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ABSTRACT 

 Chronic wasting disease (CWD) has been a known threat to Saskatchewan’s wild cervid 

populations for more than a decade. As host movements can affect the spread of a disease across 

the landscape, disease models and management strategies should incorporate information 

regarding movement patterns of the host population in question. I used radio telemetry to study 

mule deer (Odocoileus hemionus) captured between 2006 and 2008 in a CWD-endemic region of 

southern Saskatchewan. Using location data from 152 individuals, I investigated home range size 

and patterns of direct and indirect contact (measured using proximity and shared space use) in 

relation to sex, habitat, and landscape structure. 

 Home ranges (95% fixed kernel) of GPS-collared deer in this study averaged 21.4 km2 (n 

= 94). Male home ranges (x̄ = 29.5 km2, n = 56) were larger than those of females (x̄ = 16.1 km2, 

n = 38), which could have implications for CWD prevalence differences between sexes. Of the 

landscape variables tested, topographic ruggedness was inversely related to home range size and 

Shannon’s diversity (a measure of both habitat richness and evenness) was positively related to 

home range size. 

Potential direct contact events were identified when two deer were located within 25 m of 

each other at the same point in time. These events occurred more often between February and 

April, agreeing with the tendency of mule deer to aggregate into large groups during the late 

winter months, and suggesting that this may be an important time period for disease 

transmission. Contact also occurred more than expected in cropland, whereas areas of shared use 

occurred more than expected in grassland, shrub/wood habitat, and rugged terrain. Smaller home 

ranges and greater degree of shared space use within areas of rough topography may lead to 
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greater risk of environmental contamination with the infectious CWD agent in these areas. In 

contrast, the relationship between cropland and probability of direct contact may imply greater 

risk of direct CWD transmission between deer occupying this habitat.  

 These results identify connections between particular landscape factors and risk of CWD 

transmission and will be used, in combination with results of related studies, to develop a model 

of CWD spread in Saskatchewan.  This will in turn aid management agencies in developing 

methods to more effectively manage the disease and control its movement outside of affected 

regions.
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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW 

1.1 Chronic Wasting Disease 

1.1.1 Introduction to chronic wasting disease 

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) 

(Williams, Young 1980) that affects farmed and wild cervid populations in North America. Since 

its discovery in the 1960s in captive mule deer (Odocoileus hemionus) facilities in Colorado, this 

disease has become the focus of research for many wildlife agencies and institutions. CWD is 

caused by misfolded proteins called prions (Prusiner 1982) that are infectious and highly 

resistant to degradation. These infectious particles accumulate in nervous and lymphoid tissue 

and cause degenerative changes in the brain, eventually leading to death. Infected individuals 

can transmit CWD to others through direct physical contact, but also by shedding prions into the 

environment, where they may remain infective for years (Miller et al. 2004, Johnson et al. 2006, 

Tamguney et al. 2009).  

Because of the potential for transmission through environmental contamination, CWD 

has presented great challenges in all attempts at eradication or stopping its spread. Although a 

great deal of information has been uncovered in the past three decades regarding the cause of 

CWD and its impact on infected individuals, many aspects of transmission and population level 

effects remain unknown. Models have predicted major population declines (Gross, Miller 2001) 

and although these predictions have been widely debated (Schauber, Woolf 2003), researchers 

have begun to see evidence of adverse population-level effects in areas of high CWD prevalence 
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(Miller et al. 2008). Even without directly causing population declines, CWD may harm cervid 

populations by altering demographics and amplifying the effects of other diseases or stressors. 

The disease could also affect recreational hunting due to demographic changes and public 

concerns about contaminated meat (Needham et al. 2004). To date, CWD has been found in free-

ranging and captive white-tailed deer (O. virginianus), mule deer, and elk (Cervus elaphus), and 

more recently in free ranging moose (Alces alces) (Baeten et al. 2007). 

1.1.2 History of CWD in Saskatchewan and North America 

In 1967, an unidentified neurological disease was recognized among mule deer in a 

captive research facility in Colorado (Williams, Young 1980). The disease persisted in this 

facility and was identified by researchers during later years as a spongiform encephalopathy and 

eventually described as chronic wasting disease (Williams, Young 1980). CWD was also 

recognized in a Wyoming research facility during the late seventies. The discovery of CWD in 

wild elk in Colorado in 1981 and shortly afterward in Wyoming set this disease apart from other 

transmissible spongiform encephalopathies (TSEs) as the only one that affects free ranging 

species (Spraker et al. 1997, Williams, Miller 2002, Williams et al. 2002a). Surveillance over the 

next two decades uncovered infected white-tailed and mule deer in both Wyoming and Colorado, 

and later in Nebraska, which led to the designation of an endemic focus, covering areas of 

southeast Wyoming, northeast Colorado, and southwest Nebraska (Williams, Miller 2002).  

In 1996, CWD was detected in a farmed elk in Saskatchewan, which prompted the 

initiation of surveillance programs in the province for both farmed and wild cervids during the 

following year. Surveillance efforts were intensified and a herd reduction program implemented 

after the 2000 detection of CWD in a wild mule deer south of Lloydminster in west-central 

Saskatchewan. The herd reduction program involved increasing hunting opportunities in areas 
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around the initial detection in order to reduce deer densities. This included distributing antlerless 

tags at no cost, earn-a-buck incentives, and removing limits in these areas in return for hunters 

submitting the heads of harvested deer for testing.  

During the following years, this program resulted in the detection of new foci in 

Saskatchewan, as well as the designation of two areas where the disease is considered to be well 

established: the Saskatchewan Landing area and another area further north near Nipawin. Both 

areas are thought to have been initially infected by separate spillover events from infected game 

farms (Bollinger et al. 2004). CWD has since been found in several other areas around 

Saskatchewan, including wildlife management zones just south of Saskatoon and near the 

Alberta border (Figure 1.1). In Saskatchewan, prevalence in wild mule deer and white-tailed deer 

populations is currently low, ranging between 0.5% and 2.6% in affected regions (Canadian 

Cooperative Wildlife Health Centre, unpublished data), but researchers in areas of Colorado 

have documented prevalence increases to as high as 25% (Miller et al. 2008). In 2005, the 

disease was detected in a free-ranging mule deer in Alberta, which prompted the Alberta 

government to implement similar herd reduction programs to try and eradicate the disease within 

the province and prevent further spread across the Saskatchewan-Alberta border. CWD is 

currently known to occur in wild cervid populations of 13 states and two provinces and 

continues to affect the North American farmed cervid industry.  
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Figure 1.1. Wildlife Management Zones in Saskatchewan with CWD positive wild deer and/or 
elk as of March, 2009 (Saskatchewan Ministry of Environment 2009). 
 
 
 
 
1.1.3 Management Challenges 

So far no state or province has been successful in eradicating chronic wasting disease 

once it has been detected in wild populations, despite varying degrees of effort and methods of 

management. Reasons for this are many, but a primary issue is the lack of understanding 

regarding transmission pathways of CWD. Although advances have been made over the past 

three decades, there is still disagreement among researchers whether transmission of CWD 

occurs in a frequency-dependent manner, where transmission rates are independent of population 

density, or a density-dependent manner, where transmission will decline with reduced population 

density (Wasserberg et al. 2009). This is further confounded by the uncertainty surrounding 
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environmental transmission (Miller et al. 2004). The length of time that prions remain infectious 

in the environment is thought to be many years, but duration and degree of infectivity may be 

influenced by environmental factors such as soil composition (Johnson et al. 2006, Schramm et 

al. 2006). Until methods are developed to detect prions and reduce infectivity in the 

environment, herd reduction will be ineffective unless population densities in affected areas can 

be kept at extremely low levels for extended periods of time (Gross, Miller 2001).  

Drastic measures such as herd reduction cause many political and financial issues, and 

public support is difficult to maintain, particularly over the long term. In order for CWD 

management programs to be successful, cooperation is required between government agencies, 

researchers, the farmed cervid industry, hunters, landowners, and the general public. This 

relationship is complicated not only by conflicting interests, but also by the incomplete 

knowledge upon which management strategies must be based. In addition, even if programs are 

successful, there is expected to be a lag in measureable prevalence changes of up to 11 years 

(Wasserberg et al. 2009), which could have major implications for funding and support. 

Researchers and management officials now recognize that once CWD becomes established in an 

area, eradication of the disease is unlikely given the management options that are currently 

available (Pybus, Hwang 2008, Williams et al. 2002b, Miller et al. 2006). This has led to a shift 

in management focus towards preventing and controlling spread of CWD into previously 

unaffected areas (Williams et al. 2002b, Pybus, Hwang 2008).  

1.2 Importance of animal movement 

Understanding the spread of a disease requires an understanding of host populations and 

how they distribute themselves across the landscape. Hosts of chronic wasting disease are highly 

mobile, gregarious animals that occupy home ranges and associate with each other in a non-
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random manner. Movements are driven by a mix of biological and ecological factors, which 

individuals respond to in their attempts to meet nutritional needs, avoid predation, and 

successfully produce offspring (Gautestad, Mysterud 1993). These individual movements can in 

turn affect larger-scale processes like disease dynamics (Patterson et al. 2008). High contact 

rates between individuals, long distance movements such as dispersal and migration, and large 

home range sizes have all been identified as aspects of deer movement that may contribute to 

disease spread (Conner, Miller 2004, Schauber et al. 2007, Kjær et al. 2008, Skuldt et al. 2008). 

These factors are not generally considered in the designation of disease management zones, 

which are often based on man-made boundaries such as counties, rural municipalities or readily 

identifiable features such as roads that provide no natural barriers to animal movement. The 

same can be said for many disease models and measures of prevalence, which are often 

calculated at scales that cannot account for animal movement or heterogeneities in disease 

spread (Conner, Miller 2004).  

Deer movement and chronic wasting disease has been studied in several areas affected by 

the disease (Conner, Miller 2004, Kjær et al. 2008, Skuldt et al. 2008, Long et al. 2005, 

Farnsworth et al. 2006), but geographic and species differences in movement patterns suggest a 

need for region-specific studies to be conducted. If we gain an understanding of how deer 

movements are influenced by the surrounding landscape in specific areas affected by CWD, we 

can not only apply this information to models predicting disease spread, but also identify 

commonalities with longer-affected regions and learn from their experiences in developing 

effective management strategies.  
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1.3 Thesis summary 

1.3.1 Objective 

The overall objective of this study is to identify environmental and biological factors 

influencing movement patterns and social behaviour of mule deer in southern Saskatchewan and 

how these factors may affect CWD transmission and spread.  

1.3.2 Thesis topics 

1. Determine how habitat and landscape structure influence home range sizes of male and 

female mule deer in our study areas. 

2. Quantify seasonal and sex-based differences in contact rates between GPS-collared mule 

deer, as well as habitat and landscape factors that may be associated with increased contact 

probability (both direct and indirect) and potential CWD transmission in southern 

Saskatchewan.  

1.3.3 Rationale 

Knowledge gained through this study may be used as a valuable tool in developing a 

predictive spatial model of chronic wasting disease spread in Saskatchewan. Models such as 

these will allow management agencies to focus their efforts in areas of high risk for CWD 

introduction and develop methods to more effectively reduce prevalence in affected areas and 

control the spread of CWD outside of these regions. 
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CHAPTER 2 
OVERALL METHODS 

 
2.1 Study species: Mule deer (Odocoileus hemionus) 

Mule deer are an important large herbivore found in Saskatchewan, where they overlap 

with other cervids such as white-tailed deer (O. virginianus), elk (Cervus elaphus), and moose 

(Alces alces) in some portions of the province. The species, which includes both black-tailed and 

mule deer, belongs to the taxonomic family Cervidae, within the order Artiodactyla. The entire 

species range stretches across western and central North America, as far north as Alaska and 

Yukon Territory and as far south as Mexico, with each of ten recognized subspecies occupying a 

different portion of the range (Figure 2.1) (Anderson, Wallmo 1984, Mackie 1994). Of these 

subspecies, the Rocky Mountain mule deer (O. h. hemionus) spans the largest area and is the 

only one found in Saskatchewan (Mackie 1994, Anderson, Wallmo 1984, Kie, Czech 2000). 

Mule deer coexist with white-tailed deer in many parts of their range, and although the two 

species may occasionally produce hybrid offspring (Wishart 1980), they are thought to be 

generally segregated by differences in preferred habitat (Lingle 2002, Martinka 1968, Swenson 

et al. 1983, Wood et al. 1989) and predator avoidance strategies (Lingle 2002, Martinka 1968, 

Swenson et al. 1983, Wood et al. 1989). In 2006, the overall population of mule deer in 

Saskatchewan was estimated at around 43,000 individuals, with the majority occurring in the 

south-west corner of the province (Saskatchewan Ministry of Environment 2008b).  
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Figure 2.1. Distribution of mule deer and recognized subspecies in North America (Mackie 
1994). 
 

 

Mule deer are highly valued in Saskatchewan for a number of reasons. As large 

herbivores, they play a major role in nutrient cycling, plant succession, and other processes that 

are crucial in the maintenance of healthy ecosystems (Hobbs 1996). They also provide an 

important food source for predators like coyotes (Canis latrans) and cougars (Puma concolor) 

and scavengers such as raccoons (Procyon lotor), crows (Corvus brachyrhynchos) and turkey 

vultures (Cathartes aura) (Jennelle et al. 2009). Although frequently involved in human-wildlife 



10 
 

conflict through highway collisions and crop damage, mule deer are particularly important to 

humans for their aesthetic significance as well as their economic value as a game species.   

Hunting is of great cultural and economic importance to Saskatchewan. The annual gross 

expenditures related to hunting (all game species) in the province amount to over 107 million 

dollars (Murray 2006). Although white-tailed deer are the most commonly hunted big game 

species in the province, mule deer made up about 17% of cervid licenses sold in the province in 

2007 (Saskatchewan Ministry of Environment 2008a). 

Mule deer occupy a variety of habitat types throughout their range, but are well adapted 

to the open prairie and are common in grasslands of southern Saskatchewan, tending to prefer 

areas of rugged or rolling topography (Wood et al. 1989, Lingle 2003). Many are seasonally 

migratory, travelling short or long distances to seek out suitable fawning areas, food resources, 

or protection from harsh winter elements (Nicholson et al. 1997, Brown 1992, Garrott et al. 

1987). Researchers report varying percentages of migratory mule deer within study populations 

(Conner, Miller 2004, Wood et al. 1989, Sawyer et al. 2005) with some groups of monitored deer 

reported as entirely migratory (Garrott et al. 1987) and others as entirely non-migratory 

(Eberhardt et al. 1984). In mountainous regions, migrations are often between a high elevation 

summer range and a lower elevation winter range (Conner, Miller 2004, Garrott et al. 1987, 

Sawyer et al. 2005, D'Eon, Serrouya 2005).  Distance between seasonal ranges has been reported 

as high as 158 km (x̄ = 84.1 km) for GPS-collared mule deer in western Wyoming, where 

researchers found 95% of collared deer to be migratory (Sawyer et al. 2005). Migration distances 

were shorter in a study of mule deer inhabiting a prairie region of eastern Montana, with a 

maximum distance of 80 km and an average distance of 5.9 km between summer and winter 

ranges (Wood et al. 1989).  
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Patterns of sociality are also influenced by season. Females are reported to isolate 

themselves in late spring to deliver and tend to their fawns (Wood et al. 1989). This contrasts 

with large groups of mixed sex and age classes often seen in late winter (Conner, Miller 2004, 

Wood et al. 1989, Lingle 2003). Aggregatory behaviour during the late winter could be due to 

the need to procure scarce food resources (Wood et al. 1989) combined with the added 

protection of a large group (Bowyer et al. 2001), which may be necessary where travel is 

hindered by snow. In our study areas, breeding season peaks between late November and early 

December, but timing may be variable for different geographic regions throughout the mule deer 

range (Kie, Czech 2000). Their breeding strategy is considered to be polygynous, in which males 

will attempt to breed with multiple females, tending to each until breeding occurs (Geist 1981). 

Although there is a moderate amount of literature available on home range sizes of mule 

deer, reports of home range sizes are difficult to compare due to the wide variety of methods 

used in calculations of home range as well as the duration of time for which the home range is 

reported.  In general, male mule deer are reported to have larger home ranges than female mule 

deer (Robinette 1966, Relyea et al. 2000), although this relationship has not been found to be 

significant in all cases (Eberhardt et al. 1984). Home ranges vary widely among studies, and 

researchers have reported average mule deer year-round home range sizes ranging from 0.49 km2 

(O. h. fuliginatus in southern California, 95% adaptive kernel home range, n = 2)) (Kie et al. 

2002) to 39.8 km2 (O. h. hemionus in south central Washington, 95% confidence ellipse home 

range, n = 34) (Eberhardt et al. 1984).  

Much of the available literature on mule deer movement is derived from studies 

undertaken in mountainous areas of the US (Conner, Miller 2004, Relyea et al. 2000, Kie et al. 

2002, Kufeld et al. 1988b). Information is lacking for mule deer in prairie-dominated regions 
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with the exception of a few studies (Lingle 2002, Swenson et al. 1983, Wood et al. 1989, Lingle 

2003, Wood 1989), and variation in home range sizes and movement patterns from other 

geographic regions suggests that much of this information may not be applicable across all 

populations of mule deer.   

Movements and behaviour of mule deer also differ from those of white-tailed deer. 

Examples of these differences can be seen in their habitat use as well as in their response to 

predators (Lingle 2002, Martinka 1968, Swenson et al. 1983, Wood et al. 1989). A study of 

sympatric mule deer and white-tailed deer populations in a prairie-dominated area of Alberta 

found that white-tailed deer tend to move onto gentler terrain in response to predators (Lingle 

2002). In contrast, mule deer are more likely to move onto rugged terrain where their specialized 

stotting gate gives them an advantage over predators (Lingle 2002). Mule deer are also more 

likely to remain in groups and defend themselves against predators such as coyotes, while white-

tailed deer prefer to flee in response to threat (Lingle 2003). In general, it has been shown that 

rugged terrain is a key component to mule deer habitat and that agricultural land and wooded 

riparian habitats are more important for white-tailed deer (Swenson et al. 1983, Wood et al. 

1989). In Montana, researchers found that home ranges of white-tailed deer were larger (x̄ = 33.5 

km2) and less discrete than those of mule deer (x̄ = 13.85 km2) in the same area due to greater 

movement within the home range in general, and more activity shifts in response to resource 

availability (Wood et al. 1989). In contrast, researchers in Wisconsin report sedentary, non-

migratory populations of white-tailed deer, occupying home ranges of less than two square 

kilometers (Skuldt et al. 2008). Harestad and Bunnel (1979) also found that white-tailed deer 

generally have smaller home ranges than mule deer, based on a number of studies. Movement 

patterns of both species vary widely from one geographic region to the next, but differences 
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between those of mule deer and white-tailed deer within similar environments suggest that the 

two species should be considered separately for management purposes. 

2.2 Study areas 

This study was conducted in five sites in rural southern Saskatchewan near the Lake 

Diefenbaker area of the South Saskatchewan River (Bounded by -108o27’21” and 51o9’46” in 

the northwest and -106o12’28”, 50o24’40” in the southeast) (Figure 2.2). Of the five study areas, 

Antelope creek (Antelope), Swift Current Creek (Swift), and the Beechy and Matador 

community pastures (Beechy and Matador) are within CWD management zones but the most 

north-easterly site, Douglas Provincial Park (Douglas), is just outside. At the start of the research 

project, the Beechy site was also located outside of the management zones, but the zones have 

since been expanded. Douglas falls within the Moist Mixed Grassland Ecoregion of 

Saskatchewan, while the other four are found in the Mixed Grassland Ecoregion (Acton et al. 

1998). The Mixed Grassland Ecoregion is characterized by a semiarid climate with mean annual 

precipitation of 352 mm, mean July temperature of 18.9oC and mean January temperature of -

12.6oC (Acton et al. 1998). The total area covered by all study sites combined is equal to 

approximately 2700 km2, with each site ranging from approximately 250 to 800 km2.  
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Figure 2.2. Locations of study sites in southern Saskatchewan. 
 

 

Annual cropland makes up a major proportion of the study sites, while other common 

habitat types are mixed grass prairie across rolling pastureland and through the river valley 

interspersed with wetlands and patches of low shrub in coulees and draws (Acton et al. 1998). 

Grasslands in this region are composed mostly of wheatgrass (Agropyron spp.), needle-and-

thread speargrass (Stipa comata.), blue grama grass (Bouteloua gracilis), and june grass 

(Koelaria macrantha). Pasture sage (Artemisia frigida) and moss phlox (Phlox hoodii) are 

examples of forbs found among the grass species, and snowberry (Symphoricarpos occidentalis) 

and wolf willow (Eleagnus commutata) are common shrubs. Annual crops grown in these study 

areas are barley, durum, wheat, oats, canola, peas and lentils (Saskatchewan Ministry of 

Agriculture 2008). Perennial forage crops such as alfalfa are grown in these areas as well. Very 

little forest cover is present in all areas except Douglas, where patches of aspen forest (Populus 

tremuloides) are dispersed among pastureland and sand hills dominated by creeping juniper 

(Juniperus horizontalis), chokecherry (Prunus virginiana), and rose (Rosa acicularis).  
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Antelope and Swift are located on the south side of the South Saskatchewan River, to the 

west and east of Saskatchewan Landing Provincial Park, respectively. These sites are similar in 

that they are composed of one or a series of creek valleys running perpendicular to the main river 

valley. The terrain is generally more rugged than that of the other sites, particularly in Swift, 

where the large creek valley containing numerous hills and coulees is bordered by steep cliffs, 

separating it from the surrounding cropland. Similarly to those in Antelope, where several creek 

valleys create a network of coulees, ravines and draws, these rugged topographic features 

provide distinct areas of suitable mule deer habitat surrounded by developed agricultural land.  

In contrast, the Beechy and Matador study areas found north of the South Saskatchewan 

River are the largest sites, composed of a large, relatively continuous expanse of rolling 

community pasture. Matador meets the river to the south, where the rugged river valley creates a 

landscape similar to that of Antelope and Swift, but transforms into a plateau of grassland and 

crop that climbs in elevation and becomes progressively hillier to the north. Beechy and Matador 

are separated only by a secondary highway which provides no significant barrier to deer 

movement between the sites. Rolling hills continue north throughout the Beechy site, where 

grassland, seasonal wetlands, and patches of low-lying shrub form a favorable landscape for 

mule deer. Road density is very low in Beechy and Matador, particularly during the winter 

months when trails become inaccessible, which minimizes human disturbance for deer and other 

wildlife inhabiting these study areas. 

2.3 Field methods 

2.3.1 Deer capture and collaring 

Deer were captured between January and April of 2006, 2007 and 2008 using either 

clover traps (Clover 1956) (2007 and 2008) or a helicopter and net-gun (Barrett et al. 1982) 
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(2006 and 2007). Clover traps were modified following McCullough (1975), and trap height was 

increased to 50” to facilitate capture of large adult bucks. All deer were chemically immobilized 

with intramuscular injections of Telazol® and Xylazine (Rompun®) combined. We collected 

tonsil samples for chronic wasting disease testing, blood and feces for studies of other diseases 

and parasites, and ear tissue for genetic research. Weight and body measurements were taken for 

body condition evaluation and age of each deer was estimated by assessing tooth wear. Each 

deer was fitted with a VHF (Very High Frequency) collar (LOTEK, ATS) or GPS (Global 

Positioning System) collar (LOTEK, Televilt) and reversed with Atipamezole (Antisedan®) after 

collar deployment and sample collection. For males, collars were fitted with a specially designed 

foam insert to allow for neck expansion during the rut. Animal handling protocol was approved 

by the Animal Care and Use Committee (Permit # 20050135).  

2.3.2 Radio telemetry 

The majority of GPS collars were programmed to automatically take fixes every 1-4 

hours, with more frequent fixes occurring during key periods like fawning and breeding seasons. 

GPS collars manufactured by Televilt were programmed for less frequent fixes (every 8 hours) 

but relatively few collars of this type were deployed (4 of 94). In order to avoid bias due to 

higher sampling frequency during particular seasons, location data collected at intervals shorter 

than 4 hours were removed from all analyses. Fix times for all remaining data were 4:00, 8:00, 

12:00, 16:00, 20:00, and 24:00 local mean time (LMT). A portion of the collars were equipped 

with UHF (Ultra High Frequency) remote-downloading capabilities whereas others stored all 

GPS data on board for the duration of deployment. All VHF-collared deer were located at least 

once a month by small aircraft or on foot. GPS collars were also tracked, though less precisely, 

to identify long distance movements and to periodically download data from UHF-equipped 
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collars. Upon identification of a mortality signal, the carcass was located as quickly as possible 

to determine cause of death and to retrieve the collar. Final collar retrieval for the project 

occurred during February and March of 2009. Deer in the Antelope Creek study area were re-

collared at that time for additional research.  

GPS collars were reported by LOTEK to be accurate within 5 m. Additional accuracy 

testing was performed by allowing collars (n = 4) to collect location information from fixed 

positions and calculating the distance between each location and the center point of all locations. 

This resulted in an average error of 11.3 m, with individual collar error ranging from 6.1 m (SD 

= 5.1 m, n = 63 locations) to 18.4 m (SD = 44.7 m, n = 116 locations). Average fix success for 

all collars used in the study was 95.7% (Range: 46.3 – 100%) and average proportion of 3D 

locations was 97.0% (Range: 81.8 – 100%). Aerial tracking accuracy for VHF collars was tested 

by comparing locations estimated through aerial tracking of mortality events to actual locations 

collected from the ground. Using this method, average error for VHF data was 678 m (n = 82 

locations, SD = 432 m). 

Coordinates with zero values were removed from GPS collar datasets, as well as obvious 

errors such as points located in different parts of the world or locations associated with negative 

altitude values. To identify additional suspect data points within GPS collar data, each 

individual’s dataset was examined visually. Outliers were identified and assessed based on 

average movement distances and patterns of movement leading up to and following the points in 

question to determine whether they were due to long distance movements or caused by collar 

error.  
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2.4 Data processing 

2.4.1 Landscape classification 

 A classified land cover map was created for the five study areas using 20 m resolution, 

multispectral SPOT (Satellite Pour l’Observation de la Terre) images obtained during July and 

September of 2007 (Alberta Terrestrial Imaging Centre 2007). Raw images were orthocorrected 

using PCI Geomatica software (PCI Geomatics 2005) and were not radiometrically processed. 

Images covering the Swift, Matador, Beechy and Antelope study sites were collected within the 

same time period (July 2007), which allowed us to mosaic the images and classify them together. 

Collection of one image relevant to the Douglas study area was delayed until September 2007, so 

this image was classified separately due to spectral differences.  

 Vegetation training data were collected along transects in each study area throughout the 

summer of 2007 in conjunction with a deer population survey. Each location of field data 

collection was overlaid with SPOT imagery and the associated pixel or pixels were classified as 

the land cover type documented at that location. Additional training sites were identified and 

classified through visual interpretation of the 20 m SPOT imagery and high resolution (2.5 m) 

panchromatic SPOT imagery (Telus 2006), guided by knowledge of the area obtained during 

field activities. Only locations that could be classified with a high level of certainty were used as 

supplementary training sites. Thirty percent of all training or “ground truth” polygons were 

withheld as reference data for accuracy assessment, while the remaining 70% were used as 

training locations for the classification process.  

 Digital elevation model (Government of Canada, Centre for Topographic Information 

2000-2009) and terrain ruggedness layers (Evans 2004) (both 25 m resolution) were used to 

supplement remotely sensed imagery and add a topographic dimension to the classification (See 
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section 2.4.2 for details). These layers were stacked with the SPOT images, along with an 

additional layer created by applying a homogeneity filter to the SPOT near infrared band. Pixel 

size was resampled to 25 m and supervised classification was performed within ENVI software 

(ITT Visual Information Solutions 2008) using a maximum likelihood classifier. Resolution of 

the final product was 25 m.  

 The original classification scheme consisted of nine classes: crop, grassland, mixed 

grass/shrub, shrub, woodland, wetland, open water, unvegetated, and unclassified; however, due 

to difficulties distinguishing between certain classes, the image was reclassified using only five 

classes (Figure 2.3). As the mixed grass/shrub class was created to represent low lying shrub 

habitats dominated by grasses, this class was combined with the grassland class. The shrub and 

woodland classes were combined because of the relative lack of woodland throughout all areas 

except Douglas, and the resulting lack of woodland training locations. Annual cropland and 

perennial forage cropland were classified together and combined with the unvegetated class 

because the vast majority of unvegetated areas were associated with unplanted or cut cropland. 

Open water and wetland classes were combined as well. The final, broad classification scheme 

was accepted for the purposes of this study due to its biological relevance to mule deer 

behaviour. 
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Figure 2.3. Classified land cover map of study sites and surrounding areas. 

 

 Overall accuracy of the Douglas map was 90.4% (Table 2.1b) while the accuracy of the 

map covering the remaining sites was 91.3% (Table 2.1a). These numbers are to be viewed with 

caution, however, as they are inflated by a disproportionate amount of training data collected in 

crop and grassland, the classes with the highest accuracy. Also, because the majority of training 

and reference data were collected within the five study sites, the accuracy outside of these areas 

may vary.  
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Table 2.1. Error matrices for classified maps covering the Antelope, Beechy, Matador and Swift 
study areas (a) and the Douglas study area (b). All data are expressed in number of pixels unless 
otherwise indicated. 
 
a. 
    Reference data     

    Crop Grassland Shrub/woodland Wetland total 
Commission 

error 
User accuracy 

(%) 

C
la

ss
ifi

ed
 M

ap
 Crop 1349 1 0 2 1352 3 99.8 

Grassland 0 1676 20 5 1701 25 98.5 

Shrub/woodland 11 27 30 44 112 82 26.8 

Wetland 0 16 4 22 42 20 52.4 

Total 1360 1720 54 73 3207 130 91.3 

  Omission error 11 44 24 51 130     

  
Producer 
accuracy (%) 99.2 97.4 55.6 30.1 91.3     

 
b. 
    Reference data     

    Crop Grassland Shrub/woodland Wetland total 
Commission 

error 
User accuracy 

(%) 

C
la

ss
ifi

ed
 M

ap
 Crop 1707 2 0 0 1709 2 99.9 

Grassland 31 119 3 0 153 34 77.8 

Shrub/woodland 42 89 284 34 449 165 63.3 

Wetland 457 48 8 4820 5333 513 90.4 

Total 2237 258 295 4854 7644 714 90.4 

  Omission error 530 139 11 34 714     

  
Producer 
accuracy (%) 76.3 46.1 96.3 99.3 90.4     

 

 

2.4.2 Terrain Ruggedness Index (TRI) calculation 

 Terrain ruggedness was calculated for areas in and around the study sites using a 

Topographic ruggedness script (Evans 2004) for ArcGIS (ESRI 2007) and 25 m resolution 

digital elevation model (DEM) data (Government of Canada, Centre for Topographic 

Information 2000). The DEM data was produced using 1:50,000 tiles of National Topographic 

Database source data (1999), accurate horizontally within the circular map accuracy standard of 

25 m and vertically within the 10 m linear map accuracy standard of the Centre for Topographic 
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Information. The topographic ruggedness script builds on methods developed by Riley et al. 

(1999) where a terrain ruggedness index (TRI) value is calculated for each cell by averaging the 

differences in elevation between that cell and its surrounding cells. Using a DEM raster as input, 

the topographic ruggedness script creates a new raster representing elevational change in meters, 

in which high values indicate rugged topography and low values indicate flat topography (Figure 

2.4). 

 

 
a.              b. 
 
Figure 2.4. Conversion of a digital elevation model (a) to a terrain ruggedness index (TRI) (b).   
 

 

2.4.3 Home range calculation 

Fixed kernel home ranges were calculated for each deer using the Home Range Tools 

(HRT) (Rodgers et al. 2007) extension for ArcGIS (ESRI 2007). This extension uses a bivariate 

normal kernel estimation to build a raster of probability values based on the utilization 

distribution (UD) of all locations for an individual (Figure 2.5b), with each cell value 

representing the likelihood that an individual may be located in that particular cell over a period 
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of time (Kernohan et al. 2001). Unlike minimum convex polygons (MCP), kernels allow for the 

exclusion of brief excursions and distinction between migratory home ranges (Figure 2.6). Grid 

resolution was set at 50 meters and contours delineating 95% of the estimated UD volume for 

each individual were used in the calculation of home range size (Figure 2.5c).  

 

 

 

Figure 2.5. Calculation of a fixed kernel home range. GPS locations taken at four-hour intervals 
(a) are used to calculate a raster representing probability of use (b), from which volume contours 
are generated to be used in home range analysis (c). 
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Figure 2.6. Comparison of fixed kernel home range with minimum convex polygon home range 
for G034, an adult male collared in the Beechy study area. The MCP home range (825 km2) is 
inflated by long distance movements, while the kernel home range (71.6 km2) includes only the 
areas regularly travelled by the individual.  
 

 

Home ranges were calculated for GPS-collared deer surviving longer than 30 days and 

VHF-collared deer with greater than 20 locations. GPS and VHF home ranges could not be 

compared because of differences in calculation methods, nor could VHF home ranges be 

considered in the calculation of average home range size for deer in our study areas. Literature 

reports that the accuracy of kernel home ranges depends upon number of locations and that at 

least 30 locations are required to reach asymptote (Seaman et al. 1999). The sample of VHF 

collared deer for which we collected over 30 locations included only females, so we could not 

use these in calculations of mean home range size and other descriptive statistics. However, male 

and female home ranges with greater than 20 locations were used in analyses investigating 

effects of landscape factors on relative home range size. Time periods over which home ranges 
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were calculated ranged from 1 month to 3 years, depending on the length of time each individual 

was present in the study (Table 2.2).   

 

Table 2.2. Total number of GPS-collared (a.) and VHF-collared individuals (b.) included in 
home range analysis, grouped according to capture year and dataset duration. 
 
a. 

Dataset duration 
Capture year < 0.5 yr 0.5 - 1.0 yr 1.0 - 1.5 yr 1.5 - 2.0 yr Total 
2007 8 16 2 43 69 
2008 4 15 6 25 
Total 12 31 8 43 94 
 
b. 

Dataset duration 
Capture year 1.5 - 2.0 yr 2.0 - 2.5 yr 2.5 - 3.0 yr Total 
2006 3 2 29 34 
2007 10 14 24 
Total 13 16 29 58 

 

 

Autocorrelation is an issue to be considered in radio telemetry studies (Swihart, Slade 

1985, Swihart, Slade 1997). Because locations are taken every four hours for GPS-collared deer, 

data were considered autocorrelated by the home range software (Swihart, Slade 1985). Deleting 

random locations until independence is reached (Rodgers, Carr 1998), or using only a subset of 

locations have been suggested as ways of overcoming this. An unacceptably large percentage of 

our data had to be removed in order to reach independence, so we chose to accept a degree of 

autocorrelation in order to avoid decreasing the biological relevance of the resulting home range 

calculations (de Solla et al. 1999, Blundell et al. 2001).  
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Least Squares Cross Validation (LSCV) was used to select the appropriate bandwidth for 

VHF-collared deer data. LSCV is generally accepted as the best method of bandwidth selection 

(Seaman et al. 1999, Seaman, Powell 1996), but some studies have reported it to be ineffective 

for their purposes (Blundell et al. 2001). It was found to be problematic when calculating linear 

home ranges (Blundell et al. 2001), and when dealing with clustered data and high or low sample 

sizes (Hemson et al. 2005). Due to the clustered nature and large sample sizes of our GPS data, 

attempts to use LSCV resulted in the software defaulting to the reference bandwidth (href) and 

overestimating home range size. The use of 80% of each href value gave reasonable results, but in 

cases of migratory or dispersal deer, home range sizes were again inflated (Figure 2.7a). As all 

individuals must be calculated using the same method in order to compare home ranges, this 

posed a significant problem. Using trial and error, a bandwidth of 275 meters was chosen for use 

in all calculations. For all types of home ranges in our sample, this bandwidth created contours 

that closely followed the actual distribution of points while providing a reasonable amount of 

smoothing, allowing us to accurately compare home range sizes and investigate habitat 

parameters within each home range (Figure 2.7). 
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Figure 2.7. Comparison of bandwidths for fixed kernel calculations. A bandwidth of 275m 
(shown in green) performs well for both migratory (a) and sedentary (b) movement patterns, 
whereas using 80% of the reference bandwidth (shown in red) results in inflated home ranges for 
migratory individuals. 
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CHAPTER 3 
LANDSCAPE EFFECTS ON HOME RANGE SIZE OF MULE DEER (ODOCOILEUS 
HEMIONUS) IN SOUTHERN SASKATCHEWAN: IMPLICATIONS FOR CHRONIC 

WASTING DISEASE SPREAD 
 

3.1 Abstract 

 Home ranges of mule deer have been studied throughout various parts of their range, but 

little information is available for mule deer in the prairies, and virtually none is available for 

mule deer in Saskatchewan. Movement patterns such as home range size may be important in 

influencing rates of disease spread across the landscape. We used GPS and VHF radio collars to 

calculate fixed kernel home ranges of 154 male and female mule deer from five study sites in 

and around a chronic wasting disease (CWD) endemic area of southern Saskatchewan. We 

investigated how home range sizes differ between sexes and how they are influenced by habitat 

and landscape.  

 Home ranges (95% fixed kernel) of GPS-collared deer in this study averaged 21.4 km2 (n 

= 94). Male home ranges (x̄ = 29.5 km2, n = 56) were larger than those of females (x̄ = 16.1 km2, 

n = 38), which could have implications for CWD prevalence differences between sexes. The best 

model for home range size included terrain ruggedness (negatively related) and Shannon’s 

diversity (a measure of both habitat richness and evenness) (positively related), in addition to sex 

and study site. Also important but not included in the best model were proportion of cropland, 

average number of habitat patches, and patch size coefficient of variation within home ranges 

(all positively related). These results suggest that mule deer occupying rugged areas such as 

creek valleys and coulees may be able to meet their needs within relatively small home ranges, 
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whereas those with less access to rugged terrain tend to range over larger areas and make use of 

more diverse, patchy habitats in order to meet their needs.  

This research identified relationships between host movement patterns and the 

surrounding landscape that will help build an understanding of both the temporal and spatial 

spread of CWD in our study areas. Variation in home range size and movement patterns of mule 

deer from different areas of North America emphasize the need for region-specific information 

in order to understand local patterns of disease spread and develop CWD management strategies 

appropriate to the population in question. 

3.2 Introduction 

Understanding the movement patterns of a host population is essential in wildlife disease 

management. Although deer in North America have been studied extensively, little quantitative 

information exists regarding movements of mule deer in Saskatchewan. Since the identification 

of chronic wasting disease (CWD) in a free ranging mule deer in Saskatchewan in 2000, 

management programs have been underway to stop the disease from spreading to other areas of 

the province. Like many CWD management strategies across North America, these have focused 

primarily on surveillance and generalized herd reduction by increasing hunting in affected zones. 

Despite these efforts, CWD has continued to spread beyond the boundaries of the management 

zones. To date, the disease has been found in white-tailed (O. virginianus) and mule deer in 13 

wildlife management zones within the province, as well as free-ranging elk (Cervus elaphus) in 

two zones (Saskatchewan Ministry of Environment 2009) and farmed cervids in several areas of 

the province. Management difficulties are complicated by long-term environmental 

contamination with prions and uncertainties regarding disease dynamics (Miller et al. 2004, 

Wasserberg et al. 2009, Miller et al. 2006). Eradication has become a distant goal in some areas 
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(Williams et al. 2002b), and the most promising areas of management appear to lie in prevention 

and early detection of spread into new areas (Pybus, Hwang 2008) as well as the development of 

techniques enabling detection of prions in the environment (Conner et al. 2008).  

Mule deer are highly mobile, seasonally gregarious animals, known to exhibit fidelity to 

a particular home range or set of home ranges (Anderson, Wallmo 1984). Individuals of some 

populations remain within a single home range for the majority of their lifespan with the 

exception of a proportion of dispersing juveniles (Eberhardt et al. 1984), while others migrate 

between a set of seasonal home ranges (Conner, Miller 2004, Brown 1992, Garrott et al. 1987). 

These patterns of movement will affect the way in which diseases are spread throughout or 

between host populations and should be incorporated into spatial models predicting the spread of 

CWD across the landscape (Conner, Miller 2004, Conner et al. 2008). Studies on scales of mule 

deer movement and CWD dynamics in Colorado determined that heterogeneities in CWD spread 

across the landscape were best explained at the scale of the individual home range (Farnsworth 

et al. 2006), suggesting that fine-scale movements and contact patterns are important to consider 

in attempting to understand or manage disease spread.  

The size of an individual’s home range may have implications for rates of disease spread 

across the landscape. Given that CWD can be spread by both direct and indirect contact, a larger 

home range would expand the area over which an infected individual would shed prions into the 

environment, or come into contact with susceptible individuals. Many factors have been 

suggested as influencing home range size in cervids, such as population density (Vincent et al. 

1995, Kjellander et al. 2004), forage availability (Relyea et al. 2000, Tufto et al. 1996), sex 

(Robinette 1966, Relyea et al. 2000), and landscape structure (Kie et al. 2002). Although there is 

a moderate amount of literature available on home range sizes of mule deer, reports of home 
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range sizes are difficult to compare due to the wide variety of methods used in calculations of 

home range as well as the duration of time for which home ranges are reported. Home ranges 

vary widely among studies, and researchers have reported average mule deer home range sizes 

ranging from 0.49 km2 (O. h. fuliginatus, 95% adaptive kernel home range, n = 2)) (Kie et al. 

2002) in southern California to 39.8 km2 in south central Washington (O. h. hemionus, 95% 

confidence ellipse home range, n = 34) (Eberhardt et al. 1984). 

Much of the available literature on mule deer movement is derived from studies 

undertaken in mountainous areas of the US (Conner, Miller 2004, Relyea et al. 2000, Kie et al. 

2002, Kufeld et al. 1988a). Few studies address movements of mule deer in prairie-dominated 

regions (Wood et al. 1989, Severson, Carter 1978) and no information is available regarding 

home ranges of mule deer in southern Saskatchewan. To address this, a radio telemetry project 

was undertaken in 2006 to investigate factors affecting movement patterns of deer in a chronic 

wasting disease endemic area of southern Saskatchewan. As a component of this project, our 

objective is to quantify home range patterns of male and female mule deer in this area and 

identify landscape and habitat factors that may be responsible for determining home range size. 

The information gained from this study may be used, in conjunction with parallel investigations 

on migration, dispersal and social structure, to develop predictive models of CWD spread and to 

inform management decisions in Saskatchewan.  

3.3 Methods 

3.3.1 Study sites 

This research was conducted in five study areas in southern Saskatchewan near the Lake 

Diefenbaker area of the South Saskatchewan River (Bounded by -108o27’21” and 51o9’46” in 

the northwest and -106o12’28”, 50o24’40” in the southeast) (Figure 3.1). Of the five study areas, 
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Antelope creek (Antelope), Swift Current Creek (Swift), and the Beechy and Matador 

community pastures (Beechy and Matador) are within CWD management zones but the most 

North-easterly site, Douglas Provincial Park (Douglas), is just outside. Douglas is the only site 

contained within the Moist Mixed Grassland Ecoregion of Saskatchewan, while the other four 

are within the Mixed Grassland Ecoregion (Acton et al. 1998). The total area covered by all 

study sites combined is equal to approximately 2700 km2, with each site ranging from around 

250 to 800 km2.  

 

 

Figure 3.1. Locations of study sites in southern Saskatchewan. 

 

The Mixed Grassland Ecoregion is characterized by a semiarid climate with mean annual 

precipitation of 352 mm, mean July temperature of 18.9oC and mean January temperature of -

12.6oC (Acton et al. 1998). Annual cropland makes up a major proportion of the study sites, 

while the remaining habitat is composed mostly of mixed grass prairie across rolling pastureland 

and through the river valley and deciduous shrubs in coulees and low lying areas (Figure 3.2). 
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Very little forest cover is present except in the Douglas study site, where patches of aspen 

(Populus tremuloides) forest and deciduous shrubs are dispersed among pasture and sand hills 

habitats. Common annual crops of this region are barley, durum, wheat, oats, canola, peas and 

lentils (Saskatchewan Ministry of Agriculture 2008). Please refer to general materials and 

methods for a more detailed description of the study sites. 

 

 
Figure 3.2. Proportional contribution of each land cover type to the total area of each study site. 
 

 

3.3.2 Capture and radio telemetry 

Deer were captured between January and April of 2006, 2007 and 2008 using either 

clover traps (Clover 1956) or a helicopter and net gun (Barrett et al. 1982). Clover traps were 

modified following McCullough (1975) and trap height was increased to 50” to allow for capture 

of adult bucks. All deer were chemically immobilized with intramuscular injections of combined 

Telazol® and Xylazine (Rompun®) and reversed with Atipamezole (Antisedan®) after collar 

deployment and sample collection. Animal handling protocol was approved by the Animal Care 
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and Use Committee. Each deer was fitted with a VHF collar (LOTEK, ATS) or a GPS collar 

(LOTEK, Televilt) programmed to take automatic fixes every 1-8 hours. Male collars were fitted 

with specially designed foam inserts to allow for neck swelling during the rut.  

VHF-collared deer were tracked on a monthly basis between 2006 and 2009 by small 

aircraft or on the ground on foot or by truck, ATV or snowmobile. GPS-collared deer were also 

tracked regularly between 2007 and 2009 to identify long distance movements and to 

periodically download data from UHF-equipped collars. Collars were retrieved during February 

and March of 2009. To avoid bias due to higher sampling frequency during particular seasons, 

only GPS fixes taken at 4, 8, 12, 16, 20, and 24 hours local mean time (LMT) were used for 

analysis, excluding zero values and erroneous or suspect data points.  Data collected within the 

first two weeks following capture were also removed to avoid the inclusion of capture-related 

movement changes in the analysis. 

3.3.3 Home range size 

Fixed kernel home ranges were calculated for GPS-collared deer surviving longer than 30 

days and VHF-collared deer with greater than 20 locations using Home Range Tools (HRT) 

(Rodgers et al. 2007) for ArcGIS (ESRI 2007). This extension uses a bivariate normal kernel 

estimation to build a raster of probability values based on the utilization distribution (UD) of all 

locations for an individual, with each cell value representing the likelihood that an individual 

may be located in that particular cell over a period of time (Kernohan et al. 2001). Unlike 

minimum convex polygons (MCP), kernel estimation allows for exclusion of brief excursions 

and distinction between seasonal home ranges of migratory individuals. Grid resolution was set 

at 50 m and contours delineating 95% of estimated UDs were used in the calculation of home 
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range size. Time periods over which home ranges were calculated ranged from 1 month to 3 

years, depending on the length of time each individual was present in the study. 

Least Squares Cross Validation (LSCV) was used to select appropriate bandwidth for 

VHF-collared deer data. However, due to the clustered nature and large sample sizes of GPS 

data, attempts to use LSCV resulted in calculations defaulting to the software-generated 

reference bandwidth (href) and overestimating home range size. Using trial and error, a 

bandwidth of 275 m was chosen for use in all calculations involving GPS data. This bandwidth 

created contours that closely followed the actual distribution of points while providing a 

reasonable amount of smoothing, allowing us to accurately compare home range sizes and 

investigate habitat parameters within each home range.  

Autocorrelation was also an issue to be considered in the calculation of home ranges 

(Swihart, Slade 1985, Swihart, Slade 1997). Because locations were taken every four hours for 

GPS-collared deer, data were considered autocorrelated according to the home range software 

(Swihart, Slade 1985). Excluding random locations until independence is reached (Rodgers, Carr 

1998), or using only a subset of locations have been suggested as ways of overcoming this. An 

unacceptably large percentage of our data had to be removed in order to reach independence; 

therefore we chose to accept a degree of autocorrelation in order to avoid decreasing the 

biological relevance of the resulting home range calculations (de Solla et al. 1999, Blundell et al. 

2001).  

3.3.4 Landscape classification 

A classified land cover map was created for the five study areas using 20 m resolution, 

multispectral SPOT (Satellite Pour l’Observation de la Terre) images obtained during July and 

September of 2007 (Alberta Terrestrial Imaging Centre 2007). Raw images were orthocorrected 
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using PCI Geomatica software (PCI Geomatics 2005) and were not radiometrically processed. 

Images covering the Swift, Matador, Beechy and Antelope study sites were collected within the 

same time period (July 2007), which allowed us to mosaic the images and classify them together. 

Collection of one image relevant to the Douglas study area was delayed until September 2007, so 

this image was classified separately due to spectral differences.  

 Vegetation training data were collected along transects in each study area throughout the 

summer of 2007 in conjunction with a deer population survey. Each location of field data 

collection was overlaid with SPOT imagery and the associated pixel or pixels were classified as 

the land cover type documented at that location. Additional training sites were identified and 

classified through visual interpretation of the 20 m SPOT imagery and high resolution (2.5 m) 

panchromatic SPOT imagery (Telus 2006), guided by knowledge of the area obtained during 

field activities. Only locations that could be classified with a high level of certainty were used as 

supplementary training sites. Thirty percent of all training or “ground truth” polygons were 

withheld as reference data for accuracy assessment, while the remaining 70% were used as 

training locations for the classification process.  

 Digital elevation model (Government of Canada, Natural Resources Canada, Earth 

Sciences Sector, Centre for Topographic Information 2000-2009) and terrain ruggedness layers 

(Evans 2004) (both 25 m resolution) were used to supplement remotely sensed imagery and add 

a topographic dimension to the classification. These layers were stacked with the SPOT images, 

along with an additional layer created by applying a homogeneity filter to the SPOT near 

infrared band. Pixel size was resampled to 25 m and supervised classification was performed 

within ENVI software (ITT Visual Information Solutions 2008) using a maximum likelihood 

classifier. Resolution of the final product was 25 m.  
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The original classification scheme consisted of nine classes: crop, grassland, mixed 

grass/shrub, shrub, woodland, wetland, open water, unvegetated, and unclassified; However, due 

to difficulties distinguishing between certain classes, the image was reclassified using only five 

classes. As the mixed grass/shrub class was created to represent low lying shrub habitats 

dominated by grasses, this class was combined with the grassland class. The shrub and woodland 

classes were combined because of the relative lack of woodland throughout all areas except 

Douglas, and the resulting lack of woodland training locations. Annual cropland and perennial 

forage crop were classified together and combined with the unvegetated class because the vast 

majority of unvegetated areas were associated with unplanted or cut cropland. Open water and 

wetland classes were combined into one class as well. The final, broad classification scheme was 

accepted for the purposes of this study due to its biological relevance to mule deer behaviour. 

3.3.5 Landscape characterization within home ranges 

Proportions of each habitat type and average terrain ruggedness index (TRI) and 

elevation values were calculated for each home range using Hawth’s tools (Beyer 2007) 

extension for ArcGIS. Landscape metrics were then calculated using Patch Analyst Extension 

(Rempel et al. 2000), which was developed for the ArcGIS platform based on FRAGSTATS 

software (McGarigal, Marks 1994). These metrics include diversity, evenness, mean shape 

index, perimeter area ratio, mean patch fractal dimension, mean and median patch size, patch 

density, edge density, mean patch edge, and standard deviation and coefficient of variance for 

patch size (Table 3.1) 
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Table 3.1. Landscape metrics investigated using Patch Analyst. Adapted from (Elkie 1999) and 
(McGarigal 1994). 
 
Landscape metric Description 
 
Number of patches 

 
Total number of patches 

Mean patch size Average size of all habitat patches 
Median patch size Middle value of all patch sizes 
Patch size standard deviation Standard deviation of all patch sizes 
Patch size coefficient of variance Coefficient of variance of all patches 
Total edge Sum of perimeters of all patches 
Edge density Total edge divided by home range size 
Mean patch edge Average amount of edge per patch 
Mean perimeter-area ratio A measure of shape complexity: Sum of the perimeter/area 

ratio of each patch divided by the total number of patches 
Mean shape index A measure of shape complexity: sum of each patch’s 

perimeter divided by the square root of patch area, adjusted 
for circular standard and divided by the number of patches 

Mean patch fractal dimension A measure of shape complexity: Value approaches one for 
shapes with simple perimeters and two for more complex 
shapes 

Area weighted mean shape index Mean shape index weighted by the size of each patch 
Area weighted mean patch fractal 
dimension 

Mean patch fractal dimension weighted by the size of each 
patch 

Diversity Shannon’s diversity index: Relative measure of patch 
diversity – the index equals zero when there is only one 
patch in the landscape and increases as the number of patch 
types or proportional distribution of patch types increases 

Evenness Shannon’s evenness index: Measure of patch distribution – 
equal to zero when the patch distribution is low and 
approaches one when the distribution of patch types 
becomes more even.  

 

 

Certain landscape metrics, such as mean patch size, amount of edge, and number of 

patches should not be analyzed at the home range scale because they are dependent on home 

range size (Kie et al. 2002). To avoid this problem, studies have calculated landscape metrics by 

creating circular polygons at set radii around each home range centroid and investigating the 

relationship between resulting values and home range size (Kie et al. 2002, Anderson et al. 
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2005). Although this method may be preferable for many home range studies, the long distance 

migration paths of deer in several of our study areas prevented us from choosing a radius that 

would encompass both home ranges of migratory deer while providing a biologically appropriate 

scale for analysis. As an alternative, we generated a network of hexagonal polygons, each with 

an area of 200 ha across the entire habitat map and calculated landscape metrics within each 

hexagonal polygon. These polygons were then joined with the overlapping home ranges, and 

values for each landscape metric were calculated for each home range by averaging values 

associated with overlapping hexagons. Diversity and evenness could be considered size 

dependent if the minimum home range size and the minimum habitat patch size were similar, but 

in this analysis, where the minimum patch size was 30 m and the smallest home range was 

greater than 2 km, there was opportunity for even the smallest home range to encompass a range 

of habitat types. Therefore, diversity and evenness were determined to be size independent and 

were calculated within each home range polygon.  

3.3.6 Statistical analysis 

Differences in home range size between males and females and between study sites were 

investigated using SPSS (SPSS Inc. 2008). Two-way ANOVA (Analysis of Variance) was used 

to look at differences between sexes and study sites and post-hoc comparisons were performed 

using t-tests. Data were normally distributed and met all assumptions with the exception of equal 

variances between males and females.  

Mixed model regression was performed using SAS PROC MIXED (SAS Institute 2002) 

to determine which parameters were important in determining home range size. Sex, collar type, 

and site were tested as fixed effects with each landscape and habitat parameter, and interactions 

were tested for all significant parameters. A correlation matrix was generated in SPSS to identify 
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non-independent factors that could not be placed in the same model. Significant habitat and 

landscape metrics, along with sex, study area, and collar type were placed in a model and least 

significant variables were removed until all remaining variables were significant. Models were 

compared and the best was chosen based on AIC (Akaike Information Criteria) values.  

Because temporal period of home ranges differed among individuals, we performed 

mixed model regression to determine whether this factor affected GPS-collar or VHF-collar 

home ranges. Fix success of and proportion of 3D locations were also calculated for each GPS 

collar using raw data. These factors were tested to determine whether they created bias in 

calculating home range size.   

To address the question of whether home range sizes were limited by the amount of 

continuous natural habitat available, we also compared two subsets of home ranges from Swift 

Current Creek and the southern region of Matador, two areas with comparable topography but 

differing amounts of continuous habitat (Figure 3.3). For this analysis, we selected home ranges 

with TRI values greater than 5.0 from each site. To eliminate bias related to sex and collar type, 

we randomly removed individuals from over-represented classes until sex and collar proportions 

were similar between the two groups. We then tested for normal distribution of groups and 

performed a t-test to determine whether home range sizes differed between the two areas with 

similar topographic characteristics. 
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Figure 3.3. Comparison between the Matador (top) and Swift (bottom) study areas. The south 
end of Matador has a similar degree of terrain ruggedness (TRI) to that of Swift, but a greater 
amount of continuous natural habitat. 

 

 

3.4 Results 

3.4.1 Dataset 

A total of 152 deer were included in the analysis, 94 of which were GPS-collared (56 

male; 38 female) and 58 of which were VHF-collared (17 male; 41 female). Time periods over 

which home ranges were calculated ranged from 1 month to 3 years, depending on the length of 

time each individual was present in the study (Table 3.2).  Mean number of locations available 

was 32 (range = 20 - 43) for VHF-collared deer and 2384 (range = 167 - 4361) for GPS-collared 

deer. 
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Table 3.2. Number of GPS-collared (a) and VHF-collared (b) individuals included in the study 
summarized by capture year and duration of time over which home ranges were calculated. 
 
a. 

Dataset duration 
Capture year < 0.5 yr 0.5 - 1.0 yr 1.0 - 1.5 yr 1.5 - 2.0 yr Total 
2007 8 16 2 43 69 
2008 4 15 6 25 
Total 12 31 8 43 94 
 
b. 

Dataset duration 
Capture year 1.5 - 2.0 yr 2.0 - 2.5 yr 2.5 - 3.0 yr Total 
2006 3 2 29 34 
2007 10 14 24 
Total 13 16 29 58 
 
 
 
3.4.2 Home range size 
 
3.4.2.1 Effects of dataset duration and collar success 

 Temporal duration over which home ranges were calculated did not affect home range 

size for VHF-collared deer used in the study (F1,51 = 0.97, p = 0.331). However, duration was 

positively related to home range size for GPS-collared deer (F1,87 = 12.71, p < 0.001). To ensure 

this did not create bias in results, interactions were tested between duration and all significant 

influencing factors. The interaction with sex was significant (F1,86 = 4.41, p = 0.039), but sex did 

not affect duration of dataset (F1,88 = 0.12, p = 0.727) when duration was tested as a dependent 

factor. No other interactions were significant, nor were the effects of proportion of successful fix 

attempts (F1,87 = 0.14, p = 0.712) and proportion of 3D fixes (F1,87 = 3.27, p = 0.074) on home 

range size. 
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3.4.2.2 Effects of sex and study site 

The overall mean of home range size was 24.1 km2 (SE = 1.7, range = 2.1 - 87.7 km2, n = 

94) (Table 3.3), with females having smaller home ranges than males (t89.8 = -4.56, p < 0.001). 

Average male home range size was 29.5 km2 (SE = 2.5, range = 2.1 - 87.7 km2, n = 38) which 

was nearly twice the female average of 16.1 km2 (SE = 1.6, range = 4.8 – 51.5 km2, n = 56). 

There were significant differences between study areas as well (F4,89 = 4.68, p = 0.002), but no 

interaction between sex and study site (Figure 3.5). The largest differences between study areas 

were between Swift and Matador (t28.1 = -3.51, p = 0.002) and Beechy and Swift (t30 = 3.58, p = 

0.001), with home ranges in Swift (x̄ = 16.0 km2, SE = 2.0 km2, n = 25) smaller than those in 

Matador (x̄ = 33.9 km2, SE = 4.7 km2, n = 21) and Beechy (x̄ = 33.8 km2, SE = 6.5 km2, n = 7) 

(Table 3.3). Swift home ranges were also smaller than those in Antelope (t50 = -2.34, p = 0.023), 

but there were no other significant differences between study areas. Differences between age 

classes were not investigated because of inadequate juvenile sample sizes and complications in 

dealing with changes in age classes over time.  

 
Table 3.3. Mean (x̄ ±1SE) 95% kernel home range size (km2) and number (n) of individuals 
overall and for GPS-collared males and females in each of the five study areas. Significant 
differences exist between Swift and Antelope, Beechy, and Matador. 
 
 Home range size 

Study site 
Male 

x̄  ± 1 SE(km2)   n 
Female 

x̄  ± 1 SE(km2)   n 
Overall 

x̄    ±  1 SE(km2)   n 
Antelope 27.5   ±   3.3      18 15.6   ±   2.1      9 23.5    ±    2.5      27 
Beechy 47.5   ±   24.0      2 28.3   ±   2.2      5 33.8    ±    6.5        7 
Douglas 27.6   ±   6.7        8 9.35   ±   1.4      6 19.8    ±    4.5      14 
Matador 36.3   ±   5.6      16 25.7   ±   7.4      5 33.9    ±    4.7      21 
Swift 21.3   ±   3.1      12 11.0   ±   1.5    13 16.0    ±    2.0      25 
Overall 29.5   ±   2.5      56 16.1   ±   1.6    38 24.1    ±    1.7      94 
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Table 3.4. Distribution of kernel home range data (km2) for GPS-collared deer in each study 
area. 
 

Percentiles 
Study site n Min 25th  50th 75th  Max 
Antelope 27 6.44 14.2 19.3 29.1 57.2 
Beechy 7 22.2 23.5 27.6 35.1 71.6 
Douglas 14 2.12 7.82 10.4 34.2 52.0 
Matador 22 4.18 15.6 29.9 46.4 87.7 
Swift 25 4.75 8.30 13.0 20.9 43.6 

 

 

 
Figure 3.4. Distribution of kernel home range data (km2) for GPS-collared deer in each study 
site. Shaded boxes indicate data between the 25th and 75th percentiles, with the median indicated 
by a horizontal line. Whiskers represent all remaining data within 1.5 box-lengths of the 25th and 
75th percentiles. Outliers (dots) are values falling outside of this distribution and extreme values 
(stars) are greater than 3 box lengths from the 25th or 75th percentile. 
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 Figure 3.5. Mean 95% kernel home range sizes (km2) of GPS-collared deer by sex and 
 study area. Stars indicate significant differences between males and females (α = 0.05). 
 

 

3.4.2.3 Effects of habitat and landscape 

 Habitat composition within home ranges significantly influenced mule deer home range 

size. Larger home ranges tended to contain greater proportions of cropland (F1, 144 = 5.48, p = 

0.021), but grassland (F1,144 = 3.17, p = 0.077), wetland (F1,144 = 2.01, p = 0.159) and 

shrub/woodland (F1,144 = 2.80, p = 0.097) did not significantly affect home range size. 

Topography was an influencing factor as home range size was negatively related to terrain 

ruggedness (F1,144 = 23.04, p < 0.001) (Figure 3.6a).  
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Figure 3.6. Relationships between home range size (km2) and terrain ruggedness index (TRI) (a) 
and Shannon’s diversity index (SDI) (b). 
 

 

 Several measures of landscape heterogeneity were tested individually to determine which 

were important to consider in a model of home range influences. Of a total of 14 possible 

landscape metrics, four were found to be significantly related to home range size. Diversity 

(F1,144 = 9.48, p = 0.003) (Figure 3.6b), evenness (F1, 144 = 6.63, p = 0.011), average number of 

patches (F1,144 = 5.96, p = 0.016), and patch size coefficient of variation (F1,144 = 6.06, p = 0.015) 

were all positively related to home range size. Diversity and evenness were highly correlated (r = 

0.943, p < 0.001). This was expected because they are similar measures, diversity being a 

measure of both the number and proportional contribution of habitat types present, and evenness 

being a measure of only the proportional contribution of habitat types present. Each was tested 

separately in a different model.  

 Sex and proportion of crop had interacting effects on home range size (F1,143 = 4.47, p = 

0.036). When males and females were investigated separately, proportion of crop was positively 

related to male home range size (F1,67 = 5.61, p = 0.021), but not significantly related to female 
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home range size (F1,73 = 1.34, p = 0.250). There were no other interactions between sex, site, or 

collar type and any of the significant landscape or habitat factors. The model that best explained 

variation in home range size included topographic ruggedness and diversity, in addition to sex, 

site, and collar type (Table 3.5). According to this model, home ranges tended to be larger in 

areas of gentle terrain with a greater number and proportional contribution of habitat types. 

 
Table 3.5. Akaike Information Criteria (AICc) values, change in AICc (∆AICc), and residual error 
of models used to explain variation in home range size. 
 

Variables in model AICc ∆AICc Residual error 
Ruggedness, diversity, sex, site, collar type 1255.1 0.0 303.5 

Ruggedness, evenness, sex, site, collar type 1256.1 1.0 307.3 

Null model 1386.4 131.3 542.9 

 

Additional home range subsets were compared between the Swift study area and the 

southernmost region of the Matador study area. These two groups of home ranges contained 

similar amounts of rugged terrain (Average TRI values were 6.23 and 6.28 for Matador and 

Swift, respectively) but were surrounded by differing amounts of continuous habitat. Average 

home range sizes for the Matador and Swift subsets were 16.6 km2 (n = 10, SE = 4.37) and 18.5 

km2 (n = 20, SE = 1.63), respectively. Home ranges were not significantly different (t11.6 = 0.413, 

p = 0.687) between the two sites, which suggested that terrain ruggedness may be more 

important than continuous natural habitat in determining home range size. 

3.5 Discussion 

As in other studies investigating the effects of landscape on movement patterns and 

distribution of deer, we found that landscape composition significantly influenced home range 

sizes of mule deer in our study areas. Landscape heterogeneity (of which Shannon’s Diversity 
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Index is one measure) was expected to be negatively related to home range size, as a greater 

variety of habitat types in an area may allow an individual to meet its needs within a smaller 

range (Kie et al. 2002). Our results were not consistent with this expectation, as higher diversity 

values tended to be associated with larger home ranges. However, this relationship agreed with 

that of mule deer occupying a similar prairie habitat in Montana, where authors explained that 

deer compensated for a lack of available hardwood draws and badlands habitat by expanding 

their home range to include a variety of habitats (Wood et al. 1989).  

The association between smaller home ranges and topographic ruggedness supports this 

explanation and highlights the importance of rugged terrain in grassland-dominated 

environments where forest cover is scarce (Lingle 2002, Wood et al. 1989, Lingle 2003, 

Swenson 1982, Dusek 1975). Rugged terrain in southern Saskatchewan occurs mostly in the 

form of draws, coulees, and river or creek valleys with shrubby vegetation along the bottom, 

often surrounded by unvegetated cliffs. These features provide mule deer with concentrated 

sources of forage, as well as protection from predation and winter elements. Mule deer with less 

access to this type of habitat may need to range over larger areas in order to access other sources 

of forage and protective cover.  

Study site differences prompted further questions regarding the importance of available 

continuous habitat in determining home range size. Beechy and Matador, the areas containing 

the largest home ranges on average, are composed of one large, continuous expanse of grassland 

that meets the river to the south, whereas Swift, the area in which the smallest home ranges were 

found, is made up of a creek valley and networks of rugged coulees surrounded by cropland. The 

effect of surrounding cropland is difficult to measure directly as it would require analysis at 

larger scales to identify habitat influences acting outside of the home range. We chose to address 
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this question indirectly, by determining if a sample of home ranges selected from the rugged 

south end of Matador would differ significantly in size from those in Swift Current Creek. 

Results from this analysis showed that the two subsets of home ranges with similar ruggedness 

values did not differ significantly in size, suggesting that available continuous habitat may not be 

as important as topographic ruggedness in determining home range size in mule deer.  

It is difficult to compare results of studies on mule deer home range size because of the 

wide variety of methods used to estimate an animal’s home range. Even using the same dataset, 

different methods may output very different results, which emphasizes the importance of clearly 

stating methods used when reporting home range size (Harris et al. 1990). Despite these 

difficulties, home range sizes of mule deer in our study areas are larger than those reported in the 

majority of the literature (Wood et al. 1989, Nicholson et al. 1997, Robinette 1966, Relyea et al. 

2000, Kie et al. 2002). We did not include VHF-collared deer in our reports of average home 

range size because of the potential for inaccuracies and insufficient numbers of data points, but it 

is important to note that home ranges of VHF collared deer ranged as high as 156.7 km2 (Table 

3.6). In addition, the calculation of 100% minimum convex polygons (MCP) for all deer used in 

this study averaged 115.5 km2 (SE = 19.9 km2) (Table 3.7) and ranged as high as 2519.6 km2 

(Table 3.8) (The MCP home range of an adult doe from the Swift study area whose unusual 

long-distance movements were not reflected in the kernel estimation of her home range) (Figure 

3.8). Although MCP estimation was not appropriate for landscape analysis due to the inclusion 

of unused or rarely-used areas, particularly for migratory individuals, it does provide perspective 

on the total area, rather than only regularly used areas, that may be covered by the movements of 

an individual mule deer. This additional information may be important to consider for wildlife 
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disease management when home range sizes are included in models of disease spread and used 

to determine suitable scales at which to implement management strategies. 

 

Table 3.6. Mean (x̄ ±1SE) kernel home range size (km2) and number (n) of individuals of VHF-
collared deer with greater than 20 locations in each of the five study areas. 
 Home range size 

Study site 
Male 

x̄  ± 1 SE(km2)   n 
Female 

x̄  ± 1 SE(km2)   n 
Overall 

x̄    ±  1 SE(km2)   n 
Antelope 47.9   ±   21.8      6 16.5   ±   3.7      4   35.4    ±   13.7     10 
Beechy 79.8   ±   33.2      3 58.7   ±   7.8      9 64.0    ±    9.5      12 
Douglas 25.9   ±   3.3        4 22.6   ±   4.6      8 23.7    ±    3.2      12 
Matador N/A   ±   N/A      0 37.9   ±   8.4      8 37.9    ±    8.4        8 
Swift 35.9   ±   4.5        4 16.2   ±   3.7    12 21.1    ±    2.7      16 
Overall 45.6   ±   9.9      17 31.0   ±   3.6    41 35.3    ±    3.9      58 
 
 
 
Table 3.7. Mean (x̄ ±1SE) minimum convex polygon (MCP) home range size (km2) and number 
(n) of individuals overall and for males and females in each of the five study areas. 
 Home range size 

Study site 
Male 

x̄  ± 1 SE(km2)   n 
Female 

x̄  ± 1 SE(km2)   n 
Overall 

x̄    ±  1 SE(km2)   n 
Antelope 117.0   ±    36.9    24 58.3     ±   18.9    13 96.4      ±    25.1      37
Beechy 210.3   ±   153.9     5 141.1   ±   29.7    14 159.2    ±    43.7      19
Douglas 90.5     ±    22.6    12    23.9    ±   3.9      14 54.6      ±   12.34     26
Matador 153.7   ±    28.0    17 174.1   ±   40.2    13 162.5    ±    23.2      30
Swift 103.9   ±    63.1    16 124.7   ±  100.2   25 116.6    ±     65.2     41
Overall 124.6   ±    21.7    74 107.0   ±   33.0    79 115.5    ±    19.9    153
 
 
Table 3.8. Distribution of MCP home range data (km2) for GPS and VHF-collared mule deer in 
each study area. 
 

Percentiles 
Site n Min 25th 50th 75th Max 
Antelope 37 9.42 24.8 62.6 109.8 938.8 
Beechy 19 19.8 46.0 98.7 197.4 825.2 
Douglas 26 5.26 14.3 22.0 97.6 191.0 
Matador 30 3.78 55.9 160.4 228.8 560.5 
Swift 41 4.49 10.6 20.3 35.1 2519.6 
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Figure 3.7. Distribution of MCP home range data (km2) for GPS and VHF-collared deer in each 
study area (P012 not shown). Boxes indicate data between the 25th and 75th percentiles, with the 
median indicated by a horizontal line. Whiskers represent all remaining data within 1.5 box-
lengths of the 25th and 75th percentiles. Outliers (dots) are values falling outside of this 
distribution and extreme values (stars) are greater than 3 box lengths from the 25th or 75th 
percentile. 
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Figure 3.8. The MCP home range (area = 2519.6 km2) of an adult female mule deer collared in 
the Swift study area whose unusual long distance movements were not reflected in the estimation 
of her kernel home range (area = 22.3 km2). 
 
 
 

Sex-based differences in home range sizes of mule deer are also important to quantify, 

particularly in the context of understanding wildlife disease. The finding of larger male home 

ranges in this study agrees with the results of other studies (Robinette 1966, Relyea et al. 2000) 

and may have implications for chronic wasting disease. Higher CWD prevalence in male deer 

has been found in regions affected by the disease, including southern Saskatchewan. Reasons for 

this are uncertain, but are thought to involve differences in exposure to the disease agent rather 

than differences in susceptibility among sexes (Miller, Conner 2005). This may be due in part to 

breeding and non-breeding related social behaviour (Farnsworth et al. 2006, Miller, Conner 

2005), but larger home ranges may also play a role by increasing the potential for direct and 

indirect exposure of adult male mule deer to infectious prions.  

3.6 Conclusion and management implications 

 Spatial models predicting patterns of disease spread throughout wildlife populations 

require baseline information on home range and other movement patterns relevant to the 
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population in question. Home range information has been collected for deer in many regions 

throughout North America, but none was previously accessible regarding mule deer in this 

chronic wasting disease-endemic area of southern Saskatchewan. Not only will region-specific 

information allow us to create a relevant pool of knowledge on which to base disease models, but 

it will also enable us to identify commonalities with deer populations in other geographic areas. 

This will help to guide information sharing with researchers and managers in areas with longer 

histories of CWD management, as well as those at risk but not yet affected by the disease.  

It has also been shown that habitat use plays a role in fine-scale heterogeneities of CWD 

spread (Farnsworth et al. 2006). The incorporation of landscape and habitat factors into models 

of disease spread has been useful in enhancing the understanding of other wildlife-associated 

diseases such as bovine tuberculosis (Mycobacerium bovis) (McKenzie et al. 2002, Brook, 

McLachlan 2009), parapoxvirus (Rushton et al. 2000), and fox rabies (Deal et al. 2000). Our 

research has identified relationships between host movement patterns and the surrounding 

landscape that will help us to understand both the temporal and spatial spread of CWD in our 

study areas. The knowledge gained from this study will be combined with the results of parallel 

investigations on dispersal, migration, and contact rates to develop a spatial model of chronic 

wasting disease spread in southern Saskatchewan. 
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CHAPTER 4 
FACTORS INFLUENCING CONTACT BETWEEN MULE DEER (ODOCOILEUS 

HEMIONUS) IN A CHRONIC WASTING DISEASE ENDEMIC ZONE IN 
SASKATCHEWAN 

 
4.1 Abstract 

Although it is known that chronic wasting disease (CWD) can be spread through both 

direct and indirect contact, the role of each in the transmission and spread of CWD in free-

ranging populations has yet to be defined. We investigated the effects of season and landscape 

on patterns of direct and indirect contact between GPS-collared mule deer from five study areas 

located in and around a CWD-endemic zone in southern Saskatchewan. Direct contacts were 

identified using proximity and indirect contact was measured using shared space use. 

Overall probability of contact for GPS-collared deer was 0.092 (n = 107). Same-sex 

contacts were more common than between-sex contacts during all seasons, and all contact types 

were most likely to occur during the late winter and early spring (February-April). This finding 

agrees with the tendency of mule deer to aggregate into large groups during the late winter and 

suggests that this may be an important time period for CWD transmission. Direct contacts were 

found to occur more in cropland and wetland than expected based on availability, whereas they 

occurred less than expected in grassland. The opposite was true for indirect contact, which 

tended to occur more than expected in areas of low elevation and rugged terrain, and in grassland 

or shrub/wood habitats. These results suggest that cropland may be considered a high risk habitat 

for direct CWD transmission between individuals, and that rugged, low elevation areas such as 
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coulee bottoms may be high risk areas for environmental contamination and indirect 

transmission of CWD.  

4.2 Introduction 

Since the discovery of chronic wasting disease (CWD) in free-ranging deer populations in 

Saskatchewan, control of this disease has been a challenging task for management agencies in 

the province. Similar to many other CWD management programs across North America, hunter-

based population reduction has been the primary strategy, with the goal of reducing population 

densities to levels low enough to stop disease spread. This program has been unsuccessful in 

preventing the spread of CWD to areas outside of the original management areas, and as of 

spring 2009, CWD had been found in thirteen wildlife management zones in the province 

(Saskatchewan Ministry of Environment 2009). One of the many factors hindering effective 

management of CWD is uncertainty regarding specific mechanisms of its transmission and 

spread among free-ranging populations (Bollinger et al. 2004, Wasserberg et al. 2009). Several 

researchers have addressed this question and models have been constructed attempting to fit 

prevalence data to a particular mode of transmission, but disagreement remains due to the 

complexities of environmental contamination, movements of individuals, and social structure 

within populations (Gross, Miller 2001, Schauber, Woolf 2003, Wasserberg et al. 2009, Joly et 

al. 2006). The addition of quantitative, region-specific information regarding contact and social 

structure would be beneficial in continuing to improve models to guide and inform management 

decisions. 

Contact within free-ranging populations of large, mobile animals is difficult to measure, 

particularly over large geographic areas. Several methods have been used to explore potential 

interactions between individuals, such as calculating the frequency at which an individual is 
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located within the home range of another individual or population unit (Conner, Miller 2004), 

measuring home range overlap (Millspaugh et al. 2004, Atwood, Weeks 2003), and visually 

observing groups of individuals (Lingle 2003, Bowyer et al. 2001). Within the past decade, 

advances in technology have facilitated the use of proximity between individuals at a point in 

time as a rough measure of contact through the use of proximity collars, which log the 

occurrence of a contact event when two collared animals come within a particular distance of 

each other (Prange et al. 2006). This idea has also been applied using GPS (Global Positioning 

System) collars to measure proximity between collared individuals (Schauber et al. 2007, Kjær 

et al. 2008, Schuler 2006). As GPS collars automatically record locations at programmed 

intervals, potential contact events can be identified when simultaneous locations from two 

individuals are recorded within a threshold distance of each other. Proximity does not provide 

enough information to determine whether actual contact has occurred or whether sufficient 

contact has occurred for disease transmission, but it is reasonable to assume that probability of 

physical contact should increase as frequency of close proximity events increases between a pair 

of individuals. Although we recognize the limitations of using proximity as an index of contact, 

for ease of discussion, “close proximity events” will be hereafter referred to as “direct contact 

events”.  

Due to the extreme resistance of prions to environmental degradation and the importance 

of indirect transmission as a mechanism of CWD spread, we must also consider factors affecting 

spatial distribution of infectious prions in the environment. Patterns of CWD spread through 

environmental contamination will likely be influenced by soil type and other factors leading to 

increased infectivity in the environment (Johnson et al. 2006, Schramm et al. 2006), but will also 
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depend upon patterns of spatial overlap between individuals, hereafter referred to as “indirect 

contact”.  

The objectives of this study are to investigate the effects of sex, age, and season on 

probability of contact between GPS-collared mule deer in southern Saskatchewan, and to 

identify habitat and landscape characteristics that may be associated with increased risk of CWD 

transmission through direct or indirect contact. Although contact between individuals has been 

investigated in white-tailed and mule deer in other areas affected by chronic wasting disease, it is 

important to consider behavioural differences between species and populations occurring in 

different geographic regions subject to a unique set of environmental influences (Lingle 2003). 

Also, few studies of this type have addressed contact between both sexes of deer due to 

difficulties deploying GPS collars on males for extended periods of time (Kjær et al. 2008). 

Information regarding contact between male and female mule deer will provide insight into 

prevalence differences between the sexes, thought to be caused to some degree by behavioural 

differences (Miller, Conner 2005). Knowledge gained through this study will be used, along with 

results from the preceding chapter and collaborative studies, in the development of predictive 

models and strategies to manage the spread of CWD in Saskatchewan. 

4.3 Methods 

4.3.1 Study areas 

This study was conducted in five study areas in southern Saskatchewan near the 

Saskatchewan Landing area of the South Saskatchewan River (Bounded by  -108o27’ and 51o10’ 

in the northwest and -106o12’, 50o25’ in the southeast) (Figure 4.1). Four of the five sites fall 

within the Mixed Grassland Ecoregion of Saskatchewan, while the fifth, most north-easterly site 

falls within the Moist Mixed Grassland Ecoregion (Acton et al. 1998). The total area covered by 



58 
 

all study sites combined is equal to approximately 2700 km2, with each site ranging from 

approximately 250 to 800 km2.  

 

 

Figure 4.1. Locations of study sites in southern Saskatchewan. 

 

The Mixed Grassland Ecoregion is characterized by a semiarid climate with mean annual 

precipitation of 352 mm, mean July temperature of 18.9oC and mean January temperature of -

12.6oC (Acton et al. 1998). Annual cropland makes up a major proportion of the study sites, 

while the remaining habitat is composed mostly of mixed grass prairie across rolling pastureland 

and through the river valley and deciduous shrubs in coulees and low lying areas (Figure 4.2). 

Very little forest cover is present except in the Douglas study site, where patches of aspen forest 

(Populus tremuloides) and deciduous shrubs are dispersed among pasture and sand hills habitats. 

Common annual crops of this region are barley, durum, wheat, oats, canola, peas and lentils 

(Saskatchewan Ministry of Agriculture 2008). Please refer to general materials and methods for 

a more detailed description of the study sites.  
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 Figure 4.2. Proportional contribution of generalized habitat types to each study area. 
 
 
 
4.3.2 Capture and collaring 

Deer were captured between January and April of 2007 and 2008 using either modified 

clover traps (Clover 1956, McCullough 1975) or a helicopter and net gun (Barrett et al. 1982). 

All deer were chemically immobilized with intramuscular injections of a combination of 

Telazol® and Xylazine (Rompun®) and reversed with Atipamezole (Antisedan®) after collar 

deployment and sample collection. Animal handling protocol was approved by the Animal Care 

and Use Committee. Each deer was fitted with a GPS collar (LOTEK, Televilt) programmed to 

take automatic fixes every 1-6 hours. Male collars were fitted with specially designed foam 

inserts to allow for neck swelling during the rut. All GPS-collared deer were tracked monthly to 

identify long distance movements and to periodically download data from collars equipped for 

remote communication. Collars were retrieved during February and March of 2009. GPS fixes 
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taken at 4, 8, 12, 16, 20, and 24 hours were used for this analysis, excluding erroneous or suspect 

data points and data occurring within the first two weeks of initial capture. 

4.3.3 Identifying direct contact events 

Contact events were identified using the “proximity” tool in ArcGIS 9.2 (ESRI 2007) 

with a set threshold distance of 25 m. This threshold distance was chosen to account for collar 

error. All simultaneous locations from two different deer occurring within the threshold distance 

of one another were selected as direct contacts. Location pairs for each contact event were then 

linked by vectors using Crime Analysis Spatial Extension (CASE) (Crime Mapping and Analysis 

Program 2005) for ArcGIS. A buffer with a radius of 12.5 m was drawn around each contact 

vector to create a polygon encompassing both locations of a contact event while allowing for 

location error. Contact polygons were overlaid on a 25 m resolution habitat map of the study 

area as well as a digital elevation model (DEM) (Government of Canada, Centre for Topographic 

Information 2000-2009) and a terrain ruggedness layer (TRI) calculated from the DEM using a 

topographic ruggedness script (Evans 2004). The habitat map was created by classifying SPOT 

(System Pour l'Observation de la Terre) multispectral imagery (Alberta Terrestrial Imaging 

Centre 2007) (See section 2.4.1 for a detailed description of image processing). Habitat 

proportions, average elevation, and average ruggedness values were calculated for each of the 

contact polygons, and values were averaged for each deer pair.  

Non-independent pairs of deer were identified using a Coefficient of Association 

calculation (Cole 1949). Using this measure, deer were identified as part of the same social 

group if greater than 50% of their simultaneous locations were within 100 m of each other. 

Because mule deer in this area tend to have relatively fluid social group structure, only four deer 

pairs in the dataset met these criteria. To avoid bias in the analysis, one dataset was chosen 
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randomly for analysis in all cases where both non-independent deer were involved in contacts 

with another individual.  

4.3.4 Identifying shared use areas 

To calculate areas of shared use, kernel home range rasters (See section 2.4.3) for both 

deer were multiplied together to create a new raster of joint utilization distribution (JUD), or 

joint space use, where each cell is the product of the utilization distribution (UD) values of the 

two overlying cells (Schauber et al. 2007, Millspaugh et al. 2004) (Figure 4.3). Using this 

method, high intensity of use by both deer in a particular area results in high UD values, which 

in turn, result in high joint utilization distribution values for that area.  Low JUD values result 

from low intensity of use by both deer or from high intensity of use by only one individual of the 

pair. Ten concentric contours were then calculated to delineate areas containing decreasing 

values of joint use (Figure 4.3d). We modified methods used by Kjær et al. (2008) to derive 

habitat proportions and average ruggedness and elevation weighted by intensity of use by both 

deer. Using these methods, raw habitat proportions and averages were calculated for each 

contour and multiplied that contour’s average joint use value. The calculations for each contour 

were then summed and divided by the sum of all average joint use values. Habitat proportions 

within polygons with greater shared use received more weight than proportions within polygons 

of low shared use. Without accounting for intensity of use by both deer of a deer pair, there is the 

potential to make inaccurate conclusions about high likelihood of direct contact in certain 

habitats simply because they are favorable habitats frequented by both deer (Kjær et al. 2008).  
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Figure 4.3. Individual home range rasters multiplied together (a) to calculate a raster of shared 
use (b) where each cell represents a joint utilization distribution (JUD) value that is higher with 
increasing shared use (c). Concentric contours delineate areas of decreasing shared use (d) and 
habitat proportions are calculated within each contour and weighted by the corresponding 
average JUD value. 
 

 

4.3.5 Analysis 

4.3.5.1 Temporal analysis of direct contact 

Analysis of contact rates was conducted from the viewpoint of the individual deer, where 

each GPS location for each deer was classified as “contact” or “non-contact”. Using individual 

deer as the sampling unit allowed us to calculate actual contact rates between all radio-collared 

deer, accounting for deer that did not contact any other deer as well as the total number of non-
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contact locations for each deer. Contact locations were further classified as same-sex or between-

sex and same-age or between-age. SAS 9.1 (SAS Institute 2002) was used to perform logistic 

regression adjusted for repeated measures for each deer. We investigated the effects of study site, 

year, sex, and season on contact rates, as well as interactions between any of these factors. Our 

sample size of juvenile deer was insufficient to properly investigate interactions between age and 

other significant factors. To ensure that our results were not biased, we ran all tests with 

juveniles removed to determine whether results would still be significant in the absence of 

juvenile contact data. Contact rates were also analyzed by month to test for statistically 

appropriate seasonal divisions, which were then accepted based on their significance to mule 

deer biology and behaviour. Seasonal categories were as follows: Season 1 = February-April 

(winter, gestation); 2 = May-July (spring, pre-parturition, fawning, nursing); 3 = August-October 

(summer, pre-rut); 4 = November-January (fall, rut).  

4.3.5.2 Spatial analysis of direct contact 

A hierarchical resource selection approach was adopted for habitat analysis. All deer 

pairs contacting each other ten or more times were chosen for habitat analysis. After exclusion of 

four pairs to maintain independence, the total number of deer pairs used for analysis was 101. 

Each deer pair was classified by sex as male-male, female-female, or male-female, as well as by 

age as adult-adult, juvenile-juvenile, or adult-juvenile. Average habitat proportions and terrain 

ruggedness and elevation values calculated for contact events of each deer pair were designated 

as “used” landscape values, while weighted values calculated for each jointly used area were set 

as “available” (Kjær et al. 2008). Mixed model linear regression was performed in SAS 9.1 to 

compare used and available habitat and landscape values while adjusting for deer pair and site.  
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4.3.5.3 Spatial analysis of indirect contact 

The next level of habitat selection analysis was to determine whether pairs of deer tend to 

share particular habitat types more than expected based on available habitats found within their 

independent home ranges. For this analysis, used habitat proportions and ruggedness and 

elevation values were calculated for the 95% contour of each deer pair’s shared area. Available 

habitat and topographic values were calculated within each individual’s home range and 

averaged across both home ranges, weighted by the relative size contribution of each home 

range. Mixed model linear regression was again performed to compare used and available habitat 

proportions and ruggedness and elevation values.  

4.4 Results 

4.4.1 Dataset 

A total of 107 deer were used in this analysis (49 ADM, 34 ADF, 11 JVM, and 13 JVF). 

Of these deer, 81 were captured in 2007 and 26 were captured in 2008. Numbers of deer collared 

in each study area were not equal (Antelope = 31, Beechy = 8, Douglas = 16, Matador = 26, and 

Swift = 26), nor was the distribution of collars within each area. The total number of locations 

collected for each deer ranged from 6 to 4361. Of these deer, 94 individuals were involved in at 

least one contact with another individual. The average number of contacts per deer was 202 (SE 

= 33.7) and the average number of contact partners per deer was 5.1 (SE = 0.389) (Table 4.1). 

 

 

 



65 
 

 
Table 4.1. Summary of contacting deer, average contacts per individual, average contact 
probability (contacts/ total number of locations) and average number of partners per individual. 

Age/sex class Total 
individuals 

Deer 
contacting 

others 

Proportion of 
deer 

contacting 
others

Average 
contacts per 
individual 

Average 
contact 

probability  

Average 
partners per 

individual 

Overall 107 94 0.88 202 0.092 5.1 
Adult male 49 45 0.92 237 0.072 5.8 
Adult female 34 28 0.82 215 0.100 4.4 
Juv male  11 10 0.91 71 0.144 4.3 
Juv female  13 11 0.85 145 0.077 4.9 
  

 
4.4.2 Effects of sex, age, and season on contact rates 
 

The overall probability of contact between GPS-collared mule deer in our study areas 

was 0.092 (CI: 0.063 – 0.121), with no significant differences between males and females (χ1
2 = 

0.10, p = 0.750) or adults and juveniles (χ1
2 = 2.51, p = 0.113). There were differences between 

study sites (χ4
2 = 19.0, p < 0.001) with Swift having the highest probability of contact at 0.18 

(CI:  0.12 – 0.26) and Douglas having the lowest at 0.007 (CI: 0.004 – 0.015) (Figure 4.4). 

However, inferences cannot be made based on these values because of the many confounding 

factors that could be responsible for study site differences, such as differences in collar 

distribution in and proportion of deer collared among study areas. The same can be said for 

differences between sex and age classes. 
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Figure 4.4. Differences in contact probabilities between study sites (χ4

2 = 19.04, p < 0.001) 
(Error bars are 95% confidence intervals). Overall contact probability for all study areas was 
0.092 (CI: 0.063 – 0.121). 
 
 
 
 

Probability of contact varied between all seasons (χ3
2 = 28.5, p < 0.001), as was expected 

based on literature and field observations, with contacts being three times more likely during 

season 1 (Feb-Apr) than season 2 (May-Jul) and at least 2.6 times more likely than contacts in 

seasons 3 and 4 (All p < 0.001). Although we did not detect differences in overall contact 

probability between males and females, seasonal trends in contact likelihood differed between 

sexes (Figure 4.5). Both males and females were equally likely to contact other collared deer 

during season 1 when contact rates were highest (p = 0.756) and during season 3 (p = 0.783), but 

during season 2, males were 2.7 times more likely than females to contact other individuals (p = 

0.038). The opposite was true for season 4, when the likelihood of female deer contacting other 

individuals were 2.5 times greater than the likelihood of males contacting other deer (p = 0.024).  
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Figure 4.5. Seasonal differences in contact rates between males and females. Error bars are 95% 
confidence intervals. 
 
 
 
 

We also tested the probability, in the event that a contact occurred, whether the 

individuals involved would be of the same or opposite sex. Probability of same-sex contact vs. 

between-sex contact was not affected by study site (p = 0.474), age class (p = 0.768) or sex class 

of contacting individuals (p = 0.060), but season was a significant factor (χ3
2 = 11.2, p = 0.011) 

as was the interaction between season and sex (χ3
2 = 9.43, p = 0.024). Contacts were more likely 

to occur between individuals of the same sex during all seasons of the year, but the probability of 

between-sex contacts was lowest during season 3 at 0.294 (CI: 0.224 – 0.376) and highest during 

season 4 at 0.387 (CI: 0.302 – 0.478). This trend remained true for males when we explored the 
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interaction between season and sex, but there were no significant differences in the probability of 

between-sex contacts between months for females. 

The investigation of whether contacts were more likely to occur between individuals of 

the same age class did not return any conclusive results. The probability of same-age contacts vs. 

between-age contacts did not differ by season, sex, age, or time of day. However, this could be 

due to our small juvenile sample size and should be viewed with caution.  

4.4.3 Habitat and landscape factors influencing direct contact 

For this analysis, deer pair was used as the study unit and pairs were selected that 

contacted each other more than 10 times. In the cases where a pair of deer was found to be non-

independent (n = 4 pairs) and a third individual was found to contact both members of the pair, 

one of the pairs involving the third individual was randomly excluded from the analysis. Of a 

total of 274 contacting deer pairs, 101 pairs were used in the analysis, with 121.3 contacts per 

pair on average (SE = 20.8).  

Direct contacts tended to occur in agricultural land (F1,100 = 43.9, p < 0.001) and wetland 

(F1,100 = 3.96, p = 0.049) more than expected based on availability (Figure 4.6). The opposite was 

true for grassland, where the proportion found in areas shared by deer pairs was higher than in 

areas associated with contact events (F1,100 = 41.04 ,p < 0.001). Contacts occurred at higher 

elevations than expected (F1,100 = 4.71, p = 0.032), but there were no differences between amount 

of shrub land in areas associated with contact events when compared to areas commonly used by 

deer pairs (p = 0.537), nor were there differences in ruggedness (p = 0.370). Age and sex 

structure of the deer pair did not influence whether or not contacts were associated with these 

habitat types or landscape characteristics.  
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Figure 4.6. Differences between habitat proportions associated with direct contact events (a) and 
those associated with shared use areas (b). Stars indicate significant differences. 
 
 
 
4.4.4 Habitats and landscape factors influencing indirect contact 

When we looked at habitats and landscape characteristics associated with areas of 

indirect contact, we encountered different results than with direct contact. Indirect contact tended 

to be associated with grassland (F1,100 = 85.62, p < 0.001) and shrub/woodland (F1,100 = 25.3, p < 

0.001) when compared with areas available to each deer (Figure 4.7). In contrast, areas jointly 

used by pairs of deer contained less cropland (F1,100 = 51.41, p < 0.001) and wetland (F1,100 = 

172.0 , p < 0.001) than expected based on availability. Female deer pairs used wetland habitats 

more in general than mixed-sex and male deer pairs (F2,100 = 6.81, p = 0.002), but there was no 

interaction between sex, indirect contact and wetland. Commonly used areas also tended to be 

more rugged (F1,100 = 111.1, p < 0.001) and occurred at lower elevations (F1,100 = 4.53, p = 0.036) 

than individual home ranges. Juvenile deer pairs tended to make more use of rugged terrain 

(F2,100 = 8.64, p = 0.003), but age class did not affect the relationship between indirect contact 

and topography.  
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Figure 4.7. Differences between habitat proportions found in areas of indirect contact (a) and 
those measured within individual home ranges (b). Stars indicate significant differences. 
 
 
 

4.5 Discussion 

4.5.1 Temporal changes in contact rates 

This study allowed us to quantify the effects of ecological and biological factors on direct 

contact between collared mule deer. Because of potential confounding factors and unknowns 

related to proportion and distribution of collared deer in our study population, we are unable to 

extrapolate rates of contact to the entire deer population, or accurately measure differences 

between male and female contact rates or between study sites. It can be assumed that actual 

contact rates between mule deer would be higher than those between collared deer, but in 

situations where two deer were captured in the same trap, the probability of contact between 

those individuals may be higher. We can also assume that contact between collared deer would 

be related to group size, as probability of two collared deer being in the same group would 

increase as group size increases. Despite the limitations of methods used in this study, the 

observed changes in contact probabilities among male and female GPS-collared deer in response 

to season can be applied to the overall population of mule deer in our study areas.  

An interesting finding is that contact rates in general were relatively low during season 4 

(November - January). We would expect that contacts, particularly between-sex contacts would 

increase during season 4 due to the breeding season, which occurs during this time period in our 
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study areas. Although we did see the highest probability of between-sex contacts during this 

time, same-sex contacts were still more likely, and overall contact rates during this time were 

much lower than during season 1. Breeding behaviour has been suggested as an explanation for 

observed higher CWD prevalence in males of both mule and white-tailed deer as behaviours 

such as sparring, visiting scrape sites, and attempting to mate with many females could result in 

greater disease exposure among males (Miller, Conner 2005, Grear et al. 2006). Although 

breeding behaviour likely plays an important role in disease transmission, our results showed 

that the late winter/early spring, rather than the breeding season, was the most likely time for 

direct contacts to occur for both males and females. These findings agree with field observations 

as well as published literature reporting the tendency of mule deer to form large mixed-sex 

groups during the late winter months (Wood et al. 1989, Lingle 2003), but differ from studies of 

mule deer in different geographic regions, which report greater aggregations during the rut than 

any other season (Bowyer et al. 2001). 

The low incidence of between-sex contacts in our study areas during the rut could be 

explained by mule deer breeding behaviour, where a male will tend a single female for a period 

of time until breeding occurs (Geist 1981). Depending how long this tending period continues, 

and how close the female allows the male to approach, it is possible that few direct contacts 

would be identified using the methods of this study. Despite these relatively low direct contact 

rates, the breeding season should not be dismissed when considering patterns of disease 

transmission in mule deer. For example, an important part of tending behaviour is female 

urination to signal receptiveness to breeding, after which the male will investigate and assess the 

urine (Estes 1972, Kucera 1978). Because infectious prions have been found in the urine of 
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infected deer (Haley et al. 2009), this behaviour, among other breeding-related behaviours, could 

serve as an important mode of indirect CWD transmission in mule deer (Miller, Conner 2005).  

4.5.2 Factors affecting spatial distribution of contact events 

Relationships between particular habitat types and direct contact by mule deer can be 

attributed to a combination of resource availability and predation risk. Mule deer are reported to 

aggregate in open areas away from escape cover, a behaviour thought to have evolved in 

response to predation risk (Bowyer et al. 2001). Although the majority of direct contacts 

recorded in this study took place in grassland habitat, the habitat selection approach revealed that 

this habitat type, which is dominant throughout three of the five study sites, is actually less likely 

to be associated with direct contacts than expected based on its shared use by deer pairs, whereas 

cropland and wetland tended to be associated with direct contacts.  

Wetlands provide concentrated sources of water and succulent forage, particularly during 

the late summer months when ephemeral wetlands have dried up and few water sources remain. 

Vulnerability to predation while visiting water sources may explain why direct contacts occurred 

in this habitat type more than expected. These results suggest that wetlands may create 

opportunities for direct CWD transmission as well as point sources of environmental 

contamination with infectious prions. Cropland also provides semi-concentrated sources of high-

quality food during the growing season and harvest (Kjær et al. 2008), but also during the winter 

when mule deer are seen, though less often than white-tailed deer, feeding on crop residue or 

standing hay (Wood et al. 1989). Although food sources of this type are spread over relatively 

large areas, it may be more beneficial for individuals to feed in close proximity to each other to 

protect against predation (Lingle 2003, Bowyer et al. 2001). In contrast to cropland, grassland 

habitats in these study areas are often associated with rough topography and made up of a more 
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patchy landscape composition. Like cropland, grassland is a relatively open habitat, but patches 

of shrub and other food sources as well as escape terrain are more diffuse and readily available 

than on cropland, so it may be less necessary for deer occupying grassland habitats to associate 

with other individuals in order to take advantage of resources or to avoid predation.  

4.5.3 Factors affecting shared space use 

Indirect contact between pairs of deer was investigated by calculating areas of shared use 

by both deer, as well as the intensity of use by both deer (Schauber et al. 2007, Millspaugh et al. 

2004). Comparing habitats within these areas with habitats available to each member of the deer 

pair allows us to identify habitats and landscape features that may lead to certain areas being 

frequented by multiple deer, at the same or at different times. This portion of the investigation 

has implications for the transmission of chronic wasting disease and any disease of mule deer 

whose agent can be shed and remain infectious in the environment. Although we know little 

about the dynamics of indirect transmission of CWD, we do know that prions are highly resistant 

to degradation and can remain infectious in the environment for years (Miller et al. 2004). 

Although there are other factors like soil type, which are likely to influence patterns of 

environmental CWD transmission (Johnson et al. 2006, Schramm et al. 2006), we can assume 

that the probability of environmental contamination and subsequent transmission to susceptible 

deer should increase as intensity of shared use by multiple deer increases.  

Our results showed that indirect contact in our study areas was associated with rugged 

topography and grassland and shrub/wood habitats, but not with crop or wetland. These results 

differ from those seen in our investigation of habitat relationships with direct contact, but can be 

explained by behavioural and habitat use patterns. As mentioned previously, although cropland 

provides a seasonal, high quality food source, it does not provide a suitable year-round habitat 
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for mule deer and provides little protection from predators and the elements (Wood et al. 1989). 

It stands to reason that areas of cropland are not commonly shared by multiple deer, but when 

they are it is most often by groups of deer taking advantage of a food source at a particular time 

while grouped close together to minimize vulnerability to threats. 

The associations between indirect contact and both shrub/wood habitat and rugged terrain 

are particularly important for the potential spread of chronic wasting disease. In an area 

dominated by agriculture and open grassland habitat, small patches of shrub and woodland 

provide important sources of escape cover and forage, which leads to their shared use by many 

deer (Wood et al. 1989). Although this habitat is commonly shared, the protection provided by 

vegetative cover likely allows for solitary feeding and bedding leading to lower than expected 

rates of direct contact. The same can be said for areas of rugged terrain, where mule deer 

occupying hill tops or sides of cliffs have an advantage over predators (Lingle 2003). Rates of 

direct contact did not differ from expected in high ruggedness areas, but risk of indirect contact 

was found to be high. The importance of rugged terrain in mule deer habitat results in higher 

deer concentrations and greater spatial overlap between individuals occupying the rugged 

networks of drainage features found in our study areas. Despite the lower risk of direct contact 

associated with these habitat types, our results suggest that coulees, creek valleys and other 

rugged topographic features, as well as patches of shrub and woodland in our study areas may be 

important sources of environmental contamination and indirect CWD transmission between mule 

deer. 

4.6 Conclusion and management implications 

As chronic wasting disease is known to be transmitted through both direct and indirect 

contact, it is important to consider both aspects of disease transmission in attempting to 
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understand or predict patterns of disease spread. We used proximity as a means to quantify direct 

contact between pairs of mule deer and shared space use as a measure of indirect contact. 

Although these techniques limit the amount of information that can be obtained regarding type 

and duration of contacts (Kjær et al. 2008), they allow us to understand social patterns between 

mule deer of both sexes, and how these patterns are influenced by habitat and season. Further 

research should build on these results by determining the type and intensity of contacts occurring 

between deer in these habitats and how each may contribute to CWD transmission. This could be 

carried out by direct observations, or through the use of trail cameras or video cameras 

distributed across various habitat types to collect fine-scale information on contact rates. 

Our observations and results suggest a fluid social structure for both males and females, 

agreeing with results of a study in California, where group composition tended to be unstable, 

changing with diurnal peaks of activity (Bowyer et al. 2001). Observed seasonal changes in 

contact rates highlight the importance of late winter/early spring grouping behaviour as a 

potential transmission mechanism for all age/sex classes. Low contact rates reported during the 

rut do not dismiss the importance of this time period in disease transmission, but rather 

emphasize the need for further investigation to better understand how different aspects of 

breeding-related behaviour contribute to both direct and indirect transmission of chronic wasting 

disease.  

The identification of particular habitat types associated with higher risk of direct or 

indirect CWD transmission can benefit managers by allowing them to focus their efforts toward 

specific areas or to apply varying levels and types of management to different habitat types. 

Increased indirect shared space use by deer in rugged terrain and shrub/woodland suggests that 

these habitat types are at higher risk for environmental contamination in areas affected with 
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CWD. In the event that feasible techniques are developed to detect the presence of infective 

prions in soil, researchers could improve their chances of identifying contaminated areas by 

targeting these habitat types. Higher risk of direct contact between deer in cropland suggests that 

farm management practices may aid in disease management through reducing deer use of 

agricultural land during particular seasons. Alfalfa hayfields and annual legume crops such as 

peas and lentils are attractive to mule deer during the mid to late summer, and hay bales, grain 

piles and silage are likely to draw aggregations of deer during the winter season. Use of fencing 

to keep deer away from resource sites and planting unpalatable crops in areas of high deer use 

may help to manage the spread of CWD in affected areas. Further research investigating mule 

deer use of specific crop types, as well as the use of supplemental resource sites would add to 

this study and aid in developing recommendations for landowners and managers.  

Quantitative information regarding contact patterns of mule deer will complement 

parallel studies investigating relationships between landscape and coarser-scale movement 

patterns like home range size, migration and dispersal. Knowledge such as this will help 

researchers and managers gain insight into observed prevalence differences between male and 

female hosts, as well as recognize similarities and distinctions between different geographic 

regions affected by the disease. Predictive models of CWD spread can benefit from data showing 

seasonal changes in contact rates, as well as the identification of landscape and habitat 

characteristics that may be associated with higher direct or indirect transmission risk. This will in 

turn aid in the development of better management strategies and open up new avenues of 

research that will help bring researchers closer to fully understanding the dynamics of chronic 

wasting disease spread.  
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CHAPTER 5 
GENERAL DISCUSSION 

 
5.1 Introduction 

 
 In 2001, a management plan was implemented in Saskatchewan in response to the 

discovery of a hunter-shot mule deer infected with chronic wasting disease in the western region 

of the province. The main objective of this plan was to reduce deer numbers in and around the 

affected area in order to slow transmission and eventually eradicate the disease. Due to a number 

of reasons that may include difficulties reaching and maintaining target population densities, 

short duration of the program, potential spillover events from infected cervid farms, and long-

term environmental persistence of the disease agent, CWD was not eradicated from the province. 

The number of regions within the province affected by the disease began to increase, including 

areas far from the initial infection and in the neighboring province of Alberta (Kahn et al. 2004, 

Wilson et al. 2009). Similar outcomes have occurred in the United States where wildlife 

managers have attempted to control the spread of CWD in wild deer and elk populations, for 

decades in some states (Spraker et al. 1997, Williams, Miller 2002, Williams et al. 2002a). 

Collaborations between researchers and management agencies across North America 

have resulted in a rapidly expanding knowledge base surrounding this relatively new prion 

disease. It is generally agreed that once the disease becomes established in a wild population, 

eradication is unlikely and would require maintenance of host populations at very low densities 

for extended periods of time (Williams et al. 2002b, Miller et al. 2006, Gross, Miller 2001). 

These goals are extremely difficult to attain, due to the expensive and controversial nature of 
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such programs (Needham et al. 2004, Williams et al. 2002a), as well as the unknown duration 

over which population densities must be managed (Miller et al. 2006). The most promising 

courses of action are early detection and prevention of spread into uninfected areas (Pybus, 

Hwang 2008); however, early detection is difficult and expensive as well and depends on the 

ability to obtain sufficient sample sizes (Blanchong et al. 2008). Success will be aided by a 

greater understanding of CWD transmission mechanisms (Wasserberg et al. 2009, Miller et al. 

2006), novel techniques to facilitate the detection of prions in the environment (Conner et al. 

2008), and the development of accurate models that will predict patterns of CWD spread across 

the landscape, allowing researchers and managers to identify areas at risk and implement 

appropriate prevention strategies (Blanchong et al. 2008). Predictive models require information 

on disease dynamics, but also baseline biological and ecological information relevant to the 

population in question, such as rates of contact and dispersal, as well as home range size and 

relationships between these movement patterns and the surrounding environment.  

5.2 Research summary 

5.2.1 Objectives 

 To address the need for quantitative movement information specific to deer populations 

in Saskatchewan, a long-term research project was undertaken in 2006 to investigate movement 

patterns of white-tailed and mule deer in five study areas of southern Saskatchewan and to 

identify environmental factors that influence these patterns. This thesis covered a portion of this 

project, in which home range sizes and contact patterns of male and female mule deer were 

investigated in relation to factors such as habitat, topography, and landscape heterogeneity. 

Specifically, this research: 
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• Provided accurate, quantitative information on male and female home ranges of mule 

deer in southern Saskatchewan and identified how landscape composition may affect 

home range size, and in turn, potential for CWD spread.  

• Employed recently-developed methods to investigate the temporal and spatial 

distribution of direct contacts between deer in our study areas and identify particular 

seasons and habitats associated with higher risk of direct CWD transmission.  

• Expanded these methods to identify habitats and landscape features that may be linked to 

increased risk of indirect transmission of CWD through environmental exposure.  

5.2.2 Results and management implications 

The first part of this project was initiated in order to fill an information gap on home 

ranges of mule deer in Saskatchewan. Although many studies have investigated home ranges of 

mule deer and their influencing factors, little information exists specifically regarding home 

ranges of mule deer in prairie environments (Wood et al. 1989), and virtually none is available 

for mule deer in this region of Saskatchewan. Individuals in our study areas expressed a wide 

variety of movement patterns, with a proportion of the population being seasonal migrators, 

others remaining relatively sedentary, and still others occupying large, sprawling home ranges or 

embarking on sudden, long-distance excursions. Other studies on mule deer movement have seen 

similar variation in movement patterns among individuals (Conner, Miller 2004, Wood et al. 

1989, Sawyer et al. 2005). This variation led to difficulties in selecting methods for calculating 

home ranges, as some methods were appropriate for certain types of home ranges, but not for 

others. The methods chosen were suitable for our purposes, as they provided accurate estimates 

of the areas regularly traversed by individuals. However, they did not capture large areas of land 

covered briefly by migrating or dispersing individuals. Although long distance movements will 
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be addressed in a related study, home range sizes calculated using minimum convex polygons 

were included for supplementary information. 

Males occupied larger home ranges than females, agreeing with the majority of published 

literature (Robinette 1966, Relyea et al. 2000). Home ranges also varied between study sites, 

with the largest sizes occurring in the Beechy and Matador sites, and the smallest occurring in 

Swift. Variation between sites was initially thought to be due to differences in the amount of 

continuous natural habitat available. Beechy and Matador are essentially composed of one large 

expanse of rolling pastureland (including the Beechy and Matador Community Pastures) that 

extends northward from the South Saskatchewan River. Road access is poor in the pasture and 

much of the area is not often disturbed by humans. Deer in these areas occupy large home 

ranges, often migrating seasonally between the two sites. The Swift and Antelope study sites 

contrast with the Beechy and Matador sites in that they consist of concentrated areas of natural 

habitat in the form of rugged creek valleys and networks of coulees surrounded by developed 

agricultural land. It was thought that deer in these areas may be much more limited by available 

natural habitat, occupying smaller home ranges within the creek valley and avoiding the 

surrounding cropland; however, additional analysis suggested that topographic ruggedness was 

more important than available natural habitat in determining mule deer home range size. 

Mule deer are known to depend upon areas of rugged terrain for both predator avoidance 

and resource procurement (Lingle 2002, Wood et al. 1989, Lingle 2003). This explains the 

relationship between smaller home ranges and higher ruggedness values, as deer occupying 

rugged land may be able to meet their needs within smaller areas. Although smaller home ranges 

may decrease the rate of CWD spread outward from these areas, they result in greater intensity 

of use by individual deer, which may lead to more concentrated sites of environmental 
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contamination in areas occupied by CWD-positive deer. Rugged terrain was also found to be 

significantly associated with indirect contact between pairs of deer. Coulees and other 

topographic features associated with low elevation and shrubby vegetation are used by many 

deer for feeding, bedding, and as corridors through which to travel without increasing their 

vulnerability to predation. These patches of habitat make up a small proportion of the landscape 

in our study areas, but contain high deer densities relative to the surrounding environment and a 

large degree of spatial overlap between deer. Because of this, areas of rugged terrain, particularly 

those associated with vegetative cover, may be considered high risk areas for environmental 

contamination and indirect transmission of CWD. In the event that a cost-effective detection 

technique is developed to identify infective prions in soil, management agencies may benefit by 

focusing their efforts in coulee bottoms and other rugged landscape features with greater 

potential for environmental contamination. 

This study also identified important relationships between cropland and deer behaviour 

that may be important in influencing CWD spread within deer populations. Despite its 

unsuitability for year-round deer habitat, individuals often feed on standing crops during the late 

summer and fall, and crop remnants or bales during the winter, when high quality food is scarce. 

The lack of protective cover and escape terrain in areas of cropland may explain probabilities of 

direct contact being higher than expected within this habitat type. Groups of deer tend to feed in 

close proximity to one another in areas with less available cover in order to decrease the need for 

individual vigilance and the overall vulnerability of the group (Lingle 2003, Bowyer et al. 2002). 

Group feeding increases the risk of disease spread between individuals through greater potential 

for direct contact and contamination of the food source with a disease agent. For this reason, 

cropland may be considered a higher risk habitat for transmission of chronic wasting disease.  
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Further research is necessary to identify seasonal relationships between mule deer contact and 

specific crop types, but CWD management may benefit by incorporating farming practices 

directed toward reducing mule deer use of agricultural land.  

5.3 Limitations and future directions 

The methods used in Chapter 4 to measure association between deer are valuable in 

understanding social structure and seasonal changes in grouping behaviour, both of which hold 

major implications for disease spread. However, the use of proximity as a measure of contact 

does not provide any information regarding the type and duration of contact occurring. 

Furthermore, these methods allow us only to investigate contact among radio-collared deer. 

Because of this, probability of contact will depend largely on the proportion and distribution of 

collared deer in the population. As we do not have accurate estimates of mule deer population 

density in our study areas, results of this study cannot be extrapolated to the overall population, 

nor can they be used to make comparisons between study areas or age/sex classes. Future 

research should build on these results by using visual observations to investigate contact patterns 

between collared and non-collared deer and further understand how specific types of contact and 

social behaviour may contribute to disease spread. In addition, spatial patterns of contact could 

be investigated further using motion-sensitive video cameras distributed throughout different 

habitat types to identify differences in fine-scale contact patterns. 

Another limitation of the overall study was the small sample size of GPS-collared 

juvenile deer. The necessity for a two-year battery life resulted in the majority of GPS collars 

being too heavy for deployment on juveniles. A subset of smaller, lightweight drop-off collars 

(Televilt) were intended solely for use on juveniles, but these collars reached a failure rate of 

nearly 100% by the end of the second year and many were not recovered. Due to the small 
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sample size of the remaining GPS-collared juveniles, we were unable to test for differences 

between adult and juvenile contact rates. Although there were more VHF-collared juvenile deer 

available for home range analysis, only the first year of data could be used in the calculation of a 

juvenile home range (after which the individual would be considered an adult), resulting in an 

insufficient number of points to calculate an accurate kernel home range.   

The management strategies that have typically been employed in attempts to control the 

spread of chronic wasting disease within and outward from affected areas include herd reduction 

as their central focus. Although this thesis investigated movement patterns of mule deer in an 

area affected by CWD, we did not address the effects of the CWD management program itself. 

Increased hunting pressure could have effects on movements and behavioural patterns of mule 

deer through increased disturbance during the hunting season and through changes in population 

structure or density. Future research should address this question by investigating mule deer 

movements and habitat use during the hunting season in areas of CWD management as 

compared to movements outside of the hunting season or in areas where herd reduction has not 

been implemented. 

5.4 Conclusion 

Although the true goal of this study was to determine factors that may affect the spread of 

chronic wasting disease by influencing deer movement and contact patterns, much of this 

research can be applied to the understanding and management of other diseases and parasites of 

deer in Saskatchewan. Mule deer and other cervids are highly valued in the province for 

economic, ecological and aesthetic reasons and efforts must be made to control the spread of 

chronic wasting disease within and outward from affected areas. Although a great deal of debate 

has surrounded the issue of long term population effects of CWD, researchers are beginning to 
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see evidence of deer population declines in areas of high CWD prevalence (Miller et al. 2008). 

Even without significant declines in deer and elk populations, the disease will result in damage 

to the hunting industry and major economic losses in affected provinces and states. Also, public 

health concerns and the unknown potential for CWD to move into caribou (Rangifer tarandus) 

populations of the north provide additional rationale for researchers and managers to continue 

their efforts in attempting to control the disease. The efforts currently underway can be aided by 

research programs such as this, which provide region-specific information on deer movement 

and behaviour that may be used to understand mechanisms of disease spread, develop predictive 

models, and improve the effectiveness of management strategies.
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