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12201-970 São José dos Campos, São Paulo, Brazil

2 Instituto de F́ısica, Universidade Federal da Bahia 40210-340, Salvador, Bahia, Brazil and

3 Scuola Normale Superiore and CNISM,

Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Abstract

The electron effective g factor tensor in asymmetric III-V semiconductor quantum wells (AQWs)

and its tuning with the structure parameters and composition are investigated with envelope-

function theory and 8 × 8 k · p Kane model. The spin-dependent terms in the electron effective

Hamiltonian in the presence of an external magnetic-field are treated as a perturbation and the

g factors g∗⊥ and g∗‖, for the magnetic field in the QW plane and along the growth direction, are

obtained analytically as a function of the well width L. The effects of the structure inversion

asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main anisotropy ∆g =

g∗⊥ − g∗‖ in AQWs, a sign change is predicted in the narrow well limit due to SIA, which can

explain recent measurements and be useful in spintronic applications. Specific results for narrow-

gap AlSb/InAs/GaSb and AlxGa1−xAs/GaAs/AlyGa1−yAs AQWs are presented and discussed

with the available experimental data; in particular InAs QWs are shown to not only present much

larger g factors but also a larger g-factor anisotropy, and with the opposite sign with respect to

GaAs QWs.
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I. INTRODUCTION

Electron g-factor engineering, i.e. tuning the effective g factor (g∗) with quantum con-

finement effects in semiconductor nanostructures is of great interest to semiconductor spin-

tronics [1–3]. g∗ is a fundamental parameter that determines the Zeeman splitting of the

electronic states and depends on different quantum effects. For the most basic example, in

GaAs/AlGaAs like quantum wells (QWs) the g factor is determined by the confined wave-

function and by the mesoscopic (Rashba type) spin-orbit (SO) interaction at the interfaces

[4–7]. Breaking of translation symmetry along the QW growth direction (ẑ) leads to an

electron (leading-order) g-factor tensor in the following form:

g∗QW =


g∗⊥ 0 0

0 g∗⊥ 0

0 0 g∗‖

 , (1)

where g∗⊥ gives the Zeeman splitting for magnetic-field in the QW (i.e. xy) plane and g∗‖

for ~B ‖ ẑ. The difference ∆g = g∗⊥ − g∗‖ is the QW g-factor anisotropy, which in first order

perturbation theory and for symmetric QWs with barriers at z = ±L/2, reads [6]

∆g =
4me

h̄2 (βw − βb)L |f (0)(L/2)|2 , (2)

f (0) being the unperturbed confined wave-function and β the (energy-dependent) Rashba

SO coupling parameter, discussed below; with g∗‖ = ḡbulk =< f (0)|gbulk|f (0) > (i.e. equals to

the bulk average). The g-factor anisotropy is then proportional to the difference between

the βs in the well and in the barrier, and to the amplitude squared of the wave-function at

the interface; and as a function of L (as shown later in Figures 3 and 4), ∆g is seen to start

equals to zero at L = 0, to reach then an extremum (e.g. a maximum at L ∼ 4 nm for

GaAs QWs) and then to return slowly to zero as L goes to infinity.

These theoretical results for g∗QW (L) give a simple picture for the renormalization of the

electron g factor due to quantum confinement effects in III-V semiconductor QWs, are in

good agreement with the experimental data for GaAs QWs [8–13], but are limited to sym-

metric QWs. The well known Ivchenko and Kiselev framework for the g-factor calculation

[4, 14, 15] which is also based on the Kane model and envelope function approximation,

presents an accurate solution for a general confinement (i.e. for both symmetric and asym-

metric QWs) and was explicitly applied in biased GaAs and InGaAs triangular QWs [16].
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However, the above perturbative solution is much simpler, gives an intuitive and useful

physical interpretation for the g-factor renormalization, derives from long used and tested

approximations in similar problems [17], more recently the g-factor solution has been applied

also to PbTe QWs [7], GaN QWs [18] and GaAs nanodisks [3] and therefore it would be

highly desirable to have such a solution for a general nanostructure. In particular, asymmet-

ric quantum wells (AQWs), i.e. quantum wells with structure inversion asymmetry (SIA),

are important candidates for structures with large g-factor variation. It is still not clear,

for example, how the SIA affects the above results for the g factor in typical III-V AQWs.

In this work we consider square AQWs (i.e. QWs with different left and right barriers),

focus on the small L limit where both the quantum and SIA effects are larger, and extend

the above solution for g∗QW (L) to the case of AQWs. Such low field perturbation solution

has shown to be accurate in the L → 0 limit [6, 9–11], and reveal here an interesting g-

factor anisotropy sign change in narrow AQWs that can be useful in different spintronic

applications; a detailed derivation of the main results is provided.

FIG. 1. Schematic illustration of a square asymmetric QW grown along z with different interfaces

at zl and zr, and of the classical cyclotron orbit in real space for in-plane magnetic-fields, centered

at z0.

It is also interesting to investigate the electron g factor in narrow-gap III-V semicon-

ductor QWs with larger bulk g factors, stronger SO interaction and smaller remote-bands

contribution than GaAs QWs. Among the narrow gap III-V semiconductors, InAs presents

large SO interaction, high electron mobilities, small Shottky barriers and is therefore par-

ticularly attractive for spintronic applications [19, 20]. The gate-controlled electron g factor

has been studied using InAs AQWs [2]. Here we consider the g∗QW for electrons confined in

3



undoped AlSb/InAs/GaSb AQWs. These are QW structures with SIA, analytical spin-split

electronic structure and therefore of interest to the physics of Rashba coupling in semicon-

ductor 2DEGs; the special possibilities connected with the type II band-alignment in one

interface and type III in the other make them of interest also to the topological insulator

physics [21, 22]. Here expressions for the electron g∗QW (L) in general III-V square AQWs

are obtained and used to calculate the electron g factor in specific InAs and GaAs AQWs.

Several differences are found between them and between symmetric and asymmetric QWs;

for example, the g-factor anisotropy ∆g is seen to have opposite signs in InAs and GaAs

QWs and, differently to the symmetric case, to change sign in narrow AQWs due to SIA.

Next we present the multi-band envelope-function model, then the AQW g-factor calcu-

lation, the results for GaAs and InAs AQWs, the comparison with the experiments and

finally, in the conclusions, the summary of the results.

II. MULTI-BAND ENVELOPE-FUNCTION MODEL

Using standard envelope-function method based on the 8×8 k·p Kane model for the bulk,

the set of equations for the envelope functions can be written as an effective Hamiltonian

for the electron (i.e. conduction band) envelope-functions, with energy dependent effective-

mass and explicit Rashba SO coupling [23–25]. In the presence of an external magnetic field

we follow Ref. [6], add the bare Zeeman interaction, make the fundamental substitution

k→ k+ e
h̄
A (−e being the electron charge) and, as further explained in the Appendix, obtain

the following effective Hamiltonian for the QW electronic states in an in-plane magnetic field

B = (0, B, 0):

H
(σ)
eff = − h̄

2

2

d

dz

1

m(z, εσ)

d

dz
+
h̄2

2

[(z − z0)/`2]
2

m(z, εσ)
+Ec(z)∓ 2me

h̄2

[
αR(z, εσ) (z − z0)+β(z, εσ)

]
µBB ,

(3)

where the conduction band (CB) edge profile Ec(z) is now a general one. The Landau gauge

is used with vector potential A = (z B, 0, 0) and the signs ∓ stand for spin down or up along

y. Note that with this gauge the envelope function can be written as Ψ = ei(kxx+kyy)f(z),

with f(z) satisfying H
(σ)
efff = εσf , kx being a quantum number that gives the center of the

cyclotron orbit, i.e. z0 = −`2kx, where ` =
√
h̄/eB is the magnetic length; and ky is the

wave-vector for the free motion along the B-field direction which is zero for the ground-state.
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Finally εσ is the electron energy with spin σ (= ±), the Bohr magneton µB = eh̄/2me (me

being the free-electron mass), αR(z, εσ) = d
dz
β(z, εσ) and the effective mass m(z, εσ) and

Rashba SO parameter β(z, εσ) are given by:

1

m(z, εσ)
=
P 2

h̄2

[
2

εσ − Ev(z)
+

1

εσ − Ev(z) + ∆(z)

]
(4)

and

β(z, εσ) =
P 2

2

[
1

εσ − Ev(z)
− 1

εσ − Ev(z) + ∆(z)

]
, (5)

where Ev and ∆ stand for the material valence band (VB) edge and spin-orbit splitting

respectively; P = −i (h̄/me)
√

2
3
〈S|px|X〉 is the momentum matrix element, assumed con-

stant along the structure (as a fundamental assumption of the envelope-function approx-

imation) and determined by the measured CB edge effective-mass in the well m∗, i.e.

P =
√

h̄2

m∗
Eg(Eg+∆)
3Eg+2∆

. It is easy to test and verify that the above effective Hamiltonian reduces

exactly to well-known Hamiltonians in three limits: 1) in the zero magnetic field limit, giving

the usual model for the Rashba effect [23–25], 2) with no SO interaction, giving the regular

Landau level quantization in a QW [26] and 3) in the bulk limit, reducing to the theory of

Roth et al. [27] for the energy-dependent bulk g factor .

III. G FACTOR IN AQWS

The ground state g∗QW can be calculated in the small magnetic-field limit considering the

spin dependent terms in H
(σ)
eff as a perturbation. The zeroth order wave-function f (0)(z)

and energy ε0 are solutions of the unperturbed problem, i.e. with B = 0 and ky = kx = 0,(
− h̄2

2
d
dz

1
m(z,εσ)

d
dz

+ Ec(z)
)
f (0)(z) = ε0 f

(0)(z), which corresponds to the Kane AQW prob-

lem, which in turn can be easily solved exactly [25]. However, differently to the case of a

symmetric QW, the expectation value z̄ does not coincide in general with the center of the

well. For symmetric QWs with barriers at z = ±L/2, z̄ = 0 and thus the lowest energy state

also has z0 = 0 (i.e., kx = 0). For AQWs instead, z0 has to be calculated minimizing the

term h̄2

2m(z,εσ)
[(z − z0)/`2]

2
in H

(σ)
eff which simply leads to z0 = z̄, independent on B (while

kx ∝ B z0 still vanishes when B → 0). We note that an alternative approach would be to

change both coordinates, using z′ = z − z̄, and gauge, using A′ = (z′B, 0, 0), in which

case the wave function changes as Ψ → Ψ′ = eiez̄Bx/h̄ Ψ and the lowest energy Ψ′ would
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correspond to z′0 = 0 and k′x ≡ 0. Focussing here on AQWs, we prefer to leave the role

played by z̄ explicit, which accounts for the diamagnetic shift [14–16].

In first order perturbation theory, one can simply calculate the g factor from Eq.(3) as:

g∗⊥ = ḡbulk −
4me

h̄2 〈f
(0)|αR(z, ε0)(z − z̄)|f (0)〉 . (6)

Note that in flat-band wells αR (= d
dz
β) is different from zero only at the interfaces where β

changes abruptly. With ~B ‖ ẑ, the system recovers the rotation symmetry around to growth

direction, and in the same approximation (see Appendix) g∗‖ is given by the bulk average,

i.e.

g∗‖ = ḡbulk = ge+ < f (0)| − 4me

h̄2 β(z, ε0) + δgrem(z)|f (0) > , (7)

δgrem being the difference between the g-factor measured experimentally and that given by

the Roth formula, i.e. the remote-bands contribution [27] , and ge the free electron g factor

equals to 2. The QW g-factor anisotropy is then given simply by:

∆g = g∗⊥ − g∗‖ = −4me

h̄2 〈f
(0)|αR(z, ε0)(z − z̄)|f (0)〉 . (8)

As illustrated in Fig. 1, for a general III-V square AQW we set the two non-equivalent

interfaces at z = zl and z = zr, with zr−zl = L. The expectation values above can be easily

calculated and one gets:

g∗‖ = gl(ε0)Pl + gw(ε0)Pw + gr(ε0)Pr (9)

and

∆g = (∆g)r − (∆g)l (10)

where Pi (=
∫
i |f (0)(z)|2dz) is the probability to find the electron in the region i (i = l for z ≤

zl, i = w for zl < z < zr and i = r for z ≥ zr); the bulk g factors gi = ge− 4me
h̄2
βi(ε0) + δg(i)

rem

and

(∆g)j =
4me

h̄2 δβj(zj − z̄)|f (0)(zj)|2 (11)

with j = l, r and δβj = βw − βj.

The g-factor anisotropy ∆g in AQWs is then seen to be determined by the differences

δβ and by the wave-function amplitudes (squared) at each interface, weighted however by

their distance to the center of the ground state orbit z0 = z̄. Note that in symmetric QWs

δβl = δβr, z̄ − zl = zr − z̄ = L/2 and the symmetrical result in Eq. (2) is recovered. Recall
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FIG. 2. (Color online) Conduction band-edge profile Ec(z), ground state energy

ε0 and probability density |f (0)(z)|2 (with axis on the right) for L = 5 nm (a)

Al0.15Ga0.85As/GaAs/Al0.15Ga0.85As SQW, (b) Al0.3Ga0.7As/GaAs/Al0.15Ga0.85As AQW (red

lines) and (c) insulator/GaAs/Al0.15Ga0.85As AQW (blue lines). The respective ground state

orbit center z0 = z̄ are also shown. The parameters used were Eg = (1.519 + 1.247x) eV,

∆ = (1.859 + 1.115x + 0.37x2 − Eg) eV (x being the Al concentration) and 0.067me for the

GaAs conduction-band edge effective mass. For the conduction band-offset the 72% rule was used.

also that for symmetric QWs, the ground-state corresponds to z̄ = (zl + zr)/2 at the center

of the well and the contributions from the two interfaces are equal: −(∆g)l = (∆g)r =

∆g/2. The specific contribution of the SIA to ∆g increases with |(zl + zr)/2− z̄| and with

|δβr|f (0)(zr)|2 − δβl|f (0)(zl)|2|. It is interesting to consider also the limit case of an infinite

high barrier (a perfect insulator) in one of the two sides (say the l side); in this case, the g

factor anisotropy is simply given by ∆g = 4me
h̄2
δβr(zr − z̄)|f (0)(zr)|2.

Contrary to the symmetric QW case, the sign of ∆g in AQWs is not uniquely determined

by the sign of δβ but depends also on the sing of (zinterf − z̄). In practice, to calculate
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g∗QW (L) one solves the unperturbed problem and in the above equations just plug in the

obtained f
(0)
L (z), ε0(L) and also z̄(L). Next we discuss the results for specific GaAs and

InAs AQWs.

IV. AlxGa1−xAs/GaAs/AlyGa1−yAs AQW

As a first example we consider AlxGa1−xAs/GaAs/AlyGa1−yAs (with x 6= y) AQWs. The

results for g∗QW (L) in these wells are compared to those in similar GaAs symmetric wells

(SQWs) and in insulator/GaAs/AlyGa1−yAs AQWs. Typical ground-state unperturbed

solutions for these three types of QWs are shown in Figure 2 with the conduction band

profile and L = 5 nm, showing that the wave-function is deformed and z0 is pushed away

from the barrier on the left as the barrier height increases. Similarly, for a fixed AQW

profile, z0 is pushed away from the higher barrier as the well width L is decreased.

In Figure 3, the obtained g∗⊥, g∗‖ and ∆g for these three wells are plotted as a function of

L. First it is interesting to see that the break of specular symmetry (or SIA) has only small

quantitative effects in the GaAs QW electron g factor except for narrow wells when the g-

factor anisotropy changes sign and starts to increase rapidly. In these GaAs square AQWs

there is always a critical well width below which g∗⊥ becomes smaller than g∗‖, i.e. ∆g becomes

negative, while in symmetric QWs ∆g is always positive. Such anisotropy sign change in

thin AQWs is due to the z̄ dependence. For example, in insulator/GaAs/GaAlAs AQWs

it happens when z̄ > zr, i.e. when the expectation value of the electron position along

the growth direction lies outside the QW or GaAs region. Note also that for large well

widths, the anisotropy of the AlxGa1−xAs/GaAs/AlyGa1−yAs AQWs tend to that of the

GaAs SQW, and when one of the barriers is infinitely high, the anisotropy is a factor of 2

smaller, as due to one interface only.

V. AlSb/InAs/GaSb AQW

The present 8×8 k ·p Kane model is much more precise for InAs than it is for GaAs, as

indicated by a much smaller δgrem/g, which is ∼ 0.03 for InAs and ∼ 1.1 for GaAs. Here we

consider the electron g factor in InAsQWs similar to theGaAs ones discussed above, namely

thin InAs/GaSb symmetric QWs, AlSb/InAs/GaSb AQWs and insulator/InAs/GaSb
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FIG. 3. (Color online) Effective electron g factors and the anisotropy ∆g as a function of the

well width, in panels (a) and (b) respectively, for the same structures in Figure 2. In AQWs, ∆g

is seen to change sign for narrow wells; note that the curves stop at the corresponding critical

well width for a bound state. A bulk conduction-band edge g∗ = −0.44 + 4.25x − 3.9x2 (x being

the Al concentration) was used [28]. The experimental points are for g∗‖ in asymmetrically doped

GaAs/Al0.15Ga0.85As AQWs as reported in Ref. [29].

AQWs. Due to the broken-gap band alignment, there are InAs confined electron states in

these QWs with GaSb barriers only when the well width L < Lc ∼ 9 nm. This is because in

InAs/GaSb QWs with L > Lc, the electron energy ε0 gets below EGaSb
v and the state is not

confined in the InAs layer anymore [30, 31]. Note that when ε0 = EGaSb
v , the GaSb (bulk) g

factor diverges (see expression for β in Eq. (5)) and g∗QW (L ∼ Lc) is therefore expected to

be quite large since the barrier penetration is also expected to increase when L→ Lc.

In Figure 4(a) it is plotted the calculated g∗⊥ (continuous lines) and g∗‖ (dashed lines) for

the three types of wells as a function of L; and in Figure 4(b), the corresponding ∆g. The

SIA can be clearly seen to have a much stronger effect in InAs QW g factors than it has in

GaAs wells, due to the stronger SO interaction. Compared to GaAs QWs, the electron g

factor in InAs QWs is seen to be two-orders of magnitude larger, with ∆g also much larger
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and of the opposite sign. Note that the anisotropy ∆g in these InAs AQWs changes sign at

a smaller well width and that in AlSb/InAs/GaSb wells, in the large L limit, ∆g tend to

that of insulator/InAs/GaSb AQWs, instead to that of SQWs as in GaAs wells, due to the

large conduction (Γ) AlSb/InAs band-offset. In these InAs AQWs, g∗‖ is seen to present a

maximum as a function of L.

It is also interesting to note the obtained large (in absolute value) electron g factor (∼ 30)

in InAs/GaSb QWs when L → Lc, which as just discussed, is due to barrier penetration

and to a divergence in the energy dependence of the bulk g factor in GaSb. We now compare

these calculations with the available experimental data.
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FIG. 4. (Color online) Effective electron g factors (g∗⊥, g∗‖) and the corresponding anisotropy

∆g (panels (a) and (b) respectively) as a function of the well width, for three different InAs

QWs: GaSb/InAs/GaSb symmetric QW (black lines), insulator/InAs/GaSb asymmetric QW

(blue lines) and AlSb/InAs/GaSb asymmetric QW (red lines). As before, dashed lines give g∗‖

and continuous g∗⊥. Well known bulk low temperature parameters [32] and 0.96 eV and 1.98 eV

for InAs/GaSb and InAs/AlSb conduction-band offsets respectively, were used.
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VI. COMPARISON WITH THE EXPERIMENTS

The electron g factor in GaAs/AlGaAs symmetric QWs has been measured by different

groups using both optical and transport techniques, involving time-resolved photolumines-

cence and magnetoresistance measurements [8–13]. In particular g∗‖ is now well known; with

good accuracy, it is given by the above QW average of the bulk g factors, which includes

effects from the energy dependence of the bulk g factors and from the wave-function barrier

penetration. Shown in Fig. 3(a), as L goes from very large values to near zero, g∗‖ interpo-

lates from the g factor in the well material to that in the barrier, with a sign change and,

therefore, g∗‖ = 0 for a certain (narrow) well [4, 13].

The anisotropy ∆g and its well width dependence are less well known. With spin-quantum

beats in the time-resolved photoluminescence [9], Le Jeune et al. [10] and Malinowski and

Harley [11] have measured ∆g(L) in GaAs symmetric QWs, and as shown in ref. [6] it

is simply and accurately described by Eq. (2) above. In AlxGa1−xAs/GaAs/AlyGa1−yAs

square AQWs, Ye et al. [33] have measured the in-plane Zeeman splitting anisotropy which

is allowed by the SIA but is due to higher order terms (in k and in B) [34].

More recently, g∗QW (L) in asymmetrically doped GaAs/AlGaAs AQWs was studied by

Shchepetilnikov et al. [29] using electron spin resonance detected with magnetoresistance

measurements. These data with doped AQWs can not be precisely compared with our

undoped square AQW results; nevertheless, as shown in Fig. 3(a), the observed values and

well width dependence of g∗‖ agree fairly well with the theory. As expected the experimental

g∗‖ (which is for doped, εF 6= 0, AQWs) is a little larger than the calculated one (which is

for undoped wells); more interesting, the measured g-factor anisotropy ∆g ∼ 0.08 for the

8nm AQW (see ref. [29] Fig. 3) is not far from the calculated ∆g = 0.05 in Fig. 3(b)

above (note that in such well width range, both g∗‖ and ∆g increase with electron energy).

However, measurements of ∆g in thin undoped GaAs square AQWs are still needed in order

to confirm the above obtained effect of anisotropy sign change.

Regarding such negative anisotropy in narrow GaAs AQWs, Tomimoto et al. [35] have

measured a negative ∆g in a single sample with very narrow (L = 0.32nm) CdTe/ZnTe

QW and attributed it to a change in the sign of δβ. It is interesting to note however that the

g factor in such wells behaves as in GaAs QWs, with positive ∆g and no change in the sign

of δβ as a function of L when it is symmetric; this observed negative ∆g is then likely to
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have another explanation. The growth of homogeneous and symmetric CdTe/ZnTe QWs

is difficult due to the large lattice mismatch and the sample studied may well present some

specular asymmetry which can account for the observed negative ∆g.

For InAs QWs there are much fewer experimental data. Smith and Fang [36] measured an

electron g∗QW ∼ −8, in 10 nm GaSb/InAs/GaSb QWs, which however is a too wide QW, i.e.

beyond the bound state regime considered here; and can not be compare with our results also

due to the large magnetic-fields employed in the coincidence (between Zeeman and Landau-

level splittings) method used. The g factor in wide InAs QWs was determined with similar

methods also in references [37, 38]. The electron g factor in thin InAs AQWs was studied

by Nitta et al. [2] and an |g∗‖| of the order of 3.5 was measured in biased 4nm InAs/InGaAs

AQWs, which is not far from the present results, however the structures are quite different

and can not be directly compared. In general, a self-consistent treatment of the band-edge

profile and/or a fine control of the structure parameters (including temperature dependence,

precise band-offset and electron effective mass etc.) are needed for a quantitative precise

description of the experimental data. The anisotropy ∆g in InAs QWs does not seem to

have been measured yet.

VII. CONCLUSIONS

Enough ground has ben given to believe that the electron effective g factor in III-V semi-

conductor AQWs can be tuned within a wide range of values by controlling the well width

and composition, including a change of sign in both g factor and g-factor anisotropy. The

obtained effect of g-factor anisotropy sign change in narrow wells is shown to be due to SIA

and determined by the electron average position in the AQW, and can explain recent obser-

vations. Results for the electron effective g factor tensor in different GaAs and InAs QWs

have been presented in fairly good agreement with the available experimental data. With

respect to GaAs QWs, InAs QWs are seen to not only have a much larger g factor and

g-factor anisotropy but also opposite anisotropy sign. The analytical expressions derived

apply to general III-V square AQWs. These results for the g-factor renormalization by the

mesoscopic quantum confinement in semiconductor nanostructures should be of importance

not only for the development of spintronic devices but also for the spin manipulation with

external electric or magnetic fields in spin-based qubits made with semiconductor nanos-
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tructures.

Appendix: Effective Hamiltonian and g∗ for III-V QWs

The effective Hamiltonian used for the QW electronic states in both transverse (Eq. 3)

and longitudinal magnetic fields, is obtained projecting the 8×8 Kane Hamiltonian into the

2×2 conduction-band space. Considering QWs grown along ẑ and using the same basis states

as in Ref. [24] after some simple algebra one obtains the following Schroedinger-Pauli-like

effective Hamiltonian:

Heff = H01 + i [β(z, εσ)k̂x, k̂z]σy + i β(z, εσ)[k̂x, k̂y]σz + i [β(z, εσ)k̂y, k̂z]σx , (A.1)

where H0 is the usual spin-independent part, i.e. kinetic energy plus confining potential,

with the energy dependent effective mass in Eq. (4). The components k̂i are the momentum

(k + e
h̄
A) operators, which for zero magnetic field lead to k̂z = −i d

dz
plus k̂x = kx and

k̂y = ky (i.e. good quantum numbers). Note that in this case one then has [kx, ky] = 0,

[βkx, k̂z] = i αkx and [βky, k̂z] = i αky (recall that α = dβ
dz

) which substituting above give

the well known Rashba effective Hamiltonian [23–25] (with energy dependent SO coupling

parameter α; note that β is sometimes also called Rashba coupling parameter, but clearly

should not be confused with its derivative α).

In the presence of a longitudinal homogeneous magnetic field, one can use the Lan-

dau gauge A = (−By, 0, 0) and after the fundamental substitution finds [k̂x, k̂y] = −i e
h̄
B,

[βk̂y, k̂z] = i αk̂y and [βk̂x, k̂z] = iα(k̂x − e
h̄
By). Since in this case Heff does not depend on

x, one can write the envelope spinor as ψ = eikxxψ(y, z), where kx sets the center of the

orbit and can be chosen equal to zero, and one then has:

Heff = H01 + α(k̂yσx +
e

h̄
Byσy) + β

e

h̄
Bσz . (A.2)

Note that independently of the known divergence of the vector potential in infinite systems

(which can be treated with a modulated vector potential [15, 39] or by considering finite sys-

tems [14]), the off-diagonal terms above, i.e. those proportional to α are much smaller than

the diagonal ones (proportional to β) and in a good first approximation can be neglected, so

that g∗‖ is simply given by Eq.(7). The accuracy of this approximation was verified in Ref.

[4] where it is shown to be in close agreement with the full solution of the Kiselev-Ivchenko
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equations (see curves 1 and 3 in Figure 3 there); the present approximation corresponds to

neglecting the Kiselev-Ivchenko auxiliary function h [14, 15], which is indeed several orders

of magnitude smaller than the main function. Note also that in the flat-band QWs con-

sidered here α is different from zero only at the two interfaces, where it presents opposite

signs, so that the corresponding expectation values should indeed be very small compared

with the main term.

Similarly for a transverse magnetic-field, as already discussed, one can chose A =

(Bz, 0, 0) and has [k̂x, k̂y] = 0, [βk̂y, k̂z] = i αky and [βk̂x, k̂z] = i(α(kx+ e
h̄
Bz)+ e

h̄
βB), which

substituting above give the effective Hamiltonian in Equation (3).
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