
Instabilities, anomalous transport, and

nonlinear structures in partially and

fully magnetized plasmas.

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Physics and Engineering Physics

University of Saskatchewan

Saskatoon

By

Oleksandr Koshkarov

c©Oleksandr Koshkarov, February 2018. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Physics and Engineering Physics

Rm 163

116 Science Place

University of Saskatchewan

Saskatoon

Saskatchewan

Canada

S7N 5E2

i



Abstract

Plasmas behavior, to a large extent, is determined by collective phenomena such as waves.

Wave excitation, turbulence, and formation of quasi-coherent nonlinear structures are defin-

ing features of nonlinear multi-scale plasma dynamics. In this thesis, instabilities, anomalous

transport, and structures in partially and fully magnetized plasmas were studied with a

combination of analytical and numerical tools. The phenomena studied in this thesis are of

interest for many applications, e.g., plasma reactors for material processing, electric propul-

sion, magnetic plasma confinement, and space plasma physics. Large equilibrium flows of ions

and electrons exist in many devices with partially magnetized plasmas in crossed electric and

magnetic fields. Such flows result in various instabilities and turbulence that produce anoma-

lous electron transport across the magnetic field. We present first principle, self-consistent,

nonlinear fluid simulations that predict the level of anomalous current generally consistent

with experimental data. We also show that drift waves in partially magnetized plasmas

(which we called Hall drift waves), destabilized by the electron drift along with density gra-

dients, tend to form (via inverse energy cascade) shear flows similar to zonal flows in fully

magnetized plasmas. These flows become unstable due to a secondary instability (similar

to Kelvin–Helmholtz instability) and produce large-scale quasi-stationary vortices. Then, it

was shown that in nonlinear regimes, the axial mode instability due to electron and ion flows

(along the electric field) forms large-amplitude cnoidal type waves. At the same time, the

strong electric field produced by axial modes affects Hall drift waves stability and provides

a feedback mechanism on density gradient driven turbulence, creating a complex picture of

interacting anomalous transport, zonal flows, vortices, and streamers. In the case where axial

modes are destabilized by boundary effects, the nonlinear dynamics result in a new nonlinear

equilibrium or standing oscillating waves. The formation of shear flows (zonal flows) was

also studied in the framework of the Hasegawa-Mima equation and it was established that

zonal flows can saturate due to nonlinear self-interactions. Lastly, a novel approach for high-

fidelity numerical simulations of multi-scale nonlinear plasma dynamics is developed which

is illustrated with the example of an unmagnetized plasma.
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Chapter 1

Introduction

1.1 Motivation and thesis outline

Plasma is the most common state of visible matter in our universe. Therefore, understanding

of plasma physics is necessary to answer fundamental questions about the nature of the

universe. Plasma physics is addressing numerous practical applications as well as fundamental

problems such as wave turbulence. As a collective medium, plasma behavior is dominated

by wave dynamics, and turbulence still remains a great unsolved problem of classical physics

with many far-reaching practical implications.

Plasma dynamics is characterized by many different parameters with large disparity of

temporal and spatial scales. In most cases, some kind of reduction and multi-scale expansions

are necessary to solve the problem. The purpose of this thesis is to analyze several nonlinear

plasma phenomena of great interest for fundamental plasma physics and practical applications

such as electric propulsion and material processing. These will be treated with a combination

of theoretical and numerical techniques, and plasma models of different complexity will be

used. In relatively simple models, a pure analytical method will be used. A complete kinetic

description will require fully numerical treatment. An intermediate approach will also be

used where analytical tools are combined with numerical simulations.

The study will begin with nonlinear wave-wave interactions of drift waves, which are

fundamental in plasmas with an inhomogeneous density and a strong magnetic field (e.g.,

tokamak). As will be shown in Chapter 2, their nonlinear interactions transfer energy into

large-scale modes called zonal flows. This fundamental plasma process is the inverse energy

cascade. The standard theory of modulational instability will be extended to include the

effects of nonlinear self-saturation of zonal flows.

1



In Chapter 3, we will investigate a similar nonlinear process — the inverse energy cascade

due to nonlinear interaction of density gradient driven waves in partially magnetized plasmas.

In this text, we call them Hall drift waves by analogy with density gradient driven waves in

fully magnetized plasmas (i.e., drift waves). The nonlinear interaction of Hall drift waves

may be responsible for anomalously high electron conductivity (mobility) across the magnetic

field in a Hall thruster. This anomalous mobility produces large axial current and reduces

Hall thruster efficiency. It also excites large-amplitude axial waves: their nonlinear dynamics

is studied in Chapters 4, 5. The full system with Hall drift and axial waves is considered

in Chapter 6. Throughout Chapters 3-6, the reduced fluid model proposed in [115] is used

to describe waves in Hall thruster and a combination of analytical and numerical tools are

employed to study it.

Finally, in Chapter 7, the classical beam-plasma interaction problem is considered to

illustrate a new numerical method for solving the full kinetic equation. The standard numer-

ical method for the kinetic equation is particle-in-cell (PIC). Unfortunately, it is ill-suited

for turbulent and chaotic problems (e.g., drift wave turbulence) because of a large particle

noise. Therefore, the new proposed numerical method overcomes this problem by combining

PIC with a highly accurate spectral method. The pure spectral method is a good choice

for turbulent problems, but the particle distribution function may have a complicated shape

causing poor convergence in case of collisionless plasmas. The new hybrid method avoids

this problem by using particles to discretize complicated parts of the distribution function.

The content of this thesis is based on several manuscripts that have been published already

and/or submitted or in preparation for publication. The chapters that are based on published

manuscripts have preface sections describing how the chapter fits into the overall theme of

the thesis and the rest of such chapters is reproduced verbatim.

1.2 What is a plasma

Plasma is a gaseous state of matter where some atoms have lost one or more electrons. As

an example, one can consider the possible states of matter (for example water H2O) shown

in Figure 1.1 on the temperature (T ) line. At low temperatures, water is a solid and all
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molecules are bounded into a crystal. At higher temperatures1 (T > 0◦ C ≈ 0.024 eV),

thermal energy overcomes the bonding energy between molecules in the crystal lattice and

ice melts, becoming a liquid. If the temperature is raised further (T > 100◦ C ≈ 0.032 eV),

the water transitions into a molecular gas state. At temperatures around T ∼ 1 eV, water

molecules dissociate into atoms and the gas becomes atomic, so we can no longer call the

considered gas water. The next transition happens when the temperature approaches an

ionization energy (e.g., for Oxygen and Hydrogen atoms it is around 13.6 eV). At this point,

a significant fraction of atoms are ionized, and the matter is said to be in a plasma state.

T, eV0
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Figure 1.1: Illustration of different water states on the temperature line (not to scale)
and its transition into plasma state.

A plasma is an ionized gas, which usually consists of several different species that control

its dynamics, e.g., free electrons, ions (i.e., ionized atoms), and neutrals (i.e., not ionized

atoms). Therefore, the definition of temperature as an ensemble average of kinetic energy,

3T/2 = 〈mv2/2〉, should be generalized for different species, beginning with the distinction

between electron temperature (Te), ions temperature (Ti), etc. Typically, the electron tem-

perature is much higher than the temperatures of ions or neutrals. This asymmetry happens

due to the large difference between electron (me) and ions (mi) masses. For example, the

lightest ion (proton) is 1836 times heavier than the electron. Therefore, when a plasma is

created, electrons are usually heated much faster than ions. Moreover, the heating of ions due

to collisions with electrons is a very slow process, because the maximum amount of kinetic

energy an electron can transfer to an ion during a collision is 4me/mi � 1. Hence, a gas may

be classified as plasma when the electron temperature approaches the ionization energy. It

1Here and later in the text, the temperature is measured in energy units such as jouls (J) or electronvolts
(eV) rather than in Celsius (C) or Kelvins (K). Therefore, the conversion factor — the Boltzmann constant,
is omitted throughout the text and words “temperature” and “energies” are used interchangeably.
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is one of the important features of plasmas that it can be strongly non-equilibrium and ion

temperature can be significantly smaller than the electron temperature.

This thesis is focused on non-relativistic plasmas where the motion of charged particles

is governed by classical electromagnetism2, and the electron temperature is bounded by the

electron rest mass energy Te < mec
2 ≈ 0.5 MeV. Therefore, we are concerned with the state

of matter with electron temperatures roughly from ∼ 1 eV up to ∼ 0.1 MeV, which is the

most common state of visible matter in our universe. For example, our sun has a temperature

varying from ∼ 0.5 eV in the photosphere and up to ∼ 1.4 keV in the core.

Above, only an intuitive definition of a plasma state was given. A more precise definition

is: plasma is a quasi-neutral gas of charged particles where interactions are predominantly

collective. This definition, however, requires further clarifications. Namely, what are quasi-

neutrality and collective interactions?

Quasi-neutrality

A quasi-neutrality (QN) means that the electron charge density (ρe) is approximately (on

average in time and space) equal to the ion charge density (ρi). Separation of the electrons

and ions results in the electric field which brings the charges back together. The scale of the

separation is limited by the available kinetic (thermal) energy of particles (mostly electrons

as the lighter component), which allows a simple estimate for the typical length scale of the

charge separation. Assume that the charge separation had occurred and there is a region of

size x with only one particle species present, e.g., electrons with charge −e and density n.

Then the electric field E can be estimated from Gauss law3 ∂xE = −4πne, i.e., E ∼ 4πnex.

The separation occurs due to a thermal energy Ex ∼ Te, therefore we have

x ∼ λD ≡
√

Te
4πne2

, (1.1)

where λD is a Debye length, which is a charge separation scale length; i.e., if x � λD, then

ρe 6= ρi, while if x � λD, then ρe ≈ ρi, with x being a typical scale of interest. The Debye

2 For equations of motion to be classical, quantum effects should be negligible. This happens when plasma
density (or average distance between particles) satisfy n−1/3 � λDB , where λDB is a De Broglie wavelength.
This condition is usually satisfied for common plasmas.

3 Here and later in the text, unless specifically indicated, all formulas are written in Gaussian centime-
tre–gram–second (CGS) system of units.
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length is also the scale length of charge screening. It follows from the accurate solution of the

Gauss law (or the Poisson equation) in plasma, that the potential of a test charge q decays

with distance r as

φ(r) =
qe−r/λD

r
, (1.2)

in contrast to the standard Coulomb’s law in a vacuum

φ(r) =
q

r
. (1.3)

The additional decay e−r/λD occurs due to plasma charges which are getting polarized to

compensate for the test charge and screen its electric field.

Using the same estimate for electrostatic potential (∂xφ ∼ 4πnex), we can evaluate the

time scale when the fastest (i.e., lightest) species (i.e., electrons) undergoes charge separation.

We consider motionless ions with electrons deviated from them by a distance x. Newton’s

second law (meẍ = e∂xφ) yields the equation for periodic oscillation with a characteristic

frequency

ωpe =

√
4πne2

me

. (1.4)

The quantity ωpe is called the electron plasma frequency or simply plasma frequency. It

defines the charge separation time scale and characterizes the most fundamental plasma

eigen-mode — the Langmuir wave (or in this approximation Langmuir oscillations).

Let us note that if we combine these two fundamental plasma quantities, we get

λDωpe =

√
Te
me

≡ vTe , (1.5)

the thermal electron velocity vTe . This is natural because the charge separation occurs due

to the thermal motion.

Collective interactions

In neutral gases, particles interact with each other mostly through occasional collisions, where

only very close particles are involved (binary collisions). In plasmas, many charged particles

can interact simultaneously via the long-range Coulomb forces. The number of interacting

particles is limited by the Debye screening (exponential decay in (1.2)). Thus, each particle
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interacts effectively only with particles inside the Debye sphere with the center at the chosen

particle. Therefore, many particles (inside the Debye sphere) can interact simultaneously with

each other and it is called a collective interaction. Due to this interactions plasmas respond

to large-scale perturbations (i.e., larger than the Debye length) collectively. Such responses

are usually manifested as plasma waves and they are called collective phenomena. This

makes plasma dynamics significantly different from neutral gas dynamics and results in many

complex nonlinear phenomena. We note that collective interactions and collective phenomena

are different processes where the former are many-body interactions on the scales smaller than

the Debye length, while the latter are collective plasma responses on perturbations which are

usually larger than the Debye length, e.g., plasma waves.

The binary interactions in plasma become negligible in comparison with collective interac-

tions, when the potential of a test particle at the mean distance between particles (r ∼ n−1/3)

is much smaller than the plasma thermal energy. Using (1.2), we get

eφ

Te

∣∣∣∣
r=n−1/3

∼
exp

(
(nλ3

D)−1/3
)

(nλ3
D)2/3

∼ 1

(nλ3
D)2/3

� 1, (1.6)

or in other words

nλ3
D � 1. (1.7)

Condition (1.7) is a necessary condition for a plasma state and the quantity nλ3
D is known

as the plasma parameter. It defines the number of plasma particles in a Debye cube (or

sphere).

1.3 Plasma in nature and in the laboratory

Modern plasma physics includes many complex phenomena and has numerous applications.

Historically, plasma physics4 started with Irving Langmuir and Lewi Tonks who studied the

physics of tungsten filaments in light bulbs in order to increase their lifetime. Subsequently,

they developed a theory of plasma-material interactions and discovered the fundamental

plasma waves now called Langmuir waves [121]. Discharge physics covers a variety of phe-

nomena related to electric currents and electromagnetic fields in gas discharges. It deals with

4 It was Langmuir who coined the term “plasma”, because it reminded him of blood plasma [102, 120].
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relatively cold, partially ionized plasmas with electron temperature of a few electronvolts

Te ∼ (2 − 3) eV and particle densities n ∼ (1014 − 1018) m−3. Typical examples of such

plasmas in nature and laboratory are fluorescent lamps, neon lights, electric arcs, hot flames,

lightings, etc.

Another early manifestation of plasma physics phenomena came from radiophysics com-

munity. It was noticed that radio waves were reflected from upper layers of the atmosphere

which makes it possible to transmit radio signals around the globe. It was understood later

that the radio waves were reflected from the ionosphere which is a plasma layer located at an

altitude of approximately 60 km to 1000 km. Further research revealed complicated physics

which closely connects processes in the ionosphere to the whole sun-magnetosphere system.

Studies of plasmas in this system led to a new field of space physics which is concerned not

only with fundamental questions on how the universe works, but also tries to explain and

predict space weather. Thus, it has important implications for everyday life: the operation

of satellites, power plants, etc. Space physics deals with a variety of different plasmas. For

example, a typical ionosphere electron temperature is Te ∼ 0.1 eV and density n ∼ 1012 m−3,

while a typical solar wind (i.e., a plasma emanating from the sun) electron temperature is

Te ∼ 10 eV, density n ∼ 107 m−3 and large mean velocity vdrift ∼ 300 km/s. Plasma systems

are also common in deep space and are a major subject of research in modern astrophysics.

1.3.1 Thermonuclear fusion

A large part of plasma physics is focused on the problem of thermonuclear fusion (TF). TF is

the energy source of stars such as our sun and the physical phenomenon behind the hydrogen

bomb. The main idea is that one needs to combine light nuclei to form heavy ones. This

reaction releases energy when combined nuclei are sufficiently lighter than the iron nucleus.

For example, dominant fusion reactions inside the Sun are

D +D = 3He+ n+ 3.2MeV,

D +D = T + p+ 4.0MeV,

D + T = 4He+ n+ 17.6MeV,
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where D is a deuterium nucleus, T is a tritium nucleus, n is a neutron, p is a proton, and
3He, 4He are helium-3 and helium-4 nuclei respectively.

The important practical question is how one can control nuclear fusion to get almost an

inexhaustible energy source. The main difficulty is that in TF reactions one has to combine

positively charged particles (ions). Therefore, there is a large energy threshold due to the

Coulomb barrier. A rough estimate of the required temperature is Te ∼ 10 keV, and it is very

difficult to confine very hot plasmas in the laboratory, because it will melt container walls.

One possible and promising solution is to use magnetic confinement. It is well known

that the trajectories of charged particles in magnetic fields are helices, tied to magnetic field

lines at a distance of the Larmor radius

ρα =
v⊥α
ωcα

, with ωcα =
qαB

mαc
, (1.8)

where α denotes particle species (α = electrons, ions, etc.), v⊥α is the particle velocity per-

pendicular to the magnetic field, ωcα is the frequency of circular motion around the magnetic

field called the gyro frequency, qα is the particle charge, mα is the particle mass, c is the

speed of light, and B is the magnitude of the magnetic field. Therefore, if the charged par-

ticle’s Larmor radius is much smaller than the device size, the plasma can be confined in

the direction perpendicular to the magnetic field. However, particles can still escape in the

direction of the magnetic field. There is a large variety of magnetic configurations which aim

to confine plasmas [112], but the most obvious choice is to make magnetic field lines closed.

In the simplest case, we get magnetic field lines closed into a torus — a tokamak.5

1.3.2 Ion propulsion

Another prominent example of a practically applied plasma system is the Hall thruster (HT),

which is one of the most promising ion propulsion systems [99, 97]. It has good efficiency

(50− 60%), a high thrust velocity (104− 105 m/s), and a relatively simple working principle.

HTs have a cylindrical geometry, with an axial electric and a predominantly radial magnetic

field as shown in Figure 1.2. Devices are configured to have the ion Larmor radius much

5The name originates from Russian abbreviation — токамак: тороидальная камера с магнитными
катушками, which translates into English as toroidal chamber with magnetic coils
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smaller than the system size, making the magnetic field effects on the ion motion negligible.

Hence, ions are accelerated by the electric field along the axial direction. At the same time,

the electron gyroradius is much smaller than the device size, so they are confined in the

device6. The reason why a quasi-neutral plasma is important for the HT operation is space

charge. If electrons were absent, the ion charge excess would screen the accelerating electric

field, limiting the ion current and velocity. This effect is known as the Child-Langmuir

Law [32]. Therefore, a plasma overcomes this limit, because an ion charge is neutralized by

electrons.

Figure 1.2: Hall thruster scheme (from http://htx.pppl.gov/).

1.3.3 Other plasma applications

Numerous subfields and details of mentioned plasma physics applications in space physics,

fusion, etc. were omitted, as well as other diverse fields related to plasma physics. For

example, plasma reactors are commonly used for material processing (e.g., magnetrons) or

to create lasers. There are new and quickly growing fields such as a plasma medicine, where

plasma is created to control chemical reactions in very localized areas in our body.

Despite a variety of applications, plasmas in very different systems share similar properties

because universal collective plasma phenomena (e.g., plasma waves) usually define plasma

6 Actually, as will be explained later in the text, electrons move with E×B drift in the azimuthal direction.
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dynamics, and, by virtue of a theoretical approach, can be studied with similar tools and

techniques. Therefore, the goal of this thesis is to demonstrate how plasma phenomena and

applications can be approached by theoretical and numerical techniques.

1.4 Plasma models and scale separation

Plasmas are pervasive in nature and in the laboratory. Therefore, the natural question is

how can plasmas be described and studied? A common tool is mathematical modeling which

usually results in a system which can be expressed in the form of integro-differential equations.

1.4.1 Kinetic plasma model

Kinetic modeling is a fundamental way to describe plasmas. In these models, the system

state is defined by a particle distribution function (PDF) which evolves according to the

Vlasov equation. This equation originates from the Boltzmann equation for classical gases.

Additionally, it includes effects of long-range electromagnetic fields, and Maxwell’s equations

are used to compute their evolution. Electromagnetic fields are self-consistent as they depend

on the PDF. Therefore, the full kinetic model for plasmas is the Vlasov-Maxwell (VM) system

of time-dependent partial differential equations.

As was noted, the Vlasov equation originates from the Boltzmann equation and it is the

statement that the PDF changes in time only due to collisions, which follows from Liouville’s

theorem. Thus, the Boltzmann equation reads

dfα(t,x,v)

dt
=

(
∂fα(t,x,v)

∂t

)
coll

, (1.9)

and, using the chain rule, the total time derivative in the phase space

d

dt
=

∂

∂t
+ v · ∇+

F(t,x)

mα

· ∂
∂v

, (1.10)

where α subscript denotes a plasma species (e.g., electrons, ions, etc.); f(t,x,v) is a particle

distribution function; t, x, v are time, space and velocity variables, respectively; mα is a

particle mass; F(t,x) is force acting on particles; the right hand side of equation (1.9) is the

rate of PDF change due to collisions between particles.
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Vlasov recognized the problem of applying classical gas theory, which uses pair collisions,

to the plasma dynamics. He suggested that pair collisions can be neglected, but one needs

to include the effect of self-consistent electromagnetic fields, because long-range Coulomb

interactions define a plasma dynamics. Therefore, the Vlasov equation yields

dfα
dt

=

(
∂

∂t
+ v · ∇+

qα
mα

(
E +

v ×B

c

)
· ∂
∂v

)
fα = 0, (1.11)

where E = E(t,x), B = B(t,x) are self-consistent electromagnetic fields; qα is a particle

charge; c is the speed of light.

We stress here that not all plasmas are collisionless, i.e., the right hand side of (1.9) is

negligible. For example, it is not the case in high density plasmas where the effective collision

frequency ν can be comparable to the frequency of collective plasma processes (waves). We

are mostly concerned with collisionless plasmas, and we omit the complicated processes of

collisions between charged particles, which usually lead to diffusion in the velocity space.

We will however consider charge-neutral particle collisions, and will use the most simple

approximation for the collision integral

(
∂f

∂t

)
coll

≈ −ν(f − f0), (1.12)

where f0 is a PDF of neutral particle species and ν is an effective collision frequency. The

charged-neutral particle collisions are important for cold plasmas, where the fraction of ion-

ized particles is small and there is significant momentum exchange between charged and

neutral particles.

We note that the evolution equations for the Vlasov equation characteristics xc(t) and vc(t),

dxc
dt

= vc, (1.13)

dvc
dt

=
qα
mα

(
E +

vc ×B

c

)
, (1.14)

(1.15)

are Newton equations for particles in self-consistent electromagnetic fields.
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The self-consistent electromagnetic fields can be found from Maxwell’s equations

∂tE = c∇×B− 4πj, (1.16)

∂tB = −c∇× E, (1.17)

∇ · E = 4πρ, (1.18)

∇ ·B = 0, (1.19)

with charge and current densities defined via velocity moments of the distribution function

ρ =
∑
α

qα

∫
fαd

3v, (1.20)

j =
∑
α

qα

∫
fαvd

3v. (1.21)

The full electromagnetic system (1.11), (1.16)-(1.21) is not always needed to describe the

considered problem. For example, in the case of longitudinal waves k ‖ E, where k is the

wave vector, the magnetic field is stationary (∂tB = 0). In this case, the system reduces to

two equations (1.11), (1.18). This is called the electrostatic approximation and it is used in

the rest of this work.

1.4.2 Fluid reduction

The full kinetic system is very difficult to solve analytically or numerically. The intrinsic

complexity originates from various factors. First, the VM system’s high dimensionality (time

and six-dimensional phase space) implies enormous information required to describe the

system state. Secondly, a plasma has a wide range of time and spatial scales. For example, the

characteristic time scale of electron dynamics is significantly different from that of ions due to

their huge mass and temperature differences. Another important scale separation is the large

difference between plasma characteristic length scales (e.g., Debye length, Larmor radius,

etc.) and the system size. For instance, we may need to resolve waves with wavelengths of

about ∼ 1 km in space systems of astronomical sizes (e.g., 1 AU≈ 1.5×108 km). Plasma can

also be strongly anisotropic. It is common in highly magnetized plasmas (e.g., tokamaks) that

the pressure along and perpendicular to the magnetic field can vary by orders of magnitude.
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All of the above, in combination with plasma dynamics being highly turbulent and chaotic,

imply that the VM system is very complicated to treat.

The standard way to simplify equations in physics is via scale reduction, where equations

are reduced to contain only certain scales. In plasmas, the Vlasov equation (1.11) can be

reduced by using a fluid description, which is usually valid for large-scale plasma dynamics.

Fluid equations describe the evolution of macroscopic quantities, such as plasma density nα,

plasma flow velocity Vα, pressure pα, etc. Formally, one can obtain fluid equations, by taking

subsequent velocity moments of the Vlasov equation. For example, integration of the Vlasov

equation (1.11) over the whole velocity space, gives a mass conservation equation

∂nα
∂t

+∇ · (nαVα) = 0, (1.22)

where the plasma density and the velocity for the species α were defined as

nα =

∫
fαd

3v, Vα =
1

nα

∫
vfαd

3v. (1.23)

Every fluid equation defines the time evolution of a macroscopic quantity (e.g., the plasma

density) and depends on the divergence of the next order macroscopic quantity. Thus, the

density evolution equation (a zero order moment) depends on the divergence of the plasma

velocity (a first order moment). Similarly, the evolution equation for the plasma velocity

obtained by taking the first order velocity moment of the Vlasov equation — a momentum

conservation equation

∂(nαVα)

∂t
+∇ ·

(
nαVαVα +

Pα

mα

)
=
qαnα
mα

(
E +

Vα ×B

c

)
, (1.24)

depends on the divergence of the next order pressure tensor

Pα = mα

∫
(vα −Vα)(vα −Vα)fαd

3v. (1.25)

The momentum conservation equation (1.24) is also called the Euler equation and is usually

expressed in the following form

mαnα

(
∂

∂t
+ Vα · ∇

)
Vα +∇pα +∇ ·Πα = qαnα

(
E +

Vα ×B

c

)
, (1.26)

where the mass conservation equation (1.23) was subtracted and the pressure tensor was split

Pα = pαI + Πα (I is a unit tensor) into the scalar pressure pα = (mα/3)
∫

(vα −Vα)2fαd
3v

and the viscosity tensor Πα = Pα − pαI.
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Therefore, the Vlasov equation (and the Boltzmann equation) is equivalent to an infinite

number of fluid moments. One way to truncate this system is to use a closure for some

moment via lower order moments. For example, a simple approximation is the adiabatic

approximation where a non-diagonal anisotropic part of the pressure tensor is neglected

(Π = 0) and the scalar pressure follows the adiabatic law

Pα ≈ pαI, pα = nγaα , (1.27)

where γa is the adiabatic index.

The mass conservation equations (1.23), the momentum conservation equations (1.24),

and other higher order moments (e.g., energy conservation equations) are still complicated

PDEs. However, velocity moments usually have a clear physical meaning and can be mea-

sured in experiments, unlike the PDF which is more difficult to measure and interpret.

Nevertheless, it is usually important to simplify fluid equations further. For example, if

the charge separation is neglected (ne ≈ ni), the magnetohydrodynamics (MHD) equations

can be recovered, which describe plasmas on scales larger than charge separation scales

(x � λD, t � ω−1
pe ); e.g., MHD is a standard model to reproduce large-scale dynamics of

the Earth magnetosphere. Typical plasmas are controlled by non linear processes and have

a large number of parameters. Therefore, scale reduction and further simplifications are

important techniques in plasma physics and it is the underlying theme of this thesis.

1.5 Plasma waves

Due to their origin in conservative laws, most plasma equations (e.g., Vlasov and its moments,

etc.) are hyperbolic7. Therefore, the plasma dynamics are predominantly wave-like and this

thesis focuses on the study of wave-related phenomena in plasmas.

Waves are oscillations that transfer energy through space. A familiar class of waves is

those in fluids or gases such as sound waves. They propagate due to compression of the

7 The strict definition of a hyperbolic PDE is not given in this text, but a descriptive definition follows.
The representative hyperbolic equation is a wave equation (∂2t − c2∂2x)u = 0. It can be factorized into two
advection equations ∂tu± c∂xu = 0. So, the hyperbolicity means real characteristics or waves velocity speeds
c, thus solutions constitute propagating waves. For a system of PDE ∂tU + ∇ · F(U) = 0, it means real
eigenvalues for the Jacobian ∂F/∂U.
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medium and a returning pressure force. Plasmas also have similar modes (e.g., ion sound

wave) where fluid-like mechanisms (e.g., pressure) play an important role. Additionally,

charged particles and electromagnetic forces play a crucial role in plasma dynamics, resulting

in coupled electromagnetic and fluid wave-like behavior which makes plasma support a large

number of eigenmodes of different nature.

1.5.1 Linear waves and phenomena

The first step to study waves is to consider the linear approximation. As an example of the

general procedure of linear analysis, we will analyze the most fundamental plasma wave —

the Langmuir wave, which is an oscillation of the electron charge density around virtually

motionless ions. For simplicity we will use the fluid equations (1.23), (1.26) with the adiabatic

closure (1.27).

First, the plasma equilibrium must be found by solving stationary equations of motion.

In our case, these are fluid equations with omitted time derivatives. The trivial case of a

boundless and uniform plasma in equilibrium with ne = ni = n0, given Te, and zero flow

velocity is considered. In this equilibrium, electric and magnetic fields are absent. The next

step is to expand our quantities around the equilibrium

x = x0 + x̃, (1.28)

where x is a plasma quantity (e.g., density, velocity, etc.), x0 is an equilibrium value, and

x̃ is a perturbed value. Then we substitute the expansion (1.28) into fluid equations and

use linear approximation x0 � x̃; i.e., we neglect nonlinear terms. After linearization, the

electron fluid equations and the adiabatic closure read

∂ñe
∂t

+ n0∇ · Ṽe = 0, (1.29)

men0
∂Ṽe

∂t
+∇p̃e = −en0Ẽ, (1.30)

∇p̃e = γaTe∇ñe. (1.31)

We can close this system by assuming motionless ions (ñi = Ṽi = 0) and using the linearized

Gauss’s law (1.18)

∇ · Ẽ = −4πeñe. (1.32)
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Let us notice that equations (1.29)-(1.32) are a linear system of homogeneous differential

equations with constant coefficients. The homogeneity appears because zero order terms

are canceled out due to equilibrium; the linearity follows from linear approximation (i.e.,

higher order terms were neglected); coefficients are constant because equilibrium profiles

are homogeneous in space. Such equations can be readily solved with the Fourier method.

Equivalently, we can consider only one monochromatic mode with frequency ω and wave

vector k

x̃ =
(
ñe, Ṽe, ...

)
∼ e−iωt+ik·x. (1.33)

After some trivial algebra and using (1.33), the system (1.29)-(1.32) reduces to

(
ω2 − ω2

pe − γav2
Tek

2
)

Ẽ = 0. (1.34)

Therefore, the system has nontrivial solution (Ẽ 6= 0) only when frequencies and wave vectors

satisfy the equation

ω2 = ω2
pe + γav

2
Tek

2, (1.35)

which is called the Bohm-Gross dispersion relation and describes Langmuir waves. This wave

was first discovered by Irving Langmuir and Lewi Tonks in the 1920 [121].

The absence of nonlinearity makes linear wave modes independent from each other, so

each mode can be independently described with an algebraic dispersion equation, like (1.35).

Let us assume that we have some initial density profile ñe(t = 0,x), and we are looking for

further evolution in time of electron density ñe(t,x) according to the the dispersion equation

ω = ω(k). First, we expand the initial profile in the Fourier series

ñe(t = 0,x) =

∫
n̂e(k)eik·xd3k, (1.36)

and the time evolution follows

ñe(t,x) =

∫
n̂e(k)e−iω(k)t+ik·xd3k. (1.37)

Therefore, the algebraic dispersion equation is sufficient to describe the linear plasma dy-

namics.

Now we comment on how the equation (1.35) can be modified in the comprehensive

kinetic model. First of all, the dispersion relation which follows from the Vlasov equation is
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not algebraic and it involves a complicated transcendental plasma dispersion function [119].

In the long-wavelength limit (kλD � 1), the Bohm-Gross dispersion is recovered with the

adiabatic index γa = 3, as was first shown by Vlasov [128] and then by Bohm and Gross [14].

The rigorous analysis performed by Landau [82] showed that the frequency of a Langmuir

wave has a negative imaginary component γ < 0, in ω = ωr + iγ. In this case, the mode

e−iωt ∼ eγt damps in time exponentially. This effect is called Landau damping. In the long

wavelength limit, the Landau damping rate takes the form

γ =
2π2e2

mek2
ω
∂fe
∂v

∣∣∣∣
v=ω/k

. (1.38)

For wavelengths comparable to the Debye length kλD ∼ 1 and smaller, when the dispersion

equation (1.35), (1.38) becomes inaccurate, the Landau damping becomes very strong, so

that ω ∼ γ and Langmuir waves do not exist.

Imaginary solutions to dispersion equations play an important role in plasma dynamics.

In gases, collisions serve as the main mechanism to establish equilibrium. Indeed, if there

is a prominent non-equilibrium, like a density gradient, collisions may act to remove it.

In collisionless plasmas, collisions are too rare to provide such mechanism; however long-

range electromagnetic interactions can redistribute the energy. Usually, those interactions are

exhibited in the form of plasma waves. Therefore, in the presence of some free energy sources

(e.g., fast beams, density gradients, etc.), plasma waves are excited to drive a system into an

equilibrium state. Such wave excitations are called plasma instabilities and are an important

part of plasma dynamics which are studied in conjunction with plasma waves. In the linear

approximation, instabilities take the form of complex solutions to dispersion equations with

positive imaginary parts γ > 0. Similarly to the Landau damping example, in the case

of the positive imaginary part, the mode will exponentially grow in time e−iωt ∼ eγt. For

example, the Landau damping rate (1.38) can turn positive when the distribution function

has a positive slope (∂vf > 0). It is a common situation in non-equilibrium plasmas; e.g., in

the presence of a particle beam. This wave excitation is called Cherenkov radiation or inverse

Landau damping. The instabilities discussed above occur at every space point simultaneously,

so they are called absolute instabilities. There is another instability type — a convective

instability. It happens when the dispersion equation with fixed frequency and a direction of
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propagation k/k has imaginary wave number roots [119]. Therefore, a wave can grow while

propagating in space eikx ∼ eκx (κ = −Im(k)). Convective instabilities are not considered in

this thesis.

1.5.2 Nonlinear effects

The study of linear stability and plasma waves is crucial for understanding plasma dynamics,

But plasma instabilities make the wave energy grow exponentially in time and, at some

point, the linear approximation breaks. For this reason, in may cases plasma waves in

nature and in the laboratory are in a nonlinear state. This highlights the importance of

understanding nonlinear plasma dynamics. In general, we cannot solve nonlinear PDEs

analytically, and numerical solutions are also hard to obtain. The main difficulty is due to

the fact that solutions to nonlinear PDEs are usually turbulent and chaotic which means a

strong sensitivity to initial conditions (ICs) (solutions to chaotic PDEs corresponding to very

similar ICs may diverge exponentially in time8 as illustrated in Figure 1.3). Nevertheless,

nonlinear coherent structures coexist with turbulent fields and chaos. In other words, there

is an order in chaos, as was illustrated, for example, by famous Lorenz attractors [88].

Δy(0)=ε
Δy(t)~eɣt

y
1

y
2

Δy=y
1
-y

2

Figure 1.3: Illustration of chaotic PDE solution trajectories (y1 = y1(t), y2 = y2(t))
diverging in time from initial proximity (|y1(0)− y2(0)| ∼ 0).

8 This property of nonlinear PDEs inspired a famous quote by Edward Lorenz known as the “Butterfly
effect”: The flap of a butterfly’s wings in Brazil set off a tornado in Texas.
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In plasmas, nonlinear effects and turbulence9 produce numerous important phenomena

such as zonal flows [43] and anomalous resistivity [54], as well as trigger fundamental plasma

process such as wave-wave and wave-particle interactions. Therefore, understanding of non-

linear effects is vital in plasma physics. Here, we will outline some theoretical techniques

available to study nonlinear waves.

Three wave interactions and modulational instability

When wave amplitudes become sufficiently large, wave-wave interactions could become im-

portant. Moreover, nonlinear coupling between different modes leads to energy exchange

between them and may produce instabilities due to a nonlinear driving. Here we will con-

sider the simplest interaction between Langmuir and ion sound waves. We note, however,

that similar interactions can happen between many other plasma modes and it is one of the

most fundamental nonlinear plasma processes. Physically, it is very similar to parametric

resonance in mechanics, where a pendulum excites oscillations in a connected pendulum.

Mathematically, it is described with the Mathieu equation, where the frequency of a simple

pendulum equation, y′′ + ω2y = 0 is modulated by oscillations of the external pendulum

ω2 → ω2(1− ε cos(ω0t)). Wave interactions are more complicated, because instead of simply

oscillation frequencies, waves have both frequencies and wave vectors which are intercon-

nected through the dispersion relation ω = ω(k).

Because of a strict restriction on frequencies and wavenumbers, the resonance condition

from mechanics ω0 = 2ω cannot be satisfied. Instead, the condition can usually be satisfied

for three waves

ω0 = ω1 + ω2, (1.39)

as well as similar condition for wave numbers

k0 = k1 + k2. (1.40)

Therefore, in an elementary wave-wave interaction, at least three waves are involved.

9 By turbulence we mean a plasma state where numerous wave modes are excited and are interacting with
each other.
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Before we proceed, we first introduce an ion sound wave. The ion sound wave is a

fundamental electrostatic wave in plasmas without a magnetic field (or propagating along

magnetic field k ‖ B). It is similar to a normal sound wave in gases because the wave

propagates due to the compression of the ion density, but the restoring force involves the

electron pressure which is transferred to ions by the electric field. The wave exists only when

the ion temperature is much smaller than the electron temperature, because otherwise, strong

Landau damping will damp the wave. So in the limit Te � Ti and kλD � 1, when the wave

exists, one can obtain (analogous to the analysis done in Section 1.5.1)

(ω2 − k2c2
s)ñe = 0, (1.41)

where c2
s = Te/mi is the ion sound speed.

Low frequency ion sound waves act on Langmuir waves by modulation of the plasma

density. Therefore, by analogy with the Mathieu equation, the plasma density in equation

(1.34) is modulated (the plasma density is included in the plasma frequency ω2
pe ∼ ne =

n0(1 + ñe/n0)). We translate the equation (1.34) back into real space, including modulation

and considering only a one dimensional plasma slab Ẽ→ Ẽ

(
∂2
t − ω2

pe − 3v2
Te∂

2
x

)
Ẽ = ω2

peẼ
ñe
n0

, (1.42)

where ñe is a density perturbation caused by the ion sound wave and ωpe is the plasma

frequency without modulation.

As mentioned, in the ion sound wave, the restoring force that acts on ions is the electric

field from electrons. At the same time, electrons are in a quasi-static state pe+eφ = const for

the considered time scale. Therefore, the main effect of electron oscillations (i.e., Langmuir

wave) on the ion sound is a ponderomotive force, i.e., pe → pe+Ẽ
2/16π (the electron pressure

is implicitly present in equation (1.41) via the ion sound speed c2
sñe = p̃e/mi). Thus, equation

(1.41) gets modified to

(∂2
t − c2

s∂
2
x)ñe = ∂2

xẼ
2/(16πmi), (1.43)

where Ẽ is an electric field of the Langmuir wave. Equations (1.42), (1.43) describe the

nonlinear interactions between ion sound and Langmuir waves in the main order. The

strongest interaction happens when resonance conditions (1.39), (1.40) are satisfied, which
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can be seen from the Fourier transform of the quadratic nonlinearity, i.e., the convolution

∂2
t ñe ∼

∫
Ek′Ek′′δ(k − k′ − k′′)dk′dk′′.

In plasmas, Langmuir waves excite ion sound waves, so to quantify this energy transfer,

we consider a large pump Langmuir wave with amplitude E0, a wave number k0, and a

frequency ω0, which will excite an ion sound wave with an amplitude ñe, a wave number k,

and a frequency ω, as well as a Langmuir sideband with an amplitude E1, a wave number

k0 − k, and a frequency ω0 − ω. Thus, substituting the three wave structure

ñe ∼ e−iωt+ikx, E ∼ E0e
−iω0t+ik0x + E1e

−i(ω0−ω)t+i(k0−k)x, (1.44)

into our equations (1.42), (1.43), and considering the amplitude of the pump wave E0 fixed,

we find the imaginary shift of the ion sound wave frequency

γ2 =
E2

0/16π

n0Te
ωlωs/4, (1.45)

where ω2
l = ω2

pe + 3v2
Te
k2 and ωs = kcs. The expression of nonlinear growth rate confirms

the energy transfer from the Langmuir pump wave into the ion sound mode as well as into

Langmuir sideband.

Here the nonlinear fundamental process of wave-wave interaction was considered, where

only three waves were accounted for. This procedure is essentially the next step beyond

the linear approximation, where nonlinear interactions are taken into account perturbatively.

The next step beyond three-wave interactions is quasilinear theory, where instead of a fixed

pump wave, a large spectrum of weakly interacting waves is considered

E2
0 →

∑
k

E2
k . (1.46)

The evolution of the wave ensemble (1.46) within the quasilinear theory is described by

equations
dE2

k

dt
= 2γ(k)E2

k , (1.47)

where γ(k) is the linear growth rate. The resulting system is called weak turbulence approx-

imation for wave-wave interactions10.

10 Quasilinear theory can also be applied to wave-particle interaction, which is described with equations
similar to (1.38).
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Careful investigation of quasilinear theory based on wave-wave interactions shows [54]

that energy in a plasma system may be transferred into long wavelengths, constituting a

so-called inverse energy cascade. This is opposite to the well known Kolmogorov energy

cascade in fluids. For example, as was described above in this section, Langmuir waves with

wave number k0 were unstable and the energy was transferred into the ion sound waves with

smaller wave numbers k < k0. This is an inverse energy cascade mechanism. As we will see

later, the inverse cascade is an important plasma phenomenon which universally happens in

many plasma systems.

Numerical methods

Great insight into the behavior of nonlinear systems can be obtained from analytical tech-

niques. Unfortunately, pure theory is not enough to study nonlinear plasma dynamics and

numerical methods (NMs) should be employed in conjunction with theory. NMs are used

to get insights and advance the analytical theory of plasma dynamics. At the same time,

analytical tools are used to aid advancing NMs, sometimes just to use them and sometimes

to construct new methods.

The main idea behind NMs is to approximate continuous functions and operators with

their discrete counterparts. Once done, the PDE system can be translated into matrix

equations11 and solved numerically. In general, NMs in plasma physics can be roughly12

separated into two main categories: NMs for fluid models and NMs for kinetic models.

Fluid methods allow simulations of large systems for long times with high resolution since

they are computationally cheaper due to low dimensionality. They include only selected

physical effects, which can be an advantage or a disadvantage. The main difficulty comes

with the large variety of fluid models, each requiring a NM to suit the problem. Therefore,

it is difficult to develop and use NMs for fluids models, because one has to understand

how solutions of selected equations would behave. In this thesis, all fluid simulations were

performed with BOUT++ [45], which is a efficient highly parallelized framework for plasma

11 Not all NMs are represented as matrix equations, but in principle, they can be.
12 Those two categories can intersect forming hybrid methods, where kinetic method solves one part of the

problem and a fluid method another.
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fluid simulations in 3D curvilinear coordinates.

Kinetic methods are usually focused on solving the kinetic equation; e.g., Vlasov-Maxwell

equations. Therefore, they are usually computationally more expensive and many important

physical effects are included. There are various ways to solve the VM system numerically; one

example is the Eulerian-Vlasov methods [30, 118, 50], where phase space is discretized using

a Eulerian computational grid. Another approach is the class of spectral methods [6, 110, 64,

108]. In spectral methods, the distribution function is expanded in a series of basis functions

similar to the fluid expansion based on velocity moments. The oldest, most popular, and well-

established technique to study the kinetics of plasmas is the particle-in-cell (PIC) method.

It was first used in Los Alamos National Laboratory in 1955 [60] to study hydrodynamics of

fluids. Approximately five years later, particle methods [19, 37] were started to be applied in

plasma physics. One of the first prominent PIC successes, which led to the wide adoption,

was the discovery of previously predicted Landau damping [82] in PIC simulations before it

was discovered experimentally [38].

Today PIC is a standard numerical method in plasma physics and it is widely adopted in

other branches of physics such as fluid dynamics, astrophysics, etc. A thorough description

of PIC can be found in texts [12, 62, 127]. In recent years, the advances of high-performance

computing have boosted the progress in many scientific areas including kinetic plasma sim-

ulations with PIC. The optimal parallel implementations of PIC have been investigated and

developed for CPU based supercomputer environments [86, 42, 27] as well as for modern

computer architectures such as graphics processing units (GPU) [39, 27, 40].

1.6 Drift waves in fully magnetized plasma

The density gradient is an intrinsic property of laboratory plasmas. A fundamental wave

supported in fully magnetized plasmas with a gradient in density is a drift wave. A compre-

hensive review of drift waves in plasmas can be found in the Ref. [65]. Here we illustrate the

basic drift wave propagation mechanism.

Let us imagine an ion density perturbation δn localized in a magnetized plasma. Then,

a local electric field E produced by this charge will cause plasma around the perturbation
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to drift with velocity VE ∼ E × B perpendicular to the magnetic field. In homogeneous

plasmas, the whole system will rotate with zero density flux. In the presence of a density

gradient, however, the total density flux Γn will be in the direction of the diamagnetic drift

Γn ∼ ∇n×B and the perturbation δn will propagate in this direction. This is a basic drift

wave mechanism.

Figure 1.4: Geometry of a drift wave propagation in magnetized plasmas.

Now we quantify this process. We will use the geometry shown in Figure 1.4 with the

magnetic field along the z axis and the density decaying in the x direction. First, we consider

cold ions 0 ∼ Ti � Te, and a strong magnetic field ωcit � 1, where t is the considered time

scale and ωci = eB/mic is the ion cyclotron frequency. In this limit, it follows from Euler’s

equation (1.26), that ions would respond to an electric field perturbation Ẽ, with the electric
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drift

Ṽi = VE = c
Ẽ×B

B2
= −c∇φ̃×B

B2
, (1.48)

where B is a stationary magnetic field, and it has been taken into account that, in a strong

magnetic field, the electrostatic approximation is valid, so the electric field can be expressed

via the electrostatic potential Ẽ = −∇φ̃. Let us notice that in a uniform magnetic field, this

drift is incompressible; i.e., ∇ ·VE = 0. Therefore, the mass conservation equation for ions

will take the form
∂ni
∂t

+ VE · ∇ni = 0. (1.49)

Expanding density around its equilibrium value ni = n0(x) + ñi, neglecting nonlinear terms,

using the geometry defined in Figure 1.4, and considering a monochromatic mode∼ e−iωt+ik·x,

we get

ωñi +
cn0

BLn
kyφ̃ = 0, (1.50)

where ω is a perturbation frequency, ky is a perturbation wave number in the y direction,

and L−1
n = ∂xn0/n0 is the density gradient scale length.

For electrons, we use the Boltzmann approximation

ñe = n0
eφ̃

Te
, (1.51)

which comes from the projection of the Euler equation (1.26) for electrons onto the magnetic

field direction, when the electron inertia (me ∼ 0) is neglected (i.e., ω � kzvTe and the

electrons are in the quasi-stationary state ∂zpe = ene∂zφ̃).

Closing the system of equations with the quasi-neutrality condition ne ≈ ni, we finally

get the dispersion equation for drift waves

ω = vdky, (1.52)

with the drift wave velocity

vd = − cTe
eBLn

. (1.53)

Now we can see that drift waves propagate in the y direction according to the geometry of

Figure 1.4 (Ln < 0).
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1.6.1 Hasegawa-Mima equation

We will introduce a reduced fluid model for the nonlinear interaction of drift waves, called

the Hasegawa-Mima equation which is a natural next step after the linear model. It was first

derived by Akira Hasegawa and Kunioki Mima to describe turbulence in tokamaks [61]. The

geometry shown in Figure 1.4 and ordering from previous section are

ñi
n0

≈ ñe
n0

≈ eφ̃

Te
∼ ω

ωci
∼ 1

kyLn
� 1. (1.54)

Using this ordering we can further expand the Euler equation (1.26) for ions beyond simple

E×B drift (1.48). Hence,

Ṽi = VE + Vp, (1.55)

where the notation for E×B drift VE and polarization drift Vp were introduced

VE = −c∇φ̃×B

B2
, Vp = − 1

ωciB

(
∂

∂t
+ VE · ∇

)
∇φ̃. (1.56)

Notice that the polarization drift has two parts: an inertial part due to the time derivative

and an advectional part due to the Lagrangian advection. The latter serves as the main

nonlinear mechanism of wave-wave interactions in drift waves.

Plugging the ion velocity expression (1.55) into the ion mass conservation equation, in

one order above the linear approximation, we get

(
1− ρ2

s∇2
⊥
) ∂
∂t

eφ̃

Te
+ vd

∂

∂y

eφ̃

Te
− ρscs

{
eφ̃

Te
, ρ2

s∇2
⊥
eφ̃

Te

}
= 0, (1.57)

where ρs = cs/ωci is called the ion sound Larmor radius which is the ion Larmor radius

computed with the electron temperature, ∇⊥ is a gradient perpendicular to the magnetic

field, {f, g} = ∂xf∂yg − ∂yf∂xg is the Poisson bracket. Here, we note that the inertial part

of the polarization drift produces a linear term proportional to ∇2
⊥∂tφ̃ and the Lagrangian

advection adds a Poisson bracket term.

Let us note that the dynamics described by the Hasegawa-Mima equation is pseudo two-

dimensional. Indeed, all spatial derivatives are perpendicular to the magnetic field, because

the strong magnetic field separates time and spatial scales along and perpendicular to it.

Therefore, we can consider only two dimensional dynamics φ̃ = φ̃(x, y). However, we should
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also note that fast electron dynamics along magnetic field (ω � kzvTe) is important, as it

provides a Boltzmann equilibrium for the electron density perturbation (1.51).

1.6.2 Zonal flow

The Hasegawa-Mima equation (1.57) is a minimal reduced fluid model for drift wave nonlinear

interactions which lead to stochastic solutions and turbulence [65]. It is not known how to

solve the Hasegawa-Mima equation, but one can apply perturbative techniques to investigate

regimes of weak nonlinearity, similar to what was shown in Section 1.5.2. This analysis will be

conducted in Chapter 2. Here we will outline a qualitative picture of the nonlinear dynamics.

Similar to the parametric instability (also called modulational instability) discussed in

Section 1.5.2, where energy is transferred to large-scale ion sound waves from small-scale

Langmuir waves, Hasegawa-Mima describes a modulational instability where energy is trans-

ferred from small-scale drift waves to a large scale zonal flow.

Figure 1.5: Schematic representation of the inverse energy cascade in drift waves/zonal
flow system.

Unlike the ion sound wave, which is a linear plasma eigen-mode, zonal flows are a nonlin-

ear self-organized structure which emerges from turbulence and does not exist in the linear

regime. The schematic representation of energy transfer into the larger scales (inverse energy
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cascade) is shown in Figure 1.5. This happens because the parametric instability excites the

mode via nonlinear forcing (with frequency Ω and wave number q) which do not exist in the

linear limit

∂tφq ∼ φ±kφ∓k+q, (1.58)

where φq is the amplitude of the zonal flow, and φ±k, φ∓k+q are drift wave and sideband

amplitudes, respectively. Analysis similar to that in Section 1.5.2 shows that the nonlinear

effects in the Hasegawa-Mima equation shift the zonal flow frequency by

Ω2

ω2
ci

= −2k4q4ρ8
s

∣∣∣∣eφkTe
∣∣∣∣2 , (1.59)

making it unstable (Im(Ω) > 0) in the presence of drift waves.

Zonal flows cannot grow indefinitely, and must saturate at some amplitude. For example,

the zonal flow growth can be limited by the drift wave energy, so it will saturate when

the pump wave (drift wave) is exhausted. However, as we will show in Chapter 2, the

saturation may happen before the drift wave energy is exhausted due to nonlinear zonal flow

self-interaction.

Finally, we note that the study of zonal flows have numerous practical applications [43].

First, zonal flows occur in tokamaks [65], where they significantly reduce radial transport and

improve plasma confinement. Furthermore, the term zonal flow originates from meteorology,

where it refers to an atmospheric circulation in a predominantly latitudinal direction. This

phenomenon occurs in all rotating fluids (e.g., Earth atmosphere) and the zonal flow can be

described with the same Hasegawa-Mima equation, which was discovered independently in the

geophysics community, and is called Charney–Obukhov equations [26]. In the atmosphere,

zonal flows appear from Rossby wave turbulence which governs our weather, and the role of

the magnetic field is played by the Coriolis force.

1.7 Drift waves, instabilities and transport in partially

magnetized plasma

Partially magnetized plasmas (or Hall plasmas) have a number of important applications

such as Hall thrusters for electric propulsion, magnetrons and some regions of the ionosphere.
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The crucial feature of these applications is that the ion Larmor radius ρi is much larger than

the length scale of the interest L, which could be device size and/or the wavelength of the

perturbations. As a result, ions do not feel the magnetic field and can be freely accelerated

by the electric field, e.g., as in the electric propulsion systems. The electron Larmor radius is

much smaller, so the electrons gyrate around the magnetic field lines and are well confined.

This confinement is not ideal and electrons do move in the direction of the external electric

field when some additional processes (collisions and turbulence) are included.

Electron collisions with neutrals represent a classical mechanism for the electron current

across the magnetic field (along the direction of the external electric field). Numerous exper-

iments [99, 69, 93] and numerical simulations [113, 2, 7, 3, 10, 73] of practical devices with

partially magnetized plasmas, however, indicate that the electron current is orders of mag-

nitude larger than the collisional transport predictions; this current is called the anomalous

current.

In application to Hall thrusters, there are two main mechanisms proposed to explain

the anomalously high electron cross-field current: (i) electron-wall collisions [17, 101], or

so-called near-wall conductivity, and (ii) turbulence driven by micro-instabilities [69]. The

near-wall conductivity mechanism is based on the observation that the mean free path of

particles is much smaller than the effective thruster size. Thus, effective collision frequency

due to interaction with the wall is larger than the classical collision frequency; this increases

transport coefficients and axial current. It has been pointed out, however, that the near-wall

conductivity alone is not able to explain fully the anomalous current [72]. Moreover, the

near-wall conductivity is not operating outside of the thruster (i.e., no walls) where the level

of the current is still high (anomalous).

In this thesis, we consider the wave processes that may result in the turbulent transport

in partially magnetized plasmas and we start by describing a linear theory of density gradient

driven modes (similar to drift waves).

Magnetically confined electrons are subject to the E × B drift (VE) and thus their dy-

namics is described by the equation

∂ñe
∂t

+ VE · ∇n0 = 0, (1.60)
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which gives (similar to equation for ions (1.50) in drift wave dynamics)

ωñe −
cn0

BLn
kyφ̃ = 0. (1.61)

Ions are not magnetized and follow the inertial (ballistic response) determined by the equa-

tions

∂ñi
∂t

+ n0∇ · Ṽi = 0, (1.62)

∂Ṽi

∂t
= − e

mi

∇φ̃, (1.63)

which gives
ñi
n0

=
k2c2

s

ω2

eφ̃

Te
. (1.64)

Using the quasi-neutrality, one obtains the dispersion relation for “anti-drift waves” [52]

ω =
k2c2

s

kyvd
, (1.65)

with k = |k|. Here, we call these waves the Hall drift waves. These waves may become

unstable in plasmas with external electric field E0 where

(k ·B×∇n0) (k ·B× E0) > 0, (1.66)

and it is called the Simon-Hoh instability [115]. Simon-Hoh type instability is a building

block of turbulence in E×B Hall plasma devices.

1.7.1 Reduced nonlinear model for dynamics of partially magne-

tized plasmas

In this section, we describe the advanced nonlinear fluid model that we will be using to

describe wave turbulence and transport in partially magnetized plasmas. In addition to the

anti-drift mode described by the equation (1.65), our model also includes the lower hybrid

and ion sound modes as well as the effects of the electron Larmor radius and collisions. The

model was first proposed in Ref [115].
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First of all, we use standard fluid equations with the assumption that ions are not mag-

netized. Hence,

∂tni +∇ · (niVi) = 0, (1.67)

∂tVi +∇
(

V2
i

2

)
−Vi × (∇×Vi) = − e

mi

∇φ, (1.68)

where ni is the ion density, Vi is the ion velocity, φ is the electrostatic potential, and the

Reynolds stress was expanded with the well-known vector identity Vi · ∇Vi = ∇(V2
i /2) −

Vi× (∇×Vi). Here, the ion temperature, and thus pressure effects, were neglected because

the dominant part of ion energy is in their axial velocity. Then, we expand our equations

around the equilibrium — ions have equilibrium velocity Vi0, and there is a constant electric

field E0,

ni(t, r) = n0(r) + ñi(t, r), (1.69)

Vi(t, r) = Vi0 + Ṽi(t, r), (1.70)

Ṽi(t, r) = −∇χ̃(t, r), (1.71)

∇φ = −E0 +∇φ̃, (1.72)

here we neglected the divergence-free component of the ion velocity, as ions are assumed to

have a ballistic response to the predominantly axial electric field. Thus taking the divergence

of the Euler equation finally gives

(∂t + Vi0 · ∇) ñi − n0∇2χ̃−∇n0 · ∇χ̃−∇ñi · ∇χ̃− ñi∇2χ̃ = 0, (1.73)

(∂t + Vi0 · ∇)∇2χ̃ = ∇2

(
1

2
(∇χ̃)2 +

e

mi

φ̃

)
, (1.74)

where the Vi0 · ∇n0 term was neglected, because of the assumption that the equilibrium is

supported by external forces (external forces were not included in (1.67), (1.68)).

In order to derive the evolution equations for electrons, we employ the assumption that

they are strongly magnetized and consider time scales much slower than electrons gyro motion

tωce � 1. We start with the Euler equation for electrons (1.26)

∂tVe + (Ve · ∇)Ve =
e

me

∇φ− ωceVe × b− 1

neme

∇pe −
1

neme

∇ ·Πe − νVe, (1.75)
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where b = B/B is a unit vector in the direction of the magnetic field, and the friction force

−νVe due to collisions with neutrals was added with an effective collision frequency ν. We

can now proceed in a similar fashion as in the derivation of the Hasegawa-Mima equation

(1.57); in other words, we expand the Euler equation for electrons (instead of the Euler

equation for ions in Hasegawa-Mima) in a series of 1/ωce

Ve = VE + Vd + VI + Vν + VΠ, (1.76)

where

VE = vTeρeb×∇
eφ

Te
, (1.77)

Vd = − 1

nemeωce
b×∇pe, (1.78)

VI = − 1

ωce
b× (∂t(VE + Vd) + ((VE + Vd) · ∇)(VE + Vd)) , (1.79)

Vν = − ν

ωce
b× (VE + Vd), (1.80)

VΠ = − 1

nemeωce
b×∇ ·Πe. (1.81)

Here we note that this expansion is valid only for electron dynamics perpendicular to the

magnetic field (notice the b× term in all expressions for the velocities). The parallel dynamics

is neglected in this model and will be considered in future work.

To close the system, we use the gyro viscous cancellation as our closure [16]

neme(Vd · ∇)(VE + Vd) +∇ ·Πe = 0. (1.82)

Finally, we substitute the electron velocity expansion into the continuity equation

∂tne +∇ · (neVe) = 0. (1.83)

After some algebraic manipulations and expanding around the equilibrium,

ne(t, r) = n0(x) + ñe(t, r), (1.84)

∇φ = −E0 +∇φ̃, (1.85)

we finally get, to main order (see details in [115]),

∂tη̃ + Ve0 · ∇η̃ + ν(η̃ − ñe) + vTeρe

(
b×∇eφ̃

Te

)
· ∇n0 + vTeρe

{
eφ̃

Te
, η̃

}
= 0, (1.86)
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with generalized vorticity defined as

η̃ = ñe + ρ2
e

(
n0∇2 eφ̃

Te
−∇2ñe

)
, (1.87)

where the equilibrium electron velocity is Ve0 = cE0 × b/B, and the coordinate system

invariant definition of the Poisson bracket is {f, g} = (b×∇f) · ∇g.

Equations (1.73), (1.74), (1.86) together with quasi-neutrality condition ne ≈ ni form a

reduced fluid model, which we will use to investigate waves in Hall thruster plasmas. The

structure of equation (1.86) is very similar to the Hasegawa-Mima equation (1.57). Indeed,

the fourth term in the left-hand side of the equation (1.86) is analogous to the drift wave

term in Hasegawa-Mima equation, and it also produces waves analogous to drift waves in

fully magnetized plasmas; we call them Hall drift waves. The first and last terms in (1.86)

are also present in the Hasegawa-Mima equation, and they come from the polarization drift.

A new second term in (1.86) is just the equilibrium electron E×B drift and the third term

comes from the friction force due to electron collisions with neutrals.

1.8 Langmuir wave turbulence

We move to waves and turbulence in the comprehensive kinetic model; i.e., the Vlasov equa-

tion (1.11). The analytical theory for the Vlasov equation is complicated and is out of the

scope of this text. The standard numerical approach, the PIC method, is unfortunately ill-

suited for wave/turbulence problems, since it requires a high resolution and the PIC method

is very noisy. Indeed, it can be shown with the aid of the fluctuation-dissipation theorem

[79, 84] that the particle noise decreases as the inverse square root of macro-particle number

(∼ 1/
√
Np). A macro-particle is a computational particle that represents many real parti-

cles and if you need to increase a resolution by one order, you need one hundred times more

particles, which usually means one hundred times more computational time and space. This

is unacceptable for many problems; e.g., plasma turbulence. The good solution is to use

spectral methods [6, 110, 64, 108], as they are famous for their exponential convergence. In

collisionless plasmas, however, the PDF can be highly deformed, thus causing slow conver-

gence of spectral methods. This problem is absent in PIC codes because all particle methods

33



can easily represent a very complicated PDF. In Chapter 7, we will investigate the possibility

of combining spectral and PIC methods to improve convergence of the spectral method and

the accuracy of PIC. For this matter, we will use the simplest plasma turbulence problem,

Langmuir turbulence, which happens when an electron beam interacts with plasmas. Here

we will briefly outline this classical problem. For a more thorough description, refer to the

references [125, 70].

Figure 1.6: Particle distribution function of a system where a beam penetrates plasma.

When a low-density beam penetrates a plasma, the distribution function will take on a

form similar to that shown in Figure 1.6. This PDF has a positive slope (∂vf > 0) which will

cause instability, due to inverse Landau damping (i.e., the Landau damping rate (1.38) will

become positive), which excites Langmuir waves. This is also called Cherenkov radiation.

The physical mechanism of this instability can be explained as follows. In the reference

frame moving with the wave, the particle sees the wave as a potential well (φ ∼ sinx). If

the particle moves with a speed close to the wave speed vparticle ≈ vwave, it will be trapped

in this well. If it is slightly faster than the wave, it will reflect from the wave potential and

slow down. The residual energy will go into the wave itself. If on the contrary, the particle is

slightly slower than the wave, it will reflect and accelerate, removing energy from the wave.
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Therefore, if there are more particles slower than the wave (negative slope, ∂vf(vwave) < 0),

the wave will damp — Landau damping. If there are more fast particles, the wave will be

excited — Cherenkov radiation.

Thus, when there is a particle beam, plasmas are unstable and Langmuir waves will be

excited. Waves will grow taking energy from the beam, and thus disrupting it. Quasilinear

theory shows that particles will diffuse in velocity space removing the instability source (i.e.,

flattening the positive slope). Finally, the saturation stage will be reached when the beam

is fully deformed into a plateau in velocity space. This is a typical situation in plasmas with

beams and is a challenging problem for both pure PIC and spectral methods. For PIC, the

challenge comes with low beam densities, as instability growth rate decreases with beam

density γ ∼ nBeam/nPlasma, therefore requiring higher resolution. For the spectral method,

it may be difficult to converge to the plateau type distribution function. In Chapter 7, we

propose a new hybrid method, which overcomes those difficulties.
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Chapter 2

Nonlinear damping of zonal flows

2.1 Preface

In this chapter, we study nonlinear dynamics of drift waves and zonal flows with the minimal

reduced fluid model, the Hasegawa-Mima equation (1.57), as introduced in Section 1.6.1. The

modulational instability theory is extended to higher-order which allows us to quantify the

formation and saturation mechanisms of zonal flows. The material in this chapter is based

on a paper published in Plasma Physics Reports [77].

2.2 Abstract

The modulational instability theory for the generation of large scale (zonal) modes by drift

modes has been extended to the second order including the effects of finite amplitude zonal

flows, φq. The nonlinear (second order) sidebands are included in the perturbative expansion

to derive the nonlinear equation for the evolution of φq. It is shown that effects of finite φq

reduce the growth rate of zonal flow with a possibility of oscillatory regimes at a later stage.

2.3 Introduction

Drift waves (DW) and instabilities are common for many confined plasmas. Nonlinear in-

teractions of drift waves have been studied in various settings in attempts to understand

anomalous transport in controlled fusion systems such as tokamaks. The nonlinear Hasegawa-

Mima equation is often used as a simplest model for drift waves and generation of large scale

structures such as zonal flows (ZF). Similar phenomena occurs in geostrophic fluids (shallow
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water on a rotating sphere) such as the atmosphere and ocean, where the analogous Charney-

Obukhov equation is employed to describe Rossby waves. Zonal flow structures have been a

topic of intense interest due to their role in controlling the drift turbulence by taking energy

away from small scale fluctuations as well by a direct mechanism via the reduction of the

radial correlation length [22].

The basic dynamics in drift wave - zonal flow systems can be characterized by a predator-

prey model [43, 68], where drift waves are the pray while zonal flow is the predator who

“feeds” on drift waves. In this model, the evolution of zonal flow energy is described by the

equation,
∂WZF

∂t
= κWDWWZF − γdampWZF − γNL(WZF )WZF , (2.1)

where WZF , WDW - are zonal flow and drift wave energy, respectively.

The first term on the right side of Eq. (2.1) describes nonlinear coupling between drift

wave and zonal flow. This coupling is manifested as a zonal flow instability which has a growth

rate proportional to the drift wave intensity, γ = κWDW . The modulational instability theory

of drift waves is the simplest model that describes zonal flow growth [117, 116, 90, 55, 29,

58, 5, 4]. Such analytical calculations are generally consistent with the results of direct

numerical simulations [96, 90, 34]. The second term in Eq. (2.1) describes the linear ZF

damping rate, e.g. collisional or neoclassical nature [43]. The last term in Eq. (2.1) describes

nonlinear damping of ZF. In the simplest case, it can be represented in the form γNL = αWZF

where α is the so-called Landau constant [83]. Nonlinear damping may suppress the zonal

flow instability. Eq. (2.1) gives a simple estimate for the zonal flow energy (amplitude) at

saturation

Wmax
ZF ∼

γ

α
. (2.2)

Several different mechanisms resulting in nonlinear damping of zonal flow are possible (e.g.

effect of broad drift wave spectra, secondary instabilities of zonal flows, interaction with mean

flow [122] (MF), etc. [43]). In this work we focus on generalizing modulation instability theory

for the case of finite ZF amplitude by nonlinear modification of Reynolds stress tensor drive.

Generally speaking this effect is a nonlinear expansion of the coupling with drift waves (first

term in Eq. (2.1))

κ = κ0 + κ1WZF +O(W 2
ZF ). (2.3)
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Similar studies were conducted by Mendonca [94] using the wave kinetic equation. Here we

employ the direct perturbation theory for several coupled modes.

The physical nature of considered nonlinear damping is ZF interaction with itself. In some

sense (mathematically) our ZF-ZF interaction is similar to stabilization via ZF-MF inter-

action considered by K. Uzawa et al [122]. K. Uzawa concluded that taking into account

leading stabilization term is sufficient, and one does not need to include higher side-bands.

In our system the leading stabilizing effect is due to self ZF interaction. Moreover, in real

systems, the importance of ZF-MF interaction against ZF-ZF interaction would be determent

by ZF/MF energy balance.

The paper is organized as follows. In Sec. 2.4 we introduce simple modulation instability

theory of ZF/DW to derive the linear growth rate (γ = κWDW ) in Eq. (2.1). In Sec. 2.5

we extend the results of Sec. 2.4 for the case of finite ZF amplitude by taking into account

the second order sidebands. This allows us to estimate saturation amplitude Eq. (2.2) and

nonlinear damping coefficient (α = γNL/WZF ). We provide a summary of the manuscript

results in Sec. 2.6.

2.4 Drift waves-zonal flows interactions in Hasegawa-Mima

model

To derive the coupling coefficient (κ0 in Eq. (2.3)) from modulational instability theory we

use Fourier decomposition of the standard Hasegawa-Mima equation [61]:

Dk(ω)φk(ω) +
∑

k=k′+k′′

Bk′,k′′φk′(ω
′)φk′′(ω

′′) = 0, (2.4a)

Dk(ω) = −iω(1 + ρ2
sk

2) + iV∗ · k, (2.4b)

Bk′,k′′ =
cρ2

s

B0

(ẑ · k′ × k′′)(k′2 − k′′2), (2.4c)

where φk - Fourier transform of electrostatic potential corresponding to ei(k·x−ωt) mode (here

and later ω - dependence is omitted for convenience), V∗ = V∗ŷ - electron diamagnetic drift

velocity, ρs - gyroradius, c - speed of light, B0 - stationary magnetic field.

The nonlinear part of Eq. (2.4) is a sum of 3-wave interactions. The linear stage of zonal
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flow instability is obtained by truncating nonlinear part of Eq. (2.4) and including only the

primary drift wave (ω,k) mode, the zonal flow (Ω,q) mode and two sidebands (Ω±ω,q±k)

modes. The fact that electrostatic potential is observable physical quantity implies this

constrain which we will use later

φ∗j = φ−j, k−j = −kj.

Then, the electrostatic potential is represented in the form

φ(t, r) = (Φω
k + C. C.) + ΦΩ

q + ΦΩ+ω
q+k + ΦΩ−ω

q−k , (2.5)

where

Φω
k = φke

−iωt+ik·r.

Basically the truncation (2.5) is a first-order perturbation expansion with ZF amplitude as

a small parameter (φq � φk). This is true because side-bands amplitude is proportional to

the ZF amplitude or more generally |φnq+k| ∼ |φq|n. To obtain the dispersion equation for

the ZF in this limit, we substitute the truncated form of the electrostatic potential (2.5) in

the equation (2.4). Thus, evolution equations for φq and φq±k

Dqφq +Bk,q−kφkφq−k +B−k,q+kφ−kφq+k = 0, (2.6)

Dq±kφq±k +B±k,qφ±kφq = 0, (2.7)

where

Dq = −iΩ(1 + ρ2
sq

2),

Dq±k = −i
[
(Ω± ω)−V∗ · (q± k) + ρ2

s(Ω± ω)(q± k)2
]
,

B±k,q = ±cρ
2
s

B0

ẑ · k× q(k2 − q2).

In the leading order, the primary wave amplitude does not change, giving the linear dispersion

equation for drift wave (Dk = 0)

ω =
V∗ky

1 + ρ2
sk

2
. (2.8)

Eliminating sidebands amplitudes (φq±k) from Eqs. (2.6,2.7), we have

Dq = |φk|2
[
Bk,q−kB−k,q

Dq−k
+
B−k,q+kBk,q

Dq+k

]
, (2.9)
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where

B±k,q∓k =
cρ2

s

B0

ẑ · k× q(2q · k∓ q2).

The explicit form of the dispersion equation can be written as

[Ω (1 +Q)− qVgx]2 =

[
ωQ− Ω

ω
qVgx

]2

− 2ω2
ci

∣∣∣∣eφkTe
∣∣∣∣2 k2

yq
4(k2 − q2)ρ8

sK, (2.10)

where

Vgx = − 2ωρ2
skx

1 + ρ2
sk

2
, Q =

q2ρ2
s

1 + k2ρ2
s

, K =
1 + ρ2

sk
2 + ρ2

sq
2 − 4ρ2

sk
2
x

(1 + ρ2
sq

2)(1 + ρ2
sk

2)2
,

and ωci = eB0/mic - ion gyrofrequency, mi - ion mass, e - electron charge, Te - electron

temperature.

In the long wavelength limit (kρs � 1 and qρs � 1) and when q · k = 0 the solution to Eq.

(2.10) have a simple form

Ω2 = q4ρ4
s

(
ω2 − 2

∣∣∣∣eφkTe
∣∣∣∣2 k4c2

sρ
2
s

)
. (2.11)

This equation shows that the zonal flow instability occurs for a sufficiently large amplitude

of the primary drift wave (see Malkov and others [89, 5, 90])∣∣∣∣eφkTe
∣∣∣∣ > 1

kLn
, (2.12)

where Ln is a scale of density change (Ln = n0/|∇n0| ∼ csρs/V∗), and cs = Te/mi - ion

sound velocity. Note that the amplitude threshold in Eq. (2.11) is somewhat equivalent to

the linear damping term γdamp in Eq. (2.1). It is interesting that the threshold amplitude

of the unstable primary wave is of the order of the mixing length amplitude.

2.5 Effects of finite amplitude of zonal flow

The leading order of perturbation expansion of ZF frequency (growth rate) Eq. (2.11) does

not depend on the ZF amplitude. In this section we derive this dependence with second-order

perturbation expansion. The second-order term is a nonlinear self damping of ZF (the third

term in Eq. (2.1)). To do so, we are extending the model from Sec. 2.4 by including second
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order sidebands (±2q± k)

φ(t, r) =(Φω
k + C. C.) + (ΦΩ

q + C. C.)

+(ΦΩ+ω
q+k + C. C.) + (ΦΩ−ω

q−k + C. C.) + Φ2Ω+ω
2q+k + Φ2Ω−ω

2q−k . (2.13)

It is worth noting that the main assumption (φq � φk) still holds as we omitted higher order

sidebands (e.g. ±3q±k). Repeating the procedure from Sec. 2.4, the dispersion equation is

obtained as

Dq = |φk|2
[
Bk,q−kB−k,q

Dq−k
+
B−k,q+kBk,q

Dq+k

]
+

+|φq|2|φk|2
[
B−q+k,2q−kBk,−qBq−k,qBq,−k

D−q+kD2q−kDq−k
+
B−q−k,2q+kB−k,−qBq+k,qBq,k

D−q−kD2q+kDq+k

]
, (2.14)

where

D2q+k = Dq+k(Ω→ 2Ω,q→ 2q),

B±k,−q = −B±k,q = ∓cρ
2
s

B0

ẑ · k× q(k2 − q2),

Bq,q±k =
cρ2

s

B0

ẑ · k× q(2q · k± k2),

B−q±k,2q∓k =
cρ2

s

B0

ẑ · k× q(2q · k∓ 3q2).

The Eq. (2.14) differs from simplified version Eq. (2.9) by the additional part which is

quadratic in respect to ZF amplitude (|φq|). The last bracket of Eq. (2.14) resembles “α”

Landau constant which implies that the sign of the term in the last bracket governs saturation

while the ratio of the terms in the first and second brackets defines the saturation amplitude.

The explicit dispersion equation is cumbersome in this limit, so we leave only main terms in

Ω,q - Taylor series. This is justified because zonal flow does not exist in linear limit (Ωlin =

0) and is induced only via nonlinear interactions with drift waves, so Ω� ω and q � k.

Ω =
2ω2

ciΩ
∣∣∣ eφkTe ∣∣∣2 q4k2

y(k
2 − q2)ρ8

sK(
ωQ− Ω

ω
qVgx

)2 − (Ω(1 +Q)− qVgx)2
+
ω4
ci

∣∣∣ eφkTe ∣∣∣2 ∣∣∣ eφqTe ∣∣∣2 q6k4
yk

4ρ14
s [ΩM − qVgxL]

(Ω− qVgx)4
,

(2.15)

where

M =
(16k2

xk
2ρ4
s − ρ2

s(1 + ρ2
sk

2)(3k2 + 4k2
x))

(1 + ρ2
sq

2)(1 + ρ2
sk

2)4
, L =

ρ2
s(k

2 − 4k2
x)

(1 + ρ2
sq

2)(1 + ρ2
sk

2)3
.
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As before, we consider the long wavelength limit and the case when ZF propagate perpen-

dicular to the primary wave (q · k = 0). In this situation, the solution of (2.15) simplifies

significantly. Considering the primary wave above the threshold (Eq. 2.11), one writes:

(Ω±/ωci)
2 = −

∣∣∣∣eφkTe
∣∣∣∣2 k4q4ρ8

s ±

√∣∣∣∣eφkTe
∣∣∣∣4 k8q8ρ16

s − 3

∣∣∣∣eφqTe
∣∣∣∣2 ∣∣∣∣eφkTe

∣∣∣∣2 k10q6ρ16
s . (2.16)

The solution with negative sign (corresponding to the ZF instability) can be expanded giving

(Ω−/ωci)
2 ' −2

∣∣∣∣eφkTe
∣∣∣∣2 k4q4ρ8

s +
3

2

∣∣∣∣eφqTe
∣∣∣∣2 k6q2ρ8

s. (2.17)

This equation shows that finite amplitude φq results in stabilization of ZF instability. The

amplitude of stabilized ZF is of the order∣∣∣∣eφqTe
∣∣∣∣
max

∼ q

k

∣∣∣∣eφkTe
∣∣∣∣ . (2.18)

Strictly speaking, this value is at the limit of applicability of the perturbation expansion

(φq � φk). However taking into account that q � k, the Eq. (2.18) yields the main

assumption φq � φk. Thus, one can expect that the above estimate is still valid as an

order of magnitude estimate. In Eq. (2.18) regime, ZF dynamics becomes oscillatory (with

<(Ω) 6= 0) which is common in numerical ZF simulations.

It was pointed out by Manfredi [90] that at some point the amplitude of DW is starting to

decrease resulting in saturation of ZF growth. It is possible to estimate ZF amplitude using

these considerations (see J. Anderson et al [5]). However this effect will be important when

the amplitude of ZF is comparable to DW amplitude (|φq| ∼ |φk|) and is not considered in

our paper. Simulation results that J. Anderson et al [5] used to support their estimate, that

φqγq grows as φ2
k – agrees with our results because γq growth as φk, so φq grows as φk as in

Eq. (2.18).

2.6 Summary

In this article, we discussed the evolution of zonal flow in the framework of the drift wave

turbulence model described by Hasegawa-Mima equation. Within the qualitative picture of

the predator-prey model, Eq. (2.1), zonal flow dynamics is governed by the competition of
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the zonal instability and nonlinear saturation. The focus of our work was on the derivation

of nonlinear damping term via direct perturbation theory.

The dispersion of drift waves results in the amplitude threshold in Eq. (2.11) effectively

equivalent to the linear damping term in zonal flow model equation (2.1). The nonlinear

damping of zonal flow (the last term in Eq. (2.1)) was obtained by expanding the coupling

to higher order, Eq. (2.3), by including effects of finite amplitude of ZF. Nonlinear dispersion

equation for zonal flow instability (2.15) was derived. It is shown that in the long wavelength

limit, the nonlinear effects stabilize zonal flow growth. The estimate for the maximum ZF

amplitude was obtained (2.18).

It is understood that ZF is important in the Dimits shift [44] formation process. Thus,

one can envisage that the stabilization mechanism due to a finite amplitude of ZF flow may

be operative and shift the instability boundary. However, it is really speculative, since we

do not consider the really unstable modes (such as ITG) mode. Our model is based on the

Hasegawa-Mima equation, for the conditions of the tokamak, the zonal flow with m = 0, will

not follow the Boltzmann distribution for ions, so the Hasegawa-Mima equation should be

modified [116]. That analysis has to be modified [116] and the k2ρ2 will be different (smaller)

see [116, 90].
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Chapter 3

Anomalous electron mobility and inverse en-

ergy cascade in partially magnetized plas-

mas with crossed ExB fields

3.1 Introduction

As discussed in Chapter 1, partially magnetized plasmas support a type of drift waves which

is different from the standard drift waves in fully magnetized plasmas (e.g., described by

the Hasegawa-Mima equation). Such waves, the so-called anti-drift waves [52], or Hall drift

waves, as they are called in this thesis, together with ion sound and lower hybrid waves are

the basic waves that define the turbulent behavior of partially magnetized plasmas such as

Hall thrusters.

Experimental studies show that Hall thrusters are in turbulent state exhibiting a wide

range of oscillations [21, 33]. Anomalous electron current was also studied in a number

of experiments and numerical simulations; however, the exact nature of fluctuations and

anomalous current remain poorly understood. Most of the existing first principle simulations

are based on the full kinetic PIC method [1] and thus are unable to model the full discharge

due to excessive computational requirements even for modern computers.

A fluid approach, such as developed in this thesis, allows faster simulations and better

insight into the underlying physical phenomena. In this thesis, we present nonlinear sim-

ulations from first principle of the anomalous current due to wave turbulence in partially

magnetized plasmas. Our work is among first few (along with Ref [51]) in the field which

predict, from fluid theory, the level of anomalous current generally consistent with experi-
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mental values [115].

Hall truster plasmas demonstrate fluctuations in a wide range of frequencies 1 kHz – 1 GHz

of waves [33], including the slow azimuthal oscillations (10-25) kHz [69, 47, 31, 103, 69, 47],

also known as spokes. The spoke is an azimuthally rotating structure of high density, so it

emits in the visible range. It is accompanied by fluctuations in electron density and electro-

static potential [69]. As a result, the presence of the spoke strongly affects the anomalous

current in Hall thrusters and much of the anomalous current passes through the spoke re-

gion [46]. The velocity of the spoke is much smaller than the E×B drift velocity of electrons,

thus it is not directly the electron rotation and ion inertia plays an important role. Linear

instabilities typically have growth rates higher for short wavelength (i.e., high m� 1 modes

have larger growth rates [115], where m is azimuthal mode number). At the same time, the

spoke has low mode number m = 1, 2, 3. Thus, it cannot be explained as a simple linear

instability and its nature remains unknown.

It was suggested that spokes originate from small-scale turbulence driven by the density

gradient via an inverse energy cascade [115]. The example of the inverse energy cascade in

fully magnetized plasmas was considered in Chapter 2 where the formation of large-scale

zonal flows from small-scale drift waves was discussed. In this chapter, we present evidence

for inverse energy cascade and formation of large scale nonlinear structures (c.f., zonal flow)

in partially magnetized plasma turbulence driven by a density gradient [115] which supports

a possible spoke formation mechanism from small-scale turbulence.

3.2 Reduced fluid model and the spectra of linear insta-

bilities

We use the reduced fluid model derived in Section 1.7.1 which was first proposed in Ref [115]

to describe the nonlinear interaction of Hall drift waves. Two-dimensional slab geometry

perpendicular to the magnetic field is used. The equilibrium electric field E0 and equilibrium

ions velocity Vi0 are along the x̂ axis. The equilibrium electron velocity (E×B drift Ve0) is
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along the ŷ axis. Thus, the reduced model can be written as

(∂t + v0∂x)n = (n0 + n)∇2χ+∇n · ∇χ, (3.1)

(∂t + v0∂x)χ = c2
s

eφ

Te
+

1

2
(∇χ)2, (3.2)

(∂t + u0∂y)η = −n0vd∂y
eφ

Te
− ν(η − n) + vTeρe

{
eφ

Te
, η

}
, (3.3)

η = n+ ρ2
e

(
n0∇2 eφ

Te
−∇2n

)
, (3.4)

where v0 = |Vi0| is the ion equilibrium speed, u0 = |Ve0| is the electron equilibrium speed,

vd = vTeρe/Ln is the diamagnetic drift speed, n = ñe = ñi is the density perturbation, and

tildes in the perturbation terms (i.e., n, χ, φ, η) were omitted for convenience. The density

gradient effect on ions was neglected because its effect is negligible in comparison with the

ion equilibrium flow. Finally, the Laplacian was integrated out from the ion Euler equation.

The first step to study the reduced model is a local linear approximation. Therefore, we

neglect nonlinear terms and assume monochromatic response (∼ e−iωt+ik·x). The dispersion

equation follows

c2
sk

2

(ω − v0kx)2
=

vdky + ρ2
ek

2(ω − u0ky + iν)

ω − u0ky + ρ2
ek

2(ω − u0ky + iν)
. (3.5)

The dispersion equation (3.5) was first discovered in Ref [115] and analyzed in detail. Here

we note that equation (3.5) is a combination of the Simon-Hoh instability [111, 63] (the

excitation of a low frequency anti-drift mode ω = k2c2
s/vdky by the equilibrium electron flow

u0) with a low hybrid mode ω = ωLH =
√
ωceωci and an ion sound mode ω = kcs. In this

text, we call those waves Hall drift waves.

In this chapter we will use typical Hall thruster parameters which in dimensionless form

are ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,
√
mi/me = 427, u0 = 241.8cs. Using

these parameters, a solution to the dispersion equation (3.5) is shown in Figure 3.1a. The

figure clearly shows strong instabilities with growth rate γ = Im(ω) ∼ 4ωLH driven by the

density gradient.

Figure 3.1a hides another instability which appears due to electron collisions with neutrals

and an ion equilibrium flow. This is a weak axial instability for ky = 0, with growth rate

shown in Figure 3.2. An in-depth analysis of this instability is left for Chapter 4. Here, we
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Figure 3.1: Solution to the dispersion equation (3.5) with parameters Ln = 48.8ρe,√
mi/me = 427, u0 = 241.8cs.

proceed by neglecting ions axial flow (v0 = 0, which is the case for Penning trap devices) and

electron-neutral collisions (ν = 0). The structure of the Hall drift waves instability is not

significantly affected by this approximation as shown in Figure 3.1b. As will be discussed

later in Chapter 6, the nonlinear dynamics of gradient driven/axial instabilities interactions

is relevant only for time scales larger than considered in this chapter. Therefore, we study

nonlinear structures and inverse energy cascade separately from the axial instability and the

full system will be considered in Chapter 6.
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Figure 3.2: Solution to the dispersion equation (3.5) along the axial direction ky = 0

with parameters ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,
√
mi/me = 427, u0 = 241.8cs.
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3.3 Results of nonlinear simulations

We perform nonlinear simulations with the aid of the fluid simulation framework BOUT++ [45]

to investigate the nonlinear dynamics of Hall drift waves. The system (3.1)-(3.4) is supplied

with periodic boundary conditions (PBC). The PBC in the azimuthal direction is natural,

but for the axial direction, it is an approximation which simplifies the study of nonlinear

dynamics. Next, the system is modified with the addition of artificial hyperviscosity, which

is chosen not to disrupt the linear spectrum of Hall drift wave instabilities. The artificial

hyperviscosity is a standard technique to avoid spectral blocking; i.e., energy accumulation

in short wavelength modes (k∆x ∼ 1 were ∆x is a spatial discretization step size) [15].

Benchmark tests of the linear spectrum were performed and confirm the growth rates shown

in Figure 3.1b with an error under 10%.

We monitor the evolution of a turbulence state with the quantities

En =

√
1

LxLy

∫ (
n

n0

)2

dxdy, Eη =

√
1

LxLy

∫ (
η

n0

)2

dxdy, (3.6)

where Lx, Ly are system sizes in x and y dimensions respectively and the integration is

performed over the whole spatial domain. Their evolution is shown in Figure 3.3 where we

can clearly see the linear phase n� n0 where amplitudes grow exponentially consistent with

the maximum growth rate γ = 4.43ωLH predicted from linear theory in Figure 3.1b. When

the wave amplitudes are comparable to the equilibrium profiles, n ∼ n0, linear growth slows

down due to nonlinear effects; then, a saturation level is reached.

Azimuthal turbulent fluctuations result in the axial electron current

Ie ∼
〈
ñeẼazimuthal

〉
, (3.7)

where angular brackets <,> indicate spatial average, ñe is a turbulent density fluctuation

and Ẽazimuthal is a turbulent electric field fluctuation in the azimuthal direction. We use the

simulations to measure the anomalous axial electron current density, which occurs due to the

E ×B drift from a turbulent electric field in the azimuthal direction −∂yφ

je = −enc∂yφ
B0

, (3.8)
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Figure 3.3: Time evolution of (3.6) with parameters ν = 0, v0 = 0, Ln = 48.8ρe,√
mi/me = 427, u0 = 241.8cs.

where B0 is the equilibrium magnetic field. The computed axial anomalous currents are

shown in Figure 3.4, where current is averaged in space

Je =
1

LxLy

∫
jedxdy, (3.9)

and measured in units of classical current Jν with collisional conductivity

σν =
e2n0ν

meωce
, (3.10)

where we used typical value of collision frequency ν = 0.28ωLH ; however, in the simulation,

collisions are absent, ν = 0. Notice that at the time when nonlinear dynamics become

important (n ∼ n0, tωLH ∼ 2.6), current is enhanced by two orders of magnitude above

the classical current.

Next, we analyze the time evolution of the generalized vorticity spatial profiles and its

spectrum. The simulation was initialized with the sum of test waves and, after a short time,

only unstable modes remain relevant. In Figure 3.5 the spatial profile and its spectrum for

normalized generalized vorticity η/n0 are shown at time when the most unstable modes are

exponentially growing in the linear phase. The spectrum is in full agreement with analytical

theory shown in Figure 3.1b.

After some time, when nonlinear terms become relevant, linear modes interact with each

other and produce other modes. The beginning of the nonlinear stage is shown in Figure 3.6
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Figure 3.4: Anomalous axial electron current in units of classical collisional current
with parameters ν = 0, v0 = 0, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.

The current was smoothed with window function of order 30.

at the time tωLH = 2.6 when linear modes are still dominant, but nonlinear interactions

significantly modify the plasma dynamics.

The nonlinear evolution continues and, at some point, a strong shear azimuthal flow

appears as shown in Figure 3.7. At that stage, energy cascades into large structures (small

k) as shown in the spectrum.

The strong azimuthal shear flow reverses direction and eventually forms vortices as shown

in Figure 3.8. Vortices are large-scale structures (as well as flows) and are the evidence of the

inverse energy cascade. The large shear flows are analogous to zonal flow in fully magnetized

plasmas discussed in Chapter 2. Vortices can stay for some extended time tωLH ∼ 1, and

then again collapse back into the shear flow which then again forms vortices. As shown in

sequential snapshots, Figures 3.9, 3.10. At a later time, the biggest possible vortex (i.e., the

size of the simulation box) is formed (see Figure 3.11) and energy can no longer flow into

smaller k and saturation is reached. The biggest vortex still can collapse into the shear flow

and form again.
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(a) Spatial profile (b) Spectrum

Figure 3.5: Normalized generalized vorticity η/n0 spatial and spectral profiles at time
tωLH = 2.0 — linear stage. Parameters are ν = 0, v0 = 0, Ln = 48.8ρe,

√
mi/me = 427,

u0 = 241.8cs.

(a) Spatial profile (b) Spectrum

Figure 3.6: Normalized generalized vorticity η/n0 spatial and spectral profiles at time
tωLH = 2.6 — beginning of nonlinear stage. Parameters are ν = 0, v0 = 0, Ln = 48.8ρe,√
mi/me = 427, u0 = 241.8cs.

3.4 Summary

The nonlinear reduced fluid model, proposed in [115], describes the nonlinear evolution of

partially magnetized plasma systems such as Hall thrusters. The model predicts strong linear

instabilities of Hall drift waves (a combination of anti drift and low hybrid modes), with a

growth rate γ ∼ 4.43ωLH and a weak axial instability with growth rate γ ∼ 0.17ωLH for typ-

ical Hall thruster parameters (ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,
√
mi/me = 427, u0 =

241.8cs). The former modes are destabilized due to strong equilibrium electron E × B flow

u0 and density anisotropy Ln, while the later modes are unstable due to strong equilibrium
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(a) Spatial profile (b) Spectrum

Figure 3.7: Normalized generalized vorticity η/n0 spatial and spectral profiles at time
tωLH = 6.15 — nonlinear phase and formation of shear. Parameters are ν = 0, v0 = 0,
Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.

ion flow v0 and electron-neutral collisions ν. For the purpose of this chapter, axial modes

were artificially neglected (v0 = 0, ν = 0) and the nonlinear dynamics of Hall drift waves

were studied numerically. Simulations were performed with the aid of the fluid simulation

framework BOUT++. The linear phase of simulations was shown to be in perfect agreement

with linear theory (growth rate and spectrum structure). The simulations showed that in the

nonlinear phase, the Hall drift wave turbulence produces anomalous axial electron current

which exceeds typical values for current due to electron-neutral collisions by at least two

orders of magnitude. This occurs in conjunction with the formation of shear azimuthal flows

which are similar phenomena to zonal flows in fully magnetized plasmas. Counterstreaming

flows tend to form large vortices (similar to the Kelvin-Helmholtz instability) which can stay

for long periods of time (tωLH ∼ 1). The spectrum of flows and vortex formations have

dominant energy residing in small wave numbers which supports the existence of the inverse

energy cascade. Finally, nonlinear saturation is reached when the biggest possible vortex is

formed (size of the simulation box).
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(a) Spatial profile (b) Spectrum

Figure 3.8: Normalized generalized vorticity η/n0 spatial and spectral profiles at time
tωLH = 9.31 — nonlinear phase and formation of vortices. Parameters are ν = 0,
v0 = 0, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.

(a) Spatial profile (b) Spectrum

Figure 3.9: Normalized generalized vorticity η/n0 spatial and spectral profiles at time
tωLH = 10 — nonlinear phase and formation of shear flow. Parameters are ν = 0,
v0 = 0, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.
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(a) Spatial profile (b) Spectrum

Figure 3.10: Normalized generalized vorticity η/n0 spatial and spectral profiles at
time tωLH = 13 — nonlinear phase and formation of vortices. Parameters are ν = 0,
v0 = 0, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.

(a) Spatial profile (b) Spectrum

Figure 3.11: Normalized generalized vorticity η/n0 spatial and spectral profiles at
time tωLH = 17.45 — nonlinear phase and formation of vortices. Parameters are ν = 0,
v0 = 0, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.
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Chapter 4

Current flow instability and nonlinear struc-

tures in dissipative two-fluid plasmas

4.1 Preface

In the previous Chapter, we have considered the waves and instabilities driven by the electron

E × B flow in presence of density gradient and electron-neutral collisions. In many E × B

systems, an external electric field results in ion acceleration and thus to the stationary ion

beam flow. For the geometry of the Hall thrusters, this flow is in the axial direction. This

flow, which was neglected in Chapter 3, provides an additional source of free energy and thus

results in axial mode instabilities. The linear and nonlinear regimes of these instabilities due

to the equilibrium axial ion flow and axial electron transport (e.g. due to electron-neutral

collisions) are studied in this chapter. The material in this chapter is based on the paper

published in Physics of Plasmas [78].

4.2 Abstract

The current flow in two-fluid plasma is inherently unstable if plasma components (e.g. elec-

trons and ions) are in different collisionality regimes. A typical example is a partially mag-

netized E×B plasma discharge supported by the energy released from the dissipation of the

current in the direction of the applied electric field (perpendicular to the magnetic field). Ions

are not magnetized so they respond to the fluctuations of the electric field ballistically on the

inertial time scale. On the contrary, the electron current in the direction of the applied elec-

tric field is dissipative supported either by classical collisions or anomalous processes. The
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instability occurs due to a positive feedback between electron and ion current coupled by

the quasi-neutrality condition. The theory of this instability is further developed taking into

account the electron inertia, finite Larmor radius, and nonlinear effects. It is shown that this

instability results in highly nonlinear quasi-coherent structures resembling breathing mode

oscillations in Hall thrusters.

4.3 Introduction

Systems away from the equilibrium naturally evolve back toward the equilibrium state by

compensating the deviation from the equilibrium. In plasmas which support many different

wave eigenmodes, the deviations from the equilibrium often result in the development of

various instabilities. The nature of such instabilities depends on the type of plasma state and

its deviation from the equilibrium. One class of instabilities results from the non-equilibrium

which can be characterized by gradients in the velocity space, e.g. plasma-beam instabilities

or instabilities due to plasma pressure anisotropy [95]. The non-equilibrium states with

relative streaming of electrons and ions are often unstable too. Buneman type instabilities

[18] occurs due to the relative motion of electron and ions in the collisionless plasma. In

strongly collisional plasmas, the electron drift gives the Farley-Buneman instability [20, 48].

Simon-Hoh type instabilities (both collisional [111, 63] and collisionless version [107, 51, 115])

result from the relative motion of electrons and ions in crossed electric and magnetic fields

E×B. The Simon-Hoh instability is typically studied for modes propagating in the direction

of the E×B drift and typically require a density gradient (and/or magnetic field gradient [51,

115]) for the excitation.

Here we discuss the axial instability of the modes along the direction of the current flow.

Essentially, instabilities of this type were considered in Refs. [24, 49]. The basic instabili-

ties in Refs. [24, 49] exist in neglect of the electron inertia. The resistive instability of the

lower-hybrid mode which requires the electron inertia (but no density gradient) considered

in Ref. [87] can also be referred as the current flow instability of this type. Such instabilities

occur due to the phase shift in the response of electrons and ions to the quasi-neutral pertur-

bation of the electric field. In this paper, we consider the axial flow instability in conditions
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typical of E×B discharge such as in Hall thrusters and magnetrons. In this case, the axial

current is due to the dissipative flow of the electrons and the flow of accelerated ions; both

in the direction of the externally applied electric field. We consider the linear and nonlinear

regimes of this instability and show that it results in nonlinear quasi-coherent structures. It

was earlier suggested [24] that this instability mechanism plays an important role in breathing

mode oscillations [99].

4.4 Instability mechanism

Most simply the mechanism can be described on the example of the current flow in the

E×B device such as Hall thruster. Consider the configuration supported by the electric

current in axial direction (along z) due to the electric field E = Eẑ applied across the

magnetic field. We generally characterize the electron current in z direction in the form

Je = σE, where σ can be simply collisional electron conductivity across the magnetic field,

σc = e2n0νen/ (meω
2
ce), or some anomalous conductivity which may include as well the effects

of near wall conductivity [99]. In the rest of the paper, we do not specify the mechanism

of the electron transport, generally parameterizing it with σ (or ν introduced later). The

ion current Ji = envi is supported by free streaming of unmagnetized ions. We consider

quasi-neutral oscillations so that

∂

∂z
(Je + envi) = 0. (4.1)

The dynamics of unmagnetized ions is described by standard equations

∂

∂t
n+

∂

∂z
(nvi) = 0, (4.2)

∂

∂t
vi + vi

∂

∂z
vi =

e

mi

E. (4.3)

Linearizing equations (4.1)-(4.3) for perturbations (denoted by tilde) in the form
(
ñ, Ẽ, ṽi, J̃e

)
∼

exp (−iωt+ kz), and taking into account that ions have the equilibrium velocity vi0, one eas-

ily finds the dispersion relation

1

(ω − kv0i)
2 =

i

ω

σmi

e2n0

. (4.4)
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The right hand side of the dispersion equation can also be written as

σmi

e2n0

=
ν

ω2
LH

, (4.5)

where ω2
LH = ωceωci, and ν is either the frequency of the electron-neutral collisions, or

parametrization of combined effects of anomalous collisions and near-wall conductivity. This

dispersion relation was obtained in Ref. [24] by using kinetic theory for ions and later in

Ref [49] from the fluid model.

The axial modes described by the dispersion relation (4.4) are unstable due to the phase

shift between the perturbed electron and ion currents, which can be seen from these expres-

sions

J̃e = σẼ, (4.6)

J̃i =
e2n0

mi

iω

(ω − kvi0)2 Ẽ. (4.7)

The delay introduced by the finite ion flow results in the positive feedback loop leading to

the amplification of the initial perturbation. In absence of the flow vi0 = 0, the dispersion

relation (4.4) describes a damped mode with

ω = −iω
2
LH

ν
. (4.8)

However, in the presence of large equilibrium flow velocity, kvi0 > ω, one has the negative-

diffusion-type instability. From the equation (4.4), the growth rate scales with wave vector as

γ ≈ νk2v2
i0/ω

2
LH for small kv0i � ω2

LH/ν and as γ ≈ ωLH
√
kvi0/(2ν) for large kv0i � ω2

LH/ν.

These asymptotics are valid for small kρe � 1 but for larger values kρe ∼ 1 other effects

become important as discussed in the following sections. The solution to (4.4) is shown in

Figure 4.1a.

4.5 Mode stabilization at short wave-lengths due to the

effects of diffusion, inertia and finite Larmor radius

The instability with γ ∼ k2 (or ∼
√
k) in combination with nonlinear effects may produce

the explosive growth of the perturbations. However the unlimited growth rate (with k) is
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(a) Simplest electron transport model Je = σE,
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(b) Eq. (4.11) with electron diffusion
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(c) Eq. (4.13) with diffusion, inertia and FLR
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Figure 4.1: Solution to dispersion equations (4.4), (4.11), (4.13), (4.14) for differ-
ent electron transport models are shown for typical Hall truster parameters: vi0 =
4.45ωLHρe, ve0 = −1.33ωLHρe, ν = 0.25ωLH .
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unphysical and it also presents a problem in numerical simulations because the instability

will occur at the largest possible wave-vectors (kmax ∼ 1/∆x, where ∆x is the smallest

resolution length scale, e.g., mesh size). This will result in piling up of the energy at the

smallest resolution length scale. Therefore the simulation results will never converge to a

single solution. It is therefore important to incorporate physics which is relevant on smaller

scales thus limiting the growth at large wave-vectors. One of such effects is the diffusion flux

which was first added in Ref [49]. Effects of the diffusion can be included via the pressure

driven electron current in the generalized Ohm’s law

Je = σE + eD
∂n

∂z
, (4.9)

where

D = νρ2
e. (4.10)

Once again, the ν should be understood either as the classical electron-neutral, near-wall

or anomalous collisional frequency. Repeating the derivations in (4.1)-(4.3) one can get the

following dispersion equation which takes into account both electron mobility and diffusion

1

(ω − kv0i)2
=

iν

ω2
LH (ω + iνk2ρ2

e)
. (4.11)

The solution of this equation is shown in Figure 4.1b. One can see from (4.11), that the

diffusion does not stabilize high kρe completely, but limits the mode growth at the constant

level

γ ≈ ωLH(v0i − ωLHρe)
2νρe

. (4.12)

Therefore it is important to incorporate higher order effects such as electron inertia and

related effects of the electron finite Larmor radius (FLR) effect which bring in the lower-

hybrid modes [36, 87]. These effects may be included following the derivations in Ref. [115].

The respective equation that includes the electron inertia, mobility, diffusion and FLR reads

1

(ω − kv0i)2
=

(ω + iν)

ω2
LH [ω + k2ρ2

e (ω + iν)]
. (4.13)

The solution to the above equation is shown in Figure 4.1c, which shows that electron inertia

and FLR effects stabilize the modes for high kρe. It is important to note that the electron
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inertia and FLR effects alone (without electron transport ν = 0) do not make the system

unstable.

Our derivations so far have fully neglected the effect of the equilibrium electron velocity.

It can be easily included in the consideration, resulting in the dispersion equation

1

(ω − kv0i)2
=

(ω − kv0e + iν)

ω2
LH [ω − kv0e + k2ρ2

e (ω − kv0e + iν)]
. (4.14)

The results for the final dispersion equation (4.14) is shown in Figure 4.1d. Note that in

absence of dissipation this equation describes stable lower-hybrid modes modified by the

Doppler shift and the effects of the finite electron Larmor radius [115]. The addition of the

electron equilibrium velocity results in the Doppler shift kv0e in the electron response which

has a significant impact on the real part of the frequency of unstable modes: for v0e has

the opposite sign to the v0i, the account of the equilibrium electron flow reduces the phase

velocity of unstable modes and may even result in the change of the sign of the phase velocity.

The final dispersion equation (4.14) depends on three important parameters: ion equilib-

rium velocity v0i, electron equilibrium velocity v0e, and electron collision frequency ν (classical

or anomalous). Therefore, to complete the physical picture of effects discussed in this section,

we demonstrate how external parameters change the frequency and growth rate of the un-

stable mode. The effect of collisional frequency is shown in Figure 4.2a,4.2b where we varied

the parameter from typical Hall thruster classical value ν ≈ 0.1ωLH up to the anomalous

ν = 2.5ωLH . One can see that the increase of the collision frequency enhances the linear

instability and moves the most unstable wavenumber to the shorter wavelengths. At larger

values, the collisions suppress the instability, as shown in Figures 4.2c,4.2d. It is worth noting

that results for high (anomalous) collisionality ν � ωLH , should be viewed as the illustration

of a general trend rather than a quantitative description of the nonlinear effects (anomalous

mobility). Though the often used Bohm diffusion would correspond to anomalously high val-

ues of the electron collision frequency (as large as ωce), the form of the nonlinear (anomalous)

mobility and its proper parametrization is still unknown at this time.

Next, we investigate the effects of the ion equilibrium velocity, which is shown in Figure

4.3. To see the effect more clearly, the electron equilibrium velocity was set to zero. The

ion flow velocity enhances the instability moving the maximum growth rate to the longer
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Figure 4.2: Solution to the dispersion equations (4.14) for different values of electron
collision frequency ν and typical Hall truster parameters: vi0 = 4.45ωLHρe, ve0 =
−1.33ωLHρe.

wavelengths where the effects of a finite length of the system may become important [71, 76].

We will employ the correct boundary conditions in the next section.

The experimental data indicate [98] that typically the electron flow is a fraction of the

ion flow (v0e ≈ −(0.3 ÷ 0.5)v0i). The larger values of the equilibrium electron flow shifts

the maximum of the growth rate toward the longer wavelengths and also reversing the phase

velocity to the negative direction for the most unstable modes, as is shown in Figure 4.4.

4.6 Nonlinear evolution and structures

The linear theory described in the previous section predicts axial flow instability with a

maximal growth rate which is determined by the competition of the instability and stabilizing
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Figure 4.3: Solution to the dispersion equations (4.14) for different values of equi-
librium ion velocity, zero equilibrium electron velocity and collision frequency ν =
0.25ωLH .

effects of the diffusion, inertia and FLR effects. To investigate the nonlinear evolution of these

modes we perform nonlinear simulations using the model which was developed in Ref [115]

and includes the nonlinear equations for ion density (continuity) and velocity in addition

with the electron dynamics equation. In one dimensional case the nonlinear ion continuity

and momentum balance equations (4.2)-(4.3) have the form(
∂

∂t
+ v0i

∂

∂z

)
ñ = n0

∂2χ̃

∂z2
+ ñ

∂2χ̃

∂z2
+
∂ñ

∂z

∂χ̃

∂z
, (4.15)(

∂

∂t
+ v0i

∂

∂z

)
χ̃ =

e

mi

φ̃+
1

2

(
∂χ̃

∂z

)2

, (4.16)

where the potential was introduced for the ion velocity ṽi = −∂χ̃/∂z. The electron transport

model includes the electron diffusion, inertia and FLR. In the Boussinesq approximation the

electron dynamics is linear and described by the equation(
∂

∂t
+ v0e

∂

∂z

)
η̃ = −ν(η̃ − ñ), (4.17)

with the electron generalized vorticity defined as

η̃ = ñ+ n0ρ
2
e

∂2

∂z2

(
eφ̃

Te
− ñ

n0

)
. (4.18)

Typical Hall thruster axial length is around L ∼ (25÷ 100)ρe, therefore for modes with the

wave number kρe ≈ 0.1 the realistic boundary conditions are important. We use boundary
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Figure 4.4: Solution to the dispersion equations (4.14) for different values of equi-
librium electron velocity and typical Hall thruster parameters vi0 = 4.45ωLHρe,
ν = 0.25ωLH .

conditions corresponding to the absence of perturbation at the left (z = 0) and open boundary

at the right (z = L):

ñ(0) = ñ′(L) = χ̃(0) = χ̃′(L) = η̃(0) = η̃′(L) = φ̃(0) = φ̃(L) = 0, (4.19)

where prime denotes spatial derivatives.

We performed the nonlinear simulations of the system (4.15)-(4.19) using the BOUT++

plasma fluid simulation framework [45], which was modified for the case of partially magne-

tized plasma [115] and extensively benchmarked. The nonlinear simulations are monitored

with energy-like functionals

En = E

[
ñ

n0

]
, Eη = E

[
η̃

n0

]
, Eφ = E

[
eφ̃

Te

]
, (4.20)

with

E[f ] =

√
1

L

∫ L

0

dz|f(z)|2. (4.21)

The time evolution of (4.20) is shown in Figure 4.5 for typical Hall truster parameters:

ν = 0.25ωLH , v0i = 4.45ωLHρe, v0e = −0.3v0i, L = 106ρe. One can see a distinct linear

growth phase in the initial stage tωLH ∼ 0 ÷ 70. The maximum theoretical growth rate

obtained from the equation (4.14) is shown in the Figure 4.5 by a purple solid line which

shows a good agreement between theory and simulations. At later times tωLH ≥ 70, when
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En ∼ Eη ∼ 1, nonlinear dynamics start to dominate and fluctuations saturate at constant

values.
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Figure 4.5: Dashed lines represent time evolution of energy like functionals (4.20) for
parameters: ν = 0.25ωLH , v0i = 4.45ωLHρe, v0e = −0.3v0i, L = 106ρe; purple solid line
is a maximum theoretical growth rate obtained from the equation (4.14).

The evolution of density ñ and generalized electron vorticity η̃ in time and space is shown

in Figures 4.6,4.7. As shown in Figures 4.6, in the linear stage (ñ/n0 ∼ η̃/n0 � 1) density

and vorticity perturbations are growing and slowly moving to the right. This corresponds to

the linear picture shown in Figure 4.1d where the most unstable modes have small positive

phase velocity.

As amplitude fluctuations is increasing (ñ/n0 ∼ η̃/n0 ∼ 1) nonlinear effects become

important resulting in formation of strongly nonlinear quasi-periodic waves, see Figs. 4.7. It

is interesting to note that as the mode amplitude grows and nonlinear effects become more

important, the velocity of nonlinear waves reduces and eventually becomes negative, so they

start moving in opposite direction (to the left). This effect is attributed to the electron

equilibrium flow, which is in the negative direction (to the left).

The nonlinear evolution in the case of zero electron flow v0e = 0 is similar, with the

exception that the velocity of nonlinear structures does not change the direction.
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4.7 Conclusion

We have analyzed the axial instability of the current flow due to the phase shift in the electron

and ion response to the perturbations of the electric field. This is a particular example of

a general class of instabilities for the modes propagating along the direction of the current

flow, which do not need density gradient as is required for Simon-Hoh instabilities [111, 63].

Dispersion relation similar to (4.4) was obtained in Ref. [24] where it was concluded that

this instability is an important ingredient of breathing oscillations [13]. Similar dispersion

equation was also obtained in Ref. [49] where the effects of the diffusion were added. As was

noted in Ref. [24] the dispersion relation (4.4) is analogous to the one obtained in Ref. [87]

for the resistive instability of the azimuthal modes driven by E×B flow.

Our model for the instability additionally includes the effects of electron inertia and finite

Larmor radius which are important for the correct description of the modes at high k values.

It is important to note that the discussed instability occurs due to the phase shift between

the inertial response of ions and dissipative electron response. The exact mechanism of

electron current (classical collisional) or anomalous (turbulent) [59] is not so critical as long

as the perturbations of the electron current are in phase with the electric field. Thus one

can expect that this mechanism will be operative when the electron flow is anomalous and

some scale/time separation exists between fast electron processes that determine anomalous

transport and slow evolution of this instability.

The axial flow instability discussed in this paper has relatively low growth rate compared

to azimuthal modes of higher frequencies which are driven by collisions and density gradi-

ents [51, 115]. Its significance, however, is in the high amplitude of the saturated modes.

The mode saturation occurs due to ion dynamics resulting in appearance of high amplitude

quasi-coherent structures resembling the cnoidal waves [35]. The theory of such highly non-

linear (non-perturbative) waves is described in Ref. [35]. The nonlinear coherent structures

observed in our simulations appear to be an example of such large amplitude waves born

out of the instability. The electron nonlinearity is weak as it appears in the higher order

polarization drift and only for non-Boussinesq approximation. In this paper, we consider

the Boussinesq approximation so the electron dynamics is linear while all explicit nonlinear
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effects originate in ion dynamics. The electron inertia and FLR effects are important here

as a mechanism of stabilization of the instability at large k (due to coupling to lower-hybrid

dynamics).

It has been suggested [24] that the instability of this type is a crucial ingredient of breath-

ing oscillations often observed in Hall thruster discharges supported by the axial electron cur-

rent. Our basic model given by equations (4.1)-(4.3) is a subset of the full systems of equations

typically considered for description of the breathing mode [100, 98, 99]. Our simulations show

that the considered instability results in the formation of nonlinear quasi-coherent structures

which are indeed similar to those observed in breathing mode [13, 8]. The slow moving co-

herent structures formed as a result of axial flow instability discussed here could also be the

sources of non-monotonous profiles of the electric field observed experimentally in Ref. [123].

The finite velocity of ions plays a critical role in the axial current flow instability discussed

in our paper. The characteristic time scale associated with ion velocity, ω ' vi/L, where L

is the characteristic length is typically considered to be in the range of the so-called transit

instabilities [9, 124], which have higher frequencies compared to the breathing oscillations. In

our model, the real part of the unstable modes is considerably lower than ω ' vi/L, in part

due to the inclusion of the electron flow velocity. One should note though that in present

paper we consider the case of constant ion velocity v0i , while in real configurations the effects

of the axial dependence vi0 (x) could be important [9, 124]. Consideration of this, a more

general case, is left for future publication.
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Chapter 5

Nonlinear structures of lower-hybrid waves

driven by the ion beam

5.1 Preface

In Chapter 4 we have studied nonlinear dynamics of axial instabilities in partially magnetized

plasmas caused by ion flow and electron cross-field current due to resistivity whilst neglecting

the ion flow velocity. In a finite length system with boundaries, the ion beam may be a source

of another instability due to coupling of negative and positive energy wave under reflection

from the boundaries [76, 71]. In this chapter, we investigate the nonlinear dynamics of the

axial instabilities in partially magnetized plasma caused by the ion flow and boundary effects.

The material in this chapter is based on a paper submitted to Physics of Plasmas.

5.2 Abstract

The lower-hybrid waves can be driven unstable by the transverse ion beam in partially mag-

netized plasma of a finite length. This instability mechanism, which relies on the presence of

fixed potential boundary conditions, is of particular relevance to axially propagating modes

in Hall effect thruster. The linear and nonlinear regimes of this instability are studied here

with numerical simulations. In the linear regime, our results agree with analytical theory. It

is shown that in nonlinear regimes the mode saturation results in coherent nonlinear struc-

tures. For the aperiodic instability (with Re(ω) = 0 — odd Pierce zones), the unstable

eigen-function saturates into new stationary nonlinear equilibrium. In the case of oscillatory

instability (Re(ω) 6= 0 — even Pierce zones), the instability results in the nonlinear oscillat-
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ing standing wave. It is also shown that finite Larmor radius effects stabilize instability for

parameters corresponding to large number Pierce zones, therefore only a few first zones are

relevant.

5.3 Introduction

Partially magnetized plasmas where electrons undergo fast gyro rotation, while ions dynamics

is not significantly affected by the magnetic field, are common in many applications such as

Hall-effect thrusters, magnetrons, and some regions of the ionosphere. This is the typical

regime of the so-called E × B discharges, e.g., Hall thrusters for electric propulsion [114]

and magnetrons [67]. Plasmas in such discharges are typically strongly turbulent, exhibit

fluctuations of different temporal and spatial scales, and are characterized by anomalous

current. Understanding of the nature and sources of these instabilities is an area of active

research.

Local plasma gradients, such as in density, temperature, and magnetic field are usually

identified as sources of free energy resulting in plasma instabilities and turbulence. These in-

stabilities referred as drift instabilities have also been studied in partially magnetized plasmas

[95, 115].

In the short wavelength limit, linear plasma dynamics is local and is formally described

by linear partial differential equations (PDE) with constant coefficients. However, when the

mode wavelength is of the order of the system size or/and plasma equilibrium length scale,

the wave dynamics becomes nonlocal. In particular, the role of boundary conditions becomes

non-trivial, which may result in new nonlocal instabilities mechanisms. An example is the

Pierce instability [104], in which plasma flow in a finite length plasma with boundaries, results

in the instability, whereas in the periodic (infinite) plasmas such flow would only lead to a

trivial Doppler frequency shift. Such instabilities driven by boundary effects for ion sound

type waves and electric charge waves in non-compensated diodes were studied in a number

of experimental and theoretical works, see e.g. Refs. [76, 74, 105, 81] and references therein.

It was recently shown that the lower-hybrid waves can be driven by the transverse ion-

beam in a finite length system via the mechanism similar to the Pierce instability in which
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the role of boundaries is crucial for the instability [71]. The present paper is devoted to the

investigation of nonlinear regimes of this instability and its consequences.

The lower-hybrid mode is among the most important modes in partially magnetized

plasmas relevant to electric propulsion [115]. The nonlinear dynamics of resistive lower

hybrid instability induced by ions flow was recently studied in Ref. [78]. This instability is

relevant to axial (along the direction of the electric field) modes of E×B plasma discharges

such as Hall-effect thrusters and magnetrons[24]. In the previous work[78], it was shown

that numerical simulations confirm the predictions of the local theory for the most unstable

modes in periodic geometry. It was also shown that in the nonlinear stage the highly localized

(cnoidal-like type) wave structures are formed. The mechanism of this instability is local and

related to the phase shift between the perturbations of the electron and ion currents. The

electron current is supported by plasma conductivity across the magnetic field which may

have classical (collisional) or anomalous (turbulent and/or wall conductivity) nature. At the

same time, the ion current is due to inertial response to the electric field and thus is shifted

in phase due to the Doppler effect. It was shown in Ref. [71] the lower hybrid waves can be

driven unstable by the ion beam due to boundary effects. The wavelengths of those modes

usually are of the order of the system length, therefore the dynamics is highly nonlocal.

Both of these instabilities mechanisms are relevant to the axially propagating modes

in the Hall thruster (e.g., breathing modes) which are known to significantly affect the ion

thrust [13, 8]. Modes exited by boundary effects are highly nonlocal in comparison with modes

induced by the resistive electron current. Therefore, the nonlinear dynamics is expected to

be different. The objective of this work is to investigate linear and nonlinear stage of the

instability described in Ref. [71]. For this purpose, the nonlinear simulations were performed

with BOUT++ plasma fluid simulation framework [45].

The paper is organized as follow. In Section 5.4 the nonlinear two-fluid model for low-

hybrid instability is discussed. Results for linear instability from Ref. [71] are recovered in

Section 5.5. In Section 5.6 the numerical solution to full nonlinear model is obtained. The

effect of finite Larmor radius on the linear instability is analyzed in Section 5.7. Finally, the

conclusions and discussions are in Section 5.8.
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5.4 One dimensional model for lower-hybrid waves in par-

tially magnetized plasmas

In this section, we introduce one-dimensional axial fluid model for partially magnetized plas-

mas used in Ref. [71] to describe the ion beam instability in bound plasma systems. The

dynamics of unmagnetized ions is considered along constant equilibrium electric field in the

x-direction, while magnetized electrons (i.e., equilibrium electric and magnetic fields are per-

pendicular) assumed to have zero collisional mobility along this direction and quasi-neutrality

is supported by electron polarization drift.

Following the derivation in Ref. [71], two-fluid approximation with unmagnetized cold

singly ionized ions and magnetized cold electrons are used. One dimensional mass and

momentum conservation equations for ions written for perturbations around equilibrium

yield

∂tn+ n0∂xv + v0∂xn+ v∂xn0 + n∂xv0 + ∂x(nv) = 0, (5.1)

∂tv + v0∂xv + v∂xv + v∂xv0 +
e

M
∂xφ = 0, (5.2)

with equilibrium profiles

n0 =
n00v00

v0

, v0 =

√
v2

00 +
2eE0

M
x, (5.3)

where ∂t, ∂x are time and space derivatives respectively; n0 = n0(x), v0 = v0(x) are equi-

librium profiles of ion density and velocity respectively; n00 = n0(0), v00 = v0(0); n, v are

perturbed ion density and velocity respectively; φ is a electrostatic potential perturbation;

E0 is a constant electric field along the x direction; x ∈ [0, L] is a spatial domain of length L;

e is an absolute value of an electron charge; M is an ion mass. We note that the assumption

of constant electric field E0 = const, implies the equilibrium electrostatic potential to grow

as φ0 ∼ x.

In the absence of collisions and in the strong magnetic field, the electron inertial response

is compensated by the polarization drift in axial direction. The electron dynamics can be

recovered from mass conservation equation

∂tn+ n0∂xu+ u∂xn0 = 0, (5.4)
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where the electron velocity perturbation in axial direction (u) is supported by polarization

drift (in the main order of strong magnetic field expansion ∂t � ωce)

u =
e

mω2
ce

∂t∂xφ, (5.5)

where m is an electron mass, and ωce is an electron cyclotron frequency. Hence, the final

electron equation reads

∂2
xφ+

1

n0

∂xn0∂xφ+
mω2

ce

en0

n = 0. (5.6)

Note that the electron equation is linear, as leading order nonlinear term disappears in one

dimensional geometry [115].

The system is closed with standard [71] boundary conditions

φ(0) = φ(L) = n(0) = v(0) = 0. (5.7)

5.5 Linear instability

In the linear approximation, the system of equations (5.1)-(5.6) reduces to

∂tn+ n0∂xv + v0∂xn+ v∂xn0 + n∂xv0 = 0, (5.8)

∂tv + v0∂xv + v∂xv0 +
e

M
∂xφ = 0, (5.9)

∂2
xφ+

1

n0

∂xn0∂xφ+
mω2

ce

en0

n = 0. (5.10)

Note, that in the local approximation, when equilibrium profiles can be considered constant

(∂xn0 ≈ ∂xv0 ≈ 0), the system (5.8)-(5.10) is reduces to Pierce equations [104] which can be

solved analytically.

As was shown in Ref. [71] the boundary conditions (5.7) make the system of equations

(5.8)-(5.10) unstable similar to the Pierce instability. The growth rate of this system was

extensively studied in Ref. [71] and we reproduce those results in Figure 5.1. The figure

shows the growth rate normalized to low hybrid frequency ωLH = ωce
√
m/M as a function

of a Pierce parameter α = ωLHL/v0d with v0d = v0(L) being the equilibrium ion outflow

velocity. The initial equilibrium ion velocity value was chosen as in Ref. [71] v00 = 0.2v0d.
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Growth rate values were benchmarked with the Table 1 in Ref. [71] and differ with those

results by no more than 3%. Notice, that values in the Table 1 in Ref. [71] are obtained for

a different normalization. Therefore, to recover them, one needs to multiply γ/ωLH by α.

As was shown in Ref. [71], the discussed model has only two external parameters: α and

q = 1− (v00/v0d)
2. Here we use v00/v0d instead of q.

Figure 5.1 shows four Pierce instabilities zones [104]. For α < 0.7π the plasma is stable,

while for large α there will appear more zones. Each odd zone (counting starts from the

small α) has aperiodic instability Re(ω) = 0, while even zones have oscillatory instabilities

Re(ω) 6= 0. For example, Figure 5.1 shows two aperiodic zones for α ∼ π, α ∼ 2.2π and two

oscillatory zones α ∼ 1.49π, α ∼ 2.7π. The zone number also defines the number of zeros of

unstable eigenfunction, therefore higher zones correspond to higher effective wave-numbers.

This means that to consider higher number zones one needs to take into account small-scale

effects such as finite Larmor radius effect or charge separation.

Figure 5.1: Growth rate dependence on the Pierce parameter α = ωLHL/v0d with
initial ion velocity v00 = 0.2v0d.
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5.6 Nonlinear evolution

The main objective of this paper is to track a nonlinear evolution of the instability discussed

in Section 5.5. Therefore, the full system of equations (5.1)-(5.7) was solved numerically. In

order to track the stage of nonlinear evolution we define energy-like functionals and follow

their time evolution

En = E

[
n

n00

]
, Ev = E

[
v

v00

]
, Eφ = E

[
eφ

Mv2
00/2

]
, with E[f ] =

√
1

L

∫ L

0

dz|f(z)|2.

(5.11)

The temporal evolution of energy-like functionals for aperiodic (α = 1.05π) and oscillatory

(α = 1.55π) Pierce zones are shown in Figures 5.2. The evolution for both zones clearly

shows a linear growth phase with transition into nonlinear saturation.
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(a) Aperiodic zone with α = 1.05π
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(b) Oscillatory zone with α = 1.55π

Figure 5.2: Time evolution of functionals (5.11) with initial ion velocity v00 = 0.2v0d.

5.6.1 The aperiodic instability zone

In the aperiodic zone, for sufficiently small initial condition, the unstable eigenfunction starts

growing exponentially with time. The linear growth phase corresponds to the time tωLH <

100 in Figure 5.2a. The shape of the unstable eigenfunction in the first Pierce zone is shown in

Figure 5.3a where the initial Gaussian profile (blue solid line) transforms into an eigenfunction

and starts to grow exponentially in time. After some time, when n ∼ n0 the nonlinear effects

start to slow down the linear growth. Eventually, the new stationary equilibrium is reached as
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shown in the time evolution plot of total density Figure 5.3b. The blue dashed line shows the

initial density profile, and the red dotted line represents the evolution of the density during

the nonlinear regime which is a combination of large density perturbation and equilibrium

density. After about tωLH ∼ 105, the new equilibrium profile is formed and it stays constant

for the rest of the simulation 105 < tωLH < 500, as shown by the green and purple solid lines

for times tωLH = 105 and tωLH = 500 respectively which coincide.

It is interesting to note that, the new density equilibrium forms a prominent peak in the

beginning of the acceleration region due to the form of unstable density eigen function shown

in Figure 5.3a. Therefore, the continuity equation

(n0 + n)(v0 + v) = const,

implies that the total velocity will have the deceleration region in the new equilibrium as

shown in Figure 5.3c. The perturbation of electrostatic potential corresponding to the de-

scribed density and velocity profiles is shown in Figure 5.3d. The perturbation is plotted

rather than a full value of electrostatic potential, as the perturbation is still relatively small

in comparison to the equilibrium value, which is

2eφ0

Mv2
00

=

(
1−

(
v0d

v00

)2
)
x

L
. (5.12)

5.6.2 The oscillatory instability zone

In the oscillatory zone, the situation is similar, but the growth rate is smaller than in the

preceding aperiodic zone, so the linear phase is longer tωLH < 350. At the linear phase, the

eigenfunction grows exponentially in time and additionally oscillates as shown in Figure 5.4.

Every figure in this subsection is branched into two sub-figures for the first and second half

of the oscillation period. In the nonlinear regime, the new stationary equilibrium is replaced

with a standing wave. Figures 5.5 is a standing density wave which is similar to aperiodic

solution shown in Figure 5.3b, but oscillates in time. Similar standing waves can be observed

for velocity in Figures 5.6 and electrostatic potential perturbation in Figures 5.7.
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Figure 5.3: The time evolution of ion density, ion velocity, and electrostatic potential
spatial profiles in aperiodic Pierce zone for α = 1.05π and initial ion velocity v00 =
0.2v0d.

5.7 Finite Larmor radius effects

As was mentioned earlier, the Pierce zone number defines the number of zeros of the unstable

eigenfunction. For example, the unstable eigenfunction in the first Pierce zone has one zero

in the interior region (excluding boundary points) as shown in Figure 5.3a, while the second

Pierce zone has two as shown in Figure 5.4. Therefore, the effective wavelength is decreasing

with bigger zone number. In this situation, one needs to include effects relevant to smaller

scales. The next order term is finite Larmor radius effect [115]. In order to include it, the
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Figure 5.4: Linear growth of unstable eigenfunction in oscillatory Pierce zone for
α = 1.55π and initial ion velocity v00 = 0.2v0d.

electron equation (5.6) is modified into

∂2
xφ+

1

n0

∂xn0∂xφ+
mω2

ce

en0

(
n− ρ2

e∂
2
xn
)

= 0, (5.13)

where ρe is a electron Larmor radius.

The new free parameter in equation (5.13), namely, the electron Larmor radius, is chosen

to be ρe = 0.05L in dimensionless units, which corresponds to typical Hall truster acceleration

region length L ∼ 1cm, electron temperature Te = 15eV and magnetic field B = 160G.

Numerical simulation results for linear growth rates with FLR effects are shown in Fig-

ure 5.8a. One can see that FLR effects stabilize higher order zones while the first zone stays

almost without modifications. If one investigate the parameter space further, higher Pierce

zones may be stabilized partially as it is shown in Figure 5.8b where v00/v0d = 0.4 parameter

was used. Nonlinear simulations reveal that dynamics is not significantly modified by FLR

effects.

5.8 Conclusions

The linear theory of the instability first described in Ref. [71] has been confirmed here with

numerical simulations providing the necessary linear benchmark for our nonlinear studies.

The instability growth rate and the form of the unstable eigenfunction which depend on the
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Figure 5.5: Oscillating quasi-stationary profile of ion density in oscillatory Pierce zone
for α = 1.55π and initial ion velocity v00 = 0.2v0d.

Pierce parameter α are shown in Figure 5.1 where one can see distinct Pierce zones. The

effective wave number of the eigenfunction grows with zone number. We find a significant

modification of previous linear results [71] with the addition of FLR effects which are signif-

icant in the case of short wavelengths. As shown in Figure 5.8, the first Pierce zone stays

relatively unchanged, while higher order zones are stabilized.

After the linear growth phase, the aperiodically unstable mode saturates into a new

nonlinear equilibrium which is shown in Figure 5.3. The interesting feature of this equilibrium

is the presence of deceleration zone as shown in Figure 5.3c. It is interesting to note that

this feature can be attributed to the shape of the unstable density eigenfunction which has

a maximum (the unstable velocity eigenfunction has a minimum at the same location). It

is of interest to note that non-monotonous electric field profiles (that include deceleration

regions) were observed in experiments [123, 124]. In the oscillatory zone, the oscillatory

eigenfunction in nonlinear regime becomes a standing wave with similar deceleration regions

(but oscillating in time).

The classical Pierce problem (in our case v00 = v0d) has similar solutions, i.e., stationary

and oscillating nonlinear equilibria, as was investigated by many authors, most notably see

Ref. by Godfrey [56]. Previous works have identified the regimes when oscillating solutions

bifurcate (at some values of Pierce parameter α) into the combination of oscillating modes

leading to the chaotic oscillations [56, 92, 80]. We did not find such bifurcations or chaotic
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Figure 5.6: Oscillating quasi-stationary profile of ion velocity in oscillatory Pierce
zone for α = 1.55π and initial ion velocity v00 = 0.2v0d.

solutions in the second Pierce zone in our case. An important difference between the standard

Pierce modes as in Ref. [104] and our case is that our profile of the ion velocity is nonuniform

resulting in partial suppression of the instability for higher zones. We conjecture that partial

mode stabilization and the shift of Pierce zones for non-uniform profiles relative to the Pierce

instability is the reason for the absence of chaotic regimes. Further parametric studies with

respect to α, v00/v0d parameters and initial conditions to support this claim are left for future

work.

In this paper, we neglected all resistive effects, so the instability discussed in Ref. [78]

does not occur here. For some typical plasma parameters though, the growth rates of both

instabilities can be of the same order, γ ∼ 0.1ωLH . We note here that the nonlinear stages

for the resistive mode of Ref. [78] and for the nonlocal (Pierce like) mode studied here are

different. In the first case, where instability is driven by resistive electron cross-field current,

the instability is local. In this case, local nonlinear interactions due to ion trapping [35] are

the saturation mechanism which results in wave sharpening and breaking leading to cnoidal

type waves. For the Pierce like instability induced by boundary effects, only selected mode(s)

continue to grow seemingly excluding the growth (generation) of the shorter wavelengths. The

nonlinear effects saturate the mode by modifying the instability source — the velocity flow

profile, thus resulting in velocity profile which has a local minimum.

Plasma density gradients and collisions can also destabilize the azimuthal lower-hybrid
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Figure 5.8: Effect of FLR on linear growth rate, for L/ρe = 20.

mode [115, 87], which becomes Simon-Hoh instability in the low-frequency limit. Interaction

of the azimuthal (resulting in anomalous current), and axial modes due to resistive and

boundary effects such as studied here will have to be investigated within a unified framework

which is left for future studies.
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Chapter 6

Effect of anomalous resistivity on axial modes

6.1 Introduction

It was shown, in Chapter 4, that in partially magnetized plasmas with perpendicular electric

and magnetic fields (e.g., Hall thruster shown in Figure 1.2) the equilibrium ion flow v0 along

the electric field E0 = E0x̂ excites large amplitude axial waves. The instability occurs due

to the phase shift between ballistic ion current (4.7) and electron current je = σE0 where

the conductivity mechanism is not significant; in other words, it can be classical σ = σν or

anomalous σ = σa. At the same time, in Chapter 3, it was shown that the turbulence, driven

by the density gradient and the equilibrium electron flow u0 = cE0/B0 (ExB drift), produces

an anomalous current

je =
ce

B0

〈
ñẼy

〉
, (6.1)

which is at least two orders of magnitude higher than collisional current (jν = σνE0). Anoma-

lous conductivity is then defined as

σa =
je
E0

� σν ∼ νω2
pe/ωce. (6.2)

Here, ñ and Ẽy are turbulent fluctuations of the plasma density and azimuthal electric field

respectively (the slab geometry perpendicular to the magnetic field and notations introduced

in Chapter 3 are used in this chapter). Therefore, one can expect an anomalous current,

caused by the Hall drift wave turbulence, to be the main driver of axial mode instability.

Hence, the focus of this chapter is to investigate the nonlinear interaction of these modes, so,

we consider the full system (3.1)-(3.4) with equilibrium ion flow (v0 6= 0) which was neglected

in Chapter 3.
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The saturation mechanism of Hall drift waves is the polarization drift due to ExB La-

grangian advection; in other words, the Poisson bracket term in equation (3.3). It produces

coherent large-scale nonlinear structures (shear flows and vortices) and is responsible for the

inverse energy cascade. The axial mode saturation occurs due to nonlinear terms in the ion

equations (3.1), (3.2). Therefore, the characteristic time scale and amplitude for the axial

instability is different from the gradient driven modes. In particular, simulations in Chap-

ter 4 revealed that the axial mode saturation time and amplitude are higher. Therefore, the

dynamics of Hall drift wave turbulence in the presence of an equilibrium ion flow occurs in

the following order: (i) the most unstable gradient driven waves are excited and grow expo-

nentially; (ii) they form a turbulence with properties described in Chapter 3, thus enhancing

axial electron conductivity; (iii) axial modes grow due to resistive instability and anomalous

conductivity; (iv) axial mode saturates into a high amplitude cnoidal-like wave traveling in

the axial direction.

6.2 Results of nonlinear simulations

Similar to Chapter 3, nonlinear simulations of system (3.1)-(3.4) is performed with fluid

simulation framework BOUT++. First, we measured the evolution of energy-like quantities

(3.6) and anomalous current (6.1) in the nonlinear simulation similar to the one discussed in

Chapter 3, but with an equilibrium ion flow v0 6= 0 (still without electron-neutral collisions

ν = 0). The results are shown in Figures 6.1, 6.2. We can see the linear phase tωLH < 2.5

where gradient driven waves are growing exponentially and anomalous current is absent. At

later times tωLH > 2.5, the nonlinear interactions of Hall drift waves become important and

exponential growth slows down. It leads to the enhancement of axial electron current which

then drives axial instability. Therefore, Hall drift wave growth transits into the axial mode

growth which has larger saturation time. Notice that energy-like functional En corresponding

to ion density perturbation at time tωLH = 10 is ten times bigger in the presence of the

equilibrium ion flow as confirmed by Figures 3.3, 6.1.

Now, we perform the simulation where the nonlinear terms in the ion equations (3.1), (3.2)

are artificially turned off to remove the effect of axial mode saturation. In this case, axial
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Figure 6.1: Time evolution of (3.6)
with parameters ν = 0, v0 = 3.72cs,
Ln = 48.8ρe,

√
mi/me = 427, u0 =

241.8cs.

Figure 6.2: Anomalous axial current
in units of classical collisional current.
The current was smoothed with win-
dow function of order 25. Parameters
used ν = 0, v0 = 3.72cs, Ln = 48.8ρe,√
mi/me = 427, u0 = 241.8cs.

modes grow exponentially and at some point start to dominate the spatial density profile,

so we can confirm the nonlinear driving of axial modes from Hall drift wave turbulence.

We also change boundary conditions for axial direction from periodic to Dirichlet in the

left end and Neumann in the right end, to correspond to the boundary conditions used in

Chapters 4, 5 where axial instabilities were studied. The spatial profiles of plasma density

for late time tωLH = 30 for this simulation are shown in Figures 6.3. Figure 6.3a shows that,

at this time, axial modes completely dominate the profile (ky ≈ 0). Axial modes are “linear”

and do not have cnoidal form as shown in one dimensional slice Figure 6.3b. The structure

of energy-like quantities (3.6) also confirms exponential growth of axial modes as shown in

Figure 6.4. Notice that in the absence of electron-neutral collisions, axial modes (ky = 0)

do not modify the generalized vorticity ∂tη = 0, as follows from the equation (3.3). Hence,

the generalized vorticity is saturated, while plasma density is growing indefinitely. Thus,

electron-neutral collisions are important feedback mechanism from axial modes to Hall drift

waves and codependent large-scale structures (shear flows and vortices).

Finally, we consider the full system (3.1)-(3.4) with electron-neutral collisions and non-

linear ion equations. Thus, saturation mechanisms for Hall drift waves and axial modes are

present, as well as linear feedback on Hall drift waves from axial modes. The Hall drift wave
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(a) Two dimensional profile (b) One dimensional slice

Figure 6.3: Normalized density n/n0 spatial profiles in the simulation without ion
nonlinearities. Parameters used ν = 0, v0 = 3.72cs, Ln = 48.8ρe,

√
mi/me = 427,

u0 = 241.8cs.

turbulence tend to form large-scale structures with small wave numbers (i.e., strong shear

azimuthal flows and vortices). At the same time, nonlinear dynamics of the axial instability

tend to form cnoidal waves with large wave numbers. Therefore, the dynamics of the full

system is complicated due to intrinsic scale separation. Thus, we increased the resolution

(and axial system length) in the following simulation and switched back to fully periodic

boundary conditions. The evolution of energy like functionals (3.6) in full system is shown

in Figure 6.5 where the clear linear growth phase transitions into nonlinear saturation. In

the full system, electron-neutral collisions provide the main order feedback from axial modes

electric field on Hall drift waves. Thus, the axial modes are responsible for further enhance-

ment of axial current as shown in Figure 6.6. Now, we illustrate the time evolution of spatial

profiles of generalized vorticity η/n0 with consequent snapshots in Figures 6.7, 6.8, with

corresponding times tωLH = 3.0, 14.22, 22.1, 35.41, 70.86. Each figure has a two dimensional

profile to illustrate whole structure of turbulence and one dimensional slice to highlight large

axial variations (presence of axial modes). Similar to results in Chapter 3, the most unstable

modes (Hall drift waves) grow exponentially in time and then when nonlinear interaction

start to play a dominant role, shear azimuthal flows are formed as shown in Figure 6.7a. At

an early time, the axial modes are not yet developed and large amplitude axial variations are

absent, as shown in Figure 6.7b. At later time, axial modes appear with large amplitudes and
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Figure 6.4: Time evolution of (3.6)
with linear ion equations and parame-
ters ν = 0, v0 = 3.72cs, Ln = 48.8ρe,√
mi/me = 427, u0 = 241.8cs.

Figure 6.5: Time evolution of (3.6)
with parameters ν = 0.28ωLH , v0 =
3.72cs, Ln = 48.8ρe,

√
mi/me = 427,

u0 = 241.8cs.

coexist with shear azimuthal flows and vortices as shown in Figure 6.7c. Notice that axial

modes have sharp cnoidal-like peaks as can be seen in Figure 6.7d. The full dynamics is com-

plicated and do not always include vortices, shear flow and axial modes at the same instant.

As shown in Figures 6.8a-6.8f, prominent axial modes can disappear (Figures 6.8a, 6.8b),

or completely dominate the spatial profile (Figures 6.8c, 6.8d), or coexist with shear flows

(Figures 6.8e, 6.8f).

Figure 6.6: Anomalous axial electron current in units of classical collisional current
with parameters ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,

√
mi/me = 427, u0 = 241.8cs.

The current was smoothed with window function of order 30.

86



(a) Two dimensional profile (b) One dimensional slice

(c) Two dimensional profile (d) One dimensional slice

Figure 6.7: Normalized generalized vorticity η/n0 spatial profiles at times tωLH =
3.0, 14.22. Parameters used ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,

√
mi/me = 427,

u0 = 241.8cs.

6.2.1 Streamers

An analogy with fully magnetized plasmas, we study the inverse energy cascade in a partially

magnetized plasma which leads to the formation of large-scale shear flows (c.f., zonal flows).

In fully magnetized plasmas, zonal flows usually occur together with streamers [11, 25, 90].

Streamers are coherent nonlinear structures, usually observed in drift wave turbulence which

are localized in the azimuthal direction (poloidal direction in tokamaks) and extended in

the axial direction (radial direction in tokamaks). Here, we report the formation of stable

streamers in partially magnetized plasmas which can exist for long periods of time tωLH ∼ 5

as shown in Figures 6.9.
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6.3 Summary

A density gradient in partially magnetized plasmas produces small scale turbulence, Hall

drift waves. The turbulence tends to cascade energy into larger scales, forming coherent non-

linear structures (i.e., shear flows and vortices). This process is accompanied by significant

enhancement of axial electron current. High electron current triggers an axial instability

which is destabilized by the phase shift between electron current and the ion current Doppler

shifted due to equilibrium ion flow. The axial instability saturates, forming coherent non-

linear structures resembling cnoidal waves. This nonlinear dynamics of partially magnetized

plasma was studied with the reduced fluid model proposed in [115] and fluid simulation frame-

work BOUT++ for typical Hall thruster parameters (ν = 0.28ωLH , v0 = 3.72cs, Ln =

48.8ρe,
√
mi/me = 427, u0 = 241.8cs). It was established that the dynamics starts with

the strongest instability exciting Hall drift waves. The nonlinear interactions of Hall drift

waves enhances electron current and excites the axial instability even when axial modes are

linearly stable (i.e., in the absence of electron-neutral collisions). The main saturation mech-

anism of axial modes is then nonlinear terms in the ion continuity and Euler equations, and

the feedback mechanism to Hall drift waves is with electron-neutral collisions. This was con-

firmed by a simulation where those effects were artificially turned off. It was demonstrated

that the full dynamics of Hall drift and axial modes have large coherent nonlinear structures

such as shear flows, vortices, cnoidal waves, and streamers.
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(a) Two dimensional profile (b) One dimensional slice

(c) Two dimensional profile (d) One dimensional slice

(e) Two dimensional profile (f) One dimensional slice

Figure 6.8: Normalized generalized vorticity η/n0 spatial profiles at times tωLH =
22.1, 35.41, 70.86. Parameters used ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,

√
mi/me =

427, u0 = 241.8cs.
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Figure 6.9: Normalized generalized vorticity η/n0 spatial profiles for streamer for-
mation. Parameters used ν = 0.28ωLH , v0 = 3.72cs, Ln = 48.8ρe,

√
mi/me = 427,

u0 = 241.8cs.
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Chapter 7

Coupling of PIC and Vlasov spectral solver

in velocity space

7.1 Preface

Kinetic plasma dynamics involve a phenomena on a wide range of scales in velocity space.

Such phenomena are difficult to resolve simultaneously within a single algorithm; e.g., with

PIC method. Moreover, complicated turbulent plasma dynamics is very difficult to solve

with standard PIC method because of high particle noise. In this chapter, I propose a novel

approach which overcomes this problem by combining the PIC method with an accurate

spectral method. This hybrid method allows efficient high fidelity simulations of nonlinear

dynamics in systems with large-scale separation; e.g., a weak beam-plasma systems. The

material in this chapter is based on the paper published in Los Alamos Space Weather

Summer School Research Reports [75].

7.2 Abstract

A new method for the solution of the kinetic equations for a collisionless plasma has been

developed. It treats part of the distribution function with a spectral (moment-based) ex-

pansion based on Hermite polynomials, while the remaining part of the distribution function

is described with macro-particles as in the Particle-In-Cell (PIC) approach. The goal is to

combine the high accuracy of spectral methods with the flexibility of PIC in dealing with

complex distribution functions that might otherwise require a large number of moments for

convergence. The application of the new method is studied on the example problem of the
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interaction of a weak beam with the background plasma. This problem is challenging for both

conventional PIC and spectral methods due to the low density of the beam and the complex,

quickly evolving, shape of the distribution function. The potential of the new method is

demonstrated and its efficiency and accuracy are characterized.

7.3 Introduction

The Vlasov-Maxwell system describes the kinetic evolution of a collisionless magnetized

plasma, which is very difficult for analytical and numerical methods. First of all, it is a

time dependent system of partial differential equations which describes the evolution of six-

dimensional phase space. This fact implies that high computational resources are required to

resolve the system. The kinetic equation is also highly nonlinear meaning that it can lead to

turbulence and chaos. Such solutions usually need high resolution. Moreover, a collisionless

magnetized plasma is characterized by a large number of very different time and space scales

making the system of equations very stiff. For example, light electrons respond to perturba-

tions much faster than heavy ions. In the presence of a strong magnetic field, it is common

to have large anisotropy along and across the magnetic field which also makes the problem

stiff.

There are a lot of different numerical methods to solve Vlasov-Maxwell system. One of the

main distinctions between them is the approach to treat phase space. Probably the most

popular method is particle-in-cell (PIC) method [12] where phase space is discretized with

macro-particles. The PIC method is very robust and it can be efficiently parallelized. An-

other common approach is Eulerian Vlasov [30, 118, 50], where phase space is discretized

with a stationary computational grid. The third method is spectral [6, 110, 64, 108]. Spec-

tral methods handle phase space by expanding the distribution function with basis functions.

The proper choice of functions can dramatically improve the efficiency of the method.

The numerical methods discussed above have another important distinction — time dis-

cretization. Explicit methods are the simplest ones. Unfortunately, they suffer from various

numerical stability constraints. Recently, fully implicit methods are gaining in popularity in

kinetic simulations due to their unconditional stability and ability to exactly satisfy physical
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conservation laws. For example, see recent papers for conservative implicit PIC [85, 28] or

spectral methods [41, 126, 91, 23].

The main goal of this work is to construct and investigate a new hybrid method which is

based on combining PIC and spectral methods. The main idea is to divide the distribu-

tion function in phase space into two regions and resolve one part with macro-particles and

another with a basis function expansion. The PIC noise decreases as ∼ 1/
√
Np where Np

is a number of macro-particles, thus it becomes computationally expensive to obtain high

accuracy. So one of the targeted results is to improve the accuracy of PIC by resolving the

part of a distribution function with the spectral approach. On the other hand, the spec-

tral method may require a high number of expansion functions (and computational time) to

handle the complex part of the distribution function, therefore treating complex part with

macro-particles may boost the performance. To the best of the author knowledge, PIC and

spectral coupling was never done before. Thus, it is important to investigate the properties

and merits of the new method.

The paper is organized as follows: Section 7.4 introduces the main equations and a mathe-

matical formulation of the new method. A Landau damping benchmark is shown in Section

7.5. The comparison of the new numerical method against the pure spectral approach is

conducted in Section 7.6. Finally, Section 7.7 summarizes the results.

7.4 Method description

We will demonstrate the hybrid method with the example of one-dimensional electrostatic

unmagnetized plasma. Thus the Vlasov-Maxwell system takes the form,

∂tf
s + v∂xf

s +
qs

ms
E∂vf

s = 0, (7.1)

∂xE =
∑
s

qs
∫ +∞

−∞
f sdv, (7.2)

where s superscript denotes a species (e.g. electrons, ions, etc.); t, x, v are time, space and

velocity variables respectively; f s = f s(t, x, v) is the distribution function; qs, ms are charge

and mass; E is the electric field. All variables are dimensionless and the normalization units
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defined as

t = tdωpe, x =
xd

λD
, E =

eλD
Te

Ed, f =

(
Te
me

)3/2
fd

n0

, q =
qd

e
, m =

md

me

,

(7.3)

with periodic boundary conditions

f s(t, 0, v) = f s(t, L, v), E(t, 0) = E(t, L), f s(t, x,±∞) = 0, (7.4)

where d superscript denotes dimensional variables; ωpe is the plasma frequency; λD is the

Debye length; n0 is the plasma density; L is the domain length; e, me, Te are electron charge,

mass and temperature, respectively.

To begin the formulation of the hybrid method, we write the distribution function f s for each

species s in the form

f s = f sspectral + f sparticle, (7.5)

meaning that we solve two instances of Eq. (7.1) separately for f sspectral and f sparticle with

the common electric field which depends on the sum of all distribution functions. We solve

one instance with the spectral method and another with the PIC method. To simplify no-

tations, we will move the separation (7.5) into the species superscript. This means that we

are solving the system (7.1)-(7.2) for s = spectral electrons, particle electrons, spectral ions,

particle ions, etc. We also introduce superscripts for spectral and PIC part only: ss and ps

respectively.

Note that nonlinear partial differential equations (PDE) generally do not permit the sepa-

ration (7.5) because a sum of two PDE solutions may not be a solution. In our case, this

separation is possible if we keep a common electric field.

7.4.1 PIC

In the particle-in-cell method, we solve the Eq. (7.1) in the Lagrangian reference frame by

following the characteristics of the macro-particles. In this frame, the distribution function

is always constant. Thus we only need to follow the frame evolution. Following [12], for
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electrostatic momentum conserving explicit PIC we have the following equations

dxpsi
dt

= vpsi (7.6)

dvpsi
dt

=
qps

mps
Elocal(xpsi ) (7.7)

Elocal(xpsi ) =
Nx−1∑
j=0

EjS(xj − xpsi ) (7.8)

where i = (1, . . . , Np) and Np is the number of macro-particles; xpsi , v
ps
i are position and

velocity of a macro-particle i; qps,mps are charge and mass of a species ps; Ej, Elocal(xpsi )

are the electric field at the grid point xj and particle position xpsi respectively; S is the

interpolation function; Nx is the number of grid points.

To compute the electric field at the grid point we would need the charge density which is

ρj =
∑
ps

Np∑
i=1

qpsS(xj − xpsi ). (7.9)

7.4.2 Spectral method

There are a lot of different spectral methods [57] some of which are specifically designed to

solve kinetic equation [6, 110, 64, 108]. Here we closely follow the approach taken by [41].

Therefore, to solve Eq. (7.1), we approximate the distribution function and the electric field

with the expansion

f ss(t, x, v) =
Nv−1∑
n=0

Nk∑
k=−Nk

Css
n,k(t)Ψn(ξss) exp

(
2πi

kx

L

)
, (7.10)

E(x) =

Nk∑
k=−Nk

Ek exp

(
2πi

kx

L

)
, (7.11)

where Nk is the number of spatial Fourier modes defined to satisfy Nx = 2Nk + 1; Nv is

the number of Hermite modes; ξss = (v − uss)/αss with free parameters uss, αss which affect

convergence of the spectral method. The expansion functions in velocity space are defined as

Ψn(ξ) = Ψn(ξ) =
π−1/4

√
2nn!

Hn(ξ) exp

(
−ξ

2

2

)
, (7.12)

where Hn(ξ) is a Hermite polynomial of degree n in ξ with the definition

H0(ξ) = 1, H1(ξ) = 2ξ, ξHn(ξ) =
1

2
Hn+1(ξ) + nHn−1(ξ). (7.13)
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The final step is to use the orthogonality of Hermite and Fourier basis∫ +∞

−∞
Ψn(ξ)Ψm(ξ)dξ = δn,m, (7.14)∫ L

0

exp

(
2πix

n−m
L

)
dx = δn,m. (7.15)

The orthogonality gives us a final system of equations

dCss
n,k

dt
=− αss2πik

L

(√
n

2
Css
n−1,k +

uss

αss
Css
n,k +

√
n+ 1

2
Css
n+1,k

)
+ (7.16)

+
qss

mssαss

[
E∗ ∗

(
−
√
n

2
Css
n−1,∗ +

√
n+ 1

2
Css
n+1,∗

)]
k

, (7.17)

where n = (0, . . . , Nv − 1); k = (−Nk, . . . , Nk) and the convolution is defined as

[A∗ ∗B∗]k =

Nk∑
k′=−Nk

Ak−k′Bk′ . (7.18)

7.4.3 Hybrid

Finally, the hybrid method comprises the PIC and spectral parts, coupled by the solution of

Poisson’s equation (7.2) including all contributions to the plasma density. The field equation

is also solved with spectral method using the expansion (7.11) and the orthogonality condition

(7.15), therefore

E(xj) =

Nk∑
k=−Nk

Ek exp

(
2πi

kxj
L

)
, (7.19)

Ek =
L

2πik

(∑
ss

qssαss
Nv−1∑
n=0

hnC
ss
n,k + ρk

)
, (7.20)

ρk =
1

Nx

Nx−1∑
j=0

ρj exp

(
−2πi

kxj
L

)
, (7.21)

where

hn = 0, for odd n, (7.22)

hn =

√
2π

π1/4

(
1

(n/2)!

√
n!

2n

)
, for even n. (7.23)
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Thus the system of equations (7.6), (7.7), (7.17) with binding equations (7.8), (7.9), (7.20),

(7.19), (7.21) is a system of time dependent ordinary differential equations which can be

integrated, for example, with a family of Runge-Kutta methods.

7.5 Landau damping benchmark

To investigate the properties of the new hybrid method a numerical code was developed.

However, before proceeding with this study, the correctness of the code must be verified. In

this section, the ability of the code to reproduce Landau damping is demonstrated.

Landau damping is a collisionless/entropy conserving damping of electrostatic waves in the

plasma. It is derived from the dispersion equation [82]

1 + k2 +
ω

2k
Z
( ω

2k

)
= 0. (7.24)

where the normalization corresponds to (7.3); ω is the frequency; k is the wave vector;

Z(z) = π−1/2
∫ +∞
−∞ et

2
dt/(t− z) is the dispersion plasma function.

To benchmark the numerical code we measure the damping rate of an electrostatic wave in

the simplest scenario: quasineutral plasma of two species — electrons and hydrogen ions

with temperature of Te and Ti respectively. In order to compare numerical and theoretical

damping rates, a particular mode is excited to observe its evolution. We choose k = 0.5. The

analytical solution of Eq. (7.24) for this k is <(ω) = 1.414 and =(ω) = 0.154. The numerical

resolution is chosen to resolve smallest physical time and length scales and to reproduce

Landau damping, i.e., time discretization ∆t = 10−2, system length L = 4π, number of

spatial points Nx = 128, number of particles Np = 105, and number of Hermite polynomials

Nv = 51.

The Landau damping occurs on the time scales where the ion dynamics is negligible in

comparison to the electron dynamics. Thus, to check the PIC and the spectral part of the

code separately, we conduct two separate tests: (a) electrons are resolved with the spectral

part of the code and ions with the PIC part; (b) electrons are resolved with the PIC part

of the code and ions with the spectral part. The results of the simulations are shown in

Figure 7.1 where we can clearly see that the electrostatic wave damps according to the
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theoretical prediction. We also can see that the spectral part of the code Figure 7.1a is more

precise than the PIC part Figure 7.1b for the relatively similar resolution (the computation

time is similar).

(a) electrons — spectral, ions — PIC (b) electrons —PIC, ions — spectral

Figure 7.1: Landau damping benchmark

7.6 Weak beam-plasma interaction problem

In this section the capabilities of the new hybrid method are demonstrated on a classical

problem — the interaction of a weak electron beam with plasma. This problem is very

challenging for the pure PIC method [106] because the required resolution and characteristic

evolution time are increasing with the weaker beam density. During the beam-plasma in-

teraction, the electron distribution function forms a plateau in velocity space. Therefore, a

pure spectral method requires a high number of expansion functions to capture the correct

dynamics. In order to improve performance, the hybrid method treats the bulk plasma with

the spectral method and the beam with macro-particles.

The following simulation parameters with normalization (7.3) are used:

• 3 species — ions (with mass 1836), background electrons and beam electrons

• Domain length is 2048 with periodic boundary conditions

• Electron beam mean velocity is 10
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• Electron bulk and beam thermal velocities are 1

• Ion thermal velocity is 1/
√

10 · 1836

• Beam density is 10−2

The hybrid and spectral codes use the same

• initial condition shown in Figure 7.2

• time discretization (Runge-Kutta 4)

• spectral discretization of plasma bulk with 51 Hermite polynomials

At the same time, they resolve the electron beam differently

• Hybrid code uses macro-particles with different number of particle per cell (ppc)

• Spectral code uses the expansion with different number of Hermite polynomials Nv

After some time the electron distribution function flattens to form a plateau which is shown

in Figure 7.3. One can see that spectral and hybrid codes converge to the same solution. To

quantify the accuracy, we define an error

ε(t) =

∫
|f(t, x, v)− fref (t, x, v)| dxdv∫

|fref (t, x, v)|dxdv
· 100% (7.25)

where fref is the reference solution which is obtained by a spectral method solution with high

number of Hermite polynomials Nv = 1601 for the beam and Nv = 51 for the bulk. Results

are listed in Tables 7.1,7.2.

Ppc Simulation time (s) ε(100) (%) ε(200) (%)

101 1207 0.232 0.308

102 1459 0.226 0.327

103 3906 0.119 0.416

104 31425 0.123 0.128

Table 7.1: Hybrid method performance
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Nv Simulation time (s) ε(100) (%) ε(200) (%)

51 1794 0.501 2.674

101 2364 0.072 0.347

201 3703 0.013 0.043

401 5987 0.004 0.017

Table 7.2: Spectral method performance

Figure 7.2: Initial condition for electron distribution function averaged over spatial
variable x for the beam-plasma problem.

7.7 Discussion and conclusion

In this letter, the new hybrid method to solve Vlasov-Maxwell system was described. The

new key concept is to resolve one part of the velocity space with macro-particles and another

with the spectral expansion. This approach gives more flexibility to balance between accuracy

and computational load in comparison to pure PIC and spectral methods.

The numerical method was implemented and benchmarked with Landau damping problem.

The benchmark revealed that the code can reproduce the correct damping rate either with

the PIC or with the spectral part.

Next, the new method was applied to the problem of weak electron-beam plasma interaction.

This problem combines phenomena with different time scales. The essential part of the

beam instability is Landau resonance which is responsible for production and absorption of

Langmuir waves. Therefore, the plasma frequency, electron time scales, should be resolved.
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On the other hand, to capture the correct dynamics, one needs to consider a nonlinear

wave interaction between Langmuir waves and the ion sound which happens on ion time

scales. Thereby, the combination of different time scales makes this problem challenging for

computational physics.

The results (Tables 7.1,7.2) show that sufficiently small error could be obtained by discretizing

the electron beam with a small number of macro-particles (10−100 particle per cell (ppc)). To

obtain similar error with the pure spectral method, one needs to use ∼ 100 polynomials which

is computationally more expensive. The difference in performance may be more prominent

in 3-dimensional case.

It is important to note that a comparison of numerical methods is an extremely difficult task.

For instance, the error definition (7.25) uses the pure spectral method as a reference solution.

This fact makes it difficult to reason about hybrid method convergence. Thus, one needs to

investigate further the correct measure of the error.
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(a) time 100 (b) time 200

(c) zoom-in of Figure 7.3a (d) zoom-in of Figure 7.3b

(e) Common legend

Figure 7.3: Electron distribution function averaged over spatial variable x for hybrid
and spectral methods at t = 100, 200.
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Chapter 8

Discussion and conclusion

Plasma physics is a mature science discipline addressing the behavior of ionized gases

with a large number of collective nonlinear phenomena in the form of waves, fluctuations,

and self-organized structures born out of fluctuations. A large portion of this work is devoted

to the study of partially magnetized plasmas in crossed electric and magnetic fields and with

plasma density gradients using a reduced fluid model introduced in Ref. [115]. Such plasmas

are of interest for a number of applications in plasma material processing, electric propulsion,

and space physics. In many such applications, the effect of the magnetic field on ions is small

and can be neglected, while electrons are strongly magnetized and their mobility across the

magnetic field is significantly reduced. This asymmetry and external electric field result in

large equilibrium flows for electrons and ions leading to various instabilities studied in this

thesis. Electrons with large E × B drift (in the direction perpendicular to the electric and

magnetic fields) together with plasma density gradients excite Hall drift waves (or anti-drift

waves). At the same time, ions are accelerated in the direction of the applied electric field and

their motion excites axial modes. The nonlinear regimes of these instabilities and ensuing

wave turbulence are studied in this thesis.

In Chapter 3, we have shown that the wave turbulence excited in partially magnetized

plasma with the electron drift and density gradients exhibits inverse energy cascade; in other

words, energy is transfered into large-scale structures from small-scale (most unstable) Hall

drift waves. The nonlinear dynamics produces large-scale flows in the azimuthal direction

(along E × B drift) with strong shear in the axial direction (direction of the equilibrium

electric field). These types of zonal flows have been observed in other plasma systems in

laboratory. For example, these are seen in tokamaks and in isomorphically similar geophysical

systems, such as shallow water dynamics in the atmosphere and oceans on Earth and other
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planets (e.g., zonal flows and the Great Red Spot on Jupiter). Our study shows that at

a later stage, the shear flows become unstable and form vortices similar to those found in

the Kelvin–Helmholtz instability. The vortices can stay quasi-stationary for a long time (in

comparison with the linear growth rate). It was shown that the wave turbulence in this system

produces highly intermittent anomalous electron axial transport for at least two orders of

magnitude above classical collisional values. It has been suggested that this mechanism is

responsible for the anomalous current and spoke formation in Hall effect thrusters [113].

A picture of the inverse cascade, zonal flows generation, secondary instability of the

zonal flow similar to Kelvin–Helmholtz mechanism, demonstrated in this thesis for partially

magnetized plasmas, is similar to the zonal flow dynamics in fully magnetized plasmas (e.g.,

tokamaks). In strongly magnetized plasmas, small-scale standard drift wave instabilities

nonlinearly cascade energy into large-scale coherent nonlinear structures such as zonal flows

(poloidal flows with strong shear in the radial direction) and streamers (structures localized

in the poloidal direction and extended in the radial direction).

Zonal flow dynamics (in the framework of the Hasegawa-Mima equation) was studied

analytically in Chapter 2 where saturation mechanism of zonal flow energy was established

due to the nonlinear self-interaction. We have shown that this mechanism could be more

important compared to other standard mechanisms of zonal flow saturation, namely due to

the drain of drift wave energy reservoir into the zonal flows.

The equilibrium ion and electron currents in the axial direction excite another type of

instability whose nonlinear regime was studied in Chapter 4. This instability occurs due

to the phase shift between the electron current (can be classical or anomalous) and the ion

current which is Doppler shifted because of the equilibrium ion flow. It was shown that the

finite electron inertia and Larmor radius effects are necessary for the cutoff of the instability

growth rates at high wave numbers (kρe ∼ 1) and thus are important for nonlinear simulations

providing required physics based cut-off at the highest grid resolution length scale (without

artificial damping at high k). We have shown, through nonlinear fluid simulations, that

the axial instability saturates due to ion trapping at large wave amplitudes and results in

coherent structures resembling cnoidal waves. We conjecture that this mechanism may be

responsible for breathing mode oscillations in Hall effect thrusters [78].
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As was previously shown [71], the axial instability of lower hybrid waves can be excited

by boundary effects without collisional or anomalous electron axial current. This mechanism

for linear lower-hybrid waves is formally (mathematically) similar to the Pierce instability.

In Chapter 5, we showed that the finite Larmor radius effect stabilizes this instability for

high Pierce zone numbers (slow ion flows). The nonlinear simulations have revealed that, for

Pierce parameters corresponding to aperiodic instability (odd Pierce zones), the instability

saturates in a new nonlinear stationary equilibrium state. For an oscillatory instability (even

Pierce zones), the instability saturates to a stationary (oscillating) standing wave.

Azimuthal flows emerging in Hall drift wave turbulence studied in Chapter 3 are non-

linear modes with strong shear in the axial direction. At the same time, the resistive axial

modes studied in Chapter 4 are the linear eigenmodes with strong axial variations. There-

fore, the strong coupling and interactions are expected when both modes are present and

complex multi-scale nonlinear dynamics emerge due to both electron and ion equilibrium

flows [66, 129, 53, 109]. This dynamics was studied in Chapter 6 where it was shown that

the wave turbulence develops from the most unstable (small-scale) Hall drift waves which,

via the inverse energy cascade, form large-scale azimuthal flows and significantly increase

electron axial transport. The high anomalous current triggers an axial instability which pro-

duces cnoidal axial waves. This mechanism is similar to the linear resistive mode instability

mechanism where the role of the resistive linear current is replaced by the anomalous current

due to small-scale fluctuations. On the other hand, the strong electric field produced by

the axial modes play the role of the equilibrium electric field (in the axial direction) which

affects the Hall drift waves stability providing a nonlinear feedback mechanism. The full

dynamics is the result of complex interaction of nonlinearly generated azimuthal shear flows

(zonal flows), vortices and large amplitude axial modes. The existence of another type of

nonlinear mode, streamers, was shown in Chapter 6. These are nonlinear structures localized

in the azimuthal direction and extended in the axial direction. They were also reported to

appear together with zonal flows in fully magnetized plasmas resulting in intermittent axial

transport [11, 25, 90].

In Chapter 7, a new flexible hybrid numerical method for the comprehensive kinetic

Maxwell-Vlasov problem was proposed. The method aims to effectively resolve plasma tur-
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bulence which has an intrinsic scale separation. It combines a standard method for the Vlasov

equation, the PIC method, and a high-accuracy spectral method. The standard PIC method

is difficult to use for turbulence problems because particle noise error scales poorly with reso-

lution. A good solution is the spectral method; however, in collisionless plasmas the particle

distribution function (PDF) may have complex shape causing poor convergence. The idea

of this new hybrid method is to treat the small, complex part of the PDF as particles and

describe its evolution using PIC while the “well-behaved” (Maxwellian) part of the PDF is

described and evolves according to the spectral method. Thus, it allows to decrease particle

noise and improve the convergence of the spectral method. This new method was imple-

mented and tested with the classical example of Landau damping and electron beam/plasma

interaction problems producing Langmuir wave turbulence. It was shown that the proposed

method is more efficient than pure spectral and PIC method for moderate resolution and it is

expected that improvements will be more significant for larger scale separation (e.g., weaker

beam density).
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