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Abstract 

The biological sense organ contains infinite potential. The artificial neural structures have 

emulated the potential of the central nervous system; however, most of the researchers 

have been using the linear combination of synaptic operation. In this thesis, this neural 

structure is referred to as the neural unit with linear synaptic operation (LSO).  

The objective of the research reported in this thesis is to develop novel neural units with 

higher-order synaptic operations (HOSO), and to explore their potential applications. 

The neural units with quadratic synaptic operation (QSO) and cubic synaptic operation 

(CSO) are developed and reported in this thesis. A comparative analysis is done on the 

neural units with LSO, QSO, and CSO. It is to be noted that the neural units with lower 

order synaptic operations are the subsets of the neural units with higher-order synaptic 

operations. It is found that for much more complex problems the neural units with higher-

order synaptic operations are much more efficient than the neural units with lower order 

synaptic operations.   

Motivated by the intensity of the biological neural systems, the dynamic nature of the 

neural structure is proposed and implemented using the neural unit with CSO. The 

dynamic structure makes the system response relatively insensitive to external 

disturbances and internal variations in system parameters. With the success of these 

dynamic structures researchers are inclined to replace the recurrent (feedback) neural 

networks (NNs) in their present systems with the neural units with CSO.  
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Applications of these novel dynamic neural structures are gaining potential in the areas of 

image processing for the machine vision and motion controls. One of the machine vision 

emulations from the biological attribution is edge detection. Edge detection of images is a 

significant component in the field of computer vision, remote sensing and image analysis. 

The neural units with HOSO do replicate some of the biological attributes for edge 

detection. Further more, the developments in robotics are gaining momentum in neural 

control applications with the introduction of mobile robots, which in turn use the neural 

units with HOSO; a CCD camera for the vision is implemented, and several photo-

sensors are attached on the machine. In summary, it was demonstrated that the neural 

units with HOSO present the advanced control capability for the mobile robot with 

neuro-vision and neuro-control systems.  
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Chapter 1  

Introduction 

1.1 Biological Motivation 

The mass of the vertebrate of the central nervous system, called the brain, executes 

incomprehensible functions such as cognition, intelligence, and emotions and many 

more. These recondite functions of the brain make researchers curious and study them. 

As a result of this research on the biological sensitive mass, which consists of biological 

neural networks, the concept of neural networks gained its importance. This concept has 

been applied for manipulating rather practical and useful devices applications like system 

identification, pattern recognition, and control systems. The contemporary neural network 

systems have proved their success so convincingly for they are now used for 

unpredictable problems such as weather forecasting and stock predictions [2].  

The biological sense organ contains infinite potential. In the literature, the neural 

structures have emulated the potential of the central nervous system to a great extent; 

however, most of the researchers have been using the linear combination of synaptic 

operation for generating this behaviour. Nevertheless, the neural networks with the linear 

neural structures are required to have numerous neural units to emulate the nonlinear 

functions of the biological neural networks. Additionally, these neural networks may not 

be able to present the superior performance of the natural neural networks. As a further 

research breakthrough, the present linear structure of the neuron is extended in this study 

to higher-order (nonlinear) formations which include both linear and nonlinear structure, 
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in order to effectively capture the prospective tasks of the brain. Furthermore, 

mathematical replication of this procedure of the central nervous system will help 

researchers to develop more robust mechanisms for real life complex solving problems. 

Based on this inspiration, this thesis describes novel numerical structures of neural units 

and neural networks in higher-order structures. These innovative neural units with 

higher-order synaptic operations (HOSO) may impressively and convincingly assist 

engineers and scientists for their application in their respective fields. 

1.2 Basic Knowledge of Neural Units and Neural Networks 

1.2.1 Biological Neurons and Neural Units: Neural Units with Linear 

Synaptic Operation (LSO) 

In simple words, the neural unit replicates the task of a biological neuron. The biological 

neuron is shown in Fig. 1.1(a) and the model of the neuron is described in Fig. 1.1(b). 

The biological neuron primarily does not only consist of the synapse and soma, but also 

has dendrites. Information from stimuli flows from the dendrites of one neuron to that of 

another neuron. This procedure is called the synaptic operation. After synaptic 

processing, the information is passed through the soma to other neurons, and this 

operation is called the somatic operation. The artificial neural unit operates in a very 

similar way and process input signals. The biological neuron has numerous dendrites for 

receiving data and forward this processed information to other neurons. The neural unit 

also has multiple input terminals and a single output terminal, which may be considered 

as a multiple-input/single-output (MISO) system [3]. 
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(a) A schematic view of a biological neuron 

Neural 
inputs

Neural 
output

Synaptic 
operation

Somatic 
operation

nℜ∈x 1ℜ∈Ny

To other 
neurons











 

(b) Model representation of a biological neuron with multiple inputs , and a 

single input,  

nℜ∈x

1ℜ∈Ny

Figure 1.1  A biological neuron and its model 
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1.2.1.1 Synaptic Operation: Synaptic Weights and Threshold 

The synapse of the biological neuron is considered as a storage element of the past 

experience or knowledge learned from the neuronal environment. That experience or 

knowledge continuously adapts its strength in synapse. There are over 1000 synapses in 

each biological neuron. In the neural structure, the past experience is called synaptic 

weight [3]. The connotation of the synaptic weights signifies the importance of the given 

neural inputs, . The synaptic weights are expressed as 

. In biological neurons, the new stimulus after the synapse 

is compared with the old stimulus which is called the threshold. The neural unit emulates 

the threshold as well. The neural inputs and synaptic weights with the threshold is 

defined as augmented neural input  and augmented 

synaptic weights . 

n
nxxx ℜ∈= Tx ][ 21 L

n
nw ℜ∈T]L

=ax

10 ][ = nwww T
aw L

ww=w [ 21

1
10 ][ +ℜ∈ n

nxxx TL

1+ℜ∈ n

The synaptic operation with the threshold is represented as 

θcos

1100
0

aa

a
T

a

xw        
xw        

=
=

+++==∑
=

nn

n

i
ii xwxwxwxwv L

                  (1.1) 

where  is the neural synaptic output,  is the threshold (bias) weight,  

is the constant bias and 

1ℜ∈v 0w 10 =x

θ  is the phase difference between neural inputs and synaptic 

weights. 
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The synaptic operation represents the difference between the memory (synaptic weights 

) and the new information (neural inputs ). The geometric explanation of synaptic 

operation is shown in Fig. 1.2. 

aw ax

ax

aw

θ

θcos|||| aa wx
 

Figure 1.2  The geometric representation of synaptic operation 

The linear characteristic of the synaptic operation guides the neural structure to the neural 

unit with linear synaptic operation (LSO). 

1.2.1.2 Somatic Operation: Activation Functions 

After the linear synaptic operation, the combination of the neural inputs and the neural 

synaptic weights, are applied to a nonlinear activation function  which is 

considered as the somatic operation. Figure 1.3 shows the different kinds of activation 

functions which are currently used as linear or nonlinear mapping functions [3]. 

])[( •Φ
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Figure 1.3  Various somatic activation functions 
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For the neural structures the choice of somatic activation function depends on the 

performance and nature of its applications [2]. However, the sigmoid function is deemed 

to be a general activation function due to the differentiable nonlinear distinctiveness [3]. 

The entire process of the neural unit with LSO with n inputs passing through the somatic 

operation gives a neural output  as follows Ny

1][ ℜ∈Φ= vyN                              (1.2) 

The schematic diagram of the neural unit with LSO is shown in Fig. 1.4. 

w0
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∑
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[ ]•Φ
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inputs

Linear 
synaptic operation

Nonlinear 
somatic operation

Neural 
outputs

 

Figure 1.4  A neural unit with linear synaptic operation and nonlinear somatic operation 

1.2.2 Neural Networks (NNs) 

In the central nervous system cells are positioned in parallel layers [4]. The neural 

networks (NNs) are designed to emulate the properties of the biological neural systems. 

Generally, NNs are framed and portrayed as parallel distributed units [2, 5]. Their crucial 
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ability is their aptitude of learning and adaptation. Moreover, the parallel nature aids the 

overall procedure of the networks, although some artificial neurons fail to process the 

given signal [6, 7]. Typically, the structure of NNs consists of one input layer, several 

hidden layers and one output layer. This structure is called the multilayered feedforward 

neural network (MFNN). The static behaviour of the neural unit with LSO leads to this 

type of feedforward network with no dynamics (feedback) in the network. Figure 1.5 

shows a MFNN with three layers, one input layer, one hidden layer and one output layer. 

The input layer is nothing but a set of the neural inputs [9]. Each neuron in the hidden 

and output layer is a neural unit with LSO. 

.  .    ..  .    .
.  .    .

:  Neural input :  Neural unit with LSO

Input layer Hidden layer Output layer

1Ny
2Ny

3Ny

)2( −mNy
)1( −mNy

Nmy

1x

2x

)1( −nx

nx

 

Figure 1.5  Parallel connections of MFNN with one input layer, one hidden layer and 

one output layer 

Besides the MFNN, another type of NNs has been developed and is called the dynamic 

(recurrent) neural networks (DNNs) which is nothing but static neurons with feedback [8, 

10, 11, 12]. DNNs find applications in the fields of system identification and control of 

unknown dynamic systems [11, 14, 15]. This feedback unit is considered as a memory of 

the system and extends more advanced computational methods for the network by 
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affecting the other neural units in excitatory or inhibitory mode [5, 7, 8]. The structure of 

a DNN is shown in Fig. 1.6. For the purpose of clarity, the connections for only one 

neural unit in each layer are shown. Every neuron is correlated with the feedback and has 

feedforward connections with other neural units.  

.  .    ..  .    .
.  .    .

:  Neural input :  Neural unit with LSO

Input layer Hidden layer Output layer

Nmy
nx

:  Feedforward connection
:  Feedback connection

 

Figure 1.6  Multilayered NN by interconnecting neurons with feedforward and 

feedback 

1.3 Thesis Objectives 

In a word, the neural unit with LSO embraces a linear synaptic operation which is 

different from the biological neural synapse. In natural synapse, the association between 

the prior neuron and the posterior neuron is extraordinarily versatile as seen in Fig. 1.1. 

The dendrite connection is coupled in many ways. However, in the neural unit with LSO, 

there are only one-to-one correspondences in the synapse, which results in the linearity of 

the neural structures. In order to emulate the biological synapse more effectively, the 

synaptic operation of the neural unit with LSO is modulated. In the synapse, the outer 

stimuli from natural sensors such as eyes, ears, and skin etc. can be amplified and deleted 
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in conformity with the significance of the information. The multi-correspondence of the 

dendrites plays the principal role and adds to the importance of the stimuli. In this thesis, 

the linear synaptic operation of the neural unit with LSO is expanded to the nonlinear 

synaptic operation to build novel static and dynamic higher-order neural structures to 

prove superior capabilities of the neural units with higher-order synaptic operations 

(HOSO) over the neural unit with LSO. The nonlinearity of the synaptic operation 

characterizes the neural unit with HOSO. The higher-order amalgamation of neural inputs 

and neural weights therefore provides advanced neural performance. The objectives of 

this thesis are as follows: 

 To develop a nonlinear synaptic operation for the neural structure and to be able 

to come up with an enhanced performance. 

 To formulate dynamic neural units with HOSO based on the dynamic neural 

structure. 

 To apply the neural units with HOSO and dynamic neural units with HOSO for 

image processing, model identification and controllers for the nonlinear system as 

static and dynamic approaches. 

1.4 Layout of the Thesis 

The novel neural units with HOSO with the second-order synaptic operation are 

described as the neural unit with quadratic synaptic operation (QSO) and that with the 

third order synaptic operation are described as the neural unit with cubic synaptic 

operation (CSO). In Chapter 2, the XOR logic problem is solved in order to prove the 

superior capability of the neural units with HOSO. In addition, the mathematical details 
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are explained to formulate the generalization of the neural units with HOSO with the 

learning and adaptation rule (LAR). In Chapter 3, a dynamic structure is applied to the 

neural unit with CSO based on the developed dynamic neural structure, and the dynamic 

neural unit with cubic synaptic operation (CSO) is introduced with LAR. As simulation 

results, model identifications with both of the dynamic neural unit with CSO and the 

static neural unit with CSO are compared, and the effect of the dynamic structure is 

explained. In Chapter 4, the neural unit with CSO is illustrated on how it performs as 

edge detection for image processing, and in Chapter 5, a neuro-control system driving a 

mobile robot, which is a control application, is developed. Finally, conclusions and future 

work are given in Chapter 6. 
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Chapter 2  

Development of Neural Units with Higher-Order 

Synaptic Operations (HOSO) 

2.1 Introduction 

In the literature, the neural units are considered to have linear synaptic connection that 

leads to the neural unit with LSO, and this differs from the biological neurons. The 

natural junction, called the synapse, contains complex correlation between the pre-

synaptic nerve cells and the post-synaptic nerve cells [4]. This characteristic biological 

linkage is focussed and being emulated to escalate the performance of the neural units. 

However, the performance of the neural unit with LSO has several disadvantages when 

compared to a biological neuron. For example, the neural unit with LSO is inadequate in 

solving complex problems and has difficulty in learning process like translation, rotation 

and scale-invariant pattern recognition, motion detection and so forth [3]. The urge to 

replicate the multi-correspondence of the natural synapse motivated this research to come 

up with neural units with HOSO to replace the neural unit with LSO. The architectures of 

the neural units with HOSO are accomplished by capturing the higher-order association 

as well as the linear association between the elements of the input patterns [3]. The 

second-order association of the neural inputs with the synaptic weights leads to the neural 

unit with quadratic synaptic operation (QSO) and the third order neural association 

results in the neural unit with cubic synaptic operation (CSO) [16, 34]. The properties of 

the neural units with HOSO depend on the cross correlation and the inter-dependence of 
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the neural inputs. Hence, the neural units with HOSO are more sensitive than the neural 

unit with LSO. Additionally, the biological evidence accumulated in the past supports the 

presence of multiplicative-like operations in the brain, which can be considered as the 

simplest fundamental nonlinear operation. 

In this chapter, the innovative neural structures namely, the neural units with QSO and 

CSO are introduced and discussed first. Later, the focus shifts to second and third order 

neural unit structures and finally the general formula for the neural unit with thZ  order 

synaptic operation is established. In addition, in order to prove the potential of the neural 

units with HOSO, the XOR logic problem is solved with both the neural unit with LSO 

and the neural units with HOSO. 

2.2 Neural Unit with Quadratic Synaptic Operation (QSO) 

The synaptic operation of the neural unit with quadratic synaptic operation (QSO) 

embraces both the first and second-order neural input combinations with the synaptic 

weights. A neural unit with QSO with n-dimensional neural inputs and the association of 

the neural weights and the neural inputs is depicted in Fig. 2.1. The augmented neural 

inputs are defined as . Neural inputs and synaptic weights 

are amalgamated, and the nonlinear synaptic output of the neural unit with QSO is given 

in Eqn. (2.1a) and (2.1b). 

1
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or 

aaa xwx T=v                            (2.1b) 

where  is the threshold (bias) weight and  is the constant bias. 00w 10 =x

The augmented synaptic weights for the neural unit with QSO are defined in the matrix 

form as 

)1()1(111
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aw                (2.2) 

The upper triangle matrix elements are considered as the synaptic weights of the neural 

unit with QSO. The index number (0, 1, …, n) of each synaptic weight indicates that the 

synaptic weight is compounded with the same index numbered neural inputs. The 

processed inputs pass through the nonlinear activation function followed by the synaptic 

operation, and the output of the neural unit with QSO is given as 

1][ ℜ∈Φ= vyN                             (2.3) 

The schematic view of the neural unit with QSO is shown in Fig. 2.1 with nonlinear 

synaptic operation and somatic operation. 
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Figure 2.1  The structure of the neural unit with QSO with the higher-order 

computation of the neural inputs and the synaptic weights 

Consider the first row in the weight matrix of the neural unit with QSO. The first row of 

the matrix is . The elements in the first row are multiplied with the 

neural inputs corresponding to the index number as given in Eqn. (2.4). The sum of the 

product of the first row in the weight matrix of the neural unit with QSO shows the same 

combination of the synaptic operation of the neural unit with LSO which is in linear 

arrangement.   
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The linear element in the synaptic operation combination of the neural unit with QSO 

tells that the neural unit with QSO contains the property of the neural unit with LSO. 

Thus, the neural unit with LSO is a subset of the neural unit with QSO [16].  
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2.3 Neural Unit with Cubic Synaptic Operation (CSO) 

2.3.1 Structure and Mathematical Development of Neural Unit with 

CSO 

The synaptic mechanism of the neural unit with cubic synaptic operation (CSO) is that 

the correlation of the synaptic operation is more intricate with the first, second and third 

order connections algebraically with neural inputs and synaptic weights. Figure 2.2 

describes the structure of the neural unit with CSO. The synaptic operation of the neural 

unit with CSO is defined as 

                  (2.5) 

nnnnnnnnnnnn

n
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n
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n
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xxxwxxxwxxxwv
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= = =
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100001000000
0

                                       L

L

where  is the threshold (bias) weight and  is the constant bias.  000w 1 0 =x

The higher-order combination of the neural inputs and synaptic weights shows that the 

synaptic operation of the neural unit with CSO has the property of nonlinearity. The 

somatic operation of the neural unit with CSO with a nonlinear activation function is 

defined as 

1][ ℜ∈Φ= vyN                         (2.6) 

From Eqn. (2.5), it is discovered that the synaptic operation of the neural unit with CSO 

encloses the first and second-order numerical combination as well as the third order 

numerical computation of neural inputs and synaptic weights. The association 

corresponding to the lower order neural units represents the linear and quadratic 
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combination of the first and second-order numerical mixtures which are similar to the 

synaptic operations of the neural units with LSO and QSO. Thus, the neural unit with 

LSO and QSO are subsets of the neural unit with CSO [34]. 

0x
0x

nxnx

x0

x1

x2

xn

... ...

1

-1

∑
v

w001

w002

wnnn

yN

[ ]•Φ

Neural 
inputs

Nonlinear 
synaptic operation

Nonlinear 
somatic operation

Neural 
output

w000
0x

0x
0x
1x

0x
2x
0x

nx

 
Figure 2.2  The structure of the neural unit with CSO with the higher-order computation 

of the neural inputs and the synaptic weights 

These figures can represent any of the neural units with LSO, QSO and CSO. The main 

distinction of those units is the synaptic combination with neural inputs and neural 

weights. The higher-ordered synaptic operation takes more neural inputs and higher 

computations. These higher computations make the neural units more adaptable for the 

environments. 

2.3.2 Learning and Adaptation for Weight Elements of Neural Unit 

with CSO  

Learning and adaptation in neural structures assist the neurons to perform more 

efficiently. The learning and adaptation rule (LAR) makes the neural units memorize the 
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information and act on the new data corresponding to the previous data as the biological 

neurons do. LAR optimizes the synaptic weights in order to process the neural inputs. 

The LAR for the neural units with LSO and QSO can be inferred from the LAR of the 

neural unit with CSO. Therefore, in this section, the LAR is implemented for a neural 

unit with CSO.  

The synaptic weights play a significant role in tracking the desired output. Thus, the error 

between desired system and the neural structure could be reduced with the LAR. Figure 

2.3 shows the learning procedure of the neural unit with CSO with LAR.  

Desired
model

LAR

+_
r(k)

yd(k)

yN(k)

e(k)

Neural unit 
with CSO

 

Figure 2.3  Optimization of the synaptic weights of the neural unit with CSO by the 

learning and adaptation rule (LAR) 

The error is defined as 

)()()( kykyke Nd −=                         (2.7) 
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where  is the desired output and  is the output of the neural unit with CSO 

and k represents discrete time. 

)(kyd )(kyN

The error computed by LAR is applied to change the synaptic weights and thresholds 

optimally [9]. The objective of the LAR is to reduce the error, so that the neural output 

 approaches the desired output . In order to reduce the error, an error 

function  is applied as 

)(kyN )(kyd

][•J

    )]([
2
1)]{[ 2 keEkeJ =                        (2.8) 

where  is an expectation function which is regarded as the average of the error 

squares [3].  

][•E

The error function  is called the least mean square (LMS). The average function 

 is defined as 

][•J

][•E

∑
=

=•
M

l
l ke

M
E

1

2 )(1][                        (2.9) 

where M is number of observations. 

The adaptation for the synaptic weights is defined as 

 )                    (2.10) ()()1( kwkwkw ijkijkijk ∆+=+

where i, j, and k are indices of the synaptic weights. 
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A new weight  is then defined by summing the previous weight  and 

the adjustment , where  is defined by the error and the gradient of the 

error function as 

)1( +kwijk

)(kwijk∆

)(kwijk

)(kwijk∆

)(
)]([)(

kw
keJkw

ijk
ijk ∂

∂−=∆ µ                      (2.11) 

where µ  is the learning rate and it is a constant and determines the step size of the 

synaptic weights to find out their optimal value. 

The range of the step size is recommended from  to 10 throughout the experiment 

[2]. The error function with respect to the synaptic weight is derived as 
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The output  of the neural unit with CSO is obtained after a nonlinear somatic 

operation is carried out. This neural output  depends on the steepness of the slope 

of the nonlinear activation function. The threshold and the synaptic weights influence the 

)(kyN

)(kyN
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slope of the activation function. Error function is derived in terms of the neural inputs in 

Eqn. (2.13). 
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where  is the slope of the somatic operation and is obtained by the differentiation 

of the nonlinear activation function. 

][' •Φ

Further, Eqn. (2.11) can be rewritten as 

)}]({')()()()([)( kvkxkxkxkeEkw kjiijk Φ=∆ µ                (2.14) 

The LAR for the synaptic weights and the threshold for the neural unit with CSO can be 

derived from Eqn. (2.10) and Eqn. (2.14) as 
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)}]({')()()()([)()1( kvkxkxkxkeEkwkw kjiijkijk Φ+=+ µ           (2.15) 

2.4 Neural Pattern Classifiers 

Pattern is defined as the quantitative sketch of an object, event, or phenomenon. The 

objective of pattern classification is to assign a physical object, event or phenomenon to 

one of several pre-specified classes or categories [2]. Traditionally, the neural structures 

have been used as pattern classifiers and have established an outstanding capability to 

pigeonhole the given information. The logical operations such as NOT, OR, AND, 

NOR, NAND and XOR are typical examples of pattern classification. Logical operations 

except for the XOR are linearly separable problems. The prototype of the exclusive-or 

function (XOR) is not linearly separable and includes many different local minima in the 

performance surface. The local minima easily attract the synaptic weights and the neural 

output zero, which makes the error constant. These neural structures may not work 

properly with constant error. The XOR is regarded as an excellent standard for evaluating 

the potential of pattern classifiers due to its non-linear features [9]. In this chapter, the 

typical neural classifiers performing OR, AND and XOR operations are described. 

Additionally, the performances of the neural units with HOSO with the XOR problem 

demonstrate the prospect and need of the novel higher-order structures. 

2.4.1 OR, AND and XOR Logic Operations with Neural Pattern 

Classifier with LSO  

The OR, and AND logic operations are defined with neural inputs and neural outputs in 

Table 2.1 and 2.2. The two logic operations can be classified in two classes, Class A and 

 



 23

Class B according to the neural outputs. A neural pattern classifier with LSO generates 

one linear discriminant line between different classes of outputs. Figure 2.4 and 2.5 show 

the classification of Class A and Class B with neural OR and AND logic classifier with 

LSO. In the figures, one discriminant line can categorize the two classes.  

 Table 2.1  OR logic operation 

Neural inputs Neural Outputs 

1x  2x  21 xxyN OR  =  

-1 -1 -1: A 

-1 1 1: B1 

1 -1 1: B2 

1 1 1: B3 

          Class A = {A} 

          Class B = {B1, B2, B3}            
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(a) A linear discriminant line (b) Neural OR classifier with LSO 

Figure 2.4  A linear synaptic operation for OR logic operation 
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 Table 2.2  AND logic operation 

Neural inputs Neural Outputs 

1x  2x  21 xxyN   AND=  

-1 -1 -1: A1 

-1 1 -1: A2 

1 -1 -1: A3 

1 1 1: B 

         Class A = {A1, A2, A3}            

         Class B = {B}                    
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(a) A linear discriminant line (b) Neural AND classifier with LSO 

Figure 2.5  A linear synaptic operation for AND logic operation 

The neural pattern classifiers with LSO for the OR and AND logic problems are 

described in each figure. The synaptic weights of neural units with LSO are optimized for 
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these logic problems. A saturation function is applied as the somatic activation function 

for obtaining optimal neural outputs.  

The XOR logic operation is defined in Table 2.3.  

 Table 2.3  XOR logic operation  

Neural inputs Neural Outputs 

1x  2x  21 xxyN  XOR =  

-1 -1 -1: A1 

-1  1 1: B1 

1 -1 1: B2 

1  1 -1: A2 

            Class A = {A1, A2}             

            Class B = {B1, B2}             

The XOR logic operation can be expressed as 

][][ 212121 xxxxxxyN   ANDOR      AND XOR ==            (2.16a) 

or 

][][ 212121 xxxxxxyN OR      ANDOR   XOR ==             (2.16b) 

Unlike the OR and AND logic problems, the XOR logic problem contains nonlinear 

property. For the solution of the XOR logic problem, there are two possibilities to 

classify the Class A and Class B with linear discriminant lines. The geometric 
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representation of these methods is shown in Fig. 2.6 and 2.7 corresponding to Eqn. 

(2.16a) and (2.16b). 
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(c) Neural XOR classifier with LSO 

Figure 2.6  Method 1: Geometric view of the mapping functions for XOR logic using 

two neural ANDs and one neural OR operation, Eqn. (2.16a)  
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Figure 2.7  Method 2: Geometric view of the mapping functions for XOR logic using 

two neural ORs and one neural AND operation, Eqn. (2.16b)  

For the OR and AND operations, one neural unit with LSO was able to organize the 

outputs in Class A and Class B; however, for the XOR operation, one neural unit with 
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LSO is clearly incapable of categorizing the classes. In order to classify the XOR 

operation, three neural units with LSO in two layers should be applied to tackle the 

nonlinearity of the classes.  

2.4.2 XOR Logic Operation with Neural Pattern Classifiers with HOSO 

In the previous section, three neural units with LSO emulated the XOR operation. The 

neural unit with LSO is built with linear structure whereas the XOR operation has 

nonlinear property. The novel structures of the neural units with HOSO have the 

nonlinearity embedded in them and therefore these neural units have the capability to 

categorize the nonlinear properties with just one neuron. This is a more efficient and 

powerful way as compared to the neural unit with LSO. In this section, these novel neural 

units with QSO and CSO are focussed and their application in solving the XOR logic 

operation is illustrated. 

2.4.2.1 Neural XOR Classification with QSO 

The synaptic operation of the neural unit with QSO is described in Eqn. (2.2) and the 

neural input of the XOR operation is given in Table 2.3. With the neural inputs, the 

synaptic operation is derived as  

1   , 0
2
2222112

2
11120021001

2
000 =+++++= xxwxxwxwxxwxxwxwv       (2.17) 

The nonlinearity of the synaptic operation of a neural unit with QSO makes the 

discriminant line curved corresponding to the initial values of the synaptic weights, and 

the discriminant curve equations can be represented by a polynomial. One discriminant 
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curve was able to classify the two classes of outputs. Table 2.4 gives the details of the 

initial and final synaptic weights. Three different results are provided, and these results 

are illustrated in the different figures in Fig. 2.8. The simulation was stopped when the 

error between the desired output and the neural output was less than 0.05.  

 

Table 2.4  Initial and final synaptic weights in a neural unit with QSO for XOR operation 

Synaptic weights 
Case 

 w00 w01 w02 w11 w12 w22 

Initial -0.0784 -0.8245 -0.2674 0.7037 0.8995 -0.9715 
I 

Final -0.5079 -1.3828 -0.3589 -0.5338 -3.6217 0.7111 

Initial -0.6393 0.4679 -0.4479 -0.9742 0.7320 0.1390 
II 

Final 0.5155 -0.6984 0.3299 -0.4425 -3.0623 0.4882 

Initial 0.8471 0.3968 0.7790 -0.9661 -0.9609 -0.8028 
III 

Final 1.1637 -0.00006 0.00006 -0.6782 -0.9990 -0.4849 
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(c) Case III   
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Figure 2.8  Neural XOR classification with QSO and the discriminant curves from the 

polynomial equations of synaptic operation in different cases 

2.4.2.2 Neural XOR Classification with CSO 

The synaptic operation of the neural unit with CSO is described in Eqn. (2.5), and the 

synaptic operation is derived with the neural inputs as  

1   ,        0
3
2222

2
211222

2
1112

3
1111

2
20022

210012
2
100112

2
00021

2
0001

3
0000

=+++++

++++=

xxwxxwxxwxwxxw

xxxwxxwxxwxxwxwv
        (2.18) 

Owing to the nonlinearity of the neural unit with CSO, the generated discriminant curves 

were polynomials. One discriminant curve was able to categorize the two classes 

efficiently. Table 2.5 gives details of the initial and final values of synaptic weights.  
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When the error is less than 0.05 after several iteration times, the simulation was stopped. 

Three cases of discriminant curves from the neural unit with CSO were generated. The 

geometric representation is shown in Fig. 2.9. The discriminant curves of the neural unit 

with CSO were also determined by the initial values of the synaptic weights.  

From the simulation results, it is shown that a single neural unit with QSO or CSO was 

able to classify the nonlinear discriminant classes of XOR logic problem. The final 

discriminant curves were generated corresponding to the initial synaptic weights. The 

initial and final curves from the initial and final synaptic weights are illustrated in the 

figures. From the figure, it is discovered how the initial curves are revolutionized to the 

final curves for classifying the nonlinear separable problem successfully.  

In general, there may be many different neural classifiers for the XOR logic 

classification, but these neural units with QSO and CSO create more efficient 

discriminant curves. However, the neural units with HOSO may have the difficulty of 

consuming more time to solve the given problem as these neural units with HOSO have 

more complicated polynomial equations. Thus, the order of the synaptic operation should 

be considered in relation to the given problems. 
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(c) Case III   
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 Figure 2.9  Neural XOR classification with CSO and the discriminant curves from the 

polynomial equations of synaptic operation in different cases 

2.5 Generalization of Neural Units with Higher-Order Synaptic 

Operations (HOSO) 

With the derivation of the neural units with QSO and CSO, this concept can be 

generalized and formulated in mathematical representation for the neural units with 

HOSO. The synaptic and somatic operations of the neural unit with Zth order synaptic 

operation can be written as 
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and  

1][ ℜ∈Φ= vyN                             (2.20) 

The LAR of the generalized neural unit with HOSO should be modified and developed 

for their respective synaptic weights. The LAR of the synaptic weight ( ) in the 

neural units with HOSO can be expressed in discrete time as  
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Additionally, the adjustment of the synaptic weight  in the generalized 

neural units with HOSO is derived as  
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where  is an expectation function. ][•E

Finally, the adapted synaptic weight of the generalized neural unit with HOSO is then 

calculated as  

)}]({')()()()([)()1(
212121

kvkxkxkxkeEkwkw
ZZZ iiiiiiiii Φ+=+ LLL µ         (2.23) 

The basic structure of the neural unit with HOSO is shown in Fig. 2.10. 
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Figure 2.10  The schematic view of the generalized neural unit with HOSO with 

complex incorporation of multiple synaptic weights and neural inputs 

From the generalized representation of neural units with HOSO, the neural units with 

LSO, QSO, and CSO can be derived. The numbers of the inputs that correspond to a 

neural weight decide the order of the synaptic operation. 
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2.6 Summary 

The novel neural units with HOSO have been introduced in this chapter, demonstrating 

their profound potential. The major difference between the neural units with LSO and 

HOSO is in the order of synaptic operation. The higher-order association of the synaptic 

operation with neural inputs supplements the neural units with HOSO getting more 

information about of the neural inputs and making the neural system more efficient and 

sensitive. The correlation between the neural inputs is handled and taken care of by the 

synaptic operation. One synaptic weight affected by the multiple inputs calls for a 

nonlinear relation. Clearly the neural unit with LSO is not able to compute this 

nonlinearity due to the linear structural property. The superior capability of the neural 

units with HOSO comes from the nonlinearity of the synaptic operation. The given XOR 

logic operation with neural structure had been unresolved for several decades due to its 

nonlinear property. The existing methods for solving the XOR problem apply several 

layers of linear neurons stacked in layers. However, one neural unit with HOSO has the 

capability to replace the complex neural networks consisting of several neural units with 

LSO. These neural units with HOSO may offer great effects to resolve the numerous 

enigmatic intricacies just as the XOR problem. Despite the enormous improvement of the 

neural units with HOSO, the complexity of the synaptic weights of a neural unit with 

HOSO is inevitable. This complex computation of the neural units with HOSO may 

consume more time to achieve the required neural output. Hence, the order of the 

synaptic operation of the neural units with HOSO should be selected conforming to the 

complexity of the problem to get optimal and effective solution. 
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Chapter 3  

Dynamic Neural Units and Neural Networks with 

Cubic Synaptic Operation (CSO) 

3.1 Introduction 

The neural units described in the previous chapters consist of a combination of two 

computational operations. One is the synaptic operation and the other is the somatic 

operation. These two operations are fundamental processes that add the weighted inputs 

and fire out the sum of inputs when the total result of the synaptic operation exceeds a 

certain threshold. These neural structures are referred to as static or feedforward 

structures [8]. In these static or feedforward neural structures, neither feedback 

connections nor memories are considered. The outputs of these static or feedforward 

neural structures are determined by the current inputs and values of the synaptic weights.  

Biological neural systems are composed of dynamic recurrent connections and dynamic 

memories [10, 11, 17]. In the literature, feedback is broadly used in the system to make it 

a dynamic structure. The dynamic structure makes the system response relatively 

insensitive to external disturbances and internal variations in the system’s parameters. 

Thus, feedback is very advantageous for the system when the system faces unpredictable 

disturbances [21]. This feedback can be implemented in two ways for the neural units and 

networks. When it is built within the neural unit, this feedback is referred to as local 

feedback. The other type of feedback is called global feedback and encircles the entire 

networks in which the neural units are static. In comparison to local feedback, global 
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feedback implementation provides a more profound effect on the networks [25]. A neural 

unit with local feedback is called a dynamic neural unit [18, 19]. In this chapter, the 

current dynamic structure of a dynamic neural unit is extended to the neural unit with 

CSO. The new structure is regarded as a dynamic neural unit with CSO. Furthermore, the 

present recurrent (feedback) NNs with global feedback can be extended with the neural 

units with CSO. This introduces neural networks built up of the neural unit with CSO. 

The recurrent networks are regarded as nonlinear dynamic systems [24]. Thus, the 

evolved networks built of neural units with CSO and dynamic structure are regarded as 

the novel dynamic neural networks (DNNs). 

A review of the architectural details of the dynamic structure is described in Section 3.2. 

The modification of a dynamic neural unit with the neural unit with CSO is presented 

with the LAR in Section 3.3. The NNs consisting of neural units with CSO with the 

modified back-propagation are discussed in Section 3.4. Section 3.5 introduces an 

industrial motion control system as an application for the model identification. The static 

neural unit and the dynamic neural units with CSO are used as identifiers of the system. 

Finally, the properties of the dynamic structure in the dynamic neural unit are also 

summarized after the simulation studies in Section 3.5. 

3.2  A Review of the Architectural Details of the Dynamic Neural 

Structure (DNS) 

A biological neuron contains dynamic features such as feedback, memory, and delay used 

in the processing of the input signals are shown in Fig. 3.1. The input signals are 

associated in the synapse and if the combined signal exceeds a threshold, the neuron fires 
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the output. Meanwhile, the merged signal is fed back to the synapse and delayed during 

the synaptic and somatic procedures. 

Input

Transmission
delay

Synapse

Output

Feedback
path

Feedforward
path

 

Figure 3.1  Biological neuron with reverberating signals 

Based on the biological model, an artificial neural structure, called the dynamic neural 

structure (DNS), can be developed. This DNS is assumed to have feedback with a delay. 

This dynamic structure is placed between the synaptic operation and the somatic 

operation of the neural unit emulating the biological neuron shown in Fig. 3.1. The 

mathematical expression of the DNS in a neural unit which has the synaptic and somatic 

operations is expressed in Eqn. (3.1). Figure 3.2 describes the schematic view of this 

dynamic structure. 
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where  is the synaptic output,  is the output of the DNS as well as the input 

to the somatic operation,  is the feedback weight of the DNS,  is the unit delay 

operator, and k represents discrete-time. 
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Figure 3.2  Basic structure of DNS with a feedback weight and a delay in a neural unit 

The output of the DNS is derived according to Eqn. (3.1) as follows 

1)()()( −+= zkbdkdkv                       (3.2a) 

)1()()( −+= kbdkdkv                       (3.2b) 

or 

)1()()( −−= kbdkvkd                        (3.3) 

The DNS is chosen for implementation with the neural unit with CSO from the group of 

neural units with HOSO due to its superior performance. A neural unit with CSO and 

DNS is called a dynamic neural unit with CSO and is illustrated in Fig. 3.3. 
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Figure 3.3  The structure of the dynamic neural unit with CSO 

3.3 Learning and Adaptation Rule (LAR) of the Dynamic Neural 

Unit with CSO 

The concept of LAR was introduced in the previous chapter. It helps the neural unit to 

learn and adapt the given information using the error between the neural output and the 

desired output. The LAR also influences the determination of the feedback weight which 

reduces the error for the optimal neural output. The adaptation of the feedback weight of 

the DNS is explained in this section. 

The error between the neural output and the desired output is defined in Eqn. (3.4). If the 

error is reduced to an infinitesimally small value as the number of learning iterations 

increases, the learning scheme is said to be convergent [20]. 
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The error function , called the least mean square, is used to discern the global 

minimum for optimal neural outputs. The feedback weight of the DNS is adapted to make 
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the dynamic structure more effective and optimal for the neural unit, although this may 

not guarantee global optimization [12]. This error function is represented as 

)];([
2
1)]([ 2 bkeEkbJ =                       (3.5) 

The DNS feedback weight is adapted based on Eqn. (3.6) in order to minimize the error 

)]([)()1( kbJkbkb b∇−=+ µ                    (3.6) 

where  and  are parameters at the (k+1)th and (k)th sampling instants, 1)+b(k )b(k µ  

is the learning rate, and   is the gradient of  with respect to the DNS 

feedback weight b. 

)]([ kbJb∇ ][•J

The error function is then rewritten as 

)(
)]([)]([

kb
kbJkbJb ∂

∂=∇                           (3.7) 

From the definition of  and , Eqn. (3.7) is derived as  ][•J )(ke
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where  is the nonlinear activation function for the somatic operation,  is the 

output of the DNS, and  is defined as a sensitivity signal [8].  

][•Φ )(kd

)(kSb

Hence, the LAR of the DNS feedback weight is rewritten as 

{[ )()]([')()1) kSkdkeEb(kb(k bΦ+=+ µ                 (3.9) 

The sensitivity signal is derived from Eqn. (3.3) as 
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The block diagram for the sensitivity signal is shown in Fig. 3.4 Also, the entire scheme 

of the LAR for the neural unit with CSO, DNS and sensitivity is shown in Fig. 3.5. 
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Figure 3.4  DNS with sensitivity to obtain an optimal feedback weight 
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Figure 3.5  The implementation scheme of the LAR for the dynamic neural unit with 

CSO and sensitivity 
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3.4 Dynamic Neural Networks (DNNs) Consisting of Neural 

Units with CSO 

In the literature, neural networks with one or more feedback loops are referred to as 

recurrent networks, and networks with the global feedback as dynamic neural networks. 

Global feedback can make the networks perform better and has the potential of reducing 

the memory requirement significantly [25]. Figure 3.6 shows the architecture of global 

feedback with multiple hidden layers and one output layer. In this section, a neural unit 

with CSO is used as the basic element of the DNNs.  
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(a) A recurrent layer 
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(b) Multilayer with global feedback ( I : identity matrix ) 

Figure 3.6  Recurrent multilayer neural networks 

3.4.1 Back-Propagation Through Time (BPTT) 

A significant breakthrough in the field of neural networks was the discovery of the back-

propagation (BP) algorithm, an integral function in multilayered networks, which makes 

the synaptic weights learn and adapt to the surroundings. This algorithm is based on the 

error-correction learning rule. The back-propagation through time (BPTT) algorithm is 

an extension of BP for a recurrent multilayer network. The BPTT consists of two 

procedures which are epochwise back-propagation through time (EBPTT) and truncated 

back-propagation through time (TBPTT) [25]. The BPTT was developed with linear 

neural structures by Williams and Peng [25, 26]. In this section, the BPTT with the neural 

units with CSO is used by replacing the structures of BPTT with that of the neural unit 

with CSO. The resultant modified EBPTT is introduced in this section. 

3.4.1.1 Epochwise Back-Propagation Through Time (EBPTT) with 

Neural units with CSO 

The term ‘epoch’ of the EBPTT means the period or process during which the entire data 

are processed from the input layer to the output layer. The synaptic weights of the neural 
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units with CSO are adapted after every epoch with the EBPTT algorithm. The modified 

algorithm proceeds as follows: 

• Given the epoch, the total error function (cost function) from the output layer is 

defined as 
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where  is the set of indices j,  is the error signal at the output, and  

denotes the start time of an epoch, and  denotes its end time. 
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• A single forward pass of the data through the network for the interval  is 

performed. The complete record of the input data, synaptic weights of the 

networks, and desired responses over this interval is saved. 
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• A single backward pass for the prior neural layer errors over this past record is 

performed to compute the values of the local gradients of the total error 
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where  is the derivative of a nonlinear activation function,  is the 

synaptic operation of the j-th neural unit with CSO.  is a synaptic weight, 

whose index number is jjj of the k-th neural unit with CSO, and computed by the 

output of the j-th neural unit with CSO. The synaptic weight affects the j-th neural 

unit with CSO. 

][' •Φ )(nv j
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• Once the computation of back-propagation has been performed to time , 

the following adjustment is applied to the synaptic weight  of the j-th neural 

unit with CSO: 
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where µ  is learning rate and  is the input applied to the i-th synapse of 

j-th neural unit at time . 

)1( −nxi

)1( −n

3.5 The Dynamic Neural Unit with CSO for the Identification of 

Nonlinear Systems  

NNs are now being used as a function to identify linear and nonlinear dynamic systems in 

engineering. NNs have the potential of developing attributes such as parallelism, 

adaptability, robustness, and the inherent ability to handle nonlinearity. The NNs have 

established their usefulness in such fields as function mapping, pattern recognition, and 

image processing. However, dynamic function mapping, including the structural dynamic 
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model identification, remains a challenge for neural network applications [43]. In this 

section, the novel dynamic neural unit with CSO for the application in model 

identification is presented. Owing to its properties such as higher-order computation and 

dynamic structure, the dynamic neural unit with CSO has the capability of identifying 

higher-order systems. For simulation purposes, a nonlinear second-order system is used 

as the model system. The performance of the static neural unit with CSO for model 

identification is compared with the performance of the dynamic neural unit with CSO.   

3.5.1 Simulated Nonlinear System 

Figure 3.7 shows a nonlinear system being used for the simulation. A typical 

hydroelectric power plant is given as an example [43]. These kinds of systems are very 

common in industrial processes, especially in motion control systems and in any typical 

example of nonlinear systems. This contains a cascade of first-order systems with a 

saturation element between them.  
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Powerhouse

Turbine Outflow
River

Power lines

 

(a) A typical hydroelectric power plant 
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(b) The block diagram of the hydroelectric power plant 

Figure 3.7  A nonlinear system for the simulation studies 

3.5.2 Simulation studies 

For this simulation, one static neural unit with CSO and one dynamic neural unit with 

CSO were used as model identifiers instead of using NNs. The higher-order computation 

of the synaptic operation in these neural structures aids the neural units to execute the 

impressive performance of these NNs. The input of the systems was set to change the 

amplitude at every 100 iteration interval as shown in Fig. 3.8. 

 

Figure 3.8  System input for the simulation 
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For the power plant, the parameters were 11 =τ , 12 =τ , 1=K , and the saturation limits 

= 1,-1. Figure 3.9 shows the outputs of plant and the dynamic neural unit with CSO. The 

learning rate µ  of the neural unit was chosen to be 0.5. The block diagram of the plant 

was converted to discrete system with sampling time 0.01. The identification error 

between the plant and the neural unit is also described in the figures. As seen in the 

figures, as the identification error decreases, the neural unit is able to identify the plant 

with minimal error. 

Time (k)  
(a) The plant output 

Time (k)
 

(b) The output of the dynamic neural unit with CSO 

Time (k)  
(c) The error between the plant output and neural output 

Figure 3.9  The model identification of the plant with a dynamic neural unit with CSO 
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After using the dynamic neural unit identifier, a static neural unit with CSO was used to 

identify the given system. Figure 3.10 describes the outputs of the plant and the neural 

unit and identification error. The learning rate of the neural unit was again chosen to be 

0.5. The identification error was reduced, and the static neural unit with CSO could 

identify the plant. This error can be compared with the error from the dynamic neural unit. 

Time (k)  
(a) The plant output 

Time (k)  

(b) The output of the static neural unit with CSO 

Time (k)  
(c) The error between the plant output and neural output 

Figure 3.10  The model identification of the plant with a static neural unit with CSO 
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Both of the static and dynamic neural units with CSO were able to identify the system 

after a small number of iteration times. This proves the capability of the higher 

computation of the neural units with HOSO. The dynamic neural unit had higher 

overshoot at the beginning, but the error became less than the error of the static neural 

unit afterwards as shown in Figs.3.9 and 3.10. Hence, it is concluded that the dynamic 

structure, which has a memory attribute in the neural unit, influences the neural unit to 

perform more effectively.   

3.6 Summary 

In this chapter, the DNS has been described based on the design of the biological neuron. 

The basic motivation of the dynamic structure is that the biological neurons have many 

recurrent connections and also have the function of memory. The recurrent links and 

memory are emulated as the feedback in the dynamic neural unit with CSO. Additionally, 

the basic learning scheme, back-propagation, was illustrated for the DNNs.  

With the help of computer simulations, the model identification was described with both 

the static and the dynamic neural units with CSO. From the simulation results, the 

dynamic and static neural units with CSO showed the excellent results. According to the 

simulation results, it is proved that the memory causes the neural structure to have some 

potential and influence the performance. In the literature, NNs composed of many neural 

units are commonly used for model identification. However, one neural unit with HOSO 

is capable of performing the task of the NNs with better results. Hence, the neural 

networks with an even small number of the neural unit with HOSO may present advanced 

efficiency.  
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Chapter 4  

Edge Detection with HOSO Neural Units  

4.1 Introduction 

Vision is considered to be the richest of all the sensory processes in a human system 

because of its diverse informative nature and the intensity of the vision sensors as 

compared to other physical senses [30]. This robust but sensitive biological organ has 

been emulated and used in machine vision applications. One of the applications of 

machine vision emulations of the biological vision is edge detection. The edge is detected 

by different intensities of objects. Edge detection of images is a very significant aspect of 

computer vision, remote sensing and image analysis [27]. Edge detection is usually 

considered as a subjective task. The eye is illustrated in Fig. 4.1. From the figure, it is 

clear that the eye consists of numerous nerve cells which receive many light stimuli. The 

light to the eye from the surroundings interferes with each stimulus and may be 

interpolated by other stimuli to project a clear picture on the retina. These interference 

and interpolations are considered as some of the properties of the neuron. The neural unit 

does emulate this biological property, and hence the vision application with the neural 

structures becomes preferable. As proved in the previous chapter, the neural units with 

HOSO are capable of solving more complicated problems. In this thesis, a new scheme of 

edge detection is introduced with the static neural unit with CSO. 

In this chapter, Section 4.2 shows the novel neural edge detector with CSO. In this 

section, differential operators are introduced. The differential operator represents the 
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biological vision system in mathematical terms [30]. The comparison of the neural edge 

detectors with different synaptic operations is shown in the succeeding sections.  
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Figure 4.1  The structure of eye and retina 

4.2 Neural Edge Detection 

Experimental studies have found that the biological neural cells respond to specific visual 

stimulus patterns projected onto the photoreceptors, or the rods and cones, in the retina. 

The ganglion cells in the retina respond to the presence of the light stimuli. This 

procedure recognizes the edge of the object by different contrast and brightness of light 

[29]. The neural edge detectors are designed to reproduce this biological visual 

phenomenon. An edge exists if there is a large difference in the contrast or brightness 

between pixels of the given image. In order to analyze the contrast or brightness, a color 

spatial function corresponding to the intensity of the color is introduced as shown in Fig. 

4.2. The second-order differentiation of the color spatial function detects the zero 

crossing points, which represent the edge in the image. The color intensity around the 

 



 58

edge is distributed similar to the Gaussian function. Thus, the Gaussian function is 

applied as the color spatial function and also for defining and detecting the edges. The 

Gaussian function is defined as 

2

)( xexGa α−=                        (4.1) 

where α  is the slope rate of the Gaussian function. 
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(a) pixels of a image,  

(b) color spatial function,  

(c) first differentiation of color spatial function, and  

(d) second differentiation of color spatial function 

Figure 4.2  A simple illustration of color spatial function to detect the edge of the image 
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4.2.1 Differential Operators  

When the retina is stimulated by a light incentive, the photoreceptors, which are nothing 

but rods and cones, produce signals, and the ganglion cells accumulate the signals in 

order to process the stimuli [30]. The response of the ganglion cells can be expressed in 

mathematical terms as 

∑
=

=
q

m
m cRfcG

1
)]([)(                          (4.2) 

where  is the ganglion signal,  is the receptor signal, c is the spatial 

coordinate, q represents the order of differential operation and 

)(cG )(cR

dc
cdRfm
)(][ =• . 

The correlation between photoreceptors and ganglion cells is shown in Fig. 4.3. 
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Figure 4.3  Correlation between the receptor signal and the ganglion signal 
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The differentiation function  of the receptor signal can be expressed in terms of 

sampling spatial coordinate . Equation (4.1) then becomes the first-order differential 

operation expressed as 

][•mf
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1

1
cRccR

cc
cRccRcRfcG

m
m −∆+

∆
=

∆
−∆+==∑

=

     (4.3) 

This transference is shown in Fig. 4.4. 
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Figure 4.4  Transference from signal domain to sampling spatial coordinate domain 

Equation (4.4) shows the differential operator with respect to the spatial coordinate 

instance  c∆

 ( 11
1

−−
∆

= nn XX
c

D )                         (4.4) 

where  is the first-order differential operator and  represents the input of the 

differential operator at the n-th spatial coordinate.  

1D nX

The first-order differential operation can be illustrated with the differential operator and 

the impulse response shown in Fig. 4.5. 
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Figure 4.5  The first-order differential operator on impulse response 

The second-order differential operation can be derived as 
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The differentiation functions are defined in terms of differential operators as 
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Figure 4.6 shows the second-order differential operation in sampling interval . c∆
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Figure 4.6  The second-order differential operator in impulse response 

This impulse response representation for the differential operator provides a clear 

geometric interpretation of the process. The higher-order differentiations can be 

represented in the form of an impulse response demonstration. 

4.2.2 Receptive Fields 

In the biological visual system, the retina has a receptive field to receive light stimuli. 

Each spot on the fields affects the illumination of other spots by charging or discharging 

the stimuli [4]. The aggregation function reproduces the performance of the receptive 

fields. In the literature, several aggregation functions corresponding to the differential 

operator are shown to emulate the receptive fields of the retina. The structure of the 

receptive fields is illustrated in Fig. 4.7. 
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Figure 4.7  A schematic diagram of the retinal ganglion receptive field 

Several examples of aggregation functions are shown in Fig. 4.8. The aggregation 

function takes the identical role of the receptive field. Each pixel of the image is affected 

by the neighbouring pixels as in the scheme of the receptive field. This aggregation 

function is regarded as the discriminant function. The discriminant function extracts the 

information of the image as the receptive fields do in the visual organ [30]. 
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(a) Triangular (b) Sinusoidal 

  
(c) Rectangular (d) Truncated exponential 

 

(e) Truncated Gaussian 

Figure 4.8  One-dimensional examples of aggregation functions 

In this section, the Gaussian function is applied to the discriminant function as the 

Gaussian function calculates the mean of instance values with neighbourhood. Moreover, 

the Gaussian function is continuous and differentiable, so that this function should be 

taken as a discriminant function. Figure 4.9 shows the Gaussian function and the impulse 

response of the differential operators.  
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(c) First-order differential operator (d) First-order differentiation with 

Gaussian operation 
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(e) Second-order differential operator (f) Second-order differentiation with 
Gaussian operation 

Figure 4.9  The differential operators without and with Gaussian function 

4.2.3 Edge Detection 

The edge is obtained from the difference of the brightness or contrast of an object and 

represented by the second-order differential operator. The edge detection can be based on 

temporal correlations between all neurons in the image domain that are hit by the same 

object. This is possible with the help of pre-existing connections that encode the 

likelihood of a pair of neurons belonging to the same segment. Signals from neurons in 
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the same segment become correlated and can be interfered with by other signals in graph 

matching. Signals from neurons in different segments become anti-correlated and cannot 

interact [27]. This procedure for the neural edge detection is similar to the biological 

vision procedure shown in Fig. 4.10 and the following: 

• Scan an image  

• Apply second-order differentiation of the Gaussian function, Laplacian of the 

Gaussian (LG), to convolute the scanned image to represent the receptive field 

• Make the neural unit, neural processor, learn color spatial functions  

• Pass the convoluted image through the neural processor to detect the edges of the 

objects in the scanned image 

The Gaussian function is defined as Eqn. (4.1). The first-order differentiation of the 

Gaussian function is derived as 

)(22)(')(
2

xxGaxexGaxDG x αα α −=−= −                  (4.7) 

Thus, the LG is derived as 

               '{ }  )(2)( xxGaxLG α−=  

                     { })(2)2()()2( xxGaxxGa ααα −−+−=  

                      )()42( 22 xGaxαα +−=

)()12(2 2 xGax −= αα                              (4.8) 
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For optimal results,  LG matrix is recommended. The three-dimensional LG is 

applied as an optimal aggregation function. The given image is convoluted by the LG 

performing differentiation with averaging as the receptive fields. The convoluted data of 

the image is fed to the neural processor as the neural input. The neural processor is 

constructed by training the static neural units with the color spatial function. The spatial 

function verifies the contrast or brightness of the color in the image. The range of the 

spatial function is from 0 to 255, which signifies the gray level color. The neural 

processor generates a  neural output with a  neural input matrix from the 

convoluted image. The  neural input matrix generates the optimal output from 

these experiments. Each neural output affects the neighboring segments charging or 

discharging the illumination. The effect produces a clear edge detected image. Figure 

4.11 shows the section of the converted image which supplies the neural inputs for the 

neural processor. 
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Figure 4.11  Neural input matrix from the convoluted image matrix 
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The sectioned segments are rearranged as neural inputs in order of elements in row and 

column. The selected  matrix S1  becomes the  neural input . After 

the synaptic and somatic operations, the neural processor generates the neural output as  

)33( × )19( × C1x

)]([)( 11 xvxyN Φ=                            (4.9) 

After the first selected matrix procedure,  of  is replaced with because the 

middle element of  is adjacent to every other element and the middle element may be 

mostly affected by its neighbours. Thus,  is renamed as . Figure 4.12 illustrates 

the neural procedure of the first converted sectioned segments. 

L22x

S1

S1 1Ny

S1

S1'

C1x

Neural inputs 

11Cx

21Cx
31Cx

41Cx

51Cx
61Cx

71Cx

81Cx

91Cx

∑
1Ny

(a) Neural processor

11Lx 12Lx 13Lx

21Lx 23Lx

31Lx 32Lx 33Lx

Converted matrix

S1'

1Ny

11Lx 12Lx 13Lx

21Lx 22Lx 23Lx

31Lx 32Lx 33Lx

Sectioned matrix

S1

(b) Converting the selected matrix

Neural
processor

 
Figure 4.12  The neural processor with the first selected neural matrix and the 

conversion of the matrix 
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The next sectioned matrix S2  contains a new element from the previous converted 

matrix and is illustrated in Fig. 4.13. As the process is continued,  generates , 

 creates  and so forth.  
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Figure 4.13  The next sectioned segments with  for the neural inputs 1Ny

After the entire neural procedure is completed, the convoluted image matrix is changed as 

shown in Fig. 4.14. The gray coloured cells signify that the neural processor, which 

represents the function of the central nervous system, computes the elements in these 

cells. 
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Figure 4.14  Completely altered image matrix after the neural processor 

The transformed convoluted image from the neural processor enhances the edges of the 

objects in a given image by higher-order computation. In order to obtain the optimal edge 

detected image, the rate of slope of the Gaussian function and the size of the sectioned 

matrix should be adjusted. 

4.3 Simulation Studies of Neural Edge Detectors 

In this section, the simulation of the neural edge detection is illustrated following the 

procedure of the neural method explained in the previous section. The neural unit with 

CSO is used as the neural processor, and simulation results are displayed and compared 

with the performances of the neural units with LSO and QSO. In this thesis, two different 

images are used for the edge detection. One is an image of the letter E, and the other is a 

gray picture of a lady, Lena. The original letter E and the edge detected images processed 

by the neural units with LSO, QSO and CSO are displayed in Figs. 4.15. The two-

dimensional plots do not give a clear representation of the edge detected images. Thus, 
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the three-dimensional plots are shown. In three-dimensional plots, the z-axis of the graph 

expresses the gray level of each pixel. The edge of the image is extracted with the higher 

value in the z-axis. Figure 4.16 gives the three-dimensional plots of the original images 

and edge detected images of the letter E. The original Lena image and the edge detected 

images by the neural edge detectors are shown in Fig. 4.17. Three-dimensional plots of 

images of Lena are shown in Fig. 4.18. The neural edge detectors, however, did not 

present thin edge images. The thinning procedure makes the line thin to present the clear 

border of the objects. As a further step, a thinning procedure was applied following the 

neural processor. Lena’s image was processed by the thinning procedure, and the results 

are shown in Fig. 4.19. As shown, the edge-detected images are not clear due to the size 

of the pictures. For a clear view of the simulation results, a zoomed version of several 

regions of the edge detected images is illustrated in Fig. 4.20. In these figures, each row 

of the pictures corresponds to the result of neural edge detectors, and each column 

represents selected regions of the image. Hence, the edge detected images from different 

neural edge detectors can be compared. The three-dimensional plots of the thin edge 

detected images of Lena are displayed in Fig. 4.21. 
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(a) Original letter E (b) By neural edge detector with LSO 

 

(c) By neural edge detector with QSO (d) By neural edge detector with CSO 

Figure 4.15  Original letter E image and the edge detected images from different neural 

detectors with the optimal slope rate of the Gaussian function, 03.0=α  
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(a) Original image (b) Neural edge detector with LSO 

 

(c) Neural edge detector with QSO (d) Neural edge detector with CSO 

Figure 4.16  Three-dimensional plots of the original letter E image and edge detected 

images by different neural processors 
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(a) Original Lena image 
(b) By neural edge detector with LSO with 

035.0=α  

 

(c) By neural edge detector with QSO with 
08.0=α  

(d) By neural edge detector with CSO with 
01.0=α  

Figure 4.17  The original Lena image and the edge detected images processed by 

different neural edge detectors with the optimal slope rate of the Gaussian 

function, α   
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(a) Original image (b) Neural edge detector with LSO 

  

(c) Neural edge detector with QSO (d) Neural edge detector with CSO 

Figure 4.18  Three-dimensional plots of the original Lena image and edge detected 

images by different neural processors 
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(a) Neural edge detector with LSO (b) Neural edge detector with QSO 

 

(c) Neural edge detector with CSO 

Figure 4.19  The edge detected Lena images by the different neural processors after the 

thinning procedure 

 



 78

With 
LSO

With 
QSO

With 
CSO

(a) (b) (c) (d) (e)

1

2

3

4

5

 

(a) the close thin figure of region 1 from the original image 

(b) the close thin figure of region 2 from the original image 

(c) the close thin figure of region 3 from the original image 

(d) the close thin figure of region 4 from the original image 

(e) the close thin figure of region 5 from the original image 

Figure 4.20  The edge detected images from 5 different regions by neural edge 

detectors with LSO, QSO, and CSO after thinning  
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(a) Neural edge detector with LSO (b) Neural edge detector with QSO 

 
(c) Neural edge detector with CSO 

Figure 4.21  The three-dimensional plots of the thin edge detected Lena images from 

different neural edge detectors after thinning 
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4.4 Summary 

A novel neural method of edge detection was illustrated in this chapter. This new neural 

method was based on the biological vision system. Moreover, mathematical expressions 

of the biological system were introduced. A neural input matrix and  LG 

convolution window generated the optimal edge detection as shown in the simulation 

results. The new algorithm was applied with the neural units with LSO, QSO and CSO. 

As shown by the simulation results, the higher-order neural structure gave clearer edged 

lines of the objects in the given images. Especially, the neural unit with CSO presented 

more perceptible edge detected images. However, the neural unit with QSO could not 

adequately extract the edges from Lena’s image. As an edge detector, this neural method 

was not able to generate the thin line which is essential to analyze the edge-detected 

images. The neural thinning method should be developed for future work.  
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Chapter 5  

Mobile Robots with Neuro-vision and Neuro-control  

5.1 Introduction 

Human beings have built robots since the twentieth century. According to the Merriam-

Webster Online dictionary, a robot is defined as “a machine that looks like a human 

being and performs various complex acts (as walking or talking) of a human being”. 

Numerous robots are manipulated by various kinds of controllers. Neural networks are 

starting to be used to control these machines. In the literature, it is thought that the neural 

networks may result in better performance of the machinery. Most current robotic 

problems can be categorized into one of three processing levels: task planning (e.g., depth 

determination and arm-camera coordination), path planning (e.g., robot navigation), and 

path control (e.g., motor control). Most robotic processing problems can be formulated in 

terms of optimization or pattern association problems. Neural networks can be adopted to 

solve these robotic processing tasks [13]. 

In this chapter, a mobile robot is introduced as a neural control application. The mobile 

robot is illustrated in Fig. 5.1. A CCD camera for vision is implemented, and several 

photo-sensors are attached to the machine. It was proved in the previous chapters that 

neural units with HOSO have superior capability; these higher-order neural vision and 

controller may give the machine an advanced performance. Vision for the machine is 

enhanced as neuro-vision. A part of this neuro-vision was processed in the previous 

chapter as the neural edge detection. In order to apply neuro-vision appropriately, the 
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Hough transform (HT) method is introduced in this chapter. For the control application of 

this machine, the neural unit with CSO is used due to its superior performance. 

In this chapter, neuro-vision with the HT and the estimation of location for the robot’s 

movement decision is explained in Section 5.2. Neuro-control with the neural unit with 

CSO to manage the movement of the mobile robot is described in Section 5.3. In 

addition, a summary of this chapter is given in succeeding section. 

CCD camera

Sensors

Neurocontrol box

 

Figure 5.1  Mobile robot 

5.2 Neuro-vision System 

Vision is one of the most important faculties of perception for human beings. The study 

of biological vision provides motivation and a general framework for designing and 

developing fast, robust, and effective machine vision systems. Current machine vision 

performance is generally no more advanced than the most primitive animal vision system 

[35]. The term ‘neuro-vision’ is used to refer to any artificial or machine vision system 

that embodies the computational principles of biological neural circuits. The process of 
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designing neuro-vision systems based on biological analogies is more properly termed 

reverse bioengineering or inverse biomedical engineering [29, 42].  

5.2.1 Hough Transform (HT) Method 

In computer vision and image processing, it is imperative to detect basic shapes such as 

lines and circles. Neural edge detection was developed in the previous chapter in order to 

find out the shapes of the figures. However, neural edge detection cannot enable the 

machine to recognize objects completely. In order for the robot to use the edge detected 

image, the HT is required to compute and transfer the image data. The HT is one of the 

most powerful methods for detecting the basic shapes from landmarks, even though some 

landmarks may be distorted or covered up [37]. The original form of the HT involved 

parametrizing lines and was described by the slope-intercept equation as  

cmxy +=                              (5.1) 

In this equation, every point on a straight edge of the edge detected image is plotted as a 

line in (  space corresponding to all the  values consistent with its 

coordinates, and the lines are detected in this space. One of the detriments of the original 

HT is that the value of  or  becomes infinity if the line is parallel with x-axis or y-

axis. A modified HT was, therefore, introduced in order to remove this disadvantage, 

which substitutes the normal 

), yx ),( cm

m c

,( )ρθ  form for the slope-intercept format for the straight 

line as 

θθρ sincos yx +=                         (5.2) 
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where ρ  is the distance from the origin to the point P, and θ  is the angle from the x-

axis to the point P.  

The set of lines passing through the point P is represented as a set of sine curves in 

),( ρθ  space. Multiple hits in ),( ρθ  space signify the presence of lines in the original 

image [36]. Figure 5.2 shows the scheme of the normal ),( ρθ  parametrization of a 

straight line, and the ),( ρθ  parametrization of a straight at point P in ),( ρθ  space is 

illustrated in Fig. 5.3. 
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Figure 5.2  Normal ),( ρθ  parametrization of a straight line at point P in x-y space 
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Figure 5.3  Normal ),( ρθ  parametrization of a straight at point P in ρθ −  space 

Consider that some lines are detected as the landmarks shown in Fig. 5.4(a). Figure 5.4(b) 

shows the relationships between θ  and ρ  for all the landmarks. The parameter space 

( ρθ −  space) is divided into many small subspaces, and the relationships vote for the 

corresponding subspace. The central values of the subspaces which have many votes are 

selected as the parameters of the lines to be detected. Figure 5.4(c) and 5.4(d) show the 

detected line and the landmarks. The lines are detected corresponding to the threshold of 

the HT. 
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(a) Landmarks (b) The parameter space for the landmarks 
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(c) The result of the line detection with the 

threshold 0.8 
(d) The result of the line detection with the 

threshold 0.9 

Figure 5.4  An example of detection of lines by HT 

5.2.2 Navigation for the Mobile Robot 

It is very essential to implement a vision system for the mobile robot. The basic 

requirements for the autonomous navigation of a mobile robot are environmental 

recognition, path planning, driving control, and location estimation/correction capabilities 
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[45, 46, 47]. A CCD camera is put on the mobile robot to get the surrounding image. The 

image from the CCD camera is processed into a digital image through the neural edge 

detector and the HT, so that the mobile robot can receive data for navigation and travel 

corresponding to the CCD camera information. The detected lines of the path of travel 

can be the long term memory of the machine. A picture from the mobile robot is taken in 

Fig. 5.5. 

 

Figure 5.5  The hallway from the CCD camera on the mobile robot 

The robot’s neuro-vision detects the edge of the picture and identifies the line of the 

corridor. Figure 5.6 shows the edge detected image of the hallway and Fig. 5.7 illustrates 

the parameter space of the edge detected image. Figure 5.8 and 5.9 depict the straight 

lines with different thresholds. The straight lines guide the mobile robot to move along. 
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Figure 5.6  The edge detected hallway image 

 
Figure 5.7  The parameter space of the edge detected image after the HT is used to find 

out the straight lines  
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Figure 5.8  The straight lines after HT with threshold 0.7 

 

Figure 5.9  The straight lines after HT with threshold 0.8 
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5.2.3 Estimation of Location and Algorithms for the Robot’s 
Movement Decision 

To measure location and distance are very important capabilities for a mobile robot to 

autonomously execute given tasks. Vision-based methods have some advantages because 

of their flexibility and simplicity [44]. In the literature, a camera, ultrasonic, laser, radar 

and/or infrared sensors are used for the estimation of location to recognize and locate 

beacons. Those devices have become very popular recently, as they can provide precise 

location data instantaneously [48]. The scheme of the measurement of location for the 

mobile robot with sensors is shown in Fig. 5.10. 
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Figure 5.10  The scheme of the estimation of location with CCD camera and sensors 

 



 91

It is very important for the mobile robot to calculate its position and locate itself. In order 

to estimate the location and decide the direction, the CCD camera performs image 

processing, and the sensors generate data from the environment. Algorithms for the 

robot’s movement procedure are designed using pseudo codes to meet possible 

movement problems. Table 5.1 represents the position calibration algorithm of the 

machine to activate corresponding to the digital image of the hallway. The robot 

measures the width of the hallway with respect to the width of the robot (Rw), keeping its 

position in the middle of the hallway with respect to the x coordinates of the mobile robot 

in the image (Px). 

Table 5.1  Pseudo codes for position calibration 

for Hallway width (H)

if (H>Rw)

Go forward

end if

if(H<=Rw)

Turning or go backward

end if

for left feature

COMPUTE intersection point (Pl)

end for

for right feature

COMPUTE intersection point (Pr)

end for

COMPUTE mid point (Pm) between Pl and Pr

for position

if (Pm>Px)

Turn Right

else if (Pm<Px)

Turn Left
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(continued) 

else

Keep the position

end if

end for

end for 

In order to achieve its tasks, the mobile robot should also have the capability to avoid 

obstacles by calibrating the distances between the obstacle and the wall of the hallway. 

The distance from the left side wall to the left side of the obstacle (Dl), and the distance 

from the right side wall to the right side of the obstacle (Dr) are measured by computing 

the processed image. Table 5.2 shows the obstacle avoidance algorithm of the mobile 

robot. 

Table 5.2  Pseudo codes for obstacle avoidance 

if no obstacle

Keep the position

end if

if obstacle

COMPUTE the distance (Dl)

COMPUTE the distance (Dr)

if (Dl>Dr)

Turn Left

else if

Turn Right

end if

end if 
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The motor speeds for changing directions and moving forward are altered corresponding 

to the obstacles. The fused data from the sensors help the motor speed control. Table 5.3 

describes the algorithm of the motor speeds for the safe journey of the mobile robot. 

Table 5.3  Pseudo codes for motor speeds 

for data from sensor

if no obstacle

High motor speed for forward

Decrease motor speed for turning

end if

if obstacle

Low motor speed for forward

Increase motor speed for turning

end if

end for

The hypotheses for the movement decision with motor control are embedded in the 

neural networks composed of the neural units with CSO. The control system with neuro-

vision, sensors and motor control is considered as the neuro-control system. 

5.3 The Neuro-control System 

Natural neurons play many important functions in the sensory, locomotion, and cognitive 

aspects of the central nervous system. The neural units in the higher cortical level provide 

some sort of cognition, or intelligence which represents the power to reason, think, learn 

and adapt. The term ‘neuro-control’ is given to refer to artificial control systems which 

have a similar intelligence process [13]. In the literature, difficulty in the control area is 

generally caused from the computational complexity, presence of nonlinearities and 
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parameter uncertainties. Currently, with the help of research on the superior abilities of 

the biological neural systems, robust artificial neural networks have been developed for 

information processing and control in order to respond to the complex environments of 

the types given above [7, 38, 39, 40, 41].  

5.3.1 Controlling Mobile Robot with Neuro-control System 

The mobile robot in this thesis is controlled by three categories: determination, 

navigation and motor control. The mobile robot can receive the information on the 

obstacles around the machine. The sensors on the body give this blockage data to a neural 

processor. The processor, then, analyzes the given information. The neural processor 

represents the short term memory (STM) of the machine. This mobile robot can also 

attain the navigation data as long term memory (LTM) from the neuro-vision system. The 

motor is controlled corresponding to the STM and LTM. Conversely, the STM and LTM 

are affected by the movement of the machine. Since the change of direction or movement 

may influence the machine’s relationship to new environment, the robot’s motor should 

be managed by the altered STM and LTM recurrently. Figure 5.11 shows the scheme of 

the neuro-control system and the mutuality of the three neural requisites of the mobile 

robot. 
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Figure 5.11  The scheme for the neuro-control system of the mobile robot 

In this thesis, the movement of the mobile robot is described with the neural units with 

CSO. The neural unit with CSO is used to control the motor for the higher performance 

of the neural structure. A servomotor is employed for the mobile robot. A servomotor is a 

dc motor designed specifically to be used in a closed-loop control system [22]. The 

circuit diagram of a servomotor is shown in Fig. 5.12. In the Fig. 5.12,  is the 

armature voltage and considered to be the input of the system.  and  are the 

resistance and inductance of the armature circuit respectively. The voltage  is 

called back-EMF which represents the voltage generated in the armature coil due to the 

motion of the coil in the magneto of the motor. Hence, the back-EMF is defined as 

)(tea

mL

em

mR

)(t
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dt
dKtem
θ)( φ=                            (5.3) 

where K is a motor parameter, φ  is the field flux, and  is the angle of the motor 

shaft.  

θ

The flux φ  is assumed to remain constant to make the equation simple and to use  the 

Laplace transform [22]; hence 

dt
dKte mm
θ)( =                            (5.4) 

The Laplace transform of Eqn. (5.4) yields 

 )                         (5.5) ()( ssKsE mm Θ=

The armature voltage of the circuit is derived in Laplace transform as 

)()()()( sEsIsRsLsE mamma ++=                  (5.6) 

Equation (5.6) can be solved for  as )(sIa

sRsL
sEsEsI

mm

ma
a +

−= )()()(                         (5.7) 

The equation for the developed torque is 

)()()( 1 tiKtiKt aa τφτ ==                     (5.8) 

since flux is assumed constant. The Laplace transform of this equation yields 

)()( sIKsT aτ=                           (5.9) 
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The final equation is derived from summing the torques on the motor armature. In Fig. 

5.12, the moment of inertia  includes all inertia connected to the motor shaft, and J

B includes the air friction and the bearings friction. Therefore, the torque equation is 

dt
dBt

dt
dJ θ)(θ

2

2

−=τ                      (5.10) 

and thus, the Laplace transform of this equation is derived for the torque as 

)()()( 2 sBsJssT Θ+=                      (5.11) 

The motor shaft angle yields 
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Figure 5.12  Servomotor 

A block diagram can be constructed from the Eqns. (5.5), (5.7), (5.9) and (5.12), and is 

illustrated in Fig. 5.13. 
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Figure 5.13  Block diagram of the servomotor 

From Mason’s gain formula the motor transfer function is derived as 

)()()(1
)()()(
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Evaluating this expression yields 
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)( 23

τ

τ
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The armature inductance  is often ignored in the literature where  is small 

enough. Thus, the transfer function is rewritten as 

mL mL

sKKBRsJR
KsG

mmm )(
)( 2

τ

τ

++
=                     (5.15) 

Note that this transfer function depends upon the inertia and friction of the load being 

driven by the motor, as well as the motor parameters. 

5.3.1.1 Computer Simulation Studies  

The objective of this simulation is to make the servomotor follow the reference model. 

The reference model generated by the three neural components shown as Fig. 5.11 

decides the speed and direction of the mobile robot. In this simulation, the static and 

dynamic neural units with CSO were used to control the motor to follow the reference 
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model. The block diagram of motor control is given as Fig. 5.14. In the figure,  is 

the reference input,  is the output of the motor,  is the output of the reference 

model and 

Ref

C refy

E  is the error between the input and output.  

Reference
model

Motor

LAR

+-

+
-

E

C

refy

Ref

Neural unit 
with CSO

 

Figure 5.14  Block diagram of the neural motor control with CSO 

The physical parameters of the motor are given in Table 5.4. 

Table 5.4  The physical parameters of the servomotor 

Physical parameters Value 

  Resistance ( ) mR            4 Ohm 

  Motor parameters ( ) mKK ,τ        0.0274 Nm/Amp 

  Moment of inertia ( ) J     3.2284E-6 kgm  22 sec/

  Friction ( B )     3.5077E-6 Nms 
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With the physical parameters of the motor, the Laplace transform of the servomotor is 

derived from Eqn. (5.15) as 

   
22.59

2122)( 2 ss
sG

+
=                        (5.16) 

or in discrete-time system with the sampling time 0.01 as 

5531.0553.1
07221.008972.0)( 2 +−

+=
zz

zzG                      (5.17) 

Case 1: Motor control with static neural unit with CSO 

In this case, the static neural unit with CSO was used to control the servomotor. The 

learning rate µ  was 0.01. The reference output was changed at every 100 steps. Figure 

5.15 shows the result of the computer simulation in Case 1. It is observed that the static 

neural unit was initially learning the reference model, and after the learning procedure the 

motor was able to be controlled corresponding to the reference model. The trajectory of 

the motor describes the learning procedure. Whenever the signal was altered, the static 

neural unit with CSO took some time to learn the new change, and then the motor could 

follow the model in no time as the error shows.  

Time (k)  
(a) Output of the reference model 
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Time (k)  
(b) Output of the servomotor controlled by the static neural unit with CSO 

Time (k)  
(c) Error between the reference model and the servomotor 

Figure 5.15  Case 1: Motor control with a static neural unit with CSO 

Case 2: Motor control with dynamic neural unit with CSO 

In this case of study, the dynamic neural unit with CSO was used to control the 

servomotor. The learning rate µ  was 0.01 as same as that of the static neural unit with 

CSO. The change of the reference output was the same as the change in Case 1. The 

computer simulation with the dynamic neural unit with CSO is shown in Fig. 5.16. It is 

observed that the motor output could follow the reference output after several seconds. 

Unlike from the static neural controller, the initial trajectory of the motor shows the high 

overshoot due to the dynamic structure. However, the overshoot becomes less later on 

showing that the dynamic neural controller was adapted to the reference model.  
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Time (k)  
(a) Output of the reference model 

Time (k)  
(b) Output of the servomotor controlled by the dynamic neural unit with CSO 

Time (k)
 

(c) Error between the reference model and the servomotor 

Figure 5.16  Case 2: Motor control with a dynamic neural unit with CSO 

These simulation studies showed that initially the dynamic neural controller took a bit 

more time and had higher overshoot than the static neural controller; however, the 

dynamic neural controller took less time than the static neural controller to adapt to the 

new environments after the learning and adaptation. On the other hand, the dynamic 

neural controller showed a bit higher overshoot than the static neural controller. The high 

computation in the synaptic operation may cause the static and dynamic neural units with 

CSO to be more sensitive to the systems. In particular, the dynamic neural unit with CSO 
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contains the dynamic structure which makes the neural structure more complex and 

sensitive. The sensitivity of the dynamic neural structure may cause the controller to 

manage the motor with some overshoot and a little sluggish response. 

5.4 Summary 

In this chapter, a mobile robot was controlled by neuro-vision and neuro-control systems. 

The HT and the estimation of location were used for an advanced neuro-vision system, 

and the static and dynamic neural units with CSO were applied for the neural controller. 

In order to control the mobile robot, many complex problems need to be solved due to the 

nonlinear environments affecting the STM and the LTM of the machine. The simulation 

studies demonstrate the adaptive capability of the neural structures of the robot (with 

respect to the neuro-control system) when the robot is subjected to disturbance by various 

objects in its paths. The higher performance of the neural unit with CSO was able to 

control the robot effectively.  

In addition, the studies show that the dynamic nature of the neural units causes both 

advantages and disadvantages in their performance. The superiority of the dynamic 

structure was demonstrated in the previous chapter. However, usage of the dynamic 

structure should be selective according to the purpose of the systems because the 

dynamic structure may damage some performance of the systems. 
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Chapter 6  

Conclusions 

6.1 Concluding Remarks 

The study of the architecture of biological neurons has influenced the development of the 

neural structures and their computational process. Based on the neural units, various 

neural network applications such as function approximation, pattern recognition, and 

system identification and control have been studied in the literature [17]. Currently, the 

neural unit with linear synaptic operation (LSO) is used in neural networks. However, 

the linear model of the neural units ignores some of the significant features of the 

biological neurons, such as the higher-order synaptic computation. The motivation to 

emulate the superior performance of the biological neurons expands the neural units with 

LSO to the neural units with higher-order synaptic operation (HOSO). 

The novel structure of the neural units with HOSO is given in the forms of the neural 

units with quadratic synaptic operation (QSO) and cubic synaptic operation (CSO) in 

Chapter 2. The topology of the neural units with HOSO is based on the highly 

amalgamated inputs in the synapse of the biological neurons. It was proved that the 

neural unit with LSO is a subset of the neural units with HOSO in this chapter. The 

neural units with HOSO emulate some of the important properties of the biological 

neurons, and perform more efficiently than the neural units with LSO. The XOR logic 

problem gave a clue to the advanced performance of the neural units with HOSO. A 
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neural unit with HOSO was able to classify the nonlinearity of the XOR logic problem. 

The generalization of the neural units with HOSO is explained at the end of this chapter.  

In Chapter 3, the neural unit with CSO was incorporated with the dynamical structure 

followed by the nonlinear activation function. The neural structure with feedback was 

named the dynamic neural unit with CSO. A delay with feedback was implemented as the 

dynamic structure to emulate the memory activities of the brain. There is one adaptive 

parameter b in the dynamic structure. Furthermore, the novel neural networks were 

created consisting of the neural unit with CSO. In order to adapt the neural networks, the 

current back-propagation algorithm used for the neural units with LSO was modified for 

the neural networks composed of the neural units with CSO. In this chapter, industrial 

motion control systems were introduced for the model identification simulation. The 

simulation indicates the advantage of the neural units with HOSO, as well as the dynamic 

structure in the neural units. In the literature, the neural networks composed of the neural 

units with LSO accomplish the model identification; however, one neural unit with 

HOSO was able to perform the same execution as the neural networks composed of the 

neural units with LSO. Additionally, the dynamic structure effectively influenced the 

neural performance. The dynamic neural units with HOSO identified the motion systems 

with less error than the static neural units with HOSO.  

A novel edge detector was introduced with a neural approach in Chapter 4. The technique 

of the neural edge detector was based on the concept of the biological vision procedure 

which contains the processing of light stimuli to the retina. The neural units with LSO, 

QSO and CSO were applied as the neural edge detectors, and two different figures were 

used for the detectors to sense the edges. This simulation implies the capability of the 
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neural structures for image processing. As a result, the neural edge detector with the CSO 

generated more clearly defined edge lines than other neural detectors. The three-

dimensional edge detected plots demonstrates the enhanced performance of the neural 

edge detectors. Overall, this simulation proved the superior capability of the neural units 

with HOSO for image processing. 

A mobile robot was introduced for a control application in Chapter 5. In order to control 

the mobile robot, three neural categories were applied: neural function approximation as 

classification, neuro-vision system as signal processing and neuro-control system as 

control. These three components were correlated and affected other aspects of the robot’s 

performance. A neural processor for the classification of sensory data was considered as 

the short term memory (STM), and the neuro-vision system was regarded as the long 

term memory (LTM) of the machine. The Hough Transform (HT) and the algorithm of 

movement decision were used for the advanced presentation of the neuro-vision system. 

With sensors, the neuro-vision system takes several roles such as position calibration, 

obstacle avoidance, and motor speed control. From the simulation results, the controller 

with the neural unit with CSO was able to handle the mobile robot with the STM and the 

LTM. 

6.2 Conclusions 

Inspired by the structure of biological neurons, the novel static and dynamic neural units 

with HOSO have been proposed in this thesis. The neural units with HOSO are more 

powerful and efficient due to the nonlinear computation of neural inputs and neural 

synaptic weights. Thus, the neural units with HOSO are well suited to control the 
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complex (nonlinear) systems. The higher computation of synaptic operation in the neural 

units with HOSO causes the neural networks to have less number of neurons, which 

enables the neural networks to save a lot of time in the learning and adaptation. Image 

processing and motion control with the neural units with HOSO have proved the potential 

applications of the novel neural units. 

At the same time, the exponential complexity due to the increasing number of synaptic 

weights is a major concern. Hence, the order of synaptic operation should be decided in 

relation to the problems to be solved. 

6.3 Directions for Future Research 

In this thesis, only theoretical study and some computer simulations have been carried 

out. In order to extend the knowledge and area of the novel neural structures, it will be 

useful to implement the neural units with HOSO in the real-time applications. In addition, 

a detailed theoretical analysis of the dynamic structure in the dynamic neural units with 

HOSO is required in the areas of stability, convergence and flexibility. It is interesting to 

note that fuzzy logic control is another powerful tool for modeling uncertainties 

associated with human thinking and perception [5]. It is believed that the fuzzy neural 

networks have considerable potential in the area of expert systems, medical diagnosis, 

computer vision, pattern recognition, and system modeling and control [13]. It would be 

very interesting and challenging to develop the fuzzy neural network. Also, it would be 

very useful to conduct further studies in the field of medical diagnosis and prognosis with 

the help of these innovative neural structures with HOSO neural units. 
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