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ABSTRACT

Power line communications (PLC) suffers performance degradation due mainly to

impulsive noise interference generated by electrical appliances. This thesis studies

coded modulation techniques to improve the spectral efficiency and error performance

of PLC. Considered in the first part is the application of bit-interleaved coded modu-

lation with iterative decoding (BICM-ID) in class-A impulsive noise environment. In

particular, the optimal soft-output demodulator and its suboptimal version are pre-

sented for an additive class-A noise (AWAN) channel so that iterative demodulation

and decoding can be performed at the receiver. The effect of signal mapping on the

error performance of BICM-ID systems in impulsive noise is then investigated, with

both computer simulations and a tight error bound on the asymptotic performance.

Extrinsic information transfer (EXIT) chart analysis is performed to illustrate the

convergence properties of different mappings. The superior performance of BICM-

ID compared to orthogonal frequency-division multiplexing (OFDM) is also clearly

demonstrated.
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Motivated by the successes of both BICM-ID and OFDM in improving the error

performance of communications systems in impulsive noise environment, the second

part of this thesis introduces a novel scheme of bit-interleaved coded OFDM with

iterative decoding (BI-COFDM-ID) over the class-A impulsive noise channel. Here,

an iterative receiver composed of outer and inner iteration loops is first described

in detail. Error performance improvements of the proposed iterative receiver with

different iteration strategies are presented and discussed. Performance comparisons

of BI-COFDM-ID, BICM-ID and iteratively decoded OFDM are made to illustrate the

superiority of BI-COFDM-ID. The effect of signal mapping on the error performance

of BI-COFDM-ID is also studied.
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1. Introduction

After many years of industrialization, electrical distribution grids have constituted

a universal wiring system that hooks up homes and offices together. Power grids were

originally designed to transmit electric power from a small number of sources (the

generators) to a large number of sinks (the consumers) in the frequency range of

50-60 Hz. Initially, the first data transmissions over power lines were primarily done

only to protect sections of the power distribution system in case of faults. However,

nowadays, the use of existing power lines for transferring voice or data signals has

received considerable interest, both in research community and in the industry. The

market for power line communications (PLC) is two-fold: to the home, or “last mile”

access; and in the home, or “last inch” access. The basic concepts of the “last mile”

and “last inch” accesses are briefly illustrated in Figures 1.1 and 1.2, respectively [1].

For the “last mile” access, PLC is one of several possible techniques that in-

clude cable modem, different types of digital subscriber lines (xDSL) and broad-band

wireless connections. PLC is not widely thought to be superior to other technolo-

gies, nor are the other technologies without problems or clearly superior to PLC in

all respects [1]. According to many studies, power line communications could be

better than the other “last inch” access technologies such as cable, wireless links and

HomePNA (the phone-line networking based on the specifications developed by Home

Phone Networking Alliance). In the home, the ubiquitous-multiple sockets in each

room provide considerable and dispersed capacity of PLC. The development of the

“last inch” by home-networking companies in the form of wireless network adapters

and power-line adapters is gradually leading to widespread home networking; i.e., a

wide array of devices connected inside the home in a intra-home network. This “in-
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Figure 1.1: The “last mile” broadband access to homes from the local distribution

center [1].

Figure 1.2: The “last inch” or in-home networking [1].
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home networking” could transform all power outlets in the household into broadband

connections for PCs, telephones and their accessories, and other “enabled” electric

appliances as well. For example, within home automation and intelligent buildings,

PLC can also provide a natural communications line for various devices such as alarm

sensors, controllers, and even slow scan TV images for security purposes [2]. Further-

more, the birth and growth of the Internet have accelerated the demand for digital

telecommunications services to every home [3]. If the electricity distribution net-

work can carry such services, every premises, factory, office, and organization will be

interconnected and form a truly global information superhighway network.

However, the power carrier was not specifically designed for data or voice trans-

mission and presents a harsh environment for it. Varying levels of impedance and

attenuation due to electrical hardware configurations are frequent. Such variations

and other interferences from various sources lead to a very poor performance of PLC

systems. Those interferences, referred to as man-made noise, have statistical charac-

teristics much different from that of classical Gaussian interference. More specifically,

man-made noise is typically impulsive.

In order to determine the optimum receiving system for a given class of signals

and analyze its performance over the impulsive noise environment, a mathematical

model of impulsive noise is required. For almost all cases of interest, this impulsive

noise can be characterized by an envelope and a phase (or quadrature and imaginary

components). However, the main problem for any digital communications system is

to develop a model for this interference that fits all the available measurement; is

physically meaningful when the nature of noise sources, their distributions in time

and space, propagation, etc., are considered; is directly relatable to the physical

mechanism giving rise to the interference; and is still simple enough so that the

required statistics can be obtained for solving signal detection problems [4].

Various models have been proposed to meet these requirements. The simplest

model of impulsive noise, namely the two-term Gaussian mixture impulsive noise, is

to separate this interference into two terms of Gaussian noise. The relationship of the
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appearance probability for each term and the connection between the two terms via

their variances define the characteristics of the impulsive noise. Due to its simplic-

ity, the two-term Gaussian mixture impulsive noise is used in [5–8]. Another model

available to date which is more accurate and also meets the above requirements is a

relatively simple model that incorporates background noise and impulsive noise. This

model is first suggested in [9] and known as Middleton’s class-A noise. This noise

model corresponds to an independent and identically distributed (i.i.d.) discrete-

time random process whose probability density function is an infinite weighted sum

of Gaussian densities, with decreasing weights and increasing variance for the Gaus-

sian densities [10]. Middleton’s class-A noise model has been used widely in the per-

formance analysis of communications systems disturbed by impulsive noise [11–16].

This thesis, therefore, shall also concentrate on the design of digital communication

systems over class-A impulsive noise environment.

Generally, to transmit digital signals over impulsive noise environment, one can

use many of the same techniques widely implemented in wireline and wireless com-

munications. Basic modulation techniques such as binary phase shift keying (PSK),

binary frequency shift keying (FSK) and binary amplitude shift keying (ASK) can

be used for low data rate communication. For a higher data rate up to 1Mb/s,

code-division multiple access (CDMA) offers a more effective solution. Other more

advanced techniques such as M -ary PSK, M -ary quadrature amplitude modulation

(QAM), M -ary FSK, as well as orthogonal frequency-division multiplexing (OFDM)

can be used when higher data rates up to 10Mb/s are desired [17]. A thorough study

of signal modulation over power lines is given in [18].

Modulation techniques can only be used for low data rates and/or high error prob-

ability communications. Hence, they are only suitable for applications of protection

purposes and telemetering in which the high precision is not required. For CDMA,

the signal of each user is spread using a spreading code at the transmitter. It is recov-

ered at the receiver by de-spreading using the same code. CDMA provides robustness

against impulsive noise and other forms of interference. It seems, therefore, to be a

4



potential candidate for PLC. However, in CDMA systems, the processing gain needs

to be high to effectively counter impulsive noise and interference from other users.

With low processing gain, the robustness against interference and noise is lost and

the signal quality may deteriorate to unacceptable levels for all users. While the main

advantage of CDMA technique can not be fully exploited for impulsive noise environ-

ment, OFDM has been proposed as an attractive candidate for PLC due to its merits

in having simple channel estimation, high bandwidth efficiency as well as flexibility

in providing high data rates. Nevertheless, it has been demonstrated in [19–21] that

the classical OFDM receiver designed for the AWGN channel is highly suboptimal

for the impulsive noise environment. This is because the rich structure of impulsive

noise is not properly exploited in such a receiver.

Suitable error control strategies can also be applied in order to ensure reliable

communication as well as to reduce the bit error rate (BER) in a hostile environment

as in an impulsive channel. The use of some forward error correcting (FEC) codes

such as trellis codes and turbo codes in the design of a digital communications system

can eliminate the effects of impulsive noise. In general, FEC codes add redundant

information in a controlled manner to the original message, thus enabling the receiver

to retrieve the message even if it contains erroneous bits [22]. For the trellis coded

design, the information to be transmitted is first encoded with a convolutional code.

At the receiving end, Viterbi decoding is performed to recover the information. For

the design with turbo codes, the interleaver is used to arrange the code data such

that erroneous bits are randomly distributed over many codewords rather than a few

codewords [23]. Moreover, the iterative decoding also helps to increase the reliability

of the decision after each iterative step. Both of the above designs can help to combat

impulsive noise. However since coding adds extra bits into the original message,

it increases the required transmission bandwidth. To improve the efficiency of the

system with respect to bandwidth, combining a higher-order modulation with error

control coding is necessary.

The integration of modulation and channel coding results in a coded modulation
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system and it was first studied by Massey [24]. Coded modulation that jointly opti-

mizes coding and modulation is now a popular and powerful technique to improve the

performance of the digital communication systems that operate with limited band-

widths [25].

Since the invention of turbo codes [26], interleaving and iterative processing have

also been applied to coded modulation systems. It was shown in [27–32] that with

iterative decoding, bit-interleaved coded modulation (BICM), a bandwidth-efficient

approach primarily considered in the past for fading channels, can in fact be used to

provide excellent error performance over both Gaussian and fading channels. It was

first suggested in [10] that BICM could be a fruitful coding option for PLC systems due

mainly to the fact that BICM links binary coding and M -ary modulation in a simple

way. The structure of BICM is simpler than that of trellis coded modulation (TCM) or

multilevel coded modulation (MCM) and it allows a large degree of flexibility (e.g., the

choice of the channel code can be made independent of the modulation scheme). The

suitability of BICM as a coding option in PLC systems becomes more evident with

recent results obtained by applying iterative (turbo) decoding for BICM. In particular,

it is shown in [29, 33–37] that using suitable mappings, the error performance of

BICM with iterative decoding (BICM-ID) significantly improves over that of the

conventional BICM with Gray mapping. This thesis is therefore primarily concerned

with the application of BICM-ID in impulsive noise environment.

1.1 Thesis contributions

In the first part of this thesis, the application of BICM-ID systems over class-

A impulsive noise is investigated. In general, an optimal or suboptimal receiver

designed for an additive white Gaussian noise (AWGN) channel does not work well for

the systems disturbed by impulsive noise. Hence, to improve the error performance

of BICM-ID systems in the presence of impulsive noise, an optimum soft output

demodulator as well as its sub-optimum version are designed so that the iterative

demodulation and decoding can be performed at the receiver.
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The effects of signal mapping on the error performance of BICM-ID disturbed by

impulsive noise is also investigated with both computer simulations and a tight error

bound on the asymptotic performance. For given signal constellation, interleaver and

convolutional code, signal mapping plays an important role in determining the error

performance of a BICM-ID system. Generally, there are two approaches to study

the effect of signal mapping on the performance of BICM-ID. The first technique

is based on the error bound [14, 27–29, 34], which is only related to the asymptotic

performance of the systems. Another technique is based on the extrinsic information

transfer (EXIT) chart [31, 32, 38]. Both of these techniques are applied in this thesis

to study the effects of signal mapping designs in BICM-ID over the impulsive noise

channel. Performance comparisons of BICM-ID with uncoded binary PSK (BPSK),

coded BPSK and OFDM are also clearly demonstrated.

Motivated by recent investigations of OFDM technique to combat both impulsive

noise and multipath effects [20, 21], this thesis also introduces a novel design of bit-

interleaved coded OFDM with iterative decoding (BI-COFDM-ID) to further improve

the error performance of PLC systems in the environment with less impulsive noise.

In particular, two iteration loops at the receiver of BI-COFDM-ID are introduced.

The design of each iteration loop is presented and the effects of iteration scheduling

are investigated. Finally, performance comparison of BI-COFDM-ID with BICM-ID

and iteratively-decoded OFDM are also carried out.

1.2 Thesis organization

The remaining of this thesis is organized as follows.

Chapter 2 gives an introduction to impulsive noise, where the Midlenton’s class-

A impulsive noise is the main topic. The probability density function (pdf) as well

as the parameters defining the characteristics of class-A impulsive noise are clearly

described.

Chapter 3 provides an overview of common techniques to combat impulsive noise.

7



First, QAM is reviewed as a very simple transmission technique for PLC. Then, the

applications of OFDM and binary turbo codes in impulsive noise environment are

considered. Described at the end of this chapter is the recently proposed technique,

referred to as iteratively-decoded OFDM [20].

The main contribution of this thesis is contained in Chapter 4, where the applica-

tion of BICM-ID over the class-A impulsive noise channel is thoroughly investigated

and analyzed. First, the optimum and suboptimum receivers are designed for the

impulsive noise channels. Then the effect of signal mapping on the error performance

is studied by both computer simulation and a tight error bound on the asymptotic

performance. The convergence properties of different mappings are investigated with

the EXIT chart. The last part of this chapter compares the performance of BICM-ID

with that of uncoded and coded BPSK as well as OFDM.

Chapter 5 presents another important contribution of this thesis. This chapter

proposes the use of BI-COFDM-ID for the environment with less impulsive noise.

The block diagram and the main principle of two iterative decoding loops at the

receiver are introduced and discussed. The effects of signal mapping in BI-COFDM-

ID is studied with three different mapping schemes of 8-PSK constellation. The

advantage of BI-COFDM-ID is illustrated by comparing its error performance with

that of OFDM and BICM-ID.

Finally, Chapter 6 draws the conclusions and gives suggestions for further studies.
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2. Impulsive noise

2.1 Overview

Noise can be defined as an unwanted signal that interferes with the communi-

cations, measurement, perception or processing of an information-bearing signal. A

noise itself is a signal that conveys information regarding the source of the noise. The

sources of the noise are many, vary and include thermal noise intrinsic to electric con-

ductors, shot noise inherent in electrical current flows, switching, and interferences

due to varying levels of impedance and attenuation, etc. Noise is one of the main

factors limiting the capacity of data transmission in communications. Therefore, the

modeling and removal of the effects of noise have been at the core of theory and prac-

tice for digital communications systems in general and power line communications in

particular [39].

Noise in PLC is a significant problem for data transmission. This is because it

rarely has properties similar to the easily-analyzed Gaussian noise of the receiver’s

front-end. Noise in PLC comes from widely varying noise sources. The background

noise is caused by noise sources with low power, ingress of broadcast stations in the

medium and shortwave broadcast band, and switching power supplies. The chan-

nel between any two outlets in a home exhibits a transfer function of an extremely

complex transmission line network with many stubs having terminating loads of var-

ious impedances. The amplitude and phase responses of such a system fluctuate

extensively with frequency. Some frequencies may observe little attenuation in the

transmitted signal, while at others the signal may be completely distorted by noise.

Moreover, the PLC channel transfer function is time varying. This is due to the fact

that a consumer may plug a new device into the power line at any time, or some

appliances may have a time-varying load impedance, which can be the case with

9



switching power supplies or motors. Light dimmers and related products that use

triacs create impulsive noise on every cycle or half cycle of the power. Inadequately

designed switching power supplies induce impulsive noise into the power line consist-

ing of high harmonic content related to the switching frequency of the supply. As a

consequence of this noise diversity, the power line channel represents a non-Gaussian

noise environment [22].

As reported in [40], the noise in PLC channels can be classified as background

noise and impulsive noise. While background noise displays stationary characteristics,

impulsive noise appears for short intervals, but presents a high power spectral density

(PSD) of up to 40 dB above the background noise. For this reason impulse noise is

considered the main source of errors in data transmission over power lines. PLC

transceivers can easily tackle background noise; it is the impulse noise that is difficult

to deal with. If the disturbance of impulse noise is shorter than the duration of a

transmitted symbol, there is no influence of disturbance on information data, but in

a situation contrary to this, impulse noise can distort data.

From the above discussions, a knowledge and mathematical model of impulsive

noise in PLC is necessary to design a proper transmission scheme for PLC systems.

This chapter begins with a study of the characteristics of impulsive noise, and then

proceeds to consider several methods for statistical modeling of impulsive noise in

PLC.

2.1.1 Impulsive noise

In this section, the mathematical concepts of analog and digital impulses are

introduced. Consider the unit-area pulse, p(t), shown in Fig. 2.1(a). As the pulse

width, ε, tends to zero, the pulse tends to an impulse [39]. The impulse function

shown in Fig. 2.1(b) is defined as a pulse with an infinitesimal time width as:

δ(t) = lim
ε→0

p(t) =











1/ε, |t| ≤ ε/2

0, |t| > ε/2.

(2.1)
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Figure 2.1: (a) An unit-area pulse; (b) the pulse becomes an impulse as ε → 0; (c)

the spectrum of the impulsive function.

The integral of the impulsive function is given by:

∫ ∞

−∞

δ(t)dt = ε × 1

ε
= 1 (2.2)

The Fourier transform of the impulse function is obtained as:

∆(f) =

∫ ∞

−∞

δ(t)e−j2πftdt = e0 = 1, −∞ < f < ∞ (2.3)

where f is the frequency variable.

A digital impulse, δ(m), is defined as a signal with an “on” duration of one sample,

and is expressed as:

δ(m) =











1, m = 0

0, m 6= 0.

(2.4)

where the variable m designates the discrete-time index. Using the Fourier transform

relation, the frequency spectrum of digital impulse is given by:

∆(jω) =
∞
∑

m=−∞

δ(m)e−j2ωm = 1, −∞ < ω < ∞. (2.5)

In communication systems, a real impulsive-type noise has a duration that is

normally more than one sample long. An impulsive noise also originates at some

point in time and space, and then propagates through the channel to the receiver.

Impulsive noise is a non-stationary, binary-state sequence of impulses with ran-

dom amplitudes and random positions of occurrence. The non-stationary nature of
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impulsive noise can be seen by considering the power spectrum of the noise process

with a few impulses per second: when the noise is absent the process has zero power,

and when an impulse is present the noise power is the power of the impulse. There-

fore the power spectrum, and hence the autocorrelation of impulsive noise are binary

state, time-varying processes.

2.1.2 Statistical models for impulsive noise

In this section, a number of statistical models for the characterization of an im-

pulsive noise process are reviewed. An impulsive noise sequence, ni(m), consists of

short duration pulses of random amplitudes, durations and times of occurrence, and

may be modeled as the output of a P -tap filter as [39]:

ni(m) =
P−1
∑

k=0

hkn(m − k)b(m − k), (2.6)

where b(m) is a binary-valued random sequence modeling the time of occurrence of

impulsive noise, n(m) is a continuous-valued random process that models the impulse

amplitudes and hk is the impulse response of a filter that models the duration and

the shape of each impulse. The two most basic and popular statistical processes

used for modeling impulsive noise as an amplitude-modulated binary sequence are

the Bernoulli-Gaussian and Poisson-Gaussian processes, which are discussed next.

Bernoulli-Gaussian model of impulsive noise

In a Bernoulli-Gaussian model of impulsive noise, the random time of occurrence

of the impulses is modeled by a binary Bernoulli process, b(m), and the amplitude

of the impulses is modeled by a Gaussian process. A Bernoulli process, b(m), is a

binary-valued process that takes a value of “1” with a probability of α and a value of

“0” with a probability of 1 − α. The probability mass function (pmf) of a Bernoulli

process is thus given by

PB[b(m)] =











α, for b(m) = 1

1 − α, for b(m) = 0.

(2.7)
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A zero-mean Gaussian probability density function (pdf) of the random amplitude of

impulsive noise is given by

pN [n(m)] =
1√

2πσn

exp

{

−n2(m)

2σ2
n

}

, (2.8)

where σ2
n is the variance of the noise amplitude. In a Bernoulli-Gaussian model the

pdf of impulsive noise, ni(m), is given as

pBG
N [ni(m)] = (1 − α)δ[ni(m)] + αpN [ni(m)], (2.9)

where δ[ni(m)] is Kronecker delta function. Note that the function pBG
N [ni(m)] is

a mixture of a discrete probability mass function δ[ni(m)] and a continuous pdf

pN [ni(m)].

Poisson-Gaussian model of impulsive noise

In a Poisson-Gaussian model the probability of occurrence of an impulsive noise

event is modeled by a Poisson process, and the distribution of the random amplitude of

impulsive noise is modeled by a Gaussian process. The Poisson process, as described

in [41], is a random event-counting process. In a Poisson model, the probability of

occurrence of k impulsive noise events in a time interval T is given by

P (k, T ) =
(λT )k

k!
e−λT , (2.10)

where λ is a rate function with the following properties:

• Pr(one impulse in a small time interval ∆t) = λ∆t

• Pr(zero impulse in a small time interval ∆t) = 1 − λ∆t

It is assumed that no more than one impulsive noise event can occur in a time interval

∆t. In a Poisson-Gaussian model, the pdf of impulsive noise, ni(m), in a small time

interval ∆t is given by

pPG
N [n(m)] = (1 − λ∆t)δ[ni(m)] + λ∆tpN [ni(m)], (2.11)

where, as before, pN [ni(m)] is the Gaussian pdf.
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2.2 Impulsive noise models in PLC

As mentioned before, noise in power line communications is classified as back-

ground noise and impulsive noise. Background noise is stationary and can be modeled

by the classical Gaussian distribution. To model impulsive noise, one can use many

different models. However, the most widely used models have been derived from the

two basic models introduced in Section 2.1.2. These models are the two-term mixture

Gaussian and Midlenton’s class-A impulsive noise models.

2.2.1 Two-term mixture Gaussian model of noise in PLC

In PLC, to simplify the system analysis, a simple noise model, namely the two-

term mixture Gaussian impulsive noise, is normally used. The two-term mixture

Gaussian model is based on the Bernoulli-Gaussian model as discussed in Section

2.1.2. The probability of occurrence of impulsive noise is a Bernoulli random process

and its amplitude is controlled by a Gaussian distribution. The background noise is

also modeled by another Gaussian distribution. Hence, the pdf of two-term mixture

Gaussian impulsive noise is given by:

pN(n) = (1 − ε)N (0, σ2) + εN (0, κσ2), (2.12)

where ε is the probability of impulsive noise occurrence, N (0, σ2) is Gaussian distribu-

tion of zero mean and variance σ2 that represents background noise, N (0, κσ2) models

the impulsive noise component that is also Gaussian distribution but its variance is

κ times bigger than that of background noise.

Although the two-term mixture Gaussian model is simple and it is frequently used

for analyzing PLC systems [5–8], it does not provide a very accurate model of the real

impulsive noise. Another model, which is more accurate than the two-term mixture

Gaussian model and also widely used, is discussed in the next section.
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2.2.2 Midlenton’s class-A model of impulsive noise in PLC

A relatively simple model which incorporates background noise and impulsive

noise based on the Poisson-Gaussian model is known as Midlenton’s class-A impulsive

noise model and it was first suggested in [9]. Because Midlenton’s class-A impulsive

noise model is more accurate and also meets all the basic requirements in modeling

the real impulsive noise, this model has been used widely in performance analysis

of PLC systems [11, 12, 16]. This thesis also relies on Midlenton’s class-A to model

impulsive noise and design communications systems over power lines.

Midelenton’s class-A model uses the Poisson-Gaussian model to represent the

background noise and impulsive noise. The occurrence probability of impulsive noise

is modeled by a Poisson random process with the probability of having m impulsive

noise events in a time interval T given by

P =
(λT )me−λT

m!
. (2.13)

The amplitudes of both background and impulsive noise are modeled by Gaussian

random processes. Let A = λT and call it the impulsive index. Then the probability

density function of Midlenton’s class-A impulsive noise is written as

pA(n) =
∞
∑

m=0

e−A Am

m!

1

2πσ2
m

exp

(

− |n|2
2σ2

m

)

, (2.14)

where σ2
m = σ2 m/A+Γ

1+Γ
is the mth impulsive power, σ2 is total noise power (including

the powers of impulsive noise and Gaussian background noise), and Γ = σ2
G/σ2

I is

Gaussian-to-impulsive noise power ratio (GIR) with σ2
G and σ2

I are the powers of

Gaussian and impulsive noise, respectively. When A is increased, the impulsiveness

reduces and the noise comes closer to Gaussian noise. Equation (2.14) also shows that

sources of impulsive noise have a Poisson distribution, and each impulsive noise source

generates a characteristic Gaussian noise with a different variance. Let N0 = 2σ2 be

the one-sided power spectral density of the total white noise. The pdf of class-A

impulsive noise can be written as a function of A, Γ and N0 as follows:

pA(n) =
∞
∑

m=0

e−A Am

m!πN0

A(1 + Γ)

m + AΓ
exp

[

−A(1 + Γ)

m + AΓ

|n|2
N0

]

. (2.15)
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Figure 2.2: Pdf of the impulsive noise with different values of impulsive index A.

The effects of impulsive parameters A and Γ are illustrated in Figs. 2.2 and 2.3.

As can be seen from in Fig. 2.2 when the GIR is kept constant to be Γ = 10−3 and

the impulsive index A is changed from a large to a small value, the characteristic

distribution of impulsive noise changes from a Gaussian-like distribution to a really

impulsive one. In particular, when A = 10, the distribution of impulsive noise comes

very close to that of the corresponding Gaussian distribution. On the other hand, at

A = 0.01, this distribution shows an impulsive characteristic. Similar observations

can also be made when the impulsive index value A is kept constant while Γ is varying

as shown in Fig. 2.3.

The characteristics of impulsive noise can also be clearly observed from the sample

plots shown in Figs. 2.4 and 2.5. In particular, compared in Fig. 2.4 are the amplitude

distributions of Gaussian noise and impulsive noise which have the same normalized

variance of 1. The impulsive noise considered in this figure has parameters {A =

0.01, Γ = 10−3}. Observe that the amplitudes of Gaussian noise samples take on

many different values in a small range of [−3, +3]. On the other hand, almost all
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Figure 2.3: Pdf of the impulsive noise with different values of GIR Γ.

impulsive noise amplitudes distribute in a much narrower range, except some peaked

samples with very high amplitudes reflecting the impulsiveness nature of the noise.

Of course, the above observation about the amplitude distribution of the impulsive

noise matches the pdf shown in Fig. 2.2. In other words, in the impulsive noise

environment, background noise part with low amplitudes happens with a very high

probability, whereas, impulsive noise part appears in much higher amplitudes with a

very low probability.

Figures 2.4 and 2.5 also illustrate the effects of the impulsive noise parameters A

and Γ to the amplitude distribution of class-A impulsive noise. Again, it can be seen

that if A or Γ increases, the amplitude distribution of impulsive noise comes closer

to that of Gaussian noise.
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Figure 2.4: Examples of Gaussian noise and impulsive noise with A = 0.01, Γ = 10−3.
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Figure 2.5: Examples of impulsive noise with A = 0.1 and two different values of Γ.
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3. Techniques to combat impulsive noise

To combat impulsive noise, one can use many of the same techniques widely im-

plemented for communication systems over Gaussian noise environment. However, as

mentioned in previous chapters, the characteristic of impulsive noise is much different

from that of classical Gaussian noise. In general, an optimal or suboptimal receiver

designed for an additive white Gaussian noise (AWGN) channel normally does not

work well for the systems disturbed by impulsive noise. Therefore, it is necessary to

design new optimal or sup-optimal receivers for communications systems operating

in impulsive noise environment.

This chapter reviews some of the most relevant techniques to combat impulsive

noise. It also serves as the background in order to present and describe our contribu-

tions in Chapters 4 and 5.

3.1 Single-carrier quadrature amplitude modulation (QAM)

In digital communications, QAM is a modulation scheme that provides a high

spectrum efficiency [42]. The performance analysis of QAM under class-A impulsive

noise was first reported in [43]. However, this work only considers the effects of

impulsive noise to the error performance of the QAM system employing a conventional

receiver, i.e., the receiver designed for Gaussian noise. The results in [43] clearly

demonstrates that performance of the QAM system with a conventional receiver is

severely degraded when noise contains strong impulsiveness, i.e., when A or Γ is small.

In [11], the application of QAM for an impulsive noise channel was further studied.

By explicitly considering class-A impulsive noise statistical characteristic, the authors

in [11] propose an optimum receiver to combat impulsive noise more effectively. The

main contributions of the work in [11] are reviewed in the following.
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Figure 3.1: The receiver model of QAM.

The block diagram of a QAM receiver model of QAM over impulsive noise is

illustrated in Fig. 3.1. If K samples are taken during one symbol duration, the

received symbol r can be represented as:

r = {r1, r2, . . . , rK}, (3.1)

where rk is the kth sample of the received symbol. In the following analysis, the K

samples, r1, r2, . . . , rK , are assumed to be statistically independent.

Similarly, the transmitted symbol and additive class-A impulsive noise are de-

scribed by s = {s1, s2, . . . , sK} and n = {n1, n2, . . . , nK}, respectively.

The probability density function of r = s + n, given that s was sent, is expressed

as

p(r|s) = p(n = r − s) =
K
∏

k=1

pA(rk − sk) (3.2)

In general, the probability density given in (3.2) is called the “likelihood”. A

receiver based on the maximum likelihood detection selects the symbol that maximizes

this equation for a given r. The receiver with this strategy minimizes the symbol error

probability, and in this sense, a receiver which performs maximum likelihood detection

is called an optimum receiver. Substituting the pdf of the complex class-A impulsive

noise in (2.14) into (3.2), one obtains the likelihood for class-A impulsive noise as

p(r|s) =
K
∏

k=1

∞
∑

m=0

e−A Am

m!

1

2πσ2
m

exp

(

−|rk − sk|2
2σ2

m

)

(3.3)
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The receiver that performs maximum likelihood detection under class-A impulsive

noise environment selects the symbol s that maximizes (3.3) as the transmitted one.

Designing the receiver based on this complicated equation has a great difficulty. Under

the condition that the impulsive index A is sufficiently small, the infinite sum in (3.3)

can be approximated by the maximum value of its first three terms [11].

By using the above optimal or sub-optimal receiver, performance of the QAM

systems designed for impulsive noise is much better than that using the conventional

receiver and great performance improvement can be achieved. In particular, the

authors in [11] report that in the case of A = 0.1 and Γ = 10−3, the performance

improvement is about 40 dB at the symbol error probability of 10−2.

3.2 Orthogonal frequency division multiplexing (OFDM)

Another common method to improve the performance of PLC systems in the pres-

ence of impulsive noise is to use orthogonal frequency-division multiplexing (OFDM)

technique. The basic principle behind OFDM is to use a properly chosen linear trans-

form at the transmitter and its inverse transform at the receiver. The transmitted

signal passes both transforms and is therefore unaffected, whereas the impulsive noise

passes the receiver’s transform only. The energy of individual impulses is therefore

dispersed (or smeared) over the increased symbol duration [44, 45]. In this way, the

error floor that is typical for uncoded transmission over impulsive noise channels [4]

is partially eliminated.

Fig. 3.2 shows the simplified block diagram of an OFDM system. Let N be the

number of subcarriers. In OFDM, the symbol stream after the M -ary modulator

is passed through a serial-to-parallel converter, whose output is a set of N M -ary

symbols {S0, S1, . . . , SN−1} corresponding to the symbols transmitted over each of the

subcarriers. In order to generate the transmitted signal, an inverse discrete Fourier

transform (DFT) is performed on these N symbols. Typically, N is chosen to be a

power of 2 and the DFT can be efficiently implemented using the inverse fast Fourier

transform (IFFT) algorithm. The IFFT yields the OFDM symbol consisting of the
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Figure 3.2: Block diagram of an OFDM system.

sequence {s0, s1, . . . , sN−1} of length N , where

sk =
1√
N

N−1
∑

i=0

Sie
j2πki/N , 0 ≤ k ≤ N − 1. (3.4)

Assuming perfect synchronization and timing, the received symbols after filtering

and sampling can be expressed as,

rk = sk + nk, 0 ≤ k ≤ N − 1, (3.5)

where, as before, nk is additive white complex class-A impulsive noise, whose pdf is

given in (2.14).

Now at the receiver, the N -point FFT is first performed on the sequence

{r0, r1, . . . , rN−1} of N received symbols to yield:

Rk =
1√
N

N−1
∑

i=0

rie
−j2πki/N

= Sk + ñk, 0 ≤ k ≤ N − 1, (3.6)

where the noise samples {ñ0, ñ1, . . . , ñN−1} are simply the N -point FFT of the original

impulsive noise samples {n0, n1, . . . , nN−1}. They are given by,

ñk =
1√
N

N−1
∑

i=0

nie
−j2πki/N , 0 ≤ k ≤ N − 1. (3.7)
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The outputs of FFT are then passed to the parallel-to-serial converter. Finally, the

conventional M -ary demodulator is applied to demodulate each of the sample rk,

0 ≤ k ≤ N − 1. Here the term “conventional M -ary demodulator” refers to the

demodulator optimally designed for AWGN, i.e., by assuming that the noise ñk in

(3.6) and (3.7) is Gaussian.

The major difference between OFDM and the conventional single-carrier system

is the characteristic of the additive noise. With FFT operation, the original impulsive

noise is spread over N data symbols as in (3.6). As will be seen later, this is the main

reason that OFDM can improve the error performance over the uncoded single-carrier

system in impulsive noise.

3.3 Binary turbo coded modulation

With an excellent error performance due to iterative decoding, turbo code has

been proved as one of the most potential candidate for single-carrier digital com-

munication systems. The principles of turbo codes were first presented in [26] and

clearly discussed in [23] for the classical Gaussian noise environment. Application of

turbo codes to improve the error performance of communications systems corrupted

by impulsive noise was recently investigated in [6, 12]. This section provides a brief

discussion of the turbo coded system proposed in [12] to combat impulsive noise.

ku ku

kv1

kv2

Figure 3.3: An example of turbo encoder with two identical RSC encoders.
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Figure 3.4: Turbo decoder.

Consider an example of turbo coded system where the encoder and the decoder are

shown in Fig. 3.3 and Fig. 3.4, respectively. The turbo encoder employs two identical

recursive systematic convolutional (RSC) codes. The output of the encoder includes

u = {u1, . . . , uN}, v1 = {v11, . . . , v1N} and v2 = {v21, . . . , v2N}. The interleaver in

Fig. 3.3 is a random block interleaver of size N .

Denote the sequences of the match filter’s outputs as y = {y1, . . . , yN}, q1 =

{q11, . . . , q1N} and q2 = {q21, . . . , q2N} which correspond to u, v1, v2, respectively.

The decoder has two a posteriori probability (APP) decoders which correspond to

the two RSC codes in the encoder. Each APP is either an optimal or suboptimal

maximum a posteriori (MAP) decoder. More details about the MAP decoder and

the calculation of the log likelihood ration (LLR) of the a posteriori probability can

be found in [12,26,46–48].

In [12], the authors show that a decoder of a turbo coded system under the

impulsive noise environment differs from that of the conventional one in computing

the channel value Lc. In particular, the Lc for a turbo coded system disturbed by

impulsive noise needs to take into account the distribution characteristic of class-A

impulsive noise. Therefore the channel value Lc is computed as

Lc(yk) = ln
P{yk|uk = +1}
P{yk|uk = −1} = ln

pA(yk − 1)

pA(yk + 1)
(3.8)

24



where pA(·) is the pdf of class-A impulsive noise and given in (2.14).

The results in [12] show that the optimal or sub-optimal decoder implemented

for impulsive noise can greatly improve the error performance of a turbo coded

system over impulsive noise environment. For example, with channel parameters

{A = 0.1, Γ = 0.1}, the performance improvement can reach 10dB coding gain at

the bit error rate (BER) of 10−5.

3.4 Iteratively-decoded OFDM

The technique discussed in this section is a linear transform defined over complex

numbers as an encoding operation. The resulting codes are called complex number

(CN) codes. CN codes might be used “stand alone”. They can also be used as inner

codes in a product encoding scheme where the outer code is optimized to increase

the Euclidean distance between the codewords. This might be a good approach to

design codes, providing both a good distance profile and a large Euclidean distance

between the codewords. The simplified block diagram of a system using the CN codes

is illustrated in Fig. 3.5.

In the literature, the principle of CN codes was first conceived in 1963 for the

transmission over impulsive noise channels [44]. The principle of CN codes is also

applied in a different area of communication theory. More importantly, orthogonal

frequency-division multiplexing (OFDM) described in Section 3.2 can be interpreted

as a special CN code where the generator matrix G is chosen to be the following

inverse Fourier transform matrix:

G =
1√
N

















ej 2π

N
×0×0 ej 2π

N
×0×1 . . . ej 2π

N
×0×(N−1)

ej 2π

N
×1×0 ej 2π

N
×1×1 . . . ej 2π

N
×1×(N−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ej 2π

N
×(N−1)×0 ej 2π

N
×(N−1)×1 . . . ej 2π

N
×(N−1)×(N−1)

















(3.9)

The classical OFDM receiver (see Section 3.2) is designed for the AWGN channel

and, therefore, simply multiplies the received vector with G−1. Over impulsive noise
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channels, this decoder disperses the energy of single impulses over several consecutive

symbols, similar to smearing-filters approach. The typical argument is that this

makes the transmission scheme robust against impulsive noise [45]. However, it is

shown in [14, 19] that this “decoding” approach is highly suboptimal in terms of the

achievable decoding error rates. This is because the rich structure of impulsive noise

is not exploited in the decoding process.

The work in [20] proposes a decoder based on the turbo decoding principle and it

is described in the following.

Infor.
bits Serial-to-

Parallel
Converter

0S

1S

1NS −

Impulsive
Noise

Channel

M-ary
MOD.

1s

0s

1−Ns
u

G
Parallel-
to-Serial
Converter

OFDM
DEMOD. u�

decoded
bitsr

Figure 3.5: A simplified block diagram of the system using codes over complex number.

Let Ψ ∈ C denote the constellation, i.e., the discrete input alphabet with cardi-

nality |Ψ|, where C denotes the complex numbers. Let S = {S0, . . . , SN−1}, Sk ∈ Ψ,

denote the input to the CN encoder. We call the components Sk, k = 0, . . . , N − 1,

the information symbols and assume that every Sk ∈ Ψ is transmitted equally likely.

Each vector S is encoded by a CN block code with codewords s = {s0, . . . , sN−1} and

code symbols si ∈ C. Here and in the following we use capital letters to denote vec-

tors or symbols in the domain of the information sequence (information domain) and

lower case letters in the domain of the codewords (codeword domain). The encoding

operation is defined by

s = G × S (3.10)

The N × N generator matrix G is unitary and here is chosen as the inverse Fourier

transform matrix. The sender transmits the code symbols over a memoryless addi-

tive impulsive noise channel. For ease of analysis, the channel impulsive noise was

separated as back ground noise and impulsive noise. Hence the received symbols are

26



given by

rk = sk + ik + gk (3.11)

where the gk are independent and identically distributed (i.i.d.) zero mean complex

Gaussian random variables with variance σ2
g and the following pdf:

pgk
(x) =

1

2πσ2
g

exp

(

−|x|2
2σ2

g

)

(3.12)

The impulsive noise ik are also i.i.d. with variance σ2
i . Its pdf is given by Middleton’s

class-A noise model.
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Figure 3.6: An iterative decoder of codes over complex numbers.

An iterative decoding algorithm is shown in Fig. 3.6. Unlike classical OFDM

systems that treat impulsive noise at the receiver as Gaussian noise, the iterative

decoder in [20] implements a sub-optimal decoding to estimate both impulsive noise

and transmitted symbol. A detailed implementation of this iterative decoding is given

in [20]. Here we only describe the most basic principles.

As depicted in Fig. 3.6, two information-exchanging estimators, one in the code-

word and one in the information domain, are applied to obtain an estimate for the

impulsive noise. Both estimators use only partial statistical information from their

inputs which makes a low-complexity realization possible. The result from the iter-

ative scheme is used to increase the reliability of the decision in the final decoding

step. The decoded vector U is an estimate of the transmitted information vector S.
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To develop the estimators used in the algorithm shown in Fig. 3.6, knowledge

about the statistical properties of their random input vectors is required. Since an

exact description is too difficult, one can approximate the inputs by the simple linear

model introduced in the following. First, consider the codeword domain. Using the

independent random vectors s, i, and g, any arbitrary random vector y of length N

can be described by

y = ỹ + e = αss + αii + αgg + e (3.13)

where y− ỹ is the error term of the linear model ỹ. The scalar coefficients αs, αi, αg

can be found by the least square regression estimation and e is the error vector.

Similarly, for the information domain estimator, any arbitrary random vector Y of

length N can be described by

Y = βsS + βiI + βgZ + D (3.14)

Again, βs, βi, βg are scalar coefficients provided by the least square regression esti-

mation, Z denotes the background Gaussian noise in the information domain and D

is the error vector of the information domain estimator.

The detail information about the least square regression estimation is provided

in Appendix A. With scalar coefficients and error estimation obtained from the least

square regression estimation, the iterative decoding depicted in Fig. 3.6 is carried

out to improve the performance of an OFDM system when the generator matrix

G is chosen to be the inverse Fourier transform. As illustrated by simulation results

in [20], the error performance is significantly improved by using this iterative decoding.

Specifically, after 5 iterations the error performance can reach the Gaussian error

bound, which means that impulsive noise can be completely eliminated.

Although all techniques to combat impulsive noise reviewed in this chapter are

fairly common, they still have their own disadvantages. In particular, the uncoded

techniques have a poorer error performance compared to the coded techniques. On

the other hand, the coded techniques proposed so far do not give the best error

performance nor good spectral efficiency. Hence, the next two chapters of this thesis
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propose and analyze novel coded modulation techniques to combat impulsive noise

more effectively. Superior performances of our proposed techniques compared to

uncoded and coded techniques reviewed in this chapter will also be illustrated.
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4. Bit-interleaved coded modulation with

iterative decoding (BICM-ID)

According to the results from information theory, performance of a communica-

tions system with error control coding can be improved by increasing the codeword

length. For a convolutional code or an equivalent block code formed from a convolu-

tional code, the decoding performance is related to the constraint length of the code.

Typically, one cannot benefit from using a long input data sequence, because the bits

far apart on the trellis do not interact. Increasing the constraint length may bring

significant improvement, but at the expense of exponentially increasing complexity

in the maximum-likelihood (ML) decoding [29].

One clever way to circumvent the above dilemma is the recently proposed turbo

coding scheme [26, 47], where two or more short-memory convolutional codes are

concatenated in parallel or in serial through interleavers. Due to the pseudo-random

interleaving, a global interaction is introduced among the bits over an entire block.

As a result, error protection is achieved not only through the constraints on the local

trellis transitions, but also through the influence of other trellis sections. Although a

true ML decoder for such concatenated codes is hard to implement, iterative decoding

methods which employ the maximum a posteriori probability (MAP) rule for each

individual decoder have been shown to provide near-capacity performance [26,46–48].

Compared with convolutional codes, turbo codes effectively take advantage of the

potential of large block length but with the reasonable decoding complexity of the

simple constituent codes.

A similar approach is to apply iterative decoding for the serial concatenation of

encoding, bit-by-bit interleaving and high-order modulation. Unlike turbo codes, this

scheme requires only one set of encoder/decoder; therefore, the receiver complexity
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is significantly reduced. Moreover, by employing a high-order modulation a better

bandwidth efficiency is achieved.

Motivated by the recent successes of BICM-ID in both AWGN and fading chan-

nels [25, 27, 30, 49, 50], one of the most important contributions of this thesis is to

investigate the application of BICM-ID over an additive white class-A impulsive noise

(AWAN) channel to improve the error performance as well as spectral efficiency of

communications systems over impulsive noise environment in general, and PLC in

particular.

4.1 System model
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Figure 4.1: Block diagram of a BICM-ID system.

The transmitter of BICM-ID is a serial concatenation of a channel encoder, a bit

interleaver Π and an M -ary memoryless modulator (where M = 2m), as shown in Fig.

4.1. The information bits {uk} are first encoded by a convolutional code to produce

a coded sequence {ck}. The convolutional code should be chosen to be optimal in

the sense that it gives the largest free Hamming distance dH for a given code rate

and constraint length. The coded sequence {ck} is then interleaved by the random

interleaver Π. The pseudo-random interleaver permutes the encoded bits, as opposed

to the channel symbols in the symbol-interleaved coded systems. The purpose of the

interleaver is to break the effects of noise in one transmitted symbol and increase
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the diversity order to the minimum Hamming distance dH of the convolutional code.

The interleaved sequence {vk} is mapped by the M -ary modulator into the symbol

sequence {sk} for transmission. Each symbol sk is chosen from a two-dimensional

M -ary constellation Ψ according to some mapping rule µ(·).

The baseband received signal over the kth symbol period can be written as:

rk = sk + nk, (4.1)

where nk is impulsive noise. As discussed in Chapter 2, noise in PLC systems is

impulsive in nature and Middleton’s class-A model is commonly used to characterize

the impulsive noise [4, 9, 11, 12]. The probability density function (pdf) of complex

additive white class-A noise (AWAN) was discussed in Section 2.2.2. and can be

written as a function of A, Γ and N0 as follows:

pA(n) =
∞
∑

m=0

e−A Am

m!πN0

A(1 + Γ)

m + AΓ
exp

[

−A(1 + Γ)

m + AΓ

|n|2
N0

]

. (4.2)

At the receiver, the presence of bit-based interleaving makes the true maximum

likelihood decoding of BICM too complicated to implement. Therefore the receiver

in Fig. 4.1 uses a suboptimal, iterative method based on the soft input soft-output

(SISO) demodulator and the SISO channel decoder. The SISO channel decoder uses

the maximum a posteriori probability (MAP) algorithm in [47]. Similar to decoding

of Turbo codes, here the demodulator and the channel decoder exchange the extrinsic

information of the coded bits P (vi
k; O) and P (ci

k; O) through an iterative process.

In iterative processing, the feedback from the section which is less affected by the

channel noise removes the ambiguity in the high-order demodulation and enhances

the decoding of the weak data sections. With perfect knowledge of the other m − 1

bits, an M -ary constellation, M = 2m, is translated to binary modulation selected

from M/2 = 2m−1 possible sets of binary constellations. Therefore iterative decoding

of BICM not only increases the intersubset Euclidean distance, but also reduces the

number of nearest neighbors. This leads to a significant improvement over impulsive

noise channels. Of course, if the feedback contains errors, wrong binary constellations
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are chosen and this leads to the degradation of the system performance. This also

explains why it is important to control well the feedback and the error propagation.

By using the soft-decision feedback in the iterative processing, it has been shown in

[29] that the performance of BICM-ID can be further improved. It was also observed

in [29] that the soft-decision feedback is the key to obtain coding gains in BICM

while mitigating the error propagation. The detailed algorithm for the optimal soft-

output demodulator, i.e., the MAP demodulator, is described in [29] for the case of

an additive white Gaussian noise (AWGN) channel. For the channel disturbed by

impulsive noise (i.e., AWAN channel), the optimal soft-output demodulator and its

simplified version are devised in the next section.

4.2 Soft-output demodulators for AWAN channels

4.2.1 The optimal soft-output demodulator

Let m = log2 M be the number of coded bits carried by one M -ary symbol. The

a posteriori probabilities for coded bits can be computed as follows:

P (vi
k = b|rk) =

∑

sk∈Ψi

b

P (sk|rk) ∼
∑

sk∈Ψi

b

p(rk|sk)P (sk), (4.3)

where i = {1, 2, · · · ,m}, b = {0, 1} and the signal subsets Ψi
b are defined as Ψi

b =

{µ([v1
k, v

2
k, · · · , vm

k ])|vi
k = b}. The notation “∼” indicates a replacement by an equiva-

lent statistic. As in Fig. 4.1, denote P (q; I) and P (q; O) the a priori and a posteriori

probabilities of random variable q, respectively. In the initial demodulation, assume

that the symbols {si}M
i=1 are equiprobable, i.e., P (si) = 1

M
, i = 1, . . . ,M . With this

assumption, the demodulator computes the extrinsic probability P (vi
k; O) for each

group of m coded bits per constellation symbol. After being deinterleaved, P (vi
k; O)

becomes the a priori probability input P (ci
k; I) to the SISO decoder. The SISO de-

coder, in turn, calculates the extrinsic information P (ci
k; O) and P (ui

k; O). The hard

decision is made from the knowledge of P (ui
k; O). Then P (ci

k; O) is re-interleaved and

fed back as the a priori probability P (vi
k; I) for the next iteration.
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Because an ideal interleaver makes m bits in one symbol independent, the a priori

information P (v1
k; I), · · · , P (vm

k ; I) can be assumed to be independent. Therefore, for

each constellation symbol, the a priori probability is computed as:

P (sk) = P
(

µ
(

[v1(sk) · · · vm(sk)]
))

=
m
∏

j=1

P (vj
k = vj(sk); I), (4.4)

where vj(sk) is the value of the jth bit in the label of symbol sk. From the second

iteration, the extrinsic information can be determined as follows:

P (vi
k = b; O) =

P (vi
k = b|rk)

P (vi
k = b; I)

=

∑

sk∈Ψi

b

p(rk|sk)P (sk)

P (vi
k = b; I)

=
∑

sk∈Ψi

b

p(rk|sk)
∏

j 6=i

P (vj
k = vj(sk); I) (4.5)

Equation (4.5) tells that one can calculate the extrinsic information for one bit by

using the a priori probabilities of the other bits in the same channel symbol. Also,

such calculation depends on the conditional probability density function p(rk|sk).

Concentrating on the case of two-dimensional constellation Ψ, the received signals and

the constellation symbols are separated into imaginary and quadrature components.

Let {rk1, rk2} and {sk1, sk2} denote the two components of the received signal and

constellation symbol at time k, respectively. Then p(rk|sk) is given by:

p(rk|sk) = pA(rk − sk) =
∞
∑

m=0

e−A Am

m!

1

πN0

A(1 + Γ)

m + AΓ

×exp

[

−A(1 + Γ)

m + AΓ

|rk − sk|2
N0

]

, (4.6)

where |rk − sk|2 = (rk1 − sk1)
2 + (rk2 − sk2)

2. Note that computing (4.6) involves

infinite series of exponential functions and can be complicated. Similar to [12], for

easy implementation the computation of P (vi
k = b; O) in (4.5) can be simplified as

described in the following, which leads to a suboptimal soft-output demodulator.
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4.2.2 The suboptimal soft-output demodulator

The extrinsic information can be computed in the log-domain as:

λ(vi
k = b) = ln

{

P (vi
k = b; O)

}

= ln

{

∑

sk∈Ψi

b

∞
∑

m=0

e−A Am

m!

1

πN0

A(1 + Γ)

m + AΓ
×

exp

[

−A(1 + Γ)

m + AΓ

|rk − sk|2
N0

]

∏

j 6=i

P (vj
k = vj(sk); I)

}

(4.7)

Define

δm(|rk − sk|) =

[

−A(1 + Γ)

m + AΓ

|rk − sk|2
N0

]

+ ln

[

e−A Am

m!

1

πN0

A(1 + Γ)

m + AΓ

∏

j 6=i

P (vj
k = vj(sk); I)

]

. (4.8)

Then (4.7) can be rewritten as:

λ(vi
k = b) = ln

[

∑

sk∈Ψi

b

∞
∑

m=0

eδm(|rk−sk|)

]

. (4.9)

Equation (4.9) can then be approximated in a much simpler manner by using the

following Jacobian algorithm [12,46]:

ln(ea + eb) = max(a, b) + ln(1 + e−|a−b|)

= max(a, b) + fc(|a − b|), (4.10)

where fc(x) = ln(1 + e−x) is the correction function. This correction function can be

approximated, precomputed and stored in a look-up table. In this thesis, the look-up

table is determined by 10 integer values of x between 0 and 9.

4.3 Lower bound on the BER performance

Owing to the large coding gain produced by the iterative process, one is most inter-

ested in the asymptotic performance to which the iterative processing converges. This

asymptotic performance can be analyzed with the error-free-feedback bound when the

optimal soft-output demodulator is employed. The error-free-feedback bounds for
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BICM-ID systems under Gaussian noise and Rayleigh fading channels were obtained

in [29, 36]. Here, the error bound is derived for BICM-ID systems under AWAN.

The derived bound is then used to evaluate different mappings of a given M -ary

modulation.

In general, the union bound on the bit error rate (BER) of a BICM-ID with a

convolutional code of rate kc/nc, a constellation Ψ, and labelling µ is given by:

Pb ≤ 1

kc

∞
∑

d=dH

βdf(d, Ψ, µ), (4.11)

where βd is the total information weight of all the error events at Hamming dis-

tance d and dH is the minimum free Hamming distance of the code. The function

f(d, Ψ, µ) is the average pairwise error probability, which depends on the mapping µ,

the constellation Ψ and the Hamming distance d.

Let c and c̆ denote the input and estimated sequences with Hamming distance d

between them. Let x and x̆ represent the signal sequences corresponding to c and

c̆ respectively. Also without loss of generality, assume that c differs from c̆ in the

first d consecutive bits. Thus x and x̆ can be considered to have a length of d M -ary

symbols. That is x = [x1, x2 · · · xd] and x̆ = [x̆1, x̆2 · · · x̆d]. To obtain the function

f(d, Ψ, µ), one needs to compute the pairwise error probability (PEP), P (x → x̆),

which is the probability that the receiver makes a decision on x̆ given that x was

transmitted. Following the same notations in [14], define Ω := w(x̌, r) − w(x, r),

where w(x, r) is defined as the following additive decoding metric for a codeword of

length d:

w(x̌, r) =
d
∑

l=1

ln

[

∞
∑

m=0

αm

2πσ2
m

exp

(

−|rl − xl|2
2σ2

m

)

]

, (4.12)

with αm = e−A Am

m!
and, as before, σ2

m = N0

2
m+AΓ
A(1+Γ)

. The PEP can then be calculated

as:

P (x → x̌) = P (Ω > 0|x) =

∫ ∞

0

p(Ω = ζ|x)dζ. (4.13)
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Using the Chernoff bounding technique, this PEP can be upper-bounded by:

P (x → x̆) ≤ min
λ

d
∏

l=1

C(xl, x̆l, λ), (4.14)

where C(xl, x̆l, λ) is the Chernoff factor, given as:

C(xl, x̆l, λ) =

∫ ∞

−∞

eλ[ω̃(x̆l,rl)−ω̃(xl,rl)]p(rl|xl)drl, (4.15)

with ω̃(xl, rl) = ln pA(rl −xl) and ω̃(x̆l, rl) = ln pA(rl − x̆l). Since the optimal demod-

ulator is assumed, the Chernoff factor can be minimized with λ = 1/2, and as in [14],

it is given by:

C(dl) := C(xl, x̆l, 1/2) =
1

2π
×
∫ ∞

−∞

∫ ∞

−∞

√

√

√

√

∞
∑

m=0

αm

σ2
m

exp

[

−(x − dl/2)2 + y2

2σ2
m

]

×

√

√

√

√

∞
∑

m=0

αm

σ2
m

exp

[

−(x + dl/2)2 + y2

2σ2
m

]

dxdy, (4.16)

where dl := |xl − x̆l| denotes the Euclidean distance between the two M -ary symbols

xl and x̆l.

Now the function f(d, Ψ, µ) can be obtained by averaging the PEP over all possible

sequences x and x̆. Due to the success of iterative processing, one needs to consider

only the pairs of signal symbols xl and x̆l whose labels differ in only 1 bit [29, 36].

Under the assumption that dl is an i.i.d discrete random variable, f(d, Ψ, µ) can be

bounded as follows:

f(d, Ψ, µ) = E{P (x → x̌)} ≤
d
∏

l=1

E{C(dl)} = [E{C(dl)}]d. (4.17)

For each signal symbol si ∈ Ψ, let sj(i,k), where k = 1, . . . ,m, denotes the signal

symbol whose label differs at position k compared to that of si. Then a direct and

brute-force way to evaluate E{C(dl)} for any signal constellation and mapping is as

follows:

E{C(dl)} =
1

m2m

2m

∑

i=1

m
∑

k=1

∫ ∞

−∞

∫ ∞

−∞

√

√

√

√

∞
∑

m=0

αm

2πσ2
m

exp

[

−
(

x − |si − sj(i,k)|/2
)2

+ y2

2σ2
m

]

×

√

√

√

√

∞
∑

m=0

αm

2πσ2
m

exp

[

−
(

x + |si − sj(i,k)|/2
)2

+ y2

2σ2
m

]

dxdy. (4.18)
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However, for given signal constellation and mapping scheme, the probability mass

function (pmf), P (dl), of the discrete random variable dl can be easily obtained and

E{C(dl)} is simply obtained by averaging C(dl) over such a pmf. For example,

Table 4.1 tabulates the pmfs of dl for different mapping schemes, namely Gray, set

partitioning (SP) and semi set partitioning (SSP) mappings, of 8PSK (phase-shift

keying) constellation as shown in Fig. 4.2. Such constellation and mappings will also

be used in Section 4.6 to illustrate the error performance of BICM-ID.
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Figure 4.2: 8PSK with different mapping schemes.

Table 4.1: Pmfs of dl for 8PSK and different mappings.

dl Gray mapping SP mapping SSP mapping

d1 2/3 1/3 0

d2 0 1/3 1/3

d3 1/3 0 1/3

d4 0 1/3 1/3

4.4 Convergence analysis with EXIT chart

It should be pointed out that the asymptotic error performance derived in the

previous section only provides the asymptotic performance of BICM-ID. It, how-

ever, does not tell us how the iteration performance converges to this asymptotic

performance. Nevertheless, as observed in [32, 38, 51], the convergence behavior of
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iterative decoding in BICM-ID systems can be efficiently predicted by using the ex-

trinsic information transfer (EXIT) chart. Hereafter, the EXIT chart obtained with

the histogram method is investigated for BICM-ID over AWAN channels.

Following the same notations in [32,38,51], let A1 and A2 denote the log-likelihood

values of the a priori information of the coded bits at the inputs of the demodulator

and the SISO decoder, respectively. Similarly, let E1 and E2 denote the log-likelihood

values of the extrinsic information at the outputs of the demodulator and the SISO

decoder, respectively. Also let IA1 , IA2 , IE1 and IE2 represent the mutual information

of the random variables A1, A2, E1 and E2, respectively. To compute this mutual in-

formation, one needs to know the distribution of each corresponding random variable.

For a BICM-ID system disturbed by a real impulsive noise n, given the observation

z and a coded bit X1, the A1-value can be computed as follows:

A1 = ln

{

pA(z|vk = 1)

pA(z|vk = 0)

}

= ln
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, (4.19)

where z = X1 + n. Moreover, (4.19) can also be approximated by the Jacobian

algorithm as follows. First, define

κm(x) =

[

−A(1 + Γ)

m + AΓ

x2

N0

]

+ ln

[

Am

m!

√

A(1 + Γ)

m + AΓ

]

. (4.20)

Then (4.19) becomes:

A1 = ln

(

∞
∑

m=0

eκm(z−1)

)

− ln

(

∞
∑

m=0

eκm(z)

)

= max
m=0,··· ,∞

{κm(z − 1)} − max
m=0,··· ,∞

{κm(z)}

+fc(z − 1) − fc(z), (4.21)
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where fc(·) is the correction function defined in Section 4.2.

With the A1-value computed from (4.21) or (4.19), the pdf of the random variable

A1 can be conveniently determined by means of Monte Carlo simulation. With this

distribution of A1, the mutual information IA1 = I(X1; A1) between the coded bit X1

and the A1-value is:

IA1 =
1

2

1
∑

b=0

∫ ∞

−∞

pA1(ξ|X1 = b) log2

[

2 × pA1(ξ|X1 = b)

pA1(ξ|X1 = 0) + pA1(ξ|X1 = 1)

]

dξ. (4.22)

Similarly, the mutual information IE1 = I(X1; E1) that quantifies the extrinsic

information E1 at the output of the demodulator can be calculated with the pdf of the

random variable E1, which is also determined by the histogram method. Viewing IE1

as a function of IA1 and Eb/N0, the extrinsic transfer characteristic of the demodulator

is defined as:

IE1 = T1(IA1 , Eb/N0). (4.23)

Equation (4.23) shows that the demodulator transfer characteristic not only depends

on the Eb/N0-value, but also the mapping scheme via IA1 . Specifically, different

mapping schemes result in different slopes of the transfer characteristics.

On the other hand, the transfer characteristic of the SISO decoder is defined as:

IE2 = T2(IA2). (4.24)

Thus, the function T2 represents the mutual information between the a priori knowl-

edge A2 and the extrinsic information E2 of the SISO decoder. This relationship

depends only on the convolutional code used in the system, not on the mapping

scheme nor the value of Eb/N0. To compute A2 and its mutual information IA2 , as

well as E2 and its mutual information IE2 , one can follow a similar process as demon-

strated above for the demodulator’s transfer characteristic. Also note that, the pdfs

of the random variables A2 and E2 can also be obtained by Monte Carlo simulation.

To visualize the exchange of the extrinsic information, the demodulator and de-

coder characteristics are depicted in a single diagram, which is commonly referred
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to as the extrinsic information transfer (EXIT) chart [32]. Note that, after being

deinterleaved, the extrinsic information of the demodulator becomes the a priori

knowledge to the SISO decoder, i.e., IA2 = IE1 . Similarly, the extrinsic information

of the SISO decoder, IE2 , is interleaved to become the a priori knowledge, IA1 , for the

demodulator in the next iteration. The transfer characteristics of the individual de-

modulator and decoder blocks should approximately describe the true behavior of the

iteration process in the demodulation/decoding of BICM-ID over an AWAN channel.

In particular, the convergence behavior of the iterative receiver can be predicted by

following the demodulation/decoding trajectory in the EXIT chart. Applying EXIT

chart analysis for some specific BICM-ID systems under AWAN will be presented in

Section 4.6.

4.5 Gaussian bound on the error performance over an AWAN

channel

The “Gaussian bound” is derived by assuming that only the Gaussian noise is

present on the channel, i.e., the impulsive noise part is set to zero or completely

removed. The “Gaussian bound” is useful since it serves as a lower bound for any

scheme. It also indicates how well a particular scheme, such as BICM-ID, combats

impulsive noise. Under the assumption of zero impulsive noise, the received symbols

can be written as

rk = sk + gk, (4.25)

where gk are i.i.d. zero mean complex Gaussian random variables with variance σ2
g

given by

σ2
g =

σ2

1 + 1/Γ
=

σ2Γ

1 + Γ
, (4.26)

Again, here σ2 is the total power of the noise and Γ is the Gaussian to impulsive noise

power ratio. The pdf of gk is given

pg(x) =
1

2πσ2
g

exp

(

−|g|2
2σ2

g

)

(4.27)

For the uncoded communications system, the uncoded “Gaussian bound” is simply
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the performance of uncoded BPSK modulation over a classical AWGN channel with

noise variance as in (4.26). Hence, this bound is given by

Puncoded−bound = Q

(√
Eb

σg

)

, (4.28)

where the Q function is defined as

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt (4.29)

For BICM-ID, the Gaussian bound is derived similarly by assuming that the sys-

tem is only corrupted by the background Gaussian noise with pdf and variance given

in Equations (4.27) and (4.26), respectively. At the receiver, the conditional proba-

bility density function p(rk|sk) used in the SISO demodulator is

p(rk|sk) = pG(rk − sk) =
1

2πσ2
g

exp

(

−|rk − sk|2
2σ2

g

)

, (4.30)

With this conditional pdf, the iterative decoding can be carried out at the receiver

to obtain the BICM-ID Gaussian bounds, which will be presented and discussed in

Section 4.7.

4.6 Simulation and numerical results

Although any channel coding and constellation/mapping schemes can be used in

the BICM-ID systems proposed in this chapter, this section concentrates on studying

the error performance of a BICM-ID system employing 8PSK modulation and a 4-

state rate-2/3 convolutional code, whose generator polynomials are

G = [1001; 0001; 1100]. This combination of channel code and modulation scheme

yields a spectral efficiency of 2 bits/sec/Hz. Each information block has a length

of 3999 bits. Three different mapping schemes shown in Fig. 4.2 are considered.

Unless stated otherwise, in all simulation results reported in this thesis, at least 100

erroneous bits are counted to determine each BER point.

First, Fig. 4.3 compares the bit error rate (BER) performance of BICM-ID system

employing 8PSK/SSP mapping for two different demodulators. The first demodula-

tor, referred to as the “standard” demodulator, is the optimal demodulator for an
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Figure 4.3: BER performance with 9 iterations of 8PSK/SSP mapping for BICM-

ID over an AWAN channel: Comparison of different demodulators with different

impulsive index parameters, Γ = 10−3.

AWGN channel. The other demodulator is the one optimally designed for AWAN

channels as described in Section 4.2. The comparison is investigated for two impul-

sive parameters of A = 10 and A = 10−2 whereas the GIR parameter is fixed at

Γ = 10−3.

At the BER level of 10−3 one can observe a huge SNR gain of approximately

38dB by using the optimal demodulator over the standard one for AWAN channel

parameters {A = 10−2, Γ = 10−3}.1 When AWAN channel parameters are {A =

10, Γ = 10−3} the SNR gains are 2dB and 3dB at BER of 10−3 and 10−5, respectively.

These substantial gains thus clearly illustrate the advantage of having the optimal

demodulator for BICM-ID in an impulsive noise environment. One can also expect

the reduction of SNR gain when the impulsive index A increases. This is because

when A is large enough (i.e., A ≥ 1), the impulsive noise statistic comes close to

1Here, the SNR is defined as Eb/N0, where Eb is the energy per information bit.
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Figure 4.4: BER performance of BICM-ID over an AWAN channel with A = 10−3

and Γ = 10−3: 8PSK and SSP mapping.

that of Gaussian noise and there is not much difference in performance by using the

optimal and standard demodulators.

Next, Fig. 4.4 shows the BER performance of 8PSK/SSP mapping when the pa-

rameters of impulsive noise channel are {A = 10−3, Γ = 10−3}, which means that the

channel noise is highly impulsive. Also shown in the figure is the asymptotic perfor-

mance bound, calculated as described in Section 4.3 by using the first 20 Hamming

distances of the convolutional code. As can be seen from the figure, performance

improvement due to iterations is very significant with SSP mapping. In particular,

Fig. 4.4 shows that with 9 iterations the BER performance of 8PSK/SSP mapping

can reach the error bound at SNR of −24.5dB, and starting at SNR of −23.5dB the

error performance of 7, 8 and 9 iterations are practically the same and also reach the

asymptotic performance bound.

Similarly, Fig. 4.5 shows the BER performance of 8PSK employing SP mapping.
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Figure 4.5: BER performance of BICM-ID over an AWAN channel with A = 10−3

and Γ = 10−3: 8PSK and SP mapping.

The parameters of impulsive noise channel are {A = 10−3, Γ = 10−3} for this case. As

shown in this figure, with SP mapping, iteration can also help to improve the error

performance of BICM-ID. For example, after 5 iterations, a gain of 3.5dB in SNR can

be obtained at the BER level of 10−3. However, the iteration process in 8PSK/SP

mapping does not improve the error performance as much as compared to 8PSK/SSP

mapping. The error performance of BICM-ID with 8PSK/SP mapping also converges

faster than that of BICM-ID with 8PSK/SSP mapping. Fig. 4.5 illustrates that after

5 iterations the iterative decoding does not improve the error performance any more.

The error performance of BICM-ID with 8PSK/Gray mapping is also shown in

Fig. 4.6, where the impulsive noise parameters are {A = 10−3, Γ = 10−2}. Similar

to the cases of AWGN and fading channels, it was observed that iterations do not

improve BER performance for Gray mapping of BICM-ID in impulsive noise.

Figs. 4.7, 4.8 and 4.9 explicitly compare the error performance of different map-
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Figure 4.6: BER performance of BICM-ID over an AWAN channel with A = 10−3

and Γ = 10−2: 8PSK and Gray mapping.

ping schemes for 8PSK. Shown in each figure is the performance for a particular set

of impulsive parameters, namely {A = 10, Γ = 10−3}, {A = 10−3, Γ = 10−3} and

{A = 10−3, Γ = 10−2}. As can be observed from Fig. 4.7, when SNR is larger than

3.75dB (or −26.25dB in Fig. 4.8 and −16.25dB in Fig. 4.9) the SSP mapping always

gives the best BER performance. For example, at the BER level of 10−5, the SNR

gains provided by the SSP mapping over the SP mapping are about 3dB, 3.5dB and

3.2dB corresponding to channel noise parameters of {A = 10, Γ = 10−3}, {A = 10−3,

Γ = 10−3} and {A = 10−3, Γ = 10−2}, respectively. It can also be seen that Gray

mapping performs very poor. In these three figures, besides the BER performance of

each mapping scheme, the corresponding error bound on the asymptotic performance

is also plotted. One can see the tightness of the error bounds in all cases, which

suggests that the error bound derived in this thesis can be used as an effective tool

for analyzing the asymptotic performance of different constellation/mapping schemes

in BICM-ID systems under the impulsive noise.
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Figure 4.7: BER performance of 8PSK BICM-ID over an AWAN channel with A = 10

and Γ = 10−3: Comparison of different mappings and coded BPSK.
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Figure 4.8: BER performance of BICM-ID over an AWAN channel with A = 10−3

and Γ = 10−3: Comparison of different mappings and coded BPSK.
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Figure 4.9: BER performance of BICM-ID over an AWAN channel with A = 10−3

and Γ = 10−2: Comparison of different mappings and coded BPSK.

The error performance of a coded system that employs the same convolutional

code and BPSK modulation is also included in Figs. 4.7, 4.8 and 4.9. Note that

the spectral efficiency of such a system is only 2/3 bits/sec/Hz, which is only one

third of that of the systems employing 8PSK constellation. Observe that there is an

error performance degradation suffered by the 8PSK system that employs Gray or

SP mapping. Impressively, the 8PSK system with SSP mapping not only can provide

three times higher spectral efficiency but can also achieve the error performance gain

compared to the coded BPSK system. In particular, at the BER level of 10−6, the

SNR gains of 8PSK/SSP mapping over coded BPSK are about 1.6dB, 2.7dB and

2.5dB, as can be seen from Figs. 4.7, 4.8 and 4.9, respectively.

Fig. 4.10 then compares the BER performance of BICM-ID with 8PSK/SSP

mapping after 9 iterations when the optimal and suboptimal demodulators are em-

ployed. It can be seen that for both sets of impulsive parameters, namely {A = 10−3,

Γ = 10−3} and {A = 10−3, Γ = 10−2}, the suboptimal demodulator only suffers about
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Figure 4.10: BER performance of BICM-ID with 8PSK/SSP mapping over an AWAN

channel: Comparison of optimal and suboptimal demodulators after 9 iterations with

different GIR parameters, A = 10−3.

0.5dB degradation in SNR compared to the optimal demodulator. Such a small per-

formance loss might be well justified by the lower computational complexity of the

suboptimal demodulator.

It should be mentioned that Figs. 4.3, 4.7, 4.8, 4.9 and 4.10 also illustrate the de-

pendence of BER performance on both the impulsive index A and the GIR Γ. Simple

inspection of these figures shows that for all mapping schemes of 8PSK, performance

of BICM-ID improves if the channel noise becomes more impulsive (i.e., correspond-

ing to smaller value of A and/or Γ). This observation is similar to the ones made

in [11,12] for uncoded systems and coded systems with BPSK, respectively.

Next, Figs. 4.11 and 4.12 present the EXIT charts of iterative decoding for two

different values of Eb/N0, namely Eb/N0 = −26dB and Eb/N0 = −23dB, respec-

tively. The impulsive parameters of the AWAN channel investigated in those figures
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Figure 4.11: EXIT chart analysis of 8PSK BICM-ID with A = 10−3 and Γ = 10−3:

Comparison of different mappings at Eb/N0 = −26dB.

are {A = 10−3, Γ = 10−3}. It can be seen that the demodulator characteristics with

Gray mapping appear to be constant regardless of the values of IA1 . This implies

that iterative decoding is useless with Gray mapping, a fact that is also confirmed by

the BER performance results mentioned earlier. In contrast, the demodulator char-

acteristics for both SP and SSP mappings increase as IA1 increases, thus facilitating

the effective operation of iterative decoding.

Comparing Figs. 4.11 and 4.12 shows that for all three mapping schemes of 8PSK

under consideration, increasing Eb/N0 raises the demodulator characteristics, i.e.,

opening the tunnel between the demodulator and the SISO characteristics. The wider

opening of the tunnel is a crucial factor to provide a faster convergence of the iteration

decoding. For example, following the decoding trajectories of SSP mapping shown in

Figs. 4.11 and 4.12 it can be predicted that about 13 and 7 iterations are required for

BER convergence at Eb/N0 = −26dB and Eb/N0 = −23dB, respectively. The fact

that BER convergence happens after about 7 decoding iterations at Eb/N0 = −23dB
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Figure 4.12: EXIT chart analysis of 8PSK BICM-ID with A = 10−3 and Γ = 10−3:

Comparison of different mappings at Eb/N0 = −23dB.

can be verified from Fig. 4.4. The difference in the number of decoding iterations

required for BER convergence is simply due to the fact that increasing the Eb/N0

value from −26dB to −23dB significantly opens the narrow tunnel to allow a faster

convergence of the iterative decoding.

4.7 Comparisons of BICM-ID with uncoded OFDM

It has been demonstrated in the previous section that the use of M -ary modula-

tions with appropriate mappings and properly designed iterative receiver can signif-

icantly improve both the error performance and spectral efficiency of BICM-ID over

the conventional coded modulation systems that use BPSK modulation.

As discussed in Chapter 1, orthogonal frequency-division multiplexing (OFDM)

is also a commonly used technique to combat impulsive noise [19, 45]. It is therefore

of interest to compare the performance of BICM-ID and OFDM over the impulsive

51



−30 −25 −20 −15 −10 −5 0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

Uncoded BPSK, N=1
Uncoded OFDM, N=32
Uncoded OFDM N=256
Uncoded OFDM, N=1024
BICM−ID, 8PSK/Gray
BICM−ID, 8PSK/SSP, 9 iter.
Uncoded Gaussian bound
BICM−ID/SSP Gaus. bound
BICM−ID/Gray Gaus. bound

Figure 4.13: Performance comparison of BICM-ID and OFDM: A = 0.1, Γ = 10−3

and at spectral efficiency of 1 bit/sec/Hz.

noise environment. The basic principle of OFDM is briefly reviewed in Section 3.2.

4.7.1 Comparisons with conventional OFDM

Consider an AWAN channel with impulsive parameters {A = 10−1, Γ = 10−3} and

{A = 10−3, Γ = 10−3}. Assume that BPSK modulation is used for each subcarrier

of OFDM. This means that the spectral efficiency is 1 bit/sec/Hz. To have the same

spectral efficiency of 1 bit/sec/Hz, a simple 4-state, rate-1/3 convolutional code with

generator polynomials G = [01; 11; 11] is used for BICM-ID with 8PSK constellation.

Figs. 4.13 and 4.14 present the BER performance of OFDM systems with various

number of subcarriers, namely N = 1, N = 32, N = 256 and N = 1024, together with

the performance of BICM-ID. It can be clearly observed that, at high SNR values,

OFDM significantly outperforms the uncoded BPSK system that uses a single carrier

(i.e., it corresponds to OFDM with N = 1). For example, as shown in Fig. 4.13, at

the BER level of 10−4, an SNR gain of about 11dB is obtained by implementing an
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Figure 4.14: Performance comparison of BICM-ID and OFDM: A = 0.001, Γ = 10−3

and at spectral efficiency of 1 bit/sec/Hz.

OFDM system with N = 256 subcarriers. In general, a higher SNR gain is achieved

by using a larger number of subcarriers. But it also appears from either Fig. 4.13

or Fig. 4.14 that for the impulsive parameters under consideration, there is only a

marginal improvement by increasing the number of subcarriers beyond N = 256. Note

also that performance improvement achieved with OFDM at high SNR values comes

at the expense of degraded performance at the low SNR region. This phenomenon

is also observed in [19–21] and it is merely due to the suboptimality of the classical

OFDM demodulator when applied to an impulsive noise environment [19–21].

From both Figs. 4.13 and 4.14, it is interesting to observe that BER performances

of the proposed BICM-ID are much better than that of the conventional OFDM. For

example, as shown in Figs. 4.13 and 4.14, at the BER level of 10−5, even when using

8PSK/Gray mapping in the proposed BICM-ID, the SNR gains are 24dB and 32dB

compared to the conventional OFDM with 1024 subcarriers, respectively. These gains

certainly increase if SSP or SP mapping scheme is employed for BICM-ID.

53



Also plotted in Figs. 4.13 and 4.14 are the theoretical BER performance of ideal

uncoded and coded receivers that can completely remove the impulsive noise, leaving

only the Gaussian noise as the additive noise. These BER performances are thus

the uncoded and BICM-ID Gaussian bounds mentioned in Section 4.5. They serve

as the lower performance bounds for any practical uncoded and BICM-ID systems

under impulsive noise. The Gaussian bounds in Figs. 4.13 and 4.14 clearly show that

there are still huge performance gaps between the performance of OFDM systems and

that of the ideal receiver. This implies that using OFDM with the classical M -ary

demodulator still does not fully exploit the rich structure of the impulsive noise. The

proposed BICM-ID, on the other hand, shows a great improvement.

Due to the fact that it can fully exploit the structure of the impulsive noise in its

iteration decoding, the error performance of BICM-ID not only can reach the uncoded

Gaussian bound but also surpass it. In particular, as shown in Figs. 4.13 and 4.14, the

error performances of the proposed BICM-ID with 8PSK/SSP mapping can achieve

about 4dB and 5.5dB SNR gains over the uncoded Gaussian bounds at the BER

level of 10−5, respectively. Moreover, the performance of the proposed BICM-ID can

even reach the BICM-ID Gaussian bound when channel is highly impulsive. In other

words, the ability of removing impulsive noise of the proposed BICM-ID increases

significantly if the channel becomes more impulsive.

4.7.2 Comparisons with iteratively-decoded OFDM

As described in Section 3.4, a more advanced and complicated receiver was recently

developed in [20] that can be applied to OFDM. In essence, the work in [20] views

OFDM as a “code over complex numbers” and applies an iterative decoding for

it. The iterative receiver proposed in [20] consists of two information-exchanging

estimators, one in the “codeword” and one in the “information” domain. Such an

iterative decoding of OFDM is shown to perform very close to the uncoded Gaussian

bound [20]. The basic principle of this technique is described in Section 3.4.

It is relevant to point out, however, that the iterative decoding of OFDM proposed
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in [20] is very different from the iterative receiver developed for BICM considered in

this chapter. In particular, the iterations in the receiver of [20] are performed between

the two estimators of the impusive noise. In contrast, the iterative processing at the

receiver of BICM in this chapter is performed between the SISO channel decoder and

the soft-output demodulator.
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Figure 4.15: Performance comparison of BICM-ID and iteratively-decoded OFDM

with N = 1024, at spectral efficiency of 2 bits/Sec/Hz.

Figure 4.15 shows performance comparison of the proposed BICM-ID with the

iteratively-decoded OFDM in [20] with different impulsive parameters A, namely

A = {0.1, 10−2, 10−3}. To have a fair comparison, the spectral efficiency of both

the proposed BICM-ID and the iteratively-decoded OFDM are kept the same at

2bits/Sec/Hz. As illustrated in Fig. 4.15, when the channel is very impulsive, i.e.,

A < 0.1, the error performance of the proposed BICM-ID is much superior to that

of the iteratively-decoded OFDM. For example, when A = 10−2 and A = 10−3, at

the BER level of 10−5 the SNR gains of the proposed BICM-ID over the iteratively-

decoded OFDM are 2dB and 4.7dB respectively. However, if the channel is less
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impulsive or comes closer to Gaussian noise, i.e., when A ≥ 0.1, the performance

of BICM-ID is poorer. This is because when the impulsive noise comes closer to

Gaussian noise, the proposed BICM-ID looses its advantage of exploiting the structure

of the impulsive noise in its iterative decoding. Hence, the proposed BICM-ID cannot

provide a superior performance over the iteratively-decoded OFDM, which is specially

designed for less impulsive channels. To overcome this disadvantage of the proposed

BICM-ID, the next chapter proposes another novel technique to deal with channels

having less impulsive noise.
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5. Bit-interleaved coded OFDM with

iterative decoding (BI-COFDM-ID)

As discussed before, the use of orthogonal frequency-division multiplexing (OFDM)

technique to combat impulsive noise has recently received a strong interest [20, 21].

When the number of subcarriers in OFDM is sufficiently large, the transformation

at the OFDM receiver essentially converts impulsive noise to Gaussian noise and

a detector designed for an AWGN channel is generally applied to demodulate the

transmitted symbols over each subcarrier.

Although the above implementation of OFDM is simple, it is by no means optimal.

In fact it can perform poorer than the single-carrier system with a properly designed

receiver. This is because converting impulsive noise to Gaussian noise removes the

high structure of the impulsive noise and the detector does not make use of it.

Because of these disadvantages, a much more advanced and efficient receiver based

on iterative processing is proposed in [20] for OFDM. In particular, the iterative re-

ceiver in [20] consists of two information-exchanging estimators, one in the “code-

word” and one in the “information” domain. Such iterative decoding of OFDM is

shown to perform very close to the performance of an equivalent system over an

AWGN channel.

It is well-known (see also Chapter 4) that error performance of a communications

system can be further improved by the use of error control coding. Applying pow-

erful turbo codes [23, 26, 46] to combat impulsive noise is investigated in [12] where

the authors also design an appropriate turbo receiver for an additive class-A noise

(AWAN) channel.

As demonstrated in Chapter 4, BICM-ID is a spectral efficient coded modulation
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technique for impulsive noise channel. The main advantage of BICM-ID is that it is

simple in both design and implementation, as compared to other coded modulation

techniques while it can still provide large coding gains. This is because BICM-ID re-

quires only one soft-input soft-output (SISO) decoder instead of two as normally seen

in turbo decoding [46]. In BICM-ID systems, the iterative processing is implemented

between one SISO decoder and the soft-output demodulator. The complexity of the

soft-output demodulator is relatively small compared to that of a SISO decoder [29]

(which requires forward and backward recursions [47]), since the soft-output demod-

ulator can be considered as a one-state (zero-memory) decoder. It was also clearly

demonstrated in Chapter 4 that with a proper design of the soft-input soft-output

(SISO) demodulator and appropriate mapping, the use of BICM-ID can improve the

error performance as well as spectral efficiency of PLC systems.

Given the effectiveness of OFDM with iterative decoding for uncoded systems

in [20] and BICM-ID for coded systems in Chapter 4, it is natural to combine both of

these techniques in one system. This is precisely the main topic of this chapter and

the system under consideration shall be referred to as bit-interleaved coded OFDM

with iterative decoding (BI-COFDM-ID).

5.1 System model

The simplified block diagram of BI-COFDM-ID is shown in Fig. 5.1. The in-

formation bits {uk} are first encoded by a convolutional code to produce a coded

sequence {ck}. The coded sequence {ck} is then interleaved by the random inter-

leaver Π. The interleaved sequence {vk} is mapped by the M -ary modulator into a

symbol sequence. This symbol sequence is then passed through a serial-to-parallel

converter, whose output is a set of N symbols {S0, S1, . . . , SN−1}, where Sk belongs

to the M -ary constellation Ψ. Here N is number of subcarriers and the symbol Sk

is transmitted over the kth subcarrier. In order to generate the transmitted sig-

nal, an inverse discrete Fourier transform (IDFT) is performed on these N symbols.

Typically, N is chosen to be a power of 2 and the inverse DFT can be efficiently
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Figure 5.1: A simplified block diagram of a BI-COFDM-ID system.

implemented using the inverse fast Fourier transform (IFFT) algorithm. The IFFT

yields the OFDM symbol consisting of sequence {s0, s1, . . . , sN−1} of length N , where

sk =
1√
N

N−1
∑

i=0

Sie
j2πki/N , 0 ≤ k ≤ N − 1. (5.1)

Assuming perfect synchronization and timing, the received symbols at the receiver

are given by

rk = sk + ik + gk, 0 ≤ k ≤ N − 1, (5.2)

Note that, the impulsive noise in (5.2) is separated into two components: ik accounts

for impulsive noise and gk represents Gaussian noise. In particular, gk’s are inde-

pendent and identically distributed (i.i.d.) complex Gaussian random variables with

variance σ2
g and the following probability density function (pdf)

pgk
(x) =

1

2πσ2
g

exp

(

−|x|2
2σ2

g

)

(5.3)

The impulsive noise variables ik are also i.i.d. with variance σ2
i . Their pdf is given

by Middleton’s class-A noise model as [4, 9, 20]:

pik(x) = e−Aδ(x) +
∞
∑

m=1

e−A Am

m!

1

2πσ2
m

exp

(

− |x|2
2σ2

m

)

(5.4)
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with σ2
m = σ2

i m/A and δ(·) is Dirac delta function. For small impulsive index, A,

e.g., A = 0.1, the noise is highly structured since only 1− e−A ≈ 9.5% of the samples

are hit by impulses.
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Figure 5.2: Block diagram of the proposed receiver for a BI-COFDM-ID system.

At the receiver, the problem of decoding the received vector r = [r0, . . . , rN−1]

arises. One can try to implement the maximum likelihood (ML) decoder to minimize

the probability of a decoding error. However, this optimum receiver is very compli-

cated due to the presence of the random interleaver. To overcome this problem, this

section proposes a novel suboptimum iterative receiver as demonstrated in Fig. 5.2.

Similar to BICM-ID in [27, 29, 52–54], the iterative receiver implements the it-

erations between the SISO decoder and the SISO OFDM demodulator. Here, the

OFDM demodulator is an iterative demodulator itself as proposed in [20]. Therefore

there are two iteration loops, one within the OFDM demodulator (outer loop), and

the other one is between the SISO decoder and the OFDM demodulator (inner loop).

The key is how to transfer the information from the OFDM demodulator to the SISO

decoder.

In particular, the outer loop exchanges the information between two estimators,

one in the codeword domain and one in the information domain. The criterion for

both estimators is the minimum mean-square error (MMSE). The MMSE estimator

minimizes the error εMSE = E{|y − ỹ|2}, where ỹ denotes the estimate obtained for
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the actual value y. The input information for the outer loop includes the received

symbol sequence r and the a priori information P (vi
k; I) fed back from the inner

iteration loop. Let the capital letters denote vectors or symbols in the domain of

the information sequence (information domain) and the lower case letters denote

vectors or symbols in the domain of the codewords (codeword domain). To convert

information between the two domains, a transform matrix G and its inverse G−1 are

used. The transform matrix G here is chosen to be the inverse Fourier transform

matrix corresponding to the IFFT at the transmitter, which is given in Equation

(3.9).

The inputs of the codeword domain estimator are the received symbol sequence

r and the estimated symbol sequence s̃. With these inputs, the codeword domain

MMSE estimator estimates a sequence of impulsive noise ĩ. To provide the inputs

for the information domain MMSE estimator, the estimated impulsive noise sequence

ĩ together with the received sequence r are converted to Ĩ and R by multiplying

with the inverse transform matrix G−1. The information domain MMSE estimator

in the proposed BI-COFDM-ID differs from the one in [20]. Here, it not only uses Ĩ

and R but also takes into account the a priori probability P (vi
k; I) to estimate the

information sequence S̃ and also compute the probability P (S i
k|Rk, Ĩk). After being

converted to the codeword domain, the estimated information sequence s̃ is then fed

back as the input of the codeword domain MMSE estimator for the next iteration.

The inner loop, then, uses the information P (S i
k|Rk, Ĩk) as its input to calculate

the bit log likelihood ratio (LLR), λ(vi
k). The LLR of the coded bits λ(vi

k) is then

deinterleaved and passed to the SISO decoder. Similar to the SISO decoder used in

BICM-ID [29, 37, 52], the SISO decoder in the receiver of the proposed BI-COFDM-

ID also implements the maximum a posteriori probability (MAP) algorithm [47]

to compute a hard decision as well as the extrinsic probability P (ci
k; O). For the

information exchange between the SISO decoder and the OFDM demodulator, the

extrinsic probability P (ci
k; O) is then interleaved to become the input of the outer

loop.
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Due to the iterations in both the the inner and outer loops, the proposed BI-

COFDM-ID has the advantages of both BICM-ID and iteratively-decoded OFDM to

combat impulsive noise. The key is how to implement the information exchanging so

that the inner and outer loops can benefit from each other. The detailed algorithms

for the outer and inner iteration loops over the impulsive noise channel are described

in [20] and [52]. For the proposed BI-COFDM-ID, the strategies of implementing

information exchange between the two iteration loops are investigated in the next

section.

5.2 Iterative decoding of the proposed BI-COFDM-ID

5.2.1 Outer iterations

Similar to the iterative decoding algorithm in [20, 21], the outer iteration loop

of the proposed BI-COFDM-ID exchanges information between two MMSE estima-

tors. In the codeword domain, the MMSE estimator is the same as the one in [20].

However, the information domain MMSE estimator is modified to enable informa-

tion exchanging between the inner and the outer loops. Therefore, this section first

reviews the codeword domain estimator and then discusses the modified information

domain MMSE estimator for the outer loop.

To obtain the estimations in the outer iteration loop, the approximations intro-

duced in [20] are useful. In particular, if a vector of i.i.d complex random variables

x = {x0, . . . , xN−1} with E{xk} = 0 and E{xkx
∗
k} = 2σ2

x is transformed by multi-

plying with the transform matrix G, i.e., y = Gx, then the components of y are

approximated as i.i.d complex random variables with E{yk} = 0 and E{yky
∗
k} = 2σ2

x.

Similarly, if the vector x = {x0, . . . , xN−1} is transformed by the inverse matrix G−1,

then y = G−1x is also a vector of i.i.d complex random variables with E{yk} = 0 and

E{yky
∗
k} = 2σ2

x. In summary, by using these approximations, all the marginal pdfs

used in the outer loop is given in Table 5.1. The implementation of each estimator is

described as follows.
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Table 5.1: Marginal pdfs for the vectors used in the first iteration loop.

Codeword domain Information domain

sk N (0, σ2
s) P (Sk)

gk N (0, σ2
g) N (0, σ2

g)

dk N (0, σ2
d(l)) pdf is unknown

ek pdf is unknown N (0, σ2
e(l))

Codeword domain MMSE estimator

The inputs of the codeword domain MMSE estimator are:

r = s + i + g (5.5)

s̃(l−1) = β(l−1)
s s + β

(l−1)
i i + β(l−1)

g g + d(l−1) (5.6)

where r is the received vector, s̃(l−1) is an estimated vector provided by the informa-

tion domain estimator in the preceding iteration, β
(l−1)
s , β

(l−1)
i , β

(l−1)
g are the scalar

coefficients provided by the least square regression estimation and d(l−1) is the er-

ror term for information domain MMSE estimator. To simplify the notations the

superscript (l − 1) will be omitted in following computations.

According to the approximations mentioned above, the highly structure of im-

pulsive noise ik is the only non-Gaussian signal component in the codeword domain

and can, therefore, be well distinguished from sk, gk and dk. As a consequence, the

codeword domain estimator is applied to estimate the impulsive noise vector i. Also

note that the inputs r and s̃ of the codeword domain estimator are also approximated

as vectors of i.i.d random variables. Hence, the MMSE estimation for each ik is a

function of only two complex numbers, i.e., rk and s̃k. Similar to [20], using Table

5.1 and Equations (5.5), (5.6) this estimation of ik is given as follows:

ĩk =

∞
∑

m=0

Am

m!

bRe(r, s̃) + jbIm(r, s̃)

2(σ2
rσ

2
s̃ − cov(r, s̃))

p̃Re(r, s̃)p̃Im(r, s̃)

∞
∑

m=0

p̃Re(r, s̃)p̃Im(r, s̃)

(5.7)
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with [20]:

σ2
r = σ2

s + σ2
m + σ2

g

σs̃2 = β2
sσ

2
s + β2

i σ
2
m + β2

gσ
2
g + σ2

D

cov(r, s̃) = βsσ
2
s + βiσ

2
m + βgσ

2
g

and the functions b(r, s̃) and p̃(r, s̃) are given as:

b(r, s̃) = 2σ2
m

[

(σs̃2 − βicov(r, s̃)) r +
(

βiσ
2
r − cov(r, s̃)

)

s̃
]

p̃(r, s̃) =

exp

(

−1

2

σ2
s̃ |r|2 − 2cov(r, s̃)rs̃ + σ2

r
˜|s|2

σ2
rσ

2
s̃ − cov(r, s̃)2

)

√

σ2
rσ

2
s̃ − cov(r, s̃)2

Furthermore, the abbreviations used in (5.7) are:

p̃Re(r, s̃) = p̃ (Re{r}, Re{s̃})

p̃Im(r, s̃) = p̃(Im{r}, Im{s̃})

where the operators Re{·} and Im{·} evaluate the real and imaginary parts of a

complex number, respectively. Similar abbreviations for bRe(r, s̃) and bIm(r, s̃) are

also used in Equation (5.7). To estimate the whole vector ĩ, Equation (5.7) has to

be calculated once for every component ĩk. The complexity of this procedure grows

linearly with the number of subcarriers N .

Information domain MMSE estimator

The information domain MMSE estimator used in the outer loop of the proposed

BI-COFDM-ID differs from the one introduced in [20]. Here, the inputs of this

estimator include R, Ĩ and P (Si; I), where

R = G−1r = S + I + Z (5.8)

Ĩ(l) = α(l)
s S + α

(l)
i I + α(l)

g Z + E(l) (5.9)

Basically, R is the received vector transformed into the information domain, Ĩ(l) is the

transformed output of the codeword domain estimator and Z denotes the background
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Gaussian noise in the information domain. The a priori probability P (S i; I) is the

information fed back from the inner loop to increase the reliability of the outputs of

the codeword domain estimator.

In Equations (5.8) and (5.9), again α
(l)
s , α

(l)
i , α

(l)
g are the scalar coefficients also

provided by the least square regression estimation and E(l) is the error vector of the

information domain estimator. To simplify notations, the superscript (l) will also be

omitted in following calculations.

With these inputs and using the marginal pdfs approximated as in Table 5.1, the

MMSE estimation of each Sk is

S̃k = E{Sk|Rk, Ĩk} (5.10)

=

∑

Sk∈Ψ Skp(Rk, Ĩk|S)P (Sk)
∑

Sk∈Ψ p(Rk, Ĩk|Sk)P (Sk)

where p(Rk, Ĩk|Sk) is given by [20,21]:

p(Rk, Ĩk|Sk) =

exp



−
σ2

Rk|Sk
aa∗ − cov(Rk, Ĩk|Sk)(ab∗ + a∗b) + σ2

Ĩk|Sk

bb∗

2
[

σ2
Rk|Sk

σ2
Ĩk|Sk

− cov(Rk, Ĩk|Sk)2
]





4π2
[

Σ2
Rk|Sk

σ2
Ĩk|Sk

− cov(Rk, Ĩk|Sk)2
] (5.11)

where a = Rk − Sk, b = Ĩk − αsSk and

σ2
Rk|Sk

= σ2
ĩ

+ σ2
g

σ2
Ĩk|Sk

= α2
i σ

2
ĩ

+ α2
gσ

2
g + σ2

d

cov(Rk, Ĩk|Sk) = αiσ
2
ĩ

+ αgσ
2
g

Also note that in the first iteration, the probabilities P (Sk) are assumed to be

equiprobable and they are canceled in (5.10). However, from the second iteration,

P (Sk) are computed by using the priori probability information fed back from the

second iteration loop.

Because an ideal interleaver makes m bits in one symbol independent, the a priori

information P (v1
k; I), · · · , P (vm

k ; I) can be assumed to be independent. Therefore, for
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each constellation symbol, the probability P (Sk) is calculated as

P (Sk) = P
(

µ
(

[v1(Sk) · · · vm(Sk)]
))

=
m
∏

j=1

P (vj
k = vj(Sk); I), (5.12)

where vj(Sk) is the value of the jth bit in the label of symbol Sk.

The other output of the information domain MMSE estimator is P (S i
k = b|Rk, Ĩk)

which is delivered as the input information to the inner iteration loop. The compu-

tation of P (Si
k = b|Rk, Ĩk) is given as follows:

P (Si
k = b|Rk, Ĩk) =

∑

Sk∈Ψi

b

p(Rk|Sk, Ĩk)P (Sk|Rk, Ĩk) (5.13)

where i = {1, . . . ,m}, b = {0, 1} and Ψi
b are defined as Ψi

b = {µ([S1, S2, · · · , Sm])|Si =

b}. Similar to [21], the probability P (Sk|Rk, Ĩk) is given by

P (Sk|Rk, Ĩk) = p(Rk, Ĩk|Sk)P (Sk) (5.14)

with p(Rk, Ĩk|Sk) is given in (5.11).

Under the assumption that the estimated impulsive noise components Ĩk in the

information domain are i.i.d and still have the class-A distribution, p(Rk|Sk, Ĩk) can

be determined as:

p(Rk|Sk, Ĩk) =
∞
∑

m=1

e−A Am

m!

1

2πσ2
m

exp

(

−|Rk − Sk|2
2σ2

m

)

(5.15)

where σ2
m = σ2

Ĩk

m/A. Using Equations (5.11), (5.12), (5.13), (5.14) and (5.15) one

can obtain the estimated values Sk as well as the probabilities P (Si
k = b|Rk, Ĩk).

5.2.2 Inner iterations

One of the outputs of the outer loop, namely the set of probabilities P (S i
k =

b|Rk, Ĩk), is transferred to the inner loop as the input of the the bit LLR calculator.

Using these probabilities, the bit LLR calculator computes the log likelihood ratio for

each bit of the received symbol as follows:

λ(vi
k) = log

[

P (Si
k = 1|Rk, Ĩk)

P (Si
k = 0|Rk, Ĩk)

]

(5.16)
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After being deinterleaved, λ(vi
k) is delivered to the SISO decoder. The SISO decoder

treats that information as the a priori information for the coded bits and the iteration

between the OFDM demodulator and the SISO decoding keeps running. The hard-

decisions of the information bits can be made at the final iteration based on the

extrinsic information P (ui
k; O). The other output of the SISO decoder is the extrinsic

probability P (ci
k; O), which is interleaved before being fed back as the input of the

information domain MMSE estimator.

If the SISO decoder does not transfer the extrinsic information P (ci
k; O) to the

information domain MMSE estimator, the system is simply referred to as BI-COFM.

5.2.3 Iteration scheduling

As mentioned in Section 5.1, the proposed iterative receiver for BI-COFDM-ID

includes two iteration loops, i.e., the outer and the inner loops. It is therefore inter-

esting and important to investigate the strategies to schedule the iteration processes

between the outer and the inner loops. There are many different ways that the two

iteration loops can interact. This section investigates and compares the error perfor-

mance of three different scheduling schemes, namely the parallel, the serial, and the

mixed iteration schemes.

For the parallel iteration scheduling, the iterations of the outer and the inner loops

are processed in parallel. In particular, one iteration of the whole receiver includes

two iterations, one in the outer loop and one in the inner loop. In other words, the

outer loop and the inner loop exchange information in every iteration by carrying out

the iterations of the outer and the inner loops simultaneously.

Opposite to the parallel iteration scheme, in serial iteration scheme, iterations of

the outer and the inner loops are operated in serial. The iterations of the outer loop

are processed first. After a few iterations of the outer loop, the iteration process of

the inner loop is carried out. Hence, the iteration of the inner loop can only help to

increase the reliability of the decision at the final iteration of the outer loop and it

does not affect the results of the estimations of the intermediate iterations.
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Finally, the mixed iteration strategy is a combination of the parallel and serial

strategies. For each iteration of the outer loop, a number of iterations are processed

in the inner loop before continuing to the next iteration of the outer loop. Due

to the more iterations implemented in the inner loop the reliability of the extrinsic

information P (vi
k; I) increases before it is fed back as the input of the information

domain estimator in the next iteration. In this way, a higher reliability of the extrinsic

information is provided to each iteration of the outer loop.

At this point, it is appropriate to comment on the complexities of three iteration

schemes. It can be seen that the serial iteration scheme is the simplest iteration

scheme compared to the other two schemes. In the serial iteration scheme, the infor-

mation P (Si
k = b|Rk, Ĩk) needs to be computed once at the last iteration of the outer

loop and the estimated information symbol sequence S̃ needs not to be available after

each iteration of the inner loop. Therefore many calculations in the outer loop can

be skipped and the serial iteration scheme is preferred in terms of complexity. If the

time consumption and complexity of the outer and the inner loops are considered

to be equivalent, the parallel and mixed iteration schemes have the same complexity

when the total numbers of iterations carried out in the outer and the inner loop of

the two iteration schemes are the same. The detailed performance comparisons of

different iteration schedules are discussed in the following section.

5.3 Results and discussion

This section investigates the error performance of BI-COFDM-ID systems em-

ploying N = 1024 subcarriers. Two modulations schemes considered are 8PSK

and 4QAM. The convolutional codes of rates 2/3, 1/2 and 1/3 shall be used. In

particular, the 4-state rate-2/3 convolutional code has generator polynomials G =

[1001; 0001; 1100], the 4-state rate-1/2 code has G = [101; 110] and the 2-state rate-

1/3 code has G = [01; 11; 11]. Each information block has a length of 4096 bits.

Three different mapping schemes, shown in Fig. 4.2, namely Gray, set partitioning

(SP) and semi set partitioning (SSP) mappings of 8PSK (phase-shift keying), are
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Figure 5.3: BER performance of BI-COFM-ID over an AWAN channel with A = 0.1

and Γ = 10−3: A 4-state, code rate-2/3 convolutional, 8PSK and SSP mapping.

considered.

First, Figs. 5.3, 5.4, 5.5 show the bit error rate (BER) performance of BI-COFDM-

ID when parallel iteration scheme is carried out for SSP, SP and Gray mappings,

respectively. In all of these figures, the impulsive parameters are {A = 0.1, Γ = 10−3}
and the rate-2/3 convolutional code is used. As can be seen, error performance

improvement due to iterations is very significant for all cases of mappings.

Also note that, different from BICM-ID with Gray mapping in Chapter 4, here

as shown in Fig. 5.5, iterations can significantly improve the error performance even

when Gray mapping is used. This is reasonable because the proposed iterative receiver

of BI-COFDM-ID is different from that of the conventional BICM-ID. Basically, the

OFDM demodulator is itself an iterative decoding and the iteration process in the

OFDM demodulator is independent of the mapping. The outer iterations therefore

help to improve the overall performance of the proposed BI-COFDM-ID, regardless

of the mapping schemes.
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Figure 5.4: BER performance of BI-COFM-ID over an AWAN channel with A = 0.1

and Γ = 10−3: A 4-state, rate-2/3 convolutional code, 8PSK and SP mapping.
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Figure 5.5: BER performance of BI-COFM-ID over an AWAN channel with A = 0.1

and Γ = 10−3: A 4-state, rate-2/3 convolutional code, 8PSK and Gray mapping.
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Figure 5.6: Performance comparison of 8PSK BI-COFM-ID over an AWAN channel

with A = 0.1 and Γ = 10−3: Different mapping schemes.

Next, Fig. 5.6 explicitly compares the error performance of the proposed BI-

COFDM-ID employing different mapping schemes of 8PSK. Similar to BICM-ID, the

results in Fig. 5.6 show that the using SSP mapping gives the best BER performance

with iterations. However, different from BICM-ID in Chapter 4, here performance

improvement by SSP mapping is not very significant compared to the other mapping

schemes. For example, at the BER of 10−5 and after 9 iterations, the SSP mapping

achieves SNR gains of only 0.5dB and 0.7dB over the SP and Gray mappings, re-

spectively. These SNR gains for BI-COFDM-ID are very small compared to the SNR

gains observed in BICM-ID systems in Chapter 4. This is because unlike BICM-ID,

the error performance of BI-COFDM-ID can be improved significantly by the outer

iteration loop, regardless of the mapping scheme used.

5.3.1 Comparison of BI-COFDM-ID and BI-COFDM

To investigate the effect of the inner loop iterations, Figs. 5.7 and 5.8 compare

the error performance between the proposed BI-COFDM-ID and the BI-COFDM,
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Figure 5.7: Performance comparison of BI-COFDM-ID and BI-COFDM using rate-

2/3 convolutional code, 8PSK/SSP mapping over an AWAN channel with A = 0.1

and Γ = 10−3.
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Figure 5.8: Performance comparison of BI-COFDM-ID and BI-COFDM using rate-

2/3 convolutional code, 8PSK/Gray mapping over an AWAN channel with A = 0.1

and Γ = 10−3.
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Figure 5.9: Performance comparison of BI-COFDM-ID and BI-COFDM using rate-

1/3 convolutional code, 8PSK/SSP mapping over an AWAN channel with A = 0.1

and Γ = 10−3.

where there is no feedback from the SISO decoder to the OFDM demodulator. The

comparisons are investigated for channel parameters {A = 0.1, Γ = 10−3}, rate-2/3

convolutional code and 8PSK modulation. Two different mapping schemes, namely

SSP and Gray mappings, are used in Figs. 5.7 and 5.8, respectively. It is obvious

from both Figs. 5.7 and 5.8 that the inner iteration loop can help to improve the

error performance of BI-COFDM-ID significantly. In particular, after 9 iterations the

SNR gains due to the inner loop are 2.5dB and 3.5dB at the BER level of 10−4 as

can be seen from Fig. 5.7 and predicted from Fig. 5.8, respectively.

Similarly, Fig. 5.9 presents the error performance comparison of BI-COFDM-

ID and BI-COFDM for the impulsive parameters {A = 0.1, Γ = 10−3} and when a

convolution code of rate 1/3 is used. Again, BI-COFDM-ID significantly outperforms

BI-COFDM. From the comparisons in Figs. 5.7, 5.8, 5.9, it is, therefore, necessary and

beneficial to run the inner iteration loop in the proposed receiver of BI-COFDM-ID

system.
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Figure 5.10: Performance comparison of 8PSK/SSP BI-COFM-ID over an AWAN

channel with A = 0.1 and Γ = 10−3: different iteration strategies.

5.3.2 Effects of iteration scheduling to the performance of

BI-COFDM-ID

In Fig. 5.10, the error performance of BI-COFDM-ID with rate-2/3 convolu-

tional code and 8PSK/SSP mapping is investigated with different iterative schemes

for channel parameters {A = 0.1, Γ = 10−3}. Here, the mixed scheme is designed

with 1 outer iteration followed by 3 iterations of the inner loop. Hence, the error

performance of 18 iterations in the mixed scheme corresponds to 6 iterations in the

outer loop, each includes 3 iterations in the inner loop. The error performance of

11 iterations in the serial scheme is obtained by processing 6 iterations in the outer

loop first, then carrying out 5 iterations in the inner loop. Similarly, the error per-

formance of 9 iterations with parallel scheme is obtained when 9 iteration decoding

is simultaneously processed in both the outer and the inner loops.

As can be observed from Fig. 5.10, all three iteration schemes can help to improve

the error performance of BI-COFDM-ID compared to BI-COFDM. It is also seen from
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this figure, the mixed scheme offers the best error performance. In particular, at the

BER level of 10−4, the mixed iteration scheme provides SNR gains of 0.7dB and

0.4dB compared to the parallel and the serial schemes, respectively. Also note that,

BI-COFDM-ID with serial iteration scheme also performs well with a smaller number

of iterations. As shown in Fig. 5.10, after 11 iterations, the error performance of

BI-COFDM-ID with serial iteration scheme comes close to that of the system with

the mixed scheme, especially at a low level of BER.

5.3.3 Comparison of BI-COFDM-ID and BICM-ID

As demonstrated in Chapter 4, BICM-ID designed for impulsive noise is a very

attractive solution to PLC. However, the excellent performance of this BICM-ID

over impulsive noise environment degrades when the channel is less impulsive or

close to Gaussian noise. In fact, the main purpose of introducing BI-COFDM-ID

in this chapter is to deal with the less impulsive noise environment where BICM-ID

−30 −29 −28 −27 −26 −25 −24 −23 −22 −21 −20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

BICM−ID, 1 iteration
BICM−ID, 3 iterations
BICM−ID, 7 iterations
BI−COFDM−ID, 1 iteration
BI−COFDM−ID, 3 iterations
BI−COFDM−ID, 5 iterations
BI−COFDM−ID, 7 iterations
BI−COFDM−ID, 9 iterations

Figure 5.11: Performance comparison of BI-COFM-ID and BICM-ID over an AWAN

channel with A = 0.1 and Γ = 10−3: rate-2/3 convolutional code, 8PSK/SSP map-

ping.
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Figure 5.12: Performance comparison of BI-COFM-ID and BICM-ID over an AWAN

channel with A = 0.1 and Γ = 10−3: rate-1/2 convolutional code, 4QAM/natural

mapping.

shows a poor error performance. Therefore, this chapter concentrates on performance

comparison of the proposed BI-COFDM-ID and BICM-ID over a less impulsive noise

environment.

Figs. 5.11, 5.12 and 5.13 present the error performance with parallel iteration

scheme, convolutional code of different rates and over impulsive noise environment

with parameters {A = 0.1, Γ = 10−3}. In particular, convolutional codes with rates

2/3, 1/2 and 1/3 are used in Figs. 5.11, 5.12 and 5.13, respectively. The modulation

scheme used for code rates 2/3 and 1/3 is 8PSK, whereas 4QAM is employed for the

code rate 1/2.

All three figures show that at high to medium BER level, the proposed BI-

COFDM-ID outperforms BICM-ID, regardless of the convolutional code used. In

particular, after 7 iterations of both BI-COFDM-ID and BICM-ID, the SNR gains

at the BER level of 10−3 are 3dB and 2dB for rate-2/3 and rate-1/2 convolutional
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Figure 5.13: Performance comparison of BI-COFM-ID and BICM-ID over an AWAN

channel with A = 0.1 and Γ = 10−3: rate-1/3 convolutional code, 8PSK/SSP map-

ping.

codes, respectively. From these figures, one can also see that the performance advan-

tage of BI-COFDM-ID over to BICM-ID degrades if a more powerful convolutional

code is used. This is because a more powerful convolutional code can help to improve

the error performance of BICM-ID more significantly than it does for BI-COFDM-

ID. However, BI-COFDM-ID still promises to give a better error performance than

BICM-ID at high SNR, even when a very powerful convolutional code is used. This

can be observed from Fig. 5.13, where both BI-COFDM-ID and BICM-ID use the

rate-1/3 convolutional code. In particular, at a very low BER of 10−6 the SNR gain

of BI-COFDM-ID over BICM-ID is 1dB.

5.3.4 Comparison of BI-COFDM-ID and iteratively-decoded

OFDM

As discussed in Chapter 3, OFDM is also a common technique to combat im-

pulsive noise [19, 20, 45]. As shown in [20], viewing OFDM as a code over complex
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Figure 5.14: Performance comparison of BI-COFM-ID and iteratively-decoded

OFDM over an AWAN channel with A = 0.1 and Γ = 10−3.

numbers and using iterative decoding, impulsive noise can almost be completely re-

moved. Specifically, after 4 iterations, the error performance of iteratively-decoded

OFDM can converge to the Gaussian bound. It is therefore of interest to compare

the error performance of BI-COFDM-ID and iteratively-decoded OFDM. To make

a fair comparison in terms of spectral efficiency, here, the BI-COFDM-ID is inves-

tigated with 8PSK mapping, a rate-2/3 convolutional code and 1024 subcarriers.

Sine no channel coding is used in iteratively-decoded OFDM, 4QAM modulation is

employed.

Fig. 5.14 compares BER performance after 9 iterations of BI-COFDM-ID, BICM-

ID and iteratively-decoded OFDM, where the impulsive parameters are {A = 0.1, Γ =

10−3}. As can be seen from this figure, BICM-ID performs poorer than iteratively-

decoded OFDM. Moreover the iteratively-decoded OFDM can give a better error

performance compared to BI-COFDM. However, the proposed BI-COFDM-ID out-

performs the iteratively-decoded OFDM at high SNR. In particular, at the BER level

of 10−6, the SNR gain provided by BI-COFDM-ID over iteratively-decoded OFDM
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is 2dB. Note also that performance improvement achieved with BI-COFDM-ID at

higher SNR values comes at the expense of degraded performance at the low SNR

region.
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6. Conclusions and suggestions for further

research

6.1 Conclusions

The application of BICM-ID to improve the error performance and spectral effi-

ciency of PLC systems was considered in the first part of this thesis, where Middle-

ton’s class-A impulsive noise channel model is adopted. Both optimal and suboptimal

soft-output demodulators were developed to facilitate the implementation of the iter-

ative receiver for this channel model. The advantage of using the optimally-designed

demodulator for BICM-ID over impulsive noise was demonstrated by computer simu-

lation. It was shown that for any impulsive noise parameter, the use of the proposed

demodulator significantly improves the BER performance of BICM-ID over the use

of the standard demodulator designed for Gaussian noise.

The effects of different mapping schemes were also investigated for BICM-ID over

impulsive noise. It was shown that using SSP mapping of 8PSK helps to significantly

improve the BER performance with iterations and gives the best BER performance

compared to SP and Gray mappings.

The error-free-feedback bound was also derived to accurately predict the asymp-

totic error performance of BICM-ID systems. The tightness of the derived bound

is confirmed by simulation results. This accurate prediction also matches with the

predictions made by applying the EXIT chart technique. Moreover, the EXIT chart

technique showed how the performance converges to the asymptotic bound with dif-

ferent mappings.

The superior performance of BICM-ID compared to both BPSK and OFDM tech-

niques was also illustrated. With proper mapping and iterative decoding the proposed
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BICM-ID not only achieves a better performance but also can provide a higher spec-

tral efficiency compared to BPSK. It was clearly shown that, BICM-ID also signifi-

cantly outperforms both the conventional OFDM as well as the iteratively-decoded

OFDM, especially when the channel is very impulsive. However, when the channel is

less impulsive, the proposed BICM-ID performs poorer than the iteratively-decoded

OFDM.

To overcome this problem, the second part of the thesis proposed a novel BI-

COFDM-ID to combat impulsive noise. The proposed BI-COFDM-ID is a combina-

tion of iteratively-decoded OFDM and BICM-ID. A suboptimal iterative receiver was

developed for BI-COFDM over the impulsive noise channel. Computer simulation

results showed that the proposed BI-COFDM-ID outperforms both the iteratively-

decoded OFDM and BICM-ID.

In the proposed iterative receiver of BI-COFDM-ID, besides the iterative decoding

implemented inside the OFDM demodulator, there is another iterative decoding which

exchanges the information between the SISO decoder and the suboptimal OFDM

demodulator. The implementation of the OFDM demodulator was first discussed.

Then the effects of scheduling the information exchange between the SISO decoder

and the OFDM demodulator were investigated. Three different iteration strategies

were investigated in this thesis. Simulation results suggest that the mixed iteration

scheduling is the best choice in terms of the error performance. However, the serial

iteration strategy is more attractive in terms of complexity.

Different mapping schemes were also investigated for 8PSK in BI-COFDM-ID.

Similar to BICM-ID system, iterative decoding can help to improve the error perfor-

mance of BI-COFDM-ID remarkably for all three mapping schemes of 8PSK, namely

SSP, SP and Gray mappings. The error performance of BI-COFDM-ID with SSP

mapping is the best compared to the other two mappings. However, different from

BICM-ID, performance improvement by using SSP mapping is smaller compared to

the improvement observed in BICM-ID systems in Chapter 4.
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Finally, the superior performance of the BI-COFDM-ID over both the iteratively-

decoded OFDM and BCM-ID was also illustrated for the case that the channel is

less impulsive. In particular, performance comparisons between BI-COFDM-ID and

BICM-ID were made for different convolutional codes. It was demonstrated that

BI-COFDM-ID can outperform BICM-ID regardless of the convolutional code used.

Simulation results also showed that BI-COFDM-ID can achieve a better error perfor-

mance than the iteratively-decoded OFDM.

6.2 Suggestions for further research

This thesis only investigated BICM-ID and BI-COFDM-ID that employ simple

two-dimensional constellations and mapping schemes over class-A impulsive noise.

Employing other mapping schemes as well as multi-dimensional constellations/mapping

for both systems to achieve even better error performance improvement is an attrac-

tive subject of further research. The question on whether there exists an algorithm

to construct the optimal mappings for both two-dimensional and multi-dimensional

constellations needs to be answered and it is another interesting topic for future

studies.

The application of BI-COFDM-ID over impulsive noise was first introduced in

this thesis with some different mappings and convolutional codes. The effects of

both mapping schemes and different convolutional codes to the error performance of

BI-COFDM-ID were only studied and discussed with simulation results. However,

error performance analysis for these systems has not been carried out. Hence, other

interested topic is to develop an analytical framework for the study of the convergence

as well as the asymptotic error performance of BI-COFDM-ID under class-A impulsive

noise.

In PLC, both impulsive noise and multipath effects result in performance degra-

dation. This thesis only addressed the effect of impulsive noise in PLC in investigat-

ing the performance of BICM-ID and BI-COFDM-ID. Therefore, further studies of

BICM-ID and BI-COFDM-ID under both multipath effects and impulsive noise are
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very attractive.

Finally, in this thesis, the applications of BICM-ID and BI-COFDM-ID were only

investigated with Midlenton’s class-A impulsive noise channel. As discussed in Chap-

ters 1 and 2, other models exist for impulsive noise. It is therefore interesting to study

the applications BICM-ID and BI-COFDM-ID with other impulsive noise channel

models or the real-world power-line channels.
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A. The least square estimation of the

regression coefficients

To implement the MMSE estimators in both the codeword and information do-

mains, one needs to obtain the scalar coefficients with the least square regression esti-

mation. This appendix derives the least square estimations of coefficients α
(l)
s , α

(l)
i , α

(l)
g

for codeword domain MMSE estimator. Estimation of the coefficients for the infor-

mation domain MMSE estimator can be carried out similarly.

In the codeword domain estimator, the impulsive noise can be modeled by:

ĩ(l) = α(l)
s s + α

(l)
i i + α(l)

g g + e(l) (A.1)

where the vectors s, i and g are randomly generated and used as the training data

to estimate α
(l)
s , α

(l)
i , α

(l)
g at the lth iteration. The vector ĩ(l) is known as the output

of the codeword domain estimator. The error vector e(l) is unknown and its variance

needs to be minimized. For notational simplicity, the superscript (l) is omitted in the

following computations.

First, Equation (A.1) can be rewritten as:

ĩ = [s i g]











αs

αi

αg











+ e (A.2)

The average squared error over one OFDM symbol is computed by:

Φ =
1

N

N−1
∑

k=0

|̃ik − αssk + αiik + αggk|2 (A.3)

Denote X = ĩ − e, H = [s i g] and α =











αs

αi

αg











. The squared error J(α) for training
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vector with length L is:

J(α) =
NL−1
∑

k=0

|̃ik − Xk|2

= (̃i − Hα)H (̃i − Hα) (A.4)

= ĩH ĩ − ĩHHα − α
HHH ĩ + α

HHHHα

where the superscript H denotes Hermitian transpose of a matrix. Before taking

the derivation of the squared error J(α), recall the following derivatives of linear

functions:

d/dx(xTa) = d/dx(xaT ) = a (A.5)

d/dx(xHA) = 0 (A.6)

d/dx(xHCx) = CTx (A.7)

where the vector a and the matrices A, C do not depend on the vector x.

Now, the derivation of the squared error J(α) can be obtained as:

∂J(α)

∂(α)
= 0 − (̃iHH)T − 0 + (HHH)T

α
∗ = 0 (A.8)

(HHH)T
α

∗ = (̃iHH)T (A.9)

(HTH∗)α∗ = HT (̃iH)T = HT ĩ∗ (A.10)

Thus, the scalar coefficients are given by:

α̂ = Real
{

(HTH∗)−1HT ĩ∗
}

(A.11)

Substituting this value of α̂ into Equation (A.4), one can obtain the minimum of the

squared error J(α̂). Finally, the variance of the error vector e can be calculated from

the parameters {Φ}L
f=1 as follows:

σ2
e

=
1

2
E{|ek|2} =

1

2
max

f=1,...,L
{Φf} (A.12)

where Φf is the average squared error for each training OFDM symbol and can be

obtained as:

Φf =
1

N
J(α̂)

85



References

[1] A. Majumder and J. Caffery, “Power line communications,” Potentials, IEEE,

vol. 23, pp. 4 – 8, Oct., 2004.

[2] H. C. Ferreira, H. M. Grove, O. Hooilen, and A. Han Vinck, “Power line com-

munications: overview,” in IEEE AFRICON 4th, pp. 558 – 563, Jun., 1996.

[3] N. Pavlidou, A. J. Han Vinck, J. Yazdani, and B. Honary, “Power line commu-

nications: state of the art and future trends,” IEEE Commun. Mag., pp. 34–40,

Apr., 2003.

[4] A. D. Spaulding and D. Middleton, “Optimun reception in an impulsive interfer-

ence environment - part I: coherent detection,” IEEE Trans. Commun., vol. 25,

pp. 910–922, Sep., 1977.

[5] Y. Ma, P. So, and E. Gunawan, “Performance analysis of OFDM system for

broadband power line communications under impulsive noise and multipath ef-

fects,” IEEE Trans. Power Delivery, vol. 20, pp. 674 – 682, Apr., 2005.

[6] T. Faber, T. Scholand, and P. Jung, “Turbo decoding in impulsive noise envi-

ronments,” Electronics Letters, vol. 39, pp. 1069–1071, Jul., 2003.

[7] X. Wang and R. Chen, “Blind turbo equalization in Gaussian and impulsive

noise,” IEEE Trans. Veh. Technol., vol. 50, pp. 1092 – 1105, Jul., 2001.

[8] H. V. Poor and M. Tanda, “Multiuser detection in flat fading non-Gaussian

channels,” IEEE Trans. Commun., vol. 50, pp. 1769–1777, Nov., 2002.

[9] D. Middleton, “Statistical - physical models of electromagnetic interference,”

Electromagnetic compatibility; Proceedings of the Second Symposium and Tech-

nical Exhibition, vol. EMC-19, pp. 331–340, Jun, 1977.

[10] E. Biglieri and P. de Torino, “Coding and modulation for a horrible channel,”

IEEE Commun. Mag., vol. 41, pp. 92 – 98, May, 2003.

86



[11] S. Miyamoto, M. Katayama, and N. Morinaga, “Performance analysis of QAM

systems under Class-A impulsive noise environment,” IEEE Trans. Electromag-

netic Compatibility, vol. 37, pp. 260–267, May, 1995.

[12] D. Umehara, H. Yamaguchi, and Y. Morihiro, “Turbo decoding in impulsive noise

environment,” in Proc. IEEE Global Telecommun. Conf., pp. 194–198, Jul., 2004.

[13] T. Fukami, D. Umehara, and Y. Morihiro, “Noncoherent PSK optimum receiver

over impulsive noise channel,” in Proc. of the 2002 ISPLC Conf., pp. 235–238,

Mar., 2002.

[14] J. Haring and A. Han Vinck, “Performance bounds for optimum and subopti-

mum reception under Class-A impulsive noise,” IEEE Trans. Commun., vol. 50,

pp. 1130–1136, Jul., 2002.

[15] H. Dai and H. V. Poor, “Turbo multiuser detection for coded DMT VDSL sys-

tems,” IEEE J. Select. Areas in Commun., vol. 20, pp. 351 – 362, Feb., 2002.

[16] M. Ardakani, F. R. Kschischang, and W. Yu, “Low-density parity-check coding

for impulse noise correction on power line channels,” in Proc. of the 2005 ISPLC

Conf., pp. 90 – 94, Mar., 2005.

[17] Y. Lin, H. A. Latchman, M. Lee, and S. Katar, “A power line communication

network infrastructure for the smart home,” IEEE Wireless Commun., vol. 9,

pp. 104 – 111, Dec., 2002.

[18] M. Karl and K. Dostert, “Selection of an optimal modulation scheme for digital

communications over low voltage power lines,” in IEEE 4th Intl. Symp. Spread

Spectrum Tech. and Apps., p. 1087 1091, Sept., 1996.

[19] J. Haring and A. Han Vinck, “OFDM transmission corrupted by impulsive

noise,” in Int. Symp. Powerline Communication (ISPLC), pp. 9 – 14, Apr., 2000.

[20] J. Haring and A. Han Vinck, “Iterative decoding of codes over complex numbers

for impulsive noise channels,” IEEE Trans. Inform. Theory, vol. 49, pp. 1251 –

1260, May, 2003.

87



[21] J. Haring, Error tolerant communication over the compound channel. Shaker

Verlag, 2001.

[22] S. Baig and N. D. Gohar, “A discrete multitone transceiver at the heart of

the physical layer of an in-home power line communication local-area network,”

IEEE Commun. Mag., vol. 41, pp. 48 – 53, Apr., 2003.

[23] S. Lin and D. J. Costello, Error control coding. Prentice Hall, 2nd ed., 2004.

[24] J. L. Massey, “Coding and modulation in digital communications,” in Proc. of

International Zurich Seminar on Digital Communications, Mar., 1974.

[25] N. H. Tran, Signal mapping designs for bit-interleaved coded modulation with

iterative decoding BICM − ID. M.Sc. thesis, University of Saskatchewan, Dec.,

2004.

[26] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correction coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Com-

mun., pp. 1064–1070, May, 1993.

[27] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decod-

ing,” IEEE Commun. Letters, vol. 1, pp. 169–171, Mar., 1997.

[28] X. Li and J. A. Ritcey, “Trellis-coded modulation with bit interleaving and iter-

ative decoding,” IEEE J. Select. Areas in Commun., vol. 17, pp. 715–724, Apr.,

1999.

[29] X. Li, A. Chidapol, and J. A. Ritcey, “Bit-interleaved coded modulation with

iterative decoding and 8-PSK,” IEEE Trans. Commun., pp. 1250–1256, Aug.,

2002.

[30] A. Chindapol and J. A. Ritcey, “Design, analysis, and performance evaluation for

BICM-ID with square QAM constellations in Rayleigh fading channels,” IEEE

J. Select. Areas in Commun., vol. 19, pp. 944–957, May, 2001.

88



[31] S. ten Brink, J. Speidel, and R. H. Yan, “Iterative demapping for QPSK modu-

lation,” Electronics Letters, vol. 34, pp. 1459–1460, Jul., 1998.

[32] S. ten Brink, “Designing iterative decoding schemes with the extrinsic trinsic

information transfer chart,” AEU Inter. of Elec. and Commun., vol. 54, pp. 389

– 398, Dec., 2000.

[33] N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for BICM-

ID systems over a Rayleigh fading channel,” in IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE), pp. 1809–1813, May, 2004.

[34] N. H. Tran and H. H. Nguyen, “Improving the performance of BICM-ID systems

by mapping on the hypercube,” in Proc. IEEE Veh. Technol. Conf., pp. 1299–

1303, Sep., 2004.

[35] N. H. Tran and H. H. Nguyen, “Multi-dimensional mappings of M-ary constel-

lations for BICM-ID systems,” in IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE), pp. 124–127, May, 2005.

[36] N. H. Tran and H. H. Nguyen, “Design and performance of BICM-ID systems

with hypercube constellations,” IEEE Trans. on Wireless Commun., vol. 5,

pp. 1169– 1179, May, 2006.

[37] N. H. Tran and H. H. Nguyen, “Signal mappings of 8-ary constellations for bit-

interleaved coded modulation with iterative decoding,” IEEE Transactions on

Broadcasting., vol. 52, pp. 92–99, Jan., 2006.

[38] F. Schreckenbach, N. Gortz, J. Hagenauer, and G. Bauch, “Bit-interleaved coded

modulation with iterative decoding,” IEEE Commun. Letters, vol. 7, pp. 593 –

595, Dec., 2003.

[39] S. V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction. John

Wiley and Sons, 3rd ed., 2006.

89



[40] M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in

broad-band powerline communications,” IEEE Trans. on Eletromagnetic Com-

patibility, vol. 44, pp. 249 – 258, Feb., 2002.

[41] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Pro-

cesses. McGraw-Hill, 4th ed., 2002.

[42] J. G. Proakis, Digital communication. McGraw-Hill, 4th ed., 2000.

[43] J. Seo, S. Cho, and K. Feher, “Impact of non-Gaussian impulsive noise on the

performance of high-level QAM,” IEEE Trans. Electromagnetic Compatibility,

vol. 31, pp. 177–180, May, 1989.

[44] G. R. Lang, “Rotational transformation of signals,” IEEE Trans. Inform. Theory,

vol. IT-9, pp. 191 – 198, Jul., 1963.

[45] J. Bingham, “Multicarrier modulation for data transmission: An idea whose time

has come,” IEEE Commun. Mag., vol. 28, pp. 5 – 14, May, 1990.

[46] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-

optimal map decoding algorithms operation in the log domain,” in Proc. IEEE

Int. Conf. Commun., pp. 1009–1013, Jun., 1995.

[47] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-output

Maximum a Posteriori (MAP) module to decode parallel and serial concatenated

codes,” in Proc. IEEE Int. Conf. Commun., pp. 1009–1013, Nov., 1995.

[48] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional code,” IEEE Trans. Inform. Theory, vol. 42, pp. 1–20, Mar., 1996.

[49] G. T. G. Caire and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans.

Inform. Theory, vol. 44, pp. 927–946, May, 1998.

[50] E. Zehavi, “8-PSK trellis codes for a rayleigh fading channel,” IEEE Trans.

Commun., vol. 40, pp. 873–883, May, 1992.

90



[51] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” IEEE Trans. Commun., vol. 49, pp. 1727 – 1737, Oct., 2001.

[52] H. H. Nguyen and T. Q. Bui, “Bit-interleaved coded modulation with iterative

decoding in impulsive noise,” to appear in IEEE Trans. on Power Delivery, 2006.

[53] T. Q. Bui and H. H. Nguyen, “Bit-interleaved coded modulation with iterative

decoding in impulsive noise,” in IEEE Proc. of the ISPLC Conf., pp. 98 – 103,

Mar., 2006.

[54] T. Q. Bui and H. H. Nguyen, “Error performance of BICM-ID in impulsive

noise,” in IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE), pp. 201–204, May, 2006.

91


