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ABSTRACT 

In a typical orthogonal frequency division multiplexing (OFDM) broadband wireless 

communication system, a guard interval using cyclic prefix is inserted to avoid the inter-

symbol interference and the inter-carrier interference. This guard interval is required to 

be at least equal to, or longer than the maximum channel delay spread. This method is 

very simple, but it reduces the transmission efficiency. This efficiency is very low in the 

communication systems, which inhibit a long channel delay spread with a small number 

of sub-carriers such as the IEEE 802.11a wireless LAN (WLAN).  

 

To increase the transmission efficiency, it is usual that a time domain equalizer 

(TEQ) is included in an OFDM system to shorten the effective channel impulse response 

within the guard interval. There are many TEQ algorithms developed for the low rate 

OFDM applications such as asymmetrical digital subscriber line (ADSL). The drawback 

of these algorithms is a high computational load. Most of the popular TEQ algorithms 

are not suitable for the IEEE 802.11a system, a high data rate wireless LAN based on the 

OFDM technique. In this thesis, a TEQ algorithm based on the minimum mean square 

error criterion is investigated for the high rate IEEE 802.11a system. This algorithm has 

a comparatively reduced computational complexity for practical use in the high data rate 

OFDM systems. In forming the model to design the TEQ, a reduced convolution matrix 

is exploited to lower the computational complexity. Mathematical analysis and 

simulation results are provided to show the validity and the advantages of the algorithm. 

In particular, it is shown that a high performance gain at a data rate of 54Mbps can be 

obtained with a moderate order of TEQ finite impulse response (FIR) filter. The 

algorithm is implemented in a field programmable gate array (FPGA). The 

characteristics and regularities between the elements in matrices are further exploited to 
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reduce the hardware complexity in the matrix multiplication implementation. The 

optimum TEQ coefficients can be found in less than 4µs for the 7th order of the TEQ 

FIR filter. This time is the interval of an OFDM symbol in the IEEE 802.11a system. To 

compensate for the effective channel impulse response, a function block of 64-point 

radix-4 pipeline fast Fourier transform is implemented in FPGA to perform zero forcing 

equalization in frequency domain. The offsets between the hardware implementations 

and the mathematical calculations are provided and analyzed. The system performance 

loss introduced by the hardware implementation is also tested. Hardware implementation 

output and simulation results verify that the chips function properly and satisfy the 

requirements of the system running at a data rate of 54 Mbps. 
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Chapter  1    Introduction 

In this chapter, the history of OFDM and its applications are introduced. After the 

discussion of the basic concept of OFDM, the motivation of the thesis is proposed. 

1.1 Br ief History of OFDM Technology 

The rapid advances in multimedia applications involve more and more transmissions 

of graphical data, video and audio messages. The demand for high capacity broadband 

transmission links continues to increase rapidly. In the recent years, wireless 

communications have drawn remarkable attractions for their flexibility. The market for 

wireless communications has enjoyed a tremendous growth. Wireless technology now 

reaches or is capable of reaching virtually every location on the surface of the earth. 

Hundreds of millions of people exchange information every day in their personal or 

business activities using pagers, cellular telephones and other wireless communication 

products. It seems that it is a feasible solution and market competitive for the broadband 

wireless communication systems to replace, or to complement the traditional fixed 

copper communication systems. Generally wireless communication environment is more 

adverse than fixed wired communication; it requires a reasonable system design or 

architecture to provide a reliable system performance. In the third generation (3G) 

wireless communication system, although the maximum data rate can be 2Mbps, the 

typical data rate is around 384kbps. To achieve the goals of broadband cellular service, 
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it is very appealing to leap to the fourth generation (4G) networks. In the last few years, 

the orthogonal frequency division multiplexing (OFDM) broadband wireless 

communication system has attracted much interest for its advantages. It is also 

considered as one of the promising candidates for wireless communication standard. The 

world standard bodies such as IEEE and ETSI are selecting the OFDM as the physical 

layer technique for the next generation of wireless systems.  

OFDM is an old concept. It was first introduced in the late 60’s, based on the multi-

carrier modulation technique used in the high frequency military radio. Many years after 

its introduction, however, OFDM technique has not become popular. This is due to the 

requirements for large arrays of the sinusoidal generators and coherent demodulators in 

the transceiver. These are too expensive and too complex for the practical deployment. 

Eventually the discrete Fourier transfer (DFT) and inverse DFT (IDFT) were introduced 

as an effective solution to the arrays of sinusoidal generators and demodulators, which 

lower the system complexity. With the constant advances in the technology of very large 

scale integration (VLSI), the implementation of fast Fourier transform (FFT) and inverse 

FFT (IFFT) become possible and economical.  

In 1971 Weinstein and Ebert proposed the use of IFFT/FFT as an efficient way to 

realize the OFDM function and the concept of the guard interval to avoid the inter-

symbol interference (ISI) and inter-carrier interference (ICI). This proposal opened a 

new era for OFDM. The technique began to attract more and more attention and became 

very popular. OFDM has already been successfully adopted in many applications, such 

as digital audio broadcasting (DAB) and digital video terrestrial broadcasting (DVB-T). 

A brief history of OFDM technique and its applications are listed in Table 1.1. In the 

past few years, applying the OFDM technique in the wireless LAN (WLAN) has 
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received a considerable attention. OFDM technique has been adopted in the WLAN 

standards of IEEE 802.11a in North America and HIPERLAN/2 in Europe. It was 

considered for the IEEE 802.11g and the IEEE 802.16 WLAN standards. 

Table 1.1  A history of OFDM technique and its applications 

1957 Kineplex, multi-carrier high frequency (HF) modem 

1966 R. W. Chang, Bell Labs, OFDM paper+patent 

1971 Weinstein & Ebert proposed the use of FFT and guard interval 

1985 Cimini described the use of OFDM for mobile communications 

1987 Alard & Lasalle proposed the OFDM for digital broadcasting 

1995 ETSI established the first OFDM based standard, digital audio 

broadcasting (DAB) standard  

1997 Digital video terrestrial broadcasting (DVB-T) standard was 

adopted. 

1997 Broadband internet with asymmetrical digital subscriber line 

(ADSL) was employed 

1998 Magic WAND project demonstrated OFDM modems for wireless 

LAN 

1999 IEEE 802.11a and HIPERLAN/2 standards were established for 

wireless LAN (WLAN) 

2000 Vector OFDM (V-OFDM) for a fixed wireless access 

2001 OFDM was considered for the IEEE 802.11g and the IEEE 

802.16 standards 

 

1.2 Objective of the Thesis 

IEEE 802.11a can provide a variable data transmission rate from 6Mbps up to 
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54Mbps. Using IEEE 802.11a to build WLAN that offers up to 54Mbps data 

transmission rate is very appealing. It is well known that in many communication 

systems, it is important to deal with the multi-path fading channels. In the IEEE 802.11a 

system, OFDM technique is adopted as the modulation and demodulation technique in 

the physical layer. In an OFDM communication system, the broadband is partitioned 

into many orthogonal sub-carriers, in which data is transmitted in a parallel fashion. 

Thus the data rate for each sub-carrier is lowered by a factor of N in a system with N 

sub-carriers. By this method, the channel is divided into many narrowband flat fading 

sub-channels. This makes the OFDM system more resistant to the multi-path frequency 

selective fading than the single carrier communication system. The sub-carriers are 

totally independent and orthogonal to each other. The sub-carriers are placed exactly at 

the nulls in the modulation spectral of one another. At the peak point of one sub-carrier 

waveform, the sample values of other sub-carriers at the nulls are zeros and thus 

contribute no ISI to the sampled sub-carrier. This is where the high spectral efficiency of 

OFDM comes from. It can be shown that keeping the orthogonality of the sub-carriers is 

very critical for an OFDM system to be free from inter-carrier interference. 

 In a typically OFDM system, a cyclic prefix is used as a guard interval to avoid the 

ISI and ICI.  The cyclic prefix is the insertion of the last gN samples to the original 

sample sequence, where gN  is the length of the guard interval. This guard interval is 

required to be at least equal to or longer than the maximum channel delay spread of the 

system. Using a cyclic prefix as the guard interval is a simple way to reduce the ISI and 

ICI, however it also reduces the transmission efficiency of the system. The reduction 
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factor is 
gNN

N

+
, where N is the number of the sub-carriers. In the IEEE 802.11a 

system, the number of sub-carriers is set to be N=64. For the IEEE 802.11a multi-path 

channel model, when the maximum channel delay spread is very long, the data 

transmission efficiency is significantly reduced. To maintain a high level of efficiency, a 

pre-FFT time domain equalizer (TEQ) is typically introduced in cascade with the 

original channel to shorten the effective channel impulse response to be in the range of 

the guard interval. This technique eliminates the necessary in extending the range of the 

cyclic prefix to obtain a comparatively high transmission efficiency. Many TEQ 

algorithms have been proposed based on different optimum criteria. However most 

popular algorithms [6-12] were developed for low data rate OFDM systems, such as 

ADSL applications, and their computational complexities are also high. In ADSL 

applications, before data transmission an initialization process is carried out for 

handshake and identification of the network equipment and the underlying physical 

infrastructure. The IEEE 802.11a OFDM system does not have an initialization process. 

In the IEEE 802.11a OFDM system, the training sequence is used to perform channel 

estimation, automatic gain control (AGC), coarse carrier frequency estimation and fine 

frequency tuning, etc. The total time interval for this training sequence is 16µs and its 

OFDM symbol interval is 4.0 µs. The TEQ algorithm for the high rate IEEE 802.11a 

OFDM system should have a reasonable computational complexity and should not take 

long time to fulfill. Millisecond-solutions for the TEQ coefficients are acceptable for 

low data rate systems. However for the 54Mbps IEEE 802.11a OFDM system, most of 

the popular TEQ algorithms are not suitable.  

From the above discussion, it is necessary to investigate a TEQ algorithm with a 
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comparatively low computational complexity to be used in the IEEE 802.11a OFDM 

system. This thesis aims at achieving the followings: 

1) Propose a time domain equalization technique for the high rate IEEE 802.11a 

OFDM system, which has a comparatively reduced computational complexity 

for a practical use. 

2) Introduce the effective channel compensation function block for the quadrature 

amplitude modulation (QAM) after the insertion of the TEQ. 

3) Setup the OFDM system according to the IEEE 802.11a standard in Simulink® 

including the TEQ and channel compensation function blocks, and test the 

functionality of the algorithm and the overall system performance. 

4) Design the hardware model according to the proposed algorithm and implement 

the function blocks in a field programmable gate array (FPGA). 

5) Test the FPGA chips to verify the algorithm and the functionalities, and analyze 

the difference between the hardware implementation and mathematical 

calculations.  

6) Test the system performance using the hardware implementation output, and 

analyze system performance loss introduced by the hardware implementation.  

When it is necessary to shorten the long channel’s delay spread, the proposed 

algorithm is very attractive for a practical use. The simplicity of the technique makes its 

hardware implementation possible in FPGA for the high rate OFDM systems. 

1.3 Thesis Organization 

In Chapter 2, the OFDM system model based on the IEEE 802.11a standard is 

provided and discussed. Chapter 3 first describes some popular TEQ algorithms for 
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OFDM system to provide the background information. Then a reduced computational 

complexity TEQ algorithm is proposed and analyzed. The computation complexity of a 

popular algorithm and the proposed algorithm is analyzed and compared. In Chapter 4, 

examples of the functionality of the algorithm are demonstrated to show the validity of 

the algorithm. System performance through simulations is analyzed and the effect of the 

TEQ FIR filter with different orders on the system performance is also tested.  In 

Chapter 5, FPGA hardware design model and the discrete implementation of the 

algorithm are discussed. To realize the function of the zero forcing equalization, a 64-

point radix-4 pipeline FFT is also designed. In Chapter 6, the detailed information on 

hardware implementation is provided and the system performance based on the 

hardware implementation is tested. Simulation results are provided to verify the 

functionality of the chips and to study the system performance loss introduced by the 

hardware implementation. Finally Chapter 7 gives the conclusions and the suggestions 

for the further study. 
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Chapter  2    OFDM System Model  

This chapter provides the background information about the IEEE 802.11a OFDM 

system. Specifically a top-level OFDM system model based on the IEEE 802.11a 

standard is introduced and analyzed.  

2.1 Top-level OFDM System Model 

2.1.1 Overview of the IEEE 802.11a  

High data rate WLAN systems are being built rapidly around the world. The IEEE 

802.11a systems are available in North America. Other systems currently under 

development include HIPERLAN in Europe, MMAC in Japan, and recently the IEEE 

802.11g & h radio standards. While the 2.4GHz IEEE 802.11b WLAN moderately 

deployed around the world, and the associated ICs predominantly supplied by just a few 

vendors, OFDM in one form or another has won the endorsement from many major 

telecommunication equipment manufacturers, such as Lucent, Cisco, Philips 

Semiconductors and Nokia.  IEEE 802.11a presents an immediate opportunity for new 

WLAN market entry. Numerous venture-capital-funded IC design groups are developing 

IEEE 802.11a multi-mode radios, some are acquired and supported by established 

companies. This urgent IEEE 802.11a development activity has created a tremendous 

demand for innovative and accurate design and verification solutions to help accelerate 
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high data rate WLAN product development. 

The original standard family IEEE 802.11 was defined in 1997; and the IEEE 

802.11a was defined in 1999. Since then, improvements had been proposed and adopted; 

and the standard was updated in 2002 to create a standard technology that could span 

multiple physical encoding types, frequencies and applications. The IEEE committee 

intends to setup the IEEE 802.11a in the same way as that of the popular IEEE 802.3 

Ethernet standard, which has been successfully applied to 10, 100 and 1000 Mbps 

technology over fiber and various kinds of copper.  

The OFDM physical layer (PHY) operates at a carrier frequency of 5GHz in the 

industrial, scientific, and medical (ISM) frequency bands. The radio frequency for the 

IEEE 802.11a OFDM layer is initially falling into the three 100MHz unlicensed national 

information infrastructure (U-NII) bands, 5.15-5.25, 5.25-5.35 and 5.725-5.825GHz. 

The centers of the outmost channels shall be at a distance of 30MHz from the band’s 

edges for the lower and middle U-NII bands, and 20MHz for the upper U-NII band [1]. 

The spectrum allocation is subject to the authorities responsible for geographic specific 

regulatory domains. In Canada, it is regulated by the License Exempt Local Area 

NetworkCode (LELAN).  Table 2.1 shows the channel allocation scheme for this 

standard. There are twelve 20MHz channels, and each band has a different output power 

limit. The first 100MHz in the lower section is restricted to a maximum power output of 

40mW. The second 100MHz has a higher limit of 200mW, while the top 100MHz is 

dedicated for outdoor applications, with a maximum of 800mW power output. The IEEE 

802.11a standard requires the receivers to have a minimum sensitivity ranging from -82 

to -65dBm, depending on the chosen data rate shown in Table 2.2. The packet error rate  
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Table 2.1 OFDM operating bands and channels 

Band 
Channel 

numbers 
Frequency (MHz) 

Maximum output power 

(Up to 6 dBi antenna gain) 

36 5180 

40 5200 

44 5220 

 

U-NII lower band 

5.15 to 5.25 MHz 

 48 5240 

40mW 

(2.5mW/MHz) 

 

52 5260 

56 5280 

60 5300 

 

U-NII middle band 

5.25 to 5.35 MHz 

 64 5320 

200mW 

(12.5mW/MHz) 

 

149 5745 

153 5765 

157 5785 

 

U-NII lower band 

5.725 to 5.825 MHz 

 161 5805 

800mW 

(50mW/MHz) 

 

 

(PER) is required to be less than 10% at a physical sub-layer service data units (PSDU) 

length of 1000 bytes with the input levels shown in the Table 2.2. When the PER is 

10%, the power difference between the adjacent channel and desired channel is referred 

to as adjacent channel rejection. The power difference between the non-adjacent channel 

and desired channel is referred to as alternate adjacent channel rejection. These 

requirements are also indicated in Table 2.2.  In a multiple cell network topology, 

overlapping and/or adjacent cells using different channels can operate simultaneously.  
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The IEEE 802.11a OFDM system can provide a variable data transmission rate of 6, 

9, 12, 18, 24, 36, 48 and 54Mbps. Among these, the support of transmitting and 

receiving data rate of 6, 12 and 24Mbps is mandatory. The IEEE 802.11a system uses a 

training sequence for its synchronization. The training sequence comprises of 10 short 

symbols and 2 long symbols with the total training length of 16µs. The sub-carriers are 

modulated using binary phase shift keying (BPSK), quadrature PSK (QPSK), 16-

quadrature amplitude modulation (16-QAM), or 64-QAM, depending on the data 

transmission rate.  

Table 2.2 Receiver performance requirements 

Data rate (Mbps) 
Minimum 

Sensitivity 

Adjacent channel 

rejection (dB) 

Alternate adjacent 

channel rejection (dB) 

6 -82 16 32 

9 -81 15 31 

12 -79 13 29 

18 -77 11 27 

24 -74 8 24 

36 -70 4 20 

48 -66 0 16 

54 -65 -1 15 

 

Convolution codes or punctured convolution codes are used as the forward error 

correction (FEC) to improve the system performance. Double block interleaving (outer 

block interleaving and inner block interleaving) is employed to combat the burst channel 
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interference. The 64-point IFFT and FFT are employed to realize the functions of the 

OFDM modulation and demodulation. A cyclic prefix is pre-pended as guard interval to 

avoid ISI and ICI. The total interval of an OFDM symbol is 4.0µs, including 3.2 µs for 

the data samples and 0.8µs for the guard interval. The IEEE 802.11a specifies the 

OFDM physical layer (PHY) characteristics. It loads the information signal into its 52 

sub-carriers, among which 48 of the sub-carriers are used for data transmission and 4 

remaining sub-carriers are used as the pilot sub-carriers. The pilot signal can be used as 

a reference to disregard frequency or phase shift of the signal during transmission. The 

sub-carrier frequency spacing is 0.3125MHz and the occupied bandwidth for each sub-

carrier is 16.6MHz. 

2.1.2 OFDM System Model 

A top-level block diagram of the base-band high rate OFDM system is shown in Fig. 

2.1. This model is based on the parameters defined in the IEEE 802.11a standard and 

includes the TEQ and the effective channel compensation function blocks. The function 

blocks shown in the diagram will be discussed in detail. 

From the diagram the data flow can be described as follows. When the data 

transmission rate is 48 Mbps or 54 Mbps, the punctured convolution code with coding 

rate 3/2=R  or 4/3  is adopted respectively. The input stream is first fed into the 

punctured convolution encoder. The coded bit stream is buffered and block interleaved. 

After that the binary bits are mapped into QAM signals according to the QAM 

constellation map. These complex numbers are then buffered to a multiplication of 64 

samples, employs a 64-point IFFT operation to generate an OFDM symbol. The output 

data is then converted from parallel version to serial data, and the cyclic prefix is added. 
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The block inside the dotted line on the upper branch realizes the OFDM modulation.  

The serial data stream is fed into the multi-path fading channel with additive white 

Gaussian noise (AWGN). At the receiver the inverse operations are employed. The 

corrupted signal is first passed to the TEQ finite impulse response (FIR) filter. The 

output signal is then converted to the parallel version after discarding the interfered 

cyclic prefix. A 64-point FFT is used to transfer the signal back to the base band 

frequency domain. The OFDM demodulator is also indicated in the dotted line box in 

the diagram (lower branch). Then the effective channel is compensated. After QAM 

demodulation, de-interleaving, Veterbi decoding, the approximated signal )(' nd is 

recovered.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 A block diagram of the base-band OFDM 
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2.2 Frame format of the IEEE 802.11a 

According to the IEEE 802.11a, the primary function of the OFDM PHY layer is to 

transmit media access control (MAC) protocol data units (MPDUs) as directed by the 

802.11 MAC layer. The OFDM PHY layer consists of two protocol functions [1]: 

1) A PHY convergence function, which adapts the capabilities of the physical 

medium dependent (PMD) system to PHY services.  

2) A PMD system whose function defines the characteristics and methods of 

transmitting and receiving data through the wireless medium. 

During transmission, PHY sub-layer service data unit (PSDU) is provided with a 

physical layer convergence procedure (PLCP) preamble and a header to create the PLCP 

protocol data unit (PPDU). The frame format of PPDU is shown in Fig. 2.2.   

The frame of PPDU includes a 12-symbol PLCP preamble, PLCP header, PSDU, tail 

bits and pad bits. The fields of RATE, a reserved bit, LENGTH, an even parity bit and 

tail bits constitute a separate single OFDM symbol, i.e. the SIGNAL symbol. In the 

PLCP header, 6 tail bits are inserted to facilitate a reliable and timely detection of the 

RATE and LENGTH fields. It is important for this field to be correctly transmitted and 

detected, because it is used for the demodulation of the rest of the packet. It is 

transmitted with the most robust combination of the BPSK modulation and the 

convolution code with coding rate of 2/1 . The SERVICE, PSDU, tail bit and pad bits 

parts are also convolution encoded and the code rate depends on the required data 

transmission rate parameters listed in Table 2.3.  
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 Fig. 2.2 PPDU frame format 

When the data transmission rate is 54Mbps, it involves two types of the convolution 

coding rate, the SIGNAL part employs a (2, 1, 7) convolution code with a coding rate 

R=1/2; the data field shall be convolutional encoded with a coding rate R=3/4.  

2.3 Convolution Encoder , Punctured Convolution Encoder  and 

Viterbi Decoder  

In this section the function blocks in the diagram will be discussed in detail. The 

forward error correction technique used in IEEE 802.11a is based on the convolution 

coding or the punctured convolution coding depending on the data transmission rate. 

Among the channel coding techniques, convolution coding has received much attention 

and is good for coded modulation implementation. It is often used in the digital 

communication system when the signal to noise ratio (SNR) is low. The code improves 

PLCP Header 

Coded/OFDM 
(RATE is indicted in SIGNAL) 
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system performance by adding redundant bits to the source information data. The choice 

of convolution codes depends on the applications. 

Table 2.3 Rate dependent parameters 

Data rate 

(Mbps) 
Modulation 

Coding 

rate 

Coded bits per 

sub-carrier 

Coded bits 

per OFDM 

symbols 

Data bits 

per OFDM 

symbol 

6 BPSK 1/2 1 48 24 

9 BPSK 3/4 1 48 36 

12 QPSK 1/2 2 96 48 

18 QPSK 3/4 2 96 72 

24 16-QAM 1/2 4 192 96 

36 16-QAM 3/4 4 192 144 

48 64-QAM 2/3  6 288 192 

54 64-QAM 3/4 6 288 216 

  

A convolution code is generated by feeding the source binary bits to a linear finite 

state shift registers. Generally a (n, k, K) convolution code can be implemented with a k-

bit input, n-bit output linear sequential circuit with a memory length of kK-bits. The 

parameter K is called the constraint length of the convolution code [2]. The coding rate 

is defined as the ratio of the number of input bits into the convolution encoder to the 

number of output bits generated by the convolution encoder, i.e., nkR /= . Typically n 

and k are small integers with nk < , but the constrain length K should be large to 

achieve a low error probability. At each sampling clock, the input data is shifted k bits a 
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time into and along the shift registers that are K flip/flop long, and the oldest k bits are 

dropped out. After k bits have entered the shift registers, n linear combination of the 

current kK memory elements are computed and used to generate the encoded output bits. 

From the above encoding procedure, it is obvious that the n-bit encoded output not only 

depends on the most recent k bits but also on the previous kK )1( −  bits.  

The convolution encoder with coding rate R=1/2 used in IEEE 802.11a can be 

expressed using the following industry standard generator polynomials: 

]1011011[0 =g  

]1111001[1 =g  

The block diagram of the convolution encoder is shown in the Fig. 2.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Convolution encoder (K=7, R=1/2) 

The bit denoted as the output data A is output from the encoder before the bit denoted as 

the output data B. The value of “1”  in the polynomials means the connection to the 

modulo-2 adders, while “0”  means no connection to the modulo-2 adder. Before 

output data B g1 

output data A g0 

Input Data  

bT  bT  bT  bT  bT  bT  

⊕ 

⊕ 
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encoding, the shift registers are assumed to be in the all-zero state.  

There are a number of techniques to decode the convolution code. The Viterbi 

decoder is the most popular method and it is commonly used to decode the bit stream 

coded by the convolution encoder. The Viterbi algorithm was first proposed in 1967 by 

A. Viterbi. The algorithm operates on the trellis structure of the code and determines the 

maximum-likelihood estimate of the transmitted sequence that has the largest metric. 

This rule maximizes the probability of a correct decision, i.e. it minimizes the error 

probability of the information bit sequence. If the channel is binary symmetric, a 

maximum-likelihood decoder is equivalent to a minimum distance decoder.  

When decoding a long information bit sequence, the decoding delay usually is too 

long for most practical applications. Furthermore, the storage required to store the entire 

length of surviving paths is too large and expensive. Thus generally some compromises 

must be made [2]. The usually taken approach is to modify the Viterbi algorithm to 

obtain a fixed decoding delay without significantly affecting the optimum performance 

of the algorithm, thus to truncate the path memory of the decoder. The decoding 

decision made in this way is no longer the truly maximum likelihood, but it can obtain 

almost the same good performance, provided that the decoding window is long enough. 

Experience and analysis have shown that a decoding delay on the order of 5-7 times or 

more of the constrain length K results in negligible degradation in the performance 

compared with the optimum Viterbi algorithm. Detailed discussion of the algorithm can 

be found in [2]. 

In the IEEE 802.11a system, when a higher coding rate such as 3/2=R or 4/3  is 

desired, the punctured convolution code is employed. The punctured convolution code 
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starts with a lower coding rate of nR /1=  code. In the IEEE 802.11a system it starts 

with a 2/1=R  code, then puncturing is used to create the needed higher coding rate. 

Puncturing procedure is to erase some of the encoded bits according to the punctured 

pattern defined in the transmission, which also reduces the number of transmitted bits 

and increases the coding rate. At the receiver the erasure bits must be inserted into the 

punctured data stream to make the coding rate back to n/1 . These erasure bits are binary 

0’s inserted to the desired positions that were deleted by the puncturing operation in the 

transmitter.  

By puncturing and insertion of the erasure bits, the Viterbi decoder operates on the 

metric of one input bit per encoded symbol instead of the higher numbers needed for 

higher rate codes. This avoids the computational complexity inherent in the 

implementation of a decoder of the high rate convolution code.  Puncturing a code 

reduces the free distance of the rate n/1 . In general the free distance is either equal to or 

1 bit less than that of the best convolution code the same rate obtained directly without 

puncturing [2]. For the punctured convolution code system, sometimes the trace back 

length has to be extended to compensate for the addition of these dummy bits. Generally 

the decoding delay is longer than five times the constraint length of the convolution code 

before making decision.  

2.4 Inter leaving, Deinter leaving and Signal Mapping 

Most coding techniques are devised to correct the error in the transmission of the 

information bits over the AWGN channels. The transmitted bits are affected randomly 

by the noise, thus the induced bit errors occur independently of bit positions. However 

there are many cases the interference will cause a burst of errors. One example is a 
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stroke of lighting or a human-made electrical disturbance. Another important example is 

the communication channel, which can cause burst transmission errors, like the multi-

path fading channel. Fading caused by the time variant multi-path channel makes the 

SNR of the received signal to fall below a certain limit, disrupting a number of sub-

carriers. The disruption causes a block or blocks of erroneous bits at the receiver. In 

general, codes designed for correcting statistically independent bit errors are not 

effective to correct burst errors. 

The technique of interleaving is very effective to deal with burst errors. In the 

transmitter, the coded data bits are interleaved according to the designed interleaving 

pattern. At the receiver the deinterleaving operation is applied to convert the data bits 

back to their original indices. By interleaving the burst errors are spread to random 

positions and are transformed into random errors. These random errors can be 

effectively corrected by the codes designed for statistically independent errors.  

Further more, for transmission in a multi-path channel environment, interleaving can 

provide time diversity against the fading. Generally it is desired that the ratio of 

interleaving interval to the coherent time is as large as possible. But as the ratio is big, 

the introduced time delay is also increased. In practical, the ratio is about 10 as long as 

we can implement the interleaving without suffering an excessive delay [2]. 

There are two structures of interleaver: block interleaver and convolution interleaver. 

In the IEEE 802.11a system, the encoded data bits are interleaved using block 

interleavers with a block size corresponding to the number of coded bits in a single 

OFDM symbol, CN . The whole interleaver is divided into two parts: outer block 

interleaver and inner block interleaver. The outer interleaver ensures that adjacent coded 
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bits are mapped onto nonadjacent sub-carriers. The inner interleaver ensures that 

adjacent coded bits are mapped alternately onto less and more significant bits of the 

constellation and therefore long runs of low reliability bits are avoided. 

The outer interleaving is defined by the following rule [1]: 

   )1(,,1,0,)16/()16mod)(16/( −=+= CC NkkkNi L  (2.1) 

Here k is the index of the coded bit before outer interleaving, i  is the index after the 

outer interleaving,    is the function to find the maximum integer less than the number.  

The inner interleaving is defined by the following rule [1]: 

    )1(,,1,0,mod))/16(()/( −=×−++×= CCC NisNiNisisj L   (2.2) 

Here j is the index after the inner interleaving, and the value of s is determined by the 

number of coded bits per sub-carrier, BSN , according to [1]: 

)1,
2

max( BSN
s =                                         (2.3) 

The deinterleaving, which performs the inverse operation, is also defined by two 

rules. The inner deinterleaving rule is [1]: 

    )1(,,1,0,mod))/16(()/( −=×++×= CC NjsNjjsjsi L  (2.4) 

Here j is the index of the original received bit before deinterleaving, i  is the index after 

the inner deinterleaving and s is defined in Equation (2.3). The outer deinterleaving rule 

is defined as [1]:   

  )1(,,1,0,)/16()1(16 −=××−−×= CCC NiNiNik L     (2.5) 

Here k is the index after the outer deinterleaving.  

After coding and interleaving, the bits stream is modulated by BPSK, QPSK, 16-

QAM or 64-QAM according to the RATE field in the PLCP header in Fig. 2.2. The 
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serial input stream shall be divided into groups of BSN  (1, 2, 4, or 6) bits and mapped 

into modulated signals according to BPSK, QPSK, 16-QAM or 64-QAM constellation. 

In this thesis the focus is on the 54Mbps data transmission rate, at which the 64-QAM is 

employed. In this arrangement, every 6 input bits are mapped into one 64-QAM 

complex number according to the constellation shown in Fig. 2.4.  Among the 6 input 

bits, the 3 least significant bits (LSB) 210 bbb  determine the imaginary value of I  and the 

most significant bits (MSB) 543 bbb  determine the real value of Q , which is illustrated in 

Table 2.4. 

Table 2.4 64-QAM encoding table 

 

Input bits 

( 210 bbb ) 
I-out 

Input bits 

( 543 bbb ) 
Q-out 

000 -7 000 -7 

001 -5 001 -5 

011 -3 011 -3 

010 -1 010 -1 

110 1 110 1 

111 3 111 3 

101 5 101 5 

100 7 100 7 
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Fig. 2.4 64-QAM constellation bit encoding 
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2.5 FFT and IFFT 

The IFFT/FFT is the most critical part of the OFDM system. FFT is an efficient way 

to calculate the discrete Fourier transform (DFT) to find the signal spectra. Since the 

DFT and inverse DFT (IDFT) basically involve the same type of computations, 

discussions of an efficient computational algorithm for the DFT also apply to the 

efficient computation of IDFT. The concept of the DFT is discussed first. 

2.5.1 DFT/IDFT  

The DFT of an N-point sequence 10)} ,({ −≤≤ Nnnx  is calculated as [3]: 

1 ,  ...  , 1 ,0                  ,)()(
1

0

−== ∑−

=

NkWnxkX
N

n

kn
N                      (2.6) 

Here X(k) denotes the thk discrete spectral sample and NW  is defined as: 

N
j

N eW
π2

−
=                                                                      (2.7) 

So the twiddle factor kn
NW  can be written as:  

kn
N

j
kn

N eW
π2

−
=                                                                      (2.8) 

The IDFT of an N-point sequence { } 10,)( −≤≤ NkkX  is similarly defined as: 

1 ,  ...  ,1 ,0                  ,)(
1

)(
1

0

−== ∑−

=

− NnWkX
N

nx
N

k

kn
N                  (2.9) 

The sequence { })(nx  contains N samples in the time domain and the sequence { })(kX  

contains N samples in the frequency domain. The sampling points in the frequency 

domain occur at the N equally spaced frequencies 1 ,  ...  ,1 ,0  ,/ 2 −== NkNkwk π . 

With these sampling points, { })(kX  uniquely represents the sequence of { })(nx  in the 

frequency domain. Some important properties of the DFT, which can be exploited in the 

calculation, are introduced below.  

It can be seen that kn
NW is periodic with the period of N, i.e., 

L,1,0,,))(( ±==++ lmWW nk
N

lNkmNn
N        (2.10) 
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And it is easy to observe that the twiddle factor is inversely symmetrical stated as 

follows: 

k
N

Nk
N WW −=+ 2/               (2.11) 

These properties can be shown graphically on the unit circle as indicated in Fig. 2.5 for 

N=8, in which the twiddle factor is represented as a vector.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Characteristics of twiddle factor 

 

When { })(nx  is a real-valued sequence, its DFT output is symmetrical. The DFT of a 

real sequence has the following property: 

 )0()0( *XX =               (2.12) 

 1 ,  ...  ,1           ),()( * −==− NkkXkNX  (2.13) 

where “* ”  denotes complex conjugate. By the uniqueness of the DFT, the inverse is also 

true, that is if equations (2.12) and (2.13) are true then the IDFT of { })(kX  produces a 

real sequence. This property can be exploited to generated real signal. 

It can be observed from equation (2.6) that when { })(nx is a complex sequence, a 

complete direct calculation of a N-point DFT requires 2)1( −N  complex multiplications 

and 2)1( −NN  complex additions. It can be seen that the computational complexity is in 
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the order of 2N , namely )( 2NO . For large values of N, direct calculation of the DFT is 

too computational intensive and not practical for implementation in hardware. So the 

idea of FFT is brought forward.  

2.5.2 FFT/IFFT 

The FFT algorithm is well known and widely used in digital signal processing for its 

efficient evaluation of the DFT.  FFT/IFFT is one of most important feature in the 

OFDM communication system. In this thesis the IFFT/FFT is used for OFDM 

modulation and OFDM demodulation, it is also used in the FFT function block to realize 

the zero forcing equation to compensate the effective channel in frequency domain 

The set of algorithms of FFT consists of various methods to reduce the computation 

time required to evaluate the DFT. The basic idea of FFT algorithm can be derived by 

decimating the original sequence into smaller sets either in time domain (DIT) or in 

frequency domain (DIF), then performs the DFT on each sub-set. The decimation 

process continues till the desired number of samples, which can be used to calculate the 

DFT easily and simply. There are many radices used in the decimation process. Among 

the numerous FFT algorithms, the radix-2 decimation in time (DIT) and decimation in 

frequency (DIF) algorithms are the most fundamental methods.  

In the radix-2 algorithm, the length of the data sequence, { } 1 ,  ...  ,1 ,0,)( −= Nnnx , 

is chosen to be a power of 2, i.e., pN 2= , where p is a positive integer.  Define two 

(N/2)-point sub-sequences )(1 nx and )(2 nx  as the even and odd index values of )(nx , 

i.e.,  

1
2

,,1,0,)2()(1 −== N
nnxnx L           (2.14) 
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1
2

,,1,0,)12()(2 −=+= N
nnxnx L          (2.15) 

Then the N-point DFT in (2.6) can be expressed as: 
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As 2/
)2//(2(2)/2(2 ][ N

NjNj
N WeeW === ππ , the above equation can be simplified as: 
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N WnxWWnxkX        (2.17) 

or  )()()( 21 kXWkXkX k
N+=                (2.18) 

Here the )(1 kX and )(2 kX  are the (N/2)-point DFT of )(1 nx and )(2 nx , respectively, 

thus the N-point DFT )(kX  can be decomposed into two (N/2)-point DFT of )(1 kX and 

)(2 kX , 1)2/(0 −≤≤ Nk . If the (N/2)-point DFT is calculated directly, each (N/2)-

point DFT requires 2)2/(N  complex multiplications, plus the )2/(N  complex 

multiplications with k
NW , then the total number of complex multiplications required for 

computing )(kX  is )2/()2/()2/()2/(2 22 NNNN +=+ . This results in a reduction 

number of complex multiplication from 2N  to )2/()2/( 2 NN + . In the case of large 

value of N, it is almost a saving of 50% in calculation. This process to calculate the N-

point DFT from the even and odd sequences of (N/2)-point DFT can be repeated until it 

reaches the stage of calculating the last 2-point DFT. The number of the stages for radix-

2 N-point DFT calculation is therefore Np 2log= . The total number of complex 

multiplications is reduced from 2)1( −N to N
N

2log
2

. For the 64-point DFT, the number 
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of complex multiplication is reduced from 3969 to 192, about 20 times reduction. For 

the 128-point DFT, the number of complex multiplication is reduced from 16129 to 448, 

about 36 times reduction. It can be seen that FFT is very efficient in the evaluation the 

DFT. As the value of N increases, the complex multiplication reduction also increases. 

Actually it can be seen that the multiplication by the twiddle factors such as 

4/32/4/0 ,,, N
N

N
N

N
NN WWWW  is equivalent to multiplication with 1, -j, -1 and j, respectively. 

They are just complex additions, subtractions or swap of the imaginary and real parts, 

which can be exploited to reduce the computation further.  

An 8-point radix-2 FFT decimation in time process is shown in Fig. 2.6 [4]. It 

consists of three stages. The first stage can be realized solely with real additions and 

subtractions, which leads to an easy arithmetic element design. Also it can be seen from 

the figure that in order for the output sequence to be in the normal index, the input 

sequence is arranged in an order generally called bit-reversal. The rule is defined as the 

follows: if one string of p bits represents the normal index of the input sequence, then 

reverse the bits, the resulting bit string represent the index of the actually input 

sequence. For the 8-point FFT, the rule is shown in Table 2.5, the input index is 

arranged as )7(),3(),5(),1(),6(),2(),4(),0( xxxxxxxx . This rule can be extended to the 

higher point of N, the input index can be calculated easily according to the bit-reserved 

rule. Alternatively, the input sequence can be arranged in the normal index, and a 

shuffler is employed to convert the bit reverse sequence back to its normal index at the 

output. 
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Table 2.5 Bit-reverse for 8-point FFT input sequence 

Index Initial bits Reversed bits Bit-reversed index 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 Decimation in time of 8-point FFT. 
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For each stage the twiddle factors are also illustrated in the figure, which can be 

calculated according to the Equation (2.18).  

Under different cases, the DFT calculation can be decimated other than by radix-2. 

FFT algorithms were proposed that decimate the input sequence based on different 

radices or mixed radices. An important one is the radix-4 FFT algorithm, which requires 

the number of data samples N to be a power of 4, i.e., pN 4= , where p is a positive 

integer. In the hardware implementation of the zero forcing equalization, a 64-point 

radix-4 pipeline FFT is designed. The detailed discussions of this algorithm are 

presented in Chapter 4. 

2.6 OFDM Transceiver 

This section discusses the basic principles of the OFDM and its advantages.  

2.6.1 OFDM Modulation and Demodulation Technique 

OFDM is originated from the multi-carrier modulation and demodulation technique. 

A simple multi-carrier communication system is the frequency division multiplexing 

(FDM) or multi-tone. The broad transmission bandwidth is divided into many narrow 

non-overlapping sub-carriers, in which the data is transmitted in a parallel fashion. 

Ideally each sub-carrier is narrow enough so that the sub-carrier channel can be 

considered to be slow, flat fading to reduce the effect of ISI. The fundamental structure 

of a multi-carrier system is depicted in Fig. 2.7. The data stream is mapped to the desired 

waveform, filter banks are used to limit the signal bandwidth. After modulated by 

separate center frequencies, these signals are multiplexed and transmitted. At the 

receiver the frequency multiplexed signal is down converted to different channels by 
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multiplication with separate center frequencies, filtered by the filter banks to get the 

baseband multi-carrier signal for further processing.   

The spectrum allocation for sub-carriers in a FDM system is shown as in Fig. 2.8, 

where 0f , 1f , · · · , Nf  are the center frequencies of the sub-carriers. This modulation has 

the following disadvantages: 

 

 

 

 

Fig. 2.7  Fundamental transceiver structure of a multi-carrier system 

1) Since the sub-carriers are not overlapped with each other, the wide spacing 

between the sub-bands means a lower spectrum efficiency.   

2) The filter banks are required both at the transmitter and the receiver, which make 
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the system more complicated. 

 

 

 

 

  

Fig. 2.8  FDM sub-band spectrum distribution. 

With the input sequence 10]} ,[{ −≤≤ Nkka , the frequency spacing f∆  between the 

difference sub-carriers and the symbol interval Ts, the transmitted signal )(txa  can be 

expressed as: 

∑−

=

∆ ≤≤=
1

0

2 0,][)(
N

k
s

ftkj
a Ttekatx π         (2.19) 

If the signal is sampled at a rate NTs / , then the above equation can be  rewritten as: 
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n
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If the following equation: 

            1=∆ sfT   (
sT

f
1=∆ )           (2.21) 

is satisfied, then the multi-carriers are orthogonal to each other and equation (2.20) can 

be rewritten as: 
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−

=

π       (2.22) 

The above is just the IDFT expression of the input signal stream ]}[{ ka with a difference 

of the gain factor 1/N. At the receiver the DFT implementation to find the approximate 

          0f       1f                 …          Nf               f 
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signal ][ˆ ka  can be written as: 

]}[{][ˆ nxDFTka a=              (2.23) 
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Here ][ km −δ  is the delta function defined as: 
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From the derivation above, it can be observed that there are two most important features 

of the OFDM technique, which are different from the traditional FDM systems.  

1) Each sub-carrier has a different center frequency. These frequencies are chosen so 

that the following integral over a symbol period is satisfied: 

∫ ≠=Ts tlj
l

tmj
m lmdteaea0 ,0ωω  

The sub-carrier signals in an OFDM system are mathematically orthogonal to each 

other. The sub-carrier pulse used for transmission is chosen to be rectangular so that the 

IDFT and DFT can be implemented simply with IFFT and FFT. The rectangular pulse 

leads to a 
x

x)sin(
 type of spectrum shape. The spectrum of the OFDM sub-carriers is 

illustrated in Fig. 2.9. The spectrum of the sub-carriers is overlapped to each other, thus 
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the OFDM communication system has a high spectrum efficiency. Maintenance of the 

orthogonality of the sub-carriers is very important in an OFDM system, which requires 

the transmitter and receiver to be in the perfect synchronization. 

2) IDFT and DFT functions can be exploited to realize the OFDM modulation and 

demodulation instead of the filter banks in the transmitter and the receiver to lower the 

system implementation complexity and cost. This feature is attractive for practical use. 

As it is already discussed, the IFFT and FFT algorithms can be used to calculate the 

IDFT and DFT efficiently. IFFT and FFT are used to realize the OFDM modulation and 

demodulation to reduce the system implementation complexity and to improve the 

system running speed. 

 

Fig. 2.9 Orthogonality principle of OFDM 
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2.6.2 Cyclic Prefix 

It is known that in multi-path fading channel environment, channel dispersion cause 

the consecutive blocks to overlap, creating ISI/ICI.  This degrades the system 

performance. In order for the orthogonality of the OFDM sub-carriers to be preserved, 

typically in an OFDM system, a guard interval is inserted. Actually the guard interval 

can be realized by the insertion of zeros, but using the cyclic prefix as guard interval can 

transform the linear convolution with the channel into circular convolution [14]. The 

insertion of cyclic prefix is very simple. Assume the length of the guard interval is v, it is 

just pre-pended the last v samples to the original OFDM sample sequence at the 

transmitter. At the receiver the so-called guard interval is removed. The process is 

shown in Fig. 2.10. The length of the cyclic prefix is required to be equal to or longer 

than the maximum channel delay spread to be free from ISI/ICI. As already mentioned, 

this is simple, but it reduces the transmission efficiency of the information bits. 

 

 

 

 

 

 

 

 

Fig. 2.10  The structure of cyclic prefix 

The counteract of the cyclic prefix against the multi-path channel is shown in Fig. 2.11. 

Time 
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Assume that channel impulse is shown as )(th , the maximum delay spread is shorter 

than the guard interval. The i th received OFDM symbol is only disrupted by the (i-1)th 

symbol. The “ fading in”  part of the received symbol, i.e., the corrupted guard cyclic 

prefix, is discarded, thus to provide a mechanism to suppress the ISI and ICI. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 The counteract effect of cyclic prefix against the ISI and ICI 

2.7 Channel Model 

 The channel is the electromagnetic media between the transmitter and the receiver. 

The most common channel model is the Gaussian channel, which is generally called the 

additive white Gaussian noise (AWGN) channel. When signal is transmitted through the 

channel, it is corrupted by the statistically independent Gaussian noise. This channel 

model assumes that the only disturber is the thermal noise at the front end of the 
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receiver. Typically thermal noise has a flat power spectral density over the signal 

bandwidth.  

The AWGN channel is simple and usually it is considered as the staring point to 

develop the basic system performance results. In wireless communication systems, the 

external noise and interference are often more significant than the thermal noise. Under 

certain conditions, the channel can not be classified as an AWGN channel but a multi-

path fading channel. Multi-path fading is a common phenomenon in wireless 

communication environments, especially in the urban and sub-urban areas. When a 

signal is transmitted over a radio channel, it reflects, diffracts or scatters off the 

buildings, trees or other objects. The signal may have different propagation paths when 

it arrives at the receiver as shown in Fig. 2.12. Each path may introduce a different 

phase, amplitude attenuation, delay and Doppler shift to the signal. Since the 

transmission environment is always changing, therefore the phase, attenuation, delay and 

Doppler shift of the signal are random variables. At the receiver, when several versions 

of the transmitted signal are mixed together, at some points, they may add up 

constructively, and at the other points they may add up destructively. As the result the 

receiver may get a far diverse signal from the transmitted one. In this case, the channel is 

called a multi-path fading channel. 

The impulse response of a multi-path channel generally exhibits a delay spread. The 

actual multi-path intensity profile for a certain channel needs to be estimated to have the 

characteristics of the channel. For a single transmitted impulse, the time between the 

first and the last received components is called the maximum excess delay mT . Beyond 

mT  the power will fall below certain threshold level and can be discarded without 
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causing any significant error. If the maximum excess delay mT  lasts longer than the 

signal symbol time interval sT , it will generate the ISI distortion and the channel is said 

to be frequency selective fading. Otherwise if mT < sT , all the received multi-path 

components arrive within a symbol time interval. In this case there is no channel induced 

ISI distortion and the channel is said to be frequency nonselective or flat fading.  

 

 

 

 

 

 

 

 

 

Fig. 2.12  The multi-path communication environment. 

The multi-path phenomenon can also be specified in frequency domain. Another 

useful parameter of the multi-path fading channel is the reciprocal of the time spread, 

called the coherent bandwidth cB . This quantity is a statistic measure of a range of 

frequency over which a signal’s frequency components have a strong potential for 

amplitude correlation. If frequency components within this bandwidth receive 

approximately the same attenuation and group delay, the channel is said to be frequency 

nonselective. If the frequency components within the bandwidth often experience 

dramatically different attenuation and phase shift, the channel is frequency selective. 
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The coherence bandwidth cB  and maximum excess delay mT  are reciprocally related 

and can be calculated approximately with the knowledge of the other. The characteristic 

of a flat fading multi-path channel is shown in Fig 2.13. It can be seen that the coherence 

bandwidth is wider than the signal bandwidth, therefore all the signal frequency 

components are affected the same. In this situation the channel effect can be 

compensated easily. 

 

 

 

 

 

 

Fig. 2.13  Flat fading multi-path channel 

Many diversity techniques were introduced to combat the multi-path fading effect. In 

an OFDM system, the broadband is divided into many narrow sub-carriers. The data 

transmission rate of each sub-carrier is lowered down by a factor of N. When the number 

of sub-carriers is sufficiently large, the channel transfer function is nearly flat in the 

interval of an individual sub-carrier. This changes a frequency selective channel into 

many frequency nonselective channels as shown in Fig. 2.14. It can be observed that the 

magnitude frequency response is not flat for all the sub-carriers, but for the thi sub-

carrier the frequency band is very narrow and its magnitude frequency response is 

considered to be flat during that interval. For this reason, the OFDM system is robust 

against the multi-path fading effect. 
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Fig. 2.14  Magnitude frequency response for the ith sub-carrier in the OFDM 

system 

As the signal is assumed to be band-limited, the time delay line model can describe 

this multi-path phenomenon with time varying coefficients and a fixed tap spacing, 

which can be shown graphically in Fig. 2.15. If assumed that there are infinite scatters, 

then the channel impulse response can be considered to be complex Gaussian process.  

If there are multiple reflective paths and if there is no single dominant path, then the 

process is zero mean and the envelope of such a received signal is statistically described 

by a Rayleigh probability density function and the channel is said to be Rayleigh fading. 

If there is a single dominant path, then the process is nonzero mean and the fading 

envelope is described by a Rician probability density function. In this case the channel is 

considered to be Rician fading [2]. In practice, there are many channel models for 

wireless communication environments. The actual channel model needs to be estimated. 

In our case, the wireless channel is assumed to be the Rayleigh slow fading channel as 

this channel model is simple and very common. The multi-path power profile is assumed 

to be exponential decaying.  
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Fig. 2.15  A multi-path fading channel model 

In Fig. 2.15, the maximum channel delay spread lasts v samples, the coefficients of 

vααα L,, 10  are the attenuations of the different paths. These coefficients are Rayleigh 

distributed random variables. The delay sT  denotes the unit sample delay.  The output of 

the multi-path channel can be expressed as follows [2]: 
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Taking the AWGN noise )(nz into account, the received signal can be written as: 
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It can be seen from the above equation that the multi-path fading affects v samples. This 

will introduce ISI/ICI if no anti-measure is employed at the receiver. 
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2.8 Summary 

In this chapter, an OFDM system model is introduced. It first discusses the format of 

the data frame, the punctured convolution code, the Viterbi decoder, the interleaving and 

deinterleaving. Then the principle of OFDM modulation and demodulation is presented. 

To counteract the multi-path fading effect, a guard interval using cyclic prefix is 

included. The length of the cyclic prefix is required to be equal to or longer than the 

maximum channel delay spread for the system to be free from ISI/ICI. This, however, 

will reduce the transmission efficiency when the maximum channel delay spread is very 

long. To solve this problem, a TEQ is generally introduced to shorten the effective 

channel impulse response to be within the range of the cyclic prefix. The principle of 

TEQ is discussed in next chapter. 
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Chapter  3    Time Domain Equalization (TEQ): Discussion 

and Analysis 

This chapter first discusses some popular TEQ algorithms for OFDM system to 

provide the background information on the TEQ design. Then a reduced computational 

complexity TEQ algorithm for the high rate IEEE 802.11a OFDM system is introduced 

and mathematically analyzed. The complexity analysis shows a high computational 

reduction of the proposed algorithm. 

3.1 System Model 

Based on the OFDM system model given in Fig. 2.1, a data flow with TEQ is shown 

in Fig 3.1. The base band signal )(nx , generated by an N-point IFFT can be expressed 

as: 
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        (3.1) 

where the sequence of )(kX is the modulated data of the sub-carriers. After adding the 

cyclic prefix, the modulated signal passes through the multi-path fading channel. It is 

assumed that the channel is time invariant, at least during one OFDM symbol. Using the 

tap delay line channel model, the channel coefficient vector h
r

 is described by a vector: 

*
10 ],,,[ mhhhh L

r

=             (3.2) 
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Error ! 

 

 

 

Fig. 3.1   Data flow in an OFDM system with TEQ 

Here * indicates a conjugate transpose, and ih  is the attenuation of the i th path. The 

parameter m is the maximum channel delay spread value.  

At the receiver, the received signal y
r

can be written as: 

zhxy
�

�

��

+⊗=               (3.3) 

where ⊗  denotes the convolution operation and z
�

is the additive white Gaussian noise 

(AWGN).  After the insertion of TEQ, whose filter coefficients is denoted as w
�

, the 

received signal can be expressed as:  

weff zhxs
r

r

rr +⊗=              (3.4) 

in which the effective channel impulse response effh
r

 is defined as:  

whheff

r

rr

⊗=              (3.5) 

and the filtered modified noise 

wzzw

rrr ⊗=             (3.6) 

If the effective channel impulse response is limited to be in the range of the cyclic 

prefix, the received signal will be free from ISI and ICI without the necessary to extend 

the length of guard interval. 

This received signal can also be expressed in frequency domain by the following 

equation: 
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 )()()()( fZfHfXfS weff +=          (3.7) 

where )( fS , )( fX , )( fH eff
 and )( fZw

 are the FFT of s
�

, x
�

, effh
r

 and wz
r

, respectively. It 

can be observed from equation (3.7) that a simple zero forcing equalization (ZFE) 

technique can be implemented to compensate the effective channel impulse response. It 

is realized by multiplying the received signal with the vector 
)(

1

fHeff

 in frequency 

domain. The disadvantage of this method is that when the gains of some of the sub-

carriers are very low, the inversion of the gain would be very high and the noise in these 

sub-carriers is magnified. The signal to noise ratio (SNR) in these sub-carriers is 

decreased and it will introduce more bit errors, making the system performance 

degraded. At the receiver, after discarding the cyclic prefix, FFT operation, QAM 

demodulation, de-interleaving and Viterbi decoding, the approximated signal is 

obtained. 

3.2 TEQ Algor ithms 

The equalization technique was originally proposed by Hirosaki [5]. Since then 

many equalization algorithms for OFDM systems, including TEQ, have been developed. 

The main approaches of the TEQ design can be formulated as follows. Given a physical 

multi-path fading channel, described by a FIR filter with coefficients vector h , the 

maximum delay spread lasts m samples, another FIR filter with *
10 ],,,[ pwwww L

r =  is 

used to cascade with the original channel. The effective channel can now be modeled as 

a FIR filter with impulse response effh
r

, known as the target impulse response (TIR) with 

some delays. The equalization design begins with the TIR and tries to find the optimum 
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coefficients optw
r

 of the TEQ to shorten the length of effective channel impulse response 

to be in the range of the guard interval. The criteria used for finding the coefficients of 

TEQ and TIR may vary, which leads to different algorithms. The most popular 

algorithms used to design TEQ (the MMSE, the MSSNR and the MGSNR) are 

discussed in the subsequent section.  

3.2.1 Minimum Mean Square Error  (MMSE) Algor ithm and I ts Var iants  

In [6], the minimum mean square error (MMSE) method is discussed. The structure 

of the algorithm is shown in Fig. 3.2.  

 

 

 

 

 

 

 

Fig. 3.2   Structure of MMSE equalizer 

The MMSE algorithm is based on a channel shortening technique to decrease the 

system complexity of the Viterbi decoders [7].  Given the length of the TIR, it is desired 

to find the coefficients vector w
�

 of TEQ to minimize the mean square error (MSE) 

signal e
�

, given by: 
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error of MSE expressed in equation (3.8), the well-known orthogonality principle of the 

linear estimation theory can be exploited, to require: 

0][ * =yeE
rr

              (3.9) 

which gives the solution as [7]: 

 yyxyeff RwRh ** r

r

=             (3.10) 

To avoid the trivial solutions, the MMSE method places a unit-tap constraint on TIR 

coefficients effh
r

 or TEQ coefficients (MMSE-UTC) w
�

 [8]. Assume if  is the vector of 

zeros with unity in the thi  position. The problem is stated as follows [8]: 

1min
,
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ihw
hfwithMSE

eff

r

�
�             (3.11) 

Using equation (3.8) as a cost function, the following solution can be obtained [8]: 
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where yxyyxyxxyx RRRRR 1
|

−−= . 

The optimum solution is given by examining all the possible }1,0{ −∈ Ni  to maximize 

the achievable data rate in the multi-carrier system. It involves many matrix operations 

to find the optimum values of effh
r

 and optw
v

. If the MMSE algorithm places a unit-energy 

constraint on either TIR effh
r

 or the TEQ coefficients w
�

 (MMSE-UEC) [9], that is  

1* =wRw yy

rr

 or 1* =effxxeff hRh
rr

           (3.13)  

then it would give a smaller mean square error [9].  

For the unit energy constraint on TEQ coefficientsw
�

, the optimum solution can be 

calculated by the following equation [9]: 
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optyyopt gRw
rr 1)( −=               (3.14) 

where optg
r

is the eigenvector corresponding to the minimum eigenvalue which satisfies 

the equation: 

 ggwRRwwRw T
yy

T

yy
T

yy
T rrrrrr ==          (3.15) 

with wRg yy

rr = . The above calculations involve solving the minimum eigenvalue and 

eigenvector corresponding to the channel and noise independent matrices. Similarly the 

solution with the unit energy constraint on effh
r

 can also be obtained [9]. The high 

computational load of the algorithm makes it impractical to use. In [10] some iterative 

algorithms have been developed to decrease the computational complexity, but it 

requires many iterations to converge to a reasonable value. These algorithms are also 

impractical to be used in the high rate wireless communication systems.  

There are some other variations of the MMSE algorithm. One is the MMSE decision 

feedback equalization (MMSE-DFE) [11]. This algorithm includes a feed forward filter 

fw
r

and a feed back filter bw
r

 to adapt to the incoming signal. It involves finding the 

optimum values of fw
r

 and bw
r

 to minimize the error signal. In [12] the zero-pole 

MMSE-DFE is discussed. It approximates the original channel by pole-zero 

representation, written as in the following equation: 

)(1

)(
)(

ZA

ZB
ZH

+
=              (3.16) 

It uses the autoregressive moving average (ARMA)-Levinson algorithm to find the 

coefficients of )(ZB  and )(ZA . If )(1 ZA+  is used as the transfer function of the 

equalizer, the effective transfer function becomes )())(1)(()(' ZBZAZHZH =+= . If 
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the zeros of )(ZB  is less than or equal to the length of the guard interval, then the 

channel effect can be compensated free of ISI and ICI.  

3.2.2 Maximum Shortening Signal to Noise Ratio (MSSNR) 

A maximum shortening signal to noise ratio (MSSNR) algorithm is discussed in 

[13]. It is known that there are always some errors between the effective channel 

impulse response and the desired TIR coefficients. There is some part of the signal 

energy falling inside the target window, which is desired. But there is still some signal 

energy falling outside the target window, which contributes to the ISI. The definition of 

shortening SNR (SSNR) is expressed as follows: 

windowettout

windowettin

Energy

Energy
SSNR

_arg_

_arg_=                    (3.17) 

As shown in the Fig. 3.2, the target window does not need to begin at the first sample, 

but there can be some delays. The measured criterion in this algorithm is to find the 

coefficients of the TEQ, which will maximize the value of SSNR.  

It is desired that the equivalent TIR would fall in the range of cyclic prefix with a 

delay d when the minimum ISI is to be obtained. A window function is defined to fit in 

the effective channel response whh
r

rr

⊗=' . Let winh
r

=window ( wh
r

r

⊗ ), then the window 

function can be written as the follows:  
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here , gN  is the length of cyclic prefix, p is the number of the TEQ coefficients and the 

length of original channel impulse response is m.  

Similarly the equivalent channel impulse response outside the target window wallh
r

 is 

defined as follows: 
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The optimal solution becomes finding the coefficients of TEQ to maximize the SSNR. It 

is necessary that the coefficients of w
�

 are not all zeros, otherwise it will be meaningless. 

To simplify the problem, the winH  is normalized. Now the solution becomes to find the 

coefficients of TEQ to minimize wallwall HH ⋅*  while maintaining the condition: 

 1* =⋅ winwin HH                (3.20) 

The energy inside and outside the window can be expressed as  

winwin hh
rr

* wBwwHHw winwin

rrrr *** ==           (3.21) 

wAwwHHwhh wallwallwallwall

rrrr

rr

**** ==           (3.22) 

It can be observed that A  and B  are symmetric and positive definite. Assume B  is 
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invertible, the Cholesky decomposition is used to decompose the matrix B  [13]:  

    )()( ** QQQQB ΛΛ=Λ=                      (3.23) 

   
**)()( BBQQ =ΛΛ=  

Here Λ  is a diagonal matrix formed from the eigenvalues of B , and the columns of Q  

are orthonomal eigenvectors. Since B  is full rank, the matrix 
1−

B exists. 

Define  wBy
rr

*
= , the following equation can be obtained [13]: 

1**** === wBwwBBwyy
rrrrrr

           (3.24) 

Solving the above equation gives: 

yBw
rr 1*

)( −=                (3.25) 

yCyyBABywAw
rrrrrr *11** )()( == −−           (3.26) 

with 11 )()( −−= BABC . The solution to this problem is minly
r

r =  where minl
r

is the unit 

length eigenvector corresponding to the minimum eigenvalue minλ . The optimum TEQ 

coefficients can be obtained as follows [13]:  

min
1*

)( lBwopt

r

r −=                (3.27) 

So the optimum value of SSNR can be calculated accordingly. 

It can be seen that the algorithm requires knowing the original channel impulse 

response, the length of the TIR and length of the TEQ. There are not so many constraints 

and pre-conditions, but requires too many matrix operations to obtain results.   

3.2.3 Maximum Geometr ic Signal to Noise Ratio (MGSNR) 

Al-Dhahir and Cioffi proposed the maximum geometric signal to noise ration 

(MGSNR) algorithm [14]. The criterion of the MGSNR is to maximize the bit rate. The 
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disadvantages of MGSNR algorithm are that it requires several assumptions to be met 

and also involves many matrix operations. The algorithm has a high computational 

complexity and is not suitable for practical use.  

There are also other proposed algorithms to realize the equalization function in 

frequency domain, such as LMS. The problem of these algorithms is that the 

convergence process is very slow. They require many iterations for the multi-carrier 

communication system to converge to a stable solution. Therefore a new TEQ algorithm 

is sought for the high rate IEEE 802.11a OFDM systems. 

3.3 A Reduced Complexity TEQ Algor ithm 

The IEEE 802.11a OFDM system does not have an initialization process as in the 

ADSL applications. In addition, the symbol interval is very short (4µs). For practical use 

in the high rate OFDM system, it is necessary for the equalization algorithm to have 

reasonable computational complexity and take a short time to complete. The algorithms 

[10-14] are therefore impractical to be implemented in a high rate WLAN. The MMSE 

method is discussed in section 3.2.1. Based on this MMSE criterion, an equalization 

algorithm for a high rate OFDM system with a relatively low complexity is proposed. In 

what follows, this algorithm is described. More importantly, necessary modifications to 

the algorithm are introduced to make the algorithm suitable for the practical 

implementation in the high rate OFDM system. 

 Given the length of the TIR, the original channel impulse response h
r

 and the length 

of the cyclic prefix, one want to find the optimum TEQ coefficients to minimize the 

error signal )(ne . Assume that the maximum channel delay spread is longer than the 

length of the cyclic prefix, thus the ISI/ICI can not be simply removed by increasing the 
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CP OFDM Symbol 

Original channel Impulse response 

Effective channel Impulse response 

Remaining ISI/ICI 

SNR, i.e., it is necessary to include a TEQ function block to shorten the effective 

channel impulse response. The TEQ coefficient vector is described by the following: 

*
10 ],,,[ pwwww L

r =              (3.28) 

where p is the order of TEQ. The original channel impulse response is described by 

equation (3.2). As mentioned before, the effective channel impulse response effh
r

 is the 

convolution of the original channel and the TEQ FIR filter, namely whheff

r

rr

⊗= . This 

filter has the length of (m+p+1). It is assumed that the length of cyclic prefix is 
gN  

samples long. It is desired that the major components of effh
r

 are in the range of 

gN samples.  The components outside the range of cyclic prefix will contribute to the ISI 

and ICI, but it is made to be very small, thus no significant distortion is caused. Fig. 3.3 

illustrates the effective channel impulse response ( effh
r

) resulted from the convolution 

between the TEQ and the original channel impulse response. 

   

 

 

 

 

 

                   

  

       

 

 

Fig. 3.3 The TEQ shortens the impulse response to the cyclic prefix 



54 

The solution for the TEQ coefficients involves the knowledge of the original channel 

impulse response, having the channel state information at the receiver is necessary. 

Numerous algorithms have been developed for channel estimation. In [17], a channel 

estimation algorithm with the aid of the training sequence is presented to estimate the 

channel for the OFDM system. In this project, as the research focuses on the design and 

hardware implementation of the TEQ algorithm, an ideal knowledge of the channel 

impulse response h  is assumed.  

To begin, a convolution matrix  H of size )1()1( +×++ ppm  is generated as 

follows: 

*

10

10

10

00

00

00
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           (3.29) 

Then the effective channel impulse response can be expressed by the following 

equation: 

wHheff

�

�

⋅=                   (3.30) 

Ideally the effective impulse response effh
r

 should consist of the following components: 
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             (3.31) 

Here )(kheff

r

 refers to the kth element of the vector effh
r

 and the symbol X means that the 

actual values of those components are not important. In practice, the energy of the 

samples outside the range of cyclic prefix should be minimized. In order to avoid the 
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trivial solutions, the first element of effh
r

is set to 1. A reduced effective channel impulse 

response effreh −

r

 can be written in a simpler form as following: 




−+≤<
=

=−
g

effre Npmk

k
kh

0,0

0,1
)(

r

        (3.32) 

It then follows that a reduced convolution matrix reH  with size of 

)1()1( +×−++ pNpm g  can be generated accordingly from the matrix H by discarding 

the lines between 2 and )1( +gN  in H. Thus the following equation can be obtained: 

wHh reeffre

�

�

⋅=−                                    (3.33) 

It is desired to find the coefficient vector w
�

 of TEQ to satisfy the following equation: 

δ
rr

r +=⋅ dwH re                (3.34) 

whered
r

  is the )1( gNpm −++  ideal vector given by the following expression:  

*]0,,0,1[ L

r

=d                                      (3.35) 

and δ
r

is the vector that describes the error signal: 

*
10 ],,,[

gNpm −+= δδδδ L

r

            (3.36) 

Using these definitions, the cost function of MMSE can be written as follows:  
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    (3.37) 

The cost function is minimized on the condition of least square approach gives the 

following equation:  
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0=
∂

∂
w

Emse
r

              (3.38) 

(or simply use the orthogonality principle). In this case the following equation exists to 

minimize the error signal δ
r

: 

022 ** =⋅+⋅⋅−=
∂

∂
dHwHH

w

E
rerere

mse
r

r

r
 

The above equation yields: 

dHHHw rerereopt ⋅⋅⋅= − *1* )(
�

                    (3.39) 

In the case of AWGN environment, the coefficients of TEQ are given by [17]:  

dHIHHw reperereopt ⋅⋅⋅+⋅= − *12* )( γ
�

          (3.40) 

where 
SNRpe

12 =γ  , with SNR is the signal to noise ratio and I is a )1()1( +×+ pp  

identity matrix.  

Because the reduced convolution matrix reH  is used to calculate the optimum TEQ 

coefficients, the dimension of the matrix is reduced in the matrix multiplication, the 

computational complexity is also reduced accordingly. Observed that (3.40) involves 

matrix inversion, which is difficult to implement in hardware. However, this difficulty 

can be overcome as described below. Rewrite (3.40) as follows:  

       IHHA perere ⋅+⋅= 2* γ             (3.41) 

dHB re ⋅= *                  (3.42) 

So the equation (3.40) can be rewritten as follows: 

BwA =⋅
�

                 (3.43) 

It can be observed from Equation (3.41) that AA =* , i.e., A is symmetric.  This means 

that it is not necessary to calculate all of its elements; only the diagonal and upper (or 
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lower) elements required to be calculated when performing the matrix multiplication. 

There are several algorithms to solve this kind of linear equation problem without 

solving the matrix inversion directly. Cholesky decomposition has a reduced 

computational complexity and is popular. But as it has a square root operation in finding 

the diagonal elements of the matrix, this requires long time to obtain the values. Thus the 

Cholesky decomposition is impractical for hardware implementation in a high data rate 

OFDM system. More simplification is to be sought. 

Here A can be shown to be positive definite. Assume that }{ kx
r

is the input stream, 

}{ ky
r

is the response of matrix reH , and the noise vector }{ kz
r

, then 

kkrek zxHy
rrr +⋅=                   (3.44) 

here  
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It can be shown that  
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xHzzHxzxAx
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rrrrrrr
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***2*
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+++⋅⋅=

++⋅⋅⋅=
          (3.45) 

For all nonzero )1()1( +×+∈ pp
k Cx
r

, the above equation means the energy falling into the 

window with a window function defined as }1,,1,0,,0,1{

2

1

44 844 76

L
321

L

++

+

=
pm

p

wh . As stated above, 

the first element of the target impulse response d
r

 is set to be 1 to avoid trivial solution. 

Thus for any nonzero kx
r

, 0][ * >kk yyE
rr

. As noise }{ kz
r

is far less than the desired signal, 

so 0* >⋅⋅ kk xAx
rr

 and A is positive definite and Hermitian. Furthermore, it can be derived 
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that the special case of LU decomposition, the TLDL  decomposition can be used to 

factorize A:  

TLDLA =                 (3.46) 

here L is the lower triangular square matrix, D is a diagonal matrix, 

},,( 1 ndddiagD L= , and TL  is the symmetric transpose of  L. It is known that when a 

matrix is ill conditioned, sometimes the LU decomposition does not exist or is numerical 

inaccuracy if the LU decomposition exists. Define the following quantity [18]: 

2

2

1

A

STS ⋅⋅
=Ω

−

             (3.47) 

with 2/)( TAAT += , 2/)( TAAS −=  and 
2

A is the norm-2 of the matrix A. It is 

desired to have the value of Ω  not very large [18]. This condition is always satisfied 

whenever A is symmetric and positive definite. Therefore the decomposition of A is 

always numerical stable and it is safe to avoid the step to check that if it is necessary for 

the matrix to pivot or not in this case.  

The TLDL decomposition requires only half the computation of the LU 

decomposition, but the TLDL  decomposition needs one more substitution step to 

calculate the last result. Therefore, although TLDL  algorithm is used to factorize A, the 

LU decomposition’s forward and backward substitutions are used to calculate the 

optimum TEQ coefficients. Based on the properties of matrices, there exists a lower 

triangular matrix L, a diagonal matrix D and an upper triangular matrix U that satisfy the 

following equation: 

ALUDLLLDL TT === )(             (3.48) 
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),,( 1 NdddiagD L=               (3.51) 

From the above equations, the equations to calculate the elements of L, D and U 

matrices can be written as follows: 

NjNiaul ij

N

k
kjik ,,1;,,1,

1
LL ===∑

=
          (3.52) 

Choose the diagonal elements: 

Nilii ,,1,1 L==             (3.53) 

For Nj ,,1L= , the equations are derived as follows: 
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               (3.54) 

It can be observed that in equation (3.54) to calculate the values of ijl , it includes 

division operations. The relationship between elements jil  and iju  is: 

Nijuul iiijji ≤<≤= 1,/             (3.55) 

All the elements of the L and U matrices can be calculated accordingly. 
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After finding the L and U matrices, it is ready to solve for the optimum TEQ 

coefficients through substitutions. For forward substitution, it can be seen that: 

],,[ 11
*

+=⋅= pre bbdHB L

r

             (3.56) 

As ]0,,1[ L

r

=d , so it can be calculated that: 

]0,,[ 0 LhB =                  (3.57) 

Substitute the equation (3.57) into equation (3.43), the equations to solve for 

],,[ 11 += pyyy L
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can be written as: 
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In backward substitution, the matrix of D  and TL  is combined to save one step in 

solving the values of optw
r

 instead of calculation the intermediate values with each 

matrix. According to the LU decomposition algorithm, similar to the forward 

substitution, the equation to find the coefficients of optw
r

 can be written as: 
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       (3.59) 

From the derivation above, it can be observed that the reduced convolution matrix is 

used, the dimension of the matrix multiplication is reduced accordingly, so it reduces the 

computational complexity. The matrix A is proved to be symmetric and positive define, 

the TLDL  decomposition is used to reduce the computation. There are some regularities 

between the elements of matrix A, which is exploited to further reduce the hardware 
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complexity. This is discussed in hardware design. The computational complexity is 

analyzed in the following section.  

3.4 Computational Complexity Analysis 

Before analyzing the complexity of the equalization algorithm employed in this 

thesis, the MSSNR algorithm discussed in section 3.2.2 is analyzed to provide 

comparative information.  

3.4.1 Complexity Analysis of the MSSNR TEQ Algor ithm 

In section 3.2.2, the MSSNR TEQ algorithm is briefly reviewed. As mentioned after 

the insertion of the TEQ, the effective channel impulse response effh
r

 is represented by 

the equivalent impulse response composed of winh
r

 and wallh
r

. The part winh
r

 represents the 

desired signal, a window of )1( +gN consecutive samples from effh
r

. The part wallh
r

 

represents the signal falling out of the desired window, which contribute to the ISI. The 

dimensions of the convolution matrices winH  and wallH  are of pN g ×+ )1(  and 

pNpm g ×−−+ )2( . With setting the delay to a specific value, the solution for the 

optimum TEQ coefficient vector w
�

 is summarized as follows: 

1)  Calculate the matrices wallwall HHA *=  and winwin HHB *=  first with a constraint 

of 1* =wBw
rr

. 

2) Calculate the square root matrix of B and matrix C, as shown below: 

*
BBB = , 1*1 )()( −−= BABC .  

3)    Solve for the optimum coefficients min
1)( lBwopt

r

r −= , where minl
r

is the unit-



62 

length eigenvector corresponding to the minimum eigenvalue minλ  of matrix C.  

In order to find the optimum value, the above steps are iterated setting different 

values of the delay. Since the algorithm in this thesis does not involve iterative steps, for 

a fair comparison, the complexity of the MSSNR algorithm is determined without any 

iteration. Note that The calculation does not include additions and subtractions; and 

there may have different methods employed in calculation that will lead to different 

results. This is calculated as follows: 

1) The calculation of A and B requires )1(2 +gNp  and )2(2 −−+ gNpmp  

multiplications. 

2) The square root matrix of B can be calculated by Cholesky decomposition. The 

computation complexity of the decomposition is 
4

)1(

12

)12)(1( +−++ ppppp
. 

Substitutions require )1( +pp  computations. Without considering the pivoting, it 

requires 
4

)1(3

12

)12)(1( ++++ ppppp
 operations. The calculation of C requires the 

inversion of )( B  which also can be calculated by Cholesky decomposition. Then it 

requires 4p  more computations to calculate matrix C. The overall computation 

amounts to 
2

)1(3

6

)12)(1(4 +++++ ppppp
p  for the second step. 

3) As it is required to calculate the minimum eigenvalue and the corresponding 

minimum eigenvector. From the popular algorithms, assume the inverse power 

method is chosen. The computation complexity of the inverse power method is 

determined as follows. The first step requires 
6

)12)(1( ++ ppp
 operations. The later 
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step requires 2p operations. If it is assumed that there are 24 iterations, then 

combining with the calculation of optw
r

, the complexity would be 

225
6

)12)(1(
p

ppp +++
 computations. 

The computation complexity of MSSNR algorithm can be approximated by the 

following equation: 

O(MSSNR algorithm) )1(2 −+= pmp +
2

)1(3 +pp
 + 

3

)12)(1( ++ ppp
 + 225p + 4p . 

3.4.2 Complexity Analysis of the Proposed TEQ Algor ithm 

The computational complexity of the proposed algorithm is calculated as follows. 

The dimension of the convolution matrix is reduced by Ng and p is the order of the TEQ. 

The number of multiplication is 
2

)1(
)2(

++−−+ pp
Npmp g (exploits the regularity of 

the elements in the matrix A which is discussed in Chapter 4), the LDLT decomposition 

and substitutions require 
4

)1(3

12

)12)(1( ++++ ppppp
 calculations. The total 

computation amount to: 

O(proposed algorithm) )2( −−+= gNpmp + 
12

)12)(1( ++ ppp
+ 

4

)1(5 +pp
. 

As an example, assume that the lengths of the channel impulse response, the TEQ 

FIR filter and the guard interval are 15, 8 and 8 respectively. Based on the complexity 

analysis, the MSSNR algorithm requires 7620 computations. On the other hand, the 

proposed algorithm requires only 296 computations. The computation complexity is 

reduced by 25 times.    
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3.5 Summary 

After the analysis of the popular TEQ algorithms, it is found that the most of them 

have high computational load. They are not suitable for a high rate IEEE 802.11a 

OFDM system. A reduced computational complexity TEQ algorithm is proposed and 

analyzed. Compared to other TEQ algorithms, it is very attractive for practical use in a 

high rate OFDM system, due to its simplicity. 
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Chapter  4    Simulation Results and Discussions 

In this chapter, the functionality of the proposed TEQ algorithm is simulated and 

analyzed. Based on the IEEE 802.11a standard, a system model is set up in Simulink® 

and the overall system performance is tested.  The effect of different orders of the TEQ 

FIR filters on the system performance is also investigated.  

4.1 System Model 

To demonstrate the validity of the proposed algorithm and the effect of the TEQ on 

the system performance, an OFDM system model is set up in Simulink® according to 

the IEEE 802.11a standard. The top-level system model is shown in Fig. 4.1. The data 

transmission rate is chosen to be 54Mbps. There are 48 sub-carriers to be used for data 

transmission. As the pilot signal is not processed in this research, the 4 pilot sub-carriers 

are not used. A rate-3/4 punctured convolution code is employed for the FEC. The outer 

and inner block interleavers are also included; the size of the block interleaving is 288. 

The inner and outer interleaving patterns are formulated according to the standard. The 

bit stream is mapped to complex signals according to the 64-QAM constellations. The 

64-point IFFT and FFT are used. The AWGN is also included in simulation. The length 

of the cyclic prefix defined in the IEEE 802.11a is 16 samples, but in this thesis, 

different lengths are assigned to show the effect of the TEQ on the system performance.  
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Fig. 4.1 Top-level Simulink model 

4.2 Simulation Results and Discussions 

As an example, the functionality of the TEQ algorithm is illustrated in Fig. 4.2. It is 

assumed that the original channel impulse response lasts 15 samples (shown in Fig. 4.2-

(a)) and the length of the cyclic prefix is 8 samples. This implies that if a TEQ is not 

included, the ISI/ICI will greatly degrade the system performance. After the pre-FFT 

TEQ with an order of 31 (shown in Fig. 4.2-(b)) is inserted, the effective channel 

impulse response is shortened to 9 samples long as shown in Fig. 4.2-(c). It can be 
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observed that the major components of the effective channel impulse response fall in the 

range of the cyclic prefix. All samples beyond the cyclic prefix (after the 9th sample) 

contribute to the ISI/ICI, but they are very small, i.e., producing insignificant error. 

 

Fig. 4.2 Functionality validation of the TEQ 

The effect of using different lengths of cyclic prefix on the system performance is 

also tested. The bit error rates are shown in Fig. 4.3. In this case no TEQ is employed 

and the ZFE is used for compensating the effective channel impulse response. It can be 

observed that when the length of the cyclic prefix is small (for example, the CP=8, 9 or 

10), the ISI/ICI is severe and the bit error rate is very high. While extending the length 

of the cyclic prefix, more energy will fall in the cyclic prefix and the energy that 

(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 
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contributes to the ISI/ICI will become less. The overall system performance is improved. 

For the system with the length of cyclic prefix to be 14, it can be seen that increasing the 

signal to noise ratio from 12dB to 22dB, the system performance can be improved 

significantly compared with the bit error rate with the length of the cyclic prefix of 8.  

 

Fig. 4.3 System performances with different length of cyclic prefix 

With the channel model in Fig. 4.2-(a), Fig. 4.4 illustrates the effect of TEQ on the 

system performance. The top line shows the bit error rate of the system without using 

TEQ. It can be seen that if the maximum channel delay spread exceeds the guard 

interval and if TEQ is not performed and without the extension of the guard interval, the 

system performance can not be improved by simply increasing the SNR. Increasing the 
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SNR from 12dB to 22dB, the bit error rate is only decreased to an order of  210− . This is 

because the existence of the ISI/ICI causes the error floor.  

 

Fig. 4.4 Simulation results for system BER performance 

The lowest curve is the system performance for the case that the length of cyclic prefix 

is extended to 16 samples and the ZFE is used for channel compensation. It can also be 

seen that if a pre-FFT TEQ is inserted to shorten the effective channel impulse response 

to be 9 samples, and with the use of ZFE, the system performance is improved 

significantly. This improvement makes the performance approach the system with cyclic 

prefix equal to 16 samples and compensated with ZFE method. Thus we can obtain 

higher transmission efficiency and a reasonable system performance at the same time.  
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The system performances with TEQ using two other channel models, 2h
r

 and 3h
r

, are 

also shown in Fig. 4.4. The impulse responses of these two channels are as follows: 

)25(042.0)20(09.0 )14(19.0)6(402.0)(85.02 −+−+−+−+= kkkkkh δδδδδ
r

 

and  

)37(005.0)30(01.0)22(021.0

)18(044.0)15(093.0)11(197.0)6(416.0)(881.03

−+−+−
+−+−+−+−+=

kkk

kkkkkh

δδδ
δδδδδ

r

 

The maximum channel delay spreads are 25 and 37 respectively and the path gains 

follow an exponential decaying distribution. As can be expected and observed, the 

system performance degrades when the maximum delay spread increases.  However the 

performance with TEQ is still acceptable at the high SNR values. 

Figure 4.5 shows the simulation results with different orders of FIR filter to realize 

the TEQ with channel model 1h
r

 shown in Fig. 4.2-(a). It can be observed that even with 

a small order of FIR filter (p=3), the ISI and ICI can be significantly reduced and gain is 

very high compared to the case when the channel impulse response is longer than the 

guard interval and neither extension of the guard interval nor TEQ is employed. When 

the order of TEQ increases to 7, the equalizer already achieves the most performance 

gain. As the order increases to 17 or 31 the OFDM system reaches the highest 

performance gain. When the order is 45 or over, the gain due to the application of the 

TEQ becomes saturated. If the order of TEQ is even higher, no further performance gain 

can be achieved, but the performance starts to deteriorate. This is due to the fact that 

when the effective channel impulse response is longer than 64 samples, to realize the 

ZFE to compensate the effective channel, truncation is required for the 64-point FFT. 
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Fig. 4.5 Simulation results with different orders of the FIR to implement the TEQ 

The optimum TEQ FIR order depends on the channel impulse response and the 

required BER level. Based on the results tested with all three channel models and 

considering the computational complexity to find the coefficients of TEQ and the 

difficulty of hardware implementation of the FIR filter, a reasonable order of the FIR 

filter can be selected to be between 7 and less than 31 to achieve the most performance 

improvement. 

The above simulation results assume a perfect knowledge of the channel state 

information at the receiver. Such assumption is not the case in the real system. The 

realistic channel impulse response needs to be estimated. Using the channel estimation 

method in [13], the influence of the channel estimation error on the system performance 
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was also investigated. Using the channel model 3h
�

 and a 15-order TEQ, the test result is 

shown in Fig. 4.6. The system performance with an ideal knowledge of the channel 

impulse response is also provided for comparison. It can be seen that there is a very 

small performance loss due to the imperfect channel state information. This degradation 

is less than 1dB compared to the case of assuming ideal channel state information. 

 

Fig. 4.6 Bit error rate with estimated and ideal channels 

4.3 Summary 

In this chapter, the simulation results were provided to verify the functionality of the 

proposed algorithm. When the maximum channel delay spread is very long, the 

proposed TEQ can be used to shorten the effective channel impulse response. The high 
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system performance and transmission efficiency can be obtained at the same time with a 

moderate order of TEQ filter.  
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Chapter  5    Hardware Design Model for  Algor ithm 

Implementation  

In this chapter, following the discussion in the previous chapters, a hardware design 

model is presented.  The detailed function blocks to solve the optimum TEQ coefficients 

are discussed. After the implementation of the TEQ FIR filter, a zero forcing 

equalization function block is designed to compensate the effective channel impulse 

response. To speed up the calculation, a 64-point radix-4 multi-path pipeline FFT is 

employed as the fundamental structure to be implemented in FPGA. The algorithm is 

also implemented in DSP to show the advantage in the running speed of FPGA 

implementation. 

5.1 Introduction 

Today various communication standards such as WLAN, digital television (DTV), 

cable modem and wideband code division multiple access (WCDMA) have been rapidly 

developed. Custom application specific integrated circuits (ASIC) have been 

implemented to reduce their cost, size and power consumption and to increase the 

running speed. However the time cycle of design and redesign, if there are any 

modifications, is comparatively long and expensive. In addition, due to the competitive 
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pressure from the market, ASIC-based solutions may be inadequate for adopting various 

evolutions of the communication standards. On the other hand, with the constant 

advances in very large scale integration (VLSI) technologies and architecture design, 

field programmable gate array (FPGA) has experienced extensive architectural 

innovations in the past several years. Advanced process technology has enabled the 

development of high-density devices, which can have a multi-millions of gates system 

on a programmable chip (SOPC) computing platforms, from originally serving as simple 

platforms for small ASIC prototyping to glue logic implementation.  

New generations of FPGA have made it possible to integrate a large number of 

computation resources, such as embedded microprocessors, optimized digital signal 

processing (DSP) blocks and high capacities of logic elements on one silicon die. New 

FPGAs also include the embedded memory for on-chip storage, fast routing matrices 

which can be used to implement many complex applications. One of such devices is the 

Altera FPGA Stratix. This device family is based on the 1.5V, 0.13µm, all-layer-copper 

process CMOS technology. The device consists of up to 79,040 logic elements (LEs), 7 

Mbits of embedded on-chip memory, DSP blocks, high-performance I/O capabilities and 

other advanced features. It can be used at the heart of these complex high-bandwidth 

systems to accelerate system performance and to enable new functionalities. Redesign or 

modification of the original system is very quick and easy if it is implemented in FPGA. 

Furthermore, new technology like Altera HardCopy devices provides a low-risk, cost-

effective, and time-saving alternative to ASICs for high-volume production. The 

maximum running speed of FPGA system also increases tremendously in the past few 

years. They become extremely suitable to the needs of high-performance real-time 

signal processing. The research motivation in this project is to develop a cost-effective, 
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high performance and flexible TEQ for the high rate IEEE 802.11a OFDM system using 

the state-of-art technique. FPGA is preferred for hardware implementation and the 

Altera Stratix is chosen.  

Channel equalization in high data rate WLAN systems is among the most 

arithmetically demanding tasks. According to the algorithm discussed in Chapter 3, the 

implementation of the algorithm in hardware involves the design of a fixed-point matrix 

multiplication, the TLDL  & LU  decomposition, the finite impulse response (FIR) filter 

and the high-speed fast Fourier transform (FFT). All these functions are computational 

intensive and the system should operate at a data rate of 54Mbps, therefore a high 

efficient system design is essential.  

Matrix multiplication is computationally intensive operation. The multiplication of 

two matrices with dimensions )( mn ×  and )( nm × involves )( mnn × multiplications. 

There are many algorithms and hardware architectures designed to improve the matrix 

multiplication calculation. As it is proved in Chapter 3, the matrix A defined in Equation 

(3.41) is symmetric and positive definite; thus it is not necessary to calculate all the 

elements in this matrix. Furthermore, certain relationships exist among these elements 

that make the reuse of the available values possible. The exploitation of these 

characteristics reduces the computational intension and makes the calculation of the 

matrix A efficiently. This will be further discussed in this chapter.  

Solving a linear system equation is very common in various applications. As 

discussed in Chapter 3, instead of directly finding the inversion of the matrix, many 

algorithms have been developed to reduce computational complexity, such as Cholesky 

decomposition, LU decomposition and QR factorization, eigenvalue and eigenvector 
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methods. The Cholesky decomposition involves computing the square roots of the 

diagonal elements, which limits its use in hardware implementation. QR factorization 

involves iterative process in finding the result. Eigenvalue and eigenvector solution 

involves inverse power method and seems comparatively more computational intensive. 

The TLDL  decomposition and LU [18] substitutions are preferred in this hardware 

implementation to solve such a problem. 

 As already discussed, the system matrix is symmetric and positive definite, the 

TLDL  decomposition is exploited to factorize the matrix, which is only half 

computational complexity of the LU decomposition. To further increase the speed, the 

forward and backward substitutions of LU decomposition are used instead of the 

substitutions of the TLDL  decomposition to solve the linear equation. 

FFT and IFFT are the fundamental applications in digital signal processing; high 

speed FFT and IFFT are the critical parts of the OFDM system. As it is known that the 

IEEE 802.11a system can run up to at a 54Mbps data transmission rate, the OFDM 

symbol has a very short interval (4.0µs). To design a FFT for the zero forcing 

equalization in FPGA, it is required to achieve a high speed real-time processing. 

According to the system architecture and the parameters defined in the IEEE 802.11a, 

the transform operation of the FFT should be accomplished in the order of microsecond.  

As radix-4 is the most computational efficient for the implementation of 64-point 

FFT, it is preferred in the FFT hardware implementation. To speed up the calculation, 

the pipeline parallelism structure is employed. The pipeline radix-4 FFT has been 

designed and implemented. After the equalizer coefficients are obtained, the pipeline 

FFT transforms the vectors of the FIR coefficients and the original channel impulse 
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response to frequency domain for the zero forcing equalization.  

5.2 Block Diagram of TEQ Hardware Implementation  

Based on the above discussion, given the values of the original channel impulse 

response h
v

, and the order p of the TIR FIR filter, the optimum TEQ coefficients optw
r

 

can be calculated by Equations (3.49) to (3.51). They are repeated here for convenience.  

BwA =
�

             (5.1) 

with IHHA rere ⋅+⋅= 2* γ  and  dHB re

r

⋅= * . 

From the discussions in Chapter 3, the block diagram of hardware implementation is 

presented in Fig. 5.1.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 A block diagram of the TEQ hardware design. 

The hardware design flow chart can be clearly observed from the diagram. Given the 
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channel impulse response h
v

 and the order of the TEQ as the input parameters, the 

reduced convolution matrix can be obtained; a matrix multiplication function block is 

designed to calculate A. The TLDL decomposition is designed to factorize A. After 

decomposition the forward substitution and backward substitution of LU decomposition 

are designed accordingly to find the optimum coefficients optw
r

. The TEQ FIR filter is 

implemented using these coefficients.  

The next task is to design the zero forcing equalization to compensate the effective 

channel in frequency domain. First, the vector of h
v

and optw
r

 are transferred to frequency 

domain by the 64-point radix-4 pipeline FFT. Then calculate the multiplication 

)()( optwFFThFFT
r

r

⋅  and find the inversion of the multiplication result. Lastly at the 

receiver multiplies each sub-carrier with the individual element of the inversion of the 

multiplication. As the attenuation of each path is normalized and its values is considered 

to be less than 1, so the fractional number multiplication and division will be involved in 

the implementation.  

In hardware implementation, considering the tradeoff between accuracy and 

operation speed, it is decided that the input channel coefficients and the output matrix 

are all represented by 16-bits, which includes 3-bit integer and 13-bit fraction.  The 

arrangement can be changed under different requirements. The fix point representation 

is employed in the implementation and the fix point multiplier and divider are designed 

as the fundamental circuits. 

5.2.1 Matr ix Multiplication 

It was already shown that the matrix A is symmetric and positive definite. When 
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calculating the elements of the matrix it is efficient to make use of these properties to 

further reduce the computational complexity.  

The detailed process of calculating the matrix A in hardware is demonstrated. It is 

assumed that the physical channel coefficient vector is given by: 

  ][ 14131211109876543210 hhhhhhhhhhhhhhhh =
�

 

The maximum delay spread is 15 items and the order of the TEQ FIR filter is p=7, the 

length of the cyclic prefix is 8 samples and the TEQ is used to truncate the effective 

channel impulse response to be less than 9 samples. The reduced convolution matrix 

*
reH  and reH  can be generated accordingly and the multiplication result of 

IHHA rere ⋅+⋅= 2* γ  is a (p+1) x (p+1) matrix. As A is symmetric, one has  

,jiij aa =  for ji ≠              (5.2) 

Thus only the diagonal elements and upper (or lower) elements of the matrix need to be 

calculated. The equation to calculate the diagonal elements of the matrix A can be 

expressed as follows: 
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From the above equation, it is seen that the result of the last calculation can be exploited 

to calculate the next element. For 11a , it can be separated into two parts: one is 2
0h  and 

the other is 2
14

2
13

2
12

2
11

2
10

2
9

2
149 hhhhhhh +++++=− . The second part can be used to 

calculate the value of 22a  as follows: 2
149

2
822 −+= hha , then 22a  can be used to calculate 

22
2
733 aha += , and so on. Same as above, the equation to calculate the elements 12a  to 
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78a can be written as follows: 
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  (5.4) 

The element 12a  can be exploited to calculate 23a , and so on. It is observed that this 

property exists among other elements of  A. In general this rule can be written as: 

ijji aa +∆=++ )1)(1( , jiji ≠<=<< 71           (5.5)  

  iiii aa +∆=++ )1)(1( , 71 <=< i  

where ∆  is the increment.  

It requires only one more multiplication to calculate the value of ∆  and one more 

addition to get the value of the corresponding element in the second row, and so on. The 

values of the elements in other rows can be calculated easily. This property greatly 

reduces the computational complexity of matrix multiplication, from )( 3nO to )( 2nO , 

therefore decreases the requirements of the hardware implementation. The registers 

required to store the intermediate results are also reduced accordingly. 

5.2.2 Decomposition and Substitution Function Block 

After implementation of the matrix multiplication, the TLDL  decomposition module 

is implemented to factorize A, and the forward and backward substitution modules of LU 

decomposition are used to find the optimum coefficients optw
r

 as shown in Fig. 5.1. 

These circuits can be designed efficiently in FPGA according to the equations (3.54), 

(3.58) and (3.59). 
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5.2.3 TEQ FIR Filter  

After finding the optimum TEQ coefficients vector of optw
r

, a FIR filter can be 

implemented accordingly. The basic structure of a FIR filter operation can be 

represented by the following equation: 

∑
=

−=
p

i

iwinxny
0

)()()(                (5.6) 

Here )(nx  represents the input sequence, )(nw  represents the TEQ coefficients and 

(p+1) is the number of taps. The FIR is constructed by the multipliers and unit-time 

delays as shown in Fig. 5.2. In hardware implementation, the unit time delay can be 

realized by a shift register. 

 

 

 

  

�

 

 

Fig. 5.2 Structure of the FIR filter 

5.3 Radix-4 Pipeline FFT Implementation 

In the IEEE 802.11a system, besides the use of the IFFT/FFT to realize the OFDM 

modulation and demodulation, another FFT function block is also used to realize the 

zero forcing equalization. It is the most critical feature of the transceiver of OFDM 
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system. The IEEE 802.11a OFDM system is different from the lower rate OFDM 

systems such as ADSL application by the speed limitation and no initialization at the 

beginning of the communication process. The FFT/IFFT operation needs to be 

accomplished in a very short interval. For the IEEE802.11a system, an OFDM symbol 

interval lasts 3.2µs and the guard interval extends 0.8µs. In order to escape the necessity 

of too much buffer or un-buffer mechanism, it is desired that the operation be finished in 

less than 4.0µs. It is imperative to design a high performance FFT to satisfy the timing 

requirements. 

5.3.1 An Introduction of Radix-4 FFT Algor ithm 

As discussed in Chapter 2, since the major breakthrough of Cooley-Tukey radix-2 

algorithm [19] in the 60’s, a large number of FFT algorithms have been developed for 

the efficient computation of the DFT. Research also leads to fast Hartley transform 

(FHT) [20] and the split radix FFT (SRFFT) [21]. Recently there are some algorithms on 

the quick Fourier transform (QFT) [22] and the decimation-in-time-frequency (DITF) 

[23]. Efficient DFT algorithms suitable for hardware implementation are required in 

many real-time applications, however because of the high computational complexity, not 

all of the algorithms are suitable to be used in high rate systems.   

To realize the FFT/IFFT, radix-2, radix-4, radix-8 or split radix can be used in the 

evaluation of the DFT. But for practical and theoretical interests, which radix to be used 

should be studied under specific conditions. In the IEEE 802.11a system, the size of the 

FFT is 64-point, thus the more computationally efficient radix-4 scheme is preferred, the 

number of complex multiplications for 64-point FFT by radix-2, radix-4 and radix-8 is 

calculated as the follows: 
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1) For the radix-2 decimation-in-time (DIT) FFT, the first stage consists of a 

multiplication by 10 =W , so actually no multiplication is required when multiplied by 

0W . The second stage has twiddles 10 =W and jW =16 , so again no multiplications is 

necessary when multiplied by the two twiddles. The third stage has one-half of the full 

complement of (N/2) complex multiplications and so on. The equation is written as  

1]
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For N=64, the number is 98=NM .  

2) For radix-4 and radix-8, the number of complex multiplication calculated is 76 and 

80 respectively [3]. For the 64-point FFT, the radix-4 seems to be the optimum one if the 

criterion rule is the number of complex multiplications. The radix-4 FFT is also faster 

than the split radix FFT and the discussion on radix-4 FFT algorithm is provided here.   

5.3.2 Radix-4 FFT Algor ithm  

In radix-4 FFT [3], the number of samples N is the power of 4, i.e., pN 4=  and p is 

a positive integer. The N-point FFT is decimated every 4 samples rather than every 

second sample as in the radix-2. The input sequence is divided into 4 N/4 sub-sequences. 

These sub-sequences are then continuously decimated until the DFT size of the sub-

sequences is reduced to 4-point. The 4-point DFT is called radix-4 butterfly, or 

dragonfly as referred in some texts. Similar to the radix-2 FFT algorithm, the radix-4 

FFT can be derived by the DIT or the DIF method.  

For the N-point radix-4 DIT DFT algorithm, it subdivides the input sequence into 



85 

four subsequences in time domain, i.e., )4( nx , )14( +nx , )24( +nx , )34( +nx , 

)14/(...,,1,0 −= Nn . The algorithm can be written as the following equation [3]: 
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3,2,1,0=p , 3,2,1,0=l , )14/(...,,2,1,0 −= Nq  and 

 )14(),( += mxmlx                 (5.11) 
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XqpX +=                (5.12) 

The four N/4-point subsequences DFT ),( qlF  obtained from the above equation are 

combined according to equation (5.9) to yield the N-point DFT. If Equation (5.9) is 

expressed in matrix form, then the radix-4 FFT can be written as the follows: 
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Since 10 =NW , only the q
NW , q

NW 2  and q
NW 3  involve complex multiplications, and the 

multiplication with –j is just the swapping between the real and imaginary parts of a 

complex number. Each dragonfly involves 3 complex number multiplications and 12 

complex number additions, and it can be reduced to 8 complex number additions by a 

proper arrangement of the samples. The algorithm is graphically illustrated in Fig. 5.3.  

The decimation process continues until the DFT size of 4-point which can be calculated 

directly. In the radix-4 FFT algorithm, there also exists the digital reverse problem 

required to be solved as in the radix-2 algorithm, so an input data shuffler or an output 
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data shuffler needs to be included in the implementation. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Basic dragonfly computation in a radix 4 FFT 

If decimating the input sequence in frequency domain, an N-point radix-4 DIF DFT 

algorithm can be derived as the followings [3]: 
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From the definition of the twiddle factors, one obtains get the following expressions: 
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Equation (5.14) can be rewritten as:  
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Further on subdivides the N-point DFT sequence into 4 N/4-point subsequences, )4( kX , 

)14( +kX , )24( +kX , )34( +kX , 4/,...,1,0 Nk = , the radix-4 DIF FFT can be 

expressed as: 
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It can be observed that each N/4-point DFT is a linear operation of the 4 signal samples 

scaled by a twiddle factor. The decimation continues to the DFT size of 4-point as in the 

radix-4 DIT algorithm, the decimation is repeated Np 4log=  times. 

5.3.3 Radix-4 Pipeline FFT 

There are different architectures of the FFT/IFFT processors, such as column FFT, 

fully parallel FFT and pipeline FFT. Just as other computer algorithms, fully parallel 

processing structure can be employed to realize faster FFT evaluation, but the hardware 

implementations of the fully parallel FFT are too intensive and expensive. Among the 

parallel architectures, the pipeline FFT is an interesting special purpose structure. It is 

very suitable for high-speed real time applications since it can easily operate on a clock 

frequency close or equivalent to the sampling frequency, which will lower the system 
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complexity. The pipeline FFT is characterized by continuously processing the input data 

sequences and it is easy to realize the IFFT on the same core architecture with only 

minimal modification.  

The design of the pipeline FFT processor had been studied since 1970’s [3]. It 

contains an amount of parallelism equal to Nrlog , where r is the FFT radix. There will 

be Nrlog  separate hardware butterfly computations processing in parallel. Some of the 

popular types of pipeline FFT are: 

1) Radix-2 multi-path delay commutator (R2MDC) [3] is the most classical method 

to implement the radix-2 pipeline FFT. In each stage, the input data sequence is 

divided into two parallel sub-sequences with proper delays to switch the data 

sequence to the desired order.  It requires ( )2)((log2 −N ) numbers of multipliers, 

N2log  numbers of butterflies and )2
2

3
( −N  registers as the delay elements. The 

disadvantage is that both butterflies and multipliers are in 50% utilization. 

2) Radix-2 single-path delay feedback (R2SDF) can improve the utilization of the 

registers more efficiently, to 100%. It requires the same number of butterflies and 

multipliers as R2MDC, but it requires only (N-1) registers. 

3) Radix-4 single path delay feedback (R4SDF) is the radix-4 version of R2SDF. It 

improves the utilization of the multipliers to 75%, but decreases the utilization of 

butterflies to only 25%. It requires ( )1)((log4 −N ) multipliers, N4log  radix-4 

butterflies and (N-1) registers. 

4) Radix-4 multi-path delay commutator (R4MDC) [24] is a radix-4 version of 

R2MDC. Its utilization of multipliers and butterflies is 25%. It requires N4log3  
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multipliers and N4log  radix-4 butterflies and )4
2

5
( −N  registers. 

5) Radix-4 single-path delay commutator (R4SDC) [25] increases the utilization of 

the radix-4 butterflies to 75% by modifying the radix-4 butterfly. It reduces the 

requirement of registers to (2N-2), but the butterfly and the delay commutator 

control mechanism become more complicated. 

The architectures of these algorithms all have their own characteristics and can be 

used in different applications. As discussed above, the radix-4 is more computational 

efficient, so the radix-4 algorithm is preferred in this implementation. In the IEEE 

802.11a OFDM system, at the beginning of a transmitted data packet, the training 

sequence is sent for the purpose of the channel estimation, frequency synchronization, 

etc, then the preamble header and data OFDM symbol follow. It is assumed that the 

channel impulse response will not change dramatically during the transmission interval 

of the data packet. Generally the channel estimation and the ZFE in frequency domain 

can be considered necessary to operate only once in the interval of packet transmission, 

if not considering the fine tuning operation. The utilization of the butterfly, multipliers 

and registers is not a major problem. And if necessary, the utilization can be improved 

simply by introducing some buffer scheme or overlapping. Considering the control 

mechanism of a radix-4 multi-path delay commutator (R4MDC) pipeline FFT is 

comparatively simple, therefore in this hardware implementation, the R4MDC pipeline 

FFT is adopted as the fundamental architecture. A block diagram of the 64-point 

R4MDC pipeline FFT hardware implementation is shown in Fig. 5.4. This FFT structure 

consists of 364loglog 4 ==Nr  stages. Each stage includes: 

1) A delay commutator, to rearrange the input data sequences between arithmetic 
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elements as required by the algorithm. When the sequences pass through the 

commutator, they are switched to the desired paths. 

2) An arithmetic element (AE), which performs the arithmetic functions (complex 

multiplications and additions) and butterfly. 

There is a control mechanism block, which generates the necessary control signals, 

such as counters to control the time to switch the data sequence, the time to read the 

twiddle factors and the time to shuffle the output signals.  

In this case, the parallel output of the TEQ coefficients, optw
r

 and h
r

, are converted to 

serial inputs by time delays, zeros are padded for the 64-point FFT input vectors. The 

delay commutator is used to delay the input stream and then transform the input vector 

into the desired sub-sequences. In the first stage, the delay commutator distributes the 

one path input sequence to the four-path output sub-sequences. The first data path does 

not have any delay, the second path has a delay of 14 −−in , the third path has a delay of 

142 −−× in  and the fourth path has a delay of 143 −−× in , with i is the stage number and 

Nn 4log= . After some specific delays, the sub-sequences are fed to the first stage 

arithmetic element and butterfly (AE1). At the same time, the twiddle factors are feed 

into the arithmetic element in the correct order to calculate the 4-point DFT. The twiddle 

factors are calculated in advance, converted to binary format and saved in the read only 

memory (ROM), it will be read out by the control signal. There are registers required to 

store the intermediate results.  

The other stages are almost the same as the first stage, including the delay 

commutator, arithmetic element, butterfly, registers and twiddle factor reading. After 

three stages operation and calculation, the FFT result is available, but the output is still 
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in digital inverse order, a shuffler is used to switch the output sequence to its normal 

order.  

Most of the complexity is due to the control mechanism for proper delay, switching, 

shuffling and reading out the twiddle factor. In order to avoid the distribution of the data 

among different modules, the whole pipeline FFT functionalities are implemented in a 

single chip. Buffers are introduced to make the chip able to process the input stream 

continuously. Information about hardware implementation will be discussed in next 

chapter. 

5.4 Summary 

In this chapter, the detailed design of the TEQ function block is presented. The 

regularities and characteristics of the matrix A defined in Equation (3.41) are exploited 

to reduce the computation complexity. To realize the zero forcing equalization, a design 

of radix-4 pipeline FFT is also implemented in FPGA. All the hardware designs aim at 

improving the running speed of the high data rate OFDM system. 
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Fig. 5.4 Radix-4 64-point pipeline FFT block diagram 
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Chapter 6    Information on Hardware Implementation, 

Simulation and Discussions 

In this chapter the detailed information on hardware implementation is provided. An 

example of hardware simulation is demonstrated to verify the functionalities of the 

hardware chips. The error introduced by finite binary representation and truncation is 

analyzed mathematically. The difference between the hardware implementation and the 

mathematical calculation is also provided. The system performance using the hardware 

outputs for the algorithm’s parameters is tested and the performance loss introduced by 

hardware implementation is discussed. The algorithm is also implemented in DSP. The 

information of the DSP solution is provided and the operating speed is tested. 

6.1 Information on Hardware Implementation 

6.1.1 Initial Hardware Implementation Parameters 

Based on the discussions in Chapter 5, the hardware is designed, debugged, 

synthesized and tested in the Altera’s Quartus II®. Quartus II is one of the most efficient, 

comprehensive software for designing with the programmable logic and the mask-

programmed devices. The TEQ function block and the 64-point radix-4 pipeline FFT 

consist of many logic elements (more than 80% of usage of the logic elements of the 

Altera Straix EP1S25F780C6). Considering the flexibility, operation speed and to test 
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the functions of TEQ block, pipeline FFT and FIR filter independently, 3 FPGA chips 

are implemented. The first chip is to find the TEQ coefficients, the second is to 

implement the FIR filter accordingly, and the third is to realize the function of the 64-

point radix-4 pipeline FFT. The devices family used for the TEQ coefficients and 

pipeline FFT is the Altera’s high density Stratix FPGAs. The device to implement the 

FIR filter can use some lower level FPGA chips. In this case the FIR filter 

implementation is compiled and simulated in the APEX20k. In this hardware 

implementation, it is assumed that the original channel impulse response lasts 15 

samples, the order of TEQ FIR filter is 7. The input and output data widths are 16 bits 

(3-bit integer and 13-bit fraction). The twiddle factors are chosen to be 8 bits (2-bit 

integer and 6-bit fraction). Two’s complement operation is employed for the negative 

numbers. The brief connection between modules is shown in Fig. 6.1. The data widths of 

input, output and interconnections are all 16 bits. 

After the channel estimation, the channel impulse response is passed to the input 

pins of the TEQ. The outputs are the optimum TEQ coefficients, which are the input 

parameters to realize the FIR filter. The original channel vector h
r

 and optimum TEQ 

coefficient vector optw
r

 are converted from parallel to serial and passed to the 64-point 

radix-4 pipeline FFT to be transferred to the frequency domain. Then the multiplication 

of the two output sequences is calculated and the divider is used to find the inversion, 

the result is used to realize the ZFE to compensate the effective channel. 

6.1.2 Detailed Hardware Implementation Information 

The detailed information on the hardware implementation of the TEQ FIR filter, the 

64-point radix-4 pipeline FFT and the TEQ coefficients solver chips is listed in Tables 
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6.1, 6.2 and 6.3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 The module connection diagram. 

 

Table 6.1 Hardware implementation information on the TEQ FIR filter 

Chip name fir_filter 

FPGA Device Altera APEX20K EP20K100BC356-1V 

Logic elements 3,209/4,160 (77%) 

Data width 16-bit, 3-bit integer, 13-bit fraction 

Filter Order 7 

Total Pins 163 

Clock frequency 20MHz 
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Table 6.2 Hardware implementation information on the 64-point radix-4 pipeline FFT 

Chip name pipelinefft 

FPGA Device Stratix EP1S25F780C6 

Logic elements 14,780/18,460 (80%) 

FFT Length 64 

Radix 4 

Data width 16-bit, 3-bit integer, 13-bit fraction 

Twiddle factor width 8-bit, 2-bit integer, 6-bit fraction 

DSP block 9-bit elements 56 

Total Pins 77 

Memory (shift registers) 1,792 

Internal main clock 20MHz 

Clock cycle and output delay 64/82 

Transform time interval 3.2µs 
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Table 6.3   Hardware implementation information on the TEQ coefficient solver 

  Chip name equalizer 

FPGA Device Altera Stratix EP1S25F780C6 

Logic elements 15,909/18,460 (86%) 

Data width 16-bit, 3-bit integer, 13-bit fraction 

TEQ Order p=7 

DSP block 9-bit elements 24 

Total Pins 376 

Internal main clock 16MHz 

Clock cycle 55 

Time interval 3.34µs 

 

For the 64-point radix-4 pipeline FFT, it requires 65 clock cycles to finish the operation. 

Buffer method is employed to enable it to process the input stream continuously. For the 

TEQ solver, from Table 6.3 it can be seen that it requires about 3.34µs to calculate the 

optimum TEQ coefficients vector optw� . This time is less than one OFDM symbol 

interval (original OFDM symbol + guard interval) of the IEEE 802.11a system. The 

implementation of the chip to solve the TEQ coefficients involves multiplication and 

division, when the data width is large, this will decrease the maximum running speed of 

the chip. In simulation, it was found that the divider limits the highest running speed. 

The TEQ solver chip can run as high as 16MHz. In future work, an optimized divider 

shall be implemented. The TEQ FIR filter and the 64-point radix-4 pipeline FFT chips 

can run at a clock frequency greater than 20MHz. It requires two clocks to satisfy the 
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requirements of the system to transmit data up to 54Mbps in the IEEE 802.11a system. 

The block symbols of these chips are shown in the Fig. 6.2.  

 

                         

                        ( a )                                                                    ( b ) 

                   

                                   ( c ) 
 

Fig. 6.2 Block symbols of the chips 

Part (a) is the symbol block of the chip to find the optimum TEQ coefficients. The 

pins, h0 to h14, are for the inputs of the original channel impulse response. If “enable”  

signal is high, the chip begins to work. After finishing the calculation, the “done” signal 
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will be high. Part (b) is for the TEQ FIR filter, the “carry”  signal indicates the overflow. 

Part (c) is for the 64-point radix-4 pipeline FFT, “xrin”  and “xiin”  are the real and 

imaginary parts of the complex input signal, “outr”  and “outi”  are the real and imaginary 

parts of the FFT output, all are 16 bits width. 

6.2 Simulation Results and Discussions. 

In hardware implementation, since the numbers are represented by the finite binary 

bits, some errors will be introduced through the truncation or rounding. As it assumes 

that the fraction number is 13-bit, therefore the least significant bit (LSB) of the 

calculation is 132− . If the actual data value is not a multiplication of LSB, there are some 

errors in the fix point representation.  

It is known that if a 16-bit×16-bit, the result is a 32-bit. Truncation is required to 

shorten the multiplication result to the 16-bit word. This also introduces some errors. If 

the number is too large, a scale is necessary to be introduced in calculation to avoid 

overflow. The expectation and variance of error generated by binary truncation can be 

calculated using the following equation. 
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An example is demonstrated next. Assume the original channel coefficients are 

given by: 

0.1] 0.2 0.1 0.2 0.15- 0.1- 0.2- 0.3- 0.3 0.2 0.6 0.35 0.1 0.4 0.5[=h
r

 

These decimal values are first converted to binary format before entering the FPGA 
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chip. The corresponding binary numbers are shown in Table 6.4; the decimal values 

represents the converted binary numbers are also shown for comparison.  

Table 6.4 Mapping of decimal values of original channel to binary bits 

Value of h Binary Real Value 

0.5 0001000000000000 0.5 

0.4 0000110011001100 0.3999 

0.1 0000001100110011 0.1 

0.35 0000101100110011 0.349975 

0.6 0001001100110011 0.599975 

0.2 0000011001100110 0.19995 

0.3 0000100110011001 0.2999267 

-0.3 1111011001100111 -0.299967 

-0.2 1111100110011010 -0.19995 

-0.1 1111110011001101 -0.1 

-0.15 1111101100110100 -0.1499023 

0.2 0000011001100110 0.19995 

0.1 0000001100110011 0.1 

0.2 0000011001100110 0.19995 

0.1 0000001100110011 0.1 

 

There are offsets between these two sets of numbers. If more binary bits are used to 

represent the data value, the smaller would be the value of the LSB, the smaller the 

offset. But increasing the binary bits, it requires more time to complete the 
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multiplication and division operation, thus decrease the maximum running speed of the 

system. So there is a tradeoff between the highest running frequency and accuracy. The 

AWGN noise is also considered in hardware implementation. 

The hardware solution of TEQ coefficients optw
r

 is shown in Table 6.5 in decimal 

and binary data formats. The mathematical calculation values are also shown for 

comparison.   

Table 6.5 Hardware and mathematical calculations 

TEQ Binary number 
Decimal values 

(Hardware implementation) 

Mathematical 

calculation values 

0w  0011110010000011 1.89099121093750 1.88905660432045 

1w  1110111100001001 -0.53015136718750 -0.53678706108282 

2w  1110011000101001 -0.80749511718750 -0.79308852895277 

3w  1111011111100001 -0.25378417968750 -0.24499303067784 

4w  0001011111100011 0.74645996093750 0.74253305861786 

5w  1111101000011010 -0.18432617187500 -0.18674375786207 

6w  1111110000100101 -0.12048339843750 -0.11244022219353 

7w  1111001110100001 -0.38659667968750 -0.38361822089975 

 

From table 6.5 it can be seen that there are some differences between the hardware 

output and the mathematical calculations. The offset is not constant for all elements due 

to the signed multiplications and divisions. It can be observed that the offset is very 

small.  
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6.3 System Performance Test 

The TEQ coefficients optw
r

 vector and the original channel impulse response h
r

 are 

transformed to frequency domain by the 64-point pipeline FFT chip shown in Fig 6.1. 

The outputs )( optwFFT
�

and )(hFFT
�

are combined for the zero forcing equalization. The 

inversion of )()()( opteff wFFThFFThFFT
r

rr

×=  is calculated in hardware. The difference 

between the calculation of the inversion of )( effhFFT
r

 in hardware and the mathematical 

calculation for the 64 sub-carriers is also plotted in Fig. 6.3. Part (a) is the offset of real 

part and part (b) is the offset of imaginary part. It can be seen that the differences are not 

always the same among the channels, some sub-channels have large offset, some have  

smaller, but all are tolerable. 

 

Fig. 6.3 Difference of )(/1 effhFFT
r

between hardware implementation and 

mathematical calculation 

 
(a) 
 
 
 
 
 
 
 
 
(b) 
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The system performance is also tested to show the success of the hardware 

implementation. The vectors optw
r

, h
�

and the inversion of )( effhFFT
r

 calculated in 

hardware are used for the algorithm’s parameters to test the system performance. The 

result is shown in Fig. 6.4, the bit error rate using mathematical calculation for the 

algorithm’s parameters is also shown for comparison. Due to the finite length of binary 

representation and truncation, the offset introduced by the hardware implementation 

somewhat degrades the system performance, but the degradation is very minimal. The 

two curves are very close to each other. The overall system performance is very good. 

The high system performance verifies the proposed equalization technique and the 

hardware implementation. 

 

Fig. 6.4 Bit error rate obtained with hardware calculation and mathematical 

calculation for the algorithm’s parameters 
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6.4 Results of DSP Implementation 

The TEQ algorithm is also implemented in the TI TMS320C6711 to demonstrate its 

feasibility. The detailed information is shown in Table 6.6.  

Table 6.6 Information on DSP implementation 

Device TI TMS320C6711 

Clock cycles 31,472 

Clock frequency 300MHz 

Time to solve TEQ 104.91µs 

 

With the same assumptions as in the implementation in FPGA, for the 8 tap TEQ FIR 

filter, it requires 104.91µs to find the coefficients by float point calculation. Compared 

with the FPGA implementation, the DSP solution is 31 times slower. The DSP 

calculation and mathematic calculation are shown in Table 6.7.  

Table 6.7 DSP implementation and mathematical calculations 

TEQ Hardware calculations Mathematical values 

0w  1.889057 1.88905660432045 

1w  -0.536787 -0.53678706108282 

2w  -0.793089 -0.79308852895277 

3w  -0.244993 -0.24499303067784 

4w  0.742533 0.74253305861786 

5w  -0.186744 -0.18674375786207 

6w  -0.11244 -0.11244022219353 

7w  -0.383618 -0.38361822089975 

 

 

It can be concluded that using the DSP to implement the TEQ equalizer in float point 
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calculation, it has a higher accuracy, but it takes longer to find the TEQ coefficients.  

In [26], the information on real-time MSSNR TEQ design on TI TMS320C620 is 

provided. For the 7th order (8 taps) MSSNR TEQ FIR filter, it requires 603,440 clock 

cycles on 300MHz DSP to calculate the TEQ coefficients in fix point calculation.  This 

is equivalent to 2011µs [26]. There is no straight comparison between these two 

implementations for the use of the different channel models and different data width.  

The MSSNR algorithm was also implemented in DSP TMS320C6711 in float point 

calculation with the same assumption as FPGA implementation, to show how it operate 

compared with the float point DSP implementation of the proposed algorithm. The 

characteristics of elements in matrices winH  and wallH  are exploited in calculations; 

Cholesky decomposition is used to calculate the square-root matrix and the power 

method is used to find the maximum eigenvalue and eigenvector. The DSP 

implementation information is shown in Table 6.8.  

Table 6.8 DSP implementation of MSSNR TEQ algorithm 

Device TI TMS3206711 

Algorithm (float point) Maximum shortening SNR (MSSNR) 

TEQ taps 8 

Clock cycles 3,022,240 

Clock frequency 300MHz 

Calculation time 10,100µs 

 

The hardware calculation of the TEQ coefficients using MSSNR TEQ algorithm is 

shown in Table 6.9. It can be seen that the TEQ coefficients are different from the 
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solutions of the algorithm proposed in this thesis shown in Table 6.7. It takes 3,022,240 

clock cycles to find the optimum coefficients. On 300MHz DSP it takes about 10,100µs 

to find the optimum TEQ coefficients. It is about 96 times slower than the DSP 

implementation of the proposed TEQ algorithm. 

Table 6.9 DSP implementation of MSSNR algorithm 

TEQ Hardware calculations Mathematical calculations 

0w  -10.934371 -10.93437171147581 

1w  6.403067 6.40305765838586 

2w  4.250992 4.25099251696741 

3w  –0.530990 -0.53098569948867 

4w  –4.913623 -4.91362565421088 

5w  3.234580 3.23457405366343 

6w  0.463822 0.46382389085372 

7w  1.211181 1.21118184238945 

 

6.5 Summary 

In this chapter, the detailed information about the hardware implementation on TEQ 

solver, TEQ FIR filter and radix-4 pipeline FFT is provided. The hardware simulation 

results verify the functions of the chips. They satisfy the system requirements to operate 

at a data rate of 54Mbps with very high system performance. The DSP implementation 

results show that they would have higher accuracy but more time in solving the optimum 

TEQ coefficients.  
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Chapter 7     Conclusions and Suggestions for Future Study 

7.1 Summary 

Broadband communications attract much attention in the last few years. Using the 

IEEE 802.11a OFDM system to construct the WLAN and to achieve a high data rate of 

54Mbps is appealing. In OFDM communication systems, the broadband is divided into 

many sub-carriers for parallel data transmission. The system has a high spectral 

efficiency and multi-path resistant capability tolerance. A guard interval using cyclic 

prefix is inserted to avoid the ISI and ICI. The technique is very simple but it 

compromises the transmission efficiency, especially when the maximum channel delay 

spread is long and the number of sub-carriers is low as in the IEEE 802.11a standard. To 

maintain the transmission efficiency, a pre-FFT TEQ is usually included in the system to 

improve the system performance. 

In this thesis, some popular TEQ algorithms for OFDM system are studied and their 

computational complexities are analyzed. Due to their high computational complexities, 

they are not suitable for a practical use in the high rate IEEE 802.11a OFDM systems. 

Based on the MMSE algorithm, a reduced computational complexity design of a TEQ 

for the high rate IEEE 802.11a OFDM application to increase the transmission 

efficiency is then proposed. The algorithm is tested in Matlab to verify its 

functionality. A system model with TEQ is setup in Simulink based on the IEEE 
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802.11a specifications. The system performance is tested under different situations, 

including different lengths of cyclic prefix, different channel models, different orders of 

TEQ FIR filter and with estimated channel information. The system performance that 

does not include a TEQ is also tested for comparison. Finally the hardware design of the 

algorithm is studied. As an example, the algorithm with TEQ order 7 is implemented in 

FPGA. The result is compared with the mathematical calculations in Matlab. The error 

introduced by the hardware implementation is also studied and analyzed. To make the 

algorithm feasible for a practical use, a high performance 64-point radix-4 pipeline FFT 

is also implemented in FPGA. The system performance with the hardware output for the 

algorithm’s parameters is also tested. The proposed TEQ algorithm and the MSSNR 

TEQ algorithm are also implemented in TI TMS320C6711 with float point calculations 

to gain some comparative information. 

7.2 Conclusions 

In this thesis a reduced computational complexity TEQ algorithm is proposed. It uses 

a reduced dimensional convolution matrix to find the optimum coefficients of TEQ. 

After the derivation of the algorithm, the optimum TEQ coefficients can be solved by 

the equation (3.40). In solving the linear equation BwA =
�

, the matrix A is proved to be 

symmetric and positive definite. The TLDL  decomposition is also used to reduce the 

computational complexity further.  

Simulation results verify the functionality of the proposed algorithm. The optimum 

order of the TEQ FIR filter depends on the channel impulse response. The overall 

system performance tests show that a high system performance gain can be obtained 

with a moderate order of the TEQ FIR filter. When the maximum channel delay spread 
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increases, the system performance degrades. However at high SNR values, the system 

performance is still acceptable. Based on the test results and considering the difficulty of 

the hardware implementation, a reasonable order of TEQ FIR filter can be selected to be 

between 7 and 31.  

Considering the advances in VLSI technology and FPGA, the proposed algorithm 

with an order p=7 of the TEQ FIR filter is implemented in the Altera’s Stratix FPGA 

device family. The characteristics of the matrices, i.e., the symmetry and the regularities 

between the elements of the reduced convolution matrix, are exploited to further reduce 

the computational load and hardware complexity. The optimum TEQ coefficients can be 

found in less than 4µs (which is the OFDM symbol interval in the IEEE 802.11a). 

Simulation output shows that the offset between the hardware implementation and the 

mathematical calculation is minimal. This verifies the functionality of the hardware 

implementation. 

 To compensate the effective channel impulse response, a zero forcing equalization 

technique is employed. To meet the high running speed of the IEEE 802.11a system, a 

64-point radix-4 pipeline FFT is designed and implemented in FPGA. It is able to finish 

the FFT transfer in 65 clock cycles and can operate with clock frequency greater than 

20MHz. Thus the TEQ FIR filter and the FFT chips satisfy the system requirement to 

operate at 54Mbps.  Furthermore, system performance with hardware output for the 

algorithm’s parameters shows that the performance loss due to the hardware 

implementation is minimal. 

The proposed technique is attractive when it is necessary to shorten the long delay 

communication channels to increase the transmission efficiency. The simplicity of the 

technique makes its implementation possible in FPGA for the high rate IEEE 802.11a 
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systems. 

7.3 Suggestions for Future Study 

Suggested future work includes the design of a high speed fix point divider in FPGA 

to increase the TEQ running speed, the optimization of hardware implementation and the 

implementation of the TEQ algorithm with a higher order (for example 11 or 17) of FIR 

filter to further improve the system performance. Some pipeline parallel mechanism may 

be employed when the maximum channel delay spread is very long. In a practical 

OFDM system, the channel is required to be estimated first. A reconfigable TEQ chip 

structure based on the channel estimation and required TEQ FIR filter order makes it 

flexible and attractive.  

In the IEEE 802.11a system, the pilot signal is used to fine tune the channel state 

information. This method may be introduced to improve the system performance in 

slowly time-varying multi-path fading channels. 
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