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ABSTRACT

A fixed terrestrial wireless system such as the Microwave Multi-channel Distribution Ser-

vice (MMDS) can be used as the “last mile” to provide a high speed Internet connection

from a base station to a home in a rural or suburban residential area. Such a broadband

wireless system works very well under line-of-sight transmission. It works quite well

even if the line-of-sight is obstructed with a large number of trees. However, when trees

obstruct the line-of-sight, under conditions of wind, the user may experience loss of the

RF signal from time to time. This is especially true under gusty conditions.

As part of this research a high precision DSP-based measuring system is devised to

accurately measure and characterize the distortions caused by tree foliage on the RF line-

of-sight signal. The approach is to digitally generate a signal composed of several tones,

up-convert the signal to 2.5 GHz and send it through tree foliage to a receiver where the

signal is down-converted and sampled for a duration of five seconds. The samples col-

lected are processed using Matlab to compute the temporal amplitude and phase variations

of the tones. The measurement system provides estimates of the amplitude and phase of

the receive tones with a time resolution of 3.2 ms. The standard deviation of the amplitude

estimates is 0.3% of the actual amplitude of the tones and the standard deviation of the

phase estimates is 0.23 degree. This accuracy is obtained when the signal-to-noise ratio

of the receive signal is greater than 20 dB.

Measurement in the field with tree foliage in the line-of-sight shows that the swaying

of the branches in the wind can cause rapid signal fading. This research determines the

type of fade, the depth and duration of the fade, as well as the fading rate.
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5.6 Pass 4: Computation of âi[k] and θ̂i[k] . . . . . . . . . . . . . . . . . . . 56

v



6 ESTIMATION OF THE ERROR ASSOCIATED WITH THE MEASURE-

MENTS 57

6.1 Effect of White Additive Gaussian Noise . . . . . . . . . . . . . . . . . . 57

6.2 Imperfections in Up-Converter . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 PROCESSING THE AMPLITUDE AND PHASE MEASUREMENTS 72

7.1 Amplitude Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 Phase Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 OUTDOOR MEASUREMENTS AND ANALYSIS 79

8.1 Fall 2002 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.1 Line-Of-Sight Measurement . . . . . . . . . . . . . . . . . . . . 80

8.1.2 Measurements During Windy and Rainy Conditions . . . . . . . 83

8.2 Summer 2003 Measurements . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.1 Measurements During Windy Conditions . . . . . . . . . . . . . 87

8.2.2 Measurements During Windy and Rainy Conditions . . . . . . . 94

9 CONCLUSION 101

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A SOUNDING THE CHANNEL WITH A BAND-LIMITED RF PULSE 106

A.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Estimating the Impulse Response of The Channel . . . . . . . . . . . . . 107

B ANALYSIS OF A SECOND ORDER TYPE I DIGITAL PHASE-LOCK LOOPS

(DPLL) 109

B.1 Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.2 The Linearized Z-Transform Model of The DPLL . . . . . . . . . . . . . 110

vi



C MATLAB AND SIMULINK SOURCE FILES FOR THE POST-PROCESSING

SYSTEM 112

C.1 Simulink And Matlab Source Files For Pass 1 . . . . . . . . . . . . . . . 112

C.2 Simulink And Matlab Source Files For Pass 2 . . . . . . . . . . . . . . . 116

C.3 Matlab Source File For Pass 3 . . . . . . . . . . . . . . . . . . . . . . . 120

C.4 Matlab Source Files For Pass 4 . . . . . . . . . . . . . . . . . . . . . . . 122

vii



LIST OF FIGURES

1.1 Typical MMDS Radio System . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 LOS Versus NLOS Transmissions . . . . . . . . . . . . . . . . . . . . . 4

2.1 Examples of Diffraction and Reflection of The RF Signal . . . . . . . . . 9

2.2 Reducing Multipath with a High-Gain Directional Antenna . . . . . . . . 10

2.3 Creation Of an Elliptically Polarized Wave (∆θ = π
5 ) . . . . . . . . . . . 11

2.4 Multipath / Tree Foliage LOS Signal Distortions . . . . . . . . . . . . . . 13

3.1 Measuring System Block Diagram . . . . . . . . . . . . . . . . . . . . . 24

3.2 Acquisition System Data Flow Diagram . . . . . . . . . . . . . . . . . . 26

4.1 Acquisition System Hardware Block Diagram . . . . . . . . . . . . . . . 28

4.2 Views of The Acquisition System in The Field. . . . . . . . . . . . . . . 29

4.3 Measuring System Antennas: Left - Transmit Antenna, Right - Receive

Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Digital Transmit Signal Sequence For Two Different Phase Combinations. 35

4.5 Spectrum of Analog & Digital IF Receive Signals: Top - Analog Signal,

Bottom - Digital Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Spectrum of Digital IF Transmit & Receive Signals: Top - Transmit Sig-

nal, Bottom - Receive Signal . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Post-Processing System Data Flow Diagram . . . . . . . . . . . . . . . . 45

5.2 System Block Diagram For Pass 1 . . . . . . . . . . . . . . . . . . . . . 46

5.3 Detailed Block Diagram of System For Pass 1 . . . . . . . . . . . . . . . 47

5.4 DPLL Frequency Response Amplitude for a = 0.999 and K = 8.75∗10−3 49

5.5 Typical Ramp Function Made of The Cumulative Sums of ∆̂ωi f [n]. . . . . 50

5.6 System Block Diagram for Pass 2 . . . . . . . . . . . . . . . . . . . . . 51

5.7 System Block Diagram for Process 1 of Pass 2 (Baseband Down-Converter) 51

viii



5.8 Spectrum of Digital IF Receive Signal (Top) & Digital Lowpass Equiva-

lent Receive Signal (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 System Block Diagram for Process 2 of Pass 2 (Estimate ∆Fr[n]) . . . . . 54

6.1 Noise Power Spectrum Before And After Post-Processing. . . . . . . . . 58

6.2 Effect of Noise on Amplitude And Phase Estimates. . . . . . . . . . . . . 60

6.3 Noise Power Spectrum Estimates. . . . . . . . . . . . . . . . . . . . . . 63

6.4 Direct & Indirect Computation Results For The Variance Amplitude Esti-

mates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Plots of amplitude sequence estimates, âi[5× k] (top i = 24, middle i =
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1. INTRODUCTION

1.1 Recent Advances in Communication and the Demand for a Fast Internet

The invention of the telephone by Alexander Graham Bell(1847-1922) in 1876 not only

marked the end of the telegraph era but also demonstrated the communication potential

in being able to transmit speech sounds through electrical wire. During the next 100

years, communication mainly consisted of the transmission of voice using very narrow

bandwidth signals.

With the advancement of technology in optical communication and computer net-

working, telecommunications rapidly evolved in the last decade from narrow-band voice

signals to wide-band signals integrating voice, data, images, and video. At the same

time, the development of the Internet and its widespread popularity led to the creation of

a tremendous amount of multimedia applications and telecommunication services. The

high bandwidth required by these Internet-based services continuously puts pressure on

the telecommunication industry to increase the transmission rate over the Internet. Not

only does the network core have to become faster but also the end user connection to

the network core must increase in speed of data transfer. This connection, also called

the “last mile”, can be realized with fixed wireless communication, such as Microwave

Multi-channel Distribution Service (MMDS).

1.2 The MMDS Radio System as the “Last Mile” for High-Speed Internet Access

The Microwave Multi-channel Distribution Service (MMDS) consists of microwave sig-

nal transmission in a piece of the radio frequency spectrum allocated by the government

of Canada and US for a fixed terrestrial wireless service that provides connectivity from a

service provider’s base station to subscribers’ stationary stations. The topology of MMDS

1



is shown in Figure 1.1. MMDS systems were designed to be efficient to broadcast infor-

mation from the base station to the subscriber.

It is convenient at this point to introduce terminology used in MMDS to indicate the

direction of information flow. Downstream denotes the transmissions from the base sta-

tion to the subscribers’ stations. Upstream denotes the transmissions from the subscribers’

stations to the base station.

The spectrum occupied by MMDS is from 2.5 GHz to 2.7 GHz. It is exclusively

licensed in the United States by the Federal Communications Commission (FCC) in por-

tions 6 MHz wide. In Canada, licensing is done by the department of Spectrum Manage-

ment and Telecommunications of Industry Canada. The spectrum is similar and is also

licensed in 6 MHz chunks.

The band is organized to support transmission rates similar to xDSL(Digital Sub-

scriber Line) in each of the 6 MHz channels; DSL is the standard used by telephone

companies to support high-speed Internet access over twisted copper pairs.

The FCC and Industry Canada have placed power limits on the service that limit the

reach to 48 km. The reach depends upon the terrain, the base station tower height, and

Base
Station

Subscriber
Station

Subscriber
Station

Subscriber
Station

Figure 1.1: Typical MMDS Radio System
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the transmitted signal power. It may reach 48 km in rural areas on the prairie where

there are no obstructions. High gain antennas are used at the subscribers’ stations. These

antennas are directional and therefore must be aimed at the base station. The subscriber’s

station will normally have a Line-Of-Sight (LOS) transmission path (see Figure 1.2 and

Section 1.2.1) to the base station.

1.2.1 Near-Line-Of-Sight(NLOS) Transmissions

There are often significant changes in the performance of a system if there are obstructions

in the signal path. If there are no direct obstructions in the signal path, the system is said

to be a Line-Of-Sight (LOS) system.

A transmission is Line-Of-Sight (LOS) if

1. the antenna at the subscriber’s station is aimed at the base station antenna, and

2. there is no obstacle (buildings, tree foliage, etc) in the 1st Fresnel zone. The 1st

Fresnel zone is the radius of the signal cone in which the phase of the signal is

comprised between 0 and π
2 . This is where the majority of the signal power exists

in a Line-Of-Sight transmission.

A tranmission is Near Line-Of-Sight (NLOS) if

1. the antenna at the subscriber’s station is aimed at the base station antenna,

2. there are one or more obstructions in the 1st Fresnel zone, and

3. the obstructions in the line-of-sight path are not totally opaque, meaning that there

is sufficient signal power at the receiver for the system to work.

The performance of MMDS radio systems with LOS transmission does change slowly

with time. However, MMDS systems with NLOS transmission may experience perfor-

mance degradation from time to time, due to a moving obstruction.

It is pointed out that NLOS can have a different meaning. In recent publications,

NLOS refers to a system where the subscriber’s antenna is not aimed at the base station
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but rather aimed at an object such as a building to receive a reflection of the signal trans-

mitted by the base station. MMDS is not designed for this type of transmission; however,

research for this type of transmission is being done but is still at an early stage. In this

thesis, the scope of the term Near Line-Of-Sight (NLOS) is limited to a line-of-sight path

with translucent obstructions.

1.2.2 Deployment of MMDS Radio Systems

MMDS was initially intended as a one-way link to high schools located in rural areas.

The purpose was to provide video programs to aid in teaching. Communication from

student to instructor was not accommodated by MMDS. This upstream communication

was accomplished by audio conferencing over the telephone network. In 1998, the Federal

Communications Commission (FCC) opened the MMDS channel for two-way use and at

the same time made the channel available to Internet service providers.

The post 1998 MMDS has two-way communication, long range coverage, relatively

low-cost of the infrastructure, and a transmission rate similar to xDSL. The reformed

Base Station

Base Station

LOS Transmission

NLOS Transmission

(no obstacle on the LOS path)

(tree on the LOS path)

LOS signal

LOS signal

Subscriber Station

Subscriber Station

faded signal

Figure 1.2: LOS Versus NLOS Transmissions
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MMDS is a very attractive “last mile” vehicle for high-speed Internet access for residential

and “Small Office / Home Office” (SOHO) use. Unfortunately, it is not possible to place

a base station so that all subscribers’ stations have LOS transmission. One of the most

common obstructions is trees in the vicinity of the subscriber’s antenna.

It has been suggested that LOS transmission can be achieved only for 40% to 60% of

potential subscribers [1]. The exact percentage largely depends on the topography. It will

be quite small if the MMDS radio system is deployed in a mountainous region and quite

large if the system is deployed in a prairie or flat region.

Typical areas that would be covered with a MMDS radio system are suburban or rural

residential areas. As residential areas mainly consist of 1 to 2-storey family homes, the

primary obstacle that prevents potential subscribers from having LOS transmission with

the base station is tree foliage. MMDS base Internet service has been provided for a

few years. Subscribers with LOS paths get reliable service. However, subscribers with a

NLOS path, where the obstruction is tree foliage, experience momentary loss of service at

times. On dry days with little wind such NLOS systems work very well. However under

conditions of rain and wind, momentary losses of the signal can occur due to the motion

of wet leaves in the wind, causing a reduction of the throughput rate.

1.3 Objectives of This Research

Models are available to predict the wideband RF signal attenuation caused by tree fo-

liage [2][3][4], and models are available to estimate the channel delay spread [2][5], which

is an indication of the multipath structure of the channel. There have been detailed studies

of the polarization of backscatter signals from vegetation such as cereal crops [6]. This

work shows that scattering from foliage can cause changes in the polarization state of the

signal.

Frequency selective attenuations occur if the amplitudes of different frequencies in the

bandwidth of interest are attenuated differently. The phase response of the channel is also

important. If the phase response is nonlinear, the receiver will not work properly and the

bit error rate will increase. Unfortunately, changes in the phase of the signal cannot be

detected by measuring power with a single antenna.
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Signal distortion caused by the motion of tree foliage obstructing the line-of-sight path

translates into variations in the amplitude and phase response of the channel. Knowledge

of the variations in the amplitude and phase response of the channel is critical in order

to efficiently design a system that can compensate for these variations. The objectives of

this research are to:

1. Devise a high precision Digital Signal Processing (DSP)-based measuring system

to accurately measure the variations in the amplitude and phase response of the

channel caused by tree foliage obstructions to the RF line-of-sight signal.

2. Construct this DSP-based measuring system.

3. Quantify the effect of noise on the measurements obtained with this system, and

further process the measurements to reduce the effect of noise.

4. Perform outdoor measurements with one tree and several trees in the line-of-sight

under different weather conditions.

5. Perform an analysis of the measurements in order to identify and quantify the type

of distortions caused by tree foliage .

To summarize, the objective of this research is to devise a measuring system to accu-

rately measure and characterize the signal distortions caused by tree foliage obstructions

to a RF line-of-sight MMDS channel.

1.4 Thesis Organization

Chapter 2 defines the type of distortions that could possibly be introduced to the LOS RF

signal of a MMDS radio channel due to tree foliage in the line-of-sight.

Chapter 3 starts by providing a list of the specifications for the measuring system. This

chapter continues with a description of a DSP-based measuring system that meets these

specifications.The DSP-based measuring system is composed of an acquisition system

and a post-processing system. Chapter 4 describes the acquisition system. The post-

processing system is described in Chapter 5.
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The effect of Gaussian noise on the measurements is addressed in Chapter 6. Chapter

7 indicates how the measurements obtained with this system can be further processed to

reduce the effect of this noise.

Outdoor measurements were performed with a single Poplar tree and a bush of Poplar

trees in the line of sight. Chapter 8 reports the conditions in which these measurements

were performed, and gives the results of these measurements along with an analysis.

The conclusions for this research are given in Chapter 9.
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2. DISTORTION OF THE RF LOS SIGNAL

This chapter gives a description of the wireless channel, briefly explains how tree foliage

can affect the RF signal, and shows that the distortion of the RF signal can be the result of

multipath combined with trees in the line-of-sight path. The results of a literature search

on the effect of tree foliage on RF transmissions are also given at the end of this chapter.

2.1 The Wireless Channel

In wireless transmission, the channel is the physical environment surrounding the trans-

mit and receive antennas. Elements such as hills, buildings, or trees located on the path

of the RF signal affect the way the signal propagates. Most of the changes occurring on

the signal propagation paths can be explained in terms of reflection, diffraction, and scat-

tering. Reflection occurs when the electromagnetic wave impinges the smooth surface of

an object having a size much larger than the wavelength of the RF signal. Diffraction

takes place when a very dense object with a sharp edge is located very near the LOS

path. Waves bend over the sharp edge of the structure and reach the receiver. If the object

is opaque and is in the line-of-sight path, then the only signal reaching the subscriber’s

antenna is the diffracted signal. This phenomenon is called shadowing since the signal

reaches the receiver despite the total obstruction of the LOS signal. Scattering occurs

when the electromagnetic wave impinges upon objects of size comparable to or shorter

than the wavelength. The resulting signal is composed of electromagnetic waves propa-

gating in all directions. Buildings and hills can reflect or diffract the signal(Figure 2.1)

while tree foliage, lampposts, or street signs are more likely to scatter the signal.

For ideal LOS transmissions (e.g. no distortion of the signal due to scattering, re-

flection, or diffraction), only the free space path loss contributes to the attenuation of the

RF signal. The attenuation of the RF signal due to propagation in free space is, when

expressed in dB, equal to 20log(4πd/λ) dB, where d is the distance traveled and λ is the
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wavelength of the signal.

The presence of objects in the environment often creates reflection, diffraction, or

scattering, which causes signal distortion. The received signal will not only consist of

the LOS signal, but also of several secondary signals traveling on different paths(see Fig-

ure 2.1). These secondary signals are called multipath signals since they originate from

the presence of multi-propagation paths. Since these multipath signals travel longer dis-

tances than the LOS signal, they arrive at the receive antenna after the LOS signal. The

late arrivals become interference and cause distortion to the LOS signal. This type of

distortion is frequency selective.

One way to reduce the effect of multipath on the signal is to use a high gain directional

antenna. The multipath signals arrive at the receive antenna with different incident angles

than the signal from the LOS path (Figure 2.2). The directional antenna does not collect

the multipath signals, at least not with the same gain. The multipath signals that add to

signal
LOS

signal
LOS

Stationary StationBase Station

Diffracted signal

Example of Diffraction

Stationary StationBase Station

Example of Reflection

Reflected Signal

Figure 2.1: Examples of Diffraction and Reflection of The RF Signal

9



the LOS signal are the ones with an incident angle inside the main lobe of the antenna.

The main lobe of a high gain antenna is quite narrow, which means only the multipath

signals arriving at very small angles are sufficiently amplified to cause distortions to the

LOS signal.

The multipath signals arrive later than the LOS path. The multipath signals that are

in the main lobe of the antenna arrive a short time after the LOS signal. This is because

propagation paths with small incident angles cannot be much longer than the LOS path

(Figure 2.2). As the delay spread is very small, intersymbol interference (ISI) is not likely

to occur, unless the bit rate is very high. ISI occurs if a symbol of a received sequence of

symbols interferes with the next symbol of the sequence.

In addition to reducing the effect of multipath, a high-gain directional antenna is used

at the subscriber site of a MMDS radio system because of its high gain. Less power is

required at the base station for the transmission of the signal or alternatively the transmis-

sion rate can be increased.

2.2 Effect of Tree Foliage on The RF signal

The transmit and receive antenna of the measuring system devised in this research are both

vertically polarized. A vertically polarized wave is shown on the top graph of Figure 2.3.

The axis along the direction of propagation represents time and the vertical axis represents

Incident
Angle

Transmit
Antenna

Receive
Antenna
(High−Gain
Directional Antenna)

Main Lobe

Side Lobes

Multipath Signals

LOS Signal

Figure 2.2: Reducing Multipath with a High-Gain Directional Antenna
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amplitude.

The problem of interest treats the output of the vertically polarized receive antenna

as the signal. The intent is to characterize the time-varying nature of this signal through

measurements. The approach taken does not require detailed knowledge of the physics

of electromagnetic propagation (e.g. scattering, diffraction, and reflection of the incident

wave). However, it is useful to have a general understanding of these phenomena, as they

explain the behavior of the signal arriving at the receive antenna.

The polarization state of the transmitted electromagnetic wave can be affected by the

vegetation that acts as a scatter [6]. Some of the energy from the transmitted vertical po-

larization state is transferred to the horizontal polarization state by scattering or reflection

of the transmitted electromagnetic wave. The middle graph of Figure 2.3 shows a hori-

zontally polarized wave that could be generated by scattering or reflection of the vertically
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Figure 2.3: Creation Of an Elliptically Polarized Wave (∆θ = π
5 )
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polarized incident wave. If the phase difference, ∆θ, between the vertically polarized and

horizontally polarized waves differs from k π
2 ,k = 0,1,2, ..., then these waves combine into

an elliptically polarized wave, as shown by the bottom graph of Figure 2.3, when ∆θ = π
5 .

The polarization state of the RF signal resulting from the combination of the vertically

polarized and horizontally polarized waves is function of the difference of phase, ∆θ, but

also of the amplitudes, E0x and E0y, of these two waves. The polarization state of the

receive signal, based on these parameters, is given by [7]

(
Ey

E0y
)2 +(

Ex

E0x
)2 −2(

Ex

E0x
)(

Ey

E0y
)cos(∆θ) = sin2(∆θ), (2.1)

where Ex is the horizontally polarized component of the receive signal, and Ey is the

vertically polarized component of the receive signal. For example if ∆θ = π
2 + 2kπ,k =

0,1,2, ..., and E0x = E0y = E0, then (2.1) becomes

(Ey)2 +(Ex)2 = (E0)2. (2.2)

Equation (2.2) is the equation of a circle; in other words the polarization is circular. If

∆θ = kπ,k = 0,1,2, ..., then 2.1 becomes

Ey = ±E0y

E0x
Ex, (2.3)

and the polarization is linear.

Each branch and each leaf on the RF signal propagation paths will affect E0x, E0y,

and ∆θ differently. This will result in a receive signal that can be modeled as the sum

of an elliptically polarized signal and an unpolarized signal corresponding to noise. Both

of these signals vary with time, especially when the wind blows through the trees and

changes the structure of the foliage. The system devised in this research measures the

temporal variation in the vertically polarized component of the receive signal.

The effect of the leaves may change when the leaves are wet since the RF signal is in

the 2.5 GHz frequency range and water is known to absorb radio waves in that frequency

range.
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Figure 2.4: Multipath / Tree Foliage LOS Signal Distortions

2.3 Effect of Multipath

Multipath signals are very common on wireless transmission since the presence of one

object in the area surrounding the antennas can contribute to the creation of multipath

signals. Therefore, it is very difficult to find a site free of multipath, which means that

multipath will be present for most subscribers. Multipath due to stationary objects such as

buildings or rooftops, causes distortions that do not vary with time. These distortions are

usually not harmful for a communication system since they can be corrected with slow

equalizers. This ceases to be true when there is tree foliage obstruction to the line-of-sight.

For example, Figure 2.4 shows a situation where a signal reflected by a building combines

with the LOS signal at the receive antenna. These signals travel through different portions

of the tree. If the foliage density is not uniform, these signals are likely to be attenuated

differently. If the reflected signal is quite strong, this signal may become stronger than

the LOS signal if it is less attenuated than the LOS signal by the tree. The motion of

the tree changes the foliage density seen by these two signals. The LOS signal may then

become stronger than the reflected signal. This example shows that multipath created by

stationary objects can cause selective fading that varies with time due to the swaying of

the tree branches present in the line-of-sight.
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2.4 Previous Research On Effect of Tree Foliage On RF Transmissions

There have been many publications in the last 5 years on the characterization of wireless

channels for MMDS or LMDS (Local Multipoint Distribution Service) radio systems.

LMDS and MMDS radio systems are similar; however, the frequency used for the LMDS

radio system is approximately 29 GHz. Due to significant attenuation by rain of the 29

GHz electromagnetic waves, LMDS cells are limited to 1 km radius in comparison to 48

km for MMDS.

The results of some of these studies have been compiled in documents [2] published

by the IEEE802.16 standard. The IEEE 802.16 Working Group develops standards and

recommended practices to support the development and deployment of broadband Wire-

less Metropolitan Area Networks.

Signal attenuation with or without vegetation, delay spread, Doppler spread, and po-

larization changes are the main factors found in the literature to characterize the wireless

channel. Models for some of these factors are given in [2]. Values for these factors depend

on topography, foliage density, type of antennas, and the height of the antennas used.

This section covers some of the published results in situations where one or more trees

were present on the LOS path and the terrain was flat.

2.4.1 Signal Attenuation

In an experimental study [3] of RF signal propagation through a plantation of Orchad

trees, the propagation loss of a 9.6GHz continuous wave (CW) signal was reported as a

function of the number of trees located on the transmission path. The trees were 8-10 me-

ters tall, with a span of branches almost covering the space between trees. Measurements

were conducted when trees had no leaves and when trees were fully foliated.

The propagation loss measured for the first 30 meters traveled through the tree canopy

was about 1 dB/m with foliage and 0.35 dB/m without foliage. Propagation losses beyond

30 meters were similar when the trees were fully foliated or without leaves. A theoretical

explanation of these results for trees in leaf or without leaves was also provided:

With leaves: The LOS signal had a strong attenuation rate in foliage but remained the
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main component of the received signal for short distances. Beyond a distance of 30

meters, electromagnetic waves generated by multiple scattering due to the leaves

became the main component of the received signal. This signal had a much reduced

attenuation rate through foliage than the LOS signal.

Without leaves: Scattering due to branches built up at a slower rate and became the main

component of the signal only after 80 meters.

Not only did the results given in [3] apply to an Orchad tree, but they were largely

dependent on the propagation path that was selected to perform the measurements. Due

to the non-uniformity of the tree foliage, large variations in the received signal power

had been reported in [4] when these measurements were performed with various incident

angles. However, it was feasible to overlay the curves showing measured signal levels as a

function of incident angle with Ricean density functions whose parameters were functions

of the foliage structure and the environment in which the experiment was conducted.

Therefore, a statistical approach better accounted for the non uniformity of the tree foliage

when measuring foliage attenuation.

What made this statistical approach valid was that it was possible to perform enough

independent measurements without changing the setup of the experiment. This was ac-

complished in an anechoic room by placing tree foliage on a table that was rotated by

1 degree between measurements. The antennas remained fixed and only the combined

received power for the LOS signal and the scattered signal varied as the foliage was ro-

tated. A 360 degree rotation of the table allowed the measurement of a suitable statistical

database. Keeping the antennas fixed while changing the orientation of the foliage by

rotating the table produces a homogeneous sample.

To summarize, the received signal after propagation through tree foliage is composed

of the attenuated LOS signal and of a signal generated by scattering of the electromagnetic

waves by the leaves. These scattered signals may have been generated either by the trees

on the LOS path or by the trees located on each side of this path. Models for signal

attenuation by tree foliage are based on Ricean distributions whose two parameters are

usually defined as the average total power received and the ratio K of the LOS average
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signal power and the mean scattered signal power.

2.4.2 Delay Spread

It is very common on a wireless channel for multipath signals to arrive at the receive

antenna at different times and with different strengths due to reflection, diffraction or

scattering of the electromagnetic waves. The first transmit signal arriving at the receive

antenna is the LOS signal. Its propagation path is the direct path between both anten-

nas and therefore is the shortest. Delay spread is an indication of the difference of time

of arrival at the receive antenna between the LOS signal and delayed signals caused by

reflection, diffraction, or scattering. This parameter is used to predict the amount of inter-

symbol interference (ISI) for a given communication scheme.

The RMS delay spread, which is a measure of the delay spread, is reported [5] to be

less than 0.25 us based on measurements performed at 1.9 GHz in a suburban area with

a fixed terrestrial wireless system which employed a directional antenna at the receive

location.

2.4.3 Doppler Spread

For a fixed wireless radio system, the Doppler shift is introduced by foliage moving in the

wind. The typical measured Doppler spread at 2.5 GHz is less than 2 Hz [2].
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3. A DSP-BASED SYSTEM TO MEASURE THE SIGNAL DISTORTION

CAUSED BY TREE FOLIAGE

3.1 Notation

There are many symbols used in this thesis which makes it difficult for the reader to

remember what each symbol represents. To help the reader remember and sort out the

different symbols, a notation system with some simple rules is used. The name of a

function representing a waveform is accompanied by a subscript. An uppercase subscript

indicates that it is a continuous-time waveform. A lowercase subscript indicates that it

is a discrete-time waveform. The letters used for the subscript also have meaning. For

example, the subscript “RF” denotes a continuous-time radio frequency signal and the

subscript “l” denotes a lowpass equivalent discrete-time signal. When a superscript is

present, it indicates that an action has been performed on the waveform. The superscript

“r” indicates that the waveform has been resampled. The superscript “w” indicates that

the waveform has been truncated with a window. Using these notations, the continuous-

time RF receive signal is denoted by rRF(t). The signal obtained after down-converting

rRF(t) to an intermediate frequency (IF) is denoted by rIF(t). The signal obtained after

sampling rIF(t) is a discrete-time signal, ri f [n]. For a sampling period Tr, the sampled

signal can be denoted by rIF(nTr), where n is an integer. The discrete-time signal, ri f [n],

is equivalent to rIF(nTr).

A parameter that applies to a continuous-time waveform is written in uppercase letters.

Its subscript is also in uppercase. A parameter that applies to a discrete-time waveform

is written in lowercase letters. Its subscript is also in lowercase. For example, the carrier

frequency of the continuous-time IF receive signal, rIF(t), is denoted by FIF , which is

expressed in Hertz. If the intermediate frequency is expressed in radian / second, then it

is denoted by ΩIF , where ΩIF = 2πFIF .
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The sampling rate is defined as the number of samples per second. In case of an analog

to digital conversion, the sampling rate indicates how many times the analog signal is

sampled per second. In case of a digital to analog conversion the sampling rate indicates

how many samples are used per second to generate an analog signal. As the analog-

to-digital conversion takes place in the receiver, the sampling rate of the A/D converter

is denoted by Fr. As the digital-to-analog conversion takes place in the transmitter, the

sampling rate of the D/A converter is denoted by Ft . The sampling frequencies, Fr and Ft ,

have units of samples/second.

The carrier frequency of the discrete-time IF receive signal, ri f [n], is denoted by fi f ,

which is expressed in cycles/sample. This is because the sampling frequency, Fr, has unit

of samples / second, and fi f = FIF
Fr

has units cycles / second
samples / second = cycles

sample . If the intermediate

frequency is expressed in radians / sample, then it is denoted by ωi f , where ωIF = 2π fi f .

3.2 A Suitable Measuring System

The objective of this research is to devise a system to accurately measure the distortions

introduced to the RF LOS signal of a MMDS radio channel whose line-of-sight is ob-

structed by tree foliage and vertically polarized antennas are employed at the transmitter

and receiver. The NLOS channel of interest has 4 salient features:

1. As the targeted radio channel is a MMDS radio channel, the signal bandwidth is 6

MHz between 2.5 GHz and 2.7 GHz.

2. For NLOS transmissions where tree foliage is the obstruction in the line-of-sight

path, the motion of the branches in the direction of the propagation path changes

the carrier frequency of the signal as the signal is reflected or scattered by the trees

before being collected by the receive antenna. This change in frequency is called

the Doppler shift, and it depends on the carrier frequency and the component of

the velocity of the branches that is in the direction of the propagation path. For a

MMDS radio channel, the maximum Doppler shift due to trees in the line-of-sight

path is expected to be less than 2 Hz [2].

3. It is assumed that the rate at which the signal fades is less than 50 dB/s and that
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the channel can be considered time-invariant for intervals less than 5 ms. However,

the system should be able to measure variation in the channel response for intervals

that are much less than 5 ms.

4. It is assumed that the fades last between 100 ms and 1 s and successive fades can

occur in an interval whose duration is few seconds. The system should be able to

continuously record the receive signal for a duration of at least 5 seconds. Clearly,

the signal fading depends on the weather conditions (e.g. rain, wind...). Several ac-

quisitions of the receive signal with the same weather conditions will allow the mea-

surement of a suitable statistical database. Several statistical database are obtained

by acquiring the receive signal with different weather conditions, and characterize

the signal fading for different weather conditions.

One type of measuring scheme consists of transmitting a band-limited RF pulse. The

receive signal is an estimate of the impulse response of the channel. Taking the Fourier

transform of this estimate yields an estimate of the channel frequency response. A descrip-

tion of this type of measuring system is given in Appendix A. A train of band-limited RF

pulses, where the pulses are separated by ∆T seconds, can be used to estimate the vari-

ations in the amplitude and phase response of the channel over intervals of length ∆T

seconds. An alternate approach is to send a set of continuous wave (CW) RF tones that

are inside the channel bandwidth. The amplitude and phase of the receive RF tones can

then be measured at times ∆T seconds apart to estimate the variations in the amplitude

and phase response of the channel. This approach has the advantage of eliminating the

need for a sharp 6MHz channel filter.

This approach is best described by first considering the case of transmitting a single

CW tone, denoted s1RF(t), at a RF frequency FC. If s1RF(t) has a constant amplitude

equal to 1V, and constant phase, Φ, at the output of the transmitter, the transmit signal,

s1RF(t), is given by

s1RF(t) = cos(2πFCt +Φ). (3.1)

The transmitted RF tone travels through tree foliage before reaching the receive antenna.

This has the effect of changing its amplitude and its phase. The changes in amplitude
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and phase also vary with time due to the motion of tree foliage. If A(t) denotes the time-

varying amplitude and Θ(t) the time-varying phase of the single receive tone, then the

receive signal, r1RF(t), can be expressed as

r1RF(t) = A(t)cos(2πFCt +Θ(t)). (3.2)

The values of A(t) and Θ(t) at a particular instant, can be estimated using a finite-time

approximation to the Fourier transform. This can be done provided that A(t) and Θ(t) are

essentially constant over the interval that the finite-time Fourier transform is computed.

The values computed for A(t) and Θ(t) over the interval (t0, t0 +∆T ) are then estimates of

the amplitude and phase of the receive tone at instant of time t0+t0+∆T
2 = t0+ ∆T

2 . Similarly,

the computed values for A(t) and Θ(t) over the interval (t0 +∆T, t0 +2∆T ) are estimates

of the amplitude and phase of the receive tone at instant of time t0+∆T+t0+2∆T
2 = t0 + 3∆T

2 .

The variations in the amplitude and phase response of the channel at frequency FC can

then be estimated over the intervals (t0 + ∆T
2 , t0 + 3∆T

2 ), (t0 + 3∆T
2 , t0 + 5∆T

2 ), etc.

These variations in the amplitude and phase response of the channel can be estimated

at several other frequencies using several tones. This is achieved by sending N tones in

the 6MHz band within 3MHz of FC. If the N tones sent have respective RF frequencies

FC +Fi (i = 0, . . . ,N−1), a constant amplitude of 1V and constant phase, Φi, at the output

of the transmitter, then the transmit signal, denoted sNRF(t) in this example, is given by

sNRF(t) =
N−1

∑
i=0

cos(2π(FC +Fi)t +Φi). (3.3)

The receive signal is then the resultant of the N tones whose amplitude and phase vary

as a function of time. The presence of thermal noise and noise impinging on the receive

antenna has the effect of corrupting the receive signal. The effect of this noise can be

modeled as zero-mean white additive Gaussian noise, denoted N (t). The receive signal,

rNRF(t), is then given by

rNRF(t) =
N−1

∑
i=0

Ai(t)cos(2π(FC +Fi)t +Θi(t))+N (t). (3.4)

Sending N CW tones is a suitable system to measure the variations in the amplitude and

phase response of the channel over intervals of length ∆T , where ∆T is less than 5ms.
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3.3 Estimating the Amplitude and Phase Of The Tones With A FFT

In this thesis, the fast Fourier transform (FFT) is used as the finite-time approximation to

the Fourier transform to estimate Ai(t) and Θi(t) at times ∆T seconds apart. To compute

estimates for Ai(t) and Θi(t), the signal used for the FFT must be derived from the receive

signal, rNRF(t) (3.4). The FFT applies to a discrete-time signal. Therefore, rNRF(t)

has to be sampled. This requires using an A/D converter at the receiver. In order to be

within the analog bandwidth of the A/D converter, rNRF(t) has to be down-converted to

an intermediate frequency (IF), FIF . The down-converted signal is denoted by rNIF(t).

If Fr is the sampling rate of the A/D converter then the signal obtained after sampling

rNIF(t), is given by

rNi f [n] =
N−1

∑
i=0

ai[n]cos(2π
(FIF +Fi)

Fr
n+θi[n])+η[n]

rNi f [n] =
N−1

∑
i=0

ai[n]cos(2π( fi f + fi)n+θi[n])+η[n], (3.5)

where ai[n] ≡ Ai(nTr) with Tr = 1/Fr, θi[n] ≡ Θi[nTr], and η[n] ≡ N (nTr). As ai[n0] and

θi[n0] are respectively equal to Ai(t0) and Θi(t0) with t0 = n0Tr, provided that no aliasing

occurs, then estimates of Ai(t) and Θi(t) from rNRF(t) can be obtained by computing

estimates of ai[n] and θi[n] from rNi f [n]. The FFT is used to compute estimates of ai[n]

and θi[n]. At this point, it is convenient to give some brief explanations on how the FFT

works in order to help the reader understand how the FFT is applied in this research to

obtain good estimates of ai[n] and θi[n]. This will lead us to introduce some new symbols.

The L-point FFT of a sequence x[n] such that x[n] = 0 outside the interval 0≤ n≤L−1

can be defined as

X [i] =

⎧⎪⎨
⎪⎩

∑L−1
n=0 x[n]e− j2π i

L n, 0 ≤ i ≤ L−1

0, otherwise,
(3.6)

where L is the number of samples used in computing the FFT (also referred to as the

length of the FFT), and L is a power of 2 number. From (3.6), the FFT operation con-

sists of projecting the signal x[n] onto the vectors e j2π 0
L n, e j2π 1

L n, . . ., e j2π L−1
L n. X [0] is

the complex factor obtained after projecting x[n] onto e j2π 0
L n, X [1] is the complex factor

obtained after projecting x[n] onto e j2π 1
L n, etc. These L vectors or complex exponential
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functions, e j2π i
L n, with 0≤ i≤ L−1, are mutually orthogonal over the period L since for 2

complex exponential functions, e j2π j
L n and e j2π k

L n with 0 ≤ j,k ≤ L−1, the inner product

∑L−1
n=0 e j2π j

L n(e j2π k
L n)∗ is equal to [8]

L−1

∑
n=0

e j2π j
L n(e j2π k

L n)∗ =

⎧⎪⎨
⎪⎩

L, if j = k

0, otherwise,
(3.7)

where (e j2π k
L n)∗ = e− j2π k

L n is the complex conjugate of e j2π k
L n. Furthermore, as the L

complex exponential functions, e j2π i
L n, form a complete orthogonal set [8] over the period

L, then x[n] can be exactly decomposed onto this set and is equal to

x[n] =

⎧⎪⎨
⎪⎩

1
L ∑L−1

i=0 X [i]e j2π i
L n, 0 ≤ n ≤ L−1

0, otherwise.
(3.8)

The orthogonality denoted by (3.7) is a very interesting property that is used when

devising the measuring system in order to obtain good estimates of ai[n] and θi[n]. Assume

that x[n] is made of the complex exponential functions, e j2π fin, where fi with i = 0, . . . ,N−
1 are the digital frequencies defined in (3.5). With this assumption, x[n] can be written as

x[n] =

⎧⎪⎨
⎪⎩

∑N−1
i=0 cie j2π fin, 0 ≤ n ≤ L−1

0, otherwise,
(3.9)

where the ci terms are complex, with magnitude, denoted ai, and phase, denoted θi such

that ci = aie jθi . If the digital frequencies, fi, are equal to i
L cycle/sample, then (3.9) can

be rewritten as

x[n] =

⎧⎪⎨
⎪⎩

∑N−1
i=0 aie jθie j2π i

L n = ∑N−1
i=0 aie j(2π i

L n+θi), 0 ≤ n ≤ L−1

0, otherwise,
(3.10)

In this decomposition, x[n] is expressed as a linear combination of the first N of the

L complex exponential functions, e j2π i
L n. To have N distinct frequencies fi, requires that

L ≥ N. The FFT of x[n] is then equal to

X [i] =

⎧⎪⎨
⎪⎩

Laie jθi, 0 ≤ i ≤ N −1

0, i ≥ N,

(3.11)
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and the amplitude, ai, and phase, θi, of the complex exponential functions of x[n] can

easily be computed. The first N complex exponential functions of the set were used to

construct x[n] but any of the L complex exponentials could have been chosen. However,

if the digital frequencies, fi, are not integer multiples of 1
L , then the complex exponential

functions, e j2π fin, of x[n] will not be “aligned” with the complex exponential functions,

e j2π i
L n, and cross-coupling between the components of x[n] will then occur. (3.11) will no

longer be valid, and it will then become very difficult to compute ai and θi without intro-

ducing a large error. Therefore, two important conditions have to be met when devising

the measuring system:

1. The frequencies of the tones in the transmitter must be chosen such that the digital

frequencies, fi, of the sampled receive signal, in the receiver are all integer multiples

of 1
L cycle/sample.

2. The FFT should be applied on the lowpass equivalent signal of rNi f [n] since this

signal is equal to [9]

rNl[n] =
N−1

∑
i=0

ai[n]e j(2π fin+θi[n]) +ηl[n], (3.12)

and thus is made of the complex exponential functions, e j2π fin, with amplitude ai[n]

and phase θi[n].

In (3.12), ηl[n] is the lowpass equivalent of η[n].

If L is sufficiently small such that ai[n] and θi[n] are essentially constant over the L

samples rNl[0], . . ., rNl[L− 1], then the estimates of ai[n] and θi[n] computed with the

L-point FFT of rNl[n] will be approximately equal to Lai[L
2 ] and θi[L

2 ]. An error is still

introduced in this computation due to the noise term, η l[n], in (3.12). L samples are taken

during an interval of LTr seconds. If LTr < ∆T , then ai[n] and θi[n] will be essentially

constant over the L samples used in the FFT since Ai(t) and Θi(t) were assumed to be

constant over ∆T second.

The L-point FFT of rNl[n] produces estimates of ai[n] and θi[n] using the first L sam-

ples of rNl[n]. This operation assumes that rNl[n] is zero outside the interval 0≤ n≤ L−1.

The next L samples can also be used to estimate ai[n] and θi[n] with a L-point FFT. This
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FFT is equal to ∑L−1
n=0 rl[L + n]e− j2π i

L with 0 ≤ i ≤ L− 1. Successive L-point FFTs can

then be applied to compute estimates of ai[n] and θi[n] L samples apart. In order to easily

tell which samples of rNl[n] are used in the L-point FFT, a new symbol is introduced.

rNw
l [n,k] denotes the truncated signal derived from rNl[n] that is equal to

rNw
l [n,k] =

⎧⎪⎨
⎪⎩

rNl[n+ kL], 0 ≤ n ≤ L−1

0, otherwise.
(3.13)

The L-point FFT of this signal is equal to ∑L−1
n=0 rNw

l [n,k]e− j2π i
L n with 0 ≤ i ≤ L−1, and

is denoted RNw
l [i,k]. The estimates of ai[n] and θi[n] computed with this FFT are denoted

âi[k] and θ̂i[k]. They are estimates of Ai((kL+ L
2 )Tr) and Θi((kL+ L

2 )Tr).

3.4 A DSP-Based Implementation of The Measuring System

Choosing the frequency of the tones to be transmitted is accurately done in the transmitter

by generating the transmit signal with digital signal processing. Digital signal processing

is also used in the receiver since the receive signal must be sampled, and the lowpass

equivalent signal must be constructed before L-point FFTs can be computed for that sig-

nal. Furthermore, imperfections in the transmitter and receiver cause the spectrum of

the sampled receive signal to be shifted and compressed/expanded. Reconstruction of the

spectrum is achieved with digital signal processing. This reconstruction is required to “re-

DISK

Transmitter /

Receiver
Processing

Signal

Digital

Acquisition System Post−Processing System

ri f [n] ri f [n]

Figure 3.1: Measuring System Block Diagram
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align” the complex exponential tones of the lowpass equivalent signal with the complex

exponential functions, e j2π i
L n, used in the L-point FFT. Digital signal processing (DSP) is

thus extensively used in this measuring system.

This DSP-based measuring system is composed of 2 sub-systems. This is illustrated

in Figure 3.1. The acquisition system is the portion of the system that goes in the field for

collecting the data. It includes the transmitter and the receiver. The transmitter generates

and transmits a RF signal made of several tones. The signal receive in the receiver is

sampled. The sampled receive signal is denoted ri f [n] and represents the data collected in

the field. The expression for ri f [n] is given in Chapter 5 and is based on the expression

of rNi f [n] given in (3.5). The acquired sampled signal, ri f [n], is stored on a disk during

the acquisition in the field. No digital signal processing other than sampling the receive

signal is performed by the acquisition system. The digital signal processing is done later.

Since the digital signal processing is done at a different time than the data collection, it is

referred to as post-processing. The post-processing system takes as input the signal, ri f [n],

recorded in the field by the acquisition system, and computes estimates of the amplitude

Ai(t) and phase Θi(t) of the tones.

3.4.1 The Acquisition System

Figure 3.2 shows the data flow diagram of the acquisition system. The IF discrete-time

signal generated in the transmitter is denoted si f [n]. The expression for si f [n] is given in

Chapter 4. si f [n] is converted to analog with a D/A converter and filtered with a recon-

struction filter. The reconstructed analog signal, denoted sIF(t), is then up-converted to

RF. The up-converted signal, denoted sRF(t), is then transmitted. The RF channel causes

the amplitude or phase or both of some or all the tones to vary as a function of time.

The MMDS channel is modeled as a filter with a time-varying impulse response. With

this model, the RF receive signal, denoted rRF(t), is the output of the channel filter and

sRF(t) its input. In the receiver, rRF(t) is down-converted to IF. This means that the center

frequency, FC, of rRF(t) is translated to FIF . The down-converted signal, denoted rIF(t),

is then sampled with an A/D converter. The IF sampled signal, ri f [n], is then stored on a

disk. The detailed operation of the acquisition system is covered in Chapter 4.
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3.4.2 The Post-Processing System

The IF discrete-time signal, ri f [n], is imported from disk into Simulink. The post-processing

consists of computing estimates of the amplitude, Ai(t) and phase, Θi(t), of the tones.

This is achieved by correcting the distortions introduced to ri f [n] by the acquisition sys-

tem, generating the lowpass equivalent signal of ri f [n], denoted rl[n], and computing es-

timates, âi[k] and θ̂i[k], of the amplitude and phase of the complex exponential tones of

rl[n], L samples apart. The detailed operation of the post-processing system is covered in

Chapter 5.

Converter
D/A Reconstruction

Filter

DISK

Down−Convert
To IF

To RF
Up−Convert

Transmitter

Receiver

Channel

MMDS

Filter

Converter
A/D

si f [n] sIF(t) sRF(t)

rRF(t)rIF(t)ri f [n]

Figure 3.2: Acquisition System Data Flow Diagram

26



4. THE ACQUISITION SYSTEM

This chapter first gives an overview of the acquisition system along with a description

of the hardware. The transmitter and receiver subsystems are described next.

4.1 Acquisition System Overview

The hardware is designed around the TRLabs FPGA-based DSP development board [10].

The heart of this board is an Altera APEX FPGA. There are 4 such boards, two of which

are used in this project. Two of the boards are populated with a 600,000 gate APEX

part and the other 2 are populated with a 1,000,000 gate APEX part. All boards include

two A/D converters and four D/A converters. Separate development boards are used for

the transmitter and receiver. One D/A converter is used in the transmitter, none in the

receiver. However, the extra D/A converters are very useful for debugging the Hardware.

Figure 4.1 presents the hardware block diagram of the acquisition system. Figure 4.2

shows some views of the acquisition system in the field. Hardware design of the transmit-

ter and receiver is covered next.

4.1.1 Hardware Design of The Transmitter

A TRLabs FPGA-based DSP development board is used to generate the digital IF trans-

mit signal, si f [n], and convert this digital signal to an analog signal with a D/A converter

running at 100 M samples / second (MSPS). The development board is also used to gen-

erate the clock for the D/A converter. The development board has a 10 MHz temperature

compensated oscillator that is connected to the clock line of the FPGA. The FPGA has

4 internal PLL units, one of which is used to synthesize a 100 MHz clock for the D/A

converter. As the tolerance of the external oscillator is ±2 ppm (20 Hz), it follows that

the tolerance of the 100 MHz clock is also ±2 ppm (±200 Hz).
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Figure 4.1: Acquisition System Hardware Block Diagram
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Figure 4.2: Views of The Acquisition System in The Field.
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A daughter board was built and connected to the TRLabs development board. The

daughter board has a band-pass SAW filter and a 20 dB gain amplifier. This board is

used as the reconstruction filter for the analog IF output of the D/A. The SAW pass-band

filter [11] is centered at 44 MHz and has a bandwidth of 6 MHz. The data sheet indicates

that there is a maximum of 1.25 dB p-p ripple in the pass-band and that the p-p phase

ripple is at most 4.5 degrees. The maximum insertion loss is 22 dB. The 20 dB gain

amplifier of the daughter board is used to compensate for the signal attenuation caused by

the SAW filter. The analog signal at the output of the reconstruction filter is up-converted

to a RF frequency of 2.5475 GHz, using an off-the-shelf IF up-converter designed for

MMDS application [12]. The analog IF signal has a signal level of 25.5 dBmV at the

input of the up-converter, which is in the 25 to 35 dBmV recommended range of the

up-converter. The level of the output RF signal is set to 0 dBmW or -10 dBmW per tone.

The RF signal is then amplified with an off-the-shelf power amplifier designed for

MMDS applications [12]. This amplifier has a fixed gain of 34 dB ± 2 dB and a gain

stability of ± 0.5 dB (10 to 400C) and a gain flatness of ± 0.3 dB over the 6 MHz band.

The power amplifier output is then used to drive the transmit antenna at 30 dBm.

4.1.2 Hardware Design of The Receiver

The RF signal impinging on the receive antenna is down-converted to a frequency of

269.5 MHz. The transceiver / down-converter is an off-the-shelf product designed for

MMDS applications. The oscillator of the transceiver / down-converter has a tolerance

of ±2 ppm. A second down-converter is used to translate this signal to an intermediate

frequency of 44 MHz. An external signal generator is used to synthesize the 313.5 MHz

frequency local oscillator signal required to translate the frequency to 44 MHz. A SAW

filter identical to the one in the transmitter is used to eliminate the high frequency portion

of the spectrum of the down-converted signal, and keep only the portion of the spectrum

in the 6 MHz band centered at 44 MHz.

An adjustable gain amplifier allows the user to manually adjust the strength of the IF

receive signal before sampling occurs. The quantization performed by the A/D converter

in effect adds noise to the digital signal [8]. The quantization noise does not depend on the
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signal power. To keep the SNR as high as possible, the receive signal should be amplified

to the point of saturating the A/D. The signal level could be adjusted so that the signal p-p

is equal to half the range of the A/D so that variation in the amplitude of the signal due to

the channel does not saturate the A/D converter.

The A/D converter is a 12 bit resolution device with a 500 MHz analog bandwidth. As

Fr is set to 20 MHz and the temperature compensated external oscillator has a tolerance of

±2 ppm, then the 20 MHz internally generated clock to operate the A/D converter has an

accuracy of ±40 Hz. The A/D voltage range VA/D is 2 V. The format of the digital output

is in two’s complement.

A data acquisition board (DAQ) mounted inside a computer is used to transfer the

receive signal samples from the FPGA into the computer memory in real time. These

samples are then written to the computer hard drive (H/D) after the acquisition of the

receive signal is complete. The I/O headers of the board where the FPGA is located

are used to connect a ribbon cable from the I/O pins of the FPGA to the I/O bus of the

DAQ board. The data acquisition card transfers 32-bit words from its input port to the

computer RAM through the PCI internal bus of the computer [13]. Tests showed that the

system could reliably store 200 M samples, which corresponds to 5 seconds of continuous

sampling.

4.1.3 The Antennas

The transmit antenna is a sectoral antenna with a 110 degree azimuthal angle and a 10

degree elevation angle. It is vertically polarized. It has a gain of 13.5 dBi at a frequency

of 2.54 GHz. The transmit antenna is shown in Figure 4.3.

The receive antenna is a directional antenna with a beamwidth of 12 degrees. It has

a parabolic grid array reflector. As shown in Figure 4.3, it is mounted to collect the

vertically polarized component of the incoming RF signal. The feed, as well as the grid,

is perpendicular to the ground. It has a maximum gain of 10 dBi at 2.54 GHz.
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4.2 The Transmitter of The Acquisition System

Noisy components in the acquisition system and noise impinging on the receive antenna

alter the transmit signal and make it more difficult to obtain accurate measurements. The

effect of the noise on the transmit signal is minimized by choosing parameters in the

transmitter that maximize the Signal-to-Noise Ratio (SNR) at the output of the transmit-

ter. This amounts to maximizing the signal power and minimizing the quantization noise

power within the 6MHz bandwidth of the transmit signal.

The signal power should be evenly distributed among the tones after the conversion to

an analog signal. For this to happen the tones of the digital signal must be pre-weighted

to account for the frequency response of the zero order hold. The zero-order hold inherent

to the D/A converter rolls off the higher frequency tones. The amplitude of the ith digital

tone is denoted by (1 + εi). The (1 + εi) terms are calculated as follows. The impulse

response of the zero order hold is given by

hD/A(t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t < Tt

0, otherwise,
(4.1)

Figure 4.3: Measuring System Antennas: Left - Transmit Antenna, Right - Receive An-

tenna
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where Tt = 1/Ft is the sampling period in the transmitter, expressed in units of sec-

onds/sample. The frequency response is given by the Fourier transform of the impulse

response which is expressed as

F {hD/A(t)}=
∫ Tt

0
e− jΩtdt

HD/A( jΩ) ≡ F {hD/A(t)}=
sin(ΩTt/2)

Ω/2
e− jΩTt/2, (4.2)

where HD/A( jΩ) is the frequency response of a zero order hold for Tt second. The nor-

malized frequency response, which is the actual response scaled so that the DC response

is unity, is given by

HD/A,norm( jΩ) = FtHD/A( jΩ), (4.3)

and the digital amplitudes 1+ εi of the tones with analog frequencies Ωi are set such that

1+ εi =
1

|HDA,norm( jΩi)| . (4.4)

This establishes the relative amplitude of the tones.

FCC and Industry Canada regulations for MMDS channels restrict the peak transmit

power. The transmitter is designed such that the peak power of the radiated RF signal

satisfies the regulation. In the transmitter, the signal is digitally generated and converted

to analog using a D/A converter and a reconstruction filter (see Figure 4.1). The signal

at the output of the reconstruction filter is amplified such that the maximum output of

the D/A converter corresponds to the maximum allowable instantaneous transmit power.

Assuming the board noise level has been minimized, the problem of maximizing the SNR

of the transmitted RF signal is equivalent to maximizing the SNR at the output of the D/A

converter.

There is no restriction on the phase of the tones so the phases φi, i = 0,1, . . . ,N, can

be chosen to maximize the SNR of the transmit signal. Since quantization noise power is

independent of the power level of the signal, the SNR is maximized if the signal power at

the output of the D/A converter is maximized. To maximize the signal power at the output

of the D/A converter, the phases of the tones should be chosen to minimize the peak to
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average power ratio. If all φi are chosen to be zero, then the peak-to-average-power ratio,

assuming that N tones are sent, is

RP/A =
(∑N−1

i=0 (1+ εi))2

∑N−1
i=0 (1+ εi)2/2

RP/A =
2(N +∑N−1

i=0 εi)2

N +2∑N−1
i=0 εi +∑N−1

i=0 ε2
i

(4.5)

for εi given by (4.4). RP/A is equal to 22 for the case of transmitting 10 tones (N = 10)

with phases equal to 0. If the phases φi of the transmitted tones are chosen such that

φi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π/2, i = 0,2,4,6,8,

π, i = 1,5,9,

0, i = 3,7,

(4.6)

RP/A is equal to 7.4. Although this combination of phase values is not optimal, calculation

of the peak to average power ratio for other phase combinations produced greater values

of the peak-to-average-power ratio. This suggests that the particular combination in (4.6)

produces a near minimum peak-to-average-power ratio value, given the 10 transmitted

tones. The top graph of Figure 4.4 is a plot of the digital samples sequence obtained for

the 10 transmitted tones when all φi are zero and the bottom graph displays the sequence

obtained if the phases φi are chosen according to (4.6).

The noise introduced by the transmitter is a combination of quantization noise and

the noise present on the printed circuit board where the D/A converter is located. The

quantization noise is considered first from a theoretical point of view. Measurements

made with a spectrum analyzer of the signal-to-noise ratio of the IF transmit signal are

given at the end of this section. The D/A converter is assumed to be a perfectly linear

uniform quantizer. Therefore, the error, qD/A[n0], is the difference between the quantized

value, sq,i f [n0], and the actual value of the signal, si f [n0], for any arbitrary integer n0. The

random variable q[n0] is uniformly distributed over the interval (−∆D/A/2,+∆D/A/2),

where ∆D/A is the step size of the quantizer [8]. As the mean and variance of a uniform

random variable over an interval (a,b) are respectively equal to (a+b)/2 and (b−a)2/12

[14], then with a = −∆D/A/2 and b = +∆D/A/2, the mean µq and variance σ2
q of random
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variable q[n0] are given by

E{q[n0]} = µq = 0,

E{(q[n0]−µq)2} = σ2
q =

∆2
D/A

12
, (4.7)

for any integer n0.

As the signal si f [n] contains more than three tones, the quantization errors qD/A[n]

are independent [8] and E{qD/A[n1]qD/A[n2]} = E{qD/A[n1]}E{qD/A[n2]} for n1,n2 ∈ I

with n1 �= n2. As the quantization errors have zero-mean and constant variance σ2
q, the

autocorrelation function [14] of qD/A[n] is given by

E{qD/A[n1]qD/A[n2]} = σ2
qδ[n1 −n2], (4.8)

for any integers n1 and n2. As E{qD/A[n1]qD/A[n2]} depends only on the difference be-

tween n1 and n2, qD/A[n] is a wide sense stationary (WSS) process, and (4.8) can be
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Figure 4.4: Digital Transmit Signal Sequence For Two Different Phase Combinations.
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rewritten as

Rqq[n] = σ2
qδ[n],n ∈ I , (4.9)

where Rqq[n] is the autocorrelation function of the random sequence qD/A[n]. The power

spectral density (PSD) of qD/A[n] is given by [14]

Sqq(e jω) = DTFT{Rqq[n]} = σ2
q, for −π < ω ≤ +π. (4.10)

The PSD of the discrete-time quantization noise power is uniform across ω with total

power σ2
q. In case of an analog signal at the output of an ideal lowpass reconstruction

filter with cutoff frequency Ft/2, the power outside the frequency range (−Ft/2,+Ft/2)

is eliminated and the power inside this range is colored by the zero-order hold in the D/A

converter. The PSD of the quantization noise in the analog domain is

Sqa,qa =

⎧⎪⎨
⎪⎩

σ2
q

Ω2/4
sin2(Ω/2Ft), |Ω| < πFt ,

0, otherwise.
(4.11)

The even function sin2(Ω/2Ft) monotonically increases for Ω in [0,πFt] since 0≤Ω/2Ft ≤
π/2 on that interval. Thus, for a given Ω in [0,πFt], an increase in Ft decreases the ar-

gument of sin2(Ω/2Ft), causing the function to decrease. Therefore, (4.11) shows that

increasing Ft to its practical limit minimizes the analog PSD of the quantization noise.

The quantization noise within the 6 MHz bandwidth of the signal, sIF(t), will then be

minimized. The data sheet of the D/A converter indicates a maximum sampling rate of

165 megasamples/second (MSPS). Due to timing constraint on the board where the D/A

converter is located, the maximum sampling rate is 100 MSPS. Therefore, Ft is set to 100

MSPS. Table 4.1 gives measurement of the signal-to-noise ratio (SNR) at the output of the

D/A converter for sampling rates of 20 MHz and 100 MHz. The SNR theoretical value is

56.5 dB. The measured values are 32 and 37 dB below the theoretical value. A thorough

check of the board showed no stuck bits that could have caused such a drop of the SNR.

Thus, a much lower SNR than the theoretical value arises because of the noise on the

printed circuit board. The layout of the D/A converter is not perfect. Some of the noise

generated by the digital chips of the board gets coupled with the analog signal generated

by the D/A converter.
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Table 4.1: Signal-to-Noise Ratio Measurements For IF Transmit Signal

Ft Noise Pwr Signal Total Noise Pwr SNR

(10kHz RBW) Tone Pwr Signal Pwr (6MHz BW)

100MHz 33.5dBµV 75dBµV 85.5dBµV 61.3dBµV 24.2dB

20MHz 18dBµV 54.5dBµV 65dBµV 45.8dBµV 19.2dB

The measurements indicate that the SNR increases by 5 dB when the sampling rate is

increased from 20 MHz to 100 MHz. If the frequency response of the D/A converter is

approximated by a rectangular function above the 6 MHz bandwidth of interest, then the

noise power due to quantization should be 7 dB lower when the sampling rate is increased

from 20 MHz to 100 MHz. An increase of the SNR by 5 dB instead of a 7 dB increase

suggests that another source of noise such as transient noise may be increasing as the

sampling rate increases.

4.3 The Receiver of The Acquisition System

The sampling rates in the transmitter and receiver need not be equal, but if they are not the

spectrum of the receive signal will be a frequency scaled version of the original spectrum.

The highest possible sampling rate was chosen for the transmitter. However, there is

something to gain by having a lower sampling rate in the receiver. The signal processing

can then be done at a lower rate. The lowest sampling rate that can be used is limited by

the sampling theorem for bandpass signals [15]. The bandpass sampling theorem states

that a bandpass signal with bandwidth B, must be sampled at a rate greater than 2B to

retain all the information in the signal. As the transmit signal bandwidth is 6 MHz, the

sampling rate in the receiver, Fr, has to be greater than 12 megasamples/second (MSPS).

Fr is chosen to be 20 MSPS to create guard band space that will make the filtering easier.

As the reconstruction filter used in the transmitter is centered at 44 MHz, the analog

IF frequency, FIF-transmitter, of the transmit signal is set to 44 MHz. This is achieved by

setting the digital IF frequency, fi f -transmitter, of si f [n] to 2.2
5 = 0.44 cycle/sample since

the D/A converter is at Ft = 100 MSPS and FIF-transmitter = fi f -transmitter ×Ft . The same
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intermediate frequency, FIF-receiver = FIF-transmitter = 44 MHz, is used in the receiver so

that a filter identical to the reconstruction filter in the transmitter can be used.

The top graph of Figure 4.5 shows a characterization of the spectrum of the 44 MHz

IF receive signal. A consequence of the bandpass sampling theorem is that sampling this

signal at Fr = 20 MSPS, produces a digital IF signal whose digital IF frequency, fi f -receiver,

is equal to

fi f -receiver = 44 MHz /Fr

= 2+
1
5

cycles/sample

=
1
5

cycles/sample,
−1
2

< f <
1
2
. (4.12)

Due to the inherent periodicity of the spectrum of a digital signal, the convention is to ex-

press the digital frequency in the interval (−1
2 , 1

2) cycles/sample or (−π,π) radians/sample.

fi f -transmitter and fi f -receiver are also related by

fi f -receiver = fi f -transmitter
Ft

Fr
−2 = 5 fi f -transmitter −2. (4.13)

The spectrum of a digital signal is expressed in the interval (−π,π) radians/sample or

(−0.5,0.5) cycle/sample. The minus 2 constant in (4.13) indicates that the spectrum of

the sampled IF receive signal is an aliased copy of the spectrum in the intervals (−2.5,−2)

and (2,2.5) cycles/sample. This is illustrated by the bottom graph of Figure 4.5 that shows

the spectrum of the digital IF receive signal obtained after sampling the analog IF receive

signal.

The ratio between Ft and Fr is equal to 5. This factor appears in front of fi f -transmitter

in (4.13) and results in a scaling of the frequency axis by a factor of 5. This is illustrated

in Figure 4.6. The top graph shows a characterization of the spectrum of the IF digital

transmit signal, si f [n]. The bottom graph shows how this spectrum appears in the receiver

after the IF receive signal has been sampled. The expansion of the spectrum due to the

frequency scaling by a factor of 5 can be easily seen. To summarize, if the spectrum of the

digital signal in the transmitter is denoted Rt(e jω), and the spectrum of the digital signal

in the receiver is denoted Rr(e jω), then these two spectra are related by the following
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equations.

Rt(e jω) = Rr(e j(5ω−4π)),−π ≤ ω < π,

Rr(e jω) = Rt(e j( 1
5 (ω+4π)),−π ≤ ω < π. (4.14)

The frequency scaling by a factor of 5 changes the frequency spacing between the

tones. The goal when devising the acquisition system is to have the frequency of the

complex exponential tones of the lowpass equivalent receive signal, rl[n], to be integer

multiples of 1
L cycle/sample. This is a requirement for the L-point FFT to produce good

estimates of the amplitude and phase of the receive tones (Section 3.3). Because of the

frequency scaling by a factor of 5, the frequency of the complex exponential tones in

the transmitter should be chosen such that they are integer multiples of 1
5L cycle/sample.

The expression for the digital transmit signal, derived from the results of this section and

Section 4.2, is given in the next section.

−2 −1 1 2

−40 −20 20 40

0

0

FIF-receiver = 44MHz

F (MHz)

f (Cycles/Sample)
ω (Radians/Sample)2π 4π−2π−4π

fi f -receiver fi f -receiver +2

Figure 4.5: Spectrum of Analog & Digital IF Receive Signals: Top - Analog Signal,

Bottom - Digital Signal
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4.4 The Digital Transmit Signal

The digital IF transmit signal,si f [n], is directly generated in the transmitter. si f [n] is equal

to

si f [n] =
+�5L×0.03	

∑
i=−
5L×0.03�

(1+ εi)cos((ωi f -transmitter +
2πi
5L

)n+φi), (4.15)

where ωi f -transmitter = 2π fi f -transmitter. The (1+ εi) and φi constants in (4.15) were defined

in Section 4.2. The analog IF signal, sIF(t), should be centered at 44 MHz with a 6

MHz bandwidth. This means that the tones of this signal must have analog frequencies

comprised between 41 and 47 MHz. The tones of si f [n] must then have digital frequencies

comprised between 41 MHz / Ft = 0.41 and 0.47 cycle/sample. Thus, the possible values

for i in (4.15) must be such that

0.41 < fi f -transmitter +
i

5L
< 0.47, (4.16)

which means that the values for i must be comprised in the interval

−
5L×0.03� ≤ i ≤ +�5L×0.03	. (4.17)

−0.5

−0.5

0.5

0.5

f (Cycles/Sample)

f (Cycles/Sample)

0.41
fi f -transmitter = 0.44

0.47

0.05
fi f -receiver = 0.2

0.35

0

0

Figure 4.6: Spectrum of Digital IF Transmit & Receive Signals: Top - Transmit Signal,

Bottom - Receive Signal
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The number of samples, L, for the FFT must be chosen such that L× Tr < ∆T , where

∆T = 5 ms is the largest interval of time over which the amplitude and phase of the tones

are assumed to remain constant, and Tr = 1
Fr

. As Fr = 20 MHz, then L can be as high as

100,000 samples. The size of L has implications on the processing time, so L is restricted

to

L = 256, (4.18)

and (4.17) becomes

−38 ≤ i ≤ +38. (4.19)

To have an analog IF of 44 MHz, the parameter, ωi f -transmitter, in (4.15) must be set to

2π×0.44 rad/sample. However, implementation is made easier if ωi f -transmitter is chosen

to make si f [n] periodic with period 5L = 1280. The value chosen for ωi f -transmitter has to

be near 2π×0.44 because the center frequency of the IF 6 MHz SAW filter is 44 MHz.

si f [n] is periodic with period 5×256 = 1280 if

ωi f -transmitter ∗1280 = 2kπ, (4.20)

where k is a positive integer. The closest integer k that satisfies (4.20) with ωi f -transmitter

≈ 2π×0.44 is k = 563. ωi f -transmitter is then set equal to

ωi f -transmitter = 2π
563
1280

= 2π×0.4398 rad/sample. (4.21)

This completes the definition of all the parameters in (4.15), and (4.15) can be written as

si f [n] =
38

∑
i=−38

(1+ εi)cos((2π
563
1280

+
2πi

1280
)n+φi). (4.22)

The expression for si f [n] includes all tones that can possibly be sent when L = 256. In

practice, the number of tones sent will be much less than 2× 38 + 1 = 77. This has to

do with the limitation in total transmit power. Decreasing the number of tones increases

the power allocated to each tone, which increases the signal-to-noise ratio (SNR) of each

tone, and reduces estimation error. Ten tones will be sent when collecting data in the field.

To make the post-processing easier, the tone at the center of the band is sent. This tone,

denoted the center tone, is at frequency ωi f -transmitter.
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4.5 Implementation of The Transmitter and Receiver

The internal ROM of the FPGA in the transmitter contains the 1280 samples representing

one digital period of the transmit signal, si f [n] (4.22). These samples are continuously

sent to the D/A converter along with a 100 MHz clock. The Verilog code that generates

the signal and 100 MHz clock is relatively simple. It includes a counter generating an

address for the ROM storing the sample sequence. This counter automatically resets to 0

after reaching 1279.

The FPGA in the receiver is programmed to output a 20 MHz clock for the 12-bit A/D

converter. The samples are sign-extended from 12 bits to 16 bits using two’s complement

format. These samples are then gathered in groups of two for 32-bit transfers between the

FPGA and the DAQ board using a 10 MHz clock, which is generated from the 20 MHz

clock with a frequency divider.

The LabVIEW Software is used to operate the DAQ board.
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5. THE POST-PROCESSING SYSTEM

The post-processing system is a non-real time processing system whose input is a

digital signal recorded on a disk by the acquisition system. The objective of the post-

processing is to compute estimates, âi[k] and θ̂i[k], of the amplitude and phase of the

receive tones. This can only be done after correcting any translations or distortions in-

troduced by the acquisition system. The post-processing system was implemented in

Simulink. The Matlab and Simulink source files make up Appendix C.

5.1 Distortions Caused by The Acquisition System

The frequencies of the oscillators that control the D/A converter in the transmitter and the

A/D converter in the receiver have some error, so the sampling frequencies Ft and Fr are

not exactly as they should be, and Ft �= 5×Fr. Suppose that the relationship between the

sampling rate, Ft , in the transmitter with respect to the sampling rate, Fr, in the receiver is

Ft = 5(Fr +∆Fr). (5.1)

Then from (5.1) and (4.14), a tone with frequency 1126
1280π+ 2πi

1280 at the output of the trans-

mitter will have, after being received and digitized in the receiver, a frequency

(
1126
1280

π+
2πi

1280
)
Ft

Fr
−4π = (

1126
1280

π+
2πi

1280
)
5(Fr +∆Fr)

Fr
−4π

(
1126
1280

π+
2πi

1280
)
Ft

Fr
−4π =

53
128

π+
2πi
256

(1+
∆Fr

Fr
)+

1126
256

π(
∆Fr

Fr
). (5.2)

The frequency spacing of the tones in the receiver becomes ( 1
256)× (1 + ∆Fr

Fr
). If ∆Fr =

0, the receive signal spectrum is as desired, and the center tone is also at the desired

frequency, 53
128π rad/sample. If ∆Fr > 0, then the spacing between the tones is larger

than 1
256 and the spectrum has been expanded. If ∆Fr < 0, then the spectrum has been

compressed. A translation of the compressed/expanded spectrum also occurs since the

frequency of the center tone is shifted by 1126
256 π(∆Fr

Fr
) rad/sample.
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The frequencies of the oscillators of the up and down conversion stages are also in

error. This causes an additional frequency shift of the center tone. This frequency shift

also varies with time, due to the frequency drift of these oscillators. If the frequency

deviation of the center tone from its desired frequency is denoted by ∆ωi f [n], and ai[n]

and θi[n] are the amplitude and phase of the receive tones, then the digital IF receive

signal, ri f [n], is given by

ri f [n] =
38

∑
i=−38

ai[n]cos

(
(

53
128

π+∆ωi f [n]+
2πi
256

× (1+
∆Fr

Fr
))n+θi[n]

)
+η[n], (5.3)

where η[n] is zero-mean white additive Gaussian noise.

In summary, the frequencies of the oscillators are imprecise. Imprecision of the fre-

quencies of the oscillators that control the sampling and the up/down-conversion stages

causes the spectrum of the sampled receive signal to be shifted and compressed/expanded.

The effect of compression/expansion is to change the frequency spacing so that the spac-

ing is (1/256) ∗ (1 + ∆Fr/Fr) instead of 1/256. The complex exponential tones of the

lowpass-equivalent receive signal are no longer harmonically related with fundamental

period 256. Once the harmonic relationship of the tones is destroyed, cross-coupling be-

tween the tones will occur when computing the FFT, causing a large error in the amplitude

and phase estimates of the tones.

5.2 Post-Processing System Overview

The frequency shift and compression/expansion, which was previously described can be

corrected by applying digital signal processing (DSP) techniques. This must be done

before the amplitudes and phases of the tones are extracted. Figure 5.1 shows a data flow

diagram of the whole post-processing system. This is a four pass system, in which the

previously recorded receive signal, ri f [n], is processed to extract a parameter, and then

reprocessed to extract another parameter, etc.

In the first pass ri f [n] is processed to estimate the frequency deviation, ∆ωi f [n], of

the center tone from the desired frequency, 53
128π rad/sample. The frequency drift of the

up/down-conversion stages can be significant over the 5 second measurement interval. In

the first pass, a digital phase-lock loop (DPLL) is used to generate estimates of ∆ωi f [n]
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over the 5 second duration of the signal. The estimates obtained are then averaged to yield

an estimate, ∆ωi f , of the frequency deviation, ∆ωi f [n].

In the second pass, the lowpass equivalent signal, rl[n], of ri f [n] is computed. rl[n]

can be recovered with a baseband down-converter. The baseband down-converter uses an

NCO whose frequency is set to 53
128π +∆ωi f . The down-converted signal, rl[n], is stored

on a disk so it can be used in the third pass. The deviation ∆Fr of the sampling rate Fr is

also estimated in this pass for use in the third pass. ∆Fr is estimated from rl[n].

The third pass consists of restoring the frequency spacing between the tones of rl[n]

to 1/L. This is done by resampling rl[n]. The resampled lowpass equivalent signal, rr
l [n],

is then temporary stored on disk for use in the fourth pass. The fourth pass consists of

computing estimates âi[k] and θ̂i[k] of the amplitude Ai(t) and phase θi(t) of the tones.

Pass 1: Estimation of ∆ωi f [n]

Pass 2: Estimation of ∆Fr

Pass 3: Resampling

Pass 4: Computation of âi[k] & θ̂i[k]

DISK

DISK

DISK

53
128π+∆ωi f

ri f [n]

∆Fr

rl[n]rl[n]

rr
l [n]rr

l [n]

âi[k]

θ̂i[k]

Figure 5.1: Post-Processing System Data Flow Diagram
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ybp[n]

BP(z) DPLL(z)

DPLL AVERAGEri f [n] ∆̂ωi f [n] ∆ωi f

Figure 5.2: System Block Diagram For Pass 1

5.3 Pass 1: Estimation Of ∆ωi f [n]

Figure 5.2 shows a block diagram of the system making up Pass 1. The recorded receive

signal, ri f [n], is first filtered with a bandpass filter in order to isolate the center tone.

The bandwidth of this filter is sufficiently wide to account for the frequency deviation

of this tone from its nominal frequency, 53
128π rad/sample. The bandwidth of this filter

was calculated from the knowledge of the tolerances of the oscillators used at the up and

down conversion stages. The tolerance of the oscillators at the up and down-conversion

stage are ±2 ppm. Therefore, the tolerance of the combination of the two oscillators is

±4 ppm. Since the RF frequency is 2.5 GHz, the maximum frequency deviation of the

receive signal is 2.5 GHz×4/106 = 10 kHz. A digital 100 kHz bandwidth bandpass filter

is obtained with three poles. The transfer function of this filter is

BP(z) =
KBP

∏3
i=1(1−2rcos(ωpi)z−1 + r2z−2)

, (5.4)

where ωp1 = 53
128π, ωp2 = 53

128π+ 5π
1000 , ωp3 = 53

128π− 5π
1000 , r = 0.99, and KBP = 10−74/20.

At the output of this filter, the tones adjacent to the center tone are attenuated by about 45

dB. The center tone is amplified 10 times and its phase is changed by φbp. The signal at

the output of the bandpass filter is denoted ybp[n]. If act [n] and θct [n] denote the amplitude

and phase of the center tone, then ybp[n] is given by

ybp[n] = 10×act [n]cos((
53
128

π+∆ωi f [n])n+θct[n]+φbp)+ηbp[n], (5.5)

where ηbp[n] is the noise resulting from filtering the white additive Gaussian noise present

in the recorded signal.

A digital phase-lock loop (DPLL) is used to estimate ∆ωi f [n] from the incoming sig-

nal, ybp[n], after each processed sample. This occurs after the DPLL has achieved phase-
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lock with ybp[n]. The instantaneous frequency values, ∆̂ωi f [n], synthesized by the DPLL

are averaged to yield an estimate ∆ωi f of ∆ωi f [n]. A brief description and analysis of the

DPLL used in this research is given in Appendix B.

Figure 5.3 shows a detailed block diagram of the Pass 1 processor. Two parameters,

denoted by “a” and “K” have to be set to configure the DPLL. The DPLL frequency lock

range, |∆FDPLL| depends on K. It is given by [16]

|∆FDPLL| = K ∗F(1)∗Fs/2π, (5.6)

where F(z) is the transfer function of the loop filter and F(1) is its DC response. As

indicated in Appendix B, the loop filter was designed such that F(1) = 1. The DPLL

frequency lock range has to be greater than 10 kHz at all times to guarantee that the

DPLL can phase lock on y[n], and also remain locked for the whole duration of the signal.

K is set to 8.75 ∗ 10−3, yielding |∆FDPLL| = 28 kHz. This assumes that the amplitude of

ybp[n] is constant and equal to 1 V.

PD

F(z)BP(z) K

NCO

DPLL

∑

ri f [n] ybp[n]

z−1

1−z−1sin

KF
1−2cos(0.8π)z−1+z−2

1−az−1

ωi f

∆ωi f

∆̂ωi f [n]

ni +1

N −ni

Figure 5.3: Detailed Block Diagram of System For Pass 1
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The phase detector is not a true phase detector. The output of the phase detector is the

product of the amplitude of ybp[n] and the phase difference between ybp[n] and the NCO. If

the amplitude of ybp[n] decreases, then the phase error increases to keep the loop in phase-

lock. A variation in the amplitude of ybp[n] by ∆A while the gain K of the DPLL remains

constant, can be seen as a variation of K by ∆K = ∆A ∗K/amplitude of ybp[n] while the

amplitude of ybp[n] remains constant. Therefore, a decrease in amplitude of ybp[n] from 1

V to 0.5 V can be seen as a decrease of K from 8.75∗10−3 to 4.375∗10−3. If K changes

to 4.375 ∗ 10−3, then the lock-range will change to 14 kHz. Therefore, for the incoming

signal, ybp[n], whose amplitude may vary between 0.5 V and 1 V due to tree foliage, the

DPLL frequency lock range is between 14 kHz and 28 kHz. This means that the DPLL

can achieve phase lock and can remain phase locked if at all times |∆ωi f [n]| < 2π 14 kHz
20 MHz

= 4.4∗10−3 radians/sample.

The parameter “a” of the loop filter is set to 0.999, such that the loop filter pole is

placed close to the unit circle, making the rolloff of the filter amplitude response stronger.

Figure 5.4 shows the frequency response amplitude of the DPLL for K = 8.75∗10−3. The

top plot shows the DPLL frequency response over the frequency range 0 to 10 MHz. The

sharp dip in the vicinity of 8 MHz is due to the single zero of the loop filter. This zero

is required to filter out the high frequency component generated by the phase detector. In

the bottom plot, the DPLL frequency response is shown over the frequency range 0 to 50

kHz.

Variations in ∆ωi f [n] obviously cause variations in the estimates ∆̂ωi f [n]. Similarly,

variations in the phase of ybp[n] (due to the tree foliage and noise, ηbp[n]) cause ∆̂ωi f [n]

to move around its true value, ∆ωi f [n]. A cumulative sum at index n is obtained by

summing the ∆̂ωi f [n] terms produced by the DPLL at discrete-time 0,1,2, . . . ,n. If this

cumulative sum is plotted as a function of n, it looks like a ramp function that is not

perfectly straight due to the variations in ˆ∆ωi f [n]. Figure 5.5 shows the type of ramp

function that is obtained by plotting the cumulative sums. In this figure, the ramp function

is plotted from n = 0 to n = 5∗104. This interval expressed in samples corresponds to an

interval of time of 2.5 ms. The slope of the straight line approximating this ramp function

can be obtained by averaging the ∆̂ωi f [n] over the 5 second duration of the signal. This
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average value is taken as the estimate, ∆ωi f , of ∆ωi f [n]. This slope is calculated using two

points of this ramp function. To reduce the error on the slope calculation, the two points

are taken as far as possible from each other. This is achieved by taking the last point

of the waveform and the first point of the waveform after the DPLL has phase-locked to

ybp[n]. As it can be noticed on Figure 5.5, the slope of the ramp function between n = 1

and n ≈ 7000 is incorrect. This is because the DPLL hasn’t phase-locked to the signal yet

and is still hunting. If ni represents the number of samples required for the DPLL to lock,

and N is the length of ybp[n], then ∆ωi f is given by

∆ωi f =
1

N −ni
(

N

∑
i=0

∆̂ωi f [n]−
ni

∑
i=0

∆̂ωi f [n])

∆ωi f =
1

N −ni

N

∑
i=ni+1

∆̂ωi f [n] (5.7)
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Figure 5.4: DPLL Frequency Response Amplitude for a = 0.999 and K = 8.75∗10−3
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5.4 Pass 2: Estimation Of ∆Fr

This pass is composed of two processes. The first process is a baseband down-converter

that recovers the lowpass equivalent signal, rl[n], of ri f [n]. The second process estimates

∆Fr by using a DPLL that phase-lock on one of the tones of rl[n]. These two processes

are cascaded, which means that the output of the baseband down-converter is fed to the

input of the process estimating ∆Fr. This is illustrated in Figure 5.6.

The NCO frequency of the baseband down-converter is set to 53
128π+∆ωi f before the

down-conversion starts. It has a phase, φnco, with respect to the incoming signal. φnco

can be any value and therefore can be seen as a random variable uniform over (0,2π).

Figure 5.7 shows a block diagram of the baseband down-converter. Two low-frequency

signals are separately generated by using a mixer and a lowpass filter (LPF). Lowpass

filters are used to remove the high frequencies generated by the mixers. These filters are

linear phase FIR filters designed using the Matlab Remez function. The mixers used to
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Figure 5.5: Typical Ramp Function Made of The Cumulative Sums of ∆̂ωi f [n].
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ri f [n] rl[n]
∆Fr

∆Fr

Figure 5.6: System Block Diagram for Pass 2

generate these two signals are set to the same frequency but have their phase separated

by π/2. Depending on which of the two mixers is taken as the reference, one of the low

frequency signals is called the in-phase signal and the other one the quadrature signal.

In this project, the mixer with the cosine function is taken as the reference. The signal

obtained with this mixer after filtering, is denoted p[n]. The other signal is denoted q[n].

These two signals are combined to yield the baseband signal

rl[n] = p[n]− j ∗q[n]. (5.8)

j

ri f [n]

cos(( 53
128π+∆ωi f +φnco)n)

sin(( 53
128π+∆ωi f +φnco)n)

LPF

LPF

p[n]

q[n]

rl[n]
NCO

53
128π+∆ωi f

Figure 5.7: System Block Diagram for Process 1 of Pass 2 (Baseband Down-Converter)
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It can be demonstrated that rl[n] is the lowpass equivalent signal of ri f [n] (5.3) weighted

by 0.5 [9]. rl[n] is then given by

rl[n] =
1
2

38

∑
i=−38

ai[n]e j(θi[n]−φnco)e j(2πi/256)(1+∆Fr/Fr)n +ηl[n]. (5.9)

Figure 5.8 shows the spectrum of ri f [n] and of rl[n]. Recovering rl[n] from ri f [n] con-

sists in the frequency domain of shifting the spectrum of ri f [n] to the left by ωi f +∆ωi f

rad/sample, and filtering out the high frequency components of the shifted spectrum.

The problem under discussion in this section is the estimation of ∆Fr. This is done

using one of the complex exponential tones. The question is which tone should be used. If

tone number i is selected and ωi denotes its nominal frequency then from (5.3), its actual

frequency, denoted ω′
i, is equal to

ω′
i = ωi(1+

∆Fr

Fr
). (5.10)

ω′
i can also be expressed as

ω′
i = ωi +∆ωi, (5.11)

0

0 ω (Rad/Smpl)

ω (Rad/Smpl)

2π

2ππ

π−2π

−2π

−π

−π

ωi f +∆ωi f

Figure 5.8: Spectrum of Digital IF Receive Signal (Top) & Digital Lowpass Equivalent

Receive Signal (Bottom)
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where ∆ωi is the frequency deviation from ωi. From (5.10) and (5.11),

∆Fr = Fr
∆ωi

ωi
. (5.12)

(5.12) indicates that an estimate of ∆Fr can be obtained from an estimate of ∆ωi. If

var∆Fr denotes the variance of the estimator of ∆Fr, and var∆ωi denotes the variance of the

estimator of ∆ωi, then from (5.12)

var∆Fr = F2
r

var∆ωi

ω2
i

. (5.13)

Assuming the variance of the estimator of ∆ωi is the same for all the tones, then from

(5.13), the variance of the estimator of ∆Fr is minimized by maximizing ωi. This is done

by selecting the tone with the highest frequency. The second process estimates ∆ωi by

using a DPLL that is phased-lock on tone number i.

Figure 5.9 shows a block diagram of the second process. The lowpass equivalent

signal, rl[n], is first filtered with a bandpass filter to isolate the selected tone, which is the

complex exponential e jωi with the highest positive frequency. The frequency response of

this filter doesn’t show the Hermitian symmetry since this filter passes only the complex

exponential e jωi . Therefore, the impulse response of this filter is complex. It is a three

pole filter with a passband gain of 10. It has transfer function

BPc(z) =
KBP

∏3
i=1(1− re jωpi z−1)

, (5.14)

where ωp1 = ωi, ωp2 = ωi + 5π
1000 , ωp3 = ωi − 5π

1000 , r = 0.99, and KBP = 10−88/20. This

filter is similar to the bandpass filter used in Pass 1. In this filter, all the poles are located

in the upper-half of the z-plane near e jωi . The output of the bandpass filter, zbpc, is fed to

a DPLL which is used to estimate ∆ωi.

The DPLL that estimates ∆ωi is similar to the DPLL used in Pass 1 except that it

operates on a complex input signal. The modified PLL works as follows. A complex

exponential e− jθNCO[n] is generated from an NCO. This signal is multiplied with zbpc[n].

Only the imaginary component of the product is passed to the loop filter. The transfer

function of the loop filter is similar to the DPLL loop filter of Pass 1, except that no zeros

are required since the product of these two complex exponentials doesn’t create a high
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frequency component. The transfer function of the loop filter is given by

F2(z) =
1−a

1−az−1 . (5.15)

As for Pass 1, the ∆̂ωi[n] terms generated by the DPLL are averaged to yield an estimate

of ∆ωi. This estimate is denoted ∆ωi and is equal to

∆ωi =
1

N −ni

N

∑
i=ni+1

∆̂ωi f [n], (5.16)

where ni is the number of samples required for the DPLL to lock. From (5.12), the

estimate, ∆Fr, of ∆Fr is then given by

∆Fr = Fr
∆ωi

ωi
. (5.17)

PD

imag

F2(z)BPc(z) K

NCO(z)

∑

DPLL for Complex Signals

rl[n] zbpc[n]

∆̂ωi[n]z−1

1−z−1e− jθNCO[n]

1−a
1−az−1

ωi

∆Fr

Fr
ωi

ni +1

N −ni

Figure 5.9: System Block Diagram for Process 2 of Pass 2 (Estimate ∆Fr[n])
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5.5 Pass 3: Resampling

The frequency spacing between the complex exponential tones of rl[n] can be restored to

1/256 by resampling rl[n] at a different sampling rate. One way to do this is to first convert

the complex digital signal to a complex analog signal using two D/A converters, one for

the real and one for the imaginary component, and then resample the analog signals at

rate Fr + ∆Fr. Since ∆Fr is not known exactly, the signal is resampled at rate Fr + ∆Fr.

From (5.9), the resampled signal is then equal to

rl[n] =
1
2

38

∑
i=−38

ai[n]e j(θi[n]−φnco)e
j(2πi/256)Fr+∆Fr

Fr
Fr

Fr+∆Fr
n +ηr

l [n],

which, if ∆Fr = ∆Fr is equal to

1
2

38

∑
i=−38

ai[n]e j(θi[n]−φnco)e j(2πi/256)n +ηr
l [n]. (5.18)

This shows that the operation of resampling does restore the frequency spacing between

the tones.

The resampling can be and is more accurately done digitally. The signals, p[n] and

q[n], do not have to be physically converted to analog and then back to digital with D/A

and A/D converters to perform the resampling.

The digital resampling is performed on real and imaginary parts separately. Digital

resampling is carried out by interpolating between the samples of the signal. Interpola-

tion can be achieved by performing piecewise interpolations between the signal samples.

Low-order polynomials can be used for these piecewise interpolations. A cubic spline

interpolation, which uses 3rd order polynomial such that the first and second derivatives

of the piecewise functions on each side of the samples are equal [17], is used as the inter-

polator. The new sampling period is

T ′
r =

Tr

Fr +∆Fr
=

1

1+ ∆Fr
Fr

. (5.19)

The resampled lowpass equivalent signal, rr
l [n] is approximately

rr
l [n] � 1

2

38

∑
i=−38

ai[n]e j(θi[n]−φnco)e j(2πi/256)n +ηr
l [n]. (5.20)
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5.6 Pass 4: Computation of âi[k] and θ̂i[k]

The estimated values, âi[k] and θ̂i[k], are obtained by computing a series of 256-point

FFT of rr
l [n] in successive windows of length 256. To do so, rr

l [n] is truncated with a

rectangular window, w[n−256× k], where

w[n] =

⎧⎪⎨
⎪⎩

1, 0 ≤ n < 256

0, otherwise.
(5.21)

Using the symbols introduced at the end of Section 3.3, the kth FFT is performed on data

rrw
l [n,k] =

⎧⎪⎨
⎪⎩

1
2 ∑38

i=−38 ai[n]e j(θi[n]−φnco)e j(2πi/256)n +ηr
l [n], k×256 ≤ n < (k +1)×256

0, otherwise.
(5.22)

The FFT is a fast implementation of the discrete Fourier Transform (DFT). The 256-point

DFT of rrw
l [n,k] is given by

Rrw
l [i,k] =

255

∑
n=0

rrw
l [n,k]e− j 2πin

256 , i = 0, . . . ,255. (5.23)

The amplitude and phase estimates of ai[k] and θi[k] are then given by

âi[k], θ̂i[k] =

⎧⎪⎨
⎪⎩

1
256 |Rrw

l [i,k]|,∠Rrw
l [i,k]−φnco, 0 ≤ i ≤ 38

1
256 |Rrw

l [i+256,k]|,∠Rrw
l [i+256,k]−φnco, −38 ≤ i ≤−1.

(5.24)
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6. ESTIMATION OF THE ERROR ASSOCIATED WITH THE

MEASUREMENTS

The previous chapters described the measuring system along with the method used to

compute estimates of the amplitude and phase of the tones. Because of the noise generated

by the acquisition system and the noise impinging on the receive antenna, measurements

of the amplitude and phase of the tones will be in error. This chapter deals with the

estimation of the variance (mean square of the error) associated with these measurements.

The next chapter shows how these measurements can be further processed to reduce the

error and obtain better estimates of the amplitude and phase of the tones.

6.1 Effect of White Additive Gaussian Noise

As indicated in Chapter 3, the noise corrupting the receive signal can be represented by

zero-mean, stationary, white additive Gaussian noise. The receive signal is filtered with a

6 MHz bandpass SAW filter and then sampled. For the analysis, this filter is assumed to

be an ideal bandpass filter. The spectral constant of the noise, after sampling, is denoted

σ2
η. The purpose of this section is to first derive equations, (6.12) and (6.15), to determine

the variance of the amplitude and phase estimates of the tones, due to the noise. The

second part of this section consists of verifying the validity of these equations with an

experiment.

Equations (6.12) and (6.15) are based on the assumption that σ2
η is known. This means

that in order to use these equations, σ2
η will have to be determined. The top graph of

Figure 6.1 shows a characterization of the power spectrum of the noise in the sampled

receive signal, ri f [n], which is an IF signal. The post-processing system recovers the

complex baseband signal, rl[n], by multiplying ri f [n] with a complex exponential with

amplitude 1, and filtering to remove the image at twice the IF. For the noise, this operation

has the effect of shifting to baseband the noise power spectrum and removing the high-

frequency component. The bottom graph of Figure 6.1 shows a characterization of the
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noise power spectrum in rl[n]. The spectral constant of the noise remains unchanged. A

resampling of rl[n] also occurs to restore the correct frequency spacing between the tones.

The resampled signal is denoted rr
l [n]. The noise introduced by the resampling operation

is negligible. The spectral constant, σ2
η, can then be determined by computing estimates

at several frequencies of the noise power spectrum in rr
l [n], and averaging these estimates.

Let Sxx(e jω) denote the power spectrum of the noise sequence, xl[n], in rl[n]. The first

step in deriving (6.12) and (6.15) is to find the value of the average power in Xl[i] which

is the ith term of an L-point (L = 256) DFT of xl[n]

Xl[i] =
L−1

∑
n=0

xl[n]e− j2π i
L n. (6.1)

The average power in Xl(i) can be determined by taking the expectation of |Xl[i]|2, yield-

ing

E [Xl[i]X∗
l [i]] = E

[
L−1

∑
n=0

L−1

∑
m=0

xl[n]x∗l [m]e− j2π i
L (n−m)

]
, (6.2)

0

0 ω (Rad/Smpl)

ω (Rad/Smpl)

π

π

−π

−π

σ2
η

σ2
η

Figure 6.1: Noise Power Spectrum Before And After Post-Processing.
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where X∗
l (i) denotes the conjugate of Xl(i). If k = m−n, equation (6.2) becomes

E [Xl[i]X∗
l [i]] = E

[
L−1

∑
n=0

L−1−n

∑
k=−n

xl[n]x∗l [n+ k]e j2π i
L k

]

E [Xl[i]X∗
l [i]] =

L−1

∑
n=0

L−1−n

∑
k=−n

Rxx[k]e j2π i
L k, (6.3)

where Rxx[k] is the autocorrelation function of the noise and is equal to [14]

Rxx[k] = E[xl[n]x∗l [n+ k]] =
1

2π

∫ π

−π
Sxx(e jω)e jωkdω. (6.4)

Replacing 6.4 in 6.3 yields

E [Xl[i]X∗
l [i]] =

L−1

∑
n=0

L−1−n

∑
k=−n

1
2π

∫ π

−π
Sxx(e jω)e jωkdωe j2π i

L k

E [Xl[i]X∗
l [i]] =

1
2π

∫ π

−π
Sxx(e jω)

L−1

∑
n=0

L−1−n

∑
k=−n

e j(ω+2π i
L )kdω. (6.5)

Using the fact that for two integers p and q with q > p, ∑q−1
n=p ean = eap−eaq

1−ea , (6.5) becomes

E [Xl[i]X∗
l [i]] =

1
2π

∫ π

−π
Sxx(e jω)

(
1− e j(ω+ 2πi

L )L

1− e j(ω+ 2πi
L )

)∗(
1− e j(ω+ 2πi

L )L

1− e j(ω+ 2πi
L )

)
dω

E [Xl[i]X∗
l [i]] =

1
2π

∫ π

−π
Sxx(e jω)

⎛
⎝sin( (ω+ 2πi

L )
2 L)

sin( (ω+ 2πi
L )

2 )

⎞
⎠

2

dω. (6.6)

Most of the area obtained by integrating the function ( sinLω
sinω )2 belongs to its main lobe.

This lobe can be approximated by a rectangle of height L2 and width 2π
L . The area of this

rectangle is then equal to 2πL, and the average power, E
[
Xl[i]X∗

l [i]
]
, of the DFT of the

noise at 2πi
L rad/sample is approximately equal to

E [Xl[i]X∗
l [i]] � 1

2π

∫ π

−π
2πLδ(ω+

2πi
L

)Sxx(e jω)dω (6.7)

E [Xl[i]X∗
l [i]] � Lσ2

η.

It is convenient at this point to use the symbols of Section 5.6. The kth FFT performed

on the noise sequence xrw
l [n,k] is denoted by Xrw

l [i,k], and

E
[|Xrw

l [i,k]|2]� Lσ2
η, i = [0, . . . ,L−1] (6.8)
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Also from Section 5.6, âi[k] and θ̂i[k] are the amplitude and phase estimates of tone num-

ber i, that are obtained by taking the DFT, Rrw
l [i,k], of rrw

l [n,k]. Because the noise is

additive, Figure 6.2 shows that Rrw
l [i,k] can be viewed as a phasor equal to the sum of two

phasors, V [i,k] with magnitude Lai[k] and phase θi[k]−φnco and Xrw
l [i,k], where Xrw

l [i,k]

makes an angle α[i,k] with V [i,k]. This angle can be any value in (0,2π), and can then be

seen as a random variable independent of Xrw
l [i,k] and uniform over (0,2π).

The effect of the noise on the magnitude of Rrw
l [i,k] can be measured by projecting

Xrw
l [i,k] onto V [i,k], yielding

|Rrw
l [i,k]| = Lai[k]+Xrw

l [i,k]cos(α[i,k]). (6.9)

The mean of |Rrw
l [i,k]| is equal to

E [|Rrw
l [i,k]|] = E [Lai[k]]+E [Xrw

l [i,k]cos(α[i,k])]

E [|Rrw
l [i,k]|] = Lai[k] (6.10)

since E
[
Xrw

l [i,k]cos(α[i,k])
]
= E

[
Xrw

l [i,k]
]
E [cos(α[i,k])]= 0. The variance of |Rrw

l [i,k]|

Rrw
l [i,k]

Xrw
l [i,k]

V [i,k]

Lai[k]

θi[k]−φnco

α[i,k]

R eal

Im

Figure 6.2: Effect of Noise on Amplitude And Phase Estimates.
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is given by

Var(|Rrw
l [i,k]|) = E

[|Xrw
l [i,k]|2]E [cos2(α[i,k])

]
Var(|Rrw

l [i,k]|)� 1
2

Lσ2
η. (6.11)

From (5.24) and 6.11, the variance of the amplitude estimates, âi[k], due to the noise is

then given by

Var(âi[k]) � 1
2L

σ2
η. (6.12)

The effect of the noise on the phase of Rrw
l [i,k] can be measured as follows. The phasor

component Xrw
l [i,k]sin(α[i,k]) is perpendicular to V [i,k], and therefore only affects the

phase. As the change in phase due to Xrw
l [i,k]sin(α[i,k]) is small, then the phase of

Rrw
l [i,k] is given by

∠Rrw
l [i,k] = θi[k]−φnco +

Xrw
l [i,k]sin(α[i,k])

Lai[k]
. (6.13)

The mean of ∠Rrw
l [i,k] is equal to θi[k]−φnco, and the variance of ∠Rrw

l [i,k] is given by

Var(∠Rrw
l [i,k]) =

E
[|Xrw

l [i,k]|2]E [sin2(α[i,k])
]

L2a2
i [k]

Var(∠Rrw
l [i,k]) � 1

2La2
i [k]

σ2
η. (6.14)

From (5.24) and (6.14), the variance of the phase estimates, θ̂i[k], due to the noise is then

given by

Var
(
[θ̂i[k]

)� 1

2La2
i [k]

σ2
η. (6.15)

The method used to show that (6.12) and (6.15) are valid involves a direct computation

and an indirect computation of the variance of âi[k] and θ̂i[k]. These computations are

made on the measured signal. If the signal has traveled through foliage than the tones

will vary in amplitude and phase. It then becomes very difficult to estimate the variance

of the amplitude and phase estimates due to the noise in the system. The action of the

tree foliage on the signal can be eliminated by directly connecting the transmitter to the

receiver with a coaxial cable and an attenuator. In this configuration, the amplitude and
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phase of each tone remain constant during the acquisition period, and any variation in the

amplitude and phase estimates is then only due to the noise. The acquired signal is fed to

the post-processing system to generate the amplitude and phase estimates, âi[k] and θ̂i[k].

The direct computation consists of computing the variance of the sequences, âi[k] and

θ̂i[k]. The indirect method uses (6.12) and (6.15) to estimate the variance of these se-

quences after computing an estimate for σ2
η. The results obtained with both computations

are then compared.

For the direct computation, best results are obtained if the variance of âi[k] and θ̂i[k]

is computed from independent observations. Before the SAW filter in the receiver, the

noise can be considered white. The SAW filter and the low-pass filter of the baseband

down-converter in the post-processing stage color the noise. To determine the amount of

correlation introduced by the filtering, the combination of these filters is modeled as an

ideal low-pass filter, with bandwidth equal to 2π 38
256 rad/sample (4.19) and the autocor-

relation sequence of the noise, xl[n], at the output of this filter is calculated. It is equal

to

1
2π

σ2
η

∫ 2π 38
256

−2π 38
256

e jωndω = σ2
η

sin(38π
128n)

πn
. (6.16)

For n > 650, the autocorrelation sequence is less than 0.005×σ2
η. It can be assumed

that xl[650× n] is made of independent samples. Since X rw
l [i,k] is computed with 256

consecutive elements of xl[n], then Xrw
l [i, p] and Xrw

l [i,q] (p and q integers) will be inde-

pendent if there are at least 650 values between the values used in X rw
l [i,q] and the values

used in Xrw
l [i, p]. Therefore, the values of Xrw

l [i,5× k] are independent, and the values of

Rrw
l [i,5× k] can be assumed independent.

For the signal used in this experiment, 10 tones are sent. They are separated in

frequencies by 6
256 cycle/sample, and correspond in (4.19) to i = −30, i = −24, . . . , i =

0, . . . , i = 24. For the direct computation, 500 values along index k of Rrw
l [i,5×k] are used

to compute the variance of âi[k] and θ̂i[k], for each of the 10 tones (i =−30,−24, . . .). For

the indirect computation, index k covers the same range and the values, |Rrw
l [i,5× k]|2,

are averaged along index k to estimate σ2
η. A total of 57 values are obtained by varying i

from -31 to 25 and are displayed with stars in Figure 6.3. These values, except the ones
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for i = −30,−24, . . . (set to 0 in the plot), are averaged to yield the estimate of σ2
η which

is shown in Figure 6.3 with a horizontal line.

Figure 6.4 shows the results obtained for both computations. The top graph shows

with stars the values obtained with the direct computation for the variance of âi[k], and

the horizontal line corresponds to the estimate of the variance of âi[k] obtained using

(6.12). For 5 out of the 10 tones, the results are similar since they differ by less than 0.8

dB (bottom graph). For the other tones, the results are not as close since they differ by up

to 2 dB. A closer look with a spectrum analyzer reveals the presence of several spurious

tones in the band. Spurious tones are present in the vicinity of the tones for which the

results differ. The error on the amplitude estimates calculated using (6.12) is found to

range between 4.3% and 5.4% of the actual amplitude of the tones. When the variance is

computed from 500 independent amplitude estimates, the error on the amplitude estimates

is found to range between 3.5% and 5.7%. This shows that (6.12) is a valid equation to

accurately estimate the variance of âi[k] due to the Gaussian noise.

−30 −24 −18 −12 −8 0 8 12 18 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

index i

¯
|R

rw l
[i,

5
×

k]
|2

Figure 6.3: Noise Power Spectrum Estimates.
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The top graph of Figure 6.5 shows the 500 independent estimates used to compute

the variance of â24[k], along with horizontal lines corresponding to the mean of these 500

estimates plus or minus the square root of the variance of â24[k] that was estimated using

(6.12). The middle graph shows the results obtained for i = −24, and the bottom graph

for i = 18. For the top graph, 68% of the 500 estimates are within the horizontal lines,

55% of the estimates for the middle graph, and 81% of the estimates for the bottom graph.

The results obtained to estimate the variance of θ̂i[k] are shown in Figure 6.6. The

results obtained with the direct computation are shown with stars, and the results obtained

with the indirect computation are shown with circles. The results obtained with the direct

computation are 10 times higher. This suggests that an extra source of noise is present in

the system. This noise source prevents us from accurately computing the variance of θ̂i[k]

due to the Gaussian noise. However, (6.15) can be used to accurately estimate this vari-

ance, as illustrated by the bottom graph of Figure 6.6. This graph shows the 500 estimates
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Figure 6.4: Direct & Indirect Computation Results For The Variance Amplitude Esti-

mates.
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that were used to compute the variance of θ̂0[k], along with horizontal lines corresponding

to the mean of these 500 estimates plus or minus the square root of the variance of θ̂0[k]

calculated using (6.15). These lines surround quite well the measurements for k between

210 and 240, suggesting that the value calculated with (6.15) is quite accurate.

It is shown next that this extra source of noise is introduced by the IF up-converter and

corresponds to an angle modulation of the tones.

6.2 Imperfections in Up-Converter

Experiments in the lab showed that the commercial up-converter used to translate the fre-

quency from IF to RF does not work perfectly. It introduces unwanted phase modulation.

The effect is the phase of the tones are modulated with a low-frequency sinusoid plus

harmonics whose amplitude varies with time. This was observed by feeding a single tone

at 44 MHz to the up-converter with a signal generator, and measuring the RF output of
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Figure 6.5: Plots of amplitude sequence estimates, âi[5× k] (top i = 24, middle i = -24,

bottom i = 18), along with lines at one standard deviation from the mean.
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the up-converter with a spectrum analyzer.

For the measurements described in this section, a signal made of 10 tones is generated

by the transmitter and up-converted to a RF frequency of 2.5457 GHz. The RF output

of the transmitter is connected to the RF input of the receiver with a coaxial cable and a

50 dB attenuator. The adjustable gain in the receiver is manually set such that the power

level of the tones at IF is 95dBµV . Some of the sideband peaks shown in Figures 6.7

and 6.8 may be caused by non linearities in the amplifiers. However, only the sideband

peaks contributing to this unwanted phase modulation are considered in this section.

To analyze this phase modulation, two types of measurements are made. The first

measurement uses the HP 4195A network/spectrum analyzer [18] connected to the input

of the A/D converter, in the receiver. It is set to scan a region of 1.2 kHz around one of the

tones which is located in the center of the band. Figure 6.7 shows the spectrum analyzer

display for one of the scans. The tone of interest appears in the middle of the display. The

scaling along the frequency axis is 120 Hz/div. The resolution bandwidth is 3 Hz and the
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Figure 6.6: Direct & Indirect Computation Results For The Variance Phase Estimates.
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time to span 1.2 kHz with this spectrum analyzer is 37.9 minutes. The vertical scale is 6

dB per division.

A digital measurement is performed by computing phase estimates of the tone with

a 256-point FFTs. A sequence of phase estimates is then obtained. This sequence is

denoted by θ̂s[k]. Figure 6.8 shows a plot of the spectrum amplitude of θ̂s[k]. This plot

was obtained by performing a 32768-point FFT of θ̂s[k]. The frequency resolution for

this FFT expressed in Hz is Fr
256∗32768 = 2.38 Hz. This plot shows several peaks. Five

of these peaks correspond to analog frequencies of approximately 116 Hz, 181 Hz, 233

Hz, 467 Hz, and 493 Hz. Peaks at 120 Hz, 180 Hz, 240 Hz, and 480 Hz away from the

frequency of the tone can also be seen in Figure 6.7. A peak at DC is also visible in

Figure 6.8. This suggests that frequencies below 2 Hz are present in θ̂s[k]. There should

be corresponding sideband peaks at less than 2 Hz from the tone but these peaks are not

visible in Figure 6.7. A possible explanation is that the low-frequency variations in θ̂s[k]

Figure 6.7: Spectrum Analyzer Display
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are due to the frequency drift of the oscillators in the up/down converters.

In order to show how the peaks in Figure 6.8 are related to the secondary peaks in

Figure 6.7, it is convenient at this point to derive some mathematical expressions for the

signal corresponding to the tone. From Figure 6.7, if Ω1,Ω2, . . . ,Ωn denote the analog

frequencies of the sideband peaks, and Ω0 is the nominal analog frequency of the tone,

then a possible expression for the time waveform of the tone is

xa(t) = A0 cos(Ω0t)+
n

∑
i=1

(Ai(t)cos((Ω0 +Ωi)t)+Bi(t)cos((Ω0−Ωi)t)). (6.17)

Because the larger peak in Figure 6.7 could also be seen in Figure 6.8, then from that

figure, another possible expression for the time waveform of the tone is

xd(t) = Acos(Ω0t +
n

∑
i=1

βi(t)sin(Ωit)). (6.18)

The form of the second expression is that of angle modulation. Equations (6.17) and

(6.18) describe the same signal and are related as follows. Equation (6.18) can also be
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Figure 6.8: Amplitude Spectrum of θ̂s[k]
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rewritten as

xd(t) = AR e{e jΩ0t
n

∏
i=1

e jβi(t)sin(Ωit)}. (6.19)

From Figure 6.8, βi ≤ 0.062. The terms in the product of (6.19) can then be approximated

by the first two terms of the exponential Taylor series ex ≈ 1+ x, yielding

xd(t) = AR e{e jΩ0t
n

∏
i=1

(1+ jβi(t)sin(Ωit))}. (6.20)

Since βi(t) � 1, i = 1, . . . ,n, then βi(t)β j(t) ≈ 0 for i �= j, and (6.20) becomes

xd(t) = AR e{e jΩ0t(1+
n

∑
i=1

jβi(t)sin(Ωit))}

xd(t) = AR e{e jΩ0t(1+
n

∑
i=1

(
βi(t)

2
e jΩit − βi(t)

2
e− jΩit))}

xd(t) = Acos(Ω0t)+
n

∑
i=1

(
Aβi(t)

2
cos((Ω0 +Ωi)t)− Aβi(t)

2
cos((Ω0−Ωi)t)) (6.21)

As xd(t) = xa(t) then A = A0, Ai(t) = Aβi(t)/2, and Bi(t) = −Aβi(t)/2 for i = 1, . . . ,n.

The average power of the sideband peaks is then equal to

A2
i (t)
2

=
A2

4
β2

i (t)
2

, i = 1, . . . ,n. (6.22)

From (6.22), the average power of the sideband peaks is equal to half of the average power

of the tone times a factor, equal to β2
i (t)
2 , where βi(t) is the value of the corresponding peak

in Figure 6.8. The sideband peaks are the results of a narrowband angle modulation of the

tones.

Estimates of the spectrum amplitude of θ̂s[k] at different instants k, indicate that the

values βi(t) of the peaks shown in Figure 6.8 vary with time. This causes the sideband

peaks to also vary with time, according to (6.21). However, (6.21) also indicates that the

sideband peaks at same distance from the tone should have the same average power at the

same time. This is not the case in Figure 6.7 since the sideband peak 467 Hz below the

frequency of the tone has a power that is 24 dB less than the power of the tone, and the

corresponding sideband peak above the tone has a power that is 36 dB less than the tone.

The difference in power between these two sideband peaks arises because the amplitude of

the sideband peaks varies with time and the spectrum analyzer doesn’t measure the power
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of all these sideband peaks at the same time. Figure 6.9 displays a plot of 3125 consecutive

values of the phase estimate sequence, θ̂s[k], of the tone. Peak-to-peak variations of 0.5

radian, occurring in 1 ms can be observed. These variations can significantly be reduced

by filtering out with notch filters the sideband peaks at frequencies 116 Hz, 181 Hz, 233

Hz, 467 Hz, and 493 Hz. The variance of the sequence before filtering was estimated to

be 0.021. After notching the main sideband peaks, the variance of the filtered sequence is

estimated to be 0.0076.

This angle modulation is nearly identical on all the tones. To verify this statement, two

out of the 10 tones are randomly selected. Their phase estimates sequence are subtracted

to yield a new sequence. The variance of the new sequence is estimated to be 0.0033.
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Figure 6.9: Sequence of Phase Estimates, θ̂s[n]
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6.3 Summary

The amplitude measurements are in error due to the Gaussian noise. It was shown that the

variance of the amplitude measurements can be accurately estimated using (6.12). For the

signal acquired in the lab by connecting the RF output of the transmitter to the RF input

of the receiver with a coaxial cable and a 50 dB attenuator, the standard deviation of the

amplitude estimates was calculated, using (6.12), to be 4.8% of the actual amplitude of

the tones. In the next chapter, it is shown that this error can be significantly reduced.

The phase measurements are also in error due to the Gaussian noise. Equation (6.15)

can be used to accurately estimate the variance of the phase estimates due to the Gaussian

noise. For the signal acquired in the lab, the variance computed by using 500 phase esti-

mates was largely in error due to the angle modulation introduced by the IF up-converter

and the frequency drift of the oscillators of the measuring system. However, (6.15) could

be used to accurately estimate the variance of the phase estimates due to the Gaussian

noise. The standard deviation on the phase estimates calculated with (6.15) was found

to be 0.046 radian or 2.6 degrees. In the next chapter, it is shown that this error can be

significantly reduced.

This angle modulation causes some 0.5 radian peak-to-peak ripple at about 500 Hz

and is common to all the tones. It is expected that the phase variations due to tree foliage

are larger than 0.5 radian and the effect of the angle modulation should be negligible.

Slow variations of higher magnitude occur due to the frequency drift of the oscillators.

Some of these variations can be removed, as shown in the next chapter.
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7. PROCESSING THE AMPLITUDE AND PHASE MEASUREMENTS

As seen in Chapter 6, the measuring system will report variations in the phase of the

tones even if the channel remains invariant. Variations in the phase of the tones are mainly

caused by the frequency drift of the oscillators in the up/down converters. The presence of

Gaussian noise in the system also introduces an error in the measurements. The amplitude

and phase estimates can be further processed to reduce the effect of the noise generated

by the system.

7.1 Amplitude Measurement

The measuring system makes an amplitude measurement every 12.8 µs. The frequency

response of NLOS channel is time-variant, but it changes very slowly. It has been es-

tablished in Chapter 3 that the channel remains essentially constant over a 5 ms interval.

This implies that 390 consecutive measurements at 12.8 µs intervals could then be aver-

aged to get a good estimate of the amplitude and phase of the tones for the center of the

interval. A new sequence, denoted ai[k], is generated by averaging 250 consecutive am-

plitude measurements. The interval of time separating the values of ai[k] becomes equal

to 12.8 µs ∗ 250 = 3.2 ms. For the signal acquired in the lab by connecting the RF out-

put of the transmitter to the RF input of the receiver with a coaxial cable and a 50 dB

attenuator, the standard deviation on the amplitude estimates was found to be 4.8% of the

actual amplitude of the tones (Chapter 6). After averaging, the standard deviation on the

amplitude estimates is computed to be 0.3% of the actual amplitude of the tones. The

signal-to-noise ratio of the receive signal is about 20 dB.

The same computation is applied to the sequence of phase estimates, θ̂i[k]. The new

sequence of phase estimates is denoted by θi[k], and the interval of time separating the

values of θi[k] is also equal to 3.2 ms.
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7.2 Phase Measurement

It is possible to filter out some of the variations due to the frequency drift of the oscillators

in the transmitter and receiver. Some of these variations can be estimated because of the

deterministic behavior of these components, and can then be removed from the phase

measurements. The approach taken to accomplish this is described next.

The imprecision in the frequency of the oscillators of the up and down-conversion

stages causes the tones to all deviate from their nominal frequency by the same amount,

∆ω[n]. Furthermore, ∆ω[n] does not remain constant over the duration of the signal

but varies due to variations in the frequency generated by the oscillators. For example,

changes in ambient temperature cause the oscillators to drift in frequency. The frequency

of an oscillator may also slowly vary around its nominal value. However, over the 5

second period during which the signal is acquired, it can be assumed that the drift in fre-

quency of the oscillators remains constant. The frequency deviation, ∆ω[n], of the tones

can then be expressed as ∆ω[n] = α1n +C, where α1 can be positive, negative, or zero

over the 5 second interval. If the frequency of each oscillator remains constant, then

the frequency difference between any two oscillators is a constant, C, and α1 = 0. If

α1 �= 0, then the N receive tones will have phase that is a parabolic function of time, i.e.

∆ω[n] ∗ n = α1n2 +C ∗ n + Di, where Di is a constant that depends on the phase of tone

number i, (i = 1, . . . ,N) at the beginning of the 5 second interval.

The post-processing system estimates ∆ω[n] from the center tone and uses that value

to convert the IF receive signal to baseband. This action causes the phase of the down-

converted tones to vary along parabolic curves given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1[n] = α1(n−781−α2)2 + k1

p2[n] = α1(n−781−α2)2 + k2

. . .

pN[n] = α1(n−781−α2)2 + kN .

(7.1)

where ki is a constant that depends on the phase of down-converted tone number i at the

beginning of the 5 second interval, and α2 is a constant. This is explained as follows. A

perfect down-conversion to baseband is obtained when the down-converted center tone
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is at 0 Hz. The way the system has been designed, in case of a constant drift of the

oscillators frequency over the 5 second interval, the down-converted center tone will vary

in frequency but will be equal to 0 Hz exactly at the center of the 5 second interval.

But because of noise and additional phase variations caused by tree foliage, the down-

converted center tone will not be equal to 0 exactly at the center of the interval. This is

illustrated in Figure 7.1. This figure shows a plot of the phase estimates, θ i[k], obtained for

each of the tones when 10 tones are sent and the receiver is connected to the transmitter

with a coaxial cable and a 50 dB attenuator. The phase varies similarly for all the tones.

The phase mainly decreases between 0 and 2 seconds, suggesting that the frequency of the

down-converted center tone is negative, then remains relatively constant between 2 and

3 seconds (the frequency of the down-converted center tone is about 0 Hz), and mainly

increases between 3 and 5 seconds (the frequency of the down-converted center tone is

positive). The phase variation of the 10 tones can be approximated with parabolic curves,

given by (7.1), where N = 10. This can be achieved by deriving a system of equations
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Figure 7.1: Plot of Tones Phase Estimates, θi[k], i = 1, . . . ,10.
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from (7.1) and finding the values for the parameters that minimize the error between the

phase measurements and the parabolic curves in the least-squares sense. This system of

equations is derived as follows. (7.1) can be rewritten as (with N = 10)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1[n] = α1(n−781)2−2α1α2(n−781)+α1α2
2 + k1

p2[n] = α1(n−781)2−2α1α2(n−781)+α1α2
2 + k2

. . .

p10[n] = α1(n−781)2−2α1α2(n−781)+α1α2
2 + k10.

(7.2)

This system of equations is also equal to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1[n] = c1(n−781)2 + c2(n−781)+ c3

p2[n] = c1(n−781)2 + c2(n−781)+ c4

. . .

p10[n] = c1(n−781)2 + c2(n−781)+ c12,

(7.3)

where the parameters, c1, . . . ,c12 are equal to c1 = α1, c2 =−2α1α2, c3 = α1α2
2 +k1, c4 =

α1α2
2 + k2, . . ., c12 = α1α2

2 + k10. The Matlab function “lsqcurvefit” is used to estimate

these parameters. Figure(7.2) shows the parabolic curves obtained, displayed on the same

plot as the phase estimates, θi[n], of the tones. The parabolic curves can then be subtracted

from the phase estimates of the tones, yielding new sequences, θp
i [n], equal to

θp
i [n] = θi[n]− pi[n]. (7.4)

Figure 7.3 shows a plot of θp
1 [n] at the top and a plot of θp

6 [n] at the bottom. The 2 radian

peak-to-peak low-frequency ripple is probably due to the oscillators. The waveforms

shown on the figure are very similar. To verify this, one of the waveform taken as the

reference is subtracted from all the waveforms, θp
i [n] (i = 1, . . . ,10). θp

6 [n] is the waveform

arbitrary chosen to be the reference. The waveforms obtained are denoted by ∆θp
i [n],

where

∆θp
i [n] = θp

i [n]−θp
6 [n], i = 1, . . . ,10. (7.5)

Only the variations due to Gaussian noise should be left. This is not the case, as shown in

Figure 7.4. In this figure, each waveform has the shape of a straight line whose slope is
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proportional to the digital frequency of the down-converted tone the waveform represents.

The slopes are also proportional to each other. These variations are due to a residual error

in the resampling. They can be approximated with straight lines equal to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

st1[n] = −30α3n

st2[n] = −24α3n

. . .

st6[n] = 0

. . .

st10[n] = 24α3n,

(7.6)

where α3 is a constant. Equation (7.6) can be combined with (7.1) to produce a new

system of equations that is similar to (7.3). The parameters of this new system of equations

are estimated with “lsqcurvefit”. The waveforms, ∆θp
i [n], are then generated. This time,

they look like noise, with a standard deviation that is estimated to be 0.004 radian or 0.23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−10

−8

−6

−4

−2

0

2

Seconds (resolution:3.2ms)

R
ad

ia
ns

Figure 7.2: Plot of Tones Phase Estimates, θi[k], Along With Parabolic Curves, pi[n],

i = 1, . . . ,10.
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Figure 7.3: Plot of Tones Phase Estimates, θp
1 [n], and θp

6 [n]
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Figure 7.4: Plot of Tones Phase Estimates, ∆θp
i [n], i = 1, . . . ,10.
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degrees.

7.3 Summary

Two types of sequences are obtained for phase. The first type of sequence represents phase

estimates of the tones, 3.2 ms apart, after some of the variations due to the oscillators have

been removed. The variations left appear as low-frequency ripple and are probably due to

the oscillators. The second type of sequence represents the variation in the phase estimates

of the tones with respect to the variation in the phase estimates of one of the tone taken

as the reference. Only noise could be seen on the signal acquired in the lab. The standard

deviation of these sequences was calculated to be about 0.23 degrees. This means that

any variation in phase caused by tree foliage that is not common to all the tones can be

accurately measured with this system.

Any variation in amplitude that is common to all the tones or any variation in ampli-

tude that is frequency selective can also be accurately measured with this system since

the standard deviation of the amplitude estimates for the signal acquired in the lab was

calculated to be 0.3% of the actual amplitude of the tones.
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8. OUTDOOR MEASUREMENTS AND ANALYSIS

8.1 Fall 2002 Measurements

The selected site was the north east end of the TRLabs building parking lot. The TRLabs

building is situated at the north end of Innovation Place, on the University of Saskatchewan

campus. The receive antenna was placed behind one of the Poplar trees planted at the edge

of the parking lot. Figure 8.1 shows the 25-ft tall Poplar tree that was selected. The rail

road track showing at the bottom of the figure is the CP line that runs west and east. As

shown in the figure, the receive antenna was placed at 80ft from the tree and was 12 feet

high from the ground. Figure 8.2 is an aerial view of the site. This photo was taken from

the roof of the TRLabs building where the transmit antenna was installed. The white ar-

Figure 8.1: Line-of-sight Obstruction With a Single Poplar Tree.
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row in the Figure points to the tree that was shown in Figure 8.1. Although this system

configuration wasn’t very realistic because of the closeness of the transmit antenna to the

receive antenna and the presence of only a single tree in the line-of-sight, the setup re-

vealed many of the problems that needed to be overcome in order to collect good real-time

data.

The first set of measurements taken in the wind showed strong variations that were

attributed to the motion of the antennas. The transmit antenna was then fixed for the

measurements that followed. Some of the data acquired are shown next.

8.1.1 Line-Of-Sight Measurement

The receive antenna was placed in front of the Poplar tree such that there was no obstacle

between the transmit and receive antennas. Figure 8.3 shows the amplitude variation of the

tones. These curves were obtained by converting the sequences of amplitude estimates,

ai[k], to dBV, and rescaling such that at the beginning of the plot, the curves are separated

by 0.5 dB. They were also organized such that the curves are in the same order as the

tones in the band, with the one corresponding to the lowest frequency tone shown at the

bottom of the plot. The oscillation at about 1.5 Hz that can be seen on all the tones is due

to the motion of the receive antenna. The wind was less than 6 km/h, suggesting that the

receive antenna should also be fixed.

Figure 8.4 shows the amplitude variation of each tone relative to the amplitude varia-

Figure 8.2: Aerial Views of The Poplar Tree Obstructing The Line-Of-Sight.
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Figure 8.3: Line-Of-Sight: Amplitude Variation of The Tones.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Seconds (resolution:3.2ms)

dB
V

Figure 8.4: Line-Of-Sight: Amplitude Variation of the Tones Relative To Amplitude Vari-

ation of The Center Tone.
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Figure 8.5: Line-Of-Sight: Phase Measurements of The Center Tone Before And After

Correction.
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Figure 8.6: Line-Of-Sight: Phase Variation of The Tones Relative To Phase Variation of

The Center Tone.
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tion of the tone at the center of the band. A 0.2 dB peak-to-peak oscillation at 1.5 Hz on

the third curve and lasting for the first three seconds of the acquisition can be seen. The

motion of the receive antenna gives rise to variations among the tones, which suggests

that multipath independent of the trees exists in the channel. This multipath propagation

appeared to be quite strong when the receive antenna was moved back and forth by hand,

and was likely due to the roof edge in the proximity of the transmit antenna. When the

receive antenna is placed behind the tree, this multipath may cause severe frequency se-

lective fades that make it difficult to tell what type of distortions actually originate from

the tree.

The top graph of Figure 8.5 is the sequence of phase estimates, θi[k], obtained for

the tone at the center of the band (center tone), along with a parabolic approximation

to that curve. The bottom graph of that figure is the phase variation of the center tone

after removing the parabolic variation. Figure 8.6 shows the phase variation of the tones

relative to the phase variation of the center tone. The peak-to-peak variations are less than

1 degree. As for amplitude, the curves are in the same order as the tones in the band, and

the curve corresponding to the lowest frequency tone is shown at the bottom of the plot.

8.1.2 Measurements During Windy and Rainy Conditions

The antenna was placed 80 ft behind the tree, beside the rail road track (Figure 8.1). The

wind was blowing at 35 km/h, gusting to 50 km/h. The rainfall amount for that day was

about 20 mm. Variations of 2 dB in the amplitude of the tones can be seen in Figure 8.7.

These variations are caused by changes in the foliage density with the swaying of the

branches in the wind. However, some of these variations may be due to the motion of the

receive antenna. The signal loss through the tree was measured to be 7 dB.

In Figure 8.8, the relative amplitude variations are 0.5 dB or less, and occur in 250ms.

Some variations larger than 0.5 dB can be seen. Variations of 1 dB over a period of time

between 250 and 500 ms are visible at 0.5 seconds (tone number 9), and 2.25 seconds

(tones number 1 and 3).

The phase measurements obtained for the center tone are shown in Figure 8.9. The

variations are similar to the variations of the line-of-sight measurements, suggesting that
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Figure 8.7: Wind And Rain Measurement (Fall 2002): Amplitude Variation of The Tones.
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Figure 8.8: Wind And Rain Measurement (Fall 2002): Amplitude Variation of The Tones

Relative To Amplitude Variation of The Center Tone.
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Figure 8.9: Wind And Rain Measurement (Fall 2002): Phase Measurements of The Center

Tone Before And After Correction.
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Figure 8.10: Wind And Rain Measurement (Fall 2002): Phase Variation of The Tones

Relative To Phase Variation of The Center Tone.
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the phase variations due to the Doppler shift induced by the motion of the branches are

in the same range as the variations caused by the frequency drift of the oscillators in the

up/down converters. In Figure 8.10, the relative phase variations are 3 degrees or less, and

occur in 250 ms. Some variations much larger than 3 degrees can be seen. There is a 7

degree variation in 125 ms for tone number 9 at 3.5 seconds, and a 9 degree increase over

a period of 500 ms for tones 9 and 10, at 4 seconds.

8.2 Summer 2003 Measurements

The measurements took place on an acreage located on Valley road, 12km southwest of

Saskatoon. The 110 degree sectoral transmit antenna was mounted on the side of a barn,

20 feet above the ground. The receive antenna was placed 10 feet behind a clump of 25-

foot tall Poplar trees. Figure 8.11 shows a view of the trees obstructing the line-of-sight.

This clump was located northwest of the barn, at a distance of 292 meters (958 feet) from

the barn. A southeast wind blew in the same direction as the line-of-sight. A southwest

Figure 8.11: A Clump of 25-Feet Tall Poplar Trees Obstructing The Line-Of-Sight.
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wind blew in the direction normal to the line-of-sight.

The ground elevation was 25 feet lower at the bush than at the barn. The receive

antenna was mounted on a 16 feet poll, buried 2 feet in the ground, placing the receive

antenna at an elevation 30 feet lower than the transmit antenna. The angle between the

signal path and the normal to the transmit antenna was then 1.7 degrees. As the transmit

antenna had a vertical angle of 10 degrees, then the receive signal was well within the

main lobe of the transmit antenna. A water level was used to set the poll vertical and the

receive antenna was visually aimed at the barn by rotating the poll. A finer adjustment

was obtained by slightly rotating the poll and measuring the amount of power received

with a spectrum analyzer.

The RF transmit signal power was 30 dBmW and the gain of the transmit antenna

was 13.5 dBi. The power of the receive signal when the antenna was placed in front

of the bush was measured to be -58 dBmW. The amount of multipath in the channel

was measured by moving the antenna 5 feet sideway. This test showed that the channel

exhibited little amount of multipath since the variations among the tones were less than

0.5 dB for amplitude and less than 10 degrees for phase. The receive power decreased

to -71 dBmW when placing the antenna 10 feet behind the clump, indicating that the

attenuation of the RF signal through the clump was 13 dB.

A wind meter was used to perform signal acquisition with different wind conditions.

The largest fades were seen with gust winds. Data acquired under little and strong wind,

with and without rain are presented next. Measurements of the depth and rate of the fades

seen on the data are also given.

8.2.1 Measurements During Windy Conditions

Figure 8.12 shows the amplitude variation of the tones when the wind speed was measured

to be varying from 8.6 to 5.8km/h during the 5 second acquisition of the signal. The curve

at the bottom corresponds to the lowest frequency tone, the curve in the middle to the

tone at the center of the band, and the curve at the top to the highest frequency tone. For

display purposes, the spacing between the curves was arbitrarily set to 2dB. Figure 8.13

shows the amplitude variation of the tones relative to the amplitude variation of the lowest
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frequency tone. The curves are in the same order as the tones in the band. The curve for

the lowest frequency tone is a straight line equal to 0dBV. The spacing between the curves

was arbitrarily set to 1dB. The variations among the tones are less than 1dB.
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Figure 8.12: 8.6 To 5.8 km/h South East Wind, No Rain: Amplitude Variation of The

Tones.

The variation in phase due to tree foliage that is common to all the tones is masked by

the variation in phase caused by the frequency drift of the oscillators. Therefore, there is

no figure to show the phase variation of the tones. Figure 8.14 shows the phase variation

of the tones relative to the phase variation of the lowest frequency tone. The variations

among the tones are less than 9 degrees. The peak-to-peak variation of the curves given

in Figure 8.12, 8.13, and 8.14 are reported in Table 8.1.

Figure 8.15 shows the amplitude variation of the tones when the wind varied from

24 to 9.6km/h. Guard wires were used to keep the receive antenna poll still. As in Fig-

ure 8.12, the curve at the bottom corresponds to the lowest frequency tone, the curve in

the middle to the center tone, and the curve at the top to the highest frequency tone. For
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Figure 8.13: 8.6 To 5.8 km/h South East Wind, No Rain: Amplitude Variation of The

Tones Relative To Amplitude Variation of The Lowest Frequency Tone.
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Figure 8.14: 8.6 To 5.8 km/h South East Wind, No Rain: Phase Variation of The Tones

Relative To Phase Variation of The Lowest Frequency Tone.
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Table 8.1: 8.6 To 5.8 km/h South East Wind, No Rain: Peak-to-peak Variations for Am-

plitude & Phase Measurements.

Tone # 1 2 3 4 5 6 7 8 9 10

Amp. (dB) 1.8 1.7 1.8 1.9 1.9 2.1 2 2 2 2

Rel. Amp. (dB) 0 0.4 0.5 0.6 0.7 0.8 0.7 0.7 0.8 0.8

Abs. Pha. (Deg) 417 419 421 423 425 427 428 431 433 435

Rel. Pha. (Deg) 0 2.7 4.3 5.1 5.7 6.6 7.8 8 8.7 8.6
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Figure 8.15: 24 To 9.6 km/h South East Wind, No Rain: Amplitude Variation of The

Tones.
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Figure 8.16: 24 To 9.6 km/h South East Wind, No Rain: Amplitude Variation of The

Tones Relative To Amplitude Variation of The Lowest Frequency Tone.
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Figure 8.17: 24 To 9.6 km/h South East Wind, No Rain: Phase Variation of The Tones

Relative To Phase Variation of The Lowest Frequency Tone.
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display purposes, the spacing between the curves was arbitrarily set to 5dB. The varia-

tions are much stronger than on the previous plots, with three strong fades occurring over

the 5 second period. An algorithm was developed in Matlab to locate these fades, and

compute the depth of the fades and the fading rate. The fades are located by extracting

the variations with the strongest slope. These variations are identified with little circles,

squares, and diamonds on the curves shown in Figure 8.15. Table 8.3 gives for each of

them the amount of variation in dB, the duration of the variation, the rate in dB/s, and the

location of the variation in the curve.

Figure 8.16 shows the amplitude variation of the tones relative to the amplitude vari-

ation of the lowest frequency tone. The strongest variations were extracted and measure-

ments of these variations are reported in table 8.4. No data were available for the cells of

the table that are empty. Figure 8.17 shows the phase variation of the tones relative to the

phase variation of the lowest frequency tone. The strongest variations were also extracted

and measurements of these variations are reported in table 8.5. Finally, the peak-to-peak

variation of the curves given in Figure 8.15, 8.16, and 8.17 are reported in Table 8.2.

Table 8.2: 24 To 9.6 km/h South East Wind, No Rain: Peak-to-peak Variations for Am-

plitude & Phase Measurements.

Tone # 1 2 3 4 5 6 7 8 9 10

Abs. Amp. (dB) 13.8 14.5 14.9 15.7 15.7 15.7 15.9 14.8 14.4 13.3

Rel. Amp. (dB) 0 1.4 2.2 3.1 3.7 4.3 4.5 3.5 3.5 3.6

Abs. Pha. (Deg) 330 333 333 334 324 321 318 314 318 323

Rel. Pha. (Deg) 0 9.7 18.4 24.3 23.7 28.5 26.4 33.9 35 32.8

The deepest fade can last 500 milliseconds. Severe frequency selective distortions to

the signal can occur during that time.
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Table 8.3: 24 To 9.6 km/h South East Wind, No Rain: Instantaneous Amplitude Varia-

tions.

Circles / Squares / Diamonds

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(dB) (s) (dB/s) (s) (dB) (s) (dB/s) (s)

1 11.5 0.33 34.5 4.5 -5.6 0.13 -42 4.0

6 10.4 0.32 32 4.5 -6.6 0.13 -51.5 4.0

10 11.3 0.36 30.1 4.5 -4.9 0.12 -40.4 4.0

1 4.4 0.17 26.6 3.4 -3.5 0.16 -21.6 2.7

6 8.1 0.33 24.5 2 -3.9 0.15 -26.6 1.5

10 3.7 0.11 31.8 3.4 -3.5 0.17 -20.5 2.7

1 9.3 0.34 27.4 2 -5.2 0.23 -23 1.5

6 4 0.11 36.4 4.2 -2.9 0.17 -17.4 2.7

10 6.7 0.26 25.9 0.4 -3.7 0.16 -23.7 1.5

Table 8.4: 24 To 9.6 km/h South East Wind, No Rain: Instantaneous Amplitude Variations

Relative to Amplitude Variations of Lowest Frequency Tone.

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(dB) (s) (dB/s) (s) (dB) (s) (dB/s) (s)

1 0.5 0.08 6.9 4.3 0.8 0.19 4.1 1.6

2 0.5 0.11 4.5 4.4 0.7 0.12 5.7 1.7

3 1.1 0.09 12.3 4.3 0.9 0.1 9.1 1.6

4 3.2 0.18 17.7 4.3 1.1 0.15 7.5 1.7

5 3.6 0.19 19.2 4.3 1.1 0.1 11.7 1.7

6 4.3 0.2 22 4.3 1.6 0.1 16.6 1.7

7 2.4 0.22 10.9 4.3 1.6 0.1 15.8 1.7

8 1.2 0.09 13.7 1.7

9 1.6 0.16 10.1 4.4
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8.2.2 Measurements During Windy and Rainy Conditions

Figure 8.18 shows the amplitude variation of the tones when the wind speed was measured

to be varying from 21 to 15.5 km/h during the 5 second acquisition of the signal. It

was raining. The total amount of precipitation for that day was 25 millimeters. The

Measurements for the variations identified with small circles, squares, and diamonds are

reported in table 8.7. Figure 8.19 shows the amplitude variation of the tones relative to the

amplitude variation of the lowest frequency tone. Figure 8.20 shows the phase variation

of the tones relative to the phase variation of the lowest frequency tone. The peak-to-peak

variation of the curves given in Figure 8.18, 8.19, and 8.20 are reported in Table 8.6.

Table 8.5: 24 To 9.6 km/h South East Wind, No Rain: Instantaneous Phase Variations

Relative to Phase Variations of Lowest Frequency Tone.

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(Deg) (s) (Deg/s) (s) (Deg) (s) (Deg/s) (s)

1 -3.8 0.06 -62.7 4.2

2 -10 0.12 -84.8 4.2

3 -12.3 0.1 -124 4.2

4 -15.5 0.1 -156.7 4.2 6 0.05 110.4 4.3

5 -15.5 0.08 -186.1 4.2 7.7 0.08 100.2 4.3

6 -12.3 0.09 -137.1 4.2 7.6 0.08 91.1 4.3

7 -15.4 0.09 -178.7 4.2 19.2 0.1 187.7 4.3

8 -15.5 0.09 -173.5 4.2 24.9 0.14 176.8 4.3

9 -17.2 0.1 -173.6 4.2 20.3 0.12 171.5 4.3
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Figure 8.18: 21 To 15.5 km/h South West Wind, Rain: Amplitude Variation of The Tones.
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Figure 8.19: 21 To 15.5 km/h South West Wind, Rain: Amplitude Variation of The Tones

Relative To Amplitude Variation of The Lowest Frequency Tone.
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Figure 8.20: 21 To 15.5 km/h South West Wind, Rain: Phase Variation of The Tones

Relative To Phase Variation of The Lowest Frequency Tone.

Table 8.6: 21 To 15.5 km/h South West Wind, Rain: Peak-to-peak Variations for Ampli-

tude & Phase Measurements.

Tone # 1 2 3 4 5 6 7 8 9 10

Abs. Amp. (dB) 6.3 6.1 5.8 5.9 5.9 6.1 6.1 6 6.2 6.3

Rel. Amp. (dB) 0 0.8 1.2 1.2 1.2 1.7 1.8 1.8 1.8 1.7

Abs. Pha. (Deg) 475 471 467 466 466 464 465 464 465 464

Rel. Pha. (Deg) 0 5.8 7.6 9.4 12.2 13.5 15 15.9 16.5 19.5
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Figure 8.21 shows the amplitude variation of the tones when the wind speed was

measured to be varying from 14 to 15.5 km/h during the 5 second acquisition of the signal.

This signal was acquired shortly after the previous signal. The Measurements for the

variations identified with small circles and squares are reported in table 8.9. Figure 8.22

shows the amplitude variation of the tones relative to the amplitude variation of the lowest

frequency tone. Figure 8.23 shows the phase variation of the tones relative to the phase

variation of the lowest frequency tone. The strongest variations of these curves were

extracted and measurements of these variations are reported in table 8.10. Finally, the

peak-to-peak variation of the curves given in Figure 8.21, 8.22, and 8.23 are reported in

Table 8.8.

From the measurements, the wind seems to be the major factor causing signal fading.

Table 8.7: 21 To 15.5 km/h South West Wind, Rain: Instantaneous Amplitude Variations.

Circles / Squares / Diamonds

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(dB) (s) (dB/s) (s) (dB) (s) (dB/s) (s)

1 2.2 0.26 8.7 4.6 -4.2 0.4 -10.3 3.7

6 1.6 0.13 12 4.5 -4 0.4 -10.2 3.7

10 1.2 0.13 9.2 4.5 -2.6 0.31 -8.6 1.3

1 0.9 0.11 8.4 1.5 -1.9 0.19 -9.8 2.8

6 1.7 0.18 9.3 2.5 -1.7 0.18 -9.4 2.8

10 1.9 0.25 7.8 2.5 -1.9 0.18 -10.6 2.8

1 2.6 0.32 8.1 2.5 -3.3 0.27 -12 1.3

6 0.9 0.11 7.7 3 -2.9 0.31 -9.3 1.3

10 1.4 0.18 7.8 3 -2.1 0.19 -11.6 3.8
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Figure 8.21: 14 To 15.5 km/h South West Wind, Rain: Amplitude Variation of The Tones.
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Figure 8.22: 14 To 15.5 km/h South West Wind, Rain: Amplitude Variation of The Tones

Relative To Amplitude Variation of The Lowest Frequency Tone.
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Figure 8.23: 14 To 15.5 km/h South West Wind, Rain: Phase Variation of The Tones

Relative To Phase Variation of The Lowest Frequency Tone.

Table 8.8: 14 To 15.5 km/h South West Wind, Rain: Peak-to-peak Variations for Ampli-

tude & Phase Measurements.

Tone # 1 2 3 4 5 6 7 8 9 10

Abs. Amp. (dB) 10.8 10.8 10.8 11.1 11.2 11.5 11.6 11.5 11.7 11.5

Rel. Amp. (dB) 0 0.6 0.7 1 1.1 1.4 1.4 1.5 1.5 1.6

Abs. Pha. (Deg) 324 326 328 330 333 333 333 333 335 338

Rel. Pha. (Deg) 0 5.6 5.9 7.9 10.2 11.6 13.2 13.9 14.5 15.2
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Table 8.9: 14 To 15.5 km/h South West Wind, Rain: Instantaneous Amplitude Variations.

Circles / Squares / Diamonds

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(dB) (s) (dB/s) (s) (dB) (s) (dB/s) (s)

1 4.1 0.15 27 1.7 -4.4 0.12 -36.2 1.6

6 4.6 0.16 29.5 1.7 -4.6 0.12 -39 1.6

10 4.8 0.17 28.8 1.7 -4.6 0.12 -38.9 1.6

1 1.1 0.23 5 3.2 -9.8 0.67 -14.8 2.1

6 0.7 0.1 7.5 3.2 -10.1 0.68 -14.8 2.1

10 1.1 0.19 5.8 3.2 -10.2 0.65 -15.7 2.1

1 0.5 0.13 3.8 4.7 -0.9 0.19 -4.5 0.5

6 0.5 0.13 4.2 4.7 -0.9 0.16 -5.6 0.6

10 0.8 0.16 5 4.7 -0.7 0.16 -4.6 0.6

Table 8.10: 14 To 15.5 km/h South West Wind, Rain: Instantaneous Phase Variations

Relative to Phase Variations of Lowest Frequency Tone.

Tone # Var. Dur. Rate Loc. Var. Dur. Rate Loc.

(Deg) (s) (Deg/s) (s) (Deg) (s) (Deg/s) (s)

1 1.7 0.07 25.8 3.1

2 1 0.06 17.4 3.1

3 1.4 0.06 21.9 3.1

4 2.3 0.1 23.2 3.1 -2.2 0.07 -33.4 1.8

5 2.6 0.07 38 3.1 -4.9 0.13 -37.7 1.8

6 2.2 0.1 22 3.1 -6.2 0.16 -38 1.8

7 1.5 0.06 23.2 3.1 -6.1 0.16 -37.6 1.8

8 1.7 0.09 18.5 3.1 -6.6 0.13 -50 1.8

9 1.2 0.07 17.8 3.1 -6.5 0.13 -49.8 1.8
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9. CONCLUSION

9.1 Summary

Signal distortions caused by tree foliage obstructions to a RF line-of-sight 6 MHz channel

could be accurately measured. A system constructed as part of the research was able to

estimate the amplitude of the receive tones with a standard deviation of 0.3% of the actual

amplitude and the phase of the tones with a standard deviation of 0.23 degrees. This

accuracy was achieved when the signal-to-noise ratio of the receive signal was greater

than 20 dB.

The trees cause fast and large variations in the strength of the receive signal with

frequency selective distortion. The sites selected for the measurements had significant

foliage obstructions since 4 trees were present on the line-of-sight path. For fades greater

than 10 dB, the variation in amplitude that is common to all the tones is found to be

about 3 times larger than the variation in amplitude among the tones. This indicates that

the operation of the system could be improved by adding a fast automatic gain controller

(AGC) to the front-end of the modem.

It is noticed that the position of the receive antenna is very critical. Some branches

not on the line-of-sight path on a calm day may cause large temporal signal variation on

a windy day as they pass through the line-of-sight path from time to time. The tree trunk

may pass through the line-of-sight path when bending under the action of the wind.

The fades are deep, can last less than 100 ms, and the variation in the amplitude of the

tones can reach rates of 50 dB/s. This strongly suggests that these amplitude variations are

due to changes in the multipath structure of the channel caused by the motion of the trees

present in the line-of-sight path. The multipath is likely to be caused by the scattering

of the RF signal by the leaves. The number of multipath propagation paths increase with
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the number of leaves. Therefore, the more foliage there is on the line-of-sight path, the

deeper the fades are. Another explanation for the deep fades could be due to changes in

the ground reflected signal reaching the receive antenna and/or the line-of-sight signal,

when traveling through the tree foliage.

9.2 Results

On a calm day with less than 5 km/h wind, the presence of tree foliage did not cause the

strength of the line-of-sight signal to change significantly. The variation in the amplitude

of the tones was measured to be less than 1 dB. The presence of wind causes the branches

to sway. The motion of the branches gives rise to large variations in the amount of power

received, producing signal fading. The fades affect all the tones. They mainly occur when

the wind blows at varying velocity. The deepest fades are seen in presence of gust wind.

For a wind of 10 km/h, gusting to 25 km/h, a 22 dB variation in the amplitude of the tones

reached a rate of 57 dB/second.

Rain in presence of wind doesn’t seem to cause stronger amplitude variations of the

tones. The signal power loss through the foliage is also measured to be about the same

with and without rain. However, under intense rainfall and no wind, enough water can

accumulate on the tree to cause heavy signal attenuation. Such a situation was witnessed

when recording data on a rainy day. Signal attenuation by the tree foliage before the rain

picked up was measured to be 13 dB. Five minutes after the beginning of a shower, the

receive signal power decreased by more than 20 dB, bringing to 33 dB the signal attenu-

ation caused by the foliage. Five minutes after the shower stopped, the signal attenuation

was again 13 dB.

Although the tones seem to have large common variation in amplitude, some varia-

tions do exist among the tones, indicating that the signal fading is frequency selective.

To extract these frequency selective variations, the lowest frequency tone was taken as a

reference. Variations in the amplitude of the other tones were then computed with respect

to the variation in the amplitude of the reference tone. For a 16 dB fade, the maximum

frequency selective variation was measured to be 5 dB. For a 22 dB fade, the maximum

frequency selective variation was measured to be 10 dB.
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The effect of tree foliage is not sufficiently pronounced to be identified on the curves

showing the absolute phase measurements. Some variations, in the 20-30 radians range,

common to all the curves, do appear. However, similar variations could be seen on the

measurements obtained when directly connecting the RF output of the transmitter to the

RF input of the receiver, and were likely due to the frequency drift of the oscillators in

the up/down converters. Any phase variation, common to all the tones, that could be

caused by tree foliage, appears to be masked or exacerbated by the variations caused by

the frequency drift of the oscillators. It is then impossible to extract these variations.

Yet, this result confirms that the maximum Doppler shift caused by the swinging of the

branches in the wind is very likely to be less than 2 Hz [2].

The variations in phase that differ between the tones can be precisely measured with

this system. As for amplitude, these frequency selective variations are extracted by using

the lowest frequency tone as a reference and computing the variation in phase of the other

tones with respect to the variation in phase of the reference tone. They are the strongest

when deep fades occur, and can reach 40 degrees at a rate of 190 degrees / second for a

16 dB fade.

9.3 Future Research

The effect of tree foliage on the RF signal could be thoroughly characterized with this

measuring system, and the data collected in the summer of 2003. The next step would

be to design an equalizer that can compensate for some of these distortions. A solution

to improve the operation of the system would be to place a pilot tone at one edge of the

band. This would permit correction for the fast flat variation across the band but also

to correct for the phase variation due to Doppler shift caused by the motion of the tree

and the frequency drift of the oscillators. Only the variations that are frequency selective

would remain.

The frequency selective variations may be assessed by placing a pilot tone at the other

end of the band. However, more investigation is required to determine how to efficiently

compensate for these distortions.
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APPENDIX A. SOUNDING THE CHANNEL WITH A BAND-LIMITED RF

PULSE

One type of system that is used to characterize a wireless channel consists of transmitting

a band-limited RF pulse. This appendix gives a short overview of this type of system and

briefly shows how the impulse response of the channel can be estimated.

A.1 System Overview

Figure A.1 shows a block diagram of the measuring system. It is composed of a trans-

mitter and a receiver. In the transmitter, a carrier at Fc is modulated with a very narrow

pulses p(t) of width ∆τ and amplitude A. The pulse p(t) is defined by:

p(t) =

⎧⎪⎨
⎪⎩

A, 0 ≤ t ≤ ∆τ

0, otherwise.
(A.1)

The Fourier transform of p(t) is

P( jΩ) =
∫ ∆τ

0
Ae− jΩτdτ = A∆τ

sinΩ∆τ/2
Ω∆τ/2

e− jΩ∆τ/2,−∞ < Ω < +∞. (A.2)

Ideally, the ∆τ should approach 0 and A should approach infinity so that p(t) is an

impulse. In which case the output of the channel filter will have a flat energy spectrum.

This ideal pulse is impractical. A practical pulse has some width but it can be made suffi-

ciently narrow such that the output of the channel filter has a nearly flat energy spectrum

inside the filter bandwidth. The energy spectrum of the pulse p(t) is

Sp( jΩ) = |P( jΩ)|2 = A2∆τ2(
sinΩ∆τ/2

Ω∆τ/2
)2. (A.3)

The energy spectrum of p(t) has a null-to-null bandwidth of 2/∆τ Hertz. For a channel fil-

ter with a bandwidth equal to 2W Hertz and centered at Fc, ∆τ must be chosen sufficiently

small such that 2/∆τ is greater than 2W or ∆τ < 1/W . For example, if the bandwidth

of the channel filter is 6MHz, then ∆τ must be less than 333ns long. By proceeding this
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∆τ

cos(2πFct)

Figure A.1: Measuring System Block Diagram

way, the generated RF pulse approximates an impulse, δ(t), for the channel to be mea-

sured since the output of the channel filter will have a nearly flat energy spectrum inside

the bandwidth of the channel of interest. At the output of the channel filter, the transmit

signal is given by

s(t) =
sin2πWt

πt
cos2π fct. (A.4)

In summary, this signal is a band-limited RF pulse that approximates an impulse for the

channel to be characterized.

In the block diagram of the measuring system, h(t) represents the impulse response

of the channel. The RF receive signal, r(t), is the signal obtained after the RF transmit

signal, s(t), has traveled through the channel from the transmit to the receive antenna.

In the receiver, a down-converter is used to generate from r(t), the lowpass equivalent

receive signal, rl(t) [9]. Signal processing can then be applied to extract parameters for

characterizing the wireless channel.

A.2 Estimating the Impulse Response of The Channel

Because the transmit signal, s(t), has a nearly flat energy spectrum inside the the band-

width of the channel of interest, the lowpass equivalent receive signal, rl(t), is an estimate

of the lowpass equivalent impulse response of the channel. If s(t) is transmitted at time

t = t0, then rl(t) is an estimate of the lowpass equivalent impulse response of the channel

at time t = t0. An estimate of the lowpass equivalent frequency response of the channel
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at time t = t0 can be obtained by sampling r(t), computing the lowpass equivalent signal,

and performing a FFT of that signal.

To measure the impulse response of the channel at several instants of time, the mea-

suring system can be modified to send a train of band-limited RF pulses, where the pulses

are separated in time by ∆T . ∆T should be sufficiently large to guarantee that the impulse

response of the channel at instant t0 is received before receiving the impulse response of

the channel at instant t0 +∆T .
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APPENDIX B. ANALYSIS OF A SECOND ORDER TYPE I DIGITAL

PHASE-LOCK LOOPS (DPLL)

B.1 Principle of Operation

A second order type I DPLL achieves frequency lock if the frequency offset ∆ωi f of the

input recorded signal, ri f [n], with the DPLL local oscillator frequency ωi f is within the

lock range. However, frequency lock is accompanied with a constant phase error with the

input signal. This phase error is required for the DPLL to synthesize the instantaneous

frequency ∆ωi f at each iteration or clock cycle.

Figure B.1 shows a block diagram of a second order type I DPLL. It is composed of a

phase detector (PD), a loop filter (LF), a gain K, and a numerical control oscillator (NCO).

The NCO generates the signal y[n]. x[n] and y[n] are mixed by the phase detector. The

important pieces of this block diagram are the loop filter and the gain K. These entities

generate an instantaneous frequency ∆ω′[n] from the phase detector output. The instan-

taneous phase θNCO[n + 1] of the NCO output at the discrete instant of time (n + 1) ∗Tr

PD

LF K

NCO

∆ω′[n]

x[n] = cos(φi[n])

y[n] = sin(θNCO[n])

ω0

sin Acc
θNCO[n]

Figure B.1: DPLL Block Diagram
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PD

LF K

NCO

∆ω′[n] = ∆ω

x[n] = cos((ω0 +∆ω)n)

y[n] = sin((ω0[n]+∆ω)n+θ)

ω0

sin(∆θe[n] = θ)

Figure B.2: DPLL Block Diagram (In Lock)

where Tr is the sampling period, is obtained by adding ω0 and ∆ω′[n] to the NCO built-in

integrator that was set to θNCO[n] at the discrete instant of time n∗Tr. θNCO[n+1] is then

loaded into the NCO integrator at the discrete instant of time (n+1)∗Tr occurring at the

next clock cycle.

The loop filter provides some noise immunity by acting as a second gain that is si-

multaneously very small for the high frequencies of the signal and that approaches F(1)

as ∆θe[n] becomes constant equal to θ (see Figure B.2) for the frequency the DPLL has

achieved frequency lock.

B.2 The Linearized Z-Transform Model of The DPLL

The linearized Z-transform model of the DPLL is based on an approximation of the differ-

ence of instantaneous phases ∆θe[n] between x[n] and y[n] by sin(∆θe[n]) ≈ ∆θe[n]. This

model is based on taking the Z-transform of the output phase of the NCO, θNCO[n], that

is defined by (see Figure B.1)

θNCO[n+1] = θNCO[n]+ω0 +∆ω′[n]. (B.1)

Taking the Z-transform of B.1 yields

ΘNCO(z) = ω0
z−1

(1− z−1)2 +
z−1

(1− z−1)
∆ω′(z). (B.2)
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Φi(z) Θi(z)

ΘNCO(z)

Θe(z)

ω0

Figure B.3: DPLL Z-Transform Linearized Model

The inverse Z-transform of the first term is a ramp function equal to ω0 ∗ n. This ramp

function can be moved out of the feedback loop of the model, yielding

ΘNCO(z) =
z−1

(1− z−1)
∆ω′(z) = NCO(z)∆ω′(z). (B.3)

The Z-transform model of the DPLL is shown on Figure B.3 where Φi(z) denotes the Z-

transform of the instantaneous phase φi[n] of x[n], and z−1

(1−z−1) represents the Z-transform

of the NCO.

The loop filter of a general second-order DPLL has one real pole that is placed close

to the unit circle. The phase detector produces a term at frequencies in the neighborhood

of 2 ∗ωi f . This frequency can be easily filtered by adding a complex conjugate pair of

zeros at location 2∗ωi f . If a denotes the value of the pole, then F(z) is given by

F(z) = KF
1−2cos(0.8π)z−1 + z−2

1−az−1 . (B.4)

where KF is a constant. KF is set such that the DC response of the loop filter is equal to

1, yielding

KF =
1−a

2−2cos(0.8π)
. (B.5)

The transfer function of the DPLL is equal to

DPLL(z) =
K ∗F(z)∗NCO(z)

1+K ∗F(z)∗NCO(z)

DPLL(z) =
KKF(z2−2cos(0.8π)z+1)

z3 − (1+a−KKF)z2 +(a−2KKF cos(0.8π))z+KKF
(B.6)
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APPENDIX C. MATLAB AND SIMULINK SOURCE FILES FOR THE

POST-PROCESSING SYSTEM

The implementation of Pass 1 to Pass 4 in Simulink includes the following Matlab and

Simulink files that must be run in the same order as they are given below to obtain the

estimates âi[k] and θ̂i[k] of Ai(tk) and Θi(tk).

“S1 run.m” is the program corresponding to Pass 1. This program calls the Simulink

program, “S1.mdl”. The file that stores ri f [n] is too large to be processed in one block

through Simulink. ri f [n] is processed in portions of 40ms duration. Performing this way

requires saving the internal states of the Simulink blocks after processing one block of

the signal. The internal states of the Simulink blocks are then reloaded before processing

the next signal block. This is easily implemented by using the environment variables de-

fined by Simulink. These variables are used to retrieve the internal states of the Simulink

blocks in order to reload these values when running the simulation on the next segment

of data. However, in order to function correctly, the next portion of data to be processed

must have its first value equal to the last value of the previous segment of data. This is

because Simulink doesn’t update the internal states of the Simulink blocks after process-

ing the last sample of the segment. “S2 run” is the program corresponding to Pass 2. This

program calls the Simulink program, “S2.mdl”. “Compute interpol.m” is the program

corresponding to Pass 3. This program uses the Matlab function “spline” to resample

rl[n]. “Compute fft.m” is the program corresponding to Pass 4. This program uses the

Matlab function, “fft”.“Compute fft.m” creates two files. One of the file contains the esti-

mates, âi[k], and the other file contains the estimates, θ̂i[k], of the amplitude and phase of

the tones. These files can then be read to generate the waveforms showing the amplitude

and phase estimates of the tone as a function of time.

C.1 Simulink And Matlab Source Files For Pass 1

clear;
% S1_run.m
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Nb_steps

Settling Time
(Number of Iterations)

>=

Relational
Operator Product1

Product

B_pll(z)

A_pll(z)

PLL filter

fo
NCO 
natural
frequency

sin(u)

NCO
Quadrature
 Component

z −1

1−z −1

NCO
Phase Accumulator

z −1

1−z −1

Instantaneous
Frequency

Accumulator

1

Increment

K

Gain

signal_inFrom
Workspace1

z −1

1−z −1

Counter

lsb_adcConvert
to

Volt

B_bp(z)

A_bp(z)
Bandpass filter

centered at fo

PLL in−lock

Figure C.1: Simulink Source File: “S1.mdl”
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%ENTER INPUT FILE HERE
fid_input_file_S1 = fopen(’300902_setup2_d4.bin’,’r’);
% simulation parameters
DS = 1000;
sim_time = DS * 20e2;
nb_iterations = 50;
PLL_settling_time = 2e4;
den = 128;
cf_num = 53;
% filter design IIR Bandpass filter
f_dig_poles = ([-5/1000, 0, 5/1000] + (cf_num/den)) * pi;
r_poles = [0.99, 0.99, 0.99];
fpoles = [r_poles .* exp(j*f_dig_poles),
r_poles .* exp(-j*f_dig_poles)];
K = 1 / 7308;
B_bp = K;
A_bp = poly(fpoles);
% DPLL design
a = 0.999;
B_pll = (1 - a) * [1 -2*cos(0.8*pi) 1] / ((1-cos(0.8*pi))ˆ2
+ (sin(0.8*pi))ˆ2);
A_pll = [1 -a];
% ADC lsb
resol_dac = 2ˆ12;
lsb_adc = 2 / resol_dac;
% PLL loop gain
K = 5e-3;
% NCO natural frequency
fo = cf_num * pi / den;
[N,wp] = ellipord(5e-5,5e-4,0.01,70); clear wp;
[B_lp,A_lp] = ellip(N,0.01,70,5e-5); clear N;
% open files for input signal
fid_10khz_file = fopen(’S1_out.bin’,’w’);
% load input signal
data_raw = fread(fid_input_file_S1,sim_time + 1,
’int16=>double’);
signal_in.time = [];
signal_in.signals.dimensions = 1;
signal_in.signals.values = data_raw;
clear data_raw;
% run the simulation
xInitial = [];
Nb_steps = PLL_settling_time;
sim(’freq_shift02’);
% save output_signal
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fwrite(fid_10khz_file, data_10khz(2:(sim_time / DS) + 1), ...
’double’);
clear data_10khz;
% loop to run the successive runs
for I = 2:nb_iterations
Nb_steps = 0; I
xInitial = xFinal;
% load signal
data_raw(1) = signal_in.signals.values(sim_time + 1);
clear signal_in
data_raw(2:sim_time + 1) = fread(fid_input_file_S1,sim_time
,’int16=>double’);
signal_in.time = [];
signal_in.signals.dimensions = 1;
signal_in.signals.values = data_raw.’;
clear data_raw;
% run the simulation
sim(’freq_shift02’);
% save output_signal
fwrite(fid_10khz_file, data_10khz(2:(sim_time/DS) + 1), ...
’double’);
clear data_10khz;
end %loop for
% close files
fclose(fid_input_file_S1);
fclose(fid_10khz_file);
% save content of offset phase accumulator
dfo = xFinal.signals(8).values / (sim_time * nb_iterations
- PLL_settling_time);
save S1_out_dfo dfo;
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C.2 Simulink And Matlab Source Files For Pass 2

Q_bb_signal W2I_bb_signal W1

sin(u) Quadrature
 Component

Product2Product1

fo + dfo NCO 
frequency

z −1

1−z −1
NCO
Phase Accumulator

B_lp1(z)

1

Lowpass 
filter
for Quadrature

B_lp1(z)

1

Lowpass
filter

for In−phase

cos(u)In−phase
component

signal_inFrom
Workspace1

lsb_adcConvert
to

Volt

Figure C.2: Simulink Source File: “S2.mdl” (Process 1)
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Figure C.3: Simulink Source File: “S2.mdl” (Process 2)
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% S2_run.m
clear;
%ENTER INPUT FILE HERE
fid_input_file_S2a = fopen(’300902_setup2_d4.bin’,’r’);
% NCO natural frequency for frequency shift to baseband
den = 128;
cf_num = 53;
fo = cf_num * pi / den;
nb_iterations = 50;
load S1_out_dfo;
% simulation parameters
sim_time = 1000 * 20e2;
PLL_settling_time = 1e5;
% filter design FIR Lowpass filter
[Nf, Ff, Af, Wf] = remezord([30/256+2.5e-3 0.125],
[1 , 0], [0.001 0.001], 1);
B_lp1 = remez(Nf, Ff, Af, Wf);
clear Nf; clear Ff; clear Af; clear Wf;
% complex filter to extract the 9th tone
f_dig_poles = ([-5/1000, 0, 5/1000] + (24 / den)) * pi;
r_poles = [0.99, 0.99, 0.99];
fpoles = [r_poles .* exp(j*f_dig_poles),
r_poles .* exp(-j*f_dig_poles)];
K = 10ˆ(-88/20); % requires 21dB gain at DC
fzeros = [r_poles .* exp(-j*f_dig_poles)];
B_bp1 = K * poly(fzeros);
A_bp1 = poly(fpoles);
B_bp1_real = real(B_bp1);
B_bp1_im = imag(B_bp1);
A_bp1_real = A_bp1;
A_bp1_im = A_bp1_real;
% DPLL design
a = 0.999;
B_pll = (1 - a);
A_pll = [1 -a];
% ADC lsb
resol_dac = 2ˆ12;
lsb_adc = 2 / resol_dac;
% NCO natural frequency
fr1 = 24 / den * pi;
% PLL loop gain
K = 5e-3;
% open files for input and output signals
fid_I_output_file = fopen(’S2a_I.bin’,’w’);
fid_Q_output_file = fopen(’S2a_Q.bin’,’w’);
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% load input_signal
data_raw = fread(fid_input_file_S2a,sim_time + 1,
’int16=>double’);
signal_in.time = [];
signal_in.signals.dimensions = 1;
signal_in.signals.values = data_raw;
clear data_raw;
% run the simulation
xInitial = [];
Nb_steps = PLL_settling_time;
sim(’freq_shift04’);
% save output_signals
fwrite(fid_I_output_file, I_bb_signal(1:sim_time),’double’);
fwrite(fid_Q_output_file, Q_bb_signal(1:sim_time),’double’);
clear I_bb_signal; clear Q_bb_signal;
% loop to run the successive runs
for I = 2:nb_iterations
Nb_steps = 0;I
xInitial = xFinal;
% load signal
data_raw(1) = signal_in.signals.values(sim_time + 1);
clear signal_in
data_raw(2:sim_time + 1) = fread(fid_input_file_S2a,sim_time
,’int16=>double’);
signal_in.time = [];
signal_in.signals.dimensions = 1;
signal_in.signals.values = data_raw.’;
clear data_raw;
% run the simulation
sim(’freq_shift04’);
% save output_signals
fwrite(fid_I_output_file, I_bb_signal(1:sim_time),’double’);
fwrite(fid_Q_output_file, Q_bb_signal(1:sim_time),’double’);
clear I_bb_signal; clear Q_bb_signal;
end %loop for
% close files
fclose(fid_I_output_file);
fclose(fid_Q_output_file);
fclose(fid_input_file_S2a);
% save content of offset phase accumulator
dfr1 = xFinal.signals(11).values / (sim_time * nb_iterations
- PLL_settling_time);
save S2a_out_dfr1 dfr1;
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C.3 Matlab Source File For Pass 3

% Compute_interpol.m
clear;
% Initialization
fr1 = 24 / 128 * pi;
load S2a_out_dfr1;
b = 1 / (1 + (dfr1 / fr1));
Nb_read = 1e6;
Nb_iterations = 100e6 / Nb_read;
% Process the I component:
start_smpl = 1;
stop_smpl = Nb_read;
start_smpl_interpol = start_smpl;
stop_smpl_interpol = stop_smpl - 1;
% Open file to read and write the data
fid_I_input_file = fopen(’S2a_I.bin’,’r’);
fid_I_output_file = fopen(’S2a_I_interpol.bin’,’w’);
% Process input file and save result in output file
% Process first block
x = start_smpl : stop_smpl;
y = (fread(fid_I_input_file,Nb_read,’*double’)).’;
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x, y, xx);
fwrite(fid_I_output_file,yy,’double’); clear yy;
% Process successive blocks of data and save result
for I = 2:Nb_iterations - 1,
y_last_values(1:3) = y(length(y)-2:length(y)); clear y;
y = y_last_values; clear y_last_values;
start_smpl = stop_smpl - 2;
stop_smpl = I * Nb_read; clear x;
start_smpl_interpol = xx(length(xx)) + b; clear xx;
stop_smpl_interpol = stop_smpl - 1;
x = start_smpl : stop_smpl;
y = [y (fread(fid_I_input_file, Nb_read, ’*double’)).’];
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x , y, xx);
fwrite(fid_I_output_file,yy,’double’); clear yy;
end
% Process last block
y_last_values(1:3) = y(length(y)-2:length(y)); clear y;
y = y_last_values; clear y_last_values;
start_smpl = stop_smpl - 2;
stop_smpl = Nb_iterations * Nb_read; clear x;
start_smpl_interpol = xx(length(xx)) + b; clear xx;
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stop_smpl_interpol = stop_smpl;
x = start_smpl : stop_smpl;
y = [y (fread(fid_I_input_file, Nb_read, ’*double’)).’];
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x , y, xx);
fwrite(fid_I_output_file,yy,’double’); clear yy;
fclose(fid_I_output_file);
fclose(fid_I_input_file);
clear fid_I_output_file; clear fid_I_input_file;

% Process the Q component
start_smpl = 1;
stop_smpl = Nb_read;
start_smpl_interpol = start_smpl;
stop_smpl_interpol = stop_smpl - 1;
% Open file to read and write the data
fid_Q_input_file = fopen(’S2a_Q.bin’,’r’);
fid_Q_output_file = fopen(’S2a_Q_interpol.bin’,’w’);
% Process input file and save result in output file
% Process first block
x = start_smpl : stop_smpl;
y = (fread(fid_Q_input_file,Nb_read,’*double’)).’;
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x, y, xx);
fwrite(fid_Q_output_file,yy,’double’); clear yy;
% Process successive blocks of data and save result
for I = 2:Nb_iterations - 1,
y_last_values(1:3) = y(length(y)-2:length(y)); clear y;
y = y_last_values; clear y_last_values;
start_smpl = stop_smpl - 2;
stop_smpl = I * Nb_read; clear x;
start_smpl_interpol = xx(length(xx)) + b; clear xx;
stop_smpl_interpol = stop_smpl - 1;
x = start_smpl : stop_smpl;
y = [y (fread(fid_Q_input_file, Nb_read, ’*double’)).’];
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x , y, xx);
fwrite(fid_Q_output_file,yy,’double’); clear yy;
end
% Process the last block
y_last_values(1:3) = y(length(y)-2:length(y)); clear y;
y = y_last_values; clear y_last_values;
start_smpl = stop_smpl - 2;
stop_smpl = Nb_iterations * Nb_read; clear x;
start_smpl_interpol = xx(length(xx)) + b; clear xx;
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stop_smpl_interpol = stop_smpl;
x = start_smpl : stop_smpl;
y = [y (fread(fid_Q_input_file, Nb_read, ’*double’)).’];
xx = start_smpl_interpol : b : stop_smpl_interpol;
yy = spline(x , y, xx);
fwrite(fid_Q_output_file,yy,’double’); clear yy;
fclose(fid_Q_output_file);
fclose(fid_Q_input_file);

C.4 Matlab Source Files For Pass 4

% Compute_fft.m
%ENTER OUTPUT FILE HERE
fid_output_file_mag = ...
fopen(’300902_setup2_d4_mag_interpol.bin’,’w’);
fid_output_file_phase = ...
fopen(’300902_setup2_d4_phase_interpol.bin’,’w’);
% compute succesive N-point FFTs of I & Q signal
% Parameters
Nb_read = 8e5;
N = 256; % Specify the number of points for the FFT
Nb_ffts = 3125;
Nb_iterations = 125;
%open input and output files
fid_input_file_I = fopen(’S2a_I_interpol.bin’,’r’);
fid_input_file_Q = fopen(’S2a_Q_interpol.bin’,’r’);
for loop = 1:Nb_iterations,
% read I & Q signals from input files
if (loop < Nb_iterations)
I_signal = (fread(fid_input_file_I, Nb_read, ’*double’)).’;
Q_signal = (fread(fid_input_file_Q, Nb_read, ’*double’)).’;
else
I_signal = (fread(fid_input_file_I, ’*double’)).’;
Q_signal = (fread(fid_input_file_Q, ’*double’)).’;
if (Nb_read - length(I_signal)) > 0
I_signal = [I_signal zeros(1, Nb_read - length(I_signal))];
Q_signal = [Q_signal zeros(1, Nb_read - length(Q_signal))];
end
end
% Initialization
signal_start = 1;
signal_stop = N;
freq_abs_array = [];
freq_phase_array = [];
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% Compute successive N-point FFTs
for I = 1:Nb_ffts,
sig_bb_fft = fft(I_signal(signal_start:signal_stop) -
j * Q_signal(signal_start:signal_stop),N);
index_fft = N - (5*(6*N/256)) + 1;
step_fft = 6 * N / 256;
freq_abs_row = [];
freq_phase_row = [];
% extract amplitude and phase values for all 11 tones
for J = 1:11,
if (J == 5)
index_fft_old = index_fft;
index_fft = index_fft - 2*N/256;
freq_abs_row = [freq_abs_row abs(sig_bb_fft(index_fft))];
freq_phase_row = [freq_phase_row angle(sig_bb_fft(index_fft))];
index_fft = index_fft_old;
elseif (J == 7)
index_fft_old = index_fft;
index_fft = index_fft + 2*N/256;
freq_abs_row = [freq_abs_row abs(sig_bb_fft(index_fft))];
freq_phase_row = [freq_phase_row angle(sig_bb_fft(index_fft))];
index_fft = index_fft_old;
else
freq_abs_row = [freq_abs_row abs(sig_bb_fft(index_fft))];
freq_phase_row = [freq_phase_row angle(sig_bb_fft(index_fft))];
end
index_fft = index_fft + step_fft;
if (index_fft == (N + 1))
index_fft = 1;
end
end
% Update amplitude and phase arrays with the new values for
% all 11 tones
freq_abs_array = [freq_abs_array; freq_abs_row];
freq_phase_array = [freq_phase_array; freq_phase_row];
signal_start = signal_stop + 1;
signal_stop = signal_start + N - 1;
clear freq_abs_row;
clear freq_phase_row;
clear sig_bb_fft;
end
% save magnitude and phase to file
% WARNING!!!: In order to recover properly the data
% when reading the file, read by blocks of Nb_ffts * 11
% in matrices of Nb_ffts rows by 11 columns
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fwrite(fid_output_file_mag,freq_abs_array,’double’);
fwrite(fid_output_file_phase,freq_phase_array,’double’);
clear freq_abs_array; clear freq_phase_array;
clear I_signal;clear Q_signal;
end
% close the files
fclose(fid_input_file_I);fclose(fid_input_file_Q);
fclose(fid_output_file_mag);fclose(fid_output_file_phase);
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