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ABSTRACT 
 

Oil spill incidents occur around the globe and recovering spilled oil from water or soil has become 

an important subject. One of the significant methods of oil spill cleanup is known as sorption. Most 

sorbents are made from synthetic materials. Replacing them with a natural and bio friendly 

material is a sustainable practice. Flax is grown in Canada and specifically in Saskatchewan. In 

this study, the possibility of developing a natural sorbent from a by-product of linseed oil 

production is investigated.  

Two flax based sorption materials were chemically analyzed: as-received flax straw and processed 

flax fibers. Various sections of the straw and fiber were observed using scanning electron 

microscopy (SEM) to view the structure of the plant. The flax straw was cut into small particles 

of different lengths in order to study the effect of particle size on light and heavy oil uptake. The 

effect of sorbent density on oil sorption was also determined as well as the effect of shive and 

fiber. One of the main hinderance to utilizing natural sorbents for oil sorption in aqueous situation 

is their tendency to adsorb water. To illustrate the behavior of the flax straw in aqueous situations, 

two experiments were performed on the samples:  water uptake and the oil/water selectivity. In 

order to address the adsorption of water, a chemical acetylation treatment and a proposed novel 

method for coating sorbents with linseed oil was accessed. Both acetylated and oil coated samples 

were compared with raw straw to investigate changes in surface morphology, chemical structure, 

thermal properties, oil sorption and water uptake. 

The result of chemical analysis showed the cellulose content of flax fiber was higher than flax 

straw while its hemicellulose and lignin contents were higher. Based on SEM observations, the 

major portion of the flax straw stem consisted of a hollow inner tube surrounded by xylem and 

phloem vascular tubes. The vascular tube area is also known as shives and was considerably 

porous. Hence, shives may be a promising location for depositing oil in oil sorption projects. Also, 

it was observed the flax and shives were covered with plant wax, and this wax was mostly removed 

by the acetylation treatment. In the linseed oil coated samples, the plant wax was covered with a 

thin layer as well as fiber and shive particles. Fourier-transform infrared (FTIR) spectroscopy 

revealed changes in the intensity of bands related to -OH groups and acetyl groups which is an 

indication of a successful acetylation treatment. FTIR results of coated samples showed blockage 

of hydroxyl functional groups and appearance of C-H functional groups related to the linseed oil 
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backbone. The success of acetylation was also validated by thermal gravimetric analysis (TGA). 

The acetylated samples were observed to have a lower thermal stability compared to raw samples 

due to a decrease in the number of hydrogen bonds. The TGA results of coated samples were 

similar to those of raw samples as the coating agent was physically bonded to the sample surface 

and hence it did not change the structure of the coated sample.  In terms of oil sorption capacity, 

the raw sample is capable of adsorbing 13.6 g/g and 11.2 g/g for heavy and light oil, respectively. 

The amount of water uptake was 6.9 g/g after 5 min. This number increased to 8.2 g/g after 45 min 

of soaking within the artificial sea water. Despite the high oil uptake capacity in a dry condition, 

in aqueous situation raw flax straw only adsorbed 5.6 g/g of heavy oil and 4.6 g/g of light oil. 

Similarly, the amount of water uptake was more than oil, at 7.6 g/g and 8.5 g/g from the mixture 

of water and heavy and light oil, respectively. The oil sorption of acetylated samples increased by 

6.6 % and 9.8 % for heavy and light oil, respectively compared to raw flax straw. This may be due 

to the partial elimination of surface wax on the fibers and shives during acetylation which resulted 

in more regions being accessible within the sorbent particles. Acetylation treatment of flax straw 

also improved oil/water selectivity. While the amount of water uptake reduced by almost 44 % 

from the mixture of heavy oil and water, the oil uptake capacity improved by 9 %. For linseed oil 

coated samples, a considerable improvement of 32 % was observed in water adsorption compared 

to raw samples during the artificial sea water uptake experiments. Moreover, a drop of 81 % in 

water uptake and an increase of 38 % for light oil sorption was observed in oil/water selectivity 

tests for the linseed oil coated samples compared to the raw samples. As a final study, the 

possibility of reusability and deposal of the oily sorbent within a landfill was examined. It was 

observed that the linseed oil coated samples maintained 89 % of the oil sorption capacity after four 

sorption/desorption cycles for light oil and 92 % for heavy oil. It was determined the sorbents can 

be deposited in a landfill after one cycle of centrifuging based on the code of federal regulations 

(CFR). 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

 
One of the major sources  of  pollution  in  seas  and  oceans  is  the accidental oil spills  due to 

release of crude oil or its derivative products during the transportation, storage or production [1]. 

In April 2010 in the Gulf of Mexico, as a result of an underwater oil rig explosion, 4.5 million 

barrels of oil was released into the Gulf of Mexico. This was considered one of the largest oil spills 

throughout the history of oil industry [2]. Numerous marine life was lost due to the pollution and 

toxicity of the water [3]. Reliance of the modern society on oil and gas is growing and incidents 

of oil spills appears to be unavoidable.  Interested in oil spill cleanup have continue to grow to 

address these issues using various types of chemical, biological and physical methods. The 

chemical and biological approaches focus on burning or dispersing the oil, while the physical 

method removes the oil and separates it from the water without using chemical agents. For 

example, skimmers and boomers are considered physical methods as they remove the oil from 

water using various facilities and power. However, these machineries are costly to operate and 

transport, therefore they are not suitable for every oil spill cleanup project. Using any of these 

cleanup techniques, a portion of the oil still remains in the sea or ocean for a long time and causes 

devastating effects on marine life [4]. Another physical technique is called sorption [5-7]. Sorption 

is defined as a process where one substance (sorbate) attaches to another material (sorbent) [8]. 

For some oil spills, sorption is considered as one of the most effective methods [9]. By using 

sorption, the oil characteristics can be changed from liquid to solid or semi-solid to make it more 

convenient to collect. Being cost effective in terms of price, efficiency in sorption, low water up-

take, high oil uptake, excellent reusability with  good physical and chemical stability [10-12]. Oil 

sorbents can be classified into three main categories: minerals, synthetics, and naturals. Mineral 

products consist of vermiculites, silica, sorbent natural clay, perlite, graphite, zeolites, and 

diatomite. These materials do not show adequate buoyancy retention and their oil sorption 

capacities are generally low [13]. Among synthetic products, polystyrene fiber, polyurethane foam, 

acrylate and olefin resin are the most widely used sorbents in oil spill cleanup due to their high 

oleophilic and hydrophobic properties as well as high capacity for oil sorption [14]. Recently 
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disposing of synthetic materials is however becoming a global concern [15].Therefore substituting 

synthetic materials with a sustainable plant based sorbent (natural sorbent) is  proposed. Natural 

fibers such as cotton, wool, milkweed and kapok are capable of oil uptake between 30 and 40 g /g 

(gram of oil per gram of fiber) [16]. In addition, from having a high oil sorption capacity, 

hydrophobicity is another important consideration for choosing the sorbent especially for marine 

oil spills. Being hydrophobic suggests less water uptake with a higher oil separation capacity. A 

sorbent material with less water uptake, increases its buoyancy. The problem of floatability and 

low hydrophobicity of natural sorbents are two main disadvantages [17]. Researchers have 

proposed many chemical treatments to address some of these issues. For instance, it has been found 

that the modification of Kapok fibers using a sol-gel method enhances oil sorption capacity of the 

kapok fibers [18]. In a similar study, chemically treated sugarcane bagasse showed a significant 

increase in the hydrophobicity which suggests improvements in sorption  of  oily-water 

contamination [19]. Although considerable research has been done on oil sorption of various 

natural fibers, less attention has been paid to studying the sorption capacity of the entire plant. 

Fibers are derived from stems or leaves of a certain plant, where the fiber extraction is a costly 

process. In order to develop an inexpensive natural oil sorbent, biomasses can be a substitute for 

fibers [20]. Flax straw, the by-product of oil seed extraction of flax, is widely available in Canada 

and especially in Saskatchewan where  it can be consider an oil sorbent [20].  Studies have been 

conducted on flax fibers for improving their hydrophobicity  for use in composite applications 

[21]. To date, flax has not been studied to the same extent as other natural oil sorbents for its 

characteristics. To the best of the author’s knowledge, no research has been done on increasing the 

oil sorption capacity of flax straw.  

1.2 Research Objectives 

The main goal of this research is to develop an oil sorbent using flax straw. To achieve this goal 

the following objectives are proposed: 

• To study the effect of parameter such as contact time, density and particle size on oil sorption 

capacity of flax straw.  

• To study the acetylation chemical treatment on flax straw with the aim of increasing 

hydrophobicity. 
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• To propose a method that is inexpensive, bio-friendly and effective for improving the 

hydrophobicity of flax straw.  

• To study the disposal properties of the sorbent after use as well as its reusability.  

1.3 Thesis Organization 

This thesis consists of five chapters. After the overview and objectives in Chapter 1, a review of 

scientific works on oil sorption capacity of natural sorbents is provided in Chapter 2. In Chapter 

3, the experimental procedures to achieve the objectives are discussed. In the chapter 4, the 

results of experiments along with related discussions are presented. Finally, conclusions and 

some suggestions for future work are summarized in Chapter 5. 

  



4  

 

CHAPTER 2 

LITERATURE REVIEW 

 

The literature review chapter begins by describing the sorption and the conventional sorbents used 

for oil sorption. Next, the structure and chemical composition of the flax plant and how these 

elements form the stem have been explained. After understanding the stem structure, the sorption 

mechanism in natural base materials is reviewed, and some examples of oil sorption capacity of 

natural fibers are provided. Finally, the chapter ends with a calculation method for oil sorption as 

well as imaging, compositional and structural characterization techniques.        

2.1 The sorption mechanism 

Sorption is a process where a substance called sorbate is attached to another substance called 

sorbent. Sorption is a generic term explaining both adsorption and absorption. Adsorption is the 

bonding of sorbate molecules, ions or atoms to a surface of the sorbent material, while absorption 

is the entering of these molecules, ions or atoms within the bulk of the sorbent [22]. 

2.2 Conventional oil sorbents 

Oil sorbents are categorized based on the material they have been derived from. Three main 

categories of oil sorbents exist including inorganic minerals, synthetics, and organic natural 

materials. Clay, vermiculites, and graphite are some examples of inorganic mineral sorbents. They 

are eco-friendly and can uptake oil between 4 to 20 times their weight. These sorbents are also 

inexpensive and readily available, but their tendency to float on water is generally weak [23]. 

Synthetic sorbents for oil cleanups are polystyrene (PS) fibers, polyvinyl chloride (PVC) fibers, 

polyurethane (PU) foam and polypropylene fibers (PP). Zhu et al. [24] developed a synthetic oil 

sorbent by electrospinning the mixture of PVC and PS  and compared the result of sorption with a 

commercial nonwoven PP synthetic. It was observed that the PVC/PS sorbent capacity of motor 

oil was 146 g/g, while the conventional nonwoven PP sorbent adsorbed 19 g/g.  The comparison 

was also made in aqueous situation. It was observed that none of the samples adsorbed much water 

due to their excellent hydrophobic nature, and the result was almost the same with the experiment 

in absence of water. With nearly 100 g/g oil uptake, PU foam revealed strong oil uptake properties. 
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Another advantage of using PU foam is the fact that they are reusable and can be employed a 

number of times [25]. Being highly oleophilic, hydrophobic, able to float on the surface of the 

water as well as being reusable, make these synthetic materials ideal as conventional oil sorbents. 

However, the drawback of not being biodegradable and environmentally friendly, have made 

synthetic sorbents a growing concern in recent decades [17]. Disadvantages of these two groups 

give rise to the third group referred to as organic natural materials. Cotton, wool, milkweed and 

kapok fibers are examples of this group of sorbents. They are plant-based materials that are 

biodegradable, widely available and inexpensive. However, their capacity to absorb oil is generally 

lower than synthetics and their buoyancy is usually weak [14]. Nevertheless, in some specific 

cases, natural oil sorbents revealed higher oil uptake in comparison with commercially used 

sorbents. For instance, mats, blocks and screens made with kapok fibers were reported to adsorb 

1.5 to 2 times more of the same structure made with PP [17]. In this study, flax straw, an unused 

portion of the flax plant after production of linseed oil has undergone experiments for its oil 

sorption characteristics. Hence understanding the plant characteristic, its unique structure and 

chemical composition is of importance.   

2.3 Flax plant 

Flax plant is a member of the Linum family which is cultivated around the world for two main 

reasons: its seed oil referred to as linseed oil and its fibers used in the woven industries referred to 

as linen. Like some other natural plants, stems of flax plants consist of bundles of fibers. These 

fibers are removed and purified with mechanical and chemical approaches as is used in the textile 

industry. The flax plant type cultivated for its fiber production is different than the plant that is 

grown for oil. The main difference is the length of their fibers which is shorter in the latter [26]. 

The by-product of flax seed cultivation is called flax straw which mainly consist of stems because 

of its tall and tiny structure.  

2.3.1 Stem structure of the flax plant 

Stems of the flax plant comprise of xylem and phloem cells. They are located longitudinally within 

the stem, and are responsible for carrying water and nutrition required for the plant growth. Figure 

2.1 (a) illustrates the cross-section of a flax stem [27]. Xylem cells form the woody core of the 

plant and are located between the central hollow tube and phloem cell. The density of this area 
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decreases toward the middle of the stem. Phloem cells available in the form of hollow tubes are 

situated at the outer layer of xylem cells. The fibers are available in the form of bundles located 

alongside the phloem cells within the cortex area. Single fibers within the bundle are attached to 

each other with wax. Shives are the woody portion of the stem. They consist of phloem and xylem 

cells, and they have a porous structure (Fig 2.1b) [28].  

Figure 2.1. Cross-section of a flax stem (a) and schematic of stem components (b) [28]. 

Each fiber has a hollow lumen in the center which represent approximately 7 % of flax fiber cross-

sectional area in a mature plant. In terms of morphology, the average diameter of fiber and  lumen 

diameter is  around 19 and 5.0 μm, respectively (Fig 2.2) [29]. 

 

Figure 2.2. A cross-sectional view of a bundle of flax fibers consisting of individual fibers [29]. 

2.3.2 Chemical composition of the flax plant 

In general, organic compounds comprise of carbon, hydrogen, nitrogen, sulphur and oxygen. These 
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elements are available mainly in the form of cellulose, hemicellulose, lignin, wax, ash and water 

within the plant [20]. As reported by Mazza et al. [30]  the chemical composition of flax straw, 

consists of  53 %, 17 % and  23 % for cellulose, hemicellulose and lignin, respectively.  The 

compositional ratio of these ingredients differs in various parts of the plant. For instance, the 

amount of cellulose in flax fiber is reported higher than hemicellulose and lignin [31-33], and the 

amount of lignin is higher in flax shives compared to flax fiber [34]. The literature has reported 

various chemical compositions for the flax plant. For instance, Bledzki et al. [35] reported the ratio 

of 72 %, 12 % and 5 % for cellulose, hemicellulose and lignin within the flax fiber, while Ansari 

et al. [33] reported 52 %, 13 %  and 2 % correspondingly. The difference could be due to many 

reasons, such as growing conditions (water, sunlight, soil type) and the variety of plant species. 

Hence, reporting the chemical composition of the sample is crucial part of such studies and it 

should be done prior to any experiment on biological materials. 

Figure 2.3 represent the schematic of cellulose, hemicellulose and lignin arrangements within a 

single fiber. Cellulose has a crystal structure and mainly responsible for the strength of the plant 

cell walls. The cellulose fibrils (slender fiber) are attached to each other and to hemicellulose 

structure with strong hydrogen bonding [36]. Hemicellulose are amorphous polymers with a 

molecular weight less than cellulose. They are attached to cellulose using a hydrogen bond. Since 

they are amorphous, they have a lower mechanical property compare to cellulose. The last 

component is lignin which is located between the spaces of cellulose and hemicellulose structures 

[37]. The lignin and hemicellulose are attached to each other using covalent bonding and  both act 

as a glue holding the fibers together [36].   

2.4 Oil sorption mechanism of natural fibers  

The underlying mechanism of sorption for the oil uptake process is essential. However, the number 

of literatures explaining the detailed process of oil uptake in cellulosic fibers are limited [39,40]. 

There are different available sites for oil uptake in the sorbent bulk of natural fibers which are 

mainly divided into two categories: inter-particle and intra-particle. The term particle here refers 

to any small piece of pulverized flax straw with either a fibrous or wooden origin. Inter-particle 

sites are the available spaces on the surface of individual particles either from fiber or shive and 

the void spaces between various particles. On the other hand, intraparticle sites are those available 
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in the form of pores or vascular tubes within the bulk of the particles and the hollow lumen of the 

fibers. These hollow lumens may be a reliable storage for oil. For instance, in kapok fibers, the 

excellent oil uptake behavior was reported to be due to its hollow lumen shape which is about 80 

% to 90 % of its overall volume. The oil mainly attached on the surface of fibers or within the 

lumens [41].  

 

Figure 2.3. Schematic arrangement of fiber constitutions [38]. 

The oil sorption mechanics mainly consists of three stages. At the early stage of oil sorption, van 

der waals forces between the surface of natural fibers and oil, adsorb the oil into the intra-particle 

space and spread on the surface of fibers and shives. The bulk of the oil sorption occurs in intra-

particle space in the form of adsorption [20] because of the higher void space in comparison with 

inter-particle space. In the next stage, the capillary action, which is the tendency of a liquid to flow 

into narrow pores, drives the oil into the lumens and inter-particle spaces. In the last stage, when  

the lumen and intra-particle spaces have adsorbed most of the oil, this oil then begins to penetrate 

into the bulk of the sorbent particles and the absorption process begins [16,42].  

In aqueous media, the situation is slightly different. Oil is a non-polar material meaning that it has 

no electrical poles, and electrons are distributed more symmetrically on its surface. Water, on the 
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other hand, consists of polar atoms which tend to repel oil or any other non-polar material. The 

chemical composition of most natural fibers shows a high amount of cellulose material. The 

cellulose chains have a considerable amount of hydroxyl functional groups on their surface which 

are polar. Hence, cellulose tends to attract and attach  polar molecules of water [43]. However, the 

wax, available on the surface of most natural fibers can cap these hydroxyl functional groups. The 

structure of wax is similar to oil as they are both non-polar, and thus natural fibers with higher 

amount of wax on their surface tends to repel more water and create more space for oil [40]. 

Besides the basic chemistry of oil sorption of natural fibers, the effect of adsorption and absorption 

processes on the overall oil sorption phenomenon is an important consideration. A report from the 

University of Texas on oil uptake of raw cotton suggested that inter-fiber capillary uptake along 

with adsorption and absorption are involved in oil uptake [39]. In a similar study on oil sorption 

capacity of corncobs in an aqueous situation,  it was found that the sorption mechanism was mainly 

due to the surface reaction and intra-particle diffusion [42]. In another study, the effectiveness of 

various biomasses for oil cleanup was investigated. Two different sorption models were adopted 

which include the sorption capacity (SC) and penetration absorbency (PA). While the SC model 

can determine the inter-particle oil sorption of natural sorbents, the PA model was applied to 

estimate the intra-particle uptake of oil within the sorbent particles. In the mentioned study it was 

found that the governing process in oil sorption of biomass sorbents is adsorption [20].  

Overall, in the oil sorption process both absorption and adsorption mechanisms are involved which 

occurs either by inter-particle or intra-particle spaces. In this research, the effect of each of these 

factors is not studied, and thus the more general term “sorption” is preferred. 

2.5 Various types of natural oil sorbents  

Majority of the commercial and conventional oil sorbents are synthetic. However, employing a 

wide variety of modification techniques in terms of mechanical, chemical or both, scientists 

developed various reliable oil sorbents using natural plant fiber products. In this section, some of 

these achievements have been reviewed.  

2.5.1 Cotton fibers 

Cotton fibers are obtained from the cotton plant. More specifically, they grow from the outer layer 
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of the seeds which are called seed coats. The final product of purified cotton fiber is referred to as 

woven cotton which is used in the textile industry. Singh et al. [39] studied the oil sorption capacity 

of raw cotton, and reported the sorption amount of 30.5 g/g for crude oil. Choi et al. [44] studied 

the effect of different processing techniques on the oil sorbent property of cotton (CO) and 

polypropylene (PP) containing materials. It has been shown that 100 % CO/0 % PP exhibited the 

best oil sorption with almost 23 g/g followed by a combination of CO/PP of 65 %/35 %, 80 %/20 

%, 50 %/50 %, having sorption values of 20.8 g/g, 18.5 g/g and 18.3 g/g, respectively.  

2.5.2 Kapok fibers 

Kapok fibers are obtained from seeds of the ceiba tree which are mainly grown in the East, 

Southeast Asia and parts of Africa. When the seeds are harvested, the white, hair-shape fibers are 

removed. These fibers have been used as stuffing material for pillows due to their light weight and 

non-allergic characteristics. Also, they are used for making life jackets because of their excellent 

floatability in water. Although kapok fibers comprise of 64 % cellulose, the waxy cutin available 

on their surface makes this material a reliable water repellant. The amount of wax on the surface 

of kapok is reported to be higher in comparison to cotton fiber. Besides being water repellant, this 

material is also a reliable oil sorbent. For example, a study showed diesel oil sorption by PP was 

9.9 g/g compared to 42 g/g for kapok fibers both in loose packing density conditions [45].  

2.5.3 Cattail fibers 

Another interesting natural sorbent is cattail fibers. Cattail tufts are derived from the flower of the 

cattail plant which mainly grow beside lakes. Each flower yields up to 300,000 cattail tufts that 

consist of seeds, a stem and fibers [40]. Like any other natural fibers, they mainly consist of 

cellulose which is hydrophilic. However, the massive amount of 10.64 % surface wax of cattail 

fibers makes the material naturally hydrophobic [46]. The water contact angle of cattail fibers is 

estimated to be 133° which is similar to kapok and cotton fibers which are 139° and 135°, 

respectively [40]. Another compelling characteristic of cattail tuft is their unique bamboo-shaped 

structure which provides a large surface area and open spaces between the particles. This structure 

is responsible for high cattail oil uptake of 14.6 g/g in vegetable oil [47]. Hence, due to its 

hydrophobic nature and high oil sorption capacity, this sorbent can be a reliable source especially 

for remediation of oil spilled in water [47].   
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2.5.4 Flax fibers 

Recently, oil sorption applications have been proposed for the flax fibers [32,48]. Oil sorption 

experiments were performed on flax fibers for different oil types at Leeds University. The oils 

used in this experiment were Vymox 220, Vymox 100, Vymol 22, crude and diesel oil. The oil 

sorption capacity of flax fibers in these oil media was reported as 33.6 g/g, 28.3 g/g, 16.0 g/g, 17.5 

g/g and 15.6 g/g of sorbent, respectively [32]. It was revealed that flax fibers are also excellent oil 

sorbents for oil in water situations. The oil sorption of flax fibers in different concentrations of oil 

in water mixtures using Vymox 100 oil and artificial seawater were investigated. The mixtures 

studied were 10 g, 25 g and 50 g of oil in 500 mL of artificial seawater. Oil sorption in these 

different concentrations were 6.6 g/g, 18.2 g/g and 27.9 g/g of sorbent respectively. Another 

significant characteristic of flax fibers examined in the mentioned study was the reusability of this 

natural fiber. After performing multiple cycles of sorption-desorption, it was shown that most of 

the adsorbed oil was recovered. Therefore, the flax fiber could potentially  be used more than once 

[32]. 

Flax fibers are not the only part of the plant that have undergone oil sorption experiments. For 

instance, agriculture residue in the form of the remaining plant subsequent to linseed oil production 

(after removing the seeds) is considered a by-product left in the field to rot or burn. This by-product 

mainly consisting of stems is called flax straw. In a study at Helsinki University, different types 

of flax straw in terms of the harvest time were examined for their oil uptake capacity. The highest 

oil uptake was about 2.7 g/g for fall harvested flax with the particle length of less than 1mm [10]. 

In a recent study at the University of Calgary, flax straw was calculated as  3 g/g for non-detergent 

motor oil (SAE 30) [20]. The considerable difference between the reported amounts in these 

studies were mainly due to two reasons. Firstly, the initial study was performed on pure flax fiber 

while the second study, was conducted on flax straw containing some wooden impurities of the 

stem along with fibers. Secondly, the sorption examination method in these studies was performed 

differently. The first study (Leeds University) used a method according to ASTM F716-09 and 

ASTM F726-17 standards with slight modifications, while in the other two studies (Helsinki 

University and University of Calgary), adsorption filtration (AF) [10] method and paint filter liquid 

test [20] were followed respectively. 
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2.6 Effective parameter on the sorption capacity of natural fibers 

In this study, the process of oil sorption begins with expanding the sorbate media on the surface 

of sorbent particles and continues by storing the media within intra-particle void spaces and 

finishes with the diffusion of the media into the bulk of sorbent. Some of the parameters that affect 

these processes, such as hydrophobicity, particle size, contact time, surface morphology, surface 

functionality, sorbent density is explained in the following section. 

2.6.1 Hydrophobicity and oleophilicity 

Hydrophobicity is defined as the tendency of a particular material to repel water, while 

oleophilicity refers to the desire of a material to attract oil [49]. An excellent natural sorbent should 

be both oleophilic and hydrophobic, for marine applications. Since the accessible space is limited 

within the sorbent matrix, less water uptake would provide more available space for oil uptake. 

Being hydrophilic is one of the main disadvantages of natural fibers in oil sorption applications 

especially in aqueous situations [45]. However, in some cases, a considerable amount of wax on 

the surface of these fibers contributes to their elevated hydrophobicity. In the study on wetting of 

natural fibers, it was observed that cattail, cotton and kapok, revealed a strong water repellency. 

This characteristic was examined by observing and calculating the contact angle between the water 

droplet and the fiber [40]. Being hydrophobic and oleophilic depends on several factors including 

the chemical component of the plant (e.g., amount of cellulose, hemicellulose and lignin), surface 

property (e.g., amount of waxiness and roughness of the surface), porosity structure and the 

physical shape of the fiber-like hollow lumen. In a study performed on flax fibers, flax shives 

(woody stem fragments) and cotton, the composition of cellulose and hemicellulose were about 52 

% and 13 %, respectively for flax fiber, 32 % and 24 %, respectively for flax shives and 89.9 % 

and 0.22 %, respectively for bleached cotton fibers [33]. The amount of cellulose and 

hemicellulose in the flax straw which consists of both flax fiber and flax shives was assumed to be 

in the range of 32-52 % and 13-24 %, respectively, which is lower than that of cotton. Furthermore, 

the amount of wax on flax fibers, flax shives and cotton were reported as 1.9 %, 4.6 % and 0.42 

%, respectively. Therefore, flax straw may be considered a better hydrophobic material in 

comparison with cotton fibers. Research on the hydrophobicity of flax fiber is limited, and to the 

best of authors knowledge, there has not been any published research on this property for flax 
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straw.  

2.6.2 Particle size 

Another parameter that affects the oil sorption capacity of natural-based sorbents is their particle 

length and diameter. In several studies, the influence of this physical characteristic on oil sorption 

has been examined. For example, in a study on sugarcane bagasse, the crushed samples were sieved 

into different particle sizes using sieve numbers 8, 10, 18, 20, 30 and 60. Oil sorption of crude oil 

for each particle size was calculated separately. It was  observed that decreasing the particle size 

to 0.2 mm resulted in increasing the oil sorption from 3.5 g/g of sorbent to 6 g/g in the dry system 

[50]. In the same study, a similar observation was found for the mixture of oil in water system. It 

was argued that smaller particle sizes provided more surface area and available sites for uptake of 

oil. However, for a particle size smaller than 0.2 mm, the oil sorption declined. The main reason 

for this was suggested to be the lower amount of vacant space between the small particles as they 

fill these spaces more easily. This resulted in decreasing the available vacant sites in intra-particle 

spaces and plugging the open pores of the particles at the same time [50]. In a related study 

performed on barley straw, a similar result was observed. Different sizes of barley straw were 

collected using different sieve sizes. It was observed that the ideal particle size for various oil types 

was in the range of 250-500 μm. However, for particle dimensions greater and smaller than this 

size, the amount of oil sorption reduced. For the particle above this size, the lower oil sorption 

capacity was reported to be due to the lower surface area. For particles  less than 250 μm, the 

reduction occurred due to pores and capillary blockage between the small individual fibers [51].  

2.6.3 Contact time  

Contact time refers to the duration that sorbates and sorbents are in contact with each other. It is 

the time when the sorbent soaks into the sorbate or the sorbate passes through the sorbent [52]. In 

a study performed on sugarcane bagasse, the oil sorption was calculated at five-minute intervals. 

It was found that the maximum oil sorption occurred at 15 min for both crude oil and oil in water 

situations. After 15 min, the amount of oil sorption remained the same due to saturation [50]. In a 

similar study on milkweed, cotton and PP, it was demonstrated that the maximum oil sorption was 

achieved approximately 5 min after the beginning of the experiment where saturation occurred at 

this point [14].  These studies claimed the amount of adsorbed oil remained the same after the 
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saturation time.  In contrast, another study carried out on barley straw observed the oil sorption 

capacity began to decrease 15 min after starting the oil sorption experiment. This study was 

performed in an aqueous situation and claimed  decreases in the amount of oil was mainly due to 

the water uptake of barely straw fibers after 15 min [51]. Therefore, based on past studies, it is 

clear that there is an ideal contact time to reach the maximum sorption capacity for flax straw 

which should be investigated. To date, the effect of the contact time on the oil sorption capacity of 

flax straw has not been reported. 

2.6.4 Surface morphology 

Surface morphology describes the quality of a surface and it is essential in the oil sorption process, 

as it has shown to have an effect on the sorption property [14,44]. In a study conducted on  wool 

fibers, it was shown that the exceptional sorption capacity of this natural fiber was mainly due to 

the high amount of wax and uneven scaly surface [53]. In another study performed on the cattail 

fiber, the high degree of oil sorption was related to the irregular surface shape of cattail particles 

which provided enormous available spaces for retaining oil [40]. In an investigation performed on 

flax fibers, the oil sorption mechanism for flax fiber was shown to be similar to cotton owing to 

the irregular surface morphologies of these fibers [32]. While some natural materials such as wool, 

cattail and flax fiber have an uneven surface that contributes to their oil sorption capability, other 

fibers have smoother and more even surfaces. For instance, single cotton fibers, have been 

observed to mostly trap oil in twisted areas on the fiber surface rather than along the smooth parts 

of the fiber. However, this non-uniform distribution of oil on the surface of the fibers has a low 

impact on the overall oil uptake capability of cotton fiber [44]. A work conducted on milkweed 

fibers, observed different findings. Although milkweed fibers have circular and even surfaces, the 

oil sorption capacity was still high because of the availability of the lumens and the interaction of 

wax and oil on the surface of the sorbent [14]. 

2.6.5 Surface functionality groups 

Functional groups are groups of atoms or molecules that are linked to each other and are 

responsible for chemical property and characteristics of a material. By monitoring the presence 

and changes of functional groups on the surface of the materials, some of the chemical and physical 

properties can be understood [54]. One of the important properties in oil sorption studies, 
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especially in the presence of water, is hydrophobicity properties of sorbents. This property is 

essential as less amount of adsorbed water will provide more available vacant space for oil to be 

adsorbed [51]. Cellulose has mainly hydroxyl groups on its surface, and these hydroxyl groups are 

hydrophilic. The second main component in natural fibers is hemicellulose. Hemicellulose has 

hydroxyl and acetyl functional groups on its surface. In contrast with hydroxyl functional groups, 

the acetyl groups are hydrophobic which tend to repel water. Although hydrophobic functional 

groups are available on the surface of hemicellulose, the dominant groups are hydrophilic hydroxyl 

groups, therefore the overall characteristic of hemicellulose is hydrophilic [55]. Lignin, the third 

most available compound in natural fibers, is shown to have little or no effect on water uptake of 

natural fibers [56]. Therefore, the primary issue of using natural fibers as an oil sorbent is related 

to the presence of hydroxyl groups on their surfaces. Various types of chemical treatments have 

been performed on different natural fibers to modify the availability of functional groups. For 

instance, the acetylation treatment  involves removing the hydroxyl groups and replacing them 

with  acetyl groups to make the sorbent more hydrophobic [57].  

2.6.6 Surface wax 

An important surface property of the natural sorbents is the amount of wax on their surfaces. In an 

oil sorption study on flax fiber samples with different moisture content and various wax amounts, 

a relationship between the amount of wax on the surface and oil sorption property was determined. 

It was observed that among two adsorption filters made from flax fibers with different wax 

concentrations, the one containing wax in an amount of 1.6 % dry basis adsorbed  36 % more 

engine oil in comparison with the sample with 0.5 % wax concentration [10]. In a similar study, 

the wax content of natural fibers was observed to be 0.60 %, 0.80 %, 10.64 % and 2.26 % for 

cotton, kapok, cattail and flax fibers, respectively. In the same study, it was claimed that a more 

considerable amount of wax content would suggest a  more oleohilic property [58]. 

2.6.7 Sorbent density 

Another parameter that effects the oil sorption capacity of natural sorbents is the sorbent packing 

density. The term “bulk density” should be differentiated with “packing density” which can be 

manipulated by either increasing or decreasing the weight of samples in a test cell with a fixed 

volume. The conventional approach for creating various samples with different packing densities 
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is by placing a known quantity of fiber in a fixed volume test cell, and calculating the packing 

density [12,45]. The bulk density is defined as the weight of loose sorbent per unit volume. In a 

study performed on oil sorption capacity of oak, cattail, corn and soybean with  bulk densities of 

348 kg/m3, 89 kg/m3, 168 kg/m3 and 191 kg/m3, respectively, it was found that the sorbent with 

lower bulk density tended to adsorb more oil [59]. In a study carried out on kapok fibers, 1.75×10-

4 m3 stainless steel mesh was employed, and kapok samples with different packing densities were 

prepared. After performing the oil sorption experiments, it was found that the kapok samples with 

2×104 g/m3 packing density yielded the highest oil sorption uptake with almost 35 g of diesel oil 

per g of sorbent. This amount decreased to around 10 g/g of sorbent by increasing the packing 

density to 9×104 g/m3 [45]. In another study on oil sorption capacity of kapok fibers, various 

packing densities were also tested. It was observed that by increasing the packing density from 

0.02 g/mL to 0.08 g/mL, the amount of adsorbed diesel oil decreased from 36.7 g to 10.8 g oil per 

gram of sorbent [12]. Although in several experiments the effect of packing density has been 

studied, in the majority of the literatures this factor has not been considered. In such studies, a 

certain amount of sorbent loosely is spread over the sorbate, and the oil sorption in a loose sorbent 

system is calculated [32,47,51,60]. In this study, the different packing density of flax straw along 

with the loose samples have been investigated.  

2.7 Chemical treatment to enhance the sorption property 

One major issue of using cellulosic-based sorbents is their tendency to adsorb water and moisture. 

This becomes a problem especially in an aqueous condition, where both oil and water exist. Up- 

taking more water suggests less available space for oil within the sorbent, and therefore less oil 

can be adsorbed. Consequently, one possibility to enhance oil sorption properties is to increase 

hydrophobicity through surface modification using different chemical or physical techniques such 

as sol-gel and acetylation. 

2.7.1 Sol-gel 

To produce superhydrophobic kapok fibers, a method termed sol-gel can be applied [18]. In this 

method, the fibers were treated with various chemicals with the aim of removing the surface wax 

in an effort to expose the hydrophilic hydroxyl groups on the surface of fibers (Fig. 2.4). These 

free functional groups were then introduced with silica nanoparticles throughout another chemical 
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treatment. Silica nanoparticles bonded with functional groups on the surface of fibers creating a 

hydrophobic coating. Based on FTIR results, it was reported that the -OH hydroxyl groups from 

the surface of kapok fibers were eliminated and replaced by hydrophobic silica nanoparticles. 

Experiments were performed for different oil in water mixtures. The result of oil sorption 

experiments in aqueous situations showed a 22 % increase in oil sorption for soybean oil, 42 % 

increase for diesel oil and 32 % increase for gasoline [18]. 

 

Figure 2.4. Schematic steps for creating hydrophobic kapok with sol-gel method [18]. 

2.7.2 Acetylation 

A second proposed chemical treatment for surface modifications of natural fibers is a technique 

called acetylation. Acetylation is a process where the hydrophilic hydroxyl groups available on the 

surface of the natural fibers are removed and replaced by acetyl groups (CH3COO–) making the 

material hydrophobic (Fig 2.5) [57]. 

 

Figure 2.5. Schematic of acetylation treatment on celulosic material[61]. 
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In the literature, various acetylation techniques have been proposed [20,50,62]. Among them, is 

the common catalyst used for the chemical treatment,  N-Bromosuccinimide (NBS) [50]. NBS is 

a practical yet inexpensive chemical that is proven to be a proper catalyst for the acetylation 

process [63]. Prior to the use of  NBS , 4-dimethylamino pyridine (DMAP) had been used which 

is expensive and not commercially available [64]. Besides being a catalyzer, the concentration, 

temperature and time play an important role in the chemical treatment. In a study on oil sorption 

behavior of raw and acetylated sugarcane bagasse, the different parameters on acetylation were 

investigated to determine the optimum results. In this study, a certain amount of sugarcane bagasse 

was placed in a flask containing 300 mL acetic anhydride with 1 % NBS and without NBS. The 

flask containing the mixture of fiber, acetic anhydride and NBS was then placed in an oil bath. The 

experiment was repeated for various temperatures ranging from 25℃ to 130℃ for different 

durations ranging from 30 min to 67 h.  After the process, acetylated sugarcane bagasse was 

removed from the flask, washed with acetone and ethanol and oven-dried for 16 h at 60℃. It was 

found that performing this treatment at 130°C for one hour yielded the highest oil sorption result 

of  20.2 g/g  for acetylated sugarcane bagasse with 1 % NBS compared to 6.8 g/g for acetylated 

sugarcane bagasse without NBS [60]. 

Acetylation treatment has also been performed on flax fiber to improve its properties  in composite 

production [21,35]. One of the main issues of using natural fibers in composites is their tendency 

to absorb moisture.  Moisture absorption decreases the composite strength in the long term. Bledzk 

et al. [35] introduced raw flax fibers to different acid concentrations for acetylation treatment. 

Acetylated flax fibers exhibited up to 50 % decrease in their moisture adsorption [35]. To the best 

of authors knowledge, there has not been any research done on acetylation of flax straw for use as 

an oil/water sorption material.  

2.8 Sorption characteristics of natural sorbent 

Sorption characteristics of a sorbent is not only limited to the amount of oil it can absorb, but water 

uptake, reusability and retention properties should be taken into consideration. In the literature, 

scattered studies have reported these properties as a result of availability of various measuring 

methods. The following are a summary of some conventional approaches and results obtained. 
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2.8.1  Oil uptake  

One of the most common methods of calculating the oil uptake is to spread a certain amount of 

sorbent over the surface of a sorbate and calculate the amount of adsorbed oil per gram of sorbent. 

Yunhua Cui et al. [47] spread 0.5 g of cattail fiber over 100 mL of oil. After 1 min, the fiber 

assembly was removed from the beaker and suspended in filter gauze for 15 min. Next, the fiber 

assembly was re-weighted, and the amount of adsorbed oil was calculated. The sorption capacity 

was calculated by dividing the mass of adsorbed oil to mass of dry fiber assembly. In another 

experiment, Shengbin Cao et al. [40] wrapped 1 g of the sorbent with yarn and placed the assembly 

in an oil sample for 15 min. The assembly was then removed from the oil bath and placed on a 

stainless steel mesh and allowed to drip for 15 min. The sorption capacity was calculated based on 

the mass of assembly before the experiment and after dripping stopped. Tijani et al. [20], followed 

a slightly different method to calculate the amount of liquid within the solid sample. For the oil 

sorption experiment, 5 g of sorbent was thoroughly mixed with 50 mL of oil in a beaker. The 

mixture was then passing through a stainless-steel mesh No. 60 and No.80 to separate the sorbent 

from the oil. The sorbent was then left on the stainless-steel mesh for one hour, while the oil was 

collected in a beaker underneath the stainless-steel filter. The sorption capacity was then calculated 

based on the weight difference of the sample before and after the experiment. 

Regarding the mentioned methods, three important points need to be highlighted. Firstly, the 

possibility of experimental errors in the oil sorption tests are high due to the oil that adheres to any 

test containers, mesh or pad. One of the approaches to minimize such errors would be to increase 

the amount of sorbent used in the experiment. In this way, the amount of sorbent is high enough 

to minimize the probable errors. The final result would not vary significantly with other studies 

since the oil sorption is reported based on gram of adsorbed oil per gram of sorbent. Secondly, 

using any fabric to fabricate or construct the sorbent will affect the sorption results as the fabric is 

also capable of oil sorption. Therefore, to shape a sorbent a metal wire is proposed as it has low 

effect on oil sorption. Finally, the mesh size is an important consideration when it is used as a filter 

in the oil sorption experiments. Oil is a viscous material with a high cohesion between its 

molecules. During the use of the small mesh size, the oil becomes trapped within the mesh 

openings, plugging them. By increasing the size of mesh, part of the loose sorbent passes through 

the mesh and results in inaccurate data. Thus, matching the sorbent particle size with mesh size is 
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essential. In this study, the above points are considered to accurately perform the sorption 

experiments accordingly. 

2.8.2 Oil/water selectivity 

Another important parameter in oil sorption is the sorbent ability to uptake oil in the aqueous 

environment. To simulate the oil spill in seawater under practical conditions, most of the literature 

uses artificial sea water which is a mixture of distilled water and commercially available mineral 

salt [51,53]. However, different approaches throughout the literature for the water uptake 

experiments have been followed. For example, Hussein et al. [51] mixed 40 g of oil with 500 mL 

of artificial seawater. After spreading 1 g of sorbent over the oil surface, the system was placed in 

a shaker for 15 min at 105 cycle/min. Next, the sorbent was suspended for 5 min to allow the 

excess oil and water to drain. The amount of adsorbed oil and water was then calculated. After 

introducing a small amount of ether to help extract the oil, the wet samples were compressed to 

extract the oil, water and ether. After evaporation of the ether, the mixture of oil and water was 

separated using a centrifuge. The oil and water selectivity were calculated by measuring the 

amount of water and oil within the centrifugal tube. Behnood et al. [50] followed a similar 

procedure for oil/water selectivity but used a static system. For instance, 50 g of oil was mixed 

with 100 mL of artificial seawater. After a specific sorption time, ranging from zero to 60 min, the 

sorbent was removed from the mixture and hung within a net over the beaker for 5 min to drip the 

excessive oil. The oil uptake was calculated by weighting the remaining oil in the beaker. It is 

worth mentioning that since the density of oil is less than water, the oil will float on the surface of 

the water. Stirring the system continuously during the oil/water selectivity experiment seems 

essential for increasing the accuracy of the result as it allows the sorbent to be in contact with both 

oil and water at same time.  

2.8.3 Water uptake 

The water uptake test can be used to determine the degree of hydrophobicity. Pries et al. 

[65]studied the relation of acetylation degree with water uptake. He found that the water uptake of 

acetylated wood dropped from around 85 % to 70 % percent. Loong et al. [21] also studied the 

effect of acetylation of flax fibers. It was revealed that by increasing the degree of acetylation, the 

water uptake decreased from 23 g/g to 10 g/g after 5 h of the test. In this study, two treatments will 
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be performed on raw flax straw, and this test will compare the hydrophobicity of the samples. 

2.8.4 Reusability  

Reusability of a sorbent is an important consideration for industrial oil spill cleanups due to both 

economic demands and severe ecological sustainability purposes [66]. Reusability is calculated by 

subjecting the sorbent into multiple sorption-desorption cycles. Tijani et al. [50] performed 

reusability experiments on oat straw. After performing one oil sorption experiment on an oat straw 

sample, the sample was compressed using a piece of cloth in order to drain the adsorbed oil out of 

the sorbent. This cycle of sorption/desorption was repeated six times. The result illustrated a 

gradual decline in sorption capacity from 6.4 g/g to 5.2 g/g. Ansari et al. [32], followed a more 

precise method for calculating the reusability of flax fibers. After performing the oil sorption test 

within an oil/ water mixture, the samples were removed and dried at room temperature under a 

fume hood for 24 h and 48 h. After evaporating the water from the samples, the sorbent was 

squeezed between two rollers at a pressure of 105 kgf/m. The sorption-desorption cycle was 

repeated three times and the results showed a reduction in the oil uptake of 20.53 g/g, 13.93 g/g 

and11.80 g/g for the first, second and third cycles, respectively.  

One important consideration in reusability tests is to define the amount of force required for 

compressing the oily sorbent. The different force applied will vary the amount of oil retained in 

the sorbent which can affect the oil sorption capacity in the next cycle. Therefore, it is important 

to clearly define this force.    

2.8.5 Oil retention  

Retention is the ability of a sorbent to maintain the sorbate within its bulk for a certain amount of 

time. It is an important factor after oil sorption practices since the sorbent is subjected to further 

handling and delivering for recycling or to landfills. Yunhua Cui et al. [47] calculated the oil 

retention rate of a cattail assembly. After performing the oil sorption experiment, the cattail 

assembly was suspended for 24 h to allow the oil to drain out of the sample. The weight of sample 

after 24 h was determined for its oil retention capability. The oil retention capacity for the cattail 

fiber assembly was obtained over 95 % for both engine and vegetable oil. Shengbin Cao et al. [40] 

followed a similar method where the assembly of kapok fibers was left on a stainless steel mesh 
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for 24 h after the oil sorption experiment, and the calculated oil retention rate was 90 % for this 

assembly. 

2.9 Structural characterization 

In addition to the sorption characteristics of natural fibers, surface morphology and chemical 

composition require analysis. Understanding these properties will help researchers acquire in-

depth knowledge of the sorption process and mechanisms. Furthermore, it is helpful to compare 

and monitor the changes of sorbent structure, chemical composition, surface morphology and 

topography after any chemical treatment.  

2.9.1 FTIR 

Fourier-transform infrared (FTIR) spectroscopy is a technique to determine characteristics of 

specific types of bonds, and therefore can be used to identify whether a specific functional group 

is present in the material [67]. In this method, infrared radiation is emitted to the sample. By 

calculating the amount of light that is either adsorb or emitted from the sample, and by using the 

Fourier-transform to translate these data to wavelengths, the chemical composition of an organic 

or inorganic compound can be determined [68]. Moreover, by comparing the FTIR result for 

different chemically treated samples, monitoring changes in the functional groups is possible. Sun 

et al. [60] used FTIR to determine the degree of acetylation of sugarcane bagasse. It was observed 

that the stretching band at a wavelength of 3436 cm-1 (as the indicator of -OH hydroxyl group) 

decreased.   

2.9.2 TGA 

Thermogravimetric analysis (TGA) is a method to determine the thermal stability and 

decomposition temperature of a compound. In this technique, the percentage of mass loss is 

obtained as the sample is heated to elevated temperature under an inert atmosphere at a constant 

rate [69]. Some studies have been conducted on thermal stability analysis of natural fibers to 

evaluate the effect of the acetylation treatment. For instance, Nwankwere et al. [70] compared the 

TGA result of raw and acetylated rice husks. The test temperature range was 30-600 ℃. It was 

found that the thermal stability of acetylated samples decreased above 170℃ due to hydrogen 

bonds being disintegrated. Teli et al. [62] performed TGA tests on acetylated banana fibers to 
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investigate the effect of acetylation. The test temperatures ranged from 30-550 ℃. The weight loss 

of the samples at 250℃ was 7.39 % and 10.59 % for raw and acetylated samples, respectively. At 

350℃, weight loss was 35.67 % and 65.18 % for the raw and acetylated samples, respectively. It 

was found that the thermal stability of acetylated banana fiber was lower than raw fiber due to the 

acetylation treatment.   

2.9.3 SEM 

Scanning electron microscopy (SEM) is technique where the surface of the specimen is bombarded 

with a focused beam of electrons to create a surface image. Briefly, a heated filament generates 

the electrons and these electrons are directed to the specimens using a magnet. The reflected 

electrons or x-rays from the sample are collected using a detector to form an image. Two main 

results obtained from SEM which are important for understanding the behavior of natural sorbents 

are: topography and morphology. Calado et al. [71] studied the effect of an acetylation treatment 

on the surface of coir fibers. Comparing the SEM images of treated and untreated coir fibers, it 

was found that the outer layer of the untreated fibers mainly consist of uneven distributions of 

organic matter (Fig 2.6a). This material was removed by the use of a chemical acetylation 

treatment (Fig 2.6b). By removing the outer layer, the rougher and ordered structure of coir fiber 

was revealed. 

In a similar study, the SEM photos of flax fibers before and after the acetylation treatments were 

compared. It was observed that the surface of raw flax fiber was rough mainly due to the high 

amount of wax on the surface (Fig. 2.7a). This layer of wax disappeared in the acetylated samples. 

The exposed surface of fiber was smoother but small amounts of wax remained on the surface. 

Another observation was the “bamboo” shape nodes on each fiber that had been developed during 

the growth ( Fig 2.7b) which are not visible in the untreated samples [21].  
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Figure 2.6. SEM image of untreated coir fiber (a) and acetylated treated coir fiber (b) [71]. 

 

 

Figure 2.7. SEM photo of untreated flax fiber (a) and acetylated treated flax fiber (b) [21]. 

2.9.4 Summary 

The literature review showed that natural fibers have a potential to be employed as an oil sorbent. 

Also, the oil sorption mechanisms of natural fiber have been studied as well as the effective 

parameter on their sorption capacity.  Among the natural fiber, flax fibers revealed a promising oil 

sorption capacity of up to 33 g/g when only oil was present as a sorbate. This amount can be 

(b) (a) 
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compared with the synthetic and commercially available oil sorbents. However, the process of 

fiber extraction from the plant stem is costly. Hence, in the current study, the possibility of sorbent 

preparation using the whole stem, which is a by-product of linseed oil production and widely 

available in Canada, is examined. Another issue of employing a plant-based material as an oil 

sorbent is their tendency to adsorb water in an aqueous situation. This occurs due to high 

hydrophilicity of cellulose and hemicellulose, the main ingredient of plant base materials. To 

address this issue various chemical treatments have been applied and examined on natural fibers 

using acetylation and sol-gel methods. A few studies have been done on acetylation of flax fiber 

in order to decrease its hydrophilicity. However, no studies have been conducted for decreasing 

the hydrophobicity of flax straw using chemical treatments. This research gap was the main 

motivation to study the flax straw for its oil sorption and to find any possible method to enhance 

this property.  
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CHAPTER 3 

MATERIALS AND EXPERIMENTAL METHODS 

The materials, sample preparation, experimental procedure and testing and characterization 

techniques are explained in this chapter to achieve the objectives of this study. The experimental 

methods are either novel or have been modified from works of other researchers.  

3.1 Materials  

The materials in this study were provided by different suppliers. Flax straw was received from 

Biolin Research Inc. (Saskatoon, SK, Canada). Biolin is a local research company which has been 

working on various applications of flax plants for several years. The flax straw was collected from 

Bethune, Saskatchewan, Canada. The average length of the plant at the time of harvest, as per 

vendor information, was around 0.55 to 0.60 m. The plant was cut from around 0.10 m above the 

soil, and the average length of the as-received flax straw was around 0.45 m (Fig.3.1a). The 

processed flax fiber provided by Biolin is shown in (Fig.3.1b). The bulk density of the flax straw 

and flax fiber were examined in two situations: lost filled and packed filled. The density was 

between 25.6 and 97.2 kg/m3 for flax straw and between 15.3 kg/m3 and 76.5 kg/m3. 

Two oil types used in this experiment were ordered from Fisher Scientific TM (Ottawa, ON, 

Canada): heavy oil and light oil. The viscosity and density of heavy oil was 34.5 to 150.0 mm2.S-

1 and 0.83 g/mL, respectively, while the light oil was 3.0 to 34.4 mm2.S-1 (NF) and 0.83 g/mL 

respectively.  For the acetylation process, acetic anhydride and N-Bromosuccinimide (NBS) were 

both purchased from Fisher Scientific TM with a minimum essay of 97 %. The boiling point of 

acetic anhydride which is an essential consideration in performing a safe acetylation, was 140 °C. 

The NBS was received in 100 g bottles with 99 % assay, and the color of the powder was white to 

light yellow. Sea salt for producing artificial seawater was ordered from the Lake Product 

Company LLC (Florissant, MO, USA) and received in a 100 g plastic container. As per vendor 

specification, the product meets standard ASTM D1141-98 (2013) which is standard practice for 

producing a substitute for ocean water [72]. Boiled linseed oil was ordered from Fisher Scientific 

TM and it was received in 500 ml packaging.    
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Figure 3.1. Sample batch of as-received flax straw (a) and processed flax fiber (b). 

3.2 Chemical analysis of flax straw and flax fiber 

Samples of both flax straw and flax fiber were sent to Feeds Innovation Institute at the University 

of Saskatchewan for analysis of the chemical composition and moisture content. The amount of 

cellulose, hemicellulose and lignin was determined using Ankom (Macedon, NY, USA) 200 fiber 

analyzer. The acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined using 

Ankom Method 5 [73] and Ankom Method 6 [74], respectively. The amount of lignin was 

determined using ANKOM Method 8 [75] and the percentage of cellulose and hemicellulose 

calculated using equation 3.1 and 3.2, respectively.  

Cellulose = ADF – Lignin (3.1) 

Hemicellulose = NDF-ADF (3.2)  

The moisture, fat and ash contents were calculated according to Association of Official 
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Analytical Chemists (AOAC) standard [76]. 

3.3 Sample preparation 

Raw, linseed oil coated and chemical treated straw were prepared. Initially, raw straw was washed, 

oven dried, cut and untreated or treated with chemical and physical techniques. 

3.3.1  Purification and drying of the straw 

Sample preparation consisted of batches of around 150 grams flax straw (as-received) which was 

weighted to calculate the mass of dry matter using equation 3.3. The straw was then thoroughly 

washed with distilled water to remove any dirt, mud or foreign particle from the straw. The batch 

was then left on a strainer in open air for one hour allowing the water to drain out of the straw. The 

batch was weight again to determine the amount of water adsorbed based on the equation 3.4. 

Next, the batch was dried in an oven at 65°C for 24 h using a Blue M Constant temperature cabinet 

to remove any remaining water. The weight of straw was recorded every two h to estimate the 

moisture content of the sample until it stabilized. After 24 h, the dry weight of the straw was 

recorded, and moisture content of the dried batch was calculated based on the equation 3.4. 

Wd = Wt(1 −
Mw

100
) (3.3) 

Mwi
= 100 × (1 −

Wd

Wti

) (3.4) 

Where Wd is weight of dry matter in the sample (g), Wt is total weight of material considering both 

moisture and dry matter (g), MW is the wet basis moisture content and subscript “i” is an indicator 

of time ranging from 0 to 24 h. After drying the straw was cut to size.  The best practice for cutting 

flax straw was determined to be right after oven drying while they still have a low moisture content. 

3.3.2 Cutting   

Before any treatment on the sample occurred, the untreated straw was cut in small pieces using 

two approaches as shown in figure 3.4. The first approach was to use a multi-blade scissors which 

consists of a total of five scissors connected to each other side by side with a 2 mm gap between 

them (Fig 3.2). 
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Figure 3.2. Digital image of the multi-blade scissors. 

The second and more efficient approach for cutting the flax straw samples was to use a Retsch 

knife milling (Haan, Germany) (Fig 3.3a). There are two variables in this machine that must be 

established: the gap between the rotating and fixed blades and the sieve size located underneath 

the blades (Fig 3.3b). The distance between the rotary and fixed blades was set to 2 mm. The sieves 

available had square opening shapes with dimension of 4 mm x 4 mm, 6 mm x 6 mm and 8 mm x 

8 mm. The machine functions by feeding the straw from the top as shown in (Fig 3.3c).  The straw 

is then pushed into the rotary blade where the blades cut the straw by applying shearing and 

compression forces. The cut and crushed particles pass through the sieve located at the bottom of 

the machine and collect into a metal container fastened underneath the machine. Since the best 

result for cutting will be acquired when the straw has a low moisture content, it is important to use 

the dry straw that is stored in the desiccator or has just been removed from the oven. An initial oil 

sorption experiment was performed on the various cut sample to investigate the efficiency of the 

proposed cutting methods (Fig 3.4). 

3.3.3 Sieving 

Two methods for sieving were proposed for this experiment. The first method was to utilize a 

selection of sieves with different size openings, and the second method was to rely only on the 

sieve from the Retsch knife milling machine. For the first method, six different sieves with sizes 

3.36 mm (No. 6), 2.38 mm (No. 8), 1.68 mm (No. 12), 1.19 mm (No. 16), 0.84 mm (No. 20) and 

0.59 mm (No. 30) were selected. The progression of the sieve size was square root of two inspired 

from the ISO standard sieve series for common use [77]. The sieves were placed on top of each 

other so that the size decreased from top to bottom. For each run, 50 grams of cut samples were 
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placed on the top sieve and the sieves were mounted into the sieve shaker. While the machine was 

shaking the sieves in a horizontal plane, the metal hammer located at the top was impacting the 

sieves in the vertical direction as well (Fig 3.5).  The hammer impact helps the particles pass 

through the top sieves and dropping them into the next sieve. The sieving duration was set to 3 

min which was sufficient time for the particles to pass through the different levels of sieves. 

 

Figure 3.3. Retsch knife milling machine (a), fixed/rotary blades and 8 mm sieve (b), feeding the 

stock from the top (c). 

 

Figure 3.4. Schematic of cutting procedure showing the knife mill versus the scissors. 

The gap 

The sieve with 

square openings 
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Figure 3.5. The different position of hammer, fully open at (a), compacting the head (b). 

As an alternative option to sieving, the sieve mounted onto the knife milling machine was used. 

Each time around 4 grams of washed and oven dried flax straw was fed into the machine and cut 

using a sieve size of 6 mm x 6 mm. Each 4-grams was pulverized individually and kept in plastic 

bags without mixing with other cut samples (Fig 3.6). By following this method, it was ensured 

that each of the 4-gram samples would represent the same shive to fiber ratio as the straw. The 

sample made by this method are referred to as 4-gram samples in the remainder of this study. 

 

Figure 3.6. Individual packages for each cut sample containing the sample fiber to shive ratio. 

The hammer 

(A) (B) 

The head 
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3.3.4 Raw and treated sample preparation  

The samples acquired after sieving are considered as untreated samples and are referred to as ‘raw’ 

samples in the remainder of this study. Two methods of treatment were selected: an acetylation 

chemical treatment and a novel coating method using linseed oil as shown in figure 3.7.  

 

Figure 3.7. Schematic of sample preparation methods for raw, acetylation and linseed oil coating 

treatment. 

For the acetylation process, 300 g of acetic anhydride were mixed with three grams of NBS within 

a 500 ml round bottom flask. The flask was placed into the oil bath on the hot plate magnetic 

stirrer. The system was maintained until the temperature of the mixture in the flask and oil bath 

stabilized at 110°C. About 16 g of raw samples (content of four bags) were placed inside the flask 

along with a magnetic stirring bar to speed up the reaction rate. A reflux condenser was fitted onto 

the flask to allow the evaporated acetic anhydride to condense back into the flask. The pressure 

was atmospheric, and the treatment was performed under the fume hood for safety purposes (Fig 

3.8). After one hour, the flask was detached from the condenser and the samples were removed 

and washed thoroughly with acetone and ethanol. The acetylated samples were initially left under 

the fume hood for 24 h to evaporate the liquids within the samples followed by oven drying at 

60°C for another 24 h to obtain the same moisture content as other samples. 

   



33  

 

Figure 3.8. The raw samples immersed in acetic anhydride (a) and acetylation setup (b). 

The novel coating method used linseed oil as the coating agent. Each time, a batch of 4 g sample 

was soaked into the linseed oil until all particles were immersed. The wetted samples were 

immediately removed from the oil and placed inside a centrifuge machine. The centrifuge was a 

modified juice extractor (Fig 3.9b). The model of the appliance was Gourmia GJ750 with a 850 W 

motor. For modification, a sealing washer made of polytetrafluoroethylene (PTFE) was attached 

to the top of the rotating strainer using a two-part adhesive epoxy (Fig 3.9a). This washer acted as 

an obstacle against the particles moving up toward the edge of the v-shape strainer during high 

rotational speeds. The oily sample rotated inside the machine for 1 min at a low speed based on 

vendor specifications equal to 6000 rpm. At this rotational speed and with the particles applying 

force upward to the washer, there was a possibility of the washer detaching from the strainer at 

high speed and creating a dangerous situation. Therefore, for safety reasons, the strainer edge was 

cut and bent onto the washer surface at three points to hold the washer in place (Fig 3.9c). The 

samples were then removed from the strainer and left at room temperature for 24 h to air dry, and 

then they were oven dried for another 24 h at 60°C to gain the same moisture content as the other 

samples.  
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Figure 3.9. The PTFE washer attached to the strainer (a), The Gourmia GJ750 juice extractor (b), 

and the v-shape strainer and the bending locations (c). 

3.4 Experimental procedure 

The effect each parameter (particle size, density and shive/fiber ratio) on oil sorption property of 

raw samples was studied. The initial experiments are summarized in the figure 3.10. 

3.4.1 Effect of particle size on oil sorption 

In order to study the particle size effect on oil sorption capacity of flax straw, oil sorption 

experiments were performed on different particle sizes, acquired from the sieving process as 

explained in section 3.3.3. The procedure for the oil experiment was the same as explained in the 

section 3.5.1. The experiments were performed using both light and heavy oil to study the effect 

of oil viscosity. 

3.4.2 Effect of density on oil sorption 

The bulk of oil sorption takes place in the intra-particle space of the sorbent. By packing more 

material within a certain volume, it can be argued that the intra-particle spaces would decrease as 

the flax particles are compacted into each other. Three different samples with different compaction 

levels (low, medium and high) were produced to examine the effect of sorbent packing density on 

PTFE washer 
Bending 

points 

(a) (b) (c) 

V-shape 

strainer  
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the oil sorption capacity. The raw straw was the pulverized samples using the 6 mm x 6 mm sieve. 

The different sorbent packing densities were achieved by filling 3.5, 5.5 and 7.5 g of cut flax straw 

into the mesh bottles made of stainless steel mesh size 0.15 mm and plastic centrifuge tubes (Fig 

3.11). The bottle height was 80 mm while its internal diameter was 20 mm. The density of the 

samples was calculated considering the volume of the bottles and weight of the material inside 

each of the bottles. For oil sorption tests, the sorbent filled bottles were initially weighted and 

immersed into a beaker containing 300 ml of heavy oil. After 15 min, they were removed from the 

beaker and held over the beaker for 30 s allowing excess oil to drain. The bottles were then 

reweighted, and the amount of adsorbed oil was calculated based on the equation 3.5.  

 

Figure 3.10. Schematic steps of investigating the effective parameter on oil sorption. 
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Figure 3.11. The mesh bottles used for studying the effect of density on oil sorption. 

3.4.3 Effect of flax fiber and shive on oil sorption  

To realize the effect, of oil sorption capacity of pure flax fiber and flax shive, oil sorption 

experiments explained in the section 3.5.1 were performed on two different samples: pure fiber 

and pure shive (Fig 3.12 a). The shive samples were made by crushing the stem of flax with a small 

hammer and manually separating the shives from fiber. This method was inspired by the manual 

method of separating fiber from straw for textile purposes. The flax fiber samples consisted of 4 

grams of as-received pure fiber, and the flax shive sample was 4 grams of shives (Fig 3.12 b). 

 

Figure 3.12. The baskets containing flax fiber (left) and flax shive (right) (a) and manually 

separated flax shives (b). 

Shive Fiber 

(a) (b) 
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3.5 Characterization of untreated and treated samples  

The effectiveness of two proposed treatments (acetylation and linseed oil coating) on flax straw 

were investigated, and the result compared with the untreated flax straw. The summarized 

procedure of sample preparation and the area of comparison are provided in figure 3.13. 

 

Figure 3.13. Schematic for the summarized methods for treated and untreated samples. 

3.5.1  Oil sorption experiment 

The oil sorption capacity of raw, acetylated and linseed oil coated samples were compared. The  

oil sorption experimental method ASTM F726 – 17, was followed as a guideline [78]. Based on 

this standard for loose sorbents (Type II), the sorbent material should be a minimum weight of 4 

grams. Raw and treated flax straw samples obtained from milling or sieving were placed in a 

cuboid basket made of stainless-steel mesh No.20 (0.841 mm opening). Based on ASTM the loose 

sorbent should be able to freely float within the test cell in sorbate media, therefore the dimensions 

of the basket were 50 × 90 × 40 mm (length × width × depth) to meet this requirement (Fig 3.12a). 

The 4-gram sample was placed in the rectangular basket and lowered into the circular trough 

containing 450 mL of oil (Fig 3.14a). The diameter of the ceramic trough was 140 mm while the 

height of oil was approximately 30 mm. The shive/oil sample within the basket was slowly mixed 

using a spatula to ensure all the shive particles were immersed in the oil sorbent (Fig 3.14b). After 

15 min of soaking the basket was removed from the oil and held on top of the trough to allow 

excess oil to drain. After 30 s, the basket containing the oily sample was weighted and the weight 
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of oily sample was calculated by subtracting the weight of empty basket. The experiments were 

performed on both heavy and light oil to study the effect of oil viscosity. According to ASTM, 

each experiment must be repeated three times and the result of each run shall be within 15 % from 

the mean. The weight of adsorbed oil was the difference in weight of the samples before and after 

the experiment. Oil sorption capacity of samples was calculated using the equation 3.5.   

Oil sorption capacity =  
mw−md

md
  (3.5) 

Where, mw is the weight of the oily sample after 30 s of drainage (g), and md is an initial dry weight 

of the sample (g). 

 

Figure 3.14. Sorbent at the start of experiment in the test cell (a) and sorbent immersed in test 

cell using spatula (b). 

3.5.2 Kinetic water uptake  

The hydrophobicity of treated and untreated samples was compared using a water uptake 

experiment. The 4-gram samples were placed in a 500 mL beaker containing artificial sea water. 

The artificial sea water was made by mixing 300 ml of distilled water with 12 grams of sea salt 

thoroughly until the salt dissolved completely. The procedure followed the artificial sea water 

production  provided by the vendor which is based on the standard ASTM D1141 - 98(2013) 

(standard practice for the preparation of substitute ocean water) [72]. The flax straw/sea water was 



39  

mixed thoroughly using a magnetic stirrer with a speed of 500 rpm (Fig 3.15a). The mixture of 

water and flax straw was poured into a basket and left for 30 s to release excess water (Fig 3.15b). 

Finally, the basket (containing the wet sample) was weighed and the mass of wet sample was 

calculated based on the weight of the empty stainless-steel mesh. The percentage of increase in 

water uptake was calculated using the equation 3.6. The time intervals considered for this 

experiment was 10 min, and the water uptake recorded and calculated at 5, 15, 25, 35 and 45 min. 

Increase in water uptake = 100 × (
m1−m0

m0
) (3.6) 

Where m1 is the weight of the wet sample (g), and m0 is the weight of the dry sample before the 

experiment (g). 

 

Figure 3.15. Water uptake experiment setup, sorbent positioned on magnetic stirrer (a), metal 

basket used in the experiment (b). 

3.5.3 Oil and water selectivity  

The procedure for the oil and water selectivity tests were similar to the oil sorption tests, but in the 

presence of water. This test simulates situations where an oil spill could occur in oceans. The 

sorbate media was a mixture of oil (heavy and light) and artificial seawater. Approximately 50 ml 

of oil was added to 300 g of artificial seawater in a beaker. The beaker was then placed on the 



40  

magnetic stirrer and stirred at a speed of 500 rpm for 15 min. The 4-gram sorbent sample was then 

added to the mixture of oil and water (Fig 3.16a). 

 

Figure 3.16. Sorbent in mixture of oil and water on magnetic stirrer (a), basket used in the 

experiment (b) and separatory funnel (c). 

After stirring for 15 min, the contents of the beaker was poured into a basket hung over a secondary 

beaker to separate the sorbate media from the sorbent (Fig 3.16b). The basket was kept over the 

secondary beaker for 30 s to drain the excessive oil and water within the sorbent.  The device used 

for separating the oil and water was a separatory funnel (Fig 3.16c). The secondary beaker content 

was poured into the separatory funnel, and the funnel was left static until the oil and water 

separated leaving the oil to float on top of the water. The water was separated from the oil by 

opening the valve located underneath the separatory funnel, and the weight of water and oil was 

recorded. The amount of adsorbed oil (g/g), the amount of adsorb water (g/g) and the oil and water 

selectivity was calculated by equation 3.7, 3.8 and 3.9 respectively.  

Δ o g⁄ =
50−mo

mi
 (3.7) 

Δ w g⁄ =
300−m𝑤

mi
 (3.8) 
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Oil to water selectivity =
Δo g⁄

Δw g⁄
 (3.9) 

Where Δ o g⁄  is the amount of adsorbed oil per gram of sample (g) and Δ w g⁄  is the amount of 

adsorbed water per gram of sample (g). The parameters, mo and mw are the weight of remaining 

oil and water, respectively after the experiment (g) and mi is the initial weight of sorbent. 

It is important to note that the weight gain of first and secondary beaker in this experiment was 

calculated to determine the experimental error. To minimize this error, the content of both beakers 

was thoroughly emptied using a spatula. Also, the mass of the remaining oil within the separator 

funnel was calculated based on the weight of empty funnel.       

3.5.4 Fourier-transform infrared spectroscopy  

A Bio-RAD (Hercules, CA, USA) FTS-40 IR was used to determine the functional groups of raw 

and treated samples (Fig 3.17). FTIR required a ground sample mixed with a spectroscopic grade 

KBr powder. The weight ratio of the sample to the KBr was 1 to 10. After grinding the mixture 

using a mortar and pestle, 30 mg of the mixture was placed in an aluminum pan and mounted into 

the machine. The results were normalized and plotted using Microsoft Excel software. 

 

Figure 3.17. Digital image of the Bio-RAD FTS-40 FT-IR set-up. 

3.5.5 Scanning electron microscope 

Three-dimensional imaging on raw, acetylated and linseed oil coated flax shive samples were 
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conducted to monitor the surface morphology of the samples. The SEM model was a JEOL 

(Tokyo, Japan) JSM-6010 LV (Fig 3.18). Since the samples were biological and non-conductive, 

they were gold coated prior to SEM viewing. A two-sided adhesive carbon tape was used to attach 

specimens to the metal SEM mount stand.  In total, 12 samples were prepared, and images were 

taken at operating voltages of 10 kV and 15 kV using a range of magnifications from 100x to 

1200x. 

 

Figure 3.18. Digital image of the SEM model JEOL JSM-6010 LV. 

3.5.6 Thermogravimetric analysis 

The thermal stability of the samples was determined using the TGA method. The system utilized 

in this experiment was the TA Instruments (New Castle, DE, USA) Q50000IR TGA system (Fig 

3.19a). A small amount of raw and treated samples were ground using mortar and pestle (Fig 

3.19c). Then 30 mg of the ground sample was placed in an aluminum pan and mounted into the 

TGA system (Fig 3.19b). The temperature range for this experiment was from 25°C to 500°C, and 

the temperature increment rate was set to 5°C per minute under a nitrogen gas atmosphere. 
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Figure 3.19 TA Instruments Q50000IR TGA system (a) aluminum pan (b) ground samples (c). 

3.5.7 Statistical Analysis 

Results of the particle size experiment, the density experiment and the oil sorption experiment 

were statistically analyzed using analysis of variance (ANOVA) and least significant difference 

(LSD) methods. The aim of performing these analyses was to examine if changes made by 

manipulating the variables such as particle size, density and treatments influenced the oil sorption 

capacity of the samples significantly. The level of confidence in these experiments considered to 

be 95 %.          

3.6 Reusability and disposal of the sorbent 

After characterization of the sorbents in terms of oil sorption, water uptake and the structure 

property, the possibility of reusing the sorbent and the disposal requirements were tested. A brief 

outline of the regulation, the capacity of material to retain oil and the possibility of reusing the 

sorbent are examined in this section. 
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3.6.1 Waste disposal regulation 

In order to dispose of waste within a landfill in Canada there are some requirements that need to 

be met. Based on the code of federal regulation (CFR), “the placement of bulk or non-containerized 

liquid hazardous waste or hazardous waste containing free liquids (whether or not sorbents have 

been added) in any landfill is prohibited” [79]. Used oil, in certain circumstances explained in the 

CFR, is considered a hazardous material. Therefore, it cannot be deposit in the landfill if it contains 

free liquid. To demonstrate the availability of free liquids within the sorbent there is a test method 

defined as method 9095B, paint filter liquid test (PFL) [80]. The summary of the test method is to 

place the oily sorbent in the paint filter (mesh number of 60). If any oil passes through the filter 

after 5 min, it implies the oily sample contains free liquid and cannot be discarded in a landfill. In 

this experiment, the PFL tests were performed on the oily samples in three different circumstances: 

oily sample after the oil sorption experiment (section 3.5.1), oily sample after 24 h of retention 

(section 3.6.2) and oily sample after each desorption cycle (section 3.6.3). The PFL test setup is 

shown in figure 3.20. 

 

Figure 3.20 PFL test setup (a), the PFL filter (b) 

(a) (b) 
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3.6.2 Oil retention 

Oil retention is the ability of a sorbent to retain oil within its structure.  For calculating this 

characteristic, the oil sorption test was performed based on the oil sorption experiment procedure 

(section 3.5.1). After 15 min, the basket containing the oily samples were hung for 24 h. After 24 

h, the weight of oily samples was recorded, and the oil retention capacity was calculated using 

equation 3.10. 

Oil retention capacity =
mw−md

md
 (3.10)  

Where mw is the weight of the oily sample after 24 h (g), and md is the initial weight of the sample. 

3.6.3 Reusability  

For reusability, four cycles of oil sorption and desorption were performed on the samples. For oil 

sorption, the method in section 3.5.1 was followed, and for desorption, the modified centrifuge 

machine was employed. The centrifuge was run for 30 second at 6000 rpm for each desorption 

cycle. The oil sorption after each cycle was calculated using the equation 3.5. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

The results of experimental practices are discussed in this chapter which consists of three parts: 

sample preparation observations, discussions of oil sorption parameters and the effects each 

treatment had on oil sorption properties.  

4.1 Characterization of flax straw and flax fiber 

The chemical composition and the structure of the flax straw play an important role in determining 

the sorption property. Chemical composition helps explain how the amount of cellulose, 

hemicellulose and lignin are related to the interaction of oil and water with the straw. The structural 

study, number of voids, pores and lumens are important for discussions related to the storage space 

for oil or water.      

4.1.1 Chemical composition of the flax fiber and flax straw 

The result of chemical composition and moisture content was received based on wet and dry basis 

for flax fiber and flax straw (Table 4.1). Wet basis content is the percentage amount of all  material 

including water  and the dry basis composition is the ratio of constitutes except for water [27]. The 

dry basis report can be used to compare the amount of cellulose, hemicellulose and lignin as it is 

independent from the moisture content.  

The first observation in table 4.1 is the difference between the cellulose content in the flax fiber 

and the straw. The cellulose content in the fiber is around 64 %, while for flax straw it was 53 %. 

It can be argued that, since the straw consist of shives and fibers, the amount of cellulose within 

the shives, the woody part of flax straw, is lower than 53 %. Also, the amount of hemicellulose 

and lignin was higher than that of flax straw. This suggests that the content of hemicellulose and 

lignin is higher in shive compare with flax fiber which is in consistent with the data found in 

literature [30,35]. For the flax straw, the majority of material (more than half) consists of cellulose 

which is hydrophilic.     
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Table 4.1. Chemical composition of flax based on wet and dry basis. 

 Wet basis Dry basis 

 Flax Fiber Flax Straw Flax Fiber Flax Straw 

Moisture (%) 6.60 8.54 - - 

Cellulose (%) 60.43 48.49 64.70 53.02 

Hemicellulose (%) 11.90 15.70 12.74 17.17 

Lignin (%) 8.65 14.26 9.26 15.59 

Crude Fat (EE) (%) 0.64 0.51 0.69 0.56 

Ash (%) 1.39 2.85 1.49 3.12 

 

4.1.2 Flax straw structure 

The SEM observations of the raw flax straw was carried out. Photos were taken at different 

magnifications ranging from 85x to 200x. The structure of stem, fibers and shives were examined 

in terms of the surface morphology, amount of wax and the arrangement of the stem. Figure 4.1 

illustrates the cross-section of the stem at 85x and accelerating voltage of 10 kV. Moving from the 

outer layer to the center of the stem, the skin and bundles of fibers can be observed. Next are the 

phloem and xylem cells. These cells are responsible for carrying nutrition and water for the plant 

and consist of a large number of tiny tubes expanding vertically along the stem. This portion of 

the stem is also called the shive area. Therefore, it can be concluded that the flax shives consist of 

pores and internal spaces that can be considered as a reliable storage area for the oil, in oil sorption 

practices. 
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Figure 4.1. SEM image of the cross-section of the flax stem. 

In addition to shives, another important part of the flax stem for this study are the flax fibers. To 

acquire a better understanding of the location and morphology of the fibers, a piece of stem was 

cut to 3 mm length. The cut piece was then rolled onto adhesive tape in order to remove the outer 

layer of the stem (epidermis). Figure 4.2(a) shows an image with the skin removed, figure 4.2(b) 

shows the removed skin which was attached to adhesive tape. At position A of figure 4.2(a) the 

tissues of phloem cells and the vascular tubes can be observed in the magnified area. These tubes 

and void spaces can be considered another area for storage of the sorbent. Position B illustrates 

tiny vents on the walls of the phloem tubes that provide access to the neighboring xylem phloem 

tissues. The channel at  position C was formed from displacement of the bundle of fibers as shown 

in figure 4.2(c).The fibers in this area were initially connected to each other by wax [81] creating 

a strong structure similar to a binding/adhesive agent in composites. 

 

Epidermis 

Bundle of fibers 

Phloem cells 

Xylem cells 
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Figure 4.2. SEM photo of skinless part of the stem (a), stem showing removed 

skin(epidermis)(b), bundle of fibers with attached wax (c). 

The waxes available on the surface of the fibers (Fig 4.2c) are water repellant. However, since they 

partially covered the outer surface of the fibers and shives, water can easily reach the hydroxyl 

functional groups on the cellulosic substances. This may be a contributing factor to high 

hydrophilicity of natural fibers although they have a waxy surface. The tiny vents on the walls of 

the vascular tubes (Fig 4.2a) may be the initial penetration point for water or oil to enter the bulk 

C 

Wax 

 

 

 

 



50  

of the material. Considering the viscosity of oil, water might be a dominant liquid to enter to these 

tiny spaces in aqueous situation. 

4.2 Material preparation 

Sample preparation, observations and initial oil sorption experiments were performed. The aim of 

initial trials at this stage was to choose the most practical method for sample production. The results 

of these experiments are discussed in this section.    

4.2.1 Drying of the flax straw 

The process of washing, oven drying, and pulverizing were performed a number of times 

throughout this study. However, the tracking of weight change for the samples during washing and 

oven drying were recorded one time. Since the weight of the dry matter does not change during 

drying, the change in wet basis moisture content were calculated using equation 3.3. The moisture 

content results as a function of time are summarized in figure 4.3. 

 

Figure 4.3.  Moisture content during the oven-drying process. 

The moisture content of the samples after being washed and drained for one hour was 61.2 wt.%. 

This amount dropped sharply by 43.2 % after 2 h from the start of oven drying. This sharp decline 
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was due to the fact that the water could not totally defuse into the bulk of the straw as the washing 

duration was short. After almost 5 h from the start of drying, the moisture removal began to slow 

down, and after 10 h became steady at 1.1 wt.% moisture content. This agrees with ASTM 

WK58359 which is a new practice for drying flax fiber prior to moisture sensitive processing or 

testing [82]. Procedure “A” of this standard states that the samples containing more than 10 % 

moisture content shall be partially dried in an oven after 24h at 55°C. Procedure “B”, however, 

explains that the straw with moisture contents greater than 10 % shall be fully dried after 24 h of 

drying at 80°C. Therefore, the washed straw at 65°C after 24 h should contain small amounts of 

moisture. 

4.2.2 Cutting operation 

The reason for choosing the multi-blade scissors was the fixed distance between its blades which 

allowed the straw to be cut into cylindrical shapes of the same lengths. After cutting a batch of 

straw, it was observed that the structure of the stem during the cutting process remained intact and 

did not fully crush down into the fibers and shive (Fig 4.4a). The hollow lumen of the fibers, the 

porous structure of the shives, and the intra-particle spaces are the main storage areas for sorbate. 

Therefore, by breaking and opening the stem structure into small pieces, rather than intact 

cylindrical shapes, more surface area would be accessible for oil sorption. Instead of using scissors 

which apply only a shear cutting force, a knife milling machine is a better option as it is capable 

of providing shear and compaction forces at the same time. The knife milling machine is able to 

crush and cut the stems into small particles. Particle size reduction with this machine results in 

straw that was well broken into small particles of fibers and shives which is more desirable for oil 

sorption purposes (Fig 4.4b). 

Another observation during the cutting process was the importance of moisture content on cutting 

practice. For moisture contents of around 8 wt.%, it was observed that a portion of the fibers locked 

into each other and did not pass through the sieve of the knife milling machine. It was also observed 

that the amount of fiber stuck in the machine decreased by reducing the moisture content. The best 

results for cutting the straw with the knife milling machine was acquired when the straw had a 

lower moisture content of around 1 wt.%.   
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Figure 4.4. Pulverized flax stem using multi-blade scissors (a), cut flax straw using knife 

milling machine (b). 

4.2.3 Sieving 

The particles captured by various sieve sizes are shown in figure 4.5. The initial visual observation 

after the sieving process was the difference between the fiber to shive ratio. The amount of fiber 

was higher than shive when sieve sizes 3.36 mm, 2.38 mm and 1.68 mm (Fig 4.5 a, b and c) were 

used. The amount of shives that did not pass through sieve size 0.84 mm was considerably higher 

than the amount of fibers (Fig 4.5e). The magnification of this sieve is shown in figure 4.5 (i). The 

availability of fiber and shive was almost the same at sieve size 1.19 mm and 0.59 mm (fig 4.5d 

and f). Finally, for the particle deposited at the lower pan (fig 4.5 g) the amount of small fibers 

was higher. This is magnified in figure 4.5 (h).  

The main reason for trapping the fibers in the sieves with large openings is the tendency of the 

fibers with higher lengths to weave into each other while shaking in the sieve shaker. In the woven 

industry, the length of fibers is a determinant for the quality of yarn as they can weave effectively 

into each other and create more strength [83]. Smaller size fibers, however, have an application in 

nonwoven fabrics where weaving in not required [84]. This may be the reason for small size fibers 

passing through various sieves and being deposited at the lower pan. The shive particles were 

trapped mostly in the sieve size of 0.84 mm due to particle sizes being slightly larger than the sieve 

opening. This is shown in figure 4.5(i) where the square shape opening has a dimension of 0.84 

mm. 
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Figure 4.5 Digital images of particle captured by various sieve sizes. 

Another important observation was the length of particles captured by each sieve was not 

consistent with the size of the sieve. For instance, the size of the particles captured by sieve size 

1.19 mm, ranged from less than one millimeter to more than ten millimeters (Fig 4.6). 

 

Figure 4.6 Particle capture by sieve size 1.19 mm.    
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This can be explained by the cylindrical shape of the particles and their high length to cross-

sectional diameter ratio. During sieving, the particles, regardless of their lengths tend to slide on 

top of each other until they became perpendicular and pass through the sieve openings. Other 

contributing factor to this is the hammer at the top of sieving machine impacting the sieves 

vertically. This made the particles move up and down and pass through the openings regardless of 

their length. The issue of inconsistency between length and sieve opening size could be addressed 

by cutting the straw to sizes smaller than 0.6 mm as this would reduce the length to diameter ratio.  

On the other hand, flax straw is a fibrous plant and cutting it in very small sizes would result in the 

formation of a network of fiber/shive particles. These particles would not pass through the sieves 

easily and would remain on the top sieve during the sieving practice. Figure 4.7 illustrates a batch 

of flax straw and a batch of flax fiber ground using the knife milling machine with sieve size of 2 

mm x 2 mm for the purpose of chemical composition analysis.  

 

Figure 4.7 Ground and sieved batch of flax straw (a) and flax fiber (b). 

Another method of sorbent preparation was to directly use the sieve of the knife milling machine. 

Each sample size consisted of 4 grams and were kept in an individual bag to maintain a constant 

fiber to shive ratio. Figure 4.8 shows 4-gram samples made by the milling machine using 4 x 4 

mm, 6 x 6 mm and 8 x 8 mm size sieves. 
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Figure 4.8. The 4-gram samples made with the knife milling machine using three sieve sizes. 

4.3 Microstructure of untreated and treated samples  

4.3.1  SEM  

The raw, acetylation treated, and linseed oil coated samples were compared using SEM. Figure 4.9 

shows the raw and acetylated samples. The wax covered the fiber surface (Fig 4.9 a) and occupied 

the intra-fiber spaces had largely been removed by the acetylation treatment (Fig 4.9 b) which 

resulted in exposure of the fiber and shive surfaces. The surface of flax fiber illustrates a bamboo 

shape consisting of many nodes which are characteristic of the plant growth. These nodes appear 

to extend along the length of the fibers creating an uneven surface morphology. Another change 

in the morphology due to acetylation is the appearance of microfibrils on the surface of the fibers 

as shown in the magnified portion of Figure 4.9 (b). Fibrillation occurred due to the interaction of 

the acid with the lignin between the individual fibers. The crack damage was not observed in the 

non-acetylated samples, therefore it can be concluded that the degree of acetylation was enough to 

remove the wax and prevent  damage to the fiber structure [35]. 

The linseed oil coated sample is shown in figure 4.10 (a) and (b). The linseed oil formed a layer 

on the outer surface of the fiber bundle (figure 4.10a). The space between individual fibers within 

the fiber bundle is not visible as the oil spread over the bundle of fiber and covered any access to 

the intra-fiber spaces. Figure 4.10 (b) illustrates individual coated fibers at higher magnification. 

The coating appears to have covered the entire surface of the fibers as depicted by a smoother 

surface. This novel method of coating provides a very thin layer such that the small particles of 

wax on the surface of the fibers are still visible as observed in (Fig 4.10 b).    
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Figure 4.9. SEM comparison between raw (a) and acetylated flax fiber (b). 

 

Figure 4.10. Bundle of flax fibers (a) and individual fibers both coated with linseed oil (b).  

Figure 4.11 compares the untreated and acetylated flax shive particles. The change in flax shive 

due to the acetylation was similar to the flax fibers: the disappearance of the wax and exposure of 

the surface of the shive (Fig.4.11b). The fiber nodes on the surface of the shive particle can be 

observed in figure 4.11 (b) when the surface wax is removed. 

The shive particles coated with a thin layer of linseed oil are shown in (Fig 4.12b). The pre-existing 

wax on the surface of shives have been covered with a thin layer of coating agent (Fig 4.12a). The 

vascular tubes within the shive remained empty and their openings were not obstructed with 

linseed oil (Fig 4.12a). 

Covered wax 
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Figure 4.11. Untreated flax shive (a) and acetylated flax shive (b). 

 

Figure 4.12. Coated shive with linseed oil at 400x (a) and 200x magnification (b). 

4.3.2 FTIR 

Success of the acetylation treatment can be determined using FTIR. Figure 4.13 compares the FTIR 

results of raw and acetylated flax straw. 

The FTIR spectrum is characterized by adsorption bands at ~3300 cm-1 for hydrogen bonds, at 

~2900 cm-1 for aliphatic C-H bonds, at ~1700 cm-1 for carbonyl groups and at ~1230 cm-1 for ether 

bonds.  The intensity of the peak at 3000 cm-1 to 3500 cm-1 is an illustration of the availability of 

functional groups capable of hydrogen bond formation. The IR result of raw and acetylated 

samples, showed the band intensity of the peak decreased at around 3300 cm-1, suggesting the 

number of -OH functional groups reduced in acetylated samples. Also, acetylated groups in the 

region of 1730 cm-1 correspond to acetyl carbonyl groups. The other noticeable and important 

Vascular tubes 
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change in the peak intensity occurred at around 1227 cm-1 which is related to the appearance of -

C-O- acetyl groups.  The three  stretches in the band intensity of the FTIR result are illustration of 

successful acetylation treatment [85]. 

The IR spectrum of raw straw and the straw coated with linseed oil are compared in (Fig 4.14). 

Three major changes in the intensity of the FTIR peaks was observed at ~ 3300 cm-1, ~2900 cm-1 

and 1730 cm-1. First, the band intensity at ~3300 cm-1 decreased considerably which may be 

attributed to partial blockage of hydroxyl functional groups due to the linseed oil coating. Second, 

increasing the intensity of signature at ~2900 cm-1 was attributed to the high number of aliphatic 

C-H groups present in the oil backbone. The third remarkable observation was the strong band at 

1730 cm-1 which is assigned to the high number of carbonyl groups in the oil structure. 

 

Figure 4.13.  Absorption values with respect to wavelength using FTIR for raw and acetylated 

flax straw samples. 
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Figure 4.14. Absorption values with respect to wavelength using FTIR for raw and linseed oil 

coated flax straw samples. 

4.3.3 Thermal gravimetric analysis 

The TGA result of raw untreated straw were compared to acetylated (AC) and linseed oil coated 

samples (LC) to study the changes in thermal stability. Figure 4.15 shows the comparison between 

the TGA results of raw and acetylated flax straw. 

Weight loss up to 100 °C was almost 8 % for both samples. The weight loss in this temperature 

range can be attributed from water desorption in both samples due to drying. The weight loss 

continued to decrease slightly for acetylated samples while it was almost steady for the raw sample 

up to 250°C. From 250-375°C the weight of both samples started to decrease sharply to almost 70 

% for raw and 75 % for acetylated samples due to the extreme decomposition. The rate of weight 

loss decreased considerably above 375 °C for both samples. At 475°C, the weight of the remaining 

residue of raw and acetylated samples dropped by 77 % and 80 % of their initial weights.  

Hemicellulose, cellulose and lignin thermal degradation is around 200-260°C, 240-350°C and 250-
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500°C, respectively [70]. Since flax straw comprises of about 53 % cellulose, 17 % hemicellulose 

and 15 % lignin, the weight loss of both samples at the temperature range of 250 to 350 °C can be 

explained by the high amount of cellulose in the sample which breakdowns within this temperature 

range. However, the decomposition rate of acetylated sample was slightly higher than raw sample 

within this range. This can be explained by the reduction of hydrogen bonds in acetylated samples 

compared to raw samples. In the raw straw, the oxygen atoms of a similar or nearby chain of 

cellulose molecules create hydrogen bonds with multiple -OH functional groups available on the 

surface of cellulose [86]. These bonds disintegrated by acetylation treatment as some of the 

hydrogen bonds were replaced by acetyl groups. The reduction in the number of hydrogen bonds, 

contributed to a decrease in the thermal stability of acetylated samples compared to raw samples 

which is an indication of successful acetylation treatment on the samples. 

Figure 4.16 is a comparison between the TGA result of raw and linseed oil coated flax straw 

samples. Since the coating of linseed oil is consider a physical bonding in terms of thermal 

decomposition, it is expected that the trend for both samples would be similar. Below 100 °C, 

linseed oil lost less moisture than the raw samples. This can be explained by the water repellant 

coating of the linseed oil. Above 350 °C, the raw samples decomposed faster than linseed coated 

samples. This may be due to the presence of linseed oil in the sample. 

 

Figure 4.15. TGA result of raw and acetylated flax straw samples. 
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Figure 4.16. TGA result of raw and linseed oil coated flax straw samples. 

 

4.4 Result of initial experiments 

4.4.1 Oil sorption capacity of fiber and shive 

To compare the sorption capacity of flax fibers and shives, four grams of each were placed in 

separate baskets and oil sorption experiments were performed in triplicates using heavy oil. A 

noticeable difference in oil sorption capacity was observed for flax fibers and flax shives. The 

fibers adsorbed 15.87 g/g and the shives adsorbed 4.50 g/g.  The reason for this large difference is 

the   bulk density of the two samples (Fig 4.17). While the bulk density of the fiber sample was 

2×104 g/m3, the shive sample was 105 g/m3. On the other hand, the particle density of flax fibers 

and flax shives were calculated to be 1.5×106 g/m3 and 1.3×106 g/m3, respectively. Since the 

particle density of the fibers and shives are similar, it can be concluded that the lower bulk density 

of the fibers resulted in more void intra-particle spaces. The bulk of oil sorption occurs in intra-

particle spaces, and this is appearing to be the contributing factor to the higher oil sorption of flax 

fibers.   
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Figure 4.17. Four grams of flax fibers (left) and four grams of flax shives (right). 

4.4.2 Effect of particle size on oil sorption 

The result of oil sorption experiments for raw pulverized flax straw sieved to various sizes are 

plotted in figure 4.18. 

 

Figure 4.18. Heavy and light oil sorption values of the sieved raw straw samples. 
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A large difference was observed between the oil sorption of the particles capture by sieve size 

greater and lower than 1.68. For the sieve sizes of 1.68, 2.3 and 3.35 mm, the amount of adsorbed 

oil was almost the same for all sizes; 15 g/g for heavy oil and 14 g/g for light oil. The higher 

amount of oil sorption for these sizes was due to the availability of higher length fibers compared 

to shive as explained in the section 4.2.3. These high length fibers inter-woven to each other created 

a sorbent with low bulk density.  For size 1.68 mm, the oil sorption in both heavy and light oil was 

slightly lower than the other two sizes mainly due to the presence of more shive particles in the 

samples (Fig 4.5c). For particles captured by sieve size 0.841 mm, the oil sorption for both heavy 

and light oil was the lowest. This can be explained by the high shive to fiber ratio of the samples 

as shown in Figure 4.5e.  With the same reasoning, the slightly higher amount of oil sorption for 

the particles with sizes less than 0.6 mm was due to the lower amount of shive to fiber ratio (Fig 

4.5g). 

In addition to the amount of flax fibers and shives in the samples, the increased amount of oil 

sorption can attribute to smaller particles sizes. Surface area increases by decreasing the particle 

size. Larger surface areas may have more locations for the oil to be adsorbed. However, decreasing 

the particle size resulted in increasing the bulk density and decreasing the volume of the samples. 

Since the majority of the oil adsorbs in spaces between the sorbent particles, the oil sorption 

capacity has direct relation with the volume of sorbent. This can be seen by comparing the oil 

sorption results of around 10 g/g for above mentioned sieved samples with around 14 g/g of 4-

gram samples. In all sieved samples, the sorption of heavy oil was slightly higher than light oil. 

However, at 95 % level of confidence the difference between the sorption of light and heavy oil 

was not significant based on the result of ANOVA and LSD (Appendix A). Higher viscosity oil 

tends to adhere to the sorbent particles and remain in the bulk of the material.  

In conclusion, although sieving has been utilized in many literatures for studying the effect of 

particle size on oil sorption, it is not proposed for high length particles made by pulverizing fibrous 

biomasses such as flax straw due to the tendency of fibers to weave into each other. 

4.4.3 Effect of packing density on oil sorption 

 The effect of compaction has been investigated on raw, acetylated and linseed oil coated samples. 

The packing density of the samples were calculated based on the weight of sorbent and the 

approximate volume of the bottles (Fig 3.11). The results are plotted in Figure 4.19. 
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Figure 4.19. Light oil sorption results of packing density of flax straw due to sample compaction. 

The samples with packing densities of 1.5×105, 2.5×105 and 3.5×105 g/m3, had 3.5, 5.5 and 7.5 

grams of sorbent material, respectively. The sample with 3.5×105 g/m3 packing density had the 

least oil sorption capacity, while the samples with a packing density of 2.5×105 g/m3 had the 

highest sorption capacity. The sample with 3.5×105 g/m3 had the lowest void spaces from being 

well compacted within the bottle. On the other hand, samples with 1.5×105 g/m3 packing density 

had the highest void spaces but did not adsorb the highest oil content. The distances between the 

particles may have been too large to be effective for oil sorption. The experiments showed these 

spaces were ineffective due to a large distance between individual particles. The sample with the 

packing densities of 2.5×105 g/m3 had the highest oil sorption which illustrates an optimum 

packing density.  Based on the result of ANOVA and LSD analysis, there was a significant 

difference between the oil sorption of the three compacted samples (Appendix B).   

4.5 Characterization of untreated and treated samples  

4.5.1 Oil sorption experiment 

The oil sorption results of raw, linseed oil coated and acetylated samples in a loose condition in 

both heavy and light oil are plotted in figure 4.20. 
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Figure 4.20. The oil sorption result of raw, linseed oil coated (LC) and acetylated (AC) flax straw 

samples. 

Oil uptake of the sorbents in heavy oil media was generally higher than light oil. During the 

experiments, after removing the samples from the respective oils, the sorbents were hung for 30 s 

to allow excess oil to drain. High viscosity heavy oil did not flow easily which suggests a lower 

tendency of the liquid to leave the bulk sorbent. The low viscosity light oil drained more rapidly 

out of the bulk sorbent. This suggests the size of the intra-particle spaces of the sorbent are 

important for oil sorption of different oil viscosities. 

The LC samples had the lowest oil sorption capacity. After the linseed oil coating treatment, the 

intra-particle spaces/void spaces where oil is generally deposited are no longer available. Also, the 

fiber lumens may have been obstructed due to the coating.  Similarly, the porous shive particles 

may have been filled by the linseed oil.   

The AC samples had the highest oil sorption capacities compared to the raw and LC samples. The 

acetylation treatment removed surface waxes from fibers resulting in more exposure of the fiber 

surface for oil uptake as shown in Figure 4.10. In addition, acetylation tended to damage the fibers 

to some extent and create micro-cracks on the surface of  individual fibers [35]. Removing the wax 
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from the surface of the shives may result in more accessible pores for oil retention.  

The acetylation showed a slight increase in oil sorption capacity while linseed oil coated samples 

showed a minor decrease in oil sorption capacity of the linseed oil coated samples. However, the 

result of ANOVA and LSD statistical analysis showed that these treatments did not significantly 

change the oil sorption capacity of linseed oil coated and acetylated sample (Appendix C). 

Therefore, for the situations where only oil exists as a sorbate, it is suggested that the raw flax 

straw be employed since the treatments do not have a significant impact on the oil sorption 

capacity. 

4.5.2 Water uptake  

The goal of the both LC and AC treatments were to decreases the water uptake of the flax straw. 

The result of water uptake for the three samples over a period of 45 min are plotted in figure 4.21. 

 

Figure 4.21. Water uptake of raw, linseed oil coated (LC) and acetylated (AC) flax straw samples 

as a function of time. 
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The increment in water uptake of all samples were observed as time increased. The raw sample 

had the greatest water uptake, while the LC samples had the least water uptake. At 5 min, the 

acetylated samples decreased the amount of water uptake by 20.1 % in comparison with raw 

samples. The difference is due to the removal of hydrophilic hydroxyl groups on the surface of the 

fibers and shives and replacing them with hydrophobic acetyl groups. Therefore, the sorbent 

behaves as a hydrophobic material and repels water. However, after 45 min the water uptake gap 

between the raw and AC samples closed gradually where the water uptake reached 8.8 g/g and 7 

g/g, respectively. This shows that the hydrophobicity characteristic of AC samples gradually 

decreased over time.  

For the LC sample, after 5 min the water uptake was 4.6 g/g which is a 32.9 % decrease in water 

uptake compared to raw samples. The reason for this improvement in water repellency is the 

hydrophobicity of linseed oil [87,88] distributed over the surface of sorbents. Unlike acetylated 

and raw samples, linseed oil coated samples resist more permeation of water over time.  

The LC samples were able to resist diffusion of water up to 35 min as the water uptake increased 

by only 8.8 %, while the raw samples increased by 18.9 %. The results show a significant resistance 

of water uptake for the LC samples, but after 35 min the water uptake elevated more rapidly 

reaching 5.7 g/g at the 45 min. 

4.5.3 Oil and water selectivity  

The oil and water selectivity measurements were performed on raw, LC and AC samples using a 

ratio of water to oil (6:1). Figure 4.22 shows changes in the appearance and color of the sorbate 

after 15 min. The raw samples placed in the mixture of oil and water became murky after 5 min of 

stirring (Fig 4.22a). For AC samples this change was the same, however the mixture remained 

brighter to some extent compared to raw samples (Fig 4.22b). The mixture of LC samples and 

sorbate remained totally transparent during the experiment with no change in color (Fig 4.22c).    

Figure 4.23 compares the water uptake and light oil uptake for the mixture of oil and water for 

three samples; raw, AC and LC. The AC samples decreased the water uptake by 43 % compared 

to the raw samples. In contrast to the literature, there was no significant increase in the amount of 

oil uptake [89-91]. For the LC samples, the amount of water uptake remarkably decreased by 81 

% and oil sorption increased by 38 % compared to raw samples.        
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Figure 4.22. Oil and water selectivity experiment at 15 min on raw (a), acetylated (b) and linseed 

oil coated (c) flax straw samples. 

 

Figure 4.23. The sorption of raw, linseed oil coated (LC) and acetylated (AC) flax straw from the 

mixture of water and light oil. 
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The same experiment was performed on heavy oil and the results are plotted in figure 4.24. A small 

increase was observed in the uptake of heavy oil compare to light oil as well as a decrease in water 

uptake. The overall trend was similar. The acetylation treatment increased the uptake of heavy oil 

from 5.6 to 6.1 g/g while decreased the water uptake by 44 % compared to the raw samples. The 

water uptake decreased from 7.7 to g/g to 1.4 g/g for LC samples. In general, the sorption of heavy 

oil was higher than the light oil.   

 

Figure 4.24. The sorption of raw, linseed oil coated (LC) and acetylated (AC) flax straw from the 

mixture of water and heavy oil. 

There was a small increment in the oil sorption capacity of AC samples in the aqueous situation. 

This may be due to availability of increased void space within the bulk of the sorbents as the 

hydrophobic acetyl groups available on the surface of sorbent particles act to repel water and create 

more spaces for oil adsorption. For LC samples, the hydrophobicity was high enough to preserve 

the sorbent particles from wetting for a duration of 15 min. The polar water molecules repel the 

non-polar oil molecules within the sorbate mixture. Similarly, the linseed oil is non-polar and will 

also repel polar water. In the experiment both oil and the sorbent coated particles with linseed oil 
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were observed to be repelled by water, and therefore tended to attach to each other (Fig 4.25b). 

This is the main reason of high oil sorption in LC samples. Another important characteristic of LC 

sample was its high buoyancy compared to the raw sample. Figure 4.25 compares the raw and LC 

samples after 15 min of stirring within the oil and water media.  Individual raw particles were 

observed to be floating in the test cell (Fig 4.25a) while the LC samples bonded to each other and 

floated to the surface of the water (Fig 4.25b). 

 

Figure 4.25. Comparison between buoyancy of raw (a) and linseed oil coated (LC) sample(b). 

Although the AC samples considerably decreased in water uptake for the aquatic situation, there 

was no significant increase in its oil sorption capacity. The oil to water selectivity ratio of the AC 

samples was 1 and 1.5 for light and heavy oil, respectively (Fig 4.26). LC samples on the other 

hand, had 4 to 5 times more oil uptake compared to water in light and heavy oil, respectively. In 

this regard, the linseed oil coated samples are a good candidate for removing spilled oil in a marine 

environment.    
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Figure 4.26. Light and heavy oil to water selectivity for raw, linseed oil coated (LC) and 

acetylated (AC) flax straw samples. 

4.6 Reusability and disposal of the sorbent 

The linseed oil coated samples showed promising results for oil sorption. In this section, the 

possibility of reusing this material along with the oil retention capacity of linseed oil coated 

samples are compared with raw samples. In addition, to determine the possibility of disposing used 

sorbent materials in landfills, the results of the paint filter liquid (PFL) test are reviewed.  

4.6.1 Oil retention  

The experimental findings of oil retention are shown in the figure 4.27. Light oil was observed to 

drain more easily out of the bulk of sorbent compared to heavy viscous oil which adhered to the 

bulk sorbent after 24 h. The LC material retained slightly less oil compared to the raw samples. 

For example, the LC light oil retained 7 % less, while the LC heavy oil retain 10 % less than the 

raw samples. This can be mainly due to lower oil sorption capacity of LC samples explained in the 

section 4.5.1.  
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Figure 4.27. Heavy and light oil retention of raw and linseed oil coated flax straw samples (LC). 

4.6.2 Reusability  

Reusability of raw and LC flax straw samples for light oil is compared in figure 4.28. The oil 

sorption capacity of raw samples reduced by 14.8 % compared to 11.8 % for LC samples after the 

4th sorption/desorption cycle. The oil sorption capacity of raw samples was reduced by almost 11 

% after 1st cycle. This suggests a portion of oil is retained in the sorbent after being centrifuged. 

This may be due to the portion of oil that has been defused and absorbed into the bulk of the sorbent 

which cannot easily be removed by centrifuge. This remaining oil occupies part of the initial void 

spaces available to new oil to adsorb in the following cycle. Therefore, the sorbent oil uptake is 

decreases in the subsequent cycles. For example, a 2.8 % decrease in oil sorption capacity is 

observed from cycle two to cycle three and 0.8 % reduction from cycle three to cycle four. The 

decrease for the last two cycles was lower compared to first and second cycles. The centrifuge 

removed most of the adsorbed oil from the sorbent since this oil is mostly deposited in intra-particle 

spaces, and hence the sorbent was able to uptake almost the same amount of the oil during the next 

cycle.  
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For LC samples, as some opening of the pores had been closed by the coating layer, the penetration 

of the oil into the bulk of the sorbent was lower compared to the raw samples. Due to this reason, 

during the oil sorption process, most of the oil deposited in intra-particle spaces in sorbent and not 

in the bulk of sorbent particles. Because of this lower diffusion into the bulk, the centrifuge could 

push out most of the uptaken oil, and hence, the decline in oil sorption capacity of LC sample was 

not as high as the raw sample.  

 

Figure 4.28. Comparison between the reusability of raw and linseed oil coated flax straw 

samples (LC) for light oil. 

As shown in figure 4.29, the oil sorption capacity of LC samples in heavy oil dropped by 7.9 %, 

while in light oil decreased by about 11.8 % after four cycles of reusability. This may be attributed 

to the different oil viscosities. Heavy oil does not penetrate within the bulk of sorbent as quickly 

as light oil due to its higher viscosity. Therefore, most of the heavy oil that had been up taken by 

the LC samples drained out of the sorbent during centrifuge. As a result, the sorbent did not lose 

most of its oil sorption capabilities.     
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Figure 4.29. Comparison between the reusability of raw and linseed oil coated flax straw 

samples (LC) for heavy oil. 

4.6.3 PFL test result 

The PFL tests were performed on three different contaminated LC samples with light oil. The first 

sample was the oily sorbent from the oil sorption experiment where the sample had been immersed 

in light oil for 15 min and drained for 30 s. The other sample was the result of the oil retention 

experiment which had been hung for 24 h after the oil sorption experiment. The last sample was 

the oily sample which had been centrifuged for 30 second after 15 min of soaking in oil. The first 

did not pass the test which means that a free liquid still existed in the sorbent and it is not 

appropriate for landfill deposition. However, the second and third samples passed the test. This 

suggested that hanging the oily sorbent for 24 h or applying the centrifuge right after the oil 

sorption can clean the sorbent from hazardous free liquid and make it ready for transferring to the 

landfill.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 
5.1 Conclusions 

In this research work, flax straw was examined for its oil and water uptake. Raw flax straw was 

submitted to the acetylation treatment and a novel linseed oil coating treatment to enhance its oil 

sorption properties. The main findings from these experimental investigations are highlighted as 

follows: 

• Cutting the straw with a knife milling machine is an effective practice for producing the oil 

sorbent since it uses both shear and impact forces to simultaneously crush and cut the straw. 

The results showed cutting the flax straw to sizes less than 4 mm was not practical as the flax 

fibers had a tendency to weave into each other. This prevented the fibers from passing through 

the sieving of the milling machine.     

• The untreated flax straw (cut by knife milling machine using the sieve with 6x6 mm opening) 

was capable of adsorbing up to around 11 and 14 g/g of light and heavy oil, respectively in the 

absence of water. 

• The water uptake of untreated flax straw (cut by knife milling machine using the sieve with 

6x6 mm opening) in kinetic water uptake tests where only water existed was 6.9 g/g at 5 min. 

This amount was raised to 8.5 g/g after 45 min of soaking. This was found to be an issue when 

utilizing natural sorbents in aqueous conditions. 

• Both proposed treatments did not substantially impact the oil sorption capacity of the samples 

made of untreated flax straw where only oil exist as a sorbent. Therefore, using the pulverized 

untreated flax straw (cut by knife milling machine using the sieve with 6x6 mm opening) is 

proposed for the situation that only oil exist.  

• Acetylation treatment decreased the water uptake of flax straw by 44 % from the mixture of 

light oil and water (1:6) while improving the oil sorption uptake by 9 %.    

• Linseed oil coating using the proposed centrifuge method will provide an inexpensive yet 

effective coating results. This thin coating can reduce the water uptake of flax straw by 81 % 
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and improve the oil sorption by 38 % compared to the untreated straw in an aqueous situation.  

• Linseed oil coating decrease the water uptake of flax straw by 33 % after 5 min of immersing 

in the artificial sea water. Also, the resistance of flax straw toward water adsorption was 

improved by coating. The increase in the amount of water uptake for LC sample was only 8.8 

% after 35 min of soaking in the water.  

5.2 Recommendations for future work 

Based on the present research, some recommendations for future work are listed below: 

• Linseed oil coated samples can resist the water diffusion up to 35 min after soaking in water. 

In the coating practice, by changing the time that sorbent exposed to the coating agent, 

centrifugal speed and drying time, the water resistance capacity can be improved further. 

• After harvesting of flax straw, moisture and bacteria may rot and decompose.  Providing a 

linseed oil coating may prevent moisture sorption and last longer. Therefore, the effect of 

linseed oil coating on storage capacity of the sorbent is an important subject to investigate. 

•  In real oil spill situation, applying a loose sorbent is impractical as it cannot be easily collected 

after the sorption of oil. A material that can hold the sorbent particle together such as a mat 

would ease the application. The mat properties such as sorption, density, buoyancy and 

reusability will need to be investigated. 
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APPENDIX A 

Table A.1: ANOVA and LSD test result for oil sorption of untreated flax straw with respect to 

heavy oil and light oil.   

       
SUMMARY      

Groups Count Sum Average Variance   
Heavy oil(A) 7 82.19 11.74143 12.23639   
Light oil(B) 7 75.0425 10.72036 10.92629   

       

       
ANOVA       

Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 3.649054 1 3.649054 0.315081 0.58491 4.747225 

Within 

Groups 138.9761 12 11.58134    
Total 142.6251 13         

P-value is higher than the level of significance (0.05). Hence, based on the ANOVA the 

difference is not significant. 

 𝐿𝑆𝐷𝐴,𝐵 = 𝑡(0.05/2,DFW)√𝑆𝑤𝑖𝑡ℎ𝑖𝑛 (
1

𝑛𝐴
+

1

𝑛𝐵
) = 3.963717  

T critical (from critical value of t-Distribution for df=12) = 2.179 

MSw (from ANOVA) =11.58134 

nA=nB=7 

If A(average) -B(average) > LSDA,B , the difference is statistically significant 

11.74143-10.72036 = 1.2107 < LSDA,B .Based on LSD the difference is not significant. 
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APPENDIX B 

Table B.1: ANOVA and LSD test result for light oil sorption of untreated samples with 

changing in samples packing density (PD) (1.5×105, 2.5×105 and 3.5×105 g/m3)    

SUMMARY      
Groups Count Sum Average Variance   

1.5×105 PD (A) 3 60.48 20.16 0.81   
2.5×105 PD(B) 3 68.94 22.98 1.21   
3.5×105 PD(C) 3 43.8 14.6 0.7225   
       

ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Between 

Groups 109.0904 2 54.5452 59.66658 0.00011 5.143253 

Within Groups 5.485 6 0.914167    

       
Total 114.5754 8         

       

 P-value is lower than the level of significance (0.05). Hence, based on the ANOVA the 

difference is significant. 

 𝐿𝑆𝐷𝐴,𝐵 = 𝑡(0.05/2,DFW)√𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 (
1

𝑛𝐴
+

1

𝑛𝐵
) = 1.9102979  

T critical (from critical value of t-Distribution for df=6) = 2.447 

MSw (from ANOVA) =0.914167 and nA=nB=3 

If A(average) -B(average) > LSDA,B, the difference is statistically significant 

Comparing 1.5×105 PD(A) with 2.5×105 PD(B): 

22.98-20.16 = 2.82 > LSDA,B . Based on LSD the difference is significant between A and B. 

Comparing 2.5×105 PD(B) with 3.5×105 PD(C): 

22.98-14.6= 8.38 > LSDB,C . Based on LSD the difference is significant between B and C. 
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APPENDIX C 

Table C.1: ANOVA and LSD test result for light oil sorption with varying the sorbent treatment 

(raw, linseed oil coated and acetylated).    

SUMMARY      
Groups Count Sum Average Variance   

Raw(A) 3 40.8 13.6 0.3969   
LC(B) 3 38.025 12.675 0.6889   
AC(C) 3 43.5 14.5 1.0404   

       

       
ANOVA       

Source of 

Variation SS Df MS F 

P-

value F crit 

Between 

Groups 4.99625 2 2.498125 3.524774 0.0972 5.143253 

Within Groups 4.2524 6 0.708733    

       
Total 9.24865 8         

P-value is higher than the level of significance (0.05). Hence, based on the ANOVA the 

difference is not significant. 

 𝐿𝑆𝐷𝐴,𝐵 = 𝑡(0.05/2,DFW)√𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 (
1

𝑛𝐴
+

1

𝑛𝐵
) = 1.9102979  

T critical (from critical value of t-Distribution for df=6) = 2.447 

MSw (from ANOVA) =0.708733 and nA=nB=3 

If A(average) -B(average) > LSDA,B, the difference is statistically significant 

Comparing raw sample(A) with LC sample(B): 

13.6-12.675 = 0.925 < LSDA,B .Based on LSD the difference is not significant between A and B. 

Comparing raw sample (A) with AC sample(C): 

14.5-13.6 = 0.9 < LSDA,C .Based on LSD the difference is not significant between A and C. 
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APPENDIX D 

Copyright permission for the photos and images used in literature review (chapter 2). 
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