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ABSTRACT 

Epigenetic mechanisms are essential for normal cell development. Alteration in those 

normal processes leads to malignant cell transformation and with this to cancer development.  

Use of inhibitors that alter the epigenetics of DNA methylation and histone post translational 

modifications has lead to the exploration of the epigenetic mechanism involved in silencing of 

tumor suppressor genes in cancer, including acute myeloid leukemia (AML). Moreover, 

combinations of inhibitors that target various epigenetic enzymes have being recognized to be 

more effective in the re-activation of tumor suppressor genes than individual drug treatments. 

Here, we reported that p15, p21 and E-cadherin genes are more effectively re-expressed using a 

combination of DNA methyltransferase and histone methyltransferase inhibitors in AML cell 

lines. Re-expression of hypermethylated p15 and E-cadherin genes required reduced levels of 

promoter histone 3 lysine 9 (H3K9) methylation rather than inhibition of DNA methylation 

itself. Moreover, induction of p21 expression was associated with changes in promoter histone 

3 lysine 9 methylation (H3K9Me) by achieving inhibition of the histone methyltransferase, 

SUV39H1, activity. Altogether, our results highlight the potential of combining epigenetic 

drugs in the re-activation of epigenetically silenced tumor suppressor genes and the need for 

evaluating histone methyltransferases as therapeutic targets for treatment of acute myeloid 

malignancies.   
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1. INTRODUCTION 

 

Cancer has been classically recognized as a genetic disease. However, since the discovery 

of epigenetics, the cancer paradigm has changed and now it is recognized as a genetic and 

epigenetic disease.  

Epigenetics involve the study of heritable changes on gene expression without any 

alteration in the DNA sequence. Thus, epigenetic mechanisms are essential for the maintenance 

of gene expression patterns in a cell and for normal cellular development. The major hallmark 

of epigenetics is that epigenetic changes are reversible, which suggests therapies could be 

developed to reverse and restore epigenetic aberrations that occur in cancer (Sharma et al., 

2010).  

Major breakthroughs in the discovery of epigenetic drugs have contributed to our 

understanding of epigenetic silencing of tumor suppressor genes in cancer (Cameron et al., 

1999; Bachman et al., 2003; Ekmekci et al., 2004; Baylin, 2005). For example, combinations of 

epigenetic drugs, such as DNA methyltransferase (DNMT) and Histone deacetylase (HDAC) 

inhibitors have been found to be more effective in reactivating silenced tumor suppressor genes 

and in reducing tumor formation compared to individual drug treatments (Cameron et al., 1999; 

Zhu and Otterson, 2003). Hence, studies involving combinations of epigenetic-enzyme 

inhibitors might help to elucidate the epigenetic components involved in aberrant gene silencing 

and might contribute to the use of more effective treatments in cancer therapy. 

The objective of this thesis was to investigate mechanisms involved in the epigenetic 

silencing of tumor suppressor genes in acute myeloid leukemia (AML) and to evaluate 

epigenetic drug combinations that allow re-expression of tumor suppressor genes. The 

following literature review will provide the current knowledge related to the molecular basis of 

cancer, AML, chromatin structure, general concepts of epigenetics, and a brief description of 

DNMT and HMT inhibitors and their potential use in epigenetic therapy. Emphasis will be 

placed on the regulation of epigenetic events in cancer and some important tumor suppressor 

genes in AML.  
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2. REVIEW OF THE LITERATURE 

 

2.1. Molecular basis of cancer 

 

2.1.1. Multistep molecular carcinogenesis 

Classically, cancer has been recognized as a heterogeneous disease that is caused by 

progressive genetic abnormalities driven by mutational events that evoke a normal cell to 

become a cancer cell through a process called carcinogenesis (Hanahan et al., 2000). More 

recently, it has been recognized that cancer is also driven by epigenetic changes that do not 

affect the DNA sequence but cause alterations on gene activity by mechanisms that involve 

DNA methylation and histone modifications (Jones et al., 2007; Sharma et al., 2010). 

Carcinogenesis does not occur from a single event; rather it is due to the accumulation of 

sequential molecular changes that lead to the inactivation of tumor suppressor genes and the 

activation of oncogenes, which alter cell phenotypes and bring about tumor formation. Tumor 

cells are diverse and heterogenous but they all share common features of deregulated cell 

proliferation and apoptosis (Evan et al., 2001).  

In 1990, Fearon proposed a genetic, multi-step model for colorectal cancer, suggesting that 

as a cell moves through the various stages of malignancy, hyperplasia, metaplasia, neoplasia, 

pathways (Fearon and Vogelstein, -

model in which a dominantly inherited predisposition to cancer entails a germline mutation, 

while tumorigenesis requires a second, somatic mutation. In contrast, non-hereditary cancer of 

the same type requires the same two hits but both are somatic (Knudson, 1996).   

In leukemia, attempts to elucidate genetic and molecular steps that drive a variety of 

leukemic transformations have been investigated over the past three decades (Chen et al., 

2010). For example, chronic myeloid leukemia (CML) is recognized to be caused in 95% of 

cases by the chromosomal translocation t (9; 22), which produces the fusion between the 

breakpoint cluster region gene and the Albenson kinase gene (BCR-ABL). Acute myeloid 

leukemia (AML) is recognized as heterogeneous disease that is caused by a variety of recurring 

chromosomal aberrations and genetic mutations (Melo et al., 2007; McCormack et al., 2008). 

However, these malignancies evolve into other types of leukemic forms and causes of these 
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transformations are still poorly understood. Due to the heterogeneity and complexity of 

leukemias, a multistep carcinogenesis model has not yet been established. Identifying 

molecular, genetic, and epigenetic irregularities involved in each type of cancer is essential for 

understanding the biological mechanisms, for predicting cancer development, and for 

identifying appropriate therapeutic approaches. 

 

2.2. Chromatin organization and regulation 

 

2.2.1. Chromatin structure 

Chromatin structure defines the state in which genetic information is organized within a 

cell. The fundamental unit of chromatin is the nucleosome, which is composed of 147 base 

pairs of DNA wrapped around an octamer of core histone proteins, consisting of two copies of 

each histone protein: H2A, H2B, H3 and H4. Each of these core histones contains two major 

domains; a structured globular domain that mediates DNA-histone and histone-histone 

interactions and an amino domain or tail that is outside the core and serves as a substrate for 

histone modifying enzymes, which introduce post-translational modification such as 

acetylation, methylation, phosphorylation, ubiquitylation, and sumoylation (Kouzarides, 2007). 

Chromatin is compacted into a higher order structure forming a 30 nm condensed fiber by 

repetitive folding of adjacent nucleosomes. Chromatin condensation is dynamic and structurally 

heterogenous and it is present principally in two different forms, heterochromatin and 

euchromatin. Heterochromatin is compact and associated with transcriptionally inert DNA 

regions. Heterochromatin is principally found at the chromosome centromere and telomeric 

regions (Martin et al., 2005). Euchromatin is characterized by uncondensed chromatin, which is 

accessible for gene activation (Cosgrove and Wolberger, 2005; Bernstein, 2007). Dynamic 

changes in chromatin structure greatly influence abilities of genes to be activated or silenced. 

These changes are principally driven by enzymatic modifications, such as DNA methylation 

and histone protein modification and they are broadly defined as epigenetic changes (Bernstein, 

2007).  
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2.3. Epigenetics 

The term epigenetics was first defined by Waddington in the 1940s, as 

 (Waddington, 

1942). Regardless of its many definitions, epigenetics is currently defined as the study of 

heritable changes in gene expression that occur without any changes in the genomic DNA 

sequence (Jones and Baylin, 2002). Epigenetic modifications are transmitted from one 

generation of cells to the next and heritable gene expression patterns are mediated by particular 

combinations of DNA methylation and posttranslational histone modifications (Sharma et al., 

2010). These modifications regulate genome functioning and alter the structural dynamic of the 

chromatin, causing inactivation or activation of specific genes. Alteration in these processes 

results in dysregulation of gene expression profiles, causing permanent silencing of tumor 

suppressor genes and activation of oncogenes that lead to cancer development.  However, 

events that lead to initiation and progression of these changes are still not completely 

understood (Feinberg, 2007; Jones et al., 2007; Sharma et al., 2010).  

 

2.3.1. DNA methylation 

DNA methylation is the only type of chemical modification that takes place on the DNA 

molecule without altering the DNA sequence itself (Espada and Esteller, 2010). In mammals, 

DNA methylation occurs through the addition of a methyl group at the C-5

 

position of cytosine 

in CpG dinucleotides, which is catalyzed by DNA methyltransferases (DNMTs) (Figure 2.1). 

CpG islands correspond to a genomic sequence that has high content of CG dinucleotides and 

typically occurs near the transcription start site of genes (Gardiner-Garden and Frommer, 1986). 

Approximately 60% of human gene-promoters are associated with CpG-rich regions. Even 

though only a relatively small fraction of these sequences become methylated, changes in 

methylation are necessary during cell development and differentiation as well as to maintain the 

stability of the cell (Bernstein, 2007). However, hypermethylation of CpG islands can stably 

repress genes and cause misregulation that are involved in cancer development (Mund et al., 

2006; Jones et al., 2007).   

DNA methylation mainly mediates gene silencing by either blocking transcription factors 

from accessing DNA binding sites or providing sites for methyl-binding proteins, which can 
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mediate gene repression through interactions with histone related enzymes, such as histone 

deacetylases (HDACs) and histone methyltransferases (HMTs) (Sharma et al., 2010).  

 

 

 

Figure 2.1. Chemical basis of DNA methylation. DNA methylation in mammalian genome 

occurs almost exclusively in cytosine residues contained in CpG dinucleotides and it essentially 

takes place to preserve genome DNA methylation (a) and to alter gene expression patterns 

through de novo methylation (b). (a) The pattern of symmetrically methylated CpG 

dinucleotides is copied and maintained during DNA replication in a process catalyzed by DNA 

methyltransferases. (b) DNA methyltransferases use S-adenosyl-L-methionine (SAMe) as the 

source of methyl groups, producing S-adenosyl-homocysteine (SAH). DNA methyltransferases 

catalyze the addition of met -position of the pyrimidine ring of cytosine. 

(This figure was adapted and modified from Espada and Esteller, 2010). 
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2.3.1.1. CpG island hypermethylation 

A cancer epigenome is marked by a global DNA hypomethylation and site-specific CpG 

island promoter hypermethylation (Esteller, 2007). Site specific DNA hypermethylation was 

initially associated with tumorogenesis when loss of function of the tumor suppressor gene Rb 

was discovered to be caused by promoter CpG hypermethylation (Greger et al., 1989). 

Following this discovery, various other tumor suppressor genes, including p16 (Gonzalez-

Zuleta et al., 1995), p15 (Herman et al., 1997) MLH1 (Kane et al., 1997), and E-cadherin 

(Graff, 1995; Corn et al., 2000; Melki et al., 2000) were shown to undergo tumor-specific 

repression by promoter hypermethylation in a variety of cancers. 

DNA hypermethylation also indirectly silences other genes by repressing transcription 

associated-factors and DNA repair genes, which interferes with the normal cellular processes 

(Sharma et al., 2010). Although, silencing of tumor suppressor genes by DNA 

hypermethylation is well established in cancer, it is not clear how genes are targeted to be 

silenced by this modification. Currently, DNA methylation markers are being investigated as 

prognostic factors, diagnostic tools, and treatment response predictors in a variety of cancers 

including leukemia, and demethylating agents are being used in cancer therapy (Esteller, 2007). 

 

2.3.1.2. DNA methyltransferases  

In mammals, DNA methylation is a process modulated by three DNA methyltransferase 

(DNMT) enzymes, DNMT1, DNMT2, and DNMT3, which includes DNMT3a and DNMT3b 

members. These DNMTs catalyze two important methylation patterns: methylation 

maintenance and de novo methylation (Zhu and Otterson, 2003).  

DNMT1 is the largest methyltransferase with a molecular mass of 184 kDa (Smith et al., 

1992) and it is the principal isoform responsible for methylation maintenance. In proliferating 

cells, DNMT1 has a high affinity for hemi-methylated DNA and it is found to be associated 

with the replication stage of the cell cycle; ensuring preservation of the pre-existing methylation 

pattern in the new synthesized cell during DNA replication (Leonhardt et al., 1992; Li et al., 

1993). In human cells, a reduction in catalytic activity of DNMT1 results in a massive 5-methyl 

cytosine (5mC) demethylation, nuclear disorganization, genomic instability, and loss of cell 

viability (Espada and Esteller, 2010). Abnormalities in DNMT1 are found in a variety of cancer 

(Rhee et al., 2000; Lee et al., 2001; Peng et al.,2005, but loss in DNMT1 activity, in contrast to 
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normal cells, is required for activation of hypermethylated tumor suppressor genes that suppress 

tumor progression in malignant cells (Chen et al., 2007). DNMT1 has also been reported to 

interact with histone methyltransferase enzymes such as G9a and SUV39H1 to stably silence 

genes (Cedar and Bergman, 2009; Sharma et al., 2010).  

DNMT2 is much smaller than DNMT1 with a predicted molecular weight of 45 kDa.  

Although DNMT2 contains the conserved methyltransferase motif, which is characteristic of   

DNMTs, this enzyme has very low DNA methyltransferase activity in comparison with 

DNMT1 and DNMT3. In addition, it has been reported that depletion of the DNMT2 gene in 

mice does not show phenotype changes and thus the function of DNMT2 still remains unknown 

(Okano et al., 1998; Herman et al., 2003). 

DNMT3a and DMT3b isoforms have a molecular size between 100-130 kDa and they carry 

out de novo DNA methylation using unmethylated DNA as a substrate. However, several 

reports have shown that DNMT1 as well as DNMT3a and DNMT3b have both de novo and 

maintenance methylation in vivo, cooperating to establish global DNA methylation patterns in 

the cell (Kim et al., 2002). These enzymes are mainly expressed in embryonic and non-

differentiated cells and they are critical for embryonic development (Okano et al., 1999). 

DNMT3L is also a member of the DNMT3 family but unlike DNMT3a/3b it lacks DNA 

methyltransferase activity (Ooi et al., 2007). The function of this enzyme is to recruit DNMTs 

to DNA by binding to histone H3 in the nucleosomes. DNMT3a and DNMT3b are associated 

with SET domain proteins such as histone methyltransferases G9a, SUV39H1, and SUV39H2, 

which are required for heterochromatinization and histone lysine methylation (Cedar and 

Bergman 2009).  

  

2.3.1.3. DNA methyltransferase inhibitors 

Since the discovery of the association between promoter hypermethylation of tumor 

suppressor genes and the development of cancer, DNA demethylating agents (in reference to 

DNMT inhibitors, which lead to the loss of methyl groups from DNA) have emerged as 

therapeutic reagents for reversing this process. The most extensively studied DNMT inhibitors 

are 5-aza-cyditine and 5-aza- -deoxycytidine (DAC) (Figure 2.2). These chemotherapeutic 

agents are nucleoside analogues that incorporate into the DNA to inhibit the activity of DNMT 

enzymes (Zhu and Otterson, 2003; Hellebrekers et al., 2007). However, a major disadvantage 
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of these aza-nucleosides is their instability in aqueous solution. This limitation has prompted 

the development of more stable nucleosides analogues, such as 5-fluoro-

zebularine, enabling oral administration of the drugs. Even though zebularine is more stable and 

less toxic, it requires higher concentrations to cause an effect in comparison with DAC (Cheng 

et al., 2004). Non-nucleoside analogue DNMT inhibitors have also been discovered as well as 

natural products derived from teas (Hellebrekers et al., 2007).  Most DNMT inhibitors are not 

specific for a particular DNMT enzyme, which may result in unfavourable effects and 

toxicities. Consequently, new compounds specific for DNMT types are being developed, such 

as MG98, which is an oligonucleotide antisense inhibitor of DNMT1 (Hellebrekers et al., 

2007).  

 

 

 

 

 

 

 

 

Figure 2.2. Chemical structures of DNMT inhibitors. 5-aza- -deoxycytidine (DAC) and 5-aza-

cytidine. The difference between these compounds is that the ribose at position 3 of the cytosine 

ring in 5-aza-cytidine is replaced with deoxyribose in DAC. 
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2.3.1.4. 5-Aza- -deoxycytidine (DAC) 

The remarkable discovery that treatment of cells with the cytotoxic agents, 5-azacytidine 

and DAC, inhibits DNA methylation, induces expression of genes, and causes differentiation of 

cancer cells, led to the use of these drugs in cancer therapy. DAC is a derivate of 5-azacytidine 

and a more potent demethylating agent (Jain et al., 2009). This compound is also a cytidine 

analogue that is incorporated into the DNA in place of the natural base cytosine during DNA 

replication. Once incorporated into the DNA, this compound irreversibly binds to DNMT1, 

leading to a rapid loss of DNMT1 activity and therefore to the demethylation of DNA (Figure 

2.3) (Chen et al., 2004; Hellebrekers et al., 2007). Accumulated evidence from studies on 

hypermethylated silenced genes has demonstrated that DAC induced the re-expression of tumor 

suppressor genes in cancer cells if methylation is the primary reason for gene silencing (Jones 

and Baylin et al., 2002; Daskalakis et al., 2002, Chen et al, 2004). In addition, DAC can also 

induce expression of apoptotic genes and DNA damage response genes, such p53 (Chen et al., 

2004).   

The Food and Drug Administration has recently approved the use of 5-azacytidine and 

DAC for treatment of myelodysplastic syndromes (MDS) and promising results have emerged 

from the treatment of hematological malignancies, such as AML and CML (Plickmark et al., 

2007; Jain et al., 2009). Although, DAC provides an effective treatment of these cancers, 

toxicity on normal cells have been a concern due to the incorporation of this compound into 

DNA. However, since this drug only acts in dividing cells and tumor cells are rapidly dividing 

in comparison with normal cells, it is thought that treatment with this drug may have a minimal 

effect on normal cell populations, making this compound a good candidate in cancer therapy 

(Sharma et al., 2010). 
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Figure 2.3. Nucleoside analogue (NA) incorporation into the DNA of proliferating cells. 

Nucleoside analogues enter the cell via specific nucleoside transporters. Once inside the cell, 

nucleoside analogues are phosphorylated by deoxycytidine kinases (DCK) to produce active -

triphosphate derivatives. Nucleoside analogues are incorporated into newly synthesized DNA, 

where they covalently interact with DNMTs, inhibiting DNA methylation. (Adapted from 

Galmarini et al., 2001; Ewald et al., 2008).  

 

 



11 

 

2.3.2. Histone methylation 

Post-translational modifications that occur on histone tails have been recognized to play 

important roles in regulation of chromatin structure (Esteller 2007; Hublitz et al., 2009). 

Histone methylation is catalyzed by histone methyltransferases (HMTs) and it usually occurs on 

the Arginine (R) and Lysine (K) residues. Histone methylation, in contrast to other 

modifications, does not alter the charge of the histone tail but influences the basicity and 

hydrophobicity of histones and their affinity to other proteins, such as transcription factors for 

chromatin regulation (Esteller, 2007; Hublitz et al., 2009). 

The Histone methyltransferase enzymes can be subdivided into three classes; SET domain 

(Suv3-9 Suppressor of Variegation, Enhancer of Zeste, Trithorax) lysine methyltransferases, 

non-SET domain lysine methyltransferases, and arginine methyltransferases (Kouzarides, 2007; 

Albert et al., 2010; Spannhoff et al., 2009).  

Lysine methyltransferases are highly specific. They usually modify one specific lysine 

residue on a single histone, which can be linked either to activation or repression of 

transcription. Lysine methylation is predominantly found within tails of histone 3 and histone 4 

(H3 and H4); however the core globular domain of histones can also undergo methylation, for 

example at lysine 79 of H3 (Martin et al., 2005; Kouzarides, 2007; Albert et al., 2010). Lysine 

residues can be mono-, di-, or tri-methylated and more than twenty lysine methyltransferase 

enzymes have been identified in humans. However, misregulation of many of these 

methyltransferases has been linked to cancer (Table 2.1) (Martin et al., 2005; Albert et al., 

2010). 
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Table 2.1. Lysine methyltransferases and their link to cancer. Enzymes that fall into the same 

family are grouped. 

 

Enzyme Lysine residues Links to cancer 

SUV39H1/2 H3K9 Increased mRNA levels in colon cancer patients 

(Kang et al., 2007) 

B-cell lymphoma in knockout mice (Peters et al., 

2001) 

G9a H3K9 Contributes to H3K9 dimethylation involved in 

tumor suppressor gene silencing (McGarvey et al., 

2006) 

EU-HMTase1 H3K9 Overexpressed in gland tumors (Aniello et al., 

2006) 

SETDB1/ESET H3K9 Association with DNMTs  in promoter silencing in 

tumors (Li et al., 2006) 

MLL1 H3K4 Mutations/rearrangements involved in 

leukemogenesis (Chen et al., 2010) 

MLL3 H3K4 Intragenic mutations in colorectal cancer (Sjoblom 

et al., 2006) 

SMYD2 H3K4 Overexpressed in hepatocellular carcinoma 

(Skawran et al., 2008) 

Suppression of p53 transcriptional activity (Huang 

et al., 2007) 

SMYD3 H3K4 Overexpressed in colorectal and hepatocellular 

carcinoma (Hamamoto et al., 2004) 

Overexpression enhanced breast cancer cell growth 

(Hamamoto et al., 2006) 

DOT1L H3K79 Involved in leukemogenesis (Chen et al., 2010) 

SET8/PR-SET7 H4K20 Suppresses p53 dependent transcription (Shi et al., 

2007) 

SUV20H1/2 

H4K20 

Decrease of H4K20 tri-methylation is associated to 

lymphoma cancer and Knock-downed SUV20H1/2 

mice (Fraga et al., 2005) 

EZH2 H3K27 

  

Associated with aggressive tumor growth in several 

tumor types, including lymphomas and melanomas 

(Bachmann et al., 2006) 

Marker for precancerous state and aggressive breast 

cancer (Ding et al., 2006;  (Collet et al., 2006) 

Promotes proliferation and invasiveness of prostate 

cancer cells (Bryan et al., 2007)  

Biomarker for poor prostate cancer prognosis 

(Cooper et al., 2007)  
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2.3.2.1. Histone 3 lysine 9 methylation (H3K9Me) 

Lysine methylation is an abundant epigenetic modification found in all eukaryotes and it is 

associated with different states of chromatin (Kouzarides, 2007). In histone 3 (H3), mono- (Me) 

and di-methylation (Me2) of lysine 9 (K9) is associated with activation of transcription, 

whereas tri-methylation (Me3) is commonly involved in transcriptional silencing. Despite 

H3K9 di-methylation being related with transcriptional activation, it can also be associated with 

gene repression in euchromatin and heterochromatin regions, which suggest that H3K9 

methylation might have different functions depending on whether it occurs in coding regions or 

in gene-promoters (Rice et al., 2003; Martin and Zhang, 2005; Kouzarides, 2007). In mammals, 

several lysine methyltransferases target different levels of H3K9 methylation, such as 

SUV39H1/2, G9a, GLP, and RIZ (Martin et al., 2005; Hublitz et al., 2009). 

McManus and colleagues reported a dynamic role for H3K9 methylation in controlling the 

cell cycle. They revealed that mono- and di-methylation levels of H3K9 remain unaltered 

during cell cycle progression, while H3K9 tri-methylation levels increased for maintenance of 

chromosomal segregation in the transition from late G2 into mitosis. They also observed that 

H3K9 tri-methylation mark is rapidly lost after completion of mitosis and it returns to basal 

levels by early G1. Importantly, this study demonstrated that absence of pericentromeric H3K9 

tri-methylation correlates with an increase in abnormal mitosis, premature chromatid 

separation, genomic instability, and cancer predisposition (McManus et al., 2006). Thus, 

perturbations of H3K9 methylation patterns and enzymes associated with these modifications 

leads to misregulation of the cell cycle control and then to the aberrant silencing of tumor 

suppressor genes that control proliferation in various forms of cancer (Sharma et al., 2010).  

 

2.3.2.2. Histone methyltransferase SUV39H1 

SUV39H1 was the first histone methylation enzyme discovered in humans and it is 

responsible for tri-methylation of lysine 9 at histone 3 (H3K9). This enzyme belongs to the SET 

domain lysine methyltransferases class. The SET domain of SUV39H1 carries out the H3K9 

methyltransferase activity using monomethylated H3K9 as a substrate to finally induce tri-

methylation at the same residue (Aagaard et al., 1999; Rea et al., 2000; Peters et al., 2003). 

The role of SUV39H1 and its associated H3K9 methyltransferase activity in 

heterochromatin function was first indicated by the association with the heterochromatin protein 
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HP1 (Aagaard et al., 1999; Rea et al., 2000). Subsequent studies showed that SUV39H1-

mediated H3K9 methylation provides a binding site for chromodomain transcriptional repressor 

HP1 proteins, which in turn recruit other transcriptional repression machinery, such as DNA 

methyltransferases and histone deacetylases (HDACs) to achieve gene silencing (Wang et al., 

2000). Moreover, evidence supports that SUV39H1 and SUV39H2 recruit DNMT3a and 

DNMT3b in order to methylate CpG sites in the satellite sequence (Cedar and Bergman, 2009). 

For example, a loss of H3K9 methylation in SUV39H1 knockout embryonic stem (ES) cells 

decreases DNMT3b-dependent CpG methylation at major centromere satellites. This data 

suggests that DNA methylation may be a secondary event in gene silencing (Lehnertz et al., 

2003). In addition, alteration of SUV39H1 expression has been related to cancer development 

and silencing of tumor suppressor genes, such as p16, p15, and E-cadherin (Bachman et al, 

2003; Albert et al., 2010; Lakshmikuttyamma et al., 2010) 

 

2.3.2.3. Histone methyltransferase G9a 

G9a belongs to the SET domain lysine methyltransferase class and in contrast to 

SUV39H1; G9a regulates H3K9 mono- and di-methylation in euchromatin regions and has a 

major function in transcriptional control. The dominant role of this enzyme in euchromatin 

regions is supported by the observation that the H3K9 methylation pattern is severely 

eliminated in G9a-deficient mice and cells (Tachibana et al., 2002, 2005).  

G9a, apart from having the SET catalytic domain, also contains an ankyrin (ANK) domain, 

which has been recently recognized to be associated with DNMT3a and DNMT3b and is 

involved in directing de novo DNA methylation (Cedar and Bergman, 2009). Accordingly, 

Epztejn-Litman and Dong reported that H3K9 methylation is eliminated upon inactivation of 

G9a SET domain without affecting DNA methylation; instead it was recognized that the 

ankyrin domain physically interacts with DNMT3a and DNMT3b to establish DNA 

methylation (Epztejn-Litman et al., 2008; Dong et al., 2008). This data indicates that de novo 

DNA methylation is not dependent on G9a-mediated histone modification per se; however, G9a 

is required for recruiting DNMT3a and DNMT3b for stable gene silencing (Epztejn-Litman et 

al., 2008; Dong et al., 2008). Conversely, it was reported that G9a directly interacts with 

DNMT1 to establish a coordinated mechanism for DNA and histone methylation during cell 

replication and that this interaction perhaps depends on G9a methyltransferase activity (Esteve 
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et al., 2006). Increased levels of G9a have been linked to gain in promoter H3K9 dimethylation 

in tumor suppressor genes, consequently leading to their silencing in various types of cancer 

(McGarvay et al., 2006; Kondo et al., 2008).  

 

2.3.3. Histone methyltransferase inhibitors  

Since the discovery that epigenetic aberrations can be reverted in cancer cells, a number of 

DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors have been 

introduced, extensively studied, and clinically tested for use in cancer therapy (Hellebrekers et 

al., 2007). More recently, histone methyltransferase (HMTs) inhibitors have been found to 

enhance anti-cancer therapy due to their ability to block repressive histone lysine methylation 

marks, such as H3K9 di- and tri-methylation. To date, two lysine methyltransferase inhibitors 

have been identified: chaetocin and BIX-01294. 

 

2.3.3.1. Chaetocin 

Chaetocin, a fungal mycotoxin isolated from the fermentation broth of Chaetomium 

minutum, belongs to a class of molecules called 3-6-epidithiodiketopiperazines (Figure 2.4). 

Functionally, chaetocin was found to inhibit the Drosophila melanogaster histone 

methyltransferase SU(VAR)3-9 and its human ortholog, the H3K9 trimethylase SUV39H1 

(Greiner et al., 2005). Although chaetocin is effective in inhibiting SUV39H1 activity, its role 

in reactivation of silenced genes by promoter H3K9 demethylation is limited. Attempts to 

elucidate this role have been investigated. Recently, it was reported that treatment of cancer 

cells with chaetocin results in activation of tumor suppressor genes and a drastic decrease in 

promoter H3K9 di- and tri-methylation (Cherrier et al., 2009; Lakshmikuttyamma et al., 2010). 

Interestingly, chaetocin reactivates genes that have been silenced by promoter 

hypermethylathion in leukemia cells, which suggests that inhibition of SUV39H1 activity 

perhaps is required to abolish DNMTs interaction and therefore the recruitment of other 

repressive marks crucial for aberrant gene silencing (Lakshmikuttyamma et al., 2010). In 

addition to its demethylating function, chaetocin seems to be a selective drug for myeloma 

therapy, affecting myeloma cancer cells without toxicity on normal bone marrow and B-cells 

(Isham et al., 2007), which makes this compound a promising target for treatment of myeloid 

malignancies, including leukemia. 
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Figure 2.4. Chemical structure of chaetocin. 

 

 

2.3.3.2. BIX-01294  

BIX-01294 (BIX) is a diazepi-quinazolin-amine derivative that selectively impairs the 

histone methyltransferase activity of G9a and the generation of H3K9 di-methylation (Figure 

2.5). BIX does not compete with the cofactor S-adenosylmethionine (SAM) and does not inhibit 

SUV39H1 activity (Kubicek et al., 2007; Chang et al., 2009). 

It has been reported that G9a induces inactivation of post-implantation genes by the 

accumulation of H3K9 di-methylation marks during embryogenesis. In mouse ES cells and 

embryonic fibroblast cells, treatment with BIX results in a significant reduction of di-methyl 

H3K9 in proximal-promoters, thereby allowing the transient reversal of this mark and the 

activation of G9a target genes (Kubicek et al., 2007). BIX has not been tested for its ability to 

reactivate tumor suppressor genes in cancer. The evaluation of BIX treatment in cancer cells 

might be of crucial importance for activation of tumor suppressor genes that contain H3K9 di-

methylation as a repressive mark and more importantly BIX could be used to potential reverse 

misregulated G9a activity that leads a faulty cell development in cancer stem cells (Wen et al., 

2009). 
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Figure 2.5. Chemical structure of BIX-01294. 

 

 

2.3.4. Regulation of epigenetic events in cancer 

Knowing the order in which epigenetic changes occur might have important implications 

for understanding normal cell development and tumorigenesis. Previously it was recognized 

that DNA hypermethylathion was the major epigenetic deregulation linked to cancer. Cancer 

cells are subject to abnormal DNA methylation within promoters of tumor suppressor genes and 

this event is responsible for inhibiting their function and inducing cell proliferation (Jones and 

Baylin, 2002). However, these observations have been restricted to re-activation of silenced 

genes by promoter demethylation using the demethylating agent 5-aza-2´-deoxycytidine (DAC) 

(Jones and Baylin, 2002; Herman and Baylin, 2003). Conversely, it was shown that DAC also 

induces expression of non-hypermethylated genes. Tumor suppressor genes that have been 

reactivated by DAC still maintain heterochromatic marks, such as histone H3K9 and H3K27 

methylation, in their promoters. Thus, DAC treatment does not return reactive genes to a fully 

euchromatin state (Zhu and Otterson, 2003; McGarvey et al., 2006). In this regards, 

transcriptional silencing of cancer-associated genes depends not only upon DNA methylation, 

but it is also associated with multiple promoter chromatin modifications, including histone 

deacetylation, histone methylation of H3 at lysine 9, and loss of the transcriptional activating 

mark H3K4 di- and tri-methylation (Coombes et al., 2003; Scott et al., 2006; Sharma et al., 

2010). Despite the fact that the exact sequence of events is not known, the current study of 
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epigenetic inhibitors has opened the possibility to investigate dynamic alterations and 

interactions of epigenetic modified marks that are linked to silenced-promoter of tumor 

suppressor genes. 

Several reports have shown that aberrant gene silencing is associated with a concomitant 

loss of histone acetylation. Trichostatin A (TSA) and other HDAC inhibitors have been 

associated with the reactivation of silenced genes; however there is evidence suggesting that 

they cannot reactivate the expression of hypermethylated tumor suppressor genes (Herman et 

al., 1997; Cameron et al., 1999; Suzuki et al., 2002; Hellebrekers et al., 2007). Combinatorial 

therapy with histone deacetylase and DNA methyltransferase  inhibitors enhances re-expression 

of several genes silenced by promoter hypermethylation to levels higher than when they are 

induced with DNMT inhibitors alone (Zhu and Otterson, 2003; Hellebrekers et al., 2007). 

Nonetheless, HDAC inhibitors are unable to block the re-silencing of genes after treatment with 

DNMT inhibitors. This data then indicates that DNA methylation is a dominant event over 

histone deacetylation (Egger et al., 2007). In this view, histone methylation seems to play an 

important role in hypermethylated gene silencing. For example, alterations in H3K9 and H3K27 

methylation patterns are associated with aberrant gene silencing in various forms of cancer and 

more importantly DNA regions that have been hypermethylated are often pre-marked with tri-

methyl H3K27 mark in cancer ES cells (Ohm et al., 2007; Schlesinger, et al., 2007). H3K9 

methylation can be rapidly reversed by treatment with DAC, suggesting a direct relationship 

between DNA and histone methylation in gene inactivation (Nguyen et al., 2002; Coombes et 

al., 2003).  

Currently, histone methyltransferase inhibitors have being targeted in epigenetic therapy for 

re-activation of tumor suppressor in cancer, due to its ability to interact between each other and 

form repressor silencing complexes that inactivate gene expression (Fritsch, et al., 2010).  So 

far, it has been reported that treatment with chaetocin, the specific inhibitor of H3K9 

trimethylase SUV39H1, induces the expression of hypermethylated p15 and E-cadherin genes 

without any changes in promoter methylation (Lakshmikuttyamma et al., 2010).  Moreover, 

treatment with chaetocin induces re-expression of the non-hypermethylated gene p21 by 

reducing levels of trimethyl H3K9 and by blocking the interaction between SUV39H1 and the 

repressor CTIP2 protein (Cherrier et al., 2009). This suggests that histone methylation itself 
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may be a dominant event that leads to transcriptional gene silencing or it cooperatively interact 

with DNMTs to initiate aberrant promoter methylation.  

Altogether, these findings reinforce the potential of histone methyltransferase inhibitors in 

re-expressing tumor suppressor genes. As well it highlights the need for further development of 

combinatorial treatments that reverse aberrant gene silencing in cancer. 

 

2.4. Acute myeloid leukemia 

 Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of hematopoietic 

progenitor cells, which is characterized by the rapid proliferation of abnormal cells that are 

accumulated in the bone marrow and interfere with the production of normal blood cells (Figure 

2.6). AML is the most common type of leukemia in adults with an equal frequency in males and 

females, and like other cancers, its incidence increases with age (Estey and Dohner 2006; 

Deschler et al., 2006).  

Although the etiology of leukemia is unknown, recurrent genetic and chromosomal 

alterations are associated with leukemia etiology, and they are recognized to be crucial to the 

disease pathogenesis (Chen et al., 2010). The genotypic diversity of AML depends on 

numerous chromosomal translocations that result in the generation of oncogenic fusion 

proteins, such as AML1-ETO (generated by a translocation between 8 and 21, t (8; 21)), PML-

RARA, t (15; 17), CBF-MYH11, t (16; 16), and MOZ-CBP, t (8; 16), etc), as well as point 

mutations involved in specific genes (MDR, FLT-3 ITD, C/EBP , BAALC, NPM). These 

genetic alterations confer proliferative and survival advantage to hematopoietic progenitors 

with a minimal capacity to differentiate (Frankfurt et al., 2007; Chen et al., 2010). Besides 

those genetic factors, aberrant epigenetic regulation of genes in AML is being recognized as 

becoming increasingly important to the pathogenesis of AML (Plass et al., 2008). Promoter 

hypermethylation of several tumor suppressor genes with well-established functions in cell 

cycle control, apoptosis, or DNA repair are associated with the development of the disease 

(Agrawal et al., 2007; Melki et al., 1999; Melki et al., 2000; Ekmekci et al., 2004; Shimamoto 

et al., 2005).  
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Figure 2.6. Myeloid cell differentiation. Illustrated are the differentiation pathways of blood 

cell development. The bone marrow makes progenitor stem cells that develop into mature blood 

cells over time. Progenitor stem cells may become a myeloid stem cell or lymphoid stem cells. 

The myeloid stem cell differentiates into one of the five types of mature blood cells: erythroid, 

platelets, macrophage, neutrophil, eosinophil, and basophil. Acute myeloid leukemia (AML) is 

originated when a disorder of the hematopoetic progenitor stem cell occurs, causing the 

accumulation of abnormal cells that cannot be differentiated into the variety of normal blood 

cells (mature blood cells). 
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2.5. Tumor suppressor genes in acute myeloid leukemia  

Tumor suppressor genes encode proteins that are involved in receiving or processing of 

growth inhibitory signals and therefore they are very important in preventing malignant 

transformation. Like almost all genes, tumor suppressor genes are present in two copies per cell. 

ypothesis explains the loss-function of these genes in cancer 

development, meaning that both alleles of a gene have to be inactivated in order to promote 

unregulated cell proliferation (Knudson, 1996; Krug et al., 2002).  However, it was proposed 

that the function of some tumor suppressor genes can be disrupted solely by alteration of one 

allele, resulting in a dominant negative mode of action that compromise the normal function of 

its counterpart in the same cell (Blagosklonny, 2000). Genetic disruption and epigenetic 

inactivation of several tumor suppressor genes has been associated with AML development 

(Krug et al., 2002; Chen et al., 2010). Particularly, genes that are involved in cell cycle control, 

such as cyclin dependent kinases (CDK) inhibitors p15 and p21 have been recognized to be 

silenced by aberrant epigenetic modifications in AML (Herman, 1997; Scott et al, 2006; 

Lakshmikuttyamma et al., 2010). In addition, the E-cadherin gene, a potential suppressor of 

metastasis, is also epigenetically silenced in AML (Corn et al., 2000; Melki et al., 2000).  

 

2.5.1. p15 

(INK4b)

 gene  

p15 belongs to the INK4 family that consist of a group of small (15-19 KDa) ankyrin repeat 

proteins. p15

INK4b

, p16

INK4a

, p18

INK4c

, and p19

INK4d

 function as inhibitors of CDK4 and CDK6 

(Sharpless, 2005). P16

INK4a

 (p16) and p15

INK4b

 (p15) proteins bind directly to CDK4 and CDK6 

blocking their association with regulatory D cyclins and enabling other cyclin-dependent kinase 

inhibitors, such as p21CIP1 and p27KIP1 to associate with and inhibit the assembly of cyclin 

E/A-CDK2 complexes. The lack of cyclin E/A-CDK2 complexes in turn inhibits 

phosphorylation of retinoblastoma (Rb) family members causing inactivation of proteins 

involved in DNA synthesis and thus arresting the cell cycle progression in G1-phase (Figure 

2.7) (Massagué,  2004; Sharpless, 2005; Gil and Peters, 2006). p15, p16, and ARF share the 

same locus INK4a/ARF/INK4b, but they play independent roles in tumor suppression (Gil and 

Peters, 2006). INK4b gene expression can be activated by the regulation of proteins such as the 

transforming growth factor beta ( ) and small GTPases (RAS) and it can be repressed by 

myelocytomatosis (MYC) factor, which usually leads to the unregulation of other several genes 
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involved in cell proliferation (Hannon and Bench, 1994; Warner et al., 1999; Seosane et al., 

2001).  

 

 

 

 

 

 

Figure 2.7. Schematic representation of check points control during G1-S progression. By 

binding directly to CDK4 and CDK6, INK4a/b proteins block the assembly of catalytically 

active cyclin D-CDK complexes and enable the cyclin-dependent kinase inhibitors p21CIP1 

and p27KIP1 to associate with and inhibit cyclin E/A-CDK2. This in turn inhibits 

phosphorylation of retinoblastoma (Rb) family members, blocking the release and activation of 

E2F-dependent genes and the activation of proteins involved in DNA synthesis. The net result 

is the promotion of cell cycle arrest in G1-phase during G1-S progression (Adapted from 

Malumbres and Barbacid, 2009). 
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The INK4 genes are commonly silenced by mutations and epigenetic modifications in 

diverse types of cancers (Okamoto et al., 1994; Gil and Peters, 2006; Kim and Sharpless, 2006; 

Malumbres and Barbacid, 2009). Point mutations and intragenic alterations in the locus target 

INK4a rather than ARF or INK4b (Sharpless, 2005). However, most alterations occur by 

epigenetic inactivation of p16 and p15 genes due to hypermethylation of their promoters or by 

deletions in the 9p21 chromosome region (Krug et al., 2002). p15 is frequently silenced by 

promoter hypermethylation in myeloid dysplastic syndrome (MDS) and AMLs (Herman et al., 

1997; Chim et al., 2001; Christiansen et al., 2003). Hypermethylation of p15 occurs in the 

majority of patients with AML and it has been strongly associated with disease progression 

(Woong et al., 2000; Krug et al., 2002). Therapeutic DNA demethylating agents, such as DAC 

have been used for the re-activation of hypermethylated genes in AML cell lines (Jain et al., 

2009). Interestingly, it was recently showed that p15 is not only re-expressed by promoter 

demethylation, but blocking histone H3K9 methylation with histone methyltransferases 

inhibitors also induced p15 expression in AML cell lines (Lakshmikuttyamma et al., 2010). 

This suggest that use of combinatorial therapies might efficiently leads to the re-expression of 

silenced tumor suppressor genes rather than the use of epigenetic inhibitors alone.  

 

2.5.2. p21 

(WAF1/CIP1)

 gene  

p21 gene encodes a small 165 amino acid protein that belongs to the CIP and KIP family of 

CDK inhibitors that includes p21CIP/WaFI (p21), p27KIP1 (p27), and p57KIP2 (p57) (Sherr 

and Roberts, 1995). The p21 protein contains two functional domains, an amino-terminal CDK 

interaction region that is sufficient for CDK inhibition, and a carboxy-terminal region that binds 

proliferating cell nuclear antigen (PCNA), a processivity factor associated with DNA 

polymerase- r proteins involved in DNA synthesis (Chen et al., 1995).  

p21 inhibits cell cycle progression primarily by blocking CDK2 activity, which is required 

not only for the phosphorylation of Rb family proteins, which releases and activates E2F-

dependent gene expression, but also for the activation of proteins directly involved in DNA 

synthesis (Massagué, 2004; Malumbres and Barbacid, 2005). Thus, suppression of p21 activity 

is essential for checkpoint control in G1/S progression within the cell cycle (Figure 2.7) 

(Malumbres and Barbacid, 2005). Moreover, by inhibiting cell cycle progression, p21 also 

allows DNA repair processes to occur by binding to proliferating cell nuclear antigen (PCNA), 
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which interferes with PCNA-dependent DNA polymerase activity, inhibiting DNA replication 

(Chen et al., 1995; Luo et al., 1995; Moldovan et al, 2007). The ability of p21 to promote cell 

cycle arrest and DNA repair responses can be dependent or independent of the tumor 

suppressor protein p53 activity. However, other evidence indicates that p21 mediates its various 

biological activities independent of the classical p53 tumor suppressor pathways (Abbas and 

Dutta 2009).  

p21 expression can be regulated by a variety of transcriptions factors, such as p53, Sp1, or 

C/EBP for a positive regulation and MYC and inactivation of p53 for a negative regulatory 

effect (Gartel and Tyner, 1999; Abbas and Dutta, 2009). p21 deregulation has been reported in 

various forms of cancer (Shiohara et al., 1994; Poole et al., 2004). Accordingly, several studies 

have shown that p21 deficiency increased frequency and development of spontaneous tumors in 

mice (Martin-caballero et al., 2001). Moreover, evidence suggests that p21 is crucial for 

maintaining stem cell potential by restricting their self-renewal capacity in various tissues 

(Cheng et al., 2000; Kippin et al., 2005).  

Epigenetic silencing of p21 has been reported in human cancer and DNA methylation and 

histone deacetylation are crucial for this silencing (Suzuki et al., 2002; Lagger et al., 2003; 

Scott et al., 2006). p21 is unmethylated in most types of cancers; however some lung cancer 

cell lines show hypermethylation within the CpG islands of the p21 gene-promoter (Zhu and 

Otterson, 2003; Ying et al., 2004; Scott et al., 2006). Treatment with demethylating agents 

induces re-expression of p21 by mechanisms that are dependent or independent of promoter 

demethylation and by HDAC inhibition (Zhu et al., 2004; Scott et al., 2006). Scott and 

colleagues reported that p21 gene is epigenetically silenced in AML by a mechanism that does 

not involve promoter hypermethylation, due to the lack of p21 promoter methylation in AML 

cell lines. Moreover, they also showed that treatment with DAC and TSA cause p21 re-

expression by release of HDAC1 (Scott et al., 2006). In AML cell lines, similar studies have 

not been performed to determine the effect of histone methylation on p21 gene re-expression. 

 

2.5.3. E-cadherin gene 

E-cadherin gene encodes a glycoprotein that is involved in calcium dependent cell-cell 

adhesion. E-cadherin is one of the most important molecules in cell adhesion in epithelial 

tissues and is also considered a potential invasion/metastasis suppressor. Loss of E-cadherin 
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function contributes to the progression of several types of cancers such as gastric, breast, 

colorectal, thyroid, and ovarian cancer and recently it has been recognized as potential 

invasion/metastasis suppressor in leukemia (Hirohashi, 1998; Melki et al., 2000). The 

inactivation of the E-cadherin gene occurs in undifferentiated solid tumors by both genetic and 

epigenetic mechanisms (Yoshiura et al., 1995). In addition, it has been shown that E-cadherin 

gene expression is reduced or absent in leukemia due to the promoter hypermethylation (Melki 

et al., 2000). Dysfunction of this gene in AML is important to pathogenesis and therefore it 

could have clinical importance in the treatment of AML (Shimamoto et al., 2005). Recently, it 

was reported that E-cadherin silencing can be reverted either by promoter demethylation or by 

inhibition of promoter H3K9 tri-methylation in AML cell lines (Lakshmikuttyamma et al., 

2010).  
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3. EXPERIMENTAL OBJECTIVES 

 

The efficient reactivation of epigenetically silenced genes requires the development of 

combinatorial epigenetic therapies that reverse aberrant chromatin modifications and lead to 

transcriptional activation of tumor suppressor genes in cancer.  The objective of this study was 

to investigate epigenetic mechanisms involved in the re-expression of three tumor suppressor 

genes: p15, p21 and E-cadherin in AML using the DNMTinhibitor, 5-Aza- -deoxycytidine 

(DAC), and the HMT inhibitors, BIX-01294 (BIX), and chaetocin.  

 

To achieve this goal, the following aims were undertaken:  

 

1. Evaluate the p15, p21, and E-cadherin promoter methylation status using methylation 

specific PCR and DNA pyrosequencing.  

 

2. Determine the effect of DAC, BIX, and chaetocin on acute myeloid leukemia cell 

proliferation using MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). 

 

3. Evaluate the effect of individual treatments of DAC, BIX, and chaetocin on p15, p21, and E-

cadherin gene expression using real time PCR. 

 

4. Develop combinatorial treatments of DAC, BIX, and chaetocin that lead to re-expression of 

p15, p21, and E-cadherin genes in acute myeloid leukemia. 

 

5. Determine changes in DNA methylation and histone 3 lysine 9 di- and tri-methylation 

associated with p15, p21 and E-cadherin promoters using chromatin immunoprecipitation 

assays.  
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4. MATERIALS AND METHODS 

 

4.1 Reagents and suppliers 

The reagents and commercially available kits used in this study are listed in Table 4.1. and 

4.2., respectively. All reagents used for experiments were molecular biology or reagent grade. 

 

Table 4.1. List of reagents and suppliers used in this study 

Reagent Supplier Name 

100 bp DNA ladder Fermentas 

5-aza-  Sigma-Aldrich 

Acetic acid  EMD Chemicals 

Agarose Invitrogen Life Technologies 

Aprotinin Sigma-Aldrich 

BIX-01294 Sigma-Aldrich 

Boric acid EMD Chemicals 

Chaetocin Sigma-Aldrich 

dATP Fermentas 

dCTP Fermentas 

dGTP Fermentas 

DMSO Sigma-Aldrich 

dTTP Fermentas 

Ethanol EMD Chemicals 

Ethidium bromide Invitrogen Life Technologies 

Fetal bovine serum Invitrogen Life Technologies 

Formaldehyde BDH 

GM-CFS R&D Systems 

GlycoBlue coprecipitant Ambion 

HCl EMD Chemicals 

HotStarTaq Polymerase Qiagen 

IL-3 R&D Systems 

IMDM Invitrogen Life Technologies 

Isopropanol EMD Chemicals 

Loading dye 6X solution Fermentas 

Methanol BDH 

MgCl

2

 Qiagen 

MTT reagent Sigma-Aldrich 
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NaOH BDH 

Nuclease free water Qiagen 

PCR buffer 10X Qiagen 

Penecillin/Sterptomycin 100X mix Invitrogen Life Technologies 

Pepstatin A 

Sigma-Aldrich 

Phenol:chloroform:isoamyl alcohol 

Ambion 

PMSF Sigma-Aldrich 

Power SYBR green PCR master mix 10X Applied Biosystems 

Propidium iodide Sigma-Aldrich 

Proteinase K Qiagen 

RNAse Worthington 

RNasin Promega 

RPMI Invitrogen Life Technologies 

Salmon sperm DNA/protein A Agarose Millipore 

SDS Promega 

Sodium azide Sigma 

Sodium bicarbonate BDH 

Sodium borate EMD Chemicals 

Trypan blue Invitrogen Life Technologies 

 

 

Table 4.2. Comercially available kits used in this study 

Kits Company 

DNeasy Blood and Tissue Kit Qiagen 

EZ DNA Methylation Kit Cedarlane 

iScript cDNA Synthesis Kit Bio-Rad 

RNeasy MinElute Cleanup Kit Qiagen 

 

 

4.2 Oligonucleotides 

Table 4.3 lists primers and their optimal annealing temperature. PCR, Real-time PCR, and 

methylated PCR primers were purchased from Integrated DNA technologies (IDT). 

Pyrosequencing DNA primers were purchased from EpigenDex and IDT. 
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Table 4.3. Sequences and optimal annealing temperatures of primers used in this study 

Name Sequence Annealing 

temperature 

E-cadherin-PCR-F 

E-cadherin-PCR-R 

E-cadherin-qRT-F 

E-cadherin-qRT-R 

E-cadherin-ChIP-F 

E-cadherin-ChIP-R 

E-cadherin-MSP-M-F 

E-cadherin-MSP-M-R 

E-cadherin-MSP-U-F 

E-cadherin-MSP-U-R 

GAPDH- PCR-F 

GAPDH-PCR-R 

HPRT-qRT-F 

HPRT-qRT-R 

p15-PCR-F 

p15-PCR-R 

p15-qRT-F 

p15-qRT-R 

p15-ChIP-F 

p15-ChIP-R 

p15-MSP-M-F 

p15-MSP-M-R 

p15-MSP-U-F 

p15-MSP-U-R 

p21-PCR-F 

p21-PCR-R 

p21-qRT-F 

p21-qRT-R 

5'-CCTGGGACTCCACCTACAGA-3' 

5'-GGATGACACAGCGTGAGAGA-3' 

5'-AAGAAGCTGGCTGACATGTACGGA-3' 

5'-CCACCAGCAACGTGATTTCTGCAT-3' 

5'-AGAGGGTCACCGCGTCTATG-3' 

5'-CTCACAGGTGCTTTGCAGTT-3' 

5'-TTAGGTTAGAGGGTTATCGCGT-3' 

5'-TAACTAAAAATTCACCTACCGAC-3' 

5'-TAATTTTAGGTTAGAGGGTTATTGT-3' 

5'-CACAACCAATCAACAACACA-3' 

5'-AAGTGAAGGTCGGAGTCAAC-3' 

5'-ATGACAAGCTTCCCGTTCTC-3' 

5'-TGGCGTCGTGATTAGTGATG-3' 

5'-GCACACAGAGGGCTACAATG-3' 

5'-ATGCGCGAGGAGAACAAGGG-3' 

5'-GTACCCTGCAACGTCGCGGT-3' 

5'-AAGCTGAGCCCAGGTCTCCAT-3' 

5'-CCACCGTTGGCCGTAAAC-3' 

5'- GCAGGCTTCCCCGCCCTCGTGACGC-3' 

5'- ATTACCCTCCCGTCGTCCTTCTGC-3' 

5'-GCGTTCGTATTTTGCGGTT-3' 

5'-CGTACAATAACCGAACGACCGA-3' 

5'-TGTGATGTGTTTGTATTTTGTGGTT-3' 

5'-CCATACAATAACCAAACAACCAA-3' 

5'-ATGTCAGAACCGGCTGGGGA-3' 

5'-AGCCTGCTCCCCTGAGCGAG-3' 

5'-CTGGAGACTCTCAGGGTCGAA-3' 

5'-GGCGTTTGGAGTGGTAGAAATCT-3' 

55°C 

 

60°C 

 

61°C 

 

57°C 

 

55°C 

 

59°C 

 

60°C 

 

63°C 

 

58°C 

 

60°C 

 

60°C 

 

60°C 

 

61°C 

 

58°C 
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p21-ChIP-F 

p21-ChIP-R 

p21-MSP-M-F 

p21-MSP-M-R 

p21-MSP-U-F 

p21-MSP-U-R 

5'-GTGGCTCTGATTGGCTTTCTG-3' 

5'-CTGAAAACAGGCAGCCCAAG-3' 

5'-TTTCGGGGAGGGCGGTTTCGGGCGGCGCGG-3' 

5'-CGATACCTCGACGAATCCGC-3' 

5'-GGTGGTGTGGTGGGTTGAGT-3' 

5'-ACAAATCCACACCCAACTCC-3' 

59°C 

 

67°C 

 

62°C 

 

 

 

4.3 Antibodies 

Antibodies used in this thesis are listed in Table 4.4. 

 

Table 4.4. Antibodies used in chromatin immunoprecipitation Assays 

Antibody Supplier Name Catalog Number 

Anti-Histone H3 Millipore 06-755 

Normal mouse IgG Millipore 12-371 

Normal rabbit IgG Millipore 12-370 

MsmAb Histone H3 dimethyl K9 Abcam Ab1220 

RbpAb Histone H3 trimethyl K9 Abcam Ab8898 

 

 

4.4 Cell lines and culture conditions 

Human AML cell lines, Kasumi, KG-1a, and AML193 were purchased from DSMZ 

(Braunschweig, Germany). AML-

medium (IMDM) with 20% (v/v) fetal bovine serum (FBS, Invitrogen) supplemented with 2 

ng/mL human granulocyte macrophage colony stimulating factor (GM-CSF) and 3 units/mL 

human Interleukin-3 (IL-3) (R&D Systems). KG-1a cells were cultured in IMDM with 20% 

(v/v) FBS and Kasumi cells were maintained in RPMI with 10% (v/v) FBS. All cultures 

contained 1% (v/v) penicillin/streptomycin (Gibco) and were maintained at 37°C and 5% CO

2

. 

Culture media was obtained from Invitrogen.  
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4.5. Drug treatments 

For cell proliferation assays, cells were treated with different doses of DAC, BIX-01294, 

and chaetocin either alone or in combination for 72 hours. DMSO or an equivalent volume of 

50:50 acetic acid/water was used as vehicle control. For gene expression analysis using drugs 

alone, a dose response assay of DAC, BIX-01294, and chaetocin was performed in AML cell 

lines for 72 hours. For gene expression analysis using drugs in combination, AML-193 cells 

were treated with 1 µM or 8 µM DAC, 4 µM BIX-01294 and 100 nM chaetocin. Kasumi and 

KG-1a  cells  were  treated  with  4  µM  DAC,  4  µM  BIX-01294, and 100 nM chaetocin for 72 

hours. Concentration of drugs in combination is described in the appropriate figure(s). 

  

4.6. Molecular techniques 

 

4.6.1. DNA extraction from AML cells 

Genomic DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen) according to 

5 x 10

6

 cells. Concentration and purity of DNA was 

determined by standard A

260

/A

280

 spectrophotometric reading. DNA samples were stored at -

20°C until needed. 

 

4.6.2. RNA extraction from AML cells 

Total RNA was isolated using TRIzol (Invitrogen). Cells were lysed and harvested to a 

concentration of 1 mL trizol for each 5-10 x 10

6

 cells. 4-bromo-2-chlorophenol (BCP) (200 µL) 

was subsequent added to each harvested sample and mixed thoroughly by vortexing. Samples 

were incubated at room temperature for 3 minutes and centrifuged at 12,000 x g for 20 minutes. 

The top, aqueous layer was transferred to a MinElute Cleanup column (Qiagen) and isolated 

RNA was then cleaned using the RNeasy MinElute Cleanup Kit (Qiagen) as described in 

ellets  were  dissolved  in  20  µL  of  nuclease-free water 

(Qiagen) and concentration and purity was determined by standard A

260

/A

280

 

spectrophotometric reading. RNA samples were stored at -80°C until needed. 

 

 

 



32 

 

4.6.3. Reverse transcriptase polymerase chain reaction (RT-PCR)  

Complementary  DNA  (cDNA)  was  synthesized  from  1  µg  total  RNA  using  the  iScript 

cDNA Synthesis kit (Bio-Rad). Briefly, 1 µg of total RNA was added to a mix containing 4 µL 

5X  iScript Reaction Mix and 1 µL  iScript Reverse Transcriptase  in a  final volume of 20 µL. 

cDNA was synthesized by incubating the reaction at  25°C for 5 minutes, 42°C for 30 minutes, 

and 85°C  for 5 minutes. Samples were used  for PCR and Real-Time PCR or stored at -20°C 

until needed.  

PCR  was  performed  in  50  µL  reaction  mixture  containing  1.0  µL  of  cDNA,  1X  buffer 

(Qiagen), 0.2 mM of each dNTP (Fermentas), 0.2 µM of each primers,  and 1.5 U of HotStar 

Taq Polymerase  (Qiagen).  Reactions  were  run  at  95°C  for  15  minutes  followed  by  35 

amplification  cycles  (95°C  for  1  minute,  annealing  Temperature  1  minutes  and  72°C  for  1 

minute)  and  final  incubation  at  72°C  for  10  minutes.  Primer  sequences  and  annealing 

temperatures are presented in Table 4.3. 

 

4.6.4. Agarose gel electrophoresis 

For visualization of DNA, samples were mixed with loading dye 6X solution (Fermentas) 

and resolved in 2% (w/v) agarose gel containing 0.5 µg/mL ethidium bromide and  run at 150 V 

for 30 to 40 minutes using 1X of sodium borate buffer. Visualization and photography was 

done by using the UV light transilluminator GeL Doc (BioRad). 

 

4.6.5. Real-time PCR 

Amplification of cDNA was performed in a 10 µL reaction containing 5 µL Power SYBR 

green PCR master mix (Applied Biosystems), 0.45 µM of each primer and 0.2 µg cDNA using 

a StepOnePlus Real-Time PCR system (Applied Biosystems). Amplification consisted of 1 

cycle at 95°C for 10 minutes and 40 cycles at 95°C and annealing temperature for 50 seconds. 

Hypoxanthine-guanine phosphoribosyltransferase was used as housekeeping gene to normalize 

the StepOnePlus Analysis manual and by Livak and Schmittgen, 2001. 
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4.7. DNA methylation analysis 

 

4.7.1. Sodium bisulfite modification 

Genomic DNA was treated with sodium bisulfite reagent, which converts unmethylated 

cytosine to uracil (Figure 4.1), and eventually thymidine following PCR. This procedure 

allowed us to distinguish between methylated and unmethylated cytosine and was performed 

using the EZ DNA methylation kit (Cedarlane). In this procedure, 2 µg of genomic DNA was 

perform methylation specific PCR and pyrosequencing analysis or were stored at -20°C.  

 

 

 

 

Figure 4.1. Schematic representation of the chemical conversion of cytosine to uracyl. The 

bisulfite mediated deamination of cytosine proceeds by three steps in an acid-catalized reaction. 

The first step is a reversible addition of HSO

3

-

 to cytosine. Second step, is the liberation of NH

3

 

by hydrolysis and third step is the release of HSO

3

-

 to regenerate the 5,6-doble bond, forming 

uracyl (Hayatsu, 2008). dR, deoxyribose. 
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4.7.2. Methylation specific PCR (MSP) 

DNA methylation within the CpG islands of the p15, p21, and E-cadherin promoters was 

determined using methylation-specific PCR after sodium bisulfite treatment of genomic DNA 

as mentioned above. PCR was performed in a 50 µL final volume reaction containing 1 µL of 

modified DNA, 1X PCR buffer (Qiagen), 2.5 mM MgCl

2

, 0.4 mM of each dNTP, 0.2 µM of 

each primer set (methylated or unmethylated set) and 1 U of HotStar Taq Polymerase (Qiagen). 

PCR reaction was performed at 95°C for 15 minutes followed by 35 amplification cycles (95°C 

1minute, annealing temperature for 1 minute, and 72°C for 1.5 minutes) and a final elongation 

step at 72°C for 10 minutes. Methylation specific PCR primers were described previously  by 

Scott, et al 2007 and Lakshmikuttyamma et al., 2010. Primer sequences and annealing 

temperatures are listed in Table 4.3. Modified DNA from HeLa and HL-60 cells were used as 

unmethylated MSP positive control for E-cadherin and p15 genes, respectively. 

 

4.7.3 Pyrosequencing 

Sodium bisulfite treated genomic DNA was PCR-amplified using the MSP PCR method 

as described above. PCR products were then sequenced to determine levels of CpG island 

methylation within the p15, p21 and E-cadherin gene promoters using pyrosequencing 

analaysis. Pyrosequence was performed by EpigenDX (USA).  

Briefly, pyrosequencing employs a cascade enzyme system (Polymerase, Sulfurylase, 

Luciferase and Apyrase enzymes) that generates light for every incorporated nucleotide that 

form a pair with the complementary base in the DNA strand. The intensity of light (measured as 

peak heights) is proportional to the number of nucleotide molecules incorporated (for example 

if two sequential TT are incorporated it will be shown as a higher peak than a single T and same 

for double or single G, C or A). By pyrosequencing, unmethylated cytosine is measured as the 

relative content of T (see sodium bisulfite conversion above) at the CpG site and methylated 

cytosine, is measured as the relative content of C at the CpG site (appearing as TC at each CpG 

site).  

 

The degree of methylation is calculated by the QCpG software, where it compares the 

generated pyrogram (pyrosequencing- chromatogram) to the theoretical histogram (Figure 4.2) 
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and then calculates the percentage methylation (%C) from the ratio of C/T as follows 

(EpigenDX, 2010): 

 

                 % C =             C peak height x 100                 

                               C peak height + T peak height  

 

 

4.8. Cell cycle  

Cell cycle analysis was performed using the propidium iodide staining method. AML cells were 

treated with DAC, BIX-01294, or chaetocin for 72 hours and 1.5 x 10

6

 cells were harvested and 

washed in ice cold 1X PBA (1X PBS, 0.1% (w/v) bovine serum albumin, 0.02% (w/v) sodium 

azide).  Cells  were  fixed  in  ice  cold  ethanol  and  incubated  overnight  at  4°C  for  pellet 

precipitation. Cell pellets were reconstituted in Triton-PBA [0.1% (v/v) Triton X-100 and 1X 

PBA] for 5 minutes, pelleted by centrifugation, and resuspended in 500 units/mL RNAse 

working  solution  (Worthington)  at  37°C  for  30  minutes.  Following  by  cell  staining  in 

propidium iodide working solution (0.05 mg/mL PI in PBA; Sigma) at room temperature in the 

dark  for  15  minutes  and  filtered  through  35µm  nylon  mesh.  Samples  were  run  in a Flow 

cytometer (Coulter Epics XL) and analyzed using the FloJo software (Tree Star, Inc). 

 

4.9. MTT spectrophotometric assay 

Cell proliferation and cytotoxicity was measured by MTT assay. Cells were plated in 

triplicate at 2 x 10

5

 cells per well in a 96 well plate and treated with a vehicle control and 

different doses of DAC, BIX, and chaetocin for 72 hours. After treatment 1/10 culture volume 

of 5 mg/mL MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

(Sigma-Aldrich) was added and incubated for 4 hours at 37°C to allow formation of formazan 

crystals.  The  resulting  crystal  were  solubilized  by  adding  100  µL  of  solubilization  solution 

(10%  (v/v)  SDS  and  0.01  M  HCl)  to  each  well  and  incubating  at  37°C  overnight. 

Spectrophotometric absorbance reading was taken at 570 nm with 650 nm background 

subtraction using a Spectcramax 340 PC plate reader (Molecular Devices).  
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Figure 4.2. Pyrosequencing analysis of CpG methylation. An example of pyrosequencing 

analysis at 3 CpG sites (gray columns) showing a theoretical histogram (a) and the pyrogram 

generated (b). The theoretical histogram (a) indicates the number of nucleotides incorporated in 

the Y-axis at each nucleotide dispensation in the X-axis (the sequence around the analyzed C/T 

plus some control bases). In the histogram, the dark brown bars represent the nucleotide 

positions conserved between alleles and arrow empty bars portray the number of nucleotides 

incorporated. The pyrogram (b) represents the sequential nucleotide dispensations (X-axis) 

plotted against the resultant measured light intensity (Y-axis). The sequence analyzed is shown 

above the pyrogram under FI1 name, where Y represents the potential methylated cytosine in 

the CpG. In the pyrogram, E and S (X-axis) denote the addition of the enzyme and substrate, 

respectively. The A dispensation at position 1, T at position 5, and A at position 17, represent 

negative controls (used as internal control for pyrosequencing reaction). In the template 

sequence [GGTYGYGTTGAGTTGYGTTA ], identical following nucleotides (underlying) 

result in higher peak heights, such as G at position 2 that contains signal for (GG), T at position 

11, position 16, and position 22 for (TT). Each T (highlighted) proceeding a CpG site (denotes 

as Y) is counted as unmethylated cytosine (T) in the CpG. In both figures, light yellow columns 

indicate control regions for completion of bisulfite treatment represented as C at position 10 and 

15.  Percentage methylation is calculating by the QCpG software (C% = C peak/(Cpeak + T 

peak)). For example, in the first analyzed CpG (first gray column) C peak = 125 and T peak = 

(470/2) = 235. Then, C%= 35%.   
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4.10. Chromatin immunoprecipitation (ChIP) assay 

ChIP assays were performed based on the Upstate ChIP assay protocol (Upstate 

biotechnology). Modifications to the protocol were made. Briefly, Cells were collected and 

resuspended in 10 mL growth medium containing 1% formaldehyde and incubated at room 

temperature for 10 minutes. The cross-link reaction was stopped by adding 1 mL of 1.25 M 

Glycine. Cells were washed with cold 1X PBS and lysed in 600 µL SDS lysis buffer (1% (v/v) 

SDS, 10 mM EDTA, 50 mM Tris at pH 8.0) supplemented with protease inhibitors (1 mM 

PMSF, 1 µg/mL aprotinin, 1 µg/mL pepstatin A). Genomic DNA was sheared to a size of 200-

1000 bp using a Branson Sonifier 450 sonicator (output control of 1.5, 60% duty cycle). 

Sheared lysates were cleared by centrifugation and split into fractions, Input fraction, positive 

antibody fraction (5 µg  specific  antibody)  and  negative  antibody  fraction  (5  µg  IgG). 

Immunoprecipitation was performed at 4°C overnight.  

Cross-linked protein/DNA samples were reversed by heating and genomic DNA was 

isolated by proteinase K digestion, phenol:chloroform extraction (Ambion), and ethanol 

precipitation with the assistance of 30 µg GlycoBlue coprecipitant (Ambion). DNA pellets were 

dissolved in 20 µL nuclease free water and used for Real-Time PCR or stored at -20°C. 

 

4.11. Statistical analysis 

Differences between control (untreated cells) and drug treatments (treated cells) were assessed 

using the 2-sided t test. The significance levels were set at p < 0.05 (*) and p < 0.01 (**). 
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5. RESULTS 

  

5.1. p15, p21, and E-cadherin promoter silencing in AML cell lines 

 

5.1.1. Analysis of p15, p21, and E-cadherin expression and promoter methylation in AML 

cell lines 

In cancer, genes that encode for cyclin-dependent kinase inhibitors (CDKI) and cadherin 

proteins (CDH) are frequently deregulated, leading to inactivation of growth inhibitory signals, 

excessive proliferation of malignant cells, and metastasis (Corn et al., 2000; Melki et al, 2000; 

Malumbres and Barbacid, 2009). p15, p21, and E-cadherin genes have been reported to be 

epigenetically silenced in a variety of AML cell lines and patients and more importantly, it has 

been suggested that loss of function of these genes is correlated with promoter 

hypermethylation (Herman, 1997; Corn et al., 2000; Melki et al, 2000; Scott et al, 2006; 

Lakshmikuttyamma et al., 2010). In order to investigate the p15, p21, and E-cadherin gene 

expression and promoter methylation in AML, three model cell lines were studied: AML-193, 

KG-1a, and Kasumi. p15, p21, and E-cadherin expression were detected by reverse 

transcriptase PCR. Only positive control cell lines HL-60, THP-1, and HeLa expressed p15, 

p21, and E-cadherin genes, respectively (Figure 5.1). 

 Promoter methylation was analyzed using two techniques: methylation-specific PCR 

(MSP) and DNA pyrosequencing (explanation of analysis in Figure 4.2). Methylated and 

unmethylated cytosines levels within CpG islands were measured using DNA bisulfite 

modification in both assays. Bisulfite converts unmethylated cytosines to uracil and 

subsequently to thymidine after PCR amplification. MSP analysis of p15 and E-cadherin 

promoter regions detected only the presence of methylated alleles in AML-193, KG-1a, and 

Kasumi cell lines (Figure 5.3a and Figure 5.3b). MSP analysis of the p21 promoter region 

detected only unmethylated alleles in AML cell lines tested (Figure 5.3c). To confirm p15, p21, 

and E-cadherin MSP results and to quantify the degree of promoter methylation, DNA 

pyrosequencing was performed. Pyrosequencing results correlated with MSP data and revealed 

that cytosines present as CpGs within regions of p15 and E-cadherin promoters were heavily 

methylated in AML cell lines studied (Figure 5.4 and Figure 5.5). In contrast, the cytosines 
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present as CpGs in regions of the p21 promoter that were analyzed were completely 

unmethylated in AML-193 and Kasumi cell lines (Figure 5.6).  

 

 

 

 

Figure 5.1. p15, p21, and E-cadherin expression in AML cell lines. p15, p21 and E-cadherin 

gene expression in AML cell lines was analyzed using reverse transcriptase PCR. GAPDH 

expression levels were used as cDNA input controls. HL-60, THP-1, and HeLa cell lines were 

used as positive control expression for p15, p21, and E-cadherin, respectively. 
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Figure 5.2. p15, p21, and E-cadherin MSP and ChIP PCR product location. Illustrated are the 

CpG island associated promoter region of the p15 (a) E-cadherin (b) and p21 (c) genes. CpG 

islands for p15 (chr9:21998658-21999471), p21 (chr6:36754223-36754715) and E-cadherin 

(chr16:67328536-67329145) were identified using UCSC genome browser 

(http://genome.ucsc.edu). PCR primer locations are indicated by arrows. The scale represents 

the distance from the transcription start site. 

  

http://genome.ucsc.edu
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Figure 5.3. p15, E-cadherin, and p21 promoter methylation in AML cell lines. MSP analysis of 

p15 (a), E-cadherin (b), and p21 (c) promoter methylation. U and M indicate PCR amplicons 

generated using primers specific for unmethylated and methylated p15, p21, and E-cadherin 

promoter alleles, respectively.  
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AML-193 

% Methylation: 90.3; SD: 13.7 

 

KG-1a 

% Methylation: 92.3; SD: 13.1 

 

Kasumi  

% Methylation: 88.5; SD: 13.7 

 

Figure 5.4. DNA pyrosequencing analysis of p15 promoter methylation in AML cell lines. 

Percentage methylation is the mean methylation of CpGs in the p15 promoter. SD, represents 

the standard deviation of the percentage mean methylation. The sequence analyzed is shown 

above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars highlight the peaks resulting from sequential dispensations of C and T 

from which methylation is assessed. Pyrosequencing output then indicates the methylation 

percentage calculated from the ratio of the peaks heights of C and T (underlying TC and blue 

circles) in the analyzed CpG positions (first grey bar). Blue and red colours represent the 

confidence of the sequence pattern matches: greater than 90 percent and less than 70 percent, 

respectively.  
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AML-193  

% Methylation: 96.9; SD: 3.4 

 

KG-1a 

% Methylation: 82.1; SD: 12.3  

 

Kasumi 

% Methylation: 96.5; SD: 3.3 

 

Figure 5.5. DNA pyrosequencing analysis of E-cadherin promoter methylation in AML cell 

lines. Percentage methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, 

represents the standard deviation of the percentage mean methylation. The sequence analyzed is 

shown above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue, yellow and red colours represent the 

confidence of the sequence pattern matches: greater than 90 percent, 70-89 percent and less 

than 70 percent, respectively.  
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AML-193 

% Methylation: 2.9; SD: 1,2 

a) Region1 (CpG No 8-21) 

 

b) Region 2 (CpG No 22-24) 

 

c) Region 3 (CpG No 25-31) 
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Kasumi- p-21 

% Methylation: 2.8; SD: 1.5 

d) Region1 (CpG No 8-21) 

 

e) Region 2 (CpG No 22-24) 

 

f) Region 3 (CpG No 25-31) 

 

Figure 5.6.  Continued. DNA pyrosequencing analysis of p21 promoter methylation in AML-

193 and Kasumi cell lines. Percentage methylation is the mean methylation of CpGs in p21 

promoter. SD, represents the standard deviation of the percentage mean methylation. (a), (b) 

and (c) indicate 3 different regions analyzed at the p21 promoter in AML-193 cells. (d), (e) and 

(f) indicate regions analyzed at the p21 promoter in Kasumi cells. The sequence analyzed is 

shown above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue, yellow and red colours represent the 

confidence of the sequence pattern matches: greater than 90 percent, 70-89 percent and less 

than 70 percent, respectively. 
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5.2. The effect of DAC, BIX, and chaetocin on AML cell proliferation  

To determine whether epigenetic inhibitors DAC, BIX, and chaetocin can induce re-

expression of epigenetically silenced genes in AML, we first measured the effects of these 

drugs on AML cells proliferation using the MTT assay. The MTT assay colorimetrically 

quantifies the effect of these drugs on AML cell proliferation by measuring mitochondrial 

enzyme activity based on the reduction of MTT to formazan, which produces a colour change 

from yellow to purple. The mitochondrial enzymes that catalyze the reaction are only active 

when a cell is viable, allowing the correlation between viability and spectrophotometric 

readings (Carmichael et al., 1987).  

Previous work in our lab established that DAC does not affect AML cell viability at doses 

up to 16 µM  (Geyer et al., unpublished). Therefore, we evaluated the effect of BIX and 

chaetocin on AML-193, KG-1a, and Kasumi cell viability. AML-193, KG-1a, and Kasumi cell 

lines were treated for 72 hours with different doses of BIX and chaetocin and then analyzed 

using the MTT assay. Both BIX and chaetocin treatment reduce AML cell viability as shown in 

Figure 5.7. Chaetocin was the most toxic drug to AML-193, KG-1a, and Kasumi cell lines, 

causing a dramatic decrease on cell viability at doses above 100 nM, 20 nM, and 50 nM, 

respectively (Figure 5.7).  

Since DAC has little effect on cell viability it was added to AML cells treated with BIX and 

chaetocin in order to analyze its ability to potentiate the anti-proliferative effects of BIX and 

chaetocin. The effect of chaetocin and BIX on AML cell proliferation was greater when DAC 

was used in combination with these two drugs (Figure 5.7). Furthermore, decreases in cell 

proliferation observed with BIX and chaetocin were consistent with changes in the cell cycle 

profile. BIX decreased the population of cells in the dividing phase (S phase) and G2/M and 

increased the population in G1 phase, which contains check points control for cell cycle arrest 

(Figure 5.8). Similarly, chaetocin induced changes on cell cycle, increasing the population in 

subG1 and decreasing the population of dividing cells (S - G2/M) (Figure 5.9).  
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a) 

 

b) 

 

c) 

 

 

Figure 5.7. Proliferation of AML cell lines treated with BIX and chaetocin. AML-193 (a), KG-

1a (b), and Kasumi (c) cell lines were treated for 72 hours with indicated concentrations of 

BIX-01294 (BIX) and chaetocin in presence (BIX+DAC and chaetocin+DAC) or absence 

(BIX-DAC and chaetocin-DAC) of DAC (1 µM). Samples were analyzed using the MTT assay. 

The data is represented as percentage (%) relative proliferation, which is based on the 

proliferation normalized to the untreated cells (100% proliferation). Error bars represent 

standard deviation from three independent experiments.  
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Figure 5.8. Effect of BIX-01294 on the cell cycle in AML cell lines. Cell cycle histograms 

represent the propidium iodide (PI) staining of DNA content  in different phases of the cell 

cycle before and after treatment with BIX. AML-193, KG-1a, and Kasumi cells were treated for 

72 hours with either BIX (4 µM) or vehicle control (DMSO). The percentage of cells  in each 

phase of the cell cycle is shown on the histograms. At 4 µM dose, BIX increased the number of 

cells undergoing G1 phase but does not cause cell apoptosis.Cell cycle analysis was performed 

with the Watson algorithm using the FloJo software. 
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Figure 5.9. Effect of chaetocin on the cell cycle in AML cell lines. Cell cycle histograms 

represent the propidium iodide (PI) staining of DNA content in different phases of the cell cycle 

before and after treatment with chaetocin. AML-193 and KG-1a cells were treated for 72 hours 

with either chaetocin (100 nM) or vehicle control (DMSO). The percentage of cells in each 

phase of the cell cycle is shown on the histograms. At 100 nM dose, chaetocin increased the 

number of cells undergoing apoptosis. Cell cycle analysis was performed with the Watson 

algorithm using the FloJo software. 
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5.3. Effect of DAC on p15, p21, and E-cadherin gene expression 

5.3.1. DAC-induced expression of p15, p21, and E-cadherin genes 

DAC has been extensively used in cancer epigenetic therapy for inducing expression of 

genes that are silenced by promoter hypermethylation in various types of cancer (Hellebrekers 

et al., 2007; Jain et al., 2009). Moreover, DAC has also been recognized to induce expression 

of genes without promoter methylation, which is the case of p21 gene in this study (Zhu and 

Otterson, 2003; McGarvey et al., 2006). In order to investigate epigenetic changes that lead to 

re-activation of tumor suppressor genes in AML, we evaluated the effect of DAC, BIX, and 

chaetocin on p15, p21, and E-cadherin gene re-expression in AML cell lines.  

To optimize concentrations of DAC that leads to gene re-activation, AML-193, KG-1a, and 

Kasumi cell lines were treated with DAC in a dose response induction manner and p15, p21 and 

E-cadherin expression were analyzed by real time PCR. DAC significantly induced expression 

of  p15  at  doses  higher  than  1  µM  in  AML-193  and  4  µM  in  KG-1a and Kasumi cell lines 

(Figure 5.10a). Similarly, in KG-1a and Kasumi cells, E-cadherin expression was induced with 

4 µM DAC, whereas 8 µM DAC was required to induce E-cadherin expression in the AML-193 

cell line (Figure 5.10b). Despite the p21 promoter being unmethylated, DAC induced 

expression of p21 in all AML cell lines studied. Significant p21 expression was observed in 

AML-193, KG-1a, and Kasumi cell lines after treatment with 4 µM DAC (Figure 5.10c).  

 

5.3.2. DAC-induced p15 and E-cadherin expression by reducing promoter methylation 

Based on the ability of DAC to induce expression of hypermethylated p15 and E-cadherin 

genes in AML cell lines, we measured the effect of DAC on promoter demethylation using 

DNA pyrosequencing. Since treatment of KG-1a  and  Kasumi  cells  with  4  µM  DAC 

significantly increased p15 and E-cadherin gene expression, we chose only Kasumi and AML-

193 cell lines to analyze promoter demethylation. Treatment of AML-193 with 1 µM DAC and 

Kasumi with 4 µM DAC  resulted  in  a decrease of p15 and E-cadherin promoter methylation 

across the region of the CpG island analyzed. The mean level of p15 and E-cadherin promoter 

methylation was reduced on the order of 30% in all AML cell lines studied (Figure 5.11, Figure 

5.12, Figure 5.13, and Figure 5.14). In the unmethylated p21 promoter, pyrosequencing results 

revealed that the level of CpG island methylation did not change, which was in agreement with 

previous MSP and pyrosequencing results (Figure 5.15 and Figure 5.16).   
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Figure 5.10. Real time PCR analysis of p15, p21, and E-cadherin expression in AML cell lines. 

AML-193, KG-1a, and Kasumi cell lines were treated with different doses of DAC for 72 

hours. P15 (a), E-cadherin (b), and p21(c) expression was analyzed using HPRT as endogenous 

control gene. Error bars represents standard deviation of three independent experiments and (*) 

represents P-value < 0.05 and (**) represent P-value <0.01 between treated and untreated cells. 

Control represents the untreated cells. 
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a) Control 

% Methylation: 95.1%; SD: 8.0  

 

b) 1 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

 

Figure 5.11. Effect of DAC on p15 promoter methylation in AML-193 cell line. Cells were 

untreated (a) or treated (b) for 72 hours with the indicated concentration of DAC. Percentage 

methylation is the mean methylation of CpGs in the p15 promoter. SD, represents the standard 

deviation of the percentage mean methylation. The sequence analyzed is shown above each 

pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, the Y-

axis represents the signal intensity (arbitrary units), which is proportional to the number of 

nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue and yellow colors represent the confidence of the sequence 

pattern matches: greater than 90% and between 70-89%, respectively.  
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a)  Control 

% Methylation: 95%; SD: 4.9 

 

 

b) 4 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

 

Figure 5.12. Effect of DAC on p15 promoter methylation in Kasumi cell line. Cells were 

untreated (a) or treated (b) for 72 hours with the indicated concentration of DAC. Percentage 

methylation is the mean methylation of CpGs in the p15 promoter. SD, represents the standard 

deviation of the percentage mean methylation. The sequence analyzed is shown above each 

pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, the Y-

axis represents the signal intensity (arbitrary units), which is proportional to the number of 

nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue color represents the confidence of the sequence pattern 

matches greater than 90 percent. 
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a) Control  

% Methylation: 95.5; SD:4.7 

 

b) 8 µM DAC 

% Methylation: 66.8; SD: 7.0 

 

Figure 5.13. Effect of DAC on E-cadherin promoter methylation in the AML-193 cell line. 

Cells were untreated (a) or treated (b) for 72 hours with the indicated concentration of DAC. 

Percentage methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, 

represents the standard deviation of the percentage mean methylation. The sequence analyzed is 

shown above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue, yellow and red colours represent the 

confidence of the sequence pattern matches: greater than 90 percent, 70-89 percent and less 

than 70 percent, respectively. 
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a) Control 

% Methylation: 90.1; SD: 9.0 

 

b) 4 µM DAC 

% Methylation: 55.8; SD: 9.2  

 

 

Figure 5.14. Effect of DAC on E-cadherin promoter methylation in Kasumi cell line. Cells 

were untreated (a) or treated (b) for 72 hours with the indicated concentration of DAC. 

Percentage methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, 

represents the standard deviation of the percentage mean methylation. The sequence analyzed is 

shown above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue, yellow and red colours represent the 

confidence of the sequence pattern matches: greater than 90 percent, 70-89 percent and less 

than 70 percent, respectively. 
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AML-193, Control  

 

a) Region1 (CpG No 8-21) 

% Methylation: 3.4; SD: 1.08 

 

 

b) Region 2 (CpG No 22-24) 

% Methylation: 1.9; SD: 0.34  

 

 

c) Region 3 (CpG No 25-31) 

% Methylation: 1.7; SD: 1.26 
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AML-193, 1 µM DAC 

 

a) Region1 (CpG No 8-21) 

% Methylation: 2.5; SD: 1.06 

 

 

b) Region 2 (CpG No 22-24) 

% Methylation: 2.5; SD: 0.91  
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c) Region 3 (CpG No 25-31) 

% Methylation: 2.4; SD: 0.87 

 

 

Figure 5.15. Effect of DAC on p21 promoter methylation in AML-193 cell line. AML-193 

cells were untreated (Control) or treated (1µM DAC) for 72 hours with the indicated 

concentration of DAC. (a), (b) and (c) represent the analyzed CpG regions in the p21 promoter. 

Percentage methylation is the mean methylation of CpGs in the p21 promoter. SD, represents 

the standard deviation of the percentage mean methylation. The sequence analyzed is shown 

above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue and yellow colours represent the 

confidence of the sequence pattern matches: greater than 90 percent and between 70-89 percent, 

respectively. 
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Kasumi, Control 

 

a) Region 1 (CpG No 8-21) 

% Methylation: 2.9; SD: 1.04 

 

 

b) Region 2 (CpG No 22-24) 

% Methylation: 1.6; SD: 1.53 

 

 

b) Region 3 (CpG No 25-31) 

% Methylation: 2.6; SD: 2.03 
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Kasumi, 4 µM DAC 

 

 

a) Region 1 (CpG No 8-21) 

% Methylation: 2.9; SD: 0.82 

 

 

 

b) Region 2 (CpG No 22-24) 

% Methylation: 3.9; SD: 1.14 
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c) Region 3 (CpG No 25-31) 

% Methylation: 2.8; SD: 1.47 

 

 

Figure 5.16. Effect of DAC on p21 promoter methylation in Kasumi cell line. Cells were 

untreated (Control) or treated (4µM DAC) for 72 hours with the indicated concentration of 

DAC. (a), (b) and (c) represent the analyzed CpG regions in the p21 promoter. Percentage 

methylation is the mean methylation of CpGs in the p21 promoter. SD, represents the standard 

deviation of the percentage mean methylation. The sequence analyzed is shown above each 

pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, the Y-

axis represents the signal intensity (arbitrary units), which is proportional to the number of 

nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue and yellow colours represent the confidence of the sequence 

pattern matches: greater than 90 percent and between 70-89 percent, respectively. 
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5.3.3. DAC-mediated induction of p15, p21, and E-cadherin correlated with changes in 

H3K9 methylation 

DNA methylation has been recognized to cooperatively interact with histone methylation in 

silencing of gene expression (Esteve et al., 2006; Epztejn-Litman et al., 2008; Dong et al., 

2008). Histone 3 Lysine 9 (H3K9) di- and tri-methylation are common repressive marks present 

in regulatory regions of transcriptional silenced genes (Kouzarides, 2007). Since previous 

studies reported that DAC treatment decreased H3K9 methylation in promoter regions of 

silenced genes (Fahrner et al., 2002; Nguyen et al., 2002; Coombes et al., 2003), we used 

chromatin immunoprecipitation (ChIP) assays to analyze the effect of DAC and other 

epigenetic drugs on p15, p21, and E-cadherin promoter H3K9 methylation (Table 5.1). AML-

193 and Kasumi cells were treated with DAC for 72 hours and protein lysates were subjected to 

chromatin immunoprecipitation using antibodies for anti-dimethyl-H3K9 and anti-trimethyl-

H3K9. DAC decreased both H3K9 di- and tri-methylation levels at p15 and E-cadherin 

promoters relative to the untreated control (Figure 5.17a and Figure 5.17b). H3K9 tri-

methylation levels decreased to a greater extent than H3K9 di-methylation in response to DAC 

treatment in AML-193 and Kasumi cell lines (Figure 5.17a and Figure 5.17b). In contrast, at the 

p21 promoter DAC treatment increased levels of H3K9 di- and tri-methylation in both AML-

193 and Kasumi cell lines (Figure 5.17a and Figure 5.17b). Levels of histone 3 (H3) were also 

measured to analyze the possibility of nucleosome depletion. However, we did not observe 

significant changes in H3 levels, indicating that variations in histone H3K9 di- and tri-

methylation were not due to nucleosome depletion (Figure 5.17c). 
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Table 5.1. Chromatin immunoprecipitation assays of the effect of epigenetic drugs on H3K9 

methylation in AML-193 cell line 

 

 

AML-193 cells were treated or untreated for 72 hours with the indicated concentration of drugs: 

DAC (1µM), BIX (4 µM), and chaetocin (100nM), either alone or as a combinatorial treatment. 

Untreated cells represent the Control treatment. Quantitative real time PCR was performed and 

ChIP results obtained by three independent replicate experiments are represented as fold 

difference between untreated (Control) and treated cells. H3K9Me2 and H3K9Me3 represent 

the di-methylation and tri-methylation levels at Histone 3 lysine 9. Background signal were 

measured with No Antibody (Ab) control and IgG Antibody control and then subtracted from 

signal obtained from the ChIP samples. Changes on H3-core histone were measured to assure 

no nucleosome depletion. SD, represents the standard deviation of three independent 

experiments.  
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Figure 5.17. Chromatin immunoprecipitation analysis of the effect of DAC on H3K9 di- and 

tri-methylation and H3 associated with p15, E-cadherin, and p21 promoters in AML cell lines. 

(a) ChIP assay using dimethyl-H3K9 (H3K9Me2) antibodies. (b) ChIP assay using trimethyl-

H3K9 (H3K9Me3) antibodies. (c) ChIP assay using H3 (H3) antibodies. AML-193 and Kasumi 

cells were treated for 72 hours with the following concentrations of DAC: AML-193: p15 and 

p21 (1 µM), E-cadherin (8 µM); Kasumi: p15, E-cadherin and p21 (4 µM). Histograms show 

the relative fold expression of PCR products (immunoprecipitated DNA) quantified using real 

time PCR. Error bars represent standard deviation from three independent experiments. ** 

Represents P-values < 0.05 and (**) represent P-value <0.01 between treated and untreated 

cells. Control represents the untreated cells. 
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5.4. Effect of BIX on p15, p21, and E-cadherin gene expression 

 

5.4.1. BIX treatment did not re-activate expression of p15 and E-cadherin genes in AML 

cell lines 

Like DNA methylation, histone methylation is an important epigenetic mark for regulation 

of gene expression (Kouzarides, 2007). Alterations in histone methylation, such as those 

observed at positions H3K9 and H3K27 have been associated with aberrant gene silencing in 

various form of cancer (Ohm et al., 2007; Schlesinger et al., 2007). Moreover, previous studies 

reported that epigenetically silenced genes that are re-activated by DAC treatment still present 

repressive H3K9 methylation marks in their promoter regions (Zhu and Otterson, 2003; 

McGarvey et al., 2006). To evaluate whether inhibition of histone methylatransferase activity 

leads to a changes in H3K9 methylation that might influence re-expression of epigenetically 

silenced genes, we used a specific G9a (dimethyl-H3K9) inhibitor BIX-01294 (BIX). This drug 

was first tested for its ability to re-express p15, p21, and E-cadherin genes in AML cell lines. 

Initially, expression of p15, p21, and E-cadherin was monitored in the presence of various 

concentrations of BIX. AML-193, KG-1a, and Kasumi cells were treated with BIX for 72 hours 

and relative expression was measured by real time PCR. BIX did not significantly induce the 

expression of p15 and E-cadherin at doses up to 4 µM in AML-193 and Kasumi cells and at 

doses  up  to  8  µM  in  the  KG-1a cell line (Figure 5.18a and Figure 5.18b). In contrast, BIX 

induced a significant increase of p21 expression with an increase of 3.5-fold following 

treatment with 4 µM BIX in AML-193 cells. No increase in p21 expression however was 

observed in KG-1a and Kasumi cell lines (Figure 5.18 c). 

 

5.4.2. BIX reduced H3K9 methylation levels at p15, p21, and E-cadherin promoters 

without inducing gene expression 

Although BIX did not significantly induce expression of p15, p21, and E-cadherin in AML 

cell lines (with exception of p21 expression in AML-193 cells), we still determined whether 

BIX decreased H3K9 di- and tri-methylation at p15, p21, and E-cadherin promoters in AML-

193 and Kasumi cell lines. Using ChIP assays with anti-dimethyl-H3K9 and anti-trimethyl-

H3K9 antibodies, we tested the ability of BIX (4 µM) to cause changes in promoter H3K9 di 

and tri-methylation. BIX treatment significantly reduced H3K9 di-methylation levels at p15 
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promoter in AML-193 and Kasumi cell lines (Figure 5.19a). BIX had no effect on H3K9 tri-

methylation at p15 and E-cadherin promoter in any of the cell lines tested (Figure 5.19a and 

Figure 5.19b). However, a decrease in H3K9 di-methylation levels at E-cadherin promoter was 

only observed in Kasumi cells (Figure 5.19a). In contrast, the p21 promoter region was 

associated with reduced levels of H3K9 di- and tri-methylation in AML-193 treated cells 

(Figure 5.19a and Figure 5.19b). No changes were observed in histone H3 levels, indicating that 

changes in H3K9 methylation were not due to nucleosome depletion (Figure 5.19c).  

 

5.4.3. BIX did not induce changes in promoter methylation at p15 and E-cadherin 

promoters 

Previous it has been shown that G9a directly interacts with DNMTs to establish a 

coordinated mechanism for DNA and histone methylation in silencing of genes during cell 

replication (Esteve et al., 2006). In order to evaluate whether BIX induced changes in promoter 

methylation, we analyzed the effect of BIX on p15 and E-cadherin promoter methylation in 

AML-193 and Kasumi cells. Treatment with BIX did not produce any change in the mean of 

p15 and E-cadherin promoter methylation state as determined by DNA pyrosequencing (Figure 

5.20, Figure 5.21, Figure 5.22 and Figure 5.23).  
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Figure 5.18. Real time PCR analysis of p15, p21, and E-cadherin expression in AML cell lines. 

AML-193, KG-1a, and Kasumi cell lines were treated with different doses of BIX for 72 hours. 

p15 (a), E-cadherin (b), and p21(c) gene expression was analyzed using HPRT as endogenous 

control expression. Error bars represents standard deviation of three independent experiments 

and (*) represents P-value < 0.05 between treated and untreated cells. Control represents the 

untreated cells. 
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Figure 5.19. Chromatin immunoprecipitation analysis of the effect of BIX on H3K9 di- and tri-

methylation and H3 associated with the p15, E-cadherin, and p21 promoter in AML cell lines. 

(a) ChIP assay of dimethyl-H3K9 (H3K9Me2) antibodies. (b) ChIP assay of trimethyl-H3K9 

(H3K9Me3) antibodies. (c) ChIP assay of H3 (H3) antibodies. AML-193 and Kasumi cells 

were  treated  with  BIX  (4  µM)  or  untreated  for  72  hours.  Histograms  show  the  relative  fold 

expression of PCR products (immunoprecipitated DNA) quantified using real time PCR. Error 

bars represent standard deviation of three independent experiments. ** Represents P-values < 

0.05 and (**) represent P-value <0.01 between treated and untreated cells. Control represents 

the untreated cells. 
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a) Control  

% Methylation: 90.3; SD: 13.7  

 

b) 4 µM BIX 

% Methylation: 89.8; SD: 13.6 

 

Figure 5.20. Effect of BIX on p15 promoter methylation in AML-193 cell lines. AML-193 

cells were untreated (a) or treated (b) for 72 hours with 4µM BIX. Percentage methylation is the 

mean methylation of CpGs in the p15 promoter. SD, represent the standard deviation of the 

percentage mean methylation. The sequence analyzed is shown above each pyrogram, where Y 

represents the location of the cytosine in the CpG. In the pyrogram, the Y-axis represents the 

signal intensity (arbitrary units), which is proportional to the number of nucleotides 

incorporated (as peaks heights) and the X-axis is the dispensation order. The gray bars indicate 

the CpG positions, where the degree of methylation is assessed from the ratio of the peaks 

heights of C and T. Blue, yellow and red colours represent the confidence of the sequence 

pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, respectively. 
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a) Control 

% Methylation: 88.5; SD: 13.7 

 

 

b) 4 µM BIX 

% Methylation: 88.8; SD: 13.7 

 

Figure 5.21. Effect of BIX on p15 promoter methylation in the Kasumi cell line. Kasumi cells 

were untreated (a) or treated (b) for 72 hours with 4 µM BIX. Percentage methylation is the 

mean methylation of CpGs in the p15 promoter. SD, represent the standard deviation of the 

percentage mean methylation. The sequence analyzed is shown above each pyrogram, where Y 

represents the location of the cytosine in the CpG. In the pyrogram, the Y-axis represents the 

signal intensity (arbitrary units), which is proportional to the number of nucleotides 

incorporated (as peaks heights) and the X-axis is the dispensation order. The gray bars indicate 

the CpG positions, where the degree of methylation is assessed from the ratio of the peaks 

heights of C and T. Blue, yellow and red colours represent the confidence of the sequence 

pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, respectively. 
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a) Control 

 %Methylation: 96.9; SD: 3.4  

 

 

 

b) 4 µM BIX 

% Methylation: 96.4; Sd: 3.3 

 

Figure 5.22. Effect of BIX on E-cadherin promoter methylation in the AML-193 cell line. 

AML-193 cells were untreated (a) or treated (b) for  72  hours  with  4µM BIX. Percentage 

methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, represents the 

standard deviation of the percentage mean methylation. The sequence analyzed is shown above 

each pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, 

the Y-axis represents the signal intensity (arbitrary units), which is proportional to the number 

of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue, yellow and red colours represent the confidence of the 

sequence pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, 

respectively. 
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 a) Control 

% Methylation : 96.5; SD: 3.3 

 

 

 

 

b) 4 µM BIX 

% Methylation: 96.4; SD: 3.3 

 

Figure 5.23. Effect of BIX on E-cadherin promoter methylation in the Kasumi cell line. 

Kasumi cells were untreated (a) or treated (b) for  72  hours  with  4µM BIX. Percentage 

methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, represents the 

standard deviation of the percentage mean methylation. The sequence analyzed is shown above 

each pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, 

the Y-axis represents the signal intensity (arbitrary units), which is proportional to the number 

of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue, yellow and red colors represent the confidence of the 

sequence pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, 

respectively. 
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5.5. Effect of chaetocin on p15, p21, and E-cadherin expression  

 

5.5.1. Chaetocin-induced re-expression of p15, p21, and E-cadherin  

Histone methylation is an important transcription mark for regulation of gene expression; 

however alterations in histone methylation patterns lead to the permanent silencing of relevant-

cancer genes (Kouzarides, 2007; Sharma et al., 2010). To continue evaluating the effect of 

histone methylation in the silencing of tumor suppressor genes in AML, we analyzed the effect 

of chaetocin, an inhibitor of SUV39H1 histone trimethyltransferase, on p15, p21, and E-

cadherin gene re-expression in AML cell lines. Treatment of AML-193, KG-1a, and Kasumi 

cell lines with 50 to 100 nM chaetocin resulted in a significant increase in p15, p21, and E-

cadherin gene expression (Figure 5.24). p21 expression  increased the most with an ~ 6-fold 

increase and ~ 8-fold increased following treatment with 100 nM chaetocin in AML-193 and 

Kasumi cells, respectively (Figure 5.24c). Chaetocin doses up to 100 nM were required to 

significantly re-express E-cadherin and p15 in AML cell lines (Figure 5.24a and Figure 5.24b). 

 

5.5.2. Chaetocin-mediated expression of p15, p21, and E-cadherin caused changes in 

H3K9 methylation 

To determine if chaetocin induced p15, p21, and E-cadherin gene expression by causing 

changes in promoter H3K9 methylation, we used ChIP assays. Treatment of AML-193 and 

Kasumi cells with 100 nM chaetocin significantly decreased levels of trimethyl-H3K9 at p15 

and E-cadherin promoters to a greater extent than dimethyl-H3K9 (Figure 5.25a and Figure 

5.25b). In contrast to the results observed with DAC, chaetocin decreased H3K9 tri-methylation 

levels at the p21 promoter of AML-193 and Kasumi cell lines (Figure 5.25b). However, 

chaetocin was only able to reduce H3K9 di-methylation levels at the p21 promoter in AML-193 

cells. In Kasumi cells, this treatment increased levels of dimethyl-H3K9, which was similar to 

results found with DAC treatment (Figure 5.25a and Figure 5.17a). We did not observed 

changes in core histone H3 levels, indicating that changes in H3K9 methylation were not due to 

nucleosome depletion (Figure 5.25c). 
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5.5.3. Chaetocin enhanced p15 and E-cadherin expression without promoter 

demethylation 

The ability of chaetocin to enhance expression of hypermethylated silenced genes, 

prompted us to determine whether chaetocin treatment produced changes in the methylation 

status of p15 and E-cadherin promoters. Treatment of AML-193 and Kasumi cell lines with 

chaetocin did not change the methylation state across the analyzed CpG islands in the p15 and 

E-cadherin promoter as indicated by DNA pyrosequencing analysis (Figure 5.26, Figure 27, 

Figure 28 and Figure 29). 
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Figure 5.24. Real time PCR analysis of p15, p21, and E-cadherin expression in AML cell lines. 

AML-193, KG-1a, and Kasumi cell lines were treated with different doses of chaetocin for 72 

hours. P15 (a), E-cadherin (b), and p21 (c) gene expression was analyzed using HPRT as 

endogenous control expression. Error bars represents standard deviation of three independent 

experiments and (*) represents P-value < 0.05 and (**) represent P-value <0.01 between treated 

and untreated cells. Control represents the untreated cells. 

 



76 

 

 

Figure 5.25. Chromatin immunoprecipitation analysis of the effect of chaetocin on H3K9 di- 

and tri-methylation and H3 associated with the p15, E-cadherin, and p21 promoter in AML cell 

lines. (a) ChIP assay of dimethyl-H3K9 (H3K9Me2) antibodies. (b) ChIP assay of trimethyl- 

H3K9 (H3K9Me3) antibodies. (c) ChIP assay of H3 (H3) antibodies. AML-193 and Kasumi 

cells were treated with Chaetocin (100 nM) or untreated for 72 hours. Histograms show the 

relative fold expression of PCR products (immunoprecipitated DNA) quantified using real time 

PCR. Error bars represent standard deviation of three independent experiments. ** Represents 

P-values < 0.05 and (**) represent P-value <0.01 between treated and untreated cells. Control 

represents the untreated cells. 
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AML-193 p15  

a) Control 

% Methylation: 95.1; SD: 8.0  

 

b) 100 nM Chaetocin 

% Methylation: 95.2; SD: 7.4 

 

 

Figure 5.26. Effect of chaetocin on p15 promoter methylation in AML-193 cell line. AML-193 

cells were untreated (a) or treated (b) for 72 hours with 100 nM chaetocin. Percentage 

methylation is the mean methylation of CpGs in the p15 promoter. SD, represents the standard 

deviation of the percentage mean methylation. The sequence analyzed is shown above each 

pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, the Y-

axis represents the signal intensity (arbitrary units), which is proportional to the number of 

nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Yellow color represents that the sequences pattern matches with a 

confidence between 70-89 percent.  



78 

 

a) Control 

% Methylation: 95.0; SD: 7.4 

 

b) 100 nM Chaetocin% Methylation: 95.7; SD: 5.4 

 

Figure 5.27. Effect of chaetocin on p15 promoter methylation in Kasumi cell line. Kasumi cells 

were untreated (a) or treated (b) for 72 hours with 100 nM chaetocin. Percentage methylation is 

the mean methylation of CpGs in the p15 promoter. SD, represents the standard deviation of the 

percentage mean methylation. The sequence analyzed is shown above each pyrogram, where Y 

represents the location of the cytosine in the CpG. In the pyrogram, the Y-axis represents the 

signal intensity (arbitrary units), which is proportional to the number of nucleotides 

incorporated (as peaks heights) and the X-axis is the dispensation order. The gray bars indicate 

the CpG positions, where the degree of methylation is assessed from the ratio of the peaks 

heights of C and T. Blue color represents that the sequence pattern matches with a confidence 

greater than 90 percent.  
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a) Control 

% Methylation: 95.5; SD: 4.7 

 

b) 100 nM Chaetocin 

% Methylation: 90.6; SD: 10 

 

 

Figure 5.28. Effect of chaetocin on E-cadherin promoter methylation in AML-193 cell line. 

AML-193 cells were untreated (a) or treated (b) for  72  hours  with  4µM BIX. Percentage 

methylation is the mean methylation of CpGs in the E-cadherin promoters. SD, represents the 

standard deviation of the percentage mean methylation. The sequence analyzed is shown above 

each pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, 

the Y-axis represents the signal intensity (arbitrary units), which is proportional to the number 

of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue, yellow and red colors represent the confidence of the 

sequence pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, 

respectively. 
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a) Control 

% Methylation: 90.1; SD: 9.0 

 

 

 

b) 100 nM Chaetocin 

% Methylation: 84.9; SD: 11.1 

 

 

Figure 5.29. Effect of chaetocin on E-cadherin promoter methylation in AML-193 cell line. 

AML-193 cells were untreated (a) or treated (b) for  72  hours  with  4µM BIX. Percentage 

methylation is the mean methylation of CpGs in the E-cadherin promoters. SD, represents the 

standard deviation of the percentage mean methylation. The sequence analyzed is shown above 

each pyrogram, where Y represents the location of the cytosine in the CpG. In the pyrogram, 

the Y-axis represents the signal intensity (arbitrary units), which is proportional to the number 

of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation order. The gray 

bars indicate the CpG positions, where the degree of methylation is assessed from the ratio of 

the peaks heights of C and T. Blue, yellow and red colours represent the confidence of the 

sequence pattern matches: greater than 90 percent, 70-89 percent and less than 70 percent, 

respectively. 
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5.6. The effect of combinatorial treatments of DAC, BIX, and chaetocin on AML cell 

proliferation 

Previous studies in our lab showed that DAC has little effect on AML cell proliferation. 

However, we found that DAC potentiated the anti-proliferative cell response to BIX and 

chaetocin treatment in AML cell lines. Based on this result and the fact that combinations of 

DNMT and HDAC inhibitors work in synergy to induce greater expression of silenced tumor 

suppressor genes in cancer cell lines (Zhu and Otterson, 2003; McGarvey et al., 2006), we 

evaluated the effect of combinatorial treatments of DAC, BIX, and chaetocin on the 

proliferation of AML cells and in the re-activation of tumor suppressor genes in AML cell lines. 

Initially, we determined median effect doses of BIX and chaetocin in the presence and absence 

of DAC on AML-193, KG-1a, and Kasumi cell proliferation using MTT assays. Median doses 

(Dm) were determined based on the MTT assay using CalcuSyn software in accordance with 

equation 1: 

 

Log (Fa/Fu) = m log (D)  m log (Dm)                         (Eq.1) 

 

In equation 1, Fa is the fraction affected for a given dose (D), Fu is the fraction unaffected 

(1-Fa), D is the dose of drug, Dm is the median dose of the drug and m is the slope. The 

fraction affected calculated from MTT data was determined by equation 2: 

 

Fa =           (Proliferation with drug)____        (Eq. 2) 

(Proliferation without drug) 

 

We found that chaetocin induced 50% inhibition of AML cell proliferation at lower doses 

than BIX. However, median-effect doses vary between cell lines due to their sensitivity to 

drugs. Kasumi was the most sensitive cell line in response to BIX, showing a Dm of 828±481 

nM  and  10.33±2.92  nM  for  chaetocin  (Table  5.2 and Figure 5.32). Conversely, KG-1a was 

more  sensitive  to  chaetocin  and  BIX  with  a  Dms  of  7.65±0.36  nM  and  1380±269  nM, 

respectively (Table 5.2 and Figure 5.31). AML-193 was the most resistant cell line to chaetocin 

and  BIX  with  a  Dms  of  2590±163  nM  and  17±1.74  nM,  respectively  (Table  5.2  and  Figure 

5.30).  
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In all AML cell lines tested, median doses were reduced for chaetocin and BIX in the 

presence of DAC, confirming that DAC potentiates the effect of these drugs on the proliferation 

of AML cells (Table 5.2). Chaetocin Dms were reduced in the order of 3 to 5 times in all AML 

cell lines studied (Table 5.2). In AML-193, the Dm for BIX was as well reduced 3 times. 

However, in Kasumi and KG-1a the Dm for BIX was slightly reduced (Table 5.2). The ability 

of DAC to potentiate the activity of BIX and chaetocin may be explained by the correlation 

between decreased DNA and histone methylation and gene re-activation. This hypothesis can 

be supported by previous studies carried out in the Geyer lab, where re-activation of 

hypermethylated tumor suppressor gene RIZ1 takes place when AML cells are treated with 

chaetocin and DAC (Geyer, unpublished).  
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Table 5.2. Median doses of chaetocin and BIX in AML cell lines 

Cell line 

 

+/- DAC Drugs Median dose  (nM)* 

AML-193 

- BIX 2590 ± 163 

AML-193 

+ BIX 770 ± 290 

AML-193 

- Chaetocin 17 ± 1.74 

AML-193 

+ Chaetocin 3.30 ± 1.56 

KG-1a  

- BIX 1380 ± 269 

KG-1a 

+ BIX 1160 ± 307 

KG-1a 

- Chaetocin 7.65 ± 0.36 

KG-1a 

+ Chaetocin 2.53 ± 0.53 

Kasumi 

- BIX 828 ± 481 

Kasumi 

+ BIX 793 ± 189 

Kasumi 

- Chaetocin 10.33 ± 2.92 

Kasumi 

+ Chaetocin 1.96 ± 0.43 

Cells were treated for 72 hours with BIX and chaetocin in combination in presence and absence 

of DAC (+/-). * Errors represents 95% confidential interval. 
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Figure 5.30. Median effect plots of BIX and chaetocin in AML-193 cell line. AML-193 cells 

were treated for 72 hours with BIX (a) or chaetocin (b). Fa indicates fraction affected for each 

drug, Fu indicates fraction unaffected (vehicle control), and D represents doses for each drug. 

DMSO was used as a vehicle control for both drugs. The median doses (Dm) are found from 

the graphs by taking the antilog of the X intercept.  
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Figure 5.31. Median effect plots of BIX and chaetocin in KG-1a cell line. KG-1a cells were 

treated for 72 hours with BIX (a) or chaetocin (b). Fa indicates fraction affected for each drug, 

Fu indicates fraction unaffected (vehicle control), and D represents doses for each drug. DMSO 

was used as a vehicle control for both drugs. The median doses (Dm) are found from the graphs 

by taking the antilog of the X intercept. 
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Figure 5.32. Median effect plots of BIX and chaetocin in Kasumi cell line. Kasumi cells were 

treated for 72 hours with BIX (a) or chaetocin (b). Fa indicates fraction affected for each drug, 

Fu indicates fraction unaffected (vehicle control), and D represents doses for each drug. DMSO 

was used as a vehicle control for both drugs. The median doses (Dm) are found from the graphs 

by taking the antilog of the X intercept. 
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Based on the ability of DAC to potentiate anti-proliferative response of chaetocin and BIX 

in AML cell lines, we assessed the synergism or antagonism effects of BIX and chaetocin in 

presence and absence of DAC. Interaction between drugs was tested using the median effect 

plot analysis method developed by Chou and Talaly (1977). This method evaluates the nature of 

interaction of two drugs using the combination index (CI) value, which provides the qualitative 

information of drug interaction nature and is represented by equation 3: 

CI= (D

A,X

/ D

X,A

) + (D

B,X

/ D

X,B

)                      (Eq. 3) 

In equation 3, D

A,X 

 and D

B,X

 are  concentrations of drugs A and B used in combination to 

achieve X% drug effect. D

X,A

 and D

X,B

 are the concentrations of each drug (A and B) that alone 

cause that X% effect. CI is the combination index value. Combination index values can be 

represented by CI and isobologram plots. Isobolograms are defined as a measure of 

effectiveness of drug interaction, where two drugs, A and B, are required to produce a defined 

single agent effect (e,g., IC

50

/Dm). D

A

 and D

B

 used as single agents are placed on the x and y 

axes in a two-coordinate plot. The line connecting these points (drug A,

 

D

A

, and drug B, D

B

, at 

an effect above the line indicates that drug A and B at x and y doses synergistically act to cause 

an effect greater than that caused by the drugs alone. Conversely, when a combination results in 

a reduced effect (le

x

x

indicating a CI value more than 1, showing antagonism. Synergism will be described as the 

opposite of antagonism, where CI value is less than 1.  In summary, if the CI is equal to 1, the 

drug combination is additive, CI is greater than 1, then drugs display antagonism, and if the CI 

is less than 1, drugs display synergism (Zhao et al., 2004; Tallarida, 2006; Chou, 2006). 

Drug combination studies were used to measure drug interactions and potentiation of anti-

proliferative response in AML cell lines. CI values were calculated at different effect levels, 

denoted ED

X

 (x= 50, 75, and 90) using CalcuSyn software (Table 5.3). In AML-193, BIX and 

chaetocin treatment displayed antagonistic activity under the drug doses used in study (Figure 

5.33). The mean combination index values +/- SD in AML-193 cell lines for different effect 

levels were ED

50

: 1.49 +/- 0.38, ED

75

: 1.48 +/- 0.32, and ED

90

: 1.48 +/- 0.28 (Table 5.3).  In the 

presence of DAC, antagonism became significant, but it was slightly reduced as the effect-



88 

 

levels increased. CI values for ED

50

, ED

75

, and ED

90

 were 2.73 +/- 0.66, 2.18 +/- 0.42, and 1.74 

+/- 0.28, respectively (Table 5.3, Figure 5.33a and Figure 5.33c). 

In the case of KG-1a and Kasumi cell lines, a synergistic anti-proliferative effect between 

BIX and chaetocin was observed in the absence of DAC. In KG-1a, mean CI values +/- SD for 

effect levels were ED

50

: 0.77 +/- 0.12, ED

75

: 0.70 +/- 0.09, and ED

90

: 0.64 +/- 0.08 (Table 5.3 

and Figure 5.34). In Kasumi cells, CI values were ED

50

: 0.94 +/- 0.23, ED

75

: 0.93 +/- 0.18, and 

ED

90

: 0.92 +/- 0.22 (Table 5.3 and Figure 5.35). In the presence of DAC, BIX, and chaetocin 

treatment presented an antagonistic interaction at the 50% effect level in KG-1a (ED

50

: 

1.34±0.42) and Kasumi (ED

50

: 1.52±0.66) cell lines (Table 5.3, Figure 5.34 and Figure 5.35). 

However, as the effect level increased at 90% BIX and chaetocin treatment displayed 

synergistic activity in KG-1a (ED

90

: 0.86±0.21) and Kasumi (ED

90

: 0.58±0.20) cells (Table 5.3, 

Figure 5.34 and Figure 5.35).    
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Table 5.3. CI values for combination of BIX with chaetocin in AML cell lines. 

  

CI values at inhibition of 

Cell line +/- DAC 50% 75% 90% 

AML-193 

- 1.49±0.38 1.48±0.32 1.48±0.28 

AML-193 

+ 2.73±0.66 2.18±0.42 1.74±0.28 

KG-1a  

- 0.77±0.12 0.70±0.09 0.64±0.08 

KG-1a 

+ 1.34±0.42 1.08±0.28 0.86±0.21 

Kasumi 

- 0.94±0.23 0.93±0.18 0.92±0.22 

Kasumi 

+ 1.52±0.66 0.92±0.36 0.58±0.20 

Cells were treated for 72 with BIX and chaetocin in combination in presence of absence of 

DAC (+/-). CI values = 1 indicates additive effect, <1synergism, >1 antagonism. 

*Data represents ± the mean S.D. 
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Figure 5.33. Drug combination effect of BIX and chaetocin in the AML-193 cell line. (a) CI 

plots of BIX and chaetocin in presence or absence of DAC. Isobolograms for different effect 

doses (ED50, ED75, and ED 90) of BIX and chaetocin in the absence  or the presence  of DAC 

are shown in figure (b) and (c), respectively. AML-193 cells were co-treated for 72 hours with 

BIX  and  chaetocin  in  presence  and  absence  of  1  µM  DAC.  Effect  of  combinations  were 

assessed by MTT assays and estimated using the CalcuSyn software after cells were incubated 

with co-treatment of BIX and chaetocin + and  DAC. In CI plots, the horizontal line has a 

value equal to 1 and represents the line of additivity. CI < 1 indicates synergy, CI= 1 additive 

effect, and CI >1 indicates antagonism. In isobolograms, the diagonal line is the line of 

additivity. Experimental data points, represented by symbols show the different effect levels. 

Symbols located below, on, or above the line indicate synergy, additive or antagonism, 

respectively.    
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Figure 5.34. Drug combination effect of BIX and chaetocin in the KG-1a cell line. (a) CI plots 

of BIX and chaetocin in presence or absence of DAC. Isobolograms for different effect doses 

(ED50, ED75, and ED 90) of BIX and chaetocin in the absence or the presence of DAC are 

shown in figure (b) and (c), respectively. KG-1a cells were co-treated for 72 hours with BIX 

and chaetocin in presence and absence of 1 µM DAC. Effect of combinations were assessed by 

MTT assays and estimated using the CalcuSyn software after cells were incubated with co-

treatment of BIX and chaetocin + and  DAC. In CI plots, the horizontal line has a value equal 

to 1 and represents the line of additivity. CI < 1 indicates synergy, CI= 1 additive effect, and CI 

>1 indicates antagonism. In isobolograms, the diagonal line is the line of additivity. 

Experimental data points, represented by symbols show the different effect levels. Symbols 

located below, on, or above the line indicate synergy, additive or antagonism, respectively.  
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Figure 5.35. Drug combination effect of BIX and chaetocin in the Kasumi cell line. (a) CI plots 

of BIX and chaetocin in presence or absence of DAC. Isobolograms for different effect doses 

(ED50, ED75, and ED 90) of BIX and chaetocin in the absence or the presence of DAC are 

shown in figure (b) and (c), respectively. Kasumi cells were co-treated for 72 hours with BIX 

and chaetocin in presence and absence of 1 µM DAC. Effect of combinations were assessed by 

MTT assays and estimated using the CalcuSyn software after cells were incubated with co-

treatment of BIX and chaetocin + and  DAC. In CI plots, the horizontal line has a value equal 

to 1 and represents the line of additivity. CI < 1 indicates synergy, CI= 1 additive effect, and CI 

>1 indicates antagonism. In isobolograms, the diagonal line is the line of additivity. 

Experimental data points, represented by symbols show the different effect levels. Symbols 

located below, on, or above the line indicate synergy, additive or antagonism, respectively. 



93 

 

5.7. Combinatorial treatments of DAC, BIX, and chaetocin influenced gene activation in 

AML cells 

While silencing of p15, p21, and E-cadherin genes occurs in AML, little is known about the 

repressor components that effect epigenetic silencing of these genes. Previously, we found that 

p15 and E-cadherin gene promoters were hypermethylated in AML cell lines, while the p21 

promoter was completely unmethylated. Moreover, it was found that treatment with DAC and 

chaetocin as single agents induced expression of the hypermethylated genes p15 and E-cadherin 

and also the non-hypermethylated p21 gene. To study the relationship between epigenetic 

events that lead to reactivation of epigenetically silenced genes, we established combinations of 

DAC, BIX, and chaetocin that lead to re-activation of p15, p21, and E-cadherin genes in the 

AML cell lines studied. For these assays, we chose concentrations of DAC, BIX, and chaetocin, 

where AML cell lines showed an enhancement of p15, p21, and E-cadherin expression. We 

used  1  µM  DAC  for  experiments  that  involved  p15  and  p21  genes  and  8  µM  DAC  for  E-

cadherin gene in AML-193. In KG-1a and Kasumi cell lines 4 µM DAC were used for all three 

genes.  Four  micromolar  (4  µM)  BIX  and  100  nM  chaetocin  were  used  for  p15,  p21  and  E-

cadherin genes in all AML cell lines tested. 

 

5.7.1. Chaetocin and DAC in combination reactivated expression of p15 and E-cadherin 

genes by reducing levels of promoter methylation and H3K9 tri-methylation 

Co-treatment of AML cell lines with DAC and chaetocin induced re-expression of p15 and 

E-cadherin genes with a greater effect than treatment with DAC or chaetocin alone (Figure 

5.36a and Figure 5.36b). Moreover, this enhanced p15 and E-cadherin expression in AML-193 

and Kasumi cell lines was accompanied by promoter demethylation and a reduction of H3K9 

tri-methylation levels as analyzed by DNA pyrosequencing and ChIP assays, respectively 

(Figure 5.36a, Figure 5.36b, Figure 5.37, Figure 5.38, Figure 5.39, Figure 5.40, Figure 5.41a 

and Figure 5.41b). No changes were observed in histone H3 levels, indicating that changes in 

H3K9 methylation were not due to nucleosome depletion (Figure 5.41c). 
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Figure 5.36. Real time PCR analysis of p15, p21, and E-cadherin expression upon treatment 

with chaetocin and DAC in combination in AML cell lines. AML-193, KG-1a, and Kasumi cell 

lines were treated with chaetocin (100 nM) and following concentrations of DAC: AML-193: 

p15  and  p21  (1  µM),  E-cadherin  (8  µM);  Kasumi:  p15,  E-cadherin,  and  p21  (4  µM). 

Histograms show the relative fold expression of p15 (a), E-cadherin (b), and p21 (c) gene 

expression in AML-193, KG-1a, and Kasumi cell lines. HPRT was used as endogenous control 

expression. Error bars represents standard deviation of three independent experiments and (*) 

represents P-value < 0.05 and (**) represent P-value <0.01 between treated and untreated cells. 

Control, represents the untreated cells.  
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a) Control 

% Methylation: 95.1; SD: 8.0  

b) 1 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

c) 100 nM Chaetocin + 1 µM DAC 

% Methylation: 67; SD: 12 

 

Figure 5.37.  Effects of chaetocin and DAC combinatorial treatment on p15 promoter 

methylation in AML-193 cell line. AML-193 cells were co-treated for 72 hours with 100 nM 

chaetocin and 1 µM DAC. Percentage methylation is the mean methylation of CpGs in the p15 

promoter. SD, represents the standard deviation of the percentage mean methylation. The 

sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue and yellow colors 

represent the confidence of the sequence pattern matches: greater than 90 percent and between 

70-89 percent, respectively. 
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 a)  Control 

% Methylation: 95%; SD: 4.9 

 

b) 4 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

c) 100 nM chaetocin + 4 µM DAC 

% Methylation: 68%; SD: 12.1 

 

Figure 5.38. Effects of chaetocin and DAC in combinatorial treatment on p15 promoter 

methylation in Kasumi cell line. Kasumi cells were co-treated for 72 hours with 100 nM 

chaetocin and 1 µM DAC. Percentage methylation is the mean methylation of CpGs in the p15 

promoter. SD, represents the standard deviation of the percentage mean methylation. The 

sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue and yellow colors 

represent the confidence of the sequence pattern matches: greater than 90 percent and between 

70-89 percent, respectively. 
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a) Control  

% Methylation: 95.5; SD:4.7 

 

b) 8 µM DAC 

% Methylation: 66.8; SD: 7.0 

 

b) 100 nM chaetocin + 8 µM DAC 

% Methylation: 88; SD: 4.2 

 

Figure 5.39. Effects of chaetocin and DAC in combinatorial treatment on E-cadherin promoter 

methylation in AML-193 cell line. AML-193 cells were co-treated for 72 hours with 100 nM 

chaetocin and 8 µM DAC. Percentage methylation is the mean methylation of CpGs in the E-

cadherin promoter. SD, represents the standard deviation of the percentage mean methylation. 

The sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue, yellow and red 

colors represent the confidence of the sequence pattern matches: greater than 90 percent, 70-89 

percent and less than 70 percent, respectively. 
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 a) Control 

% Methylation: 90.1; SD: 9.0 

 

b) 4 µM DAC 

% Methylation: 55.8; SD: 9.2  

 

c) 100 nM chaetocin + 4 µM DAC 

% Methylation: 59; SD: 5.3  

 

Figure 5.40. Effect of chaetocin and DAC combinatorial treatment on E-cadherin promoter 

methylation in Kasumi cell line. Kasumi cells were co-treated for 72 hours with 100 nM 

chaetocin and 4 µM DAC. Percentage methylation is the mean methylation of CpGs in the E-

cadherin promoter. SD, represents the standard deviation of the percentage mean methylation. 

The sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue, yellow and red 

colors represent the confidence of the sequence pattern matches: greater than 90 percent, 70-89 

percent and less than 70 percent, respectively. 
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5.7.2. Chaetocin and DAC in combination reactivated expression of p21 gene by causing 

changes on H3K9 di-methylation 

p21 gene was not silenced by promoter hypermethylation in AML cell lines; however treatment 

of DAC led to re-expression of p21 and caused changes in H3K9 promoter methylation levels. 

To determine whether the combination of chaetocin and DAC potentiates re-expression of p21 

gene by causing changes in H3K9 methylation levels, we used real time PCR to measure the 

expression level of p21 and ChIP assays to determine changes in promoter H3K9 methylation 

in the AML cell lines studied. Co-treatment of AML-193, KG-1a, and Kasumi cell lines with 

DAC and chaetocin caused a higher level of p21 expression than observed with treatments with 

either DAC or chaetocin alone (Figure 5.36c). In contrast to the results observed with DAC and 

chaetocin treatments alone, the combination of DAC and chaetocin significantly reduced H3K9 

di-methylation levels at p21 promoter as analyzed by ChIP assays (Figure 5.41c). However, this 

treatment did not reduce trimethyl H3K9 levels as was observed with chaetocin treatment alone. 

In contrast, H3K9 tri-methylation at p21 promoter was increased in AML-193 and Kasumi cell 

lines in response to DAC and chaetocin co-treatment (Figure 5.41c). 

  



100 

 

 

 

 

Figure 5.41. Chromatin immunoprecipitation analysis of the effect of DAC and chaetocin in 

combination on H3K9 di- and tri-methylation and H3 associated with the p15, E-cadherin and 

p21 promoter in AML cell lines. AML-193 and Kasumi cells were treated for 72 hours with 

chaetocin (100 nM) and DAC as followed: AML-193: p15 and p21 (1 µM), E-cadherin (8 µM); 

Kasumi: p15, E-cadherin and p21 (4 µM). Cross-linked protein/DNA was immunoprecipitated 

with dimethyl-H3K9 (H3K9Me2) antibody or trimethyl-H3K9 (H3K9Me3) antibody or of H3 

(H3). Histograms show the relative fold expression of PCR products (immunoprecipitated 

DNA) of p15 (a), E-cadherin (b), and p21 (c) genes quantified using real time PCR. Error bars 

represent standard deviation. ** Represents P-values < 0.05 and (**) represent P-value < 0.01 

between treated and untreated cells. Control, represents the untreated cells.  
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5.7.3. Co-treatment of BIX and DAC caused differential expression of p15, p21 and E-

cadherin genes in AML cell lines 

We showed that DAC potentiated the effect of BIX on AML cells proliferation, induced 

p15, p21 and E-cadherin expression, and caused changes in promoter DNA methylation and 

histone H3K9 methylation in AML cell lines. To study the relationship between DNA 

methylation and histone H3K9 di-methylation at the p15, p21, and E-cadherin promoters, we 

measured the effect of combinations of DAC and BIX on gene expression, DNA methylation, 

and H3K9 methylation in AML cell lines. Co-treatment of AML-193, KG-1a, and Kasumi cells 

with BIX and DAC was able to induce p21 expression (Figure 5.42c). However, significant 

expression in p15 and E-cadherin genes were only evident in KG-1a and Kasumi cells, but not 

in AML-193 cells where this treatment did not cause p15 and E-cadherin re-expression (Figure 

5.42a and Figure 5.42b). Treatment with BIX and DAC in combination induced p15, p21, and 

E-cadherin expression to a greater extent than that of each drug alone. Surprisingly, this 

treatment had little effect on reversing p15 and E-cadherin promoter methylation than treatment 

with DAC alone (Figure 5.43, Figure 5.44, Figure 5.45 and Figure 5.46).  

We also observed significant changes in H3K9 di- and tri-methylation levels at p15 and E-

cadherin promoters following BIX and DAC co-treatment as analyzed by ChIP assays (Figure 

5.47a and Figure 5.47b). However, we only observed that at p21 promoter, combination of BIX 

and DAC preferentially caused reduction of H3K9 di-methylation in Kasumi cells, but not as 

much as that caused by treatment of BIX alone (Figure 5.47c). We did not observed changes in 

histone H3 levels in any of the analyzed genes, indicating that changes in H3K9 methylation 

were not due to nucleosome depletion (Figure 5.47). 
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Figure 5.42. Real time PCR analysis of p15, p21 and E-cadherin expression upon treatment 

with BIX and DAC in combination in AML cell lines. AML-193, KG-1a, and Kasumi cell lines 

were treated with BIX (4 µM) and following concentrations of DAC: AMl-193: p15 and p21 (1 

µM),  E-cadherin  (8  µM);  Kasumi:  p15,  E-cadherin  and  p21  (4  µM).  Histograms  show the 

relative fold expression of p15 (a), E-cadherin (b) and p21(c) gene expression in AML-193, 

KG-1a and Kasumi cell lines. HPRT was used as endogenous control expression. Error bars 

represents standard deviation of three independent experiments and (*) represents P-value < 

0.05 and (**) represent P-value <0.01 between treated and untreated cells. Control, represents 

the untreated cells. 
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a) Control 

% Methylation: 95.1; SD: 8.0  

b) 1 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

c) 4 µM BIX + 1 µM DAC 

% Methylation: 67; SD: 12 

 

Figure 5.43. Effects of BIX and DAC combinatorial treatment on p15 promoter methylation in 

AML-193 cell line. AML-193 cells were co-treated for 72 hours with 4 µM BIX and 1 µM 

DAC. Percentage methylation is the mean methylation of CpGs in the E-cadherin promoter. 

SD, represents the standard deviation of the percentage mean methylation. The sequence 

analyzed is shown above each pyrogram, where Y represents the location of the cytosine in the 

CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is 

proportional to the number of nucleotides incorporated (as peaks heights) and the X-axis is the 

dispensation order. The gray bars indicate the CpG positions, where the degree of methylation 

is assessed from the ratio of the peaks heights of C and T. Blue, yellow and red colors represent 

the confidence of the sequence pattern matches: greater than 90 percent, 70-89 percent and less 

than 70 percent, respectively. 
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a) Control 

% Methylation: 95%; SD: 4.9 

 

b) 4 µM DAC 

% Methylation: 57.7%; SD: 6.2 

 

c) 4 µM BIX + 4 µM DAC 

% Methylation: 63%; SD: 11.7 

 

Figure 5.44. Effect of BIX and DAC combinatorial treatment on p15 promoter methylation in 

Kasumi cell line. Kasumi cells were co-treated for 72 hours with 4 µM BIX and 4 µM DAC. 

Percentage methylation is the mean methylation of CpGs in the E-cadherin promoter. SD, 

represents the standard deviation of the percentage mean methylation. The sequence analyzed is 

shown above each pyrogram, where Y represents the location of the cytosine in the CpG. In the 

pyrogram, the Y-axis represents the signal intensity (arbitrary units), which is proportional to 

the number of nucleotides incorporated (as peaks heights) and the X-axis is the dispensation 

order. The gray bars indicate the CpG positions, where the degree of methylation is assessed 

from the ratio of the peaks heights of C and T. Blue color represents that the sequence pattern 

matches with a confidence greater than 90 percent. 
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a) Control  

% Methylation: 95.5; SD:4.7 

 

b) 8 µM DAC 

% Methylation: 66.8; SD: 7.0 

 

b) 4 µM BIX + 8 µM DAC 

% Methylation: 84%; SD: 5.1 

Figure 5.45. Effect of BIX and DAC combinatorial treatment on E-cadherin promoter 

methylation in AML-193 cell line. AML-193 cells were co-treated for 72 hours with 4 µM BIX 

and 8 µM  DAC.  Percentage methylation  is  the mean  methylation  of  CpGs  in  the E-cadherin 

promoter. SD, represents the standard deviation of the percentage mean methylation. The 

sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue, yellow and red 

colors represent the confidence of the sequence pattern matches: greater than 90 percent, 70-89 

percent and less than 70 percent, respectively. 
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a) Control 

% Methylation: 90.1; SD: 9.0 

 

b) 4 µM DAC 

% Methylation: 55.8; SD: 9.2  

 

b) 4 µM BIX + 4 µM DAC 

% Methylation: 80; SD: 4.8  

 

Figure 5.46. Effect of BIX and DAC combinatorial treatment on E-cadherin promoter 

methylation in Kasumi cell line. Kasumi cells were co-treated for 72 hours with 4 µM BIX and 

4 µM  DAC.  Percentage  methylation  is  the  mean  methylation  of  CpGs  in  the  E-cadherin 

promoter. SD, represents the standard deviation of the percentage mean methylation. The 

sequence analyzed is shown above each pyrogram, where Y represents the location of the 

cytosine in the CpG. In the pyrogram, the Y-axis represents the signal intensity (arbitrary units), 

which is proportional to the number of nucleotides incorporated (as peaks heights) and the X-

axis is the dispensation order. The gray bars indicate the CpG positions, where the degree of 

methylation is assessed from the ratio of the peaks heights of C and T. Blue and red colors 

represent the confidence of the sequence pattern matches: greater than 90 percent and less than 

70 percent, respectively. 

  



107 

 

 

 

 

Figure 5.47. Chromatin immunoprecipitation analysis of the effect of DAC and BIX in 

combination on H3K9 di- and tri-methylation and H3 associated with the p15, E-cadherin, and 

p21 promoters in AML cell lines. AML-193 and Kasumi cells were treated for 72 hours with 

BIX  (4  µM)  and  DAC  as  followed:  AML-193:  p15  and  p21  (1  µM),  E-cadherin  (8  µM); 

Kasumi: p15, E-cadherin and p21 (4 µM). Cross-linked protein/DNA was immunoprecipitated 

with dimethyl-H3K9 (H3K9Me2) antibody or trimethyl-H3K9 (H3K9Me3) antibody or of H3 

(H3). Histograms show the relative fold expression of PCR products (immunoprecipitated 

DNA) of p15 (a), E-cadherin (b), and p21 (c) genes quantified using real time PCR. Error bars 

represent standard deviation of three independent experiments. ** Represents P-values < 0.05 

and (**) represent P-value <0.01 between treated and untreated cells. Control, represents the 

untreated cells.  
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5.7.4. The combination of BIX and chaetocin induced differential p15 and E-cadherin 

expression and increased H3K9 tri-methylation levels 

To evaluate whether coordinated changes in promoter H3K9 di- and tri-methylation 

influence re-expression of silenced tumor suppressor genes in AML, we measured the effect of 

the combination of BIX and chaetocin on p15 and E-cadherin gene expression and promoter 

H3K9 methylation using real time PCR and ChIP assays, respectively. Combinatorial treatment 

of BIX and chaetocin in KG-1a and Kasumi cells enhanced p15 and E-cadherin expression 

similar to those levels observed with combinations of DAC with BIX and DAC with chaetocin, 

and to a greater extent than p15 and E-cadherin expression caused by single drug treatments 

(Figure 5.48a and Figure 5.48b). These results suggested that p15 and E-cadherin genes in 

Kasumi and KG-1a cells required changes on DNA methylation and H3K9 di- and tri-

methylation in order to be re-activated in AML cell lines. In contrast, we found that co-

treatment of AML-193 cells with BIX and chaetocin did not induce p15 and E-cadherin 

expression (Figure 5.48a and Figure 5.48b). These correlated with results observed in drug 

combination studies, where co-treatment of BIX and chaetocin displayed an antagonistic 

activity in AML-193 cell proliferation indicating that combination of these epigenetic inhibitors 

results in a negative interaction that interfere with drug activity.  

In order to determine whether p15 and E-cadherin re-expression can be achieved by 

combining changes on H3K9 di- and tri-methylation, ChIP assays were performed. Co-

treatment of Kasumi cells with BIX and chaetocin did not reduce H3K9 methylation levels at 

p15 and E-cadherin promoters (Figure 5.49a and Figure 5.49b). Surprisingly, we observed that 

treatment of AML-193 with combination of BIX and chaetocin significantly increased 

trimethyl-H3K9 levels at p15 and E-cadherin promoters (Figure 5.49a and Figure 5.49b); which 

supports our previous results that showed that this combination did not cause re-expression of 

p15 and E-cadherin genes (Figure 5.49a and Figure 5.49b). 

 

5.7.5. BIX and chaetocin in combination induced expression of p21 gene and increased 

promoter H3K9 di- and tri-methylation  

We measured the effect of combining BIX and chaetocin in the re-activation of p21 gene in 

AML cell lines. p21 expression following co-treatment with BIX and chaetocin was 

significantly induced to levels greater than that observed with either drug alone (Figure 5.31c).  
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Using ChIP assays, we showed that co-treatment of AML cell lines with BIX and chaetocin 

did not reduce H3K9 di- and tri-methyl levels at p21 promoter, but instead levels of di- and tri-

methyl H3K9 significantly increased (Figure 5.49c). These results suggested that H3K9 

methylation itself might be a positive regulatory event in the expression of p21 gene or changes 

in H3K9 methylation leads to interaction with other epigenetic events for regulation of p21 

gene. No changes were observed in histone H3 levels in any of the analyzed genes, indicating 

that changes in H3K9 methylation were not due to nucleosome depletion (Figure 5.49).  

In summary, a decrease in DNA methylation and H3K9 tri-methylation seems to be the 

major epigenetic events by which hypermethylated genes, such as p15 and E-cadherin can be 

re-expressed in AML cell lines. In contrast, for p21 gene, which contains a non-

hypermethylated promoter, regulation of H3K9 di- and tri-methylation levels appears to be a 

main event for its activation.  
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Figure 5.48. Real time PCR analysis of p15, p21, and E-cadherin expression upon treatment 

with chaetocin and BIX in combination in AML cell lines. AML-193, KG-1a and Kasumi cell 

lines were co-treated with chaetocin (100 nM) and BIX (4 µM) for 72 hours. Histograms show 

the relative fold expression of P15 (a), E-cadherin (b), and p21(c) gene expression in AML-193, 

KG-1a, and Kasumi cell lines. HPRT was used as endogenous control expression. Error bars 

represents standard deviation of three independent experiments and (*) represents P-value < 

0.05 and (**) represent P-value <0.01 between treated and untreated cells. Control, represents 

the untreated cells. 
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Figure 5.49. Chromatin immunoprecipitation analysis of the effect of chaetocin and BIX in 

combination on H3K9 di- and tri-methylation and H3 associated with the p15, E-cadherin and 

p21 promoter in AML cell lines. AML-193 and Kasumi cells were co-treated with BIX (4 µM) 

and chaetocin (100 nM) for 72 hours. Cross-linked protein/DNA was immunoprecipitated with 

dimethyl-H3K9 (H3K9Me2) antibody or trimethyl-H3K9 (H3K9Me3) antibody or of H3 (H3). 

Histograms show the relative fold expression of PCR products (immunoprecipitated DNA) of 

p15 (a), E-cadherin (b), and p21 (c) genes quantified using real time PCR. Error bars represent 

standard deviation of three independent experiments. ** Represents P-values < 0.05 and (**) 

represent P-value <0.01 between treated and untreated cells. Control, represents the untreated 

cells. 
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6. DISCUSSION 

 

Epigenetic silencing of tumor suppressor genes involved in cell cycle control and 

suppression of metastasis, such as p15, p21, and E-cadherin, are associated with AML 

development (Corn et al., 2000; Melki et al., 1999, 2000; Boultwood, 2007). Emerging interest 

in using epigenetic inhibitors that reverse the aberrant silencing of tumor suppressor genes in 

cancer, prompted us to evaluate strategies to re-express p15, p21, and E-cadherin genes in AML 

cell lines. Table 6.1, Table 6.2 and Table 6.3, show a summary of the epigenetic regulatory 

events that occur at p15, E-cadherin and p21 genes upon treatment with epigenetic drugs.  

 

 

Table 6.1. Epigenetic regulation of p15 gene upon treatment with epigenetic inhibitors, DAC, 

BIX and chaetocin 
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Table 6.2. Epigenetic regulation of E-cadherin gene upon treatment with epigenetic inhibitors, 

DAC, BIX and chaetocin 

 

 

 

Table 6.3. Epigenetic regulation of p21gene upon treatment with epigenetic inhibitors, DAC, 

BIX and chaetocin  
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6.1. Epigenetic regulation of p15, p21, and E-cadherin genes upon treatment with DAC, 

BIX and chaetocin  

In this study, the observed silencing of p15 and E-cadherin genes in AML-193 and Kasumi 

cell lines correlated with increased promoter hypermethylation. p21 was also silenced in the 

AML cell lines tested, but in contrast to p15 and E-cadherin, we did not observe 

hypermethylation at p21 promoter. Instead, we found that the CpGs analyzed at the p21 

promoter were completed unmethylated. This observation suggests that methylation 

independent epigenetic mechanisms contribute to p21 silencing in AML-193 and Kasumi cell 

lines.  

To efficiently evaluate re-activation of p15, p21, and E-cadherin genes in AML cell lines 

using the epigenetic inhibitors, DAC, BIX-01294, and chaetocin, we first determined the effect 

of these drugs on AML cell proliferation and optimized concentration of drugs that caused an 

enhancement of gene expression. Treatment with BIX and chaetocin inhibited viability and 

proliferation of AML-193, KG-1a, and Kasumi cell lines, whereas DAC had no effect on cell 

viability and proliferation as previously reported (Geyer et al., unpublished). DAC however, 

potentiated the anti-proliferative activity of BIX and chaetocin in AML cell lines. Loss of cell 

proliferation was correlated with changes in cell cycle profile, where a decrease in cell 

population in the S dividing phase and arrest in G1 and subG1 was observed following 

treatment with BIX and chaetocin.  

In AML cell lines, treatment with DAC enhanced p15 and E-cadherin expression and 

decreased promoter and H3K9 methylation. Interestingly, we found that DAC treatment also 

caused re-expression of the unmethylated p21 gene, but instead of decreasing promoter H3K9 

methylation, it increased H3K9 di-methylation levels at p21 promoter of AML-193 and Kasumi 

cell lines and H3K9 tri-methylation at the p21 promoter of AML-193 cells. The ability of DAC 

to enhance expression and induce chromatin remodelling of unmethylated genes (Nguyen et al., 

2002; Coombes et al., 2003; Wu et al., 2005; Scott et al., 2006) suggested that it may have 

effect on other epigenetic changes that are independent of DNA demethylation. Importantly, the 

finding that enhanced p21 expression was accompanied with an increase in H3K9 di- and tri-

methylation was in disagreement with the well recognized H3K9 tri-methylation gene-silencing 

mark and its association to heterochromatin regions (Heard et al., 2001; Peters et al., 2003; Rice 

et al., 2003). Our findings concur with previous studies where Vakoc and colleagues (2005) 
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presented a surprising finding that trimethyl-H3K9 mark is present in transcribed regions of 

genes (Vakoc, et al., 2005). More importantly, Wiencke (2008) recently showed that 

unmethylated genes that have been expressed in acute leukemic cell lines present in their 

promoter increased levels of H3K9 di and tri-methylation as well as H3K9 acetylation marks 

(Wiencke et al., 2008). A possible explanation for this observation is that H3K9 di- and tri-

methylation are dynamic intermediates of different methylated states that regulate different 

functional chromatin rearrangements and therefore effect expression of genes in a specific-gene 

manner. 

While H3K9 di-methylation levels mostly decreased at the p15, p21 and E-cadherin gene-

promoters upon treatment with BIX, major changes on gene expression were not observed, 

except in AML-193 and Kasumi cell lines where E-cadherin and p21 genes were expressed 

upon treatment with highest doses of chaetocin, respectively. Thus, it appears that H3K9 di-

methylation per se is not a dominant event in transcriptional silencing of p15, p21, and E-

cadherin genes in AML. Further, we showed that chaetocin treatment significantly enhanced 

p15 expression and decreased H3K9 methylation levels at p15 and E-cadherin promoter without 

inducing promoter demethylation. Interestingly, these results demonstrated that H3K9 

demethylation was a dominant event over promoter demethylation in re-expressing genes 

silenced by promoter hypermethylation in AML. Moreover, these results agree with previous 

observations found in the Geyer lab, which demonstrated that blocking the activity of the 

SUV39H1 enzyme with shRNA lead to the re-expression of the hypermethylated genes, p15 

and E-cadherin, without effecting promoter methylation (Lakshmikuttyamma, et al., 2010). 

Similar observations of gene reactivation in the absence of promoter demethylation have been 

reported in studies that involved decreasing the H3K27 methyltransferase, EZH2 and H3K9 

deacetylase, SIRT1 activities (McGarvey et al., 2007; Cao et al., 2008; Kondo et al., 2008). In 

addition, we also observed that chaetocin re-expressed p21 gene in AML-193 cell line, but in 

contrast to those results found with DAC, promoter H3K9 tri-methylation levels were reduced 

upon chaetocin treatment. Thus, due to the controversy between this result and the results 

observed with DAC treatment, we cannot conclude whether H3K9-trimethylation is a positive 

transcriptional mark in the active p21 gene-promoter. However, we could hypothesize that up- 

or down-regulation of H3K9-trimethylation levels at the p21 promoter might be associated as a 

secondary step activated by another dominant epigenetic event.  



116 

 

6.2. Epigenetic regulation of p15, p21, and E-cadherin genes upon treatment with 

combinations of epigenetic inhibitors  

A large body of evidence has shown that epigenetic interaction between DNA methylation 

and histone modifications leads to transcriptional gene silencing. Several studies have 

established that SUV39H1-mediated H3K9 methylation may initiate promoter methylation by 

providing a binding site for chromodomain transcriptional repressor HP1 proteins, which in turn 

recruit other transcriptional repression machinery, such as DNA methyltransferases and histone 

deacetylases (HDACs) to achieve promoter gene silencing (Wang et al., 2000; Nguyen et al., 

2002; Fuks et al., 2003; Lehnertz et al., 2003; Fuks, 2005). Moreover, DNMTs have been also 

shown to directly interact with histone methyltransferase G9a in directing de novo DNA 

methylation and establishing coordinated mechanism of DNA and histone methylation leading 

to gene repression (Esteve et al., 2006; Epztejn-Litman et al., 2008; Dong et al., 2008). Thus, to 

further explore in more molecular detail the role of epigenetic changes in p15, p21, and E-

cadherin gene silencing, we focused on assessing the effect of combinatorial treatments of 

epigenetic inhibitors on gene reactivation.  

Previous studies have indicated that combinations of DNMT and HDAC inhibitors work in 

synergy to induce greater expression of silenced tumor suppressor genes in cancer cell lines 

(Zhu and Otterson, 2003; McGarvey et al., 2006). However, whether there is  or not synergy 

between combinations of DNMT and HMT inhibitors and between HMT inhibitors targeting 

different lysine methylating enzymes on reactivation of epigenetically silenced p15, p21, and E-

cadherin genes in AML, was unknown. 

 Previously, we established that DAC potentiated anti-proliferative response of BIX and 

chaetocin in AML cell lines, but because DAC did not affect AML cell proliferation we could 

only determine whether the presence of DAC affected BIX and chaetocin drug interaction. We 

evaluated the effectiveness of combining BIX and chaetocin by determining CI values. CI 

measures the degree of synergism or antagonism in drug interaction. Combinations of  BIX and 

chaetocin displayed synergistic activity at high effect levels in KG-1a and Kasumi cells, as CI 

values were less than 1 (Table 5.3). The addition of DAC to BIX and chaetocin co-treatment 

caused the CI values to increase to values more than 1 (Table 5.3). This result indicated that 

DAC reduced the effectiveness of BIX and chaetocin interaction, thus affecting synergy. 

Combination of DAC and chaetocin strongly stimulated p15 and E-cadherin expression to 
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greater levels than those caused by individual drug treatments in AML cell lines and also 

decreased promoter DNA and H3K9 methylation. However, changes in promoter demethylation 

were not as significant as that caused by DAC treatment alone suggesting that promoter 

demethylation was principally caused by the presence of the demethylated agent DAC. These 

results were also consistent with our previous findings, suggesting that H3K9 demethylation 

was the dominant epigenetic event necessary for p15 and E-cadherin re-activation. In the case 

of p21, we found p21 re-expression upon treatment with combination of DAC and chaetocin 

and showed that p21 re-expression was associated with increased H3K9 tri-methylation levels.  

Treatment with BIX and chaetocin were also able to induce p15 and E-cadherin re-

expression only in AML-193 cell line and p21 expression in both AML-193 and Kasumi cell 

line. Thus, the mode of action of this treatment varied between cell lines and genes. p15 and E-

cadherin re-expression was accompanied by promoter demethylation but without significant 

changes in H3K9 methylation. Surprisingly, treatment of AML-193 cells with combination of 

BIX and chaetocin caused re-silencing of hypermethylated genes p15 and E-cadherin and more 

importantly we observed that p15 and E-cadherin inactive-promoters were associated with 

increased H3K9 di- and tri-methylation levels. This result suggested that increased promoter 

H3K9 methylation may represent a repressive epigenetic mark that is associated with silenced 

promoter hypermethylation.  

Using combinations of histone methyltransferase inhibitors, BIX and chaetocin, we 

evaluated whether co-ordinated changes in promoter H3K9 di- and tri-methylation are required 

for influencing p15, p21, and E-cadherin re-activation. Interestingly, similar to the result 

observed with a combination of BIX and DAC in AML-193, p15, and E-cadherin genes were 

also re-silenced upon co-treatment with BIX and chaetocin. This silencing was accompanied by 

increased promoter H3K9 tri-methylation, which supported our previous findings and indicated 

that H3K9 tri-methylation may act as repressive epigenetic mark when it is associated with 

silenced hypermethylated promoters. p21 gene in contrast to p15 and E-cadherin was re-

activated with co-treatment of BIX and chaetocin and this re-activation was associated with 

significant increased in promoter H3K9 di- and tri-methylation.  

Further, our results showed that H3K9 demethylation was the dominant epigenetic event in 

re-expressing tumor suppressor genes that were silenced by promoter hypermethylation and that 

loss of DNA methylation indirectly leads to gene reactivation by reducing repressive histone 
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modifications. Hence, these findings corroborate  that high levels of tri-methyl H3K9 mark 

found at promoters of hypermethylated silenced genes function as dominant repressive silent 

mark, as previously proposed (Bird, 2002; Rice et al., 2003; Kondo et al., 2004).  We also 

found that increased H3K9 tri-methylation can be linked to transcriptional activation of tumor 

suppressor genes with unmethylated promoters. Moreover, we determined that treatment of 

AML cell lines with combination of DNMTs and HMT inhibitors have a greater effect on p15, 

p21, and E-cadherin gene re-expression than treatment with individual drugs. This result 

strongly indicates the effectiveness of combinatorial strategies using epigenetic inhibitors in 

treatment of acute myeloid malignancies.  

Taken together, our results allow us to propose strategies for re-expressing genes silenced 

by promoter hypermethylation. The first strategy highlights the importance of combining 

DNMT and HMT inhibitors. Treatment with DAC induces dissociation of DNMT1, SUV39H1, 

and G9a from promoter hypermethylation. This enzyme dissociation and inhibition of 

SUV39H1 and G9a activities by treatment with chaetocin and BIX results in decreased 

promoter H3K9 di- and tri-methylation, which would lead to transcription factors and other 

regulatory machinery such as HAT enzymes to induce activation of gene-promoter and thus 

gene transcription can progress.  The second strategy involves inhibition of SUV39H1 and G9a 

activities.  G9a and SUV-39H1 inhibition results in promoter H3K9 demethylation, which 

allow free lysine residues to undergo other epigenetic modification such as lysine acetylation 

leading to other transcriptional signals to be activated.   

Reactivation of unmethylated tumor suppressor genes in AML does not fit with the 

strategies presented above, since we showed that p21 re-activation was associated with 

increased promoter H3K9 tri-methylation. However, treatment with chaetocin also induced p21 

expression, but in this case p21 re-activation was accompanied by promoter H3K9 

demethylation. Discrepancies between these results only allow us to speculate whether 

inhibition of SUV39H1 activity itself is the important event for p21 re-activation rather than 

changes in H3K9 methylation levels. However, our studies cannot provide further insights on 

this point as we did not evaluate SUV39H1 activity nor its interactions.  

Finally, our findings have strong relevance in using combinatorial treatment of epigenetic 

inhibitors in cancer therapy. Combination of drugs that affect the epigenetic machinery such as 

DNMT and HDAC inhibitors are emerging as cancer therapeutics, particularly in leukemias. In 
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this study, we demonstrated that combining SUV39H1 and G9a inhibitors with DNMT 

inhibitors enhanced DNMT activity in re-expressing hypermethylated and unmethylated 

silenced genes and showed greater effectiveness in epigenetic drug therapies in AML. Since re-

expression of p15, p21, and E-cadherin in AML cell lines requires changes in promoter H3K9 

methylation without undergoing promoter demethylation, it is possible that HMTs inhibitors 

may be more effective than DNMT inhibitors in epigenetic therapies and that may be 

chemotherapeutic toxicity will be reduced. Our study highlights the relevance in determining 

the dominance of epigenetic event in gene re-activation and the need for clinical testing of 

histone methyltransferase inhibitors. Moreover, detailed drug interaction studies are needed in 

order to identify synergy between drug combinations, which would lead to optimal cancer 

epigenetic therapies. 
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7. Future Directions 

In order to continue evaluating the epigenetic mechanism involved in silencing of tumor 

suppressor genes in AML, it will be necessary to determine the association of histone lysine 

methylating enzymes SUV39-H1 and G9a and HDAC enzymes with p15, p21 and E-cadherin 

gene promoters. Further, it will be interesting to determine the interaction between these 

enzymes and other repressor proteins using co-immunoprecipitation assays. The experiments 

performed in this study could also be done evaluating patient material to confirm the results that 

were seen in AML cell lines. 
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