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Abstract 

A nontraditional approach for active stnrctunl vibration attenuation was 

proposed using mass redistribution. The focus was on pendulum structures 

Mere the objective was to examine the effectiveness of mass reconfiguration 

along or within a structure to attenuate its vibrational energy. 

The mechanics associated with a translating mass along a rotating 

structure give rise to a Coriolis inertia force which either opposes or increases 

angular oscillations, thereby producing positive or negative damping, 

respectively. A strategy of cycling the mass to maximize attenuation and 

minimize amplification required the mass be moved at twice the frequency of 

the structural vibrations and be properly coordinated with the angular 

oscillations. The desired coordination involved moving the mass away from 

the pivot as the pendulum nears its vertical position and moving the mass 

towards the pivot when the pendulum nears its maximum angular excursion. 

System mass reconfiguration was analyzed by studying various mass 

displacement profiles including sinusoidal, piece-wise constant velocity and 

modified proportional and derivative action patterns. These strategies were 

optimized for various time intervals to maximize the rate of energy attenuation 

or minimize the final energy state. For small amplitude oscillations with 

sinusoidal mass motion, the dynamic behavior was modeled by Mathieu-Hill 

equations to explain the beating phenomenon that occurred when the 

frequency of the mass motion remained constant 

Several control systems w r e  designed to generate aforementioned 

mass reconfiguration profiles. The methodologies included human operator, 

modified proportional and derivative action, knowledge or rule based and 

artificial neural netMlrk controllers. The human operator system improved 

with experience and was the most effective. Other systems depended on the 

dosen pameterization or the implementation of self-adjusting parameters. 

Several unique tools wre developed during the course of this 

research, including simulation, optimization and control softwere. 
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1. Introduction 

1.1 Vibrations and Attenuation Techniquem 

Vibration is defined as the oscillatory behavior that all bodies 

possessing mass and stiffness exhibit when disturbed by either an internal or 
external force. Unchecked vibration in a structure is usually unwanted and 

may lead to war, premature failure due to fatigue or even catastrophic 

failure. A classic example of the latter is the Tacoma N a m  Bridge where 

failure has been attributed to wind induced vibrations near the resonant 

torsion frequency. 

There are several undesirable features of vibrations. Vibrations 

generally result in either large displacements and severe stresses in a 

stnrcture or prodmt fluctuating moderate stresses causing material fatigue 

and wear. Oscillations transmit forces and cause noise that result in 

discomfon or medical complications for human operators. Energy losses and 

deteriorating performance due to vibrations can reduce service usefulness 

and senrice life. Malfunction or destruction of delicate mechanisms or 

instrumentation attached to a structure may also occur. 

Engineering designs continue to increase strength and reduce material 

consumption which result in structures that are more susceptible to vibrations. 

Structures are being developed from high strength, light weight materials with 

low internal damping. These structures tend to be more flexible and possess 

lower energy dissipation abilities resulting in more intense vibration 

responses. Secondly, the efficiency and speed of the systems have 

increased so that vibration exciting forces tend to be relatively high and the 



dynamic systems often contain high energy sources that may create intense 

vibration problems. Thirdly, dynamic performance requirements are 

increasingly more stringent; for example, automation in robotic motion for 

medical laser surgery requires precise trajectories with strict tolerance limits. 

The resulting design geometry often renders the structure more susceptible to 

vibrations. Lastly, the protection of operators from harmful vibrations remains 

critical. Human tolerance of vibrations is affected by several factors, such as 

subject position, vibration direction, amplitude of acceleration and velocity, 

range frequency spectnrm and duration. [Ifwin and Graf, 1979, Boswell and 

D'Mello, 19931. 

The potential engineering applications for attenuating unwanted 

vibrations are numerous. For example, maintaining stnrctural integrity when 

subjected to excitation forces (such as: space structures in coupling and de- 

coupling operations, tall buildings in earthquake regions, off-shore rigs in tidal 

waters and overhead transmission lines subject to wind and environmental 

disturbances) requires prompt attenuation of the structural, vibrational energy- 

For these ex tml iy  excited vibrations, the structure or system must dissipate 

the unwanted energy and be returned to its stable, static state. 

Previous efforts have tackled the problem of vibration attenuation in a 

variety of ways ranging from applying rigorous, standard control theory or 

using advanced material science produds (Miura, 19891. Although this thesis 

is not intended to provide a treatise on all of the techniques used to reduce or 

eliminate vibrations, a review of a few of the techniques serves to provide an 

appreciation for the diversity and richness of this field. Tradiionally, vibration 

attenuation or control generally addressed the source [Irwin and Graf, 19791. 

Typically, the system parameters ware adjusted to prevent unacceptable 

vibrations thorough designing a more rigid structure, balancing moving parts, 

employing enhanced manufacturing techniques or using improved leveling of 

the stnrdures. This type of engineering has had a reasonable rang8 of 

application in detuning the system and is f o l l d  for systems subjected to 



known forcing functions so that the frequency of the forcing function does not 

coincide with the natural frequency of the structure. Alternatively, vibrations 

may be isolated in a passive mode using isolation pads, elastomeric mounts 

or other isolation units. The system can be constrained by applying external 

forces or boundary conditions to limit deformation and motion. Many 

solutions along this venue have been and continue to be explored. 

Another damping mechanism, a dynamic absorber, offers the 

advantage of being relatively low cost and assures the required reduction in 

vibration ratios at resonant frequency by generating inertia. By adding 

damping, the design of a dynamic absorber can be further enhanced; that is, 

the response spectrum is broadened in forming an auxiliary massdamper 

absorber. Early vibration absorbers included masses that swing like a 

pendulum, elastic structures or containers filled with separate wights or 

granular material or fluids, and weights attached with elastic elements in the 

form of steel springs, tubber members or elastic rodslplates [Korenev and 

Reznikov, 19931. Another possibility is employing active vibration control 

using feedback control [Inman, 19961. 

Adaptability of structural properties from recent material advances 

promises hither advancement to this field [Libresar, 19971. Material 

advances have also led to the development of materials with good energy 

dissipation properties [Bert, 1 9801, especially polymeric material (Henderson, 

19801. Also, collocated sensors/actuators have been embedded within 

structures to control dynamic behavior [Crawley, 1994. Variable geometric or 

configurable structures employing advances in sensor and actuator 

technology may be applied to this field wads et al., 19891. The active, 

internal members have controlled extension and contradion abilities 

producing a vibrational damper. Preliminary results indicate improved 

efficiency, Wen compared to conventional inertia systems consisting merely 

of a mass [Lu et al-, 19921. 



The research reported herein examines the challenging problem of 

attenuating vibrations in the absence of any physical damping either by 

internal or external friction. The damping-like effects are achieved by using a 

technique of mass reconfiguration. By coordinating the motion of an auxiliary 

mass or slider along or within a structure, the dynamic characteristics of the 

system are altered and its energy can be dissipated. Several displacement 

profiles for the slider are discussed along with their optimization. 

Integrating the motion of the auxiliary mass with the structure is critical 

to the success of this approach, thus creating a control challenge. Several 

strategies to effect appropriate control have been postulated including 

formulating human performance in terms of rule base logic or knowledge 

based systems, implementing classical control information and applying 

artificial neural network technology to replicate a successful control strategy. 

The energy attenuation for these control techniques are applied to the 

pendulum example. 

1.2 Thesis Overview 

The purpose of this thesis is to examine a technique for structural 

vibration attenuation through mass reconfiguration. The dynamic system 

consists of an auxiliary mass that is slid along a pendulum to alter the 

structural vibrations. By examining the mechanics of the translational motion 

of a mass along a rotating system, a strategy is deduced to dissipate the 

structural energy. 

Various control actions and controllers are used to implement 

attenuation. The controllers examined include a human operator, fixed and 

variable frequency motion, knowledge based controller, modified proportional 

and derivative action and artificial neural networks. 

This thesis addresses some of the challenges associated Mth 

attenuating vibrations via mass reconfiguration. The research spans several 

fields including structural and vibrational analysis, numerical simulations and 



optimization, controls and artificial intelligence technology. Hence, the 

terminology as used within the thesis has been summarized and appears in 

Appendix A 

1.3 Thesis Objective 

The objective of this research is to investigate the technique of mass 

redistribution to attenuate structural vibrations. Specifically, the technique 

has been applied Mere a mass traverses a pendulum structure. Various 

controllers are used to effect the strategy to attenuate the pendulum's 

oscillations. 

1.4 Thesis Organization 

The documentation focuses on the investigation of mass redistribution 

for pendulum systems. First, the research perspective is presented in 

Chapter 2. 60th an overview of the premise of the original vibration 

attenuation technique is reviewed and the requirements for the controlled 

system are presented. Chapter 3 examines the physics and unique 

characteristics associated with the governing differential equation betwen 

the radially translating mass on the oscillating pendulum structure. Chapter 4 

examines not only the simulation process but investigates various 

translationai motion profiles for the sliding or auxiliary mass. In particular, a 

technique to achieve stable, parametric attenuation is introduced and 

optimization of other displacement profiles for the auxiliary mass are 

examined. Chapter 5 introduces the controllers and presents the foundation 

for an artificial neural nebbark controller. The energy attenuation for various 

controllen are next reported with details of the simulated dynamics in 

chapters 6, 7 and 8. The controllers include a human operator, a modified 

proportional and derivative, a knowledge based and a neural netwrk 

controllers. The final chapter presents a discussion of results, summarizes 

the conclusions and provides insight regarding Mure extensions. 



2. Research Perspective 

2.1 Introduction 

This thesis investigated a method for active vibration attenuation by 

changing the mass configuration of the structure. The approach required a 

background integrating several fields; most prominent were structural 

dynamics, control engineering, optimization and artificial intelligence 

technology. The research used a numerical simulation approach to assess 

the feasibility of the proposed philosophy and its implementation. 

The mechanism involved either the redistribution of mass within, or the 

motion of an auxiliary mass along, the vibrating structure. Using this 

mechanism, the vibrational energy were altered. The mechanics and the 

inferred control logic for the mechanism are presented in the following 

sections using the example of a variable length pendulum. For this system, 

the variable length of the pendulum controls the motion of the end mass, thus 

making the mechanism of mass reconfiguration intrinsic to the system. 

The essential requirements for a generic controller were based on the 

control logic of the moving mass attenuation device. When considering 

plausible extensions and implementations, additional features for the 

controller were realized. In this manner, the functional requirements and the 

operation mode were considered for the controller. 

Although the research was designed to permit future prototype 

development and experimentation, the research reported herein is based on 

numerical simulations of the control systems that w e  developed through 

original and customized computer software. The ensuing result was a 

computer simulation of a system capable of monitoring, assessing and 



attenuating its vibration. A brief discussion of the approach and evaluation 

guidelines conclude this chapter. 

2.2 The Vibration Attenuation Mechanism 

The vibration attenuation mechanism is based on the philosophy that 

the structural dynamic behavior can be altered through the redistribution of its 

mass. This redistribution or reconfiguration of mass within a structure can be 

achieved by moving the structural mass or moving an auxiliary mass 

withinfalong the structure. In this study, this motion of a mass within the 

system is analyzed from both force and energy perspectives. Next, the 

attenuation of structural vibrations is shown as a mass traverses the 

oscillating structure in a special way. By reviewing the mechanics of the 

interaction of the mass as it traverses the structure, a general strategy for 

attenuating oscillations is deduced. 

2.21 Mechanics of a Rotating and Translating Mass 

Many vibrating systems involve rotational motion, as depicted in Figure 

2.1. This oscillatory motion is often characterized as being periodic, such as 

sinusoidal motion. If the structure experiences rotational motion, then the 

inertia force that arises from the rotational and translational auxiliary mass 

motion is referred to as the ConbIis Force. The Coriolis force can be viewed 

as creating either posithe or negative damping' which results in a gain or loss 

in the structural, vibrational energy. 

This effect is examined using planar motion of a variable length 

pendulum. First, the equations governing such a motion are derived and the 

Coriolis force is discussed. Next, a work-energy balance is conducted to 

determine the effects on the structural energy state. Specifically, by 

examining the action associated with raising and lowring the mass at various 

1 Positive damping refers to the loss or dissipation of energy; conversely, 
negative damping refers to the gain of energy. 
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phases during a cycle of vibration illustrates how the vibrational energy of the 

system can be altered. 

Figure 2.1 Examples of vibrating systems with rotational motion: (a) disk 
attached to a rotational spring, (b) simple pendulum and (c) flexural 
vibration of a beam. 

2.2.1.1 Role of Coriolis Inertia Force in Controlling Oscillations 

To understand the origin of the Coriolis inertia force, the kinematics of 

a point mass is considered using a moving, rotational frame of reference. 

Then, the principles of dynamics in this frame of reference are applied to a 

variable length pendulum where the action of raising and lowering the mass is 

analyzed. 

The general motion of a point can be defined using a right-handed, 

absolute or fixed coordinate system, X-Y-Z and the moving reference axis, x-y- 

: as shown in Figure 2.2. The unit vectors associated with the moving 

reference frame are f ,  j and E .  For clarity, the motion is restricted to the X-Y 

plane; thus, the 2- and z-axes remain parallel. As shown in Figure 2.2, the 

absolute position of A is defined as: 



where the position vectors, T4and 5 ,  are measured in the fwed frame of 

reference and the position vector, 7, is measured in the moving coordinate 

system. 

Figure 2.2 Reference frames for locating the point of interest, A 

The velocity and acceleration equations for point A can be derived 

through successive differentiation of the position vector, Equation 2.1, to give: 

and 



where oi = = e i  is the angular velocity and 8 = & = 0 i  is Me angular 

accderation af the moving coordinate system as measured in the fixed 

coordinate system. 

In Equation 2.2, the term, 6 x 7, represents the veloc'Ry due to the 

difference of rotation between the two ftames of reference and is 

perpendicular to the vector, 7. The terrn, ?, represents the translational 

motion that is tangential to the path as viewed in the moving system and is 

referred to as the sliding velocity. Lastly, the terrn, &, represents the 

absolute velocity of the origin of the moving frame of reference. 

In Equation 2.3, the acceleration terms of point A associated with the 

rotating coordinate system may be referred to as its nonnal, tangential, 

Coriolis, sliding and inertia acceleration components. The normal 

acceleration terrn, 6 x (6 x r'), is directed towards the center of the path of 

motion and the tangential acceleration, E x F , is perpendicular to this path in 

the moving coordinate system. These terms represent the relative 

acceleration of point A as observed from the nomtating set of axis at the 

origin, 0. The term, 26 x ? , is the Coriolis acceleration with direction normal 

to the sliding velocity. The Coriotis acceleration is comprised of tm effects; 

one is due to the rate of rotation of the system and other is due to the sliding 

velocity. The sliding acceleration, r ,  has its direction along the path of 

motion and is referenced to the moving frame of reference. The inertia 

acceleration of the moving coordinate system is given by 6 .  
When considering the kinetics associated with a mass, n r ,  its motion 

can be deduced by applying D'AlembMs principle of dynamic equilibrium; 



where is the resultant of the external forces, and 

-mt, is the fictitious inertia force. 

Throcgh substitution of Equation 2.3, Equation 2.4 becomes 

Thus, in the rotating coordinate system, the inertia force can be divided into 

several components, including the Coriolis inertia force, -426 x i) . 

Figure 2.3 Planar motion of a variable length pendulum. 

These components will be examined using a simple (or mathematical), 

variable length pendulum. As show in Figure 2.3, this pendulum system 

consists of a concentrated end mass, A, attached to a massless, inextensible 



cable, B, that is fed over point 0. The origins of the moving and rotating 
. - 
& coordinate systems are located at the pivot, 0, hence Fo = r, = Fo = 0. Alsa, 

the moving coordinate system is assumed to be attached to the cable so that 

the position of the end mass always lies in the idirection, r' = r -7. Positive 

angular rotation of the pendulum is assumed counterclockwise, 8 = 0 l> 0, 
According to Equation 2.3, the acceleration for the end mass in terms 

of this coordinate system, can be described by: 

Upon substituting into Equation 2.4, the components of the fictitious inertia 

forces acting on the end pendulum can be ide~tified as shown in Figure 2.4. 

The positive directions of the forces are indicated for the assumed 

counterclockwise rotation of the pendulum with the end mass moving away 

from the pivot (that is for > 0 and r; > 0). The external forces acting on the 

end mass include the gravitational force, mg and the cable tension, and 

can be represented as: 

By substituting Equations 2.6 and 2.7 into Equation 2.4, the differential 

equations of motion can be defined as: 

and 



Figure 2.4 Free body diagram of form d i n g  on a variable length pendulum. 

Physically, Equation 2.8 describes the tension, F, in the cable 

associated with the position and motim of the end mass. The tension is 

composed of the sliding acceleration that generates the inertia force along the 

rope, mi', the centrifugal force from the oscillations of the end mass, d 2 r ,  

and a component of the gravitational force, mgcas0. The second dflmal 

equation, Equation 2.9, desaibes the angular motion of the pendulum as 

6 affected by the position and velocity of the end mass- The term, 2-, 
r 

describes the Coriolis effects which are generated by moving the end mass. 



Both the Coriolis force and the gravitational force affect the rotation of the 

pendulum. 

The governing differential equation of motion for angular oscillations 

can be linearized2 and written in the standard form for damped vibrations, 

i where c = - which represents the viscous damping coefficient when c > Oand 
r 

is assumed to be a constant, and 

a,, = @ which npesenh the natural hequency of the pendulum. 

Variations in a, will be insignificant if the changes in r are negligible. 

When the pendulum is being lengthened ( that is, i > 0 which causes 

the magnitude of r to increase), this adion resembles a viscous damper and 

the oscillation amplitude will be reduced. In contrast, when the pendulum is 

i 
being shortened, that is - = c < 0 ; negative damping occurs and the amplitude 

r 

of the oscillations will be amplified. For the case when 3 = 0, the Coriolis 

effect is eliminated resulting in constant amplitude oscillations. These effects 

due to varying the pendulum length can be explained by the action of the 

Coriolis force. When the pendulum is being lengthened as show in Figure 

2.5, regardless of the direction of me velocity, the Coriolis force will always 

act against the oscillatory motion. The exact opposite effect will be observed 

when the pendulum is shortened. Therefore, lengthening, i > 0, or 

shortening, i < 0,  the pendulum cabie creates the Coriolis inertia force which 

acts to decrease or increase the amplitude of oscillations, respectively. 

' By assuming small oscillations, then sin0 t 0. 
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Figure 2.5 The effects of lengthening the pendulum for (a) counterclockwise 
( 0  > 0) or (b) clockwise (a < 0) pendulum rotation. 

Thus, based on these discussions, the intuitive solution for attenuating 

the structural vibrations wuld be to continually lengthen the pendulum. 

Unfortunately, this solution is not feasible a3 an infinitely long cable or 

structure would be required to completely attenuate the vibrational energy. 

Therefore, to ensure practicality, the displacement of the end mass is 

bounded, 

As the length of the pendulum cycles betwen r-and r,, the mass moves 

towards and away from the pivot, thereby either increasing or decreasing the 

angular displacement of the pendulum. 

If moving the mass both towards and m a y  from the pivot occur during 

a cycle when the magnitudes of the Coriolis force are identical (but opposite 

in direction), the angular velocity at the end of me cycle will remain the same 

as it was at the beginning. H ~ v e r ,  if a smaller Coriolis force is generated 



during the motion towards the pivot than during the motion away from the 

pivot, the final angular velocity will be decreased and vice versa. 

The Coriolis force depends on the current angular velocity and the 

sliding motion of the end mass. Its magnitude can be regulated through 

proper coordination betwen the angular oscillations and the translational 

motion of the end mass, the pendulum bob. Therefore, for vibration 

attenuation, the timing sequence for cyclng the end mass (or the translational 

displacement profiles of the moving mass) should consist of two phases: 

Phase I: The end mass is moved away from the pivot 

(lengthening the pendulum) when the angular velocdy and the 

Coriolis force are maximum (which occur when the pendulum is 

near vem'cal). This should maximize the angular velocity 

reducfion for the next part of the cycle. 

Phase 2: The end mass is moved towards the pivot (shorfening 

the pendulum) when the angular velocity and the Coriolis force 

are minimum (which occurs near maxhum angular 

displacement wifh respect to the vertical, equiIibrium position). 

This should minimize the mgular veiocdy amplification h r  the 

next part of the cycle. 

Details of this strategy will be discussed in Chapter 3.= 

2.2.1.2 Effects of Mass Reconfiguration on A Work-Enargy Balance 

The attenuation or amplification effects of the redistribution of a 

system's mass can also be explained using a wrlc-energy balance. For a 

For the pendulum systems presented herein, moving away from the pivot 
corresponds to kwen'ng the auxiliary or end mass and moving towards the 
pivot refers to raising this mass. 
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simple pendulum, the energy consists of kinetic energy, T and gravitational 

potential energy, U. This energy can be either lost or gained depending on 

the work done by or on the system. The workenergy balance is defined by 

the following equality: 

where the subscripts, f, and r2 represent instances in time and 

R;-l is the work done over this interval. 

For the variable length pendulum, the work done on the system is 

associated with moving the end mass. To move the end mass either a force 

generated internally by a mechanism within the mass or an external force can 

be applied. The latter is shown in Figure 2.6; the force, F ,  pulls the cable 

over a pivot by a finite distance, As, to change the length of the pendulum. 

The cable is assumed to be inextensible; therefore &+A r = 0. SO, the work 

on the system associated with moving the end mass is the product of the 

tension in the cable, F and the corresponding motion, As = -A r . 

If S, =$,)and s, = s(t , ) ,  for a given interval the work can be defined 

as: 

If the tension irr the cable is assumed to always be positive and is 

approximately constant during the lengthening or shortening of the cable, 

then Equation 2.1 3 simplifies to: 



When the pendulum is being shortened, that is the mass is moved towards 

the pivot, as shown in Figure 2.6, then 

As=s,-s, > O  (2.1 5) 

and the corresponding wrk is positive, 

Consequently, acmrding to Equation 2.12, the total energy of the system at 

time, t ,  , increases by the amount, F . & . 

Figure 2.6 Shortening the pendulum increases the system energy. 

In contrast, increasing the length of the pendulum, that is moving the 

mass away from the pivot, results in 



and the work is negative, 

resulting in a decrease in the energy of the system. 

The continual lengthening of the pendulum generates negative work 

and decreases the total energy of the system which is in agreement with the 

previous section. If the mass is allowed to cycle between defined limits, 

r-and r,, the following scenarios can occur. When the tension in the 

cable is identical as the mass is moved away from and then back towards the 

pivot through the same distance, then the net change in energy per cycle will 

be zero. 

However, if the force required to move the mass towards the pivot is 

different from that to move the mass away from the pivot, then either positive 

or negative work can be attained during a cycle of motion. Net negative work 

reduces the energy of the system and attenuates the oscillations of vibration; 

whereas, net positive work adds energy to the system and amplifies the 

oscillations. 

The net negative wrk will occur if the force used to move the mass 

towards the pivot is smaller than the force present when the mass moves 

away from the pivot over the same distance in one cyde. Since the tension 

will be maximum when the pendulum passes directly below the pivot and 

minimum when the pendulum is at points of maximum angular excursion, a 

strategy for attenuating the vibrations can be deduced. For the pendulum 

shown in Figure 2.3, the mass strould be moving down below the pivot and up 

at the extremes of its angular displacement This strategy is consistent with 

the explanation of the previous section that urns based on the Coriolis e f k t  



2.2.2 Control Logic for Attenuating Vibrations Using a Moving Mass 

Considering the physical phenomena associated with the interaction of 

a moving mass along an oscillating structure, a control strategy can be 

deduced to attenuate structural vibrations. Periodic motion for the end mass 

towards and away from the pivot is assumed. 

Generally, to decrease the system energy, the end mass should be 

moved away from the pivot (lowered) between the turning points of the 

oscillations and moved towards the pivot (raised) at these tuming point, as 

illustrated in Figure 2.7. To maximize the attenuation effects, the lowring of 

the mass should occur near the central position (when the pendulum is 

directly blow the pivot) as the angular velocity and the cable tension are 

maximum. This control logic is illustrated in Figure 2.7(b). Note that for this 

strategy the motion of the mass is at twice the pendulum's angular oscillation 

frequency. 

Figure 2.7 Vibration attenuation using (a) a general strategy and (b) a more 
optimal trajectory for the end mass. 

In contrast, to maximize the increase of system energy, the end mass 

should be raised near the central position when the cable force is large and 

lowred at extreme excursion points when the cable force is small, as s h m  

in Figure 2.8. 



Figure 2.8 Vibration amplification using (a) a general strategy and (b) a more 
optimal trajectory for the end mass. 

To conclu&, vibrat&n aitenuathn can be achieved by moving a mass 

along a rotating system. As previously discussed, the physkal phenomenon 

can be explained by considering either the Conblis force or a work-energy 

balance. Subsequent chapters w7i discuss the details of mass mnfiguration 

profiles to e m  this mntrol. 

2.3 Overview of the Corrtrot System 

The general requirement of any control system is to achieve the 

specified objectives in a stable manner, at a reasonable rate and with relative 

accuracy. Usually, a control system consists of a controller and a plant with 

operation in either an open loop or closed loop mode, as shown in Figure 2.9. 

The function of a controller is to generate a signal or signals to modify the 

performance of the plant to achieve the desired control objective. Controllers 

possessing feedback monitor parameter(s) or variable(s) to provide 

appropriate control action. This section examines the control system -sing 

on the functional requirements for the oontroller by examining the variable 

length pendulum, as presented in Section 2.2. 
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Figure 2.9 Functional block diagram illustrating control operation as either (a) 
open loop or (b) closed loop. 

The control objective for this research is to attenuate the oscillations of 

a freely vibrating structure. As presented in the preceding section, a method 

that can alter the vibrational energy of this system is the redistribution of mass 

within or along the structure. The knowledge and logic applied to direct the 

motion of the end mass to generate the "damping" mechanism forms the 

control logic or laws. 

As show for a variable length pendulum, the oscillations can be 

attenuated either: 

(a) by strategically moving the end mass back and forth during a 

cycle of vibration, or 

fb) by continually lengthening the pendulum. 

Implementing the latter option suggests an infinitely long pendulum which is 

physically not plausible. HOWBVW, the positive damping effects achieved by 

lengthening the pendulum may be used advantageously as a safety feature to 



augment the controller, as to be discussed in a later chapter. So, the selected 

controller is required to generate the "strategic motion of the end mass*. 

With reference to the control systems illustrated in Figure 2.8, the 

variable length pendulum shown in Figure 2.3 and the relevant discussions 

given in Section 2.2, the plant can be viewed as consisting of tw~ 

components. The first component is the attenuation mechanism that 

reconfigures the structural mass; the second component is the freely vibrating 

structure (the pendulum). For the variable length pendulum, the control 

mechanism of mass redistribution can be realized by either moving a mass 

along a massless pendulum strut or changing the length of the pendulum 

cable. 

To quantify the control objective for attenuating the vibrational energy, 

an input reference variable should be defined. To reduce or ultimately 

eliminate the structural, vibrational energy, the stable equilibrium state of the 

angular displacement or velocity for the pendulum structure could serve as 

the reference signal. As the energy of the system is minimized, the 

oscillations will be dampened and both 0 -B 0 and 0 + 0. For these 

conditions (0 -, 0 and 0 -P 0), both the potential energy which is a function of 

the angular displacement and the kinetic energy which is a function of the 

angular velocity will be minimized. Since the instantaneous state of either the 

angular displacement or the angular velocity, independently, is insufficient to 

quantify a state of zero vibration, both the angular displacement and velocity 

of the pendulum structure were considered to be the reference input variables 

(O,=O and O,=O). 

Since most vibration problems ocwr in disturbance prone 

environments, a closed loop controller ws chosen, as these controllen are 

more adept at handling disturbances. Typically, in a closed loop controller, 

the actual state data of the structure are monitored and processed. A 



comparison between the actual plant behavior and the desired behavior forms 

the error signal which drives the controller to effect the desired control action. 

For this application, the traditional closed loop control system wuld be 

a multiple input and multiple output system, as shown in Figure 2.10. A 

comparison betwen the reference signals of zero angular displacement and 

zero angular velocity with the actual corresponding current state of the plant 

(pendulum) could be made to drive the controller. The objective of the 

controller is to achieve attenuation, and ideally, cessation of structural 

vibrations through mass reconfiguration. The plant can be vi& as two 

components: the attenuation mechanism and the vibrating structure. 

DISTURBANCES w 

Figure 2.10 Control system based on traditional control theory. 
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2.4 Rationale Associated With the Controller Imp(emtatlon 

Possible implementations for the controller are baaed on the overall 

conception for the control system as presented in Section 2.3. Namely, the 

underlying architecture is to be a multiple input and multiple output, closed 

loop control system. Various considerations for implementing the controller 

are presented with details based not only on examining the pendulum 

application but also by considering future extensions. 
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The classic controllers, such as proportional, derivative, integral andlor 

a combination thereof, were first considered. Classic linear controllers are 

effectively used with linear, time invariant systems. Implementing one of 

these types of controllers has the advantage of being well studied with known 

behavior. Since the identified reference signals of Section 2.3 are the angular 

displacement and its time derivative, proportional plus derivative control 

action could be considered. The control algorithm would be mathematically 

stated as: 

where k,and k, are the proportionality constants; 

e(t) , the error signal; and 

i ( t ) ,  the control signal that physically defines the time derivative of the 

distance between the pivot and the end mass (the rate of change of the 

pendulum length). 

Details of implementing a controller with similar properties to a proportional 

and derivative action are presented in Chapter 5. 

Hwve r ,  the control process of the interaction of the moving mass 

along the pendulum is mathematically defined by the nonlinear, coupled, 

differential equations, Equations 2.9 and 2.10, for which multi-variable, 

classical control theory appears unsuitable. Selecting the proportionality 

gains, k, and k,, would have to be based on a set operating point or period 

of operation. The effediveness of such a controller is related to the acwracy 

of linearizing this region of operation for the system. If more complex 

structures are considered, then the m a ~ a t i c a l  modeling becomes 



increasingly intractable. Ideally, the controller must be able to handle 

multiple, time-varying and nonlinear variables, to operate over a broad set of 

disturbances (or initial conditions) and to perform wll over the entire 

operating domain. 

The next level of intricacy to be considered is enhancing the linear 

controller by updating or changing the proportionality constants based on the 

operating requirements of the system. The controller through monitoring error 

magnitudes, current state conditions or other parameten wuld 'look up* 

corresponding proportionality constants. Unfortunately, this type of controller 

would require tabulating the relations between the appropriate proportionality 

constants and the condition(s) "to be monitored" over the expected operating 

domain. If the system is not wll defined or a pnon knowledge for quantifying 

the appropriate control action cannot be discerned, such a table cannot be 

generated. The effectiveness of the controller would be dependent on each 

tabulated entry for a region of operation. For nonlinear systems, excessive 

discretization of the operating domain may be required. This type of 

controller risks becoming tailored to the specific application and convoluted 

for complex systems. The adaptive nature of the above controller is a 

desirable feature. Ideally, the controller should not operate in a simple 

tracking mode, but rather in an anticipatory manner. 

Although for the variable length pendulum, input parameters of angular 

displacement and angular velocity appear appropriate, these parameters may 

neither be the most appropriate nor be sufficient in effecting control. 

Understanding the mechanics of the plant defines important relations among 

the possible variables and aids in discerning variables to be monitored. For 

example, the state of the variable length pendulum system may be 

characterized using the angular displacement or velocity of the vibrating 

pendulum, the length or change of length of the pendulum, andlor the tension 

in the cable; these or a subset may senre as the input for the controller. The 

output from the controller may be either to generated a force on the cable or 



to create a displacement profile for the end mass. If the plant were to become 

more complex, such as possessing multiple masses or being characterized as 

a continuous mass structure, identifying the fewest, yet pertinent variables 

becomes increasingly difficult. For the most general case, the controller 

should be able to handle redundant and perhaps irrelevant data and discern 

appropriate relations to generate the desired control action. Again, this 

requirement discourages the use of conventional controllers. 

As explained in Section 2.2.2, the control action involves the 

coordination betwen structural oscillations and the cyclic, bounded 

translational motion of an end mass for a finite length pendulum. Then, the 

controller must either inherently possess appropriate saturation 

characteristics or have additional wntrol logic to achieve bounded motion. 

This restriction for the mass reconfiguration may require monitoring additional 

system parameters. For the variable length pendulum, the position and 

sliding velocity of the end mass may also need to be fedback to the controller. 

The complexity of the controller has been increased by introducing the 

nonlinear phenomena of saturation and by requiring additional logic to ensure 

compliance with these imposed operating limits. 

As the above discussion indicates a nonlinear controller is required, 

but defining the parameten for its operation is not intuitively obvious. A 

myriad of parameters within the control strategy for adjusting the mass 

configuration of the system as suggested in Section 2.2.2 can effect vibration 

attenuation. The controller must be capable of providing variable output 

rather than just a proportional signal; control action may be extremely 

nonlinear, such as a discontinuous relay action or a continuous sinusoidal 

signal. Fuitherrnore, the representation of the control action may be diicult 

to quantify. 



The controller should be educable3, since parameters have yet to be 

identified and defined, and operating points have to be selected. In other 

words, the 'damping ten", 2 L  (see Equation 2.10) has not been explicitly 
r 

defined nor have the limits for the varying quantities been established. 

Analyzing various control patterns is integral to understanding and for 

optimizing the control action. therefore, a controller should be capable of 

leaming various displacement profiles to effect mass reconfiguration. 

Perhaps, the controller could evaluate the causal action between various 

trajectories for the end mass trajectory, r ( t ) ,  and the dynamics of the system 

for implementing an efficient displacement profile. Thus, salient features 

considered for this application vmre its optimization and learning capabilities. 

So, if the controller is adaptive and can adjust to unknown parameters, it may 

self-train for optimal performance. 

The computational requirements for monitoring and processing data 

involve multiple, time-varying parameters, making parallel processing 

attractive to enhance computational efficiency. Thus, the controller should 

possess good computational abilities. 

Other features of the controller deper~d in part on the actual 

implementation, the related instrumentation, the physical components and the 

control logic. The controller must be easily adapted to handle the chosen 

implementation of the control logic, flexible in processing various 

measurements and generating suitable output tailored to the physical design. 

In summary, to permit extensibility and flexibility in both application and 

implementation, the controller must be nonlinear, general purpose, adaptive 

and educable. Its wmputationa! ability must span data storage, processing 

and advanced logic implementation. The control logic and prior fine tuning of 

the controller may be based on a priori knowledge, heuristics and self- 

= For the purpose d this thesis, an educable controller is defined as one that 
may be trained or instructed for a particular purposerpose 
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assessment. Additional logic to assure safety and compliance with 

implementation constraints may also be required. To fulfill as many of these 

criteria as possible, an application of artificial intelligence technology was 

selected for this wrk These methods circumvent many of the shortcomings 

of conventional control theory. Both knowledge based systems (KBS) and 

artificial neural netwrks (ANN) were applied, At the time of initiating this 

research [Stilling, 1990al KBS had some proven successes recorded in the 

literature, yet ANN were in their infancy with few applications and tools being 

available. 

2.5 Synthesis of the Control System 

Desirably, the end product is a design for an adaptive, autonomous 

system consisting of a structure and a controller whose objective is to 

attenuate its vibrational energy. The feasibility of attenuating vibrational 

energy through mass reconfiguration had not been previously reported in the 

literature. Also, mechanisms to effect the technique of mass reconfiguration 

and controllers to implement the attenuation strategy were neither readily nor 

commercially available. The research was diverted to numerical simulations 

rather than towrds prototype implementation and experimentation. In 

addition, the required computer sofbvare to implement various components of 

the proposed system was not available. During the early years of this 

research, several tools and software packages that were unique and original 

were developed and evaluated [Stilling, 1993b, 1990aBb; Stilling and Watson, 

1994a, 1992, 1991 and 1990; Watson and Stilling, 1994, 1992a&b, 1991 a&b 

and 19901. 

The control system was developed as a computer simulation; however, 

considerations were made to allow physical prototype development The 

selection of structural parameters and the control infrastructure were based 

on the state of the current technology for physically implementing the system. 

Also, the possibility of extending the proposed thesis technology to more 



complex systems affected the formulation, the bounds of variables and 

subsequent simulations of the systems. 

The synthesis began with a numerical simulation of the plant. The 

dynamic interaction of the moving mass mechanism was investigated in detail. 

Not only w r e  arbitrary displacement profiles for the auxiliary mass presented 

for simulating, but also an effort to develop optimal temporal4 profiles was 

completed. Based on these plant dynamics, control logic was postulated and 

necessary knowledge and data to train the controller was generated. The 

next phase focused on developing andlor training the controller and 

integrating the controller with the numerical simulation of the plant. As the 

technology employed was in its infancy, benchmarks and criteria for 

evaluating the performance wre  defined for both the components and the 

integrated control system. 

2.6 Summary 

The fundamentals that directed the thesis research have been 

presented, herein. Basically, they included: 

the analysis of the physical phenomenon that is associated with the mass 

redistribution technique for regulating the angular oscillations, 

an overview of the control architecture for the system that was established 

to be multi-variable and closed loop, 

a review of the functional requirements and related rationales for 

implementing a controller, and 

establishing that the approach for investigating the control system for 

active vibration attenuation was to be by simulations. 

The mechanics that describe the vibration attenuation device assume 

the vibrating system possesses rotational motion, so that a mass which 

translates along the structure can alter the system energy. The Coriolis 

' Temporal profile refers to time dependent patterns that are coordinated with 
the system dynamics. 
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inertia force that results from the rotational and translational motion of the 

mass opposes angular motion and serves to *dampenu the oscillations. For a 

variable length pendulum, mass reconfiguration may be achieved by 

lengthening or shortening the pendulum. The control logic for attenuating 

oscillations can be stated as: 

(1) lengthen the pendulum as it passes beneath the pivot, and 

(2) shorten the pendulum near points of maximum angular 

excursion. 

In selecting a controller, the operation and its possible implementation 

within the control system w r e  considered. As the control action was to be 

based on the dynamics of the plant, a closed loop operation mode was 

favored. Other functional requirements for the variable length pendulum 

system included the ability to handle multiple, timevarying, nonlinear 

parameters, to operate in a disturbanceprone environment for a variety of 

operating set points, to be adaptive and to possess optimizing and learning 

characteristics. As traditional controllers do not meet these requirements, 

methods in artificial intelligence w r e  selected for control purposes. 

Lastly, computer simulations were chosen as the vehicle of 

implementation as it provided a forum to investigate multiple aspects of the 

control system and to examine the overall feasibility of implementation. 



3. Modeling of Pendulum Structures With Mass Reconfigurability 

3.1 Introduction 

In this chapter, the analysis of the simple or mathematical pendulum of 

the previous chapter is expanded. First, the modeling is advanced by 

considering a dual mass or physical pendulum system. Such a system more 

accurately models several applications. Then, the dynamics of the 

reconfigurable masspendulum are analytically r e v i d  with interesting 

properties presented. Finally the parameterization for subsequent computer 

simulations are given. 

Vibration attenuation is achieved by mass reconfiguration within a 

structure. This philosophy is investigated using examples of pendulum 

structures osciflating in a single plane. Many components and/or structures 

for both terrestrial and space applications can be modeled by pendulum- 

based mechanisms and can be retraf~tted to incorporate the proposed 

vibration attenuation mechanism. A few examples of such stmctures are 

provided in Section 3.2.1. 

The modeling of a pendulum with reconfigurable mass can be 

simplified to a variable length pendulum' as discussed in Section 2.2. 

Alternately, when modeling a physical pendulud system, the attenuating 

mass is assumed to be a separate entity that slides along the structure. The 

governing differential equations are derived for a physical pendulum of fixed 

1 The variable length pendulum is referred to as a mathematical pendulum or 
a simple pendulum where the pendulum structure, itself, is massless. 

The physical pendulum is referred to as a compound pendulum or a dual 
mass system. 



geometry with a sliding or auxiliary mass. Then, the governing differential 

equations are compared with those of the mathematical pendulum. Similar to 

the mathematical pendulum, the sliding mass can either attenuate or amplify 

the oscillations of the physical pendulum. 

As the sliding mass traverses the structure, not only may the mass 

cause vibrational damping or amplification, but also the mass continuously 

changes the system's dynamic stiffness3. With certain assumptions the 

governing differential equation, associated with the oscillating motion of the 

sliding mass, can be approximated by the Mathieu-Hill equations4 

[McLachlan, 19511 which are used to analyze parametric vibrations. Although 

a complete mathematical analysis of these equations is complicated, stable 

and unstable regions are know for sets of the characteristic parameters of 

Mathieu's equation. The oscillations in the unstable region progressively 

increase in time and are called parametric resonance5. In general, the cyclic 

change in the param&ers, such as stiffness or inertia, can destabilize the 

entire system. 

Surprisingly, the damping effect, due to the Coriolis forces as explained 

in Chapter 2, must compete with the destabilizing effects caused by the 

change in the stiffness parameter. Therefore, prudent planning is necessary 

to develop a strategy for mass reconfiguration to attenuate oscillations. The 

interaction caused by the motion profiles for the mass results in either 

damped or unstable structural vibrations as can be explained by the general 

features of the Mathieu-Hill equations. 

%e dynamic stiffness of the system is pan of the restoring force term from 

4 
the equation of motion. 

Mathieu-Hill equations are linear differential equations with periodic 
coefficients. The Mathieu equation is a specific form containing sinusoidal 

5 
coefficients as presented in Section 3.3.2. 

Parametric resonance is also termed parametric excitations which are 
vibrations characterized by monotonically increasing oscillations- 



In addition, the effects that the position of the auxiliary mass has on the 

dynamic stiffness or natural frequency of the system are presented for both 

the mathematical and a physical pendulum systems. 

3.2 Reconfigurable MassSendulum System 

As discussed in Section 2.2, the mathematical pendulum system 

intrinsically possesses the attenuation properties. Vibration attenuation can 

be achieved by properly adjusting the length of the pendulum. The physical 

pendulum has its o w  fured rotational inertia and the damping mechanism 

becomes an addendum to the structure. The physical system has two distinct 

masses and therefore can be referred to as a dual mass system. Vibration 

attenuation is achieved as the auxiliary mass is strategically slid along the 

structure. 

This section describes various structures that can be modeled as 

pendulum systems. Following the modeling assumptions, the equations of 

motion are derived. Mathematically, the governing differential equations for 

the physical pendulum systems can be derived using either Newtonian 

(forcelequilibrium) or Lagrangian (energy) dynamics. Finally, the similarities 

behAleen the mathematical and physical pendulum structures are presented. 

3.21 Examples of PendulumSIIder Systems 

Pendulum systems accurately mode! several existing structures, the 

most familiar being children on playground swings. Pendulums have been 

studied seemingly since antiquity [Sanmartin, t 9841, yet the pendulum 

continues to be an active subject of investigation [Yagasaki, 1998 and 1999; 

Pinsky and Zevin, 1999; Dai and Singh, 1998 and 1994; Nguyen and 

Ginsberg, 1999; Yoshida and Sato, 19981. Pendulum motion dating back to 

the 13th Century describes the use of a censer during liturgical senrices; this 

was four centuries prior to any formal, reported studies into pendulum motion 

[Sanmartin, 19841. Children playing on swings dates back even further. 



Structures where an object is suspended (bridge cranes, payload 

devices, wrecking balls and various fixtures) can be modeled and rationally 

analyzed as simple pendulums. Another application where pendulums were 

critical was in the timing mechanisms of early clocks. In 1656-57, C. Huygen 

invented the first pendulum clock incorporating the nearly isochronous 

movement of small amplitude oscillations of a pendulum augmented by 

adjusting its length using a variable suspension point [Blackwell, 19861. Other 

systems readily modeled as a variable length pendulum are cablesuspended 

objects which include the action of a payload on a crane, the motion of giant 

censers [Sanmartin, 19841, athletic performances, such as, gymnasts 

performing "giant circlesn or "iron crossa on the ring apparatus [Stilling and 

Watson, 19931 or a child swinging [Tea and Falk, 1968; Gore, 1970; Bums, 

1970; Curry, 1976; Walker, 1990). Furthermore, investigators often idealize 

complex structures as single degree of freedom structures. 

Often the secondary mass may be significantly less than the main 

structural mass. This is the case for many examples in the transportation 

industry where vehicles traverse causeways (vehicles crossing bridges, trains 

traveling on tracks and passenger cars moving along light rapid transit 

systems). A more realistic model of a physical pendulum should be used for 

these cases. The system can be viewd as a dual mass system, the 

dominant structural mass and an auxiliary mass which traverses the main 

structure. 

Other fields offer additional examples; for instance, from ff uid dynamics 

there are pneumatic transfer systems, biphasic effluent flow through hinged 

pipeline units and various pipeline n-rk pigging. The motion of the 

auxiliary mass and the structure may be integral to the system's operation. As 

show by these examples, there are several applications vutrich can be 

accurately modeled as pendulums with moving mass. As Mi, the potential 

applications through augmenting systems are numerous. 



3.2.2 Assumptions and Simplifications 

For this research, the structural vibrations of the pendulum are 

assumed to be planar. Vibrations may ensue from disturbances where the 

equilibrium state of the structure is perturbed either externally or internally. 

Vibrations for the pendulum-mass systems are assumed to be initiated by an 

initial displacement from the equilibrium position, unless stated otherwise. 

For the simple or mathematical pendulum, as previously presented in 

Section 2.2, the assumptions include the connecting structure (cable or rod) 

being inextensible and having negligible mass. The concentrated end mass 

has negligible mass moment about its center. The attenuation mechanism of 

mass reconfiguration is achieved by changing the pendulum length. 

In modeling the physical pendulum systems, the attenuation device is 

assumed to be small enough to neglect its mass moment of inertia about its 

centroid in comparison to the mass moment of inertia about the pivot. 

Various motion profiles for the auxiliarylsliding mass can be prescribed 

assuming a compatible and equilibrium interface is maintained with the 

structure. The continual contact betwen the sliding mass and the structure 

allows the auxiliary mass to acquire the same kinematics of the structure at 

the point of contact. Separation betwen the vibrating structure and the 

auxiliary mass has not been considered. For most applications, this 

simplification is inherent in the construction of the system. For example, the 

mass may be confined to move within a guide or the velocity of the mass is 

sufficiently small as to prevent separation. 

To focus on the mass reconfiguration phenomena, the material 

damping and structural damping due to internal friction and external drag 

have been neglected. As structural damping reduces the overall system 

energy, the affects of the proposed active damping attenuation system would 

only be enhanced. By neglecting structural damping, the effects of mass 

reconfiguration for attenuating vibrations are more apparent for a freely 

oscillating structure. 



3.2.3 Governing Equations for Physical Pendulum Systems 

The simple pendulum model, as discussed in Section 2.2, is extended 

to take into account its structural mass. For the physical pendulum system, 

both the f w d  mass of the pendulum and the sliding mass that constitutes the 

attenuation device are considered. These two masses are commensal and 

essentially fonn a coupled oscillating system. 

For the physical pendulum system, a guide may exist to allow sliding 

the auxiliary mass within the structure, as shown in Figure 3.l(a). As the 

internal and external forces are easily identified, Newtonian dynamics are 

adopted for analyzing the pendulum-mass system. The free body diagram for 

the pendulum and the auxiliary mass are shown in Figure 3.1(b) and (c), 

respectively. The physical pendulum parameters are its mass, m,, its 

moment of inertia, I,, about the pivot (0) and the location of its center of 

mass from the pivot, I,. The auxiliary mass is free to slide within a guide 

towards or away from the pivot as the pendulum oscillates. The auxiliary 

mass parameters include its mass, m,, and its location as measured from the 

pivot, r .  The friction between the guide and the slider is assumed to be 

negligible. 

The forces acting on the sliding mass and the pendulum have been 

identified in Figure 3.1. The internal force betwen the pendulum and the 

slider is represented by a contact force, N that is normal to the guide. The 

force associated with moving the auxiliary mass is denoted by F. The 

reaction forces at the pivot are represented by Rand R,,. The gravitational 

forces acting on the structure and the slider are given by m g  and msg, 

respectively. 



Auxiliary lrms 

Figure 3.1 Physical pendulum system and the free body diagrams of (b) the 
pendulum and (c) the auxiliary mass mmponents. 

Applying Newtonian equilibrium principles, moments of force can be 

taken about the pivot and upon incoprating the motion of the slider, the 

governing differential equations can be stated as 

( I ,  +nt,r2)8 +?msri6 +(mi, +mJr)8sin8 = o 

and 

F = r,(02r - i + gcasO). 

Details of the derivation are included in Appendix 0. Also, Lagrangian 

dynamics, an energy formulation, can be used to derive the equations of 

motion producing the same results, as shown in Appendix C. 

Various configurations can be considered for the pendulum. T w  

examples are illustrated in Figure 3.2. One consists of a massless rod with a 

concentrated mass, m,, located at a fixed distance, I , ,  hwn the pivot The 

second is a uniform rod of mass, m,, and of length, I , ,  that pivots about one 



end. For both examples, the damping mechanism is an auxiliary mass that 

slides along the structure; one is represented as a mass that slides internally 

within the pendulum strut; the other is represented as a bushing that slides 

over the pendulum strut. 

The governing differential equations describing the angular oscillations 

are given by: 

and 

(b) 9 + 
l j m , I f  +mar2 + m, I; + msr 

with the force required to move the auxiliary mass still being described by 

Equation 3.2. 

Figure 3.2 Pendulum structures with an auxiliary mass or slider: (a) a 
massless rod with concentrated mass and (b) an uniform rod with 
rotational inertia. 



Various physical pendulum systems, Hltrere the attenuation device is a 

sliding mass, can be mathematically modeled by the general differential 

equations of motion, Equations 3.1 and 3.2. The equations describe a 

nonlinear coupling between the system's two degrees of freedom: the 

angular motion of the system and the translational motion of the auxiliary 

mass (or slider). If the sliding mass remained stationary, the system would be 

conservative and for small oscillations, the angular oscillations wuld be 

harmonic. Howver, the system with a moving auxiliary mass is not 

conservative and will exhibit the phenomena similar to those described in 

Section 2.2.2. The translational motion of the auxiliary mass affects the 

rotational motion of the structure via the s w n d  tenn of Equation 3.1. This 

second term represents either the addition or loss of energy to the angular 

motion depending on its sign. 

3.2.4 Comparing the Mathematical and Physical Pendulum Models 

The physical pendulum has tw~ distinct masses while the mathematical 

pendulum has only one mass; hence the two systems will be referred to as 

dual or single mass systems, respectively. The governing differential 

equations of motion for both systems are given in Table 3.1. The 

configuration of the pendulum of the dual mass system is a concentrated 

mass located at a fuced distance from the pivot as sham in Figure 3.2(a). 

The physical pendulum system provides more accurate modeling of systems 

where the moving mass is significantly less than the structural mass. 

However, as the ratio of the stnrdural pendulum mass to the auxiliary, moving 

mass decreases -+ 0 , then the differential equations (Equations 3.3a (2 1 
and b) reduce to the mathematical pendulum equation (Equation 2-10). 

Note that entries 1 and 3 in Table 3.1 represent the coupled, nonlinear 

differential equations describing the angular osdllat*ms of the system and the 

translational motion of the mass along the structure, respectively. The actual 



or physical force required to move the mass is the third entry. Entry 2 is a 

reorganization of the first entry; it merely groups the terms related to the slider 

to describe a 'pseud~force', dm, .0. r .  r )  , generated by the moving mass. 

This "pseudo-force" couples the translational motion of the slider with the 

angular oscilIations of the pendulum to either increase or decrease the energy 

of the system. 

Table 3.1 Governing equations of motion for the pendulum systems. 

I Single Mass System I Dual Mass System 

For the simple pendulum system, the oscillations are independent of 

the magnitude of the mass being moved or reconfigured within the pendulum 

structure; vibration attenuation is affected only by how the mass traverses the 

structure. However, for the physical pendulum system, the magnitude of the 

pendulum mass and its distribution (mass moment of inertia) along with the 

magnitude of the reconfigurable mass (the slider) and its position and 

translation profile affed the vibrations of the system. With the physical 

2 

g m,ii cm, -sin8=p(nr,.B.r,t) 
r 

(3-4) 

m,iie +nr,gl, ~ r n e  = p(m,.e.r.r) 

(3.5) 



pendulum, the equations of motion can be rearranged to isolate the effects of 

the auxiliary mass, which includes the rotational inertia, Coriolis effect and the 

gravitational restoring force. As the governing equations of the single and 

dual mass systems are similar, the strategy to attenuate the rotational 

vibrations of the physical pendulum should parallel those of the mathematical 

pendulum, as previously given in Section 2.2.2. 

3.3 Dynamics of the Reconfigurable Mass-Pendulum Systems 

The differential equations governing the dynamics of the reconfigurable 

masspendulum systems appear in Table 3.1. Despite the apparent 

simplicity, the dynamics of the systems considered can display a wide variety 

of interesting oscillatory and nonlinear behaviors. These unique dynamics 

arise from competing phenomena, such as parametric resonance and damped 

vibrations. In addition, the behavior associated with the nonlinearity of the 

system may interfere to affect the system further, by producing limit cycles. 

Through simplifying the goveming differential equation to a linear equation 

with variable coefficients, various phenomena can be explained and 

predicted. However, for a more comprehensive understanding the complete 

nonlinear equations can be solved numerically with the simulated resultant 

motion. This is discussed in Chapter 4. 

3.3.1 Simplifying the Equation of Motion - Parametric Vibrations 

For small amplitude oscillations, the goveming differential equations 

for both single and dual mass systems, as presented in Table 3.1, can be 

reduced to linear differential equations with variable coefficients. The focus 

will be on the mathematical pendulum and the governing differential equation 

which can be reformulated to parallel the Mathieu-Hill's Equation which 

models the phenomenon of parametric vibrations. 



For the single mass system, the assumption that the angular 

oscillations of the structure are small, effectively linearizes the governing 

differential equation (Equation 2.10) to the form, 

Next, the motion of the sliding mass, m, , is assumed to be harmonic 

and given by, 

where R, is the average radial distance of the mass from the pivot; 

Ar , the constant amplitude or limits of the motion of the slider; and 

a, the frequency of the motion. 

Note that the frequency of this translational motion is assumed constant. 

Upon substituting this slider motion (Equation 3.7) into Equation 3.6, 

the governing differential equation becomes 

The normalized amplitude of the auxiliary mass motion will be defined 



and the natural frequency of the system is given by 

Using this notation, Equation 3.8 can then be rewritten as 

i+ (-0 cos at) e +  ": o = * .  
( I - ~ s i n m r )  1-€Sinai 

If the amplitude of motion for the auxiliary mass, Ar, is small in 

comparison to the average location of the mass, R, , then ~ ( ( 1  and Equation 

3.1 1 can be approximated as 

With the variable transformation of 

and neglecting the higher order terms of E ,  the governing differential 

equation becomes 



This simplified equation is similar to Mathieu's Equation. This equation has 

some very relevant and know characteristics which are pertinent to this study 

and are briefly introduced in the next section. 

3.3.2 Introduction to Mathieu-Hill Equations 

Mathieu-Hill equations are linear differential equations with periodic 

coefficients. The canonical form of the first order Mathieu Equation is given 

by 

where the parameten a and q are limited to real numbers and z is 

unrestricted. 

The significance and incorporation of the damping terms as evident in 

Equation 3.14 will be discussed later. One generalized form of the Mathieu 

equation is Hill's equation where the periodicity of the stiffness parameter 

does not need to be harmonic [McLachlan, 19511. In other wrds, if a relay 

action for mass reconfiguration is assumed; the governing differential 

equation will parailel the Hill's equation. The extended form of Mathieu's 

equation is expressed as, 

Mere y(2z) is a periodic function. 

For the particular case of Hill's equation, the parameters are given as, 



and 

The theory of Mathieu equation can be applied to Hill's equation with similar 

stability and instability characteristics existing [Hayashi, 19641. 

By applying Floquet's theory, a particular solution of Mathieu's 

equation (Equation 3.15) is given as 

where p is the characteristic index which depends in a very decisive way on 

the parameters. a and q ,  and qr) is a periodic function of r with 

periodicity of rr or 2x: [Hayashi, 19531. 

Since Mathieu's equation (Equation 3.15) is unchanged for a sign change of 

the dependent parameter, -t, another independent solution is 

y = q(-&(-t) ; hence, the general solution may be expressed as 

where c, and c2 are arbitrary constants. 

The solution may be of decreasing amplitude or bound amplitude (stable 

motion) or of increasing amplitude (unstable motion) depending on the values 

of a and (I. 

The stable, neutral solution is characterized as periodic and by 

definition, d i e d  Mathieu functions. These functions are elliptic cosine or 

sine series that define the characteristic curves that divide the a q  plane into 

stable and unstable regions as mapped in the HainesStrett diagrams 

illustrated in Figure 3.3 [Mclachlan, 1951]. 
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With reference to the complete, general solution (Equation 3.18), stability 

exists if p is purely imaginary and instability occurs when p is real. 

As shown in Figure 3.3, the ranges of stability alternate with regions of 

instability. Essentially, Mathieu's equation and the Haines-Strett diagram 

eliminates the need to solve the differential equation when assessing the 

stability of the system. The governing differential equation needs to be 

transformed to the standard Mathieu's Equation 3.15 with the parameters, a 

and q , being evaluated. 

As presented in Section 2.2, one method to attenuate the oscillations 

of the pendulum is cycling the end mass at twice the pendulum frequency. 

Howver, h e n  the end mass cycles at this frequency, then a = l and the 

system lies in the broadest instability zone betwen the characteristic awes, 

4 and b,'. For any mass motion, q t 0, parametric resonance ocars and 

oscillations wuld tend to amplify. To understand how oscillation attenuation 

can occur for this same scenario, damping effects must be analyzed. 

The differential equation for a similar system with viscous damping can 

be derived in the following form, 

where the parameter K represents the viscous damping coefficient All the 

parameters of Equation 3.19 are real with both K and q being positive values. 

Damped Mathieu functions of fractional order are solutions to this equation. 

Also, this equation parallels the differential for the reconfigurable mass- 

pendulum system (Equation 3.14) with the exception being the damping term. 

' The characteristic number corresponding to each Mathieu ftmtion which 
defines the characteristic curves as shown in Figure 3.3. The 
characteristic number can be exparrded as a powf mies in q (from 
Equation 3.15). 



The pendulum system has a time-varying damping; whereas, Mathieu's 

equation has a positive and constant damping coefficient 

By assuming a solution in the form 

and substituting into Equation 3.19, the differential is converted into Mathieu 

equation, 

If the parameters, a and q ,  are located in a stable region of Figure 

3.3, the solution has the form of exponentially decaying damped oscillations. 

However, if the parameters are located in an unstable region, then the 

solution may be stable and converging to zero, unstable and diverging or 

neutral and periodic depending on the relation between the damping 

constant, K , and the characteristic index, p . The relations can be 

summarized as follows: 

(1) if the defining parameters (Z,q) lie on the characteristic 

anre, then K = p and the condition is neutral and the motion 

is periodic. Theoretically, oscillations once initiated wuld 

continue unchanged. In practice, natural limitations, either 

decay the oscillations or allow increased growth to a limit 



(2) if (Z,q ) occurs in a stable region then K > p and oscillations 

decay as time progresses. 

(3) if ( Z q )  occurs in an unstable region then K c pand the amplitude 

increases with time. 

The regions of stability are adjusted as shown by the iso-pcurves which lie 

within the unstable region as show in Figure 3.4 [McLachlan, 19511. As 

seen, the effects of damping have increased the region of stability. 

The charaden'stic index which controls the decay of the solution for the 

functions of fractional order, is dependent upon the equation parameters, a 

and q .  From Figure 3.4, for small values of q the minimum of the iso-b 

curves occurs approximately midway betwen the bounding curves of the 

unstable region; therefore to approximate the characteristic index 

When a = I and q I 2p, stable motion will occur. 

When the solution is quasi-periodic as exists for degenerate cases, the 

function, b(r), of Equation 3.17 is defined in terms of a phase shift variable, 

X 
a, that varies b e b n  0 and --. This variable is also interrelated to the 

2 

other parameters a,q and p. ISO-p wmes and iso-a curves are shown in 

Figure 3.5 for the first instability zone which has been reproduced [Hayashi, 

1 9641 

1 This reference [Hayashi, 19641 employs Mathieu's equation of the following 
dzx form - +(a + 16qcos2r)r = 0 .  Correspondingly, the scaling of the q-axis 
h2 

changes from the previous plots, Figure 3.3 and 3.4 (McCachlan, 19511. 
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I 
UNSTABLE I 

Figure 3.4 Iso- p stability chart for Mathieu's equations of fradional order.' 

' Note this figure has been reproduced from Theorv and Amlications of 
Mathieu Functions by N. W. McLachlan (1951) p.98. 
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Figure 3.5 First zone of stability for fractional order Mathieu  quat ti on' with 
phase shif'ts.1° 

As with Figure 3.4, the value of p determines the stability 

characteristics, but its value is based on that of a [Hayashi, 19641. These 

iso-band iso-pcurves are symmetric about the ads. The iso-p cunre 

lo This figure has been reproduced from Nonlinear Oscillations in Phvsical 
Svstems by C. Hayashi (1964) p.90. 
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becomes the boundary curve separating stable and unstable regions and 

these curves are asymptotic to the characteristic curves that bound the 

unstable region where they lie. Similar charts for the second and third 

instability region can be found in Nonlinear OW/ahbns in Physical Systems 

[Hayashi, I 9641. 

3.3.3 Equivalent Damping Coefficients for Periodic End Mass Motion 

The simplified governing differential equation for the pendulum system 

(Equation 3.14) is very similar to Mathieu's Equation of fractional order 

(Equation 3.19); the difference lies with the second damping term. Equation 

3.14 contains variable damping that may be positive or negative depending 

on the mass motion; whereas, Mathieu's equation assumes a constant, 

viscous type of damping. The variable damping in the pendulum system is 

capable of attenuating the angular oscillations as show in Section 2.2.2; the 

ktnction is similar to a viscous damper. To compare the viscous type of 

damping of Equation 3.19 with the attenuation in the pendulum system, the 

energy dissipation over an oscillation cycle is calculated and equated for 

these two types of damping. This allows an equivalent viscous damping 

coefficient to be defined for the mass reconfiguration system. Then, this 

equivalent viscous damping coefficient can be used in Mathieu's equation to 

predict stable and/or unstable motion. 

As previously stated, depending on the auxiliary mass motion, the 

attenuation or amplification of the pendulum's oscillations occurs over a cvcle 

of angular displacement, as discussed in Chapter 2. For attenuation, the net 

effect over a complete vibration cycle is energy loss, although 

instantaneously, variable damping may be either positive or negative. In 

contrast, a viscous damping mechanism dissipates energy Menever there is 

motion- To quantify these damping effects, the energy dissipation for a given 

period in these two systems is calculated. A simple 'averaging" of the 



coefficient for the angular velocity in Equation 3.6 over a cycle is ineffective, 

as this value is zero. 

Consider the motion of a one degree of freedom system, mass-spring- 

damper system. The governing differential equation for an elastically 

suspended mass that is free to oscillate has the form, 

where my represents the inertia force; 

ky , the elastic resistance force; 

c?, the viscous resistance force; 

g = A, the damping ratio; and 
2mw, 

k 
ol = - , the natural frequency. 

m 

The damping ratio can be related to the energy dissipated in a cycle. 

First, Equation 3.23 is converted into a wrk-energy relation consisting of 

incremental work done or energy change by multiplying each term by an 

incremental displacement, dy , to obtain 

Equation 3.24 can be interpreted as the energy balance for the rnass-spring- 

damper system over an infinitesimal displacement. For motion from y, to y, , 

this balance can be written in the integral form, 



The left hand side of the equation represents the energy dissipated, while the 

right hand side can be explicitly integrated to give the kinetic and potential 

energy of the system. Integrating by parts over a cycle of vibration defined by 

the period from t = 0 to r = r gives 

where AE is the energy dissipated in a cycle and E(0) is the initial energy 

state. 

For small values of the damping ratio ( 5  << I), the motion during a 

cycle can be approximated as simple harmonic motion, 

where A is an amplitude at the beginning of the cycle. For a complete cycle 

of motion, the energy dissipated is evaluated as, 

The initial energy of the system associated with the energy stored in the 

spring is given by 



The energy dissipated is normalized with respect to the above initial energy to 

give 

Using the damping ratio, 5 ,  as previously defined, the normalized energy 

dissipation by a viscous damper for a cycle becomes 

The energy dissipated in a cycle for a variable length pendulum can be 

calculated in a simiiar way. The linearized, governing differentia! equation of 

motion is multiplied by an incremental displacement, d3 , to obtain an energy 

balance given by 

This equation can be rewitten as 

Then, the energy dissipated, S,  per cycle is determined as, 



where K is the period of angular vibration. Again, the right hand side of the 

equation represents the kinetic and potential energy of the system at any 

instance of time, and E(O) is the initial energy state. Note that the energy 

dissipation as given in Equation 3.28 was always negative while that in 

Equation 3.34 depends on the velocity of the mass as represented by P . 

The attenuation of the angular oscillations for the pendulum system by 

reconfiguring the system mass fol[ows the strategy as show in Figure 2.7(a). 

The translational motion of the end mass, r ( t ) ,  is assumed to fluctuate by a 

small amplitude, Ar , about a set position, R,, with the frequency being twice 

the pendulum's average natural frequency, 2m = 2 - = 2 0 ; .  The mass E 
motion is given as 

and the harmonic angular motion of the system for a cycle is approximated as 

These profiles are show in Figure 3.6. 

The corresponding energy dissipated per cycle is then calculated as 

The change in energy over a cycle of angular oscillation is normalized with 

respect to the initial energy of the system, 



to give, 

Figure 3.6 Profile of the moving mass and oscillating pendulum system for 
attenuation. 

Equating the normalized energy dissipation for the M a  systems over a 

cycle of ~scillations (as given by Equations 3.31 and 3.39), an equivalent, 

viscous damping ratio, c,, for the sinusoidal mass recanfiguration system is 

defined as: 



As can be seen, when mass reconfiguration within the structure is 

assumed to be harmonic and at twice the natural frequency of the system 

(Figure 3.6). the damping ratio depends on the location and amount of 

translational motion of the end mass. 

Note that 6, is negative, if & <O which corresponds to the pattern 

shown in Figure 2.8a. For this case, the mass moves away from the pivot as 

the pendulum nears its maximum angular displacement and towards the pivot 

as the pendulum nears its vertical or equilibrium position. Such a pattern 

causes amplification of the angular oscillations. 

If the mass moves towards the pivot once the pendulum reaches its 

maximum angular displacement and away from the pivot as the pendulum 

nears its vertical position, then both Ar and 6, are positive, as shown in 

Figure 2.7. The governing equation for parametric vibrations with viscous 

damping similar to Equation 3.19 can be written in the form 

where the notation is as introduced in Section 3.3.1. Upon substituting the 

equivalent ratio (Equation 3.401, this equation replaces Equation 3.12 and 

with the substitution of Equation 3.13, the approximate governing differential 

equation (Equation 3.14) for the pendulum system with equivalent viscous 

attenuation properties takes the form, 

This equation, in terms d damping, can be considered equivalent to Equation 

3.14 and is of the same form as Mathieuts equation of fradional order 

(Equation 3.19) whose features were briefly presented in Section 3.3.2. 



As the displacement profiles andlor coordination of the moving mass 

with the angular oscillations of the pendulum vary, different equivalent 

damping values will be generated- For the motion pattern illustrated in Figure 

2.7(b), the relay action consists of moving the mass towards the pivot when 

the angular velocity of the system is near zero and the motion of the mass is 

away from the pivot Men  the mass passes directly beneath the pivot. The 

range, b , of translational motion at the radial distance, R,, from the pivot 

and at the natural rotational frequency of the pendulum system is 

assumed. The energy change over an oscillation can then be calculated to 

be 

Normalizing this change of energy with respect to the initial energy of the 

system (Equation 3.36) gives 

Upon equating this energy dissipation with that of the viscous damped system 

(Equation 3.31 ), the equivalent, viscous damping ratio of the relay profile for 

mass reconfiguration is given as 

This strategy provides more effective damping than the harmonic motion 

which is consistent with the discussion presented in Section 2-22 and 



illustrated in Figure 2.7. In general, the equivalent damping ratio depends on 

the location and amount of translational motion of the moving mass. 

3.3.4 Some Properties of Mathieu's Equation Applied to the 

Reconfigurable Mass-Pendulum System 

The simplified goveming differential equation (Equation 3.14) assumes 

the translational motion of the end mass is sinusoidal and at twice the mean 

frequency of the angular oscillations of the simple pendulum. Furthermore, 

the amplitude of motion of the auxiliary mass is significantly less than its 

mean radial position as measured from the pivot. The magnitude of the 

angular oscillations are assumed to be small allowing the governing 

differential equation to be linearized. 

For the described mass reconfiguration, the simplified governing 

differential equation is given by Equation 3.14 or 3.42 for the mathematical 

pendulum system, the corresponding parameters of the classic Mathieu's 

Equation 3.1 5 when the damping effects are neglected are 

and 

As predicted by Figure 3.3, any mass motion, q # O ,  at this resonant 

frequency, m = 2 0 ,  (that is, a = 1 ), wuld yield unstable behavior. When 

various normalized displacement modulations, E,  are plotted on a Haines- 

Strett stability chart, the interceptions in the unstable regions increase as the 

modulation value increases. In other words, the frequency range associated 

with unstable motion increases. 



When plotting these displacement modulations on the stability chart for 

Mathieu's Equation of Fractional Order as done in Figure 3.7, it is apparent 

that the required characteristic index, p,  for stable dynamic behavior is small. 

For small values of mass motion, q ,  the value of the characteristic index is 

also very small, as given by Equation 3.22. 

Figure 3.7 Stability chart1' for constant displacement modulations for a 
reconfigurable mass-pendulum system. 

When damping is considered, an equivalent damping caefficient can 

be evaluated. The governing differential equation can then be approximated 

by Equation 3.42 with the defining Mathku's Equation parameters being 

" The background figure has been reproduced from T h m  and Amlications 
of Mathieu Functions by N. W. McLachlan (1951) p.98. 
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and 

Damping extends the stability zone and for the above parameters, the 

stability criteria of K r pis satisfied both for the trivial case of no auxiliary 

mass motion, E = 0, and for all displacement modulations when E > 0. 

Consider the mathematical pendulum where the average position of the 

end mass is R, = 1.0 m . The frequency of vibration of the end mass is twice 

the average angular oscillations of the system of a, z 3.1321 fad I s  . As show, 

this pendulum system will exhibit stable behavior if the amplitude of the 

translational motion of the end mass is positive, Ar > 0. 

As a specific example, if the translatiom( amplitude d the sinusoidal 

displacement is selected where br = 0.25 m , the equivalent damping 

coefficient as evaluated from Equation 3.40 is <, =0.1875. The 

corresponding Mathieu parameters are a = 0.9648 , q = 0.125 and K = 0.1875, 

and this point, (a.q) lies in a stable region of the Haines-Strett diagram12. 

1 Furthermore, p z k-q = kO.0625 which satisfies the stability criteria of p c K . 
2 

For the reconfrgurable mass-pendulum system (Equation 2.1 O), the 

coefficients of the governing equation are actually time varying. The dynamic 

stiffness and the damping values are continually changing as a result of the 

12~ote for Figure 3.5, q = 0.015625 and hence the operating point is in an 
extended zone of stability. 
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mass reconfiguration (Equation 3.7 or 3.35). Instantaneously, the 

corresponding Mathieu's Equation parameters may lie in either the stable or 

unstable zone. Based on the simplified governing equation (3.14), where the 

mass reconfiguration occurs at twice the system's natural frequency the 

corresponding Mathieu's equation parameters are 

K = - 2 ~  sin 2 t (3.52) 

and (I and p are as previously defined by Equations 3.50 and 3.51, 

respectively. 

As presented in Sedion 3.3.2, for stability, p SK and the 

corresponding displacement modulation limits is expressed as the following 

inequality, 

E I - 8 ~  stn 2t. (3.54) 

or when using the former transformation (Equation 3.14) of 2t = mt +z 
2 

Stability is predicted when either 

(1 ) there is no auxiliary motion: E = 0 or 

(3.56) 

For the second condition, this inequality is only satisfied for a portion of each 

oscillation cycle of the pendulum. Instantaneously, the system behavior may 

lie outside the stable zone. Alternately, this fluctuation betwwn stable and 
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unstable zones can be seen by plotting the range of (a.q) on Figure 3.5 or 

3.6" where o E [I - W' . I]. 
In general, variations in the system parameters, such as the range of 

motion of the auxiliary mass, its frequency of motion andlor the phase with 

respect to the structural angular osciltations will affect the system dynamics. 

Predicting the dynamic behavior for a pendulum with reconfigurable mass is 

quite involved, even though a similar system - a child swinging - is 

seemingly intuitively solved as the child learns how to control the oscillations 

of the swing. Based on numerical simulations, the dynamic behaviors of the 

pendulum with reconfigurable mass for various paradigms, are explored in 

Chapter 4 with reference to the discussion herein. 

3.4 Parameterization of Systems for the Computer Simulations 

The technique of reconfiguring the structural mass is used to control 

the dynamics of the system. As the mass moves along the structure, it alters 

the system's characteristics; suetr as the damping and the dynamic stiffness. 

The effects of the moving mass are indicated in the governing 

differential equations of Table 3-1. For the mathematical pendulum, only the 

position of the moving mass alters the system's parameters. For the physical 

pendulum, both the magnitude and position of the moving mass affect the 

pafameters. 

The 'instantaneous" frequency or the dynamic stiffness of the 

mathematical pendulum changes with the mass position, as given by 

l3 See previous footnote [7]. 



As the length of the pendulum increases, the natural frequency decreases 

and vice versa. For a physical pendulum (Figure 3.2a), the position and 

magnitude of the auxiliary mass and the structural inertia and rigidity both 

affect the dynamic stiffness and the instantaneous frequency, as given by 

As the ratio of the pendulum or structural mass to the sliding mass 

approaches zero - + 0 , the dynamics of the system can be effectively [: 1 
modeled as a mathematical pendulum; Equation 3.58 reduces to Equation 

3.57. This is shown in Figure 3.8, where the pendulum is of length, 1 m. To 

approximate the dual mass system as a simple pendulum, the structural mass 

should be chosen to be -10% or less than the magnitude of the sliding mass, 

and the sliding mass motion should be limited to 0.75 < r(t) < l.25 m. 

Figure 3.8 Effects of magnitudes of the structural mass, sliding mass and 
slider position on dynamic stiffness. 



The damping coefficient is a time-varying parameter. The 

corresponding damping force is a function of the position of the sliding mass 

and its first time derivative, its magnitude and the angular motion of the 

pendulum. The nature of the damping is described through examining various 

temporal displacement profiles for the sliding mass in Chapter 4. 

For investigating the dynamics of the reconfigurable mass-pendulurn 

system the following parameterizations were made. For the simple pendulum 

system, a length of 1.0 m was chosen with a range of motion for the end mass 

being restricted to 0.25 m about this point. The corresponding natural 

frequency, as calculated from Equation 3.57, ranges between 2.80 to 3.58 

raus (with the corresponding period being 1.74 to 2.24 s). Selecting a 

sharter pendulum would increase the natural frequency and decrease the 

available time to implement control. Hence a faster control system wuld be 

required. 

For the physical pendulum system, the pendulum mass was selected 

as a concentrated mass of 7.5 kg located at a distance of 1.0 m from the 

pivot. The natural frequency of the system is 3.1321 radls and the period of 

oscillations is about 2 seconds which is comparable with the characteristics of 

the mathematical pendulum. The auxiliary mass was selected to be 0.75 kg 

with its motion bound between 0.75 to 1.25 m away from the pivot. The range 

of the undamped natural Frequency as calculated using Equation 3.58 varies 

betwen 3.08948 to 3.15977 radis. Note also that when examining only the 

slider, its motion and characteristics are equivalent to the mathematical 

pendulum system. 

In the next chapter numerical simulations of the dynamics for the above 

parameterized systems for various temporal profiles of the auxiliary mass are 

presented. Through reconfiguring the system mass, a mechanism for adve 

damping is achieved. 



3.5 Summary 

Mass reconfiguration within the system by either internally or externally 

moving an auxiliary mass within or along the structure can be used to achieve 

active vibration attenuation. Pendulum structures are accurate models for 

many physical systems which exist in numerous and diverse applications. 

Many of these systems require a mechanism to prevent andlor alleviate 

vibrations. 

In developing a mathematical model of the system, other damping 

factors, such as drag or material damping, are neglected to accentuate the 

effects that the moving mass has on attenuating the structural vibrations. 

These other forms of damping will further enhance the stability and damping 

of the systems. 

Accounting for the structural mass enables segregating the auxiliary 

mass and further extends the modeling accuracy. In addition, the moving 

mass attenuation device can be viewd as a separate mechanism that can be 

retrofitted to existing structures. As shown, the physical pendulum or dual 

mass system can be reduced to the mathematical or single mass system 

Were the effects of moving the end mass are more apparent 

To provide insight into the dynamics of the variable length pendulum 

model, the describing equation for the angular oscillations was simplified and 

reduced to linear equations with variable coefficients. These equations which 

resemble Mathieu-Hill's equations are valid for small, structural angular 

oscillations and small translational motion of the end mass which has a 

frequency the structural angular oscillation frequency. Mathieu's 

Equations are oscillatory with defined regions of stability and instability. The 

unstable physical phenomenon associated with periodicalIy varying 

parameters is called parametric excitation. For the pendulum with 

reconfigurable mass, such excitations or amplifications arise from the 

harmonic motion of the mass Hlhich creates variable stiffness, particularly 

when the frequency is twice that of the system. 



Next, an equivalent viscous damping value was determined based on 

energy dissipation over a single cycle of oscillations for two proposed modes 

of mass motion. Using the equivalent viscous damping value, the governing 

differential equation was reformulated into Mathieu's Equation of fractional 

order. For the harmonic motion profile for the slider, parameterization was 

completed to illustrate the expected stability features both over a cycle and 

instantaneously. As the mass moves, the parameters vary and the operating 

behavior switches between stable and unstable zones. Hence, determining a 

strategy for effectively attenuating angular oscillations no longer appears to 

be intuitive. 



4. Dynamics Associated With Mass Reconfiguration 

4. t Introduction 

The effects of the active damping mechanism on structural vibration 

energy are investigated for various scenarios, The active damping 

mechanism can be visualized as a redistribution of structural mass; either the 

mass slides alonghthin the structure or the structure is reconfigured with a 

different mass distribution. The interaction of redistributing the mass is 

studied using numerical simulation techniques. Typical results are 

represented graphically throughout this chapter as displacement, force and 

energy history curves or phase plots. 

The governing diierential equation has been solved numerically for 

various displacement profiles of the moving mass. Since simulation packages 

were developed for this investigation rather than employing commercial 

packages, several accuracy tests or benchmarks were established. These 

included assessing the local truncation error, evaluating convergence 

associated with the discretization of the integration routine and establishing 

stability using a conservative system. Additional evaluations of the simulated 

package w r e  performed for various damping strategies. 

In predicting the dynamics of the reconfigurable mass-pendulum 

system, simplifications Hgre made as discussed in Chapters 2 and 3. One 

involved linearizing the governing diierential equation; the effects associated 

with this simplification are given for various conditions. Also, Mathieu's 

equation for the first three instability zone have been simulated. 

To appreciate the significance of a moving mass rather than 

approximating the dynamics by a moving force, simulations were conducted 



for a mass and a force of equivalent weight with the same movement pattern. 

The physical pendulum or dual mass system was modeled Men  conducting 

this analysis. The comparison examines the energy profiles and kinematic 

histories for the tw systems. 

The primary profiles for translating the mass along the structure that 

were investigated included continuous, harmonic motion and discontinuous, 

relay motion. In each case, parameters w re  selected to enable comparison 

to be easily made. For the simulations, the parameterization of the systems 

was as given in Section 3.4 (and tabulated in Appendix D), where the 

frequency of free vibration was approximately 3.1 321 radls. 

Preliminary optimization to generate temporal translational patterns for 

redistributing the mass to minimize the structural energy for a given time 

period was also conducted. The objective function was to minimize the 

structural energy over a previously defined interval. Both continuous and 

relay-type displacement profiles were considered. 

4.2 Simulation Procedure for Investigating the Dynamics of the 

Reconfigurable Mams-Pendulum System 

The governing equations of motion for the pendulum-mass 

reconfiguration systems contain nonlinear relations (Table 3.1). 

Simplifications can be made to reduce the analysis to a linear treatment; 

however, for a complete analysis the nonlinearities and the associated 

phenomena were included. 

The closed form solution for reconfiguring the mass of a pendulum 

structure has only been completed for a few speafic cases. For example, if 

the pendulum changes its length at a constant rate, the solution can be 

defined in terms of Bessel Functions [Relton, 1965; Whittaker, 1927; Farrell 

and Ross, 19711. For harmonic motion of the sliding mass, the dynamics 

were reduced to Mathieu's Equation as shmm in Section 3.3. However, br 

general motion, an explicit solution may not exist Hence, the dynamics of the 



recanfigurable mass-pendulum systems were studied through numerical 

simulations. 

The simulation procedure assumes a displacement profile for the 

sliding mass, r(t) . Then, the governing, second order differential equation 

describing the pendulum and its mass reconfiguration, either Equations 2.9 or 

3.1, was solved using an initial value problem soIver. In this manner, for a 

particular r(r) ,  the corresponding structural angular displacement profile, 

q t ) ,  can be determined. The force required to implement the motion can 

then be calculated from Equations 2.8 or 3.2. Details of the software 

development follow. 

4.2.1 Integration Algorithms 

Depending on the algorithm and discretization used, a variety of 

numerical methods exist for approximating solutions for ordinary differential 

equations. Usually, the procedure for solving the equation(s) of motion 

requires transforming the higher order governing diierential equation into a 

set of first order differential equations. Then, the solution for this set of 

coupled, ordinary differential equations can be numerically determined for 

discrete instances using various initial value solvers, 

Initial value solvers essentially time step through the problem, with the 

solution based on the initial conditions of the system. The three types of 

initial value solvers include: 

1) one step, direct methods (e-g. Runge-Kutta algorithms), 

2) extrapolation methods (e-g. Richardson and Bulirsch-Stoer 

algorithms), and 

3) mu1 ti-step, predictor-corrector or iterative methods (e-g. Adams 

Predictor-Cmector method). 

Runge-Kutta methods are general purpose techniques that provide 

moderate accuracy. These methods propagate a solution over an interval by 



combining the information from several Euler-style steps (each involving one 

evaluation of the right hand functions). Then, by using the information 

obtained, a match to a Taylor series expansion up to some higher order is 

done. Runge-Kutta methods approximate the solution for the next time 

interval solely on the previous time. 

Extrapolation uses the concept d extrapolating a computed result to 

the value that wuld have been obtained if the step size had been very much 

smaller than it actually was. The first practical methods of this concept were 

Bulirsch-Stow methods. These routines are difficult to initiate and direct 

methods are often used to establish the dynamics for the first few time steps. 

Predictor-Corrector methods store the solution and use these results to 

extrapolate the solution for the next step and correct the extrapolation using 

derivative information at the new point. Typically, they require one step 

methods to initiate the process. These techniques tend to be computationally 

more efficient than direct methods and are #I1 suited for very smooth 

functions [Press, et. al., l992a&b, Burden and Faires, 19851. 

The initial value routines are described in detail and their algorithms 

are outlined in Appendix E. 

4.2.2 Software Dsvelopment 

Customized, dynamic simulation packages were chosen to investigate 

vibration attenuation using mass redistribution. In the process of creating 

these packages various support soffware tools were also programmed; these 

tools were developed to be reusable and extensible. The software was 

initially developed in Forth, a language claimed to be pure and elegant, yet, it 

lacks in fundamental support tools. As a scientific programming environment, 

Forth was very limited, Linear algebra sofhrvare (Stilling and Watson, 1994a; 

Watson and Stilling, 1991b1, numerical integration mutines for solving 

ordinary differential equations and controllers wwe developed with good 

interfacing capabilities [StiIling, 1990b and l993bl being explored. The 



extensibility of this language was very tractable, especially, when the entire 

scope of the project was considered.' Later in the doctorate program, 

procedural languages were deemed acceptable and much reprogramming 

was completed for the simulation and dynamic investigations of this research 

was repeated and extended in the procedural language, C. 

Originally, the linear algebra package, MATMATH [Stilling and Watson, 

1994a and Watson and Stilling, 1991 b] was developed in Forth as a tool for 

all phases of the thesis research. The package was very tractable for 

integrating the dynamic simulation and implementing the controller. The 

entire package was developed as a general purpose environment that would 

conserve memory, yet be easily extended, The coding style was modular with 

operations being succinct units that could be loaded independently; only the 

pertinent routines which need to be accessed are loaded. Details of this tool 

appear in Appendix F. 

All of the simulation software was programmed in a modular style. 

Investigating various movement profiles for the auxiliary mass along the 

structure and examining mathematical or physical pendulum systems was 

easily accommodated, since the code was confined to a few statements or 

case statement routines. The basic simulation was adapted to incorporate the 

various initial value solvers. Output routines were tailored to provide graphic 

displays of the pendulum operation with the moving mass andlor numerical 

output for further analysis and processing. The dynamic simulation software 

was a part of the completed control systems which varied from a user- 

interactive forum to a fully automated control system simulation. 

4.2.2.1 Implementation for Dynamic Simulation 

The numeric simulation for the dynarnitx of the mass traversing the 

pendulum structure required solving the appropriate governing differential 

' 'Extensible languages provide a good impedance match between how va 
think and how they represent knowledge." [Fonley, 1993). 
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equations (Equation 2.10 for the mathematical system and Equation 3.1 for 

the physical pendulum system). The procedure requires expressing the 

governing differential equation as a set of fint order differential equations in 

terms of Me time dependent variable. Using y, = 0 and y, = 0 .  the set of 

governing first order differential equations for the mathematical pendulum can 

be written as 

and 

Initially, the set of first order differential equation was solved using a direct 

method, a fourth order' Runge-Kutta algorithm (See Appendix E). Then. 

various evaluations of the software programs wre  conducted (Section 4.23). 

The dynamic interaction for the reconfiguration of mass for a pendulum-based 

system were then simulated for various profiles (Section 4.4). To ensure the 

simulated dynamics w e  representative of the actual physical phenomena 

and not artifacts of the computation methods, various initial value solver 

algorithms were implemented. A variable, self-adjusting step-size algorithm 

was incorporated. The Adams Fourth Order Predictor-Corrector Algorithm 

and an extrapolation algorithm w r e  programmed as the initial value solver. 

4.23 Verification of SoPtware Simulation Packages 

Elementary evaluations of the simulation process involved comparing 

the simulated results with an exact solution to assess the local error, adjusting 

the time discretization as a further test on convergence and performing 

'A method is amventionally called nth order, if its e m  term is O(hw') where 
h is the step size. 
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extended program runs to assess stability. Initially, these evaluations w r e  

performed using the Runge-Kutta direct method algorithm. After investigating 

various mass reconfiguration profiles (Section 4.4), the algorithms were 

changed to incorporate those with decreasing local truncation erron to 

ensure the simulated results were representative of the actual physical 

phenomena. A further evaluation of the simulation was deemed necessary. 

This method involved an assessment which incorporates the physics of the 

problem: a work-energy balance for the dissipate system was performed for 

each time step of the simulation period to account for energy loss, gain or 

exchange. (See Appendix G.) 

All results, as reported herein, are based on the parameterization as 

discussed in Section 3.4 (or tabulated in Appendix D), unless otherwise 

stated. The verifications were completed in both software development 

languages, Forth and C on various platforms. 

Firstly, the local error was evaluated using a similar second order 

differential equation. A conservative system, a constant length pendulum, 

was selected; its governing differential equation is given by: 

and when linearized for small oscillations, it becomes: 

The closed form solution of Equation (4.4) is expressed as, 

e 
0(t)=0, c o s o ~  +"sinant - 

o n  



where a = - is the natural frequency; ,K 
8,, the initial angular displacement; and 

0,, the initial angular velocity of the pendulum. 

All other notation and selected parameter values are tabulated in Appendix D. 

The governing differential equation (Equation 4.4) was solved using 

the fourth order Runge-Kutta algorithm using various time increments 

(5  = 0.1, 0.05, and 0.01 second). The local truncation erro? for the angular 

displacement history is variable as illustrated in Figure 4.1 and reported in 

Table 4.1. For the various time discretizations, the error decreases with 

smaller time steps. The magnitude of the error for the time step of 0.01s after 

approximately five (5) time constants was of order, 1 04. Note that the local 

truncation error associated with this initial value solver is divergent. 

Table 4.1 Accuracy of the Runge-Kutta algorithm 

Time 

0 

Ti4 

TI2 

3Tl4 

T 

-4T 

Exact Solution 

0.5236 

0.002487 

-0.52358 

-0.00746 

0.523552 

0.52355 

Runge-Kutta Simulated Solution 

The diierence or amount that the exact solution to the differential equation 
fails to satisfy the difference equation used in the numerical approximation 
is called the locat truncation error. 



For the variable length pendulum (Equation 2.10) with harmonic, radial 

end mass motion, an exact solution is not readily attainable. A convergence 

test was performed, whereby the solution was compared at various instances 

between simulations which were conducted with decreasing time steps. The 

results appear in Figure 4.2 when the motion is in phase and at the same 

frequency as the angular displacement 

-0.0015 - Time (s) 

-- 

Figure 4.1 Local truncation error for various time steps for a constant length 
pendulum solved using a Runge-Kutta algorithm. 

-0.6 - lime (s) 

Figure 4.2 Angular displacement profiles for a simple pendulum with 
harmonic end mass motion. 



When the time step was decreased by an additional order of 

magnitude (At = 0.001 second), the angular displacement profile for the first 

four time periods was not significantly different. 

Lastly, to ensure numerical stability' in the program, the conservative, 

constant length pendulum system (Equation 4.3) was simulated for an 

extended time period, over 200 time constants. For this system, the potential 

(U) and kinetic energy ( T )  should continually transform as the pendulum 

oscillates with no loss or gain of energy. This did occur. The energy profiles 

of the system indicated the algorithm and its coding did not suffer from any 

appreciable round off error or overflow problems, as conservation of total 

energy prevailed. Figure 4.3 illustrates the energy profiles for the initial 25 

seconds for the case where 0, = 30" and Af = 0.0 Is. 

Subsequent to obtaining the nonlinear results as presented in Section 

4.4, incorporating higher order local truncation error algorithms was deemed 

necessary. A discussion of the simulation algorithms, the Runge-Kutta, 

Adams 4th Order Predictor-Corrector algorithm and an extrapolation algorithm 

which were used, appears in Appendix E. A comparison for the conservative 

system using a time interval of 0.01 s showed no appreciable difference in the 

solution. 

For the nonwnservative case, an assessment of wTk and energy 

during the angular motion of the pendulum as the mass is being continually 

reconfigured was performed. A wrk-energy balance was performed over a 

given integration period. The energy loss or gain associated with moving an 

auxiliary mass along the structure was tracked in a cumulative manner. This 

balance gave an indication of the numerical accuracy of the simulation. (See 

Appendix G.) Again, better convergence was obtained by refining the time 

discretization for the simulation. 

4 For the purpose of simulation evaluation, stability refers to the system's 
ability to maintain an equilibrium form For the given state. 
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Time (s) 

Figure 4.3 Assessing stability of the integration routine on a conservative 
system. 

4.2.4 Effects of Various Simplifications on the Results 

To explain the effects of mass reconfiguration of pendulum structures 

various approximate solutions were assumed. The assumptions or 

simplifications and ensuing dynamics are compared for a few discrete cases. 

Firstly, the assumption of small vibration which was made in Section 

3.3.1 eliminates the nonlinearities associated with the gravitational restoring 

force For the constant length pendulum, the governing differential Equation 

4.3 is reduced to Equation 4.4. The time history profiles of the angular 

displacement was simulated for the initial conditions of 8, = 1 5 O .  30°, 60" and 

W and 0, = Ofor four consecutive periods for this conservative system using 

the Runge-Kutta algorithm with a time step of 0.01s. A comparison beheen 

the angular displacement time history for the linearized (0,(t) ) differential 

equation to that without linearization (O(c)) is made in Figure 4.4. As show, 
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Mathieu's Equation (3.19). The parameters were evaluated based on those 

chosen to model the simple pendulum system as given in Appendix 0. 

The recanfigurable mass was assumed to cycle at h-ce (Z) ,  nine (9) 

times and sixteen (16) times the ftequency of the angular oscillations of the 

pendulum. These correspond to the first three instability zones shown in the 

Haines-Strett diagrams (as shown in Figure 3.3 and 3.4). The angular 

displacement histories for the first few cycles are illustrated in Appendix H. 

Unstable behavior that is characterized as unbounded (divergent) growth was 

expected for the undamped cases and did occur for the case when the mass 

motion was at twice the angular oscillation frequency. Howver, for the other 

two cases the motion was constant amplitude, oscillatory motion; this 

indicates that the given parameterization results lie along the characteristic 

curves (shown in Figures 3.3 or 3.4). For the damped cases here the 

governing differential equation was reduced to Mathieu's Equation of 

Fractional Order (Equation 3.19) the motion was stable with the angular 

oscillations being bounded (a decaying, oscillatory motion). 

4.25 Software Development Environments 

The programming environment for the simulation package was Forth 

with software developed on the following major platforms: Motorola 68000 

based machines (Atarim STSZO, ST1040 and Mega ST), Motorola HC6811 

(New Micros 68HC11 F), Intel 8088-based machines (IBMIPC compatibles) 

and Sun Workstations. Later code was developed using the procedural 

language C for all platforms except Motorola HC6811. Initial value solvers 

included Runge-Kutta, Adams Predictor-Corrector and an extrapolation 

algorithms. The simulated response of the system was expected to provide 

good accuracy for time steps of 0-01 seconds or smaller with stable 

responses expected for runs of -150 time periods Men the initial angular 

displacement was 30°. Satisfadory results were anticipated regardless of the 

computational environment. 



4.3 Attenuation Mechanism: 

Comparison of Moving Mass and Moving Force Concept 

Often researchers approximate moving masses as loads [Zheng, et al., 

1998). This representation neglects the inertia forces associated with the 

mass v u  et al., 1997). For the physical pendulum system, the mass could be 

represented by a gravitational force with magnitude equal to the wight of the 

sliding auxiliary mass as modeled in Figure 4.5. 

To compare the dynamics of the moving mass with the moving force 

model, identical translational excursion patterns for each w r e  assumed. 

The governing differential equations for a moving mass and a moving 

force along the pendulum system are tabulated in Table 4.2, 

Table 4.2 Modeling attenuation device as a moving mass or f o r d  

Governing Differential Equations 

for Moving Mass Model 

M I  + m r  

b + (  m,l; 7 + m7- ) m,l; + m j -  . ) ~ o = o  
(3.1 

rn,liB + mPg$ sin 8 = dm,. 0. r ,  t )  

(3.5) 

where 

p(m,. 0. r ,  t )  = 

- m s ( r z B + ~ &  +rgsine) 

(3.5a) 

Governing Differential Equations for 

Moving Force Model 

(4.7) 

where 

f (WJ) = -Wr sin0 (4.7a) 

and 

W  = mpg (4.7b) 

5 The structure is assumed to be a physical pendulum; that is, the pendulum 
possesses mass itself. 
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The magnitude of the load was equated to be the weight of the moving mass 

(Equation 4.7b). For the moving load, the force acts at a given location as 

described by its motion and for the moving mass, it interacts at the point 

described by its motion (Equation 4.9). 

The radial motion of either the mass or the force may be sinusoidal as 

given by 

where R, is the position about which the attenuation device oscillates; 

Ar is the amplitude of oscillation; and 

tm is the driving frequency of the attenuation device. 

The moving force model can be approximated by Mathieu's equation, and 

when n = 2 unstable motion of the first zone of instability is predicted. As 

there is no damping, the moving load forces the system to oscillate. 

(a) Moving Mass (b) Moving Load 

Figure 4.5 T w  attenuation devices for the physical pendulum system. 
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The primary difference in the magnitude of the "driving function" 

(Equations 3.5 and 4.7) is that the moving mass contains terms related to the 

Coriolis and inertia force in addition to the gravitational restoring force. The 

contribution that the mass makes to the structural characteristics of the 

system (Equation 3.1) is unique to the moving mass case. The moving force 

continually acts with a constant magnitude (Equation 4.8) on the structure 

with its applied torque about the pivot changing as a function of its temporal 

displacement pattern (Equation 4.7a). 

Dynamic behavior results w r e  obtained using the Runge-Kutta initial 

value solver using a time step of 0.01 seconds for the governing differential 

equations. The attenuation mechanism has an assumed mass of only 10% of 

the original pendulum mass. The motion for the attenuation device was 

sinusoidal with R, = 1.0 m, & = 0.25 m and n = 20. The natural frequency for 

pendulum was 1.321 radls. The displacement profile is show in Figure 4.6. 

- Moving Mass - - - - -. Moving Load i 

Figure 4.6 Angular displacement profiles when a mass or a load traverses 
the pendulum sinusoidally at twice its natural frequency. 



As shown in the angular displacement history the moving mass for 

these conditions provides more damping effects than the moving load. This is 

evident in the amplitude of the angular oscillations and in the changed period 

of oscillations. 

The corresponding force to move the mass or load (row 3 of Table 4.2) 

is shown in Figure 4.7. 

0 1 2 3 4 5 6 7 6 9 1 0  
Time (s) - Moving Mass - - - - - - Moving Load : 

Figure 4.7 Comparing forces required to move mass or load sinusoidally. 

Despite the magnitude of the sliding mass being significantly less than 

that of the structure, for the prescribed motion, the slider increases the system 

inertia by 5.6 to 15% and increases the stiffness by 7.5 to 12.5% for its 

indicated range of motion. A significant difference in the driving force being 

modeled as either a mass or a force also exists. The force to move the mass 

is sinusoidal with an average value that is greater than the moving load, since 

inertia effects have been taken into account Peak values for the force to 

cause motion of the mass are approximately twice those associated with the 

applied load for this assumed motion profile. 



Although the governing differential equation can be reformulated 

whereby the terms relating to mass reconfiguration are grouped together as a 

"pseudo-force" (Entry 2 of Table 4.2), examining the differential equation 

(Entry 1 of Table 4.2) shows that the mass redistribution provides time- 

varying modification to the system parameters. In contrast, the moving force 

is a forced vibration problem. For both systems, a resonance condition may 

be anticipated when the natural frequency is related by an integer or 

fractional multiple of the system's natural frequency. For both cases, the 

oscillations w r e  parametric where the system periodically amplifies and 

attenuates the angular displacement. This will be discussed further in 

Sections 4.4 and 4.5. 

The damping provided by using the concept of a moving force may be 

improved by using a variable magnitude force. The force may be formulated 

as an exponentially decaying sinusoidal function. 

To conclude, for the physical pendulum structure, a significant 

difference between the two modeling techniques has been illustrated. 

Despite this difference, several researchers continue to represent a moving 

mass as a moving load. Often, the physical examples cited for a moving 

mass along a stntcture are made in the transportation field; such as a vehicle 

traversing a bridge. The modeling is simplified so that the vehicle is 

approximated as a load rather than a mass. However, applications that 

require Wra"-precision such as cutting tools traversing its guidmaylpathway 

for medical applications or manufacturing may benefit if the moving masses 

are modeled as masses rather than loads. 

4.4 Investigating Various Mass Reconfiguration Profiles 

The results reported in this section will fo#rs on both the mathematical 

and physical pendulum models, The mathematical pendulum system closely 

approximates the dynamics of many actual systems. For cases, Were the 



auxiliary mass is of significant magnitude with respect to the structure, the 

mathematical pendulum is a very good approximation. 

The key mass reconfiguration profiles that were considered included a 

continuous, harmonic motion and a discontinuous relay profile. 

4.4.1 Interaction of the Attenuation Mechanism 

The mass of the attenuation device is restricted to move along or within 

a structure. The moving mass remains in contact and acquires the dynamics 

of the point of contact of the vibrating structure. As previously presented in 

Section 2.2, the interaction of moving a mass along a rotating and vibrating 

structure can result in 

(1 ) an increase in the system energy, 

(2) a decrease in the system energy, or 

(3) no change in the system energy. 

For understanding the interaction of the reconfiguration of mass along 

a structure, the ensuing dynamics are presented as time history profiles and 

phase plots. The dynamics are examined over complete periods of angular 

oscillations for the structure. The effects of the active damping mechanism 

can be viewed either as a damping term or as a fictitious forcing function that 

drives the oscillations of the system as given in Table 3.1. 

4.4.2 Sinusoidal Motion for Mass Recontigumtion 

Sinusoidal translational motion for an auxiliary mass along the 

pendulum structure provides a continuously differentiable mode for mass 

reconfiguration- This profile can be mathematically described by the following 

equation 



Mere R, is the average radial position of the end or auxiliary mass measured 

with respect to the pivot (1 -0 m); 

& , the amplitude of the translational motion of the end or auxiliary 

mass (0.25 m); 

m , the average structural frequency (1 .I 321 radls); 

n ,  an integer or fractional multiple ( 1,2,9 or 16); and 

4 ,  the phase shift ( 0 or d2). 

The chosen parameters for the mathematical pendulum system 

maintained a period of oscillation bebeen 1.74 to 2.24 seconds. Also, note 

that the average radial position of the end mass was constrained betwen 

0.75 1 r(t) 5 1.25 rn . 

The selected radial, translational frequencies correspond to the zones 

of instability as predicted by Mathieu's Equations (and shown in the Haines- 

Strett diagrams of Figures 3.3 and 3.4). Details of the ensuing dynamics 

when the mass was reanfigured at frequencies that w r e  the same, nine (9) 

times and sixteen (16) times the structural, natural frequency appear in 

Appendix I and are summarized in Section 4.4.2-2. The results associated 

with the mass being cycled at M-ce the structural, natural frequency follow in 

Section 4.4.2.1. 

The phase shift was chosen so that the transitional motion of the 

moving mass (slider) was initially either "in phase" or "out of phase" with the 

angular oscillation to illustrate the extremes in altering the energy state of the 

system. Note that "in phasen wilI refer to the coordination between the 

translating mass and the angular osciltations shown in Figure 2.7 and 'out of 

phase" refers to the coordination show in Figure 2.8. The "in phase" 

coordination for an initial angular displacement has 4 = 0; initially, the radial 

distance b e h e n  the pivot and the auxiliary mass decreases as the angular 

oscillations decrease- 



4.4.2.1 Mass Reconfiguration at Twice the Structural, Natural Frequency 

When the translational frequency of !he auxiliary mass is twice the 

average angular ftequency of the system, a significant change in the 

structural energy ocarrs. The temporal displacement profiles (angular system 

oscillations and the translational vibration of the auxiliary mass) are shown in 

Figures 4.8 and 4.9 for the extreme cases of the auxiliary mass motion being 

initially in phase (4 = 0) and out of phase (4 = ) with the angular vibrations 

(when 0, t 0 ande, = O),  respectively. The parameterization are as given in 

each figure. For the simple or mathematical pendulum, a simulated instability 

occurred when the end mass motion was set to twice the average structural 

frequency (m = 6.2642 rad I s ) as predicted by Mathieu's Equation for the first 

zone of instability (Figure 4.5). The corresponding energy profiles for the 

cases indicated in Figures 4.8 and 4.9 are shown in Figure 4.10. 

Figure 4.8 Coordinated displacement profiles for the simple pendulum M e n  
slider motion is r(t) = % - hr m(mt +O) where na = 6.354797 and 4 = 0. 
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Figure 4.9 Coordinated displacement prsfiles b r  the simple pendulum when 
slider motion is r(t) = & - & dn(lftft ++)where m = 5.8 10217 and 4 = 5 .  

Figure 4.10 Energy profiles for the end mass motion at approximately twice 
the frequency of the pendulum- 



For the physical pendulum (Figure 3.2), the transient response for the 

first four (4) time constants shows either parametric amplification or 

parametric attenuation. When the sliding mass initially is in phase (4  = 0) 

with the angular oscilfations of the pendulum, the oscillations are attenuated 

as shown in Figure 4.1 I. In contrast, when the sliding mass initially is out of 

phase ( 4  = g), the pendulum oscillations are amplified as shown in Figure 

4.12. To investigate whether or not the former action m l d  arrest the angular 

oscillations, the simulation period was extended. For both cases, the steady 

state response consists of a regular pattern of bounded, parametric 

attenuation and amplification; this beating phenomena is illustrated in Figure 

I Time (s) 
4.7 1 -1 

Figure 4-1 1 Coordinated displacement profiles for the physical pendulum 
when slider motion is r(t) = 4 - & sin(mt + 4) where n = 2 and 4 = 0. 



I I 1 I t 
1 I I I I 1 

6 8 

lime (s) 

Figure 4.12 Coordinated displacement profiles for the physical pendulum 
when the slider motion is r(t) = R,, - Ar sin(nmr ++) where n = 2 and I) = I. 

-1 - 
T i m  (s) 

Figure 4.13 The angular displacement profiles for the physical pendulum 
when the slider motion is r(t) = 4 - Ar m(mt ++) where n = 2 and + = :. 

The corresponding force to cause this type of reconfiguration is s h m  

in Figure 4.14. 



1 ime (s) 

Figure 4.14 The driving force required to reconfigure the mass at 
r( t)  = % - At- sin(nat) Mere n = 2 .  

The energy profile is showm in Figure 4.15. 

Time (s) 

Figure 4.1 5 The energy profile of the physical pendulum for 100 seconds. 



Details for alleviating this condition of beating were created by properly 

coordinating the mass reconfiguration with the angular oscillations as 

presented in Section 4.5. 

4.4.2.2 Summary of Dynamics for Sinmoidal Slider Motion 

The details for various sinusoidal mass reconfiguration profiles appear 

in Section 4.4.2.1 and Appendix I. This type of motion requires a continuous, 

timevarying force (Equations 2.9 or 3.2) as shown in Figure 4.14. The 

structural, angular displacement profiles for the presented cases were 

continuous without any discontinuities or singularities. However, the beating 

behavior can occur (Section 4.4.1.2). 

The simulated dynamic profiles w e  dependent on the selected 

frequency of mass motion along the structure and its coordination with the 

structural angular oscillations. When the mass motion was at the same 

frequency as the structure, the moving mass and the pendulum oscillations 

wwe nearly synchronized. Due to the motion of the mass, the frequency was 

not exactly the same as the sliding mass. The coupling betwen rotational 

and translational motion resulted in a transfer of the oscillations or energy 

between the two degrees of freedom. The sliding mass transfers its 

translational energy to rotational motion. These results appear in Appendix I. 

The conditions studied in Section 4.4.2.1 (mass reconfiguration at 

twice the structural frequency) showd that the excitation for in phase 

coordination initially attenuated the angular oscillation and for out uf phase 

coordination amplified the angular oscillations. The potential for a good 

attenuating reconfiguration strategy seemed apparent; namely sinusoidal 

mass reconfiguration that is coordinated in phase with the angular oscillations 

should produce parametric oscillations. However, when several time periods 

were examined the ensuing dynamics exhibited a beating effect whm the 

oscillations or energy pefiodically grew and decayed. The competing effects 

of damping stabilized the dynamics of the structure but the parametric 



structural parameters destabilized the system. When a sinusoidal profile for 

mass recanfiguration was not perfectly coordinated or tuned with the 

structural vibrations, the strategy appeared ineffective. Determining a 

strategy to attenuate vibrations no longer seemed to be an intuitive exercise. 

Mass reconfiguration at the higher frequencies of nine (9) and sixteen 

(16) times the structural frequency did not produce the same phenomena as 

those at twice the natural frequency. Initially, the systems appear to be 

oscillating at a constant amplitude. Examination of the change in energy also 

suggested that parametric amplification or attenuation will not occur. This 

observation of constant amplitude, structural, angular oscillation suggests that 

the chosen parameterization lies along a characteristic curve of the Haines- 

Strett diagrams (Figures 3.3 and 3.4). 

4.4.3 Relay Motion for Mass Reconfiguration 

The next option considered for mass reconfiguration was a 

discontinuous profile, a relay action. The motion as previously described 

(Sections 2.2.1 and 2.2.2) can be formulated as the following control logic and 

algorithm 

if p(~], e b  then r(r) =r(t  - A)-idr 

if l ~ ( r ] <  e .  then r ( r ) = r ( t - d ) + i d  (4.1 1 b) 

otherwise r(t)  = r(r - At) (4.1 1 c) 

and r;, ~r <r, 

where Equation 4.lf a represents moving the end mass towards the pivot, 

Equation 4.1 1 b represents moving the mass away from the pivot at a constant 

velocity, i and Equation 4.1 1 c represents a dwell phase (mass remains at the 

same distance from the pivot). Furthermore, displacement limits for the end 

mass, Equation 4.1 1 d, were imposed. 



The bounds (0, and 0,) for triggering the motion are set so that the 

mass is raised near maximum angular excursion and lowered near vertical 

angular displacement. For comparative purposes to the sinusoidal profiles of 

Section 4.4.2, the maximum radial, translational velocity was selected to be a 

1.0 m/s and the range of displacement was bound by 0.75 r r( t )  r 1.25 m for 

the auxiliary mass. Because the mass reconfiguration motion is tied directly 

with the angular position, its frequency remains the natural frequency of 

the angular oscillation and stable, parametric motion is expected. 

The temporal displacement profiles are show in Figure 4.16 where 

0, = 0.3295 fad and 0, = 0.2884 fad. 

I Time (s) 

Figure 4.16 Coordinated displacement patterns of the structure and moving 
mass for the simple relay reconfiguration scheme. 

. - 

6 The constant velocity value of 1 m/s was selected for the relay motion since 
this approximates the corresponding root mean square average velocity 
for the sinusoidal motion given by, r(t) = LO- 0.25sm(2 L321 t ++) 



For the chosen limits of the governing lugic for the relay action continual 

amplitude attenuation over the shown period is produced, without requiring 

the auxiliary mass to traverse its available range. The logic has been 

implemented so that the auxiliary mass returns to its lowst potential energy 

position. 

The corresponding energy profile for the system is shown in Figure 

4.1 7. 

Time (s) 

Figure 4.17 Energy profile when the auxiliary mass moves in a relay pattern 
along the pendulum structure, 

As seen, this technique was very effective in attenuation the angular 

vibrations of the pendulum system. However, the acceleration profiles 

imposed on the reconfig urable mass produced discontinuous forces which 

may become prohibitive and unachievable vrfren the velocity values are 

increased (i.e. a change in the auxiliary mass profile). The step size of the 

integration step was the controlling limit for these simulations.' This is 

7 When using a time step of 0-01 s, the acceleration value is bound by +I- 200 
mls2 which is prohibitively high. However, this value assumes a velocity 
magnitude that was comparable to the sinusoidal displacement patterns- 
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evident by examining the force required to effect this motion pattern as shown 

in Figure 4.18. Therefore, the profile for raising the mass and lowring the 

mass may need to be cycloidal or otherwise, to achieve a smooth transition 

betwen points of rest and motion for the translation of the reconfigurable 

mass. 

200 - 

Time (s) 

Figure 4.18 Force required to move the mass with this relay action. 8 

improved damping was achieved for this mass reconfiguration profile 

when the range of the auxiliary mass was increased, when the rate of motion 

was increased and/or the mass motion was more proximal to the pivot. 

The long term stability of this assumed reconfiguration pattern is 

evident in Figures 4.16 and 4.17, as the mass no longer traverses its entire 

range, yet the amplitude of oscillations continues to attenuate. For a constant 

value of the determined limits (8, ande,), residual energy remains. When 

another disturbance occurs additional energy is introduced to the system and 

the attenuation process would be re-initiated. To advance this system, the 

a The negative force values assumes the connecting structure (rod) that the 
mass slides along can carry a compressive force. 
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energy of the system must be monitored and self-adjusting limits of operation 

or optimizing the velocity rates at which the mass moves towards or away 

from the pivot is required. This is investigated further in Chapter 8. However, 

the beating phenomena that plagues sinusoidal motion of the auxiliary mass 

at near resonance did not occur. This algorithm (Equations 4.1 1) also 

incorporates a self-imposed stop so the auxiliary mass motion is automatically 

arrested. 

4.4.4 Summary of Assumed Mass Reconfiguration Profilea 

The basic strategies for moving the auxiliary mass were based on 

the previously discussed heuristic of cycling motion within a cycle of structure 

oscitlations (Section 2.2.2). One strategy was to move the mass in a 

continuous motion; the profile was assumed to be sinusoidal. Various 

strategies were presented for this sinusoidal motion of the endauxiliary mass; 

those presented included adjusting the frequency and the phase of the 

translational vibrations of the mass, The second strategy employed a 

nonlinear relay displacement profile for the mass. The motion was 

coordinated based on the angular displacement of the structure. For each of 

the above patterns the behavior of the system arising from the various 

movement patterns of the attenuation device were characterized by the 

angular displacement of the system and translational displacement of the 

auxiliary mass, the structural energy profiles and the required external force 

to cause the motion of the mass for a short and extended time period. 

For the sinusoidal motion of the auxiliary mass, the following dynamics 

w r e  obsenred. When the two motions were initially at the same frequency, 

the angular displacement output was symmetric when the motion was in 

phase with angular displacement and antisymmetric Wen the motion was out 

of phase with the angular displacement. When the radial motion was at twice 

the system's natural frequency, parametric attenuation resulted for out of 

phase coordination and amplification when in phase coordination existed. 



The sinusoidal motion has the benefits of smooth displacement and force 

profiles and appeared as though continued motion would arrest the angular 

vibrations. However, for extended runs the deviation between the actual 

dynamic stiffness and the assumed constant frequency of the moving mass 

produced a time varying phase which transpired as a beating effect. Instability 

regions as predicted by Mathieu's Equation (Section 3.3.2) occurred only 

when the motion of the mass was at twice the natural frequency. 

For the relay motion, both the force to generate the motion of the mass 

and the resulting translational motion of the mass were discontinuous. 

However, the algorithm did effectively attenuate the vibrational energy of the 

system and incorporated a self-initiated arrest feature and did not suffer from 

any beating behavior. The rate of change between the constant velocity 

states of moving the mass towards or away from the pivot is a limiting factor, 

as the force to produce this change may be unrealistic with respect to 

implementation. 

4.5 Sinusoidal Mass Reconfiguration and Stability: Beating Phenomena 

The phenomena of beating occurs when the assumed mass 

reconfiguration is harmonic at a constant frequency that is approximately 

double the structural natural frequency. An extended run of 50 time constants 

was illustrated in Figure 4.1 3 for this case. 

Initially, the motion appears to be attenuating parametrically, then this 

behavior goes awry as the amplitude of oscillation increases. Similarly, 

parametric amplification is stabilized by the same phenomena; the system 

dynamics does not permit continual, unbounded growth in the amplitude of 

angular oscillations. Wb time, the phase betiwen the translational motion of 

the auxiliary mass and the angular oscillations varies as shown in Figures 

4.19 and 4.20. The phase shifts to create periods of negative and positive 

damping. Note that the "angular peak ordinal" is referenced to the peak 



angular displacement as shown in Figure 4.19; the phase difference has been 

determined with respect to the angular displacement. 

f ime (s) 

Figure 4.19 Relation between angular osci tlations and translational motion of 
the auxiliary mass for the physical pendulum. 

Angular Perk Ordinal 

Figure 4.20 The phase between peak excursion values of the angular and 
translational motion of the moving mass for the physical pendulum. 



To avoid this beating behavior the fallowing process was devised. 

Rather than assuming a constant ftequency for the radial vibration of the 

auxiliary mass, its motion was tuned to the time-varying or dynamic stiffness 

of the system. A "variable frequency", harmonic motion for the auxiliary mass 

was proposed whereby the motion is described by 

where 

To simulate this motion, a recursive or iterative program was required as the 

parameters describing the motion of the endlawiliary mass itself depends on 

its current position. To provide efficient convergence an algorithm based on 

bisection was used; employing techniques using higher order derivative failed 

due to the nature of the imposed motion. 

Prescribing sinusoidal motion where the frequency is tuned to the 

system parameters enables the damping mechanism to operate continuously, 

without the beating phenomena as show in Figure 4.21, Note that this 

simulation was completed using an extrapolation algorithm. 

The desirable control of vibration attenuation is achievable and 

potential damage resulting from starting or stopping the control process as 

exists with the relay profile are eliminated. This may be of particular 

importance when the moving mass attenuation mechanism is integral in the 

system's design. 
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Figure 4.21 Coordinated dynamics when using a variable frequency 
sinusoidal mass reconfiguration profile for the physical pendulum system- 

The method of self-tuning the coordination of the translational 

vibrations of the auxiliary mass with the system rather than at a f~ed, 

frequency avoids the beating phenomena. This strategy can produce an 

autonomous vibration attenuation mechanism. 

4.6 Optimizing the Mass Recdguration P M l e  to Attenuate Vibrations 

Often engineering or industrial applications require the prudent use of 

resources or efficiency in their operation, so optimization is incorporated into 

the design andlor operation processes. For this research, auxiliary ar end 

mass motion that characterizes the mass reconfiguration was optimized to 

attenuate the structural vibrational energy for various time periods. The focus 

was on parameterizing the sinusoidal and relay motion of the auxiliary mass. 

Also, to generate a general pattern, the auxiliary mass displacement profile 

was expressed as a Fourier series Hlhere the amplitude, fkqu8ncy and phase 

coefficients were adjusted. 



4.6.1 The Optimization Process 

The basic concept of optimization is to find the extrema of an objective 

or cost function. This function quantifies a performance criteria. For this 

research, the objective function was to minimize the vibrational energy of the 

structure by varying the design parameters that define the mass 

reconfiguration profiles. The complexity of the optimization problem increases 

as limitations are placed on the performance criteria andlor the design 

variables. For the pendulum, these limitations include ensuring system 

stability and providing consistency amongst the various attenuation schemes 

was imposed. 

Typically, algorithms for the direct method of optimization require an 

initial set of the design parameters, then the space is searched to find the 

"best" solution (maximum or minimum) for the objective function. The search 

process, its direction and distance, is based on the objective function. The 

degree or order of the optimization method is determined by the inforrnation 

used in the objective function. Zero order methods (such as: bisection 

methods, random searches, evolutionary programs and genetic algorithms) 

require only an evaluation of the function when searching the design space. 

First order methods (such as, steepest descent or conjugate gradient) use the 

first derivative of the objective fundion to find its extrema; second order 

methods use second derivative inforrnation and so on. 

In searching for a "be& solution when using an iterative algorithm 

process, a convergence criteria for terminating the process is required. Often 

the criteria may be based on executing a set number of iterations andlor the 

change in evaluating the objective function or its derivatives meets a specified 

tolerance limit 

4.6.2 Applying the Optimization Process 

Optimizing the reduction of the vibrational energy via mass 

reconfiguration is essentially a dynamic control problem. However, the 



problem can be converted into an iterative, parametric optimization. The 

reconfiguration profile was parameterized using the equation of motion for the 

endauxiliary mass, r(t. A) where A represents a vector of design variables. 

For a given set of design variables, A ,  the system dynamics can be simulated 

to evaluate the effectiveness for vibration attenuation. In accordance with the 

search algorithm, the design parameters are adjusted to improve 

performance. This process is represented as a flowchart in Figure 4.22. 

Select Initial Values 
- define optimization period 
- select A, to define r(t& 

Dynamic Simulation 
- solve governing diflerential equation 
with r(r,A,)as the input 

I 
Evaluate Cost Function 
- defined as the cumulative sum of the 
system's local energy peaks 

Parametric Optimization 
- using various algorithms update, A 
and determine new r(t& 

I 

Figure 4.22 Flowchart of the optimization process. 

tw 



The objective function was defined in terms of a cumulative sum of 

local structural energy peaks. TWO equations were used; one examined the 

initial portion of the energy profile (J,) 

the ather examined the fins[ portion of the energy profile 

Mere e,,  is the local maximum (peak) energy of the system, 

N is the total number of peak energy values occurring during the 

simulation period, and 

n is the number of peaks considered for the optimization as shown in 

Figure 4.23. 

The optimization based on Equation 4.13a provides good initial 

attenuation, whereas the optimization based on Equation 4.13b provides 

attenuation at the end of the period under examination. 

The system energy value is comprised of the potential energies of the 

structure (pendulum) and the attenuating device (sliding auxiliary mass) and 

the kinetic energy of the structure. By considering the peak energy values, 

the problem was discretized and the optimization could be msidered for a 

given period of operation. When n is small, only part of the simulation is 

mnsideted; when n + N as N + X ,  the optimization becomes more 

encompassing. As shown in Figure 4.23, the energy profile may be harmonic 

of the angular displacement profile and for the attenuation profiles, as 

previously presented in Section 4.4, extrema in energy ocarn near maximum 

and minimum values in the angular excursion pattern. 
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- 1  

Figure 4.23 Typical temporal energy and angular displacement profile for 
sinusoidal auxiliary mass motion. 

The fotlowing profiles w r e  used to define the translational motion of 

the auxiliary mass along the pendulum structure. dt. A) : 

a) sinusoidal based motion 

r(t .A) = R, - &sin(qmt +a,) 

b) relay motion 

if le(rj > 4 then r(t) = r(r - &) - i& 

or if l0(r)(  <a4, then r(t)=r(r-&)+id! 



c) generalized motion 

d) proportional and derivative control motion 

r(t, A) = a$(t)I + a&t] . (4.1 4.d) 

where a, fork = 1 to 9 indicate the design parameters. The parameters were 

restricted so that the translational motion was restricted to 0.75 I r I l.25 m, as 

measured radially from the pivot. All variables representing angles w e  

unconstrained. 

Optimization was primarily performed for the physical pendulum 

system. The pendulum, as show in Figure 3.2, had a concentrated mass of 

7.5 kg and an effective length of 1.0 m. The auxiliary or sliding mass was 

selected to be 10% of the pendulumistrudural mass. For each optimization 

case, the set point or operating state of the pendulum system was based on 

the pendulum having an initial energy state due to an angular displacement of 

30" from the vertical equilibrium position. The dynamic simulation software 

used either the fourth order Runge-Kutta or an extrapolation algorithm as the 

initial value solver for Equation 3.3a. The time period for which the 

optimization was conducted was varied. 

The optimization algorithm that were employed included both zero 

order and first order methods. Primarily, evolutionary programming was used 

with start positions based on Pow11 method, variable metric methods or an 

understanding of the control action- (A description of each method appears in 

Appendix J.) The convergence criteria when employing nondeterministic 

techniques of evolutionary programming was based on completing 400 to 

4000 iterations of the optimization loop due to the stochastic nature of the 

algorithm. Otherun'se, no significant change (103 in the cumulative energy 

value (Equation 4.13) was used. 



Results for the various displacement profiles, as given by Equations 

4.1 4.a to 4.14.4, follow. 

4.6.3 Optimization Results 

Optimization for the displacement profiles were limited to set time 

intervals. For each of the time periods, the results included the final value of 

the objective criteria (Equation 4A3) and the final design parameters. 

Although several runs were completed using stochastic search routines, only 

the "best" results are reported. Note that this optimization problem featured 

several local minima. 

A typical convergence of the parameters given in Equation 4.14a when 

using the evolutionary algorithm technique for objective function 4.13a is 

shown in Figure 4.24. A good initial guess had been selected to initiate the 

process. 

-a - - - - - -a2 :  

Figure 4.24 Convergence of the design variables for 4 - t sin(qmt + 4). 



4.6.3.1 Sinusoidal Mass Recorrfiguration Profile 

When the end or auxiliary mass displacement profile is sinusoidal 

(Equation 4.14a), various phenomena may arise as discussed in Section 

4.4.2. Based on Equation 4.14a, the frequency (a,a) and the phase (a,) 

were chosen as the design variables. The other parameters were set as 

R, = 1.0 m, Ar = O Z  m and o = 3.1321radls. The optimization for reducing the 

vibrational energy of the simple pendulum was completed using Equation 

4.13b where the last five (5) peak energy values for various time intervals 

were used. 

Regardless of the initial parameterization for the reconfiguration profile 

and the optimization interval, tfie sinusoidal mation that reduced the structural 

energy converged to nearly twice the average natural frequency of the system 

(Table 4.3, column 2). This agrees with the underlying physics as discussed 

in Section 2.2.2. 

Table 4.3 Optimization of & - Y sin(qot + 4) 

Optimization I Frequency I Phase shift I Cost Function 

The phase shift varied depending on the length of the simulation 

(fable 4.3, column 3). A variation in the phase angle accounts for 

coordinating the energy minimization with the chosen optimization period. 

This was $how in Figure 4.15 where the energy profile varied periodically 

and was entrained with a higher harmonic. As shown in Figure 4.15, the total 

strudural energy at r = 5, 20 or 40 seeonds were similar; this may account for 

attaining similar phase shifts. 

(seconds) 
5 
10 
20 
40 

(radiansls) 
5.940 

.. 6.122 
6.260 
6.255 

(radians) 
0.4836 
0.2564 

.. 0.5958 
0.4998 

(3) 
44.7957 
1 9.5293 
8.81 98 
2.61 0 



the optimization examines only a small portion of the energy profile. 

Ideally, the mass reconfiguration should be properly coordinated with the 

angular osciltations to produce energy attenuation. Thus, the initial energy of 

the system through repeated cycling of the slider wu ld  be reduced 

parametrically. Hence, the cumulative energy value (Table 4.3, column 4) 

should decrease with longer time intervals, as was shown. 

The results in Table 4.4 were obtained optimizing Equation 4.13a for 

the physical pendulum system. Various time periods were considered as 

indicated in Table 4.4, columns 1 and 2. Note the initial value of the objective 

function (column 3) when compared to the final optimized value (column 6) 

indicates the starting parameterization was well chosen for the problem. 

Table 4.4 Optimization of &, - &sin(a,mt +%)for physical pendulum 

Simulation 
Length (s) 
5 

10 

30 

50 

Jip (initial) 
(N-m) 
76.9392 
88.8764 
76.9392 
100.6743 
124.2942 
1 48.1438 
1 97.9203 
21 0.8743 
100.6743 
1 24.2942 
1 48.1 438 
283.221 5 
756.621 4 
1 24.2942 
148.1438 
1 97.9203 
283,221 5 
756.621 4 
1068.3294 

Frequency 
a,a, (radls) 
6.0381 05 
6.0381 12 
6.0381 10 
6.107198 
6.134335 
6.1 25754 
6.126433 
6.1 26421 
6.1071 82 
6.1 37197 
6.1 45833 
6.167618 
6.1 73288 
6.124569 
6.147330 
6.1 58987 
6.1 781 83 
6.1 76631 
6.321 721 

Phase shift 
a* (rad) 
0.253559 
0.253554 
0.253563 
0.1 95438 
0.95771 8 
0.1 79486 
0.1 78906 
0.1 7891 8 
0.1 95443 
0.124463 
0.1 17086 
0.1 1 3882 
0.131348 
0.1 82365 
0.1 1 5797 
0.1 05826 
0.044040 
0.45091 1 
0.360554 

lip (final) 
(N-m) 
73,7337 
83.3628 
83.4717 
90.0640 
106.0382 
126.2281 
1 70.2469 
1 80.8739 
90.0640 
106.0330 
1 20.4586 
177.5810 
380.9746 
106,1628 
120-4573 
1 45.6359 
l77-OOI 7 
443.7935 
991 -8176 



For the chosen mass reconfiguration displacement profile, energy is 

initially added prior to any attenuation. To appreciate the optimization 

effectiveness of the attenuation process, a percentage difference was 

calculated with respect to the system energy without continued mass 

reconfiguration. The reference energy can be either the first peak energy of 

the system with the chosen mass reconfiguration displacement profile or the 

initial energy of the system. The percent difference is given as follows: 

where J = J ,  or J,  is the final optimized cumulative energy sum, and 

Jo = ( n  + l)e,, is the reference cumulative energy sum with 

e,, = 1430 N -m or 1325 N - m , the initial peak energy for 

this system or the initial energy of the system9. 

The optimization results given in Table 4.4 also indicated the desirable 

frequency for attenuation should be nearly double the natural structural 

frequency. The phase shift appears to be very dependent on the number of 

peaks in the optimization interval with less consistent convergence resulting 

as the optimization interval w s  increased. 

The optimized solution was effective for the time interval defined by the 

number of peaks considered. Regardless of the optimized parameters, this 

mass reconfiguration profile for extended time runs generated the beating 

phenomena. Nonetheless, significant attenuation occurred for the 

optimization period. Generally, as the time period was extended the 

improvement achieved by the optimization process also improved. 

9 For the simple pendulum system, the initial energy value is 9.55 N-rn and 
for the physical pendulum system, the initial energy value is 13.25 N-m. 
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The significance of performing this optimization lies with a possible 

implementation. As constant frequency, mass reconfiguration is easier to 

achieve, the implementation could consist of operating this control action for 

only a given time period. The control action could be initiated once the 

structural, vibrational energy reaches a set value. The optimization results 

provide the recommended frequency for various attenuation rates andfor 

steady state energy values. Having the attenuation device operate as 

required also has the advantage that the structure is not continually subjected 

to the radial vibrations of the sliding mass. 

4.6.3.2 Relay Action for Mass Reconfiguration 

The optimization of the relay motion examined not only changing the 

intervals where the slider moved either towards or away from the pivot but 

also the stating of conditional logic in terms of its parameters and 

governance. These intervals were delineates by structural angular 

displacement or angular velocity states; these limits or switching values, 

a, and a, were the selected design parameters. The velocity, i t  of the 

auxiliary mass was held constant at 1.0 m/s. This velocity is not only 

physically feasible, but also is comparable to the root mean square velocity 

for the previous sinusoidal motion. The results were tabulated over various 

time intervals using the objective function described by Equation 4.4 3a. 

The parameterization achieved during optimization for the various rules 

as indicated appear in Tables 4.5, 4.6 and 4.7. The optimization was 

completed by examining the peaks of the first portion of the energy profile. 

For the relay action based on angular displacement limits (Table 4S), 

the optimization effectiveness can be calculated using Equation 4.15 Were 

this mass reconfiguration has an initial peak energy value of 

e,, = 14.76 N -m . 



Table 4.5 Optimization for Relay action, 

RULE: if lO(t# c a, , then r(t) = r(r - At) +iAt  

else if lO(t] > a,. then r(r) = r(t - At) - iAr 

Simulation 
Length (s) 
5 

10 

30 

50 

Jip 

(initial) 
87.3908 
158.O495 
1 44.0662 
171 -9686 
226.8085 
144,0662 
171.9686 
226.8085 
306.791 6 
552.948 1 
1 44. M62 
171.9686 
226.8085 
306.791 6 
767.2641 
lO8O.n86 

J, 
(final) 
68.43058 
145.1 9608 
132.00449 
136.25458 
169,25932 
112.91154 
133.31 333 
165.00674 
222.031 86 
344.45600 
1 33.03961 
138.81 834 
169.6521 5 
21 5.65916 
507.40849 
774-9571 2 

This optimization reflects the previously discussed logic that the mass 

should be raised when the oscillations are away From the vertical and lowered 

when the pendulum passes beneath the pivot; that is, a, <a,.  Note that 

exceptions may be due to the nature of the optimization technique. The 

variation in the optimized design parameters indicates the time dependent 

nature of this problem. 

The next results employ control logic based on angular displacement 

and velocity limits. The control logic varies; Table 4.6 used a "if. ..else" 

structure and Table 4.7 employs a series of "if ..." statements. Again, the 

optimization effectiveness can be calculated using Equation 4.1 5 where this 

mass reconfiguration has an initial peak energy value of e,, = 13-25 N-m. 



Table 4.6 Optimization for Relay action, 

RULE: if IB(m <a3, then r ( t )=r ( t -hr )+ iAt  

Simulation 
Length (s) 
3 
5 
7 
10 

30 

50 



Table 4.7 Optimization for Relay action, 

RULE: i f  ld(t] < a3 , then r(t) = r(t - At) - iAt 

i f  IB(t] > a,, then r(t) = r(t - At) + iAt 

Simulation 
Length (s) 
5 
10 

30 

50 

J* (initial) 
(N-m) 
1 14-41 99 
1 14.41 99 
135.3023 
176.5470 
236.6305 
1 14.41 99 
135.3023 
176.5470 
236.6305 
41 6.4584 
1 14.41 99 
1 35.3023 
176.5470 
236.6305 
569.7094 
787.6889 

J* (final) 
IN-rn) 
1 1 2.3845 
1 12-91 37 
134.3922 
173.9518 
21 3.1989 
1 13.5587 
1 33.5282 
174.91 21 
233.3368 
377.6087 
1 13.2230 
134.1 I68 
174.5706 
231 -4356 
480.321 9 
649.6805 

This relay action, as indicated in Section 4.4.3, provides autonomous 

control without self-exciting vibrations as had occurred with the constant 

frequency sinusoidal mass reconfiguration profiles. 

The optimization attained could be applied to other time periods 

without devastating effects; that is, the system behavior remained stable. 

However, residual structural energy did exist and varied with the 

parameterization. The residual energy is the system energy which remains 

once the structural vibrations are sufficiently attenuated so that triggering the 

relay action of mass reconfiguration no longer occurred. These values are 

presented in Chapter 8. Generally, when the time intervals over which the 

optimization w s  conducted were increased, the magnitude of the residual 

energy decreased. Correspondingly, a change in the response time also 

occurred. Furthermore, these optimization results also serve to set limits for 



the self-adjusting parameters of the knowledge base controller presented in 

Chapter 8. 

4.6.3.3 General Profile for Mass Reconfiguration 

To describe a general reconfiguration pattern for the auxiliary mass, 

the first four terms of a Fourier sine series were considered, as given by 

Equation 4.14~. The only constraint placed on the reconfiguration was that 

the motion remained bound between (0.75,1.25). The design variables 

included the amplitude coefficients, a, and as, frequency scaling factor of a, 

and a phase shift of a,. The natural frequency was assumed to be 3.1321 

radls. Initial expectations were that this general motion would provide better 

performance than either the sine or relay patterns as previously selected. 

The results of various optimizations was a convergence to the 

sinusoidal motion whereby the slider moved at Mce the natural frequency of 

the pendulum. The attenuation process was dominated by the "fundamental 

frequency" of the mass reconfiguration profile which was at twice the 

structural, natural frequency. The results as with the sinusoidal motion of 

Section 4.6.3.1 were dependent on the period for which the optimization was 

performed. 

4.6.3.4 Mass Reconfiguration Using Modified Proportional 

and Derivative Action 

The radial motion of the end mass was based on a modified 

proportional and derivative controller. The error signals were based on the 

angular displacement and velocity of the system with respect to the desired 

operating state of zero angular displacement and velocity. Due to the 

oscillatory nature of the problem the absolute value of these signals w e  

used as given by Equation 4Md. The design parameters were the 

proportional gain, a,, and the derivative gain, q . Again, the translational 

displacement trajectory of the end mass was restricted. 



Similar to the sinusoidal motion with tuned frequency as presented in 

Section 4.5, this reconfiguration profile will remain coordinated with the 

angular displacement. This following optimization results w r e  based on the 

simulation of a simple pendulum where the end mass position was confined 

betwen 0.75 I r r. 125. Optimization was completed for various time intervals 

as indicated in Table 4.8. 

Table 4.8 Optimization Results for r(r. A) = cr,p(t)( +u$(r)( 

Simulation 
Length (s) 
5 
10 

30 

50 

5, (initial) 
(N-m) 
62.525635 
1 lO.WS62 
1 1 0.90562 
1 10.90562 
1 10.90562 
1 lO.9OS62 
1 27.885742 
158.049673 
197.61 8443 
258.855962 
1 10.90562 
1 27 -685742 
l58.ON6f 3 
197.61 8443 

Jip (final) 
IN") 
57.949268 
100.175625 
100.175625 
lOO.l6623 
100.175625 
100.175625 
1 1 3.448700 
135.556020 
160.688751 
200.661 549 
1 00.165764 
1 13.387570 
135.61 351 8 
1 60.927906 

Note the optimization performed over 10 second interval had only 10 

peak energy values; hence, optimizations considering higher number of peak 

than 10 had the same design variable convergence. 

The results reflect the characteristics of the system with the relation 

between the design parameters or gains satisfying the following relation 



This ratio of gains is less than the natural frequency as the mass 

reconfiguration profile provides damping and as expected the damped natural 

ftequency (a,) is less than the natural frequency (a,) of the system 

(a, = a, ,/=) with the damping ratio ( 5  ) ranging between 0.3 to 0.6 . 

4.7 Summary 

The dynamic interaction of the proposed active damping device were 

studied using numerical simulations. After programming the initial value 

simulation software, the local truncation error, nature of convergence and 

stability of the program were reviewed. Based on the known solution for the 

conservative system of a constant length pendulum, the software was 

assumed to produce reliable results. 

Initial simulations examined the assumptions and simplification made in 

previous sections to explain the expected dynamics associated with mass 

reconfiguration for pendulum structures. Also investigated was the difference 

in modeling the attenuation device as a moving mass compared to a moving 

force. 

The effects of reconfiguring the mass within the pendulum system were 

studied for the single and dual mass pendulum systems based on various 

patterns for the radial motion of the auxiliary mass. As show, the motion of 

the slider can excite various system responses. 

When harmonic motion is assumed for the slider, the frequency and 

phase of the motion greatly affect the ensuing dynamics. When the radial, 

translational frequency is twice the natural structural frequency and the radial 

vibrations are in phase with the angular oscillations then parametric 

amplification initially ensue and if the coordination is out of phase, paramMc 

attenuation initially results. For extended runs, the beating phenomena was 

obsenred where periodic, bounded amplification and attenuation occurred. 



To ensure continued attenuation, proper coordination between the 

attenuation device and the angular oscitlations was necessary. The position 

of the sliding mass affects the system's parameters; that is the natural 

frequency of the system changes with the slider position. One proposal to 

achieve continual parametric attenuation when harmonic mass reconfiguration 

is assumed was tuning the frequency of the slider to the structural frequency. 

The frequency of the sliding mass was variable and a temporal function of its 

position. 

Various displacement patterns for the auxiliary mass were analyzed 

and optimized to achieve improved energy reduction for set periods. The 

optimization involved parameterization of the displacement profile of the 

auxiliary mass. Four modes of motion were studied; namely, sinusoidal 

motion at a constant frequency and phase shift, relay action based on either 

current angular displacement andlor velocity, general profile defined using a 

Fourier series and a modified proportional and derivative based displacement 

profile. For each displacement profile, the optimized design parameters were 

dependent on the time period being analyzed. The following trends were 

observed: 

1. For a cycle of pendulum motion where the mass reconfiguration is 

also cyclic, energy is initially added to the system before being removed. 

The auxiliary mass motion was initially raised at maximum angular 

displacement (thereby, adding energy to the system) prior to being lowred 

(thereby decreasing energy); 

2. the "best" attenuation for the auxiliary mass motion defined using 

sinusoidal functions was &sewed to be nearly the structural natural 

frequency; 

3. for the relay based profiles, the design parameter for raising the 

mass corresponded to a larger displacement from the vertical than the 

angular displacement limit for lowing the mass; and 



4. the relation between the proportional and derivative gains is 

negative and their ratio is slightly less than the structural natural frequency 

which indicates the system frequency is being damped. 

Based on the interaction between the radially vibrating mass and the 

angular oscillating pendulum structure, several seemingly viable approaches 

for training and operating the controlter exist. Sinusoidal motion for the 

auxiliary mass is appropriate if its motion remains at the natural 

ftequency of the system and properly coordinated with the angular vibrations. 

The tuned or time varying frequency sinusoidal motion provided continual 

parametric attenuation. A perturbation between the natural frequency and 

that of the mass may result in beating phenomena. When employing a 

constant fhquency, sinusoidal mass reconfiguration profile, the auxiliary 

mass motion must be coordinated and operates for only a set time to 

avoid the beating effect. The nonlinear relay action was effective at reducing 

the system's energy without any beating effects observed. By virtue of the 

conditional logic, this technique provided automatic initiation and cessation of 

slider motion. To conclude, the proposed technique of strategically moving a 

mass along a structure can be used to regulated the vibrational energy of the 

structure. 



5. Controllem 

5.1 Introduction 

Through a computer simulation approach, various controllers were 

used to integrate the plant (a pendulum structure) with the vibration 

attenuation device (a mass redistribution mechanism). This chapter provides 

a brief introduction to the controllers employed in this research. For each 

controller, the basic concepts, properties, potential and related terminology 

are given. Implementation and performance details of each controller when 

integrated with the structure are presented in subsequent chapters, 

The controllers can be categorized as a human operator that interacts 

with the system, a nonconventional controller that has similarities to a 

proportional and derivative action, a rule-based or knowledge based system 

that is based on heuristics from the human operator and an artificial neural 

nethark that imitates an appropriately controlled system. For this application, 

each controller was expected to operate using multiple, time-varying, 

nonlinear input parameters. In addition, the controller should be extendable, 

adaptive and ultimately autonomous (Sections 2.2.3 and 2.2.4). The 

performance of each controller was evaluated on its ability to attenuate 

structural vibrations. Since the design focus was initially on innovation, 

applications of artificial intelligence techniques were examined. 

In constructing the complete control system, various tools for both the 

simulation and artificial intelligence controllers were developed and 

customized accordingly. As application software andlor hardware for artificial 

neural newrks was in its infancy at the time of initiation of this research and 

was commercially unavailable, original simulation wftware had to be 



developed [Stilling and Watson, 1994; Stilling, 1993; Stilling and Watson, 

1992; Watson and Stilling, 1992; Stilling and Watson, 1991; Watson and 

Stilling, 1991; Stilling, 19901. Furthenore, the philosophical premises of 

some of the artificial intelligence technology were just being established and 

applications, as reported in the literature, were limited. 

5.2 Human Operator Controller 

The process of redistributing the mass to attenuate energy is akin to a 

"playground swing" situation where through mass redistribution angular 

oscillations are amplified [Walker, 1990; Curry, 1976; Gore, 1970; Bums, 

1970; Tea and Falk, 19681. Through trial and error, children can effectively 

learn to "pumpn the swing to generate motion. Foreseeably, the inverse 

problem of arresting the osciltations can be learned heuristically. 

The physics of the interaction of moving an end mass towards andlor 

away from the pivot for the simple pendulum (Section 2.2.2) suggests a 

solution can be developed and generalized as a conditional rule. In this 

study, applying this generalization to the variable length pendulum became an 

exercise in hand-eye coordination. As the operator pulls or releases the 

pendulum cable to adjust its length, its angular vibrations can be attenuated. 

The operator processes various pendulum dynamic information and applies it 

to attenuate the system's vibrational energy. 

Despite the inherent inexactness of a human controller, one can 

become skilled at the task and acquire sufficient expertise to outperform many 

conventional, linear or nonlinear control systems. In implementing a human 

controlled system, the dynamic process of reconfiguring the mass were 

simulated and animated on a computer- The resuits far the interactive 

sessions had dired implications for implementing rule-based controllers and 

will be considered in detail in Chapter 6. 



5.3 Controller with Modified Proportional and Dedvativo Action 

An initial proposal w s  a controller that uses proportional and 

derivative action to implement the two phase control stfategy as given in 

Section 2.2.2, 

(1) lengthen the pendulum as it passes beneath the pivot (its 

'neutral'' position) when the angular velocity is maximum, 

and 

(2) shorten the pendulum at points of maximum angular 

excursion (its extrema positions2) when the angular 

velocity is minimum. 

Although the control strategy is stated in a discrete manner with 

respect to the extrema of the timedependent vibration displacement profile, 

developing a linear-based controller should be possible; this controller would 

provide a continuous control signal. The control strategy was relaxed by 

identifying the point where the pendulum changes its length as a region; that 

is, the pendulum was lengthened as it approaches the neutral position and 

shortened as it nears its maximum angular displacement. This continuous 

motion for the attenuation device had desirable, physical implementation 

characteristics. 

One possible twu phase control strategy is illustrated in Figure 5.1 

Mere a single period of simple hamnic vibrations for the undamped 

pendulum system is being considered. The desired control action at example 

points is also illustrated in this figure. The first phase of tbe control law as 

illustrated (1 ) applies near the erdrema in the angular velocity and the second 

1 For the pendulum system, the neutral position refen to the case when the 
pendulum is vertical beneath the pivot 

Extrema positions are measured with respect to the 'neutral' or vertical 
position of the pendulum. 
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phase (2) applies near the extrema in the angular displacement profile. Both 

axes have been normalized (the abscissa, with respect to the period of an 

oscillation and the ordinate, with resped to its corresponding maximum 

value). The strategy of moving the mass at approximately twice the natural 

frequency appears to indicate that the control action could be based on 

angular displacement (proportional control adion) and angular velocity 

(derivative control action). 

UP DOWN UP DOWN UP 

Normalized 
Time 

(I) 

Figure 5.1 Applying the control law of (1) lengthening and (2) shortening the 
pendulum for simple harmonic vibrations. 
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The operation of linear controllers have been wll studied and provide 

good control for linear systems [Ogata, 19701. Proportional and derivative 

controllers provide anticipatory action as the derivative control action 

responds to the rate of change of the error which can give significant 

correction prior to the actual error becoming too large. Also, the proportional- 

derivative controller tends to increase the system stability by adding damping 

to the system, but has the drawback of amplifying noise that can lead to 

saturation effects. 

A controller with proportional and derivative action was considered 

first. Mathematically, the control signal fed to the plant or pendulum structure 

can be expressed as : 

where m(t) represents the contml signal; 

k, or K, , proportional gain; 

k, or Kd , derivative gain; 

e(t),  the error signal that corresponds to the difference in 

angular displacement measured with respect to the zero, 

equilibrium position ( e(t) = 8, -f3(t) = 0 - 0(t) = 4 ( t )  ); 

d(t),  the first time derivative of the error signal which 

corresponds to the angular velocity as measured with resped to 

the desired, equilibrium state ( q t )  = 0 -0(z) = -6(t) ); and 

q t )  and i?(t), normalized error signals where l~(t(m s 1 and 

li(t] 5 I .  



Physically, the control signal (dl)) would drive a mechanism to move 

the attenuation device, an auxiliary mass. For example, the mass could be 

lowered when the control signal, dt), was positive and raised when the 

signal was negative. Hence, the control signal produced by Equation (5.1) 

would not be capable of efficiently attenuating the penduiurn vibrations. For 

the case where both the proportional and derivative gains are positive with 

K, = K, = 1, the control signal represents the desired control law for only part 

of the period. As s t t o w  in Figure 5.3, this signal has the same frequency as 

the oscillations of the system, rather than the desired control action which 

should be at Mce the frequency of the pendulum. Therefon, the sign of the 

control signal cannot be consistently related to the desired control action. 

Note that the axes have been normalized, with the control signal being the 

sum of the two normalized error signals as given by Equation 5.1. 

This analysis was completed for only one period with the natural 

frequency of the system assumed to be constant. Subsequently, the phase 

shift betwen the control signal and the dynamics of the system wuld  remain 

constant. However, the physical application of reconfiguring the mass within 

the pendulum system to effect damping does result in changes to the natural 

frequency during a period of oscillation, as discussed in Sections 3.4, 4.4.2 

and 4.5. Implementing a linear controller, based on Equation 5.1, with the 

actual system wuld  produce nonoptimal control as the control action would 

not be properly coordinated with the dynamics of the plant over the entire 

period. Also, other &&As, such as beating phenomena, may be encountered 

as described in Sections 4.42 and 4.5 or some bifurcations as recently 

reported vagaski, 19991. 

The control logic based on extrema, as itlustrated in Figure 5.1, 

required the control action to be at W*ce the natural frequency. Unfortunately, 

a proportional and derivative controller provides control action at the same 

frequency as the structural oscillations, as show in Figure 5.2. 
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Figure 5.2 Comparison of linear proportional and derivative control signal 
with the desired control strategy at each extrema. 

A control strategy that satisfied the desired control action, yet retained 

the desirable characteristics of a proportional and derivative action was 

possible, if the error signal and its derivative w r e  rectified. The control 

signal wuld then be defined as 

with the notation being the same as previously given in Equation 5.1. This 

type of action will be referred to as a "modified, proportional and derivative 

control actionu. 



When the gains were both positive, then the control signal oscillated at 

twice the frequency of the plant and remained positive throughout the cycle of 

angular oscillation. Generating this action to physically represent the 

displacement profile of the attenuation device satisfied the frequency relation; 

however, the coordination between the translational motion of the attenuation 

device and the angular oscillations would not alter the system energy. 

However, if the gains were chosen so that K p  < 0 and K, = -Kp , then the 

control signal would be a "saw-tooth" pattern as show in Figure 5.3 when 

Kp = -1 and K, = I. This profile satisfied the control logic for each extremum 

and would be appropriately mapped to the velocity profile of the auxiliary 

mass. Desirably, this control action wuld require the "proportional" and 

"derivative" gains to be adaptable to eliminate the structural, vibrational 

energy. 

Other control signals wuld also satisfy the control logic, such as a 

control signal based on the rectified error with a given offset. Mathematically, 

this can be stated as, 

when O represents some bias and K, c 0. 

This type of control action can be considered as a biased, rectified 

proportional controller and is illustrated in Figure 5.4 for K p  = -1 and O = 0.5. 

This control action would be used to drive the attenuation device and would 

be representative of its velocity profile. Wm this control signal, achieving 



'complete' vibrational attenuation wuld also require an adjustable bias3; 

otherwise, some residual energy wuld remain. Although this control signal 

was not implemented, it illustrates that a variety of control signals exist and 

may be implemented to satisfy the desired control logic. 

- 

0 "t - 5  .P i t C t 
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Figure 5.3 Control signal with modified, proportional and derivative action 
satisfies the control law. 

3 An adjustable bias may be based on the normalized error function and may 

be defined as O = k 144 where k is an optimized constant and 
e(*)--, 

dt).- is the maximum value of the error fundion for a period. 
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Figure 5.4 A biased, rectified proportional control action also satisfies the 
controi logic. 

The cantrolter with the modified, proportional and derivative action is 

represented as a block diagram in Figure 5.5. This controller with 

appropriately chosen gains was expected to be effective for a given set point. 

A similar control action where the auxiliary mass translated radially in a 

continuous, sinusoidal pattern along the pendulum has been simulated in 

Sections 4.4.2 and 4.6.2. When the frequency of motion of the auxiliary mass 

was fixed, the dynamics of the system exhibited beating phenomena (as 

s h m  in Figure 4.24). This phenomena wns avoided by using a "tuned" 

ftequency for the auxiliary mass motion, as described in Section 4.5. Since 

the control signal in Figure 5.5 was based on the actual angular position and 

velocity as feedback parameters to calculate the enor signal and generate the 



control signal, this phenomena was not expeded. The feedback parameters, 

themselves, would provide the necessary tuning and the control action would 

remain coordinated with the error signal. 

Mass-Pendulum 

Figure 5.5 Block diagram implementation of the controller with modified, 
proportional and derivative action. 

Details of the operation of this controller are given in Chapter 7. 

5.4 Artificial Intelligence Technology 

Artificial intelligence is a unique blend of biological processes with 

technology. In emulating various human or biological processes, several 

techniques andlor tools have evolved which include knowledge based expert 

systems, artificial neural nehmrks, genetic algorithms and evolutionary 

programming. Research in the field of artificial intelligence is truly 

interdisciplinary as contributions or applications have included psychology, 

physiology, biology, neuroanatomy, social sciences, mathematics, physics, 

engineering, applied mathematics and computational sciences, to name but a 

few [Miller, 1990). The advances made in these areas during this portion of 

the thesis research have been immense [Sanchez-Sinecio and Lau, 19921. 

Typically, artificial intelligence technology provides a method of 

handling knowledge, where knowledge refers to information or models that 

are used to interpret, predict and appropriately respond to actual systems 



[Haykin, 29941. Often the representation of knowledge is redundant, 

incomplete and error prone; artificial intelligence technology can handle 

these problems in an effective manner. Despite industrial applications being 

limited [Miller, 19901, this field was considered very tractable to the thesis 

research. The next two sections provides a brief introduction and describes 

the potential implementation of knowledge based or expert systems and 

artificial neural networks as control candidates. 

5.5 Knowledge Based Systems 

Knowledge based systems (KBS) or expert systems are one of the 

tangible products of artificial intelligent research. KBS essentially attempt to 

capture human expertise or specialized knowledge for an application area. 

Several architectures for KBS have been developed. Typically, a knowledge 

based or expert system controller is comprised of a knowledge base, an 

inference engine and a working memory or interface system [Wolfgram, 1987; 

Krishnamoorthy and Rajeev, 19961. Basicalty, the knowledge base contains 

the relevant information regarding the area that the system is to provide 

expertise and assistance; this may be formulated as facts andfor governing 

rules. The conditional logic used to control the attenuation device, as 

previously stated in Section 5.3, could form the knowledge base for 

attenuating vibrations by mass reconfiguration. The working memory or 

inference engine accesses this information, appropriately. The interface 

system is the link between the userlsystem and the knowledge base. 

Typically, when KBS are used to assist a human operator, an interactive 

session consists of the operator providing appropriate data as prompted by 

the KBS through a computer terminal and keyboard interface. For an 

automated control system, sensors would provide the necessary input data for 

the inference engine to ad on. 

Knowledge based systems are applied where the expertise can be 

formulated into a hierarchy of heuristics or conditionals. Early applications 



were nonnumerical problems that related to areas of assessment, monitoring 

and diagnosis. The MYClN project for medical diagnosis was one of the 

earliest projects in this fietd [Ally and Coombs, 49841. Other applications 

included prediction, identification, speech understanding, design, repair, 

problem identification. monitoring, planning, debugging, instruction, plant 

dynamics and control [Stilling, 1989, Walker and Miller, 19901. For control 

applications, the input data or information is assessed and processed by the 

inference engine according to the hierarchy of heuristics or control laws; then 

the appropriate control action is generated. 

The challenge of creating an expert system is in extracting the 

knowledge base as the human expert appears to operate in an inexact, 

contradictory and error-prone manner. Often, the human operator cannot 

articulate the heuristics in a fashion suitable for creating a knowledge base 

system. Furthermore, expert systems tend to be very domain specific and are 

not reliable outside the programmed operating environment. If the knowledge 

based controller were programmed to attenuate vibrations for the pendulum 

structure based on a disturbance that caused an angular displacement offset 

of, say, 10"; one would expect less efficient performance for a similar 

disturbance causing an Mset of 90'. Nonetheless, when operating conditions 

can be defined and processing rules can be arranged logically, knovdedge 

based systems can be developed that provide consistent and efficient 

performance [Waterman, 19861, 

In applying this technology to direct the reconfiguration of mass to 

attenuate the angular oscillations of a pendulum structure, the heuristic used 

by the human operator (Sections 2.2.2 and 5.2) must be quantified. A block 

diagram for the system when using a knowledge based controller is a 

feedback system with the parameters of the structure and controller being 

continually monitored as indicated in Figure 5.6. 
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Knowledge Based System Plant: Mass-Pendulum 
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Figure 5.6 Block diagram representation of Knowledge Based 

controller. 

1) 

System 

The traditional control signals, namely reference and error signals, are 

contained within the knowledge base. The control output signal, m(t), has 

been post processed by the knowledge based controller to generate, r(t), 

the displacement of the attenuation device. Also, constraint operating 

conditions for the mechanism may also be embodied in the knowledge base. 

The inference engine of the expert system will process this data to direct the 

mass reconfiguration. To avoid problems of operating outside a given 

domain or operating condition, the control logic must be as general as 

possible and preferably self-adapting. 

Details of the knowledge based controller and the corresponding 

results are presented in Chapter 8. 



5.6 Artificial Neural Networks 

Another development from the field of artificial intelligence is artificial 

neural networks4. These nets originated as symbolic and computational 

approximates of the biological neural system. 

Artificial neural networks w r e  developed based on mathematical 

modeling of the biological system as introduced in the following brief historical 

review. The connectionist or parallel distributed processing model of 

behavioral and cognitive functions can be traced to w r k  by Jackson 

(1 86911 958) and Luria (1 966) [Rumelhart et al., 19861. A mathematical model 

for the functioning of brain neurons dates back to 1943 in w r k  by McCulloch 

and Pitts; their model was a binary, time dependent logical neuron. By the 

1950's. Rosenblatt presented the concept of a single layer of neurons; this 

artificial neural net was called a perceptran. Perceptrons had limited 

computational abilities, but advances by Kohonen, Grossberg and Anderson 

in the 1980's resulted in more powerful, multi-layer netwrks [Neelakanta and 

De Gmff, 19941. Since these developments in the 1980°s, neural netwrk 

research has been continually growing. 

With access to powerful computers and advances in training multiple 

layer nets, the interest and research in the area of artificial neural nebarks 

advanced to an implementation level (Watwick, 19951, Successes employing 

artificial neural networks began to compete with traditional methods and 

models in areas of processing and prediction. Implementations included 

classification of undersea sonar signals, speech analysis, vision recognition, 

robotic control and others [Lawrence, 19901. Early prototypes, labeled as 

'Adelinem and 'Madaline", were developed in 1960's [Widrow and Lehr, 19901; 

they were constructed using various logic devices (i-e. AND, OR and majority- 

vote-taker elements) [Haykin, 19941 and w r e  used as control units. 

- ~ -  ~ 

4 Artificial neural networks are also called neural networks, neural nets, nets, 
parallel distributed processing (POP) models, connectionist models or 
neuromorphic systems by various researchers. 



Artificial neural nets are viable computational models for a wide variety 

of problems which include pattern classification, speech synthesis and 

recognition, adaptive interfaces between humans and complex physical 

systems, function approximations, image data compression, associated 

memory, clustering, forecasting and prediction, combhatorial optimization, 

nonlinear system modeling and control [Hassoun, 19951. 

5.6.1 Motivation for Selecting Artificial Neural Networlcs 

At the time of initiation of this research, applications using artificial 

neural nets for control were very novel; the majority of the reported 

applications focused on system identification and possible implementations 

techniques. During the extended research tenure of this project, applications 

and extensions related to the field of control and engineering have advanced 

significantly as reported in various academic journals. 

Although the control logic for this application can be clearly postulated, 

extending the concept of vibration attenuation by mass reconfiguration to 

more complex systems may not be intuitive. In 1989, Tursby et al. reports 

that "artificial neural nets can be very useful in a large system where the 

identification of control elements and the determination of algorithms based 

on mathematical models of the structure may be difficult if not impossitris !o 

achieve." These criteria existed at the onset of this research; hence an 

artificial neural nehrvotk that can parallel a controlled system for the mass- 

pendulum application was developed. 

5.6.2 Ovenriew of Artificial Neural Networks 

A conceptual and mathematical framework for understanding the 

functionality of neural netwrks is provided to serve as a foundation for 

discussing its implementation as a controller in Section 5.6.3. When this 

research commenced, very little information for net synthesis w s  available. 

Since design principles did not exist, this section summarizes the 



considerations, development and related advancements for creating the 

neurat network tool for this application with details provided in appendices. 

A neural network consists of a dense maze of interconnected nodes 

that a d  in parallel [Redger and Aleksander, 19951. Mathematically, at each 

node is a simple, computational element called a neurons. Similar to the 

biological neural cell, a computational neuron processes inputs ftom 

connecting nodes to generate a single output that may be passed to several 

other neurons. 

The neural activity can be represented in several ways. The most 

common processing protocol is a linear combination or a weighted sum of the 

input signals, as shown in Figure 5.7. The value is then scaled using a 

logistic or squashing function6. The generated output value is passed to 

subsequent nodes. 

Figure 5.7 A neuron is a fundamental computational unit of artificial neural 
netwrks. 

The fundamental elements of an artificial neural network are also called 
processing elements, computation units, neurons or nodes. 

Logistic functions are also called activation functions, transfer characteristics 
or threshold functions; the fundion depends on the mapping required. 
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The squashing function is usually a nonlinear function that models the 

activation levels in biological systems [Lipprnan, 19871. Various activation 

functions exist, including signum threshold functions, piecewise linear 

functions or sigmoid' functions as shown in Figure 5.8 and mathematically 

described in Appendix K 

Figure 5.8 Typical squashing functions include: (a) antisymmetric step 
function, (b) ramp function and (c) sigmoid function. 

Mathematically, the computation performed at a node is given as, 

Y = v(v) 

and y represents the output for the node; 

v , the linear combination of inputs or the internal activation level; 

w, , the adjustable weight associated with the rth input; 

x, , the rth input; 

I the number of input signals; and 

g( ), the activation function. 

7 The popular sigmoid function is a continuous, differentiable, monotonically 
increasing function exhibiting asymptotic properties; a hypwtmtic tangent 
function was chosen far the implemented controller- 
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Another numerical processing feature associated at the neuron level is 

biasing or threshold setting. Each neuron can have an internal, unique 

threshold provided by either an adjustable bias input or a threshold value 

defined by the logistic scaling function. In this research, a bias for each node 

was included by having an additional fixed input of value 1 with its o w  

sy napses8- 

The input-output values can be either binary or continuous. The input- 

output relations are learned though the weighted connections. By adjusting 

the weights applied to each input signal, the relevancy of the input is 

established for generating a desired output The adjustment of these wights 

can be accomplished in either a supervised or unsupervised training mode 

[Hassoun, 1995; Simpson, 19921. Techniques for training are discussed later. 

The architecture of the net or the connection scheme of the neurons to 

form the n e w &  can also vary. The architecture affects the mapping 

complexity between input-output relationse. The most popular format in use is 

a multiple layer, feed-forward network. The selected netwrk, as illustrated in 

Figure 5.9, featured no intra-connection of nodes within a layer and nodes of 

a previous layer all feed to each node of the adjacent layer. This type of net 

can be labeled as IJ-K-L where the indices represent the number of 

nodesheurons in each layer. This type of net was used and its mathematical 

representation of the output can be expressed as, 

"ynapses, a biological term for the connection between n m n s ,  refers to 
the connecting weights between neurons for artificial neural networks. 

9 A single layer net (perceptron) provides direct, linear mapping relations; two 
layer structures permit mapping of convex, open or dosed regions; three 
layer systems can model arbitrary complexities with inclusions and 
exclusions as determined by the number of nodes- 
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where X, is the dh node of the input layer with I being the total number of 

nodes of this layer; 

w, , the (1. j) weight connecting the rlh input node to the Jh node of the 

first hidden layer Mere J is the total number of nodes of this layer; 

W, , the (j. k) weight connecting the fi node of We fint hidden layer to 

the &th node of the second hidden layer where K is the total number of 

nodes of this layer; 

w, , the (k. l )  weight connecting the kth node of the second hidden layer 

to the fth node of the output layer, 

), is the activation function; and 

-v[ is the lth node of the output layer with L being the total number of 

nodes of the output layer. 

input First Hidden Second Hidden 
Layer Layer Layer 

Output 
Layer 

Figure 5.9 Multiple layer feed forward neural network (3-54-2) 
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Another category of netwrks are recurrent neural nets. Structurally, 

the nets possess Teed fonrrrard" andlor 'feed backward" connections and the 

connections may be within a layer andor among nonadjacent levels or 

elements. The "feedback" connections, typically, incorporate derivative or 

time delay information. These nets have been successfully applied to identify 

dynamic systems [Pham' and Karaboga, 19991. Urfortunately, these nets 

require a large number of additional nodes which infers more extensive 

computations and training requirements. Thus, these networks tend to be 

more susceptible to noise and their training as an independent simulators are 

difficult. Real time control applications have successfully incorporated 

recurrent nets [Ku and Lee, 19951. Sample architectures are given in 

Appendix K However, to achieve dynamic processing ability in an artificial 

neural network for this research, the input parameters were selected to 

contain the first time derivative data. When compared to a simple recurrent 

net that posses nodal time delays, the derivative input data provided good 

performance and required less computational resources. [See Appendix Kj. 

Learning behavior is intrinsic to both artificial and biological neural 

nets. Artificial neural nets achieve good performance through associations 

and generalizations without the use of rules [Brow, 1987. Learning is 

achieved by adjusting the connecting or synaptic wights and threshold 

values. As the complexity of the net increases either in number of nodes or 

types and number of interwnnections, the run-time operation increases and 

the training becomes increasingly involved. 

Various learning algorithms and/or training paradigms have been 

developed [Rahim, 1994; Masters, 199q. The training of the net that is 

relevant to this research is classified as supervised. Supenrised training 

requires external information, often as a set of matched inputloutput patterns 

which are called exemplar patterns. For supenrised, error-based training, the 

process consists of repeated presentation of the input patterns with know 

output performance; the net generated output patterns then are compared to 



the desired output and adjustments to the wights and threshold values are 

made to force tfre net to generate the desired output. The training is assumed 

complete for a set of exemplar patterns when tfie output patterns for the 

applied input patterns converges, such that the output pattern remains 

unchanged through successive training iterations or an acceptably small 

difference betwen the net generated and the desired output exits. 

The training or adjusting of the weights was accomplished by applying 

various optimization methods vvfrich included steepest descent or back 

propagation, coordinate search, conjugate gradient, Powell method, 

evolutionary algorithms and others. The algorithms are presented in 

Appendix J. Each training algorithm was evaluated on a benchmark training 

suite with the results being as summarized in Table 5.1. 

Table 5.1 Evaluation of Training Methods 

Training Method I Computational 

Back Propagation 

Convergence 
Ranking 

4 
3 
1 
2 
5 
6 

steps Ranking 
3 

Coordinate search 
Conjugate Gradient 
P m l l  
Genetic Algorithms 
Evolutionary Programs 

global 
lobal 

2 
4 
5 
6 
1 

Note that each ranking is from 1 to 6, the computational steps per 

training iteration are ranked from fewst to most computations; the training 

convergence is ranked from fewest to most training iterations; and the 

minimum has been classified as most likely to converge to either a global or 

local minimum. As comparable results w e  obtained Wen Powll and 

conjugate gradient training algorithms were used, the latter was chosen for 

the training of the artificial neural nehmks controllers as it was relatively easy 

to implement in both languages and apply to the application being studied. 

The training details are discussed further in Appendices J and K 



To summarize, through parallel processing, nets provide a complex 

mathematical mapping of input data to output by establishing appropriate 

links. By adjusting the interconnecting wights, nets can be trained to 

recognize the important parameters and provide appropriate output. A unique 

feature of nets is their ability to team performances through training rather 

than through programming. For simple nets, associations are learned through 

adjusting the weights connecting computational elements. With the ability to 

train, a net provides good performance for a range of operating states. 

Continued learning using current results enables the net to adapt dynamically 

and to adjust to minor variations in the input data. Since nets consist of 

numerous interconnected elements, good performance has been observed 

under conditions of incomplete or noisy input data. Also the inherent robust 

nature of nets accommodates modeling uncertainties and undefined dynamics 

of the system. 

For this research the neural net frarnwrk was a feed forward, multi- 

layer, static net''. The processing capabilities of each neuron was described 

as the summation of continuous, unbounded inputs to generate an output 

bounded by the domain [-?,I] and expressed in Equation 5.2. Bias or 

threshold attribute was achieved by adding another node to input layers. The 

output of the net was expressed by Equation 5.3. Inputs w r e  chosen to 

contain derivative information and recurrent network architecture was not 

incorporated. Training the netwrk was supervisory using optimization 

techniques. The selection of inputatput parameters and the number of 

nodes and layers are discussed in the next section. 

lo A static netvvork is defined as one that has only feed forward connedions; 
there is no recurrence. In contrast a dynamic net has both feed forwgrd 
and feed backward connedions. [mikowksi and Gawtrhop, 19951. 



5.6.3 Artificial Neural Networks as the Controller 

This section presents the neural nettmrk as the control unit. Since 

design and function are closely linked; the control philosophy and neural 

network characteristics and operation are discussed concurrently. The 

nebark implementation depends on the required operating philosophy and its 

corresponding training protocol. 

Often a neural network as a controller is viewed as a "black box" that 

accepts inputs to produce outputs. The function of the input-output relations 

is to provide control action so as to approximate an appropriately controlled 

system, as show in Figure 5.10. The net was trained to learn the relation 

between system dynamics and the necessary control action to effect vibration 

attenuation. This type of control action for the neural net will henceforth be 

referred to as a 'proxy" controller. 

When the neural net functions as a 'proxy" of one of the previously 

described controlled systems, the trained neural net operates as a feed 

forward controller in a closed loop, as shown in the bottom portion of Figure 

5.10. Although the neural network and its post processor were to operate 

similar to other controllers, it w s  a prow the neural net cannot be viewed as 

a direct substitute. The neural nettmrk performs more than a traditional 

controller. The control system incorporating the neural network is neither a 

traditional open or dosed loop controller. Despite providing multiple input, 

feed forward control, the network using feedback in a nontraditional way. 

The controller was to process multiple inputs as given by the input 

vector, f ( t ) ,  to generate a multiple output vector, @). The output signal 

from the net wuld then be post processed to generate the control signal, 

~ ( t )  used to drive the control mechanism that wuld change the mass 

configuration as defined by r(t) to attenuate the vibrations (9@) + 0). 
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Figure 5.10 "Proxy", neural net controller trained to imitate other controlled 
systems. 

As s h w ,  the operation deviates significantly from a classical closed 

loop control block diagram, as was previously shown in Figure 5.4 for the 

control system using proportional and derivative action. Firstly, a reference 

signal and the corresponding error signal that typically drives the controller is 

not explicitly generated. Secondly, the selection of inputs and outputs from 
the controller have not been identified in a classic approach to re fkt  the 

desired control objective. Consequen?ly, post processing from the controller 

to drive the mechanism is required. Lastly, the dynamics of the system have 



been incorporated by selecting time derivative input information rather than 

introducing time delay elements. Each of these aspects is discussed next. 

The neural net controller internally processes the error signal with 

respect to a reference signal. This was achieved by training the net with 

patterns that represent an appropriately controlled system; thus, the error 

sianal is embedded within the trained connections. Hence, the desired or 

reference input, 0 ,  + 0, does not appear explicitly in the control diagrams, 

rather it is inferred and embedded through training. 

The control objective can be stated as attenuating angular osciliations, 

0 ( t ) ,  by mass reconfiguration, r(t) . The classic control approach would be to 

identw Me control input signal as 0(r) and control output signal as r(r). 

However, for the neural net controller the input signal was selected to 

represent the state dynamics of the masspendulum system. The inputs were 

chosen to be easily measured, dynamic parameters, namely, the angular 

displacement, angular velocity, translational displacement and translational 

velocity. T(r) = [~(r).B(t).r(r).i(t)]. The selection of both the angular and 

translational displacement time profiles were chosen since the governing 

differential equations are coupled (Table 3.1) and as discussed in Section 

2.2.2, the control strategy depends on proper coordination between the 

angular oscillations and the mass reconfiguration profile. Furthermore, the 

attenuation device's translational kinematics for an input parameter enables 

constraint information for mass reconfiguration to be incorporated into the net. 

Note that dynamic information was automatically included as time derivative 

data was pan of the input vector", as discussed in Section 5.6.2. 

'' When the net morphology w s  developed [Stilling, 1991 and 1990a; Stilling 
and Watson, 1991 and 19901, providing appropriate dynamic input 
parameters was novel. The net was freed from storing time dependent 
operations internally; this technique has since been pradiced by others 
[Qian et al., 19981. 



The neural net controller processes parameters that characterize the 

dynamics of the system to generate control output signal(s). Two unique sets 

of outputs were considered for the neural network to provide the control 

action; one set had four output parameters and the other, three. Since, the 

control action can be expressed as either discrete or continuous signal as 

shown in Figure 5.11 which maps the controt output action aver a cycle of 

simple harmonic motion, the neural net output was mapped as either 

continuous or discrete values. Each network would require post processing 

prior to being fed to the mechanism to effect mass reconfiguration, r(r) . 

0 angular displacement (1) move mass towards pivot 
8 angular velocity (2) move mass away ftompivot 
r(t) translational displacement (3) no action 

Figure 5.1 1 Mapping of neural net input-output patterns for typical control 
action of the mass-pendulum system over one period. 



For the four node output network, the output parameters were assumed 

continuous and chosen to be the angular displacement and translational 

displacement of the auxiliary mass and their time derivatives; that is 

( t )  = [(,),(t,),(tl),(t1)]. These were the same parameters identified as 

viable input parameters. When the output data was continuousand 

unbounded (not normalized), the sigmoid processing operation of the final 

output layer was removed.12 This net mapped current dynamics with 

appropriate control action that represented the dynamics at a Mure time step. 

The neural net controller was trained to have predictive capabilities. 

By considering the training protocol, the development and operation 

can be better illustrated as explained in Appendix K The training protocol for 

a supervised, errordriven trained net is show in Figure 5.12. 

The supporting rationale for selecting this set of input-output 

parameters was as follows: 

(1) these variables could be measured from an actual structure; 

(2) the process could be extended to more complex structures; 

such as: continuous structures; 

(3) supervised, error-based training was easy to implement; and 

(4) prototype development for training and implementing the 

controller was conceptually plausible. 

l2 When input and output data were normalized or bounded betwleen -1 and 1, 
each layer of the net had sigmoid functions. 
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Figure 5.1 2 Training of the "proxy" neural netvmrk controller. 

To appreciate the predictive nature of the operating mode provided 

through training the neural net controller, the time sequence operation is 

illustrated in Figure 5.13. Beginning at Point A, a set of measured parameters 

that represent the dynamics of the system f ( t o )  = [8(ro).0(ro).r(t ,) . i(t~)].  a n  

processed by the neural net controller. The neural net maps this behavior to 

a corresponding controlled performance at Point 8. The control output at 

Point B, approximates the controlled plant performance for time, t=r,-A t 

given the initial conditions at t=t, Then, the system operates using this 

control action to generate its response at Point C With corresponds to 

(=to-?A t for the cantrolled system. The neural net controller uses this plant 



behavior tbat is denoted by Point C as its new condition which become the 

new Point A and the timedependent sequence is repeated. 

Mass- f r 1  
Pendulum 

Figure 5.1 3 Time sequential operation of the "proxy" neural net controller. 

For the three node output net, the control action was encoded by all 

three nodes. A tri-state, three element vector represented the neural net 

output; F(t) E ([- 1- 1 - I], [0 0 01 or [I 1 I]) with the v e d a  sets corresponding 

to motion of the attenuation towrds the pivot, no motion or motion away from 

the pivot, respectively. Other numerical combinations were not part of the 

training regime. The rationale for selecting these values was multiiaeeted. 

Using three values instead of a single value added redundancy which is 

associated with increased reliability Through a post processor, the control 

adion can be based on the majority ftom the combined output signals. 



Various reconfiguration profiles for the auxiliary mass" can be readily 

mapped to discrete output patterns. This net architecture focused on the 

control action with the net performing the majority of the processing rather 

than on generating state parameter data to be using in the control process. 

Furthermore. the output format could easily be implemented with digital 

control. The exemplar patterns used to train the three node output were 

generated similarly to the four nodal output netwrk; an additional step 

required that the measured controt action from the plant be mapped to the 

appropriate output pattems to form the exemplar output or target patterns. 

To summarize, the neural n e h r k  was trained to approximate an 

appropriately controlled system. By sampling at time, t and t+At, the 

controlled system dynamics wuld be incorporated into the trained weights of 

the net. This eliminated the need to compute error signals as the network 

would intrinsically have processed such signals. Parameters as identified in 

the governing equations of motion were chosen as the input parameters. The 

trained network results in creating a predictive controller. Further details of 

the morpholcgy, operation and training for the neural netwwk and its 

implementation as the control unit for vibration attenuation as used during this 

research appears in Appendix K or in Chapter 8. 

5.7 The Control Tool: Software Developments 

During the thesis, much software was developed, as commercial neural 

network softwarelhardware was not accessible [Stilling and Watson, 19911. 

Also, tools in the area tended to be protected by proprietary rights and 

implementation details were usually withheld. Hence, a code accessible, 

readable and computationally efficient software package was developed. 

Originally, a linear algebra package was created; it was called MATMATH 

[Stilling and Watson, 1994a; Watson and Stilling, 1991 b]. The software was 

l3 For values associated with the mass reconfiguration kinematics, refer to 
Chapters 6,7 and 8. 



designed to be highly portable, serviceable, extensible and reusable. Later in 

the research, as new training algorithms were being explored, source code 

was developed in both Forth and "C" languages. Programming in these two 

environments necessitated the development of communication/translation 

utilities so results could be easily accessed by either system and platforms. 

5.7.1 MATMATH 

The linear algebra package, MATMATH, was developed in FORTH 

(Appendix F). As previously mentioned early simulations of the dynamics 

were coded with this package. The operation and training algorithms for the 

neural networks w r e  also coded using this utility package. 

Forth is fast, compact and easy to program, debug and maintain 

[Noble, 1988; Noble 19891. In addition, Forth efficiently exploits available 

resources. Several unique coding techniques were developed, such as, 

operator overloading, vector execution to create generic operators, internal 

operand adjustment, mnemonic kludges for loop indices, dynamic memory 

allocation, access to host hardware (when necessary) and others. The 

modular style of programming enabled the code to be extensible, reusable 

and tailored for an application. 

As a comprehensive utility package, the matrix operators span those 

that would be required in most engineering design and analysis. Also, unique 

element operators for data manipulation were designed. Although the set of 

operators is not exhaustive, supplemental functions can be derived by 

combining operators or by modifying the source code. Basically, the 

operators included data structure defining routines, initialization commands, 

input and output utilities, matrix operations of addition, subtraction, 

multiplication, determinants, inverses, eigenvalues/eigenvectors, norm 

computations and element arithmetic operators. The computations can be 

performed as single/double precision integer arithmetic and as shortllong 

IEEE floating point arithmetic. 



The attractiveness of Forth for the thesis research was its small kernel 

with the ability to access platftmn hardware. The transfer of the research to a 

prototype using highly portable mictocontrollers/chips; such as Motorola 

68HCll or RTX-2000A was tractable. Since Forth provides easy access to 

platform hardvmre, prototype development where the structure and related 

sensors and actuators could be easily interfaced was deemed feasible. 

Appropriate utilities HFere developed in Forth for interfacing with a 

microwntrollerlprocessor (Stilling, 1993b and 1990b; Watson and Stilling, 

1992; Stilling and Watson, 19921. 

5.8 Summary 

The control action for mass reconfiguration to attenuate vibration for 

the rnass-pendulum system may be implemented in several ways. The control 

logic may be postulated in several ways as either discrete or continuous 

action. The controllers as presented included human operator, proportional 

and derivative action, knowledge based systems and neural networks. 

A human operator either through a priori knowledge of the physics 

governing the interaction between the mass-pendulum or through heuristics 

should be capable of effecting vibration attenuation. Also proportional and 

derivative action was analyzed. Although standard linear control action 

appears inappropriate, Men using a rectified error signal, the control signal 

parallels the desired control action. Based on the heuristics from the human 

operator or the specialized domain knowfedge from the physics of this 

problem, a knowledge based system can be created to generate appropriate 

control action. Artificial neural r,enM,rks, a relatively untested controller for 

this application was proposed to generate control action by approximating 

appropriately controlled systems. This novel application was examined to 

assess the feasibility of using a network for this type of control application. 

The following chapters examine the performance of each of the 

aforementioned controllers. 



6. Human Operator as the Controller 

6.1 Introduction 

One option for implementing the control system involves a human 

operator. For this scenario, the operator assesses the plant dynamics and 

generates appropriate control action to attenuate its vibrations. The 

plausibility of this method is established by the fact that the inverse problem 

to vibration attenuation can be modeled by interpreting a child learning to 

swing as vibration amplification by mass reconfiguration. Through trial and 

error and, indeed, in a very short time, a child can coordinate squatting and 

standing to initiate swinging walker, 19901 and then can increase the 

amplitude of oscillations of the swing. The inverse problem of attenuating 

oscillations is not as easily learned. However, by observing the cause and 

effects of moving a mass radially along an oscillating pendulum system, a 

human operator should be capable of deducing a strategy to attenuate the 

vibrations. 

Implementing a human controlIer had a two-fold purpose. Firstly, the 

understanding of the dynamics of the proposed system was furthered in a 

more tangible environment. Through interactive simulations of the human 

operatorcontrolled process, additional analysis was possible. Secondly, 

benchmarks or measures for evaluating the control systems were established. 

In establishing these benchmarks necessary data to implement other 

controllers were also acquired. 

To evaluate the practicality of establishing a human operator controlled 

system for attenuating vibrations by moving a mass along the structure, 

several control experiments [Stilling, 1993a; Stilling and Watson, 19931 wre 



conduded with subjects of whom the majority had some post-secondary 

education. The participants constructed a simple pendulum and adjusted its 

length to control the vibrations. Also, some procedures for vibration control 

were made available to the participants on instructional cards. For these 

cases, the participants -re able to learn heuristics to minimize the 

vibrations. Thus, operatordefined heuristics w r e  cansidered as a feasible 

control approach for attenuating the structural vibrations. 

An interactive computer simuiation was later developed to permit 

human operator control. Various usergenerated control strategies for 

coordinating the translational motion of the auxiliary mass with the oscillating 

pendulum structure could be studied. Data representing the structural 

kinematics and energy profiles revealed characteristics associated with 

energy attenuation for the pendulum structure. The temporal angular and 

translational displacement profiles, along with their derivatives, illustrated 

effective, coordinated control action, From this data, force histories and 

damping coefficient graphs characterizing the type of human control were 

also generated. 

6.2 Software Considerations and Developments 

To investigate human control, the computer simulation for the variable 

length pendulum was customized to be interactive as indicated in the 

flowhart of Figure 6.1. A visual (or graphic) interface was created to 

represent the dynamics of the system. The vibrations of the pendulum and 

the translational motion of the mass (attenuation mechanism) were animated. 

For each program iteration', the screen was rehshed2 with updated positions 

of the pendulum and the auxiliary mass displayed. Keyboard input was used 

to control the motion of the end mass. The input was limited to functional 

- - -  - 

' A program iteration refers to the outer loop of Figure 7.1 where the dynamics 
-re solved for one time step. 

' Although the term, refreshed, infers the screen is cleared, the graphics were 
updated using XOR line draw routines. 
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Update parameters 
for motion of the 

auxiliary mass 

b 

Solve governing 
differential equation 

Calculate the 
parameters for 

the system 

Update parameters, 
visual display, 

and increment time 

Figure 6.1 Flowchart for the interactive computer program to simulate a 
human operator controller. 



keystrokes; one corresponded to moving the mass towards the pivot and the 

other, to moving the mass away from the pivot. Through software the 

keyboard buffer was continually updated and accessed to control the motion 

of the auxiliary mass along the pendulum. 

Delay routines were added to allow adequate time for human 

interaction, These routines either accessed the internal computer clock or 

executed a series of null operations. This feature approximated real-time 

computing and control. 

Program operation began with an introductory screen; then the user 

selected the speed of operation for the simulation. Program termination was 

based on achieving 99.99% reduction in the initial system energy or on 

executing a userdefined number of iterations. 

6.2.1 Pendulum Parameterization for Numerical Simtclathn 

A fourth order Runge-Kutta algorithm was used as the initial value 

solve? for the differential equation describing the variable length pendulum 

motion, as given by: 

where m represents the pendulum mass4 (1.0 kg); 

g , an acceleration due to gravity of 9-61 mls2; and 

r , the pendulum length. 

For consistency, results are reported to at least the third decimal place. 
Note that the numerical simulations employed algorithms of wder h'or 
higher where h represents the time step. 

' Selecting the auxiliary mass magnitude was arbitrary as the governing 
differential equation (Equation 7.1) was independent of mass; hmver ,  
the mass value was used to calculate energy magnitudes. 



An initial length for the pendulum was selected as 1.0 rn and the motion of the 

mass was restricted to a range of 0.75m to 1.25 m from the pivot. Thus, the 

natural frequency (o ,) of the system could vary betwen 3.616 to 2.801 radls 

which corresponds to a period of oscillation (T )  ranging from 1.737 to 2.243 

seconds. 

The time step ( b r )  for the initial value solver was chosen to be 0.05 

seconds. which is approximately K5 to x5 of the oscillation period 

depending on the location of the auxiliary mass. Based on user input, the 

incremental motion for the mass (Ar) was set to be a.05 m; hence limits for 

the instantaneous transIational velocity were bounded betwen k1.0 rnls 

which corresponded to acceleration limits of 240.0 mls2. For the preliminary 

trials, the initial position of the pendulum was 30' from the vertical with a 

corresponding initial energy of 1.314 N-rn. All of these parameters could be 

changed to permit several scenarios to be investigated. 

6.22 Additional Display Features for Interactive Computer Simulation 

To assist the operator in monitoring performance, the number of 

iterations were tracked on-screen. Also, the intangible parameter of the 

current total structural energy and its components were displayed. The total 

structural energy consist of the potential energy, I/ and the kinetic energy, 

T , as defined as 

Note that the potential energy is minimized INhen the mass is at its lowest 
possible position which occws when the pendulum is beneath the pivot. 
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The energy of the system is an essential parameter to determine the 

effectiveness of the chosen strategy for moving the mass. In Chapter 4, the 

structural energy was integral in defining the objective function to optimize the 

displacement profiles for mass reconfiguration. 

6.2.3 Implementation Plaffom 

The platforms that the interactive control system software was 

developed for included the Atarim ST520, ST1040, MegaST and TT using 

~or(hmaw@'. Forth enabled access to low level graphics, timing registen 

and BIOS' routines. Floating point mathematicsa was available through 

software andlor hardware. The software, MAT MATH^ [Stilling and Watson, 

1994a; Watson and Stilling, 1991 a; Appendix F] was developed as a generic 

toal and was used when programming the initial value solver. 

6.3 Results from Human Operator Perfomlance 

The operator gained experience in attenuating vibrations for a 

pendulum via moving a mass along the structure by executing the interactive 

program several times. For a fixed length of the pendulum, the simulation 

produced constant amplitude oscillations about the vertical position. 

However, for some of the end mass displacement profiles (as implemented by 

the user), the simulation did emulate various unstable and nonlinear 

phenomena. For instance, unstable behavior, such as a state of 'infiniten 

energy, occurred M e n  the mass was allowed to approach the pivot ( r  4)). 

To prevent this from occurring the mass motion was 

user cwld increase the energy of the pendulum to 

constrained. Also, the 

cause the pendulum to 

Copyright by Bradley Forthware, 1986. 
7 BlOS refers to the basic input and output systems, such as keyboard, disk 

and memory access. 
a The floating point mathematics as programmed by Bradley Forthwre wes 

s 
Motorola Fast Floating point format and is IEEE double precision. 

MATMATH is a linear algebra package developed in Forthmacs. 
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circle the pivot. Eventually, these simulations wuld fail as the energy 

increased sufficiently so that the computer registers associated with 

calculating and monitoring system parameters overflowed. 

Preliminary testing showed that a human operator could learn how to 

attenuate the vibrations when the mode for free vibrations was about the 

stable equilibrium position. Operators generated several trajectories for 

moving the end mass which resulted in vibration attenuation. Improved 

performance was noted as the operator gained experience andlor was 

informed of the following heuristic: 

a) move the mass away from the pivot as the pendulum passes 

beneath the pivot, and 

b) move the mass towards the pivot, as the pendulum reaches 

points of maximum angular displacement. 

Typically, the user generated control action employed the above control logic 

in a relay fashion. 

6.3.1 Detailed Trial Analysis for Human Controller 

A sample, as taken from one operator's experience, is presented by 

examining the time relationships among the state variables of the system, the 

temporal energy profiles, the force histories and characterizing the dynamic 

parameter profiles. For this case, the initial structural energy of 1.314 N-rn 

was reduced to 0.0087 N-m (99.3% reduction) in approximately four cycles of 

the angular displacement motion. The motion of the attenuation device, the 

auxiliary or end mass, was restricted to 0.75 r r r L25 m. 

As iilustrated in Figure 6.2, the phase portrait of the angular motion 

indicates vibration attenuation as the magnitude of oscillations are continually 

decreasing. The motion appears to be converging to the stable position of 

zero angular displacement and veloaty. 
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Figure 6.2 Phase plane diagram for a trial of the human controlled 

simple pendulum system. 

The angular displacement and its fint time derivative profiles are 

show in Figure 6.3. The motion shows a decrease in the amplitude of 

oscillations and is characteristic of damped vibrations. The angular velocity 

lags the angular displacement and their profiles remain reasonably periodic 

and asymmetric. Also, superimposed on this figure is the translational velocity 

(i-curve)of the auxiliary mass to illustrate the coordination of the control 

action wtth the angular oscillation profiles. The control strategy for 

attenuating vibrational energy as used for this trial can be deduced by 

examining the icurve. The motion of raising, lowering or holding the 

auxiliary mass stationary was coordinated with the oscillations of the 

pendulum. Achieving precision in the mass motion was difficult due to the 

inherent inefficiencies of the human operatw, nonetheless, the mass appean 
to be moved at extrema in the angular displacementhelocity profiles. 
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Figure 6.3 Coordinated control action of translational motion of the auxiliary 
mass with angular oscillations of the pendutum. 

For this case, the trend for the total structural energy history followed 

an exponential decay as show in Figure 6.4. A characteristic increase in 

system energy occurred during the attenuation process as highlighted in the 

insert. The human operator appears to be anticipating the moment at which 

the mass should be moved towards the pivot. The early raising of the mass 

increases the total system energy. Based on the first three time periods of the 

kinetic energy profile, the logarithmic decrement is approximately 0.55. 

Based on the first three time periods, the average damping ratio was 

calculated to be 4.041 1 with a natural frequency of 1 .079 rad/s. 
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Figure 6.4 Structural energy profile and its components for this human 
operator control trial . 

The influence of the fundamental frequency an the Coriolis inertia force 

is evident as a net positive and net negative value as coordinated with the 

gravitational force profile, show in Figure 6.5 The inertia forces that drive 

the system are based on the position profiles d the pendulum and the sliding 

mass. As illustrated, the frequency of the Coriolis inertia force varies 

continuously and apparently at a higher harmonic of the frequency of the 

restoring gravitational force. The influence of the fundamental frequency in 

the Coriolis inertia farce is evident as net positive or negative values are 

synchronized with the gravitational restoring force profile as derived in 

Appendices 0 and C. 



Figure 6.5 Forces driving the angular acceleration of the pendulum under 
human operator control. 

The 'instantaneousn damping coefficient, as defined by ti, varies 
r 

discontinuously producing both positive and negative damping values as 

illustrated in Figure 6.6. The coefficient has a small mean value. 

~ u v ~ ~ v u ! ~ '  rime (s) 

-4 1 - Damping Coefficient -- - r [ 

Figure 6.6 Instantaneous damping coefficient produced by the control action 
from a human operator. 



The form in the cable to cause the temporal displacement of the 

auxiliary mass 7~as also calculated from Equation 2.9. This force along with 

the translational displacement prafile appears in Figure 6.7. The force is 

periodic with a frequency that is approximately twice the frequency of the 

angular displacement profiles that were previously shown in Figure 6.3. Also, 

as predicted in Section 2.2, the force is larger when the mass is being 

lowered than when the mass is being raised. 

Time (s) 

Figure 6.7 Force required to elfect motion of the auxiliary mass for vibration 
attenuation as generated by a human operator. 

6.3.2 Analysis and Generalization from Other Trials 

Other strategies were also employed to reduce the total structural 

energy. For instance, when the restridion on mass motion was eliminated, 

the mass moved towards the pivot until the system gained sufficient energy to 

circle the pivot. Then, the mass was strategically moved a w y  from the pivot 

at maximum velocity. 



Other observations w r e  made from the various human operator trials. 

For instance, when the mass motion oscillated closer to the pivot point an 

increase in the magnitude of damping occurred. 

In addition, simulations w r e  altered by selecting different initial 

conditions and introducing random disturbances during operation. Also, 

constraints on the motion of the end mass were imposed. Regardless of the 

changes to these values, with most trials, the human operator was capable of 

adapting and effecting vibration attenuation. 

Under human operation, the system stability was maintained. Despite 

the imprecision of the control generated by ttre human operator, stable, 

energy attenuation of the system was accomplished by moving the mass 

along the pendulum structure. 

6.4 Data Sampling for Future Implementation 

The characterizing state parameters of translational and angular 

displacements and velocities were saved for implementing other control 

systems, as will be discussed in Chapter 8. These data sets were generated 

and saved at a frequency of 12.5 HZ." 

The data sets characterized control action for attenuating pendulum 

vibrations. Twu data formats w r e  kept. The first data set paired the current 

state pararneters with those at a time increment (At = 0.08 seconds) later; that 

is. 0(t).0(t), r( t )  and i ( t )  and 9(t + &), 8 ( c  + At), r(t + At) and i(t + &) values were 

incrementally saved. The second data set matched the current state data, 

0(t). 0(r ) ,  r(t) and i ( t )  with a corresponding trinomial output Mat corresponded 

to raising, lowering or not moving the end mass. 

to The average period of oscillation for the simple pendulum is 2.006 seconds, 
or its frequency is 0.499 Hz (see Appendix D)). 
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6.5 Summary 

Through an interactive program, a tool to investigate human control for 

vibration attenuation through mass reconfiguration of a simple pendulum was 

developed. A human operator with minimal training demonstrated sufficient 

hand-eye coordination and reasoning to effectively attenuate the vibrations. 

The ability to attenuate energy by moving a mass along the pendulum 

improved with practice andlor the knowledge of the given heuristic of Sections 

2.2 and 6.2. 

Some very important observations were noted from these trials. The 

human operator appeared to process position and derivative data of the 

oscillating system Men controlling the system. Also, measures of the 

structural energy values were available for the user Men executing a control 

strategy for attenuating vibrations. The dynamics as generated from the 

human controller showed that attenuation could be achieved when the 

translational mass motion was at twice the frequency of the oscillating 

pendulum structure. An increased rate of attenuation results when the slider 

motion was closer to the pivot. 

Data characterizing the interaction of motion of the auxiliary mass 

along the pendulum and data representing appropriate control action were 

gathered for analysis and Mure control implementation. This data was to 

serve as a measure for performance evaluation and as a basis for 

implementing other controllers. 

Despite the inherent inexactness that a human operator possesses, 

this controller was extremely effective in attenuating the angular vibrational 

energy of a pendulum structure through mass reconfiguration. The operator 

demonstrated adeptness in adapting to several trial scenarios. 



7. Modified Proportional and Derivative Action Controller 

7.1 lnboduction 

The performance of a continuous signal controller for mass 

reconfiguration that is based on proportional and derivative action is 

considered in this chapter. A proportional and derivative control adion uses 

error signals that are measured with respect to the static equilibrium position 

of zero angular displacement and zero angular velouty. To generate a 

control signal that fits the control strategy of Section 2.2.2, the proportional 

and derivative controller was modified by using rectified emf signals. 

The operation mode of the control system is a feed forward controller 

that operates in a closed loop as previously shown in Figure 5.5. The current 

angular displacement and velocity are fed into the controller to generate an 

error signal for producing the control signal. The control signal is then post 

processed to effect motion of the auxiliary mass that is used to attenuate the 

structural vibrations of the pendulum system. Details of the processing are 

presented in Section 7.2 

As with the previous chapter, the purpose of this chapter is to present 

the dynamic interaction and the attenuation characteristics of this controller 

with a pendulum structure. The results include strudural kinematic and 

energy temporal profiles, force history curves and damping coefficient graphs. 

Unless otherwise stated, parameter definitions are as defined in the previous 

chapters, 



7.2 Implementation Considerations 

As defined in Section 5.3, the control signal for the modified 

proportional and derivative action controller was expressed as 

To achieve a control signal that has twice the frequency of the oscillations of 

the pendulum, the normalized error functions can be used, as defined as 

where K represents the gain; 

P(t) , the normalized error function which may be defined as w -0- . 
I L r l  ' 

W-0, 
and i(t), the normalized ermr fundion vvhich may be defined as P.Wl - 

For the case Mere the angular motion is sinusoidal at a frequency of a,, 

then 19 MN 1 = b "0 .W 1 and the relation betwen the "proportional" and 

'derivative" gains may be given as 

Then, the control signal can be processed to drive the attenuation 

mechanism, the rnotkn of an auxiliary mass. As previously show in figure 

5.3, the magnitude and sign of the gains alter the confrol signal, Gains can 

be appropriately selected so that the control signal is propdona[ to the 

velocity of the attenuation device. 



7.3 Software Conrideratiom 

7.3.1 Simulation Procedure 

The control action may be represented by defining the translational 

velocity of the auxiliary mass, i ( i )  , as 

When calculating the translational displacement for the auxiliary mass, 

updates were based on assuming constant velocity over the time step, as 

given by the following equation: 

Next, the displacement constraint of 0.75 s r s 1.25 m was imposed and 

translational derivatives w r e  calculated using standard backward difference 

equations. 

As given by Equations 7.4 and 7.5, the translational motion of the 

auxiliary mass is not only time dependent, but also a function of the current 

angular displacement and velocity. When applying multi-time step initial 

value sobers, the translational displacement values were updated 

accordingly. The simulation procedure for the modified proportional and 

derivative controller is summarized by the flowchart of Figure 7.1. These 

simulations did not feature a visual interface. The program was typically 

terminated by defining a set computation period. 



Set initial conditions 
and parameter values 

Solve governing 
differential equatii/ 

for one time step 

Calculate enor 
signals 

Update dynamics for 
auxiliary mass 

Figure 7.1 Modified proportional and derivative controller flowhart. 



7.3.2 Parametstiration of Pendulum System for Numerical Simulation 

The system being investigated was a physical pendulum whose 

dynamics wwe defined by Equations 3.1 and 3.2. The selected parameters 

included a concentrated mass of 7.5 kg located 1 .Om from the pivot and an 

auxiliary mass of 0.75 kg with a permissible translational range of 

0.75sr I 1.25m. The acceleration due to gravity is 9.81 mlsz. The 

simulations were based on an initial angular displacement of 30". The 

controller gains were selected to be k, = -3.0 and k, = 1.0. Note that the 

average natural frequency for this system is approximately 3.1 321 rads. 

The initial vaiue problem solver used a fourth order Runge-Kutta with 

the time step interval being 0.01s. Simulations were also completed with 

higher order solvers. 

7.3.3. Software Implementation 

The simulation software was developed in the C language (namely, 

Zortech C++' and was also compiled using ~attice' and GCC'). This software 

had access to floating point utilities. The simulations were performed on a 

486 based personal computer. 

7.4 Results and Oiscussions 

The analysis of the performance of this modified proportional and 

derivative controller are made with comparisons draw to the human control 

action of Chapter 6. Although maximum energy attenuation may not have 

occurred for the chosen parameterization, only the first four or five cycles of 

the pendulum motion are presented in reviewing the dynamic performance of 

the modified proportional and derivative controller. However, energy profiles 

&tech C++ is ay~yrighted from 1986-89 by Zdech U&d. 
2 Lattice C is copyrigheed liom 1990-3 by HiSoft and Lattice, tnc. 
GCC is GNU FmMware Foundation that is  cop^. 



are presented for longer time intervals to illustrate the controllers performance 

for an extended period of time. 

The first four cycles of motion are represented in the phase portrait of 

Figure 7.2. In comparison to Figure 6.2, a stable focus also occurs over the 

shown time interval. This portrait has improved symmetry over the dynamics 

ensuing from the human operator controller. However the rate of attenuation 

of the angular oscillations is significantly lower as evident from the temporal 

angular and translational displacement profiles of the auxiliary mass shown in 

Figure 7.3. As with the human controller, the coordinated control action of the 

auxiliary mass has a translational displacement frequency that is hhce the 

frequency of the angular displacement trajectory. Also note that the control 

action is continuous in comparison to the discontinuous pattern produced by 

the human operator. 

Angular Velocity 

Figure 7.2 Phase portrait of the angular displacement profile with modified 
proportionai and derivative control action. 



Figure 7.3 Coordinated displacement profiles when using modified 
proportional and derivative control action. 

The energy for the physical pendulum indudes both contributions from 

the structural mass (i.e. the pendulum) and the auxiliary mass (i.e. the slider); 

the potential energy and kinetic energy have been defined as: 

and 

respectively. 

The energy history of Figure 7.4 indicates a logarithmic decrement of 0.114 

based on the first three time periods of the kinetic energy profile. 



Figure 7.4 Structural energy profiles for modified proportional and 
derivative control action. 

Shown in Figure 7.5 is an extended run using the same control action to 

illustrate the stability of this control action The control action remains tuned 

to the dynamics of the structural vibration as it processes the current 

structural angular motion to generate ttte control action. However, due to the 

variation in frequency betubwn the control action and the vibrations af the 

pendulum a "beating effect" is observed at periodic intervals. At these 

instances the motion of the slider is not oscillating at the frequency of 

the pendulum. 

Both the damping ratio and the natural frequency vary slightly. Based 

on the first three time periods of the angular displacement profile, the average 

damping ratio was calculated to be -0.0142 with a natural frequency of 

-3.090 radfs. 
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Figure 7.5 Structural energy profiles for an extended period of operation. 

The inertia force associated with the motion of the auxiliary mass or 

slider (Equation 3Sa) and its components an shown in Figure 76. The 

gravitational restoring force and the angular inertia component retain their 

consenrative nature and essentially cancel one another. Thus, the "pseudo- 

force" generated by the slider consists primarily of the Coriolis inertia force. 

As with the human operator. the force associated with the slider d m ,  $3. r .  t )  is 

harmonic and coordinated with the gravitational restoring force of the 

pendulum, as show in Figure 7.7. These forces are continuous with the 

slider force being a higher harmonic of the gravitational force. 



Figure 7.6 Forces associated with the slider when its motion is controlled by 
modified proportional and derivative action. 

Figure 7.7 Forces driving the angular motion of the pendulum under 
proportional and derivative control action. 

The 'instantaneousD damping coefficient varies continuously producing 

both positive and negative damping values as illustrated in Figure 7.8. Since 

the motion of Me slider is proportional to the rectified value of Me error and its 

derivative, the coefficient is nearly sinusoidal rather than the discontinuous 

pmfile produced by the human operatw. Since the translational excursion of 



the slider attenuates proportionally with me angular oscillations, the damping 

coefficient is also attenuated. 

- Damping Coefficient - - - - - * r 1 
Figure 7.8 Instantaneous damping coefficient produced by modified 

proportional and derivative control action. 

The force in the cable to cause the temporal displacement of the 

auxiliary mass was also calculated and is plotted in Figure 7.9. The 

translational displacement profile of the slider has also been superimposed on 

this graph. Again, the force is continuous and periodic at twice the frequency 

of the previously show angular displacement, As show the force remains 

negative regardless if the slider is being lowered or raised. 



Figure 7.9 Force required to effect motion of the auxiliary mass for vibration 
attenuation as generated by the modified proportional and derivative 
action. 

To assess the generality of this control action, the simulations were 

also wnduded using various initial conditions. The energy profiles when the 

initial angular displacement was 60' are shown in Figure 7.10. As expected. 

good attenuation prevails since the control action is tuned to enor signal. 

Note the chosen gain values may not be optimal for these conditions. 

5 10 15 20 

Time (s) 

Figure 7.10 Energy profiles when the initial displacement is 60" . 
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7.5 Summary 

The continuous signal provided by the modified proportional and 

derivative action controller proved effective in attenuating the vibration 

energy. However, the technique was not as efficient at reducing the structural 

energy as the relay type of control action provided by the human operator. 

Again, the effectiveness of the energy attenuation was noted to occur when 

the translational motion of the auxiliary mass was at twice the frequency of the 

oscillating pendulum. 



8. Artificial Intelligence Techniques as the Controllen 

8.1 Introduction 

Since artificial intelligence technology seeks to represent human 

knowledge or expertise, the control strategy for reconfiguring the mass to 

attenuate vibrations was programmed using artificial intelligence techniques. 

The techniques used as the control units were knowledge based systems and 

artificial neural netwrks. 

As show in Chapter 6, a human operator could effect vibration 

attenuation for this problem, and the strategy for attenuating vibrations could 

be postulated as heuristics or rules. A logical advancement was to automate 

this control by programming these heuristics as the controller; thus, 

knowledge based systems were applied to automated human control. 

Essentially, the knowledge based consisted of conditional logic rules that 

were postulated in various ways. The details are discussed in Section 8.2 

An artificial neural mtwrk l~lras also implemented as the controller. At 

the time of its implementation, this was a very novel application of this 

artificial intelligence technique. The ANN processed input data that 

represented the kinematic state of the system to generate control action for 

reconfiguring the mass. Initially, the training process was based on 'trial and 

error" where the system energy was assessed for possible mass 

reconfigurations. Later, the network was trained to imitate a properly 

controlled system; that is the network controlled system was a 'proxy" of a 

properly controlled system. Details follow in Sedion 8.3, 



8.2 Knowledge Base Systems as the Controllers 

The proposed knowledge based system controller wuld operate in a 

closed loop mode (Sections 2.3 and 5.5). The controller wuld monitor and 

assess state parameters, then determine the direction for the required 

auxiliary mass motion for attenuating the vibrations. The upwards and 

downwards motion for the slider was assumed to be at a constant velocity; 

this paralleled the action used for the human operator controller. As shown in 

Chapter 7, the parameters of interest could be based on angular 

displacement andlor velocity of the pendulum structure. 

The knowledge based system quantified the rules associated with 

moving the mass into conditional logic statements. Initially, these rules 

contained fixed, predetermined limits for operation based on the angular 

displacement The next generation for the knowledge based system was to 

incorporate a level of variability in the limits. Rather than using preset 

angular displacement values, one of the conditionals for the auxiliary mass 

motion was based on angular velocity. To add greater adaptability, the 

values for the limits defining the conditional statements w r e  matched to the 

current maximum excursion values. The latter approach required monitoring 

and updating the maximum angular displacement (andlor velocity) 

parameters. Hence, the rule base was reposed to be self-adjusting; that is, it 

possessed a degree of intelligence. 

A computer program was developed that integrated the knowledge 

based controller (the set of conditional logic statements for determining 

motion of the auxiliary mass) with the dynamic simulations of the governing 

differential equation for the physical pendulum and slider system. The details 

of implementing the controller are presented in Section 8.2.1. The results are 

presented in terms of the angular phase portrait, temporal kinematic profiles, 

energy histories, force profiles and parameter graphs. The dynamics 

behavior of the controller is presented for the initial ten seconds. These 

curves are compared to the results from the human operator controller of 



Chapter 6. Also, extended simulation runs illustrating the energy profiles are 

show. 

The control for the motion of the sliding mass which regulates the 

interaction between the mass and the pendulum structure was based on 

current angular kinematics. The data from this rule based controlled 

simulations was also saved for further analysis and to support implementation 

of the artificial neural network controller. 

8.2.1 Considerations in Developing the Knowledge Base Controller 

The controller was to implement the heuristic developed in Section 2.2 

and proven to be effective in Section 6.3. The control action can be 

categorized as: 

(a) moving the mass towards the pivot, 

(b) moving the mass away from the pivot and 

(c) stationary position of the mass with respect to the pivot. 

Motion for the mass was arbitrarily selected to be a relay action (see Figure 

6.3) which employed constant velocity per time increment as was previously 

used in the human operator controller. Based on a priori knowledge of the 

interaction bebeen the auxiliary mass and the vibrating structure, zones for 

each movement category can be mapped as shown in Figure 8.1. The control 

logic can be expressed as conditional statements based on the current 

pendulum dynamics as angular displacement limits, angular velocity limits or 

a combination of angular displacement and velocity limits. 



Mass Motion 
A W ~  tom the pivot (down) 

0 the pivot (up) 

Figure 8.1 Visual representation of heuristic governing the mass motion for 
attenuating vibrations, 

8.2.1 .I Angular Displacement Limits 

Initially, quantifying the zones for controlling the mass movement was 

completed using angular displacement limits, 0,and 0,, as indicated 

graphically in Figure 8.1 and in the algorithm of Figure 8.2. Next, 

displacement constraints were applied. Afterwards the corresponding 

translational derivatives were calculated. 

Let i = cons tan t , 

If le(ti< 9 ., then mass is moved m y  fmm the pivot; 

Else if I0(t] >B, , then mass is moved towards Me pivot; 

Eke mass remains stationary. 

Figure 8.2 Algorithm for the rule based controller using fixed angular 
displacement limits. 

This algorithm assumes that 0, is sofficiently less than the maximum 

angular displacement for the asciIlating pendulum. Also, this control 



algorithm may possess residual energy. The maximum residual energy of the 

system can be related to the limit associated with moving the mass towards 

the pivot, 0,. The potential energy may be as great as mgr(1-cos0,). 

Therefore, if the absolute maximum angular displacement of the structure is 

smaller than the limit, 0, and this limit is nonzero then the structural vibrations 

may not be completely eliminated. However, selecting smaller values for 0, 

reduces the final energy state of the system, but the rate of energy 

attenuation will be decreased as shown in Section 8.4. 

When implementing this control logic, as stated, downward motion of 

the auxiliary mass ensues. This feature forces the mass to return to its lowst 

position and provides additional attenuation in the structural energy, as 

suggested in Section 2.2.2. Once the pendulum oscillations cease to exceed 

an amplitude of 08,; the mass remains stationary until the oscillations are less 

than O,, then the mass moves away from the pivot. Generally, the 

implementation of the algorithm assumes the zones for upward and dowward 

motion of the auxiliary mass are not coincidental and that 0, ~ 0 , .  However, 

if this condition of overlapping regions do exist, the downward motion will 

predominated This ensures the mass returns to its position of lowest 

potential energy to attenuate the system's energy. 

8.2.1.2 Angular Displacement and Angular Velocity Limits 

To advance the knowledge based controller, an angular velocity limit 

was used to determine when the auxiliary mass motion was to be towards the 

pivot The value for this limit was based on selecting either a maximum, 

tolerable, residual kinetic energy level, E R ,  for the structure or a permissible 

angular displacement. Thus, the angular velocity limit could be calculated for 

the physical pendulum as: 



As the energy of the system changes, the location Were this limit occurs also 

changes. When initial excess energy exists, the location for mass motion will 

be away from the vertical, but as the energy is attenuated, the location for 

mass motion nears the vertical. In other words, the corresponding angular 

displacement for the limit to determine M e n  motion is towards the pivot will 

decrease as the system energy is attenuated. 

The conditional logic can be formulated as the algorithm given in 

Figure 8.3. 

This knowledge base controller features improved attenuation as the 

system energy decreases. It may be viewed as approximating nonlinear, 

proportional and derivative control action and appears to be the modus 

operandi of the human operator as show in Figure 8.3. 

If /B(t] c 0, , then mass is moved away fmm the pivot; 

Else If l6(t)( < 8,, then mass is moved towards the pivot; 

Else mass remains stationary. 

Figure 8.3 Algorithm for the rule based controller using angular displacement 
and velocity limits. 

8.2.1.3 Adjustable Angular Limits 

Adaptive parametersllirnits that are based on the current state of 

vibrations creates a continually self-adjusting system. With this controller the 

residual energy level cwld be significantly reduced from the former 

implementations. The updating of limits for the rule base was completed by 

tracking the maximum angular displacement over a set number of cycles. 

After each given set of cycles this maximum value was reset so that the 

current maximum value could be found. The flowchart that incorporates 

adjusting limits to the changing dynamics is stMHln in Figure 8.4. 



and parameter values 

Solve governing 
differential equations 

for one time step 

base to determine 
slider's kinematics 

Yes Update in 
the knowledge base -) 

as x cycles A 

Increment time . 0 

Figure 8.4 Flowchart of the adaptive knowledge based controt system. 



8.2.2 Simulation Considerations 

The physical pendulum system was the selected model for the 

knowledge base controlled simulations. The parameters were selected the 

same as those used for the proportional and derivative action controller. 

Namely, the concentrated mass of 7.5 kg was located 1.0 m from the pivot; 

the acceleration due to gravity was 9.81 mh2; and an auxiliary mass of 0.75 

kg with a permissible translational range of 0.75 I r 5 125m was chosen. The 

simulations were based on an initial angular displacement disturbance of 30'. 

The constant velocity for the motion of the auxiliary mass was chosen 

to match the value previously assumed in the human operator simulation; that 

is kl mts. When the iteration time step was chosen to be 0.01 s, this velocity 

corresponds to maximum acceleration limits of 5!00 m l  s2. This value has 

been noted as being unrealistic; however, a comparison among the various 

displacement profiles can be readily made. 

The initial value problem solver was a fourth order Runge-Kutta. 

Simulations were also completed with higher order solvers. As with the 

proportional and derivative action controller simulation, when multi-step initial 

value solvers w r e  used, the translational data for the moving mass were 

updated for the current angular kinematic data for the intermediate steps. 

8.2.2.1 Software Implementation 

This particular control system was programmed both in Forth and in C 

languages. The commercial software used include Forthmacs and fortech 

C++, Lattice C and GCC. The hardware platforms were the Atari systems 

(Section 6.2. t ) and penonat IBM-compatible computers. 

8.23 Results and Discussion 

The displacement based limits ware conducted for a physical 

pendulum with the results for various limits based on an initial energy of 

14.243 N-m being tabulated in Table 8.1. As the limit for motion away from 



the pivot decreases the residual system energy is attenuated; however the 

rate of attenuation decreases. The kinematic results follow for the algorithm 

of Figure 8.2 Were i = 1 m l s ,€in = 0.3060rcrdand 8, = 0.2959rad. These values 

were obtained using the optimization as discussed in Chapter 4. Next, results 

when the auxiliary mass motion vies based on angular displacement and 

angular velocity limits are given. These results follow the conditional logic of 

Figure 8.3 where the optimized limits were 0.1582 rads and 0.2442 fad. 

Lastly, the physical pendulum performance M e n  the limits were adjusted 

based on the current maximum, angular excursion values where displacement 

limits for motion towards or away from the pivot were based on 60% and 40% 

of this value, respectively. These simulations were completed in C. 

Comparisons are primarily drawn to the human operator control system as 

this system was intended to be its automated counterpart. Note each 

technique does provide vibration attenuation. 

Table 8.1 System Energy for Various Angular Displacement Limits 

" Steady state value has not been reached at t=50s. 
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Limit for Motion 
Towards the Pivot 

0-75 
0.75 
0.75 
0.75 

Limit for Motion 
Away from the Pivot 

0, ( r w  
. 0.3927 

0.3927 
0.3927 
0.3927 

%em 
0.70 
0.50 
0.40 
0.30 

System Energy 
(N-rn) 

O,(rad) 
0.3665 
0.2618 
0.2094 
0.1571 

E(f = 10s) 

6 .2922 
6 -2922 
6.2967 
8.5009 

E, or E(r = 50s) 

6.2922 
6.2922 
6.2922 
5.9568 



8.23 .I Results based on Angular Displacement Limits 

As shown in the phase plane portrait of Figure 8.5, when compared to 

the human operator dynamics, this knowledge based controller provides 

more consistent attenuation. However, the attenuation rate is significantly 

lower than the sample show in Chapter 6. The attenuation rate is more 

comparable to that provided by the proportional and derivative controller 

shown in Figure 8.3. 

An~ukr Velocity 

Figure 8.5 Phase plane portrait for the knowledge based control system. 

The coordinated angular kinematics and translational motion of the 

slider are shown in Figure 8.6. The auxiliary mass motion remains 

coordinated with the angular displacement so that the mass moves towrds 

the pivot near maximum displacement and away from the pivot as the 

pendulum passes near its vertical. The motion for the slider is discontinuous 

and the slider reaches its excursion limits, 



Figure 8.6 The temporal kinematic profiles for the knowledge based 
controller with angular displacement limits. 

As shown by the energy profile of the system in Figure 8.7, the 

attenuation in total energy is comparable to the proportional and derivative 

control action and is significantly less than the human operator controller. 

This controller, unlike the constant frequency, sinusoidal motion described in 

Section 4.4.2, is stable over an extended period, as show in Figure 8.8. For 

this case, the structural energy was attenuated to a residual value. 

Tim (s) 

Figure 8.7 Energy profiles with fixed angular displacement limits in the rule 
base controller. 



- - 

0 10 20 30 40 50 60 

rime (s) 

Figure 8.8 Energy profile with the coordinated auxiliary mass motion for an 
extended simulation period. 

8.2.3.2 Angular Displacement and Velocity Limits 

The dynamics when the limits for the rule base are based on angular 

velocity for motion to~lards the pivot and angular displacement to determine 

motion away from the pivot are similar to those using angular displacement 

limits. As show in Figure 8.9, the phase portrait for the oscillations remains 

symmetrical. 



Figure 8.9 Phase portrait for angular motion Men the rule base controller 
has angular displacement and velocity limits. 

The coordinated temporal profile is show in Figure 8.10. The 

generalization that translational motion of the attenuation device is at twice 

the frequency of the angular oscillations still holds. The governing rule that 

auxiliary mass motion away form the pivot occurs when angular oscillations 

nears the vertical is evident. The primary difference with the previous 

knowledge based controller is that the angular displacement limit used to 

determine the auxiliary mass motion towards the pivot varies with the total 

energy of the system. 

The energy profiles are shown in Figure 8.1 1. Based on the kinetic 

energy, the logarithmic decrement over the first three cycles of angular motion 

is 0.03 with this rule base (Figure 8.3). 



Figure 8.10 The kinematic profifes for the knowledge based controller with 
angular displacement and velocity limits. 

0 10 20 30 40 50 60 

Tim (s) 

Figure 8.1 1 Energy profile for the knowledge based controller using angular 
displacement and velocity limits. 



8.2.3.3 Adjustable Limits 

The rule base formulated using adjustable limits also produced stable 

attenuation for extended runs as evident in the phase portrait of Figure 0.12 

and temporal energy profiles shown in Figure 8.1 3. 

Figure 8.12 Phase portrait for adjustable limit controller. 

Figure 8.1 3 Temporal energy profile for adjustable limit controller. 
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The limits -re adjusted every second cycle with limits set at 60% and 

40% of the current maximum angular excursion values. The temporal 

kinematic profiles are illustrated in Figure 8.14, and the dynamics of the limits 

are illustrated in Figure 8-15. The energy profile has been superimposed on 

the time-varying, absolute values of the limits that control the auxiliary mass 

motion. 

Time (s) 

- 0 -.-- 9 - r - - - - - -  i 

Figure 8.14 The kinematic profiles for the knowledge based controller with 
adjustable limits. 



Figure 8.15 Monitoring the limits as the energy is attenuated. 

8.2.3.4 Safety Concerns 

As the knowledge based system, an application of artificial intelligent 

technology, was deemed to be an acceptable, autonomous controller, safety 

concerns related to self-excited parametric oscillations exist. Specifically, the 

system should not gain excessive energy as had occurred Men the auxiliary 

mass moved sinusoidally at a constant frequency. As show in Figures 8.7, 

8.1 1 and 8.1 3 for the case where oscillations ensue from initial displacement 

of 300, the rule base controller attenuates the system energy to an acceptable 

residual value. As show in Figure 8.16 for various initial angular 

displacement values of lo0, 60°, 90' and 120", the adjustable limits rule base 

appears to respond in a consistent and "stableo manner. 

Furthermore, the adjustable limit rule base provides the ability to adjust 

to disturbances or operating situations in comparison to corrbolIers where the 

controt signal has fixed limits or gains. 
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Figure 8.16 Energy attenuation using adjustable angular displacement limits 
under various initial conditions. 

8.2.4 Summary 

To summarize, the conditional logic used as the knowledge base 

controller was based on the current state parameter values of angular 

displacement and/or velocity. By continually assessing the structural angular 

dynamics, motion for the auxiliary mass was determined. The slider motion 

was based on using displacement values corresponding to step increments 

using velocity values of either 1 , O  or -1 m/s. 
Adaptive limits were next incorporated into the logic. By redefining the 

limits using the current dynamics of the system, an internally self-adjusting 

wntrolted system resulted. The controller appears capable of attenuating 

vibrations for various initial disturbances. Hence by providing the controller 

with a degree of intelligence through being capable of internally monitoring its 

state to establish limits proved to be quite efhcious for this control problem. 



These knowledge based or conditional logic driven controllers operate 

on the same premise as employed by the human operator; namely, the 

frequency of the translational motion of the slider is approximately twice that 

of the angular oscillations of the system. 

8.3 Artificial Neural Networks as the Controller 

The proposed artificial neural netwrk controller unit was a multilayer, 

feed forward, static net. The unit operated in the feed forward loop and 

processed plant dynamics to generate appropriate control action (Figure 

5.10). The operation of the controller presented herein imitates another 

appropriately controlled system. Although during the research, several 

architectures and control strategies w r e  explored, this section focuses on the 

architecture and topography of the network used, its training and 

implementation, along with the control it provided. The net was trainined in 

an "off-linew mode using a supervisory training algorithm; the training was 

validated using data generated under the same control conditions as the 

training data; then the control system was evalued by its energy attenuation. 

8.3.1 The Artifical Neural Network 

The artificial neural network selected for the controller was a multilayer, 

feed forward network. The nodal processing capabilities was defined by 

Equation 5.2 as a summation of continuous, unbounded inputs that were 

passed through an activation function, The activation function was a sigmoid 

function that was defined using a hyperbolic tangent function (as given in 

Appendix K). The nodal output value was a normalized, continuous signal. 

The net consisted of fully interconneded neurons beheen adjacent 

layers with no interconnections within a layer. The data processing was 
contiguous as data was processed and passed through consecutive layers 

and defined by Equation 5.3. The input data consisted of kinematic state 



parameters (8(t).t!ift),r(r).i(t)) and each input layer had a bias node with its 

own set of interconnecting wights. 

Two sets of nehwrks w r e  considered with each having tMJ hidden 

levels of processing nodes.' The nets were distinguished by the output 

parameters used to provide control action. One set had four output nodes (I- 

J-K-4) and the other had three output nodes (IJ-K-3). The first nebrrrork output 

was mapped to continuous functions2 representing the kinematic state 

parameters ( 8 ( t ) , @ t ) ~ ( t ) . i ( t ) )  and the latter was mapped to discrete output 

values ([I I 11. [OOO] or [-1 -1 - 11 ). 
The size of the neural net affects its "learning abilitiesn [Huang and 

Huang, 1991 ; Chakraborty and Nuguchi, 1997) and its computational ability 

[Holler et al., 19881, in other words, its ability to learn patterns, to generalize 

and to operate efficaciously. When this part of the research was completed 

very little work had been completed with regards to tailoring and parsimony of 

networks [Mirchandani and Cao, 1989; Hirose, et al., 19911; thus, once the 

net structure was chosen it remained fixed. 

To establish the net size, the net was trained using a set of exemplar 

patterns3, that modeled the dynamics of a translating mass along the rotating 

pendulum system. This exemplar data patterns were sampled one simulation 

time step apart as shown in Figure 8.17. The simulation used random 

translational motion, r(t) and achieving convergence or reduction in the 

training error was used as a measure of the success for training this net. This 

net was trained to represent the system dynamics and was believed to be a 

superset of the desired control action for vibration attenuation; thus, using the 

' This net was assumed capable of solving complex mapping and had been 
reportedly applied to decision regions of arbitrary shapes [Lippman, f987]. 

To achieve convergence for continuous output either the sigmoid function of 
the final output layer was omitted or the output data was normalized. 

Exemplar patterns refer to paired input-output patterns for neural net 
training. 
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same architecture was deemed sufficiently capable of modeling the wntrol 

problem. 

System 

Training 

Figure 8. t 7 Training of the neural nehwrk to establish net size. 

The selected net had an input layer, first and second hidden layers and 

an output layer. This structure provided three sets of adjustable wights. The 

number of nodes in each layer w r e  chosen as follows: 

a) input or source layer had 4 nodes (angular displacement and 

velocity of the structure and the translational position and velocity of the 

reconfigurable mass); 

b) first hidden layer, 13 nodes; 

c) second hidden layer, 11 nodes; and 

d) output layer, 4 nodes or 3 nodes. 



When the neuron or processing nodes of a layer contained a bias or 

threshold, the number of nodes of the previously layer was effectively 

increased by one. This representation of the biaslthreshold created an 

internal input node with a preset value of 1; these net architectures can be 

referred to as either a 5-1 3-1 1-4 or a 5-13-1 1-3 net. (The number of 

connecting wights were 252 and 241, respectively.) 

8.3.2 Training of the Artificial Neural Network 

A very important feature of artificial networks is their adaptive nature; 

they "learn by example" rather than by traditional programming. This process 

is called "trainingn of the neural n e w &  and is explained in Appendix K In 

this thesis, the training paradigm was 'supervised"; that is, the net output was 

compared to a target4 to generate an error value, and then the wights were 

adjusted to reduce this difference using optimization techniques as described 

in Appendix J. By repeated and persistent presentation of exemplar patterns, 

the net can be trained to respond more efficiently. 

Once the neural network was trained using the training suite - a set of 

input-output pattems as generated from a controlled system - the training 

was validated. The validation process used a set of input-output patterns that 

had also been generated from the controlled system but was not identical to 

the training suite. The cumulative error from this validation suite provided an 

indication of how well the net had "learned" the controlled system of input- 

output relations. Sample training and validation data suites appear in 

Appendix L. The final assessment of the neural network was evaluating its 

performance when implemented a3 the controller for generating the mass 

reconfiguration for the system. 

Exemplar patterns were sampled while a controlled system operated 

properly; the data was generated from simulations and were not entrained 

with artifacts or noise. Regardless of the control system employed (human, 

4 Target values are the ideal or desired output. 
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knowledge based, proportional and derivative action or otherwise), the 

training process was illustrated in Figure 5.12. Essentially, the net behaves 

as a "smaf function generator whereby the state parameters of 

0(t).8(t),r(t) and i(t) served as input and the net generated an appropriate 

control signal ( d l ) )  based on an output signal that sampled one time 

iteration, later. The dynamic nature of the problem was incorporated by the 

selection and sampling process of input-output parameters. By selecting the 

input-output parameters as state variables of the system, the neural net 

controller had the standard control signals embedded within the net. To 

provide timedependent sensitivity, the parameters included derivative data. 

For the tn'-state output pattern neural netwrk, additional processing 

was required. When generating the exemplar patterns the control action was 

mapped to the target signal. The state data from the system no longer served 

as output parameters for the network. Also, Men operating the net, the 

output from the neural net controller had to be post processed. The train in^ 
process is represented in Figure 8-1 8. This neural net was particularly 

useful when generic or other control adion wre to be investigated. 

Training was completed for two types of exemplar patterns. One set of 

exemplar patterns consisting of approximately 80 - 100 patterns that matched 

temporal kinematic or state parameter data for input and output patterns; the 

other set matched input kinematic, state parameter data to the tri-state, three 

value output vector. Typical data as sampled from the human operator 

controller is provided in Appendix L. 



System: Controller and Plant 

Training 

Figure 8.1 8 Training layout for IJ-K-3 "proxy", neural nehvork controller. 

The training was based on reducing the sum of square of the error 

betwwn the net generated output vector with the exemplar output pattern 

over the entire training suite. Figure 8.1 9 illustrates a typical convergence 

sequence that was achieved during training using data that was generated for 

the human operator controlled system. For this particular example, an 

average error of 4 % existed for an exemplar pattern. 

The weighting matrices were saved for various training convergence 

levels. These weights ware then accessed to implement the neural net 

controller for the system. 





compilers. Training was initially completed using the Atari computers and 

was later redone on IBM based machines. 

8.3.4.2 Simulation Considerations 

The system being modeled was the simple pendulum with parameters 

for the system being as previously stated (see Appendix 0). As an example, 

the controlled system was based on imitating the control action of the rule 

based controller which implemented the conditional logic based on fixed, 

angular displacement limits, as described earlier in this chapter. Another 

example was to be a proxy to the human operator controlled system as 

reported in Chapter 6. 

8.3.4.3 lmplemntation of the Neural Network as the Controller 

In implementing the neural net controller for the system, the current 

kinematic state parameter data was passed to the neural net controller. This 

data sewed as input for the neural network. Essentially, the simulation of the 

neural net controller was a series of matrix computations as given by Equation 

5.3. The post processing converted the net output to suitable translational 

dynamics to be processed by the next iteration of the simulation process for 

determining the angular oscillations of the pendulum. 

Depending on the net architecture, (I-J-K-3 or IJ-K-4) the output values 

require different processing prior to being fed to the control mechanism (or 

simulation package that implements the control action). For the IJ-K4 

nehwrk, the output nodes corresponding to the translational velocity of the 

attenuation mechanism required only a unity gain as the post processor, as 

the value was readily incorporated into the simulation padcage of the 

controlled system. The translational position and acceleration for the auxiliary 

mass was calculated using finite difference equations; these values were also 

returned to the simulation program. 



For the discrete, three node output netwrk the patterns were matched 

to the three possible modes of control, namely, moving the mass towards the 

pivot (-1 -1-1 1, no motion of the mass (0001 and moving the mass away ffom 

the pivot [I 1 1 j. The magnitude for the incremental motion, & , is based on 

the mass velocity, i, and the selected time step, At, as discussed in the 

implementation of the various control systems. The net output was then 

combined using a "winner-takes-all" principle as defined by 

if s:, then move the mass towards the pivot, 
if z, < z 5 z, then no control action is taken, and 
if:, < z  then move the mass away from the pivot. 

where :represents an averaged output that is compared to the defined limits 

of :, and :, . 
This architecture provided improved implementation flexibility as the 

net generated control output may be matched to a variety of movement 

profiles for the attenuation device. 

The neural net controller was accessed for each time step of the 

simulation where the angular displacement of the system was then calculated 

and returned to the controller. 

8.3.5 Performance Results for the Neural Network Controller 

Good energy attenuation was achieved for various 'proxy" neural 

netwrks. Regardless if the net was trained using kinematic or tfi-state output 

values, appropriate control action was generated by the neural net controller. 

The tri-state output was easily mapped to a relay action for mass 

reconfiguration and tended to convert other control action to this type of 

wntrol. A more complex post processing of the neural net output w s  

necessary to generate non-relay action. The tri-state output was a more 



flexible system allowing deficiencies in training to be corrected through 

redefining limits in the post processor. 

Despite the net being trained on a subset of the controlled operation, 

yet accessed more frequently during the controlling of the pendulum system, 

the neural net controller provided appropriate control action. The neural net 

controller appeared able to interpolate control action for system kinematic 

states for which it had not been explicitly trained. 

A sample energy profile for the "proxy", neural net controller of the 

knowledge based system that used fuced, angular displacement limits in its 

rule base is shown in Figure 8.20 [Stilling, 19911. The time axis has been 

normalized with respect to the average period of the structure and the system 

energy has been normalized with respect to the moving or end mass. The 

performance of the neural nehrrrork exceeded the original rule base system 

that it was to imitate. For each energy profile, the system was initiated with an 

identical disturbance that corresponded to 8.50 N-mkg or an initial angular 

displacement of 30". 

Figure 8.20 Comparison of energy attenuation for the rule based controller 
and the 'proxy", neural network controller. 



The extrapolation ability of the neural nehmk was evaluated by 

presenting the "proxy", neural network controlled system with conditions that 

were not included in the training suite. Specifically, initial conditions that 

corresponded to an initial angular displacement of IS0, 4S0, 60" and 90" were 

simulated. Energy attenuation was observed for each case with the most 

efficient energy attenuation occumng when the disturbance lied within or was 

near the condition that the net had been trained with. 

8.3.6 Summary 

The artificial neural network was capable of performing autonomous 

control for vibration attenuation. Energy attenuation appeared stable for long 

simulations. Also, the trained net could be applied to other initial conditions. 

For the example given, the rate of energy attenuation was an improvement 

over the system being used as the model. Controllers trained using the tn'- 

state output had additional flexibility as the post processing allowed limits to 

be placed on the norm of the output that would correspond to various mass 

movements. 



9. Summary, Conclusions and Rscommndations 

9.1 Summafy and Discussion 

The development of the concept of mass reconfiguration for structural 

vibration attenuation was investigated. This vibration attenuation concept 

was applied to pendulum structures whereby mass reconfiguration was 

achieved by a radially, translating mass along an oscillating pendulum, The 

control strategy was implemented as mass reconfiguration displacement 

profiles using various types of controllers. Numerical simulation and 

optimization techniques -re applied to investigate this problem. 

First, the physics associated with a moving mass along a rotating 

system was presented. The rotational and translational motion of the auxiliary 

mass gives rise to the Coriolis inertia force which affects the angular motion of 

the pendulum system. This Coriolis effect can be viewed as producing 

positive or negative damping. Specifically, when the mass is moved away 

from the pivot, the Coriolis force opposes the oscillatory motion and acts to 

decrease the oscillation amplitude. In contrast, Wen the mass is moved 

towards the pivot, the Coriolis force acts with the oscillation motion and will 

increase the amplitude. 

For the systems as studied, the mass must remain in contact with the 

structure which leads to assuming a cyclic motion. For cyclic mass motion, 

the angular displacement is periodically increased and decreased. As the 

structure vibrates, the magnitude of the Coriolis force varies. To achieve 

vibration attenuation over a cycle of the structural oscillations, the mass 

should be moved towfds the pivot when the Coriolis force is small, thereby 

minimizing the increase to the rotational oscillations; then, the mass should 



be moved away from the pivot when the Coriolis force is large, thereby 

maximizing the decrease in the oscillations. In terms of the angular excursion 

andlor velocity, this control logic is postulated as: 

1) the auxiliary mass is moved away from the pivot when the angular 

velocity and the Coriolis force are maximum which occurs *en the pendulum 

nears the vertical, and 

2) the auxiliary mass is moved towards the pivot when the angular 

velocity and Coriolis force are minimum which OCCU~S when the pendulum 

nears its maximum angular excursion. 

Alternately, the physics associated with mass reconfiguration can be 

understood by examining the wrk-energy balance from the interaction. 

Moving the mass towards the pivot generates positive work since the force to 

cause this motion is in the same direction as the motion which increases the 

system energy. Conversely, moving the mass away from the pivot produces 

negative wrk as the force to cause this displacement is in the opposite 

direction as the motion which decreases the system energy. As the system 

oscillates, the magnitude of the force to cause mass reconfiguration vanes. 

Therefore, a strategy for periodic motion of an auxiliary mass to cause 

attenuation can be deduced which parallels the above logic; namely, motion 

of the mass occurs during the turning points in the angular oscillations. 

Next, a mathematical model was developed to represent the mass 

reconfiguration for pendulum structures. Internal and external damping 

factors were neglected to accentuate Ute attenuation effects by mass 

r ~ g u r a t i o n .  Then, simpliftcations to the governing equation enabled 

parallels to be draw to the Mathieu-Hill equations, where regions of stability 

and instability wwe identified. Specrfically, harmonic motion at twice, nine (9) 

and sixteen (16) times the naturai frequency were examined. Predicting the 

dynamic behavior for the simple structure of a pendulum with reconfigurable 

mass was show to be quite involved. 



Through extensive computer modeling and simulations, the dynamics 

of the mass-pendulurn system were investigated. The auxiliary mass 

displacement profiles that were examined were periodic (Equations 4.14a to 

4.14d) and the mass motion was restricted (Equation 2.1 1 ). The profiles, 

which satisfied the proposed control strategy for achieving vibration 

attenuation, included: 

I) continuous, harmonic motion using fixed frequency and 

phase, 

2) relay action using piece-wise "constant velocity" motion that 

was based on the current, structural angular displacement 

andlor velocity, and 

3) motion based on modified proportional and derivative action 

of the structure. 

Based on the sinusoidal motion (Equation 4.1 O), the optimization of the 

parameters regardless of the optimization period approached twice the 

natural frequency of the system (n = 2). Attenuation initially occurs when 

4 = 0. As show by the optimization results (Table 4.6), the phase shift varies 

with the period of optimization. Since the mass motion affects the natural 

frequency of the structure (Figure 3.7) and causes damping, a variation 

between the frequency of the angular oscillations and the mass motion 

results. This frequency variation resulted in a 'beating phenomenan (Figures 

4.13, 4.1 5 and 4.19). Thus, the displacement profile of the mass must be 

properly coordinated for the time period of interest. 

An improvement to this displacement profile that retained the 

sinusoidal characteristics was proposed. The frequemy of the mass motion 

was tuned to the frequency of the system. This profile was defined as: 



This tuned displacement profile produced continual, parametric attenuation 

(Figure 4.21 ). 

The relay action using piecewise, "constant" velocity also produced 

good attenuation. The velocity was selected to be -1, 0 or I m/s. The 

structural dynamics did not exhibit beating effects; however, depending on the 

parameterization of the control logic, residual energy remained. Also, the 

simulation process defined the transition beheen velocity states; that is, the 

acceleration of the translating mass was defined by the time step of the 

simulation. As the time step was decreased, the acceleration of the 

translating mass had the potential to become physically unattainable, The 

control logic to select the mass motion was formulated using various logic 

paradigms and structural angular displacement andlor velocity limits as 

presented in Chapter 4. Also, the parameter limits wre optimized for various 

time intervals (see Tables 4.5, 4.6 and 4.7). As the time intervai was 

lengthened, the magnitude of the residual energy was reduced, but the rate of 

energy attenuation was decreased. 

To enhance the attenuation of the structural energy, the conditional 

limits were made adjustable as was presented in the controlled System (see 

Section 8.4.3). This technique capitalized on the fast attenuation rate without 

high residual energy levels remaining. 

The displacement profile based on modified proportional and derivative 

action was considered in Chapters 4 and 7. This profile provided a more 

continuous action than the relay technique and avoided discontinuities that 

produce high acceleration values for the auxiliary mass. The parameters (or 

gains) for the mass displacement profile when optimized accounted for the 

fact that the damped natural frequency was lower than the natural frequency 

of the system. Good vibration attenuation was also achieved using this 

displacement profile. 

Several profiles for mass reconfiguration m e  formulated and proved 

effedive in providing structural vibration attenuation. 



Integrating the mass reconfiguration with the pendulum structure 

produced the control system. The fundamental requirement of the controlled 

system was to attenuate vibrations. Multiple input, closed loop controllers 

were considered. Other desirable requirements that were identified included 

being general purpose, adaptive with learning capabilities and being 

autonomous. The identified input parameters were the temporal angular 

displacement of the structure andlor the temporal translation of the 

reconfigurable mass. Uniquely, the controllers embedded the standard input 

signals Wich the controller internally generated to produce the control signal 

that defined the sliding mass motion. The control systems presented included 

a human operator controller based on a relay mass reconfiguration profile, a 

modified proportional and derivative controller using proportional and 

derivative action, a knowledge or rule based controller using a relay mass 

reconfiguration profile, and an artificial neural network trained to imitate a 

proven, effective reconfiguration control strategy. The effectiveness of each 

control system reflected the mass reconfiguration strategy that was 

implemented. A summary of the mass reconfiguration strategy and the 

corresponding controller implementation(s) appears in Table 9.1. 

Neural neWrks wre selected as a controller due to their originality 

and learning capabilities; at the initiation of the project, the nature of the 

problem was not well defined. The development of artificial neural network 

was in its infancy at the time of implementing this control system. The 

selection of the net was a feed forward, multiple layer net. The net was made 

time-sensitive and timedependent by selecting inpuboutput parameters that 

contained time derivative information (angular and translational 

displacements and velocities). Also, the exemplar patterns matched input 

states of the system to the time-delayed output action- The development of 

the artificial neural netrrvwk controller involved training the net, validating the 

training of the net and then, implementhg the net as the controller. Various 



optimization techniques were implemented for training the net, as ware tools 

for creating, training and implementing this controller 

Table 9.1 Comparing mass reanfigurations and control implementations 

Mass Recontigumtion I Nature of the Strategy & Its P e h m m e  

constant frequency 
and phase 

Swegy 
Sinusoidd Motion with 

-time dependent 
- similar to Mathieu's Equations 
-energy aUenuation can be paramebic 
provided proper phase shii employed 

- continuous, differentiable motion 

tuned (variable) 
hequency 

Sinusoidd Motion with 

Relay Action 
- piecewise, 
constant vdoclty 
prafile 

- produced 'beating" phenomena 
- continuous, differentiable molion 

Proportional and 
Derivative Based 
Action 

-time dependent 
- when properly coordinated provided 
paramebic energy attenuation 
- discontinuous displacement profile 
( i n t a t i o n  did not provide lor 
smoath transition between velocity 
states) requires conditionds to select 
docrty 
- provided good rate of energy 
attenuation with the energy decreased in 
steps - residud energy existed 

- conlinuaus displacement mofion 
-gainpameWswereseleckdas 
constants - the beab'ng phenomena was evident as 
stdls in the auxiliary mass motion 

Selected from above 

Controller and Comments 

Not lmdemented 
- would require logic to select 
phase magnitude and logic to 
mestthecontrol action to 
avoid amplilication from the 

- when initiated the mass 
motion should be 'in phase" 
with the angular oscillations 
Human Omator 
-with experience operator 
skills improved. 
- best energy attenuatw 

comnef 
- goad attenuation 
- improved resulk obtained 
when adjustable limits for 
selecb'ng ueladty were used. 

-- 

- good, nearly parametric 
attenuan without beating 
- reammend defining 
adjustable @ns. 

Arliiia'd Neurd Network 
- when propaty bawd led to 
good energy attenuation 
- example provided improved 
attenuation over trhed 
system and aammdaW 
changes to -ng 
condtions 



9.2 Conclu%ions 

The objective of the thesis was to investigate mass reconfiguration 

within or along a structure for attenuating the structural, vibrational energy. 

Since the approach taken examined the complete controlled system to 

achieve vibration attenuation, the research, as reported within, encompassed 

several domains. These included structural dynamics, numerical simulation, 

optimization, control and artificial intelligence technology. Baaed on the 

results from this investigation where mass reconfiguration consisted of a 

radially, translating mass along a rotating structure (mass-pendulum system), 

several conclusions can be d r a m  

The most important oonclusion is that mass reconfiguration can be an 

effective vibration attenuation mechanism. Mass reconfiguration can alter the 

characteristics of the system and hereby increase, decrease or cause no 

change to the structural energy. Therefore, a strategy for mass 

reconfiguration can be deduced to effectively attenuate the vibrational energy 

in structures. When studying mass motion along a structure, accounting for 

the inertia effects of the mass becomes involved and complex. 

Based on the mass reconfiguration displacement profiles that were 

studied by simulating the ensuing dynamics and optimizing the time- 

dependent displacement profile, several characteristics for the mass 

recanfiguration strategy for effective attenuation can be made. Namely, for 

vibration attenuation the profile should be cyclic at approximately twice the 

angular frequency of the system. To achieve parametric attenuation, a 

sinusoidal auxiliary mass motion that is tuned to twice the frequency of the 

angular oscillations of the system can be used. To avoid beating effects, 

relay action can be employed to synchronize the mass motion with the current 

frequency of the pendulum motion. Regardless of the auxiliary mass 

displacement profile, improved attenuation with respect to maximizing the rate 

of the attenuation and minimizing the residual energy can be achieved by 

using proper parameters for the reconfiguration profiles andlor by using 



adjustable parameters based on the current system dynamics or parameters. 

Autonomous wntrol required adjustable parameters for defining the mass 

reconfiguration profile. 

The technique of reformulating the complex, dynamic control problem 

as an iterative, parameter optimization can be beneficial. The effectiveness 

for this study varied with the improvement depending on the period of 

optimization and the technique being investigated. Optimization using 

random search methods showed that several iterations w r e  required to 

converge to or towards the global solution. 

A variety of controllers to implement the mass reconfiguration 

attenuation control strategy can be developed and employed, as was shown. 

Controllers based on timedependent reconfiguration profiles, conditional 

logic and modified proportional and derivative adion were developed and 

shown to achieve good structural, vibrational energy attenuation for the 

pendulum systems. Based on the implemented controllers, the human 

operator performance was best at employing mass reconfiguration to 

attenuate vibrations followd by controllers based on artificial intelligence 

technology. 

In developing the artificial neural nenclrork controller, the following 

conclusions can be draw: 

1) by providing time dependent parameters, a "dynamica or time- 

dependent neural network for control purposes can be developed; 

2) by using displacement and velocity parameters, effective control for 

a nonlinear second order system can be achieved; 

3) by generating exemplar patterns from a controlled system, training 

suite data for creating a "prow neural net controller can be acmmplished; 

4) by implementing parametric optimization techniques (such as, 

Powdl Method, Conjugate Gradient, Coordinate Search, Evolutionary 

Algorithms and others), supenrisory training for neural nehaks can be 

enhanced over back propagation methods; 



5) by presenting a data suite that is independent, yet similar to the 

training suite, the training of the neural n e w &  can be assessed; 

6) by presenting the entire training suite (batch training), the neural 

net can be trained more expeditiously; and 

7) by avoiding "over-training*, the neural network provided more 

general control and responds better to conditions that the net was not 

explicitly trained for. The phenomena was not investigated in detail and 

hence a general conclusion cannot be drawn. 

All the simulation, optimization and control systems were custom 

programmed for the thesis research. Based on the programs developed, 

modular programming was concluded to be effective for developing software 

tools that can be customized for various languages and programming 

platforms. 

9.3 Contributions 

Several original contribution from this research were made. The key 

contribution was the development and application of the concept of mass 

reconfiguration using either internal mass redistribution or an addendum 

system of an auxiliary mass to attenuate vibration in a rotating system. The 

understanding of the mechanics of this system were presented. Parametric 

excitations were applied to control vibrations [Stilling and Watson, 1994b and 

19931; the technique for inverse parametric amplification (i-e. attenuation) was 

achieved using a tuned-frequency, harmonic mass redistribution. 

Secondly, artificial intelligence technology methods were successfully 

applied as controllers for this problem. Both knowledge based systems and 

artificial neural networks were effective controllers. 

Thirdly, extensive tool development for computer simulations were 

completed. These were done on various plafforrns in both Forth and C 

languages. The custom sufhme packages that were developed 



encompassed linear algebra packages, initial value solvers, optimization 

search techniques and neural network programs. 

The formulation of the problem in a nontraditional or classic manner 

provided new insight into the problem and motivated unique solutions, For 

example, a pseudo-force comprised of the slider related terms transformed 

the freely vibrating system into a forced vibration problem. The "pseudo- 

force" m s  defined by the mass reconfiguration. Also by examining the 

fluctuations with respect to the natural frequency of the system, the beating 

phenomena could be explained and circumvented by creating a self-tuning 

frequency reconfiguration profile. Also, the controller embedded standard 

control signals, thereby expanding its typical processing capabilities 

associated with generating appropriate control action. 

In addition, the concept of changing the dynamic characteristics 

(parameters in the governing differential equation) provides new engineering 

design venues to solve problems. This thesis examined the specific case of 

mass reconfiguration in a dynamic system. The concept can be extended to 

adjusting the boundary conditions to change the dynamics of the system to 

achieve a desired goal; for instance achieving vibration attenuation in a 

transmission line may involve adjusting the tension and length of the vibrating 

cable by lengthening and shortening the cable over a large pulley at its 

attachment point. 

9.4 Recommendations for Future Work 

Regarding the concept of mass reconfiguration, a continuation of the 

investigation with the pendulum strudure could involve developing a profile 

that provides the rapid attenuation of the relay action without encountering 

high acceleration patterns in the auxiliary mass. This mjerK could be avoided 

using appropriate transition patterns (such as cycloidal motion). Further 

optimization and improvements on the adjustable limits would be desirable. 



The research reports the effects associated when 10% of the structural 

mass is employed as an auxiliary mass to traverse 40% of the structure's 

span. Both of these factors should be investigated further. As wit the 

location of the mass motion (that is the proximity to the pivot) will affect the 

attenuation characteristics of the mass reconfiguration system. Furthermore, 

when applied to large structures, multiple control units (i.e. masses) may 

prove more effective. 

Completion of a prototype of the system is recommended. This wuld 

permit an investigation into not only the process of training a neural netwrk 

based on sampling a controlled system, but also the dynamics andlor 

limitations associated with the sensors and actuators could be investigated. 

To better represent more systems, the structure considered should be 

continuous. Initial investigation with a cantilever beam [Stilling, 1990; Stilling 

and Watson, 19971 showed that additional inertidrelative acceleration terms 

need to be considered. Examining the effects of an auxiliary mass along a 

strudure alters its eigenvalues and eigenvectors (modat frequencies and 

shapes). The general strategy for damping the first mode of vibration 

involved moving the mass at twice this modal frequency over the length of the 

structure. But other strategies associated with higher frequency motion may 

also be appropriate, especially when all modes of vibration are considered. 
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Appendix A: Terminology 

A list of the terminology as used within the thesis is presented below. 

The terms are from structural and vibrational engineering, control 

engineering, optimization and artificial intelligence technology. 

ACTlVE ATTENUATION MECHANISM as proposed in the thesis, consists of 
motion of a mass either within or along a structure to reduce its vibrational 
energy; the mass may be an auxiliary unit or intrinsic to the structure. The 
technique is also termed mass redistribution or mass reconfiouration. 

ARTlFlClAL INTELLIGENCE TECHNOLOGY refers to wncepts and 
developments that combine biological processes with computer technology to 
emulate various human or biological processes; some of the tools that have 
evolved include artificial neural networks and knowledge based svstems. 

ARTIFICIAL NEURAL NETWORKS is also referred to as neural netwrks, 
neural nets or nets in this wrk; as employed in this research the net provides 
a matching between input and output patterns using a parallel set of weighted 
sums and nonlinear squashing functions. 

ATTENUATION refers to the loss of vibrational energy of a structure; it is 
positive damping that occurs from the active vibration technique. 

AUXlLlARY MASS is the end mass of the simple pendulum or the sliding 
mass of the phvsical ~endulum that translates along the system to reconfigure 
its mass to effect active vibration attenuation. 

CLOSED LOOP CONTROL SYSTEM is a control system with output fedback 
into the controller, the controller maintains a p-bed relatian bebeen the 
reference input and system output by comparing these and using the 



difference as a means of effecting control. (See also open IOOP control 
system.) 

CONTROLLER is the logic that directs the control mechanism to effect the 
desired objective for the plant by supplying appropriate action or signal. 

DAMPfNG refers to the change in energy of the system. 

POSITIVE DAMPING refers to loss or dissipation of energy; in this work it 
refers to the attenuation of oscillations or the reduction of structural, 
vibrational energy. 

NEGATIVE DAMPING refen to the gain of energy. 

EXEMPLARY PATTERNS refers to a set of paired input and output patterns 
used to train artificial neural networks. 

FEEDBACK CONTROL SYSTEM see closed loop control system. 

INSTABIUTY refers to oscillations that are unbounded; the amplitude of 
osciHation increases. (See also stabilitv and neutral stable). 

KNOWLEDGE BASED SYSTEM or expert system refers to a knowledge 
base, an inference engine, warking memory and interface used to emulate 
human expertise in a given area. 

MASS REDISTRIBUTION see active attenuation mechanism. 

MASS RECONFlGURAl'lON see active attenuation mechanism. 

MATHEMATICAL PENDULUM see simple pendulum. 

MATHIEU4ILL EQUATIONS are linear differential equations with pm-odic 
coefficients. 

MATMATH is the name of the linear algebra software package that urns 
custom developed in Forth for the thesis research. 



NEUTRAL STABlUTY refers to oscillations that remain unchanged; no 
attenuation or growth in amplitude. (See also stability and instability). 

OPEN LOOP CONTROL SYSTEM is a control system whereby the output 
does not affect the control action; the input and output relation of the system 
is well defined for each reference input and there corresponds fuced operating 
conditions. Such systems often operate on a time basis and do not operate 
well in the presence of disturbances. (See also closed  loo^ control svstem.) 

OPTIMIZATION is the process of determining extrema in an objective or cost 
function; it is determining a "best" solution. 

PARAMETRIC RESONANCE vibrations that are characterized by 
monotonically increasing oscillations; also it is referred to as parametric 
excitations. 

PHYSICAL PENDULUM is a compound or dual mass pendulum system; both 
the pendulum structure and the sliding or auxiliary mass possess physical 
properties of mass or inertia. 

PLANT refers to the physical abject that is to be controlled; that is. the 
equipment or rnechanism(s) that hnctions to perform a given operation. 

PROCESS refers to the progressive, continuous operation of a series of 
control actions leading to the desired end result or behavior; process is the 
controlled operation that may be systematically directed, the action to achieve 
a desired result. 

PROPORTlONAL AND DERlVAtlVE CONTROL ACTION refers to a type of 
processing of the feedback signal to the controller; proportional action 
involves scaling the feedback signal and derivative action involves scaling its 
derivative. 

SEARCH TECHNIQUES refers to methods used to find optimums in an 
objective function; techniques include: conjugate gradient, coordinate search, 
evolutionary programs and others. 



SELF-TUNING of self adjusting terms refers to parameters that autonomously 
change; in this thesis, this refers to parameters that adjust to maintain proper 
coordination between the active attenuation mechanism and the vibrating 
structure. 

SIMPLE PENDULUM is also referred to as a mathematical pendulum and 
accurately models a variable length pendulum where the pendulum structure, 
itself, is massless. 

STABILITY refers to oscillations that remain bound. (See also instability and 
neutral stability). 

STRUCTURE is the vibrating plant that is controlled; for the research 
reported herein the structures have consisted of pendula structures. 

SYSTEM is the combination of the components that cohesively perform a 
certain objective; the system is the combination of the controller and plant. 

TRAINING SUITE refers to a set of exemplar  att terns used to adjust the 
wights or train an artificial neural network 

VALIDATION SUITE refers to a set of exemolar patterns used to evaluate the 
training of the artificial neural netwrk. 

VlBRAnON is the oscillatory behavior of bodies which possess mass and 
stiffness undergo when disturbed by either an internal or external disturbance. 

Angular Vibration refers to rotational oscillations. 
Translational Vibrations refer to linear oscillations. 



Appendix 6: Deriving the Governing Equations for a Physical Pendulum 

The physical pendulum system is a dual mass system; both the 

pendulum and the attenuation device, the slider possess mass. A typical 

schematic for the simple pendulum is show below. 

(a) (b) (c) 
Figure 8.1 Physical pendulum system and the free body diagrams of (b) the 

pendulum and (c) the auxiliary mass components. 

Applying Newtonian equilibrium principles, moments of the forces are 

taken about the pivot to give, 

where the notation is consistent with Figure 8.1 and is defined in the 

Nomenclature and Abbreviations found on page xviii. 



As developed in Sedion 2.2, the motion of the slider is governed by, 

This equation in terms of its rectangular components can be expressed as, 

m,(~ - 8'r) = -nt,gcos8 - F 

and 

m,(& + 20k)=-m,grut0 + N 

From Equation B2b, the interaction force, N , is defined as 

By substituting Equation 8.3 into Equation 8.1, the planar motion of the 

pendulum is defined as, 

The force required to move the siiding or auxiliary mass is defined by 

rearranging Equation B.2a, 



Appendix C: 

Using Lagrangian Dynamics, An Energy Formulation, To Derive the 

Governing Differential Equations 

C.l Introduction 

The goveming differential equations of motion for the pendulum system 

and the proposed attenuation device are derived. Newtonian mechanics 

model systems using forces is quite adequate for analyzing simple systems. 

However, to formulate the equations of motion for more complex systems, 

energy principles or Lagrangian Dynamics are often used [Barr, 19931. 

Regardless of the modeling approach, the governing differential equations are 

identical. 

A brief introduction to the approach of Lagrangian Dynamics is 

followed by the derivation of the governing equations for a simple, constant 

length pendulum, for the variable length pendulum, a physical pendulum with 

a stationary auxiliary mass and a physical pendulum where the mass 

traverses the structure. Knowledge of the interaction between the pendulum 

and the auxiliary mass is not necessary for deriving the differential equations 

describing the planar oscillations. Lastly, the general equations as derived 

are discussed. 

C.2 Background 

Briefly, the energy formulation is based on Hamilton's Principle 

[Goldstein, 19801. The dynamics of a system is based on minimizing the time 

integral of the differences between kinetic (7) and potential (U) energies. The 



difference in energy is called the Lagrangian (d =T-CI). Using Calculus of 

Variations [Lanczos, 19701, Hamilton's Principle can be expressed as: 

Therefore, the Euler-Lagrange equations or the Lagrangian equations of 

motion are defined by: 

where q represents a generalized coordinate, 
" 

the superscript, " , the first time derivative; 

a, partial differential operator; and 

F,, the generalized nonmnservative farces. 

Additional background and references on Lagrangian Dynamics appears in 

Section C.8. 

C.3 Simple Pendulum 

A single mass pendulum as show in Figure C.1 consists of a constant 

length pendulum. A mass or bob is located at a fixed distance, r ,  from the 

support. Assuming the mass moment of inertia of the bob about its center is 

significantly less than its inertia about the support and the connection (cable 

or rod) has negligible constant mass, then the energy of the system can be 

expressed as follows: 

I Kinetic Energy: T = ;rnrY2 

Potential Energy U = mgr(1- cod) 

1 As potential energy is a relative term, the selected zero reference position 
correspond to the vertical equilibrium position when r = R,. This 
convention is f o l l d  throughout this appendix. 
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where rn represents the mass of the bob; 

r , the radial distance from the pivot to the mass; 

0 ,  the angular displacement measured with respect to the vertical; 

g , the acceleration due to gravity and 

the superscript, . , represents the first time derivative of the parameter. 

Note that the potential energy has been defined with respect to the lowest 

position of the mass. 

- 
Y 

Concentrated end 
Massless, mass, A. 

inextensible cable, B 
X 

Figure C. 1 Model of a variable length pendulum. 

For the conservative system, simple pendulum motion based on the 

Lagrangian formulation (Equation C.2) gives the following governing 

differential equation where the generalized coordinate is the angular 

displacement measured with respect to the vertical: 

mr'd+mgrrin8 = 0 

which simplifies to 



with 

C.4 Variable Length Pendulum 

Next, the mechanism for active damping which is the lengthening and 

shortening of the pendulum is considered. To continue with the energy 

derivation, the change in the position of the mass can be modeled by its 

translational kinetic energy. The kinetic energy formulation (Equation C.3) is 

expanded to become 

with the Lagrangian now expressed as: 

and when differentiated and simplified the soventing equation of motion for 

the oscillations of the pendulum can be expressed as: 

The mechanism that decreases or increases the energy of the system is 

mathematically represented in the coefficient, 2c. Depending on the sign of 
r 

this term, positive or negative "damping' may ensue. Alternately, the 

governing differential equation can be r-tten so that the affects of 

changing the length can be v i d  as the forcing function, mathematically this 

can be stated as, 



(C. 10) 

ii, 
where p@r, t) = -2- 

r 
(C.1 Oa) 

The motion of the mass, achieved by increasing or decreasing the 

length of the pendulum, drives the oscillations of the system. An iterative 

algorithm for solving Equation C.10 would be required, as the force is a 

function of the current angular kinematics of the structure. 

The force associated with moving the mass can be derived by 

considering the radial distance between the pivot and the end mass (Le. the 

length of the pendulum) as the generalized coordinate. Mathematically, the 

force to effect a change in mass position mn be expressed as: 

where F, represents the tension in the cable. Approximating the force in the 

cable is essential for design implementation, such as, component selection, 

service life predictions and establishing limits for cable operation, By 

calculating the work associated with moving the end (F ,  &) , a workenergy 

balance can be used to validate the acwtacy of the simulation. 

C.5 Physical Pendulum System 

The governing differential equations of motion for a pendulum 

possessing either a concentrated or distributed mass closely parallel those for 

tfte simple pendulum as presented in Section C.3. The governing equations 

increase in complexity when the physical properties of the pendulum are 

taken into account- The active attenuation mechanism, an auxiliary mass, 

coexists with the stnrcturai mass as appears in the governing diierential 



equations. Incorporating the active vibration attenuation device can be 

visualized as augmenting the system with an additional sliding mass; a 

coupled system results. 

To appreciate the physical contribution made by the pendulum, the 

following configurations for the penduIurn wre  considered: 

(a) a pendulum with a concentrated mass located at a fixed distance 

from the support, and 

(b) a pendulum with distributed mass, such as a uniform rod. 

Schematically, these systems are illustrated in Figure C.2. 

Figure C.2 Pendulum structures with an awdtiary mass or slider: (a) a 
massless rod with concentrated mass and (b) an uniform rod with 
rotational inertia. 

A key difference between these models is in defining the moments of 

inertia about the pivot or support; the moments of inertia far each pendulum 

type are respectively given as: 



1 
(b) I, = - m,I: (C. 12b) 

3 

where I refers to the moment of inertia with the subscript indicating the 

configuration; 

5, the concentrated mass of the pendulum; 

I,, the radial distance from the pivot to the concentrated mass; 

m,, the distributed mass of the rod; and 

I,, the length of the rod. 

By examining only the pendulum, the energy for the bm cases are 

defined as follows: 

Kinetic Energy: 

Potential Energy: 

(a) (I, = mpgfP(1 - cos0) 

mrgl, (b) Ub = --;--(I - case) 

(C. 13a) 

(C. 13b) 

(C. 1 4) 

(C. 14b) 

Mere 0 represents the angular displacement measure with respect to the 

vertical; 

g , the acceleration due to gravity, and 

the superscripts, - , the first time derivative of the indicated parameter. 

Based on the Lagrangian formulation (Equation C.2), the following 

governing equations of motion for the tM, cases can be derived as: 



(a) ntpf;0 +mpgl, sin0 = 0 (C. 1 Sa) 

1 1 
(b) -m,l,20+-m,gl,sinO = O  

3 2 
(C. 15b) 

When simplifying these differential equations, the familiar equation 

describing simple pendulum motion as discussed in Section C.3 ensues with 

the natural frequencies as noted belaw: 

0 +of, sine = O 

(C. 1 6a) 

(C. 16b) 

The essential difference between the tw configurations is that the 

effective length for the uniform rod is 

(C. 17) 

C.6 Physical Pendulum with an Auxiliary Sliding Mass 

The attenuation mechanism is an auxiliary sliding mass. The 

mechanism is not integral to the structure as was the case for the simple or 

mathematical pendulum system. The affects of the slider to alter the dynamic 

characteristics of the structure are considered next Since a dual mass 

system is formed, applying the energy formulation for deriving the governing 

differential equation requires accounting for the kinetic energy and potential 

energy of the slider. 



where the subscript, s , refers to the auxiliary mass or slider with m referring 

to mass and rreferring to the radial distance between the support and the 

centroid of the slider. 

By combining Equations C.13, C.14, C.18 and C.19, the Lagrangian 

equations for the pendulum-slider systems can be mathematically stated as: 

with the simplified, governing differential equations of motion being: 

The natural frequency of the pendu!um-slider system is a function of 

the individual parameters of the pendulum and the slider. As expressed 

mathematically, this characteristic or fundamental frequency is dependent not 

only on the position but also the magnitude of the mass of the slider. 

(a) ale =Ig( mpIi mptp + +m,q m,r 



By rearranging the equations of motion (Equations C.21a and C.21b) to 

segregate the effects of the slider, nonhomogeneous equations can be 

witten, herein the contribution of the external auxiliary mass can be viewd 

as the forcing function, p ( 8 ,  r .r ) . Mathematically, the equations of motion 

may be witten as: 

(a)  rnpl;0 + mpglp sin 0 = p(0. r ,  t )  (C. 23a) 

1 1 
(b) -m,l:8 +-mrgf ,  dn0 = p(8.r.t) 

3 2 

The total energy of the system depends on the position of the auxiliary 

mass, the slider, when the other parameters are held constant. 

When the slider is permitted to move, the dynamics become more 

involved. The translational energy associated with the slider must also be 

taken into account. The Lagrangian becomes: 

t ( a )  = ( 1  r 2  ) -carO)+msR, 
2 



and the ensuing governing differential equations can be expressed as: 

Again, by reorganizing the above equations so that the left-hand side of the 

equations containing terms related to the auxiliary mass, the affects of the 

auxiliary mass can be viewed as the forcing function for the system: 

(a) mpl$ +ntpgfp sin0 =p(O,r,r) (C.26a) 

1 1 
(b) -mrlf0+;mrgirdnO=g(8.r.r) 

3 - 

where p(8.r.r) = -m,(rzO + 2rt6 + rgsin0) (C.26~) 

The total energy of the system is affeded by the wrk associated with the 

motion of the slider. Ttte mrk associated with the translational motion of the 

slider is the scalar produd of the force applied to move the slider and its 

translational displacement To derive the required force to displace the slider, 

the Lagrangian is considered with the radial displacement of the slider being 

the generalized coordinate, heme the force to move the audiary mass along 

the pendulum can be mathematically expressed as: 



By prescribing various motion patterns for the slider, the dynamic interaction 

betwen the structure and slider can be studied. 

C.7 Discussion and Summary 

First by neglecting the motion of the auxiliary mass, the mathematical 

modeling of both pendulum structures are characterized by the equation: 

with the natural frequency, om, being a function of the mass and its 

distribution within the structure. For small displacements, the system is 

classified as being conservative with simple harmonic motion ensuing, if an 

initial displacement from its equilibrium position is applied. During vibrations, 

the structural energy transforms betwen kinetic and potential energy. 

When cansidering the redistribution of mass either within or along the 

structure, then the general equation is of the form, 

where c represents the damping coefficient which is a function of the auxiliary 

mass magnitude, its position and its velocity, as expressed in Equations 3.1, 

3.3a, and 3.3b. 

Alternately, the governing equation of motion can be expressed so that 

the effects of the motion of the auxiliary or sliding mass are viewed as the 

forcing function for the system, 

Note that the equation describing the force to Mect the sliding mass motion 
is consistent; see Equations (29), (3.2), (8.51, [C. 11) and (C.27). 

249 



Were the coefficients, A and B are based on the physicai parameters of the 

structure and C is based on those of the auxiliary mass and p(r.0.t) is the 

forcing function that depends on the current kinematic state of the auxiliary 

mass. The am-liary mass can be viewed as either a damping term or a 

forcing function. Different positions and magnitudes of the auxiliary mass can 

effect the dynamic parameters and behavior of the pendulum systems. 
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Appendix D: Values for Pendulum Parameters 

Mass reconfiguration was investigated using pendulum structures. 

Both a simple or single mass pendulum and a physical or dual mass 

pendulum were used. The simple pendulum represents a variable length 

pendulum as show in Figure 0.1 (a). Mass reconfigurability is intrinsic to this 

system. The physical pendulum consists of a massless rod supporting a 

concentrated mass 1 m from the pivot with an auxiliary mass that slides 

alongivvlthin the connecting rod, as show in Figure D.1 (b). 

Figure 0.1 Simple pendulum and physical pendulum models with mass 
reconfiguration. 



The parameters used in the computer simulations to investigate the 

dynamics and to effect a controlled system are provide in Table D.? . Note that 

the parameterization was selected so that the natural frequencies of the 

systems were approximately equivalent; thus, comparison could be easily 

made. 

Table D.1 Parameter Identification as used irt the Simulations 

Symbol 
0 

0 0 

e 
8. 
0 
t 
9 
m, 
ms 
I* 

r 

F 
a 
rn o r a m  

Description 
angular displacement of the system 
(measured with respect to the vertical) 
initial angular displacement of the system 

angular velocity of the system 
initial angular velocity of the system 
angular acceleration of the system 
time 
acceleration due to gravity 
mass of pendulum (structure) 
mass of the slider (auxiliary mass) 
location of concentrated mass of pendulum 
(pendulum length) 
position of the auxiliary mass or force 
(measured radially from the pivot) 
velocity of the auxiliary mass or force 
amplitude for displacement pmfile 
displacement freauencv of force/msss profile 

Value Units 
variable radians t 
II - 
6 

variable 
0 
variable 
P I  t l 
9.81 
7.5 
0.75 
1 .o 

radians 

radls 
r w s  
radls2 
second 
rn/s2 
kg 
kg 
m 



Appendix E: Initial Value Solvers 

E.1. Introduction 

Initial value solvers time step through a differential equation based on 

the initial conditions for the problem. Initial value solvers may be classified 

as: 

1. direct methods, 

2. multi-step, predictorcorrector or iterative methods, and 

3. extrapolation methods. 

All three types were programmed to ensure the results were representative of 

the governing differential equation or the existing physical phenomena and 

not artifacts of the simulation techniques. A modular style of programming 

provided ease in changing the initial value solver; however, for this study not 

all of the equations could be expressed explicitly in time and iterative routines 

needed to be developed. 

Each method is briefly described with details of the algorithm as 

employed given. 

E.2. Direct Methods: Runge-Kutta 

The direct methods are one step integration methods that are self- 

starting and require only initial conditions or current values to begin. A fourth 

order, Runge-Kutta method was used. Runge-Kutta methods are 

multipurpose, commonly employed integrators. 

Successive values are calculated based on the average slope with 

agreement to a Taylor series expansion. Each step is identical. The 

algorithm has a fourth order error associated with it and requires four 



evaluation for each time step. In each step, the derivative is calculated at the 

initial point, twice at the temporary midpoint and at the endpoint, From these 

derivatives, the final function value is calculated as given by the Runge-Kutta 

fomu la: 

kl =hf(xn.yn) 

E.1) 

where f is the derivative defined by the right-hand side of the first order 

differential equation and h is the step size. 

This technique provides solutions at regularly spaced intervats Note 

that the high order of this technique does not guarantee high accuracy. To 

evaluate the accuracy the number of steps should be doubled and the results 

compared. 

E.3. Multistep Methods: Adam Ptedictor-Corrector 

Multi-step or predictorcorrector methods process data from more than 

one previous time step using multiple methods to determine the value of the 

next time step. T w  types of methods exist: explicit (or open) methods that 

define the solution in terms d the previously determined vahes and implicit 

(or closed) method which defines the solution using both sides of the value 



and require interpolation, These methods are best suited for very smooth 

functions. 

The Adams fourth order predictorcorrector method uses a four step, 

Adams-Bashforth method as the predictor and a three step Adams-Moulton 

method as the corrector. The Adams-Bashforth method is explicit. The 

Adams-Moulton technique is an implicit and provides fourth order accuracy. 

The method is initiated wittr preliminary values of the routine found 

using the Runge-Kutta technique. The Adams-Bashforth method (Equation 

E.6) approximates the solution which is corrected by the Adams-Moulton 

technique (Equation E.7). 

E.4. Extrapolation Methods 

These methods extrapolate a result that would have been obtained if 

the step size were smaller. Early implementations were Bulirsch-Stoer and 

Richardson extrapolation methods. These techniques are best suited for 

smooth functions and those without singuiarities; however, these methods 

provided high accuracy solutions with minimal computational efforts. 

The extrapolation technique used a variable step size [Burden and 

Faires, 19851. Consistency in accuracy is monitored internally by the 

algorithm; numerical errors are controlted by automatically changing the step 

size. The variable step size routine essentially calls the algorithm for a 

smaller step and compares the results. Based on the compatibility with a 

predetermined accuracy criterion, an appropriate step size and solution is 

generated. The algorithm was adjusted by imposing that the output be 

generated at set intervals, yet allowing for the algorithm to initiate smaller step 

sizes if necessary. This technique used a difference method with e m  



expansion and an end error correction and is presented as Extraoolation 

Alaorithm 5.6 [Burden and Faires, 19851- 

E.S. Discussion 

When the function being evaluated is rellively simple and does not 

require many manipulation extrapolation procedures are most efficient. 

Predictor-corrector methods are favored when the evaluation of the fundion is 

complicated. Rungs-Kutta techniques are good general purpose methods. 

When good accuracy is required, Runge-Kutta should be used to provide 

good starting values for the advanced methods. As with any numerical 

approximation, it is desirable to attain sufficiently accuracy with the 

approximation with minimal effort. 

Runge-Kutta Methods have high-order local truncation errors without 

requiring the computation and evaluation of derivatives of the functions. 

These techniques are one-step methods as the approximation for the next 

time interval is based solely on the previous time. 



Appendix F: MATMATH--A Linear Algebra Software Package 

MATMATH is a software utility package that was created and 

developed during this thesis project [Stilling and Watson, 1994; Watson and 

Stilling 1991 b]. The package performs fundamental linear algebra operations 

and unique element or data manipulation routines, The routines are 

categorized by function in Table F. 1 . 

The matrix operations are intended for two dimensionai arrays with 

provisions made for vector operations. The gamut of operations include: 

matrix defining operators, functions for matrix addition, subtraction, 

multiplication, determinants, inverse, eigenvaluesleigenvectors, norm 

computations, lowerupper triangular decomposition, solve utilities, copying 

and partitioning routines, conversion programs, element arithmetic operators 

and others. 

The computations can be performed as either single or double 

precision arithmetic or short or long IEEE floating point arithmetic. Unique 

methods of memory management for complex operations enables returning 

computational resources. 

This package was viewed as a major asset far the Forth community. 

Especially, since operators were state sensitive (that is, the code was 

accessible in both the interpret and compile states). The package has been 

developed with several Forth kernels for various computer platforms. 



Table F.1: MATMATH Operator Index by Function 

Matrix Structure and Type Declaration 
MATRIX DOUBLE# 

Assimment Operators 

BI-MAT TRI-MAT 

Matrix In~ut(0utput Utilities 

.MAT 123FILL 
HILBERT M ! 
MFlLL MRANDOM 
STACK-*SYMM 

Matrix Ooerations 

DETERMINANT ElGEN 
MMINUS MMULT 
SOLVE 

Matrix Norm Operators 

COL-NORM E-NORM 

Copvina and Partitioning Utilities 

COL-EXTRACT COL-INSERT 
MUCTRACT MINSERT 
ROW-EXTRACT ROW-INSERT 

DIAGONAL IDENTITY 
MEDlT 

MZERO STACK->MAT 

INVERSE LUDECOMP 
MPLUS SMULT 

NORM ROW-NORM 

DIAG-NECT MCOPY 
ROW-EXTRACT MINSERT 
TRANS-COPY VECT->DIAG 

Temporaw or Dvnamic Memorv Manaaement Operator 

TEMP-MATRIX TEMP-ALLOT TEMP-DEALLOT 

Matrix Parameter Interroclation Commands 

?#BYTES ?#COLUMNS M O W S  ?DIMENSION 
?TYPE LMAT-NAME RMAT. NAME SMAKNAME 

Oefinina Owrator 

3ELEMENT-OP: ELEMENT-OP: 

Conversion Utilities 

M?>D M?>F M?>S MF>? 

Element Arithmetic Operations 

MI+ MABSOLUTE MDIWDE MMULTE 
MSQROOT 



The procedure for creating functional and readable code involves: 

(1) declaring or creating the data structure (matrices); 
(2) initializing the data structure; 
(3) performing the required computations. 

As evident from the equations presented in Chapter 5, neural network 

computations can be easily postulated in matrix algebra form. The operation 

as given by the following equation is essentially a series of nested, inner 

products, 

The MATMATH source code for the operation of a multi-layer feed foward 

network is given below with non-executable comments following each 

backslash. 

FLOAT# 
4 7 MATRIX WJI 
7 9 MATRIX WKJ 
9 3 MATRIX WLK 
4 1 MATRIX INPUT 
7 1 MATRIX HL1 
9 1 MATRIX HL2 
3 1 MATRIX OUTPUT 

\ Selecting floating point as operating mode 
\ Credng matrices for adjustable weighting 

\ Creating vectors for nodal ou@uts 

' FTANH ElBvlENT_OP: SQUASH \ Creates the logistic squashing fuction; 
\ assumes that ftanh defined and fl. pt only. 

: NN \ Defining executable program called NN 
TRI-MAT WJI INPUT HL1 \ Identfying mabices to be manipulated 

MMULT \ Matrix rnultipkaljon (inner product) 
UNI-MAT HL1 SQUASH \ Apply activation function to each dement 

TR1-MAT WKJ HL1 HL2 MMULT \ Identify and multiply for next layer of net 
UNI-MAT HL2 SQUASH \ Perform logistic squashing 
TRI-MAT WLK HL2 OUTPUT MMULT \ Calculations for next layer. inner product 
UNI-MAT OUTPUT SQUASH \ and logistic squashing 
I \ Terminate progam 

\ To operate a Mwl net, enter NN 
The package provided good flexibility in implementing and evaluating 

several nets [Stilling and Watson, 1991 and 1990). Also, the package w s  

initially used to solve the second order differential equations using the Runge- 

Kutta algorithm [Stilling, 1990aI. 



Appendix G: 

Work-Energy Balance for the Pendulum Systems 

The freely oscillating, constant length pendulum represents a 

conservative system. As the pendulum oscillates, energy is transformed 

between kinetic and potential energy. The total energy of the system remains 

constant and is equivalent to the initial energy of the system. The energy 

balance for the system is defined as: 

( T + U ) ,  = (T+U),:  (G-1) 

where T represents the kinetic energy; 

U , the potential energy, and 

t, and r, represent instances in time. 

The pendulum systems with mass reconfiguration is nonconservative. 

As the mass is moved along the oscillating pendulum, energy is either added 

or removed from this system. The work done in moving the mass accounts for 

the change in total structural energy, as indicated in the work-energy balance, 

(T+u)r, +K, =(T+u)k (G-2) 

where W,_, represents the work done over the time interval from r, to r , .  

The wrk associated with moving the end mass is the product of the 

force applied to move the mass and the corresponding motion, as given by 

where represents the force applied to the moving mass and 

& represents the motion of the mass betvueen the limits s, and s,. 



As previously defined in Chapter 2 and 3, the force applied to the end 

mass is given by 

F = nt,(Bzr - i + gcos~)  (G-4) 

where m, is the mass of the sliding or moving mass; 

g , the acceleration due to gravity; 

0 and 0 , the angular displacement and velocity of the mass; and 

rand r " ,  the translational displacement and acceleration of the mass, 

respectively. 

For the case of a variable length pendulum, this force defines the 

tension in the cable. The force is assumed positive if the cable is to remain 

taut. Since this force is not constant, the wrk for the same net displacement 

may also vary. To account for the change in total energy over an extended 

time period requires tracking the incremental work done; that is a cumulative 

sum of the work during the interval must be tallied. 

For the variable length pendulum, when the motion of the end mass 

was defined as being sinusoidal with a tuned frequency, the work-energy 

balance was monitored. For each time step of the simulation, an average 

force and the related work were calculated. As the initial value solvers tend to 

be prone to cumulative error, the work-energy balance was performed over 

the simulation run as given below, 

where i indicates the current time step; 

n , the number of time steps in the simulation run; and 

FE , the wrk-energy sum for the system'. 

When accounting for all forms of energy and work done, the value of 

WE should remain wnstant and be equivalent to the initial system energy. 

1 When integrating Equation H.3 using a trapezoidal routine, the integration 
error was considerably larger than the initial value solver. Thus, smaller 
time steps were required to maintain the workaergy balance. 
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This provided a further measure of the accuracy of the numerical simulation. 

As show in Figure (3.1, the wrk-energy term (WE) remains constant Note 

also that potential and kinetic energy is transformed as the pendulum 

oscillates and the moving mass performs work to change the net energy state 

of the system. 

Figure G.1 Work-Energy balance performed when the mass is reconfigured 
sinusoidally. 



Appendix H: Simulating Mathieu's Equations 

Mathieu's equation (Equation 3-15) wre  simulated based on the 

parameterization for the physical systems as given in Appendix D. Namely, 

the governing differential equation for the reconfigurable mass pendulum 

system (Equation 2.10) was reformulated to a ftactional order of Mathieu's 

Equations (Equation 3.19) under the assumptions of small angular oscillations 

and small harmonic, slider motion at M*ce the ftequency of the angular 

oscillations. 

The displacement profiles were simulated and appear in Figure H.l 

with the viscous-equivalent damper (as derived in Section 3.3.3), where the 

a=1 and y=0.125forEquation3.15and Z = 1 ,  q=0.125 and ~ = 0 . 1 8 7 5  for 

Equation 3.19. 

-2 - Time (s) 

- - * - - -  with damping, 

Figure H.1 Angular displacement profile for the first instability zone for 
Mathieu's Equation of Fractional Order 3.23 (with damping). 



Also, frequencies w r e  selected to investigate the second and third 

instability zone. For these cases, the parameterization for Equation 3.1 5 were 

a = 4 and q = 025 for the second zone and a = 9 and q = 05625 for the third 

zone, and for Equation 3.1 9 the parameterization were ii = 4,  q = l and 

K = 0375 for the second zone and were 5 = 9, q = L125 and K = 0.5625 for 

the third zone. The displacement histories for the first few cycles are 

illustrated in Figures H.2 and H.3, respectively- 

The relation between stability and instability are characterized as 

bounded or oscillatory motion and unbounded (divergent) unlimited growth of 

the displacement profile. As show, for the chosen parameterization, the 

dynamics lie along the characteristic curve and the undamped case exhibits 

neutral stability. 

Time (s) 
- without damping - - - - . with damping 

Figure H.2 Angular displacement profile for the second instability zone: 
Mathieu's Equation 3.15 (without damping) and Mathieu's Equation of 
Fractional Order 3.19 (with damping). 



-0.6 - 1 ime (8) 

I- without damping - - - - - - with damping ; 

Figure H.3 Angular displacement profile for the third instability zone: 
Mathieu's Equation 3.15 (without damping) and Mathieu's Equation of 
Fractional Order 3.19 (with damping). 



Appendix I: 

Sinusoidal Mass Reconfiguration 

(at integer multiples of the structural, natural frequency) 

1.1 Introduction 

The reconfiguration of the mass at integer multiples of the structural, 

average natural frequency was simulated. The frequencies of interest were 

when the mass moved at the same frequency as the structural frequency, at 

nine (9) and sixteen (16) times the natural frequency. The latter were chosen 

as they correspond with instability zones predicted by Mathieu's Equations. 

The parameterization for the pendulum systems were based on values 

presented in Appendix D. 

1.2 Mass Reconfiguration at the Same Frequency 

as the Structural, Natural Frequency 

The angular displacement of the pendulum as the mass is reconfigured 

at the same frequency as me average natural frequency of the pendulum is 

studied. The temporal profiles of the angular motion and the position of the 

traversing auxiliary mass are show in Figures 1.1 and 1.2 when the 

translational mass motion is initially in phase and out of phase with angular 

oscillations, respectively. Figure 1.3 shows the phase portrait for the initial 50 

seconds (-25 time constants). 

When the motion is in phase (+=0), the resulting angular 

displacement is symmetric and at the same frequency as shown in Figures 1.1 

and 1.3(a). For the case, where the motion is out of phase ( 6  = X rad), the 



motion is antisymmetric, Figures 1.2 and I.3(b). The amplitude of angular 

oscillation is not affected appreciably by the mass motion during the first few 

periods. 

Time (s) 
-0.6 - 

Figure 1.1 Coordinated temporal kinematic profiles - simple pendulum with 
mass motion of r(t) = % - Ar sin(mi ++)where n = 1 and + = 0. 



Figure 1.2 Coordinated temporal kinematic profiles - simple pendulum with 
mass motion of r(t) = % - & si.(mt ++) where n = 1 and 4 = g. 

Angular Velocity 
2.5 - (radls) 

Angular Velocity 
2 5  - (raW - -  - 

Angular Angular 
Displacement Displacement 

(rad) (rad) 
- 1 1 -1 1 

Figure 1.3 Phase plane plots of the angular pendulum motion when (a) 4 = 0 
and (b) 9 = for the translational mass displacement 

The forces that are required to generate these sinusoidal motions for 

the mass are illustrated in Figure 1.4. Both profiles are continuous and 

converge in the steady state. 

* - - - 

0 1.5 3 4.5 6 7.5 9 
T i m  (s) 



Figure 1.4 The driving force to effect sinusoidal auxilia~y mass motion. 

Similar behavior was obsenred for the physical pendulum system. 

However, the motion of the system tended to be more symmetrical than 

observed for the simple pendulum. 

1.3 Mass Reconfiguration at Nine Times 

the Structural, Natural Frequency 

As predicted by Mafhieu's equations a zone of instability should occur 

when the frequency is nine (9) times the natural frequency of the system. The 

two extreme cases where the mass motion begins either in or out of the phase 

were simulated for both the simple and physical pendulum. The pendulum 

dynamics were similar to those of Mathieu's equation as shown in Appendix 

H; namely, the motion was oscillatory without any unstable, divergent 

behavior as shown in the phase plot of Figure 1.5. 

Angular Velocity 
2 -@ads) 

-2 - 

Figure 1.5 Oscillatory angular displacement history for ten time constants. 



By examining the massnormalized energy change for this 

reconfiguration profile (similar to Section 3.3.3) gives 

Note this expression does not contain a secular term as was the case when 

the mass reconfiguration was at twice the natural frequency of the angular 

oscillations. 

1.4 Mass Reconfiguration at Sixteen Times 

the Structural, Natural Frequency 

From Mathieu's Equations another instability zone should occur when 

mass reconfiguration is at sixteen (16) times the structural natural frequency. 

The coordinated dynamics for the simple pendulum are illustrated in Figure 

1.6 and those for the physical pendulum are shown in Figure 1.7. Note that 

these simulations were completed with a time step of 0.005s. 

-3 - Time (s) 

Figure 1.6 Coordinated dynamics for simple pendulum with the mass motion 
of r(t)=%-Arsin(nar++)where n =  16 and O=:. 



Figure 1.7 Coordinated dynamics for physical pendulum with mass motion of 
r ( t )= R, -&sin(mt+t$)where n =  16 and 4.:. 

The kinematic profiles indicate stable, oscillatory motion for these 

parameters. For the simple pendulum, the energy dissipation over a period 

can be approximated by the following expression, 

Note that there is no secular term. 



Appendix J: Optimization and ANN Training Algorithm 

J. t Introduction 

Optimization has been applied throughout the research. In particular, 

mass reconfiguration profiles and supervisory training algorithms for the 

artificial neural networks were developed using optimization techniques. The 

optimization process and techniques are presented herein with respect to 

training the neural networks. 

5.2 Ovewiew of the Optimization Process 

Optimization describes the process of determining the "best" solution 

or design. As applied in this research, optimization techniques were applied 

to determine mass reconfiguration profiles that would attenuate the structural 

vibrational energy (Section 4.6) and to set values of the weighting matrices to 

train the artificial neural network to learn inputatput patterns. 

The optimization process essentially determines extrema of an 

objective or cost function. This function mathematically represents the design 

problem and through proper parameterization of the design variables a 'best" 

solution is discerned. For the mass reconfiguration problem, the * j i v e  

function defined the structural energy in terms of the mass reconfiguration; 

that is, the design variables defined the mass displacement profiles. For the 

neural net training the objective function was reducing the ermr between net 

generated output and desired output values; the design variables -re the 

adjustable wights. 

AIgorithrns that are used to determine optimal sotutions may be 

classified according to the search process. The search process is based on 



the objective function and the degree or order of the optimization method is 

determined by the information used in the objective function. For example, 

zero order methods require only an evaluation of the function; whereas, first 

order methods use the fint derivative of the objective function. 

The techniques used in this research were iterative in nature. 

Convergence criteria wre set based on executing a set number of iterations 

or evaluating the change in the objective function for design changes. 

The optimization methods used included steepest descent, coordinate 

search, conjugate gradient, Powell, quasi-Newton, evolutionary programming 

and genetic algorithm methods. Each technique is described as implemented 

for the neural net training. The majority of the mass reconfiguration 

optimization was done using evolutionary algorithms. The final training for the 

neural netbarks used a direct first order method. 

5.3 Optimization for Training the Neural Networks 

A very important feature of artificial networks is their adaptive nature; 

they "learn by example" rather than by traditional pr ogramming. This process 

is called "training* of the neural netwrk. The training process is presented in 

Appendix K, whereas, this section discusses the algorithms used to training 

the nehmrk. The training process was view& as unconstrained minimization 

where the error' represented the cost function and the adjustable wights 

were the design parameters. For each net, its structure (number and types of 

nodes and connections, etc.) was predetermined. The design space is 

defined by the possible values for the design parameters (that is, the 

adjustable weights and thresholds). Through optimization techniques the 

' For a single pattm, the error for a particular output node can be defined as 
e, = (yt - nf where c, represents the war signal of the 1 h output; y . an 

output value; and the superscript, d , indicates the desired output for the 
given input signal. 

273 



value of the adjustable wights are determined, so that the emr function is 

minimized. 

Computationally, the optimization algorithms should involve minimal 

computational effort and not be memory expensive; thus, ideally, the function 

should be evaluated as few times as possible. Optimization methods find 

either global (true maximum or minimum values) or local (maximum or 

minimum values for a given region) extremum; usually finding the global 

extremum is desirable. Although training trials from different starting points 

were completed and did produce different weighting values for this control 

application, finding a global minimum was not ensured. 

When this phase of research was conducted, the accepted and 

popular, general purpose training technique for multi-layer net\nrorks was back 

propagation5 [Rumelhart et al.. 1986; Lippman, 19871. Due to encountered 

inefficiencies when training the nehmrks, other optimization techniques were 

applied: namely, coordinate search, conjugate gradient, Powell method, 

quasi-Newton methods and evolutionary algorithms. Many of these 

techniques provided significant acceleration in the training process as 

compared to the simple pattern or batch modes of back propagation. It 

should be noted that the application of these optimization strategies for 

training neural netwrks was completed independently af those that have 

since been published in the literature. 

3.4 Training Algorithms 

As each technique is welldocumented elsewhere in the literature, only 

a brief overview of the algorithms with the specific adjustments for training 

neural newrks follows. 

5 Rosenblatt in 1959, proposed the training technique for simple nonlinear 
tasks with perceptron training. 
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J.4.1 Back Propagation 

Back propagation is a gradient search technique applied to supervised, 

enor-based neural netwrk training. Its implementation is attributed to work 

by Wehs, Parker, Widrow and Hoff and Rumelhart and McClelland 

[Freeman and Skapara, 19911. Essentially, this technique is steepest descent 

optimization method as used in least square cunre fitting. This technique was 

initially used in this research [Stilling, 1990al. 

As shown in the flowchart of Figure J.1, the cost function between the 

desired output and those generated by the net is minimized by adjusting the 

weights. After initializing the adjustable connections, the process involves 

repeated presentation of input-output patterns with the wights being 

adjusted. The process requires the state of all nodes be computed for each 

presentation of training data, starting from the bottom Iayer (input) and moving 

to the top layer (output), then the error is calculated based on the difference 

betwen the generated and the desired or target values. The variables of the 

net are then adjusted by propagating the error backwards through the net. 

The back propagation algorithm follows the flovvchat 

As shown, the output From a node is calculated as the nonlinear 

weighted sum of the preceding nodes (Block 3 of Figure J.1) or in terms of 

only the previous layer can be defined as: 

were v, = v$: 
r=O 

and y, is the input of the rth node; 
w, , the adjustable wight connecting the y, node to y, node; 
5, the wighted sum of the inputs to the ]th node; 
cp , the nonlinear activation function6 

(an exponential sigmoid function is assumed); 
y, , the output of the jth node; and 
J , is the number of nodes in the jth layer. 

(J. 1 a) 

The activation function is assumed to be a sigmoid function. 
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Initialize adjustable weights 
to small random values 

I Select an exemplar pattern 

Calculate output values 
for each node. 

Calculate error function and n 
gradient data for each node I 

Compute weight adjustment 

aJ = - Y , Q - Y , ~ $ Y ~ )  

intema:S, = - y , ( + J ~ t j k ~ , ,  
t = o  

I Update weights I 

Figure J.1 Flowchart of Back Propagation Algorithm. 
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Then, the error associated for a given pattern (E,) for the above node 

is calculated (Block 4 of Figure J.1 ) or in terms of the jth layer can be stated 

as 

Were the superscript d indicates a desired or target value. 

Next, the error corrections are calculated based on derivative of the 

error by applying the chain rule; 

(1 ) for an output node as 

and 

(2) for internal node as 

The adjustment to the weight can be summarized for the output node as, 

6, = -y,(l -.v,)(y: -Y,) (J-5) 

and for the internal nodes as, 

The wight adjustment equation (Block 6 of Figure J.1) can now be defined as 



where q is the teaming rate or step size associated with the weight 

adjustment. 

To summarize, this gradient search technique defines the error as the 

difference between desired and net generated output. Weights are initially 

selected as small random numbers that are adjusted based on gradient 

information. The error is propagated badwrds from the top layer back to the 

input layer. This algorithm is vulnerable to local minimums and often 

converges slowly near a minimum requiring small steps. 

5.4.2 Coordinate Search Method 

The coordinate search method searches the possible solution domain 

or the design space by repeatedly finding minimums for each variable's 

direction. For the neural net application one wight is adjusted while the 

remainder are fixed until a minimum value is reached. Then, the next weight 

is adjusted with the other wights being held constant. These independent 

single variable optimizations are continued until all the variable (weights) 

have been independently adjusted. Then, the process is repeated until 

convergence to a minimum or an acceptable value has been reached. This 

method requires only functional evaluations throughout in seeking a minimum 

value. The single variable optimization method used was Brent's method 

[Press et at., l992aBbI. 

J.4.3 Conjugate Gradient Technique 

With this technique, the search directions are conjugate gradients of 

each other (orthogonal and conjugate to one another)'. For a set of N linearly 

independent, mutually conjugate directions, N line minimization will converge 

5 Given the vectors, 84 = lrl -A,A-tr, 
hi-,= gz-I +Y ih, 

Mere i = 0.1.2.. ; h and yare scalars, and A is a matrix, and h, = go ,the vectors 
are considered conjugate and orthogonal if they satisfy the following: 

gl-g, = O  h, -A-h ,  = O  g, -h, = O  i #  j .  



to the minimum for a quadratic function. If the function is not quadratic the 

minimization process requires repeated cycling though the N line searches. 

To determine a conjugate direction to the preceding search (and 

previous searches), the derivative of the function is calculated at each point 

from where the search is initiated. The technique as programmed was a 

combination of the Fletcher-Reeve and Polak-Ribiere versions of the 

conjugate gradient [Press et at., 1992bl. In training the neural nehwrks, the 

derivatives w r e  approximated numerically. A onedimensional, sub- 

minimization routine was applied along each search method; for this research 

the Brent method was used [Press et al., 1992aBbJ. 

By using the conjugate gradient to determine search directions, 

noninterfering directions are followed and convergence to the minimum is 

quicker than gradient information. However, in calculating the derivative 

information additional computations are required. Generally, the 

computational savings in the rate of convergence exceeds the extra functional 

calculations of the conjugate directions. 

J.4.4 Powell Method 

The Powell method is also a direction set method for multi-dimensions. 

The technique does not require the calculation of derivative information which 

can become quite involved for the neural network error function. This method 

uses one-dimensional search techniques to bracket and converge to the 

solution. The technique through repeated iterations has been shown to 

generate conjugate gradient search directions for multidesign variables for 

quadratic functions. 

Basically, the process for the Powell method involves searching along 

the basis vectors which correspond to the direction of each design variable 

(that is, the direction associated with each adjustable wight is searched until 

a minimum is found for that direction). Then by combining these previous 

searches, a new set of directions are generated. After several iterations, the 



directions generated will be mutually conjugate, if the function is quadratic 

[Press, et al., 1992bI. Otherwise, the search sequence is repeated. 

To summarize the procedure is as follows: 

(a) select the basis vector (direction of each adjustable wight) as the 

set of search directions; 

(b) search a direction (along the weight direction) until a minimum is 

reached; 

(c) record the distance traveled in this direction; 

(d) then, repeat steps (b) and (c) for each search direction; 

(e) create a new search direction based on the vector summation of the 

distance traveled along the search direction; 

(f) search along this "conjugate direction"; 

(9) discard the first search direction; 

(h) using the newly generated set of search directions repeat steps (b) 

through (h) to reach the minimum of the function (error function). 

A known fault of this method is that searching may result in parallel 

search directions (linearly dependent) being generated vhich requires the 

process be restarted or adjusted. 

For the research reported herein, the line search steps (referred to in 

step (b)) used the Brent Method [Press, at al., 1992a&b]. The majority of the 

results for the artificial neural netwrks w r e  trained using this method. 

These algorithms with source code appear in Numerical Recipes in Fortran 

(Press, et al., 1992al and Numerical Recims in C [Press et al., 1992b1. For 

this study, the algorithms were programmed in the Forth language. 

5.4.5 Other Search Methods 

Variable Metric Methods were also applied to train neural networks. 

These techniques are called quasi4ewton methods. Similar to conjugate 

gradient methods, data from successive line minimization are accumulated. 

These techniques require the computation of the actual gradients and 

cumulatively store updated information. The algorithms used included 



Davidon-Fletcher-Powell and the Broyden-Fletcher-Goldfarb-Shanno 

technique [Marasco, 1986a&b]. These techniques were successfully applied 

to the benchmark problem (see Appendix K); howver, the memory 

requirements -re viewed as being extensive and was not applied to the 

control problem being studied. 

5.4.6 Evolutionary Algorithms 

These optimization methods are zero order, random search methods 

that are based on the "principles of evolutionn or "survival of the fittest". The 

methods are classified as either genetic algorithms or evolutionary programs. 

The primary difference is that genetic algorithms searches several directions 

in parallel as multiple solutions are being optimized collectively; whereas, 

evolutionary programming operates by comparing two solutions. Also, 

historically, the original genetic algorithm proposal [Holland, 1975; Goldberg, 

1989; Michealwicz, 19921 requires the set of design parameters be binary 

encoded. 

Basically, the genetic algorithm process can be summarized by the 

flowchart of Figure 5.2. 

When applied to neural networks training, this optimization examines 

the net globally rather than examining the single weights using gradient or 

conjugate gradient information as the previous techniques do. The first step 

was to represent the adjustable connecting weights as genetic code; this was 

done by representing the weights as a floating point vector. The second 

adjustment was to transform the error minimization to a maximization problem 

to create a fitness evaluation; this was done by negating the error function. 

The fitness function was defined as 

Note that the error was calculated for the entire training suite. Another 

technique to transform weights selection to a minimization problem can be 

formed from 



where FSUY and F,, are the evaluated fitness functions maximum and 

minimum values, and a is a control parameter selected between 1.01 to 

Random Generated Solutions 3 
Evaf uate Solutions 
(Fitness Calculations) 

Applying Genetic Operators 
- Selection 
- Crossover 
- Mutations 
- New Random Population 

Figure 5.2 Flawhart for a genetic training algorithm. 

Next, the genetic operators that emulate biological evolution processes 

of selection, reproduction (or cross-over) and mutation are applied iteratively- 



First, the selection process allows the best solutions to be retained; 

those solutions with higher fitness have a greater chance of reproducing. 

Poplation Selection = , F ( Y  ) (J. lo)  

where w, and w,  are adjustable weight vectors within the population; N , the 

number of vectors in population set; and F( ) , fitness value. 

The cross-over operation is effective at the beginning of the search 

process. To perform cross-over, the wighted strings from the population set 

are "spliced", the parts are exchanged, then rejoined as s h m  pictorially in 

Figure 5.3, the adjustable wights being represented by lower case letters. 

The crossover point (place Mere the splice occurs) may be fixed, flexible (or 

randomly chosen) or multiple based an a given mask. 

String1 a b c  e f g h  * 
C Location of splice 

Newstring 1 a b c e p q  r s  I 
Figure 5.3 Illustration of the cross-over genetic operation. 

The mutation operator provides additional randomness as a few 

weights are adjusted by small random amounts. This process avoids 

premature convergence to local optimal by introducing diversity. Also, a few 

new solutions may be randomly generated and added to the set Then, the 

process is repeated until convergence to a suitable solution is obtained. 



Appendix K: Artificial Neural Networks 

K.l Introduction 

Artificial neural netrrrrorks can be defined simply as an interconnected 

system of parameterized functions. In this appendix an overview of the 

artificial neural nehurks with the various considerations made in developing 

the neural network as the control unit are presented. The details associated 

the architecture and topology (or the type of interconnections), its operation 

and the training considerations. 

K.2 Net Morphology: The Neuron Model 

The basic computation element6 of the artificial neural net was selected 

to be a nonlinear, weighted sum model that contained a bias or threshold 

parameter. This model, a weighted summation with threshold, has become 

commonplace in defining and implementing neural networks. Mathematically, 

each neuron performs the following operation: 

Were the variables have been previously defined in Equations 5.2 and 5.3 

with a bias parameter being included as a new synapse with fixed input, 

X, = 1 and value given by the weight, w,.  The generated output value is then 

passed to subsequent neurons. 

The activation fundion provides scaling of the output and w r e  

illustrated in Figure 5.8 and can be described as, being 

6 These fundamental elements of an artificial neuraI netwrk are also called 
processing elements, computation units, neurons or nodes. 
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(a) a signum threshold function (Figure 5.8(a)) described by 

if v > 0 then cp(v) = 1 

if v = 0 then cp(v) = 0 (K2) 

i f v c O  then cp(v)=-1 

Note that M e n  the activation function range is from 0 to 1, this type of neuron 

has an allor-none firing properties as described by the McCulloch-Pitts 

model7; 

(b) a piece-wise linear (ramp) function (Figure 5.8(b)) described by 

if v r v, then cp(v) = 1 

if V, < v c va then cp(v) = av (K3) 
i f v < v ,  thencp(v)=-1 

where a is the amplification factor of the linear mapping region; and 

(c) a sigmoid function (Figure 5.8(c)) which may have several forms 

(Note that when the slope parameter, a, approaches infinity the function 

becomes a threshold function.); 

which represents a hyperbolic tangent function, or 

vA 
(iii) cp(v) = - 

I+V'  

which represents a parametric relation [Simpson, 19921. The sigmoid 

functions are the most popular since they are continuous, differentiable 

monotonically increasing function that exhibits smoothness and asymptotic 

properties. Note that the hyperbolic tangent function as previously defined in 

Equation K4b. 

7 The McCulloch-Pitt neuron is an n-input, single output element with a 
signum nonlinearity. 

285 



K.3 Net Architecture 

When this research commenced, very little inforrnation for net 

synthesis w s  available. Since design principles did not exist, this section 

summarizes some of the considerations made when designing the neural 

networks for this application. The selection of inputs, the consideration of 

using dynamic netss, the selection of output parameters, the connection 

topography and the number of nodes and layers are discussed in this section. 

The first consideration was selecting input parameters. The angular 

displacement and translational displacement of the reconfigurable mass were 

chosen as the relation between these parameters are coupled (as given in 

Table 3.1). The coordination betwen the mass reconfiguration and the 

angular displacement ultimately determines the success in attenuating 

vibrations. Furthermore, including the translational displacement variable 

enables constraint information to be incorporated into the net. Because the 

interaction between the attenuation device and the angular oscillations is 

second order the time derivative data were also considered as inputs. 

The connections may be within a layer andor among nonadjacent 

levelsielements. Typically, the feedback connection incorporates derivative 

d 
information or a time delay (- or = - I ) .  The feedback connection may operate 

dt 

in several ways as shown in Figure K1; timedelayed feedback from the input 

nodes supplement the input layer with derivative inforrnation of the external 

inputs; time-delayed feedback from the hidden layer creates additional, 

internal input nodesg' time-delayed feedback from the output layer also 

creates internal input nodes'', and/or a combination of these option. Another 

topography for nets is that connections may be local creating a partially 

connected network 

Ibid. 
This is called an Elman network [Pham and Karaboga, 19991. 

lo This is called a Jordan network [Pham and Karaboga, 19991. 



Feed forward nets with appropriate time delay elements have been 

successfully applied to identify dynamic systems [Pham and Karaboga, 19991; 

however, they are plagued by requiring a large number of input nodes which 

infers extensive computations and training requirement% these networks are 

susceptible to noise. Furthermore, training these types of net as an 

independent simulator are difficult. Recurrent nets have been applied to 

dynamic systems withcut these drawbacks [Ku and Lee. 19951 and an, 

especially popular in real-time control applications. 

Nodelneuron Identification 

External lnput 
9 Internal lnput 
n u 
m 

Hidden 

Figure K1 Various types of recurrent netwrks include (a) nodal. (b) Elman 
and (c) Jordan. 



Consideration was given to implement a recurrent or dynamic net. A 

trial net was created where time-delays were introduced for the input 

displacements as illustrated in Figure K2. Other types of recurrent or 

feedback action within the net were not considered. Since hidden layers 

typically contain mote nodes than an input layer, adding recurrence to these 

levels would create a larger net that would increase the storage or memory 

requirements and related computations. 
n 

Nodelneuron Identification 

I Internal lnput 

I) External lnput 

0 Hidden 

0 0"~" 

Figure K.2 Prototype neural networks with recurrent input nodes. 

As an alternative to adding time delays to the input nodes, both the 

instantaneous displacement and velocity values for the input parameters w r e  

added as input parameters. This has similar effects as a time delayed neural 

network. This net was as easily trained to learn inputatput relations and 

required less computational resources as the recurrent net (Figure IC2). At 

the time of developing the net morphology [Stilling, 1991 and 1990a; Stilling 

and Watson, 1991 and 1990j, providing appropriate dynamic input 

parameters was believed to free the net from storing time dependent 

operations (such as calculating derivatives or integrals) and other calculated 



information (such as products) internally. Providing dynamic input 

parameters, especially integral relations, has since become accepted practice 

in control applications [Qian et at., 1998). 

The output parameters as presented in Sections 5.6.3 and 8.3.1 were 

either the kinematic parameters (~(t) .B(t) .r (r)  and i(t)) or three tri-state values. 

The net used as a controller was either an I-J-K-4 or an IJ-K-3. For either 

case, the output data was post processed prior to being fed to the control 

mechanism (or simulation package that implements the control action). For 

the I-J-K-4 network, the output nodes corresponding to the translational 

velocity of the attenuation mechanism required only a unity gain as the post 

processor, as the value was readily incarporated into the simulation package 

of the controlled system. For the three parameter output, the norm of the 

output vector was compared to preset limits ( as discussed in Section 8.3.4.2). 

The size of the net affects its computational ability and as described in 

Section 8.3.1 the net size was established by having the neural network learn 

a time based inverse of the controlled system which was believed to be a 

superset of the desired control action. The result was a network with three 

sets of adjustable weights with the number of nodes being 4 input nodes, 13 

and 11 nodes in the first and second hidden layer and either 3 or 4 nodes in 

the output layer. Also a bias node was added to each input layer. Thus the 

number of connecting or adjusting weights were 252 or 241, respectively. 

To conclude, the net selected for this investigation was a feed-forward, 

multi-layer, static net". The processing capabilities of each neuron was 

described by Equation K1. The net topology consisted of fully interconnected 

neurons between adjacent layers, with no interconnections within a layer. 

The data processing was contiguous Mereby information was passed 

through to consecutive layers; that is, the output of the preceding layer formed 

11 A static netwrk has only feed forward connections; there is no recurrence. 
In contrast a dynamic net has both feed forward and feed backward 
connections. pikowski and Gawthrop, f99q. 
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the input of the current Iayer which was then processed and passed to the 

next Iayer. The vector for the input layer represents the kinematic state of the 

structure containing both position and derivative information. Two hidden 

layers w r e  chosen to provide intermediate mapping which gave the net three 

layers of adjustable weights. The output layer provided the generated control 

response. The net provided a matching of the kinematic sensory data to the 

control response that was required for attenuating vibrations. The selected 

nets appeared mathematically tractable and would not tax available memory 

resources, yet appeared to be practical and to provide good flexibility. 

K.3 Neuraf Network Tdning 

"Training" of the neural network refers to adjusting the interconnecting 

weights so that the input-output relation can be learned. The artificial neural 

network controller was to provide predictive control action by imitating a 

controlled mass-pendulum system. Regardless of the system to be imitated, 

the net essentially functions as a "smart" function generator where the input 

panmeters of 0(t),0(t),r(t) and i ( t )  m r e  used to generate output vedon that 

were processed to give an appropriate control signal (nl(t)). To provide the 

time-dependent sensitivity, the parameters contained derivative data and 

input-output patterns were time delayed. The development of the neural net 

controller involved training the net, validating the training and implementing 

the net. This section discusses the training process. Sample training and 

validation suites are given in Appendix L. The energy reduction associated 

Men the net was implemented as a controller appears in Chapter 8. 

The mode of training was "supervisory" where the net generated output 

was compared to a desired or target output to generate an enor value that is 

minimized by adjusting the i n t ~ ~ c o n n ~ n g  weights. An 'off-line" error- driven 

training process where exemplar patterns wre  generated by periodically 

sampling a controlled massgendulurn system was used. However, initially, 



an external rule base was used to monitor and select appropriate control in an 

"on-linen training mode. With the "on-line" training, the learning was in situ 

and completed pattern by pattern as the patterns wre being generated by the 

rule base monitor. When 'off-linen training was completed, the training was 

primarily, in batch modet2 where the entire set of inputatput patterns were 

generated a pion' to the initiation of training. Details of these training modes 

are discussed concurrentIy with the generation of the exemplar patterns. 

Supervised training algorithms, for both pattern and batch modes of 

training, were used to train the artificial neural networks. The training process 

is represented in the flowchart of Figure K3. Initially, small random values 

were assumed for the adjustable connections. A comparison betwen the 

expected response and the net generated response was formulated as an 

expected error function that was defined as either a sum of squares or a mean 

square sum. 

The error associated with a particular output node for a single pattern 

was defined as 
2 

s =(Y;-A)  (K5) 

where e, represents the error signal of the I t h  output; 

y , an output value; and 

the superscript, J , indicates the desired, corresponding output 

The expected error function for the output layer for a given pattern was 

expressed as an averaged sum of the output errors, 

where E, is the error over the output vector for a single pattern, p , and 

L is the number of nodes in the output layer. 

l2 Batch mode training will also be referred to as epoch training. 
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Initialize weights and thresholds 
to small random values 

Select exemplar pattern 
(input) 

Compute net output 
for input pattern 

Compute error for output layer 
by combining nodal errors 

Calculate Cumulative 
Expected Error 

Yes 
r 1 

Update weights and threshold values 
according to optimization method 

Figure K3 Flowchart representing both pattern (dashed lines) and batch 
mode (solid lines) supervised, error correction training. 



For the batch training mode, the expected error function was defined 

by summing the output layer error over the training suite", as given by 

where Pis the number of patterns in the training suite. 

Since the supervised training process was viewed as an unconstrained 

minimization problem. Various optimization techniques (such as, coordinate 

search, conjugate gradient, Powell, evolutionary algorithms and others) for 

adjusting the weights were implemented to minimize the error function. A 

brief overview of the algorithms appear in Appendix 3. 

Computationally, the optimization algorithms should involve minimal 

computational effort and not be memory expensive; thus, ideally, the function 

should be evaluated as few times as possible. Convergence criteria were 

established based on the magnitude of the error function. Optimization 

methods find either global (true maximum or minimum values) or local 

(maximum or minimum values for a given region) extremum; usually finding 

the global extremum is desirable. Although training trials from different 

starting points were completed and did produce different weighting values for 

this control application, finding a global minimum w s  not ensured. 

For minimization problems, a set of criteria to terminate the training 

process was established. Ideally, the output as generated by the net matches 

the target for a given input pattern. The convergence criteria were based on 

the error (cost) function reaching preset limits. Regardless of the training 

mode, the error averaged over the entire training suite w s  less than a set 

value and no one pattern could have an error greater than a set limit. A level 

of confidence was defined in terns of the norm of the target output vector for 

the training suite for the trinomial output net. 

13 The training suite refers to the entire set of exemplar patterns used for 
setting the connecting weights Of a network 
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Despite training to a global minimum being intuitively desirable, 

convergence to a global minimum resulted in "overtraining* which did not 

always produce the best functioning net for this application. When training 

convergence was relaxed the net operation was more general and 

appropriate for a wider set of operating conditions in comparison to nets with 

lower convergence limits. This concept has since been reported by others 

who have shown that an "overtrained" neural networks do not tolerate 

variations to the input when generating a corresponding output . 

The training scheme first implemented was Back Propagation using a 

pattern training made [Stilling, 1990aI. However, during the training, 

previously trained patterns appeared to be "forgotten". To enhance the 

pattern training mode, patterns w r e  introduced randomly rather than in the 

same sequence. Then, eventually, a batch training mode was adopted. The 

change was that the error and its gradient were tallied over the entire training 

suite. 

Early efforts using training techniques developed by implementing the 

various optimization techniques were done as an on-line training methods 

where the paired inputatput patterns w e  generated by assessing three 

possible control actions; namely, motion of the mass towards the pivot, motion 

of the mass away from the pivot and no motion of the mass. The change of 

structural energy for each possibility was examined and the control action 

corresponding to the maximum reduction in energy was chosen. As this 

assessment was done at discrete time steps, the pattern training format was 

applied after each set of evaluations [Stilting, 1990aI. Alternately, the 

patterns could be stored for off-line bateh training. The second method of 

generating a training suite was to sample simulations of the system as it m s  

being controtled; for example, training suites w r e  generated as a human 

performed the control, when a proportional and derivative control action was 

employed or when the knowledge based controller was used. These 

exemplar patterns were used for off-iine, batch training mode. Appendix L 



contains a sample set of exemplar patterns used for training and validated the 

neural nebrk .  

These other optimization techniques were evaluated using benchmark 

systems. The tw systems chosen were the XOR mapping and a binary 

encoding system. For the XOR problem the net that was trained was a 23-3- 

1 feed forward weighted sum network. The binary encoding sequence used 

as 5-7-7-5 network Good convergence (error minimization) was achieved for 

the XOR case, for all training algorithms, as this problem can be viewed as an 

identification problem that has a unique solution. Also, the patterns for the 

binary encoded sequence w r e  trained using each method. 

The back propagation technique had an average number of 

computations per iteration and was easily programmed using linear algebra. 

It provided good initial convergence but was slow during the final reduction of 

the sum of square errors. The coordinate search method performance was 

dependent on the Iine search method; it required few computations per each 

training iteration and provided improved convergence over the back 

propagation method. The conjugate gradient and the Powell method 

produced similar results. The Powell method was computationally less 

intense per training iteration but tended to require more training iterations to 

reduce the sum of square errors. The convergence with the conjugate 

gradient method tended to "jumpn to improved states. Both of the evolutionary 

programs were relatively slow to converge. Because the genetic algorithm 

perfoms several paraltel searches the computations per training iteration was 

large. These results wre summarized by ordinal ranking of the 

computational intensity per training iteration, the convergence rate (the 

number of training iterations required to reduce the sum of square errors) and 

the likelihood of Mether or not the training was towards a local or global 

minimum with results tabulated in Chapter 5.6.2. Comparable results were 

obtained when Powell and conjugate gradient training algorithms were used, 



the latter was chosen due to its ease in imptementing in both software 

languages. 

K.4 SUMMARY 

The neural network selected was a multiple layer, feed foward net. 

The input signals were time dependent, continuous values that represented 

the state of the dynamic system. The output signal provides control action; 

the output was either the same as the input parameters at a time step later or 

the control action was mapped to a tri-valued output set. T w  hidden layers 

were creating either approximately 240-250 adjustable weights in the entire 

net Training was done, primarily, in a supervisory, error-reduction mode to 

create a "proxy" controller for attenuating vibrational energy of the mass- 

pendulum system. As artificial neural networks were in their infancy at the 

time of initiating this phase af the research, many software tools were 

developed. Developments included training algorithms using optimization 

techniques, determining net sue based on the inverse problem and using 

time derivative data to provide dynamics to the netMKk The training and 

evaluation of the neural nehMrk involved an assessment of the training using 

a validation suited which was followed by implementing the net at the 

controller in the mass-pendulum system. 



Appendix L: Artificial Neural Network Training and Validation Data 

The artificial neural network controllers were trained to be "proxies" of 

other control systems, such as the human operator system, the rule base 

system and others. The training data was sampled from the pendulum system 

when the control action produced effective vibration attenuation. 

The exemplar patterns w r e  paired input-output data. Both the training 

and validation suites were generated from the same simulation; sampling was 

done at slightly different times. The training suite was used to set the weights 

of the artificial neural network controller; whereas the validation suite 

evaluated the training of the neural network controller. The input data 

contained the angular displacement and velocity of the pendulum and the 

translational position and the velocity of the auxiliary or sliding mass. The 

matched output data was either the same kinematic parameters sampled at a 

time step, Af , later or a three value output vector ([I 1 11, [OOO] or [-1-1-11) 

based on the translational velocity of the reconfigurable mass. 

The training suite and the validation suite each contained 

approximately 100 samples and believed to span the operating range for the 

system. Also, the "pristine values as generated from the simulation w r e  

used; that is, the patterns did not contain any artifact or noise 

For the human operator controller, as presented in Chapter 7, the 

control motion for the auxiliary mass was a relay action characterized by 

piece4se constant velocity motion. The user selected whether the mass 

should be moved towards or away from the pivot or no motion at all with the 

corresponding velocity being -1 m/s , 1 mls or 0 mls. The inputatput data 



was sampled at 12.5 Hz which corresponds to the simulation time step of 0.08 

seconds. The corresponding training suite appears in Table L.1 and the 

validation suite follows in Table L2. Note that due to the relay action the 

kinematic output data for the translational velocity of the auxiliary mass 

matches the tri-value output data. 

Table L.1 Training Suite Data from Human Operator Controlled System 

Input Data 
0 e 

0.5256 0 
0.463 -0.8673 

0,3386 -1.6406 
0.1 383 -22031 

4.0606 -1 -7628 
4.21 31 -1.2843 
-0.3183 -0.824 
-0.382 -0.4958 

-0.4164 -0.172 
-0.41 14 0.2954 
-0.3515 0.9288 
-0.2382 1.31 28 
-0.1111 1.211 
0.0012 1.0251 
0.0926 0.8 
0.161 0.5665 

0.2064 0.3444 
0.2328 0.1875 
0.2426 -0.0022 
0.2303 -0.2527 
0.1 898 -0.5644 
0.1 154 -0.9295 
0.0174 -1.01 17 

-0.0899 -0.9777 
-0.1708 -0.6437 

-0.22 -0.3448 
-0.2415 -0.0938 
-0.2406 0.1054 
-0.2183 0.3452 

Output Data Set 1 
8 0 
0.498 4.5369 

0.4105 -1.2357 
0.2456 -2.078 
0.0333 -t . 9 W  

-0.1429 -1 S241 
-0.2715 -1.0494 
-0.3542 4-61 12 
-0.4032 -0.3504 
-0.4197 0.0422 
-0.3894 0.5902 
-0.2997 I .I386 
-0.1734 1.2759 
-0.0526 1.1 253 
0.0497 0.91 52 
0.1297 0.6828 
0.1865 0.4531 
0.221 6 0.2609 
0.2401 0.1 
0.2395 -0.1 197 
0.214 4.4011 

0.1572 -0.7412 
0.0674 -0.9856 
-0.0367 -1 -1 501 
-0.1346 -0.8076 
-0.1992 -0.4888 
-0.2339 4.2129 
-02435 0.0123 
-0.2324 0.2197 

0.413 

Output Data Set 2 
r i  
0.95 -1 -1 -1 -1 
0.85 -1 -1 -1 -1 
0.75 -1 -1 -1 -1 
0.8 1 1 1 1  
0.9 1 1 1 1  

1 1  1 1 1  
1.1 1 1 1 1  

1 -1 -1 -1 -1 
0.9 -1 -1 -1 -1 
0.8 -1 -1 -1 -1 

0.75 0 0 0 0 
0.8 1 1 1  1 
0.9 1 1 1 1  

1 1  1 1 1  
1.1 1 1 1  1 
1.2 1 1 1 1  

1.25 0 0 0 0  
1.15 -1 -1 -1 -1 
1.05 -1 -1 -1 -1 
0.95 -1 -1 -1 -1 
0.85 -1 -1 -1 -1 
0.8 0 0 0 0  

0.75 -1 -1 -1 -1 
0.85 1 1 1 1  
0.95 1 1 1  1 
1.05 1 1 1  1 
1.15 1 1 1  1 
1.15 -1 -1 -1 -1 
1.05 -1 -1 -1 -1 



Input Data Oulput Data Set 1 Output Data Set 2 
-0.17 0.6267 1 -1 -0.1348 0.7795 0.95 -1 1 -1 -1 



Input Data OutputDataSetl OUtput Set 2 
4.oni -0.0352 1.1 -1 -0.0781 -0.0006 1.05 -1 -I -1 -1 

The validation process involved presenting the set of exemplar 

patterns to the net and calculating the cumulative error. The validation 

process provied a single measure for the training that had been ahieved. 



Table L.2 Validation Suite Data from Human Operator Controlled System 

Input Data Output Data Set 1 Output Data Set 2 
8 0 r i  0 0 r i  

0.498 -0.537 0.95 -1 0.483 -0.867 0.9 -1 -1 -1 -1 
0.4105 -1.236 0.85 -1 0.3386 -1.641 0.8 -1 -1 -1 -1 
0.2456 -2.078 0.75 -1 0.1383 -2.203 0.75 0 0 0 0  
0.0333 -1.992 0.8 1 -0.061 -1.763 0.85 1 1 1  1 
-0.143 -1.524 0.9 1 -0.213 -1.284 0.95 1 1 1 1  
-0.272 -1.049 1 1 -0.318 -0.824 1.05 1 1 1 1  
-0.354 -0.611 1.1 1 -0.382 -0.496 1.05 -1 -1 -1 -1 
-0.403 -0.35 1 -1 -0.416 -0.172 0.95 -1 -1 -1 -1 
-0.42 0.0422 0.9 -1 -0.411 0.2954 0.85 -1 -1 -1 -1 

-0.389 0.5902 0.8 -1 -0.352 0.9288 0.75 -1 -1 -1 -1 
-0.3 1.1386 0.75 0 -0,238 1.3128 0.75 0 0 0 0  

-0.173 1.2759 0.8 1 -0.1 11 1.211 0.85 1 1 1 1  
-0.053 1.1253 0.9 1 0.0012 1 ,0251 0.95 1 1 1 1  
0.0497 0.9152 1 1 0.0926 0.8 1.05 1 1 1  1 
0.1297 0.6820 1 .I 1 0.161 0.5665 1.15 1 1 1 1  
0.1865 0.4531 1.2 1 02064 0.3444 1.25 1 1 1  1 
0.2216 0.2609 1.25 0 0.2328 0.1875 1.2 -1 -1 -1 -1 
0.2401 0.1 1.15 -1 0.2426 -0.002 1.1 -1 -1 -1 -1 
0.2395 -0.12 1.05 -1 0.2303 -0.253 1 -1 -1 -1 -1 
0.214 -0.401 0.95 -1 0.1898 -0.564 0.9 -1 -1 -1 -1 

0.1572 -0.741 0.85 -1 0.1 154 -0.93 0.8 -1 -1 -1 -1 
0.0674 -0.986 0.8 0 0.0174 -1.012 0.8 0 0 0 0 
-0.037 -1.15 0.75 -1 -0.09 -0.978 0.8 1 1 1 1  
-0.135 -0.808 0.85 1 -0.171 -0.644 0.9 1 1 1  1 
-0.199 -0.489 0.95 1 -0.22 -0.345 1 1 1 1  1 
-0.234 -0.213 1.05 1 -0.242 -0.094 1.1 1 1 1 1  
-0.244 0.0123 1.15 1 -0.241 0.1054 1.2 1 1 1 1  
-0.232 0.2197 1.15 -1 -0.218 0.3452 1.1 -1 -1 -1 -1 
-0.198 0.4813 1.05 -1 -0.17 0.6267 1 -1 -1 -1 -1 
-0.135 0.7795 0.95 -1 -0,096 0.7589 1 1 i l l  
-0.059 0.7244 1.05 1 4.024 0.679 1.1 1 1 1 1  
0.0085 0.6254 1.15 1 0.0384 0.566 1.2 1 1 1 1  
0.0651 0.5028 1.25 1 0.0095 0.4724 1.25 0 0 0 0  
0.1122 0.4329 125 0 0.1327 0.3848 1.25 0 0 0 0  
0.1506 0.3293 1.25 0 0.1661 O m 7  1.2 -1 -1 -1 -1 
0.1794 0.2405 1.15 -1 0.1899 O.l?75 1.1 -1 -1 -1 -1 
0.1969 0.1 009 1.05 -1 0.1997 0.0097 1 -1 -1 -1 -1 



Input Data Omut Data Set 1 O~utDataSet2  
0.1976 -0.097 0.45 -1 0.1897 -0.22 0.9 -1 -1 -1 -1 






