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Abstract

Real-time games such as first-person shooters (FPS) are sensitive to even small amounts

of lag. The effects of network latency have been studied, but less is known about local

latency – that is, the lag caused by local sources such as input devices, displays, and the

application. While local latency is important to gamers, we do not know how it affects

aiming performance and whether we can reduce its negative effects. To explore these issues,

we tested local latency in a variety of real-world gaming systems and carried out a controlled

study focusing on targeting and tracking activities in an FPS game with varying degrees of

local latency. In addition, we tested the ability of a lag compensation technique (based on

aim assistance) to mitigate the negative effects. To motivate the need for these studies, we

also examined how aim in FPS differs from pointing in standard 2D tasks, showing significant

differences in performance metrics. Our studies found local latencies in the real-world range

from 23 to 243 ms that cause significant and substantial degradation in performance (even

for latencies as low as 41 ms). The studies also showed that our compensation technique

worked well, reducing the problems caused by lag in the case of targeting, and removing

the problem altogether in the case of tracking. Our work shows that local latency is a real

and substantial problem – but game developers can mitigate the problem with appropriate

compensation methods.
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Chapter 1

Introduction

First person shooter (FPS) games are a popular video game genre with millions of active

players worldwide [9]. The genre is characterized by games in which the player takes a first-

person perspective within the game avatar that is being controlled; that is, the view displayed

on the screen originates within the avatar’s head, and the view direction is directly tied to the

direction that the avatar faces. Another important characteristic of the genre is that players

possess weapons that they use to fire at enemy targets (which can be controlled by other

players or AI), and the game objective typically involves eliminating the targets either as a

direct or intermediate goal. For example, a common objective in multiplayer FPS games is to

obtain the highest score, with score being gained by killing enemy players, and an objective

more common to single-player or cooperative FPS games is to complete story-based tasks,

which normally involves eliminating AI-controlled opposition along the way.

FPS games tend to be a serious and competitive genre, with relatively few games marketed

for casual play. For example, FPS games are often featured in professional game competi-

tions such as Major League Gaming.1 Refinement of FPS game mechanics and gameplay

elements can have a significant effect on player performance and enjoyment, particularly

when games are targeted toward competitive play. An understanding of low-level interaction

details in FPS gameplay is therefore an important step toward improving FPS game design

and mechanics.

FPS games can be classified into several broad categories. Recent FPS games tend to

use elements of realistic warfare, with player avatars and weapons being modeled to make

use of realistic mechanics. Avatars are relatively easy to destroy, typically requiring only one

1http://www.majorleaguegaming.com
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to five hits with a rapid-fire weapon, and therefore quick and accurate initial reactions to

stimuli, such as encountering an enemy, are important. The game weapons are modeled after

real-life weapons, and include design elements such as limited magazines of ammunition that

must be periodically reloaded. Weapons also typically have recoil when fired, and there is

some degree of spread (i.e., random deflection of bullet direction) applied to successive shots

rather than weapons having perfect accuracy with respect to aim direction. Two of the most

popular franchises of games of this type are the Call of Duty2 and Battlefield3 (Figure 1.1)

series.

Another common style of FPS is that in which game design makes little attempt to achieve

realism – in these games, the overall pace of the game is generally quicker. Avatars move

faster and can absorb more weapon hits before being killed, and weapons often have little

to no recoil or inaccuracy. Continuous fire beam-like weapons that require precisely tracking

the target with the aiming reticle (i.e., crosshair at the center of the screen) are common.

Prevalent games of this type are the Quake4 and Team Fortress5 series.

Additionally, some games, while not being first-person shooters, behave similarly to FPS

games in regards to pointing. For example, the Grand Theft Auto series6 gives the player a

third-person view external to the avatar, but the mechanism of shooting at targets behaves

essentially the same as in first person shooters. The game’s visual appearance is similar to

that of many shooters, and the targeting reticle stays centered with respect to the screen. In

such games, weapon design and target behavior is typically no different than what is found in

first person shooters. However, players are sometimes given the option to use aiming assists

to help them in acquiring targets.

A critical aspect shared by almost all FPS games is that of aiming. Aiming actions can

generally be separated into two types of tasks: target acquisition, and target tracking. Target

acquisition is the act of moving the aiming reticle onto the target and pressing a button to

fire at it, while tracking is keeping the reticle on the target as it or the player moves around.

2http://www.callofduty.com
3http://www.battlefield.com
4http://www.quakelive.com
5http://www.teamfortress.com
6http://www.rockstargames.com/grandtheftauto
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Figure 1.1: A screenshot of Battlefield 4 (http://www.battlefield.com), showing the
typical perspective of a first person shooter game.

While these two tasks are often performed consecutively in practice (i.e., acquire a target,

then track it while continuously firing at it), it is useful to distinguish the two parts and study

them separately since there may be factors that interact with one task differently than the

other. A player’s overall performance, such as number of kills made during a match, depends

heavily on their ability to perform these tasks. Therefore, improving our understanding

of the low-level details involved with target acquisition and target tracking in FPS game

environments can inform the design of game elements that have an effect on the player’s

experience.

Real-time games require quick and timely responses to other players’ actions and game

events [85]. Any delays in the responsiveness of a game are disruptive because they create

mismatches in timing between a player’s actions and visual feedback of those actions, oppo-

nents’ actions, and other game events. Latency (or lag) in FPS games has been an important

problem since the beginning of the genre because it causes detrimental effects on important

aspects of gameplay such as aiming. Even low levels of latency caused by slow game update

rates have been a problem since the early FPS games such as Wolfenstein 3D and Doom by

3



iD software.7

Once it became common to play multiplayer games through the Internet or direct modem

connections, the poor network connectivity that was common at the time resulted in high

amounts of latency in the of 150 to 300 ms. Latency arising from network communication

has been extensively studied in a number of contexts, and delays above 100 ms have been

shown to be disruptive to racing games [68] and first person shooters [13]. Since latency

originating from the network has highly disruptive effects on gameplay, game developers

quickly began developing techniques to mitigate network latency. Combined with these

mitigation techniques and significant improvements in network speed and reliability in recent

years, latency arising from the network has had diminishing effects on gameplay.

However, one important area that has not been examined within the context of 3D first

person shooter games is that of the effects of local latency – that is, latency caused by phe-

nomena on the local computer, rather than due to networking. Local latency arises from

input devices, displays, and software processing. Latency on the game output subsystem

(e.g., computer monitor, television, or graphics drivers) forces players to react based on old

information, and input latency adds to the time taken for player actions to be registered by a

game. In both situations, player performance suffers, either because of a missed opportunity,

incorrect response to an opponent’s action, or reduced ability for the player to skillfully con-

trol their movement. As a further drawback, local latency causes reduced player performance

and enjoyment even when it may not be noticeable [44]. Whereas the magnitude of network

lag is generally decreasing, local latency is often increasing due to the use of wireless input

devices and high-latency displays such as televisions. My measurements suggest that local

latency in these situations is often above 100 ms (see Chapter 4).

1.1 Problem

It is known that latency is a problem in any interactive tightly-coupled tasks, but there is

a lack of knowledge regarding precisely how local latency affects aiming performance in first

person shooters. Without quantified knowledge of the precise effects of latency on 3D FPS

7http://www.idsoftware.com
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gameplay, it is difficult to judge how severely lag affects different game tasks, to develop

effective compensation techniques, to motivate consumers to consider latency when making

game system purchases, and to motivate hardware and software developers to minimize local

latency (or susceptibility to its effects) in their products.

There is a varied but generally poor understanding of the prevalence and effects of local

latency among video game communities. Players involved in professional competition or

other forms of serious gaming tend to be more aware of the problem, but others are less

informed. Many enthusiasts and casual gamers do not realize that the gaming systems they

use suffer from latency even during offline play. While many others have some level of

awareness regarding local latency, its negative effects are often dismissed as insignificant or

unimportant at levels that are typically not perceptible (e.g., below 100 ms). Arguably, one of

the major causes of this lack of awareness is the absence of specific information regarding the

prevalence and effects of local latency. If local latency was studied in detail and quantified

within the appropriate context (i.e., the relevant game genre – in this case, first person

shooters), players would have the information needed to make appropriate decisions to help

maximize their level of performance and enjoyment in games.

Previous research has shown that network-based latency has a significant negative effect

on player gameplay performance [22, 24, 7, 20]. However, local latency has different effects on

gameplay than network latency, such as not affecting the local view feedback that is shown

to the player (see Section 2.3.1). Likewise, the effects of local latency have been studied for

pointing in 2D environments [61, 72, 71], but not in 3D FPS games, and it should not be

assumed that the effects are equivalent due to important differences that make FPS games

more sensitive to latency than many other games or tasks [22].

In order to determine the effects of latency on aiming in first person shooter games, it is

necessary to have an understanding of aiming in such games. A study of latency in pointing

should be framed within the models of pointing. Existing research about aiming in 3D such

as Vicencio [89] tends to use existing models of pointing in 2D contexts and assumes that

such models are also valid within similar 3D contexts. However, there are several differences

between 2D and 3D settings that could alter the performance of aiming – in particular, there

are substantial changes in the visual information presented in the two environments, and
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therefore FPS games require for immediate feedback when controlling the view [24].

One major difference is that in FPS games, the game world visually pans around a fixed

central reticle, while 2D environments typically consist of a fixed background with the player

directly moving the cursor to change their pointing target. Substantially more optical flow is

presented to the user while panning in a FPS environment as compared to moving the cursor

in a 2D application. In addition to optical flow, FPS environments typically include other 3D

visual cues, such as perspective, parallax, shading, shadows, and sometimes stereopsis that

are absent in 2D graphics. These differences result in a substantial increase in the amount of

visual information that needs to be processed by players, which tends to slow down feedback

processing time [35]. Looser [54] reported that target acquisition in 3D FPS environments is

approximately 25% slower than in 2D scenarios. This difference in performance suggests the

effects of latency in 2D and FPS environments may also differ.

Despite these numerous differences, relatively few studies have examined aiming in 3D

FPS games, although a significant amount of previous work has been performed that examines

target acquisition and tracking in the context of a 2D environment. For example, a large

body of research has been performed around the classic Fitts’ Law [33] limb movement

time model. Similarly, studies have been performed related to 2D-based target tracking,

such as the modeling of trajectory-based tasks with the Steering Law [3]. Since the 3D

FPS environment and pointing behavior is quite different than pointing in similar 2D tasks,

it should not be assumed that previous 2D-based research applies equivalently to 3D first

person shooters.

1.2 Solution

The effects of local latency on first person shooter aiming performance have not been pre-

viously studied, and quantifying these effects is important for improving player gameplay

experience. Additionally, there are no established in-game mechanisms for mitigating the

effects of local latency, and there is little knowledge regarding the range of local latency that

may be found in gaming systems. Furthermore, differences between aiming in 3D FPS and

2D environments have not been sufficiently established, and characterizing these differences
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is helpful for motivating the study of phenomena such as latency specifically within FPS

environments. In order to solve these problems, I performed three studies.

In study one (Chapter 3), I sought to investigate and quantify the difference in perfor-

mance between standard FPS aiming tasks and equivalent pointing tasks in a 2D environ-

ment. I tested both target acquisition and target tracking. I also created two different con-

trolled experimental environments: one 3D environment that emulates an FPS game, and a

similar environment in 2D. Specifically, in the 2D environment, the mouse directly controlled

the aim reticle against a fixed background to perform aim. The difficulty of aiming tasks was

controlled and consistent between the 2D and 3D conditions. Player performance in each

condition was modeled and compared, and I quantified the differences in task completion

times for both target acquisition and target tracking.

Before studying the effects of local latency in FPS games, I performed study two (Chap-

ter 4) with the goal of ascertaining an approximate distribution of local latency across various

types of gaming systems. I selected existing real-world systems that covered a range of in-

put, output, processing devices, and games, and I measured the latency of each setup using

a measurement methodology that I devised. This study determined an appropriate range of

latency values to examine in the following study, as well as demonstrating that real-world

latencies are high enough to cause problems.

Finally, study three was performed to examine the effects of local latency on aiming

performance in first person shooters. The objective was two-fold: to quantify the negative

performance effects of latency, and to find a mitigation strategy to minimize the effects. As in

study one, aim was separated into target acquisition and target tracking tasks. Participants

performed the same tasks at each of five levels of local latency. I compared task comple-

tion time within each level of latency to a base-case condition with minimum latency, thus

quantifying the effect of latency and improving our knowledge of it.

As the second part of study three, I also created and evaluated a technique to mitigate

the effects of local latency through the use of aiming assistance. Participants performed the

same tasks in the same manner as in the first part of the study, but with the presence of the

mitigation techniques (i.e., aim assists). The strength of the aim assists was based on the

current latency level set in the experiment, with the goal of decreasing or eliminating the
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differences in performance found between different levels of latency.

These studies improve the body of knowledge regarding differences between 2D and 3D

FPS environments, particularly when it comes to the effect of local latency. I demonstrate

that local latency is pervasive and substantial in magnitude in gaming systems, and because

aiming in 3D first person shooters has important differences to pointing in 2D settings that

may make studies of latency in 2D to be inapplicable to FPS, I quantified the effects of

latency on aiming in FPS games and also demonstrated effective techniques to compensate

for the latency.

1.3 Steps in the Solution

The process of improving the understanding of local latency in first person shooter games

involved a number of steps:

1. It was necessary to determine how aiming in first person shooters is performed, starting

with identifying the components of aim. I found that aiming can be split into target

acquisition and target tracking as two related but separate components of aiming.

2. An initial pilot study was performed to informally examine the effects of local latency

on target tracking in a simple 3D scenario.

3. I determined useful constraints in acquisition and tracking behavior for FPS games

based on typical target behavior and commonly encountered aiming patterns. For

acquisition, it is important to evaluate targets that could appear anywhere visible on

the screen, with both vertical and horizontal deflection required to aim at them. For

tracking, it is sufficient to have targets move only horizontally because this is the

primary style of movement seen in FPS.

4. I needed to find a model of target acquisition that is valid in FPS games. Since Fitts’

Law [33] is the canonical model for pointing in 2D, I picked it as the starting point.

Study one was performed to compare target acquisition and tracking performance in

2D versus 3D environments. I determined that Fitts’ Law is valid in 3D as well as 2D,
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except that performance constants differed, with 3D tasks taking longer to complete in

the equivalent conditions.

5. I identified the components that contribute to local latency in gaming systems. This

process involved reading about such contributing components from existing literature

and experimenting with factors that may affect latency, combined with the author’s

knowledge of computer hardware, software, and operating systems.

6. I determined a procedure for measuring the total local latency of a computer gaming

system. It was important to be able to test systems quickly and easily, so that a number

of existing real-world systems could be measured.

7. I measured the local latency of a representative sample of real-world systems in study

two based on my knowledge of what contributes to latency. The measurements were

an important step toward motivating the significance of the local latency problem, as

well as determining a range of latency values to use for evaluating the effects of local

latency.

8. I identified the ways in which latency affects aiming tasks. This was done based on

observing how aiming was affected by latency in the previous pilot study, and also

through the author’s experience with latency in FPS games.

9. I created a latency mitigation technique based on existing aiming assistance techniques.

The types of assistance needed and the shape of the assist functions were identified

based on knowledge gained through the previous step. The constants for the assist

functions were tuned by performing a pilot study that employed the aiming assistance

in the presence of varying latency.

10. I performed study three to quantify the effects of local latency on FPS aiming perfor-

mance. The experimental procedure was very similar to that in study one, but with

the presence of varying amounts of latency.

11. Also as part of study three, I evaluated the effectiveness of my latency-mitigating

aim assistance techniques, and had participants answer questionnaires regarding their
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subjective experience with the latency and aiming assistance.

1.4 Evaluation

There were two main evaluative components to the concepts described in this thesis: study

one (Chapter 3), which determined the effects of dimensionality (i.e., 2D versus 3D environ-

ments) on aiming performance, and study three (Chapter 5), which determined the effects of

local latency on FPS aiming as well as the effectiveness of aim assistance toward reducing the

effects of latency. Both studies made use of controlled experiments in which human subjects

performed tasks in game-like applications that I created to obtain performance metrics in

varying conditions. Study two was a collection of descriptive statistics.

1.5 Contribution

My work is the first to investigate and improve the body of knowledge regarding the effects

of latency in first person shooter games. My primary contribution is the result of my exper-

iments in Chapter 5, which shows the degradation in aiming performance caused by local

latency and mitigation techniques that can be used to decrease or eliminate the effects of

local latency. I provide the first empirical evidence that local latency is a real and substantial

problem for FPS games – even at very low levels, and levels lower than were measured in

many real-world systems. My work shows that designers and publishers of FPS games (and

other high-speed interactive systems) can benefit from compensating for local latency.

The secondary contributions of this thesis are comparisons of aiming between 2D and 3D

environments in Chapter 3 that are otherwise equivalent, and the finding of an approximate

distribution of local latency and its causes in real-world systems (Chapter 4). This work is

the first to show that target acquisition performance is different in 3D compared to 2D, for

matched-difficulty targets.

The knowledge gained from my experiments can help improve first person shooter game

design and experience, in the following ways:

Game and Hardware Design. An understanding of latency and its effects can motivate
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consumers, manufacturers, and game designers to decrease the prevalence of latency or

limit its negative effects (see Section 6.5).

Level design. A better understanding of ideal target sizes and their relationship to map

size and layout can improve the design of worlds and levels with particular difficulty

characteristics.

Game balancing techniques. A number of game balancing techniques are currently used

in both 2D and 3D games in order to dynamically adjust difficulty levels or to allow

players with different skill levels to play together. Correct implementation of game

balancing techniques such as aiming assists [62] requires a thorough understanding of

aiming in the game environments.

Training of skilled FPS players. The performance and mechanics of aiming techniques

can be an important part of training for expert gamers. Much like the way in which

training for athletics is informed by detailed understanding of the low-level actions of

body movements from studies in exercise physiology, training regimes for FPS gamers

could be devised based on a deep understanding of the low-level actions in FPS game

tasks from studies in human computer interaction.

1.6 Outline

The following is an outline of the remaining parts of this thesis:

Chapter Two shows a look at the research that has been previously performed that is re-

lated to the topics of this thesis. Topic areas include goal-oriented constrained limb

movement (e.g., models of pointing temporal performance and mechanisms of execu-

tion), including the applications of such to first person shooter games. The different

types of latency and their sources are also examined, and some research regarding their

effects on performance is reported.

Chapter Three presents my study one, which looks at the differences in performance be-

tween 2D and 3D environments in target acquisition and target tracking tasks using a

11



human study. The potential reasons for these differences are discussed as well.

Chapter Four shows my findings regarding the distribution of local latency that can be

found in real-world gaming systems (study two). I also look at how changing some

specific factors can affect latency in systems that are otherwise equal.

Chapter Five presents study three, which answers the main questions that I asked about

latency. Using results from a human study, I examine how different levels of local

latency affect target acquisition and target tracking performance in a controlled FPS

mini-game, and I also report on the effectiveness of using aim assistance to compensate

for the effects of latency.

Chapter Six is a discussion of the results of this thesis. Results are summarized, and

possible reasons are given for the findings. The findings are compared to other similar

studies and their generalizability is discussed. The implications and limitations of my

research are also presented.

Chapter Seven presents a brief conclusion that summarizes the main findings of the thesis,

and also discusses potential areas of future investigation.
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Chapter 2

Background

In this chapter, I present the background information needed to understand my research

while we examine the previous work that has been performed on related topics. Since my

work combines the topic areas of pointing and motor control, first person shooters, and

latency, I divide this chapter into those three parts.

2.1 Goal-Oriented Constrained Movement

This thesis focuses heavily on aiming at targets in virtual environments, which involves fine

motor control. This type of task fits well under the extensive literature that has been written

on goal-oriented constrained limb movement (e.g., pointing in the real world or in virtual

environments, reaching for objects, moving objects to constrained areas, etc). Although

much of this previous work has been targeted at real-world physical interactions rather than

computer-based on-screen virtual interactions, the results are generally accepted to apply to

both [56, 84].

2.1.1 Fitts’ Law

Fitts’ Law [33] is the most widely accepted relationship for predicting performance of con-

strained motor movement tasks. The original work by Fitts, published in 1954, is based on

three types of experiments with physical object manipulation: a reciprocal tapping task, a

disc transfer task, and a pin transfer task. It has since been extensively used in computer

science research to model and predict the amount of time taken to perform a pointing task in

relation to the difficulty of the task. The model is based on information theory; in this case,

distance to the target is said to be equivalent to the signal amplitude, and the width of the
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target is similar to noise amplitude (i.e., a tolerance). Fitts proposed a metric to quantify

the difficulty of a task, named Index of Difficulty (ID), measured in bits:

Id = − log2

(
Ws

2A

)
where Ws is the tolerance range (width) and A is the amplitude of the movement (distance).

Fitts also proposed an Index of Performance (IP) that indicates motor performance in a

way that is constant across a wide range of amplitudes and tolerances, measured in bits per

second:

Ip = −1

t
log2

(
Ws

2A

)
where t is the time per movement.

Although Fitts’ Law was not originally designed to model computer-based pointing, it has

become the standard basis used in human-computer interaction research for target acquisition

with a wide variety of input devices. Over the years, several improved variations to Fitts’

original model have been created. The formulation suggested for use today [84] is based on

Shannon’s model for information capacity of a communications channel [82], which was the

basis for Fitts’ work. This modern formulation for Index of Difficulty, which is better at

predicting small-scale movements, and proposed by MacKenzie [55, 56] is commonly called

the Shannon formulation:

ID = log2

(
A

W
+ 1

)
It has become standard practice to use the models for ID and IP to perform regression in

order to predict movement times or test for goodness-of-fit. This usage yields the equation

commonly referred to as Fitts’ Law [56]:

MT = a+ b · ID

where a is a constant reaction time cost and b is the relative performance of the user and

device pairing.

This formulation has become the basis of an ISO standard, ISO 9241-9, which is used to

evaluate non-keyboard input devices [42]. The standard presents a multi-directional tapping

experimental task to be used for evaluation, consisting of a circular arrangement of circular
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Figure 2.1: Multi-directional tapping task, as described in ISO 9241-9, used for eval-
uating input devices.

targets (Figure 2.1), appearing in many different directions around a central point (due to

the fact that targeting performance varies based on direction of approach [91]).

The standard recommends using a measure which it names Throughput (TP) to evaluate

the bandwidth of devices and conditions. Throughput is formulated as:

TP =
IDe

MT

where MT is the time to complete the targeting condition (or movement time), and IDe is the

Index of Difficulty adjusted for accuracy – an idea proposed by Crossman in 1956 (see [90])

to better reflect the task that participants performed rather than what they were asked to

do. IDe is calculated as in the Shannon formulation for ID, but with width being adjusted

as follows:

We =


W · 2.066

z(1− Err/2)
if Err > 0.0049%,

W · 0.5089 otherwise

where W is the target width, Err is the error rate, and z is the normal distribution quantile

function (qnorm in environments such as the R language). Another way to calculate We

(omitted here) makes use of the standard deviation of click distances away from the center
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of the target. An important benefit of using Throughput is that it is immune to the speed-

accuracy tradeoff [58]; that is, Throughput is constant regardless of whether users focus more

on speed or accuracy.

2.1.2 Sub-movements and Feedback in Motor Control

Although Fitts’ Law has been repeatedly demonstrated to predict the overall time taken

to arrive at a target, it does not describe the underlying process of movement. There is a

consensus that most movements that are consistent with Fitts’ Law are comprised of multiple

submovements [28, 25, 64], but the nature of these submovements and the feedback control

involved is less clear. Here, I present a brief summary of several different sub-movement

models; for an in-depth coverage, see [28].

One of the earliest well-supported models of limb control is the iterative correction model,

originally proposed by Crossman [25] and later refined by Keele [46]. The iterative model

suggests that submovements occur as consecutive ballistic impulses that are prepared by

visual feedback from the previous impulse. Each impulse travels a constant proportion of

the remaining movement distance and takes approximately a constant amount of time to

complete, with total acquisition time being dependent on the number of impulses performed.

Crossman estimates that visual feedback reaction time is much quicker than the normal

accepted values for reaction time, with times of 20 to 50 ms being proposed, and hypothesizes

that the short times are due to the time windows for feedback being anticipated (since the

start and stop times of limb motion are known to the participant).

Although there are several other models to describe limb aiming movement, the currently

accepted one is the optimized submovement model [28], which was originally developed by

Meyer [64]. This model was created in order to explain the deficiencies of the iterative cor-

rection model: the iterative model predicts a constant initial submovement duration, even

though the duration has been observed to vary based on distance and width, and the itera-

tive model predicts each movement to cover a constant proportion of the remaining distance,

despite variability of submovement endpoints being reported by many [28]. The optimized

submovement model predicts that movement to a target is composed of two submovements,

regardless of target distance and width: an initial primary movement that is programmed
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to end at the target, and an optional secondary corrective movement. The secondary move-

ment only occurs if the primary movement misses, which occurs due to perturbations caused

by neuromotor stochastic noise. The duration of each movement is determined by subjects

adapting to optimize the total movement time as required due to neuromotor noise [64].

Meyer also tested the optimized submovement model under a condition with no visual feed-

back, and the model was successful in this case as well. With no visual feedback, the primary

movement was relatively unaffected, but the duration and number of submovements of the

secondary movement were increased.

The initial ballistic submovement of an aiming task is performed with the goal being to

minimize the time needed to correct for the error resulting from the movement [38]. Intu-

itively, it may seem like the error distribution from the initial movement would be centered on

the target, with equal amounts of undershoot and overshoot – models such as the optimized

submovement model would also predict this outcome [64]. However, only a small portion of

initial movements results in overshoot in practice [30]. This is because the time needed to

correct for an overshoot is greater than for undershoot [29], since overshoot requires both

overcoming the inertia of the initial movement, and a swap of muscle roles, with antagonist

muscles taking agonist roles and vice versa.

There are conflicting findings regarding which portion of the aiming movement is affected

by visual feedback. One study [12] shows that removing vision of the hand and target 290 ms

before the movement finishes has an insignificant effect on performance, presumably because

there is insufficient remaining time for visual feedback to have an effect. Other studies [17,

21] indicate the opposite – only visual information from the final portion of the aiming

movement (25% or 135 ms in the case of [17]) is important. Despite the presence of such

studies that discount the importance of visual feedback during certain phases of movement,

the body of research as a whole indicates that vision has an important effect both during the

ballistic and corrective portions of movement [28]. For the ballistic portion, vision mostly

provides feed-forward information to plan the movement, while vision guides the corrective

portion in an on-line feedback fashion. There is also some evidence that visual feedback is

used throughout the entire motion: Saunders [77] shows that for fast reaching movements

in a virtual space, participants reacted to perturbations to their virtual fingertip movement
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approximately 160 ms after the event, even when the perturbation happens early in the

movement and despite the subjects being unaware of it.

It would intuitively seem that a sufficiently practiced movement can eventually be per-

formed without on-line feedback, and some older research does suggest that this is the case

when movement is practiced [46, 80], or when movement times are below approximately

half of a second in length [94]. However, more recent research contradicts these findings,

suggesting that visual feedback is always involved. Proteau [74] had participants practice

an aiming task either 200 or 2000 times, with some participants having full visual feedback

available while others could not see their arm. Results showed that the participants with

more practice were actually more greatly affected by the removal of feedback, and thus were

more dependent on it. One possible explanation shows that increased practice leads to par-

ticipants making more efficient use of feedback rather than changing the ballistic portion of

movement or reducing the number of submovements [1]. Similarly, Elliot shows that people

adjust their initial ballistic movement by increasing its speed in order to make more time for

corrective actions near the end of the movement [31].

However, there is evidence that, in some conditions, the entire aiming movement can be

made in open-loop with no feedback and with just one ballistic motion. Thibbotuwawa [87]

shows that there is a critical target distance-to-width (A/W ) ratio of approximately 10:1 at

which the transition to open-loop aiming occurs. Below the 10:1 A/W ratio, movement time

increases linearly with the square root of distance. Above the 10:1 ratio, movement times

were modeled accurately by Fitts’ Law.

In summary, although there is some evidence that target acquisition can be performed

in an open-loop manner under specific conditions, there is overwhelming support for visual

feedback being an important part of the aiming process. When trajectory errors are made

due to neuromotor noise or external disruption, visual feedback strongly contributes toward

correcting the trajectory. Therefore, the lack of visual feedback, or the disruption of it for

reasons such as latency in feedback, is likely to result in decreased aiming performance.
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2.1.3 Tracking

Previous research on target tracking is not as extensive as that of Fitts-like target acquisition

movements. Tracking actions have also seemingly not been modeled in their entirety as

acquisition has, but there is a significant amount of research about how tracking is performed

and its characteristics.

A number of studies indicate that pursuit tracking (i.e., following a moving target) is

composed of a sequence of discrete submovements [36, 70, 73], rather than being performed

through a continuous smooth motion. For increasing movement frequency (and thus target

speed), submovement speed increases in amplitude, but the submovement duration is unaf-

fected [81]. Faster target movement results in greater error in tracking – this speed-error

relationship is observed because targets travel farther in a fixed amount of time at higher

speeds (and especially during delays during which feedback is awaited), which necessitates

larger corrections.

Tracking movements make use of both visual feedback and feedforward mechanisms. Each

submovement is a planned corrective movement programmed to compensate for error in

tracking. After each submovement, visual and kinesthetic feedback is used to assess the

trajectory and compare the endpoint position to the target [36, 70]. Each correction has a

response latency that is based on reaction delays in feedback. The delays vary and increase

with target speed, with a range of approximately 100 to 330 ms reported by Grossman [36]

within the tested speed range when subjects had no preview of future target motion.

Although movement anticipation is performed in most conditions, when target speed and

relative difficulty of the tracking task becomes high enough, subjects start being unable to

maintain accurate tracking and they become increasingly more reliant on anticipating target

movement. According to Grossman’s findings, while multiple submovements occur for each

target direction change at lower frequencies, once movement frequency reaches approximately

two direction changes per second, subjects are able to perform only one corrective action for

each target direction change [36].

Keele [46] presents an extensive and in-depth examination of movement control in skilled

motor performance, covering both single target acquisition under Fitts’ Law and continuous
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target tracking movements. Visual feedback processing time is said to be an important factor

in both. When tracking a target and the target changes its direction, it takes approximately

200 to 300 ms before corrective motor action is applied, and thus targets with more frequent

direction changes should be more difficult to track. It is also suggested that continuous

tracking should be predictable as a series of submovements. Faster target speeds effectively

increase the distance to the target when tracking errors occur, and smaller targets make the

series of acquisition tasks more difficult, as predicted by Fitts’ Law.

The Steering Law [3] models the action of moving a pointer through a tunnel, with the

trajectory being constrained on both sides. According to the Steering Law, time to complete

the steering task increases linearly with increasing tunnel length, and decreases with an

increasing tunnel width. Although steering seems similar to tracking or following a target,

it is not equivalent because the Steering Law assumes that the tunnel side boundaries are

never crossed and it does not consider the longitudinal direction – that is, the user could

stay consistently ahead of or behind the target, which would cause errors in tracking that

the Steering Law does not consider.

2.2 First Person Shooters and 3D

My work directly focuses on aiming performance in 3D first person shooter game settings.

Therefore, we examine the literature on player performance in FPS games, as well as its ties

to the relevant general motor control performance topics.

2.2.1 Fitts’ Law in Virtual 3D

Since Fitts’ Law applies to constrained motor movement tasks in general, it should apply to

first person shooters as well. However, some transformations must be performed first due

to the way that pointing is executed in 3D virtual environments that are projected onto

2D screens and manipulated with 2D input devices (such as mice) [86]. The magnitude of

input movement required to acquire targets at varying locations in the virtual world is non-

linear due to input movements resulting in a rotation of the view (and thus aiming direction)

rather than a translation. For example, a target that moves laterally in the virtual world
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Figure 2.2: Relationship between width and angular width, and distance and angular
distance.

by d units might require a 1 cm movement of the mouse, but if the target moved 2d units

instead, the input required would be less than 2 cm, but the target would appear smaller

at its new location. Figure 2.2 shows the similarity between angular and non-angular width

and distance terms.

Kopper examined distal pointing behavior in real-world 3D pointing using a laser pointer

to point at targets [48] and reached conclusions and transformations similar to mine. He

defined angular distance as

α = 2 arctan

(
0.5A

D

)
and angular width as

ω = arctan

(
0.5(A+W )

D

)
− arctan

(
0.5(A−W )

D

)
and then proposed a new formulation for Index of Difficulty:

IDangular = log2

( α
ωk

+ 1
)

In this formulation, the width term gains an exponent due to this approach fitting the data

better in Kopper’s experiment. The angular width seemingly had a more important effect on

trial time than distance. The given possible explanation for this finding is that the ballistic

portion of the movement was found to almost always be quick, and the vast majority of time
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was spent in the corrective portion which was more affected by width. Potential reasons given

for this difference are the hand tremor present in using a laser pointer, and the disturbance

of pressing the button on the pointer. Neither of these factors are likely to be significant in

mouse pointing.

Looser et. al. performed a study [54] that is similar in concept to my study presented

in Chapter 3 in which he studies target acquisition tasks in both a 3D first person shooter

environment and a standard 2D setting. They compared Fitts’ Law regression results in both

3D and 2D and found that Fitts’ Law holds in both cases, suggesting that FPS aiming tasks

can be used in place of traditional ones, with the motivation being that participants would

find the task more compelling and less tedious to complete. Unlike Kopper, Looser used the

standard Fitts’ Law model with no exponential term on angular width, but in order to work

in 3D, he also converted distances and widths into angular units.

Zaranek [97] performed a study with a shooting task based on the ISO 9241-9 experimental

protocol [42], and proposed that two concerns with using Fitts’ Law in 3D are perspective

distortion of targets near the edge of the screen and the effect of target depth. While these

are valid concerns and may affect the pre-programmed ballistic phase of acquisition due to

the distorted apparent size of the target, targets are ultimately fired upon once centered in

the screen and thus perspective distortion during the corrective phase should be relatively

minor. Likewise, if neither the player nor the targets are moving, a change in target depth

should be equivalent to an inverse change in target size when centered, although perspective

distortion may again have an effect on the ballistic initial motion. Regardless, Zaranik does

find some significant effects of target distance, especially on error rate and when using motion

controllers [97].

Grossman and Balakrishnan [37] present and evaluate a version of Fitts’ Law for three-

dimensional space in which the A/W term becomes separated into A/W , A/H, and A/D

(width, height, depth). Each of the three terms is weighted by empirically derived constants,

and the Euclidean norm is then taken, with the resulting value replacing the original A/W

term. However, their work focused on true 3D space, where the input device has three degrees

of freedom for movement, and thus no projection onto 2D screens nor rotational input device

movement is involved.
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2.2.2 Aim Assistance

Aiming assistance is the usage of techniques to aid users in tasks that require aiming at

targets. Since modeling of aim is rooted in Fitts’ Law, these assistance techniques focus

strongly on manipulating the factors that describe the difficulty of the aiming task – that

is, target distance and width [10]. Assists can seek to reduce the effective target distance

in ways such as bringing targets closer or increasing effective target width (e.g., increasing

target size when aiming near it), or to affect both distance and width.

In addition to the goal of improving aim performance in general use, aim assists have

been applied to various targeted applications, such as helping older [95] or motor-impaired

people [32], compensating for control devices with poorer performance such as gamepads [66],

or balancing opponents’ skill levels in games [11, 89]. Many targeting assistance techniques

have been developed for both 2D and 3D environments. We will take a brief look at several

techniques and applications here – see [89] for a more thorough review.

My form of aim assistance used in Chapter 5 is inspired by two existing aim assistance

techniques: sticky targets and force fields. Sticky icons [95] (or targets) improve target

acquisition by increasing the effective width of the target in motor space as the cursor passes

over the target. Therefore, the assist does not help the user to close the distance to the

target, but rather it makes it more difficult to overshoot the target or otherwise accidentally

move away from it. While sticky targets affects the speed of the cursor over the target, force

fields [6] affect the position of the cursor while it is within the region that force fields apply

(generally within the target). The cursor is displaced toward a certain position on the display

while affected by the field, which is typically toward the center of the target.

Another widely used assistance technique that improves effective target width is area

cursors [45]. While pointing and target acquisition is typically performed by aiming with

a single point (i.e., the tip of a mouse cursor or center of a targeting reticle), area cursors

increase the targeting area to a rectangle, so that the entire area within the rectangle is

sampled for hits. This technique allows much easier selection of small targets, but fails to

perform well when target density is high enough that multiple targets become covered by the

area cursor. Another technique, DynaSpot [19], improves on this limitation by activating the
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area cursor only while the cursor is moving fast enough, and using the standard point cursor

while at rest or low speed.

Vicencio-Moriera and colleagues [89] examined several forms of aiming assistance as aids

for game balancing in FPS games when players possess disparate levels of skill, including

target lock (based on related work by Guiard [39]), bullet magnetism, area cursor [45], sticky

targets [15], and target gravity [11]. Their work finds that there is difficulty in transferring the

2D-based assists into 3D FPS environments, and that many techniques lose their effectiveness.

This suggests that there would be value in directly comparing targeting tasks between 2D

and 3D settings, and that the comparison would be useful when developing aim assistance

or manipulation techniques for 3D applications.

2.3 Latency

In the context of interactive computer systems, we define latency (or lag) as the time delay

between a causative input or triggered event and the expression of the corresponding effect.

Latency can be observed in scenarios such as loading an image from disk and waiting for it

to be displayed, or pressing the trigger button in an online first person shooter and waiting

for the resulting shot to be registered on the server. Latency is pervasive in digital systems

and can vary greatly depending on the devices in the system (e.g., some LCD televisions

have high latency due to built-in image processing). Latency almost universally induces

negative effects on user performance or experience throughout a wide variety of contexts.

The negative effects of latency have been reported for a number of computer applications,

such as collaborative groupware [85], video scrubbing [63], digital sketching [16] and video

games [13, 68].

My work mainly focuses on the effects of local latency on player performance in first

person shooter games. Therefore, it is important to examine the previous body of research

related to latency. Some of this previous work is based on local latency, whose detrimental

effects on performance have yet to be successfully compensated. Other work is based on the

effects of forms of latency that can be compensated at least partially, such as network-based

latency.
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2.3.1 Network and Local Latency

Users may encounter latency in many forms; in games, sources of latency can be broadly

classified as either network latency or local latency. With computer-based interactions being

increasingly tied to the Internet in modern usage, many people (and particularly gamers)

associate latency primarily with network-based sources of latency, which arise due to signal

travel distances along network paths and processing delays of routers that make up the

network. Networking latency, which is also commonly referred to as ping, is readily apparent

in contexts such as online games where a connection quality meter is often prominently

displayed to indicate the player’s or opponents’ ping times. These ping meters have been

widespread since the early days of online gaming, likely because of the strong negative effects

of latency on player performance or quality of experience [68], and the ability for varying

ping levels between opponents to cause unfair disadvantages for players more heavily affected

by latency [96]. Ping varies significantly depending on distance and routing to the server.

Typical ping times for internet connectivity are very approximately 30 ms to 100 ms, but

even for a given distance to the server, network congestion can a wide range of ping times to

be experienced.

Local latency, unlike network latency, is caused by factors local to the particular computer

system being used for a task or activity. These sources of latency are due to elements such

as buffering delays in display hardware, buffering or filtering during software runtime, or

synchronization delays between different stages of a system (such as the application processing

loop and display re-draw events). Terms equivalent to local latency have seemingly not been

created in research literature previously, and while the term input lag is typically used to

describe the phenomenon colloquially, it implicitly appears to refer to latency caused by the

input aspects of a system, although in reality it typically refers to the total latency in a

system (aside from network-based sources). Therefore, I use the term local latency to refer

to this type of latency, which I examine in Chapters 4 and 5.

In online games, latency occurs due to both network lag and local latency, while in offline

games, latency is solely due to local latency. In many contexts, including online games, local

latency manifests itself differently than network lag. For example, local latency delays the
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player’s own cursor or view movement feedback, while network lag rarely does. Also, online

games typically employ mechanisms to compensate for the effects of network latency, such

as the dead reckoning technique [69]. Due to differences such as these, it is important to

examine local latency and its effects separately from network latency.

2.3.2 Sources of Latency

The magnitude of local latency in a system is determined by the combination of individual

components in the system, including the input device, software processing components, and

output devices. Examining the contribution of each component toward total latency has not

been documented in literature, nor is it within the scope of my research to experimentally

test individual components. However, it is helpful to understand where latency comes from

and how significantly each element in the system contributes to it, and therefore I present a

brief outline here based on myknowledge of computer system architecture and components,

separated by component type. For another similar examination, refer to [67] which takes a

detailed look at where latency comes from in an Android smart phone. Although some of the

Android components do not apply in computer gaming (such as the touch screen hardware),

most other components are equivalent.

Input Subsystem

Most input devices in a modern system are connected through the universal serial bus (USB)

which polls devices at discrete intervals. In Windows operating systems, input device sam-

pling occurs at 125 Hz (i.e., every 8 ms) [18], which means that there can be up to 8 ms of

latency on the input, or 4 ms on average. For example, if a game reads the input state from

the OS 1 ms before a USB poll occurs, the game is operating on input that is 7 ms old. While

it is possible to raise the default polling rate through third-party tools, such operations are

typically unsupported.

For complex input devices that require heavy processing or have limited update rates,

such as the PlayStation Move or Microsoft Kinect motion control systems, latency can be

significantly higher. Also, inherently jittery input devices such as touch screens or game pad

joysticks are often filtered for smoothing before being processed, which adds latency.
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Application processing

The game or application itself can often be the cause of the majority of latency in a system.

Since applications can do any number of things that cause latency, the magnitude of latency

can vary widely; however, there are some common patterns. Games are updated in discrete

intervals (also called frame rates when referring to visual output), causing latency that is

potentially as long as the update period. Games typically run at 30-60 frames per second

which results up to 17-33 ms of latency, although the average would be approximately half

the maximum amount.

Vertical synchronization (v-sync) is commonly used in order to eliminate screen tearing

and achieve potentially smoother visuals. When enabled, v-sync causes the game update to

wait until the display has finished its update scan-out. Since this results in the input state

being read immediately after the display updates, by the next time the display is updated,

the displayed image will be based on input that is a full display refresh period out of date.

Since the vast majority of current displays receive frame updates at 60 Hz, this results in

17 ms of latency. Furthermore, unless triple buffering is used, if a game update takes longer

than the display refresh period (causing it to miss the v-sync point), the resulting frame

will be shown at the next v-sync point or later. The consequence of the miss is double the

latency, half the frame rate, and perceptible stutter. Triple buffering eliminates this downside

of v-sync, but potentially induces more latency itself, depending on implementation.

Game loops are typically implemented in one of several common ways [88]. Simple coupled

input-update-render mechanisms result in low latency, but other designs are often used due

to requirements of multi-threaded systems or deterministic simulation. For example, online

games, games with replays, and simulation games often require decoupled game update and

render subsystems. This strategy allows logic updates to be performed with a fixed, deter-

ministic time step, while simultaneously allowing rendering to be performed more frequently,

which results in smoother visuals. The disadvantage of this scheme is that the rendering

system needs to interpolate between two logic states, which necessitates additional latency

equal to the logic update time step. Games commonly perform logic updates at 30 Hz, which

results in a fixed 33 ms of extra latency.
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Another way that games can induce latency is by performing smoothing or other filtering

on the input, which is often done in systems where a mouse is not the primary method of

input. Also, some rendering techniques require compositing with previous frames, which also

adds latency. Additionally, any latency such as waiting for disk access will delay the process,

causing momentary lag. Overall, the latency caused by software delays is often 67 to 133 ms.1

Output subsystem

The display is a main contributor to local latency. While old CRT displays were almost

universally low latency, LCD displays are often laggy, which has been shown to make them

not comparable to CRT displays in uses such as pattern reversal visual evoked potentials [41].

Although specialized gaming monitors have low lag (about 10 ms), most monitors average

about 20-40 ms of latency [27]. Televisions, which are popular in the game console community,

often have significantly greater latency than monitors due to internal processing such as

motion smoothing and on-screen menu support. The pixel response time in displays – that

is, the time needed for a pixel to fully transition from one color to another – also contributes

to the latency (2-10 ms). Additionally, displays almost always operate at 60 Hz update rates

(even when they interpolate to higher rates, as is commonly seen in televisions), which means

that full screen updates cannot be shown any quicker than the refresh rate allows.

The operating system and video drivers can also contribute to latency. Modern oper-

ating systems use compositing desktop environments which aggregate all visible application

windows into a single frame to be drawn. The compositing step can add some latency, partic-

ularly when v-sync is used, but games are able to bypass this factor by using exclusive-mode

fullscreen output [34]. Additionally, depending on application implementation and video

driver settings, the video driver may buffer several full frames of output before drawing to

the screen. For example, Direct3D-based applications often make use of frame pre-rendering,

which by default has the CPU prepare 3 frames in advance before they are rendered by the

GPU. This practice can result in smoother frame rates, but since this means all output is

delayed by 3 frames, there is a high latency penalty of 50 ms or more even at a relatively

high frame rate of 60 Hz [92].

1https://en.wikipedia.org/wiki/Input_lag
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2.3.3 Latency Compensation

The presence of latency in real-time interactive online games and other groupware has long

been a significant problem that causes issues with user performance and quality of experience.

Without compensation, latency causes the user’s own actions and their response feedback to

be delayed, as well as seeing an outdated state of the world that requires the user to anticipate

what the true state is at any given time. As such, a majority of online games and applications

make use of latency compensation techniques in order to improve user experience. I present

here a brief overview of common techniques to manage effects of latency, both in the well-

studied network latency context, and a brief look at the early work to mitigate local latency.

Network Latency

A common approach for minimizing the appearance of latency is the usage of prediction

techniques such as extrapolation in the form of dead-reckoning [5, 69]. In this approach,

clients predict the current state of other users by using information about the last known

state. For example, in FPS games, if the previous position and velocity information of a

remote avatar is known along with the timeliness of that information, the current position

can be predicted by adding the velocity vector to the old position of the avatar, scaled by

the amount of time that has passed.

Although prediction is helpful in mitigating the perception of latency, significant problems

arise when using prediction in FPS scenarios because the client cannot know what actions

other users will perform during the predicted period. The result of such mispredictions is

seen as jerky, jumpy movement of other players’ avatars. One way to reduce the severity of

prediction errors is to smoothly interpolate between the incorrect avatar position and the new

correct position once a misprediction is detected [79] (Figure 2.3). These smooth corrections

are more effective (i.e., less perceptible) when gradual adjustments are made to correction

rate rather than adjusting at a constant rate, and also, the speed of the correction is more

important than the magnitude in determining whether it is perceptible [78]. Another way to

improve prediction is to reduce the magnitude of prediction errors by making more intelligent

predictions through means such as analyzing play patterns [4].
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Figure 2.3: Actual object motion path versus the path seen by remote peers under
different prediction error correction methods.

Because of the downsides associated with extrapolative prediction, FPS games more com-

monly use a system of interpolation combined with remote lag. This approach has been used

and documented [14] by the makers of Half Life2 (a dated but long-popular FPS game) and

the general technique is still dominant today. In this technique, other players are interpolated

between two previous known states. Rather than using the most recent update and the one

before it to interpolate between, states that are one or two updates older are used instead,

which results in more latency but creates tolerance for missing an update or two. As a result,

enemy movement is smooth and predictable when a reasonable connection quality is used.

Extrapolation may be used when there are connection dropouts longer than the period that

interpolation is effective.

Interpolation results in a smoother experience, but displayed enemy positions are even

more out of date than if they were simply displayed as updates arrive. As a consequence,

compensation is required in order to allow players to interact with others in a manner that

hides the latency – for example, players should be permitted to shoot at a target at the

location that it currently appears to be rather than needing to predict where the target really

is. One way to accomplish this is to trust clients regarding the outcomes of their actions. For

example, if a player fires at a target and appears to hit it in their own representation of the

world state, the server (or other clients) could accept this claim and execute the action as

2http://www.valvesoftware.com/games/backcatalog.html
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intended. However, in games that are open to the public, clients are rarely trusted with such

decisions due to the wide prevalence of cheating. Instead, as is done in Half Life, before the

server simulates the outcome of an input update from a client, it first temporarily rewinds

time to a state that the world was in at the time the client performed the action [14]. In this

way, the server can judge whether such an action was feasible to be performed on the client,

greatly reducing the potential for cheating.

Other techniques have been devised for groupware where consistency and integrity is a

higher priority than minimizing perceived latency. Local lag [26, 85] purposely adds latency

to the local client in order to present what remote peers will see at the time the messages

are received. Pointer trails [40] display a visual representation of past actions performed by

peers in order to give more context for during which state the actions were performed.

Local Latency

Although seemingly little research has been performed on compensating the effects of local

latency, there is some recent work that may lay foundations for future development. With

head-mounted virtual reality (VR) displays experiencing a recent resurgence, there is a push

for finding methods of minimizing latency or making it less perceptible. With VR in partic-

ular, even small amounts of latency can result in motion sickness or otherwise a significantly

degraded experience.

Asynchronous timewarp [8] is a technique employed by the Oculus VR SDK.3 With this

technique, a game frame is processed the standard way at first – that is, input is sampled after

a previous frame has been rendered, then the game logic and rendering is done before a frame

is sent to the display. However, with timewarp, an extra step is timed to occur shortly before

the display refresh occurs: the frame is re-rendered again in a quick, lightweight method

using the most recent rotational and positional sensor data from the VR headset. Game

logic does not execute a second time, but rather the view is rotated and translated using the

existing computations. The end result is less perceived latency and judder, although there

are technical limitations that can limit the efficacy of the technique, such as limited timing

precision, increased GPU load, and black edges appearing where there is no rendered data.

3http://www.oculus.com
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Alternatively, Oculus is considering predicting headset rotation and position by extrapolating

the original sampled data, which has its own set of disadvantages.

There is also a patent on a device that is intended to compensate for local latency caused

by frame buffering [47], although there seems to be no research or accompanying product

associated with it currently. The system appears to work in a way similar to the remote lag

technique described in the network latency compensation section above – when evaluating

the outcome of a user’s inputs, the actions are executed within a previous state that has been

saved by the system.

2.3.4 Effects of Network Latency on Games

The negative effects of network-related sources of latency on online games have received

significant attention in research literature. Although such latency manifests in different

ways than local latency does, it has significant effects on player performance and balance

in games [22]. Interestingly, the relationship between latency and player performance varies

widely depending on the view type, and the timeliness, precision, and impact of actions in

the game [24].

In a 2006 publication, Claypool examined existing work related to network latency in

several different types of games [22]. He proposed that interactions in games can be classi-

fied into a two-dimensional taxonomy between precision and time deadline of actions (Fig-

ure 2.4), with actions requiring more precision and quicker timing being most sensitive to

latency. Likewise, since different game genres are made up of games requiring actions with

varying precision and deadlines, latency sensitivity of different game types was found to vary

significantly. Games where players control an avatar in first-person perspective (e.g., first

person shooters and racing games) were found to be most sensitive to latency due to the

first-person view requiring immediate feedback in order to achieve a high degree of control.

Games where avatars were controlled with a third-person view camera were less sensitive

to latency, and games using an omnipresent camera (e.g., real-time strategy) were consider-

ably less lag-sensitive (Figure 2.5). Using the aggregated performance versus latency charts,

threshold levels of latency needed for an approximately 25% performance drop compared to

no latency were suggested: 100 ms for first person avatar, 500 ms for third-person avatar,
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Figure 2.4: Taxonomy of player interactions, classified between precision and timeli-
ness requirements. Adopted from [24].

and 1000 ms for omnipresent games.

In followup studies, Claypool performed a more detailed examination regarding the precise

effects of deadline and precision on performance; however, these studies used AI-controlled

players and therefore the applicability to games played by real players may be compromised

since players are capable of adjusting to latency and the AI did not seem to attempt to

do so. AI characters played a first-person 3D combat tank game (BZFlag4) in which the

size of enemy tanks (and therefore precision required) and the speed of the shells (deadline)

varied [23]. When the tank was 25% of its normal size, the lagged player scored approximately

10% worse, and there was a negligible effect of lag when tanks were at 400% of their normal

size. The results were similar when bullet speeds of 25% vs 400% were compared as well,

with faster bullets being more sensitive to lag.

In 2015, Claypool introduced a third factor to the taxonomy, that being the impact of

an action [24], and evaluated the interaction of impact with latency in a Space Invaders-like

game where the impact of different actions can be evaluated. In summary, attack actions

that deal more damage, travel faster, or have a greater area of effect have more impact

on the importance of the action and are therefore more sensitive to latency. Using this

information, Claypool proposed and evaluated a network congestion compensation technique

4http://bzflag.org/
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Figure 2.5: Player performance versus latency magnitude in three types of games.
Adopted from [24].

that prioritizes packets that contain actions predicted to be more important (using deadline,

precision, impact) when some packets must be dropped, and showed that the compensation

was effective at reducing the effect of latency.

Studies have also been performed that examine the effect of latency on metrics other than

player score. The level of jitter that causes players of Call of Duty: Modern Warfare 25 to

report a poor experience was studied by [7]. It was shown that when the congested player is

the host of a session, jitter of up to 100 ms (on top of 100 ms of static latency) was required

for a degraded experience, while jitter of 250 ms was required when the affected user was not

the host. Interestingly, while expert players were shown to be sensitive even to the condition

with no jitter and 100 ms of latency, they were also the best at compensating for network

conditions to receive the least performance penalty.

Another study performed in the context of a massively multiplayer online role-playing

game (MMORPG) [20] showed that players were much less likely to play for extended periods

of time when network conditions were poor. While players logged sessions of 4 hours with

normal latency of approximately 150 ms, they played for less than one hour when ping was

250 ms. Similarly, even small amounts of jitter (10 ms) and packet loss was shown to cut

5https://www.callofduty.com/

34



play times in half. From the data, the authors created a model that predicts the likelihood

that a user will quit at any given point given the latency, jitter, and packet loss levels.

2.3.5 Effects of Local Latency

Local latency has recently become a subject of interest to gamers6 with new types of gaming

systems that use high-latency devices, such as gesture input or televisions, and latency-

sensitive applications such as virtual reality headsets. Additionally, many systems, such as

tablets, smart phones, and Nintendo’s Wii U, now rely on touch devices that suffer from

significant local latency. While local latency increases in prevalence, it has been shown

that lag can have significant effects on performance at surprisingly low levels – in a study

employing a Fitts’ Law-like task with direct touch input, it was found that latencies as low

as 10 ms reduced drag-and-point performance [44]. Also, in addition to my own work, it has

recently been shown by another study that local latency accounts for a significant portion

of total system latency in online games, and should be accounted for [76] when considering

latency-based factors.

Several studies have been performed examining the effect of latency on target acquisition

in 2D cursor-controlled tasks. In an early study by MacKenzie, it was shown that 75 ms

of latency has a substantial effect on acquisition time (16% longer movement time), and

that acquisition took 64% longer at 225 ms compared to baseline latency [61]. MacKenzie

suggested that these severe effects at high latency could be because a person’s natural ten-

dency to anticipate motions is severely compromised by lag. A similar study by Pavlovych

found different results: acquisition time at 33-83 ms of latency was similar to baseline, with

significant differences appearing starting at 108 ms [72]. Pavlovych directly compares these

results to MacKenzie’s and hypothesizes that the reason for the discrepancy could be that

MacKenzie’s system had approximately 60 ms more latency than expected, but such claims

cannot be verified. Pavlovych also found that there is a significant interaction between target

width and latency, with smaller targets being more highly affected by latency than larger

targets. This finding is consistent with work in 3D VR environments where it has been shown

6Evidence for this can be seen from the numerous discussions returned by a web search for "input lag."
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that width and distance should be treated separately under the presence of latency [83].

Target tracking involves keeping a pointing device over a moving target. Pavlovych ex-

amined the effect of lag on target tracking in 2D and found significant interaction between

lag and longitudinal tracking errors [71]. Error increased quickly for latencies over 110 ms,

for jitter above 40 ms, and for dropout rates above 10%. Also, target speed interacted sig-

nificantly with latency, resulting in faster targets being significantly more difficult to track

under higher latency compared to lower latency. However, the 2D target motion used Lis-

sajous curves,7 which are smooth curves that do not match the horizontal ground-plane

movements seen in FPS games. The gradually curved target motion using Lissajous curves

may aid the participant’s ability to predict the target motion in high latency conditions and

therefore extrapolation to FPS games, where player movement is more chaotic with quicker

direction changes, could be limited.

Cloud Gaming

The research area that is perhaps most relevant to local latency in 3D first person shooters is

that of latency in cloud gaming environments [43]. In cloud gaming, a thin client transmits

inputs to a server that actually runs the game and processes the input. The resulting rendered

frames are sent back to the thin client to be displayed. In this manner, the client does not

need powerful processing hardware; however, the client also does not know about game state

and thus cannot make use of latency compensation techniques available to normal full clients.

This lack of compensation extends to core mechanics such as rotating the view, which has

lag-free feedback in full clients but is delayed in cloud gaming. Thus, the effect of network

latency in a cloud environment is similar to that of local latency in a standard setting,

although cloud gaming is also more prone to jitter in latency, packet loss, limited bandwidth,

and other such characteristics of networks.

Lee examined how latency in cloud gaming affects player experience in various games

using an electromyograph (EMG) device [52]. Similarly to Claypool’s findings for network

lag outside of cloud environments [22], Lee found that latency in cloud gaming is more

detrimental for some types of games than others. Once again, first person shooters were most

7https://en.wikipedia.org/wiki/Lissajous_curve
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affected by latency, followed by role playing games, and action games were least affected due

to attacks being easier to connect with. Lee also created a model that predicts the suitability

of any given game to cloud gaming. The model is based on the ratio of screen dynamics to

input rate, with a higher ratio requiring higher real-time strictness.

Another study designed to determine the significance of latency in cloud gaming found

that individual differences determine the degree to which players can tolerate latency [75]. A

small number of players could only detect delays of 97-182 ms, and some others could perceive

latency as low as 26-40 ms. In the median case, people could perceive 51-90 ms of latency.

The study found that while a player’s amount of gaming experience is not the determinant

factor on whether latency is perceptible, the number of corrections used in movements is

correlated with how sensitive players were to latency, and more experienced players tended

to use more corrections. It should be noted that the experiment consisted of a simple target

selection task that used a jog wheel input device with a button, where the only inputs were

left-right rotations and clicks. Since it was previously shown that more visually dynamic

environments are more reliant on low latency, the results may apply somewhat differently to

typical cloud games.
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Chapter 3

Comparison of Pointing in 2D versus 3D

A large amount of research related to pointing has been performed in the context of

two-dimensional environments in which users move a pointer around a screen in a fixed-

background setting. This research covers a wide range of applications, including pointing

assistance [95], pointing device comparison [60], and measuring the effects of latency [72].

However, it is unknown whether this research may be directly applied to three-dimensional

first person shooter-like environments, because there may be substantial differences between

the two settings which could interact with previous findings.

In order to find whether there are performance differences between the two and three

dimensional environments, I performed a user study that compared participant performance

metrics in aiming between the two environments in settings that are as similar as possible to

each other except for dimensionality. In addition to providing a contribution by comparing

performance in 2D versus 3D, I also performed the study with the intent of using the findings

to inform my work on latency and aim assistance (Chapter 5)

3.1 Apparatus

The study was performed on a performance custom-built gaming PC (see Table 3.1 for

specifications). A high performance gaming display with a high refresh rate of 120 Hz and

1 ms pixel response time was used in order to minimize latency – such a display is often used

in FPS gaming competitions as well. The display was set to its native resolution of 1920x1080

and full screen mode was used. A high performance gaming mouse polled at 1000 Hz was

also used for minimum latency and smooth, responsive tracking. The experimental game ran

at a constant 120 frames per second when vertical sync was enabled, and in the range of
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Table 3.1: Experimental PC specifications.

Component Specification

Processor (CPU) Intel Core i7 3.2 GHz

Video Card (GPU) NVidia GeForce 460 GTX

Memory (RAM) 16GB PC1600 DDR3

Motherboard Asus P8Z68-V LE

Storage Intel 520 SSD, 120GB capacity

Mouse Razer DeathAdder 3.5G, 1000 Hz sample rate

Display BenQ XL2420TX, 120 Hz refresh rate

Operating System Arch Linux 64-bit

Video Drivers NVidia standard closed-source

hundreds of frames per second without vertical sync; thus, the PC was more than capable of

ideal performance within the experiment.

Mouse sensitivity (gain) was set such that it felt subjectively appropriate and acceptable

to most participants. Participants were allowed to adjust sensitivity if it was significantly

different than they are normally used to, although no participants did so.

The experiment was performed in a small, closed, quiet room with minimal distractions

and were asked to silence their mobile phones. Participants adjusted their chairs to an

appropriate height and had ample space to move their mouse on a large mouse pad.

The experiment was executed within a custom-built application made to resemble a first

person shooter game (while in the 3D condition), which guided users through each step of

the study session (with assistance from the experiment administrator). It was developed in

the C++ language using the Ogre3D open-source graphics library1 (version 1.8). Ogre3D

was used to simplify OpenGL 3D graphics rendering, keyboard and mouse input, sample 3D

models, and Quake 3 BSP file format loading and rendering. The BSP file capability was

used such that a simple game world could be created using a Quake 3 level editor and easily

used within the experiment.

1http://www.ogre3d.org
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3.2 Tasks and Procedure

My experimental system implemented two primary tasks to be performed by participants:

target tracking and target acquisition. These tasks are representative of primary activities

in many 3D game environments; in FPS games, target acquisition is carried out when first

encountering an enemy, and then a combination of acquisition and tracking is used until the

enemy is eliminated. The entirety of the study consisted of these two tasks being performed

in short and discrete trials with varying conditions.

All tasks and conditions were performed in a custom-made game world created using

GtkRadiant.2 This world consisted of one room divided into two sections, with one section

used for the acquisition task and the other used for the tracking task (Figure 3.1). The player

position was fixed to a location at the center, between the two rooms. In the 3D conditions,

the world had a graphical appearance very similar to Quake III Arena, which was a popular

first person shooter.

3.2.1 Acquisition

In first person shooters, aiming typically begins with target acquisition. The player performs

acquisition by moving their aim to a direction corresponding to an intended target. In

shooters, this target may be a specific entity such as an adversary combatant, or a location

in the world environment chosen in order control space by making it hazardous for enemies

to cross the targeted area. In this study, I focus on direct aiming at specific targets.

Each target acquisition trial within the study began with the participant’s aim being set

by the system to a base view initial direction, aiming down range to the middle of the cluster

where targets appear. This aim direction was locked for a period of 500 ms at the beginning

of each trial. During this time, the participant could not adjust their aim, ensuring that each

trial began with a controlled initial aim direction, and the 500 ms pause allowed participants

to prepare to aim at the target.

At the end of the 500 ms period, the trial timer started and a spherical target appeared.

2Level creation tool for creating Quake 3 compatible maps: http://icculus.org/gtkradiant
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Figure 3.1: Side cut-out view of the world. The large room shown on the left is used
for target acquisition, while the area on the right (tracking target shown) is used for
tracking. The player location is fixed in the middle.

At this point, the aim lock was released, and participants attempted to aim at the target

then click the left mouse button to shoot it. Participants were instructed to complete trials

as quickly as possible while trying to be reasonably accurate. The main dependent measure

was trial completion time, with lower times being better.

Participants were also told that the targets would start appearing red-tinted if accuracy

dropped below a threshold, and to be more careful and accurate if this happened until targets

stopped appearing red. The threshold was reached if accuracy fell below 80% at any point

within a block of trials (see Section 3.6). If the participant shot but missed a target during

a trial, the trial would continue until successfully completed, but it would be flagged as

containing misses (errors) and repeated until completed without errors.

Each sub-block of trials consisted of 72 possible target positions within a virtual circle

located in front of the player, perpendicular to the initial view direction (Figure 3.2). The

position order was randomized, but the same order occurred within every block and partici-

pant. This was done by randomizing the order of the possible positions with a fixed random

number generator seed. The targets were all visible on screen from the base view position
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Figure 3.2: 2D Acquisition task showing a sample of various target distances, widths,
and directions.

without having to rotate the view.

Units and Measurements

As required by standard game and graphics engines, my experimental world was modeled in

3D Euclidean space with Cartesian coordinates, with each object having positions and sizes

given in coordinates along x, y, and z axes. I use the term world units to refer to distances

within this Cartesian system. Fitts’ Law calculations require amplitude (i.e. distance) and

width measurements, but it is unsuitable to use Cartesian coordinates from within a 3D

game environment for this purpose because they do not accurately reflect the input device

movement amplitudes required to acquire a target – because the view rotates rather than

translates, the movement magnitude is non-linear with respect to the Cartesian distance of
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the target.

As discussed by Looser [54] and Kopper [48], angular measures are required for analysis

within a 3D first person shooter-like setting. Therefore, for the 3D target acquisition task, I

converted world unit measures into angular measures to use as inputs for distance and width

in calculations. Here, distance (amplitude) is the amount of rotation required to bring the

center of the object to the center of the screen, and width is the arc length occupied by the

object in the player’s field of view.

Distance angle was calculated as follows:

D = arctan

(
d

d ′

)
where d ′ is the depth of the target, away from the player, and d is the deflection distance in

world units. Target width angle was calculated as follows:

W = 2 arctan

(
w/2

d ′/ cos(D)

)
where w is target width in world units and D is angular target deflection distance.

Target conditions

The 72 target conditions were generated as a result of all the different combinations of target

width, distance, and direction parameters. Discrete values (as opposed to random sampling

from a continuous range) were used for the parameters in order to enable statistical analysis

such as ANOVA. Angular units are used for the 3D task, while Cartesian world units are

used in the 2D task. All targets were located at a depth of 448 world units away from the

player. The following is a summary of factors in target positioning.

Direction Direction indicates the direction that the participant had to move the mouse

to acquire the target, starting from the base view position. There were six different

values of direction used: 0°, 45°, 135°, 180°, 225°, and 315°, where a direction of 0°

corresponds with aiming directly to the right. This parameter was used in order to

vary the direction of mouse movement, and because it has been shown that angle of

approach affects the prediction ability of Fitts’ Law [91, 65], the directions chosen

are balanced across axes. Directions corresponding to directly upward or downward
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movement were omitted in order to decrease the number of possible combinations and

thus the length of the experiment for purposes of minimizing fatigue. By including the

angles at 45° angles from the horizontal axis, I still included the vertical axis in the

experiment.

Distance Target distance determines how far a participant had to move the mouse to acquire

the target. In 2D, it is the distance in world units away from the center, while in 3D,

distance was the deflection angle away from the initial view direction. There were

four values for distance, with the maximum value chosen as the largest distance that

fits within the room and is visible from the base view direction. The remaining three

values were chosen by subdividing the farthest position evenly into five values, with

the smallest resulting value being discarded to avoid an overly easy condition. In

3D, this subdivision was performed in the angular unit system, after calculating the

angular deflection for the farthest target. In Figure 3.2, distance is depicted by the four

concentric circles centered around the reticle.

Width Target width is the diameter of the target sphere or circle. In 2D, it is the diameter of

the circle in world units, with a maximum size chosen manually to result in reasonable

sizes and resulting ID values. In 3D, it is the angular width (i.e., the angle that a

participant would have to move their view by in order to move across the extents of the

sphere). The maximum width in 3D was chosen by calculating the value that resulted

in an equal width-to-distance ratio (in angular units of deflection) as the equivalent

condition in the 2D version of the task. This ensured that the Index of Difficulty

is equal in both dimensionalities. The remaining values were calculated by evenly

subdividing the width of the largest target. Three values of width were used.

Target distance and width values were aggregated into an Index of Difficulty (ID) value

for each combination, which was used in results analysis. See Section 3.4 below for the

ID calculation, and Table 3.2 for a detailed breakdown of distance and width values for all

possible Index of Difficulty values.

The distance and width parameters in the 3D task are similar to those in the 2D task,

but the algorithm to calculate the positions and sizes of the target must be different, such
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Table 3.2: Distance and width values for all possible values of ID in the target acqui-
sition task.

2D 3D (Cartesian) 3D (angular)

ID Distance Width Distance Width Distance Width

2.949 68.32 10.17 101.8 15.28 12.8° 1.905°

2.124 68.32 20.33 101.8 30.56 12.8° 3.81°

1.696 68.32 30.5 101.8 45.87 12.8° 5.715°

3.47 102.5 10.17 156 15.78 19.2° 1.905°

2.595 102.5 20.33 156 31.56 19.2° 3.81°

2.124 102.5 30.5 156 47.36 19.2° 5.715°

3.852 136.6 10.17 214.7 16.52 25.6° 1.905°

2.949 136.6 20.33 214.7 33.05 25.6° 3.81°

2.454 136.6 30.5 214.7 49.6 25.6° 5.715°

4.154 170.8 10.17 280 17.57 32.01° 1.905°

3.233 170.8 20.33 280 35.15 32.01° 3.81°

2.722 170.8 30.5 280 52.74 32.01° 5.715°

that calculating the Index of Difficulty in each unit system results in the same ID values.

Since game engines operate in a Cartesian unit system, ultimately the 3D target positions

and sizes must be set in world units as well. However, because aiming in 3D involves rotating

the view rather than panning, it is not possible to simply subdivide the distances and sizes of

the 3D targets in world units because such an approach would result in ID values inconsistent

with those in the 2D case. For example, the magnitude of the aiming movement required to

acquire a target with a distance of 100 world units is less than twice as large as the movement

required to acquire a target at a distance of 200 world units.

Furthermore, a constant scaling factor was applied to the target positions and sizes in the

2D task, with the purpose of making the effective distances and sizes of the target visually

similar on the screen while not affecting the resulting ID value. Without the scaling, targets

in the 2D task appeared much larger than in the 3D task. See Appendix B for the algorithm

used to make consistent target parameters between 2D and 3D tasks.
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Figure 3.3: Target tracking task showing target movement from initial position (T0)
through four direction changes (T1-4).

3.2.2 Tracking

In addition to the target acquisition task, a target tracking task was also performed by

participants. Tracking a moving target is a core part of aiming in first person shooters. In

a game, a player would typically acquire the target first, then track it while it potentially

moves evasively until it is eliminated. Participants performed tracking separately in order to

isolate this phase of aiming and identify the effects of lag on it alone.

In each tracking trial, a target appeared in the same initial position, directly in front of

the player, centered in the area that the target had to move within. When the participant

was ready to start a trial, they aimed at and clicked on the target to begin. The target

immediately started moving side-to-side in a pseudo-random, evasive pattern (Figure 3.3).

Each trial lasted for a period of four seconds, during which the participant was required to

do their best to keep their aim within the target’s bounding box. Whenever the player’s aim

was on the target, the target was tinted green to indicate successful tracking as feedback.

Once a trial was completed, the target reset to the initial position, ready for the next trial.

The dependent measure for evaluation was the amount of time that participants successfully

aimed at the target during a trial.
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The target was humanoid in appearance, with attributes similar to many first person

shooters. Hit detection was done using a bounding box with a width of 32 units, depth of 24

units, and a height of 56 units. The target’s side-to-side evasive motion occurred along one

axis, corresponding to the width of the room, orthogonal to the player’s base aim direction.

Target motion was linear, with evasion happening as direction changes which are equivalent

to the target’s velocity vector being reversed.

The target accelerates to a maximum velocity over a period of 140 ms after each direction

change. The timing of direction changes is predetermined, sampled from a uniform random

number generator with a period of 0.3 to 0.7 seconds. This results in an average of ten

direction changes per trial. The seed for the generator is kept constant so that every sub-

block and participant experiences the same evasive pattern.

The only independent variable in the tracking task was target speed, which had two

possible values: 240 and 320 units per second. Each block started with seven trials at the

slower speed, followed by seven trials at the higher speed.

Wherever possible, the parameters chosen were based on an existing first person shooter -

Quake III Arena. The bounding box size matches that of the player’s avatar in Quake 3, the

acceleration time and evasive motion period was similar to that of a typical player in Quake

3, and the higher target speed of 320 units per second matches that of a player in Quake 3.

The lower speed is similar to what would be found in slower-paced FPS games.

3.3 Differences Between 2D and 3D Conditions

The experiment was kept as similar as possible between the 2D and 3D conditions in the

study, and thus the same game world and target models were used, but changes to aiming,

lighting, camera, and targets were performed.

Aiming While moving the mouse rotates the view (effectively panning the background) in

the 3D case while leaving the aiming reticle fixed in the center, in 2D, moving the

mouse moves the aiming reticle while the world and background remains fixed.

Lighting The graphics engine’s lighting system was disabled for the 2D conditions, leaving

the environment fully lit in order to remove any 3D cues.
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Figure 3.4: Cropped view of the tracking task in the 2D environment (top) and the
3D FPS environment (bottom).

Camera Instead of using perspective projection to show the appearance of a 3D world on

the screen, orthogonal projection was used for the camera instead, removing the three-

dimensional appearance.

Targets As previously mentioned, in the acquisition task, care was taken to preserve equal

Index of Difficulty values between the 2D and 3D conditions of the task, which resulted

in some differences between target positions and sizes. In the tracking task, no such

changes were needed because no modeling or regression was performed.

Figure 3.4 shows the visual differences in the acquisition task, while Figure 3.5 shows the

differences in the acquisition task.

3.4 Performance Metrics in Acquisition

The target acquisition task in the study is set up to be equivalent to an ISO 9241-9 [42]

standard task for evaluating input devices. In both tasks, circular targets of varying sizes

and distances appear around a central location in various directions. The ISO task is a

formulation of Fitts’ Law [57], which is widely used and recommended in human computer

interaction studies [84].

In this task, targets are classified by Index of Difficulty (ID), which represents the difficulty

of the pointing task conditions, in bits:

IDe = log2

(
D

We

+ 1

)
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Figure 3.5: Cropped view of the acquisition task showing a sequence of frames from
one trial (left to right) in the 2D environment (top) and the 3D FPS environment
(bottom).

where D is the distance to the target, and W is the width of the target – both parameters

are equivalent to those in my target acquisition task. We is the effective width, adjusted for

accuracy. The range of ID covers those commonly encountered in real FPS games, with the

exception of instances where targets are very close or very far from the player.

Although I am primarily interested in trial completion time (i.e., the time taken to aim

at the target and click on it), I am also interested in Throughput (TP), as defined by the

aforementioned ISO standard, which measures the bandwidth of the pointing condition:

TP =
IDe

MT

where MT is the movement time (i.e., trial completion time).

Throughput is immune to the speed-accuracy tradeoff [58] due to the adjustments for

target width based on accuracy, represented by the adjusted width term, We:

We =


W ∗ 2.066

z(1− Err/2)
if Err > 0.0049%,

W ∗ 0.5089 otherwise

where W is the target width, Err is the error rate, and z is the normal distribution quantile

function (qnorm in environments such as the R language).
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Although I use the accuracy-adjusted width in the throughput analysis, the non-adjusted

version is used when setting up target conditions, and is reported in Table 3.2. This was

done because adjusted ID must be calculated after data is gathered, since it uses error

rate or standard deviation, which precludes being able to have consistent, discrete levels

for ID. Furthermore, IDe must be calculated per condition, rather than aggregated for all

participants.

3.5 Participants

Twelve participants were recruited from the local university (9 male, 3 female). All partici-

pants had previous experience at FPS games using a keyboard and mouse, and all were right

handed. Mean weekly computer usage for participants was 42 hours. Seven participants

rated themselves as being in the top 25th percentile of skill level in FPS games.

3.6 Study Design

Within each session, all conditions for one task (i.e., acquisition or tracking) were completed

first, followed by all conditions for the other task. Participants were given up to a five minute

break between the two tasks to rest, although no one took more than one minute.

Trials were grouped into blocks, with each block containing all possible conditions for

each task (72 for acquisition, 14 for tracking). Blocks were used to increase the total number

of trials, to monitor for practice effects, and to disperse the various conditions throughout

the experiment. There were five blocks in each dimensionality condition, with the first two

being used for training, during which every second trial was skipped in order to reduce the

total training length. A short break was given to participants between blocks.

In order to give participants a chance to get accustomed to the tasks, procedure, mouse

sensitivity, and the rest of the experiment, each dimensionality condition began with two

blocks of training, at which time participant performance did not contribute to data analysis.

Participants were also allowed to ask questions during this time, and they prepared for the

non-training period.
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All conditions were counterbalanced, with half the participants starting with the acqui-

sition task and the other half starting with the tracking task. Also, half the participants

started with the 2D tasks and the other half started with 3D tasks.

My hypotheses were as follows:

H1. Acquisition time would change with dimensionality.

H2. Tracking time would change with dimensionality.

3.6.1 Experimental Conditions Summary

The experimental factors were as follows:

Dimensionality. Represents whether the task was the 2D or 3D version.

Block. The block number, with three identical blocks being performed for each task and

dimensionality combination, and one additional training block performed at the start

of each.

Index of Difficulty (ID). The index of difficulty component of the Fitts’ Law relationship

as part of the acquisition task. With 4 different possible values for distance and 3

for width within each dimensionality condition, there are 12 resulting combinations

of index of difficulty. However, there were only 10 unique values of ID due to some

distance/width combinations equating to the same values of ID.

Speed. The target speed in world units per second as part of the tracking task. There were

2 levels used.

The target acquisition study used a 2x3x10 within-participants RM-ANOVA with factors

Dimensionality, Block, and ID. The dependent measure was trial completion time.

The target tracking study used a 2x3x2 within-participants RM-ANOVA with factors

Dimensionality, Block, and Speed. The dependent measure was time on target.
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3.7 Results

Outliers were further removed by filtering out the worst 1% of trials for each participant

within each condition. Outliers were only removed on the slow end of the distribution be-

cause it was not possible for a participant to get an unusually good trial time through

methods such as anticipating a timer. The slow end was removed because participants were

observed to sometimes pause briefly during a trial due to reasons such as talking or ergonomic

adjustments.

3.7.1 Acquisition

Although I tracked error rate, trials with errors (target misses) were still included in the

trial completion time analysis rather than being filtered out. This was done because, in real

games, misses occur frequently during the acquisition process, and the total time taken to

shoot at a target regardless of misses is typically the most important metric. That is, the

primary concern is which player is eliminated first in an encounter.

Main effect of Dimensionality

Trial completion time included trials with misses. RM-ANOVA showed a significant effect of

Dimensionality on trial completion time (F1,11 = 15.8 , p < 0.01). This effect can be observed

in Figure 3.6 as the overall performance gap between 2D and 3D, with 2D having a shorter

trial completion time on average. Post-hoc paired t-tests showed a significant difference in

task time (p < 0.05) between 2D and 3D at all ID levels except at ID = 1.70 and ID = 2.45.

I therefore accept H1–acquisition time changed with dimensionality.

Interaction between Dimensionality and ID

RM-ANOVA also showed an interaction effect between Dimensionality and ID on trial com-

pletion time (F9,99 = 2.65, p < 0.01), suggesting that dimensionality has a different perfor-

mance effect as ID changes. By looking at Figure 3.6, it can be observed that 3D acquisition

performance degrades quicker as ID rises.
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Figure 3.6: Index of difficulty versus trial completion time.
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Table 3.3: Target acquisition ID versus trial completion time regression results.

Dimensions y-intercept slope R2

2D 0.250 0.157 0.99

3D 0.258 0.170 0.99

Regression analysis

I performed a linear regression to determine how task completion time changed over varying

levels of ID. The results can be seen in Table 3.3.

Results show that the regression y-intercept is very similar between 2D and 3D, while

task completion time grows approximately 8% faster in 3D compared to 2D. The regression

has an excellent fit to the data with an R2 of 0.99 in both dimensions. The fact that a linear

regression fits well with the data confirms that Fitts’ Law is well suited to 3D pointing when

angular units are used.

Error Rate

There was a significant difference in number of errors per trial between the 2D and 3D

conditions (t-test, p < 0.05). In the 2D conditions, the mean number of errors per trial was

0.74, while in the 3D conditions, the mean number of errors per trial was 0.65.

Throughput

The accuracy-adjusted throughput (or index of performance) was 4.14 in 3D and 4.26 in 2D.

This is approximately a 3% difference, compared to the 8% difference found when looking

at just trial completion time with errors rolled in. However, the difference of 3% was not

statistically significant (p ≈ 0.24).

Both values found for throughput are similar to those found previously [59] for pointing

with a mouse.
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Table 3.4: Summary of RM-ANOVA main effects and interactions on acquisition time
for the acquisition task.

Effect DFn DFd F Significance

Dimensionality 1 11 15.8 Yes

ID 9 99 321 Yes

Block 1 11 0.737 -

Dimensionality : ID 9 99 2.86 Yes

Dimensionality : Block 1 11 1.44 -

ID : Block 9 99 1.57 -

Dimensionality : ID : Block 9 99 2.52 Yes

Summary of Effects

Table 3.4 shows a summary of main effects and interactions analyzed with RM-ANOVA,

including both significant and non-significant effects on acquisition time.

3.7.2 Tracking

Performance in the tracking study was determined by the mean time successfully spent

tracking the target per trial, with maximum possible time being 5 seconds.

Main effect of Dimensionality

RM-ANOVA showed no significant main effect of Dimensionality on tracking performance

(F1,11 = 0.136, p = 0.07). I therefore reject H2. Figure 3.7 shows the relationship between

target speed and time on target for both 2D and 3D environments.

Interaction effect between Dimensionality and Speed

RM-ANOVA showed a significant interaction effect of Dimensionality and Speed on time-on-

target performance (F1,11 = 10.8, p < 0.01), although post-hoc t-tests show no significant

differences between 2D and 3D performance at either target speed.
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Figure 3.7: Target speed versus time on target.
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Table 3.5: Summary of RM-ANOVA main effects and interactions for the tracking
task.

Effect DFn DFd F Significance

Dimensionality 1 11 0.14 -

Speed 1 11 594 Yes

Block 1 11 2.37 -

Dimensionality : Speed 1 11 10.8 Yes

Dimensionality : Block 1 11 3.00 -

Speed : Block 1 11 0.02 -

Dimensionality : Speed : Block 1 11 4.85 Yes

The interaction suggests that although dimensionality does not affect tracking perfor-

mance on average, it does have an effect once target speed is considered, with faster moving

targets becoming more difficult to track in 2D environments compared to 3D ones. This

interaction effect can be observed in Figure 3.7.

Summary of Effects

Table 3.5 shows a summary of main effects and interactions analyzed with RM-ANOVA,

including both significant and non-significant effects.

3.8 Discussion

The experiment examined the performance differences between equivalent tasks in two and

three dimensional settings, separated into target acquisition and target tracking tasks. To

summarize the difference between the conditions, the 3D conditions used a perspective-

transformed view that emulates how we see the real world, while the 2D conditions used

orthographic projection (i.e., parallel lines are preserved). Also, mouse movement directly

controlled the movement of the reticle in the 2D conditions, with the background staying

fixed, while mouse movement rotated the view in the 3D conditions, which, in effect, moves

the background while keeping the reticle fixed.
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The performance metrics that I focused on do not in themselves explain the specific

mechanical differences that give cause to the overall difference in performance, but the results

do indicate that there is a significant difference in how aiming is performed between 2D and

3D conditions. In the acquisition task, the results show that movement time was a statistically

significant 8% longer in the 3D condition compared to the 2D condition across a range of

index of difficulty values. In the tracking task, there was no significant main effect, but an

interaction effect with target speed was found between the 2D and 3D conditions.

In the acquisition task, throughput [84] was not statistically significantly different between

2D and 3D. This result does not invalidate the difference in task completion time between

the conditions; instead, the low difference in throughput is explained by the difference in

error rate between the two conditions (0.74 errors per trial in 2D versus 0.65 in 3D) since

throughput makes use of error rate as a method of finding the effective width of targets.

That is, it takes into account the effective spread of targeting locations used by participants

relative to actual target width. In the 2D condition, the error rate was higher, meaning that

participants were effectively aiming at a larger target (i.e., the area that their clicks covered

was larger), since errors mean clicking in an area larger than the real target. This higher 2D

error rate results in a lower throughput score for the condition, but the important outcome is

that aiming in 2D behaves differently than in 3D, as evidenced by movement time and error

rate differences.

My study was the first to use difficulty-matched targets comparing 2D and 3D settings

in otherwise very similar conditions and environments. Although a study by Looser [54] was

similar in the goals used, mine provided important additional changes (see below). My study

shows that there are differences in aiming between 2D and 3D settings, and these differences

are one of the motivating factors for the usefulness of my study described in Chapter 5.

Although it would be useful to examine how latency affects first person shooter performance

regardless of the work in this chapter, the 2D/3D differences I found indicate that there may

also be reasons that latency could affect performance in FPS differently than it does in 2D

pointing scenarios. Therefore, it should not be assumed that the effects of latency will be the

same in FPS as in the existing work on latency in 2D, and it is worth evaluating the effects

separately.
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3.8.1 Performance Differences Between 2D and 3D

In the following sections I discuss possible explanations for the differences I found between

2D and 3D, and contrast my work with previous studies of targeting in 3D. While I do not

currently have a concrete explanation for the differences, there is currently external work

underway to examine these differences in detail and find the causes.

Target Acquisition

There are several possible reasons for the reduced performance in the 3D condition. The first,

and perhaps most likely, reason to explain the difference is that visual differences between

the two conditions may cause performance losses – that is, the dramatically-larger amount of

optical flow (i.e., visual movement) in the 3D condition requires more perceptual processing.

This explanation may also account for the increasing difference between 2D and 3D as the

index of difficulty rises since smaller targets may be more likely to be lost in the visual

movement.

As detailed in Section 2.1.2, controlled pointing movements are performed through means

of one or more constituent submovements, beginning with a ballistic open-loop movement

that is programmed to end at the target. Because stochastic neuromotor noise may cause

the initial movement to miss, the initial movement may be followed by corrective movements

that make use of visual feedback to correct for errors and arrive at the target [64]. Between

each submovement, visual feedback is used to evaluate the error and plan a corrective action.

Therefore, any mechanisms that delay the visual feedback or the amount of time necessary

to process and react to it would also delay the total movement time. In the 2D condition,

the target location is fixed on the screen, with user eye gaze normally being focused on the

target throughout the motion. This allows for easy and rapid comparison of cursor location

to the target location, since there is relatively little movement on the screen that requires

neuro-sensory processing. In contrast, for the 3D condition, the entire screen changes in

content when movement is performed, and the visual information must be processed by the

brain. A visual search [93] must be performed to find the location of the target on the screen

before a corrective movement can be planned. In 2D, visual search is less likely to be needed
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because the cursor is unlikely to be lost during movement – users can perform continuous

tracking of the cursor in the peripheral vision. Also, kinesthetic feedback can be used as

well [46] which would complement the visual feedback.

The second reason that movement time was different may be found in the throughput

results analysis. The finding that throughput was not significantly different between the two

conditions while the movement time and error rates were suggests that users likely made use of

a different level of speed/accuracy tradeoff between the two conditions. That is, participants

were faster on average as a result of being more risky and making more errors. However,

trials with errors were included in movement time analysis – if a trial had an error, it would

take more time than normal to complete because users would have to realize their mistake,

make another correction, and finish the task. Despite these slower error trials counting in

movement time analysis, movement time was still quicker in 2D.

A third possibility is that the FPS environment I used (like most FPS games) is a perspec-

tive projection of a 3D world, as opposed to a true 3D visual experience. The lack of some

3D cues, such as stereopsis or parallax, may have caused perceptual conflicts that degraded

performance. For example, participants may have misjudged the target location, distance,

or depth due to cue conflicts, hindering their targeting ability. To explore this possibility, in

future work I will test performance with a true 3D display that provides both stereo vision

and parallax.

A fourth reason for the 2D/3D difference is the potential for visual-motor conflict in the

3D task. In traditional 2D cursor movement, the user’s hand and mouse movement is aligned

with the direction of cursor movement on the screen. The optical flow information on the

screen is therefore in the same direction as the movement of the hand that can be seen in

one’s peripheral vision. In 3D FPS cursor movement, however, the 3D world pans behind

the central reticle, and the user’s hand and mouse movement is opposite to the movement

of the world movement on the screen. The optical flow information on the screen is in the

opposite direction as the movement of the hand that can be seen in one’s peripheral vision.

This is a version of the stimulus-response compatibility hypothesis [49], with lower levels of

compatibility (or naturalness) being associated with slower reaction times.

Yet another reason for the difference could be that humans are used to direct, one-to-one
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physical control of limb position in space. Moving the cursor through means of a mouse is

similar to direct manipulation – the cursor directly reflects the physical motion of the mouse,

albeit with a control-to-display ratio (i.e., gain) that is likely not at a one-to-one ratio. In

the 3D condition, mouse movement is mapped non-linearly to aim control, because moving

the mouse results in a rotation of the view – that is, the relationship between target distance

from the cursor on the screen is non-linear with respect to the amount of input movement

required. This could be seen as another form of stimulus-response incompatibility.

Finally, another potential contribution to the 3D condition being slower is due to per-

spective distortion of distal targets. As pointed out by Zaranek [97], targets that are close

to the edge of the screen appear larger than they are due to perspective distortion. This

illusion may interfere with planning the initial ballistic submovement in acquisition. The

user’s movement would be planned with a seemingly easier to hit target in mind, therefore

reducing the effectiveness of the ballistic submovement and requiring additional corrective

followup motions.

Regarding the differences in error rate, a possible reason for the finding is that users

are more familiar with 2D environments when using a computer, such as when experiencing

standard desktop usage through web browsing or such. Rotational 3D environments are

comparatively more rare. As a result, users may have been more confident in their aiming

abilities in 2D and took more risks by prioritizing speed over error rate in the speed/accuracy

trade-off. This more risky behavior could also explain the difference in movement time, since

the priority would be placed on speed rather than accuracy.

As future work, there are a number of interesting possibilities for digging deeper into the

potential visual differences between the 3D and 2D conditions that contribute to the differ-

ences in aiming performance that I found in this study. Individual 3D depth cues (such as

parallax) from the 3D case could be isolated and evaluated for their effect on aiming perfor-

mance. Likewise, the visual information in the background texture could be systematically

reduced in order to lessen the effect of optical flow. Finally, in a wholly 2D environment, one

could test shifting the background under a centered cursor, versus the traditional setup of

moving the cursor over a fixed background. A key tool in finding the underlying differences

in mechanics in either of these proposed conditions would be tracking the location of aim
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at all times, in order to analyze where the performance difference is located. For example,

3D aiming might involve longer pauses between submovements due to the aforementioned

differences in visual and processing load required. Another possibility would be that less

time is spent in the ballistic portion of movement and more corrective actions are required

due to perspective distortion.

Target Tracking

Tracking time on target was not significantly different between the 2D and 3D conditions.

However, there was a significant interaction effect with target speed between 2D and 3D. It

is likely that this interaction is a result of a combination of fast targets being very difficult to

track and the inherent differences in tracking targets once the target has moved significantly

away from the center position, especially for box-shaped targets.

The tracking task in the experiment was very difficult to perform well, particularly in the

fast target condition which represents target movement in fast-paced first person shooters.

Participants were successful in tracking the target for only approximately 1.5 seconds out of

a 5 second trial. Participants often made frantic guessing movements trying to anticipate

target movement rather than being able to properly track it. Consequently, anything that

would help the participants stay on target longer despite their inability to do so would benefit

the faster target case more than the slower one. It is likely that the nature of tracking this

particular type of movement in 3D is what presented this aid in the 3D conditions.

When the target is centered at the start of a trial, motion is perpendicular to the vector

between the player and the target. In effect, rotating the view in 3D to track the target in

this position is similar to moving the cursor in 2D – approximately the same amount of input

movement is required for a given amount of target motion. However, since the target moves

along the same vector or "rail" the entire time, as the target approaches the periphery of its

movement range, tracking in 3D requires comparatively less movement. This is because a

significant portion of the target movement vector moves it toward or away from the player,

which requires no compensatory tracking movement, and the portion of the vector that

requires tracking compensation becomes less significant. The target does effectively appear

smaller as it moves away from the center of its movement, which makes it harder to track and
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offsets the benefit of requiring less movement. However, the target is normally box-shaped

in an FPS game (and in the study), and the exposed profile of the box becomes larger as

the target moves away from center since more of the side of the box is exposed. Therefore,

the target size does not decrease as quickly as the magnitude of the required tracking motion

does.

The effective growth of the target profile as it moves away from the center could be

avoided in the future by using a cylindrical hit area for the target rather than a box, or by

having the target constantly adjust its rotation so that the front face of it is directed toward

the player. I did not do this in my study, partially because it is a common aspect of aiming

in 3D and also because the fixed-rotation target is the approach used in a similar study [54].

3.8.2 Comparison with Previous 3D Studies

The most relevant previous study that can be compared to my work is that of Looser [54].

I see my study as building on this previous result, rather than conflicting with it. Looser

used a similar approach to mine, in that regression was performed on the Fitts’ Law index of

difficulty versus movement time results in both the 2D and 3D studies. However, the results

of Looser’s study were different than my own; Looser found a very similar slope of regression

between the two conditions, with the main difference being the y-intercept. This is unlike

my results, where I found a very similar y-intercept but a different slope. See Table 3.6 for

a comparison of results.

It is worth noting that my study confirmed that Fitts’ Law is suitable for use in a 3D

environment, even though I used a 2D version of the task as described by ISO 9241-9 [42],

unlike Looser. The suitability of Fitts’ Law is evidenced by the excellent fit of a linear

regression to my results (R2 = 0.99). The fit seems to hold both on the low and high end of

ID values used in my study.

It is interesting and surprising that Looser’s results show such a wide discrepancy in y-

intercept between the two conditions. Since a trial starts as soon as a target appears, the

intercept is a measure of reaction time including the time needed to prepare for the movement.

My results show an intercept of 250 ms, which is in line with typical human visual reaction

time [50], with the 3D case being very slightly higher, likely due to the additional complexity
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Table 3.6: Target acquisition ID versus trial completion time regression for both my
study and Looser’s.

Ivkovic Looser

Dimensions y-intercept slope y-intercept slope

2D 0.250 0.157 0.19 0.18

3D 0.258 0.170 0.46 0.19

in evaluating the projected distance of the object. However, Looser’s results, while showing

a reasonable 190 ms intercept for the 2D case, show a 3D intercept of 460 ms, which seems

unreasonably long. It is possible that their 3D environment was unusually difficult to process

or that the target was difficult to quickly perform a visual search on.

There were several differences in the studies that help to explain the different overall re-

sults. Looser used a one-dimensional Fitts’ Law test to compare a traditional 2D environment

to a 3D FPS environment. In the 2D case, fixed-width targets were presented at different

distances from the starting cursor along the horizontal dimension of the screen (the targets

were centered vertically on the screen). In the FPS case, fixed size targets were presented

at different locations along the horizontal x-axis of the 3D world at a fixed depth, effectively

presenting a rectangular target to the user. In contrast, I evaluated a 2D Fitts’ Law task

where targets varied in size and location in both horizontal and vertical dimensions on the

screen.

There were also differences in the setup of my experimental conditions. I attempted to

present a consistent visual environment in both conditions. For example, the same back-

ground texture was used in both 2D and 3D. In the 2D case, I used an orthographic camera

projection (to remove all perspective depth cues) and removed shading cues from the spherical

targets so that they appeared circular. In contrast, Looser used conditions that appeared en-

tirely different visually – the 2D task was devoid of background texture and used desktop-like

features such as a normal mouse pointer, while the 3D task used a fully textured box-shaped

room with humanoid targets and other depth cues. Additionally, there may have been dif-

ferences due to the apparatus used. My experiment used a high resolution, high refresh rate

display which may have elicited a different response than the comparably low resolution and
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refresh rate used by Looser.

Finally, Looser chose an index of difficulty range that spanned the same range as my

study, but were inconsistent between conditions, therefore only regression could be compared.

I designed targets with matched IDs between the conditions so that I could perform an

ANOVA in addition to regression. This allowed us to look for interaction effects, which is an

important extension.
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Chapter 4

Latency in Real-World Systems

Although gamers share evidence when discussing game system latency [51], and significant

marketing is employed to promote "low latency" input devices and displays, little empirical

evidence exists for the local latency associated with different gaming setups. Minimizing

latency in VR headset displays has been a recent focus of attention for new products, such as

the Oculus Rift,1 which includes a device to measure latency from "motion-to-photon" while

the device is in use. However, efforts to apply such measurement methodologies to typical

FPS gaming systems have been uncommon.

In this chapter, I show a sample of the latency of existing real-world systems. In order

to do this, I performed a study in which I sampled sixteen different systems comprised of

various games and hardware. Due to limited time and resources, my goal in the study was

to find a reasonable range of latencies that can be found in various classes of systems, rather

than performing a large-scale study of many systems where each factor in the system could

be analyzed separately.

4.1 Methodology

I built my own latency measurement apparatus in order to canvass a range of typical gaming

setups and measure the amount of latency faced by gamers in real-world situations. This

apparatus was also used to measure latency in my study reported in Chapter 5. my system

measures the latency between the beginning of a physical input device movement and the

resulting visible motion on the screen. I used simple descriptive statistics to report my

findings.

1http://www.oculusvr.com
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4.1.1 System Selection

I chose the sixteen sampled conditions by measuring systems that were easily accessible to

us. These included systems from the University’s Interaction Lab, the author’s own system,

and systems of people known to the author. I attempted to find a representative variety of

conditions by varying factors when possible, such as exchanging the input device or game in

the same system. I did not make any special attempt to find combinations with the lowest

or highest possible latency. Instead, I used the hardware and software that was already

commonly used on those systems.

I selected systems from a variety of different types including gaming and office PCs, gam-

ing consoles, and different types of input and output devices. Measurements were performed

on a number of different games, using the same system settings that would be used during

normal gameplay without modification. All displays had their "game mode" enabled in the

on-screen settings.

4.1.2 Apparatus and Measurements

The measurement apparatus used a high speed video camera (Canon ELPH 300HS digital

camera, recording video at 240 frames per second) mounted on a tripod to capture the motion

of the input device. This allowed both the input device and the display to be captured clearly

in the camera frame at once.

To obtain a measurement, I ran the game system with a highly visible textured scene to

allow for easy observation of movement on the screen. With the camera recording, I tapped

the input device sharply with a hammer to elicit a change in view direction with as little

input transition time as possible (i.e., ramping up to a high velocity as quickly as possible to

avoid ambiguity). The input device was elevated to the height of the display and kept steady

by placing it on a flat wooden board located closely to the front of the display.

I measured the amount of latency by reviewing the recorded footage on a frame-by-frame

basis, counting the number of recorded frames elapsed between the input device initially

starting to move and the display changing, with each recorded frame having a period of 4.2

milliseconds. An LED light or highly contrasting marker mounted on the device helped to
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show exactly when the movement started.

The reported latency period ended when any updates related to the input movement were

first seen on the screen. Note that this could mean that only a small portion of the screen has

updated at that point. For most systems I measured, the display operated at a refresh rate

of 60 Hz, therefore it would take up to an additional 8 ms for half the screen to update and

16 ms for the rest of the screen to fully update, potentially slightly increasing the effective

latency experienced by players.

my camera makes discrete measurements with a precision of 4.2 ms (i.e., the frame period

length) and the displays used on the measured systems can have some jitter on their latency.

For these reasons, I report the average latency from 4 measurements for each of the real-world

systems, as well as the standard deviation of the measurements.

4.2 Results

I used my latency measurement apparatus to determine the latency of a number of real-

world systems. Table 4.1 shows a summary of the results, with mean latency and standard

deviation reported in milliseconds. Unless otherwise indicated (such as for the Overlord and

BenQ displays), the displays receive video input at 60 frames per second. Systems, input

devices, and displays are classified broadly as described in the legend at the bottom of the

table.

The table is displayed with each system condition numbered and separated into groups.

Systems 1-8 are PC desktops, while systems 9-16 are gaming consoles. Systems 1-5 are

independent PC systems with no grouping. Numbers 6-8 are performed on the same desktop

PC, with two different monitors and mice. Numbers 9-12 are the gaming consoles on the same

TV, but with different games. Finally, systems 13-16 share a TV as well, but on different

games.

Figure 4.1 shows the mean latency of the systems with points associated with gaming

consoles shown as brown circles, while points for PC systems are shown as blue diamonds.
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Figure 4.1: Scatter plot of latency results with a distinction between PC and console
systems.

4.3 Discussion

Quantifying the results I found regarding the range of latency that can be found on various

types of systems help to select the latency levels used in my study in Chapter 5, and together

with the results of that study, I show that latency is a substantial problem in real-world

gaming. Although there is a limited number of data points for each type of condition, some

interesting observations can be made from the results in this study.

4.3.1 Latency Summary

I found a wide range of latencies from 23 ms on a PC with an ultra-fast gaming monitor,

up to a surprising 243 ms for the best-selling game GTA5, even on a relatively low-latency

TV. Although my measurements are not exhaustive, I believe they are a reasonably broad

sample of real-world latency that covers a useful variety of conditions. I attempted to avoid

bias by measuring a wide variety of systems that were of convenient availability to us, rather
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than looking for systems that fit within certain desired parameters. The results match well

with casual observations and measurements I observed in my experience with system latency

before the study. PC systems ranged from 23 to 158 ms of latency, with a relatively even

spread of measurements between them. Console systems tested at 130 ms at the low end of

latency, up to 243 ms at the high end.

4.3.2 Attributing Latency to Components

Although data for the various types of system conditions is limited, in some cases it is possible

to make observations within the pairs of conditions where only one factor changes between

two measurements.

Displays

One the largest sources of latency variance that I observed was due to the display used in the

system configuration. In general, displays designed for gaming and low latency, such as those

in systems 1 and 6, reached the lowest latency results. Standard computer monitors often

have a low-to-moderate amount of latency, often in the range of 15 ms to 40 ms, although

the latency can vary considerably [27]. Although my experimental conditions do not allow

for isolating the latency contribution of HDTV television displays, latency databases such as

DisplayLag [27] show that televisions often have a latency in the range of 40 ms to 80 ms,

which is in line with my observations. This latency likely comes from the image processing

algorithms and internal buffering mechanisms used by televisions, some of which are used

even when "game mode" is enabled.

There were two cases in my conditions where direct comparisons between displays can be

made:

• System 6 is a gaming desktop PC running the fast-paced Quake III Arena first person

shooter using a gaming mouse and a ultra-high performance BenQ gaming display.

The display boasts a low latency, low pixel response time, and high refresh rate as its

performance features. This system achieved an average latency of 23 ms, which was

the lowest observed in my study. The same system, with the display exchanged for
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a standard LCD display (System 7), showed 64 ms of latency, which is a substantial

increase.

• Systems 11 and 14 both ran on the Nintendo Wii U console, playing the Legend of Zelda:

Windwaker HD game on two different televisions. In this case, the resulting latencies of

155 ms and 138 ms were not significantly different. The difference in latency is dwarfed

by the high total latency in both systems.

Wired versus Wireless Mice

Wireless input devices can sometimes induce a non-negligible amount of latency into the

system, although performance of different technologies varies. In my results, systems 6 and

8 shared the same conditions, except the wired gaming mouse in system 6 (Logitech G5) is

swapped for a wireless mouse (Logitech MX 1100). This resulted in an increase of latency

from 23 ms to 37 ms, which could make a difference in situations where low latency is

critical. However, the difference is modest, and the MX 1100 is built on six year old wireless

technologies. Modern wireless mice are likely to have less latency, which would result in an

inconsequentially low difference in latency compared to that caused by many displays.

Game-Induced Latency

Although gamers tend to immediately think of hardware as the source of the local latency

in a system, a surprisingly high amount of latency can be present as a result of the game

itself, or the way that the game configures the system. There are a variety of reasons why

this may happen. One very common way that games add latency is due to the necessary

interpolation between frames that must be performed when game logic is decoupled from the

game rendering system, which is a standard way to design game architecture. Other sources

include input filtering/smoothing, rendering effects that require a buffer of multiple frames,

the usage of vertical sync, and inappropriate timing of input sampling. See Section 2.3.2 in

Chapter 2 for more information on these sources.

This game-induced source of latency can be clearly observed in the latency magnitudes

of systems 15 and 16. The only difference in these systems is the game, where Battlefield 3
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achieves a latency of 155 ms, and Grand Theft Auto 5 (GTA 5) achieves a surprisingly high

243 ms, which is almost 100 ms higher. Although the reasons for this difference cannot be

discerned fully by an outside observer, one of the reasons is that GTA 5 runs at 30 frames

per second, or less in some situations, while Battlefield 3 can achieve up to 60 frames per

second.

PC versus Console

Although a clear and dramatic difference in latency can be observed between the PC and

gaming console systems (Figure 4.1), my experimental conditions prevent us from making

direct comparisons where all other factors are equal. However, some inferences can be made.

One reason for consoles showing more latency is that they were all used with televisions as

displays, which is the standard way they’re used in practice, and televisions generally have

more latency than computer monitors. Consoles also use wireless gamepads as input devices

and likely use input filtering to achieve smooth aiming, which adds latency as well. Consoles

almost always enable vertical sync in games, which is not necessarily the case in PC gaming,

since players tend to be given the option of disabling it. Finally, PC systems can often run at

high frame rates, which decrease the amount of local latency, while games tuned for consoles

often target a rate of 30 frames per second.

Regardless of the reasons, a clear trend can be seen in real-world systems, with gaming

console setups exhibiting a high amount of latency, in the range that can be perceived by

many gamers. Since consoles are a popular platform for gaming, and because such setups are

prone to having high latency, gamers would benefit if more attention was given to reducing

latency.
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Table 4.1: Results of field latency sample, with latency shown in milliseconds.

# System Game Input Display Lag ± SD

1 Linux(G) Path of Exile GM, W Overlord X270OC 100Hz(I) 32 ± 3

2 OS X 10(S) Zombie count M, WL Toshiba PA3769 (VGA)(T) 158 ± 12

3 Win 7(G) Day Z M, W Asus VH242H(T) 117 ± 7

4 Win 7(S) Cut the rope M, W Dell S2340Tt(I) 117 ± 6

5 Win 8.1(G) CS: GO GM, W Dell UP2414Q(I) 65 ± 4

6 Win 8(G) Quake 3 GM, W BenQ XL2420T 120Hz(T) 23 ± 2

7 Win 8(G) Quake 3 GM, W LG L226WTX(T) 64 ± 4

8 Win 8(G) Quake 3 GM, WL BenQ XL2420T 120Hz(T) 37 ± 2

9 PS4(C) Killzone SF C, WL Sony KDL55HX850(V) 148 ± 8

10 PS4(C) Watch Dogs C, WL Sony KDL55HX850(V) 175 ± 16

11 Wii U(C) Windwaker HD C, WL Sony KDL55HX850(V) 155 ± 16

12 Wii U(C) CoD Black Ops 2 C, WL Sony KDL55HX850(V) 130 ± 8

13 Wii U(C) Bioshock Infinite C, WL Sams. UN60EH6003F(V) 192 ± 9

14 Wii U(C) Windwaker HD C, WL Sams. UN60EH6003F(V) 138 ± 17

15 Xb 360(C) Battlefield 3 C, WL Sams. UN60EH6003F(V) 155 ± 23

16 Xb 360(C) GTA 5 C, WL Sams. UN60EH6003F(V) 243 ± 60

Systems: G = gaming computer (performance CPU, discrete GPU); S = standard computer; C =
gaming console.

Input: M = standard mouse; GM = gaming mouse; C = standard gamepad; W = wired, WL =
wireless.

Displays: T = twisted-nematic; I = in-plane switching or equivalent; V = LCD televisions (IPS
with game mode on).
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Chapter 5

Quantifying and Mitigating Local Latency

In the previous chapter, I established that local latency is a pervasive aspect of real-world

gaming systems, with it being observed in every tested system with widely varying levels.

In this chapter, I examine and quantify how local latency affects aiming performance in

first person shooters. I also demonstrate methods of mitigating latency to decrease its effect

on performance. In order to accomplish these goals, I carried out a user study based on a

modified version of my system used in Chapter 3, with the 2D condition removed and latency

conditions added.

The study consisted of two separate sessions that were performed on consecutive days.

In one session, participants performed the study without the mitigation assists in order to

quantify how latency affects their aim. In the other session, the same tasks and procedure

were performed, but with the mitigation assists being active. This two-session split allowed

us to compare performance with and without the assists in order to ascertain whether the

mitigation techniques are effective at reducing the performance impact of latency. Two

sessions were used in order to keep the length of each condition reasonable and avoid excessive

participant fatigue.

5.1 Controlling Local Latency

In order to find the effects of lag on participant performance, I devised a mechanism that

allowed us to control the amount of local latency present in the system at any given time in a

controlled manner. To accomplish this, I built a computer system with the lowest amount of

latency that I could reasonably achieve, such that I could find a baseline level of performance

when latency was as close to zero as possible. To reach higher levels of latency above baseline,
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I purposely added latency to the system at the software layer, within the experimental game.

I chose to add latency purely on the output, delaying rendered frames from being shown

on the display, rather than varying latency on both the input and output. This simplification

is acceptable because there would be little difference between latency on the input versus the

output within the experiment in terms of the effect on performance results. Also, in many

real-world cases, the output side of the system is the dominant cause of latency.

Five levels of total system latency were used in the study: 11 ms, 41 ms, 74 ms, 114 ms, and

164 ms. See Section 5.6.1 regarding how latency levels changed throughout the experiment.

The first level was the lowest achievable, while the highest was a reasonable high-end value

based on my results shown in Chapter 4, although even higher levels can be found in real-

world systems. The intermediate levels were not uniformly spaced because it is more valuable

to find the effects of latency with finer granularity toward the lower end. Because it is already

known that latency has a significant effect at the higher levels, it was useful to see if there

were any threshold levels found and what the performance curve looks like at lower levels of

latency.

Because the use of vertical sync (v-sync) on the display output causes additional latency,

it was disabled for the baseline (lowest) level of latency, resulting in 11 ms of lag. However,

vertical sync is commonly used in real-world gaming, and is necessary in order to avoid dis-

tracting screen tearing. Therefore, v-sync was used in the latency conditions above baseline.

The second lowest level of latency in the experiment, 41 ms, was the result of enabling v-sync

without purposely adding any more artificial latency on the output–it is the natural latency

of the system with v-sync enabled. The final three levels of latency were the result of enabling

v-sync, as well as adding latency artificially on the output.

The method used to artificially add latency was buffering rendered frames, then displaying

them later. Each frame was rendered into a texture target contained in a ring buffer, where

the buffer’s size was one larger than the number of frames of latency desired. Instead of

sending the current frame to the display after it was rendered, the appropriate previously

rendered frame was retrieved from the buffer and displayed instead. For example, to add

two frames of latency to the system (on top of the natural 41 ms with v-sync), the screen

image rendered two frames in the past was displayed. Since the display’s refresh rate in the
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experiment was 120 Hz, this resulted in 41 + 2 ∗ (1/120) = 74 milliseconds of latency.

5.2 Tasks and Procedure

My experimental system implemented two primary tasks to be performed by participants:

target acquisition and target tracking. These tasks are representative of primary activities

in many 3D game environments; in FPS games, target acquisition is carried out when first

encountering an enemy, and then a combination of acquisition and tracking is used until the

enemy is eliminated. The entirety of the study consisted of these two tasks being performed

in short and discrete trials with varying conditions. These tasks and procedures are similar to

those found in Chapter 3. However, there are differences in design between the two studies

and therefore the study in this chapter is described here in detail, rather than only the

differences being contrasted.

All tasks and conditions were performed in a custom-made game world created using

GtkRadiant1. This world consisted of one room divided into two sections, with one section

used for the acquisition task and the other used for the tracking task (see Figure 3.1). The

player position was fixed to a location at the center, between the two rooms. The world had

a graphical appearance very similar to Quake III Arena, which was a popular first person

shooter.

5.2.1 Acquisition

Target acquisition is typically the initial phase of aim found in most first person shooters.

It consists of the player moving their aim to a new location or direction corresponding to

an intended target. In shooters, this target may be a specific entity such as an adversary

combatant, or a ground location chosen in order to control space. In this study, I focus on

the former type of target.

Each target acquisition trial within the study began with the participant’s aim being set

by the system to a base initial direction, aiming down range to the middle of the cluster

1Level creation tool for creating Quake 3 compatible maps: http://icculus.org/gtkradiant
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where targets appear. This aim direction was locked for a period of 500 ms at the beginning

of each trial. During this time, the participant could not adjust their aim, ensuring that each

trial began with a controlled initial aim direction, and the 500 ms pause allowed participants

to prepare to aim at the target.

At the end of the 500 ms period, the trial timer started and the target appeared. The

target was approximately spherical, in the shape of an ogre head (Figure 5.1). At this point,

the aim lock was released, and participants attempted to aim at the target then click the

left mouse button to shoot it. Participants were instructed to complete trials as quickly

as possible while trying to be reasonably accurate. The main dependent measure was trial

completion time, with lower times being better.

Participants were also told that the targets would start appearing red-tinted if accuracy

dropped below a threshold, and to be more careful and accurate if this happened until targets

stopped appearing red. The threshold was reached if accuracy fell below 80% at any point

within a sub-block of trials (a group of trials with a constant latency level; see Section 5.6).

If the participant shot but missed a target during a trial, the trial would continue until

successfully completed, but it would be flagged as containing misses (errors) and repeated

until completed without errors.

Each sub-block of trials consisted of 36 possible target positions within a virtual cone

extending from the center of the base view position (Figure 5.1). The position order was

randomized, but the same order occurred within every sub-block and participant. This was

done by randomizing the order of the possible positions with a fixed random number generator

seed. The targets were all visible on screen from the base view position without having to

rotate the view.

Target conditions

The 36 target positions were generated as a result of different combinations of parameters

related to the cone: angle, radius, and depth. Discrete, manually chosen values were used

for the parameters in order to enable statistical analysis such as ANOVA.

Angle Angle indicates the direction that the participant had to move the mouse to acquire

the target, starting from the base view position. There were six different values of
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Figure 5.1: Target acquisition task showing all possible target locations and sizes.
The six IDs (numeric labels) were chosen to be typical of targets in FPS games.

angle used: 0°, 45°, 135°, 180°, 225°, and 315°, where an angle of 0° corresponds with

aiming directly to the right. This parameter was used in order to vary the direction

of mouse movement, and because it has been shown that angle of approach affects

the prediction ability of Fitts’ Law [91, 65], the angles chosen are balanced across axes.

Angles corresponding to directly upward or downward movement were omitted in order

to decrease the number of possible combinations and thus the length of the experiment

for purposes of minimizing fatigue.

Radius Radius indicates the base radius of the cone. It is the angular deflection away from

the centered base view position, which determines how far a participant has to move

the mouse to acquire the target. This parameter is similar to the distance factor in the

Fitts’ Law formula. Radius had three values: 74, 148, and 224 units. These were chosen

by finding the largest suitable radius that is contained within the room and visible from

the base position, then dividing it into three evenly spaced intervals (omitting the value

of zero).

Depth Depth indicates the target’s depth into the room, away from the player along the

base view direction. Two values were used: 224 units and 448 units. Because the player

position was fixed and there were no other moving objects in the world, depth could
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also be taken as the size of the target, since a target that is farther away is effectively

smaller from the player’s perspective. Thus, this parameter is analogous to the width

parameter in the Fitts’ Law formula.

The various parameters for position and size were aggregated into an Index of Difficulty

(ID) value, which was used in results analysis. The ID was calculated in a way similar to the

procedure detailed in Chapter 3, using the Shannon formulation for ID [55]:

ID = log2

(
D

W
+ 1

)
As explained in Section 3.2.1, D (distance) and W (width) were expressed in angles rather

than Cartesian coordinates for the purposes of ID calculation.

5.2.2 Tracking

In addition to the target acquisition task, a target tracking task was also performed by

participants. Tracking a moving target is a core part of the aiming task in first person

shooters. In a game, a player would typically acquire the target first, then track it while it

potentially moves evasively until it is eliminated. I performed tracking separately in order to

isolate this phase of aiming and identify the effects of lag on it alone.

In each tracking trial, a target appeared in the same initial position, directly in front

of the player, centered in the area that the target had to move within. When the player

was ready to start a trial, they aimed at and clicked on the target to begin. The target

immediately started moving side-to-side in a pseudo-random, evasive pattern (Figure 5.2).

Each trial lasted for a period of five seconds, during which the participant was required to

do their best to keep their aim within the target’s boundary box. Whenever the player’s aim

was on the target, the target was tinted green to indicate successful tracking as feedback.

Once a trial was completed, the target reset to the initial position, ready for the next trial.

The dependent measure for evaluation was the amount of time that participants successfully

aimed at the target during a trial.

The target was humanoid in appearance, with attributes similar to many first person

shooters. Hit detection was done using a bounding box with a width and depth of 30 units,
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Figure 5.2: Target tracking task showing target movement from initial position (T0)
through four direction changes (T1-4).

and a height of 56 units. These dimensions were chosen to match those of the player’s

character in the game Quake 3 Arena. Its side-to-side evasive motion occurred along one

axis, corresponding to the width of the room, orthogonal to the player’s base aim direction.

Target motion is linear, with evasion happening as direction changes which are equivalent to

the target’s velocity vector being reversed.

The target accelerates to a maximum velocity over a period of 140 ms after each direction

change. The timing of direction changes is predetermined, sampled from a uniform random

number generator with a period of 0.3 to 0.75 seconds. This results in an average of ten

direction changes per trial. The seed for the generator is kept constant so that every sub-

block and participant experiences the same evasive pattern.

The only independent variable in the tracking task was target speed, which had two

possible values: 240 and 320 units per second. Each sub-block started with two trials at the

slower speed, followed by two trials at the higher speed.

Wherever possible, the parameters chosen were based on an existing first person shooter -

Quake III Arena. The bounding box size matches that of the player’s avatar in Quake 3, the

acceleration time and evasive motion period was similar to that of a typical player in Quake
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3, and the higher target speed of 320 units per second matches that of a player in Quake 3.

The lower speed is similar to what would be found in slower-paced FPS games.

5.2.3 Questionnaire

At the beginning of their first session, participants filled out a computer-based questionnaire

regarding their demographics information, including questions that have them self-assess

their skill level in first person shooters, how much time they spend playing FPS games, and

how much time they spend on their computer. See Appendix C for a full set of questions

asked. The questionnaires were designed partly to get a sense of the demographics of the

study, and partly to look for any correlations between participant performance or the effect

of lag on each participant based on their experience level.

Additionally, between each change in latency levels (i.e., between sub-blocks) during the

experiment, participants filled out a brief survey regarding their experience during the sub-

block. Answers were given through a seven-point Likert scale [53] that ranged from "strongly

agree" to "strongly disagree." The statements given were as follows (see Appendix D for the

actual survey given to participants):

• "I performed well this round."

• "Lag affected my performance."

• "This round was frustrating."

• "The controls were laggy."

During the session in which latency mitigation aim assists were used, an additional state-

ment was given along with the previous four (see Appendix E):

• "I noticed my aim being assisted."

Finally, a questionnaire was given at the end of each study session, with questions de-

pending on the session. In the participant’s first session, five questions were given, with the

first and last question being asked as a yes or no answer, and the rest with an eleven-point

Likert scale.
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• "Were you aware of the existence of input lag before this study?"

• "How much do you feel that input lag has affected your performance in games in the

past (apart from this study)?"

• "How much do you feel that input lag has affected your enjoyment of games in the past

(apart from this study)?"

• "Has input lag affected your purchasing decisions in the past?"

• "Did you experience motion sickness during the study?"

During the second session, statements were as follows (see Appendix F), with answers in

a seven-point scale:

• "Aim assists improved my performance."

• "I preferred having my aim assisted compared to the previous day’s non-assisted expe-

rience."

• "I would want to see aim assists being used to mitigate lag in commercial games"

5.3 Compensating for Local Latency

Although quantifying the effects of latency on performance was the primary goal of the study,

another important goal was to discover whether any methods could be used to effectively

mitigate the effects of latency and restore performance to levels as close as possible to those

of lag-free gameplay. Since aiming assistance is commonly used to improve performance on

relatively low-performance or hard to use input devices such as gamepads (e.g., in many

console FPS games such as Call of Duty: Black Ops 2 2), and to balance gameplay between

opponents of varying skill levels [89], it seemed suitable to use aim assists for the purpose of

mitigating latency.

2https://www.callofduty.com/blackops2 (Treyarch)
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I developed a compensation technique to mitigate the effects of local latency on aiming

using aiming assistance. In order to compensate for any reasonable amount of latency, the

strength of the assistance was based on the current latency level of the system. Since effective

forms of general aiming assistance already exist, I based my techniques on known methods,

rather than inventing novel methods. However, finding a combination of suitable assists

to use, tuning the weight of their input parameters, and evaluating their effectiveness is a

valuable and novel contribution.

I devised my form of assistance so that it directly mitigates local latency by targeting

the mechanisms through which latency affects player performance, rather than serving as

a general form of player performance boosting. In order to create targeted compensation

schemes, I identified two primary ways that local latency affects the two tasks.

Target overshoot during target acquisition.

During target acquisition, players tend to keep moving the crosshair toward the target

until they observe that they have reached the target. If lag is present, players can

overshoot the target (i.e., move aim too far past it) because the state observed on the

display is behind the true game state. If the player fired as soon as they thought they

were aiming at the target, they would actually miss due to overshoot.

Sticky targets [95] was chosen to compensate for latency in targeting because it directly

combats the target overshoot effect by increasing the width of the target in motor space.

Sticky targets reduces the mouse gain (also called C:D ratio [62]) while the player’s

aim is on the target, and thus it should decrease overshoot due to latency.

Direction changes during target tracking.

Each time a target changes direction while in motion, players have to change their

aiming movement in order to continue to track it. Perceiving direction changes under

local latency can take substantially longer; and once players do react and attempt to

change their aim, the target has moved even farther in the other direction. Another

aspect to tracking is predicting future target positions and when it may change direc-

tion, if a pattern is apparent. Latency interferes with this process by delaying feedback

regarding incorrect predictions.
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Aim dragging, an assist found in the Call of Duty: Black Ops 2 game and many other

first person shooters, was chosen to compensate for latency during tracking because it

provides assistance in tracking these direction changes, reducing the amount of time

spent off target. Aim dragging causes the player’s aim to be partially dragged along the

direction of target movement. As in Call of Duty, aim dragging is active even if aiming

near the target but not exactly on it. The decreased-gain aspect of sticky targets is also

applied, which compensates for the fact that the tracking assistance could otherwise

move the aim too quickly once added to the player’s own input, and also provides

overshoot protection.

In order to develop a model of compensation and tune the relevant parameters, I per-

formed an initial informal pilot study using two participants that did not participate in the

full study. I began by implementing familiar mathematical functions that would result in an

approximate curve shape that seemed appropriate, then I iterated on the function parameters

experimentally. I did not iterate on my initial tuning of the weights of the parameters. If I

had iterated, the compensation effectiveness would quite likely be improved for future stud-

ies. Table 5.1 shows the resulting assistance values at the latencies used in my experiment.

The formulas used for compensation are as follows:

Sticky targets

s =
1

1 + 10l1.2

where s is the resulting multiplier to mouse gain (with 1 being no change in gain) and l

is the amount of local latency, given in seconds. The effect is a roughly linear decrease

in sensitivity up to about 100 ms, after which the effect decreases gradually to prevent

the gain from becoming too low at high amounts of latency.

Aim dragging

d = 1− 1

1 + 2.75l1.3

where d is the resulting strength of the drag, with 0 corresponding to no assistance and

1 being perfect assistance (auto-tracking), and l is the amount of latency in seconds.
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Table 5.1: Assistance strength at the experimental lag levels.

Factor 41 ms 74 ms 114 ms 164 ms

s 0.82 0.69 0.57 0.47

d 0.10 0.17 0.24 0.31

Again, the effect is approximately linear at lower latency, with a gradually decreasing

slope at high latency.

5.4 Participants

Eighteen participants were recruited from a local university (15 male, 3 female). All partic-

ipants had at least some experience playing first person shooter games with a mouse as the

input device. Every participant except for one was right-handed. The median number of

hours spent using a computer per week was 52. There were 5 participants that did not play

FPS games at the time of the study, but have played in the past. 7 participants rated them-

selves as being within the top 25th percentile of skill, while 4 participants rated themselves

in the bottom 25%. The average self-assessed skill rating between participants, on a scale

of 0 to 10, was 6.5. 8 participants primarily played shooters offline, while the most common

type of multiplayer gameplay reported was in realistic, fast-paced shooters (such as the Call

of Duty series). 4 participants had more experience playing games with a gamepad than a

mouse.

Participants were awarded with a $5 honorarium for their first session, followed by $20

for the second session, in order to encourage them to attend both sessions.

5.5 Apparatus

The study was performed on a custom-built gaming PC (see Table 5.2 for specifications). A

high performance gaming display with a high refresh rate of 120 Hz and 1 ms pixel response

time was used in order to minimize baseline latency–such a display is often used in FPS
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gaming competitions as well. A high performance gaming mouse polled at 1000 Hz was also

used for minimum latency and smooth, responsive tracking. The experimental game ran at a

constant 120 frames per second when vertical sync was enabled, and in the range of hundreds

of frames per second without vertical sync; thus, the PC was more than capable of ideal

performance within the experiment.

Mouse sensitivity (gain) was set such that it felt subjectively appropriate and acceptable

to most participants. Participants were allowed to adjust sensitivity if it was significantly

different than what they were used to, and two participants did decrease their sensitivity.

The experiment was performed in a small, closed, quiet room with minimal distractions

and participants were asked to silence their mobile phones. Participants adjusted their chairs

to an appropriate height and had ample space to move their mouse on a large mouse pad.

Other than surveys, the experiment was executed within a custom-built application made

to resemble a first person shooter game, which guided users through each step of the study

session (with assistance from the experiment administrator). It was developed in the C++

language using the Ogre3D open-source graphics library3 (version 1.8). Ogre3D was used to

simplify OpenGL 3D graphics rendering, keyboard and mouse input, sample 3D models, and

Quake 3 BSP file format loading and rendering. The BSP file capability was used such that

a simple game world could be created using a Quake 3 level editor and easily used within the

experiment.

5.5.1 Latency Measurement

I used the measurement apparatus as described in Chapter 3 to measure the amount of lag in

each experimental condition. To assess the latency jitter and ensure that my measurements

were accurate, I made 18 measurements at each of the lowest two latency levels and reported

the mean and standard deviation of the samples. I also verified that the higher latency

conditions with artificially added latency have the expected amount of additional latency.

The mean baseline latency (no v-sync) was 11.4 ms (s.d. 2.28), and the first latency condition

(v-sync on) was 40.8 ms (s.d. 3.13). While some frame-to-frame variation was present, it

3http://www.ogre3d.org
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Table 5.2: Experimental PC specifications.

Component Specification

Processor (CPU) Intel Core i7 3.2 GHz

Video Card (GPU) NVidia GeForce 460 GTX

Memory (RAM) 16GB PC1600 DDR3

Motherboard Asus P8Z68-V LE

Storage Intel 520 SSD, 120GB capacity

Mouse Razer DeathAdder 3.5G, 1000 Hz sample rate

Display BenQ XL2420TX, 120 Hz refresh rate

Operating System Arch Linux 64-bit

Video Drivers NVidia standard closed-source

was minimal.

5.6 Study Design

Within each session, all conditions for one task (i.e., acquisition or tracking) were completed

first, followed by all conditions for the other task. Participants were given a several minute

break between the two tasks to rest.

Since the entire experiment had to be completed both with and without latency compen-

sation enabled, and each case required significant time to complete, participants performed

the experiment in two separate sessions on two consecutive days, at approximately the same

time each day. This was done to reduce participant fatigue and to keep sessions to a reason-

able length of time. The total experiment length was approximately one hour per session,

for a total of two hours.

5.6.1 Latency Levels and Blocking

In order to evaluate how participants perform under different levels, it was necessary to

change latency as a factor over time during the experiment. Such a factor would normally
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Figure 5.3: Latency levels over the course of a session, grouped into blocks.

be randomized and counterbalanced throughout the session. However, it was not reasonable

to do so with latency, because an important aspect of latency in real-world systems is that it

stays relatively constant, allowing players to adapt and to compensate for it to some degree.

The study design was made with an attempt to account for this adaptation; therefore, latency

levels in the experiment only ever changed to an adjacent level (e.g., 11 ms to 41 ms, or 114 ms

to 74 ms).

In order to satisfy both counterbalancing (minimizing practice effects) and allow for par-

ticipants to gradually adjust to latency, I grouped sequences of all five levels of latency into

blocks, where each block contains a linear progression of latency level, either from minimum

to maximum, or from maximum to minimum. Blocks alternated between increasing and

decreasing progression, so that latency in each block started at the level that the previous

block ended. See Figure 5.3 for a chart depicting the change of latency throughout the course

of an experiment session.

Additionally, I used the term sub-block to refer to all the trials within a single, continuous

latency condition. Therefore, since there were five latency groups per block, there were also

five sub-blocks per block. A sub-block contained all 36 possible trials in the acquisition task,
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and 8 trials in the tracking task (4 at each speed).

5.6.2 Training

In order to give participants a chance to get accustomed to the experiment and adjust to

latency, each session began with two blocks of training, at which time their performance did

not contribute to data analysis, and participants were allowed to ask questions. Latency

during training began at the minimum level, progressed to a maximum, and then back to

a minimum. There were no surveys given during training. During these training blocks,

each level of latency only included half the normal number of trials (e.g., only two trials

for each speed during tracking, rather than four) in order to decrease the total time taken

for training while still allowing latency to gradually decrease to a minimum for the start of

the non-training period. Additionally, each time latency changed, the first two trials in the

acquisition task and one trial in the tracking task were used as training (unknowingly to the

participant), giving participants a chance to briefly adapt to the new level of latency.

5.6.3 Counterbalancing

In order to counterbalance the compensation condition, approximately half of the partici-

pants started without compensation for their first session, and the other half started with

compensation enabled. Due to a mistake in participant scheduling, counterbalancing was

not performed perfectly: 10 participants started without compensation, while 8 started with

compensation. Additionally, the order of tasks was fully counterbalanced, with half the

participants starting with the acquisition task, and the other half starting with tracking.

5.6.4 Experimental Conditions Summary

Three factors were the same for acquisition and tracking tasks: Lag, Block, and Compensa-

tion. The tracking task also had a Speed factor for target speed, and the acquisition task

had an ID factor for index of difficulty.

Lag. Represents the level of local latency experienced within a condition.

89



Block. As described in Section 5.6.1, block is a group of all possible conditions, including

latency, within a session. Since latency compensation was varied across sessions, a

block did not include both values for Compensation.

Compensation. This factor indicated whether latency compensation aiming assists were in

use.

Speed. Used only in the tracking task, this factor represented the speed of the target.

ID. For target acquisition, six IDs were tested, consisting of combinations of target distance

and cone radius.

5.6.5 Design and Hypotheses

The acquisition study used a 2x3x5x6 within-participants repeated measures analysis of vari-

ance (RM-ANOVA) with factors Compensation (off, on), Block (1-3), Lag (11 , 41, 74, 114,

164 ms), and ID (1.15, 1.76, 1.81, 2.15, 2.54, 3.02). Dependent measures were trial completion

time and number of errors.

The tracking study used a 2x3x5x2 within-participants RM-ANOVA with factors Com-

pensation (off, on), Block (1-3), Lag (11, 41, 74, 114, 164 ms), and target Speed (240, 320

u/s). The dependent measure was time on target.

My hypotheses for the studies were:

H1. Tracking time on target would decrease with lag.

H2. Acquisition time would increase with lag.

H3. Acquisition errors would increase with lag.

H4. Lag compensation would reduce the effect of lag on tracking time on target.

H5. Lag compensation would reduce the effect of lag on acquisition time.

H6. Lag compensation would reduce the effect of lag on acquisition errors.
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5.7 Results

5.7.1 Pre-processing

Before the data generated by the study was analayzed, several steps were taken to clean the

data and remove outliers:

• All results for the tracking task for one participant were removed because it was dis-

covered after that participant’s session that the system was incorrectly configured in

such a way that it would invalidate those results – tracking latency mitigation was

inadvertently changed to be much stronger preceding the session.

• Several participants stopped for an extended time during a trial, either to take a break

or ask questions. These trials were removed by removing acquisition task trials that

took longer than 3 seconds to complete, which removed a total of 36 trials.

• Outliers were further removed by filtering out the slowest 1% of trials for each par-

ticipant within each latency level. Outliers were only removed on the slow end of the

distribution because it was not possible for a participant to get an unusually good trial

time through methods such as anticipating a timer. The slow end was removed because

participants were observed to sometimes pause briefly during a trial due to reasons such

as talking or ergonomic adjustments.

In total, 268 trials out of 21694 total trials were removed.

5.7.2 Acquisition

Although I tracked error rate, trials with errors (target misses) were still included in the

trial completion time analysis rather than being filtered out. This was done because, in real

games, misses occur frequently during the acquisition process, and the total time taken to

shoot at a target regardless of misses is typically the most important metric.
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Table 5.3: Trial completion time increase due to latency.

Latency Movement time ∆ Movement Time Significance

11 ms 620 ms - -

41 ms 630 ms 1.5% -

74 ms 689 ms 11.0% Yes

114 ms 798 ms 28.5% Yes

164 ms 944 ms 52.1% Yes

Effect of Lag on trial completion time

RM-ANOVA showed a significant main effect of Lag (F4,60 = 246, p < 0.0001), as well as a

significant interaction effect between Lag and Compensation (F4,60 = 18.7, p < 0.001). In

the non-compensated case, planned pairwise t-tests (Holm corrected) showed a significant

difference between all levels of Lag (p < 0.0001), with the exception of the 11 ms and 41 ms

pair (p = 0.25). I therefore accept H2.

Figure 5.4 shows the effect of latency on trial completion time (black lines), both with and

without compensation. The effect of 41 ms of latency was negligible compared to baseline,

although it becomes substantial and approximately linear at higher levels. Trial completion

time increased by 1.5%, 11.0%, 28.5%, and 52.1% compared to baseline at 41 ms, 74 ms,

114 ms, and 164 ms, respectively (Table 5.3).

Effect of Compensation

The interaction between Lag and Compensation also suggests that compensation was effective

at reducing the effect of latency. Figure 5.4 shows that compensation did decrease the effect of

latency on performance, and follow-up paired t-tests (Holm corrected) confirm a statistically

significant improvement at 74 ms, 114 ms, and 164 ms (p < 0.05). This effect was found

both when comparing the compensated curve to baseline at each latency level, and when

comparing within the compensated curve between the 11 ms level. I therefore accept H5.

However, planned pairwise t-tests showed that trial completion time was still significantly

higher (p < 0.05) at 74 ms or more latency, even when compensation was enabled – this was

92



Figure 5.4: Effect of latency on targeting performance.
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the same result found in the non-compensated condition. This means that my compensa-

tion technique was not able to fully eliminate the effect of latency, but it did decrease the

performance effect.

Figure 5.4 also contains dark red lines depicting trial completion time when the amount

of latency is subtracted from completion time. With lag, the participant will see the target

appear later than when it actually gets created within the game state, and therefore reaction

time will be delayed by the amount of latency present. All subsequent figures will display

non-adjusted performance, (black lines).

Effect of ID

RM-ANOVA showed a significant two-way interaction between Lag and ID (F20,300 = 8.87,

p < 0.0001), as well as a three-way interaction between Lag, ID, and Compensation (F20,300 =

2.15, p < 0.001). This three-way interaction suggests that lag has a different effect on

acquisition performance depending on the index of difficulty of the acquisition task. Figure 5.5

shows that trial completion time actually did degrade at 41 ms of latency at the lower three

levels of ID, even though (as I observed previously) there was no significant effect when not

considering ID. This degradation effect was confirmed by a followup paired t-test (p < 0.001)

at the three lower difficulties, although not at higher difficulties (p > 0.5). The figure also

shows that compensation worked for all ID levels. The curves, which represent different

levels of ID, all show less performance degradation with increasing lag in the compensated

conditions when compared to the non-compensated conditions.

Figure 5.6 shows the same Lag, ID, and Compensation factors, but with ID on the x-axis.

Since the curves are approximately linear, it appears that the acquisition task in the FPS

environment follows Fitts’ Law when angular distances are used. Note however the sharp

increase in completion time between the very close second and third ID at higher latencies.

These points are associated with a change in both radius and distance, reinforcing results

found in previous studies [83].
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Figure 5.5: Effect of latency on targeting performance by ID and compensation.
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Figure 5.6: Effect of difficulty on targeting performance by latency and compensation.

96



Effect of Block

RM-ANOVA showed a significant main effect of Block (F2,30 = 6.76, p < 0.05), indicating

that a practice effect was present. Participants did perform better as the session went on:

trial completion time decreased by 1.5% in block 2 and 3.6% in block 3 compared to block

1. These effects are small, and because the occurrence of each latency level throughout the

session is fairly balanced, there is likely no significant confound. Since there was no significant

interaction between Block and Lag, this confirms that there was no significance of practice

on the effect of latency on performance during the experiment.

Summary of Effects

Table 5.4 shows a summary of main effects and interactions analyzed with RM-ANOVA,

including both significant and non-significant effects.

Error rate

I also examined the effect of Lag on target acquisition error rate (misses on targets). RM-

ANOVA showed a significant interaction between Lag and Compensation (F4,60 = 6.32,

p < 0.001) on error rate. See Figure 5.7 for a chart showing the change in error rate. Without

compensation, paired t-tests show that error rate is lower at 41 ms than at 11 ms (p < 0.01),

and that there is no significant difference between 11 ms and the other levels, so I must reject

H3. With compensation enabled, paired t-tests show a significant decrease in error rate at

114 ms and 164 ms compared to 11 ms of lag, and no significant difference at 41 ms and

74 ms. I therefore accept H6. The decrease in error rate compared to the baseline suggests

that my compensation technique could benefit from further tuning of the parameters to the

assistance strength functions, since improving aspects of performance beyond the expected

performance with no latency is undesirable.

5.7.3 Tracking

Performance in the tracking study was determined by the mean amount of time successfully

spent tracking the target per trial, with maximum possible time being 5 seconds.
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Figure 5.7: Effect of latency on error rate in target acquisition.

98



Table 5.4: Summary of RM-ANOVA main effects and interactions for the acquisition
task.

Effect DFn DFd F Significance

Lag 4 60 246.1 Yes

ID 5 75 383.6 Yes

Block 2 30 6.8 Yes

Compensation 1 15 16.5 Yes

Lag : ID 20 300 8.9 Yes

Lag : Block 8 120 1.8 -

ID : Block 10 150 2.2 Yes

Lag : Compensation 4 60 18.7 Yes

ID : Compensation 5 75 5.5 Yes

Block : Compensation 2 30 0.2 -

Lag : ID : Block 40 600 1.4 -

Lag : ID : Compensation 20 300 2.2 Yes

Lag : Block : Compensation 8 120 1.7 -

ID : Block : Compensation 10 150 0.4 -

Lag : ID : Block : Compensation 40 600 1.0 -

Effect of Latency on tracking time

RM-ANOVA showed a significant main effect of Lag (F4,56 = 39.7, p < 0.0001), as well as

a significant interaction between Lag and Compensation (F4,56 = 46.2, p < 0.0001). With

no latency compensation, planned pairwise t-tests (Holm corrected) showed that there was a

significant decrease in tracking time between each level of lag (p < 0.01). I therefore accept

H1.

As shown in Figure 5.8, the performance decrease is approximately linear with increasing

lag: 94.2%, 87.8%, 77.7%, and 67.3% of baseline latency performance at 41 ms, 74 ms,

114 ms, and 164 ms of latency (Table 5.5).
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Table 5.5: Trial completion time increase due to latency.

Latency Change in tracking time Significance

41 ms -5.8% Yes

74 ms -12.2% Yes

114 ms -22.3% Yes

164 ms -32.7% Yes

Effect of Compensation

RM-ANOVA showed a significant main effect of Compensation (F1,14 = 22.6, p < 0.001)

and an interaction between Lag and Compensation (F4,56 = 46.2, p < 0.0001), meaning

that compensation was effective at reducing the effect of latency on tracking time. With

compensation enabled, planned pairwise t-tests showed no significant difference in tracking

time between any levels of Lag (p > 0.2). Planned t-tests also showed a significant difference

between the baseline and compensated tracking times at all levels above 11 ms (p < 0.01),

and although it appears that the 11 ms level may differ as well, t-tests show no significant

difference. I therefore accept H4.

Effect of Speed

An interaction was found by RM-ANOVA between Lag and target Speed (F4,56 = 4.40,

p < 0.01), suggesting that latency affects performance in tracking differently depending on

target speed. Figure 5.9 shows that the performance effect of latency is greater at lower

target speeds than at higher speeds.

A significant three-way interaction between Lag, Speed, and Compensation was also shown

by RM-ANOVA (F4,56 = 3.38, p < 0.05). This indicates that the effectiveness of my compen-

sation technique varies depending on the amount of latency and target speed. Compensation

resulted in a slight performance boost compared to baseline at lower target speeds when

latency was 74 ms and 114 ms.
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Figure 5.8: Effect of latency on tracking performance.
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Figure 5.9: Effect of latency on tracking performance, based on target speed.
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Table 5.6: Summary of RM-ANOVA main effects and interactions for the tracking
task.

Effect DFn DFd F Significance

Lag 4 56 39.66 Yes

Speed 1 14 166.40 Yes

Block 2 28 8.98 Yes

Compensation 1 14 22.60 Yes

Lag : Speed 4 56 4.39 Yes

Lag : Block 8 112 2.20 Yes

Speed : Block 2 28 0.55 -

Lag : Compensation 4 56 46.16 Yes

Speed : Compensation 1 14 14.50 Yes

Block : Compensation 2 28 0.04 -

Lag : Speed : Block 8 112 0.82 -

Lag : Speed : Compensation 4 56 3.38 Yes

Lag : Block : Compensation 8 112 0.75 -

Speed : Block : Compensation 2 28 0.19 -

Lag : Speed : Block : Compensation 8 112 1.30 -

Effect of Block

RM-ANOVA showed a significant main effect of Block (F2,28 = 8.98, p < 0.001), indicating

that there was a learning effect present. Tracking time increased by 4.1% in block 2 and

6.5% in block 3, as compared to block 1. As in the acquisition task, there was no significant

interaction between Block and Lag, therefore there was no significant effect of practice on

the impact of latency on performance.

Summary of Effects

Table 5.6 shows a summary of main effects and interactions analyzed with RM-ANOVA,

including both significant and non-significant effects.
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5.7.4 Survey Results

The survey results showed some interesting secondary findings.

Between-latency survey responses

Figure 5.10 shows a summary of the survey results given to participants between each sub-

block, upon change of latency level. Answers were given as a seven-point Likert scale. The

labels on the chart correspond to the survey questions as follows:

Performance "I performed well this round."

Lag Effect "Lag affected my performance."

Frustration "This round was frustrating."

Lagginess "The controls were laggy."

Surveys showed that participants could identify the presence of latency and its effect on

performance at 114 ms of lag and higher (post-hoc u-test, p < 0.05), and could not distinguish

between different levels of latency at the lower levels. With compensation enabled, they felt

that they performed equally well at all levels of latency.

During the session in which latency compensation was enabled, participants were given an

additional statement: "I noticed my aim being assisted." Based on the responses that were

given, participants were not able to differentiate between the different levels of assistance

given, even when compared to the baseline latency condition.

End of first session survey

At the end of a participant’s first session, they were asked to fill out a brief five question

survey. When asked before the experiment if they were aware of local latency (stated as

"input lag" for familiarity) before the study, as a yes or no question, only 4 participants

answered that they were not aware. 4 participants indicated that they experienced "quite a

bit" of motion sickness during the experiment, with the choices being "not at all," "a little

bit," and "quite a bit."
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Figure 5.10: Summary of between-latency survey results.
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The results for the remaining three questions are shown in Figure 5.11, presented as a

histogram of responses. The given questions are indicated in the chart as follows, and answers

were given as an eleven-point scale using semantic anchors at the ends of the scale, ranging

from "not at all" to "very much:"

Performance "How much do you feel that input lag has affected your performance in games

in the past (apart from this study)?"

Enjoyment "How much do you feel that input lag has affected your enjoyment of games in

the past (apart from this study)?"

Purchasing "Has input lag affected your purchasing decisions in the past?"

End of second session survey

At the end of a participant’s second session, they were asked to which extent they agreed

with three statements, answered within a eleven-point Likert scale. A summary of answers

is shown in Figure 5.12 as a histogram of responses.

Chart labels correspond with statements given as follows:

Performance "Aim assists improved my performance."

Preference "I preferred having my aim assisted compared to the previous day’s non-assisted

experience."

Desire "I would want to see aim assists being used to mitigate lag in commercial games"
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Figure 5.11: Summary of post-first session survey results.

107



Figure 5.12: Summary of post-second session survey results.
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Chapter 6

Discussion

In this chapter, I discuss the results of the studies, with an emphasis on the findings

from the previous chapter. I begin by summarizing and interpreting the results, followed

by an explanation of them. I compare these results to previous work and discuss how they

generalize to the real world. I also look at implications of the results for first person shooter

game design, discuss the limitations of the work, and what could have been done differently

for potentially better results.

6.1 Summary of Results

The primary goals of the research were to quantify the negative effects of local latency on

aiming performance in first person shooters, as well as to see whether mitigation techniques

could be effectively used to decrease the performance penalties of lag. I have clearly answered

these questions in the studies through the research process.

Local latency has a substantial negative effect on aiming performance. For target

acquisition, latency started having a significant effect on performance between 41 and

74 ms of lag, which is a common range encountered in PC systems. For targets with

a lower index of difficulty, lag had significant effects even earlier, between 11 to 41 ms

of lag. By 114 ms of lag (commonly seen on PC systems with games not optimized

for low latency) acquisition time increased by 29%, and by 164 ms (common in console

gaming on televisions), acquisition time was 52% above baseline performance.

For target tracking, latency levels above the baseline 11 ms all had a significant effect

on tracking performance, with an approximately linear decrease in time on target as
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latency increases. Time on target decreased by 22% at 114 ms of lag and 33% at 164 ms

of lag.

Compensation reduced or eliminated the effects of lag on performance. For target

acquisition, latency compensation in the form of sticky targets [95] aim assistance re-

duced the negative performance effects of lag at all significant levels of latency. Assis-

tance reduced the penalty of latency by up to 40%.

For target tracking, the compensation technique, in the form of sticky targets and aim

dragging (similar to force fields [70]), was able to fully eliminate the performance effects

of lag – that is, there was no significant difference in tracking time on target between

any levels of latency compared to baseline.

Additionally, I had secondary research questions which had the goal of supporting the

motivation or providing information toward the main questions – are there differences in

aiming between 2D and 3D? How much local latency is seen in real world systems? What

are users’ qualitative experiences with lag? I achieved these secondary goals as well:

Aiming in 3D is significantly different than in 2D. Target acquisition movement time

was 8% longer in 3D conditions compared to equivalent 2D conditions. However,

throughput [42] was similar between conditions, and error rate was higher in 2D, so

the difference may be due to a different emphasis in the speed/accuracy trade-off. Re-

gardless, these differences show that aiming is performed differently in 3D than in 2D.

Local latency is found in substantial levels in real-world systems. While purpose-built

gaming PC systems can have very low latency (11 ms in the experimental setup in

Chapter 5 and 23 ms in the samples in Chapter 4), I observed a wide and fairly evenly

distributed range of latency in PC systems, spanning up to 158 ms of lag. Console

systems are far more laggy, with sampled latency beginning at 130 ms and going up to

as high as 243 ms in one system.

Many people are aware of lag, but experiences with it vary. In the study, 12 out of

16 people reported being aware of local latency before the study. Users could not detect

lag until the 114 ms level or higher. Most participants thought that lag did not impede
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their performance in past gameplay experience, although most thought that it did affect

their enjoyment moderately. 10 people considered lag at least moderate amount when

deciding their hardware purchasing decisions. Regarding aim assists, most participants

thought that aim assists helped their performance, and, on average, participants would

like to see aim assists being used in commercial games to mitigate lag. All but 3

participants preferred the assisted conditions in the study over the non-assisted ones.

Discussion for the findings on differences in aiming between 2D and 3D can be found in

Chapter 3, while discussion on the local latency distribution in real-world systems is located

in Chapter 4.

6.2 Explanation of Results

In this section, I attempt to explain why I found the results that were observed. Many of

these explanations are hypotheses, and further examination would make for valuable future

work.

6.2.1 Effects of Latency

The reasons why local latency causes performance to decrease are likely the same as those

discussed for other types of latency. Both target tracking and acquisition (particularly for

more difficult targets) rely heavily on visual feedback to perform the task [46]. As detailed

in Section 2.1.2, controlled pointing movements are performed through means of one or

more constituent submovements [28], beginning with a ballistic open-loop movement that

is programmed to end at the target. Because stochastic neuromotor noise may cause the

initial movement to miss, the initial movement may be followed by corrective movements

that make use of visual feedback to correct for errors and arrive at the target [64]. Between

each submovement, visual feedback is used to evaluate the error and plan a corrective action

– in target tracking, this feedback takes on the order of 200 to 300 ms to adjust to a target

direction change [46], and in acquisition, reports of 135 to 160 ms needed for visual feedback

are common [17, 77]. Therefore, any mechanisms that delay the visual feedback or the amount

of time necessary to process and react to it would also delay the total movement time.
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Latency has a direct effect on these submovement-feedback cycles. Each time movement

pauses between submovements while awaiting feedback, latency adds to the amount of time

required to perform the feedback process because the previous submovement effectively ends

later than normal by the length of the latency time. For example, if there were three sub-

movements, pauses for feedback would take place twice, and so if latency magnitude was

100 ms, the total movement would require an additional 200 ms.

Also, in target acquisition in the present study, a trial begins as soon as a target appears,

and therefore simple reaction time is part of the measured movement time. Latency has the

effect of delaying the user’s ability to see the target by the length of the latency duration.

Therefore, even if this was the only factor of latency affecting movement time (i.e., ignoring

the feedback interference), movement time would increase by the amount of latency present.

Based on these explanations, I can hypothesize a simple model for predicting acquisition

movement time under the presence of latency:

tl = t+ l + (s− 1)l

where tl is the new movement time, t is the original movement time, l is the amount of latency,

and s is the number of submovements used to complete the task. However, by comparing the

predictions of this model on my own results while assuming two submovements per trial (the

best current model for movement time prediction assumes exactly two submovements [64]),

the prediction overstates the effect of lag for lower latencies while predicting correctly at the

high end of latency. One possible explanation for this is that the number of submovements

used changes depending on the amount of latency – testing this would be an interesting

question for future work. Also, there is evidence that visual feedback is used throughout fast

reaching movement [77] rather than just between submovements. Finally, it is possible that

users are accustomed to pointing under relatively low amounts of latency and so they perform

better when some latency is present. Evidence for this can be seen when latency is subtracted

from movement time to compensate for reaction time effects (red lines in Figure 5.4). In this

case, movement time seems slightly faster at 41 ms compared to 11 ms.

Another reason that latency may have disruptive effects is that it causes a mismatch

between visual feedback and kinesthetic feedback. In real-world aiming tasks, humans use
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visual feedback to make adjustments for noise, but kinesthetic feedback (i.e., the body sensing

the positions of one’s own limbs) is used as well [36]. Local latency causes a mismatch

between the two types of feedback due to the visual feedback arriving later than other kinds

of feedback.

The difference in sensitivity between targeting and tracking may arise from the added

requirements of the tracking task – during tracking, changes in the direction of target move-

ment were observed to cause significant disruption, and direction changes occurred numerous

times during each trial. Direction changes cause a sort of double penalty in tracking – not

only does one take longer to react to a direction change with lag, but the target has moved

farther in the opposite direction relative to the crosshair by the time corrective action is taken

(particularly at higher target speeds [46]). This requires a greater magnitude of corrective

action, and this magnitude approaches its peak at approximately two direction changes per

second, at which point users perform only one corrective action per direction change [36].

Additionally, when latency is very high and direction changes happen frequently, there be-

comes a point when the amount of time taken to react to a direction change and execute the

lagged movement is as high or greater than the time between direction changes. In this case,

tracking is a sequence of chaotic guesses because by the time the user has attempted to react

to a direction change, another direction change is already underway.

6.2.2 Compensation for Latency

As with the effects of latency, the reasons for the success of the compensation mechanisms

also align with previous work on aim assistance. That is, the compensation techniques worked

well because they provided a kind of bridge across the delay-caused gap between the initiation

of an action and the display of that action. For targeting, compensation enlarged the effective

width of targets by the amount needed to make up for the overshooting that occurred due to

latency; for tracking, aim dragging kept the crosshair on the target for the amount of time

in which the target’s direction change was invisible due to delay.

The difference in compensation effectiveness between acquisition and tracking (compen-

sation did not work as well in acquisition) arises from the fact that I only compensated for

overshooting errors, rather than lateral errors. I initially thought that latency would primar-
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ily cause overshooting, but I observed that lateral aiming errors were also common, and the

presence of lag hampered the player’s ability to adjust their aim through controlled feedback.

Future work will examine techniques that take these transverse errors into account (e.g.,

bullet magnetism [89]).

The surprising finding in the study of compensation techniques was the degree of effec-

tiveness of the technique, even at the highest levels of local latency that are likely to be

experienced in the real world. This means that the problem of local latency is one that could

potentially be solved if compensation techniques can be successfully deployed.

6.3 Comparison to Similar Studies

With regards to the effects of latency on aiming performance, the surprising finding in my

study, is that even latencies as low as between 11 and 41 ms can cause significant perfor-

mance problems for both target acquisition and tracking. Few studies have suggested that

performance in aiming tasks can be affected by latencies this small – although one recent

experiment on direct-touch input with ultra-low latency touch screen hardware also found

that latency above 10 ms had a negative effect on touch performance [44].

A study on the effects of network latency and packet loss in Unreal Tournament 2003 (a

previously popular, fast paced first person shooter) examined the effect on a variety of metrics,

including hit fraction in a precision shooting test and effects on kill and death scores [13].

In the hit fraction test, accuracy was similar up until 100 ms of latency, at which point

performance dropped sharply. Similar results were found in a restricted deathmatch scenario

where a human was made to fight against an AI opponent in a controlled environment with

restricted weapons. I found that local latency has effects well before this 100 ms threshold,

and this is likely because of the differences between the effects of network lag and local latency

(see Section 2.3.1), such as network lag not affecting local aim feedback, and the presence of

network latency mitigation techniques in the game.

A 1993 study by MacKenzie examines the effects of local latency on pointing perfor-

mance in a Fitts’ Law target acquisition task [61], finding effects at levels potentially as

low as 25 ms, although statistical significance was not examined at specific levels of latency.
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Figure 6.1: Comparison of results of my study versus MacKenzie. Left side shows
performance relative to baseline, while right side shows absolute movement time.

Figure 6.1 shows a comparison of MacKenzie’s results versus mine. In the left pane, move-

ment time is compared as a comparison to time at baseline latency (8.3 ms for MacKenzie,

11 ms for us). MacKenzie’s results show that latency has an approximately linear effect on

performance, while in comparison, my results show a smaller effect at low levels of latency

but a greater effect at higher levels. The penalty growth is lower up until my 41 ms, at which

point growth becomes equal and then surpasses that observed by MacKenzie. However, it

is important to note that this comparison ignores index of difficulty values since raw data

based on ID was not made available by MacKenzie, and ID values in his study range up to

approximately 6, while mine only reach a value of 3. This can be observed in the right pane

of the figure, where MacKenzie’s movement time is much higher than mine. This makes a

direct comparison somewhat limited in utility, particularly since both MacKenzie and I found

that ID interacts with lag. However, it is interesting to observe that absolute movement time

rises approximately parallel between the two studies after the initial few levels of latency,

meaning that lag might be additive with movement time at higher levels.

In contrast, results of a 2D-based study by Pavlovych [72] that is seemingly equivalent

to MacKenzie’s show quite different results: latency only starts showing significant effects

115



on performance at 108 ms of lag, and not at 83 ms or below. This discrepancy is noted and

discussed by Pavlovych who concludes that the only viable hypothesis regarding the reason

is that MacKenzie’s system had an additional hidden 60 ms of lag compared to stated levels,

which, when added, would make the results similar. If this hypothesis is true, then my study

is the only target acquisition study that I’m aware of that shows sensitivity to latency at low

levels. If the hypothesis is false, then my study is valuable in clarifying the lack of consensus

in literature regarding the threshold of effects of latency.

Network latency in cloud gaming has very similar effects to local latency since both

types of lag delay all feedback including local feedback to aiming movements. Therefore,

network latency when playing an FPS through cloud gaming should be comparable to the

effects of local latency in my study. While there do not seem to be cloud gaming studies

that examine effects on player performance in situations similar to mine, studies have been

performed regarding the latency levels needed for them to be perceivable [52, 75]. These

studies show users noticing effects at levels of approximately 50 ms, which is lower than my

findings that only show users noticing lag at 114 ms and higher. This discrepancy could be

because higher sensitivity methodology is used (e.g., an ECG device [52]) rather than relying

on users self-reporting), or because the addition of the remaining elements of FPS gameplay

that I removed could make latency easier to notice.

FPS environments have unique properties that make latency particularly disruptive [22,

52], as can be observed by the faster growth of relative performance decrease in my study

compared to MacKenzie’s 2D study [61] and the higher sensitivity to latency at low levels

compared to Pavlovych [72]. First, shooter games involve fast-paced game events with tight

deadline requirements, meaning that quick reflexes and precise aiming are paramount to

performance. Second, the amount of precision required in first person shooters is greater than

in most other genres. Third, the first-person perspective means that a player’s movements

cause the entire view of the 3D scene to shift behind a fixed cursor in the center of the

screen. This causes much stronger visual changes (e.g., optical flow and motion parallax)

as compared to 2D environments where a small cursor is moved across a fixed background.

Also, the first-person perspective requires more frequent and precise aim adjustments and

therefore relies more heavily on feedback.
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6.4 Generalization to Real FPS Games

The research in this thesis was (necessarily) a controlled experiment rather than a real-world

test in a real FPS game, there are several reasons why my results about the effects of latency

will hold in realistic scenarios:

• I tested levels of latency that are common in gaming systems, and covered a wide range

of systems with different input and display devices in various games.

• I tested realistic task elements (targeting and tracking) that are ubiquitous in 3D

shooter games. Although there are many differences between my study system and

an actual FPS game (e.g., moving while shooting, other visual information), the core

mechanics of moving the mouse to acquire or track a target do not change.

• The ways that targeting and tracking work in most FPS games is similar to out ex-

perimental tasks. FPS players typically aim for fixed targets in a single aim-and-shoot

action, and moving targets typically move along a horizontal plane (e.g., the ground or

a ledge) with most evasive action occurring as horizontal direction changes. Movement

that lies along a projection toward or away from the player’s aim does not significantly

affect aiming requirements, since the only effect is a slight change in target size.

• I used an experimental setup that closely mimics a real gaming PC (fast mouse, graphics

card, and display), and recruited participants with FPS gaming experience.

There are some differences that should be studied further in a real FPS environment.

For example, in the study system the player could not move the character. While player

movement is often used as part of tracking in FPS games, this restriction allowed us to

focus specifically on mouse input for tracking tasks (although many FPS games encourage

the player to stay stationary while firing in the form of reduced accuracy when firing while

moving).

However, I believe that differences between my testing environment and a real FPS envi-

ronment will most likely increase the effects of lag. Player movement adds additional com-

plexity when aiming and provides further opportunity for lag to interfere with the feedback
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processes. Likewise, the combination of movement and pressure to fire accurately encourages

players to use the closed-loop feedback phase of aiming which is highly affected by lag due to

the need for multiple adjustments with feedback delay between each one. Unlike real games,

my experiment involved repeated simple aiming motions where participants could easily focus

on the open-loop ballistic phase of motion.

Given enough time, players tend to get used to the latency of a particular system and

notice it less. Players often claim that this adaptation negates the performance effect of lag,

and although that may be true to a small extent, I believe the adaptation effect is limited.

Lag reduces the amount of time available to respond to game events. Planned acquisition

motions such as open-loop ballistic motion with correctly predicted target locations may

become latency-adapted to some extent, but errors are common and would negate adaptation.

Likewise, tracking predictable targets may suffer less from lag, but any unexpected path

deviations or errors in tracking would suffer from the closed-loop feedback-delay penalty

imposed by latency. When players become highly practiced at aiming tasks, they do not

reduce the need for visual feedback, but rather they become even more reliant on it [74], and

therefore become potentially more affected by latency. my experiment did attempt to give

players a chance to adapt to lag by making smaller, sequential changes to it in small steps

rather than randomizing latency levels, as well as giving a large amount of time to training

at the start of the experiment and removing early trials in each block from results.

My study setup also supports generalization of the effects of compensation to real FPS

games. The compensation technique was designed to be general enough to apply to many

common aiming scenarios. Two issues were not studied in The experiment: first, the effects

of large required movements to acquire a target (e.g., real gameplay might require the player

to perform a rapid 180 degree turn to aim at an enemy); second, the potential effects of

distractor targets. Distractors that can appear near the intended target can make aiming

assistance techniques less effective [89], even though the technique is designed to only affect a

small angle around the targeting cursor. In real FPS scenarios, distractors may be less of an

issue because players typically shoot at the nearest target. In addition, modifications to the

compensation algorithm – such as determining the size of the effect based on cursor speed –

may help to avoid errors.
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There are some important challenges in deploying a compensation scheme in a real-world

FPS. One main issue is the need to know the amount of local latency in order to set the

amount of compensation. If the estimated latency is incorrect, compensation will either

work ineffectively or provide an unfair advantage to the player. To accurately determine

local latency, measurement tools should be used. These tools are already in use for latency-

sensitive devices such as the Rock Band1 game controller and the Oculus Rift2 virtual reality

headset. However, to ensure fairness it would be better if latency estimates could be made

directly from the hardware components that make up a game system. I envision that the

required information could be archived in a database of component latency specifications,

ideally created by manufacturers and from crowd-sourced gaming communities (which already

has similar sites.3 The game could then require that players establish their latency before

allowing compensation to be enabled.

The study that compares aiming in 2D to 3D also generalizes well because it uses es-

tablished standards in the human computer interaction field [84], such as using the ISO

9241-9 [42] task for evaluating input devices. It also makes use of standard comparison

methods such as movement time, error rate, and throughput. Additionally, every effort was

made to create a 3D version of the task that was as similar as possible to the 2D version

for direct comparison, including matching target index of difficulty levels between the two

conditions in such a way that the amount of mouse movement required in both is equal.

6.5 Implications of Results

The findings on effects of latency have a number of implications for game designers, hardware

manufacturers, and consumers. I have shown that even a small amount of latency has negative

performance effects, yet game designers do not seem to treat minimizing latency as a priority.

There are numerous ways to make games suffer from innate latency, such as filtering input,

interpolating the game state within the rendering subsystem, or post-processing effects such

as motion blur. Although I have not investigated exactly which game engine techniques cause

1http://www.harmonixmusic.com/games/rock-band/
2http://www.uculus.com
3http://www.displaylag.com
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lag, it is clear from the results in Chapter 4 that games do often induce lag due to their design.

Additionally, developers can examine whether advanced techniques such as scheduling input

and logic processing to happen as late as possible in the time between frames to reduce

latency is suitable for their games.

If it is not possible to minimize latency, game designers can potentially reduce the reliance

of game mechanics on low latency by understanding studies such as [23, 24]. FPS games are

inherently one of the most prone to latency for reasons that I explained previously. Reducing

the deadline requirements of actions or the amount of precision needed to have useful effects

would help toward making the game less latency-sensitive, but such approaches should be

weighed carefully due to potentially negative gameplay implications.

These results will hopefully also motivate hardware manufacturers to make hardware with

low latency more readily available. Expensive devices marketed toward gamers exist, but

these are out of reach of many gamers or have significant downsides (e.g., gaming monitors

generally have twisted-nematic panels which offer inferior image quality to some other types

of panels). In reality, there are devices that are both inexpensive and of reasonable quality

that do not market themselves as high-end gaming devices, but they achieve low latency by

not using design decisions in areas such as on-screen displays and image processing methods

that add latency. A broad focus on decreasing latency in devices can likely decrease lag

across devices without adding substantial cost.

Another possible consequence of this research is that consumers may be motivated to make

decisions regarding hardware and games that take latency into consideration. Currently,

many consumers are either not aware of local latency at all, or they underestimate the

magnitude of its effects (as evidenced by the survey results), either by not realizing that

there are performance effects at latencies that they do not perceive, or by not being aware of

how high the performance penalties are at high levels of lag such as those present in console

games on TV displays. It is interesting though that the survey results show that most

participants did acknowledge experiencing lower enjoyment of games as a result of latency,

yet they many did not previously think it affected their performance.

Finally, game developers should consider including latency mitigation by means of aim

assists in games where it is appropriate to do so. I showed that assists are effective at
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reducing the negative effects of lag on performance. Also, the survey results show that

almost all participants preferred the conditions that made use of assists, and about half of

them were positive toward including such assists in real games.

The understanding of Fitts’ Law in one and two dimensions is taken as the ground truth

in human computer interaction studies, so understanding how 3D situations differ from this

baseline is a valuable result. It is important to know whether actions in 3D environments can

be modeled using the known 2D relationships and equations. If this were the case, it would

allow access to an extensive body of research for FPS game designers and researchers to

make use of. However, by directly comparing 2D versus 3D FPS environments, I have shown

that there are important differences in aiming performance between 2D and 3D contexts.

Therefore, further work is needed to translate the body of previous work on 2D pointing to

3D FPS contexts. Once this translation is performed the detailed analysis of aiming can

support empirically based design decisions. For example, an FPS game designer may choose

to use specific target sizes relative to the overall map size in order to elicit a particular level

of player performance.

Augmentations to FPS game mechanics can also benefit from the detailed analysis of

aiming in the FPS context. For example, such adjustments are needed for player balancing.

Recent work has shown that 2D aim assists do not translate directly to 3D [89]; therefore

by incorporating assists based on aiming data relevant to the 3D FPS environment, better

player balancing techniques may be achieved.

6.6 Limitations

Although this work is valuable toward understanding the effects of latency and aiming in 3D,

there are some limitations and things I would change in retrospect. One significant change I

would make is to perform the study presented in Chapter 3 first. Although the 2D/3D study

is presented first, in reality, the first major body of work I performed was the latency study

in Chapter 5, because the latency study is the one that examined the primary questions I

set out to answer from the beginning.

As a consequence, I learned some lessons too late to apply them to the latency study. In
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particular, the range of index of difficulty values I used in the latency study was fairly small,

with the maximum value being only 3.02, as opposed to an ID of approximately 6 in similar

2D studies on latency. While I were restricted in the distance values used for targets so that

they can stay within the player’s field of view and room boundaries, I could have made the

minimum target size smaller to create more difficult conditions. Another change I would

have made is to use spherical targets in target acquisition in the latency study. The targets

I did use (ogre heads) appear approximately spherical, but their bounding area was modeled

as a box. This results in effective target widths that change based on distance angle, which

I did not account for. This makes the plots involving index of difficulty slightly inaccurate,

but none of my significant results are affected by the oversight.

Another limitation of my work is that I did not spend enough time on creating and tuning

the aiming assists used for latency mitigation. Despite this, they worked remarkably well

in target tracking, and although they were useful in acquisition, they could have been more

effective. For optimal performance, I should have piloted other approaches to the aim assists

and tried making use of other techniques. Also, tuning the parameters for the current aim

assist formulas would have likely resulted in significantly better improvements in acquisition.

Although the field samples of latency that I performed in Chapter 4 were not meant to

be thorough and exhaustive, it would have been beneficial to measure more setups than I

did. Time and access constraints limited the number of sample points I had, but these were

still sufficient to establish a useful range of latency values and make observations regarding

patterns such as what factors have a significant effect on total system latency.

While I were very successful in making equivalent conditions between 2D and 3D in target

acquisition in Chapter 3, the target tracking comparison would have been more useful if I

either used cylindrical targets or made the target turn to face the player while it is moving.

Either option would avoid the problem of the target effectively changing width when looked

at from an angle due to its box-shaped hit area.

Finally, it would have been potentially valuable to have more participants in the studies,

particularly for the study in Chapter 3, which only had twelve participants. When I analyzed

the results with only eight participants, the magnitude of the movement time differences

between 2D and 3D was 12% as opposed to the 8% I found in the end. This indicates some
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instability in the results, and having more participants would help create confidence in the

magnitude of the effects.
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Chapter 7

Conclusion

The primary problem I intended to solve with this research was the lack of knowledge of

precise, quantitative information regarding the effects of local latency on aiming performance

in first person shooters, as well as a lack of mitigation techniques that can be used to compen-

sate for the latency. A secondary problem I identified was that there was limited knowledge

of how pointing in 2D settings compares to aiming in 3D FPS environments, which leaves

doubt regarding whether knowledge of latency in 2D can be directly applied to first person

shooters. I solved these problems through the studies that I performed and documented the

approach and results in this thesis.

Although target acquisition and tracking have been previously characterized in the context

of 2D graphical environments, little research has evaluated how those results translate to a

3D FPS-like graphical environment. I performed such an evaluation within 2D and 3D

environments that were visually similar and had targets with matched indexes of difficulty.

My results indicate differences between 2D and 3D that are in some cases substantial. The

main lesson from this comparison for FPS games, therefore, is that previous targeting results

from traditional 2D pointing studies may not be directly transferable to 3D FPS games. Past

design work that is based on 2D models should be re-evaluated given the additional difficulty

presented by these more complex 3D environments.

My work shows that local latency is a real and substantial problem – but that games

can mitigate the problem with appropriate compensation methods. My studies provide the

first empirical evidence quantifying the negative effects of local system latency on aiming in

3D game environments. My results show that local latency levels as low as 41 ms (which is

lower than the lag found in most gaming systems) causing significant degradation in aiming

performance, and that performance degradation increased to substantial levels at higher
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latency – movement time increased by 52% in target acquisition, and target tracking time

on target fell by 32% at 164 ms of latency, which is not uncommon in gaming systems. The

results also show that significant amounts of latency prevail in real-world systems and that

aim assistance can effectively mitigate local latency. My compensation scheme reduced the

problems caused by lag in the case of targeting and removed the problem altogether in the

case of tracking.

Local latency is pervasive and substantial in magnitude in gaming systems, and because

aiming in 3D first person shooters has important differences to pointing in 2D settings that

may make studies of latency in 2D to be inapplicable to FPS, I quantified the effects of

latency on aiming in FPS games and also demonstrated effective techniques to compensate

for the latency.

7.1 Questions for Further Study

My research also raised other questions and issues that would be valuable to investigate in

future work. To begin with, the limitations I described in Section 6.6 would be useful to

overcome in follow-up studies. I also present some other interesting possibilities for research

in this section.

7.1.1 Effects of Lag on Score in Real Games

My studies provide valuable evidence on the effects of latency in specific, restricted aiming

tasks. However, real games make use of many elements that mine do not, such as movement,

targets firing back at the player, level knowledge, and so on. Likely the most important

future work to perform would be to examine how local latency affects overall player scores

in real-world competitive first person shooters.

7.1.2 Conflicting Results on Effects of Latency

Although existing studies of latency in 2D pointing tasks use different methodologies, con-

ditions, and latency levels than my experiment, it seems that latency may have effects of
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similar magnitude in 2D pointing as in 3D first person shooters according to some studies

(e.g., [61]). However, previous studies conflict with each other [61, 72], and therefore there is

no clear consensus on how latency affects simple target acquisition behavior. Further studies

are needed to resolve these conflicting results.

Additionally, studies on 2D target tracking under latency show results very different than

the results I found on target tracking in FPS. In one study [71], tracking errors were only

significantly greater at 170 ms of latency than at baseline latency, as opposed to my results

which show degradation as low as 41 ms. It would be valuable to investigate the reasons for

this wide discrepancy in threshold of latency effects.

7.1.3 Changes to Aim Mechanics Due to Latency

In Section 6.2.1, I hypothesized a simple model to predict acquisition time under latency.

Because the model (which relied on a measure of number of submovements performed in

aim) did not properly predict actual performance, I proposed that latency might change the

number of submovements performed during aim, or that it might shift the weight placed on

the initial ballistic movement compared to the feedback-corrected final movements. It would

be useful to examine these ideas in detail.

Additionally, while I examined the effects of latency on aim performance and differences in

aim performance between 2D and 3D settings, I did not delve deep into the mechanical reasons

regarding why these effects appear. It would be valuable to examine in detail how aiming

might change under latency, or which differences in the environment or aiming mechanics

between 2D and 3D cause the differences in performance.

These studies should also consider using a 3D virtual reality headset as part of the ex-

amination since the devices offer true 3D cues that are not available while using a standard

screen-projected world. Also, VR is likely even more sensitive to lag than standard screens

are [2], so studying the effects of lag in this context, where it is difficult to achieve sufficiently

low latency, could be useful.
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7.1.4 Index of Difficulty under Latency

Are target size and target distance independent factors for index of difficulty in the presence

of latency? So and Chung [83] suggest that target size and distance should not be considered

a single effect of ID for tasks involving latency. In the study regarding the effects of latency

on aim, I included two target conditions with similar IDs, but with different combinations

of distance and size. With lag present, the closer and smaller targets had consistently worse

performance than the targets with greater distance and size (but similar ID). The performance

discrepancy with these similar IDs also increased with lag (Figure 5.6). This would suggest

that local latency can cause greater problems for smaller targets. However, this preliminary

finding will need to be verified by a more targeted study as future work.
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Appendix B

Index of Difficulty Calculations (2D and 3D)

void AcqTargetMaker : : makeDif fs ( ) {
const i n t c i r c l eRad iu sS t ep s = 5 ;
const i n t d i s t anceS t ep s = 3 ;

f l o a t maxDist = maxDef lect ion ;
f l o a t maxWidth = maxRadius ;
f l o a t minDist = maxDist / ( f l o a t ) c i r c l eRad iu sS t ep s ;
f l o a t minWidth = maxWidth / ( f l o a t ) d i s t anceS t ep s ;
f l o a t maxDwRatio = maxDist / maxWidth ;

// For 3D
f l o a t maxDistAngle = atan (maxDist / targetDepth ) ;
f l o a t minDistAngle = maxDistAngle / ( f l o a t ) c i r c l eRad iu sS t ep s ;
f l o a t maxWidthAngle = maxDistAngle / maxDwRatio ;
f l o a t minWidthAngle = maxWidthAngle / ( f l o a t ) d i s t anceS t ep s ;

f o r ( i n t d i s tS t ep = 2 ; d i s tS t ep <= c i r c l eRad iu sS t ep s ; d i s tS t ep++) {
f o r ( i n t widthStep = 1 ; widthStep <= di s t anceS t ep s ; widthStep++) {

D i f f i c u l t y d i f f ;
i f ( i s F l a t ) { // cur rent cond i t i on i s 2D

// Sca l i ng to get appearance in p i x e l s about same as 3D
f l o a t v i s ua l S ca l eFac t o r = 0.61 f ;

d i f f . d i s t anc e = minDist ∗ d i s tS t ep ∗ v i sua l S ca l eFac t o r ;
d i f f . width = minWidth ∗ widthStep ∗ v i sua l S ca l eFac t o r ;
d i f f . id = ca l c I d ( d i f f . d i s tance , d i f f . width ) ;

} e l s e {
// Find the de s i r ed ang le then work back to world coo rd ina t e s
f l o a t d i s tAng le = minDistAngle ∗ d i s tS t ep ;
f l o a t widthAngle = minWidthAngle ∗ widthStep ;

d i f f . d i s t anc e = targetDepth ∗ tan ( d i s tAng le ) ;
f l o a t distToTarget = targetDepth / cos ( d i s tAng le ) ;
d i f f . width = 2 .0 f ∗ distToTarget ∗ tan ( widthAngle / 2 .0 f ) ;
d i f f . id = ca l c I d ( d i f f . d i s tance , d i f f . width ) ;

}
d i f f i c u l t i e s . push_back ( d i f f ) ;

}
}

}

f l o a t AcqTargetMaker : : c a l c I d ( f l o a t d i s tance , f l o a t width ) {
i f ( i s F l a t ) {

re turn log2 ( ( d i s t anc e / width ) + 1 .0 f ) ;
} e l s e {

f l o a t d i s tanceAng le = atan ( d i s t anc e / targetDepth ) ;
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// Actual d i s tance , not j u s t a long y ax i s
f l o a t distToTarget = targetDepth / cos ( d i s tanceAngle ) ;
f l o a t widthAngle = 2 .0 f ∗ atan ( width /2 .0 f / distToTarget ) ;

r e turn log2 ( ( d i s tanceAngle / widthAngle ) + 1 .0 f ) ;
}

}
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User ID

Gender

Male

Female

Handedness 1

Which hand do you use to maneuver the mouse when you play FPS games that require a mouse?

Left

Right

Primary Language

What is the language you speak at home (to parents/kids/etc)?

Computer Use

How many hours per week do you typically use a computer?

Not at all 80 hours

First Person Shooter (FPS) game validation

Do you play or have you played first person shooter (FPS) games that require the use of a mouse?

Yes

No

Current FPS Usage

How often do you currently play FPS games that require the use of a mouse?

I never played FPS games

I don’t play FPS games anymore

less than an hour a week

Lag study 0%

Appendix C

Demographic Survey
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1-5 hours a week

6-10 hours a week

10-20 hours a week

20–30 hours a week

more than 30 hours a week

Former FPS Usage

If you used to play FPS games more regularly in the past that required the use of the mouse, how often would you play those
games?

I have never played FPS games

less than an hour a week

1-5 hours a week

6-10 hours a week

10-20 hours a week

20–30 hours a week

more than 30 hours a week

Time since peak

How long has it been since your peak days of FPS gaming?

I'm currently at my peak

Less than half a year

Less than a year

Less than two years

Less than five years

Less than eight years

Longer than eight years

FPS Skill Level

In your peak days of online FPS gaming, how well did you place in the match scoreboard, on average?

top 10%

top 25%

top 50%

top 75%

below top 75%

What kind of FPS games do you primarily play?

Offline

Unrealistic, fast paced (like Quake, UT)

Unrealistic, slow paced

Realistic, fast paced (like Call of Duty)

Realistic, slow paced (like ARMA)



Next

Contact Maps Search Disclaimer Privacy

Rate your skill level in FPS games

Extremely Unskilled Extremely Skilled

Do you have more experience with gaming with a gamepad or gaming with a mouse?

A little more experience with a gamepad

A lot more experience with a gamepad

A little more experience with a mouse

A lot more experience with a mouse

Do you or have you previously spent a significant amount of time playing non-FPS games with a mouse?

Yes

No

Â© University of Saskatchewan



NextBack

Contact Maps Search Disclaimer Privacy

Rate your experiences and agreements with the following statements

strongly
disagree

moderately
disagree

slightly
disagree

neutral
slightly
agree

moderately
agree

strongly
agree

I performed well this round

Lag affected my performance

This round was frustrating

The controls were laggy

Â© University of Saskatchewan

3%

Appendix D

Between-Block Survey (Non-mitigated)
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NextBack

Contact Maps Search Disclaimer Privacy

Rate your experiences and agreements with the following statements

strongly
disagree

moderately
disagree

slightly
disagree

neutral
slightly
agree

moderately
agree

strongly
agree

I performed well this round

Lag affected my performance

This round was frustrating

The controls were laggy

I noticed my aim being assisted

Â© University of Saskatchewan

3%

Appendix E

Between-Block Survey (Mitigated)
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SubmitBack

Contact Maps Search Disclaimer Privacy

Rate your experiences and agreements with the following statements

strongly
disagree

moderately
disagree

slightly
disagree

neutral
slightly
agree

moderately
agree

strongly
agree

Aim assists improved my
performance

I preferred having my aim assisted
compared to today's non-assisted
experience

I would want to see aim assists
being used to mitigate lag in
commercial games

Â© University of Saskatchewan

Baserate Sequence Survey 96%

Appendix F

End of Session Survey
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