within a structure, the dynamic characteristics of the
system are altered and its energy can be dissipated. Several displacement
profiles for the slider are discussed along with their optimization.

Integrating the motion of the auxiliary mass with the structure is critical
to the success of this approach, thus creating a control challenge. Several
strategies to effect appropriate control have been postulated including
formulating human performance in terms of rule base logic or knowledge
based systems, implementing classical control information and applying
artificial neural network technology to replicate a successful control strategy.
The energy attenuation for these control techniques are applied to the
pendulum example.

1.2 Thesis Overview

The purpose of this thesis is to examine a technique for structural
vibration attenuation through mass reconfiguration. The dynamic system
consists of an auxiliary mass that is slid along a pendulum to aiter the
structural vibrations. By examining the mechanics of the translational motion
of a mass along a rotating system, a strategy is deduced to dissipate the
structural energy.

Various control actions and controllers are used to implement
attenuation. The controllers examined include a human operator, fixed and
variable frequency motion, knowledge based controller, modified proportional
and derivative action and artificial neural networks.

This thesis addresses some of the challenges associated with
attenuating vibrations via mass reconfiguration. The research spans several
fields inciuding structural and vibrational analysis, numerical simulations and
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optimization, controls and artificial intelligence technology. Hence, the
terminology as used within the thesis has been summarized and appears in
Appendix A.

1.3 Thesis Objective

The objective of this research is to investigate the technique of mass
redistribution to attenuate structural vibrations. Specifically, the technique
has been applied where a mass traverses a pendulum structure. Various
controllers are used to effect the strategy to attenuate the pendulum’s
oscillations.

1.4 Thesis Organization

The documentation focuses on the investigation of mass redistribution
for pendulum systems. First, the research perspective is presented in
Chapter 2. Both an overview of the premise of the original vibration
attenuation technique is reviewed and the requirements for the controlled
system are presented. Chapter 3 examines the physics and unique
characteristics associated with the goveming differential equation between
the radially translating mass on the oscillating pendulum structure. Chapter 4
examines not only the simulation process but investigates various
translationai motion profiles for the sliding or auxiliary mass. In particular, a
technique to achieve stable, parametric attenuation is introduced and
optimization of other displacement profiles for the auxiliary mass are
examined. Chapter S introduces the controllers and presents the foundation
for an artificial neural network controller. The energy attenuation for various
controllers are next reported with details of the simulated dynamics in
chapters 6, 7 and 8. The controllers include a human operator, a modified
proportional and derivative, a knowledge based and a neural network
controllers. The final chapter presents a discussion of resuits, summarizes
the conclusions and provides insight regarding future extensions.
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2. Research Perspective

2.1 Introduction

This thesis investigated a method for active vibration attenuation by
changing the mass configuration of the structure. The approach required a
background integrating several fields; most prominent were structural
dynamics, control engineering, optimization and artificial intelligence
technology. The research used a numerical simulation approach to assess
the feasibility of the proposed philosophy and its implementation.

The mechanism involved either the redistribution of mass within, or the
motion of an auxiliary mass along, the vibrating structure. Using this
mechanism, the vibrational energy were altered. The mechanics and the
inferred control logic for the mechanism are presented in the following
sections using the example of a variable length pendulum. For this system,
the variable length of the pendulum controls the motion of the end mass, thus
making the mechanism of mass reconfiguration intrinsic to the system.

The essential requirements for a generic controller were based on the
control logic of the moving mass attenuation device. When considering
plausible extensions and implementations, additional features for the
controller were realized. In this manner, the functional requirements and the
operation mode were considered for the controller.

Although the research was designed to permit future prototype
development and experimentation, the research reported herein is based on
numerical simulations of the control systems that were developed through
original and customized computer software. The ensuing resuit was a
computer simulation of a system capable of monitoring, assessing and



attenuating its vibration. A brief discussion of the approach and evaluation
guidelines conclude this chapter.

2.2 The Vibration Attenuation Mechanism

The vibration attenuation mechanism is based on the philosophy that
the structural dynamic behavior can be altered through the redistribution of its
mass. This redistribution or reconfiguration of mass within a structure can be
achieved by moving the structural mass or moving an auxiliary mass
within/along the structure. In this study, this motion of a mass within the
system is analyzed from both force and energy perspectives. Next, the
attenuation of structural vibrations is shown as a mass traverses the
oscillating structure in a special way. By reviewing the mechanics of the
interaction of the mass as it traverses the structure, a general strategy for
attenuating oscillations is deduced.

2.2.1 Mechanics of a Rotating and Translating Mass

Many vibrating systems involve rotational motion, as depicted in Figure
2.1. This oscillatory motion is often characterized as being periodic, such as
sinusoidal motion. If the structure experiences rotational motion, then the
inertia force that arises from the rotationai and translational auxiliary mass
motion is referred to as the Coriolis Force. The Coriolis force can be viewed
as creating either positive or negative damping’ which results in a gain or loss
in the structural, vibrational energy.

This effect is examined using planar motion of a variable length
pendulum. First, the equations governing such a motion are derived and the
Coriolis force is discussed. Next, a work-energy balance is conducted to
determine the effects on the structural energy state. Specifically, by
examining the action associated with raising and lowering the mass at various

' Positive damping refers to the loss or dissipation of energy; conversely,
negative damping refers to the gain of energy.
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phases during a cycle of vibration illustrates how the vibrational energy of the
system can be altered.

(a) (b} {c)

Figure 2.1 Examples of vibrating systems with rotational motion: (a) disk
attached to a rotational spring, (b) simple pendulum and (c) flexural
vibration of a beam.

2.2.1.1 Role of Coriolis Inertia Force in Controiling Oscillations

To understand the origin of the Coriolis inertia force, the kinematics of
a point mass is considered using a moving, rotational frame of reference.
Then, the principles of dynamics in this frame of reference are applied to a
variable length pendulum where the action of raising and lowering the mass is
analyzed.

The general motion of a point can be defined using a right-handed,
absolute or fixed coordinate system, X-Y-Z and the moving reference axis, x-y-
- as shown in Figure 2.2. The unit vectors associated with the moving
reference frame are 7, jandk . For clarity, the motion is restricted to the X-Y
plane; thus, the Z- and :-axes remain parallel. As shown in Figure 2.2, the
absolute position of A is defined as:

F =F,+F (2.1)



where the position vectors, 7,and 7,, are measured in the fixed frame of

reference and the position vector, 7, is measured in the moving coordinate
system.

PointA

¢

Figure 2.2 Reference frames for locating the point of interest, A.

The velocity and acceleration equations for point A can be derived
through successive differentiation of the position vector, Equation 2.1, to give:

F,=F, +F +@ xF (2.2)

and



-

Fo=F, +F +@ x (B xF)+& xF +20 x 7 (2.3)

where & =wk =6k is the angular velocity and & =ak =8k is the anguiar
acceleration of the moving coordinate system as measured in the fixed
coordinate system.

In Equation 2.2, the term, & x7, represents the velocity due to the
difference of rotation between the two frames of reference and is
perpendicular to the vector, 7. The term, 7, represents the translational
motion that is tangential to the path as viewed in the moving system and is
referred to as the sliding velocity. Lastly, the term, 7,, represents the
absolute velocity of the origin of the moving frame of reference.

In Equation 2.3, the acceleration terms of point A associated with the
rotating coordinate system may be referred to as its normal, tangential,
Coriolis, sliding and inertia acceleration components. @ The ncrmal
acceleration term, @ x (@ x7), is directed towards the center of the path of
motion and the tangential acceleration, a x 7, is perpendicular to this path in
the moving coordinate system. These terms represent the relative
acceleration of point A as observed from the non-rotating set of axis at the
arigin, 0. The term, 26 x 7, is the Coriolis acceleration with direction normal
to the sliding velocity. The Coriolis acceleration is comprised of two effects;
one is due to the rate of rotation of the system and other is due to the sliding
velocity. The sliding acceleration, 7, has its direction along the path of
motion and is referenced to the moving frame of reference. The inertia
acceleration of the moving coordinate system is given by ?o .

When considering the kinetics associated with a mass, m, its motion
can be deduced by applying D'Alembert’s principle of dynamic equilibrium;
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F, EXTERNAL "m%.« =0 (2.4)

where £y ... is the resultant of the external forces, and

-mr, is the fictitious inertia force.

Through substitution of Equation 2.3, Equation 2.4 becomes

—

Fﬂ?ﬂ!.vu"”‘(’:':a +F+@ x(o-i xF)+&xF+2(§ xf"):O (2.5)

Thus, in the rotating coordinate system, the inertia force can be divided into

several components, including the Coriolis inertia force, —m(26 x 7).

Pivot, O |

Concentrated end

Massless, mass, A.

inextensible cable, B

Yx

Figure 2.3 Planar motion of a variable length pendulum.

These components will be examined using a simple (or mathematical),
variable length pendulum. As shown in Figure 2.3, this pendulum system
consists of a concentrated end mass, A, attached to a massless, inextensible
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cable, B, that is fed over point O. The origins of the moving and rotating
coordinate systems are located at the pivot, O, hence 7, =7, =F, =0. Also,
the moving coordinate system is assumed to be attached to the cable so that
the position of the end mass always lies in the 7 -direction, 7 =r-i . Positive
angular rotation of the pendulum is assumed counterciockwise, 8=0-k >0.

According to Equation 2.3, the acceleration for the end mass in terms
of this coordinate system, can be described by:

F,= (i’ —o)zr)?' +{or +20F)j (2.6)

Upon substituting into Equation 2.4, the components of the fictitious inertia
forces acting on the end pendulum can be identified as shown in Figure 2.4.
The positive directions of the forces are indicated for the assumed
counterclockwise rotation of the pendulum with the end mass moving away
from the pivot (that is for © >0 and 7 > 0). The external forces acting on the

end mass include the gravitational force, mg and the cable tension, F and

can be represented as:

Fereya = mg(cosdi - sin8f) - Fi (2.7)

By substituting Equations 2.6 and 2.7 into Equation 2.4, the differential
equations of motion can be defined as:

-F +mgcosd—mF +ma’r=0 or mgcos® —mF +mdir=F (2.8)

and

mgsin® +mar + 2mor =0 or 9+2 +=f-sin9=0. (2.9)



~4

>
\ Y
- -~
i
F
f.m.a
X
v
s  (nertia Force

"> External Force

Figure 2.4 Free body diagram of forces acting on a variable length pendulum.

Physically, Equation 2.8 describes the tension, F, in the cable
associated with the position and motion of the end mass. The tension is
composed of the sliding acceleration that generates the inertia force along the
rope, m#, the centrifugal force from the oscillations of the end mass, mé’r,
and a component of the gravitational force, mgcos8. The second differential
equation, Equation 2.9, describes the angular motion of the pendulum as

affected by the position and velocity of the end mass. The term, 2£,
r

describes the Coriolis effects which are generated by moving the end mass.
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Both the Coriolis force and the gravitational force affect the rotation of the
pendulum.

The governing differential equation of motion for angular oscillations
can be linearized® and written in the standard form for damped vibrations,

8+2c0+020=0 (2.10)

where ¢ = _ which represents the viscous damping coefficient when ¢ > 0and
r

is assumed to be a constant, and
o, = \/g which represents the natural frequency of the pendulum.
r

Variations in o, will be insignificant if the changes in r are negligible.

When the pendulum is being lengthened ( that is, 7> 0 which causes
the magnitude of r to increase), this action resembles a viscous damper and
the oscillation amplitude will be reduced. In contrast, when the pendulum is

being shortened, that is Loc< 0; negative damping occurs and the amplitude
r

of the oscillations will be amplified. For the case when ¢ =0, the Coriolis
effect is eliminated resulting in constant amplitude oscillations. These effects
due to varying the pendulum fength can be explained by the action of the
Coriolis force. When the pendulum is being lengthened as shown in Figure
2.5, regardless of the direction of the velocity, the Coriolis force will aiways
act against the oscillatory motion. The exact opposite effect will be observed
when the pendulum is shortened. Therefore, lengthening, ~>0, or
shortening, 7 <0, the pendulum cabie creates the Coriolis inertia force which
acts to decrease or increase the amplitude of oscillations, respectively.

2 By assuming small oscillations, then sin@ ~@.
14



(b)

Figure 2.5 The effects of iengthening the pendulum for (a) counterciockwise
(e > 0) or (b) clockwise {® < 0) pendulum rotation.

Thus, based on these discussions, the intuitive solution for attenuating
the structural vibrations would be to continually fengthen the pendufum.
Unfortunately, this solution is not feasible as an infinitely long cable or
structure would be required to completely attenuate the vibrational energy.
Therefore, to ensure practicality, the displacement of the end mass is
bounded,

P SPSTp. (2.11)

As the length of the pendulum cycles between r__and r_ _, the mass moves
towards and away from the pivot, thereby either increasing or decreasing the
anguiar displacement of the pendulum.

If moving the mass both towards and away from the pivot occur during
a cycle when the magnitudes of the Coriolis force are identical (but opposite
in direction), the anguiar velocity at the end of the cycle will remain the same
as it was at the beginning. However, if a smaller Coriolis force is generated
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during the motion towards the pivot than during the motion away from the
pivot, the final angular velocity will be decreased and vice versa.

The Coriolis force depends on the current angular velocity and the
sliding motion of the end mass. Its magnitude can be regulated through
proper coordination between the angular oscillations and the transiational
motion of the end mass, the pendulum bob. Therefore, for vibration
altenuation, the timing sequence for cycling the end mass (or the transiational
displacement profiles of the moving mass) should consist of two phases:

Phase 1: The end mass is moved away from the pivot
(lengthening the penduium) when the angular velocity and the
Coriolis force are maximum (which occur when the pendulum is
near vertical). This should maximize the angular velocity
reduction for the next part of the cycle.

Phase 2: The end mass is moved ltowards the pivot (shortening
the pendulum) when the anguilar veiocity and the Coriolis force
are minimum (which occurs near maximum angular
displacement with respect to the vertical, equilibnum position).
This should minimize the angulfar velocity amplification for the
next part of the cycle.

Details of this strategy will be discussed in Chapter 3.
2.2.1.2 Effects of Mass Reconfiguration on A Work-Energy Balance

The attenuation or amplification effects of the redistribution of a
system’s mass can aiso be explained using a work-energy balance. For a

} For the pendulum systems presented herein, moving away from the pivot
corresponds to lowering the auxiliary or end mass and moving towards the
pivot refers to raising this mass.
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simple pendulum, the energy consists of kinetic energy, 7 and gravitational
potential energy, U. This energy can be either lost or gained depending on
the work done by or on the system. The work-energy balance is defined by
the following equality:

(T+U), +W,_, =(T+U), (2.12)

where the subscripts, ¢, and ¢, represent instances in time and
W,_,is the work done over this interval.
For the variable length pendulum, the work done on the system is

associated with moving the end mass. To move the end mass either a force
generated internally by a mechanism within the mass or an external farce can

be applied. The latter is shown in Figure 2.6; the force, F, pulls the cable
over a pivot by a finite distance, As, to change the length of the penduium.
The cable is assumed to be inextensible; therefore As+Ar=0. So, the work
on the system associated with moving the end mass is the product of the
tension in the cable, # and the corresponding motion, As=-Ar.

If s, =s(r,)and s, =s{t,), for a given interval the work can be defined

as:

(2.13)

=
1}

R D2
R
&

if the tension in the cable is assumed to aiways be positive and is
approximately constant during the lengthening or shortening of the cable,
then Equation 2.13 simplifies to:

W,_, = FAs (2.14)
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When the pendulum is being shortened, that is the mass is moved towards
the pivot, as shown in Figure 2.6, then
As=s5,-5>0 (2.15)

and the corresponding work is positive,

W,_,=F As>0. (2.16)

Consequently, according to Equation 2.12, the total energy of the system at
time, ¢,, increases by the amount, F-As.

Figure 2.6 Shortening the pendulum increases the system energy.

In contrast, increasing the iength of the pendulum, that is moving the
mass away from the pivot, results in
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As=s5, -5, <0 (2.17)

and the work is negative,

W,,=F-As<0, (2.18)

resulting in a decrease in the energy of the system.

The continual lengthening of the pendulum generates negative work
and decreases the total energy of the system which is in agreement with the
previous section. If the mass is allowed to cycle between defined limits,
r.nand r... the following scenarios can occur. When the tension in the

cable is identical as the mass is moved away from and then back towards the
pivot through the same distance, then the net change in energy per cycle will
be zero.

However, if the force required to move the mass towards the pivot is
different from that to move the mass away from the pivot, then either positive
or negative work can be attained during a cycle of motion. Net negative work
reduces the energy of the system and attenuates the oscillations of vibration;
whereas, net positive work adds energy to the system and amplifies the
oscillations.

The net negative work will occur if the force used to move the mass
towards the pivot is smaller than the force present when the mass moves
away from the pivot over the same distance in one cycle. Since the tension
will be maximum when the pendulum passes directly below the pivot and
minimum when the pendulum is at points of maximum angular excursion, a
strategy for attenuating the vibrations can be deduced. For the pendulum
shown in Figure 2.3, the mass should be moving down below the pivot and up
at the extremes of its angular dispiacement. This strategy is consistent with
the expianation of the previous section that was based on the Coriolis effect.
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2.2.2 Control Logic for Attenuating Vibrations Using a Moving Mass

Considering the physical phenomena associated with the interaction of
a moving mass along an oscillating structure, a control strategy can be
deduced to attenuate structural vibrations. Periodic motion for the end mass
towards and away from the pivot is assumed.

Generally, to decrease the system energy, the end mass should be
moved away from the pivot (lowered) between the tuming points of the
oscillations and moved towards the pivot (raised) at these turning point, as
illustrated in Figure 2.7. To maximize the attenuation effects, the lowering of
the mass should occur near the central position (when the pendulum is
directly below the pivot) as the angular velocity and the cable tension are
maximum. This control logic is illustrated in Figure 2.7(b). Note that for this
strategy the motion of the mass is at twice the pendulum’s angular oscillation

/<\

A~
%

\
== :/>

Mass Mass

raised @) raised raised 0) raised

frequency.

Figure 2.7 Vibration attenuation using (a) a general strategy and (b) a more
optimal trajectory for the end mass.

In contrast, to maximize the increase of system energy, the end mass
should be raised near the central position when the cable force is large and
lowered at extreme excursion points when the cable force is small, as shown
in Figure 2.8.
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Figure 2.8 Vibration amplification using (a) a general strategy and (b) a more
optimal trajectory for the end mass.

To conciude, vibration attenuation can be achieved by moving a mass
along a rotating system. As previously discussed, the physical phenomenon
can be explained by considering either the Coriolis force or a work-energy
balance. Subsequent chapters will discuss the details of mass reconfiguration
profiles to effect this control.

2.3 Overview of the Control System

The general requirement of any control system is to achieve the
specified objectives in a stable manner, at a reasonable rate and with relative
accuracy. Usually, a control system consists of a controller and a plant with
operation in either an open loop or closed foop mode, as shown in Figure 2.9.
The function of a controller is to generate a signal or signals to modify the
performance of the plant to achieve the desired control objective. Controllers
possessing feedback monitor parameter(s) or variable(s) to provide
appropriate control action. This section examines the control system focusing
on the functional requirements for the oontroller by examining the variable
length pendulum, as presented in Section 2.2
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(b)

Figure 2.9 Functional block diagram illustrating control operation as either (a)
open loop or (b) closed loop.

The control objective for this research is to attenuate the oscillations of
a freely vibrating structure. As presented in the preceding section, a method
that can alter the vibrational energy of this system is the redistribution of mass
within or along the structure. The knowledge and logic applied to direct the
motion of the end mass to generate the “damping” mechanism forms the
control logic or laws.

As shown for a variable length pendulum, the oscillations can be
attenuated either:

(a) by strategically moving the end mass back and forth during a

cycle of vibration, or

(b) by continually iengthening the pendulum.
Implementing the latter option suggests an infinitely long pendulum which is
physically not plausibie. However, the positive damping effects achieved by
lengthening the pendulum may be used advantageously as a safety feature to



augment the controller, as to be discussed in a later chapter. So, the selected
controller is required to generate the “strategic motion of the end mass”.

With reference to the control systems illustrated in Figure 2.8, the
variable length pendulum shown in Figure 2.3 and the relevant discussions
given in Section 2.2, the plant can be viewed as consisting of two
components. The first component is the attenuation mechanism that
reconfigures the structural mass; the second component is the freely vibrating
structure (the pendulum). Fer the variable length penduium, the control
mechanism of mass redistribution can be realized by either moving a mass
along a massiess pendulum strut or changing the length of the pendulum
cable.

To quantify the control objective for attenuating the vibrational energy,
an input reference variable should be defined. To reduce or uitimately
eliminate the structural, vibrational energy, the stable equilibrium state of the
angular displacement or velocity for the penduium structure could serve as
the reference signal. As the energy of the system is minimized, the
oscillations will be dampened and both 650 and 6 0. For these

conditions (0 - 0and 6 — 0), both the potential energy which is a function of
the angular displacement and the kinetic energy which is a function of the
angular velocity will be minimized. Since the instantaneous state of either the
angular displacement or the angular velocity, independently, is insufficient to
quantify a state of zero vibration, both the angular dispiacement and velocity
of the pendufum structure were considered to be the reference input variables
(B =0 and 6, =0).

Since most vibration problems occur in disturbance prone
environments, a closed loop controller was chosen, as these controllers are
more adept at handling disturbances. Typically, in a closed loop controiler,
the actual state data of the structure are monitored and processed. A
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comparison between the actual plant behavior and the desired behavior forms
the error signal which drives the controller to effect the desired control action.
For this application, the traditional closed loop controi system would be
a multiple input and muitiple output system, as shown in Figure 2.10. A
comparison between the reference signals of zero angular displacement and
zero angular velocity with the actual corresponding current state of the plant
(pendulum) could be made to drive the controller. The objective of the
controller is to achieve attenuation, and ideally, cessation of structural
vibrations through mass reconfiguration. The plant can be viewed as two
components: the attenuation mechanism and the vibrating structure.

DISTURBANCES
o

INPUT REFERENCE
VARIABLES

035;=0 PLANT

QUTPUT
VARIABLES

60

ATTENUATION || STRUCTURE
MECHANISM (PENDULUM)

Figure 2.10 Control system based on traditional control theory.

2.4 Rationale Associated With the Controller impiementation

Possible implementations for the controller are based on the overall
conception for the control system as presented in Section 2.3. Namely, the
underlying architecture is to be a muitiple input and muitipie output, closed
loop control system. Various considerations for implementing the controller
are presented with details based not only on examining the pendulum
application but also by considering future extensions.
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The classic controllers, such as proportional, derivative, integral and/or
a combination thereof, were first considered. Classic linear controllers are
effectively used with linear, time invariant systems. Implementing one of
these types of contrallers has the advantage of being well studied with known
behavior. Since the identified reference signais of Section 2.3 are the angular
displacement and its time derivative, proportional plus derivative control
action could be considered. The control algorithm would be mathematically
stated as:

A1) = k(8 per ~0(2)) + &, (6 o —6(r)) (2.19)
or
r‘(l):lrp(e(t))+kd(d—;(:—)] 220)

where £ and k, are the proportionality constants;
¢(7) . the error signal; and
F(r), the control signal that physically defines the time derivative of the

distance between the pivot and the end mass (the rate of change of the

penduium length).

Details of implementing a controller with similar properties to a proportionat
and derivative action are presented in Chapter 5.

However, the control process of the interaction of the moving mass
along the pendulum is mathematicaily defined by the nonlinear, coupled,
differential equations, Equations 2.9 and 2.10, for which muiti-variable,
classical control theory appears unsuitable. Selecting the proportionality
gains, k, and k,, would have to be based on a set operating point or period

of operation. The effectiveness of such a controller is related to the accuracy
of linearizing this region of operation for the system. If more complex
structures are considered, then the mathematical modeling becomes
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increasingly intractable. Ideally, the controlier must be able to handle
muitiple, time-varying and nonlinear variables, to operate over a broad set of
disturbances (or initial conditions) and to perform well over the entire
operating domain.

The next level of intricacy to be considered is enhancing the linear
controller by updating or changing the proportionality constants based on the
operating requirements of the system. The controller through monitoring error
magnitudes, current state conditions or other parameters would “look up’
corresponding proportionality constants. Unfortunately, this type of controller
would require tabulating the relations between the appropriate proportionality
constants and the condition(s) “to be menitored” over the expected operating
domain. If the system is not well defined or a prioni knowledge for quantifying
the appropriate control action cannot be discerned, such a table cannot be
generated. The effectiveness of the controller would be dependent on each
tabulated entry for a region of operation. For nonlinear systems, excessive
discretization of the operating domain may be required. This type of
controller risks becoming tailored to the specific application and convoluted
for complex systems. The adaptive nature of the above controller is a
desirable feature. Ideally, the controller should not operate in a simple
tracking made, but rather in an anticipatory manner.

Aithough for the variable iength penduium, input parameters of angular
displacement and angular velocity appear appropriate, these parameters may
neither be the most appropriate nor be sufficient in effecting control.
Understanding the mechanics of the plant defines important relations among
the possible variables and aids in discerning variables to be monitored. For
example, the state of the variable length pendulum system may be
characterized using the angular displacement or velocity of the vibrating
pendulum, the iength or change of length of the pendulum, and/or the tension
in the cable; these or a subset may serve as the input for the controller. The
output from the controller may be either to generated a force on the cable or
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to create a displacement profile for the end mass. [f the plant were to become
more complex, such as possessing multiple masses or being characterized as
a continuous mass structure, identifying the fewest, yet pertinent variables
becomes increasingly difficult. For the most general case, the controller
should be able to handle redundant and perhaps irrelevant data and discern
appropriate relations to generate the desired control action. Again, this
requirement discourages the use of conventional controllers.

As explained in Section 222, the control action involves the
coordination between structural oscillations and the cyclic, bounded
translational motion of an end mass for a finite length penduium. Then, the
controller must either inherently possess appropriate saturation
characteristics or have additional control logic to achieve bounded motion.
This restriction for the mass reconfiguration may require monitoring additional
system parameters. For the variable length pendulum, the position and
sliding velocity of the end mass may aiso need to be fedback to the controller.
The complexity of the controller has been increased by introducing the
nonlinear phenomena of saturation and by requiring additional logic to ensure
compliance with these imposed operating limits.

As the above discussion indicates a nonlinear controller is required,
but defining the parameters for its operation is not intuitively obvious. A
myriad of parameters within the control strategy for adjusting the mass
configuration of the system as suggested in Section 2.2.2 can effect vibration
attenuation. The controller must be capable of providing variable output
rather than just a proportional signal; control action may be extremely
nonlinear, such as a discontinuous relay action or a continuous sinusoidal
signal. Furthermore, the representation of the control action may be difficult
to quantify.
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The controller should be educable®, since parameters have yet to be
identified and defined, and operating points have to be selected. In other

words, the “damping term”, 2i (see Equation 2.10) has not been explicitly
r

defined nor have the limits for the varying quantities been established.
Analyzing various control patterns is integral to understanding and for
optimizing the control action. Therefore, a controller should be capable of
leaming various dispiacement profiles to effect mass reconfiguration.
Perhaps, the controller could evaluate the causal action between various
trajectories for the end mass trajectory, r(t), and the dynamics of the system

for implementing an efficient displacement profile. Thus, salient features
considered for this application were its optimization and learing capabilities.
So, if the controller is adaptive and can adjust to unknown parameters, it may
self-train for optimal performance.

The computational requirements for monitoring and processing data
involve muitiple, time-varying parameters, making parallel processing
attractive to enhance computational efficiency. Thus, the controller should
possess good computational abilities.

Other features of the controller depend in part on the actual
implementation, the related instrumentation, the physical components and the
control logic. The controlier must be easily adapted to handle the chosen
implementation of the control logic, flexible in processing various
measurements and generating suitable output tailored to the physical design.

In summary, to permit extensibility and flexibility in both application and
implementation, the controller must be nonlinear, general purpose, adaptive
and educable. Its computational ability must span data storage, processing
and advanced logic implementation. The control logic and prior fine tuning of
the controller may be based on a priori knowledge, heuristics and seif-

? For the purpose of this thesis, an educable controller is defined as one that
may be trained or instructed for a particular purpose.
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assessment.  Additional logic to assure safety and compliance with
implementation constraints may also be required. To fulfill as many of these
criteria as possible, an application of artificial intelligence technology was
selected for this work. These methods circumvent many of the shortcomings
of conventional control theory. Both knowledge based systems (KBS) and
artificial neural networks (ANN} were applied. At the time of initiating this
research [Stilling, 1990a] KBS had some proven successes recorded in the
literature, yet ANN were in their infancy with few applications and tools being
available.

2.5 Synthesis of the Control System

Desirably, the end product is a design for an adaptive, autonomous
system consisting of a structure and a controller whose objective is to
attenuate its vibrational energy. The feasibility of attenuating vibrational
energy through mass reconfiguration had not been previously reported in the
literature. Also, mechanisms to effect the technique of mass reconfiguration
and controllers to implement the attenuation strategy were neither readily nor
commercially available. The research was diverted to numerical simulations
rather than towards prototype implementation and experimentation. In
addition, the required computer software to implement various components of
the proposed system was not available. During the early years of this
research, several toois and software packages that were unique and original
were developed and evaluated [Stilling, 1993b, 1990a&b; Stilling and Watson,
1994a, 1992, 1991 and 1980; Watson and Stilling, 1994, 1992a&b, 1991a&b
and 1990].

The control system was developed as a computer simulation; however,
considerations were made to allow physical prototype development. The
selection of structural parameters and the control infrastructure were based
on the state of the current technology for physically implementing the system.
Also, the possibility of extending the proposed thesis technology to more
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complex systems affected the formuiation, the bounds of variables and
subsequent simulations of the systems.

The synthesis began with a numerical simulation of the plant. The
dynamic interaction of the moving mass mechanism was investigated in detaii.
Not only were arbitrary displacement profiles for the auxiliary mass presented
for simulating, but also an effort to develop optimal temporal* profiles was
completed. Based on these plant dynamics, control logic was postulated and
necessary knowledge and data to train the controller was generated. The
next phase focused on developing and/or training the controller and
integrating the controller with the numerical simulation of the plant. As the
technology employed was in its infancy, benchmarks and criteria for
evaluating the performance were defined for both the components and the
integrated controi system.

2.6 Summary
The fundamentals that directed the thesis research have been
presented, herein. Basically, they included:
o the analysis of the physical phenomenon that is associated with the mass
redistribution technique for regulating the angular oscillations,
o an overview of the control architecture for the system that was established
to be multi-variable and closed loop,
o a review of the functional requirements and reiated rationales for
implementing a controller, and
o establishing that the approach for investigating the control system for
active vibration attenuation was to be by simulations.
The mechanics that describe the vibration attenuation device assume
the vibrating system possesses rotational motion, so that a mass which
translates along the structure can alter the system energy. The Coriolis

“ Temporal profile refers to time dependent patterns that are coordinated with
the system dynamics.
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inertia force that results from the rotational and translational motion of the
mass opposes angular motion and serves to “dampen” the oscillations. For a
variable length pendulum, mass reconfiguration may be achieved by
lengthening or shortening the pendulum. The control logic for attenuating
oscillations can be stated as:

(1) lengthen the pendulum as it passes beneath the pivot, and

(2) shorten the pendulum near points of maximum angular
excursion.

In selecting a controller, the operation and its possible implementation
within the control system were considered. As the control action was to be
based on the dynamics of the plant, a closed loop operation mode was
favored. Other functional requirements for the variable length penduium
system included the ability to handle multiple, time-varying, nonlinear
parameters, to operate in a disturbance-prone environment for a variety of
operating set points, to be adaptive and to possess optimizing and learning
characteristics. As traditional controilers do not meet these requirements,
methods in artificial intelligence were selected for control purposes.

Lastly, computer simulations were chosen as the vehicle of
implementation as it provided a forum to investigate multiple aspects of the
control system and to examine the overall feasibility of implementation.
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3. Modeling of Pendulum Structures With Mass Reconfigurability

3.1 Introduction

In this chapter, the analysis of the simpie or mathematical pendulum of
the previous chapter is expanded. First, the modeling is advanced by
considering a dual mass or physical pendulum system. Such a system more
accurately models several applications. Then, the dynamics of the
reconfigurable mass-pendulum are analytically reviewed with interesting
properties presented. Finally the parameterization for subsequent computer
simulations are given.

Vibration attenuation is achieved by mass reconfiguration within a
structure. This philosophy is investigated using examples of pendulum
structures oscillating in a single plane. Many components and/or structures
for both terrestrial and space applications can be modeled by pendulum-
based mechanisms and can be retrofitted to incorporate the proposed
vibration attenuation mechanism. A few examples of such structures are
provided in Section 3.2.1.

The modeling of a pendulum with reconfigurable mass can be
simplified to a variable length pendulum' as discussed in Section 2.2.
Altemnately, when modeling a physical pendulum’ system, the attenuating
mass is assumed to be a separate entity that slides along the structure. The
governing differential equations are derived for a physical pendulum of fixed

' The variable length pendulum is referred to as a mathematical pendulum or
a simple pendulum where the pendulum structure, itself, is massless.

? The physical pendulum is referred to as a compound pendulum or a dual
mass system.



geometry with a sliding or auxiliary mass. Then, the goveming differential
equations are compared with those of the mathematical pendulum. Similar to
the mathematical pendulum, the sliding mass can either attenuate or amplify
the oscillations of the physical pendulum.

As the sliding mass traverses the structure, not only may the mass
cause vibrational damping or amplification, but also the mass continuously
changes the system's dynamic stiffness’. With certain assumptions the
governing differential equation, associated with the oscillating motion of the
sliding mass, can be approximated by the Mathieu-Hill equations*
[McLachlan, 1951] which are used to analyze parametric vibrations. Although
a complete mathematical analysis of these equations is complicated, stable
and unstable regions are known for sets of the characteristic parameters of
Mathieu's equation. The oscillations in the unstable region progressively
increase in time and are called parametric resonance®. In general, the cyclic
change in the parameters, such as stiffness or inertia, can destabilize the
entire system.

Surprisingly, the damping effect, due to the Coriolis forces as explained
in Chapter 2, must compete with the destabilizing effects caused by the
change in the stiffness parameter. Therefore, prudent planning is necessary
to develop a strategy for mass reconfiguration to attenuate oscillations. The
interaction caused by the motion profiles for the mass results in either
damped or unstable structural vibrations as can be explained by the general
features of the Mathieu-Hill equations.

*The dynamic stiffness of the system is part of the restoring force term from
the equation of motion.

* Mathieu-Hill equations are linear differential equations with periodic
coefficients. The Mathieu equation is a specific form containing sinusoidal
coefficients as presented in Section 3.3.2.

Parametric resonance is also termed parametric excitations which are
vibrations characterized by monotonically increasing oscillations.
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In addition, the effects that the position of the auxiliary mass has on the
dynamic stiffness or natural frequency of the system are presented for both
the mathematical and a physical pendulum systems.

3.2 Reconfigurable Mass-Pendulum Systems

As discussed in Section 2.2, the mathematical pendulum system
intrinsically possesses the attenuation properties. Vibration attenuation can
be achieved by properly adjusting the length of the pendulum. The physical
pendulum has its own fixed rotational inertia and the damping mechanism
becomes an addendum to the structure. The physical system has two distinct
masses and therefore can be referred to as a dual mass system. Vibration
attenuation is achieved as the auxiliary mass is strategically slid along the
structure.

This section describes various structures that can be modeled as
pendulum systems. Following the modeling assumptions, the equations of
motion are derived. Mathematically, the governing differential equations for
the physical pendulum systems can be derived using either Newtonian
(forcefequilibrium) or Lagrangian (energy) dynamics. Finally, the similarities
between the mathematical and physical pendulum structures are presented.

3.2.1 Examples of Pendulum-Slider Systems

Pendulum systems accurately model several existing structures, the
most familiar being children on playground swings. Pendulums have been
studied seemingly since antiquity [Sanmartin, 1984], yet the penduium
continues to be an active subject of investigation [Yagasaki, 1998 and 1999;
Pinsky and Zevin, 1999; Dai and Singh, 1998 and 1994; Nguyen and
Ginsberg, 1999; Yoshida and Sato, 1998]. Pendulum motion dating back to
the 13th Century describes the use of a censer during liturgical services; this
was four centuries prior to any formal, reported studies into pendulum motion
[Sanmartin, 1984]. Children playing on swings dates back even further.
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Structures where an object is suspended (bridge cranes, payload
devices, wrecking balls and various fixtures) can be modeled and rationally
analyzed as simple pendulums. Another application where pendulums were
critical was in the timing mechanisms of early clocks. In 1656-57, C. Huygen
invented the first pendulum clock incorporating the nearly isochronous
movement of small amplitude oscillations of a pendulum augmented by
adjusting its length using a variable suspension point [Blackwell, 1986]. Other
systems readily modeled as a variable length pendulum are cable-suspended
objects which include the action of a payload on a crane, the motion of giant
censers [Sanmartin, 1984], athietic performances, such as, gymnasts
performing “giant circles” or “iron cross® on the ring apparatus [Stilling and
Watson, 1993] or a child swinging [Tea and Falk, 1968; Gore, 1870; Bums,
1970; Curry, 1976; Walker, 1990]. Furthermore, investigators often idealize
complex structures as single degree of freedom structures.

Often the secondary mass may be significantly less than the main
structural mass. This is the case for many examples in the transportation
industry where vehicles traverse causeways (vehicles crossing bridges, trains
traveling on tracks and passenger cars moving along light rapid transit
systems). A more realistic modei of a physical pendulum should be used for
these cases. The system can be viewed as a dual mass system, the
dominant structural mass and an auxiliary mass which traverses the main
structure.

Other fields offer additional examples; for instance, from fiuid dynamics
there are pneumatic transfer systems, biphasic effluent flow through hinged
pipeline units and various pipeline network pigging. The motion of the
auxiliary mass and the structure may be integral to the system's operation. As
shown by these examples, there are several applications which can be
accurately modeled as pendulums with moving mass. As weli, the potential
applications through augmenting systems are numerous.



3.2.2 Assumptions and Simplifications

For this research, the structural vibrations of the pendulum are
assumed to be planar. Vibrations may ensue from disturbances where the
equilibrium state of the structure is perturbed either externally or internally.
Vibrations for the pendulum-mass systems are assumed to be initiated by an
initial displacement from the equilibrium position, unless stated otherwise.

For the simple or mathematical pendulum, as previously presented in
Section 2.2, the assumptions include the connecting structure (cable or rod)
being inextensible and having negligible mass. The concentrated end mass
has negligible mass moment about its center. The attenuation mechanism of
mass reconfiguration is achieved by changing the pendulum length.

In modeling the physical pendulum systems, the attenuation device is
assumed to be small enough to neglect its mass moment of inertia about its
centroid in comparison to the mass moment of inertia about the pivot.
Various motion profiles for the auxiliary/sliding mass can be prescribed
assuming a compatible and equilibrium interface is maintained with the
structure. The continual contact between the sliding mass and the structure
allows the auxiliary mass to acquire the same kinematics of the structure at
the point of contact. Separation between the vibrating structure and the
auxiliary mass has not been considered. For most applications, this
simplification is inherent in the construction of the system. For example, the
mass may be confined to move within a guide or the velocity of the mass is
sufficiently small as to prevent separation.

To focus on the mass reconfiguration phenomena, the material
damping and structural damping due to internal friction and external drag
have been neglected. As structural damping reduces the overall system
energy, the affects of the proposed active damping attenuation system would
only be enhanced. By neglecting structural damping, the effects of mass
reconfiguration for attenuating vibrations are more apparent for a freely
oscillating structure.



3.2.3 Governing Equations for Physical Pendulum Systems

The simple pendulum model, as discussed in Section 2.2, is extended
to take into account its structural mass. For the physical pendulum system,
both the fixed mass of the pendulum and the sliding mass that constitutes the
attenuation device are considered. These two masses are commensal and
essentially form a coupled osciliating system.

For the physical pendulum system, a guide may exist to allow sliding
the auxiliary mass within the structure, as shown in Figure 3.1(a). As the
intemal and external forces are easily identified, Newtonian dynamics are
adopted for analyzing the pendulum-mass system. The free body diagram for
the pendulum and the auxiliary mass are shown in Figure 3.1(b) and (c),
respectively. The physical pendulum parameters are its mass, m,, its

moment of inertia, /,, about the pivot (O) and the location of its center of
mass from the pivot, /,. The auxiliary mass is free to slide within a guide
towards or away from the pivot as the pendulum oscillates. The auxiliary
mass parameters include its mass, m,, and its location as measured from the

pivat, r. The friction between the guide and the slider is assumed to be
negligible.

The forces acting on the sliding mass and the pendulum have been
identified in Figure 3.1. The intemnal force between the pendulum and the
slider is represented by a contact force, N that is normal to the guide. The
force associated with moving the auxiliary mass is denoted by F. The
reaction forces at the pivot are represented by R and R,. The gravitational

forces acting on the structure and the slider are given by m.g and mg,

respectively.
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Figure 3.1 Physical pendulum system and the free body diagrams of (b) the
pendulum and (c) the auxiliary mass components.

Applying Newtonian equilibrium principles, moments of force can be
taken about the pivot and upon incorporating the motion of the slider, the
goveming differential equations can be stated as

([a +m,r’ﬁ +2m +(”',’p + m,r)gsine =0. (3.1)
and

F= m,(ézr ~F+ gcose) . (3.2)

Details of the derivation are inciuded in Appendix B. Also, Lagrangian
dynamics, an energy formuiation, can be used to derive the equations of
motion producing the same resuits, as shown in Appendix C.

Various configurations can be considered for the pendulum. Two
examples are illustrated in Figure 3.2. One consists of a massiess rod with a
concentrated mass, m,, located at a fixed distance, /,, from the pivot. The

¥ P'

second is a uniform rod of mass, m_, and of length, / , that pivots about one
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end. For both examples, the damping mechanism is an auxiliary mass that
slides along the structure; one is represented as a mass that slides internally
within the pendulum strut; the other is represented as a bushing that slides
over the pendulum strut.

The governing differential equations describing the angular oscillations
are given by:

« . mi +mr
(@) 6+ —e i+ g 22 | g g (3.3a)
m,l. +mr myl, +mr
and
" 2 : Iml
(b) e;Jr(L—z""’_z Mg 2o sing =0 (3.3)
\imi +mr smi> +mr

with the force required to move the auxiliary mass still being described by
Equation 3.2.

ip

Massiess
Red

Concentrated

Mass ‘\

(a) (b)

Figure 3.2 Pendulum structures with an auxiliary mass or slider: (a) a
massless rod with concentrated mass and (b) an uniform rod with
rotational inertia.
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Various physical pendulum systems, where the attenuation device is a
sliding mass, can be mathematically modeled by the general differential
equations of motion, Equations 3.1 and 3.2. The equations describe a
nonlinear coupling between the system’'s two degrees of freedom: the
angular motion of the system and the transiational motion of the auxiliary
mass (or slider). If the sliding mass remained stationary, the system would be
conservative and for small oscillations, the angular oscillations would be
harmonic. However, the system with a moving auxiliary mass is not
conservative and will exhibit the phenomena similar to those described in
Section 2.2.2. The transiational motion of the auxiliary mass affects the
rotational motion of the structure via the second term of Equation 3.1. This
second term represents either the addition or loss of energy to the angular
motion depending on its sign.

3.2.4 Comparing the Mathematical and Physical Pendulum Models

The physical pendulum has two distinct masses while the mathematical
pendulum has only one mass; hence the two systems will be referred to as
dual or single mass systems, respectively. The governing differential
equations of motion for both systems are given in Table 3.1. The
configuration of the pendulum of the dual mass system is a concentrated
mass located at a fixed distance from the pivot as shown in Figure 3.2(a).
The physical pendulum system provides more accurate modeling of systems
where the moving mass is significantly less than the structural mass.
However, as the ratio of the structural pendulum mass to the auxiliary, moving

mass decreases (—"'i—» 0), then the differential equations (Equations 3.3a
m

and b) reduce to the mathematical penduium equation (Equation 2.10).

Note that entries 1 and 3 in Table 3.1 represent the coupled, nonlinear
differential equations describing the angular oscillations of the system and the
translational motion of the mass along the structure, respectively. The actual
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or physical force required to move the mass is the third entry. Entry 2 is a
reorganization of the first entry; it merely groups the terms related to the slider

to describe a “pseudo-force”, p(m,.0.r,r), generated by the moving mass.
This “pseudo-force” couples the transiational motion of the slider with the

angular osciilations of the pendulum to either increase or decrease the energy
of the system.

Table 3.1 Governing equations of motion for the pendulum systems.

Single Mass System

Dual Mass System

I TP e
1 r r mJl +mr ml>+mre
(2.9) (3.1)
md +m, & ing = pm,.0.7.1) m, 18 +m,gl, sin@ = p(m,.0,r,1)
p
2 (3.5)
(3.4)
where where
. - _ 1R A .
pm, 6.r.1) = 2m, e p(m,.0.r.1)= —m,(r 8+2r0 +rgsm6)
r
(3.5a)
(3.4a)
F:m,(ézr—r"+gcose) F:m,(ézr—i‘+gcose)
3 (2.8) (3.2)

For the simpie pendulum system, the oscillations are independent of

the magnitude of the mass being moved or reconfigured within the penduium
structure; vibration attenuation is affected only by how the mass traverses the
structure. However, for the physical pendulum system, the magnitude of the
pendulum mass and its distribution (mass moment of inertia) along with the
magnitude of the reconfigurable mass (the slider) and its position and
translation profile affect the vibrations of the system. With the physical
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pendulum, the equations of motion can be rearranged to isolate the effects of
the auxiliary mass, which includes the rotational inertia, Coriolis effect and the
gravitational restoring force. As the govemning equations of the single and
dual mass systems are similar, the strategy to attenuate the rotational
vibrations of the physical pendulum should parallel those of the mathematical
pendulum, as previously given in Section 2.2.2.

3.3 Dynamics of the Reconfigurable Mass-Pendulum Systems

The differential equations governing the dynamics of the reconfigurable
mass-pendulum systems appear in Table 3.1. Despite the apparent
simplicity, the dynamics of the systems considered can display a wide variety
of interesting oscillatory and nonlinear behaviors. These unique dynamics
arise from competing phenomena, such as parametric resonance and damped
vibrations. In addition, the behavior associated with the nonlinearity of the
system may interfere to affect the system further, by producing limit cycles.
Through simplifying the governing differential equation to a linear equation
with variable coefficients, various phenomena can be explained and
predicted. However, for a more comprehensive understanding the complete
nonlinear equations can be solved numerically with the simulated resuitant
motion. This is discussed in Chapter 4.

3.3.1 Simplifying the Equation of Motion -- Parametric Vibrations

For small amplitude oscillations, the governing differential equations
for both single and dual mass systems, as presented in Table 3.1, can be
reduced to linear differential equations with variable coefficients. The focus
will be on the mathematical pendulum and the governing differential equation
which can be reformulated to parallel the Mathieu-Hill's Equation which
models the phenomenon of parametric vibrations.
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For the single mass system, the assumption that the angular
oscillations of the structure are small, effectively linearizes the governing
differential equation {Equation 2.10) to the form,

8+22 . 8a-0 (3.6)

r r

Next, the motion of the sliding mass, m,, is assumed to be harmonic

and given by,
r(t)= R, - Ar sinat (3.7)

where R is the average radial distance of the mass from the pivot;
Ar , the constant amplitude or limits of the motion of the slider; and
®, the frequency of the motion.
Note that the frequency of this translational motion is assumed constant.
Upon substituting this slider motion (Equation 3.7) into Equation 3.6,
the governing differential equation becomes

- (-Aracos i) 6+ g

0+2
Ar
Ro[l-%sinml} Ro[l‘E’Sl"ml]

o

9=0. (3.8)

The normalized ampiitude of the auxiliary mass motion will be defined
as

£ =— (3.9)



and the natural frequency of the system is given by

0, = |5 (3.10)

Using this notation, Equation 3.8 can then be rewritten as

2

=2 8=0. 311
(1-esinwt) 1-esinwt (341)

Be2 (-emcos®r) o

If the amplitude of motion for the auxiliary mass, Ar, is smalil in
comparison to the average location of the mass, R, then &((l and Equation

3.11 can be approximated as

8- 2ewcoswt)1 +esinwt + £ sin® Bt+-8
( X P (3.12)
+mi(l +esinwt +&° sin mt+---)9 =0

With the variable transformation of
ot =2t-—, (3.13)

and neglecting the higher order terms of ¢, the goveming differential
equation becomes

2 02
-‘;—g -4(ssin2t)§+-m—’2’4(l —gcos2T)0 = 0. (3.14)



This simplified equation is similar to Mathieu’s Equation. This equation has
some very reievant and known characteristics which are pertinent to this study
and are briefly introduced in the next section.

3.3.2 Introduction to Mathieu-Hill Equations
Mathieu-Hill equations are linear differential equations with periodic

coefficients. The canonical form of the first order Mathieu Equation is given
by

2

d’y
&

+(a-2qc0s2:)y =0 (3.15)
where the parameters a and ¢ are limited to real numbers and : is
unrestricted.
The significance and incorporation of the damping terms as evident in
Equation 3.14 will be discussed later. One generalized form of the Mathieu
equation is Hill's equation where the periodicity of the stiffness parameter
does not need to be harmonic [McLachlan, 1951]. In other words, if a relay
action for mass reconfiguration is assumed; the governing differential

equation will parallel the Hill's equation. The extended form of Mathieu's
equation is expressed as,

dl
“+la-2vlas)y=o (3.16)

where y(2z)is a periodic function.

For the particular case of Hill's equation, the parameters are given as,

a=80, (3.16a)



and
-2qy(2)=2[8, cos2z+8, cos4z+..]. (3.16b)

The theory of Mathieu equation can be applied to Hiil's equation with similar
stability and instability characteristics existing [Hayashi, 1964).

By applying Floquet's theory, a particular solution of Mathieu's
equation (Equation 3.15) is given as

y = exp{ut)é(t) (3.17)

where | is the characteristic index which depends in a very decisive way on
the parameters, a and g, and ¢(t)is a periodic function of t with
periodicity of = or 2r {Hayashi, 1953].

Since Mathieu’s equation (Equation 3.15) is unchanged for a sign change of

the dependent parameter, -1, another independent solution is

y = exp(-pt)d(-7); hence, the general solution may be expressed as

y = ¢, exp(pe)d(t) + ¢, exp(—pt(-1) (3.18)

where ¢, and c, are arbitrary constants.

The solution may be of decreasing amplitude or bound amplitude (stable
motion) or of increasing amplitude (unstable motion) depending on the values
ofaand q.

The stable, neutral solution is characterized as periodic and by
definition, called Mathieu functions. These functions are elliptic cosine or
sine series that define the characteristic curves that divide the a-q plane into
stable and unstable regions as mapped in the Haines-Strett diagrams
Hlustrated in Figure 3.3 (McLachlan, 1951].
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With reference to the complete, general solution (Equation 3.18), stability
exists if p is purely imaginary and instability occurs when p is real.

As shown in Figure 3.3, the ranges of stability alternate with regions of
instability. Essentially, Mathieu's equation and the Haines-Strett diagram
eliminates the need to solve the differential equation when assessing the
stability of the system. The governing differential equation needs to be
transformed to the standard Mathieu’s Equation 3.15 with the parameters, @
and ¢, being evaluated.

As presented in Section 2.2, one method to attenuate the oscillations
of the pendulum is cycling the end mass at twice the pendulum frequency.
However, when the end mass cycles at this frequency, then a=1 and the
system lies in the broadest instability zone between the characteristic curves,
a and b, 7. For any mass motion, q =0, parametric resonance occurs and

oscillations would tend to amplify. To understand how oscillation attenuation
can occur for this same scenario, damping effects must be analyzed.

The differential equation for a simiiar system with viscous damping can
be derived in the following form,

2
i—zy+2x%+(ﬁ—2qc032:)y=0 (3.19)

where the parameter « represents the viscous damping coefficient. All the
parameters of Equation 3.19 are real with both x and ¢ being positive values.
Damped Mathieu functions of fractional order are solutions to this equation.
Also, this equation parallels the differential for the reconfigurable mass-
pendulum system (Equation 3.14) with the exception being the damping term.

” The characteristic number corresponding to each Mathieu function which
defines the characteristic curves as shown in Figure 3.3. The
characteristic number can be expanded as a power series in g (from

Equation 3.15).
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The pendulum system has a time-varying damping;, whereas, Mathieu's
equation has a positive and constant damping coefficient.
By assuming a solution in the form

y=exp(-xz)-u(z) (3.20)

and substituting into Equation 3.19, the differential is converted into Mathieu
equation,

H
i—;—‘+(a-2qcos22)n= 0 (3.21)

where a=(a—x1).

If the parameters, a and ¢, are located in a stable region of Figure

3.3, the soiution has the form of exponentially decaying damped osciilations.
However, if the parameters are located in an unstable region, then the
solution may be stable and converging to zero, unstable and diverging or
neutral and periodic depending on the relation between the damping
constant, k , and the characteristicindex, u. The relations can be

summarized as follows:

(1) if the defining parameters (a,q) lie on the characteristic
curve, then x = p and the condition is neutral and the motion

is periodic. Theoretically, oscillations once initiated would
continue unchanged. In practice, natural limitations, either
decay the oscillations or allow increased growth to a limit.
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(2) if (a,q) occurs in a stable region then x > p and oscillations

decay as time progresses.

(3) if (@.q) occurs in an unstable region then x < uand the amplitude

increases with time.

The regions of stability are adjusted as shown by the iso-u curves which lie

within the unstable region as shown in Figure 3.4 [McLachlan, 1951]. As
seen, the effects of damping have increased the region of stability.

The characteristic index which controls the decay of the solution for the
functions of fractional order, is dependent upon the equation parameters, a
and g. From Figure 3.4, for small values of ¢ the minimum of the iso-u

curves occurs approximately midway between the bounding curves of the
unstable region; therefore to approximate the characteristic index

(3.22)

=

m

H
(SRE-Y

When a =1 and g < 2u, stable motion wiil occur.

When the solution is quasi-periodic as exists for degenerate cases, the
function, ¢(t), of Equation 3.17 is defined in terms of a phase shift variable,

o, that varies between 0 and —g. This variable is also interrelated to the

other parameters a,g and p. Iso-p curves and isc-c curves are shown in

Figure 3.5 for the first instability zone which has been reproduced [Hayashi,
1964]°.

* This reference [Hayashi, 1964] employs Mathieu's equation of the following
2
form % +(a+16gcos2t)x=0. Correspondingly, the scaling of the g-axis
changes from the previous plots, Figure 3.3 and 3.4 [McLachian, 1951].
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Figure 3.4 Iso-u stability chart for Mathieu's equations of fractional order.?

® Note this figure has been reproduced from Theory and Applications of
Mathieu Functions by N. W. McLachian (1951) p.98.

51



0.125

0.100

-10°
O =

0.075

g—b

0.025

0 0.5 1.0 1.5 2.0

a“

Figure 3.5 First zone of stability for fractional order Mathieu Equation® with
phase shifts.'

As with Figure 3.4, the value of u determines the stability
characteristics, but its value is based on that of ¢ [Hayashi, 1964]. These
iso-g and iso-pu curves are symmetric about the g-axis. The iso-u curve

'® This figure has been reproduced from Nonlinear Oscillations in Physical
Systems by C. Hayashi (1964) p.90.
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becomes the boundary curve separating stable and unstable regions and
these curves are asymptotic to the characteristic curves that bound the
unstable region where they lie. Similar charts for the second and third
instability region can be found in Nonlinear Oscillations in Physical Systems
[Hayashi, 1964).

3.3.3 Equivalent Damping Coefficients for Periodic End Mass Motion

The simplified governing differential equation for the pendulum system
(Equation 3.14) is very similar to Mathieu's Equation of fractional order
(Equation 3.19); the difference lies with the second damping term. Equation
3.14 contains variable damping that may be positive or negative depending
on the mass motion; whereas, Mathieu's equation assumes a constant,
viscous type of damping. The variable damping in the pendulum system is
capable of attenuating the angular oscillations as shown in Section 2.2.2; the
function is similar to a viscous damper. To compare the viscous type of
damping of Equation 3.19 with the attenuation in the pendulum system, the
energy dissipation over an oscillation cycle is caiculated and equated for
these two types of damping. This allows an equivalent viscous damping
coefficient to be defined for the mass reconfiguration system. Then, this
equivalent viscous damping coefficient can be used in Mathieu's equation to
predict stable and/or unstable motion.

As previously stated, depending on the auxiliary mass motion, the
attenuation or amplification of the pendulum’s oscillations occurs over a cycle
of angular displacement, as discussed in Chapter 2. For attenuation, the net
effect over a complete vibration cycle is energy loss, although
instantaneously, variable damping may be either positive or negative. In
contrast, a viscous damping mechanism dissipates energy whenever there is
motion. To quantify these damping effects, the energy dissipation for a given
period in these two systems is calculated. A simple “averaging” of the



coefficient for the angular velocity in Equation 3.6 over a cycle is ineffective,
as this value is zero.

Consider the motion of a one degree of freedom system, mass-spring-
damper system. The governing differential equation for an elastically
suspended mass that is free to oscillate has the form,

my+cy+ky=0 or F+2&n y+aly=0 (3.23)

where my represents the inertia force;
ky , the elastic resistance force;
cy , the viscous resistance force;

g= 5 < , the damping ratio; and
{0}

- L]

o, = L3 , the natural frequency.
m

The damping ratio can be related to the energy dissipated in a cycle.
First, Equation 3.23 is converted into a work-energy relation consisting of
incremental work done or energy change by muitiplying each term by an
incremental displacement, 4y, to obtain

mydy +cydy + kydy = 0 . (3.24)
Equation 3.24 can be interpreted as the energy balance for the mass-spring-

damper system over an infinitesimal displacement. For motion from y, to y,,

this balance can be written in the integral form,

[kt = o). @2



The left hand side of the equation represents the energy dissipated, while the
right hand side can be explicitly integrated to give the kinetic and potential
energy of the system. Integrating by parts over a cycle of vibration defined by
the period from t =0 to ¢ =1 gives

f )dt-~ my* +ky*) - E(0) (3.26)

where AE is the energy dissipated in a cycle and E(0) is the initial energy
state.
For small values of the damping ratio (£ << 1), the motion during a

cycle can be approximated as simple harmonic motion,

y)=4 exp(-&m,,t)cos(mn\{ 1-E’ )t = Acosa t (3.27)

where A is an amplitude at the beginning of the cycle. For a complete cycle
of motion, the energy dissipated is evaiuated as,

AE = ~[oytdt = <[ Ao sin'(o f)d(w,1) = - A0 cn. (3.28)
0 mﬁ o

The initial energy of the system associated with the energy stored in the
spring is given by

E(0) %w. (3.29)



The energy dissipated is normalized with respect to the above initial energy to
give

AE  2cn
m =g (3.30)

n

Using the damping ratio, &, as previousily defined, the normalized energy

dissipation by a viscous damper for a cycle becomes

2
AE _ Al“"n" = —an. (3.31)

The energy dissipated in a cycle for a variable length pendulum can be
calculated in a similar way. The linearized, governing differential equation of
motion is muitiplied by an incremental displacement, 48, to obfain an energy
balance given by

69 + zf-é(m-fiecm =0. (3.32)
This equation can be rewritten as

d(%é‘) +d(%%9’) +2§[9’ +%6’)dt =0. (3.33)
Then, the energy dissipated, AE, per cycle is determined as,

AE =2 5(62 +£91)d: =19, £ £ (3.39)
o 4r 2 2r



where t is the period of angular vibration. Again, the right hand side of the
equation represents the kinetic and potential energy of the system at any
instance of time, and E(0) is the initial energy state. Note that the energy
dissipation as given in Equation 3.28 was always negative while that in
Equation 3.34 depends on the velocity of the mass as represented by 7.

The attenuation of the angular oscillations for the pendulum system by
reconfiguring the system mass follows the strategy as shown in Figure 2.7(a).
The translational motion of the end mass, r(z), is assumed to fluctuate by a

small amplitude, Ar, about a set position, R,, with the frequency being twice

the pendulum's average natural frequency, 2m=2 \/RE =202. The mass

(-]

motion is given as
r(t)= R, - Ar sin2wmt, (3.35)
and the harmonic angular motion of the system for a cycle is approximated as
08(r) =90, cosar. (3.36)

These profiles are shown in Figure 3.6.
The corresponding energy dissipated per cycle is then calculated as

2 = 2[ (6 + Bot )= - T M grgy (337)
o7 4r 2 R,

The change in energy over a cycle of angular oscillation is normalized with
respect to the initial energy of the system,
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Figure 3.6 Profile of the moving mass and oscillating pendulum system for
attenuation.

Equating the normalized energy dissipation for the two systems over a
cycle of oscillations (as given by Equations 3.31 and 3.39), an equivalent,
viscous damping ratio, & .,, for the sinusoidal mass reconfiguration system is

defined as:

L3ar (3.40)



As can be seen, when mass reconfiguration within the structure is
assumed to be harmonic and at twice the natural frequency of the system
(Figure 3.6), the damping ratio depends on the location and amount of
transiational motion of the end mass.

Note that £, is negative, if Ar <0 which corresponds to the pattem

shown in Figure 2.8a. For this case, the mass moves away from the pivot as
the pendulum nears its maximum angular displacement and towards the pivot
as the pendulum nears its vertical or equilibrium position. Such a pattem
causes amplification of the anguiar oscillations.

If the mass moves towards the pivot once the pendulum reaches its
maximum angular displacement and away from the pivot as the penduium
nears its vertical position, then both Ar and ., are positive, as shown in

Figure 2.7. The goveming equation for parametric vibrations with viscous
damping similar to Equation 3.19 can be written in the form

8+28 0,0 +0l(l+esinwr)@=0 (3.41)

where the notation is as introduced in Section 3.3.1. Upon substituting the
equivalent ratio (Equation 3.40), this equation replaces Equation 3.12 and
with the substitution of Equation 3.13, the approximate governing differential
equation (Equation 3.14) for the pendulum system with equivaient viscous
attenuation properties takes the form,

2 @ 02
23—94-33?"%4-4?"(1-—“032#9 =0. (3.42)

This equation, in terms of damping, can be considered equivalent to Equation
3.14 and is of the same form as Mathieu's equation of fractional order
(Equation 3.19) whose features were briefly presented in Section 3.3.2.
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As the displacement profiles and/or coordination of the moving mass
with the angular oscillations of the pendulum vary, different equivalent
damping values will be generated. For the motion pattern illustrated in Figure
2.7(b), the relay action consists of moving the mass towards the pivot when
the angular velocity of the system is near zero and the motion of the mass is
away from the pivot when the mass passes directly beneath the pivot. The
range, Ar, of transiational motion at the radial distance, R,, from the pivot

and at twice the natural rotational frequency of the pendulum system is

assumed. The energy change over an oscillation can then be calculated to
be

AE =12gAr(cos9, - 1). (3.43)

Normalizing this change of energy with respect to the initial energy of the
system (Equation 3.36) gives

AE _ 12gAr(cos®, -1} = A o Ar
E(0) g(R, +Ar)1-cosB ) R +Ar

(3.44)

Upon equating this energy dissipation with that of the viscous damped system
(Equation 3.31), the equivatent, viscous damping ratio of the relay profile for
mass reconfiguration is given as

. 3Ar
QE'Q = R . (3~45)

a

This strategy provides more effective damping than the harmonic motion
which is consistent with the discussion presented in Section 222 and



illustrated in Figure 2.7. In general, the equivalent damping ratio depends on
the location and amount of transtational motion of the moving mass.

3.3.4 Some Properties of Mathieu's Equation Applied to the

Reconfigurable Mass-Pendulum System

The simplified governing differential equation (Equation 3.14) assumes
the transiational motion of the end mass is sinusoidal and at twice the mean
frequency of the angular oscillations of the simple pendulum. Furthermore,
the amplitude of motion of the auxiliary mass is significantly less than its
mean radial position as measured from the pivot. The magnitude of the
angular oscillations are assumed to be small allowing the govemning
differential equation to be linearized.

For the described mass reconfiguration, the simplified governing
differential equation is given by Equation 3.14 or 3.42 for the mathematical
pendulum system, the corresponding parameters of the classic Mathieu's
Equation 3.15 when the damping effects are neglected are

a=4 m’ =1 (3.46)
and
4
q= 4%;-% = % (3.47)

As predicted by Figure 3.3, any mass motion, ¢=0, at this resonant
frequency, o=20, (that is, a=1), would yield unstable behavior. When

various normalized displacement modulations, ¢, are plotted on a Haines-
Strett stability chart, the interceptions in the unstable regions increase as the
modulation value increases. In other words, the frequency range associated
with unstable motion increases.
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When plotting these displacement modulations on the stability chart for
Mathieu's Equation of Fractional Order as done in Figure 3.7, it is apparent
that the required characteristic index, u, for stable dynamic behavior is small.

For small values of mass motion, ¢, the value of the characteristic index is

also very small, as given by Equation 3.22.

Figure 3.7 Stability chart' for constant displacement modulations for a
reconfigurable mass-pendulum system.

When damping is considered, an equivalent damping coefficient can
be evaluated. The governing differential equation can then be approximated
by Equation 3.42 with the defining Mathieu's Equation parameters being

" The background figure has been reproduced from Theory and Applications
of Mathieu Functions by N. W. McLachlan (1951) p.98.
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K=E,0, =%e%‘=%e (3.48)

a=a-x’ =4“;§—x‘ = 1—%3* (3.49)

q=% (3.50)
and

u=%=§ (3.51)

Damping extends the stability zone and for the above parameters, the
stability criteria of x > uis satisfied both for the trivial case of no auxiliary
mass motion, € = 0, and for all displacement modulations when £ >0.

Consider the mathematical penduium where the average position of the
end mass is R, =1.0m. The frequency of vibration of the end mass is twice
the average angular oscillations of the system of w_=3.1321rad/s. As shown,
this pendulum system will exhibit stable behavior if the amplitude of the
transiational motion of the end mass is positive, Ar > 0.

As a specific example, if the translational amplitude of the sinusoidal
displacement is selected where Ar=025m, the equivalent damping
coefficient as evaluated from Equation 340 is £, =01875. The

corresponding Mathieu parameters are a =09648, ¢ =0.125 and x =0.1875,

and this point, (a,q) lies in a stable region of the Haines-Strett diagram'.
Furthermore, u = t%q =+0.0625 which satisfies the stability criteria of p <x.

For the reconfigurable mass-pendulum system (Equation 2.10), the
coefficients of the governing equation are actually time varying. The dynamic
stiffness and the damping vaiues are continually changing as a resuit of the

"?Note for Figure 3.5, ¢ =0.015625 and hence the operating point is in an
extended zone of stability.
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mass reconfiguration (Equation 3.7 or 3.35). Instantaneously, the
corresponding Mathieu's Equation parameters may lie in either the stable or
unstable zone. Based on the simplified govemning equation (3.14), where the
mass reconfiguration occurs at twice the system's natural frequency the
corresponding Mathieu's equation parameters are

x = -2esin2t (3.52)
ml

a=4—"2-x*=1-4¢' sin* 21 (3.53)
o

and gand p are as previously defined by Equations 3.50 and 3.51,
respectively.
As presented in Section 3.3.2, for stability u<x and the

corresponding displacement madulation limits is expressed as the following
inequality,

£ < -8esin2t. (3.54)

or when using the former transformation (Equation 3.14) of 2t = ot +§

€ < 8ecos2o ¢ (3.55)

Stability is predicted when either
(1) there is no auxiliary motion: € =0 or

(2) fore>0, cos2at 2-;- (3.56)

For the second condition, this inequality is only satisfied for a portion of each
oscillation cycle of the penduium. [nstantaneously, the system behavior may
lie outside the stable zone. Alternately, this fluctuation between stable and
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unstable zones can be seen by plotting the range of (a.q) on Figure 3.5 or
3.6" where a e[l—ncﬂl].

In general, variations in the system parameters, such as the range of
motion of the auxiliary mass, its frequency of motion and/or the phase with
respect to the structural anguiar oscillations will affect the system dynamics.
Predicting the dynamic behavior for a pendulum with reconfigurable mass is
quite involved, even though a similar system — a child swinging — is
seemingly intuitively solved as the chiid learns how to control the oscillations
of the swing. Based on numerical simulations, the dynamic behaviors of the
pendulum with reconfigurable mass for various paradigms, are explored in
Chapter 4 with reference to the discussion herein.

3.4 Parameterization of Systems for the Computer Simulations

The technique of reconfiguring the structural mass is used to controi
the dynamics of the system. As the mass moves along the structure, it alters
the system'’s characteristics; such as the damping and the dynamic stiffness.

The effects of the moving mass are indicated in the governing
differential equations of Table 3.1. For the mathematical pendulum, only the
position of the moving mass alters the system’s parameters. For the physical
pendulum, both the magnitude and position of the moving mass affect the
parameters.

The “instantaneous® frequency or the dynamic stiffness of the
mathematical pendulum changes with the mass position, as given by

o(f) = 7%‘ (3.57)

' See previous footnote [7].
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As the length of the penduium increases, the natural frequency decreases
and vice versa. For a physical pendulum (Figure 3.2a), the position and
magnitude of the auxiliary mass and the structural inertia and rigidity both
affect the dynamic stiffness and the instantaneous frequency, as given by

1, +mAi) ' ,,.,2,)_
® - m“,-f-m, t - g m,rt ‘ '
! \Ig[,,.,,; +,,,,(,y) 0| 1, _ms e
m,r(t)2

As the ratio of the pendulum or structural mass to the sliding mass

approaches zero Lﬁ—» 0), the dynamics of the system can be effectively
m

3

modeled as a mathematical penduium; Equation 3.58 reduces to Equation
3.57. This is shown in Figure 3.8, where the pendulum is of length, 1 m. To
approximate the dual mass system as a simple pendulum, the structural mass
should be chosen to be ~10% or less than the magnitude of the sliding mass,
and the sliding mass motion should be limited to 0.75 < r(t) < 125m.

8 Simple m/m,

74 Pendulum —6'
> ——
§ 6 - 0.1
g 5 | —+=0.2
-4 ——Q 5
83 | =1
053 - 2
g — 5
s =
s 1 t 02 04 06 08 1 12 14

0 Position of Sliding Mass (m)

Figure 3.8 Effects of magnitudes of the structural mass, sliding mass and
slider position on dynamic stiffness.
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The damping coefficient is a time-varying parameter. The
carresponding damping force is a function of the position of the sliding mass
and its first time derivative, its magnitude and the angular motion of the
pendulum. The nature of the damping is described through examining various
temporal displacement profiles for the sliding mass in Chapter 4.

For investigating the dynamics of the reconfigurable mass-pendulum
system the following parameterizations were made. For the simpie pendulum
system, a length of 1.0 m was chosen with a range of motion for the end mass
being restricted to 0.25 m about this point. The corresponding natural
frequency, as calculated from Equation 3.57, ranges between 2.80 to 3.58
rad/s (with the corresponding period being 1.74 to 2.24 s). Selecting a
shorter pendulum would increase the natural frequency and decrease the
available time to implement control. Hence a faster controi system would be
required.

For the physical pendulum system, the pendulum mass was selected
as a concentrated mass of 7.5 kg located at a distance of 1.0 m from the
pivot. The natural frequency of the system is 3.1321 rad/s and the period of
oscillations is about 2 seconds which is comparable with the characteristics of
the mathematical pendulum. The auxiliary mass was selected to be 0.75 kg
with its motion bound between 0.75 to 1.25 m away from the pivot. The range
of the undamped natural frequency as calculated using Equation 3.58 varies
between 3.08948 to 3.15977 rad/s. Note also that when examining only the
slider, its motion and characteristics are equivalent to the mathematical
pendulum system.

In the next chapter numerical simulations of the dynamics for the above
parameterized systems for various temporal profiles of the auxiliary mass are
presented. Through reconfiguring the system mass, a mechanism for active
damping is achieved.
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3.5 Summary

Mass reconfiguration within the system by either internally or externally
moving an auxiliary mass within or along the structure can be used to achieve
active vibration attenuation. Pendulum structures are accurate models for
many physical systems which exist in numerous and diverse applications.
Many of these systems require a mechanism to prevent and/or alleviate
vibrations.

In developing a mathematical model of the system, other damping
factors, such as drag or material damping, are neglected to accentuate the
effects that the moving mass has on attenuating the structural vibrations.
These other forms of damping will further enhance the stability and damping
of the systems.

Accounting for the structural mass enables segregating the auxiliary
mass and further extends the modeling accuracy. In addition, the moving
mass attenuation device can be viewed as a separate mechanism that can be
retrofitted to existing structures. As shown, the physical pendulum or dual
mass system can be reduced to the mathematical or single mass system
where the effects of moving the end mass are more apparent.

To provide insight into the dynamics of the variable length pendulum
model, the describing equation for the angular oscillations was simplified and
reduced to linear equations with variable coefficients. These equations which
resemble Mathieu-Hill's equations are valid for small, structural angular
oscillations and smali translational motion of the end mass which has a
frequency twice the structural angular oscillation frequency. Mathieu's
Equations are oscillatory with defined regions of stability and instability. The
unstable physical phenomenon associated with periodically varying
parameters is called parametric excitation. For the penduium with
reconfigurable mass, such excitations or amplifications arise from the
harmonic motion of the mass which creates variable stiffness, particularly
when the frequency is twice that of the system.
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Next, an equivalent viscous damping value was determined based on
energy dissipation over a single cycle of oscillations for two proposed modes
of mass motion. Using the equivalent viscous damping vaiue, the governing
differential equation was reformulated into Mathieu's Equation of fractional
order. For the harmonic motion profile for the slider, parameterization was
completed to illustrate the expected stability features both over a cycle and
instantaneously. As the mass moves, the parameters vary and the operating
behavior switches between stable and unstable zones. Hence, determining a
strategy for effectively attenuating angular oscillations no longer appears to
be intuitive.
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4. Dynamics Associated With Mass Reconfiguration

4.1 Introduction

The effects of the active damping mechanism on structural vibration
energy are investigated for various scenarios. The active damping
mechanism can be visualized as a redistribution of structural mass; either the
mass slides along/within the structure or the structure is reconfigured with a
different mass distribution. The interaction of redistributing the mass is
studied using numerical simulation techniques. Typical results are
represented graphically throughout this chapter as displacement, force and
energy history curves or phase plots.

The goveming differential equation has been solved numerically for
various displacement profiles of the moving mass. Since simulation packages
were developed for this investigation rather than employing commercial
packages, several accuracy tests or benchmarks were established. These
included assessing the local truncation error, evaluating convergence
associated with the discretization of the integration routine and establishing
stability using a conservative system. Additional evaluations of the simulated
package were performed for various damping strategies.

In predicting the dynamics of the reconfigurable mass-pendulum
system, simplifications were made as discussed in Chapters 2 and 3. One
involved linearizing the governing differential equation; the effects associated
with this simplification are given for various conditions. Aiso, Mathieu's
equation for the first three instability zone have been simulated.

To appreciate the significance of a moving mass rather than
approximating the dynamics by a moving force, simulations were conducted



for a mass and a force of equivalent weight with the same movement pattern.
The physical pendulum or dual mass system was modeled when conducting
this analysis. The comparison examines the energy profiles and kinematic
histories for the two systems.

The primary profiles for transiating the mass along the structure that
were investigated included continuous, harmonic motion and discontinuous,
relay motion. In each case, parameters were selected to enable comparison
to be easily made. For the simulations, the parameterization of the systems
was as given in Section 3.4 (and tabulated in Appendix D), where the
frequency of free vibration was approximately 3.1321 rad/s.

Preliminary optimization to generate temporal translational patterns for
redistributing the mass to minimize the structural energy for a given time
period was aiso conducted. The objective function was to minimize the
structural energy over a previously defined interval. Both continuous and
relay-type displacement profiles were considered.

4.2 Simulation Procedure for Investigating the Dynamics of the
Reconfigurable Mass-Pendulum Systems

The goverming equations of motion for the pendulum-mass
reconfiguration systems contain nonlinear relations (Table 3.1).
Simplifications can be made to reduce the analysis to a linear treatment;
however, for a complete analysis the nonlinearities and the associated
phenomena were included.

The closed form solution for reconfiguring the mass of a pendulum
structure has only been completed for a few specific cases. For example, if
the pendulum changes its length at a constant rate, the solution can be
defined in terms of Bessel Functions [Relton, 1965; Whittaker, 1927; Farrell
and Ross, 1971). For harmonic motion of the sliding mass, the dynamics
were reduced to Mathieu's Equation as shown in Section 3.3. However, for
general motion, an explicit solution may not exist. Hence, the dynamics of the
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reconfigurable mass-pendulum systems were studied through numerical
simulations.

The simulation procedure assumes a displacement profile for the
sliding mass, #(r). Then, the goveming, second order differential equation

describing the pendulum and its mass reconfiguration, either Equations 2.9 or
3.1, was solved using an initial value problem sclver. In this manner, for a
particular r(r), the corresponding structural angular displacement profile,

8(r), can be determined. The force required to implement the motion can

then be calculated from Equations 2.8 or 3.2. Details of the software
development foilow.

4.2.1 Integration Algorithms

Depending on the algorithm and discretization used, a variety of
numerical methods exist for approximating solutions for ordinary differential
equations. Usually, the procedure for solving the equation(s) of motion
requires transforming the higher order governing differential equation into a
set of first order differential equations. Then, the solution for this set of
coupled, ordinary differential equations can be numerically determined for
discrete instances using various initial value solvers.

Initial value solvers essentially time step through the problem, with the
solution based on the initial conditions of the system. The three types of
initial value solvers include:

1) one step, direct methods (e.g. Runge-Kutta algorithms),

2) extrapolation methods (e.g. Richardson and Bulirsch-Stoer

algorithms), and

3) muiti-step, predictor-corrector or iterative methods (e.g. Adams

Predictor-Corrector method).

Runge-Kutta methods are general purpose techniques that provide
moderate accuracy. These methods propagate a solution over an interval by
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combining the information from several Euler-style steps (each involving one
evaluation of the right hand functions}). Then, by using the information
obtained, a match to a Taylor series expansion up to some higher order is
done. Runge-Kutta methods approximate the solution for the next time
interval solely on the previous titme.

Extrapolation uses the concept of extrapolating a computed result to
the value that would have been obtained if the step size had been very much
smaller than it actually was. The first practical methods of this concept were
Bulirsch-Stoer methods. These routines are difficult to initiate and direct
methods are often used to establish the dynamics for the first few time steps.

Predictor-Corrector methods store the solution and use these results to
extrapolate the solution for the next step and correct the extrapolation using
derivative information at the new point. Typically, they require one step
methods to initiate the process. These techniques tend to be computationally
more efficient than direct methods and are well suited for very smooth
functions [Press, et. al., 1992a&b, Burden and Faires, 1985].

The initial value routines are described in detail and their algorithms
are outlined in Appendix E.

4.2.2 Software Development

Customized, dynamic simulation packages were chosen to investigate
vibration attenuation using mass redistribution. In the process of creating
these packages various support software tools were also programmed, these
tools were developed to be reusable and extensible. The software was
initially developed in Forth, a language claimed to be pure and elegant, yet, it
lacks in fundamental support toois. As a scientific programming environment,
Forth was very limited. Linear algebra software [Stilling and Watson, 1994a;
Watson and Stilling, 1991b], numerical integration routines for solving
ordinary differential equations and controllers were developed with good
interfacing capabilities [Stilling, 1990b and 1993b] being expiored. The
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extensibility of this language was very tractable, especially, when the entire
scope of the project was considered.! Later in the doctorate program,
procedural languages were deemed acceptable and much reprogramming
was completed for the simulation and dynamic investigations of this research
was repeated and extended in the procedural language, C.

Originally, the linear algebra package, MATMATH [Stilling and Watson,
1994a and Watson and Stilling, 1991b] was developed in Forth as a tooi for
all phases of the thesis research. The package was very tractable for
integrating the dynamic simulation and implementing the controller. The
entire package was developed as a general purpose environment that would
conserve memary, yet be easily extended. The coding style was modular with
operations being succinct units that could be lcaded independently; only the
pertinent routines which need to be accessed are loaded. Details of this tool
appear in Appendix F.

All of the simulation software was programmed in a modular style.
Investigating various movement profiles for the auxiliary mass along the
structure and examining mathematical or physical pendulum systems was
easily accommodated, since the code was confined to a few statements or
case statement routines. The basic simulation was adapted to incorporate the
various initial value solvers. Qutput routines were tailored to provide graphic
displays of the pendulum operation with the moving mass and/or numerical
output for further analysis and processing. The dynamic simulation software
was a part of the completed control systems which varied from a user-
interactive forum to a fully automated control system simulation.

4.2.2.1 Implementation for Dynamic Simulation
The numeric simulation for the dynamics of the mass traversing the
pendulum structure required solving the appropriate govemning differential

! “Extensible languages provide a good impedance match between how we
think and how they represent knowledge.” [Forsley, 1993].
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equations (Equation 2.10 for the mathematical system and Equation 3.1 for
the physical pendulum system). The procedure requires expressing the
govemning differential equation as a set of first order differential equations in
terms of the time dependent variable. Using y, =8 and y, =9, the set of

governing first order differential equations for the mathematical pendulum can

be written as
)"1 =Y, (41 )
and
. F .
¥y ==2%y, -Zsiny,. (4.2)
r r

Initially, the set of first order differential equation was solved using a direct
method, a fourth order” Runge-Kutta algorithm (See Appendix E). Then,
various evaluations of the software programs were conducted (Section 4.2.3).
The dynamic interaction for the reconfiguration of mass for a pendulum-based
system were then simulated for various profiles (Section 4.4). To ensure the
simulated dynamics were representative of the actual physical phenomena
and not artifacts of the computation methods, various initial value soiver
algorithms were implemented. A variable, seif-adjusting step-size algorithm
was incorporated. The Adams Fourth Order Predictor-Corrector Aigorithm
and an extrapclation algorithm were programmed as the initial value soiver.

4.2. Verification of Software Simulation Packages

Elementary evaluations of the simulation process involved comparing
the simulated resuits with an exact solution to assess the locai error, adjusting
the time discretization as a further test on convergence and performing

%A method is conventionally called nth order, if its error term is O(h™") where
his the step size.
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extended program runs to assess stability. Initially, these evaluations were
performed using the Runge-Kutta direct method algorithm. After investigating
various mass reconfiguration profiles (Section 4.4), the algorithms were
changed to incorporate those with decreasing local truncation errors to
ensure the simulated results were representative of the actual physical
phenomena. A further evaluation of the simulation was deemed necessary.
This method involved an assessment which incorporates the physics of the
problem: a work-energy balance for the dissipate system was performed for
each time step of the simulation period to account for energy loss, gain or
exchange. (See Appendix G.)

All results, as reported herein, are based on the parameterization as
discussed in Section 3.4 (or tabulated in Appendix D), unless otherwise
stated. The verifications were completed in both software development
languages, Forth and C on various platforms.

Firstly, the local efror was evaluated using a similar second order
differential equation. A conservative system, a constant length penduium,
was selected; its governing differential equation is given by:

§+L 5in0=0. (4.3)
/

P

and when linearized for small oscillations, it becomes:

6+£0=0. (4.9)
]

P

The closed form solution of Equation (4.4) is expressed as,

8(r)=0,coso 1 + 8, sino t . (4.5)
@
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where @, = 1£ is the natural frequency;

P

8,, the initial angular displacement; and

8, , the initial angular velocity of the pendulum.

All other notation and selected parameter values are tabulated in Appendix D.

The governing differential equation {(Equation 4.4) was solved using
the fourth order Runge-Kutta algorithm using various time increments
(Ar =01, 005, and 0.01 second). The local truncation error’ for the angular

displacement history is variable as illustrated in Figure 4.1 and reported in
Table 4.1. For the various time discretizations, the error decreases with
smaller time steps. The magnitude of the error for the time step of 0.01s after
approximately five (5) time constants was of order, 10°. Note that the local
truncation error associated with this initial value soiver is divergent.

Table 4.1 Accuracy of the Runge-Kutta algorithm

Time | Exact Solution Runge-Kutta Simulated Soiution

At=0.1 At=0.05 At=0.01

0 0.5236 0.5236 0.5236 0.5236
Ti4 | 0.002487 0.002551 0.002491 0.002487
T 0.52358 -0.52358 -0.52357 -0.52358
3T/4 | -0.00746 -0.00746 -0.00747 -0.00746
T 0.523552 0.50111 0.523502 0.523552
~47 0.52355 0.521739 0.522074 0.52355

? The difference or amount that the exact solution to the differential equation

fails to satisfy the difference equation used in the numerical approximation
is called the local truncation error.
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For the variable length pendulum (Equation 2.10) with harmonic, radial
end mass motion, an exact solution is not readily attainable. A convergence
test was performed, whereby the solution was compared at various instances
between simulations which were conducted with decreasing time steps. The
results appear in Figure 4.2 when the motion is in phase and at the same
frequency as the angular displacement.

0.0015 -

Angular Displacement
Ervor (rad)

-0.0015 - Time (s)

At: ———0Q18 ------ 0.05s 0.01s

Figure 4.1 Local truncation error for various time steps for a constant length
pendulum solved using a Runge-Kutta algorithm.

AN
AVRVATA

06 - Time (s)

Angular Displacement
(rad)

Ar: ——01s------ 005§ =—=0.01s

Figure 42 Angular displacement profiles for a simple pendulum with
harmonic end mass motion.
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When the time step was decreased by an additional order of
magnitude (As=0001 second), the angular displacement profile for the first
four time periods was not significantly different.

Lastly, to ensure numerical stability* in the program, the conservative,
constant length pendulum system (Equation 4.3) was simulated for an
extended time period, over 200 time constants. For this system, the potential
(U) and kinetic energy (7) should continually transform as the pendulum
osciliates with no loss or gain of energy. This did occur. The energy profiles
of the system indicated the algorithm and its coding did not suffer from any
appreciable round off error or overflow problems, as conservation of total
energy prevailed. Figure 4.3 illustrates the energy profiles for the initial 25

seconds for the case where 6, = 30° and As =00ls.

Subsequent to obtaining the nonlinear results as presented in Section
4.4, incorporating higher order local truncation error aigorithms was deemed
necessary. A discussion of the simulation algorithms, the Runge-Kutta,
Adams 4th Order Predictor-Corrector aigorithm and an extrapolation algorithm
which were used, appears in Appendix E. A comparison for the conservative
system using a time interval of 0.01s showed no appreciable difference in the
solution.

For the nonconservative case, an assessment of work and energy
during the angular motion of the pendulum as the mass is being continually
reconfigured was performed. A work-energy balance was performed over a
given integration period. The energy loss or gain associated with moving an
auxiliary mass along the structure was tracked in a cumulative manner. This
balance gave an indication of the numerical accuracy of the simulation. (See
Appendix G.) Again, better convergence was obtained by refining the time
discretization for the simulation.

* For the purpose of simulation evaluation, stability refers to the system’s
ability to maintain an equilibrium form for the given state.
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Energy (N-m)

Time (s)

—TI-y —U - T

Figure 4.3 Assessing stability of the integration routine on a conservative
system.

4.2.4 Effects of Various Simplifications on the Results

To explain the effects of mass reconfiguration of pendulum structures
various approximate solutions were assumed. The assumptions or
simplifications and ensuing dynamics are compared for a few discrete cases.

Firstly, the assumption of small vibration which was made in Section
3.3.1 eliminates the nonlinearities associated with the gravitational restoring
force. For the constant length pendulum, the governing differential Equation
43 is reduced to Equation 44. The time history profiles of the angular
displacement was simulated for the initial conditions of 8, = 15°, 30°, 60° and

90° and @, = Ofor four consecutive periods for this conservative system using

the Runge-Kutta algorithm with a time step of 0.01s. A comparison between
the angular displacement time history for the linearized (9,(¢)) differential

equation to that without linearization (6(t) ) is made in Figure 4.4. As shown,
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Mathieu's Equation (3.19). The parameters were evaluated based on those
chosen to model the simple pendulum system as given in Appendix D.

The reconfigurable mass was assumed to cycle at twice (2), nine (9)
times and sixteen (16) times the frequency of the angular oscillations of the
pendulum. These correspond to the first three instability zones shown in the
Haines-Strett diagrams (as shown in Figure 3.3 and 3.4). The angular
displacement histories for the first few cycles are illustrated in Appendix H.
Unstabie behavior that is characterized as unbounded (divergent) growth was
expected for the undamped cases and did occur for the case when the mass
motion was at twice the anguiar osciilation frequency. However, for the other
two cases the motion was constant amplitude, oscillatory motion; this
indicates that the given parameterization results lie along the characteristic
curves (shown in Figures 3.3 or 3.4). For the damped cases where the
governing differential equation was reduced to Mathieu's Equation of
Fractional Order (Equation 3.19) the motion was stable with the anguiar
oscillations being bounded (a decaying, oscillatory motion).

4.2.5 Software Development Environments

The programming environment for the simulation package was Forth
with software developed on the foliowing maijor platforms: Motorola 68000
based machines (Atari™ ST520, ST1040 and Mega ST), Motorola HC6811
(New Micros 68HC11F), Intel 8088-based machines (IBM/PC compatibles)
and Sun Workstations. Later code was developed using the procedural
language C for all platforms except Motorola HCE811. Initial value soivers
included Runge-Kutta, Adams Predictor-Corrector and an extrapolation
algorithms. The simulated response of the system was expected to provide
good accuracy for time steps of 0.01 seconds or smaller with stable
responses expected for runs of ~150 time periods when the initial angular
displacement was 30°. Satisfactory results were anticipated regardiess of the
computational environment.
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4.3 Attenuation Mechanism:

Comparison of Moving Mass and Moving Force Concept

Often researchers approximate moving masses as loads [Zheng, et al.,

1998]. This representation neglects the inertia forces associated with the

mass {Xu et al., 1997]. For the physical pendulum system, the mass could be

represented by a gravitational force with magnitude equal to the weight of the
sliding auxiliary mass as modeled in Figure 4.5.

To compare the dynamics of the moving mass with the moving force

model, identical translational excursion patterns for each were assumed.

The governing differential equations for a moving mass and a moving

force along the pendulum system are tabulated in Table 4.2.

Table 4.2 Modeling attenuation device as a moving mass or force®

Governing Differential Equations Goveming Differential Equations for
for Moving Mass Model Moving Force Model
1 § +[ fm,' ~],-9 +g{ ’".{. *'"{Jme <0 mpljé +Wrsin®+mJ gsin@ =0
mJl. +mr° ml, +mr*
(3.1) (4.6)
2\ m,I:0+m,gl, sin®=p(m,.0.r,t) m, [0 +m,] gsin® = f(W,r)
(3.5) (4.7)
where where
p(m, .0.r.1)= f(W.r)=-Wrsin® (4.7a)
-m, (r‘é + 279 +rg sin 9) and
(3.5a) W=mg (4.7b)
3 F= m,(ézr ~F + gcosh) (32) | F=Wcos6 (4.8)

® The structure is assumed to be a physical pendulum; that is, the pendulum

possesses mass itself.
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The magnitude of the load was equated to be the weight of the moving mass
(Equation 4.7b). For the moving load, the force acts at a given location as
described by its motion and for the moving mass, it interacts at the point
described by its motion (Equation 4.9).

The radiat motion of either the mass or the force may be sinusoidal as
given by

r(t) = R, - Ar sin(nox) (4.9)

where R is the position about which the attenuation device oscillates;
Ar is the amplitude of oscillation; and

na is the driving frequency of the attenuation device.

The moving force model can be approximated by Mathieu's equation, and
when n =2 unstable motion of the first zone of instability is predicted. As
there is no damping, the moving load forces the system to oscillate.

lp Massless
Massles Rod
Rod ' ¢
Mass Mass —tr &
” Sliding mass T\ /
0
Moving Load
(a) Moving Mass (b) Moving Load

Figure 4.5 Two attenuation devices for the physical pendulum system.
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The primary difference in the magnitude of the “driving function”
(Equations 3.5 and 4.7) is that the moving mass contains terms related to the
Coriolis and inertia force in addition to the gravitational restoring force. The
contribution that the mass makes to the structural characteristics of the
system (Equation 3.1) is unique to the moving mass case. The moving force
continually acts with a constant magnitude (Equation 4.8) on the structure
with its applied torque about the pivot changing as a function of its temporal
displacement pattern (Equation 4.7a).

Dynamic behavior results were obtained using the Runge-Kutta initial
value soiver using a time step of 0.01 seconds for the governing differential
equations. The attenuation mechanism has an assumed mass of only 10% of
the original pendulum mass. The motion for the attenuation device was
sinusoidal with R =10m, Ar=025mandn=20. The natural frequency for

pendulum was 1.321 rad/s. The displacement profile is shown in Figure 4.6.

06 -

Angular Motion (rad)

06 - Time (s)

Moving Mass ------ Moving Load ;

Figure 4.6 Angular displacement profiles when a mass or a load traverses
the pendulum sinusoidally at twice its natural frequency.
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As shown in the angular displacement history the moving mass for
these conditions provides more damping effects than the moving load. This is
evident in the amplitude of the angular oscillations and in the changed period
of oscillations.

The corresponding force to move the mass or load (row 3 of Table 4.2)
is shown in Figure 4.7.

16 -

14 ~

12 -
g 10 -
3 8-
s ™, T~ P ,ﬂ;\‘/* L
w 6

4

; P

0 - - : - - A1 Al A1)

0 1 2 3 4 5 6 7 8 9 10
Time (s)
Moving Mass ------ Moving Load"

Figure 4.7 Comparing forces required to move mass or load sinusoidally.

Despite the magnitude of the sliding mass being significantly less than
that of the structure, for the prescribed motion, the slider increases the system
inertia by 5.6 to 15% and increases the stiffness by 7.5 to 12.5% for its
indicated range of motion. A significant difference in the driving force being
modeled as either a mass or a force also exists. The force to move the mass
is sinusoidal with an average value that is greater than the moving load, since
inertia effects have been taken into account. Peak values for the force to
cause motion of the mass are approximately twice those associated with the
applied load for this assumed motion profile.



Although the governing differential equation can be reformuiated
whereby the terms relating to mass reconfiguration are grouped together as a
“pseudo-farce” (Entry 2 of Table 4.2), examining the differential equation
(Entry 1 of Table 4.2) shows that the mass redistribution provides time-
varying modification to the system parameters. In contrast, the moving force
is a forced vibration problem. For both systems, a resonance condition may
be anticipated when the natural frequency is related by an integer or
fractional multiple of the system’'s natural frequency. For both cases, the
oscillations were parametric where the system periodically amplifies and
attenuates the angular displacement. This will be discussed further in
Sections 4.4 and 4.5.

The damping provided by using the concept of a moving force may be
improved by using a variable magnitude force. The force may be formulated
as an exponentially decaying sinusoidal function.

To conclude, for the physical pendulum structure, a significant
difference between the two modeling techniques has been illustrated.
Despite this difference, several researchers continue to represent a moving
mass as a moving load. Often, the physical exampies cited for a moving
mass along a structure are made in the transportation field; such as a vehicle
traversing a bridge. The modeling is simplified so that the vehicle is
approximated as a load rather than a mass. However, applications that
require “uitra-precision such as cutting tools traversing its guideway/pathway
for medical applications or manufacturing may benefit if the moving masses
are modeled as masses rather than loads.

4.4 Investigating Various Mass Reconfiguration Profiles

The resuits reported in this section will focus on both the mathematical
and physical pendulum models. The mathematicai pendulum system closely
approximates the dynamics of many actual systems. For cases, where the
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auxiliary mass is of significant magnitude with respect to the structure, the
mathematical pendulum is a very good approximation.

The key mass reconfiguration profiles that were considered included a
continuous, harmenic motion and a discontinuous relay profile.

4.4.1 Interaction of the Attenuation Mechanism

The mass of the attenuation device is restricted to move along or within
a structure. The moving mass remains in contact and acquires the dynamics
of the point of contact of the vibrating structure. As previously presented in
Section 2.2, the interaction of moving a mass along a rotating and vibrating
structure can resulit in

(1) an increase in the system energy,

(2) adecrease in the system energy, or

(3) no change in the system energy.

For understanding the interaction of the reconfiguration of mass along
a structure, the ensuing dynamics are presented as time history profiles and
phase plots. The dynamics are examined over complete periods of angular
oscillations for the structure. The effects of the active damping mechanism
can be viewed either as a damping term or as a fictitious forcing function that
drives the oscillations of the system as given in Table 3.1.

4.4.2 Sinusoidal Maotion for Mass Reconfiguration

Sinusoidal transiational motion for an auxiliary mass along the
pendulum structure provides a continuously differentiable mode for mass
reconfiguration. This profile can be mathematically described by the following
equation

r(t) = R, - Ar sin(net + ¢) (4.10)



where R_ is the average radial position of the end or auxiliary mass measured
with respect to the pivot (1.0 m);
Ar , the amplitude of the translational motion of the end or auxiliary
mass (0.25 m);
@, the average structural frequency (1.1321 rad/s);
n, an integer or fractional multiple ( 1, 2, 9 or 16); and
¢, the phase shift ( O or =/2).

The chosen parameters for the mathematical pendulum system
maintained a period of oscillation between 1.74 to 2.24 seconds. Also, note
that the average radial position of the end mass was constrained between
0.75s ()< 1.25m.

The selected radial, transiational frequencies correspond to the zones
of instability as predicted by Mathieu's Equations (and shown in the Haines-
Strett diagrams of Figures 3.3 and 3.4). Details of the ensuing dynamics
when the mass was reconfigured at frequencies that were the same, nine (9)
times and sixteen (16) times the structural, natural frequency appear in
Appendix | and are summarized in Section 4.4.2.2. The resuits associated
with the mass being cycled at twice the structural, natural frequency follow in
Section4.4.2.1.

The phase shift was chosen so that the transitional motion of the
moving mass (slider) was initially either “in phase” or “out of phase” with the
angular oscillation to illustrate the extremes in altering the energy state of the
system. Note that “in phase’ will refer to the coordination between the
translating mass and the angular oscillations shown in Figure 2.7 and “out of
phase” refers to the coordination shown in Figure 2.8. The “in phase”
coordination for an initial angular displacement has ¢ = 0; initially, the radial
distance between the pivot and the auxiliary mass decreases as the angular
oscillations decrease.
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4.4.2.1 Mass Reconfiguration at Twice the Structural, Natural Frequency

When the translational frequency of the auxiliary mass is twice the
average angular frequency of the system, a significant change in the
structural energy occurs. The temporal displacement profiles (angular system
oscillations and the translational vibration of the auxiliary mass) are shown in
Figures 4.8 and 4.9 for the extreme cases of the auxiliary mass motion being

initially in phase (¢ = 0) and out of phase ($ = %) with the angular vibrations

(when 0, = 0and@, = 0), respectively. The parameterization are as given in
each figure. For the simple or mathematical pendulum, a simulated instability
occurred when the end mass motion was set to twice the average structural
frequency (nw = 6.2642rad/s ) as predicted by Mathieu's Equation for the first
zone of instability {(Figure 4.5). The corresponding energy profiles for the
cases indicated in Figures 4.8 and 4.9 are shown in Figure 4.10.
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Figure 4.8 Coordinated displacement profiles for the simple pendulum when
slider motion is r(¢) = R, — Ar sin(nwt +¢) where nw = 6354797 and ¢ =0.
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Figure 4.9 Coordinated displacement profiles for the simple pendulum when
slider motion is r(¢) = R, - Ar sin(nat + ¢) where no = 5810217 and ¢=7%.

Energy (N-m/kg)

Figure 4.10 Energy profiles for the end mass motion at approximately twice
the frequency of the penduium.
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For the physical pendulum (Figure 3.2), the transient response for the
first four (4) time constants shows either parametric amplification or
parametric attenuation. When the sliding mass initially is in phase ($=0)
with the angular oscillations of the pendulum, the oscillations are attenuated
as shown in Figure 4.11. In contrast, when the sliding mass initially is out of
phase (¢ =7%), the pendulum oscillations are amplified as shown in Figure
4.12. To investigate whether or not the former action would arrest the angular
oscillations, the simulation period was extended. For both cases, the steady
state response consists of a regular pattern of bounded, parametric

attenuation and amplification; this beating phenomena is illustrated in Figure
413,
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Figure 4.11 Coordinated displacement profiles for the physical pendulum
when slider motion is r(r) = R, - Ar sin{nwt +$) where n=2 and ¢ =0.

92



15+ +15

L /\[ "
o.:\/ VRYATAN

Time (s)

0.5

l

Translational Motion (m)

Angular Motion (rad)
o

14

g --o--- r

Figure 412 Coordinated displacement profiles for the physical pendulum
when the slider motion is r(r) = R, - Ar sin(nwt +¢) where n=2 and ¢ = %.
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Figure 4.13 The angular displacement profiles for the physical pendulum
when the slider motion is r(r) = R, — Ar sin(nwt +$)where n=2 and ¢ =%

The corresponding force to cause this type of reconfiguration is shown
in Figure 4.14.
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Figure 4.14 The driving force required to reconfigure the mass at
r(t)= R, - Ar si{nwt) where n=2.

The energy profile is shown in Figure 4.15.
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Figure 4.15 The energy profile of the physical penduium for 100 seconds.



Details for alleviating this condition of beating were created by properly
coordinating the mass reconfiguration with the angular oscillations as
presented in Section 4.5,

4.4.2.2 Summary of Dynamics for Sinusoidal Slider Motion

The details for various sinusoidal mass reconfiguration profiles appear
in Section 4.4.2.1 and Appendix |. This type of motion requires a continuous,
time-varying force (Equations 2.9 or 3.2) as shown in Figure 4.14. The
structural, angular displacement profiles for the presented cases were
continuous without any discontinuities or singularities. However, the beating
behavior can occur (Section 4.4.1.2).

The simulated dynamic profiles were dependent on the selected
frequency of mass mation along the structure and its coordination with the
structurai angular osciilations. When the mass motion was at the same
frequency as the structure, the moving mass and the pendulum oscillations
were nearly synchronized. Due to the motion of the mass, the frequency was
not exactly the same as the sliding mass. The coupling between rotational
and translational motion resuited in a transfer of the oscillations or energy
between the two degrees of freedom. The sliding mass transfers its
translational energy to rotational motion. These resuits appear in Appendix I.

The conditions studied in Section 4.4.2.1 (mass reconfiguration at
twice the structural frequency) showed that the excitation for in phase
coordination initially attenuated the angular oscillation and for out of phase
coordination amplified the angular oscillations. The potential for a good
attenuating reconfiguration strategy seemed apparent; namely sinusoidal
mass reconfiguration that is coordinated in phase with the angular osciliations
should produce parametric oscillations. However, when several time periods
were examined the ensuing dynamics exhibited a beating effect where the
oscillations or energy periodically grew and decayed. The competing effects
of damping stabilized the dynamics of the structure but the parametric
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structural parameters destabilized the system. When a sinusoidal profile for
mass reconfiguration was not perfectly coordinated or tuned with the
structural vibrations, the strategy appeared ineffective. Determining a
strategy to attenuate vibrations no longer seemed to be an intuitive exercise.

Mass reconfiguration at the higher frequencies of nine (S) and sixteen
(16) times the structural frequency did not produce the same phenomena as
those at twice the natural frequency. Initially, the systems appear to be
oscillating at a constant amplitude. Examination of the change in energy also
suggested that parametric amplification or attenuation will not occur. This
observation of constant amplitude, structural, angular oscillation suggests that
the chosen parameterization lies along a characteristic curve of the Haines-
Strett diagrams (Figures 3.3 and 3.4).

4.4.3 Relay Motion for Mass Reconfiguration
The next option considered for mass reconfiguration was a
discontinuous profile, a relay action. The motion as previously described

(Sections 2.2.1 and 2.2.2) can be formulated as the following control logic and
algorithm

if jo(e)l > 0, then r(e)=r(t — &) —rar (4.11a)
if jo(e) < 8, then r(f)=r(t - &) +ra (4.11b)
otherwise r(r)=r(z - A1) (4.11¢c)
andr, <r<r_ (4.11d)

where Equation 4.11a represents moving the end mass towards the pivot,
Equation 4.11b represents moving the mass away from the pivot at a constant
velocity, 7 and Equation 4.11c¢ represents a dwell phase (mass remains at the
same distance from the pivot). Furthermore, displacement limits for the end
mass, Equation 4.11d, were imposed.
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The bounds (6_and8,) for triggering the motion are set so that the

mass is raised near maximum angular excursion and lowered near vertical
angular displacement. For comparative purposes to the sinusoidal profiles of
Section 4.4.2, the maximum radial, translational velocity was selected to be a
1.0 m/s © and the range of displacement was bound by 0.75 < r(t)<125 m for

the auxiliary mass. Because the mass reconfiguration motion is tied directly
with the angular position, its frequency remains twice the natural frequency of
the anguiar oscillation and stable, parametric motion is expected.

The temporal displacement profiles are shown in Figure 4.16 where
8, =03295rad and 6, = 0.2884rad.
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Figure 4.16 Coordinated displacement patterns of the structure and moving
mass for the simple relay reconfiguration scheme.

® The constant velocity value of 1 m/s was selected for the relay motion since
this approximates the corresponding root mean square average velocity
for the sinusoidal motion given by, r(z) = 10— 0.25sin(2-1321-1 +¢)
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For the chosen limits of the governing logic for the relay action continual
amplitude attenuation over the shown period is produced, without requiring
the auxiliary mass to traverse its available range. The logic has been
implemented so that the auxiliary mass retums to its lowest potential energy
position.

The corresponding energy profile for the system is shown in Figure
4.17.

Energy (N-m)

4.5
7.
10.5

12
13.5
15

Time (s)

Figure 4.17 Energy profile when the auxiliary mass moves in a relay pattern
along the penduium structure.

As seen, this technique was very effective in attenuation the angular
vibrations of the pendulum system. However, the acceleration profiles
imposed on the reconfigurable mass produced discontinuous forces which
may become prohibitive and unachievable when the velocity values are
increased (i.e. a change in the auxiliary mass profile). The step size of the
integration step was the controlling limit for these simulations.” This is

7 \When using a time step of 0.01 s, the acceleration vaiue is bound by +/- 200
m/s? which is prohibitively high. However, this value assumes a velocity
magnitude that was comparable to the sinusoidal displacement patterns.
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evident by examining the force required to effect this motion pattern as shown
in Figure 4.18. Therefore, the profile for raising the mass and lowering the
mass may need to be cycloidal or otherwise, to achieve a smooth transition

between points of rest and motion for the translation of the reconfigurable
mass.
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Figure 4.18 Force required to move the mass with this relay action. *

improved damping was achieved for this mass reconfiguration profile
when the range of the auxiliary mass was increased, when the rate of motion
was increased and/or the mass motion was more proximal to the pivot.

The long term stability of this assumed reconfiguration pattern is
evident in Figures 4.16 and 4.17, as the mass no longer traverses its entire
range, yet the amplitude of oscillations continues to attenuate. For a constant
value of the determined limits (8, and@, ), residual energy remains. When

another disturbance occurs additional energy is introduced to the system and
the attenuation process would be re-initiated. To advance this system, the

® The negative force values assumes the connecting structure (rod) that the
mass slides along can carry a compressive force.
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energy of the system must be monitored and self-adjusting limits of operation
or optimizing the velocity rates at which the mass moves towards or away
from the pivot is required. This is investigated further in Chapter 8. However,
the beating phenomena that plagues sinusoidal motion of the auxiliary mass
at near resonance did not occur. This algorithm (Equations 4.11} also
incorporates a self-imposed stop so the auxiliary mass motion is automatically
arrested.

4.4.4 Summary of Assumed Mass Reconfiguration Profiles

The two basic strategies for moving the auxiliary mass were based on
the previously discussed heuristic of cycling motion within a cycle of structure
oscillations (Section 2.2.2). One strategy was to move the mass in a
continuous motion; the profile was assumed to be sinusoidal. Various
strategies were presented for this sinusoidal motion of the end/auxiliary mass;
those presented included adjusting the frequency and the phase of the
transfational vibrations of the mass. The second strategy employed a
nonlinear relay displacement profile for the mass. The motion was
coordinated based on the angular displacement of the structure. For each of
the above patterns the behavior of the system arising from the various
movement patterns of the attenuation device were characterized by the
angular displacement of the system and transiational displacement of the
auxiliary mass, the structural energy profiles and the required external force
to cause the motion of the mass for a short and extended time period.

For the sinusoidal motion of the auxiliary mass, the following dynamics
were observed. When the two motions were initially at the same frequency,
the angular displacement output was symmetric when the motion was in
phase with angular displacement and antisymmetric when the motion was out
of phase with the anguiar displacement. When the radial motion was at twice
the system’'s natural frequency, parametric attenuation resulted for out of
phase coordination and amplification when in phase coordination existed.
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The sinusoidal motion has the benefits of smooth displacement and force
profiles and appeared as though continued motion would arrest the anguiar
vibrations. However, for extended runs the deviation between the actual
dynamic stiffness and the assumed constant frequency of the moving mass
produced a time varying phase which transpired as a beating effect. instability
regions as predicted by Mathieu's Equation (Section 3.3.2) occurred only
when the motion of the mass was at twice the natural frequency.

For the reiay motion, both the force to generate the motion of the mass
and the resulting transiational motion of the mass were discontinuous.
However, the algorithm did effectively attenuate the vibrational energy of the
system and incorporated a self-initiated arrest feature and did not suffer from
any beating behavior. The rate of change between the constant velocity
states of moving the mass towards or away from the pivot is a limiting factor,
as the force to produce this change may be unrealistic with respect to
implementation.

4.5 Sinusoidal Mass Reconfiguration and Stability: Beating Phenomena

The phenomena of beating occurs when the assumed mass
reconfiguration is harmonic at a constant frequency that is approximately
double the structural natural frequency. An extended run of 50 time constants
was illustrated in Figure 4.13 for this case.

Initially, the motion appears to be attenuating parametrically, then this
behavior goes awry as the amplitude of oscillation increases. Similarly,
parametric amplification is stabilized by the same phenomena; the system
dynamics does not permit continual, unbounded growth in the amplitude of
angular oscillations. With time, the phase between the transiational motion of
the auxiliary mass and the angular oscillations varies as shown in Figures
4.19 and 4.20. The phase shifts to create periods of negative and positive
damping. Note that the “angular peak ordinal® is referenced to the peak
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anguiar displacement as shown in Figure 4.19; the phase difference has been
determined with respect to the angular displacement.
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Figure 4.19 Relation between angular oscillations and transiational motion of
the auxiliary mass for the physical pendulum.
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Figure 420 The phase between peak excursion values of the angular and
transiational motion of the moving mass for the physical pendulum.
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To avoid this beating behavior the following process was devised.
Rather than assuming a constant frequency for the radial vibration of the
auxiliary mass, its motion was tuned to the time-varying or dynamic stiffness
of the system. A “variable frequency”, harmonic motion for the auxiliary mass
was proposed whereby the motion is described by

r(t)= R, - &r cos(20 (1)t +9) (4.12)
where
= |-£
0.(0= -5 (4.12a)

To simulate this motion, a recursive or iterative program was required as the
parameters describing the motion of the end/auxiliary mass itself depends on
its current position. To provide efficient convergence an algorithm based on
bisection was used; employing techniques using higher order derivative failed
due to the nature of the imposed motion.

Prescribing sinusoidal motion where the frequency is tuned to the
system parameters enables the damping mechanism to operate continuously,
without the beating phenomena as shown in Figure 4.21. Note that this
simulation was completed using an extrapolation algorithm.

The desirable control of vibration attenuation is achievable and
potential damage resuiting from starting or stopping the control process as
exists with the relay profile are eliminated. This may be of particular
importance when the moving mass attenuation mechanism is integral in the
system’s design.
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Figure 421 Coordinated dynamics when using a variable frequency
sinusoidal mass reconfiguration profile for the physical pendulum system.
The method of seif-tuning the coordination of the translational
vibrations of the auxiliary mass with the system rather than at a fixed,
frequency avoids the beating phenomena. This strategy can produce an
autonomous vibration attenuation mechanism.

4.6 Optimizing the Mass Reconfiguration Profile to Attenuate Vibrations

Often engineering or industrial applications require the prudent use of
resources or efficiency in their operation, so optimization is incorporated into
the design and/or operation processes. For this research, auxiliary or end
mass motion that characterizes the mass reconfiguration was optimized to
attenuate the structural vibrational energy for various time periods. The focus
was on parameterizing the sinusoidal and relay motion of the auxiliary mass.
Also, to generate a general pattern, the auxiliary mass displacement profile
was expressed as a Fourier series where the amplitude, frequency and phase
coefficients were adjusted.
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4.6.1 The Optimization Process

The basic concept of optimization is to find the extrema of an objective
or cost function. This function quantifies a performance criteria. For this
research, the objective function was to minimize the vibrational energy of the
structure by varying the design parameters that define the mass
reconfiguration profiles. The complexity of the optimization problem increases
as limitations are placed on the performance criteria and/or the design
variables. For the pendulum, these limitations include ensuring system
stability and providing consistency amongst the various attenuation schemes
was imposed.

Typically, algorithms for the direct method of optimization require an
initial set of the design parameters, then the space is searched to find the
“best” solution (maximum or minimum) for the objective function. The search
process, its direction and distance, is based on the objective function. The
degree or order of the optimization method is determined by the information
used in the objective function. Zero order methods (such as: bisection
methods, random searches, evolutionary programs and genetic algorithms)
require only an evaluation of the function when searching the design space.
First order methods (such as, steepest descent or conjugate gradient) use the
first derivative of the objective function to find its extrema; second order
methods use second derivative information and so on.

In searching for a “best’ solution when using an iterative algorithm
process, a convergence criteria for terminating the process is required. Often
the criteria may be based on executing a set number of iterations and/or the
change in evaluating the objective function or its derivatives meets a specified
tolerance limit.

4.6.2 Applying the Optimization Process
Optimizing the reduction of the vibrational energy via mass
reconfiguration is essentially a dynamic control problem. However, the
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problem can be converted into an iterative, parametric optimization. The
reconfiguration profile was parameterized using the equation of motion for the
end/auxiliary mass, r(,A) where A represents a vector of design variables.

For a given set of design variables, A, the system dynamics can be simulated
to evaluate the effectiveness for vibration attenuation. In accordance with the
search algorithm, the design parameters are adjusted to improve
performance. This process is represented as a flowchart in Figure 4.22.

Select Initial Values
- define optimization period
- select A , to define r(t,A)

Iy g

Dynamic Simulation
- solve goveming differential equation
with r(t,A)as the input

Evaluate Cost Function
- defined as the cumulative sum of the
system’s local energy peaks

Parametric Optimization
- using various algorithms update, A ;
and determine new r(t,A)

-

Figure 4.22 Flowchart of the optimization process.
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The objective function was defined in terms of a cumulative sum of
local structural energy peaks. Two equations were used; one examined the
initial portion of the energy profile (J,,)

o= ey (4.13a)
=0
the other examined the final portion of the energy profile

Ny
Jp= L, (4.13b)

1=N-n

where ¢, . is the local maximum (peak) energy of the system,

N is the total number of peak energy values occurring during the

simuiation period, and

n is the number of peaks considered for the optimization as shown in

Figure 4.23.

The optimization based on Equation 4.13a provides good initial
attenuation, whereas the optimization based on Equation 4.13b provides
attenuation at the end of the period under examination.

The system energy value is comprised of the potential energies of the
structure (pendulum) and the attenuating device (sliding auxiliary mass) and
the kinetic energy of the structure. By considering the peak energy values,
the problem was discretized and the optimization could be considered for a
given period of operation. When n is small, only part of the simulation is
considered;, when n—> N as N - x, the optimization becomes more
encompassing. As shown in Figure 4.23, the energy profile may be harmonic
of the angular displacement profile and for the attenuation profiles, as
previously presented in Section 4.4, extrema in energy occurs near maximum
and minimum values in the angular excursion pattern.
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Figure 4.23 Typical temporal energy and angular displacement profiie for
sinusoidal auxiliary mass motion.

The following profiles were used to define the translational motion of
the auxiliary mass along the pendulum structure, r{¢, 4):

a) sinusoidal based motion

r(t.4) = R, - Arsinfa@t + @), (4.14a)
b) relay motion

if |8(t) > a,, then r{t)=r(t — A) - FAr (4.14b.1)

or if |B(¢) <a,, then r(r) = (e - Ar)+ra (4.145.2)
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c) generalized motion

4
rtA)=a,+Y a, sin(a,jmr +a.,}), (4.14.c)
=1

d) proportional and derivative control motion
r(t, ) = a,B(t) + a,}8(7) . (4.14.d)
where a, for k = 1to 9indicate the design parameters. The parameters were

restricted so that the translational motion was restricted to 0.75<r < 125m, as
measured radially from the pivot. All variables representing angles were
unconstrained.

Optimization was primarily performed for the physical pendulum
system. The pendulum, as shown in Figure 3.2, had a concentrated mass of
7.5 kg and an effective length of 1.0 m. The auxiliary or sliding mass was
selected to be 10% of the pendulum/structural mass. For each optimization
case, the set point or operating state of the pendulum system was based on
the pendulum having an initial energy state due to an angular displacement of
30° from the vertical equilibrium position. The dynamic simulation software
used either the fourth order Runge-Kutta or an extrapolation aigorithm as the
initial value solver for Equation 3.3a. The time period for which the
optimization was conducted was varied.

The optimization algorithm that were employed included both zero
order and first order methods. Primarily, evolutionary programming was used
with start positions based on Powell method, variable metric methods or an
understanding of the control action. {A description of each method appears in
Appendix J.) The convergence criteria when employing nondeterministic
techniques of evolutionary programming was based on completing 400 to
4000 iterations of the optimization loop due to the stochastic nature of the
algorithm. Otherwise, no significant change (10™) in the cumulative energy
value (Equation 4.13) was used.
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Results for the various displacement profiles, as given by Equations
4.14.at0 4.14.d, follow.

4.6.3 Optimization Results

Optimization for the displacement profiles were limited to set time
intervals. For each of the time periods, the results included the final value of
the objective criteria (Equation 4.13) and the final design parameters.
Although several runs were completed using stochastic search routines, only
the “best” resuits are reported. Note that this optimization problem featured
several local minima.

A typical convergence of the parameters given in Equation 4.14a when
using the evolutionary algorithm technique for objective function 4.13a is
shown in Figure 4.24. A good initial guess had been selected to initiate the

process.
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Figure 4.24 Convergence of the design variables for R, - Arsif(a @t +a,).
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4.6.3.1 Sinusoidal Mass Reconfiguration Profile

When the end or auxiliary mass displacement profile is sinusoidal
(Equation 4.14a), various phenomena may arise as discussed in Section
442 Based on Equation 4.14a, the frequency (a,m) and the phase (a,)
were chosen as the design variables. The other parameters were set as
R,=10m, Ar=025m and @ =3132lradis. The optimization for reducing the

vibrational energy of the simple pendulum was completed using Equation
4.13b where the last five (5) peak energy values for various time intervals
were used.

Regardless of the initial parameterization for the reconfiguration profile
and the optimization interval, the sinusoidal motion that reduced the structural
energy converged to nearly twice the average natural frequency of the system
(Table 4.3, column 2). This agrees with the underlying physics as discussed
in Section 2.2.2.

Table 4.3 Optimization of R, - Ar sin{a, & +a,)

Optimization | Frequency | Phase shift | Cost Function
N
interval aw a, 3 ey Wheren =5
=¥-n
(seconds) (radians/s) | (radians) (J)
) 5.940 0.4836 44.7957
10 6.122 0.2564 19.5293
20 6.260 0.5958 8.8198
40 6.255 0.4998 2610

The phase shift varied depending on the length of the simulation
(Table 4.3, column 3). A variation in the phase angle accounts for
coordinating the energy minimization with the chosen optimization period.
This was shown in Figure 4.15 where the energy profile varied periodically
and was entrained with a higher harmonic. As shown in Figure 4.15, the total
structural energy at ¢=5, 20 or 40 seconds were similar; this may account for
attaining similar phase shifts.
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The optimization examines only a small portion of the energy profile.
|deally, the mass reconfiguration should be properly coordinated with the
angular osciliations to produce energy attenuation. Thus, the initial energy of
the system through repeated cycling of the slider would be reduced
parametrically. Hence, the cumulative energy value (Table 4.3, column 4)
should decrease with longer time intervals, as was shown.

The results in Table 4.4 were obtained optimizing Equation 4.13a for
the physical pendulum system. Various time periods were considered as
indicated in Table 4.4, columns 1 and 2. Note the initial value of the objective
function {column 3) when compared to the final optimized value (column 6)
indicates the starting parameterization was well chosen for the problem.

Table 4.4 Optimization of R, — Ar sin(a,mt + a,)for physical pendulum

Simulation | » Jip (initial) Frequency | Phase shift | J,(final)

Length (s) (N-m) a (radls) | a, (rad) (N-m)

5 5 76.9392 6.038105 0.253559 73.7337
7 88.8764 6.038112 0.253554 83.3628

10 5 76.9392 6.038110 0.253563 83.4717
7 100.6743 6.107198 0.195438 90.0640
9 124.2942 6.134335 0.957718 106.0382
1 148.1438 6.125754 0.179486 126.2281
15 [ 197.9203 6.126433 0.178906 170.2469
21 210.8743 6.126421 0.178918 180.8739

30 7 100.6743 6.107182 0.195443 90.0640
9 124.2942 6.137197 0.124463 106.0330
11 148.1438 6.145833 0.117086 120.4586
21 283.2215 6.167618 0.113882 177.5810
41 756.6214 6.173288 0.131348 380.9746

50 9 124.2942 6.124569 0.182365 106.1628
1 148.1438 6.147330 0.115797 120.4573
15 | 197.9203 6.158987 0.105826 145.6359
21 283.2215 6.178183 0.044040 177.0017
41 756.6214 6.176631 0.450911 443.7935
61 1068.3294 | 6.321721 0.360554 991.8176
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For the chosen mass reconfiguration displacement profile, energy is
initially added prior to any attenuation. To appreciate the optimization
effectiveness of the attenuation process, a percentage difference was
calculated with respect to the system energy without continued mass
reconfiguration. The reference energy can be either the first peak energy of
the system with the chosen mass reconfiguration displacement profile or the
initial energy of the system. The percent difference is given as follows:

—J%J-!xum% (4.15)

]

where J =/ _orJis the final optimized cumuiative energy sum, and

J, =(n+1e,_,is the reference cumulative energy sum with
€., = 1430 N-mor 1325N-m, the initial peak energy for

this system or the initial energy of the system®.

The optimization results given in Table 4.4 also indicated the desirable
frequency for attenuation should be nearly double the natural structural
frequency. The phase shift appears to be very dependent on the number of
peaks in the optimization interval with less consistent convergence resulting
as the optimization interval was increased.

The optimized solution was effective for the time interval defined by the
number of peaks considered. Regardless of the optimized parameters, this
mass reconfiguration profile for extended time runs generated the beating
phenomena. Nonetheless, significant attenuation occurred for the
optimization period. Generally, as the time period was extended the
improvement achieved by the optimization process also improved.

% For the simple pendulum system, the initial energy value is 9.55 N-m and
for the physical pendulum system, the initial energy value is 13.25 N-m.
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The significance of performing this optimization lies with a possible
implementation. As constant frequency, mass reconfiguration is easier to
achieve, the implementation could consist of operating this control action for
only a given time period. The control action could be initiated once the
structural, vibrational energy reaches a set value. The optimization resuits
provide the recommended frequency for various attenuation rates and/or
steady state energy values. Having the attenuation device operate as
required also has the advantage that the structure is not continually subjected
to the radial vibrations of the sliding mass.

4.6.3.2 Relay Action for Mass Reconfiguration

The optimization of the relay motion examined not only changing the
intervals where the slider moved either towards or away from the pivot but
also the stating of conditional logic in terms of its parameters and
governance. These intervals were delineates by structural anguiar
displacement or angular velocity states; these limits or switching values,
a,and a, were the selected design parameters. The velocity, 7, of the

auxiliary mass was held constant at 1.0 m/s. This velocity is not only
physically feasible, but aiso is comparable to the root mean square velocity
for the previous sinusoidal motion. The results were tabulated over various
time intervals using the objective function described by Equation 4.13a.

The parameterization achieved during optimization for the various ruies
as indicated appear in Tables 4.5, 46 and 4.7. The optimization was
completed by examining the peaks of the first portion of the energy profile.

For the relay action based on angular displacement limits (Table 4.5),
the optimization effectiveness can be calculated using Equation 4.15 where
this mass reconfiguration has an initial peak energy value of
e .=1476N-m.
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Table 4.5 Optimization for Relay action,

RULE: if |8(¢) <a,. then r(r) =r(t— Ar)+FAt
eise if [8(t) >a,, then r(r)=r{t-Ar)-FAr

Simulation | »n J;p a3 1} Jip

Length (s) (initial) (rad) (rad) (final)

5 5 87.3908 0.219699 0.527839 68.43058
11 158.0495 0.288389 0.329530 145.19608

10 9 144.0662 0.295850 0.305973 132.00449
11 171.9686 0.324446 0.432622 136.25458
15 226.8085 0.295924 0.434288 169.25932

30 9 144.0662 0.321032 0.478952 112.91154
11 171.9686 0.311054 0.455049 133.31333
15 226.8085 0.341271 0.297213 165.00674
21 306.7916 0.296427 0.386322 222.03186
41 552.9481 0.275943 0.332988 344.45600

50 9 144.0662 0.288261 0.270128 133.03961
11 171.9686 0.345607 0.416392 138.81834
15 226.9085 0.294457 0.428416 169.65215
21 306.7916 0.299502 0.412360 215.65916
61 767.2641 0.19572¢9 0.195956 507.40849
99 1080.7786 | 0.15263 0.225519 774.95712

This optimization reflects the previously discussed logic that the mass
should be raised when the oscillations are away from the vertical and lowered
when the pendulum passes beneath the pivot, that is, a, <a,. Note that

exceptions may be due to the nature of the optimization technique. The
variation in the optimized design parameters indicates the time dependent
nature of this problem.

The next results employ control logic based on angular displacement
and velocity limits. The controi logic varies; Table 4.6 used a “if...else’
structure and Table 4.7 employs a series of “if ..” statements. Again, the
optimization effectiveness can be calculated using Equation 4.15 where this
mass reconfiguration has an initiai peak energy vaiue of ¢, =13.25N-m.
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Table 4.6 Optimization for Relay action,

RULE: if |6(r)} <a;, then r(r) =r(t— Ar)+7At
else if |(z) <a, , then r(r) =r(z- Ar)-rAL

Simulation | » IS a3 2, IR

Length (s) (initial) (rad/s) (rad) (final)

3 3 50.09114 0.219279 0.094472 48.04105

5 11 111441989 | 0.204742 0.118691 1127111

7 3 50.09114 0.227700 0.068406 47.89143

10 8 114.4199 0.184721 0.117999 112.7454
1" 135.3023 0.125243 0.135414 135.0475
15 | 176.5470 0.124327 0.141216 175.1296
21 | 216.6305 0.124436 0.138792 214.1480

30 11 135.3023 0.194896 0.120133 133.6307
15 | 176.5470 0.176122 0.166963 174.3708
21 | 236.2482 0.154877 0.174943 231.8839
41 | 416.4584 0.126061 0.265844 380.8840

50 11 135.3023 0.198795 0.100658 133.7181
15 | 176.5470 0.162591 0.121420 174.8444
21 | 236.2482 0.186871 0.172462 231.9784
41 | 416.4584 0.156483 0.326833 370.6925
61 |569.7094 0.157813 0.289592 487.8780
99 |787.6889 0.110486 0.258885 648.6624
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Table 4.7 Optimization for Relay action,

RULE: if |6(t)| <ay, then r(r) =r(t - At)-FAs
if |8(c) > a,., then r(r) = r(t - Ar)+rAt

Simulation | n Jp (initial) a3 a Jp (final)
Length (s) (N-m) (rad/s) (rad) (N-m)

5 9 114.4199 0.070508 0.227908 112.3845
10 9 114.4199 0.163295 0.204169 112.9137

11 135.3023 0.177447 0.176329 134.3922
15 | 176.5470 0.172184 0.190425 173.9518
21 [ 236.6305 0.172128 0.172377 213.1989
30 9 114.4199 0.135145 0.162559 113.5587
1 135.3023 0.166531 0.204416 133.5282
15 | 176.5470 0.189711 0.138709 174.9121
21 | 236.6305 0.143724 0.124261 233.3368
41 | 416.4584 0.280887 0.14125 377.6087
50 9 114.4199 0.077165 0.151851 113.2230
11 135.3023 0.120872 0.163752 134.1168
1§ | 176.5470 0.140772 0.194692 174.5706
21 | 236.6305 0.228133 0.127645 231.4356
61 | 569.7094 0.309712 0.136023 480.3219
99 | 787.6889 0.255174 0.111024 649.6805

This relay action, as indicated in Section 4.4.3, provides autonomous
control without self-exciting vibrations as had occurred with the constant
frequency sinuscidal mass reconfiguration profiles.

The optimization attained could be applied to other time periods
without devastating effects; that is, the system behavior remained stable.
However, residual structural energy did exist and varied with the
parameterization. The residual energy is the system energy which remains
once the structurai vibrations are sufficiently attenuated so that triggering the
relay action of mass reconfiguration no longer occurred. These values are
presented in Chapter 8. Generally, when the time intervals over which the
optimization was conducted were increased, the magnitude of the residual
energy decreased. Correspondingly, a change in the response time aiso
occurred. Furthermore, these optimization resuits also serve to set limits for
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the self-adjusting parameters of the knowledge base controller presented in
Chapter 8.

4.6.3.3 General Profile for Mass Reconfiguration

To describe a general reconfiguration pattern for the auxiliary mass,
the first four terms of a Fourier sine series were considered, as given by
Equation 4.14c. The only constraint placed on the reconfiguration was that
the motion remained bound between (0.75,1.25). The design variables
included the amplitude coefficients, a,anda;, frequency scaling factor of a,

and a phase shift of a,. The natural frequency was assumed to be 3.1321

rad/s. Initial expectations were that this general motion would provide better
performance than either the sine or relay patterns as previously selected.

The results of various optimizations was a convergence to the
sinusoidal motion whereby the slider moved at twice the natural frequency of
the pendulum. The attenuation process was dominated by the “fundamental
frequency” of the mass reconfiguration profile which was at twice the
structural, natural frequency. The results as with the sinusoidal motion of
Section 4.6.3.1 were dependent on the period for which the optimization was
performed.

4.6.3.4 Mass Reconfiguration Using Modified Proportional
and Derivative Action

The radial motion of the end mass was based on a modified
proportional and derivative controller. The error signals were based on the
angular displacement and velocity of the system with respect to the desired
operating state of zero angular displacement and velocity. Due to the
oscillatory nature of the problem the absoiute value of these signals were
used as given by Equation 4.14d. The design parameters were the
proportional gain, a,, and the derivative gain, q,. Again, the translational

displacement trajectory of the end mass was restricted.
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Similar to the sinusoidal motion with tuned frequency as presented in
Section 4.5, this reconfiguration profile will remain coordinated with the
angular displacement. This following optimization results were based on the
simulation of a simple pendulum where the end mass position was confined
between 0.75<r < 1.25. Optimization was completed for various time intervals
as indicated in Tabie 4.8.

Table 4.8 Optimization Results for r(¢, 4) = a,lB(:) + a,[B(:)

Simulation | n I, (initial) as 3 J, (final)
Length (s) {N-m) (ks) (k) (N-m)

5 11 62525635 |-2.665191 1.078098 57.949268
10 9 110.90562 |[-3.122069 | 1.090214 100.175625

11 110.90562 |-3.122074 | 1.090216 100.175625
1§ | 110.90562 |-3.088274 | 1.092528 100.16623

21 110.90562 |-3.122064 | 1.090213 100.175625
30 9 110.90562 (-3.122076 | 1.090217 100.175625
11 127.685742 | -3.188820 | 1.112100 113.448700
15 | 158.049673 | -3.358870 | 1.147632 135.556020
21 197.618443 | -3.582639 | 1.203158 160.688751
41 258.855962 | -3.580447 | 1.199175 200.661549
S0 9 110.90562 | -3.083492 |1.091123 100.165764
11 127.685742 | -3.249181 1.121573 113.387570
15 | 158.049673 | -3.335123 | 1.151067 135.613518
21 197.618443 | -3.536795 | 1.190637 160.927906

Note the optimization performed over 10 second interval had only 10
peak energy vaiues; hence, optimizations considering higher number of peak
than 10 had the same design variable convergence.

The results reflect the characteristics of the system with the relation
between the design parameters or gains satisfying the following relation

o >-3 (4.16)
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This ratio of gains is less than the natural frequency as the mass
reconfiguration profile provides damping and as expected the damped natural
frequency (®,) is less than the natural frequency (w,) of the system

(0,= ca,,\ll—é,‘ ) with the damping ratio (£ ) ranging between 0.3t0 0.6 .

4.7 Summary

The dynamic interaction of the proposed active damping device were
studied using numerical simulations. After programming the initial value
simulation software, the local truncation error, nature of convergence and
stability of the program were reviewed. Based on the known soiution for the
conservative system of a constant length pendulum, the software was
assumed to produce reliable resuits.

Initial simulations examined the assumptions and simplification made in
previous sections to explain the expected dynamics associated with mass
reconfiguration for pendulum structures. Also investigated was the difference
in modeling the attenuation device as a moving mass compared to a moving
force.

The effects of reconfiguring the mass within the pendulum system were
studied for the single and dual mass pendulum systems based on various
patterns for the radial motion of the auxiliary mass. As shown, the motion of
the slider can excite various system responses.

When harmonic motion is assumed for the slider, the frequency and
phase of the motion greatly affect the ensuing dynamics. When the radial,
translational frequency is twice the natural structural frequency and the radial
vibrations are in phase with the angular oscillations then parametric
amplification initiaily ensue and if the coordination is out of phase, parametric
attenuation initially resuits. For extended runs, the beating phenomena was
observed where periodic, bounded amplification and attenuation occurred.
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To ensure continued attenuation, proper coordination between the
attenuation device and the angular oscillations was necessary. The position
of the sliding mass affects the system’'s parameters; that is the natural
frequency of the system changes with the slider position. One proposal to
achieve continual parametric attenuation when harmonic mass reconfiguration
is assumed was tuning the frequency of the slider to the structural frequency.
The frequency of the sliding mass was variable and a temporal function of its
position.

Various dispiacement patterns for the auxiliary mass were analyzed
and optimized to achieve improved energy reduction for set periods. The
optimization involved parameterization of the displacement profile of the
auxiliary mass. Four modes of motion were studied; namely, sinusoidal
motion at a constant frequency and phase shift, relay action based on either
current angular displacement and/or velocity, general profile defined using a
Fourier series and a modified proportional and derivative based displacement
profile. For each displacement profile, the optimized design parameters were
dependent on the time period being analyzed. The following trends were
observed:

1. For a cycle of pendulum motion where the mass reconfiguration is
also cyclic, energy is initially added to the system before being removed.
The auxiliary mass motion was initially raised at maximum angular
displacement (thereby, adding energy to the system) prior to being lowered
(thereby decreasing energy);

2. the “best’ attenuation for the auxiliary mass motion defined using
sinusoidal functions was observed to be nearly twice the structural natural
frequency;

3. for the relay based profiles, the design parameter for raising the
mass corresponded to a larger displacement from the vertical than the
angular displacement limit for lowering the mass; and
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4. the relation between the proportional and derivative gains is
negative and their ratio is slightly less than the structural natural frequency
which indicates the system frequency is being damped.

Based on the interaction between the radially vibrating mass and the
angular oscillating pendulum structure, several seemingly viable approaches
for training and operating the controller exist. Sinusoidal motion for the
auxiliary mass is appropriate if its motion remains at twice the natural
frequency of the system and properly coordinated with the angular vibrations.
The tuned or time varying frequency sinusoidal motion provided continual
parametric attenuation. A perturbation between the natural frequency and
that of the mass may result in beating phenomena. When employing a
constant frequency, sinuscidai mass reconfiguration profile, the auxiliary
mass motion must be coordinated and operates for only a set time period to
avoid the beating effect. The nonlinear relay action was effective at reducing
the system’s energy without any beating effects observed. By virtue of the
conditional logic, this technique provided automatic initiation and cessation of
slider motion. To conclude, the proposed technique of strategically moving a

mass along a structure can be used to reguiated the vibrational energy of the
structure.
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5. Controllers

5.1 Introduction

Through a computer simulation approach, varicus controllers were
used to integrate the plant (a pendulum structure} with the vibration
attenuation device (a mass redistribution mechanism). This chapter provides
a brief introduction to the controliers employed in this research. For each
controller, the basic concepts, properties, potential and related terminology
are given. Implementation and performance details of each controller when
integrated with the structure are presented in subsequent chapters.

The controllers can be categorized as a human operator that interacts
with the system, a nonconventional controller that has similarities to a
proportional and derivative action, a rule-based or knowledge based system
that is based on heuristics from the human operator and an artificial neural
network that imitates an appropriately controlied system. For this application,
each controller was expected to operate using multiple, time-varying,
nonlinear input parameters. In addition, the controller should be extendable,
adaptive and ultimately autonomous (Sections 2.2.3 and 2.24). The
performance of each controller was evaluated on its ability to attenuate
structural vibrations. Since the design focus was initially on innovation,
applications of artificial intelligence techniques were examined.

In constructing the complete control system, various tools for both the
simulation and artificial intelligence controllers were developed and
customized accordingly. As application software and/or hardware for artificial
neural networks was in its infancy at the time of initiation of this research and
was commercially unavailable, original simulation software had to be



developed {Stilling and Watson, 1994; Stilling, 1993; Stiling and Watson,
1992; Watson and Stilling, 1992; Stilling and Watson, 1891; Watson and
Stilling, 1991; Stilling, 1990]. Furthermore, the philosophicai premises of
some of the artificial inteiligence technology were just being established and
applications, as reported in the literature, were limited.

§.2 Human Operator Controller

The process of redistributing the mass to attenuate energy is akin to a
“playground swing” situation where through mass redistribution angular
oscillations are amplified [Walker, 1990; Curry, 1976; Gore, 1970; Burns,
1970; Tea and Falk, 1968]. Through trial and error, children can effectively
learn to “pump” the swing to generate motion. Foreseeably, the inverse
probiem of arresting the oscillations can be leamed heuristically.

The physics of the interaction of moving an end mass towards and/or
away from the pivot for the simple pendulum (Section 2.2.2) suggests a
solution can be deveioped and generalized as a conditional rule. In this
study, applying this generalization to the variable length pendulum became an
exercise in hand-eye coordination. As the operator pulls or releases the
pendulum cable to adjust its length, its angular vibrations can be attenuated.
The operator processes varicus pendulum dynamic information and applies it
to attenuate the system’s vibrational energy.

Despite the inherent inexactness of a human controller, one can
become skilled at the task and acquire sufficient expertise to outperform many
conventional, linear or noniinear control systems. In implementing a human
controlled system, the dynamic process of reconfiguring the mass were
simulated and animated on a computer. The resuits for the interactive
sessions had direct implications for implementing rule-based controllers and
will be considered in detail in Chapter 6.
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5.3 Controller with Modified Proportional and Derivative Action

An initial proposal was a controller that uses proportional and
derivative action to implement the two phase control strategy as given in
Section 2.2.2,

{1) lengthen the penduium as it passes beneath the pivot (its
'neutral’’ position) when the angutar velocity is maximum,
and

(2) shorten the pendulum at points of maximum angular
excursion (its extrema positions’) when the angular
velocity is minimum.

Although the control strategy is stated in a discrete manner with
respect to the extrema of the time-dependent vibration displacement profile,
developing a linear-based controller should be possible; this controller would
provide a continuous control signal. The control strategy was relaxed by
identifying the point where the pendulum changes its length as a region; that
is, the penduium was lengthened as it approaches the neutral position and
shortened as it nears its maximum anguiar displacement. This continuous
motion for the attenuation device had desirable, physical implementation
characteristics.

One possible two phase control strategy is illustrated in Figure 5.1
where a single period of simple harmonic vibrations for the undamped
penduium system is being considered. The desired control action at example
points is also illustrated in this figure. The first phase of the control law as
itlustrated (1) applies near the extrema in the angular veiocity and the second

' For the pendulum system, the neutral position refers to the case when the
pendulum is vertical beneath the pivot.

* Extrema positions are measured with respect to the ‘neutral’ or vertical
position of the pendulum.
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phase (2) applies near the extrema in the anguiar displacement profile. Both
axes have been normalized (the abscissa, with respect to the period of an
oscillation and the ordinate, with respect to its corresponding maximum
value). The strategy of moving the mass at approximately twice the natural
frequency appears to indicate that the control action could be based on
angular displacement (proportional control action) and angular velocity
(derivative control action).

(2) 7))
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Figure 5.1 Applying the controt law of (1) lengthening and (2) shortening the
pendulum for simple harmonic vibrations.
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The operation of linear controllers have been well studied and provide
good control for linear systems [Ogata, 1970]. Proportional and derivative
controllers provide anticipatory action as the derivative control action
responds to the rate of change of the error which can give significant
correction prior to the actual error becoming too large. Also, the proportional-
derivative controller tends to increase the system stability by adding damping
to the system, but has the drawback of amplifying noise that can lead to
saturation effects.

A controller with proportional and derivative action was considered
first. Mathematically, the control signal fed to the plant or pendulum structure
can be expressed as :

m() = k e(t) + k é(e) or m(t) = K,é(e) + K ,é(t) (5.1)

where m(t) represents the cantrol signal;
k,or K, proportional gain;
k,orK,, derivative gain;
e(), the error signal that corresponds to the difference in
angular displacement measured with respect to the zero,
equilibrium position (e(t) =0 o ~08(t) = 0-6(c) =-6(r) );
é(r), the first time derivative of the error signal which
corresponds to the angular velocity as measured with respect to
the desired, equilibrium state (é(t) = 0-6(r) = -6(¢)); and

ér)andé(c), normalized error signals where |e(r)<1and

@) <1.
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Physically, the control signal (m(¢)) would drive a mechanism to move

the attenuation device, an auxiliary mass. For example, the mass could be
lowered when the control signal, m(), was positive and raised when the

signal was negative. Hence, the control signal produced by Equation (5.1)
would not be capabie of efficiently attenuating the pendulum vibrations. For
the case where both the proportionai and derivative gains are positive with
K, =K, =1, the control signal represents the desired control law for only part

of the period. As shown in Figure 5.3, this signal has the same frequency as
the oscillations of the system, rather than the desired control action which
should be at twice the frequency of the pendulum. Therefore, the sign of the
control signal cannot be consistently related to the desired control action.
Note that the axes have been normalized, with the control signal being the
sum of the two normalized error signals as given by Equation 5.1.

This analysis was compieted for only one period with the naturai
frequency of the system assumed to be constant. Subsequently, the phase
shift between the control signal and the dynamics of the system would remain
constant. However, the physical application of reconfiguring the mass within
the pendulum system to effect damping does result in changes to the natural
frequency during a period of oscillation, as discussed in Sections 3.4, 4.4.2
and 45. Implementing a linear controller, based on Equation 5.1, with the
actual system would produce nonoptimal control as the controt action would
not be properly coordinated with the dynamics of the plant over the entire
period. Also, other effects, such as beating phenomena, may be encountered
as described in Sections 4.42 and 4.5 or some bifurcations as recently
reported [Yagaski, 1999].

The control logic based on extrema, as illustrated in Figure 5.1,
required the control action to be at twice the natural frequency. Unfortunately,
a proportional and derivative controller provides control action at the same
frequency as the structural oscillations, as shown in Figure 5.2.
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Figure 5.2 Comparison of linear proportional and derivative control signal
with the desired control strategy at each extrema.

A control strategy that satisfied the desired control action, yet retained
the desirable characteristics of a proportional and derivative action was
possible, if the error signal and its derivative were rectified. The control
signal would then be defined as

m{t) = K, |é(e) + K. |é(0)| (5.2)

with the notation being the same as previously given in Equation 5.1. This

type of action will be referred to as a “modified, proportional and derivative
control action”.
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When the gains were both positive, then the control signal oscillated at
twice the frequency of the plant and remained positive throughout the cycle of
angular oscillation. Generating this action to physically represent the
displacement profile of the attenuation device satisfied the frequency relation;
however, the coordination between the transiational motion of the attenuation
device and the angular oscillations would not alter the system energy.
However, if the gains were chosen so that K, <0 and K, =-K,, then the

control signal would be a “saw-tooth” pattern as shown in Figure 5.3 when
K,=-1and K, =1. This profile satisfied the control logic for each extremum

and would be appropriately mapped to the velocity profile of the auxiliary
mass. Desirably, this control action would require the “proportional” and
“derivative” gains to be adaptable to eliminate the structural, vibrational
energy.

Other control signals would also satisfy the control logic, such as a
control signal based on the rectified error with a given offset. Mathematically,
this can be stated as,

m(t) = K, |é(r) +© (5.3)
where @ represents some bias and X, <0.

This type of control action can be considered as a biased, rectified
proportional controller and is illustrated in Figure 5.4 for X, =-1and @ =05.

This control action would be used to drive the attenuation device and would
be representative of its velocity profile. With this control signal, achieving
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‘complete’ vibrational attenuation would also require an adjustable bias®:
otherwise, some residual energy would remain. Although this control signal
was not implemented, it illustrates that a variety of contral signals exist and
may be implemented to satisfy the desired control logic.
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Figure 5.3 Control signal with modified, proportional and derivative action
satisfies the control law.

? An adjustable bias may be based on the normalized error function and may

et
be defined as @ =k —,L where kis an optimized constant and
e(t) MAXDMUM
e(t), onane 1S the maximum value of the error function for a period.

131



Desired Control
Action
..._._»
-
—+
-
_._._’

)= DOWN UP DOWN UpP
1 e, 4
* l."‘ . X St 9 " ¥
2 & 'y &
05 t——b—ng—* A &

. .

% 0

w D

Normalized

Time -

Signals  ---a---| )| —e=—m(t)

Figure 5.4 A biased, rectified proportional control action also satisfies the
control logic.

The controlier with the modified, proportional and derivative action is
represented as a block diagram in Figure 55. This controller with
appropriately chosen gains was expected to be effective for a given set point.

A similar control action where the auxiliary mass translated radially in a
continuous, sinusoidal pattern along the pendulum has been simuiated in
Sections 4.4.2 and 4.6.2. When the frequency of motion of the auxiliary mass
was fixed, the dynamics of the system exhibited beating phenomena (as
shown in Figure 4.24). This phenomena was avoided by using a “tuned”
frequency for the auxiliary mass motion, as described in Section 4.5. Since
the control signal in Figure 5.5 was based on the actual angular position and
velocity as feedback parameters to calculate the error signal and generate the
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control signal, this phenomena was not expected. The feedback parameters,
themselves, would provide the necessary tuning and the control action would
remain coordinated with the error signal.

Controller with Proportional

and Derivative Action Post Plant:

Processor Mass-Pendulum

r(t) 8

Figure 5.5 Block diagram implementation of the controller with modified,
proportional and derivative action.

Details of the operation of this controller are given in Chapter 7.

5.4 Artificial Intelligence Technology

Artificial intelligence is a unique blend of biological processes with
technology. In emulating various human or biological processes, several
techniques and/or tools have evoived which include knowledge based expert
systems, artificial neural networks, genetic algorithms and evolutionary
programming. Research in the field of artificial intelligence is truly
interdisciplinary as contributions or applications have included psychology,
physiology, biology, neuroanatomy, social sciences, mathematics, physics,
engineering, applied mathematics and computationat sciences, to name but a
few [Miller, 1980]. The advances made in these areas during this portion of
the thesis research have been immense [Sanchez-Sinecio and Lau, 1992].

Typically, artificial intelligence technology provides a method of
handling knowmledge, where knowledge refers to information or models that
are used to interpret, predict and appropriately respond to actual systems
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[Haykin, 1994]. Often the representation of knowledge is redundant,
incomplete and error prone; artificial intelligence technology can handle
these probiems in an effective manner. Despite industrial applications being
limited [Miller, 1990], this field was considered very tractable to the thesis
research. The next two sections provides a brief introduction and describes
the potential implementation of knowledge based or expert systems and
artificial neural networks as control candidates.

5.5 Knowledge Based Systems

Knowledge based systems (KBS) or expert systems are one of the
tangible products of artificial intelligent research. KBS essentially attempt to
capture human expertise or specialized knowledge for an application area.
Several architectures for KBS have been developed. Typically, a knowledge
based or expert system controller is comprised of a knowledge base, an
inference engine and a working memory or interface system [Wolfgram, 1987;
Krishnamoorthy and Rajeev, 1996]. Basically, the knowledge base contains
the relevant information regarding the area that the system is to provide
expertise and assistance; this may be formulated as facts and/or govermning
rules. The conditional logic used to control the attenuation device, as
previously stated in Section 5.3, could form the knowledge base for
attenuating vibrations by mass reconfiguration. The working memory or
inference engine accesses this information, appropriately. The interface
system is the link between the user/system and the knowledge base.
Typically, when KBS are used to assist a human operator, an interactive
session consists of the operator providing appropriate data as prompted by
the KBS through a computer terminal and keyboard interface. For an
automated controi system, sensors would provide the necessary input data for
the inference engine to act on.

Knowledge based systems are applied where the expertise can be
formulated into a hierarchy of heuristics or conditionals. Early applications

134



were nonnumerical problems that related to areas of assessment, monitoring
and diagnosis. The MYCIN project for medical diagnosis was one of the
earliest projects in this field [Alty and Coombs, 1984]. Other applications
included prediction, identification, speech understanding, design, repair,
problem identification, monitoring, planning, debugging, instruction, plant
dynamics and control [Stilling, 1989, Walker and Miller, 1990]. For controi
applications, the input data or information is assessed and processed by the
inference engine according to the hierarchy of heuristics or control laws; then
the appropriate control action is generated.

The challenge of creating an expert system is in extracting the
knowledge base as the human expert appears to operate in an inexact,
contradictory and error-prone manner. Often, the human operator cannot
articulate the heuristics in a fashion suitable for creating a knowiedge base
system. Furthermore, expert systems tend to be very domain specific and are
not reliable outside the programmed operating environment. If the knowiedge
based controller were programmed to attenuate vibrations for the pendulum
structure based on a disturbance that caused an angular displacement offset
of, say, 10°, one would expect less efficient performance for a similar
disturbance causing an offset of 90°. Nonetheless, when operating conditions
can be defined and processing rules can be arranged logically, knowledge
based systems can be developed that provide consistent and efficient
performance [Waterman, 1986].

In applying this technology to direct the reconfiguration of mass to
attenuate the angular oscillations of a pendulum structure, the heuristic used
by the human operator (Sections 2.2.2 and 5.2) must be quantified. A biock
diagram for the system when using a knowiedge based controller is a
feedback system with the parameters of the structure and controlier being
continually monitored as indicated in Figure 5.6.
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Controller:
Knowledge Based System  Plant: Mass-Pendulum

r(t) 8(t)

Figure 56 Block diagram representation of Knowledge Based System
controller.

The traditional control signals, namely reference and error signals, are
contained within the knowledge base. The control cutput signal, m(¢), has

been post processed by the knowledge based controller to generate, r(),

the displacement of the attenuation device. Aiso, constraint operating
conditions for the mechanism may aiso be embodied in the knowledge base.
The inference engine of the expert system will process this data to direct the
mass reconfiguration. To avoid problems of operating outside a given
domain or operating condition, the control logic must be as general as
possible and preferably self-adapting.

Details of the knowledge based controller and the corresponding
results are presented in Chapter 8.
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§.6 Artificial Neural Networks

Ancther development from the field of artificial intelligence is artificial
neural networks®. These nets originated as symbolic and computational
approximates of the biological neural system.

Artificial neural networks were developed based on mathematical
modeling of the biological system as introduced in the following brief historical
review. The connectionist or parallel distributed processing model of
behavioral and cognitive functions can be traced to work by Jackson
(1869/1958) and Luria (1966) [Rumelhart et al., 1986]. A mathematical modei
for the functioning of brain neurons dates back to 1943 in work by McCulloch
and Pitts; their model was a binary, time dependent logical neuron. By the
1950’'s, Rosenblatt presented the concept of a single layer of neurons; this
artificial neural net was called a perceptron. Perceptrons had limited
computational abilities, but advances by Kohonen, Grossberg and Anderson
in the 1980's resulted in more powerful, muiti-layer networks [Neelakanta and
De Groff, 1994]. Since these developments in the 1980's, neural network
research has been continually growing.

With access to powerful computers and advances in training multipie
layer nets, the interest and research in the area of artificial neural networks
advanced to an implementation level [Warwick, 1995]. Successes employing
artificial neural networks began to compete with traditional methods and
models in areas of processing and prediction. Implementations included
classification of undersea sonar signals, speech analysis, vision recognition,
robotic control and others [Lawrence, 1990]. Early prototypes, labeled as
“Adeline’ and "Madaline”, were developed in 1960’s [Widrow and Lehr, 1980};
they were constructed using various logic devices (i.e. AND, OR and majority-
vote-taker elements) [Haykin, 1994] and were used as control units.

* Artificial neural networks are also called neural networks, neural nets, nets,
paralle! distributed processing (POP) models, connectionist modeis or
neuromorphic systems by various researchers.
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Artificial neural nets are viable computational models for a wide variety
of problems which include pattern classification, speech synthesis and
recognition, adaptive interfaces between humans and complex physical
systems, function approximations, image data compression, associated
memory, clustering, forecasting and prediction, combinatorial optimization,
nonlinear system modeling and control [Hassoun, 1995].

5.6.1 Motivation for Selecting Artificial Neural Networks

At the time of initiation of this research, applications using artificial
neural nets for control were very novel; the majority of the reported
applications focused on system identification and possible implementations
techniques. During the extended research tenure of this project, applications
and extensions related to the field of control and engineering have advanced
significantly as reported in various academic journals.

Although the control logic for this application can be clearly postulated,
extending the concept of vibration attenuation by mass reconfiguration to
more complex systems may not be intuitive. In 1989, Tursby et al. reports
that “artificial neural nets can be very useful in a large system where the
identification of control elements and the determination of algorithms based
on mathematical models of the structure may be difficult if not impossitis to
achieve.” These criteria existed at the onset of this research; hence an
artificial neural network that can parallel a controlled system for the mass-
pendulum application was developed.

5.6.2 Overview of Artificial Neural Networks

A conceptual and mathematical framework for understanding the
functionality of neural networks is provided to serve as a foundation for
discussing its implementation as a controller in Section 56.3. When this
research commenced, very little information for net synthesis was available.
Since design principles did not exist, this section summarizes the
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considerations, development and related advancements for creating the
neural network tool for this application with details provided in appendices.

A neural network consists of a dense maze of interconnected nodes
that act in parallel [Redger and Aleksander, 1995]. Mathematically, at each
node is a simple, computational element called a neuron®. Similar to the
biological neural cell, a computational neuron processes inputs from
connecting nodes to generate a single output that may be passed to several
other neurons.

The neural activity can be represented in several ways. The most
common processing protacol is a linear combination or a weighted sum of the
input signals, as shown in Figure 5.7. The value is then scaled using a
logistic or squashing function®. The generated output value is passed to
subsequent nodes.

Figure 5.7 A neuron is a fundamental computational unit of artificial neural
networks.

° The fundamental elements of an artificial neural network are aiso called
processing elements, computation units, neurons or nodes.

® Logistic functions are also called activation functions, transfer characteristics
or threshold functions; the function depends on the mapping required.
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The squashing function is usually a nonlinear function that models the
activation levels in biological systems [Lippman, 1987]. Various activation
functions exist, including signum threshold functions, piece-wise linear
functions or sigmoid’ functions as shown in Figure 5.8 and mathematically
described in Appendix K.

@ V)

1-__

(a) (b) (c)
Figure 58 Typical squashing functions include: (a) antisymmetric step
function, (b) ramp function and (c) sigmoid function.
Mathematically, the computation performed at a node is given as,
y=0(v)
where v = i w.x,

e=1

and y represents the output for the node;

(5.2

v, the linear combination of inputs or the internal activation level,
w, , the adjustable weight associated with the thinput;

x,, the #hinput;
I the number of input signals; and
o( ). the activation function.

” The poputar sigmoid function is a continucus, differentiable, monotonically
increasing function exhibiting asymptotic properties; a hyperbolic tangent
function was chosen for the implemented controller.
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Another numerical processing feature associated at the neuron level is
biasing or threshold setting. Each neuron can have an internal, unique
threshold provided by either an adjustable bias input or a threshold value
defined by the logistic scaling function. In this research, a bias for each node
was included by having an additional fixed input of value 1 with its own
synapses®.

The input-output values can be either binary or continuous. The input-
output relations are learned though the weighted connections. By adjusting
the weights applied to each input signal, the relevancy of the input is
established for generating a desired output. The adjustment of these weights
can be accomplished in either a supervised or unsupervised training mode
[Hassoun, 1995; Simpson, 1992]. Techniques for training are discussed later.

The architecture of the net or the connection scheme of the neurons to
form the network can aiso vary. The architecture affects the mapping
complexity between input-output relations®. The most popuiar format in use is
a multiple layer, feed-forward network. The selected network, as illustrated in
Figure 5.9, featured no intra-connection of nodes within a layer and nodes of
a previous layer ail feed to each node of the adjacent layer. This type of net
can be iabeled as /-/-K-L where the indices represent the number of
nodes/neurons in each layer. This type of net was used and its mathematical
representation of the output can be expressed as,

= m[g Wy -w(g W, -m(Z’: w, r)D (5.3)

=0

® Synapses, a biological term for the connection between neurons, refers to
the connecting weights between neurons for artificial neural networks.

® A single layer net (perceptron) provides direct, linear mapping relations; two
layer structures permit mapping of convex, open or ciosed regions; three
layer systems can model arbitrary compiexities with inciusions and
exclusions as determined by the number of nodes.
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where x, is the ithnode of the input layer with / being the total number of
nades of this layer;
w., the (i. /) weight connecting the ithinput node to the thnode of the
first hidden layer where J is the total number of nodes of this layer;
w,, the (j.k) weight connecting the th node of the first hidden layer to

the ithnode of the second hidden layer where K is the total number of
nodes of this layer;

w, . the (k,/)weight connecting the ithnode of the second hidden layer
to the Ahnode of the output layer;

o{ }. is the activation function; and

¥, is the thnode of the output layer with L being the total number of
nodes of the output layer.

Input First Hidden

Second Hidden
Layer Layer

Layer

Qutput
Layer

@ Adjustable
Connecting
Weight

Figure 5.9 Multiple layer feed forward neural network (3-5-4-2)
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Angther category of networks are recurrent neural nets. Structurally,
the nets possess “feed forward” and/or “feed backward’ connections and the
connections may be within a layer and/or among nonadjacent levels or
elements. The “feedback” connections, typically, incorporate derivative or
time delay information. These nets have been successfully applied to identify
dynamic systems [Pham and Karaboga, 1999]. Unfortunately, these nets
require a large number of additional nodes which infers more extensive
computations and training requirements. Thus, these networks tend to be
more susceptible to noise and their training as an independent simulators are
difficult. Real time control applications have successfully incorporated
recurrent nets [Ku and Lee, 1995). Sample architectures are given in
Appendix K. However, to achieve dynamic processing ability in an artificial
neural network for this research, the input parameters were selected to
contain the first time derivative data. When compared to a simple recurrent
net that posses nodal time delays, the derivative input data provided good
performance and required less computational resources. [See Appendix K].

Leamning behavior is intrinsic to both artificial and biological neural
nets. Artificial neural nets achieve good performance through associations
and generalizations without the use of rules [Brown, 1987]. Leaming is
achieved by adjusting the connecting or synaptic weights and threshold
values. As the complexity of the net increases either in number of nodes or
types and number of interconnections, the run-time operation increases and
the training becomes increasingly involved.

Various leaming algorithms and/or training paradigms have been
developed [Rahim, 1994; Masters, 1995]. The training of the net that is
relevant to this research is classified as supervised. Supervised training
requires externai information, often as a set of matched input-output patterns
which are called exemplar pattemns. For supervised, error-based training, the
process consists of repeated presentation of the input patterns with known
output performance; the net generated output pattems then are compared to
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the desired output and adjustments to the weights and threshold values are
made to force the net to generate the desired output. The training is assumed
complete for a set of exemplar pattems when the output patterns for the
applied input pattems converges, such that the output pattern remains
unchanged through successive training iterations or an acceptably small
difference between the net generated and the desired output exits.

The training or adjusting of the weights was accomplished by applying
various optimization methods which included steepest descent or back
propagation, coordinate search, conjugate gradient, Poweil method,
evolutionary aigorithms and others. The algorithms are presented in
Appendix J. Each training algorithm was evaluated on a benchmark training
suite with the results being as summarized in Table 5.1.

Table 5.1 Evaluation of Training Methods

Training Method Computational | Convergence | Minimum
Steps Ranking Ranking
Back Propagation 3 4 local
Coordinate Search 2 3 local
Conjugate Gradient 4 1 local
Powell 5 2 local
Genetic Algorithms 6 5 global
Evolutionary Programs 1 6 global

Note that each ranking is from 1 to 6, the computational steps per
training iteration are ranked from fewest to most computations; the training
convergence is ranked from fewest to most training iterations; and the
minimum has been classified as most likely to converge to either a giobal or
local minimum. As comparable results were obtained when Powell and
conjugate gradient training algorithms were used, the latter was chosen for
the training of the artificial neural networks controllers as it was relatively easy
to implement in both languages and apply to the application being studied.
The training details are discussed further in Appendices J and K.
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To summarize, through parallel processing, nets provide a complex
mathematical mapping of input data to output by establishing appropriate
links. By adjusting the interconnecting weights, nets can be trained to
recognize the important parameters and provide appropriate output. A unique
feature of nets is their ability to learn performances through training rather
than through programming. For simple nets, associations are learned through
adjusting the weights connecting computational elements. With the ability to
train, a net provides good performance for a range of operating states.
Continued learning using current resuits enables the net to adapt dynamically
and to adjust to minor variations in the input data. Since nets consist of
numerous interconnected elements, good performance has been observed
under conditions of incomplete or noisy input data. Also the inherent robust
nature of nets accommodates modeling uncertainties and undefined dynamics
of the system.

For this research the neural net framework was a feed forward, muilti-

layer, static net'

. The processing capabilities of each neuron was described
as the summation of continuous, unbounded inputs to generate an output
bounded by the domain [-1,1] and expressed in Equation 5.2. Bias or
threshold attribute was achieved by adding another node to input layers. The
output of the net was expressed by Equation 5.3. Inputs were chosen to
contain derivative information and recurrent network architecture was not
incorporated.  Training the network was supervisory using optimization
techniques. The selection of input-output parameters and the number of

nodes and layers are discussed in the next section.

"% A static network is defined as one that has only feed forward connections;
there is no recurrence. In contrast a dynamic net has both feed forward
and feed backward connections. [Zbikowksi and Gawtrhop, 1995].

145



5.6.3 Artificial Neural Networks as the Controlier

This section presents the neural network as the control unit. Since
design and function are closely linked; the control philosophy and neural
network characteristics and operation are discussed concurrently. The
network implementation depends on the required operating philosophy and its
corresponding training protocol.

Often a neural network as a controller is viewed as a “black box” that
accepts inputs to produce outputs. The function of the input-output relations
is to provide control action so as to approximate an appropriately controlled
system, as shown in Figure 5.10. The net was trained to learn the relation
between system dynamics and the necessary control action to effect vibration
attenuation. This type of control action for the neural net will henceforth be
referred to as a “proxy” controller.

When the neural net functions as a “proxy” of one of the previously
described controlled systems, the trained neural net operates as a feed
forward controller in a closed loop, as shown in the bottom portion of Figure
5.10. Although the neural network and its post processor were to operate
similar to other controllers, it was a proxy; the neural net cannot be viewed as
a direct substitute. The neural network performs more than a traditional
controller. The control system incorporating the neural network is neither a
traditional open or closed loop controller. Despite providing muitiple input,
feed forward control, the network using feedback in a nontraditional way.

The controller was to process muiltiple inputs as given by the input
vector, X(t), to generate a multiple output vector, 7(¢). The output signal

from the net would then be post processed to generate the control signal,
m(t) used to drive the control mechanism that would change the mass

configuration as defined by r(1) to attenuate the vibrations (8(r) - 0).
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Figure 5.10 “Proxy”, neural net controller trained to imitate other controlied

systems.

As shown, the operation deviates significantly from a classical closed

loop control block diagram, as was previously shown in Figure 5.4 for the

control system using proportional and derivative action. Firstly, a reference

signal and the corresponding error signal that typically drives the controller is
not explicitly generated. Secondly, the selection of inputs and outputs from
the controller have not been identified in a classic approach to reflect the
desired control objective. Consequently, post processing from the controller
to drive the mechanism is required. Lastly, the dynamics of the system have
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been incorporated by selecting time derivative input information rather than
introducing time delay elements. Each of these aspects is discussed next.

The neural net controller intemally processes the error signal with
respect to a reference signal. This was achieved by training the net with
patterns that represent an appropriately controlled system; thus, the error
signal is embedded within the trained connections. Hence, the desired or
reference input, 8, — 0, does not appear explicitly in the control diagrams,
rather it is inferred and embedded through training.

The control objective can be stated as attenuating angular osciliations,
8(r). by mass reconfiguration, #(f). The classic control approach would be to

identify the control input signal as 6(r) and control output signal as r(¢).

However, for the neural net controller the input signal was selected to
represent the state dynamics of the mass-penduium system. The inputs were
chosen to be easily measured, dynamic parameters, namely, the angular
displacement, angular velocity, transiational displacement and translational

velocity, X(¢)=[8(r).6(:).r(1).5(1)]. The selection of both the angular and

transiational displacement time profiles were chosen since the goveming
differential equations are coupled (Table 3.1) and as discussed in Section
2.2.2, the control strategy depends on proper coordination between the
angular oscillations and the mass reconfiguration profile. Furthermore, the
attenuation device’s translational kinematics for an input parameter enables
constraint information for mass reconfiguration to be incorporated into the net.
Note that dynamic information was automaticaily included as time derivative
data was part of the input vector'’, as discussed in Section 5.6.2.

! When the net morphology was developed [Stilling, 1991 and 1990a; Stilling
and Watson, 1991 and 1990], providing appropriate dynamic input
parameters was novel. The net was freed from storing time dependent
operations internally; this technique has since been practiced by others
[Qian et al., 1998].
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The neural net controller processes parameters that characterize the
dynamics of the system to generate control output signal(s). Two unique sets
of outputs were considered for the neural network to provide the control
action; one set had four output parameters and the other, three. Since, the
control action can be expressed as either discrete or continuous signal as
shown in Figure 5.11 which maps the control output action over a cycle of
simple harmonic motion, the neural net output was mapped as either
continuous or discrete values. Each network would require post processing
priar to being fed to the mechanism to effect mass reconfiguration, r(r).

Notation: Control Action:
0 angular displacement (1) move mass towards pivot
8 angular velocity (2} move mass away frompivot
r(t) translational dispiacement (3) no action

Figure 5.11 Mapping of neural net input-output patterns for typical control
action of the mass-pendulum system over one period.
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For the four node output network, the output parameters were assumed
continuous and chosen to be the angular displacement and translational
displacement of the auxiliary mass and their time derivatives; that is

¥(,) = [e(tl),é(z,),r(t,),r’(t,)]. These were the same parameters identified as

viable input parameters. When the output data was continuousand
unbounded (not normalized), the sigmoid processing operation of the final
output layer was removed.'> This net mapped current dynamics with
appropriate control action that represented the dynamics at a future time step.
The neural net controller was trained to have predictive capabilities.

By considering the training protocol, the development and operation
can be better illustrated as explained in Appendix K. The training protacol for
a supervised, error-driven trained net is shown in Figure 5.12.

The supporting rationale for selecting this set of input-output

parameters was as follows:

(1) these variables could be measured from an actual structure;

(2) the process couid be extended to more complex structures;
such as: continuous structures;

(3) supervised, error-based training was easy to implement; and

(4) prototype development for training and implementing the
controiler was conceptually plausible.

2 When input and output data were normalized or bounded between -1 and 1,
each layer of the net had sigmoid functions.
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Figure 5.12 Training of the “proxy” neural network controller.

To appreciate the predictive nature of the operating mode provided
through training the neural net controller, the time segquence operation is
illustrated in Figure 5.13. Beginning at Point A, a set of measured parameters

that represent the dynamics of the system X{(¢,) :[e(x,) ).r(t,).F )] are

processed by the neural net controller. The neural net maps this behavior to
a corresponding controlled performance at Point B. The control output at
Point B, approximates the controlled plant performance for time, r=t,~A4 ¢
given the initial conditions at ¢=t, Then, the system operates using this
control action to generate its response at Point C which corresponds to
t=t,~2A t for the controlled system. The neural net controller uses this plant
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behavior that is denoted by Point C as its new condition which become the
new Point A and the time-dependent sequence is repeated.

A B
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Figure 5.13 Time sequential operation of the “proxy” neural net controliler.

For the three node output net, the control action was encoded by ali
three nodes. A fri-state, three element vector represented the neural net

output; F(r) e{[-1-1-1} [000]or[1 11]} with the vector sets corresponding
to mation of the attenuation towards the pivot, no motion or motion away from
the pivot, respectively. Other numerical combinations were not part of the
training regime. The rationale for selecting these values was muitifaceted.
Using three values instead of a single value added redundancy which is
associated with increased reliability Through a post processor, the control
action can be based on the majority from the combined output signals.
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Various reconfiguration profiles for the auxiliary mass'™ can be readily
mapped to discrete output patterns. This net architecture focused on the
control action with the net performing the majority of the processing rather
than on generating state parameter data to be using in the control process.
Furthermore, the output format could easily be implemented with digital
control. The exemplar patterns used to train the three node output were
generated similarly to the four nodal output network; an additional step
required that the measured control action from the plant be mapped to the
appropriate output patterns to form the exemplar output or target patterns.

To summarize, the neural network was trained to approximate an
appropriately controlled system. By sampling at time, t and t+At, the
controlled system dynamics would be incorporated into the trained weights of
the net. This eliminated the need to compute error signals as the network
would intrinsically have processed such signals. Parameters as identified in
the governing equations of motion were chosen as the input parameters. The
trained network results in creating a predictive controller. Further details of
the morpholegy, operation and training for the neural network and its
implementation as the control unit for vibration attenuation as used during this
research appears in Appendix K or in Chapter 8.

5.7 The Control Tool: Software Developments

During the thesis, much software was developed, as commercial neural
network software/hardware was not accessible [Stilling and Watson, 1991].
Also, tools in the area tended to be protected by proprietary rights and
implementation details were usually withheld. Hence, a code accessible,
readable and computationally efficient software package was developed.
Originally, a linear algebra package was created; it was called MATMATH
[Stilling and Watson, 1994a; Watson and Stilling, 1991b]. The software was

" For values associated with the mass reconfiguration kinematics, refer to
Chapters 6, 7 and 8.
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designed to be highly portable, serviceable, extensible and reusable. Later in
the research, as new training algorithms were being explored, source code
was developed in both Forth and “C” languages. Programming in these two
environments necessitated the development of communication/transiation
utilities so results could be easily accessed by either system and platforms.

5.7.1 MATMATH

The linear algebra package, MATMATH, was developed in FORTH
(Appendix F). As previously mentioned early simulations of the dynamics
were coded with this package. The operation and training algorithms for the
neural networks were also coded using this utility package.

Forth is fast, compact and easy to program, debug and maintain
[Noble, 1988; Noble 1989]. In addition, Forth efficiently exploits available
resources. Several unique coding techniques were developed, such as,
operator overloading, vector execution to create generic operators, internal
operand adjustment, mnemonic kludges for loop indices, dynamic memory
allocation, access to host hardware (when necessary) and others. The
modular style of programming enabled the code to be extensible, reusable
and tailored for an application.

As a comprehensive utility package, the matrix operators span those
that would be required in most engineering design and analysis. Also, unique
element operators for data manipulation were designed. Aithough the set of
operators is not exhaustive, supplemental functions can be derived by
combining operators or by modifying the source code. Basically, the
operators included data structure defining routines, initialization commands,
input and output utilities, matrix operations of addition, subtraction,
multiplication, determinants, inverses, eigenvalues/eigenvectors, norm
computations and element arithmetic operators. The computations can be
performed as single/double precision integer arithmetic and as short/long
IEEE floating point arithmetic.
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The attractiveness of Forth for the thesis research was its small kernel
with the ability to access platform hardware. The transfer of the research to a
prototype using highly portable microcontrollers/chips;, such as Motorola
68HC11 or RTX-2000A was tractable. Since Forth provides easy access to
platform hardware, prototype development where the structure and related
sensors and actuators could be easily interffaced was deemed feasible.
Appropriate utilities were developed in Forth for interfacing with a
microcontroller/processor [Stilling, 1993b and 1990b; Watson and Stilling,
1992; Stilling and Watson, 1992].

5.8 Summary

The control action for mass reconfiguration to attenuate vibration for
the mass-pendulum system may be impiemented in several ways. The control
logic may be postulated in several ways as either discrete or continuous
action. The controllers as presented included human operator, proportional
and derivative action, knowledge based systems and neural networks.

A human operator either through a priori knowledge of the physics
governing the interaction between the mass-pendulum or through heuristics
should be capablie of effecting vibration attenuation. Also proportional and
derivative action was analyzed. Although standard linear control action
appears inappropriate, when using a rectified error signal, the control signal
parallels the desired control action. Based on the heuristics from the human
operator or the specialized domain knowiedge from the physics of this
problem, a knowledge based system can be created to generate appropriate
control action. Artificial neural networks, a relatively untested controller for
this application was proposed to generate control action by approximating
appropriately controlied systems. This novel application was examined to
assess the feasibility of using a network for this type of control application.

The following chapters examine the performance of each of the
aforementioned controllers.
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6. Human Operator as the Controller

6.1 Introduction

One option for implementing the control system involves a human
operator. For this scenario, the operator assesses the plant dynamics and
generates appropriate control action to attenuate its vibrations. The
plausibility of this method is established by the fact that the inverse problem
to vibration attenuation can be modeled by interpreting a child leaming to
swing as vibration amplification by mass reconfiguration. Through trial and
error and, indeed, in a very short time, a child can coordinate squatting and
standing to initiate swinging [Walker, 1990] and then can increase the
amplitude of osciliations of the swing. The inverse problem of attenuating
oscillations is not as easily leamed. However, by observing the cause and
effects of moving a mass radially along an oscillating pendulum system, a
human operator should be capable of deducing a strategy to attenuate the
vibrations.

Implementing a human controlier had a two-fold purpose. Firstly, the
understanding of the dynamics of the proposed system was furthered in a
more tangible environment. Through interactive simulations of the human
operator-controlled process, additional analysis was possible. Secondly,
benchmarks or measures for evaluating the control systems were established.
In establishing these benchmarks necessary data to implement other
controllers were also acquired.

To evaluate the practicality of establishing a human operator controlled
system for attenuating vibrations by moving a mass along the structure,
several control experiments [Stilling, 1993a; Stilling and Watson, 1993] were



conducted with subjects of whom the majority had some post-secondary
education. The participants constructed a simple pendulum and adjusted its
length to control the vibrations. Aiso, some procedures for vibration control
were made available to the participants on instructional cards. For these
cases, the participants were able to leam heuristics to minimize the
vibrations. Thus, operator-defined heuristics were considered as a feasible
control approach for attenuating the structural vibrations.

An interactive computer simuiation was later developed to permit
human operator control. Various user-generated control strategies for
coordinating the transtational motion of the auxiliary mass with the oscillating
pendulum structure could be studied. Data representing the structural
kinematics and energy profiles revealed characteristics associated with
energy attenuation for the pendulum structure. The temporal angular and
translational displacement profiles, along with their derivatives, illustrated
effective, coordinated control action. fFrom this data, force histories and
damping coefficient graphs characterizing the type of human control were
also generated.

6.2 Software Considerations and Developments

To investigate human control, the computer simulation for the variable
length pendulum was customized to be interactive as indicated in the
flowchart of Figure 6.1. A visual (or graphic) interface was created to
represent the dynamics of the system. The vibrations of the pendulum and
the transiational motion of the mass (attenuation mechanism) were animated.
For each program iteration’, the screen was refreshed’ with updated positions
of the penduium and the auxiliary mass dispiayed. Keyboard input was used
to control the motion of the end mass. The input was limited to two functional

! A program iteration refers to the outer loop of Figure 7.1 where the dynamics
were solved for cne time step.

2 Although the term, refreshed, infers the screen is cleared, the graphics were
updated using XOR line draw routines.
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Figure 6.1
human operator controller.
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keystrokes; one corresponded to moving the mass towards the pivot and the
other, to moving the mass away from the pivot. Through software the
keyboard buffer was continually updated and accessed to control the motion
of the auxiliary mass along the pendulum.

Delay routines were added to allow adequate time for human
interaction. These routines either accessed the internal computer clock or
executed a series of null operations. This feature approximated real-time
computing and control.

Program operation began with an introductory screen; then the user
selected the speed of operation for the simulation. Program termination was
based on achieving 99.99% reduction in the initial system energy or on
executing a user-defined number of iterations.

6.2.1 Pendulum Parameterization for Numerical Simulation

A fourth order Runge-Kutta algorithm was used as the initial value
solver® for the differential equation describing the variable length pendulum
motion, as given by:

mréd +2mi + mgr sin® = 0 (6.1)

where m represents the pendulum mass* (1.0 kg);
g. an acceleration due to gravity of 9.81m/s? and

r, the pendulum length.

* For consistency, resuits are reported to at least the third decimal place.
Note that the numerical simulations employed aigorithms of order A°or
higher where h represents the time step.

* Selecting the auxiliary mass magnitude was arbitrary as the goveming
differential equation (Equation 7.1} was independent of mass; however,
the mass vaiue was used to calcuiate energy magnitudes.
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An initial length for the pendulum was selected as 1.0 m and the motion of the
mass was restricted to a range of 0.75m to 1.25 m from the pivot. Thus, the
natural frequency {(« ) of the system could vary between 3.616 to 2.801 rad/s
which corresponds to a period of oscillation (T) ranging from 1.737 to 2.243
seconds.

The time step ( Ar) for the initial value solver was chosen to be 0.05

seconds, which is approximately . to ). of the oscillation period

depending on the location of the auxiliary mass. Based on user input, the
incremental motion for the mass ( Ar) was set to be +0.05 m; hence limits for
the instantaneous translational velocity were bounded between +1.0 m/s
which corresponded to acceleration limits of +40.0 m/s”. For the preliminary
trials, the initial position of the pendulum was 30° from the vertical with a
corresponding initial energy of 1.314 N-m. All of these parameters could be
changed to permit severai scenarios to be investigated.

6.2.2 Additional Display Features for Interactive Computer Simulation

To assist the operator in monitoring performance, the number of
iterations were tracked on-screen. Also, the intangibie parameter of the
current total structural energy and its components were displayed. The total
structural energy consist of the potential energy, U and the kinetic energy,
T, as defined as

U/ =mgr(1-cos@) (6.2

T=%mrzél. 6.3)

* Note that the potential energy is minimized when the mass is at its lowest
possible position which occurs when the pendulum is beneath the pivot.
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The energy of the system is an essential parameter to determine the
effectiveness of the chosen strategy for moving the mass. In Chapter 4, the
structurat energy was integral in defining the objective function to optimize the
displacement profiles for mass reconfiguration.

6.2.3 Implementation Platforms

The platforms that the interactive control system software was
developed for included the Atari™ ST520, ST1040, MegaST and TT using
Forthmacs©®. Forth enabled access to low level graphics, timing registers
and BIOS’ routines. Floating point mathematics® was available through
software and/or hardware. The software, MATMATH?® (Stilling and Watson,
1994a; Watson and Stilling, 1991a; Appendix F] was developed as a generic
toal and was used when programming the initial value solver.

6.3 Results from Human Operator Performance

The operator gained experience in attenuating vibrations for a
pendulum via moving a mass along the structure by executing the interactive
program several times. For a fixed length of the pendulum, the simulation
produced constant amplitude oscillations about the vertical position.
However, for some of the end mass displacement profiles (as impiemented by
the user), the simulation did emulate various unstable and noniinear
phenomena. For instance, unstable behavior, such as a state of “infinite”
energy, occurred when the mass was allowed to approach the pivot (r —0).
To prevent this from occurring the mass motion was constrained. Also, the
user could increase the energy of the pendulum to cause the pendulum to

® Copyright by Bradley Forthware, 1986.

7 BIOS refers to the basic input and output systems, such as keyboard, disk
and memory access.

® The floating point mathematics as programmed by Bradiey Forthware uses
Motorola Fast Floating point format and is IEEE double precision.

® MATMATH is a linear aigebra package developed in Forthmacs.
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circle the pivot. Eventually, these simulations would fail as the energy
increased sufficiently so that the computer registers associated with
calculating and monitoring system parameters overflowed.

Preliminary testing showed that a human operator could leam how to
attenuate the vibrations when the mode for free vibrations was about the
stable equilibrium position. Operators generated several trajectories for
moving the end mass which resuited in vibration attenuation. Improved
performance was noted as the operator gained experience and/or was
informed of the following heuristic:

a) move the mass away from the pivot as the pendulum passes

beneath the pivot, and

b) move the mass towards the pivot, as the pendulum reaches

points of maximum angular displacement.
Typically, the user generated control action employed the above control logic
in a relay fashion.

6.3.1 Detailed Trial Analysis for Human Controller

A sample, as taken from one operator's experience, is presented by
examining the time relationships among the state variables of the system, the
temporal energy profiles, the force histories and characterizing the dynamic
parameter profiles. For this case, the initial structural energy of 1.314 N-m
was reduced to 0.0087 N-m {99.3% reduction) in approximately four cycles of
the angular displacement motion. The motion of the attenuation device, the
auxiliary or end mass, was restricted to 0.75<r<125m.

As illustrated in Figure 6.2, the phase portrait of the angular motion
indicates vibration attenuation as the magnitude of oscillations are continually
decreasing. The motion appears to be converging to the stabie position of
Zero angular dispiacement and velocity.
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Figure 6.2 Phase plane diagram for a trial of the human controlled
simple pendulum system.

The angular displacement and its first time derivative profiles are
shown in Figure 6.3. The motion shows a decrease in the amplitude of
oscillations and is characteristic of damped vibrations. The angular velocity
lags the angular displacement and their profiles remain reasonably periodic
and asymmetric. Also, superimposed on this figure is the translational velocity
(7-curve) of the auxiliary mass to illustrate the coordination of the control

action with the angular oscillation profiles. The control strategy for
attenuating vibrational energy as used for this trial can be deduced by
examining the f-curve. The motion of raising, lowering or holding the
auxiliary mass stationary was coordinated with the oscillations of the
pendulum. Achieving precision in the mass motion was difficult due to the
inherent inefficiencies of the human operator; nonetheless, the mass appears
to be moved at extrema in the angular displacement/velocity profiles.
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Figure 6.3 Coordinated control action of transiational motion of the auxiliary
mass with angular oscillations of the penduium.

For this case, the trend for the total structural energy history followed
an exponential decay as shown in Figure 6.4. A characteristic increase in
system energy occurred during the attenuation process as highlighted in the
insert. The human operator appears to be anticipating the moment at which
the mass should be moved towards the pivot. The early raising of the mass
increases the total system energy. Based on the first three time periods of the
kinetic energy profile, the logarithmic decrement is approximately 0.55.

Based on the first three time periods, the average damping ratio was
calculated to be ~0.0411 with a natural frequency of 1.079 rad/s.
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Figure 6.4 Structural energy profile and its components for this human
operator control trial .

The influence of the fundamental frequency on the Coriolis inertia force
is evident as a net positive and net negative value as coordinated with the
gravitational force profile, shown in Figure 6.5 The inertia forces that drive
the system are based on the position profiles of the pendulum and the sliding
mass. As illustrated, the frequency of the Coriolis inertia force varies
continuously and apparently at a higher harmonic of the frequency of the
restoring gravitational force. The influence of the fundamental frequency in
the Coriolis inertia force is evident as net positive or negative values are
synchronized with the gravitational restoring force profile as derived in
Appendices B and C.

165



Force (N/kg)

Time (s)

Figure 6.5 Forces driving the angular acceleration of the pendulum under
human operator control.

The “instantaneous” damping coefficient, as defined by 25. varies
r

discontinuously producing both positive and negative damping values as
illustrated in Figure 6.6. The coefficient has a small mean value.
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Figure 6.6 Instantaneous damping coefficient produced by the control action
from a human operator.
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The force in the cable to cause the temporal displacement of the
auxiliary mass was also calculated from Equation 2.9. This force along with
the transiational dispiacement profile appears in Figure 6.7. The force is
periodic with a frequency that is approximately twice the frequency of the
angular displacement profiles that wers previously shown in Figure 6.3. Also,
as predicted in Section 2.2, the force is larger when the mass is being
lowered than when the mass is being raised.

Force (N/kg)
Transiational Motion (m)

Figure 6.7 Force required to effect motion of the auxiliary mass for vibration
attenuation as generated by a human operator.

6.3.2 Analysis and Generalization from Other Trials

Other strategies were aiso employed to reduce the total structurai
energy. For instance, when the restriction on mass motion was eliminated,
the mass moved towards the pivot until the system gained sufficient energy to
circle the pivot. Then, the mass was strategically moved away from the pivot
at maximum velocity.
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Other observations were made from the various human gperator trials.
For instance, when the mass motion oscillated closer to the pivot point an
increase in the magnitude of damping occurred.

In addition, simulations were altered by selecting different initial
conditions and introducing random disturbances during operation. Aiso,
constraints on the motion of the end mass were imposed. Regardless of the
changes to these values, with most trials, the human operator was capable of
adapting and effecting vibration attenuation.

Under human operation, the system stability was maintained. Despite
the imprecision of the control generated by the human operator, stable,
energy attenuation of the system was accomplished by moving the mass
along the pendulum structure.

6.4 Data Sampling for Future Implementation

The characterizing state parameters of translational and angular
displacements and velocities were saved for implementing other control
systems, as will be discussed in Chapter 8. These data sets were generated
and saved at a frequency of 12.5 Hz."

The data sets characterized control action for attenuating pendulum
vibrations. Two data formats were kept. The first data set paired the current
state parameters with those at a time increment ( Ar = 0.08 seconds ) later; that

is, 8().0(r), (1) and {t) and ¢+ As),6(t + As), (¢ + Ar) and it + Ar) values were
incrementally saved. The second data set matched the current state data,
8(:).8(¢). (1) and #(r) with a corresponding trinomial output that corresponded

to raising, lowering or not moving the end mass.

" The average period of oscillation for the simpie penduium is 2.006 seconds,
or its frequency is 0.499 Hz (see Appendix D)).
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6.5 Summary

Through an interactive program, a tool to investigate human control for
vibration attenuation through mass reconfiguration of a simple pendulum was
developed. A human operator with minimal training demonstrated sufficient
hand-eye coordination and reasoning to effectively attenuate the vibrations.
The ability to attenuate energy by moving a mass along the pendulum
improved with practice and/or the knowledge of the given heuristic of Sections
22and6.2.

Some very important observations were noted from these trials. The
human operator appeared to process position and derivative data of the
oscillating system when controlling the system. Also, measures of the
structural energy values were available for the user when executing a control
strategy for attenuating vibrations. The dynamics as generated from the
human controlier showed that attenuation could be achieved when the
transiational mass motion was at twice the frequency of the oscillating
pendulum structure. An increased rate of attenuation resuits when the slider
motion was closer to the pivot.

Data characterizing the interaction of motion of the auxiliary mass
along the pendulum and data representing appropriate control action were
gathered for analysis and future control implementation. This data was to
serve as a measure for performance evaluation and as a basis for
implementing other controliers.

Despite the inherent inexactness that a human operator possesses,
this controller was extremely effective in attenuating the angular vibrational
energy of a pendulum structure through mass reconfiguration. The operator
demonstrated adeptness in adapting to several trial scenarios.
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7. Modified Proportional and Derivative Action Controller

7.1 Introduction

The performance of a continuous signal controller for mass
reconfiguration that is based on proportionai and derivative action is
considered in this chapter. A proportional and derivative control action uses
error signals that are measured with respect to the static equilibrium position
of zero angular displacement and zero anguiar velocity. To generate a
control signal that fits the control strategy of Section 2.2.2, the proportional
and derivative controller was modified by using rectified error signals.

The operation mode of the control system is a feed forward controller
that operates in a closed loop as previously shown in Figure 5.5. The current
angular displacement and velocity are fed into the controller to generate an
error signal for producing the control signal. The control signal is then post
processed to effect motion of the auxiliary mass that is used to attenuate the
structural vibrations of the pendulum system. Details of the processing are
presented in Section 7.2

As with the previous chapter, the purpose of this chapter is to present
the dynamic interaction and the attenuation characteristics of this controiler
with a pendulum structure. The resuits include structural kinematic and
energy temporal profiles, force history curves and damping coefficient graphs.
Uniess otherwise stated, parameter definitions are as defined in the previous
chapters.



7.2 Implementation Considerations
As defined in Section 5.3, the control signal for the modified
proportional and derivative action controller was expressed as

mit) =k |e(t) + & Jee) - (7.1)

To achieve a control signal that has twice the frequency of the oscillations of
the pendulum, the normalized error functions can be used, as defined as

m{t) = K{-{é(e) + |é(e)) (7.2)

where X represents the gain;

1)-8
é(1), the normalized error function which may be defined as ——6(13 T” ;
M

08(£) - 6z .
B ]

For the case where the angular motion is sinusoidal at a frequency of o,,

and (1), the normalized error function which may be defined as

then [6,,,|=|o,8,,| and the relation between the “proportional’ and

“derivative” gains may be given as
k,=-~0k,. (7.3)

Then, the control signal can be processed to drive the attenuation
mechanism, the motion of an auxiliary mass. As previously shown in Figure
3.3, the magnitude and sign of the gains alter the control signal. Gains can
be appropriately selected so that the control signal is proportional to the
velocity of the attenuation device.
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7.3 Software Considerations

7.3.1 Simuiation Procedure

The control action may be represented by defining the translational
velocity of the auxiliary mass, /i), as

)=k Je(t) + k., lé(z) (7.4)

When calculating the transiational displacement for the auxiliary mass,
updates were based on assuming constant velocity over the time step, as
given by the following equation:

r(t)=r(t - Ar)+ F{1)At (7.5)

Next, the displacement constraint of 0.75<r<125m was imposed and
translationat derivatives were calculated using standard backward difference
equations.

As given by Equations 7.4 and 7.5, the transiational motion of the
auxiliary mass is not oniy time dependent, but also a function of the current
angular displacement and velocity. When applying multi-time step initial
value soivers, the transiational displacement values were updated
accordingly. The simuiation procedure for the modified proportional and
derivative controller is summarized by the flowchart of Figure 7.1. These
simulations did not feature a visual interface. The program was typically
terminated by defining a set computation period.
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Figure 7.1 Modified proportional and derivative controller flowchart.
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7.3.2 Parameterization of Pendulum System for Numerical Simulation
The system being investigated was a physical pendulum whose
dynamics were defined by Equations 3.1 and 3.2. The selected parameters
included a concentrated mass of 7.5 kg located 1.0m from the pivot and an
auxiliary mass of 0.75 kg with a permissible translational range of
0.75<r<125m. The acceleration due to gravity is 9.81 m/s>.  The
simulations were based on an initial angular displacement of 30°. The
controller gains were selected to be k,=-30 and k, =10. Note that the

average natural frequency for this system is approximately 3.1321 rad/s.

The initial value problem solver used a fourth order Runge-Kutta with
the time step interval being 0.01s. Simulations were also completed with
higher order solvers.

7.3.3. Software Implementation

The simulation software was developed in the C language (namely,
Zortech C++' and was also compiled using Lattice? and GCC®). This software
had access to floating point utilities. The simulations were performed on a
486 based personal computer.

7.4 Resuits and Discussions

The analysis of the performance of this modified proportional and
derivative controiler are made with comparisons drawn to the human control
action of Chapter 6. Although maximum energy attenuation may not have
occurred for the chosen parameterization, only the first four or five cycles of
the penduium motion are presented in reviewing the dynamic performance of
the modified proportional and derivative controller. However, energy profiles

' Zortech C++ is copynighted from 1986-89- by Zortech Limited.
2 Lattice C is copyrighted from 1990-3 by HiSoft and Latlice, Inc.
3GCC is GNU FreeSoftware Foundation that s “copyleft’.
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are presented for longer time intervals to illustrate the controllers performance
for an extended period of time.

The first four cycles of motion are represented in the phase portrait of
Figure 7.2. In comparison to Figure 6.2, a stable focus aiso occurs over the
shown time interval. This portrait has improved symmetry over the dynamics
ensuing from the human operator controller. However the rate of attenuation
of the angular oscillations is significantly lower as evident from the temporal
anguiar and translational displacement profiles of the auxiliary mass shown in
Figure 7.3. As with the human controller, the coordinated contral action of the
auxiliary mass has a transiational dispiacement frequency that is twice the
frequency of the angular displacement trajectory. Also note that the control
action is continuous in comparison to the discontinuous pattern produced by
the human operator.

Angular Velocity
1.75 ~ (rad/s)

: t=10s .

Angular

0.6

-1.78 ~

Figure 7.2 Phase portrait of the angular displacement profile with modified
proportional and derivative control action.
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Angular Motion
Translational Motion
(m or m/s)

Figure 7.3 Coordinated displacement profiles when using modified
proportional and derivative control action.
The energy for the physical pendulum includes both contributions from
the structural mass (i.e. the pendulum) and the auxiliary mass (i.e. the slider);
the potential energy and kinetic energy have been defined as:

U=mgl, (1-cos8)+m,g(125~r cos6) (7.6)
and
T-lm 12e* +lmr29'2 'lm Pt (7.7)
= P g + . .
2 2
respectively.

The energy history of Figure 7.4 indicates a logarithmic decrement of 0.114
based on the first three time periods of the kinetic energy profile.
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Figure 7.4 Structural energy profiles for modified proportional and
derivative control action.

Shown in Figure 7.5 is an extended run using the same control action to
illustrate the stability of this control action. The control action remains tuned
to the dynamics of the structural vibration as it processes the current
structural angular motion to generate the control action. However, due to the
variation in frequency between the control action and the vibrations of the
pendulum a *beating effect” is observed at periodic intervals. At these
instances the motion of the slider is not ascillating at twice the frequency of
the pendulum.

Both the damping ratio and the natural frequency vary slightly. Based
on the first three time periods of the angular displacement profile, the average
damping ratio was calculated to be ~0.0142 with a natural frequency of
~3.090 rad’s.
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Energy (N-m)

Figure 7.5 Structural energy profiles for an extended period of operation.

The inertia force associated with the motion of the auxiliary mass or
slider {Equation 3.5a) and its components are shown in Figure 7.6. The
gravitational restoring force and the angular inertia component retain their
conservative nature and essentially cancel one another. Thus, the “pseudo-
force” generated by the slider consists primarily of the Coriolis inertia force.

As with the human operator, the force associated with the slider p(m, 8,7.1) is

harmonic and coordinated with the gravitational restoring force of the
pendulum, as shown in Figure 7.7. These forces are continuous with the
slider force being a higher harmonic of the gravitational force.

178



Slider Forces (N)

Fceoriolis ~ -——--- Fgravity ------ Finertia =~ ===p(m :.9.1‘:!):;

Figure 7.6 Forces associated with the slider when its motion is controlled by
modified proportional and derivative action.

Slider Force (N)

Pendulum Force (N/kg)

) . -4
6 - Time (s) _ 6

—p(m.8,ry) ... Fgravity

Figure 7.7 Forces driving the angular motion of the pendulum under
propertional and derivative control action.

The “instantaneous” damping coefficient varies continuously producing
both positive and negative damping values as illustrated in Figure 7.8. Since
the mation of the slider is proportional to the rectified value of the error and its
derivative, the coefficient is nearly sinusoidal rather than the discontinuous
profile produced by the human operator. Since the translational excursion of
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the slider attenuates proportionally with the angular osciliations, the damping
coefficient is also attenuated.
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Figure 7.8 Instantaneous damping coefficient produced by modified
proportional and derivative control action.

The force in the cable to cause the temporal displacement of the
auxiliary mass was also caiculated and is plotted in Figure 7.9. The
translational displacement profile of the slider has aiso been superimposed on
this graph. Again, the force is continuous and periodic at twice the frequency
of the previously shown angular displacement. As shown the force remains
negative regardless if the slider is being lowered or raised.
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Figure 7.9 Force required to effect motion of the auxiliary mass for vibration
attenuation as generated by the modified proportional and derivative
action.

To assess the generality of this control action, the simulations were
also conducted using various initial conditions. The energy profiles when the
initial angular displacement was 60° are shown in Figure 7.10. As expected,
good attenuation prevails since the control action is tuned to error signai.
Note the chosen gain values may not be optimal for these conditions.

Energy (N-m)
Transiationatl Motion (m)

Time (s)

o 7= [ ] — ] ~een--T - -

|
ad

Figure 7.10 Energy profiles when the initial displacement is 60° .
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7.5 Summary

The continuous signal provided by the modified proportional and
derivative action controller proved effective in attenuating the vibration
energy. However, the technique was not as efficient at reducing the structural
energy as the relay type of control action provided by the human operator.
Again, the effectiveness of the energy attenuation was noted to occur when
the translational motion of the auxiliary mass was at twice the frequency of the
oscillating pendulum.
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8. Artificial Intelligence Techniques as the Controliers

8.1 Introduction

Since artificial intelligence technology seeks to represent human
knowledge or expertise, the control strategy for reconfiguring the mass to
attenuate vibrations was programmed using artificial intelligence techniques.
The techniques used as the control units were knowiedge based systems and
artificial neural networks.

As shown in Chapter 6, a human operator could effect vibration
attenuation for this problem, and the strategy for attenuating vibrations could
be postulated as heuristics or rules. A logical advancement was to automate
this control by programming these heuristics as the controller; thus,
knowledge based systems were applied to automated human control.
Essentially, the knowledge based consisted of conditional logic rules that
were postulated in various ways. The details are discussed in Section 8.2

An artificial neural network was aiso implemented as the controller. At
the time of its implementation, this was a very novel application of this
artificial intelligence technique. The ANN processed input data that
represented the kinematic state of the system to generate control action for
reconfiguring the mass. Initially, the training process was based on “trial and
error’ where the system energy was assessed for possible mass
reconfigurations. Later, the network was trained to imitate a properly
controlied system; that is the network controlled system was a “proxy” of a
properly controlled system. Details follow in Section 8.3.



8.2 Knowledge Base Systems as the Controllers

The proposed knowledge based system controller would operate in a
closed loop mode (Sections 2.3 and 5.5). The controller would monitor and
assess state parameters, then determine the direction for the required
auxiliary mass motion for attenuating the vibrations. The upwards and
downwards motion for the slider was assumed to be at a constant velocity;
this paralleled the action used for the human operator controller. As shown in
Chapter 7, the parameters of interest could be based on angular
displacement and/or velocity of the pendulum structure.

The knowledge based system quantified the rules associated with
moving the mass into conditional logic statements. Initially, these rules
contained fixed, predetermined limits for operation based on the angular
displacement. The next generation for the knowledge based system was to
incorporate a level of variability in the limits. Rather than using preset
angular displacement vaiues, one of the conditionals for the auxiliary mass
motion was based on angular velocity. To add greater adaptability, the
values for the limits defining the conditional statements were matched to the
current maximum excursion vaiues. The latter approach required monitoring
and updating the maximum angular displacement (and/or velocity)
parameters. Hence, the rule base was reposed to be self-adjusting; that is, it
possessed a degree of intelligence.

A computer program was developed that integrated the knowledge
based controller (the set of conditional logic statements for determining
motion of the auxiliary mass) with the dynamic simulations of the governing
differential equation for the physical pendulum and slider system. The details
of implementing the controller are presented in Section 8.2.1. The resuits are
presented in terms of the angular phase portrait, temporal kinematic profiles,
energy histories, force profiles and parameter graphs. The dynamics
behavior of the controller is presented for the initial ten seconds. These
curves are compared to the results from the human operator controlier of
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Chapter 6. Also, extended simulation runs illustrating the energy profiles are
shown.

The control for the motion of the sliding mass which regulates the
interaction between the mass and the pendulum structure was based on
current angular kinematics. The data from this rule based controlled
simulations was also saved for further analysis and to support implementation
of the artificial neural network controller.

8.2.1 Considerations in Developing the Knowledge Base Controller

The controller was to implement the heuristic developed in Section 2.2
and proven to be effective in Section 6.3. The control action can be
categorized as:

(a) moving the mass towards the pivot,

(b) moving the mass away from the pivot and

(c) stationary position of the mass with respect to the pivot.

Mation for the mass was arbitrarily selected to be a relay action (see Figure
6.3) which employed constant velocity per time increment as was previously
used in the human operator controller. Based on a priori knowledge of the
interaction between the auxiliary mass and the vibrating structure, zones for
each movement category can be mapped as shown in Figure 8.1. The control
logic can be expressed as conditional statements based on the current
pendulum dynamics as angular displacement limits, angular velocity limits or
a combination of angular dispiacement and velocity limits.
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Mass Motion
- Away from the pivot (down)
D Towards the pivot (up)

D Stationary

Figure 8.1 Visual representation of heuristic governing the mass motion for
attenuating vibrations.

8.2.1.1 Angular Displacement Limits

Initially, quantifying the zones for controlling the mass movement was
completed using angular displacement limits, 6 ,and 6,, as indicated
graphically in Figure 8.1 and in the algorithm of Figure 8.2. Next,

displacement constraints were applied. Afterwards the corresponding
translational derivatives were calculated.

Let 7 =constant,

If |6(¢) <8, then mass is moved away from the pivot;
Else if |o(r} >, then mass is moved towards the pivot,

Else mass remains stationary.

Figure 8.2 Algorithm for the rule based controiler using fixed angular
displacement limits.

This algorithm assumes that 8, is sufficiently less than the maximum

angular displacement for the aoscillating pendulum. Also, this control
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algorithm may possess residual energy. The maximum residual energy of the
system can be related to the limit associated with moving the mass towards

the pivot, 8,. The potential energy may be as great as mgr(l-cos6,).

Therefore, if the absolute maximum angular displacement of the structure is
smaller than the limit, 8, and this limit is nonzero then the structural vibrations
may not be completely eliminated. However, selecting smaller values for 0,
reduces the final energy state of the system, but the rate of energy
attenuation will be decreased as shown in Section 8.4.

When implementing this control logic, as stated, downward motion of
the auxiliary mass ensues. This feature forces the mass to return to its lowest
position and provides additional attenuation in the structural energy, as
suggested in Section 2.2.2. Once the pendulum oscillations cease to exceed
an amplitude of 9,; the mass remains stationary until the osciilations are less

than 8,, then the mass moves away from the pivot. Generally, the

implementation of the algorithm assumes the zones for upward and downward
motion of the auxiliary mass are not coincidental and that 9, <8,. However,

if this condition of overlapping regions do exist, the downward motion wil
predominated. This ensures the mass returns to its position of lowest
potential energy to attenuate the system'’s energy.

8.2.1.2 Angular Displacement and Angular Velocity Limits

To advance the knowledge based controller, an angular velogcity limit
was used to determine when the auxiliary mass motion was to be towards the
pivot. The value for this limit was based on selecting either a maximum,
tolerable, residual kinetic energy level, E,, for the structure or a permissible
angular displacement. Thus, the angular velocity limit could be calculated for
the physical pendulum as:

h < |pEs -
0 e —sz,[ﬁ or JZIP (1-cosb) (8.1)
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As the energy of the system changes, the location where this limit occurs also
changes. When initial excess energy exists, the location for mass motion will
be away from the vertical, but as the energy is attenuated, the location for
mass motion nears the vertical. In other words, the corresponding angular
displacement for the limit to determine when motion is towards the pivot will
decrease as the system energy is attenuated.

The conditional logic can be formulated as the algorithm given in
Figure 8.3.

This knowledge base controlier features improved attenuation as the
system energy decreases. It may be viewed as approximating nonlinear,
proportional and derivative control action and appears to be the modus
operandi of the human operator as shown in Figure 8.3.

Let 7 =constant,

If |8(¢) <0, . then mass is moved away from the pivot;

Else If |6(r) <6, then mass is moved towards the pivat;

Else mass remains stationary.

Figure 8.3 Algorithm for the rule based controller using angular displacement
and velocity limits.

8.2.1.3 Adjustable Angular Limits

Adaptive parameters/limits that are based on the current state of
vibrations creates a continually self-adjusting system. With this controller the
residual energy level could be significantly reduced from the former
implementations. The updating of limits for the rule base was completed by
tracking the maximum anguiar displacement over a set number of cycles.
After each given set of cycles this maximum value was reset so that the
current maximum vaiue could be found. The flowchart that incorporates
adjusting limits to the changing dynamics is shown in Figure 8.4.
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Figure 8.4 Flowchart of the adaptive knowledge based control system.




8.2.2 Simulation Considerations

The physical pendulum system was the selected model for the
knowledge base controlled simuiations. The parameters were selected the
same as those used for the proportional and derivative action controller.
Namely, the concentrated mass of 7.5 kg was located 1.0 m from the pivot;
the acceleration due to gravity was 9.81 m/s>; and an auxiliary mass of 0.75
kg with a permissible translational range of 0.75<r < 125m was chosen. The
simulations were based on an initial angular displacement disturbance of 30°.

The constant velocity for the motion of the auxiliary mass was chosen
to match the value previously assumed in the human operator simulation; that
is £lm/s. When the iteration time step was chosen to be 0.01s, this velocity
corresponds to maximum acceleration limits of +200m/s?. This value has
been noted as being unrealistic; however, a comparison among the various
displacement profiles can be readily made.

The initial value problem solver was a fourth order Runge-Kutta.
Simulations were also completed with higher order solvers. As with the
proportional and derivative action controlier simulation, when multi-step initial
value solvers were used, the transiational data for the moving mass were
updated for the current angular kinematic data for the intermediate steps.

8.2.2.1 Software Implementation

This particular control system was programmed both in Forth and in C
languages. The commercial software used include Forthmacs and Zortech
C++, Lattice C and GCC. The hardware piatforms were the Atari systems
(Section 6.2.1) and personal IBM-compatible computers.

8.2.3 Resuits and Discussion

The displacement based limits were conducted for a physical
pendulum with the resuits for various limits based on an initial energy of
14.243 N-m being tabulated in Table 8.1. As the limit for motion away from
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the pivot decreases the residual system energy is attenuated; however the
rate of attenuation decreases. The kinematic results follow for the algorithm
of Figure 8.2 where /=1m/s,8, =03060radand 8, = 02959rad. These values

were obtained using the optimization as discussed in Chapter 4. Next, resuits
when the auxiliary mass motion was based on angular displacement and
angular velocity limits are given. These results follow the conditional logic of
Figure 8.3 where the optimized limits were 0.1582 rad/s and 0.2442 rad.
Lastly, the physical pendulum performance when the limits were adjusted
based on the current maximum, angular excursion values where displacement
limits for motion towards or away from the pivot were based on 60% and 40%
of this value, respectively. These simulations were completed in C.
Comparisons are primarily drawn to the human operator control system as
this system was intended to be its automated counterpart. Note each
technique does provide vibration attenuation.

Table 8.1 System Energy for Various Angular Displacement Limits

Limit for Motion Limit for Motion System Energy

Towards the Pivot | Away from the Pivot (N-m)

%0, | 9, (rad) %6, |0,(rad) E(t =10s) E or E(t = 50s)
0.75 0.3927 0.70 0.3665 6.2922 6.2922
0.78 0.3927 0.50 0.2618 6.2922 6.2922
0.75 0.3927 0.40 0.2094 6.2967 6.2822
0.75 0.3927 0.30 0.1571 8.5009 5.9568
0.55 0.2880 0.50 0.2618 5.7422 3.4084
0.55 0.2880 0.40 0.2084 8.2656 3.4052
0.55 0.2880 0.30 0.1571 10.8261 3.4057
0.35 0.1833 0.30 0.1571 12.2194 1.3§60‘
0.35 0.1833 0.20 0.1047 13.1790 .
0.35 0.1833 0.10 0.0524 13.8105

" Steady state value has not been reached at t=50s.
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8.2.3.1 Results based on Angular Displacement Limits

As shown in the phase plane portrait of Figure 8.5, when compared to
the human operator dynamics, this knowledge based controller provides
more consistent attenuation. However, the attenuation rate is significantly
lower than the sample shown in Chapter 6. The attenuation rate is more
comparable to that provided by the proportional and derivative controlter
shown in Figure 8.3.

Angular Velocity
2 T(radls)

-0.6 0.2

Figure 8.5 Phase plane portrait for the knowledge based control system.

The coordinated angular kinematics and translational motion of the
slider are shown in Figure 86. The auxiliary mass motion remains
coordinated with the anguiar displacement so that the mass moves towards
the pivot near maximum displacement and away from the pivot as the
pendulum passes near its vertical. The motion for the slider is discontinuous
and the slider reaches its excursion limits.
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(m or m/s)

Translational Motion

Angular Motion (rad or rad/s)

Figure 86 The temporal kinematic profiles for the knowledge based
controlier with angular displacement limits.

As shown by the energy profile of the system in Figure 8.7, the
attenuation in total energy is comparable to the proportional and derivative
control action and is significantly less than the human operator controlier.
This controller, unlike the constant frequency, sinusoidal motion described in
Section 4.4.2, is stable over an extended period, as shown in Figure 8.8. For
this case, the structural energy was attenuated to a residual value.

Energy (N-m)

Time (s)

T-U U----- T!

Figure 8.7 Energy profiles with fixed angular displacement limits in the rule
base controller.
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Energy (N-m)

Time (s)

T-U U----- T

Figure 8.8 Energy profile with the coordinated auxiliary mass motion for an
extended simulation period.

8.2.3.2 Angular Displacement and Velocity Limits

The dynamics when the limits for the rule base are based on angular
velocity for motion towards the pivot and angular displacement to determine
motion away from the pivot are similar to those using angular displacement

limits. As shown in Figure 8.9, the phase portrait for the oscillations remains
symmetrical.
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Angular Velocity
2 - (radss) 't=10s|

-0.6

Figure 8.9 Phase portrait for angular motion when the rule base controller
has angular displacement and velocity limits.

The coordinated temporal profile is shown in Figure 8.10. The
generalization that translational motion of the attenuation device is at twice
the frequency of the angular oscillations still holds. The governing rule that
auxiliary mass motion away form the pivot occurs when angular oscillations
nears the vertical is evident. The primary difference with the previous
knowledge based controller is that the anguiar displacement limit used to
determine the auxiliary mass motion towards the pivot varies with the total
energy of the system.

The energy profiles are shown in Figure 8.11. Based on the kinetic
energy, the logarithmic decrement over the first three cycles of angular motion
is 0.03 with this rule base (Figure 8.3).
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Transiational Motion
(m or m/s)

Angular Motion (rad or rad/s)

Figure 8.10 The kinematic profiles for the knowledge based controller with
angular displacement and velocity limits.

Energy (N-m)
a
|

2 - R ”
B A LIS T TS R T TS LIS LTI OT FOoN:
0 ? : LMMA&.,
0 10 20 30 40 50 60
Time ()
r-U g----- T

Figure 8.11 Energy profile for the knowledge based controller using angular
displacement and velocity limits.

196



8.2.3.3 Adjustable Limits

The rule base formulated using adjustable limits aiso produced stable
attenuation for extended runs as evident in the phase portrait of Figure 8.12
and temporal energy profiles shown in Figure 8.13.

Angular Velocity
2 - (rad/s)

t=10s

/

Angular
Displacement
{rad)

0.6

Figure 8.12 Phase portrait for adjustable limit controller.

16 -
14 -

Energy (N-m)
o @

Figure 8.13 Temporal energy profile for adjustable limit controller.
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The limits were adjusted every second cycle with limits set at 60% and
40% of the current maximum angular excursion values. The temporal
kinematic profiles are illustrated in Figure 8.14, and the dynamics of the limits
are illustrated in Figure 8.15. The energy profile has been superimposed on
the time-varying, absolute values of the limits that control the auxiliary mass
motion.

Translational Motion (m or m/s)

Angular Motion (rad or rad/s)

Figure 8.14 The kinematic profiles for the knowiedge based controller with
adjustable limits.
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Angular Displacement Limits
(rad)
Energy (N-m)

omgmomomo
Time (s)
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Figure 8.15 Monitoring the limits as the energy is attenuated.

8.2.3.4 Safety Concemns

As the knowledge based system, an application of artificial intelligent
technology, was deemed to be an acceptable, autonomous controller, safety
concems related to self-excited parametric oscillations exist. Specifically, the
system should not gain excessive energy as had occurred when the auxiliary
mass moved sinusoidally at a constant frequency. As shown in Figures 8.7,
8.11 and 8.13 for the case where oscillations ensue from initial displacement
of 30°, the rule base controller attenuates the system energy to an acceptable
residual value. As shown in Figure 8.16 for various initial angular
displacement values of 10°, 60°, 90° and 120°, the adjustable limits rule base
appears to respond in a consistent and “stable” manner.

Furthermore, the adjustable limit rule base provides the ability to adjust
to disturbances or operating situations in comparison to controllers where the
control signai has fixed limits or gains.
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Figure 8.16 Energy attenuation using adjustable angular displacement limits
under various initial conditions.

8.2.4 Summary

To summarize, the conditional logic used as the knowledge base
controller was based on the current state parameter values of anguiar
displacement and/or velocity. By continually assessing the structural angular
dynamics, motion for the auxiliary mass was determined. The slider motion
was based on using displacement values corresponding to step increments
using velocity values of either 1, 0 or -1 m/s.

Adaptive limits were next incorporated into the logic. By redefining the
limits using the current dynamics of the system, an intemnally seif-adjusting
controlled system resuited. The controller appears capable of attenuating
vibrations for various initial disturbances. Hence by providing the controller
with a degree of intelligence through being capable of internally monitoring its
state to establish limits proved to be quite effacious for this control problem.
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These knowledge based or conditional logic driven controllers operate
on the same premise as empioyed by the human operator, namely, the
frequency of the translational motion of the slider is approximately twice that
of the angular oscillations of the system.

8.3 Artificial Neural Networks as the Controller

The proposed artificial neural network controller unit was a multilayer,
feed forward, static net. The unit operated in the feed forward loop and
processed plant dynamics to generate appropriate control action (Figure
5.10). The operation of the controller presented herein imitates another
appropriately controlled system. Aithough during the research, several
architectures and control strategies were explored, this section focuses on the
architecture and topography of the network used, its training and
implementation, along with the control it provided. The net was trainined in
an “off-line” mode using a supervisory training algorithm; the training was
validated using data generated under the same control conditions as the
training data; then the control system was evalued by its energy attenuation.

8.3.1 The Artifical Neural Network

The artificial neural network selected for the controller was a multilayer,
feed forward network. The nodal processing capabilities was defined by
Equation 5.2 as a summation of continuous, unbounded inputs that were
passed through an activation function. The activation function was a sigmoid
function that was defined using a hyperbolic tangent function (as given in
Appendix K). The nodal output vaiue was a normalized, continuous signal.

The net consisted of fully interconnected neurons between adjacent
layers with no interconnections within a layer. The data processing was
contiguous as data was processed and passed through consecutive layers
and defined by Equation 5.3. The input data consisted of kinematic state
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parameters (&(¢).&(r),r(r).7(r)) and each input layer had a bias node with its
own set of interconnecting weights.

Two sets of networks were considered with each having two hidden
levels of processing nodes.' The nets were distinguished by the output
parameters used to provide control action. One set had four output nodes (7--
J-K-4) and the other had three output nodes (7-/-K-3). The first network output
was mapped to continuous functions® representing the kinematic state
parameters (#&(t),&(¢),7(¢).7(:)) and the latter was mapped to discrete output
values ([111], [000] or [-1-1-1]).

The size of the neural net affects its “leaming abilities” [Huang and
Huang, 1991; Chakraborty and Nuguchi, 1997] and its computational ability
[Holler et al., 1988), in other words, its ability to learn patterns, to generalize
and to operate efficaciously. When this part of the research was completed
very little work had been completed with regards to tailoring and parsimony of
networks [Mirchandani and Cao, 1989; Hirose, et al., 1991]; thus, once the
net structure was chosen it remained fixed.

To establish the net size, the net was trained using a set of exemplar
patterns’, that modeled the dynamics of a translating mass along the rotating
pendulum system. This exemplar data patterns were sampied one simulation
time step apart as shown in Figure 8.17. The simulation used random
translational motion, r(r) and achieving convergence or reduction in the
training error was used as a measure of the success for training this net. This

net was trained to represent the system dynamics and was believed to be a
superset of the desired control action for vibration attenuation; thus, using the

' This net was assumed capable of solving complex mapping and had been
reportedly applied to decision regions of arbitrary shapes [Lippman, 1987].

2 To achieve convergence for continuous output either the sigmoid function of
the final output iayer was omitted or the output data was normalized.

* Exemplar pattems refer to paired input-output pattems for neural net
training.
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same architecture was deemed sufficiently capable of modeling the control
problem.

r(t)

8(2).6(2).A(1). /1)
Meaurement
Devices
2-1

/ Training Error

Algorithm Signals

Figure 8.17 Training of the neural network to establish net size.

The selected net had an input layer, first and second hidden jayers and
an output layer. This structure provided three sets of adjustable weights. The
number of nades in each [ayer were chosen as follows:

a) input or source layer had 4 nodes (anguiar displacement and
velocity of the structure and the translational position and velocity of the
reconfigurable mass);

b) first hidden layer, 13 nodes;

c) second hidden layer, 11 nodes; and

d) output layer, 4 nodes or 3 nodes.
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When the neuron or processing nodes of a layer contained a bias or
threshold, the number of nodes of the previously layer was effectively
increased by one. This representation of the bias/threshold created an
internal input node with a preset value of 1; these net architectures can be
referred to as either a 5-13-114 or a 5-13-11-3 net. (The number of
connecting weights were 252 and 241, respectively.)

8.3.2 Training of the Artificial Neural Network

A very important feature of artificial networks is their adaptive nature;
they “learn by example” rather than by traditional programming. This process
is called “training” of the neural network and is explained in Appendix K In
this thesis, the training paradigm was “supervised”; that is, the net output was
compared to a target* to generate an error value, and then the weights were
adjusted to reduce this difference using optimization techniques as described
in Appendix J. By repeated and persistent presentation of exemplar patterns,
the net can be trained to respond more efficiently.

Once the neural network was trained using the training suite — a set of
input-output patterns as generated from a controlled system - the training
was validated. The validation process used a set of input-output pattems that
had also been generated from the controlled system but was not identical to
the training suite. The cumulative efror from this validation suite provided an
indication of how well the net had “learmed” the controlled system of input-
output relations. Sample training and validation data suites appear in
Appendix L. The final assessment of the neural network was evaluating its
performance when implemented as the controller for generating the mass
reconfiguration for the system.

Exemplar pattermns were sampled while a controlled system operated
properly, the data was generated from simulations and were not entrained
with artifacts or noise. Regardless of the control system employed (human,

* Target values are the ideal or desired output.
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knowledge based, proportional and derivative action or otherwise), the
training process was illustrated in Figure 5.12. Essentially, the net behaves
as a “smart’” function generator whereby the state parameters of
0(r).8(¢).7(r) and /(r) served as input and the net generated an appropriate
control signai (m{r)) based on an output signal that sampled one time

iteration, later. The dynamic nature of the problem was incorporated by the
selection and sampling process of input-output parameters. By selecting the
input-output parameters as state variables of the system, the neural net
controller had the standard control signals embedded within the net. To
provide time-dependent sensitivity, the parameters included derivative data.

For the tri-state output pattern neural network, additional processing
was required. When generating the exemplar patterns the control action was
mapped to the target signal. The state data from the system no longer served
as output parameters for the network. Also, when operating the net, the
output from the neural net controlier had to be post processed. The_training
process is represented in Figure 8.18. This neural net was particularly
useful when generic or other control action were to be investigated.

Training was completed for two types of exemplar patterns. One set of
exemplar pattems consisting of approximately 80 - 100 patterns that matched
temporal kinematic or state parameter data for input and output patterns; the
other set matched input kinematic, state parameter data to the tri-state, three
value output vector. Typical data as sampled from the human operator
controller is provided in Appendix L.
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System: Controller and Plant

OREF  o(t mt) a(Y)
 =——C>— Controiler ,
i I
3 ;
T
8(2).6(s). A1), /1)
Meaurement z-1 Processing
Devices Sample Logic

'

Z Training Error

Algorithm Signals

Figure 8.18 Training layout for /-/-X-3 “proxy”, neural network controller.

The training was based on reducing the sum of square of the error
between the net generated output vector with the exemplar output pattern
over the entire training suite. Figure 8.19 illustrates a typical convergence
sequence that was achieved during training using data that was generated for
the human operator controlled system. For this particular example, an
average error of <1% existed for an exemplar pattern.

The weighting matrices were saved for various training convergence
levels. These weights were then accessed to implement the neural net
controller for the system.
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compilers. Training was initially completed using the Atari computers and
was later redone on IBM based machines.

8.3.4.2 Simulation Considerations

The system being modeled was the simple pendulum with parameters
for the system being as previously stated (see Appendix D). As an example,
the controlled system was based on imitating the control action of the rule
based controller which implemented the conditional logic based on fixed,
angular displacement limits, as described earlier in this chapter. Another
example was to be a proxy to the human operator controlled system as
reported in Chapter 6.

8.3.4.3 Implementation of the Neural Network as the Controlier

In implementing the neural net controller for the system, the current
kinematic state parameter data was passed to the neural net controller. This
data served as input for the neural network. Essentially, the simuiation of the
neural net controller was a series of matrix computations as given by Equation
5.3. The post processing converted the net output to suitable translational
dynamics to be processed by the next iteration of the simulation process for
determining the angular osciilations of the pendulum.

Depending on the net architecture, (/-/-K-3 or I</-K-4) the output values
require different processing prior to being fed to the control mechanism (or
simulation package that implements the control action). For the /-/K-
network, the output nodes corresponding to the translational velocity of the
attenuation mechanism required only a unity gain as the post processor, as
the value was readily incorporated into the simulation package of the
controlled system. The translational position and acceleration for the auxiliary
mass was calculated using finite difference equations; these values were aiso
returned to the simulation program.
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For the discrete, three node output network the patterns were matched
to the three possible modes of control, namely, moving the mass towards the
pivot [-1-1-1], no motion of the mass [000] and moving the mass away from
the pivot [111]. The magnitude for the incremental motion, Ar, is based on
the mass velocity, 7, and the selected time step, Ar, as discussed in the
implementation of the various control systems. The net output was then
combined using a “winner-takes-all” principle as defined by

| L
:=_Z}’t

L I=1
fzsz, then move the mass towards the pivot, (8.2)
fz, <z<z, thenno control action is taken, and
ifz, <2 then move the mass away from the pivot.

where :represents an averaged output that is compared to the defined limits
of =, and >z, .

This architecture provided improved implementation flexibility as the
net generated control output may be matched to a variety of movement
profiles for the attenuation device.

The neural net controller was accessed for each time step of the
simulation where the angular displacement of the system was then calculated
and returned to the controller.

8.3.5 Performance Resulits for the Neural Network Controller

Good energy attenuation was achieved for various “proxy” neural
networks. Regardless if the net was trained using kinematic or tri-state output
values, appropriate control action was generated by the neural net controller.

The tri-state output was easily mapped to a relay action for mass
reconfiguration and tended to convert other control action to this type of
control. A more complex post processing of the neural net output was
necessary to generate non-relay action. The tri-state output was a more
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flexible system allowing deficiencies in training to be corrected through
redefining limits in the post processor.

Despite the net being trained on a subset of the controlled operation,
yet accessed more frequently during the controlling of the pendulum system,
the neural net controller provided appropriate control action. The neural net
controller appeared able to interpolate control action for system kinematic
states for which it had not been explicitly trained.

A sample energy profile for the “proxy”, neural net controller of the
knowledge based system that used fixed, angular displacement limits in its
rule base is shown in Figure 8.20 [Stilling, 1991]. The time axis has been
normalized with respect to the average period of the structure and the system
energy has been normalized with respect to the moving or end mass. The
performance of the neural network exceeded the original rule base system
that it was to imitate. For each energy profile, the system was initiated with an
identical disturbance that corresponded to 8.50 N-m/kg or an initial angular
displacement of 30°.

@0

System Energy
(N-m/kg)
O 2~ N WhHhL Od® N

Figure 8.20 Comparison of energy attenuation for the rule based controlier
and the “proxy”, neural network controller.

210



The extrapolation ability of the neural network was evaluated by
presenting the “proxy”, neural network controlled system with conditions that
were not included in the training suite. Specifically, initial conditions that
corresponded to an initial angular displacement of 15°, 45°, 60° and S0° were
simulated. Energy attenuation was observed for each case with the most
efficient energy attenuation occurring when the disturbance lied within or was
near the condition that the net had been trained with.

8.3.6 Summary

The artificial neural network was capable of performing autonomous
control for vibration attenuation. Energy attenuation appeared stable for long
simulations. Also, the trained net could be applied to other initial conditions.
For the example given, the rate of energy attenuation was an improvement
over the system being used as the model. Controllers trained using the tri-
state output had additional flexibility as the post processing allowed limits to
be placed on the norm of the output that would correspond to various mass
movements.
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9. Summary, Conclusions and Recommendations

9.1 Summary and Discussion

The development of the concept of mass reconfiguration for structural
vibration attenuation was investigated. This vibration attenuation concept
was applied to pendulum structures whereby mass reconfiguration was
achieved by a radially, translating mass along an oscillating pendulum. The
control strategy was implemented as mass reconfiguration displacement
profiles using various types of controllers. Numerical simulation and
optimization techniques were applied to investigate this problem.

First, the physics associated with a moving mass along a rotating
system was presented. The rotational and transiational motion of the auxiliary
mass gives rise to the Coriolis inertia force which affects the angular motion of
the pendulum system. This Coriolis effect can be viewed as producing
positive or negative damping. Specifically, when the mass is moved away
from the pivot, the Coriolis force opposes the oscillatory motion and acts to
decrease the oscillation amplitude. In contrast, when the mass is moved
towards the pivot, the Coriolis force acts with the oscillation motion and will
increase the amplitude.

For the systems as studied, the mass must remain in contact with the
structure which leads to assuming a cyclic motion. For cyclic mass motion,
the anguiar displacement is periodically increased and decreased. As the
structure vibrates, the magnitude of the Coriolis force varies. To achieve
vibration attenuation over a cycle of the structural osciilations, the mass
should be moved towards the pivot when the Coriolis force is small, thereby
minimizing the increase to the rotational oscillations; then, the mass should



be moved away from the pivot when the Coriolis force is large, thereby
maximizing the decrease in the oscillations. In terms of the angular excursion
and/or velocity, this control logic is postulated as:

1) the auxiliary mass is moved away from the pivot when the angular
velocity and the Cariolis force are maximum which occurs when the pendulum
nears the vertical, and

2) the auxiliary mass is moved towards the pivot when the angular
velocity and Coriolis force are minimum which occurs when the pendulum
nears its maximum angular excursion.

Alternately, the physics associated with mass reconfiguration can be
understood by examining the work-energy balance from the interaction.
Moving the mass towards the pivot generates positive work since the force to
cause this motion is in the same direction as the motion which increases the
system energy. Conversely, moving the mass away from the pivot produces
negative work as the force to cause this displacement is in the opposite
direction as the motion which decreases the system energy. As the system
oscillates, the magnitude of the force to cause mass reconfiguration varies.
Therefore, a strategy for periodic motion of an auxiliary mass to cause
attenuation can be deduced which parallels the above logic, namely, motion
of the mass occurs during the turning points in the angular oscillations.

Next, a mathematical model was developed to represent the mass
reconfiguration for pendulum structures. Internal and external damping
factors were neglected to accentuate the attenuation effects by mass
reconfiguration. Then, simplifications to the governing equation enabled
parallels to be drawn to the Mathieu-Hill equations, where regions of stability
and instability were identified. Specifically, harmonic motion at twice, nine (9)
and sixteen (16) times the natural frequency were examined. Predicting the
dynamic behavior for the simple structure of a pendulum with reconfigurable
mass was shown to be quite involved.
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Through extensive computer modeling and simuiations, the dynamics
of the mass-pendulum system were investigated. The auxiliary mass
displacement profiles that were examined were periodic (Equations 4.14a to
4.14d) and the mass motion was restricted (Equation 2.11). The profiles,
which satisfied the proposed control strategy for achieving vibration
attenuation, included:

1) continuous, harmonic motion using fixed frequency and

phase,

2) relay action using piece-wise “constant velocity” motion that

was based on the current, structural angular displacement

and/or velocity, and

3) motion based on modified proportional and derivative action

of the structure.

Based on the sinusoidal motion (Equation 4.10), the optimization of the
parameters regardiess of the optimization period approached twice the
natural frequency of the system (n=2). Attenuation initially occurs when
¢ = 0. As shown by the optimization resuits (Table 4.6), the phase shift varies
with the period of optimization. Since the mass motion affects the natural
frequency of the structure (Figure 3.7) and causes damping, a variation
between the frequency of the angular oscillations and the mass motion
results. This frequency variation resulted in a “beating phenomena® (Figures
413, 4.15 and 4.19). Thus, the displacement profile of the mass must be
properly coordinated for the time period of interest.

An improvement to this displacement profile that retained the
sinusoidal characteristics was proposed. The frequency of the mass motion
was tuned to the frequency of the system. This profile was defined as:

r(t) = R, - Arsin20(1)- t) where o(f) = ‘j% .
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This tuned displacement profile produced continual, parametric attenuation
(Figure 4.21).

The relay action using piece-wise, “constant” velocity also produced
good attenuation. The velocity was selected to be -1, 0 or 1 m/s. The
structurat dynamics did not exhibit beating effects; however, depending on the
parameterization of the control logic, residual energy remained. Also, the
simulation process defined the transition between velocity states; that is, the
acceleration of the translating mass was defined by the time step of the
simulation. As the time step was decreased, the acceleration of the
translating mass had the potential to become physically unattainable. The
control logic to select the mass motion was formulated using various logic
paradigms and structural angular displacement and/or velocity limits as
presented in Chapter 4. Also, the parameter limits were optimized for various
time intervals (see Tables 4.5, 46 and 4.7). As the time interval was
lengthened, the magnitude of the residual energy was reduced, but the rate of
energy attenuation was decreased.

To enhance the attenuation of the structural energy, the conditional
limits were made adjustable as was presented in the controlled system (see
Section 8.4.3). This technique capitalized on the fast attenuation rate without
high residual energy levels remaining.

The displacement profile based on madified propartional and derivative
action was considered in Chapters 4 and 7. This profile provided a more
continuous action than the relay technique and avoided discontinuities that
praduce high acceleration values for the auxiliary mass. The parameters (or
gains) for the mass displacement profile when optimized accounted for the
fact that the damped natural frequency was lower than the natural frequency
of the system. Good vibration attenuation was also achieved using this
displacement profile.

Several profiles for mass reconfiguration were formulated and proved
effective in providing structural vibration attenuation.
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Integrating the mass reconfiguration with the pendulum structure
produced the control system. The fundamental requirement of the controiled
system was to attenuate vibrations. Multiple input, closed loop controllers
were considered. Other desirabie requirements that were identified included
being general purpose, adaptive with leaming capabilities and being
autonomous. The identified input parameters were the temporal angular
displacement of the structure and/or the temporal franslation of the
reconfigurable mass. Uniquely, the controllers embedded the standard input
signals which the controlier internally generated to produce the control signal
that defined the sliding mass motion. The control systems presented included
a human operator controller based on a relay mass reconfiguration profile, a
modified proportional and derivative controller using proportional and
derivative action, a knowledge or rule based controller using a relay mass
reconfiguration profile, and an artificial neural network trained to imitate a
proven, effective reconfiguration control strategy. The effectiveness of each
control system reflected the mass reconfiguration strategy that was
implemented. A summary of the mass reconfiguration strategy and the
corresponding controller implementation(s) appears in Table 9.1.

Neural networks were selected as a controller due to their originality
and learning capabilities; at the initiation of the project, the nature of the
problem was not well defined. The development of artificial neural network
was in its infancy at the time of implementing this control system. The
selection of the net was a feed forward, muitiple layer net. The net was made
time-sensitive and time-dependent by selecting input-output parameters that
contained time derivative information (angular and transiational
displacements and velocities). Also, the exemplar patterns matched input
states of the system to the time-delayed output action. The development of
the artificial neural network controller involved training the net, validating the
training of the net and then, implementing the net as the controller. Various
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optimization techniques were impiemented for training the net, as were tools

for creating, training and implementing this controlier

Table 9.1 Comparing mass reconfigurations and control implementations

Mass Reconfiguration | Nature of the Strategy & Its Performance | Controller and Comments
Strategy
Sinusoidal Motion with | - continuous, differentiabie motion Not| nted
constant frequency - ime dependent - would require logic to select
and phase - similar to Mathieu’s Equations phase magnitude and logic to
- energy attenuation can be parametric | arest the control action to
provided proper phase shift employed avoid amplification from the
- produced “beating” phenomena ‘beating” effects
Sinusoidal Motion with | - coninuous, differentiable motion Not implemented
tuned (variable) - time dependent - when initiated the mass
frequency - when properly coordinated provided motion should be “in phase”
parametric energy attenuation with the angular oscillations
Relfay Action - discontinuous displacement profile Human Operator
- piece-wise, {implementation did not provide for - with experience operator
constant velocity smooth fransition between velocity skills improved.
profile states) requires conditionals to select - best energy attenuator
velocity K ule Based
- provided good rate of energy Controlier
attenuation with the energy decreased in | - good attenuation
steps - improved results obtained
- residual energy existed when adjustable limits for
selecting velocity were used.
Proportional and - continuous dispiacement motion Modified rional and
Derivative Based - gain parameters were selected as Derivative Control Action
Action constants - good, nearly parametric
- the beating phenomena was evidentas | attenuation without beating
stalls in the auxiliary mass motion - recommend defining
adjustable gains.
Selected from above Artificial Neural Network
- when properly Fained led to
good energy attenuation
- example provided improved
attenuation over trained
system and accommodated
changes to operating
conditions
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9.2 Conclusions

The objective of the thesis was to investigate mass reconfiguration
within or along a structure for attenuating the structural, vibrational energy.
Since the approach taken examined the complete controlled system to
achieve vibration attenuation, the research, as reported within, encompassed
several domains. These inciuded structural dynamics, numerical simulation,
optimization, control and artificial inteiligence technology. Based on the
results from this investigation where mass reconfiguration consisted of a
radially, transiating mass along a rotating structure (mass-pendulum system),
several conclusions can be drawn.

The most important conclusion is that mass reconfiguration can be an
effective vibration attenuation mechanism. Mass reconfiguration can alter the
characteristics of the system and thereby increase, decrease or cause no
change to the structural energy. Therefore, a strategy for mass
reconfiguration can be deduced to effectively attenuate the vibrational energy
in structures. When studying mass motion along a structure, accounting for
the inertia effects of the mass becomes invoived and complex.

Based on the mass reconfiguration displacement profiles that were
studied by simulating the ensuing dynamics and optimizing the time-
dependent displacement profile, several characteristics for the mass
reconfiguration strategy for effective attenuation can be made. Namely, for
vibration attenuation the profile should be cyclic at approximately twice the
angular frequency of the system. To achieve parametric attenuation, a
sinusoidal auxiliary mass motion that is tuned to twice the frequency of the
angular oscillations of the system can be used. To avoid beating effects,
relay action can be employed to synchronize the mass motion with the current
frequency of the pendulum motion. Regardiess of the auxiliary mass
displacement profile, improved attenuation with respect to maximizing the rate
of the attenuation and minimizing the residual energy can be achieved by
using proper parameters for the reconfiguration profies and/or by using
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adjustable parameters based on the current system dynamics or parameters.
Autonomous control required adjustable parameters for defining the mass
reconfiguration profile.

The technique of reformulating the complex, dynamic control problem
as an iterative, parameter optimization can be beneficial. The effectiveness
for this study varied with the improvement depending on the period of
optimization and the technique being investigated. Optimization using
random search methods showed that several iterations were required to
converge to or towards the global solution.

A variety of controllers to implement the mass reconfiguration
attenuation control strategy can be developed and employed, as was shown.
Controllers based on time-dependent reconfiguration profiles, conditional
logic and maodified proportional and derivative action were developed and
shown to achieve good structural, vibrational energy attenuation for the
pendulum systems. Based on the implemented controllers, the human
operator performance was best at employing mass reconfiguration to
attenuate vibrations followed by controllers based on artificial inteiligence
technology.

In developing the artificial neural network controller, the foliowing
conclusions can be drawn:

1) by providing time dependent parameters, a “dynamic’ or time-
dependent neural network for control purposes can be developed;

2) by using displacement and velocity parameters, effective control for
a nonlinear second order system can be achieved,

3) by generating exemplar patterns from a controlled system, training
suite data for creating a “proxy” neural net controiler can be accomplished;

4) by implementing parametric optimization techniques (such as,
Powell Method, Conjugate Gradient, Coordinate Search, Evolutionary
Aigorithms and others), supervisory training for neural networks can be
enhanced over back propagation methods;
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5) by presenting a data suite that is independent, yet similar to the
training suite, the training of the neural network can be assessed;

6) by presenting the entire training suite (batch training), the neural
net can be trained more expeditiously; and

7) by avoiding “over-training®, the neural network provided more
general control and responds better to conditions that the net was not
explicitly trained for. The phenomena was not investigated in detail and
hence a general conclusion cannot be drawn.

All the simulation, optimization and control systems were custom
programmed for the thesis research. Based on the programs developed,
modular programming was concluded to be effective for developing software
tools that can be customized for various languages and programming
platforms.

9.3 Contributions

Several original contribution from this research were made. The key
contribution was the development and application of the concept of mass
reconfiguration using either internal mass redistribution or an addendum
system of an auxiliary mass to attenuate vibration in a rotating system. The
understanding of the mechanics of this system were presented. Parametric
excitations were applied to control vibrations [Stilling and Watson, 1994b and
1993}; the technique for inverse parametric amplification (i.e. attenuation) was
achieved using a tuned-frequency, harmonic mass redistribution.

Secondly, artificial intelligence technology methods were successfully
applied as controliers for this problem. Both knowledge based systems and
artificial neural networks were effective controllers.

Thirdly, extensive tool development for computer simulations were
completed. These were done on various platforms in both Forth and C
languages. The custom software packages that were developed
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encompassed linear algebra packages, initial value solvers, optimization
search techniques and neural network programs.

The formulation of the problem in a nontraditional or classic manner
provided new insight into the problem and motivated unique solutions. For
example, a pseudo-force comprised of the slider related terms transformed
the freely vibrating system into a forced vibration problem. The “pseudo-
force” was defined by the mass reconfiguration. Also by examining the
fluctuations with respect to the natural frequency of the system, the beating
phenomena could be explained and circumvented by creating a self-tuning
frequency reconfiguration profile. Also, the controller embedded standard
control signals, thereby expanding its typical processing capabilities
associated with generating appropriate control action.

In addition, the concept of changing the dynamic characteristics
(parameters in the governing differential equation) provides new engineering
design venues to solve problems. This thesis examined the specific case of
mass reconfiguration in a dynamic system. The concept can be extended to
adjusting the boundary conditions to change the dynamics of the system to
achieve a desired goal; for instance achieving vibration attenuation in a
transmission line may involve adjusting the tension and length of the vibrating
cable by lengthening and shortening the cable over a large pulley at its
attachment point.

9.4 Recommendations for Future Work

Regarding the concept of mass reconfiguration, a continuation of the
investigation with the pendulum structure could involve developing a profile
that provides the rapid attenuation of the relay action without encountering
high acceleration patterns in the auxiliary mass. This “jerk” couid be avoided
using appropriate transition patterns (such as cycloidal motion). Further
optimization and improvements on the adjustable limits would be desirable.
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The research reports the effects associated when 10% of the structural
mass is employed as an auxiliary mass to traverse 40% of the structure’s
span. Both of these factors should be investigated further. As well the
location of the mass motion (that is the proximity to the pivot) will affect the
attenuation characteristics of the mass reconfiguration system. Furthermore,
when applied to large structures, multiple control units (i.e. masses) may
prove more effective.

Completion of a prototype of the system is recommended. This would
permit an investigation into not only the process of training a neural network
based on sampling a controlled system, but aiso the dynamics and/or
limitations assaciated with the sensors and actuators could be investigated.

To better represent more systems, the structure considered shouid be
continuous. Initiat investigation with a cantilever beam [Stilling, 1990; Stilling
and Watson, 1997] showed that additional inertia/relative acceleration terms
need to be considered. Examining the effects of an auxiliary mass along a
structure alters its eigenvalues and eigenvectors (medal frequencies and
shapes). The general strategy for damping the first mode of vibration
involved moving the mass at twice this modal frequency over the length of the
structure. But other strategies associated with higher frequency motion may
also be appropriate, especially when ail modes of vibration are considered.
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Appendix A: Terminology

A list of the terminology as used within the thesis is presented below.
The terms are from structural and vibrational engineering, control
engineering, optimization and artificial intelligence technology.

ACTIVE ATTENUATION MECHANISM as proposed in the thesis, consists of
motion of a mass either within or along a structure to reduce its vibrational
energy; the mass may be an auxiliary unit or intrinsic to the structure. The
technique is also termed mass redistribution or mass reconfiguration.

ARTIFICIAL INTELLIGENCE TECHNOLOGY refers to concepts and
developments that combine biological processes with computer technology to
emulate various human or biological processes; some of the tools that have
evolved include artificial neural networks and knowledge based systems.

ARTIFICIAL NEURAL NETWORKS is aiso referred to as neural networks,
neural nets or nets in this work; as employed in this research the net provides
a matching between input and output patterns using a parallel set of weighted
sums and nonlinear squashing functions.

ATTENUATION refers to the loss of vibrational energy of a structure; it is
positive damping that occurs from the active vibration technique.

AUXILIARY MASS is the end mass of the gsimple pendulum or the sliding

mass of the physical pendulum that translates along the system to reconfigure
its mass to effect active vibration attenuation.

CLOSED LOOP CONTROL SYSTEM is a control system with output fedback
into the controiier; the controller maintains a prescribed relation between the
reference input and system output by comparing these and using the
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difference as a means of effecting control. (See also gpen loop control
system.)

CONTROLLER is the logic that directs the control mechanism to effect the
desired objective for the plant by supplying appropriate action or signal.

DAMPING refers to the change in energy of the system.

POSITIVE DAMPING refers to loss or dissipation of energy; in this work it
refers to the attenuation of oscillations or the reduction of structural,
vibrational energy.

NEGATIVE DAMPING refers to the gain of energy.

EXEMPLARY PATTERNS refers to a set of paired input and output patterns
used to train artificial neural networks.

FEEDBACK CONTROL SYSTEM see closed loop control system.

INSTABILITY refers to oscillations that are unbounded; the amplitude of
oscillation increases. (See also stability and neutral stable).

KNOWLEDGE BASED SYSTEM or expert system refers to a knowledge

base, an inference engine, working memory and interface used to emulate
human expertise in a given area.

MASS REDISTRIBUTION see active attenuation mechanism.
MASS RECONFIGURATION see active attenuation mechanism.
MATHEMATICAL PENDULUM see simpie pendulum.

MATHIEU-HILL EQUATIONS are linear differential equations with periodic
coefficients.

MATMATH is the name of the linear algebra software package that was
custom developed in Forth for the thesis research.
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NEUTRAL STABILITY refers to oscillations that remain unchanged; no
attenuation or growth in amplitude. (See also stability and instability).

OPEN LOOP CONTROL SYSTEM is a control system whereby the output
does not affect the control action; the input and output relation of the system
is well defined for each reference input and there corresponds fixed operating
conditions. Such systems often operate on a time basis and do not operate
well in the presence of disturbances. (See also closed loop control system.)

OPTIMIZATION is the process of determining extrema in an objective or cost
function; it is determining a “best” solution.

PARAMETRIC RESONANCE vibrations that are characterized by
monotonically increasing oscillations; also it is referred to as parametric
excitations.

PHYSICAL PENDULUM is a compound or dual mass pendulum system; both
the pendulum structure and the sliding or auxiliary mass possess physical
properties of mass or inertia.

PLANT refers to the physical object that is to be controlled; that is. the
equipment or mechanism(s) that functions to perform a given operation.

PROCESS refers to the progressive, continucus operation of a series of
control actions leading to the desired end resuit or behavior; process is the
controlied operation that may be systematically directed, the action to achieve
a desired result.

PROPORTIONAL AND DERIVATIVE CONTROL ACTION refers to a type of
processing of the feedback signal to the controller; proportional action
involves scaling the feedback signal and derivative action involves scaling its
derivative.

SEARCH TECHNIQUES refers to methods used to find optimums in an
objective function; techniques inciude: conjugate gradient, coordinate search,
evolutionary programs and others.
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SELF-TUNING or seif adjusting terms refers to parameters that autonomously
change; in this thesis, this refers to parameters that adjust to maintain proper
coordination between the active attenuation mechanism and the vibrating
structure.

SIMPLE PENDULUM is also referred to as a mathematical pendulum and
accurately models a variabie length pendulum where the pendulum structure,
itself, is massless.

STABILITY refers to oscillations that remain bound. (See aiso instability and
neutral stability).

STRUCTURE is the vibrating plant that is controlled; for the research
reported herein the structures have consisted of pendula structures.

SYSTEM is the combination of the components that cohesively perform a
certain objective; the system is the combination of the controller and plant.

TRAINING SUITE refers to a set of exemplar patterns used to adjust the
weights or train an artificial neural network.

VALIDATION SUITE refers to a set of exempiar patterns used to evaluate the
training of the artificial neural network.

VIBRATION is the oscillatory behavior of bodies which possess mass and
stiffness undergo when disturbed by either an internal or external disturbance.

Angular Vibration refers to rotational oscillations.
Translational Vibrations refer to linear osciilations.
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Appendix B: Deriving the Govermning Equations for a Physical Pendulum

The physical pendulum system is a dual mass system; both the
pendulum and the attenuation device, the slider possess mass. A typical
schematic for the simple pendulum is shown below.

Y
(o]
I Guide
=> "

Auxiliary

mass
Pendulum's
mgl, Centre of Mass
8 X !
Y

(a) (b) ()
Figure B.1 Physical pendulum system and the free body diagrams of (b) the
pendulum and (c) the auxiliary mass components.

Applying Newtonian equilibrium principles, moments of the forces are
taken about the pivot to give,

1,6 =~m,gl, sind - Nr (B.1)

where the notation is consistent with Figure B.1 and is defined in the
Nomenclature and Abbreviations found on page xviii.
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As developed in Section 2.2, the motion of the slider is governed by,

m, [(r - ézr}f + (ér + 29;”)]’] = ~m,g(cos®i + sin®f) - Fi + Nj . (B.2)
This equation in terms of its rectangular components can be expressed as,

m,(F -8%r)=-mgcosd - F (B.2a)
and

m, (ér + 26?) =-mgsind+ N . (B.2b)
From Equation B.2b, the interaction force, N, is defined as

N = m,(§r+29r’ +gsin6). (B.3)

By substituting Equation B.3 into Equation B.1, the planar motion of the
pendulium is defined as,

(Id +~mr’ b +2m rid +(mplp +m,r)gsin6 =0. (B.4)

The force required to move the siiding or auxiliary mass is defined by
rearranging Equation B.2a,

F= m,(ézr -F+ gcasB). (B.5)
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Appendix C:
Using Lagrangian Dynamics, An Energy Formulation, To Derive the
Governing Differential Equations

C.1 Introduction

The governing differential equations of motion for the pendulum system
and the proposed attenuation device are derived. Newtonian mechanics
model systems using forces is quite adequate for analyzing simple systems.
However, to formulate the equations of motion for more complex systems,
energy principles or Lagrangian Dynamics are often used [Barr, 1993]
Regardless of the modeling approach, the governing differential equations are
identical.

A brief introduction to the approach of Lagrangian Dynamics is
followed by the derivation of the governing equations for a simple, constant
length pendulum, for the variable length pendulum, a physical pendulum with
a stationary auxiliary mass and a physical pendulum where the mass
traverses the structure. Knowledge of the interaction between the pendulum
and the auxiliary mass is not necessary for deriving the differential equations
describing the planar oscillations. Lastly, the general equations as derived
are discussed.

C.2 Background

Briefly, the energy formulation is based on Hamilton's Principle
[Goldstein, 1980). The dynamics of a system is based on minimizing the time
integral of the differences between kinetic (7) and potential (/) energies. The
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difference in energy is called the Lagrangian (< =T-U). Using Calculus of
Variations [Lanczos, 1970], Hamilton's Principie can be expressed as:

SE(T-U) di=0. (C.1)
Therefore, the Euler-Lagrange equations or the Lagrangian equations of
motion are defined by:

ddd) &

2N 2F C.2

dt[&i) éqg ° (€2

where g represents a generalized coordinate,
the superscript, ", the first time derivative;
0, partial differential operator; and
F,, the generalized non-conservative forces.

Additional background and references on Lagrangian Dynamics appears in
Section C.8.

C.3 Simple Pendulum

A single mass pendulum as shown in Figure C.1 consists of a constant
length pendulum. A mass or bob is located at a fixed distance, r, from the
support. Assuming the mass moment of inertia of the bob about its center is
significantly less than its inertia about the support and the connection (cable
or rod) has negligible constant mass, then the energy of the system can be
expressed as follows:

Kinetic Energy: T =%mr’éz (C.3)

Potential Energy: U/ =mgr(1~ cos6) (C.4)'

' As potential energy is a relative term, the selected zero reference position
correspond to the vertical equilibrium position when r=R. This

convention is followed throughout this appendix.
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where m represents the mass of the bob;

r, the radial distance from the pivot to the mass;

0, the angular displacement measured with respect to the vertical;

g . the acceleration due to gravity and

the superscript, ' , represents the first time derivative of the parameter.
Note that the potential energy has been defined with respect to the lowest

position of the mass.

Massless,
inextensibie cable, B

Concentrated end

mass, A.

Figure C.1 Model of a variable length pendulum.

For the conservative system, simple pendulum motion based on the
Lagrangian formulation (Equation C.2) gives the foliowing goveming
differential equation where the generalized coordinate is the angular

displacement measured with respect to the vertical:

mr* 8-+ mgr sin =0

which simplifies to
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é+ cof, sin@ =0 (CS)
with

(C.6a)

C.4 Variable Length Pendulum

Next, the mechanism for active damping which is the lengthening and
shortening of the pendulum is considered. To continue with the energy
derivation, the change in the position of the mass can be modeled by its

translational kinetic energy. The kinetic energy formulation (Equation C.3) is
expanded to became

T= %m.r"éz +%mﬁz (C.7)

with the Lagrangian now expressed as:

4 =-;—mr29°2 4-%mr"z -mg(R, —r cos8) (C.8)

and when differentiated and simplified the governing equation of motion for
the oscillations of the pendulum can be expressed as:

é+z?+§sme -0 (C.9)
r

The mechanism that decreases or increases the energy of the system is

mathematically represented in the coefficient, 2~ Depending on the sign of
r

this term, positive or negative “damping” may ensue. Alternately, the
governing differential equation can be re-written so that the affects of
changing the length can be viewed as the forcing function, mathematically this
can be stated as,
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] +§sin0 = p{0,r.1) (C.10)

where p(8,7.1) = 25 (C.10a)

r

The motion of the mass, achieved by increasing or decreasing the
length of the pendulum, drives the oscillations of the system. An iterative
algorithm for solving Equation C.10 would be required, as the force is a
function of the current angular kinematics of the structure.

The force associated with moving the mass can be derived by
considering the radial distance between the pivot and the end mass (i.e. the
length of the pendulum) as the generalized coordinate. Mathematically, the
force to effect a change in mass position can be expressed as:

F, =m{61r-r“+gcose] (C.11)

where F represents the tension in the cable. Approximating the force in the
cable is essential for design impiementation, such as, component selection,
service life predictions and establishing limits for cable operation. By

calculating the work associated with moving the end (F, - Ar), a work-energy

balance can be used to validate the accuracy of the simulation.

C.5 Physical Pendulum System

The governing differential equations of motion for a pendulum
possessing either a concentrated or distributed mass closely parallel those for
the simple pendulum as presented in Section C.3. The governing equations
increase in compiexity when the physical properties of the pendulum are
taken into account. The active attenuation mechanism, an auxiliary mass,
coexists with the structurai mass as appears in the governing differential
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equations. Incorporating the active vibration attenuation device can be
visualized as augmenting the system with an additional sliding mass; a
coupled system resuits.

To appreciate the physical contribution made by the pendulum, the
following configurations for the pendulum were considered:

(a) a pendulum with a concentrated mass located at a fixed distance
from the support, and

{b) a penduium with distributed mass, such as a uniform rod.

Schematically, these systems are illustrated in Figure C.2.

Massless
Rod

Concentrated
Mass

- Sliding mass

(@) (b)

Figure C.2 Pendulum structures with an auxiliary mass or slider: (a) a
massless rod with concentrated mass and (b) an uniform rod with
rotational inertia.

A key difference between these models is in defining the moments of
inertia about the pivot or support; the moments of inertia for each pendulum
type are respectively given as:
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@I, =mp (C.12a)

() 1, =< m,l; (C.12b)
where / refers to the moment of inertia with the subscript indicating the
configuration;

m,, the concentrated mass of the pendulum;

1,, the radial distance from the pivot to the concentrated mass;

m,, the distributed mass of the rod; and
[, the length of the rod.

By examining only the pendulum, the energy for the two cases are
defined as follows:

Kinetic Energy:
@) T, =m0 (C.13a)
) T, =%m,l,’92 (C.13b)

Potential Energy:
(@) U, =m,gl,(1-cosb) (C.14a)
(b) U, = i"——,;-gi-(l - cosf) (C.14b)
where 0 represents the anguiar displacement measure with respect to the
vertical;
g , the acceleration due to gravity, and

the superscripts, ", the first time derivative of the indicated parameter.

Based on the Lagrangian formulation (Equation C.2), the following
governing equations of motion for the two cases can be derived as:
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(@) m,I’0+m,gl, sin8=0 (C.15a)
(b) %m,lfé+%m,g[, sin® =0 (C.15b)
When simplifying these differential equations, the familiar equation

describing simple pendulum motion as discussed in Section C.3 ensues with
the natural frequencies as noted below:

8+0lsing=0 (C.16)
where
@) o,= \/E (C.16a)
Ip
2g
b) @, = |= (C.16b)

3

‘N

The essential difference between the two configurations is that the
effective length for the uniform rod is

L ==l (C.17)

C.6 Physical Pendulum with an Auxiliary Sliding Mass

The attenuation mechanism is an auxiliary sliding mass. The
mechanism is not integral to the structure as was the case for the simpie or
mathematical pendulum system. The affects of the slider to alter the dynamic
characteristics of the structure are considered next. Since a dual mass
system is formed, applying the energy formulation for deriving the governing
differential equation requires accounting for the kinetic energy and potential
energy of the slider.
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T =—m7'@? (C.18)

U,=m,g(R, -rcos8) (C.19)

where the subscript, s, refers to the auxiliary mass or slider with m referring
to mass and rreferring to the radial distance between the support and the
centroid of the slider.

By combining Equations C.13, C.14, C.18 and C.19, the Lagrangian
equations for the pendulum-slider systems can be mathematically stated as:

{a) <4, =%(mp1: +m,r2)92 +g(mplp(l—cos0)+m,Ro(l—‘—;—COSOD (C.20a)

(b)4, = %[%m,lf + m,rl) 0%+ g[%mrl,(l ~cos0)+m,R, (1 -RLCOSBJJ (C.20b)

with the simplified, governing differential equations of motion being:

(a) 6+ {M] s5in® =0 (C.21a)
2 2 - .
mJl, +m.r
1
(b) 6+ g(j—"'lﬁiL"LzJ $in® =0 (C.21b)
smi +mr

The natural frequency of the pendulum-slider system is a function of
the individual parameters of the pendulum and the slider. As expressed
mathematically, this characteristic or fundamental frequency is dependent not
only on the position but also the magnitude of the mass of the slider:

\/g( m,l +m,rJ
(@) o, = g —5— (C.22a)
ml +m.r
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1
(0) o, = g Lo T (C.22b)
‘ml +mr

By rearranging the equations of motion (Equations C.21a and C.21b) to
segregate the effects of the slider, nonhomogeneous equations can be
written, wherein the contribution of the external auxiliary mass can be viewed
as the forcing function, p(8,r.7). Mathematically, the equations of motion

may be written as:
(a) mp1;§ +m,gl, sin® = p(6,r,1) (C.23a)
(b) %m,lfé + ;‘m,gl, sin® = p{0.r.1) (C.23b)
where p(8,r.t)=-m,(r*8 + rg sin6) (C.23c)

The total energy of the system depends on the position of the auxiliary
mass, the slider, when the other parameters are held constant.

When the slider is permitted to move, the dynamics become more
involved. The translational energy associated with the slider must also be
taken into account. The Lagrangian becomes:

()4, -—(m I +mr ) «é%m F +g[mpfp(l—cos0)+m,R,(l—RL-cosGD

o

(C.24a)
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(b) 4, =%(§-m,lf +m,r1J §2+%m,f‘ +g{-;-m,l,(l—cosG)+m,Ro(l—RLcos9))

(]

(C.24b)

and the ensuing govemning differential equations can be expressed as:

- ( amr i ml, +mr

(@) 0+| ———|r0+g —5———|sin8=0 (C.25a)
\m,{ +mr ml. +mr

. r
(b) 6+

1
_2mr ]fé + A{—-—-—! ml s mr ] sin@ =0 (C.25b)

{ z 2 1 1 b4
\Emr[r +mr 3”7,1, +mr

Again, by reorganizing the above equations so that the ieft-hand side of the
equations containing terms related to the auxiliary mass, the affects of the
auxiliary mass can be viewed as the forcing function for the system:

(@) m, ;ﬁ +m,gl sin6 = p(6,r.1) (C.26a)
(b) %m,lfé +~mgl, sind = po.r.() (C.26b)
where p(@,r.1)=-m, (rzé +2ri0 +rg sinB) (C.26¢)

The total energy of the system is affected by the work associated with the
motion of the slider. The work associated with the transiational motion of the
slider is the scalar product of the force applied to move the slider and its
transiational displacement. To derive the required force to displace the slider,
the Lagrangian is considered with the radial displacement of the sfider being
the generalized coordinate, hence the force to move the auxiliary mass along
the pendulum can be mathematically expressed as:
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F, =m,[ézr*F+gcos91 (C.27)

By prescribing various motion patterns for the slider, the dynamic interaction
between the structure and slider can be studied.

C.7 Discussion and Summary

First by neglecting the motion of the auxiliary mass, the mathematical
modeling of both pendulum structures are characterized by the equation:

0+w’sing=0 (C.60rC.16)

with the natural frequency, o,, being a function of the mass and its

distribution within the structure. For small displacements, the system is
classified as being conservative with simple harmonic motion ensuing, if an
initial displacement from its equilibrium position is applied. During vibrations,
the structural energy transforms between kinetic and potential energy.

When considering the redistribution of mass either within or along the
structure, then the general equation is of the form,

+cd+0lsing=0 (C.28)

where ¢ represents the damping coefficient which is a function of the auxiliary
mass magnitude, its position and its velocity, as expressed in Equations 3.1,
3.33, and 3.3b.

Alternately, the governing equation of motion can be expressed so that
the effects of the motion of the auxiliary or sliding mass are viewed as the
forcing function for the system,

4D+ Bsin® = C {r.0,1) (C.29)

2 Note that the equation describing the force to effect the siiding mass motion
is consistent; see Equations {2.9), (3.2), (B.5), {C.11) and (C.27).
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where the coefficients, 4 and B are based on the physical parameters of the
structure and C is based on those of the auxiliary mass and p(r.0,:) is the

forcing function that depends on the current kinematic state of the auxiliary
mass. The auxiliary mass can be viewed as either a damping term or a
forcing function. Different positions and magnitudes of the auxiliary mass can
effect the dynamic parameters and behavior of the pendulum systems.

C.8 References on Lagrangian Dynamics

Barr, A.D.S. (1993} “Parametric Vibration In Beams®. In Proceedings of the
14th Engineering Mechanics Symposium. Eds. P.H. Qosthuizen and J.T.
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Goldstein, H. (1980) Classical Mechanics. Reading, Massachusetts:
Addison-Wesley Publishing Company.

Lanczos, C. (1970) The Vanational Principles of Mechanics. Toronto:
University of Toronto Press.
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Appendix D: Values for Pendulum Parameters

Mass reconfiguration was investigated using penduium structures.
Both a simple or single mass pendulum and a physical or dual mass
pendulum were used. The simple pendulum represents a variable length
pendulum as shown in Figure D.1(a). Mass reconfigurability is intrinsic to this
system. The physical pendulum consists of a massiess rod supporting a
concentrated mass 1 m from the pivot with an auxiliary mass that slides
along/within the connecting rod, as shown in Figure D.1(b).

Massless
r Rod

Cable | Concentrated
Mass

Sliding mass

End Mass

(@) (b)

Figure D.1 Simple pendulum and physical pendulum models with mass
reconfiguration.
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The parameters used in the computer simulations to investigate the
dynamics and to effect a controlled system are provide in Table D.1. Note that
the parameterization was selected so that the natural frequencies of the

systems were approximately equivalent; thus, comparison could be easily

made.

Table D.1 Parameter Identification as used in the Simulations

Symbol | Description Value Units

0 angular displacement of the system variable radians
(measured with respect to the vertical)

9, initial anguiar displacement of the system g radians

9 angular velocity of the system variable rad/s

8, initial angular velocity of the system 0 rad/s

8 angular acceleration of the system variable rad/s?

¢ time [04] second

g acceleration due to gravity 9.81 m/s?

mg mass of pendulum (structure) 7.5 kg

ms mass of the slider (auxiliary mass) 0.75 kg

A location of concentrated mass of pendulum | 1.0 m
(penduium length)

r position of the auxiliary mass or force Al(1-coset) | m
{measured radially from the pivot)

F velocity of the auxiliary mass or force Alwsin(er) | m/s

a amplitude for displacement profile 0.25 m

@ore | displacement frequency of force/mass profile | 3.1321 rad/s
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Appendix E: Initial Value Solvers

E.1. introduction

Initial value solvers time step through a differential equation based on
the initial conditions for the probiem. Initial value solvers may be classified
as:

1. direct methods,

2. multi-step, predictor-corrector or iterative methods, and

3. extrapolation methods.
All three types were programmed to ensure the results were representative of
the governing differential equation or the existing physical phenomena and
not artifacts of the simulation techniques. A modular style of programming
provided ease in changing the initial value solver; however, for this study not
alt of the equations could be expressed explicitly in time and iterative routines
needed to be developed.

Each method is briefly described with details of the algorithm as
employed given.

E.2. Direct Methods: Runge-Kutta

The direct methods are one step integration methods that are self-
starting and require only initial conditions or current values to begin. A fourth
order, Runge-Kutta method was used. Runge-Kutta methods are
muitipurpose, commonly employed integrators.

Successive values are calculated based on the average slope with
agreement to a Taylor series expansion. Each step is identical. The
algorithm has a fourth order error associated with it and requires four
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evaluation for each time step. In each step, the derivative is calculated at the
initial point, twice at the temporary midpoint and at the endpoint. From these
derivatives, the final function value is calculated as given by the Runge-Kutta
formula:

kl =hf(xn'yn)

(E.1)
k, = hf(xn +g,yn +kT‘J (E.2)
k, = hf(xn +§,yn +%) (E.3)

k,=hf(x,+hy, +k;)
(E.4)

kl k! k! kl s
= t——t—— E.5
Vo =V P + 3 + < +Olh ) (E.5)

where £ is the derivative defined by the right-hand side of the first order

differential equation and A is the step size.

This technique provides solutions at regularly spaced intervals. Note
that the high order of this technique does not guarantee high accuracy. To
evaluate the accuracy the number of steps should be doubled and the resulits
compared.

E.3. Multi-step Methods: Adams Predictor-Corrector

Multi-step or predictor-corrector methods process data from more than
one previous time step using muitiple methods to determine the value of the
next time step. Two types of methods exist: explicit (or open) methods that
define the solution in terms of the previously determined values and implicit
(or closed) method which defines the soiution using both sides of the value
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and require interpolation. These methods are best suited for very smooth
functions.

The Adams fourth order predictor-corrector method uses a four step,
Adams-Bashforth method as the predictor and a three step Adams-Moulton
method as the corrector. The Adams-Bashforth method is explicit. The
Adams-Moulton technique is an implicit and provides fourth order accuracy.

The method is initiated with preliminary values of the routine found
using the Runge-Kutta technique. The Adams-Bashforth method (Equation
E.6) approximates the solution which is corrected by the Adams-Moulton
technique (Equation E.7).

Y, =¥ +h[55f(x,,y,)—59f(xz,wz)+37f(x,.yl)— 9f(x°,yo)]/ 24 (E.6)

y=y +h{9f(x,y,)+19f(x,,y3)—Sf(xz,w2)+f(x,,yl)]/ 24 (E.7)

E.4. Extrapolation Methods

These methods extrapolate a result that would have been obtained if
the step size were smaller. Early implementations were Bulirsch-Stoer and
Richardson extrapolation methods. These techniques are best suited for
smooth functions and those without singularities; however, these methods
provided high accuracy solutions with minimal computational efforts.

The extrapolation technique used a variable step size [Burden and
Faires, 1985]. Consistency in accuracy is monitored intemnally by the
algorithm; numerical errors are controlled by automatically changing the step
size. The variable step size routine essentially calls the algorithm for a
smaller step and compares the results. Based on the compatibility with a
predetermined accuracy criterion, an appropriate step size and solution is
generated. The algorithm was adjusted by imposing that the output be
generated at set intervals, yet allowing for the algorithm to initiate smaller step
sizes if necessary. This technique used a difference method with error
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expansion and an end error correction and is presented as Extrapolation
Algorithm 5.6 [Burden and Faires, 1985].

E.5. Discussion

When the function being evaluated is relatively simple and does not
require many manipulation extrapolation procedures are most efficient.
Predictor-corrector methods are favored when the evaiuation of the function is
complicated. Runge-Kutta techniques are good general purpose methods.
When good accuracy is required, Runge-Kutta should be used to provide
good starting values for the advanced methods. As with any numerical
approximation, it is desirable to attain sufficiently accuracy with the
approximation with minimai effort.

Runge-Kutta Methods have high-order local truncation errors without
requiring the computation and evaluation of derivatives of the functions.
These techniques are one-step methods as the approximation for the next
time interval is based solely on the previous time.
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Appendix F: MATMATH—A Linear Algebra Software Package

MATMATH is a software utility package that was created and
developed during this thesis project [Stilling and Watson, 1994a; Watson and
Stilling 1991b]. The package performs fundamental linear aigebra operations
and unique element or data manipulation routines. The routines are
categorized by function in Table F.1.

The matrix operations are intended for two dimensional arrays with
provisions made for vector operations. The gamut of operations include:
matrix defining operators, functions for matrix addition, subtraction,
multiplication, determinants, inverse, eigenvalues/eigenvectors, norm
computations, lower-upper friangular decomposition, solve utilities, copying
and partitioning routines, conversion programs, element arithmetic operators
and others.

The computations can be performed as either single or double
precision arithmetic or short or long IEEE floating point arithmetic. Unique
methods of memory management for complex operations enables returning
computational resources.

This package was viewed as a major asset for the Forth community.
Especially, since operators were state sensitive (that is, the code was
accessible in both the interpret and compile states). The package has been
developed with several Forth kernels for various computer platforms.
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Table F.1: MATMATH Operator Index by Function
Matrix Structure and Type Declaration

MATRIX

Assignment Operators

BI_MAT

MAT
HILBERT
MFILL

STACK->SYMM

Matrix Operations
DETERMINANT EIGEN

MMINUS
SOLVE

Matrix Norm Operators
COL_NORM

Copying and Partitioning Utilities

DOUBLE#

TRI_MAT
Matrix Input/Output Utilities

MRANDOM

COL_EXTRACT COL_INSERT

MEXTRACT

MINSERT

ROW_EXTRACT ROW_INSERT
Temporary or Dynamic Memory Management Operator

TEMP_MATRIX
Matrix Parameter Interrogation Commands

WCOLUMNS
LMAT.NAME

MBYTES
?TYPE

Defining Operator

TEMP_ALLOT

3ELEMENT_OP: ELEMENT_OP:

Conversion Utilities

M?>D

Element Arithmetic Operations
MABSOLUTE

M1+

MSQROOT
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FLOAT#

UNI_MAT

DIAGONAL

M@
MZERO

INVERSE
MPLUS

NORM

DIAG->VECT

ROW_EXTRACT

TRANS_COPY

TEMP_DEALLOT

WROWS
RMAT.NAME

M?>S

MDIMIDE

INTEGER#

IDENTITY
MEDIT
STACK->MAT

LUDECOMP
SMULT

ROW_NORM

MCOPY
MINSERT
VECT->DIAG

?DIMENSION
SMAT.NAME

MF>?

MMULTE



The procedure for creating functional and readable code involves:

(1) declaring or creating the data structure (matrices),
(2) initializing the data structure;
(3) performing the required computations.
As avident from the equations presented in Chapter 5, neural network

computations can be easily postulated in matrix algebra form. The operation
as given by the following equation is essentially a series of nested, inner
products,

Y = w(g Wy -w(g W »w[g w, xm (F.1)

The MATMATH source code for the operation of a multi-layer feed forward

network is given below with non-executable comments following each
backslash.

FLOAT# \ Selecting floating point as operating mode
47 MATRIX WJI \ Creating matrices for adjustable weighting
7 9MATRIX WKJ
9 3MATRIX WLK
4 1 MATRIXINPUT \ Creating vectors for nodal outputs
71 MATRIX HL1
91 MATRIX HL2
3 1 MATRIX QUTPUT
* FTANH ELEMENT_OP: SQUASH \ Creates the logistic squashing function;
\ assumes that ftanh defined and f1. pt. only.

NN \ Defining executable program calied NN
TRI_MAT WJI INPUT HL1 \ |dentifying matrices to be manipulated
MMULT \ Matrix multiplication (inner product)

UNI_MAT HL1 SQUASH \ Apply activation function to each element
TRI_MAT WKJ HL1 HL2 MMULT \ Identify and muitiply for next layer of net
UNI_MAT HL2 SQUASH \ Perform logistic squashing
TRI_MAT WLK HL2 QUTPUT MMULT  \ Calculations for next layer: inner product
UNI_MAT OQUTPUT SQUASH \ and logistic squashing
; \ Terminate program

\ To operate a trained net, enter NN

The package provided good flexibility in implementing and evaluating
several nets [Stilling and Watson, 1991 and 1990]. Also, the package was
initially used to solve the second order differential equations using the Runge-
Kutta algorithm [Stilling, 1990a].
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Appendix G:
Work-Energy Balance for the Pendulum Systems

The freely oscillating, constant length pendulum represents a
conservative system. As the pendulum oscillates, energy is transformed
between kinetic and potential energy. The total energy of the system remains
constant and is equivalent to the initial energy of the system. The energy
balance for the system is defined as:

(T+0), =(T+0), (G.1)
where T represents the kinetic energy;

U, the potential energy, and
1, and ¢, represent instances in time.

The pendulum systems with mass reconfiguration is nonconservative.
As the mass is moved along the oscillating pendulum, energy is either added
ar removed from this system. The work done in moving the mass accounts for
the change in total structural energy, as indicated in the work-energy balance,

(T+U)r‘ W, = (T+U):, (G-2)
where #,_, represents the work done over the time interval from ¢, to ¢,.

The work associated with moving the end mass is the product of the
force applied to move the mass and the corresponding motion, as given by

W.,=|F-& (G.3)
5

where F represents the force applied to the moving mass and
ds represents the motion of the mass between the limits s, and s,.
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As previously defined in Chapter 2 and 3, the force applied to the end
mass is given by

F= m,(ézr -F +gcose) (G.4)
where m is the mass of the sliding or moving mass;

g . the acceleration due to gravity;

8 and 8, the angular displacement and velocity of the mass; and

rand 7, the translational displacement and acceleration of the mass,
respectively.

For the case of a variable length pendulum, this force defines the
tension in the cable. The force is assumed positive if the cable is to remain
taut. Since this force is not constant, the work for the same net displacement
may also vary. To account for the change in total energy over an extended
time period requires tracking the incremental work done; that is a cumulative
sum of the work during the interval must be tallied.

For the variable length pendulum, when the motion of the end mass
was defined as being sinusocidal with a tuned frequency, the work-energy
balance was monitored. For each time step of the simulation, an average
force and the related work were calculated. As the initial vaiue solvers tend to
be prone to cumulative error, the work-energy balance was performed over
the simulation run as given below,

n

WE=YW _  +T+U, (G.5)

1
where  indicates the current time step;

n, the number of time steps in the simulation run; and

WE , the work-energy sum for the system'.

When accounting for all forms of energy and work done, the value of
WE should remain constant and be equivalent to the initial system energy.

' When integrating Equation H.3 using a trapezoidal routine, the integration
error was considerably larger than the initial value solver. Thus, smaller
time steps were required to maintain the work-energy balance.
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This provided a further measure of the accuracy of the numerical simulation.
As shown in Figure G.1, the work-energy term (WE ) remains constant. Note
also that potential and kinetic energy is transformed as the pendulum

oscillates and the moving mass performs work to change the net energy state
of the system.

156 -

Energy or Work (N-m)

9 - Time (s)

Figure G.1 Work-Energy balance performed when the mass is reconfigured
sinusoidally.
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Appendix H: Simulating Mathieu’s Equations

Mathieu's equation (Equation 3.15) were simulated based on the
parameterization for the physical systems as given in Appendix D. Namely,
the governing differential equation for the reconfigurable mass pendulum
system (Equation 2.10) was reformulated to a fractional order of Mathieu's
Equations (Equation 3.19) under the assumptions of small anguiar oscillations
and small harmonic, slider motion at twice the frequency of the angular
oscillations.

The displacement profiles were simulated and appear in Figure H.1
with the viscous-equivalent damper (as derived in Section 3.3.3), where the
a=1and ¢=0.125 for Equation 3.15and a=1, ¢=0.125 and x =0.1875 for
Equation 3.19.

,,,,,
s

0
1
2
3
4
5
6
7
8
9
10

- »
.o .
~easw?

Angular Motion (rad)
o)
(6]
t

2 - Time (s)

e with damping :

Figure H.1 Angular displacement profile for the first instability zone for
Mathieu's Equation of Fractional Order 3.23 (with damping).
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Also, frequencies were selected to investigate the second and third
instability zone. For these cases, the parameterization for Equation 3.15 were
a=4 and ¢ =025 for the second zone and a=9 and ¢=10.5625 for the third
zone, and for Equation 3.19 the parameterization were @=4, ¢q=1 and
x = 0375 for the second zone and were a=9, ¢=1125 and x = 05625 for
the third zone. The displacement histories for the first few cycles are
illustrated in Figures H.2 and H.3, respectively.

The relation between stability and instability are characterized as
bounded or osciltatory motion and unbounded (divergent) unlimited growth of
the displacement profile. As shown, for the chosen parameterization, the

dynamics lie along the characteristic curve and the undamped case exhibits
neutral stability.

Angular Motion (rad)

Time (8)

— without damping ------ with damping .

Figure H.2 Angular displacement profile for the second instability zone:
Mathieu's Equation 3.15 (without damping) and Mathieu’s Equation of
Fractional Order 3.19 (with damping).
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Angular Motion (rad)

Time (8)

' ——without damping - ----- with damping

Figure H.3 Angular displacement profile for the third instability zone:

Mathieu's Equation 3.15 (without damping) and Mathieu's Equation of
Fractional Order 3.19 (with damping).
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Appendix I:
Sinusoidal Mass Reconfiguration
(at integer multipies of the structural, natural frequency)

.1 Introduction

The reconfiguration of the mass at integer multipies of the structural,
average natural frequency was simulated. The frequencies of interest were
when the mass moved at the same frequency as the structural frequency, at
nine (9) and sixteen (16) times the natural frequency. The latter were chosen
as they correspond with instability zones predicted by Mathieu's Equations.

The parameterization for the pendulum systems were based on values
presented in Appendix D.

1.2 Mass Reconfiguration at the Same Frequency
as the Structural, Natural Frequency

The angular displacement of the pendulum as the mass is reconfigured
at the same frequency as the average natural frequency of the pendulum is
studied. The temporal profiles of the angular motion and the position of the
traversing auxiliary mass are shown in Figures 1.1 and 1.2 when the
translational mass motion is initially in phase and out of phase with angular
oscillations, respectively. Figure [.3 shows the phase portrait for the initial SO
seconds (~25 time constants).

When the motion is in phase ($=0), the resulting angular
displacement is symmetric and at the same frequency as shown in Figures [.1
and [.3(a). For the case, where the motion is out of phase (¢ =% rad), the
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motion is antisymmetric, Figures 1.2 and [.3(b). The amplitude of anguiar
oscillation is not affected appreciably by the mass motion during the first few
periods.

Translational Motion (m)

Angular Motion (rad)

Figure 1.1 Coordinated temporal kinematic profiles -- simple pendulum with
mass motion of (¢} = R - Ar sin(nwt +¢)where n=1 and ¢ = 0.
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Translational Motion (m)

Angular Motion (rad)
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Figure 1.2 Coordinated temporal kinematic profiles — simple penduium with
mass motion of r(r) = R - Ar sin(nwt +¢)where n=1 and ¢ =%.

Angular Velocity Angutar Velocity
25 - (rad/s) 2.5 - (rad/s)

Angular Angular
Displacement Displacement
. (rad) - . (rad)

1 -1 1

(@) ()

Figure |.3 Phase plane plots of the angular pendulum motion when (a) ¢ =0
and (b) ¢ = for the transiational mass displacement.

The forces that are required to generate these sinusoidal motions for
the mass are illustrated in Figure 1.4. Both profiles are continuous and
converge in the steady state.

15 -
14 —
13 -
12- .|| -

Force (N/kg)
o
}

0 1.5 3 45 6 75 9




Figure 1.4 The driving force to effect sinuscidal auxiliary mass motion.

Similar behavior was observed for the physical pendulum system.
However, the motion of the system tended to be more symmetrical than
observed for the simple pendulum.

.3 Mass Reconfiguration at Nine Times

the Structural, Natural Frequency

As predicted by Mathieu’s equations a zone of instability should occur
when the frequency is nine (9) times the natural frequency of the system. The
two extreme cases where the mass motion begins either in or out of the phase
were simulated for both the simple and physical penduium. The pendulum
dynamics were similar to those of Mathieu's equation as shown in Appendix
H, namely, the motion was oscillatory without any unstable, divergent
behavior as shown in the phase plot of Figure 1.5.

Angular Velocity
2 f(radls)

Figure 1.5 Oscillatory angutar displacement history for ten time constants.
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By examining the mass-normalized energy change for this
reconfiguration profile (similar to Section 3.3.3) gives

wl"@e (2 )9 ”(4 )9 "(8 ), ,
D0 ZoE (S sin| 200 ) = sin| ~ 0t | = sinl w2 ] |7 +0(z? 11
12[”"3‘"" 230 g3 [ ) (1)

Note this expression does not contain a secular term as was the case when
the mass reconfiguration was at twice the natural frequency of the angular
oscillations.

.4 Mass Reconfiguration at Sixteen Times
the Structural, Natural Frequency
From Mathieu’s Equations another instability zone should occur when
mass reconfiguration is at sixteen (16) times the structural natural frequency.
The coordinated dynamics for the simple pendulum are illustrated in Figure
1.6 and those for the physical pendulum are shown in Figure 1.7. Note that
these simulations were completed with a time step of 0.005s.

e
§5 g
L :
)
o

Figure 1.6 Coordinated dynamics for simple pendulum with the mass motion
of r{t) =R, - Ar sin{nwt +¢)where n=16 and ¢ =2.
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Figure |.7 Coordinated dynamics for physical pendulum with mass motion of
(1) = R, - Ar sin{nwt + ) where n=16 and ¢ =2

The kinematic profiles indicate stable, oscillatory motion for these
parameters. For the simple pendulum, the energy dissipation over a period
can be approximated by the following expression,

zf‘ [5 m(;a) t)—ismua) r) ——-sm( 0] t)]l +0(£2) (1.2)

Note that there is no secular term.
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Appendix J: Optimization and ANN Training Algorithms

J.1 Introduction

Optimization has been applied throughout the research. In particular,
mass reconfiguration profiles and supervisory training algorithms for the
artificial neural networks were developed using optimization techniques. The
optimization process and techniques are presented herein with respect to
training the neural networks.

J.2 Overview of the Optimization Process

Optimization describes the process of determining the “best” solution
or design. As applied in this research, optimization techniques were applied
to determine mass reconfiguration profiles that would attenuate the structural
vibrational energy (Section 4.6) and to set values of the weighting matrices to
train the artificial neural network to learn input-output patterns.

The optimization process essentially determines extrema of an
objective or cost function. This function mathematically represents the design
problem and through proper parameterization of the design variables a “best’
solution is discermed. For the mass reconfiguration problem, the objective
function defined the structural energy in terms of the mass reconfiguration;
that is, the design variables defined the mass displacement profiles. For the
neural net training the objective function was reducing the error between net
generated output and desired output values; the design variables were the
adjustabie weights.

Algorithms that are used to determine optimal solutions may be
classified according to the search process. The search process is based on
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the objective function and the degree or order of the optimization method is
determined by the information used in the objective function. For example,
zero order methods require only an evaluation of the function; whereas, first
order methods use the first derivative of the objective function.

The techniques used in this research were iterative in nature.
Convergence criteria were set based on executing a set number of iterations
or evaluating the change in the objective function for design changes.

The optimization methods used included steepest descent, coordinate
search, conjugate gradient, Powell, quasi-Newton, evolutionary programming
and genetic algorithm methods. Each technique is described as implemented
for the neural net training. The majority of the mass reconfiguration
optimization was done using evolutionary aigorithms. The final training for the
neural networks used a direct first order method.

J.3 Optimization for Training the Neural Networks

A very important feature of artificial networks is their adaptive nature;
they “learn by example” rather than by traditional pr ogramming. This process
is called “training” of the neural network. The training process is presented in
Appendix K, whereas, this section discusses the aigorithms used to training
the network. The training process was viewed as unconstrained minimization
where the error* represented the cost function and the adjustable weights
were the design parameters. For each net, its structure (number and types of
nodes and connections, etc.) was predetermined. The design space is
defined by the possible values for the design parameters (that is, the
adjustable weights and thresholds). Through optimization techniques the

* For a single patterm, the error for a particular output node can be defined as
¢ = (y,” - y,)z where ¢, represents the error signal of the /thoutput; y, an

output value; and the superscript, 4, indicates the desired output for the
given input signal.
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value of the adjustable weights are determined, so that the error function is
minimized.

Computationally, the optimization algorithms should involve minimal
computational effort and not be memory expensive; thus, ideally, the function
should be evaluated as few times as possible. Optimization methods find
either global (true maximum or minimum values) or local (maximum or
minimum values for a given region) extremum; usually finding the global
extremum is desirable. Although training trials from different starting points
were completed and did produce different weighting values for this control
application, finding a global minimum was not ensured.

When this phase of research was conducted, the accepted and
popular, general purpose training technique for muiti-layer networks was back
propagation’ [Rumelhart et al., 1986; Lippman, 1987]. Due to encountered
inefficiencies when training the networks, other optimization techniques were
applied; namely, coordinate search, conjugate gradient, Poweil methad,
quasi-Newton methods and evolutionary algorithms. Many of these
techniques provided significant acceleration in the training process as
compared to the simple pattern or batch modes of back propagation. It
should be noted that the application of these optimization strategies for
training neural networks was completed independently of those that have
since been published in the literature.

J.4 Training Algorithms
As each technique is well-documented elsewhere in the literature, only

a brief overview of the algorithms with the specific adjustments for training
neural networks follows.

S Rosenblatt in 1959, proposed the training technique for simple nonlinear
tasks with perceptron training.
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J.4.1 Back Propagation

Back propagation is a gradient search technique appiied to supervised,
error-based neural network training. Its implementation is attributed to work
by Werbos, Parker, Widrow and Hoff and Rumelhart and McClelland
[Freeman and Skapara, 1991]. Essentially, this technique is steepest descent
optimization method as used in least square curve fitting. This technique was
initially used in this research [Stilling, 1990a].

As shown in the flowchart of Figure J.1, the cost function between the
desired output and those generated by the net is minimized by adjusting the
weights. After initializing the adjustable connections, the process involves
repeated presentation of input-output patterns with the weights being
adjusted. The process requires the state of all nodes be computed for each
presentation of training data, starting from the bottom layer (input) and moving
to the top layer (output), then the error is calculated based on the difference
between the generated and the desired or target values. The variables of the
net are then adjusted by propagating the error backwards through the net.
The back propagation algorithm follows the flowchart.

As shown, the output from a node is calculated as the nonlinear
weighted sum of the preceding nodes (Block 3 of Figure J.1) or in terms of
only the previous layer can be defined as:

y, = (p(vJ) (J.1)

where v, =i“’v}’: (J.1a)
t=0

and y isthe input of the sthnode;
w,, the adjustable weight connecting the y, node to y node;
v,, the weighted sum of the inputs to the jth node;
o, the nonlinear activation function®

(an exponential sigmoid function is assumed);
¥y, . the output of the jth node; and

J , is the number of nodes in the jth layer.

® The activation function is assumed to be a sigmoid function.
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Figure J.1 Flowchart of Back Propagation Algorithm.
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Then, the error associated for a given pattern (E,) for the above node

is calculated (Block 4 of Figure J.1 ) or in terms of the jth layer can be stated

as

E,=53 0 -») (12

where the superscript d indicates a desired or target vaiue.
Next, the error corrections are calculated based on derivative of the
error by applying the chain rule;
(1) for an output node as
CE, CE, v, _ 6E, &y, dv,

= —L =3y, J.3)
aw'l av] aw'] ay.l av! aw!l !
where —?—v— =y, (J.3a)
CW,]
v,
_af = yJ(I - yl) (J.3b)
ok
8}’; = "(}' ld —-VJ) (J-3¢)
and
(2) for internal node as
K X K
2y T ok, v Z o, = =35 w, (J.4)
j =0 aV G}’J k= 0 k=0
The adjustment to the weight can be summarized for the output node as,
81 = —y](l _-leyxd —yl) (J-5)
and for the internal nodes as,
5, =5, (1-) 380, (8)
The weight adjustment equation (Block 6 of Figure J.1) can now be defined as
/] r evious 6E reviows
W:M = W: - T]a—w— = WP nSIy, (J.7)

¥
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where n is the leaming rate or step size associated with the weight
adjustment.

To summarize, this gradient search technique defines the error as the
difference between desired and net generated output. Weights are initially
selected as small random numbers that are adjusted based on gradient
information. The error is propagated backwards from the top layer back to the
input layer. This algorithm is vuinerable to local minimums and often
converges slowly near a minimum requiring small steps.

J.4.2 Coordinate Search Method

The coordinate search method searches the possible solution domain
or the design space by repeatedly finding minimums for each variable's
direction. For the neural net application one weight is adjusted while the
remainder are fixed until a minimum value is reached. Then, the next weight
is adjusted with the other weights being held constant. These independent
single variable optimizations are continued until all the variable (weights)
have been independently adjusted. Then, the process is repeated until
convergence to a minimum or an acceptable value has been reached. This
method requires only functional evaluations throughout in seeking a minimum
value. The single variable optimization method used was Brent's method
[Press et al., 1992a&b].

J.4.3 Conjugate Gradient Technique

With this technique, the search directions are conjugate gradients of
each other (orthogonal and conjugate to one another)®. For a set of N linearly
independent, mutually conjugate directions, N line minimization will converge

gl‘l = gl —A'zA.h!
hx‘ol = gx-l +Y|hi
where ;=0,12..; Aandyarescalars, and 4 is a matrix,and 4, = g, .the vectors
are considered conjugate and orthogonal if they satisfy the foliowing:
g-g =0 h, -A-hj =0 g ’h1 =0 i®j.

278

® Given the vectors,



to the minimum for a quadratic function. [f the function is not quadratic the
minimization process requires repeated cycling though the N line searches.

To determine a conjugate direction to the preceding search (and
previous searches), the derivative of the function is calculated at each point
from where the search is initiated. The technique as programmed was a
combination of the Fletcher-Reeve and Polak-Ribiere versions of the
conjugate gradient [Press et al., 1992b]. In training the neural networks, the
derivatives were approximated numerically. A one-dimensional, sub-
minimization routine was applied along each search method,; for this research
the Brent method was used [Press et al., 1992a&b).

By using the conjugate gradient to determine search directions,
noninterfering directions are followed and convergence to the minimum is
quicker than gradient information. However, in calculating the derivative
information additional computations are required. Generally, the
computational savings in the rate of convergence exceeds the extra functional
calculations of the conjugate directions.

J.4.4 Powell Method

The Powell method is also a direction set method for muiti-dimensions.
The technique does not require the calculation of derivative information which
can become quite involved for the neural network error function. This method
uses one-dimensional search techniques to bracket and converge to the
solution. The technique through repeated iterations has been shown to
generate conjugate gradient search directions for muilti-design variables for
quadratic functions.

Basically, the process for the Powell method involves searching along
the basis vectors which correspond to the direction of each design variable
(that is, the direction associated with each adjustable weight is searched until
a minimum is found for that direction). Then by combining these previous
searches, a new set of directions are generated. After several iterations, the
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directions generated will be mutually conjugate, if the function is quadratic
[Press, et al,, 1992b]. Otherwise, the search sequence is repeated.

To summarize the procedure is as follows:

(a) select the basis vector (direction of each adjustable weight) as the
set of search directions;

{b) search a direction (along the weight direction) until 8 minimum is
reached;

(c) record the distance traveled in this direction;

(d) then, repeat steps (b) and (¢) for each search direction;

(e) create a new search direction based on the vector summation of the
distance traveled along the search direction;

(f) search along this “conjugate direction”;

(9) discard the first search direction;

{h) using the newly generated set of search directions repeat steps (b)
through (h) to reach the minimum of the function (error function).

A known fault of this method is that searching may result in parallel
search directions (linearly dependent) being generated which requires the
praocess be restarted or adjusted.

For the research reported herein, the line search steps (referred to in
step (b)) used the Brent Method [Press, et al., 1992a&b]. The majority of the
results for the artificial neural networks were trained using this method.
These algorithms with source code appear in Numerical Recipes in Fortran
{Press, et al., 1992a] and Numerical Recipes in C [Press et al., 1992b]. For
this study, the aigorithms were programmed in the Forth language.

J.4.5 Other Search Methods

Variable Metric Methods were also applied to train neural networks.
These techniques are called quasi-Newton methods. Similar to conjugate
gradient methods, data from successive line minimization are accumulated.
These techniques require the computation of the actual gradients and
cumulatively store updated information. The algorithms used included
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Davidon-Fletcher-Powell and the Broyden-Fletcher-Goldfarb-Shanno
technique [Marasco, 1986a&b]. These techniques were successfully applied
to the benchmark problem (see Appendix K), however, the memory
requirements were viewed as being extensive and was not applied to the
control problem being studied.

J.4.6 Evolutionary Algorithms

These optimization methods are zero order, random search methods
that are based on the “principles of evolution” or “survival of the fittest®. The
methods are classified as either genetic algorithms or evolutionary programs.
The primary difference is that genetic algorithms searches several directions
in parallel as multiple solutions are being optimized collectively; whereas,
evolutionary programming operates by comparing two solutions. Also,
historically, the original genetic algorithm proposal [Holland, 1975; Goldberg,
1989; Michealwicz, 1992] requires the set of design parameters be binary
encoded.

Basically, the genetic algorithm process can be summarized by the
flowchart of Figure J.2.

When applied to neural networks training, this optimization examines
the net globally rather than examining the single weights using gradient or
conjugate gradient information as the previous techniques do. The first step
was to represent the adjustable connecting weights as genetic code, this was
done by representing the weights as a floating point vector. The second
adjustment was to transform the error minimization to a maximization problem
to create a fitness evaluation; this was done by negating the error function.

The fitness function was defined as

F()= -E() #E()20

0 otherwise
Note that the error was calculated for the entire training suite. Another

(J.8)

technique to transform weights selection to a minimization problem can be
formed from
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_FwN,"

E
()= L‘._, (J.9)
F(wl)—FW-a

where F,,. and F,, are the evaluated fitness functions maximum and

minimum values, and a is a control parameter selected between 1.01 to
1.001.

Random Generated Solutions

>¢

Evaluate Soiutions
(Fitness Calculations)

Y

Applying Genetic Operators
- Selection
- Crossover
- Mutations
- New Random Population

Convergence Test?

Figure J.2 Flowchart for a genetic training algorithm.

Next, the genetic operators that emulate biological evoiution processes
of selection, reproduction (or cross-over) and mutation are applied iteratively.
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First, the selection process allows the best solutions to be retained;
those solutions with higher fitness have a greater chance of reproducing.

Fw.)

2 Fw,)

where w and w, are adjustable weight vectors within the population; ¥, the

Popularion Selection = (J.10)

number of vectors in population set; and F( ) , fitness value.

The cross-over operation is effective at the beginning of the search
process. To perform cross-over, the weighted strings from the population set
are “spliced”, the parts are exchanged, then rejoined as shown pictorially in
Figure J.3, the adjustable weights being represented by lower case letters.
The cross-over point (place where the splice occurs) may be fixed, flexibie (or
randomly chosen) or muitiple based on a given mask.

Sting1 |abcdefgh

Sting2 [ Imndpqrs

. Location of splice

New String |abcepqrs

Figure J.3 lllustration of the cross-over genetic operation.

The mutation operator provides additional randomness as a few
weights are adjusted by small random amounts. This process avoids
premature convergence to local optimal by introducing diversity. Also, a few
new solutions may be randomly generated and added to the set. Then, the
process is repeated until convergence to a suitable soiution is obtained.

283



Appendix K: Artificial Neural Networks

K.1 Introduction

Artificial neural networks can be defined simply as an interconnected
system of parameterized functions. In this appendix an overview of the
artificial neural networks with the various considerations made in developing
the neural network as the control unit are presented. The details associated
the architecture and topology (or the type of interconnections), its operation
and the training considerations.

K.2 Net Morphology: The Neuron Model

The basic computation element® of the artificial neural net was selected
to be a nonlinear, weighted sum model that contained a bias or threshold
parameter. This modei, a weighted summation with threshold, has become
commonplace in defining and implementing neural networks. Mathematically,
each neuron performs the following operation:

y= (p(wdxo + i w,x,) = (p(i w,x‘) (K1)

=1 1=0

where the variables have been previously defined in Equations 5.2 and 5.3
with a bias parameter being included as a new synapse with fixed input,
x, =1 and value given by the weight, w,. The generated output value is then
passed to subsequent neurons.

The activation function provides scaling of the output and were
illustrated in Figure 5.8 and can be described as, being

¢ These fundamental elements of an artificial neural network are also called
processing elements, computation units, neurons or nodes.
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(a) a signum threshold function (Figure 5.8(a)) described by
if v>0 then o(v)=1
ifv=0 then o(v)=0 (K2)
fv<0 then o(v)=-
Note that when the activation function range is from 0 to 1, this type of neuron
has an ali-or-none firing properties as described by the McCulloch-Pitts
model’;
(b) a piece-wise linear (ramp) function (Figure 5.8(b)) described by
fv2v, then o(v)=1
fv, <v<v, then o(v)=av (K.3)
ifv<y, then o(v) = -1
where ais the amplification factor of the linear mapping region; and
(¢) a sigmoid function (Figure 5.8(¢)) which may have several forms

(1) o(v) = —

1+exp(-av) (K4a)

(Note that when the slope parameter, a, approaches infinity the function
becomes a threshold function.);
l-exp(-v)
1 K.4b
(i) o(v)= anl() p—— ( )
which represents a hyperbolic tangent function, or

(iii) o(v)= 1:'”1 (K.4c)

which represents a parametric relation [Simpson, 1992). The sigmoid
functions are the most popular since they are continuous, differentiable
monotonically increasing function that exhibits smoothness and asymptotic
properties. Note that the hyperbolic tangent function as previously defined in
Equation K.4b.

7 The McCulloch-Pitt neuron is an n-input, singie output element with a
signum nonlinearity.
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K.3 Net Architecture

When this research commenced, very little information for net
synthesis was available. Since design principles did not exist, this section
summarizes some of the considerations made when designing the neural
networks for this application. The selection of inputs, the consideration of
using dynamic nets’, the selection of output parameters, the connection
topography and the number of nodes and layers are discussed in this section.

The first consideration was selecting input parameters. The angular
displacement and transiational displacement of the reconfigurable mass were
chosen as the reiation between these parameters are coupled (as given in
Table 3.1). The coordination between the mass reconfiguration and the
angular displacement ultimately determines the success in attenuating
vibrations. Furthermore, including the translational displacement variable
enables constraint information to be incorporated into the net. Because the
interaction between the attenuation device and the angular oscillations is
second order the time derivative data were aiso considered as inputs.

The connections may be within a layer and/or among nonadjacent
levels/elements. Typically, the feedback connection incorporates derivative

information or a time delay (% or z™'). The feedback connection may operate

in several ways as shown in Figure K.1; time-delayed feedback from the input
nodes supplement the input layer with derivative information of the external
inputs; time-delayed feedback from the hidden layer creates additional,
internal input nodes™ time-delayed feedback from the output layer also
creates internal input nodes'®, and/or a combination of these option. Ancther
topography for nets is that connections may be local creating a partially
connected network.

® Ibid.
? This is called an Elman network [Pham and Karaboga, 1999].
'% This is called a Jordan network [Pham and Karaboga, 1999].
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Feed forward nets with appropriate time delay elements have been
successfully applied to identify dynamic systems {Pham and Karaboga, 1999];
however, they are piagued by requiring a large number of input nodes which
infers extensive computations and training requirements; these networks are
susceptible to noise. Furthermore, training these types of net as an
independent simulator are difficult. Recurrent nets have been applied to
dynamic systems without these drawbacks [Ku and Lee, 1995] and are
especially popular in real-time control applications.

z-

z -1

[ 2-1]
(b)

Node/neuron Identification
® External Input
° Intemal Input
Hidden
Output

-z -1

(€)

Figure K1 Various types of recurrent networks include (a) nodal, (b) Eiman
and (c¢) Jordan.
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Consideration was given to implement a recurrent or dynamic net. A
trial net was created where time-delays were introduced for the input
displacements as illustrated in Figure K2. Qther types of recurrent or
feedback action within the net were not considered. Since hidden layers
typically contain more nodes than an input layer, adding recurrence to these
levels would create a larger net that would increase the storage or memory
requirements and related computations.

Node/neuron |dentification

> Intemal Input
i 2-1 mmjp External Input
O Hidden
| _-1
z : | Output

Figure K.2 Prototype neural networks with recurrent input nodes.

As an alternative to adding time delays to the input nodes, both the
instantaneous displacement and veliocity values for the input parameters were
added as input parameters. This has similar effects as a time delayed neural
network. This net was as easily trained to leamn input-output relations and
required less computational resources as the recurrent net (Figure K.2). At
the time of developing the net morphology [Stilling, 1991 and 1990a; Stilling
and Watson, 1991 and 1990], providing appropriate dynamic input
parameters was believed to free the net from storing time dependent
operations (such as caiculating derivatives or integrals) and other calculated
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information (such as products) internally.  Providing dynamic input
parameters, especially integral relations, has since become accepted practice
in control applications [Qian et al., 1998].

The output parameters as presented in Sections 5.6.3 and 8.3.1 were

either the kinematic parameters (8(t),8(1).7(¢) and i(t)) or three tri-state values.

The net used as a controller was either an /-/-K-# or an [-J-K-3. For either
case, the output data was post processed prior to being fed to the control
mechanism (or simulation package that implements the control action). For
the /-J-K-+ network, the output nodes corresponding to the translational
velocity of the attenuation mechanism required only a unity gain as the post
processor, as the value was readily incorporated into the simulation package
of the controlled system. For the three parameter output, the norm of the
output vector was compared to preset limits ( as discussed in Section 8.3.4.2).

The size of the net affects its computational ability and as described in
Section 8.3.1 the net size was established by having the neural network learn
a time based inverse of the controlled system which was believed to be a
superset of the desired control action. The result was a network with three
sets of adjustable weights with the number of nodes being 4 input nodes, 13
and 11 nodes in the first and second hidden layer and either 3 or 4 nodes in
the output layer. Also a bias node was added to each input layer. Thus the
number of connecting or adjusting weights were 252 or 241, respectively.

To conclude, the net selected for this investigation was a feed-forward,
multi-layer, static net''. The processing capabilities of each neuron was
described by Equation K.1. The net topology consisted of fully interconnected
neurons between adjacent layers, with no interconnections within a layer.
The data processing was contiguous whereby information was passed
through to consecutive layers; that is, the output of the preceding layer formed

' A static network has only feed forward connections; there is no recurrence.
In contrast @ dynamic net has both feed forward and feed backward
connections. [Zbikowski and Gawthrop, 1995].
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the input of the current [ayer which was then processed and passed to the
next layer. The vector for the input layer represents the kinematic state of the
structure containing both position and derivative information. Two hidden
layers were chosen to provide intermediate mapping which gave the net three
layers of adjustabie weights. The output layer provided the generated control
response. The net provided a matching of the kinematic sensory data to the
control response that was required for attenuating vibrations. The selected
nets appeared mathematically tractable and would not tax available memory
resources, yet appeared to be practical and to provide good flexibility.

K.3 Neural Network Training

“Training” of the neural network refers to adjusting the interconnecting
weights so that the input-output relation can be leamed. The artificial neural
network controlier was to provide predictive control action by imitating a
controlled mass-pendulum system. Regardless of the system to be imitated,
the net essentiaily functions as a “smart’ function generator where the input

parameters of 8(¢),8(¢),7() and /() were used to generate output vectors that
were processed to give an appropriate control signal (m(s)). To provide the

time-dependent sensitivity, the parameters contained derivative data and
input-output patterns were time delayed. The development of the neural net
controller involved training the net, validating the training and implementing
the net. This section discusses the training process. Sample training and
validation suites are given in Appendix L. The energy reduction associated
when the net was implemented as a controller appears in Chapter 8.

The mode of training was “supervisory” where the net generated output
was compared to a desired or target output to generate an error value that is
minimized by adjusting the interconnecting weights. An “off-line” error- driven
training process where exemplar patterns were generated by periodically
sampling a controlled mass-pendulum system was used. However, initially,
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an external rule base was used to monitor and select appropriate control in an
“on-line” training mode. With the “on-line” training, the learmning was in situ
and completed pattern by pattem as the patterns were being generated by the
rule base monitor. When “off-line” training was completed, the training was
primarily, in batch mode'? where the entire set of input-output patterns were
generated a priori to the initiation of training. Details of these training modes
are discussed concurrently with the generation of the exemplar patterns.

Supervised training aligorithms, for both pattern and batch modes of
training, were used to train the artificial neural networks. The training process
is represented in the flowchart of Figure K.3. Initially, small random values
were assumed for the adjustabie connections. A comparison between the
expected response and the net generated response was formulated as an
expected error function that was defined as either a sum of squares or a mean
square sum.

The error associated with a particular output node for a single pattern
was defined as

b3
e =(y'-») (K5)
where ¢, represents the error signal of the /th output;
y, an output value; and

the superscript, 4, indicates the desired, corresponding output.
The expected error function for the output [ayer for a given pattern was
expressed as an averaged sum of the output errors,

1 & 2
£, = zg(}’f ‘)’:) (K6)

where £ is the error over the output vector for a single pattem, p, and

Lis the number of nodes in the output [ayer.

'2 Batch mode training will also be referred to as epoch training.
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Initialize weights and thresholds
to small random values

Compute error for output layer
by combining nodal errors

________ b l‘ <
A v
Select exemplar pattern
(input) o
a
Y v o
c
Compute net output ®
for input pattem Té
€
(]
%4 * 5
©
)]
Q.
(]
@

Y

Calculate Cumulative
Expected Error

No

End of Suite?

Update weights and threshold vaiues
according to optimization method

<« ¥ v N

Figure K3 Flowchart representing both pattern (dashed lines) and batch
mode (solid lines) supervised, error correction training.
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For the batch training mode, the expected error function was defined
by summing the output layer error over the training suite', as given by

1 P
E=2YE, (K7)
=1

where Pis the number of patterns in the training suite.

Since the supervised training process was viewed as an unconstrained
minimization problem. Various optimization techniques (such as, coordinate
search, conjugate gradient, Powell, evolutionary algorithms and others) for
adjusting the weights were implemented to minimize the error function. A
brief overview of the algorithms appear in Appendix J.

Computationally, the optimization algorithms should involve minimal
computational effort and not be memory expensive; thus, ideally, the function
should be evaluated as few times as possible. Convergence criteria were
established based on the magnitude of the error function. Optimization
methods find either global (true maximum or minimum values) or local
(maximum or minimum values for a given region) extremum; usually finding
the global extremum is desirable. Although training trials from different
starting points were completed and did produce different weighting values for
this control application, finding a global minimum was not ensured.

For minimization problems, a set of criteria to terminate the training
process was established. ideally, the output as generated by the net matches
the target for a given input pattern. The convergence criteria were based on
the error (cost) function reaching preset limits. Regardless of the training
mode, the error averaged over the entire training suite was less than a set
value and no one pattern could have an error greater than a set limit. A level
of confidence was defined in terms of the norm of the target output vector for
the training suite for the trinomial output net.

" The training suite refers to the entire set of exemplar patterns used for
setting the connecting weights of a network.
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Despite training to a global minimum being intuitively desirable,
convergence to a global minimum resulted in “overtraining® which did not
always produce the best functioning net for this application. When training
convergence was relaxed the net operation was more general and
appropriate for a wider set of operating conditions in comparison to nets with
lower convergence limits. This concept has since been reported by others
who have shown that an “overirained” neural networks do not tolerate
variations to the input when generating a carresponding output .

The training scheme first implemented was Back Propagation using a
pattern training mocde ([Stilling, 1990a]. However, during the training,
previously trained patterns appeared to be “forgotten”. To enhance the
pattern training mode, patterns were introduced randomly rather than in the
same sequence. Then, eventually, a batch training mode was adopted. The
change was that the error and its gradient were tallied over the entire training
suite.

Early efforts using training techniques developed by implementing the
various optimization techniques were done as an on-line training methods
where the paired input-output patterns were generated by assessing three
possible control actions; namely, motion of the mass towards the pivot, motion
of the mass away from the pivot and no motion of the mass. The change of
structural energy for each possibility was examined and the control action
corresponding to the maximum reduction in energy was chosen. As this
assessment was done at discrete time steps, the pattern training format was
applied after each set of evaluations [Stilling, 1990a). Alternately, the
patterns could be stored for off-line batch fraining. The second method of
generating a training suite was to sample simulations of the system as it was
being controlled; for example, training suites were generated as a human
performed the control, when a proportional and derivative control action was
employed or when the knowledge based controller was used. These
exemplar patterns were used for off-line, batch training mode. Appendix L
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contains a sample set of exemplar patterns used for training and validated the
neural network.

These other optimization techniques were evaluated using benchmark
systems. The two systems chosen were the XOR mapping and a binary
encoding system. For the XOR problem the net that was trained was a 2-3-3-
1 feed forward weighted sum network. The binary encoding sequence used
as 5-7-7-5 network. Good convergence (error minimization) was achieved for
the XOR case, for all training algorithms, as this problem can be viewed as an
identification problem that has a unique solution. Also, the patterns for the
binary encoded sequence were trained using each method.

The back propagation technigue had an average number of
computations per iteration and was easily programmed using linear algebra.
It provided good initial convergence but was siow during the final reduction of
the sum of square errors. The coordinate search method performance was
dependent on the line search method; it required few computations per each
training iteration and provided improved convergence over the back
propagation method. The conjugate gradient and the Powell method
produced similar results. The Powell method was computationally less
intense per training iteration but tended to require more training iterations to
reduce the sum of square errors. The convergence with the conjugate
gradient method tended to “jump” to improved states. Both of the evolutionary
programs were relatively slow to converge. Because the genetic algorithm
performs several parallel searches the computations per training iteration was
large. These results were summarized by ordinal ranking of the
computational intensity per training iteration, the convergence rate (the
number of training iterations required to reduce the sum of square errors) and
the likelihood of whether or not the training was towards a local or global
minimum with results tabulated in Chapter 56.2. Comparable resuits were
obtained when Powell and conjugate gradient training aigorithms were used,
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the latter was chosen due to its ease in implementing in both software
languages.

K.4 SUMMARY

The neural network selected was a multipie layer, feed forward net.
The input signals were time dependent, continuous values that represented
the state of the dynamic system. The output signal provides control action;
the output was either the same as the input parameters at a time step later or
the control action was mapped to a tri-valued output set. Two hidden layers
were creating either approximately 240-250 adjustable weights in the entire
net. Training was done, primarily, in a supervisory, error-reduction mode to
create a “proxy” controller for attenuating vibrational energy of the mass-
pendulum system. As artificial neural networks were in their infancy at the
time of initiating this phase of the research, many software tools were
developed. Developments included training algorithms using optimization
techniques, determining net size based on the inverse problem and using
time derivative data to provide dynamics to the network. The training and
evaluation of the neural network involved an assessment of the training using
a validation suited which was followed by implementing the net at the
controller in the mass-pendulum system.
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Appendix L: Artificial Neural Network Training and Validation Data

The artificial neural network controllers were trained to be “proxies” of
other control systems, such as the human operator system, the rule base
system and others. The training data was sampled from the pendulum system
when the control action produced effective vibration attenuation.

The exemplar patterns were paired input-output data. Both the training
and validation suites were generated from the same simulation; sampling was
done at slightly different times. The training suite was used to set the weights
of the artificial neural network controller, whereas the validation suite
evaluated the training of the neural network controller. The input data
contained the angular displacement and velocity of the pendulum and the
translational position and the velocity of the auxiliary or sliding mass. The
matched output data was either the same kinematic parameters sampled at a
time step, Az, later or a three value output vector ([111], [000] or [-1-1-1])
based on the translational velocity of the reconfigurable mass.

The training suite and the validation suite each contained
approximately 100 sampies and believed to span the operating range for the
system. Also, the “pristine values as generated from the simuiation were
used; that is, the patterns did not contain any artifact or noise

For the human operator controller, as presented in Chapter 7, the
control motion for the auxiliary mass was a relay action characterized by
piece-wise constant velocity motion. The user selected whether the mass
should be moved towards or away from the pivot or no motion at all with the
corresponding velocity being -1 m/s , 1 m/s or O m/s. The input-output data
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was sampled at 12.5 Hz which corresponds to the simulation time step of 0.08
seconds. The corresponding training suite appears in Table L.1 and the
validation suite follows in Table L.2. Note that due to the relay action the
kinematic output data for the translational velocity of the auxiliary mass
matches the tri-value output data.

Table L.1 Training Suite Data from Human Operator Controlled System

Input Data Output Data Set 1 Output Data Set 2
] 6 roF 8 ) ro ¥
0.5256 0 1 0 0498 -05369 095 -1 404
0463 -08673 09 -1 04105 -1.2357 085 -1 4 1 4
0.3386 -1.6406 08 -1 02456 -2078 075 -1 N I B
0.1383 -22031 075 O 00333 -19924 08 1 1 1 1
-0.0606 -1.7628 085 1 0.1429 -15241 09 1 1t 1 1
02131 -1.2843 095 1 027115 -1.04%4 1 1 1 1 1
-0.3183 0824 105 1 03542 -06112 11 1 1 1 1
-0.382 -04958 105 -1 04032 -0.3504 1 4 o IS B |
04164 0172 095 - 04197 00422 09 -1 41 A4
04114 02954 085 -1 03804 05902 08 4 14
-0.3515 09288 075 -1 02097 1138 075 O 0 0 0
02382 13128 075 O 01734 12759 08 1 1 1 1
Q0111 1211 085 1 00526 11253 09 1 1T 1 1
00012 10251 095 1 0.0497 09152 1 1 1 1 1
0.0926 08 105 1 01297 06828 11 1 1 1 1
0.161 05665 115 1 0.1865 04531 12 1 1 1 1
0.2064 03444 125 1 02216 02609 125 O 0o 0 0
02328 01875 12 -1 0.2401 01 115 4 N I
02426 -0.0022 1.t 4 02395 01197 105 -1 o I R
02303 -0.2527 1 0.214 -04011 095 -1 N IS B
0.1898 05644 09 1 0.1572 -0.7412 085 -1 4 1 4
0.1154 09295 08 -1 00674 -0985%6 08 O 0 0 0
00174 -10117 08 O 00367 -11501 075 -1 = I I |
00899 -09777 08 1 01346 -08076 085 1 1 1 1
01708 06437 09 1 01992 04888 095 1 1T 1 1
022 -0.3448 1 1 02339 -02129 105 1 L
-0.2415 00938 11 1 02435 00123 115 1 1 1 1
02406 01054 12 1 02324 02197 115 -1 o IR I
02183 03452 11 -1 01977 04813 105 -1 = I B
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Input Data Qutput Data Set 1 Qutput Data Set 2
0.7  0.6267 1 4 0.1348 0.7795 095 -1 o S B

00963 07589 1 1 00592 07244 105 1 T 1 1
0024 0679 11 1 0.0085 06254 115 1 1t 1
00384 056 12 1 0.0651 05028 125 1 T 1 1
00895 04724 125 O 01122 04329 125 0 0 0 0
01327 03848 126 O 01506 03293 125 O 0 0 0
0.1661 02007 12 -1 0.1794 02405 115 1 S I
01899 04775 11 4 0.1969 01009 105 -1 4 1A
0.1997  0.0097 LI 0.1976 -0.0969 095 -1 o S B
0.1897 -021%6 09 -1 0.1783 -0.3586 085 -1 41 A
01835 -05138 08 -1 0.1236 -0.6845 0.7 -1 S S I
0.0897 -0.6652 08 1 0.0573 -06311 085 1 111
00268 -0.5862 09 1 -0.0011 -0.8337 095 1 t 1 1

00264 -04762 1 1 00488 -0416 1.05 1 1T 1 1
-0.068 -0.3%48 1.1 1 -0.0843 -0.294 115 1 t 1 1

00975 0247 12 1 -0.1078 01779 125 1 T 1 1

-0.1156 -0.1341 125 0 -0.1212 -00876 125 0 0 0 0

-0.1244 -0.0395 125 0 01251 00093 125 O 0 0 0

01234 00581 125 0 0.1191 01148 12 4 S IS Y

-0.1118 01768 115 -1 01013 02434 11 4 1 4

-0.0874 03142 105 -1 00698 0388 1t -1 4 4 4

-0.0485 04635 095 -1 0026 04367 1 1 T 1 1

-00049 04038 105 1 00142 03666 1.1 1 11 1
00316 03265 115 1 00469 02849 12 1 T 1 1
00601 02427 126 1 00716 02168 125 0 0 0 0
00817 01867 125 0 0.0802 0153 125 O 6 0 0

0097 0.1162 125 0 0.102 00839 12 -1 4 1
01052 00454 115 -1 0.1064 00003 11 -1 S B
0.1061 -0.0515 105 -1 0.1011 01102 1 -t S I B

0094 -0.1756 095 -1 00834 -02476 09 -1 14 1 A
00707 -0.2606 095 1 00575 -0.26%6 1 1 T 1 1
00442 -0.2641 105 1 00312 02572 11 1 t 1 1
00186 -0.2459 115 1 0.0066 -0.2311 12 1 1 1 1

00044 02137 125 1 0015 02099 125 0 0o 0 0

00253 02019 125 O 0032 019 125 0 0 0 0

00443 01744 125 O 00525 -0.1553 125 0 0 0 0

-0.0898 01332 125 0 0.0658 -0.1086 125 0 0 0 0

-00708 -0.0889 12 -1 00746 -0.0645 115 -1 4 01 4
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Input Data Output Data Set 1 Qutput Data Set 2

00771 -00352 11 - 00781 -0.0006 1056 -1 4 14
00771 00383 1 A -0074 00849 095 -1 4014
-0.0685 0131 09 -1 -00603 0.1928 0485 -1 S S B
00504 0201 09 00403 0203t 095 1 t 11
00302 02002 1 1 -00203 01932 105 1 T 1 1
00109 041831 11 1 0002 0.t704 115 1 t 1 1
0006 0156 12 1 00134 01402 125 LI
00203 01336 125 O 00268 0.1243 126 0 ¢ 0 0
00327 01126 125 O 0038 00987 128 O ¢ 0 0
00425 00829 125 O 00464 00711 12 -1 404 4
0.0436 0.0561 115 -1 0052 00377 11 4 1A
00833 0.0157 105 -1 0.0535 -0.0102 1 4 401 1
00522 -0.0402 095 -1 00493 -00743 09 -1 S IS
0.0447 -0.1126 085 -1 0038 -0.1547 08 -1 4 A
0.0302 -0.1561 085 1 00225 -01532 09 1 1 1
00149 -0.t1471 095 1 0.0078 -0.1383 1 1 1
0.0011 -0.1277 105 1 -0.0049 -0.1158 11 1 1T 1 1
00103 0103 115 1 -0.0152 00897 12 11
00193 -00762 125 1 -0.0229 -00679 125 0 0 0 0
-0.0261 -00583 125 O -0.0287 00475 126 O 0 0 0
-0.0308 -0.0357 125 O 00324 -00253 12 -1 4 1 A
00333 0013 115 4 00336 00014 11 - 4014
00331 00179 1.05 -1 -0.0318  0.0366 1 4 = S B
00204 00575 095 -1 -0026 00803 09 -1 444
00219 0084 095 1 -0.0176  0.0852 1 1 T 1 1
00134 00844 105 1 -0.0092 00819 11 1 t 1 1
-00052 0078 115 1 00014 00731 12 1 T 1 1
0002 00673 125 1 00053 00659 t25 0 0 0 0
0008 00631 125 0 00116 00591 126 0 0 0 0
00145 0084 125 0 0017 00478 128 O 0 0 0
00192 00406 125 0 00211 00327 125 0O 0 0 0
00225 00241 125 O 00235 00151 125 O 0 0 0
0024 00057 125 0 00236 00142 12 -1 4 4 A

The validation process involved presenting the set of exemplar
patterns to the net and calculating the cumulative error. The validation
process provied a single measure for the training that had been achieved.
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Table L.2 Validation Suite Data from Human Qperator Controlled System

input Data Qutput Data Set 1 Output Data Set 2
] 8 ro ¥ é 8 ro ¥
0498 -0537 095 -1 0463 -0867 09 -1 4 4 4
04105 -1.236 085 -1 03386 -1641 08 -1 = I
02456 -2078 075 -1 01383 -2203 075 O 0 0 0
00333 -1992 08 1 0061 1763 085 1 1T 1 1
0143 -1524 09 1 0213 -1.284 095 1 1 1 1
0272 -1.049 1 1 0318 0824 105 1 1 1 1
0354 -061t 11 1 0382 -049 105 -1 4 1 4
-0.403 -0.35 1 0416 -0172 095 -1 % IS S |
042 00422 09 -1 0411 02054 085 -1 = I
-0.389 05902 08 - -0.352 09288 075 -1 4 1 41
03 11386 075 O 0238 13128 075 O 0 0 0
0473 12759 08 1 Q411 1211 085 1 1 1 1
0053 11283 09 1 00012 10251 095 1 1 1 1
0.0497 09152 1 1 0.0926 08 105 1 1 1 1
01297 06828 1.t 1 0.t61 05665 1.15 1 1 1 1
0.1865 04531 12 1 02064 03444 126 1 1 1 1
02216 02608 125 0 02328 01875 12 - 4 1 4
0.2401 01 115 -1 02426 -0002 11 -1 = B B
02395 012 105 - 02303 -0.253 1 4 = IS
0214 -0401 095 - 01898 0564 09 A1 S S B
01572 -0.741 085 -1 01154 093 08 -1 ™ I |
00674 -0986 08 O 00174 1012 08 0 0 0 0
0037 1145 075 4 009 0978 08 1 L I
0135 0808 085 1 0171 -0644 09 1 1 1 1
-0199 -0489 095 1 Q.22 -0.345 1 1 1 1 1
0234 0213 105 1 0242 0094 11 1 1 1 1
0244 00123 115 1 0241 01054 12 1 1 1 1
0232 02197 115 -1 0218 03452 11 -1 = IS B |
-0.198 04813 105 -1 017 06267 1 4 4 1 4
0135 07795 095 -1 009 0.7589 T 1 1 1 1
0059 07244 105 1 0024 0679 11 1 1 1 1
00085 06254 115 1 00384 0566 12 1 1 1 1
0.0651 05028 128 1 00895 04724 126 O 0 0 O
01122 04329 125 0 01327 03848 125 O 06 0 0
01506 03293 1258 0 0.1661 02907 12 -1 5 IS
01794 02405 115 -1 01899 01775 11 41 4 1 4
01969 0.1009 105 -1 0.1997 0.0097 1 A ™ I B
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Input Data Qutput Data Set 1 Output Data Set 2
0.1976 -0.097 095 -1 0.1897 -022 09 -1 1 14
01753 0388 085 - 01535 0514 08 -1 11 A
01236 -0685 075 -1 00897 0665 08 1 1 1
00573 -0631 085 1 00268 -0586 09 1 1T 1 1
0001 -0534 095 1 0026 -0476 1 1 Tt 1
0049 0416 105 1 0068 0385 11 1 1 1 1
0084 -0204 145 1 0098 -0235 12 1 1 1 1
0108 -0.178 125 1 0116 014 125 0 0o ¢ 0
0121 0088 125 0 0124 004 126 0 0 0 0
0125 00093 126 0 0123 00s81 125 0 0 0 0
0119 01148 12 - 0112 01768 115 -1 4 1 4
0.101 02434 11 -0.087 03142 105 -1 S IS

-0.07 0388 1 -0.043 04635 095 -1 4 1 4
0026 04367 1 1 -0.005 04038 105 1 1T 1 1
00142 03666 1.1 1 00316 03265 115 1 1 1 1
00469 02849 12 1 00601 02427 125 1 1 1 1
00716 02168 125 O 00817 0.187 125 0 0 0 0
00902 0153 125 O 0097 01162 125 0 0 0 ¢

0102 00839 12 - 0.10s2 00454 115 -1 14 4 4
0.1064 00003 t1 -1 0.1051 -0052 105 -1 S S
0.1011  -011 1 4 0094 0176 095 -1 S I B
00834 -0248 09 -t 00707 -0.261 095 -1 11
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