

TOWARDS A NEW APPROACH

FOR ENTERPRISE INTEGRATION:

THE SEMANTIC MODELING

APPROACH

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Masters of Science

in the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

By

RANGA PRASAD RADHAKRISHNAN

© Copyright Ranga Prasad Radhakrishnan, May 2003. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226149991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that

permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised

my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition

shall be given to me and to the University of Saskatchewan in any scholarly use

which may be made of my material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Mechanical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

Canada S7N 5A9

 ii

ABSTRACT

Manufacturing today has become a matter of the effective and efficient application

of information technology and knowledge engineering. Manufacturing firms’

success depends to a great extent on information technology, which emphasizes the

integration of the information systems used by a manufacturing enterprise. This

integration is also called enterprise application integration (here the term

application means information systems or software systems). The methodology for

enterprise application integration, in particular enterprise application integration

automation, has been studied for at least a decade; however, no satisfactory solution

has been found. Enterprise application integration is becoming even more difficult

due to the explosive growth of various information systems as a result of ever

increasing competition in the software market. This thesis aims to provide a novel

solution to enterprise application integration.

The semantic data model concept that evolved in database technology is revisited

and applied to enterprise application integration. This has led to two novel ideas

developed in this thesis. First, an ontology of an enterprise with five levels

(following the data abstraction: generalization/specialization) is proposed and

represented using unified modeling language. Second, both the ontology for the

enterprise functions and the ontology for the enterprise applications are modeled to

allow automatic processing of information back and forth between these two

 iii

domains. The approach with these novel ideas is called the enterprise semantic

model approach.

The thesis presents a detailed description of the enterprise semantic model

approach, including the fundamental rationale behind the enterprise semantic

model, the ontology of enterprises with levels, and a systematic way towards the

construction of a particular enterprise semantic model for a company. A case study

is provided to illustrate how the approach works and to show the high potential of

solving the existing problems within enterprise application integration.

 iv

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere thanks to my supervisor,

Professor C. Zhang, for his invaluable guidance, stimulating discussion and

continuous encouragement during my whole research as well as for his critical

review of the manuscript.

I would like to extend special thanks to the other members of my advisory

committee: Professor S. Habibi and Professor G. Watson. Their valuable support

and constructive suggestions have greatly improved the present work.

I acknowledge Professor M. Hojati and Dr. Z. Ma for guiding me during the initial

stages of my research. I would like to thank Mr. G.V. Shankar, CEO of Saisu

Technologies Inc., for allowing me to study its software product. I also

acknowledge Dr. H.M. Morelli from the English Department of the University of

Saskatchewan for reviewing the draft version of this thesis and giving me valuable

suggestions in technical English writing.

My research was made possible by the generous support of Saisu Technologies Inc.,

Saskatoon, and the Natural Sciences and Engineering Research Council (NSERC).

 v

Dedicated to my friends & family

 vi

TABLE OF CONTENTS

PERMISSION TO USE……………………………………………… i

ABSTRACT………………………………………………………….. ii

ACKNOWLEDGEMENTS………………………………………… iv

TABLE OF CONTENTS………………………………………….... vi

L IST OF TABLES………………………………………….……….. x

L IST OF FIGURES………………………………………………… xi

L IST OF ACRONYMS…………………………………………..…xvi

CHAPTER 1 INTRODUCTION..1

1.1 ENTERPRISE TODAY .. 1

1.2 MOTIVATION... 3

1.3 SOLUTIONS TO THE EAI PROBLEM: A BRIEF ANALYSIS 4

1.3.1 Solutions in the first category .. 4

1.3.2 Solutions in the second category.. 6

1.4 STATEMENT OF A NEW APPROACH: SEMANTIC MODEL APPROACH............ 7

1.5 RESEARCH OBJECTIVES, SCOPE AND SIGNIFICANCE 9

1.6 A REMARK ON GENERAL RESEARCH METHODOLOGY 11

1.7 ORGANIZATION OF THE THESIS.. 12

CHAPTER 2 L ITERATURE REVIEW13

2.1 INTRODUCTION ... 13

2.2 ENTERPRISE MODELING... 14

2.2.1 Basic concepts.. 14

2.2.2 Different schools of enterprise modeling approaches.......................... 16

2.2.3 A further comparison of different enterprise modeling approaches.... 19

 vii

2.2.4 Special notes on methods and tools for modeling 23

2.2.5 Concluding remarks... 23

2.3 SOFTWARE INTEGRATION SOLUTION .. 24

2.3.1 Strategies for software integration... 24

2.3.2 Middleware.. 25

2.3.3 Adapters... 30

2.4 FURTHER NOTES ON TOOLS FOR APPLICATION INTEGRATION 31

2.4.1 Common Object Request Broker Architecture (CORBA)................... 31

2.4.2 Java 2 Platform, Enterprise Edition (J2EE) ... 33

2.4.3 Microsoft BizTalk Server .. 35

2.4.4 Adapter with Application Logic .. 37

2.5 GENERAL CONCLUDING REMARKS AND DISCUSSIONS.............................. 38

CHAPTER 3 UNIFIED MODELING LANGUAGE...................40

3.1 INTRODUCTION ... 40

3.2 UML BASICS .. 40

3.2.1 Functional View... 41

3.2.2 Structural View .. 42

3.2.3 Behavioral view ... 43

3.2.4 Implementation View... 46

3.2.5 Environment View... 47

3.3 EXTENDING UML ... 48

3.4 OBJECT CONSTRAINT LANGUAGE (OCL).. 50

3.5 APPLICATION OF UML FOR DATA MODELING .. 50

3.5.1 UML data modeling profile... 50

3.6 ADVANTAGES OF USING UML FOR DATA MODELING 54

 viii

CHAPTER 4 ENTERPRISE SEMANTIC MODEL

FRAMEWORK..56

4.1 INTRODUCTION ... 56

4.2 FUNDAMENTALS OF SEMANTIC MODEL APPROACH FOR EAI 57

4.2.1 Semantic data model .. 57

4.2.2 Semantic data model as means for integration of program/data.......... 58

4.2.3 Analogy leading to enterprise semantic model (ESM) approach 59

4.3 GENERAL METHODOLOGY FOR ESM .. 61

4.4 ONTOLOGY OF GENERIC ENTERPRISE FUNCTIONS 62

4.4.1 Activity ontology ... 63

4.4.2 Resource ontology ... 65

4.4.3 Organization ontology ... 68

4.5 ONTOLOGY OF GENERIC ENTERPRISE INFORMATION SYSTEMS 69

4.6 SPECIALIZATION OF GENERIC ENTERPRISE ONTOLOGY (GEO) INTO

GENERIC PROCESS ENTERPRISE .. 74

4.6.1 Ontology of generic process enterprise functions................................ 75

4.6.2 Ontology of generic process enterprise information systems.............. 79

4.6.3 Link between the generic enterprise ontology (GEO) and generic

process enterprise ontology (GPEO) ... 82

4.7 SPECIALIZATION OF GEO AND GPEO INTO GENERIC STEEL ENTERPRISE 86

4.7.1 Ontology of generic steel enterprise functions.................................... 86

4.7.2 Ontology of generic steel enterprise information systems................... 89

4.7.3 Link between the generic enterprise ontology (GEO), generic process

enterprise ontology (GPEO) and generic steel enterprise ontology (GSEO) .. 91

4.8 ENTERPRISE SEMANTIC MODEL (ESM) TEMPLATE 93

4.8.1 ESM template for enterprise functions.. 93

4.8.2 ESM template for enterprise information systems............................... 96

4.9 CONCLUSION.. 99

 ix

CHAPTER 5 A CASE STUDY ..100

5.1 INTRODUCTION ... 100

5.2 ABC COMPANY ... 100

5.3 ENTERPRISE SEMANTIC MODEL TEMPLATE SPECIALIZED FOR ABC....... 102

5.3.1 ESM template for enterprise functions specialized for ABC............. 102

5.3.2 ESM template for enterprise information systems specialized for

ABC……….. ... 105

5.4 INSTANTIATION OF ENTERPRISE SEMANTIC MODEL TEMPLATE FOR

ABC….. ... 105

5.4.1 ESM for ABC Functions.. 106

5.4.2 ESM for ABC information systems... 110

5.5 EXAMPLES .. 116

5.5.1 Identification of potential conflicts.. 118

5.5.2 Decision making .. 120

CHAPTER 6 CONCLUSION ..121

6.1 OVERVIEW OF THE THESIS.. 121

6.2 MAIN CONCLUSIONS OF THE THESIS... 123

6.3 CONTRIBUTIONS OF THE THESIS.. 124

6.4 FUTURE WORK ... 124

REFERENCES..127

APPENDIX A ACTIVITY ONTOLOGY137

APPENDIX B RESOURCE ONTOLOGY145

APPENDIX C ORGANIZATION STRUCTURE ONTOLOGY

...148

 x

LIST OF TABLES

Table 2.1 Modeling framework comparison: life-cycle (modeling levels) 20

Table 2.2 Modeling framework comparison: model views.................................... 21

Table 2.3 Modeling framework comparison: genericity levels.............................. 22

Table 2.4 Comparison of different types of middleware.. 28

 xi

LIST OF FIGURES

Figure 1.1 Evolution from file to semantic database... 8

Figure 1.2 Enterprise semantic model (ESM) concept .. 9

Figure 1.3 General methodology for building enterprise semantic modeling

framework…………………………………………………………..……………...11

Figure 2.1 Architecture of enterprise model concept... 14

Figure 2.2 Application integration approaches.. 25

Figure 2.3 Universal adapter.. 31

Figure 3.1 Use case diagram for enrolling students in the University................... 41

Figure 3.2 Class diagram for modeling an order ... 42

Figure 3.3 Object diagram for modeling a specific customer order 43

Figure 3.4 Object instantiated from class .. 43

Figure 3.5 Sequence diagram for enrolling a student in the seminar..................... 44

Figure 3.6 Collaboration diagram showing the calculation of the value of a

portfolio.. 45

Figure 3.7 Statechart diagram for invoices.. 45

Figure 3.8 Activity diagram for receiving delivery ... 46

Figure 3.9 Component diagram showing dependencies between software

components.. 47

Figure 3.10 Deployment diagram of physical hardware in the system................... 47

Figure 3.11 Generic process diagram ... 49

Figure 3.12 Database representation using UML ... 51

Figure 3.13 Schema representation using UML ... 51

Figure 3.14 Table representation using UML... 52

 xii

Figure 3.15 Representation of keys using UML... 52

Figure 3.16 Representation of non-identifying relationship using UML 53

Figure 3.17 Representation of identifying relationship using UML....................... 53

Figure 4.1 Semantic model as an integrator.. 58

Figure 4.2 Semantic model approach to EAI .. 60

Figure 4.3 Enterprise ontology lattice... 62

Figure 4.4 Activity ontology... 64

Figure 4.5 Resource ontology... 66

Figure 4.6 Supplier ontology .. 67

Figure 4.7 Human resource ontology.. 67

Figure 4.8 Finance ontology ... 68

Figure 4.9 Organization structure ontology.. 69

Figure 4.10 Ontology of the storage and retrieval of data...................................... 70

Figure 4.11 Corporate information system ontology.. 71

Figure 4.12 Execution information system ontology.. 71

Figure 4.13 Management information system ontology... 72

Figure 4.14 Ontology of information system- cost... 72

Figure 4.15 Ontology of information system-software interface............................ 73

Figure 4.16 Ontology of information system- hardware interface 73

Figure 4.17 Ontology of information system- OS.. 73

Figure 4.18 Ontology of information system- DBMS.. 74

Figure 4.19 Ontology of information system- manufacturer’s information 74

Figure 4.20 Engineering ontology .. 75

Figure 4.21 Manufacturing ontology .. 76

 xiii

Figure 4.22 Employee ontology.. 76

Figure 4.23 Equipment ontology .. 77

Figure 4.24 Finance ontology ... 77

Figure 4.25 Manager ontology.. 77

Figure 4.26 Supervisor ontology... 78

Figure 4.27 Supplier’s information ontology.. 78

Figure 4.28 Engineering information systems ontology... 79

Figure 4.29 Process control information systems ontology.................................... 79

Figure 4.30 Ontology of information system- cost... 80

Figure 4.31 Ontology of information system- software interface........................... 80

Figure 4.32 Ontology of information system- hardware interface 81

Figure 4.33 Ontology of information system- OS.. 81

Figure 4.34 Ontology of information system- DBMS.. 82

Figure 4.35 Ontology of information system- manufacturer’s information 82

Figure 4.36 Link between GEO for activity and GPEO for activity 83

Figure 4.37 Link between GEO for resource and GPEO for resource................... 84

Figure 4.38 Link between GEO for organization structure and GPEO for

organization structure... 85

Figure 4.39 Manufacturing ontology .. 87

Figure 4.40 Furnace ontology... 87

Figure 4.41 Production manager ontology.. 88

Figure 4.42 Supplier’s information ontology.. 88

Figure 4.43 Ontology of CAD software ... 89

Figure 4.44 Ontology of information system- cost... 90

 xiv

Figure 4.45 Ontology of information system- software interface........................... 90

Figure 4.46 Ontology of information system- hardware interface 91

Figure 4.47 Ontology of information system- manufacturer’s information 91

Figure 4.48 ESM template for business processes of enterprise............................ 93

Figure 4.49 ESM template for enterprise resources.. 94

Figure 4.50 ESM template for enterprise organization structure............................ 95

Figure 4.51 ESM template for supplier information... 95

Figure 4.52 ESM template for information systems- functional view.................... 96

Figure 4.53 ESM for information system- cost .. 96

Figure 4.54 ESM for information system- software interface................................ 97

Figure 4.55 ESM template for information system- hardware interface................ 97

Figure 4.56 ESM template for information system- OS... 98

Figure 4.57 ESM template for information system- DBMS................................... 98

Figure 4.58 ESM template for information system- manufacturer’s information.. 99

Figure 5.1 ESM template for manufacturing... 103

Figure 5.2 ESM template for manufacturing equipment 103

Figure 5.3 ESM template for organization structure ... 104

Figure 5.4 ESM template for supplier’s information... 104

Figure 5.5 ESM template for information systems- functional view................... 105

Figure 5.6 ESM for ABC business process- manufacturing................................ 107

Figure 5.7 ESM for ABC resource- manufacturing equipment........................... 108

Figure 5.8 ESM for organization structure of ABC... 109

Figure 5.9 ESM for supplier information of ABC.. 110

Figure 5.10 ESM for ABC information systems- functional view 111

 xv

Figure 5.11 ESM for ABCinformation system- cost .. 112

Figure 5.12 ESM for ABC information system- software interface..................... 113

Figure 5.13 ESM for ABC information system- hardware interface.................... 114

Figure 5.14 ESM for ABC information system- OS... 114

Figure 5.15 ESM for ABC information system- DBMS...................................... 115

Figure 5.16 ESM for ABC information system- manufacturer’s information...... 116

Figure 5.17 Decision making using knowledge-base... 117

 xvi

LIST OF ACRONYMS

API
ARIS
CAD
CIM
CIMOSA
COM
CORBA
CRM
DBMS
EAI
EBE
EI
EJB
ERP
ESM
GEO
GIM
GPEO
GRAI
GSEO
HRD
HTTP
IEM
I IOP
IT
J2EE
JDBC
OCL
ODBC
ORB
OS
PERA
PLC
R& D
SOAP
TCP/IP
TOVE
UML
XML

Application Programming Interface
Architecture for Integrated Information System
Computer Aided Design
Computer Integrated Manufacturing
Computer Integrated Manufacturing Open Systems Architecture
Component Object Model
Common Object Request Broker Architecture
Customer Relationship Management
Database Management System
Enterprise Application Integration
Enterprise Business Entity
Enterprise Integration
Enterprise Java Beans
Enterprise Resource Planning
Enterprise Semantic Model
Generic Enterprise Ontology
Graphs with Results and Activities Interrelated Integrated Methodology
Generic Process Enterprise Ontology
Graphs with Results and Activities Interrelated
Generic Steel Enterprise Ontology
Human Resource Development
Hyper Text Transfer Protocol
Integrated Enterprise Modeling
Internet Inter-Object Request Broker Protocol
Information Technology
Java 2 Platform, Enterprise Edition
Java Database Connectivity
Object Constraint Language
Open Database Connectivity
Object Request Broker
Operating System
Purdue Enterprise Reference Architecture
Programmable Logic Controller
Research and Development
Simple Object Access Protocol
Transmission Control Protocol/Internet Protocol
Toronto Virtual Enterprise
Unified Modeling Language
Extensible Markup Language

 1

CHAPTER 1

INTRODUCTION

1.1 Enterpr ise Today

Customer demand for fast delivery and high quality functions has increased

considerably since the explosion of information system usage in enterprises in the

1990s. This demand has had a profound impact on manufacturing and other service

organizations, all of which will be called enterpr ises throughout this thesis.

Increasing resources used to be considered a solution to this demand problem, but

such a solution does not work well nowadays because increasing costs are beyond

what customers will accept. Another problem with this solution is related to a new

concept of economic development called ‘sustainable’ development. In short,

sustainable development advocates the need for long-term planning of resources,

which can conflict with this solution of increased resources. Another solution could

be to advance the technology of enterprises. It is usually the case that new

technology development has risk of failure and has long lead-times. Thus, there is a

need to study alternative solutions. The philosophy of any new solution should be to

maximize efficiency with minimal and sustainable utilization of resources. A

straightforward solution is ‘ lean production,’ [Warnecke & Huser 1995] which was

developed in the 1980s. However, the lean production concept has been shown not

to improve productivity in terms of fast delivery of products/services and in terms

of its ease in adapting to change [Green 1999]. Considerable efforts were taken to

 2

find further new solutions; among others, computer integrated manufacturing

(CIM) and concurrent engineering approaches appear to be most effective.

The CIM and concurrent engineering concepts advocate a large-scale use of

information technology in enterprise. As a result, computer program systems,

including databases and programs, have been developed with the objective of

providing support to every functional unit of an enterprise, for example, designing,

fabricating, shop-floor planning, and finance. The CIM concept has subsequently

created or stimulated some business of developing technical and business software

because enterprises could not afford to develop and maintain their own proprietary

systems. Examples of some giant software companies are OracleTM (for database

management) [Oracle 2003], BaanTM (for enterprise resource planning) [Baan 2003],

and i2TM (for supply chain management) [i2 2003].

Parallel to the development of CIM and concurrent engineering, another concept

called vir tual enterpr ise [Presley et al. 2001] was proposed in the early 1990s.

Primarily, the virtual enterprise principle says that enterprises should concentrate on

their core competency and outsource all other functions [Nayak et al. 2001]. By

forming a virtual chain of enterprises, the changes made in one enterprise do not

negatively affect other enterprises in the chain and, hence, the enterprises are more

agile to meet changing market demands.

It is reasonable to characterize the current enterprise as (1) being information or

data intensive, (2) adapting virtual enterprise as a principle for organizing and

managing resources, and (3) requiring a massive amount of communication with its

suppliers and customers.

 3

1.2 Motivation

There are problems that hinder effective implementation of the modern enterprise

characterized in the preceding discussion. These problems can exist at the

functional level, the physical level, and the information system level. At the

functional level, supplier partners or customer partners may not be identified

correctly for an enterprise’s particular functional needs or their actual performances

may differ significantly from those required. At the physical level, products or parts

supplied from suppliers may not match an enterprise’s particular product

environment. At the information system level, partners could have their own

information systems that are different from those of the master or some other

enterprise. Furthermore, these differences could be syntactic or semantic. Rapid

evolution of information systems or computer programs from third parties (i.e.,

those technical and business software providers or vendors) may further complicate

problems encountered at the information system level. Quite often, there is

uncertainty about whether an enterprise’s current information systems would be

able to communicate with the information systems of its partners, after either a

change of partners or an updating of information systems that are currently operated

by the enterprise. These problems are put together and named the ‘enterprise

application integration (EAI) problem’ [Lutz 2000].

Many solutions have been proposed to tackle the above problems. These solutions

can be put into two categories. The first category of solutions focuses on developing

methods or tools to facilitate communication of information or data between

enterprises. The second category of solutions is based on the rationale that a model

of an enterprise is a key towards an effective solution and focuses on modeling an

enterprise’s functions and resources [Lim et al. 1997]. The solutions in this category

do not explicitly represent or model the enterprise’s information systems. In

general, the solutions from both the categories have not solved the enterprise

integration problem to its entirety. A brief analysis to confirm this observation will

be given in the next section, and a further detailed analysis is given in Chapter 2.

 4

This thesis aims to develop a new solution or a new solution concept for the EAI

problem [Cadarette & Durward 2001]. The term integration here is meant for the

establishment of effective, efficient, and automated communications amongst

enterprise applications within different partner enterprises. The intended research

has great significance, which is evidenced by the fact that one of the Gartner-

Group’s top-10 predictions for 2002 [McCoy et al. 2002] is that during 2002,

leading-edge businesses will exploit application integration to generate business

innovation. Further evidence is the finding made by a new Hurwitz study [Migliore

2001] that of about 600 enterprises, only 10 percent have fully integrated even their

most strategic business processes.

1.3 Solutions to the EAI Problem: a Br ief Analysis

As discussed in the preceding section, there are two categories of solution to the

EAI problem. In the following, a brief analysis is given for the purpose of deriving

the research objectives of this thesis, while a more detailed analysis will be

discussed in Chapter 2.

1.3.1 Solutions in the first category

Solutions in the first category can be considered to focus on information systems

within enterprises. Solutions in this category include those of computing businesses

looking for means by which two databases or two programs can communicate with

each other. Well known proposals include (1) CORBATM (Common Object Request

Broker Architecture) [CORBA 2002], (2) EJBTM (Enterprise Java Beans) [EJB

2002], and (3) Microsoft BizTalkTM server [BizTalk 2002].

CORBATM uses the standard protocol IIOP (Internet Inter-ORB Protocol), which is

operating system-independent to make two enterprise applications interoperate with

each other. The basic idea underlying CORBATM is that each enterprise application

 5

is programmed based on the CORBATM protocol, a so-called CORBATM-based

program. Because CORBATM makes applications independent of operating systems,

CORBATM allows enterprise applications to run on different operating systems yet

communicate with each other. CORBATM, however, requires all information systems

to work under the same server. EJBTM goes beyond CORBATM in the sense that

EJBTM aims to enable two information systems supported by different servers to

interoperate with each other. EJBTM takes the idea from the JavaTM program, which is

known to run over the Internet across different computing platforms at different

levels of program system architecture. BizTalkTM is a middleware product for

application integration. It is a collection of tools and services that performs the task

of changing enterprise applications into a standard format through which the

applications are able to communicate with each other. Tools that fulfill this task are

called adapters.

ARIS (ARchitecture of Integrated Information System) [Williams 2000] takes a

different approach and concentrates on the issue of the design of enterprise

information systems. ARIS models all the software engineering activities including

requirements, design, and implementation. ARIS has various views of information

systems and various levels of abstractions. ARIS is supposed to work as follows: a

particular enterprise application falls into a particular view and a particular

abstraction level in the ARIS model.

In general, the solutions above do not address the semantics of enterprise functions

that various applications are supposed to fulfill and do not provide a path that one

can walk through from enterprise function units to enterprise information systems.

It is the observation of the author of this thesis that changes affecting information

systems of an enterprise could come from information systems themselves (e.g.

software updating by a software company) and also from enterprise function units

(e.g. enterprise reorganization, change of partners). In short, the solutions in this

category do not provide an end solution to the EAI problem.

 6

1.3.2 Solutions in the second category

Solutions in the second category take a systems engineering approach by viewing

an enterprise as a system and explicitly modeling its enterprise functions and

activities. Such a model helps users perform a systematic procedure to ‘design’ an

enterprise to meet changes [Whitman & Huff 2001]. The following are several well-

known studies falling into this category.

The CIMOSA (Computer Integrated Manufacturing Open Systems Architecture)

modeling methodology [CIMOSA 1996] models the life cycle activities of an

enterprise from its requirements definition to its maintenance. CIMOSA facilitates

evaluating operational alternatives and decision-making. The PERA (Purdue

Enterprise Reference Architecture) modeling methodology [Rathwell 2001]

supports and guides the development of a master plan for an enterprise business

entity. The business entity may be either part of a larger entity or a complete

enterprise itself. PERA covers life cycle activities from identification of the

business entity to its operation and maintenance. GRAI (Graphs with Results and

Activities Interrelated) modeling methodology models the decisional structure of an

enterprise and supports the design of CIM systems leading to GIM (GRAI

Integrated Methodology) [Doumeingts & Chen 1996]. GIM covers the enterprise

life cycle from the requirements to the implementation. The IEM (Integrated

Enterprise Modeling) methodology [Lin 1999] supports the enterprise life cycle

from the requirements definition to the implementation.

In general, the solutions above do not represent enterprise applications explicitly.

Furthermore, these models of an enterprise do not represent the partners, especially

their roles in the function chain of an enterprise. Zhang and his colleagues observed

the need of representing partners in the data structures for enterprises [Zhang et al.

1999]. The main purpose of their work was to design an enterprise. They viewed an

enterprise as a dynamic system in which partners are part of the system. They have,

 7

however, not addressed the EAI problem [Gosain & Thillairajah 2002 and

TechMetrix research 2002].

1.4 Statement of a New Approach: Semantic Model Approach

From the preceding discussions, it is claimed that there is a need to develop a new

solution or approach to the EAI problem. This new solution must address the

shortcomings in the existing solutions (i.e., the two categories of solutions

discussed previously). Furthermore, the new solution must have the following

elements:

(1) a model of enterprise in the aspect of resources and functions which include

partners (suppliers and customers);

(2) a model of enterprise applications; and

(3) a model of the relationship between enterprise applications and enterprise

functions.

One of the basic ideas that has led to the above conceptual solution is based on the

successful experience of database systems as a role in integrating program files in

the early 60s, as shown in Figure 1.1. In Figure 1.1(a), each program (P1 and P2)

handles its own files, F1 and F2, respectively. There is no way that communication

between files and programs can be made by another general purpose program. The

files F1 and F2 actually represent the real world discourse. In this approach, the

maintenance of a program system for any change in either program or file is done

manually. This will create complexity in keeping information consistent in F1 and

F2. There is another problem with this approach; the contents in the files may be

redundantly represented, which may further create sources of inconsistencies in

information. The database concept integrates all files by viewing contents of files as

representation of the semantics of the real world discourse that the particular

programs are to deal with and provides a common syntactic means of actually

 8

writing the contents (see Figure 1.1(b)). As such, the maintenance of information

consistency among program files is now taken over by a database management

system. Figure 1.1(c) shows another approach. In this approach, the conceptual

model captures the semantics of a real world discourse more accurately and is

generically free from the constraints brought about by the syntactic problems with

different DBMSs. With this approach, database designers are more transparent to

the underlying DBMSs. From the point of view of integration, one could view the

semantic model as a means of facilitating communications among DBMSs/

databases.

Figure 1.1 Evolution from file to semantic database

The success of the database concept as a means of integrating program files would

result in a solution to the EAI problem based on the following analogy:

(a) The concept of program file
(b) The concept of database
(c) The concept of conceptual or semantic database

Real World Real World

P1 P2

F1 F2

Database

P1 P2

Real World

P2

(a) (b) (c)

Request V: View

F: File

P: Program

Conceptual Database/
Semantic Database

V1

P1

V2

Data exchange

Represent

 9

This analogy can thus imply the situation shown in Figure 1.2, which is similar to

the situation illustrated in Figure 1.1(c). A detailed discussion of this new solution

to the EAI problem will be presented in Chapter 4.

Figure 1.2 Enterprise semantic model (ESM) concept

1.5 Research Objectives, Scope and Significance

This thesis aims to develop a new solution to the EAI problem through semantic

modeling. This new solution should address all the problems with the existing

solutions reported in the literature. The enterprise where the new approach is

applied must take the virtual enterprise as its organization principle. The following

objectives are considered relevant to achieving this aim.

Real-world Enterprise

Programs

Database

DBMS

Enterprise Applications

Enterprise Semantic model (ESM)

DBMS for ESM

Enterprise

Enterprise Function 1

Semantics of
Enterprise Application 1

Enterpr ise
Semantic Model

Enterprise Function 2 Enterprise Function 3

Enterprise Semantics

Semantics of
Enterprise Application 2

 10

Objective 1: To justify further the semantic modeling approach for the EAI problem

through an analysis of the need for enterprise integration or enterprise application

integration and the shortcomings of the existing approaches.

The methodology applied to achieve this objective is to conduct an in-depth

literature study and also to conduct an industrial survey. It is noticed that part of

research related to this objective was described in Section 1.4.

Objective 2: To formulate an enterprise semantic model framework. The framework

needs to demonstrate its genericity and its capability of solving the problems with

existing approaches.

A framework of a model or a system is defined as a set of concepts or notions with

which a concrete model or system can be built. A framework must capture the most

generic things and their relationships. A framework may contain templates (e.g.,

databases or knowledge bases) and tools (i.e., software programs) to facilitate the

building of a concrete model for a real-world application. The enterprise semantic

model framework, with which this thesis is concerned, must include the ontology,

generic functions and resources of enterprises, generic enterprise applications, and

links between enterprise applications and enterprise functions/resources. This thesis

does not, however, attempt to provide a complete model (e.g., enterprise ontology);

instead, the thesis follows the research methodology shown in Figure 1.3. In Figure

1.3, the process on the left side shows the derivation of axioms/fundamental

concepts. The process on the right side shows that an enterprise semantic model

framework will be created. An important point here is that the semantic model is

extensible.

This thesis is not going to develop any software, though in the mind of the author

this is desired from a practical viewpoint. Nevertheless, the result of the thesis work

will be a foundation for any kind of scenario within which a concrete product, such

as software, can be developed. For instance, it is likely that a kind of software that

 11

would help a company to diagnose its current EI or EAI problems and make

recommendations on a re-engineering process for solving identified problems could

be created.

Figure 1.3 General methodology for building enterprise semantic model framework

Objective 3: To develop a showcase for an enterprise semantic model and to

demonstrate the effectiveness of the enterprise semantic model as a potential

solution to the EI or EAI problem.

This will involve a case study. The semantic model will be instantiated for an

existing enterprise. A few test cases will be developed to evaluate the proposed

solution to tackle the EAI problem.

1.6 A Remark on General Research Methodology

Two types of scientific research approaches can be identified in the methodological

literature, namely, the theory-developing or analytic research approach and the

A: a process of organization of primitives of a model: The process is data
 abstraction called generalization [Eriksson & Penker 2000]
B: a process of building a model: The structure shown in the middle means that
 the model must be created to be extensible in both horizontal and vertical
 directions

Real-world Application

Axioms/ Notions

A B

Elements created

Elements are not
created, but
extended

 12

design-oriented or applied research approach [van Stekelenborg 1996]. The

differences in these approaches arise from the purpose of the research and the

techniques that are used and not from the structure and the methods that are applied.

Theory-developing research is descriptive as it describes, explains, and predicts

phenomena. Design-oriented research is prescriptive, focusing on the guidelines and

procedures actually needed to change phenomena. A validation of the soundness of

design-oriented research is done by means of case studies. The research work

described in this thesis is of the design-oriented type. This also implies that the

result of the research is an artefact, which is imperative, normative, and prescriptive

[van Stekelenborg 1996].

1.7 Organization of the Thesis

Chapter 2 provides a literature review to further enable the reader to understand the

related subjects. It also gives further justification of the significance of the proposed

work, particularly with respect to the research objectives set up in Chapter 1.

Chapter 3 introduces unified modeling language (UML) with special emphasis on

modeling data and processes. UML will be used as a vehicle for describing a data or

process model.

Chapter 4 presents a semantic model framework. This will include a more detailed

discussion of the requirement for the framework, the basic elements of the

framework, and a few templates.

Chapter 5 shows an instantiated semantic model for a particular enterprise, ABC in

this case. It also presents a case study to show potential applications of the proposed

semantic model.

Chapter 6 summarizes and concludes the thesis and addresses future work.

 13

CHAPTER 2

L ITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to provide further justification regarding the

significance of the research described in Chapter 1, particularly with respect to the

research objectives. A critical review of the related work reported in the literature

will fulfill this purpose. This chapter also provides the background for facilitating

subsequent discussions. In this chapter, the two categories of solutions or

approaches to the EAI problem introduced in Chapter 1 will be further elaborated,

on which the related work in literature will be reviewed. Section 2.2 will discuss

enterprise modeling, which is the core of the second category of solutions to the

EAI problem. This includes an in-depth discussion of the motivation and the

characteristics of different enterprise modeling approaches and a comparison of

them. An enterprise modeling methodology which belongs to the first category of

enterprise integration solutions focusing on information systems is also discussed in

this section. Section 2.3 discusses different strategies for software integration,

which forms the first category of solutions to the EAI problem. This section also

discusses middleware and adapter systems, which are alternative solutions to EAI.

In Section 2.4 the different application integration products available in the market

are analyzed and compared. Section 2.5 contains general concluding remarks.

 14

2.2 Enterpr ise Modeling

2.2.1 Basic concepts

A model is the representation of a thing that could be a real world entity, a process,

or an event. Because any thing has three aspects, structure, behavior, and function,

there are at least three models corresponding to a thing. A process to develop a

model is called modeling. The purpose of modeling is to explore the structure,

behavior, and function of a thing and the relationships among them.

An enterprise has structure, behavior, and function. Enterprise modeling refers to

the creation of a model of an enterprise from the above mentioned three aspects

[Christensen et al. 1995]. Enterprise modeling from the aspect of structure

involves modeling the organization of resources and their relationships. The

resources include people, materials, money, information systems, and equipment.

Enterprise modeling from the aspect of function involves modeling what the

enterprise intends to accomplish. Enterprise modeling from the aspect of behavior

involves modeling how the business entities interact with each other to achieve their

functions. These three aspects of the enterprise model are related as shown in

Figure 2.1.

Figure 2.1 Architecture of enterprise model concept

Function Process Resource

Subjective view

Principles

Function

Behavior

Structure

 15

It is shown in Figure 2.1 that structure is a basis for behaviors (processes) governed

by principles. Further, function is the concept of utilization of behaviors in a

meaningful manner. Examples of functions would be ‘design,’ ‘planning,’ etc.

Examples of resources would be ‘steel materials,’ ‘ three skilled operators,’ etc.

Examples of processes would be ‘machining,’ ‘assembling,’ etc. More detailed

elaborations on the concept of function, behavior and structure are found in

[Eriksson & Penker 2000].

Berio and Vernadat [1999] elaborated that an enterprise model must describe:

• Three fundamental types of flows within or across enterprises:

- Material flows (physical objects such as products, tools, raw materials);

- Information flows (documents, data, computer files); and

- Decision/control flows (sequence of operations).

• Five modeling views:

- Function view: addressing enterprise functionality (what has to be done) and

enterprise behavior (in which order work has to be done);

- Information view: addressing what are the objects to be processed or to be

used;

- Resource view: addressing who or what does what;

- Organization view: addressing organization units and their relationships,

i.e., who is responsible for what or whom; and

- Business rule view: addressing all the constraints or rules.

• Three modeling levels:

- Requirement definition: to represent ‘ the voice of the users,’ i.e., what is

needed, expressed in a detailed and unambiguous way;

- Design specification: to define formally one or more solutions satisfying the

set of requirements, to analyze their properties and to select the ‘best’ one;

and

- Implementation description: to state in detail the implementation solution

taking into account technical and physical constraints.

 16

It is clear that Berio and Vernadat’s argument is consistent with the function-

behavior-structure architecture as shown in Figure 2.1. In later discussions related

to enterprise modeling and enterprise ontology, Berio and Vernadat’s architecture

will be applied.

Another key concept regarding enterprise modeling is called the ‘generic enterprise

model’ [Fox 1993]. The enterprises, irrespective of business factors, must have

commonalities. The philosophy of generic enterprise model is that these

commonalties should be captured and standardized into a model. The generic

enterprise model can then be re-used so that modeling does not have to start from

scratch every time [Szegheo 2000]. Generic enterprise modeling is consistent with

the idea of modeling of systems in that it is comprised of two steps. The first step is

to create a generic enterprise model. Because of its nature to capture commonalities

among individual real world systems, enterprises in this case, the generic enterprise

model is a template or type from the point of view of data modeling. The second

step is to instantiate the template with specific semantics derived from individual

systems.

2.2.2 Different schools of enterpr ise modeling approaches

Enterprise modeling approaches can be categorized into different schools based on

their purposes. The following is a brief overview of different schools and their

respective enterprise modeling approaches.

• School 1: Modeling of enterprise information systems

This school concentrates on modeling the life cycle of enterprise information

systems. It helps in the software engineering of the enterprise. It provides a rich set

of constructs for information modeling. It is mainly concerned with IT resources

which are described from the viewpoints of control, information, and organization.

 17

Hence this school is in the first category of enterprise integration approaches

focusing on enterprise information systems.

ARIS (ARchitecture for Information Systems) [Williams 2000] focuses on the

design of enterprise information systems. Therefore it provides specific modeling

support for the information technology (IT) of the enterprise. ARIS supports

enterprise modeling from an operational concept and IT concept to IT system

implementation. It provides various views of the IT systems such as a control view,

an organization view, etc.

• School 2: Modeling of enterprise entities and activities

This school concentrates on modeling the life cycle of enterprise functional entities

and activities. The life cycle extends from concept creation to maintenance. Its main

goal is to avoid ambiguity when a new element or person is added to the enterprise,

so that the new element can be integrated well into the enterprise. Different

approaches in this school are briefly discussed below.

- CIMOSA (Computer Integrated Manufactur ing Open Systems Architecture)

[CIMOSA 1996] is intended to be used for operational support rather than as a

project guide in developing or re-engineering business entities. Operational uses

are understood as decision support for evaluating operational alternatives as well

as model driven operation control and monitoring. CIMOSA supports the

engineering of an enterprise. It models the enterprise life cycle from requirements

definition to implementation description. It also supports the operational use and

maintenance of the models.

- GRAI/GIM (Graphs with Results and Activities Inter related/GRAI

Integrated Methodology) [Doumeingts & Chen 1996] was initially developed to

model the decisional structure of a manufacturing enterprise for strategic, tactical

and operational planning. GRAI was extended to support the design of computer

 18

integrated manufacturing (CIM) systems leading to GRAI integrated methodology

(GIM) as an integrated methodology for business process modeling. With special

emphasis on the decisional aspects, the concept (analysis), structure (user oriented

design), and realization (technical oriented design) phases of the life-cycle

concept are supported.

- IEM (Integrated Enterpr ise Modeling) [Lin 1999] supports the creation of

enterprise models for business re-engineering and therefore allows for the

modeling of process dynamics for an evaluation of operational alternatives. IEM

supports the main phases of the enterprise life cycle (requirements, design,

implementation, and model up-date).

- PERA (Purdue Enterpr ise Reference Architecture) [Rathwell 2001] is

intended to support and guide the development of the master plan for an

enterprise business entity. The methodology covers the complete project of

introduction, implementation and operation of an enterprise business entity, which

may be either part of a larger entity or be a complete enterprise itself. The life

cycle starts with a definition of the Business Entity to be modeled, identifying its

mission, vision, management philosophy, mandates, project sponsors, leaders and

members and ends with obsolescence of the plant at the end of the operational

phase.

� School 3: Enterprise ontology modeling

This school takes the philosophy that integration means effective communication

among different constituent elements. Effective communication can only be made

possible through a common context including (1) sharable concepts and their

representations and (2) sharable knowledge which is in the form of either what-is or

how-to-do. A representation approach in this school is TOVE.

 19

- TOVE (TOronto Vir tual Enterpr ise) [Fox & Gruninger 1998, Fox et al. 1993]

aims to create a generic, reusable enterprise data model that provides shared

terminology for the enterprise that each agent can jointly understand and use. It

defines the meaning of each term in a precise manner. It implements the

semantics in a set of axioms that will enable TOVE to deduce automatically the

answer to many "common sense" questions about the enterprise [Fox &

Gruninger 1994].

2.2.3 A fur ther compar ison of different enterpr ise modeling approaches

In this section six different enterprise modeling methodologies are compared. The

aspects used for comparison are (i) life cycle dimension, (ii) model view dimension,

(iii) genericity dimension, and (iv) modeling language/construct used. The l ife cycle

dimension includes identification of the Business Entity, definition of concepts,

requirements definition, design, implementation, and operation and maintenance

(see table 2.1). The model view dimension includes functional view, information

view, decision view, organization view, and structure view (see Table 2.2). The

gener icity dimension includes the particular model and the reference architecture,

which supports model creation (see Table 2.3). The modeling language/construct

dimension includes sets of generic building blocks to represent enterprise

processes, activities, information, resources, and organization. It is noted that a

similar, yet slightly different extent comparison was presented by Kosanke [1996].

Further, some comments on this comparison are presented in the following.

 20

P
E

R
A

T
O

V
E

IE
M

G
R

A
I

/G
IM

C
IM

O
SA

A
R

IS

E
B

E

Identification
(E

nterprise
B

usiness
E

ntity)

M
eta-

ontology

not defined

not defined

not defined

not defined

Identification

E
B

E

C
oncept

L
ayer

O
ntology for

E
ntity,

relationship,
role, and
actor

not defined

not defined

not defined

not defined

C
oncept

E
B

E

D
efinition

L
ayer

Strategy
ontology:
Purpose

R
equirem

ent
D

efinition

C
oncept L

evel
A

nalysis

R
equirem

ent
D

efinition

O
peration

C
oncept

R
equirem

ent

E
B

E

Specification
layer and
detailed design
layer

Strategy
ontology:
strategy,
assum

ption, and
O

rganization

System
 D

esign

Structure L
evel:

U
ser O

riented
D

esign

D
esign

Specification

IT
 System

C

oncept

D
esign

E
B

E
 M

anifestation
L

ayer

A
ctivity and process

ontology: activity
and resource

Im
plem

entation
D

escription

R
ealization L

evel:
T

echnical O
riented

D
esign

Im
plem

entation
D

escription

Im
plem

entation

Im
plem

entation

E
B

E
 O

peration
L

ayer

not defined

M
odel U

pdate

not defined

O
peration,

M
odel

m
aintenance

not defined

O
peration and

M
aintenance

In Table 2.1, PERA and TOVE cover the two uppermost layers of enterprise life

cycle, i.e., the identification of the business entity and definition of concepts. This

information is assumed to be provided by enterprise management in all other

T
able 2.1 M

odeling fram
ew

ork com
parison: life-cycle (m

odeling levels)

 21

methodologies. The enterprise operation is defined only in PERA and CIMOSA.

Model maintenance is explicitly identified in both CIMOSA and IEM, and

contained in the operation layer of PERA. ARIS and GRAI only support the

requirements, design, and implementation aspects. In addition, ARIS covers the life

cycle of information systems.

P
E

R
A

T
O

V
E

IE
M

G
R

A
I/

G
IM

C
IM

O
SA

A
R

IS

Inform
ation

A
rchitecture

 (dynam
ic not

defined)

A
ctivity and Process

ontology

Function M
odel

V
iew

Function V
iew

(static), and
Inform

ation
T

echnical V
iew

Function V
iew

(static), and
Function V

iew

(dynam
ic)

Function V
iew

(static), and
C

ontrol V
iew

(dynam

ic)

F
unction

not defined

not defined

Inform
ation

M
odel V

iew

Inform
ation

V
iew

Inform
ation

V
iew

D
ata V

iew

Inform
ation

H
um

an and
O

rganization
A

rchitecture

O
rganizational

ontology

not defined

D
ecision

V
iew

,
Physical
V

iew
, and

O
rganization

V
iew

O
rganization

V
iew

O
rganization

V
iew

D
ecision/

O
rganization

M
anufacturing

A
rchitecture:

M
anufacturing

E
quipm

ent
A

rchitecture

R
esource

ontology

not defined

Physical
V

iew
, and

M
anufacturing

T
echnical

V
iew

R
esource

V
iew

R
esource

V
iew

Structure/
R

esource

In Table 2.2, CIMOSA assumes one consistent enterprise model in which particular

views are provided for the user in the engineering environment to allow for model

engineering on a particular aspect of the enterprise operation. ARIS provides a

similar approach, but has identified the control view for integrating the different

views into a common process model. GRAI/GIM and PERA identify different

T
able 2.2 M

odeling fram
ew

ork com
parison: m

odel view
s

 22

views, but as yet there is no real integration into one consistent model. The

information view of PERA is not well defined. GRAI/GIM identifies a unique

decision view, which is at the centre of the GRAI methodology, enabling modeling

of strategic, tactical, and operational planning. IEM does not define model views

explicitly but provides viewpoints on a common model. In TOVE the different

ontologies provide for different views.

Table 2.3 Modeling framework comparison: genericity levels

 ARIS CIMOSA GRAI/
GIM

IEM TOVE PERA

Gener ic Generic Generic Generic Generic
enterprise
model

not
defined

Par tial Reference
Models

Partial 4 Levels of
Abstraction

Reference not
explicitly
defined

not
defined

Par ticular Particular Particular Particular Deductive
enterprise
model

not
defined

In Table 2.3, except for PERA, which only provides a single task module, all the

other methodologies have a rather populated generic level and provide sets of

partial/reference models.

From the dimension of modeling language/construct, only CIMOSA has a vision of

an executable model for operation control and monitoring. TOVE uses a formal

language to model all the ontologies within the enterprise. The modeling languages

of CIMOSA and TOVE are very expressive. All the other methodologies use

specialized languages for particular modeling purposes, e.g., language for project

description (PERA), language for decision systems and CIM systems design

(GRAI/GIM), languages for information systems design (ARIS), and language for

business process re-engineering (IEM). Furthermore, PERA only provides textual

description for modeling a task and its information inputs and outputs.

 23

2.2.4 Special notes on methods and tools for modeling

Methods are viewed differently from tools, that is, tools are computer program

systems that implement methods and have certain usability. ARIS has view-specific

modeling methods for computer-based modeling, based on the ARIS framework.

This includes extended entity relationship modeling as well as process chain

diagrams, stimulus-response chains, and functional and organizational hierarchy

charts. There are various commercial tools that provide comprehensive computer

support for the analysis, planning and introduction of information systems.

CIMOSA has both formal textual descriptions and graphical forms. Some of the

tools that support the CIMOSA method are FirstSTEPTM, CimToolTM, and PACETM.

GRAI/GIM has its own graphical method that is applied in the decisional model,

while the IDEF0TM is used in functional modeling. A tool is being developed for

implementing the GRAI/GIM method, known as Computer Aided GIM TM. IEM

methodology has its own method, the IEM modeling method. The tool used to

support the IEM method is called MO2GOTM. PERA has its own modeling method.

PERA does not mention specifically any modeling tools, but some tools like MetisTM

and other generic modeling tools are used to support the method. TOVE uses a

formal modeling method, ‘First Order Logic,’ to model the different ontologies.

Some of the tools used to support the TOVE method are the C++ environment and

the Rock knowledge representation tool.

2.2.5 Concluding remarks

A comprehensive comparison has shown that none of the methodologies along with

their tools, can provide a complete solution to the EAI problem. There are no

possible consistent and rational answers to the following questions: “Does an

enterprise need to purchase a particular application software called ‘A’ , or a

different one, or none?” and “What will be the impact to the software applications

and business operations existing in an enterprise if ‘A’ is introduced?”

 24

The enterprise modeling approach is helpful for achieving EAI by answering the

second question (partially), as enterprise functions are systematically represented.

Enterprise ontology modeling is an essential method for developing a knowledge

system for making intelligent decisions regarding enterprises. However, a usable

language for ontology modeling is not available. At this point, a powerful language

called unified modeling language (UML) [Zrnec et al. 2001] will be considered in

this thesis. Detailed information about UML can be found in Chapter 3.

2.3 Software Integration Solution

The first category of solutions to the EAI problem takes the philosophy that

enterprise applications are computing software by their very nature. Consequently,

provision of more generic ways for software systems to be able to communicate

with each other can be a solution to the EAI problem [Cummings & Hanson 2002].

2.3.1 Strategies for software integration

It is noted that enterprise applications are not implemented on one operating system

using one computing language. The individualism of enterprise applications has to

be recognized. Under this scenario, software integration can take the following

strategies [Linthicum 2001] and these strategies are shown in Figure 2.2.

• Data oriented: This focuses on the equivalence mapping between two databases,

both in syntax and semantics. This approach does not change the application code

that makes use of data in databases.

• Application-interface oriented: This refers to the leveraging of the interfaces

exposed by applications. Developers leverage these interfaces to access both

business processes and simple information. In order to integrate the applications,

the interfaces must be used to access both process and data, extract the

information, place it in a format understandable by the target application, and

 25

transmit the information. Message broker (discussed in Section 2.3.2) is the

perfect solution for this type of software integration strategy.

• Method oriented: This is the sharing of the business logic that exists within an

enterprise. The applications may access each other’s methods without having to

rewrite each method within the respective application. The solutions include

distributed objects, application servers, and transaction processing monitors

(discussed in Section 2.3.2).

• Portal oriented: This approach is used by application architects to integrate

applications by presenting information from several local or partner applications

within the same user interface.

• Process integration oriented: This provides an abstract business-oriented layer on

the top of more traditional information movement mechanisms. This also provides

process automation features, e.g., a view of how business information flows

between different applications. This does not typically deal with physical

integration flows and physical systems, but with abstract and shared processes.

Figure 2.2 Application integration approaches

2.3.2 Middleware

Middleware is a simple mechanism that allows one entity (application or database)

to communicate with another entity or entities. In other words, middleware is any

Method

Application Interface

Data

P
ro

ce
ss

In

te
gr

at
io

n

P
or

ta
l

Performs Integration function

Performs Interaction function

 26

type of software that facilitates communications between two or more software

systems. It is able to hide the complexities of the source and target systems, freeing

developers from focusing on low-level application programming interfaces (APIs)

and network protocols, allowing them to concentrate on sharing information

[Kramp & Coulson 2000].

It is noted that middleware are evolving, which means that they may extend their

functions beyond their originally designed functions. In the following, some well-

known middleware types are discussed [Linthicum 2001]:

• Remote procedure call: Remote procedure calls provide developers with the

ability to invoke a function within one program and have that function execute

within another program on a remote machine. The fact that it is actually being

carried out on a remote computer is hidden. Remote procedure calls require more

bandwidth than other types of middleware products because carrying out a remote

procedure call requires so much “overhead.”

• Message-oriented middleware: This is a queuing software, using messages,

which are byte sized units of information that move between applications, as a

mechanism to move information from point to point. Because message-oriented

middleware uses the notion of messages to communicate between applications,

direct coupling with the middleware mechanism and the application is not

required. Message-oriented middleware products rely on an asynchronous

paradigm. Message-oriented middleware typically provides a structure (a schema)

and content (data) in accord with the schema and its use of messages is relatively

easy to manage.

• Distributed objects: Distributed objects are small application programs that utilize

standard interfaces and protocols to communicate with one another. Two types of

distributed objects are very popular today: common object request broker

architecture (CORBATM) and component object model (COMTM). CORBATM and

COMTM provide specifications that outline the rules that developers should follow

when creating a CORBATM-compliant or COMTM-enabled distributed object.

CORBATM is heterogeneous, with CORBATM-compliant distributed objects

 27

available on most platforms. COMTM must be considered native to Windows TM

operating environments and therefore homogenous.

• Database-oriented middleware: This facilitates communications with a database,

whether from an application or between databases. Database-oriented middleware

are of two basic types: command line interfaces and native database middleware.

An example of command line interface is Microsoft’s open database connectivity

(ODBCTM). It exposes a single interface in order to facilitate access to different

databases and uses drivers to accommodate differences between databases. Native

database middleware accesses the features and functions of a particular database,

using only native mechanisms.

• Transaction-oriented middleware: Transaction middleware does a commendable

job of coordinating information movement and method sharing between many

different resources. Although it provides an excellent mechanism for method

sharing, it is not as effective at simple information sharing.

- Transaction Processing monitors: They are based on the concept of a

transaction, a unit of work with a beginning and end. The reasoning is that if the

application logic is encapsulated within a transaction, then the transaction is

either completed or rolled back completely. The load-balancing mechanisms of

transaction processing monitors guarantee that no single process takes on an

excessive load.

- Application servers: They provide not only for the sharing and processing of

application logic but also for connecting to back-end resources including

databases, ERP applications, and even traditional mainframe applications. They

also provide user interface development mechanisms and mechanisms to deploy

the application to the platform of the web.

• Message broker: This facilitates information movement between two or more

resources and can account for differences in application semantics and platforms.

They can transform the schema and content of the information as it flows between

various applications and databases.

 28

The following table compares the different types of middleware available.

C
om

m
unication

M
echanism

F
lexibility

D
egree of

com
plexity

A
pplication

L
ogic

C
onnection

m
ode

Intruding

Synchronous
(D

irect
C

om
m

unication)

N
ot Flexible

Sim
ple

D
oes not house

logic

Point-to-Point

D
oes not change

source and target
application

R
em

ote
P

rocedure C
all

A
synchronous

(Q
ueued

C
om

m
unication)

N
ot Flexible

Sim
ple

D
oes not house

logic

Point-to-Point
and m

essage
queuing

D
oes not change

source and target
application

M
essage-

oriented
m

iddlew
are

Synchronous
 N

ot Flexible

C
om

plex

D
oes not

house logic,
but allow

s for
m

ethod-
sharing

M
any-to-

M
any

C
hange source

and target
application

D
istributed

O
bject

Synchronous or
A

synchronous

Flexible

Fairly C
om

plex

D
oes not house

the w
hole

application
logic, but has
the constraints
posed by the
application
logic on the
data

M
any-to-M

any

D
oes not

interfere w
ith

application
logic

D
atabase

O
riented

Synchronous

Flexible

C
om

plex

H
ouse

application
L

ogic

M
any-to-

M
any

C
hanges the

source code
of the target
application

T
ransaction

P
rocessing

M
onitors

A
synchronous,

R
equest/

R
esponse

Flexible

C
om

plex

H
ouse

application
L

ogic

M
any-to-M

any

C
hanges the

source code of
the target
application

A
pplication

Servers

A
synchronous,

R
equest/

R
esponse

V
ery Flexible

C
om

plex

H
ouse

application
L

ogic

M
any-to-M

any

D
oes not

interfere w
ith

the application
logic

M
essage

B
rokers

T
able 2.4 C

om
parison of different types of m

iddlew
are

 29

JDBC- Java Database Connectivity ODBC-Open Database Connectivity
COM -Component Object Mode

�
 CORBA- Common Object Request Broker Architecture

E
xam

ple

Special
F

eatures

D
is-

advantages

Supported
A

pplication
Integration
A

pproaches

Scalability

D
istributed

C
om

puting
E

nvironm
ent

E
asiest to

understand
and use

- B
locking

m
iddlew

are
- It eats
bandw

idth

A
pplication

Interface
oriented

D
o not scale

w
ell

R
em

ote
P

rocedure
C

all

M
essage

Q
ueuing

Series

D
irect

coupling
betw

een the
applications
is not
required

D
ata change

usually
needs
adapters

A
pplication

Interface
oriented

D
o not scale

w
ell

M
essage-

oriented
m

iddlew
are

C
O

R
B

A
T

M,
C

O
M

T
M

A
lso a

m
echanism

 for
application
developm

ent and
it provides ‘the
rules of the road’
for developers

T
he application

m
ust be created

using distributed
objects

A
pplication

Interface and
M

ethod O
riented

D
o not scale

w
ell

D
istributed

O
bject

O
D

B
C

T
M, JD

B
C

T
M

It doesn’t interfere
w

ith the
application and
exposes a single
interface to access
different databases

T
he application

logic is inseparable
from

 the D
B

 D

atabase oriented

Scale w
ell

D
atabase

O
riented

T
uxedo

T
M

L
oad

balancing
m

echanism
s

N
ot so

effective in
inform

ation
sharing

A
pplication-

Interface and
M

ethod
O

riented

Scale w
ell

T
ransaction

P
rocessing

M
onitors

O
racle 9i T

M,
W

ebL
ogic

T
M

N
ot only

shares logic,
but also
connects to
back-end
resources

N
ot so

effective in
inform

ation
sharing

A
pplication

Interface,
M

ethod,
Portal, Process
integration
oriented

Scale w
ell

A
pplication

Servers

C
entrPort T

M,
H

elio
T

M

A
pplications

are cohesively
connected and
need not be
changed for
their
interaction

N
eed separate

m
iddlew

are
for each
vertical
industry

A
pplication

Interface,
M

ethod,
Portal, Process
integration
oriented

E
xcellent

scalability

M
essage

B
rokers

T
able 2.4 C

om
parison of different types of m

iddlew
are

 30

2.3.3 Adapters

Adapters play a key role in application integration. There are two different types of

adapters existing on the market today. The first type of adapter is more or less like a

connector. It is a basic communication interface into or out of a particular system or

database. It also connects the application to the middleware products. In this case,

only the middleware has the application logic in it to integrate different

applications. The second type of adapter has the application logic in it to integrate

different applications. Consequently, the second type acts more or less like

middleware. Both these types of adapters are explained in detail below.

• Adapters with application logic: These adapters deliver all-important business

logic at the application sub-module level. Any adapter without application logic,

combined with many lines of hard code, can get data from SAPTM manufacturing

into an OracleTM financial application, for instance. In contrast, an intelligent

adapter should be able to insert the data into the proper accounts payable field or

invoice line item and meet any pre-determined business requirements when doing

so. This requires application-level logic to perform the necessary actions

[Traverse 2001]. The best adapter solutions include an intuitive, template-based

adapter development environment. They reduce the need for low-level

programming and let customers build or modify adapters in a graphical, drag-and-

drop environment.

• Adapters without application logic: This type of adapter acts just like a

connector. The middleware has the knowledge about where the data would be and

what it means semantically. The adapter simply converts the data from its native

format to the format compatible with the middleware. Some of the adapters of this

type are called “Universal Adapters.” They provide middleware-independent

transformation and universal adapter development tools. Figure 2.3 shows the

architecture of a universal adapter [eJai 2001].

 31

Figure 2.3 Universal adapter

Universal adapters have transform models inside them that convert data from the

native application format to the format required by the middleware. They handle

publishing and subscribing in addition to reply/request functions to enable

application formats usable by middleware [eJai 2001].

2.4 Fur ther Notes on Commercial Tools for Application

Integration

In this section, some of the popular tools available on the market that can be useful

to application integration are listed. Some of these were discussed in previous

sections under specific contents. Here, they will be discussed with focus on their

purposes/roles, ways of achieving their goals, assumptions made during their

development, their weaknesses, and possible future developments.

2.4.1 Common Object Request Broker Architecture (CORBATM)

CORBATM was developed by the Object Management Group. It is an open, vendor-

independent architecture and infrastructure that computer applications use to work

M
ID

D
L

E
W

A
R

E
 B

U
S

A
PP

L
IC

A
T

IO
N

TRANSFORM
MODEL

Publisher

Subscriber

Subscriber

Publisher
X

M
L

, e
tc

UNIVERSAL ADAPTER

 32

together over networks. The core process in CORBATM is an object request broker

(ORB).

Using the standard protocol I IOP (Internet Inter-ORB Protocol), a CORBATM-based

program from any vendor, on almost any computer, operating system, programming

language, and network, can interoperate with a CORBATM-based program from the

same or another vendor, on almost any other computer, operating system,

programming language, and network.

CORBATM applications are composed of objects, individual units of running

software that combine functionality and data, and that frequently (but not always)

represent something in the real world. In the case of legacy applications, they are

wrapped in code with CORBATM interfaces and opened up to clients on the network.

The separation of interface from implementation, enabled by interface definition

language, is the essence of how CORBATM enables interoperability. For each object

type an interface is defined in interface definition language. Any client that wants to

invoke an operation on the object must use this interface definition language

interface to specify the operation it wants to perform, and to marshal the arguments

that it sends. When the invocation reaches the target object, the same interface

definition is used there to unmarshal the arguments so that the object can perform

the requested operation with them. The interface definition is then used to marshal

the results for their trip back, and to unmarshal them when they reach their

destination. In the case of remote invocation, the ORB examines the object

reference and discovers that the target object is remote. Then it routes the

invocation out over the network to the remote object's ORB.

CORBATM has assumptions at two key levels: first, it assumes that the client knows

the type of object it is invoking and that the client and object interfaces are

generated from the same interface definition language. This means that the client

knows exactly which operations it may invoke, what the input parameters are, and

where they have to go in the invocation; when the invocation reaches the target,

 33

everything is there and in the right place. Second, the client's ORB and object's

ORB are assumed to agree on a common protocol - that is, a representation to

specify the target object, operation, all parameters (input and output) of every type

that they may use, and how all of this is represented over the wire.

In CORBATM, programs are made to treat all objects as (potentially) remote, which

may result in an awkward coding style. CORBATM’s assumptions about object

naming are not scalable. This is a problem for very large object-based applications

because some of the objects may contain millions of other objects. Security

schemes that prevent unauthorized users from gaining access to a computer

network, firewalls, can be deployed with full effectiveness only within an intranet.

CORBATM can be implemented to full effect in UNIXTM only. Cross-platform porting

is very difficult. All major vendors have left the CORBATM consortium. CORBATM is

now only a niche market supported by small companies.

The next generation of CORBATM is needed. Simple object access protocol (SOAP)

is the primary contender for that. SOAP is fully inspired by CORBATM and several

of the CORBA TM designers have designed SOAP. The IIOP and IIOP binary data in

CORBATM are replaced by HTTP (Hyper Text Transfer Protocol) and XML

(Extensible Markup Language) in SOAP.

2.4.2 Java 2 Platform, Enterpr ise Edition (J2EETM)

J2EETM defines a standard for developing multi-tier enterprise applications. It

simplifies enterprise applications by basing them on standardized, modular

components, by providing a complete set of services to those components, and by

handling many details of application behavior automatically, without complex

programming. Java 2 Enterprise EditionTM adds full support for Enterprise

JavaBeansTM (EJB) components, Java servlets APITM, JavaServer PagesTM, and XML

technology.

 34

The enterprise java beans (EJBTM) specification provides one type of interoperability

between applications or between applications and databases. They are designed to

give middleware developers a standard specification for supporting JavaTM server

components. EJBsTM created with different tools can, at least in theory, interoperate

with each other and can run on any application server that supports the EJBTM

specification. Another new specification, expected to appear in the next rendition of

the Java 2 Platform Enterprise Edition (J2EETM), is the Java Connector

ArchitectureTM. The Java Connector ArchitectureTM, currently under development,

would define a common architecture for connecting EJBTM servers to heterogeneous

enterprise systems such as ERP, mainframe transaction processing, and database

systems.

The J2EETM standard wraps and embraces existing resources required by multi-tier

applications with a unified, component-based application model. This enables the

next generation of applications for solving the strategic requirements of the

enterprise. Remote method invocation is a feature of JavaTM that facilitates inter-

application communication. When EJBsTM or other JavaTM objects need to

communicate over a network with other JavaTM applications, they use remote

method invocation, a remote procedure call that enables one JavaTM application to

access the objects and methods of another JavaTM program across a network. For

communication between JavaTM and non-JavaTM applications, a new specification

released in 2001 called remote method invocation over I IOP (Internet Inter-ORB

Protocol), allows JavaTM remote method invocation objects to communicate with

non-JavaTM CORBATM objects over a network. Instead of using the JavaTM remote

method protocol for interactions between distributed objects, which is what the

remote method invocation employs, remote method invocation over IIOP uses

IIOP, a protocol originally developed to connect CORBATM products from different

vendors. The Java Connector ArchitectureTM is to be based on existing JavaTM

technologies, including Java Transaction Application Program InterfaceTM, EJBsTM,

and Java Database ConnectivityTM (JDBC).

 35

Entity EJBsTM are developed to follow loosely the relational data model: basically

one instance of the particular entity bean class equals one row in the relational table.

J2EETM assumes that all the enterprise application can be built with the JavaTM

technology, either EJBTM or Java Connector architectureTM.

The overall complexity of the system is increased with the introduction of EJBsTM.

The issue of data security and user access is also more complicated because while

Sun’s EJBTM specification offers its own role-based authentication scheme, its actual

implementation is left to the EJBTM vendor.

The focus of vendors is slowly moving away from the J2EETM server and into

complementary products that will be built as J2EETM applications, running on top of

their existing J2EETM servers. These new applications will leverage built-in support

for transaction handling and scalability provided by J2EETM application servers,

providing a fully integrated platform for development. ColdFusionTM is one such

exciting example. MacromediaTM/AllaireTM plans to port the ColdFusionTM

development platform to a generic J2EETM application, which can run on top of any

J2EETM compliant application server.

2.4.3 Microsoft BizTalk Server TM

The BizTalkTM server is a middleware product used for application integration. It is a

collection of tools and services that helps the enterprise activities in a variety of

ways. The BizTalkTM server ships with BizTalkTM editor, BizTalkTM mapper,

BizTalkTM document tracker, BizTalkTM orchestration designer, BizTalkTM messaging

manager, and BizTalkTM server administrator. The BizTalkTM editor creates document

specifications that represent extensible markup language (XML), flat files, and

electronic data interchange files. The BizTalkTM editor also imports existing

document type definition and XML-data reduced schema. Mapping document

contents between different formats is done by the BizTalkTM mapper. The BizTalkTM

document tracker, the BizTalkTM orchestration designer, the BizTalkTM messaging

 36

manager, and the BizTalkTM server administrator performs the functions of tracking

and auditing messages, building business processes, managing trading relationships,

and managing BizTalkTM server, respectively. The BizTalkTM server gives industry-

leading support for standards such as XML, simple object access protocol (SOAP),

secure/multipurpose Internet mail extensions, and public key infrastructure. The

BizTalkTM server also has accelerators and adapters.

The purpose of the BizTalkTM server is to easily integrate the internal applications,

securely connect with the business partners over the Internet, and rapidly automate

the business processes. This infrastructure enables companies to integrate, manage,

and automate business processes by exchanging business documents (e.g., purchase

orders, invoices) among applications within or across organizational boundaries.

The BizTalkTM server makes the enterprise application integration simple by

integrating with virtually any product or technology.

There are several approaches for integrating the existing legacy applications. If the

existing application can output a file format that BizTalkTM server can read, then the

BiztalkTM server acts as simple middleware and integrates the two applications. A

more automated approach would be to write an application adapter using the

documented support from the BizTalkTM to feed data directly into and out of a

legacy application. BizTalkTM server orchestration is another way of integrating

applications. It is an environment for creating and running distributed business

processes. Within this environment, a business process can directly access a web

service as an activity in that process using the SOAP Toolkit. SOAP is the envelope

format for BizTalkTM framework documents and provides a reliable messaging

protocol for the BizTalkTM server. The BizTalkTM server has a comprehensive library

of over 300 adapters, which ensures the easy integration of products and

technologies with the BizTalkTM server. BizTalkTM accelerators include a powerful

combination of product enhancements, simple-to-use tools, documentation, and

samples that are developed in concert to ensure they work well together.

 37

The BizTalkTM server works with the assumption that adapters can be implemented

upon all the legacy applications that need to be integrated. It also assumes that there

exists a standard format through which the legacy applications that need to be

integrated can talk to each other.

It also has some weaknesses or disadvantages. Some of them are: it does not

integrate as well with non-MicrosoftTM objects; it needs partners to access legacy

data; it does not address XML programming barriers (addresses only standard

document object model); it does not work with UNIXTM.

BizTalkTM server has an open, extensible environment. Custom transports and

application integration components can be developed to access legacy systems.

Custom parsers, serializers, and correlators can be developed to handle file formats

not supported in the core product. Custom "functoids" can be developed to extend

the mapping capabilities of the BizTalkTM server. Custom schema importers can be

developed to extend the BizTalkTM server editing tool.

2.4.4 Adapter with application logic

An adapter is an application integration device and adapts the source application

format in a way that it can be integrated with the target application format. It uses

the intelligence it contains regarding the business logic to integrate the source and

the target application.

In the case of integrating a legacy application on the mainframe with a client

application, the application integration adapter allows the legacy applications to

remain untouched while providing an interface to clients. An application integration

adapter has the intelligence to identify the host application and to provide message

reformat, security and data connectivity for the appropriate application – all without

any change being made to the existing legacy mainframe application.

 38

An application integration adapter routes the transaction to the legacy mainframe

systems via the proprietary communications environment of the mainframe system.

On the legacy mainframe system, the destination application will receive the routed

transaction from the application integration adapter. The application processes the

transaction and returns a reply to the application integration adapter via the

proprietary communications protocol, where the message is reformatted and

returned to the originating workstation via the industry standard transmission

control protocol/Internet protocol (TCP/IP).

The important assumption by the application integration adapter is that all the

application formats in use today can be converted into a standard format. Another

assumption by the adapter is that the whole of the application logic is deterministic

and can be contained in the adapter.

The main disadvantage of the adapter is that it is not possible to convert all the

formats an application may have into a standard format. Containing the whole

application logic in the adapter is a complex process. Even if one does so, problems

will be created when the application logic changes.

The types of adapters available on the market are ready for evolving into universal

adapters with application logic. They must be able to have a transformation engine

for all possible formats of an application.

2.5 General Concluding Remarks and Discussions

Based on the review of two categories of solutions to enterprise application

integration (EAI), it may be clear that the first category of solutions, i.e., those

which stemmed from many computer software giants such as MicrosoftTM and SunTM,

has attempted to provide generic and fundamental methods for different

applications for communicating within both Intranet and Internet. Though they have

 39

achieved their goal in a specific period of time, their life cycles vary; some fade

away very soon, while others may stay with enterprise applications longer. This

evolutionary nature has actually produced a huge difficulty for enterprises, which

need to make decisions regarding their investment on information technology for

their business processes. Apparently, the first category of solutions has not provided

complete solutions to the EAI problem.

The second category of solutions reflects the efforts made in manufacturing or in

the industrial engineering society. The most useful point here is the need to have

enterprise ontology for EAI. However, existing studies on enterprise ontology

modeling have not included ontology or data modeling for enterprise applications.

Knowledge of enterprise applications relevant to EAI does exist but is represented

in a way specific or proprietary to individual producers of them. Fundamental

representation (i.e., ontology) of the enterprise applications is needed for the

purpose of integrating them in a particular enterprise environment.

Further research towards the following directions is needed based on the analysis

above. First, enterprise ontology modeling should include enterprise functions and

enterprise applications, as well as their connections. Second, a more general

modeling language should be used for practicability and usability. Third, the

relationship between the complete enterprise model and the various solutions from

the first category of solutions (e.g., adapters, middleware, etc.) should be such that

they are treated as individual connection tools organized in a knowledge base,

which may be called the tool knowledge base, and they will be called or assigned

by a high level decision engine to enable communication at the enterprise

application level.

 40

CHAPTER 3

UNIFIED MODELING LANGUAGE

3.1 Introduction

Unified modeling language (UML) was developed by Grandy Booch, James

Rumbaugh, and Ivar Jacobson in 1996 and later standardized by the Object

Management Group in 1997. UML is one of the most powerful tools for modeling a

dynamic system. The purpose of this chapter is to explain how UML fulfills its

modeling promises through a set of notions/concepts and constructs. For this

purpose, this chapter will be organized as follows. In Section 3.2, some of the basic

notions of UML are illustrated. In Section 3.3, a powerful mechanism in UML for

users to extend the UML constructs is described. In Section 3.4, a textual formalism

of UML, called object constraint language (OCL), is introduced. Section 3.5

focuses on a discussion of database design using UML. There is also an analysis of

the advantages of the UML approach for database design in Section 3.6.

3.2 UML Basics

UML is a very expressive language, addressing all the views needed to develop and

then deploy systems ranging from enterprise information systems to distributed

web-based applications and even to hard real time embedded systems. UML is used

 41

to visualize, construct, and document the artefacts of a software intensive system

[Booch et al. 1999]. UML has a notation and a well-defined set of syntactic and

semantic rules [Eriksson & Penker 2000]. The strongest aspect of UML is its

incorporation of views. UML takes into account five types of perspectives, or

views, pertaining to any given piece of software. In the following, these views,

along with the UML graphical notation are introduced.

3.2.1 Functional view

The functional view represents how the user will view the software in terms of its

functions. This view is constructed by use-case diagrams, which show the over-all

functionality of software. It ignores how the software goes about performing its task

and focuses on what is being performed. In Figure 3.1, the scenario where a student

is enrolled in a university is considered. The Student and the International

Student are users and are represented diagrammatically as shown in Figure 3.1.

The International Student ‘ is-a’ Student, and this generalization association is

represented by an arrow with a hollow triangle end, originating from the more

specialized user, International Student in this case. Enrol Student and Enrol

International Student are use-cases, which are performed for the users. The use-

cases are represented diagrammatically as an oval shown in Figure 3.1. Enrol

Student is extended into Enrol International Student and this extension relationship

is represented by an arrow and a stereotype (see the next section) <<extend>>.

Figure 3.1 Use-case diagram for enrolling students in the University

International Student

Student

Enrol Student

Enrol International
Student

<<extend>>

 42

3.2.2 Structural view

A system is composed of classes, objects, and their associations. The structural

view represents the system from these perspectives. This view does not display how

the classes and objects actually behave, but shows their relationships. A structural

view can be constructed with two types of diagrams, class and object diagrams.

Figure 3.2 Class diagram for modeling an order

Class diagrams: They describe the structure of a system. The structures are built

from classes and relationships. The classes can represent and structure information,

such as products, documents, and organizations. In Figure 3.2, a typical customer

order is modeled using the class diagram. The classes are represented as rectangles

with the names of the class written inside the rectangle. In Figure 3.2, Order ,

Order-I tem, I tem, and Customer are all classes. The association name appears

near the association line, and the multiplicities appear on each end. In Figure 3.2,

descr ibe and place are association names, and the numbers are the multiplicities.

The customer places an order, which is shown by an arrow pointing towards order.

The aggregate relationship is a specialization of association, where a whole is

associated with its parts. The hollow diamond on the association line in Figure 3.2

denotes that an order aggregates many order-items. The multiplicity of the

association can be represented as either a range (1..*), (0..*), etc., or a specific

number (1). In the association between customer and order, the multiplicity icons

represent the scenario where one customer places one or more orders. The

semantics of the order-item and item classes with associations is that (i) all items

describes
Item

1 1..*

0..*
Order-Item

1

Customer place 1

1..*

Order
describe

 43

and their definitions/descriptions are gathered with the Item class, (ii) not all items

in the Item class are put on orders by customers.

Figure 3.3 Object diagram for modeling a specific customer order

Object diagrams: They express possible object combinations of a specific class

diagram. They are typically used to exemplify a class diagram. Because an object

diagram is an instance of a class diagram, multiplicity is not shown. The object

names, which are underlined, are composed of their names, followed by a colon and

the class name. In Figure 3.3, AMX object belongs to the class Customer . As UML

is extendible, the object instantiated from the class is represented in this thesis as

shown in Figure 3.4.

Figure 3.4 Object instantiated from class

3.2.3 Behavioral view

This view represents the actual behavior of software. It contains diagrams

representing the inner-workings of classes and their behaviors in respect to one

another. The behavioral view is composed of four diagram types.

Sequence diagrams: They show one or several sequences of messages sent among a

set of objects. The inter-class communication is broken down as a series of steps.

Messages are shown as arrows that represent communication between objects. They

place : Order AMX: Customer

Class name

{ Object name: Class name}

 44

follow similar association rules as mentioned in the earlier views. Lifelines are

vertical dashed lines that indicate the object's presence over time. Activation boxes

represent the time an object needs to complete a task and are represented by

rectangular boxes along the lifelines. Objects can be terminated early using an

arrow labelled <<destroy>> that points to an X. All these concepts are represented

in Figure 3.5 with an example.

Figure 3.5 Sequence diagram for enrolling a student in the seminar

Collaboration diagrams: They describe a complete collaboration among a set of

objects with their roles. Unlike sequence diagrams, collaboration diagrams do not

have an explicit way to denote time; instead the messages are numbered in the order

of execution. Sequence numbering can become nested, for example, nested

messages under the first message are labelled 1.1, 1.2, 1.3, and so on. In Figure 3.6,

the sequences of messages passed between different objects are represented.

<<destroy>>

Wish_to_enroll
<<Create>>

Provide_name

Provide_StNumber Is_valid
(name,number) theStudent

:Student
 yes

theStudent

getAvailableSeminars()

Student

:Enroll_in_
Seminar

:Security_Logon

Seminar

 45

Figure 3.6 Collaboration diagram showing the calculation of the value of a portfolio

Statechart diagrams: They express object state under differing circumstances.

External stimuli are the focus of statechart diagrams. States represent situations

during the life of an object and can be illustrated using a rectangle with rounded

corners. Changes in states are indicated with an arrow pointing from one state to

another. The state transition is labelled with its cause. A filled circle followed by an

arrow represents the object's initial state. An arrow pointing to a filled circle nested

inside another circle represents the object's final state. The above-mentioned

concepts are represented in Figure 3.7, which is a statechart diagram for invoices.

Figure 3.7 Statechart diagram for invoices

Activity diagrams: they are much like statechart diagrams in that they express the

response of classes with respect to execution, but activity diagrams focus on

variables and states internal to a system rather than external stimuli. Activities are

action states represented by a rectangle with rounded corners. The receiving activity

is represented as a rectangle with a concave side and the sending activity as a

1: GetPortfolio
Value()

: Cash
Account

1.1: GetValue()

1.2: GetValue()

1.3: GetValue()

1.4: GetValue()

: Portfolio

: Security

: Security

: Security

1.1.1: GetPrice()

1.2.1: GetPrice()

1.3.1: GetPrice()

: Security
Holding

: Security
Holding

: Security
Holding

Invoice
destroyed Paying

Paid Unpaid

 46

rectangle with a convex side. Action flow arrows illustrate the relationships among

activities. The initial and final states are represented as mentioned in the statechart

diagrams section. A diamond represents a decision with alternate paths. In Figure

3.8, the two alternate decision paths, i.e., to send rejection or to send acceptance,

are represented by a diamond. The outgoing alternates should be labelled with a

condition or guard expression. A synchronization bar helps illustrate parallel

transitions. In Figure 3.8, either the send rejection or the receive invoice activity

could cause a final state in the activity.

Figure 3.8 Activity diagram for receiving delivery

3.2.4 Implementation view

This view demonstrates the organization and dependencies of the actual system and

its pieces. This view has only one type of diagram.

Component diagrams: Show the organization and dependencies of a system’s actual

parts. The components are represented using rectangles with tabs and their

relationships using dashed arrows as shown in Figure 3.9.

Receive
Delivery

Check
Delivery

Send
Rejection

Delivery not
accepted

Send
Acceptance

Delivery
accepted

Receive
Invoice

 47

Figure 3.9 Component diagram showing dependencies between software

components

3.2.5 Environment view

This view represents the environment in which the software will exist when

finished. This view has one diagram type.

Figure 3.10 Deployment diagram of physical hardware in the system

Deployment diagrams: Show all required resources for the software. This is a

special case of class diagram used to describe the hardware within a software

<<PC>>
ClientA:

PentiumPC

<<PC>>
ClientC:

PentiumPC

<<Printer>>
Colorprinter:
HPSuperJet

<<Server>>
Application

Server:
SunSuperServer

<<Internet>>
Internet

<<Database
Store>>

Database Server

<<TCP/IP over
modem>>

<<DB
Protocol>>

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

<<PC>>
ClientB:

PentiumPC

 main.cpp

 source.cpp program.exe

 main.obj wincrt.dll

 source.lib

 48

system. The nodes are represented by cubes, and their associations by lines, as

shown in Figure 3.10.

3.3 Extending UML

UML provides certain constructs that are used to customize the building blocks

mentioned in the previous section to suit application needs. Because of UML’s

unique capability to adapt and extend, it is possible to add new building blocks to

UML, making it a very flexible language that can be used in many situations

[Eriksson & Penker 2000]. These constructs are:

- Stereotypes: These are techniques used to define new kinds of building blocks in

UML based on existing blocks. They allow one to customize an existing UML

modeling element to suit application requirements.

- Tagged values: All modeling elements can be extended with tagged values that

consists of a tag and a value, for example, a version tag and a version number

(value) for a class.

- Constraints: These are rules applied to UML models. They can be applied to just

one or to several model elements. In addition to using predefined constraints, such

as ‘xor’ and ‘ordered’ , customized constraints, can be defined through a textual

language of UML called object constraint language (OCL) (to be discussed in

Section 3.4).

To facilitate the use of UML for modeling business processes, Eriksson & Penker

[2000] developed several more applicable model templates, which are discussed

below.

• Processes: The Eriksson-Penker business extensions represent a process in a

UML class diagram with the process symbol shown in Figure 3.11. A process (an

activity stereotyped to process) takes input resources from its left-hand side and

indicates its output resources on its right-hand side. The goals of the process are

 49

illustrated as goal objects above the process symbol and resources used as part of

the process are represented as resource objects below the process symbol, as

shown in Figure 3.11.

• Resources: Resource types are represented as classes. Resource instances are

represented as objects. The Eriksson-Penker business extensions define some

stereotypes to indicate different categories of resource types. Physical, abstract,

information object, and people are four types of resources. The information

resource class alone is represented by a rectangle with slanting sides.

• Goals: A goal describes the desired state of one or more resources. Dividing goals

into sub-goals is called goal modeling. The Eriksson-Penker business extensions

represent goals as objects and use an object diagram to show the dependencies

between goals and sub-goals.

• Rules: Many of the UML diagrams have built-in support for defining rules, using

the generic construct of defining a constraint. A class diagram has structural

constraints in its relationships (e.g., the multiplicity of an association). A state

diagram has behavioral constraints in its state and state transitions. Derivation

rules can be defined as a computational constraint in UML using object constraint

language (see Section 3.4).

Figure 3.11 Generic process diagram

<<Process>>

Process
<<physical>>

<<information>>

<<physical>>

<<people>> <<goal>>

<<physical>>

<<control>> <<achieve>>

<<supply>> <<supply>>

<<information>>

 50

3.4 Object Constraint Language (OCL)

Object constraint language (OCL) is UML’s recommended language for specifying

constraints. OCL is a declarative specification language. Statements in OCL cannot

actually change anything in the model, but they can however specify such a change.

The OCL language consists of expressions, comprising a statement involving

operators and operands, which return a result value. All expressions are related to a

specific context, which is specified with the keyword ‘context’ followed by the

name of the context part. To represent the concept that the OCL constraint is a class

invariant on the context, the keyword ‘ inv:’ followed by the invariant expression is

used. This means that the expression must evaluate to true for all objects of that

class. OCL will be used in Chapter 4 to model an enterprise.

3.5 Application of UML for Data Modeling

3.5.1 UML data modeling profile

The data modeling profile for UML explains the stereotypes used in UML for

database specific needs [Rational 2000]. It includes the descriptions and examples

for important concepts including database, schema, table, key and relationship. The

profile uses stereotypes and tagged values for all the information needed to describe

the structures of the database and its elements. The profile also uses constraints to

enforce database design conformance [Naiburg & Maksimchuk 2001].

• Database: A database is a system for storage and controlled access to stored data.

It is the biggest element a data model supports. The stereotype <<Database>>,

when used as a UML component, defines a database. As a component, the

database must have a name. The three possible representations of a database

component are shown in Figure 3.12.

 51

AEDL: Name of the database

Figure 3.12 Database representation using UML

• Schema: A full description of the data model to be used for storage and retrieval

of data is stored in a schema inside a database. The schema is the biggest unit that

can be worked with at any given time. A package (a rectangle with a tab on top,

as shown in Figure 3.13) using the <<Schema>> stereotype in a UML model

represents a database schema. Figure 3.13 represents the schema.

Figure 3.13 Schema representation using UML

• Table: A table is the basic modeling structure of a relational database. It

represents a set of records of the same structure, also called rows. Each of these

records contains data. The information about the structure of a table is stored in

the database itself. A class with the <<Table>> stereotype represents a relational

table in a schema of a database. The table can be represented in different ways, as

shown in Figure 3.14. The first compartment represents the table name; the

second compartment represents the attributes or column names of the table; and

the third compartment represents the operations of the table.

 SQL database
 -AEDL

 <<Database>>
 DB2 database
 -AEDL Oracle

database
AEDL

<<Schema>>
PURCHASING

 52

Figure 3.14 Table representation using UML

• Key: Keys are used to access a table. Primary keys uniquely identify a row in a

table, while foreign keys access data in other related tables. In Figure 3.15, the PK

tag represents the primary key, and the PK stereotyped operation is the primary

key constraint. Similarly, an FK tag represents the foreign key and it generates the

foreign key constraint, which is represented by a stereotyped FK on the operation.

Figure 3.15 Representation of keys using UML

• Relationship: A dependency of any kind between tables in a data model is called a

relationship. Every relationship is between a parent and child table, where a

parent table must have a primary key defined. The child table creates a foreign

key column and foreign key constraint to address the parent table. A non-

identifying association represents a relationship between two independent tables,

whereas an identifying relationship is a relation between two dependent tables. In

Figure 3.16, DEPT and EMP are the parent and child tables respectively, where

the foreign key of the child table does not contain all of the primary key columns.

In Figure 3.17, PERSON and ACCOUNT are the parent and child tables

 ACCOUNT

BALANCE: FLOAT
ACCOUNTNO: FLOAT

<<TABLE>>
ACCOUNT

BALANCE: FLOAT
ACCOUNTNO: FLOAT

 EMPLOYEE

 HIREDATE: DATE
PK EMPNO: NUMBER
FK DEPTNO: NUMBER
 SALARY: NUMBER

<<PK>> PK_EMPNO()
<<FK>> FK_DEPTNO()

 53

respectively, where the idea that the child table cannot exist without the parent

table is represented by the containment relationship (filled diamond).

Figure 3.16 Representation of non-identifying relationship using UML

Figure 3.17 Representation of identifying relationship using UML

A relationship has two roles associated with it. They define the role of one table in

association with the other. It is possible to assign more than one relationship

between two tables using different roles.

• Datatype: Supporting relational databases requires the support of standard

datatypes. Examples are char, date, float, long, and number.

• Column: A table contains columns, which are tagged attributes. Columns, when

they are instantiated as a row, can contain data. They must have a defined data

type. Constraints can be checked for any column. Columns are modeled as

attributes of the table class.

1 0..*

+FK_ACCOUNT1

 ACCOUNT

 BALANCE: FLOAT
PK ACCOUNTNO:FLOAT

KP
F SOCIALID: INTEGER

<<PK>> PK_ACCOUNT0()
<<FK>> FK_ACCOUNT1()

+PK_PERSON1

 PERSON

PK SOCIALID: INTEGER
 NAME: CHAR

<<PK>> PK_PERSON1()

<<IDENTIFYING>

<<NON-IDENTIFYING>>

0..1 0..*

+PK_DEPT

 DEPT

PK DEPTNO: NUMBER
 DNAME: VARCHAR2

<<PK>> PK_DEPT()

+FK_DEPTNO

 EMPLOYEE

 HIREDATE: DATE
PK EMPNO: NUMBER
FK DEPTNO: NUMBER
 SALARY: NUMBER

<<PK>> PK_EMPNO()
<<FK>> FK_DEPTNO()

 54

• Constraint: A constraint is a rule applied to the structure of the database. This rule

extends the structure and can be applied to a column and/ or table. All constraints

are defined as stereotyped operations.

• View: A virtual table that, from the user’s perspective, behaves exactly like a

typical table but has no independent existence of its own. The view is modeled as

a class, with the view icon drawn as a table with dotted line. It is also modeled as

a class with stereotype <<View>>.

• Role and cardinality: This represents a numerical range defined on the

relationship of how many times the relationship can occur. The role describes the

relationship between two classes textually. The role and cardinality are mentioned

when relating two classes.

• Stored procedure: This is an independent procedural function that typically

executes on the server. It can be defined as a procedure within the database, from

an external file or as a function. A stored procedure container is a grouping of one

or multiple stored procedures. It is modeled as a class with the stereotype <<SP

Container>>. Within a <<SP Container>> are the stored procedures, which are

modeled as operations on the container with the stereotype <<SP>>.

• Trigger: A trigger is activity executed by the database management systems as a

side effect or instead of a modification of a table or view to ensure consistent

system behavior on data operations. The trigger is displayed as a trigger

stereotype on the operation.

• Index: An index is a physical data structure that speeds up data access. It does not

change the quality or the quantity of data retrieved. The index is represented as

index stereotype on an operation.

3.6 Advantages of Using UML for Data Modeling

UML has many advantages over many other languages used for data modeling.

They include:

 55

• UML gives the ability to model, in a single language, the business application and

the database architecture of systems. It is helpful in bringing the many teams

involved in the development process together by using the same language (UML)

to model both the applications and data.

• Modeling a database is generally just the modeling of database tables, columns,

and relationships but not the entire database design. UML describes the database

in great detail. All the aspects of the database can be modeled by using UML.

Designing the database through data modeling in UML provides the ability to

capture many more items on the diagram visually than with traditional entity-

relationship (E-R) notations. One can model elements like domains, stored

procedures, triggers, and constraints as well as the traditional tables, columns, and

relationships. It exposes elements directly on the model that normally get hidden

behind modeled elements as tagged values.

• In UML for data modeling, diagrams do not have to be typed; this means one can

have elements of many different types on a diagram or one can stereotype the

diagram to a specific type and allow only those types of elements. UML supports

the typed concept for different levels of constructs. Making a database typed, such

as <<Database Diagram>>, is a very powerful mechanism for allowing a whole

database to be manipulatable. In data modeling, typed or non-typed construct has

triggered a long-standing debate in database and artificial intelligence

communities. In general, typed constructs tend to be more efficient in retrieval

and processing of data in the case of a large amount of data of a few types, while

non-typed constructs tend to be more flexible and suitable in the case of a small

amount data but a variety of data types. The mechanism for combination of typed

and non-typed constructs could achieve a more in terms of object relativity that

has been one of the criteria when evaluating a data modeling method [Smith &

Smith 1977, Ter Bekke 1992, Zhang & Werff 1994]. For example, a data

structure called ‘ Instance-As-Type’ [Li et al. 1999] could be modeled with this

mechanism.

 56

CHAPTER 4

ENTERPRISE SEMANTIC MODEL FRAMEWORK

4.1 Introduction

This chapter aims to introduce and describe the enterprise semantic model (ESM)

framework. Section 4.2 describes the basic idea of the ESM framework, in which

the philosophical ground of the semantic model approach to enterprise application

integration (EAI) is elaborated further. In Section 4.3, the characteristics of the

ESM framework are discussed, and a fundamental notion, ontology, is elaborated.

This has led to the need of two types of ontology for EAI : ontology for enterprises

and ontology for enterprise information systems. Sections 4.4 and 4.5 present the

conceptual models of ontology for enterprises and of ontology for enterprise

information systems, respectively. Section 4.6 provides a systematic procedure for

developing an ontology for a particular type of enterprise, a process enterprise. In

Section 4.7, the procedure for developing an ontology for a particular type of

process enterprise, a steel enterprise, is described. In Section 4.8, the enterprise

semantic model template is developed by using the ontologies developed in the

previous sections.

 57

4.2 Fundamentals of the Semantic Model Approach for EAI

4.2.1 Semantic data model

Historically, semantic database models were first developed to facilitate the design

of database schemas. In the 1970s, traditional models (relational, hierarchical, and

network) used data structures that focused on how they were represented in

computers. These data models lacked direct support for relationships, data

abstraction, inheritance, constraints, unstructured objects, and the dynamic

properties of an application. Although the relational model has provided database

practitioners with a modeling methodology independent of the details of the

physical implementation, many database designers believe that the relational model

does not offer a sufficiently rich conceptual model for problems that do not map

onto tables in a straightforward fashion.

During the past decade numerous data models with the aims of providing increased

expressiveness to the modeller and incorporating a richer set of semantics into the

database have emerged. This collection of data models can be loosely categorized

as “semantic” data models. Semantic models provide a higher level of abstraction

for modeling data, allowing database designers to think of data in ways that

correlate more directly to how data arise in the world. The primary components of

semantic data modeling are the explicit representation of objects, attributes and

relationships among objects; type constructors for building complex types; ‘ is-a’

relationships; and derived schema components. Additionally, the semantically

based data models provide the following advantages over traditional, record-

oriented systems [Trujillo et al. 1997]:

• Increased separation of conceptual and physical components;

• Decreased semantic overloading of relationship types;

• Availability of convenient data abstraction mechanisms.

 58

4.2.2 Semantic data model as a means of integrating program/data

The role of a semantic model can be re-visited. The semantic model in essence

plays a role as an integrator (see Figure 4.1). Figure 4.1(a) shows the evolution from

program pattern to semantic model pattern, and Figure 4.1(b) shows the architecture

of information systems based on the semantic model concept. The first sense of this

integrator is that different programs and files work together with the database

concept; the second sense is that different databases/programs supported by

different DBMSs work together based on the semantic model concept (see Figure

4.1(a)).

Figure 4.1 Semantic model as an integrator

Semantic Model Concept

Database-A

Database Concept

File A File B File C

Program A Program C Program B

(a)

Database-B Database-C

Semantic Model (Conceptual View)

Program A Program B Program C

ORACLETM DB2TM FoxProTM

(b)

 59

Under the semantic model concept, programs (A,B,C) with their corresponding

DBMSs work in the way shown in Figure 4.1(b). It is noted that the operation

architecture, as shown in Figure 4.1(b), has implied the need of an information

management system for the semantic model. At this point, research with the

heading of database integration is along this path [Ma et al. 1999].

Files/Programs could not communicate with each other automatically prior to the

database system concept, which allows them to communicate with each other

automatically (or with the help of DBMS). In essence, the DBMS has captured

some commonalities in various application data, both in data structure and data

manipulation. Different DBMSs have, however, created a new communication

barrier. The semantic model concept, then, creates another common platform for

different programs/DBMSs to communicate with each other- a means to overcome

the new barrier and a sense of integration.

A closer view of the history of the computing world reveals that integration has

been an issue that has constantly existed, which reflects freedom in academic

research (i.e., divergence) and usability (i.e., convergence). Each time, solutions to

integration appear to create a higher layer of platform for representing and

managing the commonalities among different participating entities (e.g., files,

DBMSs). In the case of evolution of programs/files into programs/databases and

into programs/semantic databases, the commonality the semantic model has

focussed on is such that all different programs more or less address a part or an

aspect of semantics of a discourse under consideration, and hence, the route to

integration is along the path of identification of common semantics and provision of

computer systems for managing the common semantics.

4.2.3 Analogy leading to the enterpr ise semantic model (ESM) approach

The present situation of enterprise application integration (EAI) resembles past

situations of computer programs integration; enterprise applications (e.g., various

 60

CAD/CAM systems, various ERP systems) are analogous to programs and, further,

analogous to programs/databases. This analogy can straightforwardly lead to a

semantic model approach to EAI, as shown in Figure 4.2(a). Figure 4.2(b) shows

the architecture of operations of these enterprise applications. From this analogy, it

becomes clear that an enterprise semantic model (ESM) needs to be first researched.

Figure 4.2 Semantic model approach to EAI

An essential requirement for ESM is that it should capture and represent enterprise

semantics. The concept of an enterprise includes the activity (or function) concept,

the resource concept, and the organization structure concept. One of the problems

with the current practices in EAI, as analyzed in Chapter 1 and Chapter 2, is a

missing link between enterprise functions (or activities) and enterprise applications

(or information systems). Another problem with EAI is uncertainty due to dynamic

evolutions of enterprise applications. To address these two problems, ESM must

capture this missing link. This is the important feature of the ESM approach

Enterprise Semantic Model Concept

EA-A EA-B EA-C

DB/Presentation DB/Presentation DB/Presentation

(a)

Enterprise Semantic Model

ORACLETM/Presentation FoxProTM/Presentation DB2TM/Presentation

(b) EA-A
(ERP)

EA-B
(CRM)

EA-C
(CAD)

DB: Database; ERP: Enterprise Resource Planning; CRM: Customer Relationship Management;
CAD: Computer Aided Design; EA-A, EA-B, EA-C: Enterprise Application Programs

 61

proposed in this thesis that distinguishes it from existing approaches (see Chapter

2).

4.3 General Methodology for ESM

ESM will be developed as a framework consisting of (i) a set of templates, (ii)

guidelines to extend the templates, and (iii) guidelines to instantiate the templates

given a particular enterprise. These guidelines are illustrated using examples. An

ontology approach will be applied to develop the ESM framework. Ontology in the

context of system modeling is a set of fundamental entities and their connectivities

within a discourse. Ontology represents things that are the most common and, thus,

shareable by different instances of a discourse under study. Semantics of a system

will be built upon the ontology of that system. Along this line of thinking,

enterprise ontology is a set of things that are common and shareable by enterprises.

Ontology modeling refers to a process that leads to a formal representation of

captured or defined ontology. In order to capture and represent the missing link in

ESM (see the discussions in Section 4.2.3), enterprise ontology modeling will be

carried out for both enterprise functions and enterprise applications.

To make ESM as flexible or generic as possible, the data abstraction method called

“generalization/specialization” is applied here. This then results in the organization

of ESM with the ontology approach in a hierarchical manner (see Figure 4.3). In

this lattice, Level 1 contains most generic things about an enterprise. Specializations

proceed up to Level 3. At Level 4, a conventional data structure or schema, which

uses those defined in the lower levels, can be derived and defined. A semantic

model of a particular enterprise is simply an instantiated template (i.e., Level 5). It

is noted that such a hierarchical organization has not been seen in the literature.

Usually, a two-layer organized structure was employed in the existing studies on

ontology [Fox & Gruninger 1998] or meta-modeling for design [Yoshikawa et al.

1994].

 62

Figure 4.3 Enterprise ontology lattice

As opposed to existing enterprise ontology modeling studies (see Chapter 2),

unified modeling language (UML) will be used in this thesis. Concepts and their

relationships in enterprise ontology can be expressed using various class and

relationship constructs in UML. More dynamic and complex relationships in

ontology can be expressed using the object constraint language (OCL) in UML.

Things at level 4 and level 5 need more UML constructs (refer to Chapter 3). The

remainder of this chapter will present a detailed development of ESM based on the

methodology. In particular, Section 4.4 and Section 4.5 will present ontology for

enterprise functions and ontology for enterprise applications, respectively; this

corresponds to level 1 (Figure 4.3). Section 4.6 presents ontology for a process

enterprise (i.e., level 2). Section 4.7 presents further specialized ontology for a steel

manufacturing enterprise (i.e., level 3). Section 4.8 shows how templates

(conventional database schema) are derived and defined; this corresponds to level 4.

On a general note, these developments do not pursue a complete model, but a model

with extendibility (or genericity) and practicability (see research objective 2 and the

idea described in Figure 1.3).

4.4 Ontology of Gener ic Enterpr ise Functions

In this section the three main concepts of an enterprise, namely, activity, resource,

and organization structure are modeled. The formalization of activity is crucial in

Enterprise
ontology

Enterprise
semantic
model Data/Process templates

Particular vertical segment enterprise ontology
(Process enterprise)

Ontology of particular type of enterprise in the
vertical segment (Steel manufacturing enterprise)

Generic enterprise ontology

Level 4

Level 3

Level 2

Level 1

Level 5 Instantiated templates
Specific

Generic

 63

any attempt to represent an enterprise. Activities are events that specify a

transformation on the world. States enable activities and are also caused by

activities. Activities are initiated at some point in time, and once initiated, they

have duration over some interval of time. Further, properties of states hold over the

duration of these activities. All activities require that some objects be available at

the time that the activity is performed. These objects act as resources for the

activities. The resource has a location and its quantity is measured by an

appropriate unit. The organization structure of an enterprise is divided into many

divisions and each division has its own goals; however, their collective goal is to

fulfill the goal of the organization. The organization has many agents, and they

perform different roles to achieve the goals.

4.4.1 Activity ontology

Figure 4.4 represents the activity ontology of an enterprise by using a UML class

diagram. The concepts are modeled as classes and the generalization/specialization

relationship between the classes are modeled by using an arrow with a hollow

triangle end. The class to which the arrow points is the generalized class, and the

class from which the arrow originates is the specialized class. The state tree linked

by an enables relation to an activity specifies what has to be true in order for the

activity to be performed. The state tree linked to an activity by a causes relation

defines what will be true of the world once the activity has been completed. There

are two types of states, terminal and non-terminal. Use, consume, release and

produce states belong to the terminal state, and exclusive, not, conjunctive and

disjunctive states belong to non-terminal state. The activity uses the resource. Both

the activity and state have an attribute called status. This attribute is modeled as a

class and has two subclasses: state status and activity status. Possible, committed,

enabled, re-enabled, disenabled and completed are the statuses of the state.

Dormant, terminated, executing, suspended and re-executing are the statuses of the

activity. The status is changed by action. Commit, enable, disenable, re-enable and

 64

complete are the types of action. The action occurs in a situation, and the situation

needs time.

Figure 4.4 Activity ontology

has

uses

occurs_in

enables
has

State

Terminal Non-terminal

Use

Consume Produce

Release

Conjunctive Disjunctive

Exclusive Not

Status

has

Activity

Possible

Enabled

Re-enabled

Disenabled

Completed Committed

State status

Terminated

Suspended

Re-executing

Executing

Dormant

Activity status

Action

Commit Complete Disenable Re-enable Enable

is_changed_by

Situation Time needs

Resource

causes

 65

Not all concepts shown in Figure 4.4 can be defined diagrammatically, especially

those concepts that are related to logical operations (e.g., sequence, order, list, etc).

They can, however, be defined by texts, i.e., object constraint language (OCL) of

UML (see Chapter 3 for details). Enable action is defined using OCL below.

Context State inv:

Enable

Pre: Status=Committed

Post: -

An action Enable takes place with the pre-condition that the status of

the state is committed.

Similarly, the following concepts from Figure 4.4 are defined using OCL and

documented in Appendix A:

- Action and time: commit, re-enable, disenable, complete, and duration

- Activity status: terminated, suspended, re-executing, dormant, and executing

- State status: possible, re-enabled, enabled, disenabled, completed, and committed

- Terminal state: use, release, produce, consume

- Non-terminal state: exclusive, not, conjunctive, and disjunctive

4.4.2 Resource ontology

Being a resource is not an innate property of an object but is derived from the role

an object plays with respect to an activity. Primitive resource properties are

identified and defined (Figure 4.5), from which more complex properties would be

defined. An activity uses a resource. A resource has quantity, location, and role and

is governed by restriction. Statuses of a resource are production, consumption, and

use. A resource can be divided into continuous and discrete. A continuous resource

is uncountable, whereas discrete resources such as finance, human, and supplier are

countable. In Figure 4.5, there can be various discrete resources other than finance,

 66

human or supplier; and hence, the discrete resource class is not completely

instantiated. Resources can also be divided into physically and functionally divisible

resources, and they both have their respective components.

Figure 4.5 Resource ontology

Using OCL, the concept of consumption of a resource is defined below.

Context Resource inv:

Consumption

Pre: trueuARqs =)...(

Post:)...()...(uARquARq es >

The consumption specification term entails that the resource amount

will be decremented after the completion of the activity, i.e., the

quantity sq of the resource-R at the start of the activity-A, in terms of

unit-u, will be greater than the quantity eq at the end of the activity-A.

Status

Restriction Quantity Role Location

Production Consumption Use

use has

governed _by

Activity

has

Physically Divisible
Resource

Functionally
Divisible Resource

has
has

Physical Component Functional Component Finance Human Supplier

Resource

Continuous Discrete

 67

It is noted that the definitions of the following concepts can be seen in Appendix B:

- Resource status: use, and production

- Resource type: continuous, discrete, physically divisible, and functionally

divisible

Supplier ontology: A supplier provides both products and information. An

enterprise receives products and information and pays back to the supplier (see

Figure 4.6). The products from the supplier can be of many types, such as

manufactured, bought, and non-physical (e.g., service). The supplier provides

information about the product it provides. The information the supplier and the

enterprise provide each other could be scheduling and resource information within

their respective organizations. The information is modeled in UML using a

rectangle with angled sides as shown in Figure 4.6.

Figure 4.6 Supplier ontology

Figure 4.7 Human resource ontology

Supplier Enterprise

received_by

received_by

received_by

Product

pay

received_by

provide

Information

provide

selected_from
HR Finance

need

received_by

Responsibility

has

Payroll
Other

Benefits

has has

Employee
Candidates

Activity

perform

provide

Finance

 68

Human resource ontology: Human resources (HR) are selected from the employee

candidates by conducting interviews. The HR performs activity, needs and receives

finance, has responsibility, and has payroll and other benefits (see Figure 4.7). The

HR acts as agents, which are described in the organization ontology.

Figure 4.8 Finance ontology

Finance ontology: Finance receives money and in turn funds various departments.

Finance forms the treasury and dictates the budget (see Figure 4.8).

4.4.3 Organization ontology

Figure 4.9 represents the organization ontology of an enterprise. An organization is

defined as a set of constraints on the activities performed by agents. In particular, an

organization consists of a set of divisions and has some goals. Each division and

goal has a set of sub-divisions and sub-goals, respectively. There are organization-

agents belonging to each division or sub-division. An agent can also be a member

of a team set up in response to a special task. Each agent has a set of

communication-link defining the protocol, based on which that agent communicates

with other agents in the organization. Each agent has a set of roles, and each role is

defined with a set of goals the role is created to fulfill. Each role requires certain

skill and is allocated with proper authority at the level that the role can achieve its

goals. Agents perform activities in the organization, each of which may consume

resources, and there is a set of constraints that restrict the activities.

Departments
fund

Finance

dictate
form

Treasury Budget

received_from

 69

Figure 4.9 Organization structure ontology

Using OCL, the concept of a role having an authority is defined below.

Context Role inv:

atr. implies role r has authority at

It is noted that the definitions of the following concepts can be seen in Appendix C:

- Organization structure: role, goal, and agent

4.5 Ontology of Gener ic Enterpr ise Information Systems

It should be noted that for the purpose of EAI, this thesis research treats an

enterprise application (i.e., an information system) as a black box with some

interfaces that are essential for communication with other applications. These

interfaces facilitate communications, particularly in terms of (i) functionality, (ii)

Goal

Sub-goal

Division

Sub-division

Skill Authority

Agent

Communication
link

Activity

Resource Constraint

Team

has
Organization

has

has
Role

require

play

restricted_by consume

perform

member_of

member_of

has

 70

information transfer, and (iii) physical compatibility (e.g., operating systems). From

the EAI viewpoint, the information of these interfaces is apparently more important

than the structure of the software.

Ontology of the storage and retrieval of data:

Figure 4.10 represents the storage and retrieval of data from a database. The client

inputs the data to be stored or queried using input devices like a keyboard in an user

interface. These data or queries are received by the application server where the

application logic is present. The application server formats the data and sends them

to the database server to be stored in the database. The database server then stores

these data in an appropriate place in the database. In case of queries, the application

server identifies the appropriate data to be retrieved for the queries and sends

instructions to the database server about the data to be retrieved. The database

server then retrieves the data to be retrieved as instructed by the application server

from the database and sends them to the application server, which then sends them

to the user interface for “showing” to other applications. The database server saves

all the information about the data retrieved and the location of the data stored in the

database. The physical database is a destination for the data.

Figure 4.10 Ontology of the storage and retrieval of data

send

send data/
query

send

send formatted data/
send information about
data to be retrieved <<Server>>

Application
Server

retrieve

store

<<Server>>
Database
Server

Database

<<PC>>
Client_x

 71

Ontology of the functional view information systems:

An enterprise has various information systems. These information systems can be

categorized into three main classes, corporate, execution, and management systems.

Figure 4.11 Corporate information system ontology

Corporate information system ontology: Corporate information systems (Figure

4.11) have information regarding finance and accounting and human resources

(HR). Finance and accounting information informs about cost accounting, budget,

accounts payable, and accounts receivable. Human resource information informs

about recruitment, payroll, and employee information.

Figure 4.12 Execution information system ontology

Corporate System

has has

inform_
about

Cost
Accounting

Budget Accounts
Payable

Accounts
Receivable

Recruitment Payroll Employee

inform_
about

inform_
about

inform_
about

inform_
about

inform_
about

inform_
about

Finance and Accounting
Information

Human Resource
Information

Requirements
information

Detailed Scheduling
information

Maintenance
information

Product
information

has
has has

has

Execution System

 72

Execution information system ontology: Execution systems (Figure 4.12) constitute

systems that execute the core function of an enterprise. They have information

regarding scheduling, maintenance, requirements, and product.

Figure 4.13 Management information system ontology

Management information system ontology: Management systems (Figure 4.13) have

information regarding inventory, purchasing, shipping, and order entry.

Ontology of information system- cost:

The information system within an enterprise has some costs associated with it

(Figure 4.14).

Figure 4.14 Ontology of information system- cost

Ontology of information system- software interface:

The information system within an enterprise has some software interface (Figure

4.15). The software interface has some costs associated with it.

Information System Cost
has

Shipping
Information

Inventory
Information

Purchasing
Information

Order Entry
Information

has
has has

has

Management System

 73

Figure 4.15 Ontology of information system-software interface

Ontology of information system- hardware interface:

The information system within an enterprise has some hardware interface (Figure

4.16). The hardware interface has some costs associated with it.

Figure 4.16 Ontology of information system- hardware interface

Ontology of information system- operating system (OS):

The information system within an enterprise has an operating system (Figure 4.17).

The OS has some costs associated with it.

Figure 4.17 Ontology of information system- OS

Ontology of information system- database management system (DBMS):

The information system within an enterprise stores its data in the database using a

database management system (Figure 4.18). The DBMS has some costs associated

with it.

has
OS Cost

has
Information System

has
Information System

Information System
has

Hardware Interface Cost
has

has
Software Interface Cost

 74

Figure 4.18 Ontology of information System- DBMS

Ontology of information system- manufacturer’s information:

The information system within an enterprise has a manufacturer (or producer)

(Figure 4.19). There are various attributes of information regarding the

manufacturer, which are used to evaluate the manufacturer and compare the

manufacturer with other manufacturers on the market. Supplier selection decisions

are made using these information.

Figure 4.19 Ontology of information system- manufacturer’s information

4.6 Specialization of Gener ic Enterpr ise Ontology (GEO) into

Gener ic Process Enterpr ise

In this section the generic enterprise ontology (GEO) described in Section 4.4 and

4.5 will be extended for a particular type of enterprise, a process enterprise. The

process enterprise provides a unique challenge as it is a continuous type of

enterprise. Production is not altogether stopped; production can, however, be

slowed down for grade changes or unusual operating conditions. This is because

stopping the production for overhaul/restart can be very expensive and/or time

consuming. The purpose of this section is also to show how the hierarchical

organization of ESM works (see Figure 4.3).

Information System has
Manufacturer

Information

has

use
DBMS Cost Information System

has

 75

4.6.1 Ontology of gener ic process enterpr ise functions

In this section, the generic enterprise functions presented in Section 4.4 will be

specialized into generic process enterprise functions.

Business process ontology:

Engineering ontology: The engineering or design process is elaborated in Figure

4.20. The engineering process is done in accordance with its quantitative and

qualitative goals and is driven by the deadlines and controlled by the design

manager. The engineering process takes as inputs the necessary data (e.g.,

specifications) and produces the analysis results. It uses the design personnel and

the information technology necessary to perform its function.

Figure 4.20 Engineering ontology

Manufacturing ontology: The manufacturing process is elaborated in Figure 4.21.

The manufacturing process is done in accordance with its quantitative and

qualitative goals and is driven by deadlines and controlled by the production

manager. The manufacturing process takes as inputs raw materials and produces

<<Process>>

 ENGINEERING/
 DESIGN

<<physical>>
Analysis Results

<<information>>
Data

<<people>>
Design

Manager

<<goal>>
Quantitative

Engineering Goal

<<control>> <<achieve>>

<<supply>> <<supply>>

<<information>>
Deadline

<<control>>
<<achieve>>

<<abstract>>
Information
Technology

<<people>>
Design Personnel

<<goal>>
Qualitative

Engineering Goal

 76

finished goods. It uses the manufacturing personnel and the manufacturing

equipment necessary to perform its function.

Figure 4.21 Manufacturing ontology

Resource ontology:

Employee ontology: Employees (Figure 4.22) perform some activities and have a

department. Employees have salary and benefits, working schedules, and records.

Figure 4.22 Employee ontology

Equipment ontology: Equipment (Figure 4.23) is used to manufacture products and

is maintained by employees. The equipment belongs to a department, has a value,

and has a working schedule and a working condition.

Department Salary &
benefits

Working
schedule

Activity Record

perform
has

has has has

Employee

<<physical>>
Finished Goods

<<goal>>
Quantitative

Manufacturing Goal

<<control>>
<<achieve>>

<<supply>>

<<goal>>
Qualitative

Manufacturing Goal

<<control>> <<achieve>>

<<information>>
Deadline

<<physical>>
Raw Materials

<<supply>>

<<Process>>

 MANUFACTURING

<<physical>>
Manufacturing Equipment

<<people>>
Manufacturing Personnel

<<people>>
Production
Manager

 77

Figure 4.23 Equipment ontology

Finance ontology: Finance (Figure 4.24) is received from banks and buyers.

Finance is used to pay for various expenses of the department and salaries. Finance

has accounts and interest.

Figure 4.24 Finance ontology

Organization structure ontology:

Figure 4.25 Manager ontology

Interest Department

Bank Buyer

Salary Account

received_from

pay pay has
has

Finance received_from

Working
schedule

Product Employee

Working
condition

maintained_by

has has has
has

manufacture Equipment

Department Value

Employee

Supervisor

Target Decision Regulation Direction Authority

define
define

has
define

make

Chief Executive
Officer Manager

controlled_by control

 78

Manager ontology: A manager (Figure 4.25) is an employee, controlled by a chief

executive officer. The manager controls the supervisor, defines targets, makes

decisions, has authority, and defines regulations and direction.

Figure 4.26 Supervisor ontology

Supervisor ontology: A supervisor (Figure 4.26) is an employee, controlled by the

manager. The supervisor controls the laymen, maintains records, makes decisions,

has authority, does check-ups, and makes detailed schedules.

Supplier’s information ontology:

A supplier of a generic process enterprise (Figure 4.27) has various types of

information, which are used in collaborative design, collaborative manufacturing,

supplier selection, supplier rating, and decision making.

Figure 4.27 Supplier’s information ontology

Employee

Layman

Record Decision Check-up Detailed schedule Authority

does
make

has
maintain

make

Manager Supervisor
controlled_by control

Collaborative
Design

Collaborative
Manufacturing

Supplier
Selection

Supplier
Rating

Decision
Making

used_in used_in

Supplier

used_in used_in
used_in

Information
provide

 79

4.6.2 Ontology of gener ic process enterpr ise information systems

In this section, the generic enterprise information systems modeled in Section 4.5

will be specialized into generic process enterprise information systems.

Ontology of the functional view of information systems:

In a generic process enterprise, there are five main categories of information

systems, corporate, engineering, management, execution, and process control

systems.

Engineering information system ontology: Engineering information systems (Figure

4.28) have information regarding quality, schedule, design, and requirements.

Figure 4.28 Engineering information systems ontology

Figure 4.29 Process control information systems ontology

Supervisory
information

Packaging/
Handling

information

Control
information

Powerhouse
information

has
has has

has

Process Control System

Data
acquisition
information

has

Design
information

Quality
information

Schedule
information

Requirements
information

has
has has

has

Engineering System

 80

Process control information system ontology: Process control systems (Figure

4.29) have information regarding packaging/handling, control, supervision,

powerhouse, and data acquisition.

Ontology of information system- cost:

Information systems of a generic process enterprise have some costs (Figure 4.30),

which are affected by the supplier, compatibility, adaptability, usability, and

hardware.

Figure 4.30 Ontology of information system- cost

Figure 4.31 Ontology of information system- software interface

Ontology of information system- software interface:

Generic process enterprise information systems have various types of software

interfaces (Figure 4.31). The interfaces have compatibility issues. The interfaces

translate/ group/
forward

Message Application
Status

Transaction
State

Graphics
/ Media

Application

support
input/
display notify get get

affect

Cost

Supplier Compatibility

has

Hardware Adaptability Usability

affect
affect affect

affect

Information System

has has
Information system Software Interface Compatibility

Data

 81

translate, group, and forward messages, notify applications, get application statuses,

get transaction states, support graphics/media and input/display data.

Figure 4.32 Ontology of information system- hardware interface

Ontology of information system- hardware interface:

Generic process enterprise information systems have various types of hardware

interfaces (Figure 4.32). The interfaces have compatibility issues. The interfaces

control and communicate with applications and hardware, support data storage, and

support input/output.

Figure 4.33 Ontology of information system- OS

Ontology of information system- operating system (OS):

Generic process enterprise information systems have various types of OS (Figure

4.33). The OS has compatibility issues, stores/retrieves data, controls/adapts

hardware/software, held in read-only memory (ROM), and provides security.

has
OS

Data Hardware Security

store/ retrieve

has

Software ROM

control/
adapt

control/
adapt held_in

Information
System

provide

has

Hardware

 has

Application

support support
control/
communicate_with

Information System Hardware Interface

Compatibility

Compatibility

control/
communicate_with

Input/ Output Data
Storage

 82

Figure 4.34 Ontology of information system- DBMS

Ontology of information system- database management system (DBMS):

Generic process enterprise information systems use various types of DBMS (Figure

4.34). The DBMS has compatibility, controls/manages database, receives requests

from applications, authorizes users, instructs OS, and has programs.

Figure 4.35 Ontology of information system- manufacturer’s information

Ontology of information system- manufacturer’s information:

An information system manufacturer of a generic process enterprise has

information (Figure 4.35) that informs about various aspects of its products, such as

hardware, functionality, operating system, interface, and DBMS information.

4.6.3 Link between the gener ic enterpr ise ontology (GEO) and gener ic

process enterpr ise ontology (GPEO)

It is noted that GEO was established in Section 4.4 and Section 4.5, respectively. In

Section 4.3, a methodology was proposed and was illustrated in Figure 4.3. This

has
Manufacturer

inform_about

Information

has Information
System

Hardware OS Functionality Interface DBMS

inform_about inform_about inform_about
inform_about

has

Program

use
DBMS

Database Application OS

has

User

request

control/
manage

Information System

authorize
instruct

Compatibility

 83

methodology is an application of a data abstraction called generalization/

specialization, which is one of the bases for the popular methodology in software

engineering, called the object-orientation paradigm. The biggest advantage of

organizing information (knowledge and data) in this way is that information at a

more generalized level can be reused by objects at specialized levels. This section

aims to provide an explanation on the generalization/specialization linkage between

GEO and GPEO.

Figure 4.36 Link between GEO for activity and GPEO for activity

Link between GEO for activity and GPEO for activity (manufacturing):

Manufacturing is an activity. In Figure 4.36, manufacturing uses raw materials, the

manufacturing activity is considered to be in produce state, and the status of the

produce state is enabled. Then the status of the manufacturing activity becomes

executing. The enabled status of the produce state is changed by disenable action;

and this action occurs in the situation, completing manufacturing. Completing

manufacturing requires time. It can be noted here that knowledge at the GPEO level

is derived from knowledge at the GEO level by following the link, i.e., GPEO “ is-

a” GEO; in particular, manufacturing is an activity.

Raw Material

Executing Status

Disenable Action

Completing Manufacturing Time

has

Manufacturing

has

Produce State

is_changed_by

Enabled Status

occur_in
require

use is_in

 84

Figure 4.37 Link between GEO for resource and GPEO for resource

Link between GEO for resource and GPEO for resource (equipment):

Equipment is a discrete resource. In Figure 4.37, when the manufacturing activity

uses the equipment, the equipment is in use status. The equipment is operated by

humans, provided by the supplier, needs finance, is at a location, is governed by

machine rules and organization rules, has quantity, and performs the role of goods

manufacture.

Link between GEO for organization structure and GPEO for organization

structure (manager):

A manager is a part of the organization structure. In Figure 4.38, the manager is

considered to belong in the manufacturing department, which is one of the divisions

of the organization. The manager can be a member of the design team and

communicates through orders. The manager plays the role of a production manager

in this case, whose goal is to manufacture goods, which is a sub-goal of the

organization goal of making profit. The production manager role requires

engineering skills and authorizes production. The Manager performs manufacturing

activity, which is restricted by deadlines and consumes raw materials.

Discrete Resource
Use Status

Machine Rule Quantity

Goods
Manufacture

Location

use

is_in

governed _by

Manufacturing

has is_at perform

Organization
Rule

governed
_by

Equipment

Finance Supplier

provided_by need

Human
operated_by

 85

Figure 4.38 Link between GEO for organization structure and GPEO for

organization structure

Link between GEO for supplier’s information and GPEO for supplier’s

information:

In Section 4.4 (see also Figure 4.6), it was noted that the supplier provides

information to an enterprise. In Section 4.6.1 (see also Figure 4.27), this ontology is

specialized to show how the supplier’s information is used in the generic process

enterprise.

Link between GEO for information system and GPEO for information system:

The information system in a process enterprise is a specialization of the information

system in a generic enterprise. In the GEO for information systems section (Section

4.5), it was noted that an information system has cost, a software interface, a

hardware interface, an OS, a DBMS, and the manufacturer’s information. In the

Make Profit

Manufacture Goods

Manufacturing Department

Engineering Skill Production

Manager

Order

Manufacturing

Raw Material Deadline

aim_to
Organization

authorize require

play

restricted_by consume

perform

member_of

member_of

communicate_
through

Production Manager

aim_to
Design Team

 86

GPEO for information systems section (Section 4.6.2), the above-mentioned

concepts are specialized into the process enterprise. In Section 4.5, the ontology of

the functional view of generic enterprise information systems, such as corporate,

execution, and management systems, was defined. In Section 4.6.2, the ontology of

the functional view of information systems specific to a process enterprise, such as

engineering and process control systems, was defined. It is noted that the generic

information systems defined in Section 4.5 were re-used in Section 4.6.2.

4.7 Specialization of GEO and GPEO into Gener ic Steel Enterpr ise

In this section, the GEO and GPEO described in the earlier sections will be

specialized for a particular type of process enterprise, the steel enterprise. This

section also shows how the hierarchical organization of ESM works (see Figure

4.3).

4.7.1 Ontology of gener ic steel enterpr ise functions

In this section, the GEO and GPEO, defined in Section 4.4 and Section 4.6.1,

respectively, will be customized for generic steel enterprise functions.

Business process ontology:

Manufacturing ontology: The generic steel manufacturing process is elaborated in

Figure 4.39. The manufacturing process is done in accordance with its quantitative

and qualitative goals and is controlled by deadlines and the production manager.

The manufacturing process takes as inputs the raw materials and alloys, and outputs

the finished steel goods. It uses manufacturing personnel and manufacturing

equipment such as buckets, agents, ladles, furnaces, rolling mills, and cooling beds,

as resources to perform its function.

 87

Figure 4.39 Manufacturing ontology

Resource ontology:

Furnace ontology: The furnace (Figure 4.40) is a resource used by a steel

enterprise. The furnace melts charge and produces melted steel and slag. Agents

and power are used by the furnace and it is controlled by the control system.

Figure 4.40 Furnace ontology

Agent Control System

Charge
Melted
steel

Slag Power

supply

produce
use

melt

use controlled_by

Furnace

<<physical>>
Steel

<<people>>
Production
Manager

<<goal>>
Quantitative

Manufacturing Goal

Amount of Steel:
Integer=x

<<people>>
Manufacturing

Personnel

<<physical>>
Agents

<<control>>
<<achieve>>

<<supply>>
<<supply>>

<<goal>>
Qualitative

Manufacturing
Goal

<<control>> <<achieve>>

<<information>>
Deadline

<<physical>>
Raw Materials

<<physical>>
Alloys

<<physical>>
Furnace

<<physical>>
Rolling Mill

<<supply>>

<<supply>>

<<supply>>

<<Process>>

 MANUFACTURING

<<supply>>

<<physical>>
Ladle

<<physical>>
Bucket

<<supply>>

<<physical>>
Cooling Bed

 88

Organization structure ontology:

Production manager ontology: The production manager (Figure 4.41) is controlled

by the plant manager. The production manager co-ordinates resources and

activities, plans schedules, monitors standards, analyzes limitations and constraints,

reviews recommendations, and controls production supervisors.

Figure 4.41 Production manager ontology

Figure 4.42 Supplier’s information ontology

Supplier’s information ontology:

The supplier of a steel enterprise has much information to be examined. For

example, the raw materials quality information of a supplier (Figure 4.42), is

Resource Schedule Activity Standard

review monitor

co-ordinate

plan

Plant
Manager

controlled_by control

co-ordinate

Production
Supervisor

Recommendation Limitation &
Constraint

analyze

Production
Manager

Quality Information

Supplier Steel Grade Steel-making Process Engineering Department Price

select

decide
influence analyzed_by

dictate

Raw Materials Quality Information

 89

analyzed by the engineering department, which selects the supplier, decides the

final steel grade, influences the steel-making process, and dictates the price.

4.7.2 Ontology of gener ic steel enterpr ise information systems

In this section, the GEO and GPEO defined in Section 4.5 and Section 4.6.2

respectively, will be customized for generic steel enterprise information systems.

Ontology of the functional view of information systems:

Figure 4.43 Ontology of CAD software

Ontology of computer aided design (CAD) software: A steel enterprise has many

information systems for different functions. For example, the CAD software (Figure

4.43) performs analysis, simulation, data management, and 2D/3D graphics;

produces reports; and serves as a parts library.

Ontology of information system- cost:

A steel enterprise has many information system related costs (Figure 4.44), such as

maintenance cost, associated with it. Maintenance cost is affected by qualified staff;

standardized programming language, operating system, and documentation; and

system structure.

perform

Analysis Report Parts
Library

Simulation

perform

perform

produce
serve_as

2D/3D
Graphics

Data
Management

perform

CAD
Software

 90

Figure 4.44 Ontology of information system- cost

Ontology of information system- software interface:

A steel enterprise has different information systems with different interfaces (Figure

4.45). For example, the CAD system interface has a toolbar, settings menu, and

pop-up menu; and can create/edit/move objects, display online help, control object

precision, and change object properties.

Figure 4.45 Ontology of information system- software interface

Ontology of information system- hardware interface:

A generic steel enterprise has different hardware interfaces. For example, the

process control system interface (Figure 4.46) communicates with process control,

operator control, and data analysis application; handles signals; and adapts process

control equipment.

Object Object
Property

has
has has

display

CAD System Interface

create/ edit/ move change

Online
Help

Object
Precision

control

Pop-up
Menu

Settings
Menu

Tool
Bar

Maintenance Cost

Qualified
Staff

Standardized
Programming

Language

Standardized
Operating
System

Standardized
Documentation

System
Structure

affect

affect affect affect

affect

 91

Figure 4.46 Ontology of information system- hardware interface

Ontology of information system- manufacturer’s information:

There is much information to be considered regarding the manufacturer of a generic

steel enterprise information system (Figure 4.47), including DBMS information.

DBMS information informs about the compatibility, security, data transfer, query

builder, and space management of the DBMS.

Figure 4.47 Ontology of information system- manufacturer’s information

4.7.3 Link between the gener ic enterpr ise ontology (GEO), gener ic process

enterpr ise ontology (GPEO) and gener ic steel enterpr ise ontology

(GSEO)

It is noted that GEO was established in Section 4.4 and 4.5, and GPEO established

in Section 4.6. This section aims to provide an explanation about the generalization/

specialization linkage between GSEO and, GEO and GPEO.

communicate_
with

communicate_
with

communicate_
with

Process
Control

Equipment

adapt

Process
Control

Application

Operator
Control

Application

Data
Analysis

Application

Signal

handle

Control System Interface

Compatibility Security

inform_
about inform_

about

Data Transfer Query Builder
Space

Management

inform_
about

inform_
about

inform_
about

DBMS Information

 92

Link between GEO and GPEO for functions, and GSEO for functions:

Manufacturing for a steel enterprise (Figure 4.39) is a specialization of the

manufacturing for process enterprise (4.21), and both types of manufacturing are

activities (Figure 4.4). The furnace (Figure 4.40) is equipment (Figure 4.23) and

eventually a resource (Figure 4.5). Hence, all the concepts that are applicable to

resource and equipment are also applicable to the furnace. The production manager

(Figure 4.41) is a manager (Figure 4.25) and acts as an agent in the organization

structure (Figure 4.9). The production manager is eventually a human resource

(Figure 4.7). Hence, all the concepts that are applicable to a human resource, agent,

and manager are also applicable to the production manager. The supplier

information specific to steel enterprise, raw materials quality information (Figure

4.42), is a specialization of supplier information used in the generic process

enterprise (Figure 4.27). Both types of supplier information are developed from the

supplier information ontology (Figure 4.6).

Link between GEO and GPEO for information systems, and GSEO for

information systems:

In Section 4.6.2, cost, software interface, hardware interface, and manufacturer’s

information for information systems specific to process enterprise was derived from

Section 4.5, where the same concepts generic to all enterprises were defined. In

Section 4.7.2, the above mentioned concepts are specialized for information

systems specific to a steel enterprise: maintenance cost from generic cost, CAD

system interface from software interface, control system interface from hardware

interface, and DBMS information from generic information system manufacturer’s

information. It is noted that while modeling the ontology for the functional view of

information systems, the CAD system modeled as information systems specific to

steel enterprise is a specialization of the engineering system modeled as information

systems specific to a process enterprise. The CAD system re-uses the concepts

 93

developed in the engineering system ontology, and they both re-use the generic

information systems defined in the GEO section (Section 4.5).

4.8 Enterpr ise Semantic Model (ESM) Template

The ESM developed in this section acts as a template, which can be customised to

develop the semantic model for a particular enterprise. ESM templates for both

enterprise functions and enterprise information systems are developed in this

section using the ontologies developed in the previous sections.

4.8.1 ESM template for enterpr ise functions

In this section, the ESM template is developed for enterprise functional aspects such

as business processes, enterprise resources, organization structure, and supplier

information.

Figure 4.48 ESM template for business processes of enterprise

Purchasing

Execution Design Maintenance

Human
Resource

Management

Sales

Finance

 94

ESM template for business processes of enterprise:

The ESM template for business processes of enterprise is depicted in Figure 4.48

using an ‘activity diagram’ of UML. The human resource ontology is defined in

Figure 4.7 and the finance ontology in Figure 4.8. Similarly, the ontologies for

design, execution, maintenance, purchasing, and sales can be defined. These

ontologies are used in the ESM template for business processes of an enterprise, as

shown in Figure 4.48. Design, execution, and maintenance occur simultaneously,

but only after the completion of the purchasing activity. Sales takes place after all

the above-mentioned activities are completed. Human resource management and

finance take place simultaneously with all the activities.

ESM template for enterprise resources:

The ESM template for enterprise resources is depicted in Figure 4.49. Employee

uses knowledge, materials, equipment, and technology. Equipment uses or makes

materials and uses technology. Finance is needed by most of the resources such as

employees, materials, equipment, and technology.

Figure 4.49 ESM template for enterprise resources

ESM template for enterprise organization structure:

The ESM template for enterprise organization structure is depicted in Figure 4.50.

The corporate executive officer controls the plant manager, who in turn controls the

Technology Material

Finance

use

use

Knowledge

use use

Employee

need

need need

need

use use/ make Equipment

 95

execution, sales, purchasing, and finance managers. These department managers

control their respective workers.

Figure 4.50 ESM template for enterprise organization structure

ESM template for enterprise supplier information:

The ESM template for enterprise supplier information is depicted in Figure 4.51.

There are various types of information regarding a supplier for an enterprise, which

are considered while selecting the supplier. They are the supplier’s reliability,

quality, client-base, financial stability, and after-sales support information.

Figure 4.51 ESM template for supplier information

has
Supplier

Reliability
Information

Information

Financial
Stability

Information

Client-base
Information

After-sales
support

Information

Quality
Information

control

Plant Manager

control

Corporate Executive Officer

Department worker

control

Execution
Manager

Sales
Manager

Finance
Manager

Purchasing
Manager

 96

4.8.2 ESM template for enterpr ise information systems

In this section, the ESM template is developed for enterprise information system

aspects, such as their functional view, cost, software interface, hardware interface,

operating system, database management system, and manufacturer’s information.

Figure 4.52 ESM template for information systems- functional view

ESM template for information systems- functional view:

The ESM template for the functional view of enterprise information systems is

depicted in Figure 4.52 using ‘package diagram’ of UML. The enterprise has

various information systems performing different functions (Section 4.5). These

information systems can be categorized into three packages, corporate, execution

and management systems. The execution systems depend on both the management

and corporate systems, and the management systems depend on the corporate

systems.

Figure 4.53 ESM for information system- cost

Information System Cost
has

Maintenance Cost Initial Cost Operation Cost

CORPORATE SYSTEM

MANAGEMENT SYSTEM EXECUTION SYSTEM

 97

ESM template for information system- cost:

The ESM template for the cost of enterprise information systems is depicted in

Figure 4.53. The information system of an enterprise has some costs, such as initial,

operation, and maintenance costs, attached to it.

ESM template for information system- software interface:

The ESM template for the software interface of enterprise information systems is

depicted in Figure 4.54. The enterprise information system has various types of

software interfaces such as graphical user interface and non-graphical user

interface.

Figure 4.54 ESM for information system- software interface

ESM template for information system- hardware interface:

The ESM template for the hardware interface of enterprise information systems is

depicted in Figure 4.55. The hardware of an enterprise has interfaces, such as

control interface and non-control interface.

Figure 4.55 ESM template for information system- hardware interface

Hardware
has

Non-control Interface Control Interface

Hardware Interface

Software Interface
has

Information System

Non-Graphical User Interface Graphical User Interface

 98

ESM template for information system- operating system (OS):

The ESM template for the OS of enterprise information systems is depicted in

Figure 4.56. The enterprise information system has various types of OS, such as

batch, time-shared, and real-time OS.

Figure 4.56 ESM template for information system- OS

ESM template for information system- database management system (DBMS):

The ESM template for the DBMS of enterprise information systems is depicted in

Figure 4.57. The enterprise information system uses various types of DBMS, such

as object-oriented (OO), extended relational, relational, and hierarchical DBMS.

Figure 4.57 ESM template for information system- DBMS

ESM template for information system- manufacturer’s information:

The ESM template for the manufacturer’s information of enterprise information

systems is depicted in Figure 4.58. The information system manufacturer of an

Information System
use

DBMS

OO
DBMS

Extended
Relational DBMS

Hierarchical
DBMS

Relational
DBMS

Information System
has

OS

Batch
OS

Time-
shared OS

Real-time
OS

 99

enterprise has various information, such as hardware, functionality, operating

system, interface, and DBMS information.

Figure 4.58 ESM template for information system- manufacturer’s information

4.9 Conclusion

In this Chapter, the philosophical ground of the semantic model approach to EAI is

elaborated. A fundamental notion of the ESM framework, ontology, is also

discussed. Ontology modeling is done for both enterprise functions and enterprise

information systems. Using this generic ontology, a systematic procedure for

developing ontology for a particular type of enterprise, process enterprise, is

detailed. Further, the procedure for developing ontology for a particular type of

process enterprise, steel enterprise, from the ontology of generic process enterprise

is described. Finally, the enterprise semantic model template is developed by using

the ontologies developed in the previous sections. In the next Chapter, the

procedure for instantiating the ESM template will be explained.

Interface
Information

Operating
System

Information

Functionality
Information

Hardware
Information

DBMS
Information

has
Manufacturer

Information

has Information
System

 100

CHAPTER 5

A CASE STUDY

5.1 Introduction

This chapter demonstrates how the enterprise semantic model (ESM) framework is

applied to develop the semantic model for a particular enterprise. The enterprise is

called ABC, which is largely based on a real company, but its name is not

disclosed. In Section 5.2, ABC is introduced. It is noted that in Chapter 4, a five-

layer organizational architecture of the ESM framework was presented (see Figure

4.3). Part of the templates at level 4 will also be described in this chapter because

they depend on a particular company situation; as such, those company specific

templates are described in Section 5.3. A concrete semantic model is the result of

instantiation of the templates; Section 5.4 presents such instantiation. Section 5.5

gives examples to show the potential of using the semantic model proposed in this

thesis to address unsolved problems with those other approaches to EAI (see

Chapter 1).

5.2 ABC Company

The enterprise for which the ESM is developed in this chapter will be called ABC.

The enterprise’s original name is not disclosed for reasons of confidentiality.

 101

ABC’s sole line of business is steel making and fabricating. ABC is one of the

leading suppliers of the wide and thick carbon hot rolled coil and discrete plate in

North America. It is a major player in certain special steel markets, especially

tubular products and flat-rolled alloy steels. ABC makes steel pipes ranging from 2-

80" in diameter. ABC also performs cut-to-length operations on steel pipes. ABC

has an annual capacity of 1,000,000 tons of steel produced in two electric arc

furnaces. The major raw material used in the steel making process is ferrous scrap.

ABC’s total annual consumption of ferrous scrap can be more than 1.1 million tons;

thus, the company is a large recycler of steel. ABC includes a modern slab caster

which processes liquid steel into continuously cast solid steel slabs up to 8" thick

and up to 86" wide. The slab is then usually cut into 30' lengths, reheated in a gas-

fired furnace to a temperature of 2300 degrees Fahrenheit, and rolled on a hot

rolling mill into strips of steel from 0.090" to .750" thick, 36" to 77" wide and up to

3000' long which are then coiled up for ease in handling and transport. The rolling

mill also produces hot rolled discrete plate from .500" to 2.5" thick and 48" to 72"

wide. ABC purchases scrap from a network of scrap dealers and processors.

The electric arc steel making process uses electrical energy, which flows through

graphite electrodes positioned above the raw materials so as to create an electrical

arc reaching temperatures up to 5500 degrees Fahrenheit. The use of this form of

energy makes ABC a large consumer of electricity. In addition, the graphite

electrodes, which carry the electrical energy to the scrap and are slowly consumed

in the process, are a source of carbon. A few of the other raw materials, including

alloys such as manganese and silicon, are added to certain types of steel in order to

impart special properties such as strength and corrosion resistance characteristics.

Oxygen is used to remove impurities during the steel making process and to provide

additional energy for melting the raw materials. Carbon dioxide and argon gases are

used to shield the liquid steel from ambient air contamination during refining and

pouring. Electric arc furnace steel making is environmentally friendly. Up to 46

million Imperial gallons of water are circulated daily in the steel melting and

 102

casting operations, chiefly as a process coolant. This water is constantly re-treated,

purified, and then recycled.

ABC employs directly and through its subsidiary companies more than 2,000

people. ABC, like other steel companies, has invested millions of dollars to make

steel making more environmentally friendly. All of ABC's operating facilities have

received ISO 14001 certification of their environmental management systems. The

by-products of steel making are converted into other useful products. So far ABC

has the following enterprise information systems: SAPTM ERP and DLGLTM systems

for accounting and human resource management; SDCTM system for maintenance

scheduling; PreactorTM for production scheduling; AutoCADTM R12 for engineering;

OutboundTM for shipping; KinectricsTM for quality management; and SimensTM and

UniversalTM for process control.

5.3 Enterpr ise Semantic Model Template Specialized for ABC

The ESM developed in this section is specialized for ABC. From this ESM

template, the semantic model for ABC can be developed through the process of

instantiation. These templates are built upon the ontology developed in Chapter 4.

5.3.1 ESM template for enterpr ise functions specialized for ABC

In this section, the ESM template is developed for enterprise functional aspects such

as business processes, enterprise resources, organization structure, and supplier

information.

ESM template for manufacturing (business process):

The ESM template for a particular business process, manufacturing, is modeled in

Figure 5.1. Manufacturing proceeds in the order from charging, melting, casting,

 103

transportation, and finishing. All along, the manufacturing process sends

information to various departments simultaneously.

Figure 5.1 ESM template for manufacturing

ESM template for manufacturing equipment (resource):

The ESM template for a particular resource, manufacturing equipment, is modeled

in Figure 5.2. The various manufacturing equipment are: container, furnace,

processing equipment, and material handling equipment.

Figure 5.2 ESM template for manufacturing equipment

ESM template for organization structure:

The ESM template for organization structure specialized for ABC is modeled in

Figure 5.3. The corporate executive officer controls the plant manager, who in turn

Container Furnace

Manufacturing Equipment

Sending
Information

Charging

Melting

Casting

Transportation

Finishing

Processing Equipment Material Handling Equipment

 104

controls the direct production manager and support manager. These managers

control their respective department workers.

Figure 5.3 ESM template for organization structure

Figure 5.4 ESM template for supplier’s information

ESM template for supplier’s information:

The ESM template for a particular supplier’s information, raw materials quality

information, is modeled in Figure 5.4. The raw materials supplier has much

information to be examined. For example, the various types of quality information

to be considered when buying raw materials from the supplier include raw materials

property information and raw materials ingredient information.

Direct Production Manager Support Manager

control

Plant Manager

control

Corporate Executive Officer

control

Department Worker

has

Raw Materials Quality Information

Raw Materials Property
Information

Raw Materials Ingredient
Information

Raw Materials supplier

 105

5.3.2 ESM template for enterpr ise information systems specialized for ABC

In this section, the ESM template is developed for the functional view of enterprise

information systems.

ESM template for information systems- functional view:

The ESM template for functional view of information systems, specialized for

ABC, is modeled in Figure 5.5. Engineering systems depend on corporate systems;

execution systems depend on engineering systems; and process control systems

depend on execution systems. The relationships between the remaining systems are

explained in Section 4.8.

Figure 5.5 ESM template for information systems- functional view

5.4 Instantiation of Enterpr ise Semantic Model Template for ABC

The enterprise semantic model (ESM) for both the functions and information

systems of ABC is developed by instantiating the ESM template developed in

CORPORATE SYSTEM

MANAGEMENT SYSTEM EXECUTION SYSTEM

ENGINEERING SYSTEM

PROCESS CONTROL SYSTEM

 106

Section 5.3. It is noted that the instantiated ESM developed in this section could go

one level further. However, the instantiation is not undertaken to that level because

the problem called “one class one instance or few instances” could occur [Zhang &

Werff 1993], which has by itself caused much debate in the database community. In

the following discussion, this will be noted.

5.4.1 ESM for ABC functions

In this section, the ESM for functional aspects of ABC such as manufacturing

business process, equipment resources, organization structure and supplier

information are modeled.

ESM for ABC business process- manufacturing:

The ESM for the manufacturing business process of ABC is modeled in Figure 5.6

by instantiating the ESM template shown in Figure 5.1. The charging includes

bucket makeup and furnace charging. The melting includes melting in electric arc

furnace, refining, tapping into ladle, adding alloy and de-sulphurizing agents, and

slag removal. The casting includes casting in continuous slab caster and the

transportation includes slab transportation by over-head crane. The finishing

includes re-heating, rolling in 2-hi slabbing mill, shearing in shearing mill, finishing

in 4-hi rolling mill, and cooling in cooling bed. The sending information includes

sending information to engineering, HRD, R&D, finance, and maintenance

departments. By modeling all the activities shown in Figure 5.6 as classes, and then

instantiating them, instantiation can be made to go one level further. For example,

slag removal can be modeled as a class, and the exact slag removed, sulphur , can

be instantiated as an instance or an object of that class.

 107

Figure 5.6 ESM for ABC business process- manufacturing

Sending Information

Finishing

Transportation

Casting

Melting

Charging

Sending
Information
to the HRD

Sending
Information
to the R&D

Sending
Information

to the
Finance

Department

Sending
Information

to the
Maintenance
Department

Bucket Makeup

Furnace Charging

Melting in Electric Arc Furnace

Refining

Tapping into Ladle

Slag Removal

Adding Alloys and De-sulphurizing Agents

Casting in Continuous Slab Caster

Slab Transportation by Over-head Crane

Shearing in Shearing Mill

Re-heating

Rolling in 2-hi Slabbing Mill

Rolling in 4-hi Finishing Mill

Cooling in Cooling Bed

Sending
Information

to the
Engineering
Department

 108

ESM for ABC resource- equipment:

The ESM for the manufacturing equipment of ABC is modeled in Figure 5.7, by

instantiating the ESM template shown in Figure 5.2. Container includes ladle and

bucket; furnace includes electric arc furnace, walking beam furnace, slab re-heat

furnace, and ladle metallurgy furnace; processing equipment includes rolling mill,

shearing mill, leveller, continuous slab caster, cooling bed, up-coiler, slabbing mill,

and finishing mill; and material handling system includes transfer cars and over-

head cranes. The classes shown in Figure 5.7 can be instantiated to one level

further. For example, the class electric arc furnace can be instantiated to an object,

FuchsTM, the exact electric arc type of furnace used in ABC.

Figure 5.7 ESM for ABC resource- manufacturing equipment

Ladle

Manufacturing Equipment

Container

Electric
Arc

Furnace

Slab
 Re-heat
Furnace

Walking
Beam

Furnace

Ladle
Metallurgy

Furnace

Rolling
Mill

Slabbing
Mill

Shearing
Mill

Finishing
Mill

Leveller Up-coiler

Cooling
Bed

Continuous
Slab Caster

Over-head
Crane

Transfer
Cars

Bucket

Furnace Processing Equipment Material Handling System

 109

ESM for organization structure of ABC:

The ESM for the organization structure of ABC is modeled in Figure 5.8, by

instantiating the ESM template shown in Figure 5.3. Direct production manager

includes purchasing, design, sales, manufacturing, inventory, and workflow

managers; support manager includes finance, HRD, CRM, R&D, information

systems, maintenance, quality control, safety control, shareholder relations, and

environmental affairs managers; and department worker includes department

supervisors and department laymen. The classes shown in Figure 5.8 can be

instantiated to one level further. For example, the class sales manager can be

instantiated to an object, the exact name of the sales manager.

 Figure 5.8 ESM for organization structure of ABC

control

Plant Manager

control

Corporate Executive Officer

control

Department Laymen

control

Department Supervisors

Direct Production Manager Support Manager

Inventory
Manager

Purchasing
Manager

Design
Manager

Sales
Manager

Workflow
Manager

Manufacturing
Manager

HRD
Manager

CRM
Manager

Finance
Manager

Maintenance
Manager

Quality
Control
Manager

R&D
Manager

Shareholder
Relations
Manager

Information
System

Manager

Safety
Control
Manager

Environmental
Affairs

Manager

 110

ESM for supplier information of ABC:

The ESM for the supplier information of ABC is modeled in Figure 5.9 by

instantiating the ESM template shown in Figure 5.4. Raw materials property

information includes heat property, specific gravity, reactivity, and solubility

information; and raw materials ingredient information includes mineralogical,

chemical content, and hazardous ingredients information. The classes shown in

Figure 5.9 can be instantiated to one level further. For example, the specific gravity

information class can be instantiated to an object, the exact specific gravity of the

raw material used in ABC.

Figure 5.9 ESM for supplier information of ABC

5.4.2 ESM for ABC information systems

In this section, the ESM for the information systems aspects of ABC, such as their

functional view, cost, software interface, hardware interface, operating system,

database management system, and manufacturer’s information, are modeled.

has

Raw Materials Quality Information

Raw Materials Property
Information

Raw Materials Ingredient
Information

Raw Materials Supplier

Heat
Property

Information

Chemical
Content

Information

Mineralogical
Information

Specific
Gravity

Information

Hazardous Ingredients
Information

Solubility
Information

Reactivity
Information

 111

ESM for ABC information systems- functional view:

Figure 5.10 ESM for ABC information systems- functional view

The ESM for the functional view of ABC information systems is modeled in Figure

5.10, by instantiating the ESM template shown in Figure 5.5. The corporate system

includes finance and accounting systems and human resource systems. The

PROCESS CONTROL SYSTEM

Supervision
System

Packaging/Handling
System

Powerhouse
System

Warehouse
System

Controllers PLC Data Acquisition System

EXECUTION SYSTEM

Maintenance
Scheduling

System

Production
Scheduling

System

Raw
materials
/Finished
Products
Tracking
System

Quality
Management

System

MANAGEMENT
SYSTEM

Order
Entry

System

Shipping
System

ENGINEERING SYSTEM

CAD

CORPORATE SYSTEM

Finance & Accounting
System

HR System

 112

engineering system includes CAD systems. The management system includes order

entry and shipping systems. The execution system includes maintenance

scheduling, production scheduling, raw materials and finished products tracking,

and quality management systems. The process control system includes supervision,

packaging/handling, powerhouse, warehouse, and data acquisition systems and also

PLCs (Programmable Logic Controllers) and other controllers. The classes shown

in Figure 5.10 can be instantiated to one level further. For example, the class CAD

system can be instantiated to an object, AutoCADTM R12, used in ABC.

ESM for ABC Information system- cost:

Figure 5.11 ESM for ABC information system- cost

The ESM for the cost of ABC information systems is modeled in Figure 5.11, by

instantiating the ESM template shown in Figure 4.53. Initial cost includes process

control information system, ERP, CRM, logistics, e-commerce, engineering, quality

Perfective
Cost

Corrective
Cost

Adaptive
Cost

Maintenance Cost Initial Cost

Technical
Support

Cost

Processing
Cost

Operation Cost

Information System Cost

Engineering
Information
System Cost

Quality
Management
System Cost

Production
Scheduling
System Cost

Database
Cost

ERP
Cost

Process Control
Information
System Cost

CRM
Cost

Logistics
Information
System Cost

E-commerce
System Cost

 113

management, production scheduling systems and database cost; operation cost

includes technical support and processing cost; and maintenance cost includes

perfective cost, corrective cost, and adaptive cost. The classes shown in Figure 5.11

can be instantiated to one level further. For example, the class ERP (Enterprise

Resource Planning) cost can be instantiated to an object, the exact cost of SAPTM,

the ERP system used in ABC.

Figure 5.12 ESM for ABC information system- software interface

ESM for ABC information system- software interface:

The ESM for the software interface of ABC information systems is modeled in

Figure 5.12, by instantiating the ESM template shown in Figure 4.54. ERP system

interface includes graphical and non-graphical user interface. Graphical user

interface includes user interface; and non-graphical interface includes application

program interface (API). The classes shown in Figure 5.12 can be instantiated to

one level further. For example, the class application program interface (API) can be

instantiated to an object, SAPTM Netweaver API , the exact API used by the SAPTM-

ERP system in ABC.

ESM for ABC information system- hardware interface:

The ESM for the hardware interface of ABC information systems is modeled in

Figure 5.13, by instantiating the ESM template shown in Figure 4.55. The process

control system interface includes control and non-control interfaces. Control

ERP System Interface
has

ERP System

Application Program Interface

Graphical Interface

User Interface

Non-Graphical Interface

 114

interface includes user-control, motion control, safety system, sensor system, and

I/O hardware system interfaces; and non-control interface includes weighing system

and data analysis interfaces. The classes shown in Figure 5.13 can be instantiated to

one level further. For example, the class motion control interface can be instantiated

to an object, RS 485, the exact motion control serial of UniversalTM Process Control

system (UPS 03) used in ABC.

Figure 5.13 ESM for ABC information system- hardware interface

Figure 5.14 ESM for ABC information system- OS

Process Control System
has

Process Control System Interface

Weighing
System

Interface

User
Control
Interface

Motion
Control
Interface

Sensor
System

Interface

Safety
System

Interface

Data
Analysis
Interface

I/O
Hardware
Interface

Control Interface Non-control Interface

{ UNIXTM} { Windows 98TM}

OS

Real-time OS Time-shared OS

 115

ESM for ABC information system- operating system (OS):

The ESM for the operating system of ABC information systems is modeled in

Figure 5.14, by instantiating the ESM template shown in Figure 4.56. UNIXTM is an

instance of time-shared OS class and Windows 98TM is an instance of real-time OS

class.

ESM for ABC information system- database management system (DBMS):

The ESM for the DBMS of ABC information systems is modeled in Figure 5.15, by

instantiating the ESM template shown in Figure 4.57. OracleTM and DB2TM are

instances of relational DBMS class.

Figure 5.15 ESM for ABC information system- DBMS

ESM for ABC information system- manufacturer’s information:

The ESM for the manufacturer’s information of ABC information systems is

modeled in Figure 5.16, by instantiating the ESM template shown in Figure 4.58.

ABC’s information system manufacturer uses ORACLETM DBMS. Compatibility,

capability, usability, security, version, reliability, interface, and tools information

are the information needed while modeling the ORACLETM DBMS information of

the information system manufacturer. The classes shown in Figure 5.16 can be

instantiated to one level further. For example, the class version information can be

{ ORACLETM} { DB2TM}

DBMS

Relational DBMS

 116

instantiated to an object, 8i, the exact version of ORACLETM DBMS system used in

ABC.

Figure 5.16 ESM for ABC information system- manufacturer’s information

5.5 Examples

The situation where ABC wants to purchase a new CAD (Computer Aided Design)

system, say SolidWorks�
� , is considered as an example. The top decision maker

needs to ask those questions raised in Chapter 1. Some of them are as follows:

(i) Does this new CAD system create communication problems with the

existing information systems in ABC?

(ii) Are any of the functions performed by this new CAD system already

performed by systems existing in ABC?

(iii) Are any of the functions performed by this new CAD system not needed

by ABC?

(iv) Does ABC have the required resources and organization structure to

operate this new CAD system to its full functionality?

(v) Is it a wise financial decision to buy this CAD system?

(vi) If there is a problem with any of the questions mentioned above, when

will the problem be resolved, i.e., when will ABC be able to purchase

the new CAD system?

has ABC’s Information
System Manufacturer

Compatibility
Information

Usability
Information

Capability
Information

Security
Information

Tools
Information

ORACLE DBMS Information

Version
Information

Reliability
Information

Interface
Information

 117

It is noticed that the following types of information have been seen in the ESM of

ABC: (1) Business processes, (2) Resources, (3) Organization structure, (4)

Functional view of information systems, (5) Software interface of information

systems, (6) Operating systems of information systems, and (7) Database

management systems of information systems. Furthermore, there is a knowledge-

base about SolidWorksTM. It is noted that the knowledge-base that has information

about SolidWorksTM is not a part of the ESM of ABC, while it is a part of the

knowledge-base for decision making for EAI. It is also noted that a particular ESM

is just a storage of information about a particular company (e.g., ABC). The ESM

becomes useful only when any decisions related to information systems support to

the company is demanded; in this case, there will be an engine for making decisions

based on general knowledge-bases. This decision making engine drives a reasoning

process to lead to a decision. The engine is a piece of software, the same as a

knowledge or an expert system known to the general artificial intelligence

community. The development of this engine is out of the scope of this thesis, but

the general knowledge-bases for the engine to work can be built using the templates

developed in this thesis. The situation described above is shown in Figure 5.17. In

Figure 5.17, demands can be initiated either from a need to enhance enterprise

functions or a need to resolve conflicts between information systems.

Figure 5.17 Decision making using knowledge-base

From the knowledge-base, we can retrieve the following information:

(1) SolidWorks�
� is a CAD system

(2) SolidWorks�
� has Microsoft .NET API �

� software interface

EAI Decision
Making Engine

Knowledge-base

Demand EAI Decisions

 118

(3) SolidWorks�
� has Windows XP�

� operating system

(4) SolidWorks�
� has ORACLE�

� database management system

(5) SolidWorks�
� performs 2D and 3D modeling

(6) SolidWorks�
� costs $6000 US, at present, but the price will be $4500 US, by

2004

(7) SolidWorks�
� needs desktop computer resource and design personnel.

From the ESM of ABC, we can retrieve the following information:

(1) ABC has AutoCAD R12�
� , and SAP�

� ERP to support CAD and ERP

functions respectively

(2) SAP�
� has SAP Netweaver API �

� software interface

(3) SAP�
� has Windows 98�

� operating system

(4) SAP�
� has ORACLE�

� database management system

(5) AutoCAD �
� performs only 2D modeling and ABC needs support for 3D

modeling

(6) The funding available to buy a CAD software at present is $5000 US

(7) ABC possesses desktop computer resource and design personnel.

5.5.1 Identification of potential conflicts

It is derived from the ESM of ABC that function 2D modeling is presently

supported by the CAD system currently used in ABC, AutoCAD R12�
� .

Furthermore, it is derived from the ESM of ABC that function 3D modeling is not

supported by AutoCAD R12�
� , and needs to be supported. From the knowledge-

base, it is derived that SolidWorks�
� supports both 2D modeling and 3D modeling.

By comparing the functions supported by SolidWorks�
� , derived from the

knowledge-base, and the functions performed by ABC, derived from the ESM of

ABC, it is found that SolidWorks�
� does not perform any function not needed by

ABC. Hence, from the functional support viewpoint, there is only one conflict,

“ functional redundancy” (2D modeling).

 119

It is found from the knowledge-base that to operate SolidWorks�
� , a desktop

computer and design personnel is needed. From the ESM of ABC, it is derived that

ABC possesses both desktop computer and design personnel. Hence, there is no

conflict from the resource and organization structure viewpoint.

From the ESM of ABC, it is derived that SAP�
� ERP, the ERP system used in ABC,

needs to communicate with the SolidWorks�
� CAD system. It is also derived from

the ESM of ABC that the SAP�
� ERP system uses SAP NetWeaver Application

Program Interface�
� (API). Furthermore, it is found from the knowledge-base that

SolidWorks�
� uses Microsoft .NET API �

� . In order to integrate SAP�
� and

SolidWorks�
� from the software inter face viewpoint, the compatibility issue

between SAP NetWeaver API �
� and Microsoft .Net API �

� is reviewed from the

knowledge base. According to the knowledge stored in the knowledge-base, SAP

NetWeaver API �
� and Microsoft .Net API �

� are found to be compatible and, hence,

there is no conflict from the software interface viewpoint.

From the ESM of ABC it is derived that the SAP�
� ERP system supports the

Windows 98�
� operating system (OS). It is found from the knowledge-base that

SolidWorks�
� supports Windows XP�

� OS. In order to integrate SAP�
� and

SolidWorks�
� from the OS viewpoint, the compatibility issue between Windows

98�
� and Windows XP�

� is reviewed from the knowledge base. According to the

knowledge stored in the knowledge-base, Windows 98�
� and Windows XP�

� are

found to be compatible and, hence, there is no conflict from the OS viewpoint.

From the ESM of ABC, it is derived that the SAP�
� ERP system uses ORACLE�

�

database management system (DBMS). It is found from the knowledge-base that

SolidWorks�
� also uses ORACLE�

� DBMS. Hence SAP�
� ERP and SolidWorks�

� are

compatible from the DBMS viewpoint.

 120

From the ESM of ABC, it is derived that $5000 US is available for purchasing a

new CAD system. It is found from the knowledge-base that the cost of

SolidWorksTM is $6000 US. Hence, there is a conflict in the cost.

From the knowledge-base it is found that the price of SolidWorksTM will be reduced

to $4500 US by January 2004. Hence, if ABC purchases SolidWorksTM by 2004,

there will not be any financial conflict.

5.5.2 Decision-making

The following information derived from the previous section is useful in the

decision making process:

(i) SolidWorksTM has no compatibility problems with the existing software

in ABC that needs to communicate with it.

(ii) There is a functional redundancy problem, as both AutoCAD R12TM and

SolidWorksTM perform 2D modeling.

(iii) SolidWorksTM does not perform any function not needed by ABC.

(iv) ABC has all the resources and organization structure needed to operate

SolidWorksTM.

(v) ABC does not have the funding to purchase SolidWorksTM at present.

(vi) By 2004, ABC will be able to purchase SolidWorksTM.

The decision to buy SolidWorksTM by 2004 is made, as there is no other conflict

except for one functional redundancy. However, the advantages of having

SolidWorksTM are greater when compared to the redundancy problem and, hence,

the decision to purchase SolidWorksTM by 2004 is made.

On a final remark, the above mentioned reasoning and decision processes can be

largely automated. This is one of the key reasons that ESM has a high potential to

ease the complexity and difficulty in dealing with EAI problems.

 121

CHAPTER 6

CONCLUSION

6.1 Overview of the Thesis

This thesis started with a discussion of the need to investigate a methodology for

enterprise application integration. Enterprise applications are software systems that

deal with any information related to an enterprise. Examples of enterprise

application are ERP (Enterprise Resource Planning) software and CAD (Computer

Aided Design) software. Enterprise application integration (EAI) is a part of

enterprise integration (EI). EAI is going to be very important because of the

explosive expansion of information and rapid development of its processing

methods. Existing studies on EAI reported in the literature are indeed numerous, but

they have not satisfied industrial needs based on the researcher’s industrial visiting

experiences and academic analysis. While complaints from industry about the lack

of methods of coping with EAI are usually in practical terms, the researcher’s

analysis has shown the following problems responsible for this situation. First,

existing studies are focused on the modeling of enterprises only and not on

enterprise applications (or software systems) that enterprises use. Second, the

existing studies are too theoretical to be applied to practical questions constantly

puzzling industrial managers’ minds. These questions are, for example, (1) What

are the conflicts, if any, that will be created with existing enterprise systems if a

new software system called X is introduced? (2) What will be the consequence if

 122

the new system to be introduced is changed after two years? (3) Why should the

enterprise buy a new system, X, as it has a system called Y which works very well?

The goal of this thesis was set to provide a more effective solution to the enterprise

application integration (EAI) problem. The following objectives were set up to

achieve this goal.

Objective 1: To justify further the semantic modeling approach for the EAI problem

through an analysis of the need of enterprise integration or enterprise application

integration and the shortcomings of the existing approaches.

Objective 2: To formulate an enterprise semantic model framework. The framework

needs to demonstrate its genericity and its capability of solving the problems with

existing approaches.

Objective 3: To develop a showcase for an enterprise semantic model and to

demonstrate the effectiveness of the enterprise semantic model as a potential

solution to the EI or EAI problem.

A comprehensive and critical discussion on existing studies on EAI was presented

in Chapter 2. The literary sources are from both the software engineering

community and the industrial engineering community. In the software engineering

community, those most popular methods and systems helpful to address the EAI

problem were examined; these include COBRATM, J2EETM, middleware, and

adapters. In industrial engineering community, well-known schools of work, such

as CIMOSA, PERA, and so on, were examined. The problems mentioned above

were further confirmed.

Based on a critical review of existing works and analyses, an enterprise semantic

model approach was elaborated and developed. The starting point of this approach

is such that these identified problems were addressed. This was responsible for

 123

some general ideas proposed for developing this approach. First, modeling of

ontology for enterprise was considered as a foundation. Both enterprise functions

and enterprise applications were modeled. UML was identified as a suitable

modeling language and used for representing the ontology and the model elements

throughout the thesis work. Second, the organizational structure for the model was

devised to have five layers to achieve genericity of the model. These five layers

include (taking a process industry as an example): (i) level 1: generic enterprise, (ii)

level 2: generic process enterprise, (iii) level 3: steel process enterprise, (iv) level 4:

model template, and (v) level 5: model (i.e., instantiated model template). Third,

modeling of enterprise applications was considered equally important as modeling

of enterprise functions. This allows walking through between enterprise function

and enterprise application.

A company, ABC, was visited during the course of this thesis study and was taken

as a case study. It has been demonstrated how a semantic model for this company

can be formulated. Finally, an example was shown of how the EAI problem could

potentially be solved with the proposed approach.

6.2 Main Conclusions of the Thesis

(1) Enterprise application integration is becoming more and more difficult because

of competition in the enterprise applications market, which is leading to a

situation where it is impossible to have one unified operating system or

language.

(2) Existing studies have not provided an effective solution to the enterprise

application integration problem. The main shortcoming in the existing

approaches is a lack of a powerful principle or concept for the integration of

enterprise applications.

(3) The proposed concept called the enterprise semantic model appears to be

effective to the enterprise application integration problem. This is attributed to

several novel ideas behind this semantic model: (a) the five layer organizational

 124

structure, (b) the modeling of enterprise application ontology and its

relationship with enterprise function ontology, and (c) the relationship between

the framework and the model.

6.3 Contr ibutions of the Thesis

The main contributions of the thesis are: (i) identification of the bottle neck

problems with existing studies and practices of EAI, and (ii) development of a new

approach called the semantic model approach.

The semantic model approach contains the following salient points: (1) modeling of

enterprise ontology using UML, (2) organization of enterprise ontology in terms of

the data abstraction: generalization/specialization, (3) explication of relationship

between ontology and data/database model, and (4) integrated modeling of both

enterprise function and enterprise application.

One of the important contributions in intelligent and knowledge systems is the

demonstration of the path from ontology to a concrete model. Other approaches, for

example the TOVE enterprise ontology approach, are only on the fundamental

level, i.e., on the level of a particular manufacturing process, say design, or at the

data/ database modeling level for a specific database design where the semantics of

concepts used in a data/database are left in the minds of modellers.

6.4 Future Work

There are still several issues regarding enterprise applications integration that have

not been addressed, and they need to be studied further.

The first issue concerns the ways of predicting the evolution of a particular piece of

software or paradigm. This issue is crucial to achieving an optimum trade-off for a

 125

particular company between short-term gain and long-term suitability. A company

could invest in an enterprise application software system today in order to obtain

better support to its existing business functions, but software has a life and can

become obsolete, say in two years. The obsolesce of this particular software may

bring some constraints for introducing other new software systems due to their

inability to communicate with the existing software. This issue could also be

viewed in another way: How does one make decisions under uncertain situations

(i.e., uncertainty in evolution of software)?

The second issue concerns the relationship between the enterprise semantic model

and those tools that are available, e.g., adapters, middleware, etc. This issue is

important as the development of these tools will certainly have an impact on the

development of enterprise applications. An idea for this issue can be outlined as

follows. One can develop a knowledge base using the enterprise application

ontology and template developed in this thesis. The knowledge base will contain all

the marketed middleware and adapters. Then, when one develops a solution to a

particular EAI problem, the whole solution package will also include a specification

of these tools.

The third issue is how to implement the ESM in general. Software of ESM is not a

program like enterprise resource planning (ERP) or database management system.

ESM will be implemented as a database application system, which means that (1)

ESM will be built upon a database or knowledge management system, e.g.,

ORACLETM. (2) There will be a program system to perform a general process

management task. In the ESM database system, the data dictionary will contain all

the definitions of ontology and templates developed in preceding chapters. A

particular enterprise will be treated as instances of these templates. The

implementation of the data dictionary will be incrementally carried out, as the ESM

model is developed as having the property of extendibility through its

generalization/specialization architecture. The incremental implementation strategy

is as follows. Suppose that implementation for an enterprise A is done, for which

 126

ontology is implemented and denoted as OA. When enterprise B is implemented,

ontology OA is first reviewed and extended (if needed) for enterprise B. This

extension of ontology is denoted as OB. As such, after both enterprises are

implemented, ontology of ESM has been extended to OA + OB. In this way, with

more implementations for enterprises, the completion of ESM can be gradually

achieved.

The process management program system as mentioned can be made fairly

straightforwardly. In this system there is a decision making system which is like an

expert or knowledge system. The expert system uses a knowledge-base which

includes knowledge about the commercial enterprise application programs.

Obviously, this knowledge-base can take the ontology and template (defined for the

information system of an enterprise) developed in preceding chapters.

 127

REFERENCES

[Baan 2003] Baan. (2003). iBaan Enterprise- Solution for a lean operational

environment. Retrieved March 25, 2003 from the Baan Web site:

http://www.baan.com/solutions/enterprise/

[Berio & Vernadat 1999] Berio, G., Vernadat, F.B. (1999). New Developments in

Enterprise Modeling using CIMOSA. Computers in Industry, 40 (2), pp. 99-

114. Elsevier Science.

[BizTalk 2002] Microsoft BizTalk. (2002). Microsoft BizTalk server: Product

overview. Retrieved October 27, 2002 from the Microsoft Website:

http://www.microsoft.com/biztalk/evaluation/overview/biztalkserver.asp

[Booch et al. 1999] Booch, G., Rumbaugh, J., Jacobson, I. (1999). The Unified

Modeling language user guide. The Addison-Wesley Object Technology Series.

Addison-Wesley, U.S.A.

[Cadarette & Durward 2001] Cadarette, P., Durward, K.M. (2001). Achieving a

Complete Enterprise Integration Strategy. Retrieved October 20, 2002 from the

ebizQ Web site: http://eai.ebizq.net/str/cadarette_1.html

 128

[Christensen et al. 1995] Christensen, L. C., Johansen, B. W., Midjo, N., Onarheim,

J., Syvertsen, T. G., Totland,T. (1995). Enterprise Modeling – Practices and

Perspectives. Proceedings of ASME Ninth Engineering Database Symposium.

Boston, U.S.A., September 1995.

[CIMOSA 1996] CIMOSA Association. (1996). CIMOSA: A Primer on key

concepts, purpose and business value. Retrieved August 27, 2002 from the

CIMOSA Association Website: http://cimosa.cnt.pl/Docs/Primer/primer0.htm

[CORBA 2002] Object Management Group. (2002). The Common Object Request

Broker: Architecture and Specification. Retrieved September 2, 2002 from the

Object Management Group Web site: http://cgi.omg.org/docs/formal/02-06-

01.pdf

[Cummings & Hanson 2002] Cummings, G., Hanson, K. (2002). Interaction

Integration. Enterprise Application Integration (EAI) journal, April 2002.

Thomas Communications Inc.

[Doumeingts & Chen 1996] Chen, D., Doumeingts, G. (1996). The GRAI-GIM

reference model, architecture and methodology. In Bernus, P., Nemes, L.,

Williams, T. (Ed.), Architecture for Enterprise integration. Chapman & Hall.

 129

[eJai 2001] Enterprise Java Application Integration (eJai). (2001). eJai Universal

Adapter Whitepaper. Retrieved April 14, 2002 from the eJai Web site:

http://www.igs.com/products/eJai%20Universal%20Adapter/eUA%20product%

20sheet_final.pdf

[EJB 2002] Roman,E., Ambler,S., Jewell,T. (2002). Mastering Enterprise

Javabeans
TM

. Wiley computing publishing, John Wiley & Sons, Inc., U.S.A.

[Eriksson & Penker 2000] Eriksson, H.E., Penker, M. (2000). Business modeling

with UML: business patterns at work. John Wiley & Sons, New York, U.S.A.

[Fox 1993] Fox, M.S. (1993). Issues in Enterprise Modeling. Proceedings of the

IEEE International Conference on Systems, Man and Cybernetics, Le Touquet,

France, October 1993, pp. 86-92.

[Fox et al. 1993] Fox, M.S., Chionglo, J.F., Fadel, F.G. (1993). A Common-Sence

Model of the Enterprise. Proceedings of the 2nd Industrial Engineering

Research Conference, Los Angeles, U.S.A., pp. 425-429.

[Fox & Gruninger 1994] Fox, M.S., Gruninger, M. (1994). The Role of

Competency Questions in Enterprise Engineering. Proceedings of the IFIP

WG5.7 Workshop on Benchmarking- Theory and Practice, Trondheim, Norway,

June 1994.

 130

[Fox & Gruninger 1998] Fox, M.S., Gruninger, M. (1998). Enterprise Modeling. AI

Magazine, 19 (3), pp. 109-121. AAAI Press.

[Gosain & Thillairajah 2002] Gosain, S., Thillairajah, V. (2002). EAI: The Business

Drivers and Technical Challenges. Retrieved September 12, 2002 from the

ebizQ Web site: http://eai.ebizq.net/str/gosain_1a.html

[Green 1999] Green, S.D. (1999). The Dark Side of Lean Construction:

Exploitation and Ideology. Proceedings of the Seventh Annual Conference of

the International Group for Lean Construction, Berkeley, California, USA, 26-

28 July-1999.

[i2 2003] i2. (2003). Supply Chain Management. Retrieved March 25, 2003 from

the i2 Web site: http://www.i2.com/solutionareas/scm/index.cfm#

[Kosanke 96] Kosanke, K. (1996). Comparison of Enterprise Modelling

Methodologies. Proceedings of DIISM'96, Katsheuvel, Netherlands, September

15-18, 1996. Chapman & Hall.

[Kramp & Coulson 2000] Kramp, T., Coulson, G. (2000). The Design of a flexible

communications framework for next generation middleware. In Drew, P.,

Meersman, R., Tari, Z., Zicari, R. (Ed.), DOA’00- International Symposium on

 131

Distributed Objects and Applications (pp. 273-283). IEEE Computer Society,

California, U.S.A.

[Li et al. 1999] Li, Q., Tso, S.K., Zhang, W.J. (1999). Generalization of Strategies

for Product Data Modeling with Special Reference to Instance-As-Type

Problem. Computers in Industry, 41, pp. 25-34.

[Lim et al. 1997] Lim, S.H, Juster, N., De Pennington, A. (1997). Enterprise

Modeling and Integration: A Taxonomy of seven key aspects. Computers in

Industry, 34 (3), pp. 339-359. Elsevier Science

[Lin 1999] Lin,H., Fan,Y., Wu,C. (1999). The research of integrated enterprise

modeling method based on workflow model. 7th International conference on

ETFA, Barcelona, October 1999, pp. 187-193.

[Linthicum 2001] Linthicum, D. (2001). B2B Application Integration: e-business-

enable your enterprise. Addison-Wesley, U.S.A.

[Lutz 2000] Lutz, J.C. (2000). EAI Architecture patterns. Enterprise Application

Integration (EAI) journal, March 2000. Thomas Communications Inc.

[Ma et al. 1999] Ma, Z.M., Zhang, W.J., Ma, W.Y. (1999). View Relation for

Schema Integration on Multiple Databases and Data Dependencies. Proceedings

 132

of 9th International Database Conference on Heterogeneous and Internet

Database, Hong Kong, pp. 278-289.

[Migliore 2001] Migliore, M. (2001). Hurwitz Study Reveals Integration a Growing

Concern for Enterprises. Retrieved December 20, 2002 from the Web Services

report Web site:

http://www.capeclear.com/news/pressroom/reports/web_services_report.htm

[McCoy et al. 2002] McCoy, D., Morello, D.T., Miklovic, D., Earley, A., Nicolett,

M., Fulton, R., et al. (2002). Gartner predicts 2002: Top 10 predictions.

Retrieved December 20, 2002 from the Gartner Web site:

http://www3.gartner.com/DisplayDocument?doc_cd=103726

[Naiburg & Maksimchuk 2001] Naiburg, E.J., Maksimchuk, R.A. (2001). UML for

database design. Addison-Wesley, U.S.A.

[Nayak et al. 2001] Nayak, N., Bhaskaran, K., Das, R. (2001). Virtual

Enterprises: Building Blocks for Dynamic E-business. Australian Computer

Science Communications, Proceedings of the Workshop on Information

Technology for Virtual Enterprises, Queensland, Australia, January-2001.

[Oracle 2003] Oracle. (2003). Oracle9i Database, Features. Retrieved March 25,

2003 from the ORACLE Web site:

 133

http://www.oracle.com/ip/deploy/database/oracle9i/index.html?oracle9idb_featu

res2.html

[Presley et al. 2001] Presley, A., Sarkis, J., Barnett, W., Liles, D. (2001).

Engineering the Virtual Enterprise: An Architecture-Driven Modeling

Approach. International Journal of Flexible Manufacturing Systems, 13 (2), pp.

145- 162. Kluwer Academic Publishers.

[Rathwell 2001] Rathwell, G. (2001). Introduction to PERA: Perdue Enterprise

Reference Architecture. Retrieved October 15, 2002 from the Perdue Enterprise

Reference Architecture Web site: http://www.pera.net/

[Rational 2000] Rational. (2000). The UML and data modeling. Retrieved August

15, 2002 from the Rational Web site:

http://www.rational.com/media/whitepapers/Tp180.PDF

[Smith & Smith 1977] Smith, J.M., Smith, D.C.P. (1977). Database abstraction:

Aggregation and Generalization. ACM Transactions on Database Systems, 2

(2), pp. 105-133.

[Szegheo 2000] Szegheo, O. (2000). Introduction to Enterprise Modeling. In

Rolstadås, A., Andersen, B. (Ed.), Enterprise Modeling – Improving Global

 134

Industrial Competitiveness (pp. 21-33). Kluwer Academic Publishers, Boston,

U.S.A.

[TechMetrix research 2002] TechMetrix research. (2002). Which technology for

tomorrow’s EAI? Retrieved August 24, 2002 from the ebizQ Web site: http://e-

serv.ebizq.net/aps/techmetrix_2.html

[Ter Bekke 1992] Ter Bekke, J.H. (1992). Semantic Data Modelling. Printice Hall.

[Traverse 2001] Traverse, C. (2001). Adapting to Total Integration. Enterprise

Application Integration (EAI) journal, September 2001. Thomas

Communications Inc.

[Trujillo et al. 1997] Trujillo, J., King, G.A., Palomar, M. (1997). Semantic Data

Modelling for databases: Issues of modelling and teaching the paradigm.

International Symposium on Software Engineering in Universities (ISSEU'97),

Rovaniemi, Finland.

[van Stekelenborg 1996] van Stekelenborg,R.H.A. (1996). On the Way to

Supportive Information Technology for Contemporary Industrial Purchasing: A

summary of four years of Dutch design-oriented research. Heading for New

Frontiers in Purchasing and Supply Management, Proceedings of the 5th

 135

International Annual IPSERA Conference, Eindhoven, NL, April, 1996, pp. 345-

363.

[Warnecke & Huser 1995] Warnecke, H.J., Huser, M. (1995). Lean production.

International Journal of Production Economics, 41 (1-3), pp. 37-43. Elsevier

Science.

[Whitman & Huff 2001] Whitman, L., Huff, B. (2001). On the use of Enterprise

Models. International Journal of Flexible Manufacturing Systems, 13 (2), pp.

195-208. Kluwer Academic Publishers.

[Williams 2000] Williams, T. (2000). Workflow Management within the ARIS

Framework. Retrieved October 20, 2002 from the Architecture of Integrated

Information System Web site:

http://www.pera.net/Methodologies/ARIS/ARIS_Paper_by_Ted_Williams.html

[Yoshikawa et al. 1994] Yoshikawa, H., Tomiyama, T., Kiriyama, T., Umeda, Y.

(1994). An Integrated Modeling Environment Using the Metamodel. Annals of

the CIRP, 43 (1), pp. 121-124.

[Zhang et al. 1999] Zhang, W.J., Li, Q. (1999). Information Modelling for Made-to-

Order Virtual Enterprise Manufacturing Systems. International Journal of

Computer Aided Design, 31, pp. 611-619.

 136

[Zhang & Werff 1993] Zhang, W., Werff, K van der. (1993). Guidelines for Product

Data Model Formulation Using Database Technology. Proceedings of

International Conference on Engineering Design (ICED'93), Vol. 3, The Hague,

The Netherlands, pp. 1618-1626.

[Zhang & Werff 1994] Zhang, W., Werff, K van der. (1994). A critique of

conceptual data modelling notions relative to the machine design domain.

Proceedings of 1994 ASME Engineering Database Symposium, USA, pp. 59-66.

[Zrnec et al. 2001] Zrnec, A., Bajec, M., Krisper, M. (2001). Enterprise Modeling

with UML. Electro Technical Review, 68(2-3), pp. 109-114.

 137

APPENDIX A

ACTIVITY ONTOLOGY

Time and action ontology:

Context Situation inv:

ji ss < implies isituation earlier than jsituation

Context Situation inv:

)..(iij sas implies jsituation results from performing iaction in isituation

Context Situation inv:

 ii ts . implies isituation starts in itime

Context Duration inv:

ji tt < implies itime earlier than jtime

Context Situation inv:

 ii ts . and jiij tsas))...((implies ji tt <

If isituation starts at itime and jsituation resulting from performing iaction in

isituation starts at jtime , then it implies that itime is earlier than jtime .

Context State inv:

Commit

Pre: Status=Possible

Post: -

 138

An action Commit takes place with the pre-condition that the status of the state is

possible.

Context State inv:

Complete

Pre: (Status=Enabled) or (Status=Re-enabled)

Post: Status<>Enabled

An action Complete can take place with the pre-condition that the status of the state

is either enabled or re-enabled and its post-condition is that status of the state is not

enabled.

Context State inv:

Disenable

Pre: (Status=Enabled) or (Status=Re-enabled)

Post: -

An action Disenable can take place with the pre-condition that the status of the state

is either enabled or re-enabled.

Context State inv:

Re-enable

Pre: Status=Disenabled

Post: -

An action Re-enable can take place with the pre-condition that the status of the state

is disenabled.

Context State inv:

Duration= 'tt − implies EnabletSa =)..(and CompletetSa =')..(

Duration of the activity is 'tt − , when an enable action takes place in state-S and

time-t and disenable action takes place in state-S and time 't .

 139

Activity and state ontology:

Ontology of status of state:

Context State inv:

Status=Committed implies Commitsa i =−1. and Enablesa i <>.

The status of a state is committed in isituation , if a commit action occurred in the

preceding situation,)1(−isituation and an enable action did not occur.

Context State inv:

Status=Enabled implies Enablesa i =−1. and

)).().((DisenablesaorCompletesa ii <><>

The status of a state is enabled in a isituation if an enable action occurred in the

preceding situation,)1(−isituation and a complete action or disenable action did not

occur.

Context State inv:

Status=Disenabled implies Disenablesa i =−1. and enablesa i −<> Re.

The status of a state is disenabled in a isituation if a disenable action occurred in

the preceding situation,)1(−isituation and a re-enable action did not occur.

Context State inv:

Status=Re-enabled implies enableresa i −=−1. and

)).().((DisenablesaorCompletesa ii <><>

The status of a state is re-enabled in a isituation if re-enable action occurred in the

preceding situation,)1(−isituation and a complete action or disenable action did not

occur.

 140

Context State inv:

Status=Completed implies Completesa i =−1. and Commitsa i <>.

The status of a state is completed in a isituation if a complete action occurred in the

preceding situation,)1(−isituation and a commit action did not occur.

Context State inv:

Status=Possible implies Completesa i =−1. and Commitsa i <>.

The status of a state is possible in a isituation if a complete action occurred in the

preceding situation,)1(−isituation and a commit action did not occur.

Ontology of status of activity:

Context Activity inv:

ES implies enabling state

Context Activity inv:

CS implies caused state

Context Activity inv:

Status=Dormant implies ES=Committed and ES<> Enabled

The status of an activity is dormant if the status of its enabling state is committed

and not enabled.

Context Activity inv:

Status=Executing implies ES=Enabled or CS=Enabled

The status of an activity is executing if the status of its enabling state or caused state

is enabled.

 141

Context Activity inv:

Status=Suspended implies ES=Disenabled or CS=Disenabled

The status of an activity is suspended if the status of its enabling state or caused

state is disenabled.

Context Activity inv:

Status=Re-executing implies ES=Re-enabled or CS=Re-enabled

The status of an activity is re-executing if the status of its enabling state or caused

state is re-enabled.

Context Activity inv:

Status=Terminated implies ES=Completed or CS=Completed

The status of an activity is terminated if the status of its enabling state or caused

state is completed.

Non-terminal States Ontology:

Context State inv:

)..(RSa implies action occurring on Resource R in State S

Context State inv:

Disjunctive

Pre: EnablesRSa i =)))...(((1 or …or EnablesRSa in =)))...(((

Post: Status <> Status@pre

The state is Disjunctive, if the status of the state can be changed, when one of the

resources from 1R to nR has been selected and its status has been changed. The

keyword Status@pre refers to the status before the action takes place.

 142

Context State inv:

Conjunctive

Pre: EnablesRSa i =)))...(((1 and …and EnablesRSa in =)))...(((

Post: Status <> Status@pre

The state is Conjunctive, if the status of the state can be changed, only when all of

the resources from 1R to nR have been selected and its status has been changed.

Context State inv:

Exclusive

Pre: EnablesRSa ii =)))...(((and EnablesRSa ij <>)))...(((

Post: Status <> Status@pre

The state is Exclusive, if the status of the state can be changed, only when one of

the resources from iR to jR has been selected and its status has been changed.

Context State inv:

Not

Pre: EnablesRSa ii <>)))...(((

Post: Status <> Status@pre

The state is Not, if the status of the state can be changed, only when a particular

resource iR has not been selected and its status has not been changed.

Terminal states ontology:

Context State inv:

is RP . implies property of Resource at the start of the Activity

Context State inv:

ie RP . implies property of Resource at the end of the Activity

 143

Context Resource inv:

A.R implies Activity-A uses/consumes Resource-R

Context State inv:

Use

Pre: trueRA i =.

Post: result =)..(ieis RPRP =

The state is Use state, when a resource iR is used by an activity-A and if none of

the properties of the resource are changed when the activity is successfully

terminated.

Context State inv:

Consume

Pre: trueRA i =. and trueRP ix =.

Post: result =)..(ieis RPRP <> and trueRP ix <>.

The state is Consume state, when any property)(xP of a resource iR that existed

prior to the performance of the activity-A does not exist after the activity-A has

been performed, i.e., if any one of the properties of the resource is changed when

the activity is successfully terminated.

Context State inv:

Release

Pre: trueRA i =. and useRi =

Post: result =)..(ieis RPRP =

The state is Release state, when a resource iR used by an activity-A is released and

if none of the properties of the resource are changed when the activity-A is

successfully terminated.

 144

Context State inv:

Produce

Pre: trueRA i =. and trueRP ix <>.

Post: result =)..(ieis RPRP <> and trueRP ix =.

The state is Produce state, when any property)(xP of a resource iR that did not

exist prior to the performance of the activity-A has been created by the activity-A,

i.e., if any one of the properties of the resource is changed when the activity-A is

successfully terminated.

 145

APPENDIX B

RESOURCE ONTOLOGY

Context Resource inv:

q.(R.l.A.s.u) implies quantity q of Resource R, in terms of unit u, at location l,

used by Activity A, in situation s

Context Resource inv:

)...(uARqs implies quantity q of Resource R in terms of unit u at the start of

Activity A

Context Resource inv:

)...(uARqe implies quantity q of Resource R in terms of unit u at the end of

Activity A

Context Resource inv:

)..(ARr implies role r performed by Resource R with respect to Activity A

Context Resource inv:

PRR. implies Resource PR is a physical division of Resource R

Context Resource inv:

FRR. implies Resource FR is a functional division of Resource R

 146

Context Resource inv:

Use

Pre: trueuARqs =)...(

Post:)...()...(uARquARq es =

The use specification term entails that the resource amount will remain constant

even after the resource is used, i.e., the quantity sq of the resource-R at the start of

the activity-A will be equal to the quantity eq at the end of the activity-A.

Context Resource inv:

Production

Pre: trueuARqs =)...(

Post:)...()...(uARquARq es <

The production specification term entails that the resource amount will increase by

a constant after the completion of the activity, i.e., the quantity sq of the resource-R

at the start of the activity-A will be less than the quantity eq at the end of the

activity-A.

Context Resource inv:

Physical_divisible

Pre:))...(()..(ARRrARr P=

Post: -

A resource is physically divisible if the act of physically dividing the resource does

not affect its role in the activity. Each division can be used or consumed by the

same activity. A resource-R is physically divisible with respect to an activity-A if

each physical division of the resource (PR) has the same role as the whole resource-

R.

 147

Context Resource inv:

Functional_divisible

Pre:))...(()..(ARRrARr F=

Post: -

A resource is functionally divisible if each division performs the same function as

the whole resource. A resource R is functionally divisible with respect to an activity

A if each functional division of the resource (FR) has the same role as the whole

resource R.

Context Resource inv:

Continuous

Pre: Physical_divisible = true

Post: -

A resource is continuous if it is physically divisible. Continuous resource indicates

that the resource is uncountable.

Context Resource inv:

Discrete

Pre: not Continuous

Post: -

A resource is discrete if it is not continuous. Discrete resource indicates that the

resource is countable.

 148

APPENDIX C

ORGANIZATION STRUCTURE ONTOLOGY

Role ontology:

Context Role inv:

21.rr implies role 2r is sub-ordinate of role 1r

Context Role inv:

if ().(21 rr and).(22 atr) then).(21 atr

If role 2r is a sub-ordinate of role 1r and role 2r has authority 2at , then role 1r also

has authority 2at .

Goal ontology:

Context Goal inv:

21.gg implies 2g is a sub-goal of 1g

Context Goal inv:

tg. implies goal g is achieved in time t

Context Goal inv:

if (().(1gg and).(2gg) and ().(1 tg and).(2 tg)) then g.t

If both goal- 1g and goal- 2g are sub-goals of goal-g, and both goal- 1g and goal- 2g

are achieved in time-t, then the goal-g is also achieved in time-t.

 149

Agent ontology:

Context Agent inv:

oa.r implies organization agent oa plays a role r

Context Agent inv:

oa.tm implies organization agent oa is a member of team tm

Context Team inv:

tm.r implies team tm has a goal g

Context Agent inv:

if (().(11 tmoa and).(12 tmoa) and ().(11 roa and).(12 roa)) then).(11 rtm

If both agents 1oa and 2oa belong to team- 1tm and both have the same role- 1r , then

the team- 1tm has the role- 1r .

Context Agent inv:

21.oaoa implies agent 1oa has authority over agent 2oa

