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ABSTRACT 
 

 This research used classical and molecular epidemiology tools to assess the 

potential importance of feedlot cattle as Campylobacter reservoirs. The project was 

conducted from November 2004 to September 2005 in southern Alberta. 

 Fresh pen-floor fecal samples were collected from commercial feedlot cattle 

near slaughter weight in seven feedlots. Overall, 87% of 2,776 fecal samples were 

culture positive for Campylobacter species (86% of 1,400 in winter, 88% of 1,376 in 

summer), and 69% of 1,486 Campylobacter positive isolates were identified as 

Campylobacter jejuni. After accounting for clustering within pen and feedlot, the 

number of days-on-feed and feedlot size were associated (p ≤ 0.05) with 

Campylobacter species isolation rates.  

 Retail ground beef was collected from 60 grocery stores (four chains, three 

cities). None of the 1,200 packages were culture positive for Campylobacter species. 

Polymerase chain reaction (PCR) results from a subset of samples (n=142) indicated 

that 48% of packages were positive for Campylobacter DNA. By species, 14.8% 

(21/142), 26.8% (38/142) and 1.4% (2/142) of packages were PCR positive for  

C. jejuni, C. coli and C. hyointestinalis DNA, respectively. The collection period (1, 2, 

3 or 4) was associated (p ≤ 0.05) with the odds of detecting Campylobacter species 

DNA using PCR.  

 Oligonucleotide DNA microarrays were used as a platform for comparative 

genomic hybridization (CGH) analysis of 87 C. jejuni isolates (46 bovine, 41 human) 

obtained within the same geographical regions and time frame. Of the 13 CGH clusters 

identified based on overall comparative genomic profile similarity, nine contained 
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human and cattle isolates, three contained only human isolates, and one contained only 

cattle isolates. In addition, human clinical and feedlot cattle C. jejuni isolates were 

compared on a gene-by-gene basis and only a small number of the 1,399 genes tested 

were unequally distributed between the two groups (p ≤ 0.05).  

 The high isolation rates of Campylobacter species and C. jejuni reported here 

may have implications for food safety, public health and environmental contamination. 

Our findings suggest that feedlot cattle and human C. jejuni strains are very similar and 

may be endemic within southern Alberta.  
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CHAPTER 1 
OVERVIEW 

 
1.1  Introduction 

 Campylobacters are ubiquitous bacteria, found in water, in soil, and in the 

intestinal tract of reservoir hosts (including mammals, birds and insects). Many 

Campylobacter species are zoonotic (transmissible between people and animals), and 

are important in both public health and food safety. Public awareness of campylobacters 

as human pathogens has been relatively limited compared to other enteric bacteria. In 

developing countries, people may become infected much earlier in life and may acquire 

high levels of immunity (Oberhelman and Taylor 2000), resulting in fewer clinical 

cases. In developed countries, lack of awareness may be because clinical signs from 

campylobacteriosis are less severe and mortality rates lower compared to 

gastrointestinal infections caused by bacteria such as Salmonella or Eschericia coli 

O157:H7 (PHAC 2007, Kennedy et al. 2004, Statistics Canada 2007), resulting in less 

media coverage. In reality however, campylobacters have been identified as the most 

commonly isolated bacteria in human diarrhea cases in countries in both developed and 

developing worlds (Friedman et al. 2000, Oberhelman and Taylor 2000), and as such 

these bacteria have garnered increasing respect and research dollars.  

 Historically, Escherich was credited as the first to describe spiral bacteria in the 

stool of clinical human cases in 1886 (Butzler 2004). However, campylobacters were 

considered veterinary pathogens until 1938 when the first human clinical report of a 
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milk-borne outbreak was published (Levy 1946), and the major breakthrough was the 

isolation of campylobacters from human feces in 1968 (Dekeyser et al. 1972). The 

taxonomy of campylobacters has not been straightforward. The organisms now 

considered campylobacters began as part of the genus Vibrio and were separated into 

their own genus in 1963 based on both biochemical and genetic differences from Vibrio 

(On 2005). Since then, different species have entered and exited the Campylobacter 

genus as new, and in particular genetic, insights have become apparent (Euzéby 1997, 

On 2005). 

 Our understanding of the epidemiology of campylobacters is incomplete and 

classical epidemiological questions have not been fully answered.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Research into each of these questions is ongoing. Detection of campylobacters 

requires precise temperature, atmospheric, and nutrient conditions. Further, the 

Epidemiological considerations 
 
Who:  Which populations and subpopulations of hosts (human, livestock, pet, insect,  
bird, protozoa) are becoming infected or colonized, and which strains of  
campylobacters are most important for human disease?  
 
What:  What pathogenic mechanisms and genotypic/phenotypic characteristics are 
associated with virulence, colonization, and infection? 
 
When:  Do seasonal effects exist which promote transmission or infection and, if so,  
are these effects important?  
 
Where:  What is the geographical distribution of campylobacters in particular hosts, and
what adaptive microenvironments (e.g. biofilm) play a role in the epidemiology?  
 
Why:  Why are people becoming infected in such numbers, and can interventions be 
found to eliminate transmission routes and reduce infection levels?   
 
How:  How are these bacteria transmitted between hosts—contact, water, fomite,  
food, other? 
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adaptability of these bacteria to real-world conditions e.g. in water, biofilm, and 

environmental extremes, make it difficult to implement successful interventions. The 

genetic diversity of strains, including hypervariable regions and plasmids, has made it 

challenging for researchers trying to identify virulence factors and predict clinical 

manifestations (e.g. Guillain Barré syndrome). While many gaps in our knowledge of 

these pathogens still exist, breakthroughs, particularly in molecular typing, are 

continuing to advance our knowledge.  

 Below is a general overview of the techniques used in this research and a 

description of the study objectives and goals. 

 

1.2  Methods 

1.2.1  Literature review 

 General keywords and MeSH terms (Appendix A) were used to search the 

following databases: Agricola, BioOne, Biosis Previews, Cab Abstracts, Canadian 

Newstand, EMBASE, Health and Safety Science Abstracts, Microbiology Abstracts, 

ProQuest Dissertaitions and Theses, PubMed, Scopus, Web of Science and the search 

engine Google™. The main search was from July 3-16, 2007 followed by weekly 

publication notifications from PubMed (Appendix A). 

 

1.2.2  Primary research 

 The contamination of feedlot cattle feces and retail ground beef with 

campylobacters was assessed through two prevalence studies described in Chapters 3 

and 4 of this manuscript. Enrichment culture, hippurate hydrolysis testing, and 
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polymerase chain reaction technologies were used to detect campylobacters in feces or 

ground beef. In addition, seasonal (winter and summer) isolation rates of Campylobacter 

species in feedlot cattle feces were also obtained. Associations between risk factors and 

the presence of Campylobacter spp. in both cattle feces and retail ground beef samples 

were investigated using hierarchical models.  

 DNA microarray technology was used to describe the genomic profiles of 

feedlot cattle and human clinical Campylobacter jejuni isolates (Chapter 5). Description 

was based on global clustering and gene-by-gene comparison between the two groups.  

 
1.2.3  Ethics 

 Ethics approval for this research was received from both the University of 

Saskatchewan Biomedical Research and the University of Calgary Conjoint Health 

Research Ethics Boards. An ethics analysis written prior to commencing the research 

has been included (Appendix B). 

 
1.3  Specific objectives 

Targeted feedlot cattle feces survey 

1) To estimate the prevalence of Campylobacter spp., in particular C. jejuni, in 

fresh fecal samples from commercial Alberta feedlot cattle near slaughter weight 

2) To obtain point estimates for Campylobacter spp., in particular C. jejuni, in 

commercial feedlot cattle feces 

3) To evaluate potential associations between risk factors and isolation rates of 

Campylobacter spp. in commercial feedlot cattle feces  

4) To collect isolates for future molecular characterization (DNA microarray) 
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Retail ground beef survey 

1) to estimate the prevalence of Campylobacter spp. and C. jejuni in retail ground 

beef from southern Alberta  

2) To evaluate associations between potential risk factors and contamination rates 

of retail ground beef with Campylobacter spp. 

3) To collect isolates for future molecular characterization (DNA microarray) 

 
Molecular characterization of C. jejuni using DNA microarray 

1) To describe human clinical and feedlot cattle C. jejuni isolates using DNA 

microarray technology 

2) To compare isolates by source population (human, feedlot cattle) and by season 

3) To assess the plausibility of cattle as a source of infection to people based on the 

genomic profiling 

 

1.4  Conclusions 
 The purpose of this thesis was to address unanswered questions regarding the 

epidemiology of campylobacters, in particular C. jejuni, in the Alberta beef industry. 

This research was designed to indirectly assess the plausibility that feedlot cattle may be 

sources of Campylobacter spp., in particular C. jejuni, to people. The prevalence studies 

contribute baseline data on contamination of feedlot cattle feces and retail ground beef 

with these bacteria. DNA microarray, a relatively new molecular technique, was 

assessed as an epidemiologic tool, and used to describe C. jejuni isolates from feedlot 

cattle and people. 
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CHAPTER 2 
LITERATURE REVIEW 

 
2.1 Epidemiology of campylobacters—The Classical Triad 

2.1.1 Agent 

 The family Campylobacteriaceae is composed of Gram-negative, 

nonsporeforming, spiral or curved rod bacteria 0.2 to 0.8 µm wide and 0.5 to 5 µm long. 

Most species are motile with a single unsheathed flagellum at one or both poles 

(Vandamme 2000). Within the Campylobacter genus, 17 species have been identified 

including six subspecies and three biovars (Euzéby 1997). Campylobacter coli, 

Campylobacter concisus, Campylobacter curvus, Campylobacter fetus, Campylobacter 

gracilis, Campylobacter hyointestinalis, Campylobacter jejuni, Campylobacter 

lanienae, Campylobacter lari, Campylobacter rectus, Campylobacter showae and 

Campylobacter sputorum have been isolated from cattle and people (Giacoboni et al. 

1993d, Humphrey et al. 2007, Logan et al. 2000, Yan et al. 2005). C. jejuni 

encompasses two subspecies: C. jejuni subspecies jejuni and C. jejuni subspecies doylei. 

C. jejuni subspecies doylei has not been found in animal hosts to date, does not grow 

well at 42°C, and cannot reduce nitrate (On 2005, Parker et al. 2007). Hereafter,  

C. jejuni refers to C. jejuni subspecies jejuni.  

 C. jejuni and C. coli are considered the most important Campylobacter species 

for public health. Based on selective media culture in developed countries, C. jejuni and 
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C. coli account for approximately 80-94% and 2-15% of human infections respectively 

(Moore et al. 2005, Nachamkin et al. 2000b, Rajda and Middleton 2004). 

 In the laboratory setting, campylobacters are usually considered fragile; 

susceptible to aerobic, acidic, and highly osmotic environments, dessication, and 

temperature extremes (Humphrey et al. 2007, Murphy et al. 2006). Campylobacters are 

microaerophilic, surviving optimally in atmospheres with 5-7% oxygen and 

approximately 10% carbon dioxide (Corry et al. 1995, Leuchtefeld et al. 1982). 

Thermophilic campylobacters have a narrow temperature growth range of 

approximately 30°C to 46°C (Humphrey et al. 2007), and thermophilic species relevant 

to both cattle flora and human infection include C. coli, C. hyointestinalis C. jejuni,  

C. lanienae, C. lari, and C. sputorum, with 97-100% of isolates from these species 

growing at 42°C (Humphrey et al. 2007, On 2005).  

 Despite their limited temperature growth range, thermophilic campylobacters 

can be isolated from frozen meats (Moorhead and Dykes 2002, Paulsen et al. 2005) but 

are killed by pasteurization and adequate cooking; factors important for managing food 

safety concerns. Campylobacters cannot multiply in concentrations of 2% or greater 

sodium chloride (Doyle and Roman 1982), do not usually survive well on surfaces 

(susceptible to dessication) (Fernandez 1985), and are able to persist in aquatic 

environments and biofilm (Buswell et al. 1998). Interestingly, the presence of food has 

been found to protect campylobacters usually susceptible to the low pH levels of gastric 

acidity (Waterman and Small 1998). The above properties indicate the complexity of 

these enteric pathogens, and their ability to adapt to a variety of extreme environments. 
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 Change in the morphological structure of campylobacters from spiral to coccoid 

has been observed during environmental stress and in old cultures. The coccoid forms 

tend to be difficult to subculture and lose motility (Ng et al. 1985). These changes may 

allow campylobacters to survive in environmentally challenging environments in a 

“viable but non culturable” (VBNC) state (Oliver 2005, Rollins and Colwell 1986). 

However conflicting evidence as to the importance of coccoid forms, injured bacterial 

cells, and the VBNC form exists, with strain-to-strain variation suggested as an 

explanation (Jones et al. 1991). Some VBNC strains do not display coccoid morphology 

and were not able to colonize birds (Fearnley et al. 1994), while other injured cells have 

been found to resuscitate (and in some cases become virulent) after passage through 

animal and protozoal hosts (Axelsson-Olsson et al. 2005, Jones et al. 1991, Saha et al. 

1991). Further, injured strains have also been culturable but not able to colonize avian 

hosts and have been referred to as “culturable but not infectious” (Hald et al. 2001). The 

ability of injured strains to be non-culturable and yet revert to virulence with passage 

through an appropriate host may be epidemiologically important for identification of 

transmission routes to people (e.g. food and water). While campylobacters are 

considered relatively susceptible to environmental extremes in the laboratory, the high 

levels of human infection, and the ability of these organisms to survive in less than 

optimal real-world conditions (e.g. survive food processing and environmental water) 

deserve continued research attention. 
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2.1.2  Host 

In people 

 Campylobacter spp. cause bacterial gastroenteritis in people in both the 

developed and developing world (Oberhelman and Taylor 2000). Approximately 72-

80% of Campylobacter infections in Canada and the United States (USA) have been the 

result of foodborne transmission (Mead et al. 1999, Rajda and Middleton 2004). In 

people, disease incubation is approximately 1-8 days (mean 3 days) after ingestion, 

(Skirrow and Blaser 2000) and the infective dose may be as low as 500 cells in 

contaminated foods (Robinson 1981).  

 Symptoms in people include fever, headache, muscle pain and vomiting, 

although diarrhea (watery and often progressing to bloody) and abdominal cramping are 

the most common clinical signs (Skirrow and Blaser 1995). After onset, clinical signs 

usually last approximately a week, although prolonged illness and relapse may occur. 

Rarely extraintestinal sequelae may occur including rash, hepatitis, cholecystitis, 

pancreatitis, cystitis, septic abortion, reactive arthritis, hemorrhagic uremic syndrome, 

and bacteremia (particularly in immunocompromised people) (Skirrow and Blaser 

2000).  

 People of any age may be infected, although children under two years of age 

(developed and developing countries) and young adults (developed countries) may have 

higher incidence rates (Blaser 1997, Friedman et al. 2000). Severity of clinical signs can 

be strain dependent and it is possible for people to be infected by several strains at the 

same time (Black et al. 1988, Richardson et al. 2001).  
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 Due to underreporting issues, it is difficult to estimate human campylobacteriosis 

rates. Surveillance in Europe and the USA have reported rates of 3 to 167 cases per 

100,000 population (1998 and 1999 data) (Friedman et al. 2000, Takkinen et al. 2003). 

However, rates of 900-1000 cases per 100,000 population (USA) have been suggested 

after factoring in estimates for underreporting (Friedman et al. 2000, Nachamkin et al. 

2000a). Case fatality rates from Campylobacter infections have been estimated to be 

approximately 0.1-0.2% in the USA and Sweden (Kennedy et al. 2004, Mead et al. 

1999, Ternhag et al. 2005). 

 Serious autoimmune disorders related to Campylobacter infection include 

Guillain-Barré syndrome (GBS), its variant Miller Fisher syndrome (MFS), and reactive 

arthritis (Bremell et al. 1991, Endtz et al. 2000, Nachamkin 2002). Campylobacter 

infection was first postulated as a potential cause of GBS in 1982 (Rhodes and 

Tattersfield 1982). Approximately 0.3 to 1 per 1000 C. jejuni cases lead to GBS, and 

Campylobacter infection has been identified as the most common trigger to GBS 

(Gilbert et al. 2005, Nachamkin et al. 2000a, Nachamkin 2002, Rees et al. 1995). A 

slightly higher incidence of GBS has been reported in males compared to females, and 

GBS can affect patients of all ages (Nachamkin et al. 1998, Rees et al. 1995). In patients 

with GBS, inflammation and demyelination of peripheral nerves results in acute flaccid 

paralysis, sensory abnormalities, symmetrical weakness of limbs and respiratory 

muscles, and loss of reflexes. Treatment may take weeks to months. While complete 

recovery is possible, up to 25% of GBS patients may require mechanical ventilation and 

15-20% may have prolonged or permanent neurological deficits (Briscoe et al. 1987, 

Kuwahara 2004, Nachamkin et al. 1998, Winner and Evans 1993). In the developed 
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world, case fatality from GBS has been estimated at 2-10% and may be even higher in 

the developing world (Beale and Miller 1985, de Jager and Sluiter 1991, Kuwahara 

2004, Nachamkin et al. 1998).  

 Miller Fisher syndrome has also been associated with Campylobacter infection 

in people. This syndrome is characterized by ophthalmoparesis, lack of reflexes, and 

incoordination without weakness (Nachamkin et al. 2000a). Cases of reactive arthritis 

post campylobacteriosis have also been reported with duration of recovery lasting from 

a few weeks to years (Bremell et al. 1991, Skirrow and Blaser 2000). These autoimmune 

disorders resulting from campylobacteriosis may be debilitating, with prolonged 

recovery times and significant associated economic burden. 

 
In poultry 

 Poultry are considered a primary source of Campylobacter infection to people 

(Corry and Atabay 2001, Humphrey et al. 2007, Pearson et al. 2000). In a recent Quebec 

study, 38.5% of poultry carcasses surveyed (82 broiler chicken flocks, 2,414 carcasses) 

were positive for Campylobacter spp. (Arsenault et al. 2007). Poultry carcass 

contamination may vary from 102 to 105 Campylobacter cells per carcass and the 

infective dose in people has been estimated to be as low as 500 Campylobacter cells in 

contaminated foods (Jacobs-Reitsma 2000, Robinson 1981). An interesting study from 

Belgium (1999) documented a drop in campylobacteriosis corresponding to the removal 

of local poultry meat from shelves due to unrelated dioxin contamination. In that study, 

modeling estimated that local poultry meat was responsible for approximately 40% of 

human Campylobacter infections (Vellinga and Van Loock 2002). In Iceland, intensive 

epidemiological risk factor and intervention studies are underway to study transmission 
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of campylobacters into poultry flocks in that closed agricultural system (Campy-On-Ice 

project). Risk factors positively associated with flock or farm Campylobacter status 

were: increasing age and flock size, number of broiler houses on-site, manure spreading 

on-farm, the presence of vertical or vertical and horizontal ventilation shafts, producer 

boot disinfection procedures, and the use of geothermal water for broiler house cleaning. 

Protective practices included the use of treated water, the presence of other domestic 

livestock and storing manure on-farm (Barrios et al. 2006, Guerin et al. 2007a, Guerin et 

al. 2007b). 

 
In cattle 

 The prevalence of Campylobacter spp. in cattle feces may range from 5 to 100 % 

(Giacoboni et al. 1993c, Hoar et al. 1999, Inglis et al. 2003, Inglis et al. 2004). 

Campylobacter spp. prevalence levels have been identified based on the type of 

production system: dairy cattle 6-64% (Humphrey et al. 2007), pasture cattle 5-55% 

(Bailey et al. 2003, Beach et al. 2002, Busato et al. 1999, Giacoboni et al. 1993, Hoar et 

al. 1999), feedlot cattle 20-100% (Hyatt et al. 1998, Inglis et al. 2004, Minihan 2004), 

Tables 2.1 and 2.2. Beef calves also tend to have high fecal prevalences of 

campylobacters (20-100%) (Adesiyun et al. 1992, Firehammer and Myers 1981, 

Giacoboni et al. 1993, Myers et al. 1984). Campylobacters and C. jejuni have been 

commonly isolated from seemingly healthy cattle (Inglis et al. 2004, Inglis et al. 2006), 

and C. jejuni has been implicated as a cause of abortion in western Canadian cattle (Van 

Donkersgoed et al. 1990). 
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Table 2.1  Previously published fecal prevalence surveys of Campylobacter spp. and 
C. jejuni in commercial and experimental feedlots 
 
Area Year  Type C spp. 

or Cj 
# Pos (n)b % Pos ID Reference 

Australia 1998 COM C spp. 55(100) 55.0 C (Bailey et al. 2003) 
   Cj 55(100) 55.0 B  
Canada 2000 COM Cj 124(200)a 62.2 B,CBH, 

mPCR  
(Besser et al. 2005)c 

Canada 2002 EXP C spp. 318(380) 83.7 PCR (Inglis et al. 2003) 
   Cj 144(380) 37.9 PCR  
Canada 2002-2003 EXP C spp. 63(80) 78.7 C (Lefebvre et al. 2006) 
Canada NR EXP C spp. 268(299)a 89.6 PCR (Inglis et al. 2004) 
   C spp. 60(60) 100 PCR  
   Cj 40(299)a 13.4 mPCR  
   Cj 19(60) 31.7 mPCR   
Canada  NR EXP Cj 130(300) 43.3 C, cPCR (Inglis et al. 2005b) 
Canada 1999 COM C spp. 177(278) 63.7 C (Inglis et al. 2006)d 

   Cj 130(278) 46.8 B, cPCR  
Ireland 2001-2002 COM C spp. 322(600)a 54.0 C (Minihan et al. 2004) 
   C spp. 107(109) 98.2 C  
   Cj 215(600)a 35.8 B, PCR  
Ireland  COM C.spp. 62(109) 57.0 C (Minihan 2004)e 

   Cj 45(109) 41.3 B, PCR  
US 2002-2003 COM Cj 36(49) 73.5 B, PCR (Lee et al. 2004) 
US 2002-2003 COM C spp.  46(98)a 46.9 C (Bae et al. 2005) 
   Cj 31(98)a 31.6 CBH, 

mPCR,  
 

US NR COM C spp. 64(100) 64.0 C, ELISA (Beach et al. 2002)e 

US NR COM C spp. 537(2672)a 20.1 NR (Hyatt et al. 1998)a 
US NR EXP C spp. 47(816)a 5.8 C (Berry et al. 2006) 
   C spp. 21(51) 41.2 C  
   Cj 44(816)a 5.4 B, PCR  
a # samples tested; b n=# animals tested unless otherwise specified;  c Final sampling;  
d at exit of feedlot (modified charcoal cefoperazone deoxycholate agar);  
e pretransit to abattoir.  B: culture and biochemical testing; C: culture; C spp.: 
Campylobacter species; Cj: Campylobacter jejuni; CBH: colony blot hybridization; 
COM: commercial; ELISA: enzyme-linked immunosorbent assay; EXP: experimental; 
NR: not reported; PCR: polymerase chain reaction; cPCR: colony PCR; mPCR: 
multiplex PCR; RTQ PCR: real-time quantitative PCR. 
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Table 2.2  Previously published fecal prevalence surveys for Campylobacter spp. 
and C. jejuni in cattle intestinal contents/feces sampled in abattoirs 
 

Area Year C spp. 
or Cj 

# Pos (n)a % Pos ID Reference 

Australia NR Cj 9(30)b 30.0 B (Grau 1988) 
  Cj 3(66)c 4.5 B  
Canada 2004 C spp. 18(19) 95.0 PCR (Inglis et al. 2005a) 
  Cj 11(19) 57.9 RTQ-PCR  
Canada NR Cj 35(100) 35.0 B (Garcia et al. 1985) 
Denmark 1995-1996 C spp. 44(94) 47.0 C (Nielsen et al. 1997) 
  Cj 40(94) 42.5 B  
Ireland NR C spp. 60(109)d 55.0 C (Minihan 2004) 
  Cj 42(109)d 38.5 B, PCR   
  C spp. 69(109)e 63.0 C  
  Cj 39(109)e 35.8 B, PCR   
Italy 1999-2001 C spp. 27(193) 14.0 C (Bywater et al. 2004) 
Germany  C.spp. 126(191) 66.0 C  
UK  C.spp. 36(72) 50.0 C  
  Cj 141(456) 30.9 B  
Italy 2000-2001 C spp. 48(89)f 53.9 C (Pezzotti et al. 2003) 
   Cj 12(89)f 13.5 B  
Japan 1993-1997 C spp. 410(648) 63.3 C (Ono and Yamamoto  
  Cj 325(648) 50.2 B 1999) 
Japan 2003 Cj 18(78) 23.1 B, mPCR (Saito et al. 2005) 
New Zealand NR C spp. 0(65) 0 C (Gill and Harris 1982) 
Nth Ireland NR C spp. 52(210) 24.8 Ci (Madden et al. 2007) 
  Cj 30(210) 14.3 B  
Norway 1999-2001 C spp. 241(804)g 30.0 C (Johnsen et al. 2006) 
  Cj 208(804)g 25.8 B  
Sweden 1999-2000 C spp. NR 16.0 NR (Blixt et al. 2001)j 

Switzerland 2002-2003 C spp. 95(935)h 10.2 C (Al-Saigh et al. 2004) 
  Cj 95(935)h 10.2 PCR  
Turkey 2003 C spp. 35(200) 17.5 C (Acik and Cetinkaya  
  Cj 9(200) 4.5 mPCR 2005) 
UK 1993-1994 C spp. 322(360) 89.4 C (Stanley et al. 1998c) 
       
US 2001-2003 C spp. 48(252) 19.0 C (Gharst et al. 2006) 
  Cj 48(252) 19.0 PCR  
a n=# animals unless otherwise specified;  b feedlot cattle; c pasture cattle; d post-transit 
sample; e post-lairage sample; f n=# herds;  g adults and calves sampled; h 172/935 
feedlot cattle;  i 37°C;  j abstract only. B: culture and biochemical testing; C: culture;  
C spp.: Campylobacter species; Cj: Campylobacter jejuni; NR: not reported; Nth: 
Northern; PCR: polymerase chain reaction; mPCR: multiplex PCR; RTQ PCR: real-
time quantitative PCR. 
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 In southern Alberta, a body of research on the importance of feedlot cattle as 

Campylobacter reservoirs continues by Inglis et al. This research group developed 

polymerase chain reaction (PCR) technology to directly test cattle feces for 

campylobacters, and nested real-time quantitative PCR (RTQ-PCR) to quantify 

microbial numbers in the feces (Inglis and Kalischuk 2003, Inglis and Kalischuk 2004). 

In several surveys using these technologies, feedlot cattle in southern Alberta were 

found to shed campylobacters chronically with 84-90% of samples positive for 

Campylobacter spp., 13-38% positive for C. jejuni, and 27% of the fecal samples 

contained > 104 g-1 C. jejuni cells (Inglis et al. 2003, Inglis et al. 2004). Further, this 

group established that C. jejuni colonizes the proximal small intestine in healthy cattle 

(Inglis et al. 2005a). Antimicrobial resistance patterns in southern Alberta feedlot cattle 

have also been described, including both prevalence and development over time. 

Development of antimicrobial resistance in C. jejuni isolates to ampicillin, 

azithromycin, ciprofloxacin, enrofloxacin, erythromycin, gentamicin, meropenem, and 

naladixic acid over time were limited, while tetracycline and doxycycline resistance 

tended to develop quickly and to high levels over the feeding period (Inglis et al. 2005b, 

Inglis et al. 2006).  

 Cattle contact, occupational exposure to cattle, feces, or farm animals (Eberhart-

Phillips et al. 1997, Kapperud et al. 2003, Neimann et al. 2003, Studahl and Andersson 

2000), barbecuing red meat, and consuming undercooked red meat (Adak et al. 1995, 

Neimann et al. 2003) have been identified as factors increasing human risk of 

Campylobacter infection. Further, ruminant or cattle density have also been associated 

with infection (Louis et al. 2005, Nygard et al. 2004). Alternatively, other studies have 
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found no association with cattle contact (Kapperud et al. 1992) or consuming red meat 

(Kapperud et al. 2003, Schonberg-Norio et al. 2004, Studahl and Andersson 2000). One 

study interestingly found occupational contact with livestock or feces protective (Adak 

et al. 1995). 

 A 2004 study examined antimicrobial risk of pathogens (nasal and rectal swabs) 

from Alberta feedlot personnel and from animal care workers at the Lethbridge 

Research Station. Sixty-one people were tested at the beginning of the study and 46 

were retested nine months later. None of the participants were found to be shedding 

campylobacters. For inclusion in the study people had to be 18 years old, employed by 

and work at one of four feedlots or at the Lethbridge Research Station, and give 

informed consent (Read et al. 2004). It was not specified in the design that the 

employees worked directly with cattle, and it is possible that volunteer bias might apply. 

In addition, no serological evaluation for Campylobacter antibodies (indicating previous 

exposure) were carried out. 

 
Other potentially important reservoirs 

 Campylobacters may be carried by or infect a variety of wild mammals, birds 

and insects (Fallacara et al. 2001, Szalanski et al. 2004, Wahlstrom et al. 2003). 

Companion animals are known to be chronic carriers and can be infected with multiple 

Campylobacter spp. at the same time (Hald et al. 2004, Koene et al. 2004). While the 

transmission of campylobacters from pets to people is of public health concern, 

particularly in immunocompromised people, children, and the elderly, the ability of 

people to transmit campylobacters to pets is also worthy of note (Damborg et al. 2004). 

 Campylobacters have been detected in house flies, filth flies and darkling beetles 
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(Adhikari et al. 2004, Szalanski et al. 2004, Templeton et al. 2006). These insects may 

be important reservoirs for transmission of campylobacters to poultry, cattle and other 

reservoir hosts. Recently amoeba were identified as C. jejuni reservoirs able to 

resuscitate nonviable strains, which may be relevant to C. jejuni survival in water and to 

the persistence of these bacteria in the environment (Axelsson-Olsson et al. 2005). It is 

interesting to note that in a New Zealand molecular typing study, isolates from cattle, 

sparrows, flies and rodents were tested by pulsed field gel electrophoresis and all had 

identical clonal C. jejuni profiles (Adhikari et al. 2004). The complex ecology of 

campylobacters, including the multitude of reservoir host species, illustrates the 

challenges in controlling and preventing these important public health pathogens. 

 
Transmission 

 Transmission of Campylobacter spp. is through three main routes; food, water, 

and direct contact with infected or reservoir hosts (Humphrey et al. 2007). Consumption 

of undercooked meat (poultry, pork, beef, lamb, and seafood), unpasteurized milk, 

contaminated water, cross-contamination from raw meat, and direct contact with 

animals are some known sources (Clark et al. 2003, Damborg et al. 2004, Humphrey et 

al. 2007, McNaughton et al. 1982, Miller and Mandrell 2005, Neimann et al. 2003, 

Savill et al. 2001, Stanley et al. 1998b, Steele et al. 1997). Human-human transmission 

is possible, and while campylobacteriosis outbreaks do occur, greater than 95% of cases 

are thought to be due to endemic spread (Blaser 1997). Further, foreign travel can be an 

important human risk factor for developing campylobacteriosis and for fluoroquinolone 

resistance (Engberg et al. 2004, Johnson et al. 2008, Russell et al. 1993). 
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2.1.3  Environment 

Water 

 While campylobacters are not able to multiply in water, these bacteria are able to 

persist and remain viable in aquatic environments. In 2000, a large waterborne outbreak 

in Walkerton, Ontario raised public awareness to Campylobacter and Escherichia coli 

(E. coli) as waterborne pathogens; seven people died (two from C. jejuni) and 2,321 

people became ill from these enteric bacteria. Heavy rains washed cattle feces from 

nearby farms into supply wells, and inadequate chlorination of drinking water was 

blamed for the outbreak (O'Connor 2002). A large cohort study monitoring long term 

sequelae (Walkerton Health Study) has found an increased risk of chronic 

gastrointestinal symptoms (relative risk (RR) 2.4, 95% confidence interval (CI) 2.2-2.7) 

and arthritis (RR 1.4, 95% CI 1.0-2.0) in adults suffering from diarrhea at the time of the 

outbreak (Garg et al. 2006). This large-scale outbreak illustrates important public health 

consequences from contaminated water systems. Campylobacters have been isolated 

from marine, drinking, recreational, roof, and ground water (Hernandez et al. 1995, 

Savill et al. 2001, Stanley et al. 1998a), and water is a potential reservoir for 

transmission of environmental campylobacters. 

 
Soil and livestock manure 

 The farm environment has been described as “a self-perpetuating reservoir of 

infection” (Jones 2001). In 2005, the number of feedlot cattle in Canada was estimated 

to be 3,552,500 head (CanFax 2007b). Campylobacters have been isolated from dairy, 

pasture, and feedlot cattle (Acik and Cetinkaya 2005, Atabay and Corry 1998, Bailey et 

al. 2003, Giacoboni et al. 1993, Hoar et al. 1999, Inglis et al. 2006, Stanley et al. 1998b). 
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Livestock manure (e.g. cattle, and swine) is composted and spread on agricultural lands. 

In Alberta, the application and management of manure is regulated through the 

Agricultural Operation Practices Act (Gov of AB 2008). In previous experiments,  

C. jejuni inoculated into stored beef manure (slurry) took greater than 112 days to 

decline 90% (17°C) (Kearney et al. 1993), and in experimental application of C. jejuni 

to four types of New Zealand soils, 99% of C. jejuni remained in the top 5 cm of the 

soils and survived for at least 25 days (10°C) (Ross and Donnison 2006). In order to 

inactivate C. jejuni in soil, reduce possible contamination of water sources, and prevent 

infection of reservoir hosts (e.g. wild birds, and insects), appropriate composting and 

application practices are critical. In addition, access to manure within feedlot pens by 

birds, insects and potentially other reservoir hosts may be unfeasible to control. 

 
Biofilm  

 Biofilm is an extracellular matrix binding together microcolonies of organisms  

(e.g. bacteria, protozoa, and fungi) (Buswell et al. 1998, Donlan 2002). These 

microenvironments may protect campylobacters from detergents, antimicrobial agents 

and environmental stressors, leading to bacterial persistence and survival (Buswell et al. 

1998, Donlan 2002, Thomas et al. 1999, Trachoo and Frank 2002). Contamination of 

food and water with Campylobacter from biofilm reservoirs in kitchens, poultry houses, 

and on farms may be potential transmission routes for these pathogens to people 

(Buswell et al. 1998, Trachoo et al. 2002).   
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Seasonality 

 Although peak times may vary with region, campylobacteriosis rates have been 

found to rise during the warmer months of the year (spring and summer peaks) (Frost 

2001, Kovats et al. 2005, Louis et al. 2005, Nylen et al. 2002). In Alberta (1992 to 2000 

data), the lowest number of campylobacteriosis cases were reported in February-March 

and the highest numbers in late June-early July (Kovats et al. 2005). Seasonal 

prevalence increases during the warmer months have also been seen in poultry 

production (Guerin et al. 2007b, Meldrum et al. 2004). Interestingly, prevalence studies 

of campylobacters in water found peaks during the colder winter months (Carter et al. 

1987, Jones 2001, Obiri-Danso and Jones 1999). In cattle, research on the effect of 

seasonal Campylobacter shedding has been limited, and results may reflect the type of 

production system studied. In dairy cattle, seasonal peaks in Campylobacter shedding 

have been reported in spring (April) and autumn (October) in the United Kingdom (UK) 

including periodicity between years (Stanley et al. 1998b), and in autumn (March) in 

New Zealand (Meanger and Marshall 1989). An Irish study found higher fecal 

prevalences in feedlot cattle in January-February compared to November (Minihan et al. 

2004), a USA study found a summer peak (Berry et al. 2007), and a UK study found no 

seasonality in feedlot cattle (Stanley et al. 1998b). These results indicate that seasonal 

effects on Campylobacter shedding in feedlot cattle are not clear cut, and that continued 

research in this area is warranted. 

 
2.2  Identification and characterization of campylobacters 

 The ability to sequence bacterial genomes has revolutionized the taxonomy, 

characterization, and diagnostic tests for campylobacters. In 2000, Parkhill et al 
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published the first sequenced genome of C. jejuni (NCTC 11168) (Parkhill et al. 2000). 

Since then eight other C. jejuni subsp. jejuni genomes have been sequenced (Fouts et al. 

2005, Hofreuter et al. 2006, Poly et al. 2007). Strain variability is an important 

characteristic of campylobacters. Hypervariable regions have been identified using 

genomic sequencing and DNA microarray technology, and some strains (e.g. C. jejuni 

81-176) contain plasmids (Hofreuter et al. 2006, Larsen and Guerry 2005, Parkhill et al. 

2000). Strain variability may influence persistence in environmental extremes, 

virulence, antimicrobial resistance patterns, ability to infect/cause disease or induce 

sequelae such as GBS or MFS in people, and survival of campylobacters in water, feces, 

or food (Fitzgerald et al. 2005, Park 2005). At the same time, C. jejuni 81116 has been 

found to be genetically stable for over 20 years in different environments (Manning et 

al. 2001). Microbial populations consisting of both campylobacters that are genetically 

stable and those able to adapt to external forces may explain, to some extent, the 

continued success of campylobacters as human and foodborne pathogens. 

 Traditionally, selective culture media have been used to isolate Campylobacter 

spp. More recently, a combination of techniques including selective enrichment, culture 

isolation from selective agar, and then biochemical, serological or genotypic methods 

have been used to fully describe isolates (Miller and Mandrell 2005, Nachamkin et al. 

2000b, Yu et al. 2001). A variety of phenotypic and genotypic identification and typing 

tools have been developed, Tables 2.3 and 2.4. 

 The choice of molecular typing tool may be based on implementation costs, 

labour required, access to specialized equipment or software, portability and 

standardization, discriminatory ability and resolution of the technique, flexibility of 
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experiment design, and the time frame required for results (long-term research project 

compared to outbreak investigation). The number of available techniques, the lack of 

consensus within the research community, and the ongoing development of molecular 

typing tools illustrate that currently no one method is optimal for all circumstances. 
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Table 2.3  Phenotypic methods commonly used to identify or characterize 
campylobacters 
 

Technique Principle Advantages and Disadvantages 
A: Inexpensive                                                                               
Indicates viability    

Culture Selective growth 
based on agar 
components 

D: Long incubation times, precise temperature and  
   atmospheric conditions required                                                 
Training may be required for recognition of colony 
   morphology                                                                                 
Discriminates to genus only 
Viable but non culturable strains exist 
A: Inexpensive                                                                              
Indication of sample purity                                                            
Presumptive identification of genus 

Morphology        
e.g. Gram stain 

Direct microscopy 

D:Training may be required for recognition of organism shape   
Discriminates to genus only 

A:1.Easy to perform  Biochemical 
characteristics 

Differentiate based 
on metabolic 
activities.  
Groupings resulting 
from a series of 
tests constitute a 
'biotype'. 

D:May be labour intensive and expensive depending on the  
   level of resolution required                                                         
May have poor reproducibility because depends on growth  
   conditions                                                                        
Limited resolution unless a large number of biochemical traits 
   analysed for each sample 
A:Well established technique Serological 

characteristics  
Antibody reaction 
of a mammal to 
microbial antigens.  

D: Requires constant supply of antisera                                        
Can be expensive and time consuming                                         
Limited resolution as many strains non-typeable                         
Antigen cross-reaction can lead to false positives                         
Training may be required for consistent results 

A: Easy to perform                                                                        
Results specific                                                                              

Phage typing Lytic areas on lawn 
of bacterial growth 
on agar.                       

D:Requires constant supply of bacteriophages (time  
   consuming and labour intensive)                                                
Not standardized                                                                            
Each species and subspecies requires its own specifically  
   designed typing system                                                              
Resolution limited and based on the number of phages tested.     
A: Reproducible    Antibiograms Lytic areas on a 

lawn of bacterial 
growth on agar           

D: Limited resolution as unrelated strains can have the same  
   patterns 

A: advantages; D: disadvantages.(Klena and Konkel 2005, Riley 2004a, Riley 2004b) 
(E Taboada personal communication) 
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Table 2.4  Genotypic methods commonly used to identify or characterize 
campylobacters 
 
Technique Principle Advantages and Disadvantages 

A: High sensitivity                                                                           
Inexpensive                                                                                       
High throughput                                                                                
Can be used for speciation 

PCR  Amplification of genetic 
material based on specific 
primers, followed by 
electrophoresis.  May be used as 
an amplification step for many 
molecular techniques, including 
DNA microarray, RFLP, PFGE, 
AFLP. 

D:High risk of contamination                                                      
Electrophoresis reproducibility may be poor                                    
Nonspecific primers possible                                                            
Low resolution (not good for subtyping) 
A:Moderate to high resolution for subtyping                                   
Easy to perform                                                                                 
High throughput 

RFLP   
Commonly 
used for fla 
typing        
(RFLP-fla) 

Comparison of banding patterns 
from restriction endunuclease 
digestion of PCR amplified 
polymorphic DNA fragments         
e.g. flagellin genes. 

D:Dedicated software required for analysis of banding patterns      
Increased resolution requires the use of more restriction  
   enzymes                                                                                         
High throughput                                                                           
A:Uses whole genome to create profile                                            
Moderate resolution                                                                          
Can enable you to see genomic events (rearrangements,  
   insertions, deletions                                                                       

PFGE Comparison of banding patterns 
from macrorestriction 
endonuclease digestion of whole 
genomic DNA. 

D:Dedicated software required for analysis of banding patterns      
Some strains untypeable because of endogenous nuclease  
   activity                                                                                           
Patterns can sometimes be unstable                                                  
Low throughput                                                                                
Requires highly specialized and expensive equipment  
A:1. Uses whole genome to create profile                                        
High resolution                                                                                 
Does not require the genetic sequence of DNA targets to be  
   known  

AFLP PCR amplification of 
polymorphic DNA fragments 
flanked by specific restriction 
endonuclease sites, followed by 
comparison of fragments. D:Dedicated software required for analysis of banding patterns      

Requires highly specialized and expensive equipment                    
Moderate throughput 
A:Flexibility of design                                                                      
May be used on whole genomes or portions                                     
High resolution 

DNA 
microarray 

Hybridization of test DNA 
(fluorescently labeled) to short 
DNA sequences (targets) bound 
to solid substrate (e.g. glass 
slide).   

D: Protocols and cutoffs not standardized                                        
Gene sequences for targets must be known                                     
Low throughput                                                                                 
Requires highly specialized and expensive equipment 
A:1. High resolution                                                                         
Reproducible and protocols standardized  

 MLST Portions from 7 or 8  
housekeeping genes are 
amplified using PCR and then 
sequenced to look at allelic 
differences within each loci 

D:Gene sequences for targets must be known                                  
Requires highly specialized and expensive equipment               
Comparisons based on only a few genes                                          
Moderate throughput 
A: Reproducible and reliable  Ribotyping Hybridization of digested 

genomic DNA to ribosomal 
operon targets 

D:Low resolution                                                                              
Automation requires expensive equipment                                      
Moderate throughput                                   

A: advantages; D: disadvantages; AFLP: amplified fragment length polymorphism; 
MLST: multi-locus sequence typing; PCR: polymerase chain reaction; PFGE: pulsed 
field gel electrophoresis; RFLP: restriction fragment length polymorphism. 
(Klena and Konkel 2005, Riley 2004a, Riley 2004b) (E Taboada personal 
communication) 
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2.2.1  Phenotypic methods 

 Phenotypic methods (Gram stain, culture, biotyping, serotyping, phage typing 

and antibiograms) have traditionally been used to detect and characterize 

campylobacters (Riley 2004a). Culture of these bacteria is not straightforward. 

Temperature, duration of incubation, microaerophilic atmosphere, and type of 

enrichment and culture media are all important for successful growth of campylobacters. 

The most common temperature for incubation of thermophilic campylobacters is 42°C, 

and microaerophilic environments (10% CO2, 5% O2, 85% N2) are often used to 

promote growth (Nachamkin et al. 2000b).  

 A variety of different culture techniques have been used to isolate 

campylobacters from cattle feces and red meat (Corry et al. 1995, Inglis et al. 2006, 

Whyte et al. 2004, Wong et al. 2007). Enrichment broths including Bolton, Exeter, Park 

and Sanders and Preston broth (Baylis et al. 2000, Corry et al. 1995, Humphrey 1994) 

have been developed to increase growth and resuscitate damaged cells prior to culture. 

Most post-enrichment media are combinations of nutrient agar with antibiotics or blood 

to improve selection and growth of targeted Campylobacter spp. Examples of post-

enrichment media include cefoperazone amphoteracin teicoplanin agar, cefoperazone-

vancomycin-amphoteracin agar, Karmali, modified cefoperazone charcoal deoxycholate 

agar (mCCDA), Preston’s, and Skirrow’s media (Atabay and Corry 1998, Besser et al. 

2005, Bolton and Robertson 1982, Corry et al. 1995, Karmali et al. 1986). 

 While culture is usually inexpensive and has the advantage of indicating 

organism viability, the unpredictable sensitivity if conditions are not precise can be 

problematic, and usually 3-4 days are required to confirm detection. 
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 After culture identification, biochemical testing to distinguish the species of 

thermophilic campylobacters is routine and based on preferred growth temperatures, 

metabolic characteristics, and antibiotic resistance patterns (Riley 2004a). For example, 

C. jejuni will grow at 37°C and 42°C but not at 25°C (Corry et al. 1995). As with other 

Campylobacter spp., C. jejuni can produce catalase and oxidase, but only C. jejuni will 

hydrolyze hippurate (Corry et al. 1995). A drawback of biochemical identification is that 

strain variation exists, leading to possible misclassifications. For example, strains of  

C. jejuni have been found to be hippuricase negative (Hébert et al. 1984). As a result, 

genotypic methods continue to develop to replace phenotypic identification and improve 

sensitivity of detection (Denis et al. 1999, Hong et al. 2004, Inglis and Kalischuk 2003, 

Inglis and Kalischuk 2004). 

 Two serotyping methods, the Penner scheme which uses passive 

hemagglutination techniques based on heat stable antigens to a capsular polysaccharide 

(Penner and Hennessy 1980), and the Lior scheme which uses bacterial agglutination 

techniques based on heat labile antigens (Lior et al. 1982), have been used extensively to 

type Campylobacter strains. Both methods are time consuming, technically demanding, 

rely on constant supply of antisera, and are hindered by the large number of untypeable 

strains (Wassenaar and Newell 2000). Further, strains with the same serotype have often 

been found to be very different genetically (Wassenaar and Newell 2000). Even so, 

serotyping has been used worldwide to characterize campylobacters in epidemiologic 

studies (Clark et al. 2003, Devane et al. 2005, Fayos et al. 1992, Kramer et al. 2000, 

Nielsen et al. 2005, Saito et al. 2005). 
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2.2.2  Genotypic methods 

 A variety of molecular techniques have been developed to characterize strains of 

Campylobacter based on genetic composition. Sequencing and the amplification of 

genetic material has aided progress in the development of molecular techniques. 

Polymerase chain reaction is relatively inexpensive, with good sensitivity and specificity 

if contamination is minimized and if careful genetic sequence design is used (Riley 

2004b). Polymerase chain reaction amplifies genetic material based on specific primers, 

and has been used to identify genes of interest (e.g. virulence genes) and to detect 

Campylobacter spp. in food, water, and feces (Bang et al. 2003, Datta et al. 2003, 

Devane et al. 2005, Inglis et al. 2003). Modifications to PCR (e.g. nested PCR, 

multiplex PCR or real-time PCR) have enabled researchers to distinguish between 

closely related species (e.g. C. jejuni and C. coli) and to quantitatively estimate the 

number of organisms in samples (Inglis and Kalischuk 2004, Josefsen et al. 2004, Klena 

et al. 2004, Sails et al. 2003, Waage et al. 1999). Genetic sequences must be available 

for primer construction, and PCR does not differentiate between viable, damaged, or 

dead organisms.  

 Polymerase chain reaction has also been incorporated into techniques such as 

amplified fragment length polymorphism (AFLP) and PCR restriction fragment length 

polymorphism (PCR-RFLP). Fla-typing (PCR-RFLP of flagellin genes) has been used 

to successfully characterize Campylobacter strains, and to group epidemiologically 

related (outbreak) strains (Clark et al. 2003, Nielsen et al. 2000, Petersen and Newell 

2001). Amplified fragment length polymorphism (AFLP), a technique which utilizes the 

entire genome, can be highly discriminatory (Desai et al. 2001, Duim et al. 1999, 
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Manning et al. 2001, Schouls et al. 2003), but may be time consuming and requires 

specific equipment.  

 Multilocus sequence typing (MLST) is based on sequencing and amplification of 

housekeeping genes, and is replacing pulsed-field gel electrophoresis (PFGE) as the 

“gold standard” in Campylobacter typing (Djordjevic et al. 2007). Multilocus sequence 

typing is automated, data are reproducible, protocols have been standardized, and the 

method has been successfully applied to epidemiological investigation and to the 

population biology of campylobacters (Colles et al. 2003, Dingle et al. 2001, Dingle et 

al. 2005, Karenlampi et al. 2007, Manning et al. 2003). However, MLSTs 

discriminatory power may depend on the genes chosen and comparisons are based on 

relatively few genes.  

 Over time, molecular typing techniques have described Campylobacter strain 

similarities and differences in a variety of ecological niches, host species, food, and 

environmental sources (Klena and Konkel 2005, Riley 2004a), and the evolution of 

these methods must continue if the epidemiology of campylobacters is to be fully 

understood. 

 
2.2.3  DNA microarray 

 DNA microarray technology involves binding specific gene sequences to solid 

substrate (e.g. glass slide) using complementary base pair hybridization. On spotted 

arrays, currently the most common because of study design flexibility, each spot on the 

substrate may represent thousands of replicates of a particular genetic sequence 

(Taboada et al. 2007). Digested genomic DNA from test strains will bind competitively 

to the bound sequences if sufficient sequence similarity exists. Further, because so many 
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replicates of the sequence are bound to one spot, whole genome comparison of a 

reference strain to a test strain is possible. The bound genetic sequences (open reading 

frames, ORFs) may be synthesized oligonucleotides usually 20-70 base pairs in length 

(oligonucleotide arrays), or gene-specific DNA fragments (average 1000 base pairs) 

which are amplified using PCR (cDNA amplicon arrays) (Dorrell et al. 2005a, Taboada 

et al. 2007).  

 Oligonucleotide arrays require genetic sequences to be known (and are therefore 

not able to detect novel genes), do not require amplification steps, often have less cross-

hybridization than amplicon arrays, and may be able to detect single nucleotide 

polymorphisms with specific experimental designs (Dorrell et al. 2005b, Pearson et al. 

2003, Taboada et al. 2007). Amplicon arrays may be cheaper to produce than 

oligonucleotide arrays, however the sequences often exhibit more cross-hybridization 

and care must be taken to avoid contamination during PCR amplification (Dorrell et al. 

2005b, Taboada et al. 2007).  

 Array hybridizations are usually quantified through the use of fluorescent  

(e.g. Cyanine dye) labeling of DNA (Draghici 2003). Scanning at appropriate 

wavelengths for the label allows the intensity of each spot to be quantified in pixel units. 

Intensity cut-offs are then assigned to designate each gene as present or 

absent/divergent. DNA microarray may be used for both global clustering (whole 

genome evaluation) or for specific gene expression analysis. Microarray technology 

may also be used for detection of Campylobacter spp. in mixed microbial populations, 

for distinguishing between similar Campylobacter spp. (e.g. C. jejuni and C. coli), and 

for investigating strain diversity and evolutionary relationships (Champion et al. 2005, 
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Gaynor et al. 2004, Leonard II et al. 2003, On et al. 2006, Pearson et al. 2003, Sergeev 

et al. 2004, Taboada et al. 2004, Volokhov et al. 2003, Yoo et al. 2004). Array methods 

may be labour intensive and expensive, with lack of protocol standardization between 

laboratories. However, the use of robotics and automation are addressing these 

disadvantages. There is also little agreement as to how best to analyze results, which 

may include thousands of genes on one slide. The sequencing of Campylobacter strains 

has greatly accelerated our ability to investigate the epidemiology of campylobacters in 

the real world, and because DNA microarrays can assess entire microbial genomes 

(thousands of genes on one chip) this methodology has one of the highest discriminatory 

powers of any genotypic methodology to date. 

 
2.3  Rationale 

2.3.1  The beef industry in Alberta 

 Canada’s beef industry is the largest source of farm cash receipts of any single 

agricultural commodity (2005 data), and Canada is the third largest exporter of beef and 

cattle at 10% of the world’s exports (2006 data) (CanFax 2007b, Statistics Canada 

2006). In 2005, Alberta cattle were worth three billion dollars in farm cash receipts, 

38.4% of the province’s total (Statistics Canada 2006). In that same year, Canadians 

consumed 51.4 lbs of beef per capita (retail weight) (CanFax 2007b).  

 Alberta had 2,370,800 cattle on feed in 2005; 67% of the national total (CanFax 

2007b). As of January 1, 2007, 197 sites fed 1000 head or more. Thirty-five of those 

feedlots had one-time capacities of 10,000 head or more, and 12 operations fed 20,000 

or more cattle (representing 37% of the provincial total capacity) (CanFax 2007a). 
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Feedlots are distributed through the central corridor of the province, with the majority of 

sites in the southern portion of the province (CanFax 2007a).  

 In 2005 there were six federally inspected cattle slaughter plants in Alberta 

(AAFC 2005), all of which are required to meet federal government (Canadian Food 

Inspection Agency) guidelines on the use of hazard and critical control points (HACCP) 

during slaughter and processing. Provincially inspected slaughterhouses also exist and 

are responsible for approximately 5% of cattle slaughtered (CFIA 2003). 

 On May 20, 2003 the Canada/USA border was closed to the movement of live 

cattle because bovine spongiform encephalopathy was identified in a mature cow from 

Alberta. Movement of live cattle under 30 months of age from Canada to the USA did 

not resume until July 18, 2005 (Weerahawa et al. 2007).  

 The beef industry is extremely important to both the provincial and the national 

economies and to Canadian consumers in general. Further, high levels of 

Campylobacter spp. shedding by cattle may be relevant to public health, food safety and 

the environment. Continued research into the epidemiology of campylobacters in cattle, 

with emphasis on understanding transmission, reservoirs, and persistence of these 

bacteria in food and the environment, could help to reduce cattle shedding and the 

possibility of pathogen transmission in the future.  

 
2.3.2  The importance of campylobacters to public health 

Incidence of campylobacters in Alberta 

 Campylobacter spp. are a major cause of food and waterborne disease in people 

worldwide (Miller and Mandrell 2005). In Alberta, each human case of 

campylobacteriosis is reportable at the provincial level, and all cases are followed up by 
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the Alberta Medical Officer of Health in each regional health authority. In Alberta, stool 

culturing for campylobacteriosis is recommended by physicians if the patient has had 

diarrhea for five days or more (with no prior antibiotic use) or in cases with bloody 

diarrhea (ACPGP 1997). Further, a confirmed case is based on laboratory isolation of 

Campylobacter spp. from an appropriate clinical specimen, whether or not the patient 

has clinical symptoms (Gov of AB 2005). In Alberta in 2005, campylobacteriosis was 

reported at a rate of 36.1 cases per 100,000 people, a rate much higher than either E. coli 

O157:H7 infection (5.8/100,000) or salmonellosis (19.5/100,000) over the same time 

period (PHAC 2007, Statistics Canada 2007). Because transmission of campylobacters 

to people is commonly through food sources, food handling and kitchen guidelines to 

prevent cross-contamination of foods and to ensure the adequate cooking of meat are 

currently available to the public (CFIA 2007, Health Canada 2006). However improved 

education and public awareness are essential to reduce the incidence of 

campylobacteriosis in people. 

 
Burden of disease  

 Campylobacteriosis has significant economic impacts on the public health 

system. The true number of Campylobacter cases in people is difficult to estimate 

because underreporting of enteric disease is known to occur. This may be because 

symptoms are not severe enough for patients to access the healthcare system, because 

physicians may not always request a stool culture for identification, because diagnostic 

methods lack the sensitivity to find all cases, or because public health officials are not 

made aware of all clinical cases. Further, outbreaks may not be recognized because of 

the long incubation period, the wide host reservoir range, and the potential for cross-
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contamination between foods (Flint et al. 2004, Frost 2001, Mead et al. 1999, Miller and 

Mandrell 2005). In a UK study, an estimated 8.7 out of 1000 people were infected with 

Campylobacter annually. Of these, only 4.1 per 1000 population were likely to consult a 

physician and only 1.7 of 1000 would be confirmed positive by a laboratory (Frost 2001, 

Wheeler et al. 1999). An Ontario study showed that for every reported case of 

gastrointestinal illness in Ontario, a median of 285 community cases went unreported 

(Majowicz et al. 2005). 

 Because of the numbers of people affected and the potentially serious sequelae, 

Campylobacter infection can be a significant burden to health care systems. Several 

Canadian studies have looked at the incidence of GBS in Canada (Hauck et al. 2007, 

McLean et al. 1994). An administrative data study in Alberta found a mean incidence of 

1.6 per 100,000 over 11 years (GBS from all causes). Guillain-Barré syndrome 

development in patients has resulted in recurrent hospital admissions, extended hospital 

stays, ventilator support and patient death (Hauck et al. 2007). A USA study estimated a 

total annual cost due to Campylobacter infection in people to be 1.5-8 billion dollars 

(1995 USA dollars), including both the costs of campylobacteriosis and of related GBS, 

a significant economic burden on the health system (Buzby et al. 1997). 

 
Antimicrobial resistance 

 Research into antimicrobial use in animal production and increasing levels of 

antimicrobial resistance in people has been given high research priority. It has been 

found that C. jejuni and C. coli in people are usually resistant to cephalosporins (except 

a few broad-spectrum formulations) penicillins, rifampin, sulfamethoxazole, 

trimethoprim, and vancomycin (Nachamkin et al. 2000b). While macrolides are the 
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treatment of choice for most complicated cases in people, resistance rates for 

erythromycin range from 0-11%  for C. jejuni and 0-68.4% for C. coli, and resistance 

rates for clindamycin are variable (Nachamkin et al. 2000b, Reina et al. 1994). 

Fluoroquinolones have good activity against Campylobacter spp. in vivo, although 

resistant strains have been isolated from patients both prior to and after treatment 

(Nachamkin et al. 2000b).  

 In people, increases in quinolone resistance over time have been dramatic. In a 

study by Sanchez et al., over a five year period C. jejuni resistance to ciprofloxacin 

increased from 0% (n=23) to 51.3% (n=73) (Sanchez et al. 1994). The introduction of 

enrofloxacin into veterinary practice has been blamed for the increase in quinolone 

resistance in human populations, with both livestock and companion animals suggested 

as potential sources (Anderson et al. 2001, Endtz et al. 1991, Engberg et al. 2001). In 

Canada, enroflaxacin is currently approved for use in beef cattle (not dairy cattle or veal 

calves) and in dogs and cats; this drug was withdrawn from use in poultry in 1997 

(Engberg et al. 2001, Health Canada 2004).  

 Active surveillance of Campylobacter antimicrobial resistance profiles in both 

human and veterinary medicine has increased as a means of describing trends over time 

and assessing interventions. The Canadian Integrated Program for Antimicrobial 

Resistance Surveillance (CIPARS) actively surveys campylobacters in retail meat 

products and on-farm antimicrobial resistance patterns (Gov of Canada 2006a, Gov of 

Canada 2006b). Ongoing research into the mechanisms of resistance and the 

identification of resistance genes using molecular techniques will continue to increase 
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our understanding of Campylobacter infection and treatment, and the role of antibiotic 

use in people and animals. 

 
2.3.3  Food safety 

 Foodborne transmission is responsible for approximately three quarters of all 

cases of campylobacteriosis in North America (Mead et al. 1999, Rajda and Middleton 

2004). Poultry products are generally considered the primary source of Campylobacter 

infection in people (Humphrey et al. 2007). In Canada, people have become infected 

through drinking unpasteurized milk or contaminated water, and through eating 

undercooked or cross-contaminated meat (Clark et al. 2003, McNaughton et al. 1982, 

Miller and Mandrell 2005). An extensive list of outbreaks due to Campylobacter spp. in 

food and water sources (worldwide) has previously been published (Miller and Mandrell 

2005). 

 Campylobacter prevalence surveys in retail meat have been conducted as an 

assessment of disease risk through the food chain. Retail meats such as poultry, beef, 

pork and lamb have been assessed as sources of infection from host reservoir 

contamination, and as possible cross-contamination sources (Datta et al. 2003, Kramer 

et al. 2000, Pezzotti et al. 2003, Zhao et al. 2001). The prevalence of Campylobacter 

spp. in beef, retail and abattoir surveys (not including carcass swabs), has been reported 

to be 0-32%, Tables 2.5 and 2.6. In a Canadian study, Lammerding et al found 17.1% of 

269 abattoir beef samples to carry Campylobacter spp. (Lammerding et al. 1988). More 

recently, a retail poultry and beef survey in Edmonton, Alberta found Campylobacter 

prevalences of 62% (n=100) in poultry meat and 0% (n=100) in ground beef 

(Bohaychuk et al. 2006). 
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Table 2.5  Previously published surveys of the prevalence of Campylobacter spp. 
and C. jejuni in fresh, uncooked, retail beef samples  
Area Year C spp. 

or Cj 
Pos(n) % 

Pos 
Method Beef Type 

 (Notes) 
Reference 

Austria NR C spp. 2(84) 2.4 C RM (Mayrhofer et al. 2005) 
  Cj 1(84) 1.2 B RM  
Canada 2001 C spp. 0(100) 0 C G (Bohaychuk et al. 2006) 
Denmark 2001-2002 C spp. 0(777) 0 C RM (Nielsen et al. 2005) 
England 1998 C spp. 52(96) 54.2 C L (Kramer et al. 2000) 
  Cj 47(96) 49.0 B L  
England 1984-1986 C spp. 30(127) 23.6 C RM (Fricker and Park 1989) 
  Cj 30(127) 23.6 B RM  
England NR C spp. 0(1) 0.0 C S (Bolton et al. 2002) 
  Cj 5(5) 100 B,PCR-

ELISA 
L  

Ireland 2001-2002 C spp. 7(221) 3.2 C RM (Whyte et al. 2004) 
  Cj 6(221) 2.7 B RM  
Ireland NR C spp. 4(20) 20.0 C G (Cloak et al. 2001) 
Italy 2000-2001 C spp. 2(151)H 1.3 C RM (Pezzotti et al. 2003) 
 2000-2001 Cj 2(151)H 1.3 B RM  
Japan 1984-1985 C spp. 2(120) 1.7 C G (Fukushima et al. 1987) 
  Cj 2(120) 1.7 B G  
Japan 1993-1998 C spp. 0(58) 0 C RM, I (Ono and Yamamoto 1999) 
  C spp. 0(54) 0 C RM, D  
Kenya NR C spp. 1(50) 2.0 C RM (Osano and Arimi 1999) 
  Cj 1(50) 2.0 B RM  
Korea 2001-2006 C spp. 3(250) 1.2 C RM (R,W,TR) (Hong et al. 2007) 
 2001-2002 Cj 0(50) 0 B,PCR RM  
 2003-2004 Cj 1(100) 1.0 B,PCR RM  
 2005-2006 Cj 2(100) 2.0 B,PCR RM  
NZ  2003-2004 C spp. 8(230) 3.5 C G,RM (Wong et al. 2007) 
  Cj 8(230) 3.5 C,PCR G,RM  
NI NR C spp. 0(50) 0 C RM not G (Madden et al. 1998) 
UK 1997 C spp. 10(1015) 1.0 C G (BT) (Little and de Louvois 1998) 
USA 1983-1984 Cj 17(360) 4.7 B RM (Stern et al. 1985) 
  Cj 13(360) 3.6 B G  
USA 1982-1983 C spp. 1(230) 0.4 C RM (Harris et al. 1986) 
USA 1999-2000 C spp. 1(210) 0.5 C S (Zhao et al. 2001) 
  Cj 1(210) 0.5 B,PCR S  
USA 2002-2005 C spp. 1(2073) 0.05 C G (Gov of USA 2005) 
  Cj 1(2073) 0.05 B,PCR G  

B: culture and biochemical testing; BT: butcher; C: culture; C spp.: Campylobacter 
species; Cj: C. jejuni; D: domestic; RM: red meat (beef); G: ground beef; GA: gall 
bladder; I: imported; L: liver; N: neck; NI: Northern Ireland; NZ: New Zealand; PCR: 
polymerase chain reaction; PCR-ELISA: PCR enzyme-linked immunosorbent assay;  
S: steak; W: warehouse; TR: traditional market; UK: United Kingdom; USA: United 
States.  
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Table 2.6  Previously published surveys of the prevalence of Campylobacter spp. 
and C. jejuni in beef abattoirs samples 
 

 
a geographical area inferred from country of residence of first author;  
b denominator is # Campylobacter isolates tested. 
 A: abattoir; B: culture and biochemical testing; BT: butcher; C: culture; CA: calves;  
C spp.: Campylobacter species; Ch: chilled; Cj: C. jejuni; CS: carcass swab;  
D: deboned; F: feedlot cattle; G: ground beef; GA: gall bladder; L: liver; MM: minced 
meat (mostly beef); N: neck; NI: Northern Ireland; NZ: New Zealand; P: pasture cattle; 
S: steak; Sk: skinned; R: retail; RM: red meat (beef); US: United States; W: warehouse; 
Wa: washed; TR: traditional markets. 
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Area Year C spp. 
or Cj 

Pos (n) % 
Pos 

ID Beef Type 
(Notes) 

Reference 

Australia 2005 C spp. 0(151) 0.0 C,PCR G,RM (R,W,TR) (Bosilevac et al. 2007) 
NZ 2005 C spp. 1(216) 0.5 C,PCR G,RM  
Uruguay 2005 C spp. 1(250) 0.4 C,PCR G,RM (I)  
  Cj 1(250) 0.4 C,PCR, 

mPCR 
G,RM(I)  

USA 2005 C spp. 5(393) 1.3 C,PCR G,RM (I)  
  Cj 5(393) 1.3 C,PCR, 

mPCR 
G,RM (I)  

Australia 2000-2001 Cj 60(65) 92.3 B CS (CA) (Grau 1988) 
  Cj 11(44) 25.0 B CS (F)  
  Cj 3(70) 4.3 B CS (P)  
Belgium 1996 C spp. 6(62) 9.7 C CS (Korsak et al. 1998) 
Belgium 1997 C spp. 3(60) 5.0 C RM (Ghafir et al. 2007) 
 1997 C spp. 2(60) 3.3 C CS  
 1997 C spp. 0(67) 0.0 C G  
 1997 C spp. 19(60) 31.7 C L  
 2000-2001 C spp. 5(786) 0.6 C G (R,A)  
 2000-2001 Cj 5(786) 0.6 B,PCR G (R,A)  
Canada NR Cj 12(100) 12.0 B L (Garcia et al. 1985) 
  Cj 33(100) 33.0 B GA  
Canada 1983-1984 C spp. 46(269) 17.1 C N (Lammerding et al.  
 1983-1984 Cjb 58(76)b 76.3 B N,GA 1988) 
 1985-1986 C spp. 42(329) 12.8 C N  
 1985-1986 Cjb 71(74)b 95.9 B N,GA  
aEngland NR C spp. 37(117) 31.6 C CS (Bolton et al. 1982a) 
England 1979 C spp. 21(2015) 1.0 C G (R,A) (Turnbull, Rose 1982) 
England NR C spp. 3(135) 2.2 C MM (R,BT,A) (Bolton et al. 1985) 
  Cj 3(135) 2.2 B MM  
Ireland NR C spp. 0(109) 0 C CS (Minihan 2004) 
Japan NR C.spp. 0(52) 0 C RM (R,A) (Tokumaru et al. 1990) 
NZ NR C spp. 7(30) 23.3 C CS (CA Sk) (Gill and Harris 1982) 
  C spp. 6(30) 20.0 C CS (CA Wa)  
  C spp. 3(30) 10.0 C CS (CA Ch)  
  C spp. 4(30) 13.3 C CS (D)  
NI NR C spp. 0(100) 0.0 C N (Madden et al. 2001) 
NI NR C spp. 0(100) 0.0 C N (Madden et al. 1998) 
Poland NR C spp. 1(114) 0.9 C CS (Kwiatek et al. 1990) 
  Cj 0(114) 0 C CS  
Sweden 1999-2000 C spp. NR <3.0 NR CW (Blixt et al. 2001) 
USA 1992-1993 C spp. 84(2064) 4.0 C CS (Gov of US 1994) 
USA 1993-1994 C spp. 24(2109) 1.1 C CS (Gov of US 1996a) 
USA 1993-1994 C spp. 1(562) 0.2 C G (Gov of US 1996b) 
USA NR C spp. 2(100) 2.0 C CS (F) (Beach et al. 2002) 
 NR C spp. 0(96) 0.0 C CS (P)  
USA 2002-2003 Cj 18(19) 94.7 B,PCR CS (Lee et al. 2004) 
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2.4  Conclusions 

 Public awareness of food safety issues continues to increase, and further research 

in this area is essential to maintaining consumer confidence. The potential impact of 

campylobacters on food safety, on clinical disease in human populations, and on the 

economic burden to health care systems requires continued investigation. Further 

research into the adaptive mechanisms, genetic characteristics, and the epidemiology of 

these bacteria, including the importance of animal and environmental reservoirs, is 

critical if appropriate prevention and control measures are to be implemented to protect 

public health. 
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CHAPTER 3  
PREVALENCE AND RISK FACTOR INVESTIGATION OF CAMPYLOBACTER 

SPECIES AND CAMPYLOBACTER JEJUNI IN FEEDOT CATTLE FECES 
 

3.1  Introduction 

 Thermophilic Campylobacter species are important targets for veterinary and 

public health research because of their zoonotic potential, large range of reservoir hosts, 

and environmental persistence (e.g. survivability in water). Campylobacter jejuni  

(C. jejuni) and Campylobacter coli (C. coli) cause the majority of human cases of 

illness, with C. jejuni responsible for 80-85% of these (Moore et al. 2005). Transmission 

to people may be through the ingestion of contaminated food or undercooked meat, 

water, or raw milk (Humphrey et al. 2007).  

 Thermophilic Campylobacter species are commonly isolated from food 

producing animals including poultry, cattle, swine, and sheep (Bywater et al. 2004, 

Humphrey et al. 2007), with poultry generally recognized as the primary source of 

infection for people (Humphrey et al. 2007). Cattle may be sources of infection for 

people (Clark et al. 2003, Garcia et al. 1985, Humphrey et al. 2007) and potentially 

important reservoirs for environmental spread to water (Clark et al. 2003) and to other 

hosts (e.g. wild birds, insects, rodents, and poultry (Adhikari et al. 2004, Ziprin et al. 

2003). In 2000, a large waterborne outbreak of enteric disease (Campylobacter spp. and 

Escherichia coli O157:H7) in Walkerton, Ontario affected 2,321 people (two deaths 

from C. jejuni) and raised public awareness to cattle as enteric pathogen reservoirs 
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(O'Connor 2002). Canadians have been infected with Campylobacter spp. from direct 

contact with cattle and through the consumption of raw milk (Dilworth et al. 1988, 

McNaughton et al. 1982). In Alberta, campylobacteriosis is the most common notifiable 

bacterial enteric disease with 36.1 cases per 100,000 people in 2005 (PHAC 2007, 

Statistics Canada 2007). 

 In 2005, the province of Alberta had 2,370,800 cattle on feed; 67% of the 

national total (CanFax 2007b). As of January 1, 2007, 197 feedlots fed 1,000 head or 

more. Thirty-five of these feedlots had one-time capacities of 10,000 head or more, and 

12 operations had one time capacities of 20,000 head or more (representing 37% of the 

provincial total capacity) (CanFax 2007a).  

 In cattle, C. jejuni colonizes the proximal small intestine and may be found in 

digesta throughout the intestinal tract (Inglis et al. 2005a). The prevalence of 

Campylobacter spp. in dairy cattle has been reported to be 6-64% (Humphrey et al. 

2007), and North American fecal studies report the prevalence of Campylobacter spp. to 

be 5-49% in pasture cattle (Bae et al. 2005, Beach et al. 2002, Hoar et al. 1999). In 

North American feedlots, fecal Campylobacter spp. prevalences range from 46-100% 

using culture or polymerase chain reaction (PCR) methodology (Bae et al. 2005, Inglis 

et al. 2003, Inglis et al. 2004, Inglis et al. 2006, Lefebvre et al. 2006), and 32-74% for  

C. jejuni using biochemical or molecular identification techniques (Bae et al. 2005, 

Besser et al. 2005, Inglis et al. 2003, Inglis et al. 2004, Inglis et al. 2005b, Inglis et al. 

2006, Lee et al. 2004). Because of the possibility of transmission of campylobacters to 

other cattle, poultry, other livestock, companion animals, birds, insects or the 

environment, research on campylobacters in cattle continues to be supported. 



64 
 

 Few risk factors for Campylobacter spp. shedding in beef cattle have been 

identified (Hoar et al. 2001, Minihan et al. 2004). In an Irish longitudinal study, 

shedding of Campylobacter spp. in feedlot cattle was associated with the pen involved, 

environmental contamination of pen dividing bars and water troughs, and the month of 

sampling (Minihan et al. 2004). Distinct seasonal trends in Campylobacter spp. 

prevalence have been reported in human and poultry studies (Humphrey et al. 2007), 

although the exact timing of the peaks varies among countries (Kovats et al. 2005). In 

cattle, the effect of season on Campylobacter spp. shedding has not been as definitive. 

Seasonal peaks have been identified in dairy cattle including a United Kingdom study in 

which seasonal differences in prevalence of Campylobacter spp. were found in dairy but 

not beef cattle (Stanley et al. 1998). The generally higher fecal Campylobacter spp. 

prevalences reported in feedlot cattle compared to dairy or pasture surveys (Bae et al. 

2005, Hoar et al. 1999, Humphrey et al. 2007) also suggest that differences may exist 

between beef production industries, and that targeted research into risk factors in feedlot 

cattle is required. Further, production system differences between North America, 

Europe and other continents suggest that geographically targeted studies should be 

conducted. 

 This chapter reports the results of a fecal survey from feedlot cattle near the end 

of the feeding period. The goals of this project were 1) to obtain isolation rates of 

Campylobacter spp. and C. jejuni in cattle feces prior to the animals entering the food 

chain, 2) to obtain isolation rates of Campylobacter spp. and C. jejuni in cattle feces in 

summer and winter as indicators of seasonal fluctuation, 3) to conduct preliminary risk 

factor analyses based on Campylobacter spp. isolation rates in feces after adjusting for 
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clustering at pen and feedlot levels, and 4) to collect C. jejuni isolates for molecular 

characterization (Chapter 5). 

 
3.2  Materials and methods 

3.2.1  Sample size calculation 

 For a survey using simple random sampling, 22 samples would have been 

necessary to measure a 68% expected prevalence of C. jejuni (Minihan et al. 2004) with 

20% precision and 95% confidence (Epi-Info, version 3.01, CDC, USA, 2003). After 

applying an inflation factor formula (Dohoo et al. 2003) to account for clustering of the 

expected frequency of Campylobacter within pens, the survey required seven feedlots, 

assuming an intraclass correlation coefficient (ICC) of 0.3, an unadjusted sample size of 

22, sampling of 40 pens per feedlot, and one sample per pen. An ICC for clustering of  

C. jejuni in cattle feces was not available from previous publications, and the choice of 

0.3 was a slightly more conservative estimate than previously published ICCs for non-

enteric cattle conditions (McDermott and Schukken 1994). To assess within-pen 

variability, it was decided to sample 10 fecal pats per pen for a total of 2,800 fecal 

samples. Ethics approval for this project was received from both the University of 

Saskatchewan Biomedical Research and the University of Calgary Conjoint Health 

Research Ethics Boards. 

 
3.2.2  Study animals and sampling protocol 

 The sampling target was feedlot beef cattle near slaughter weight. Seven 

commercial Alberta feedlots agreed to participate. Four feedlots had one-time capacities 

of 10,000-19,999 animals, two had capacities between 20,000 and 39,999 head, and one 
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had a capacity of ≥ 40,000 cattle. Animals sampled in this study were crossbred steers or 

heifers typical of the beef herds in western Canada (British Columbia, Alberta, 

Saskatchewan and Manitoba). Cattle were kept in open-air, dirt floor pens with 20% 

porosity wood fences, and the number of animals per pen ranged from 14-538.  

 Upon arrival to feedlots, cattle were processed as per standard practices of the 

feedlot based on the age class, gender, weight, and health risk category of the animal. 

This may have included recording body weight, individual animal identification (e.g. ear 

tagging), administration of growth implants, castration of bulls, induction of abortion in 

pregnant heifers, vaccination for protection against agents including infectious bovine 

rhinotracheitis, parainfluenza-3 virus, bovine viral diarrhea virus, bovine respiratory 

syncytial virus, Mannheimia haemolytica, Clostridia spp. and/or Histophilus somni, and 

parasiticide treatment (e.g. topical avermectin). In addition, injectable metaphylactic 

antimicrobials may have been administered at processing depending on the assigned 

health risk category of each group of animals. Individual animal injectable antimicrobial 

use data were not collected for this study.  

 Within the feedlot industry, “on feed” refers to cattle confined within feedlot 

pens and fed ad libitum high concentrate “finishing” rations to maximize growth prior to 

slaughter. In this study cattle finishing diets varied between feedlots, but generally 

contained approximately 80% carbohydrate sources (barley or other cereal grains), 

approximately 18% roughage sources (cereal or corn silage), and approximately 2% 

vitamin and mineral supplements (all as-fed). Ionophores and antimicrobials (monensin, 

oxytetracycline, chlortetracycline, tylosin) fed for seven or more days during the feeding 
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period were documented by pen, and the average number of days study cattle were on 

feed was 150 (range 38 to 462 days). 

 For each sampling date, feedlot personnel at each site identified the 20 pens 

closest to slaughter based on expected shipping dates. In this study, 85% of pens were 

sampled within 47 days of slaughter (range 22-120 days). Average pen weight was 

supplied by feedlots. Pen size (area) was supplied by feedlots or approximated at the 

time of sampling for calculation of pen density (# animals/m2). Each feedlot was visited 

twice, once in winter (Jan 17 – Feb 1, 2005) and once in summer (Aug 22 – Sept 13, 

2005). Geographically, feedlots were located within four regional health authorities: 

Chinook (4 sites), Palliser (1 site), Calgary (1 site) and East Central (1 site).  

 The first 10 fresh pen-floor fecal pats (steaming or observed defecation) were 

sampled in each pen using Starswab II (Starplex Scientific Inc, Etobicoke, ON, Canada) 

charcoal transport media swabs. Efforts were made to avoid sampling multiple pats from 

the same animal. Each swab was inserted into five different locations within each fecal 

pat with care to avoid gross environmental contamination, and re-inserted into the 

charcoal transport media. Ten swabs from each pen were placed into a medium Ziploc 

bag (SC Johnson, Racine, WI, USA), the bags were placed into an insulated foil bag 

(KeepCool-GenericKC9, Winnipeg, MB, Canada) with four frozen gel packs (Ice-

Pak/Hot-Pak, Montreal, QC, Canada), with care to avoid placing the ice packs onto the 

swab tips. The insulated bag was then packaged into a cardboard box and shipped via 

courier (labeled as per International Air Transport Association regulations) to the 

Vaccine and Infectious Disease Organization (VIDO) in Saskatoon, SK, Canada. A 

Hobo H08 Pro temperature monitor (Onset Computer Corporation, Pocasset, MA, USA) 



68 
 

was included in each of the 14 shipments. Swabs were processed within approximately 

24 hours of collection, with the exception of one shipment which was processed at 48 

hours due to weather related transport delay. Transport temperature ranges were 

monitored from two hours after closure to two hours before the shipment was opened. 

 
3.2.3  Culture methodology 

 Each charcoal swab was streaked onto Karmali selective agar (Oxoid, CM935 

with supplement SR0167E, Nepean, ON, Canada) and incubated microaerobically (85% 

N2, 10% CO2, 5% O2) at 42°C for 48 hours. Each incubation batch included a lab strain  

C. jejuni plate as positive control. One colony considered positive for Campylobacter 

spp. from each sample (based on growth, color and morphology of the colony, and color 

of the cell mass) was selected and streaked onto a Karmali agar plate and incubated at 

42°C (85% N2,10% CO2, 5% O2) for a further 48 hours.  

 
3.2.4  Hippurate hydrolysis testing 

 Hippurate hydrolysis testing was used to differentiate Campylobacter colonies 

and identify isolates as C. jejuni. For the winter collection, two Campylobacter spp. 

positive isolates from most pens (277 samples from 140 pens) and for the summer 

collection almost all Campylobacter positive isolates (1,209 of 1,210) were tested for 

hippurate hydrolysis. A loopful of bacterial cells was emulsified in 100µL of 1% 

aqueous sodium hippurate (Sigma-Aldrich H529, Oakville, ON, Canada) in a single well 

of a 96 well titre plate. After two hours incubation at room temperature, 50 µL of 

ninhydrin solution (3.5% ninhydrin in a 1:1 mixture of acetone and butanol) was slowly 

added to each well and incubated at 37°C for 20-30 minutes. Purple color change 
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indicated a positive reaction, whereas clear to yellow indicated a negative sample. 

Positive isolates were tentatively identified as C. jejuni and were frozen at -70°C in 25% 

glycerol for later molecular characterization. 

 
3.2.5  Polymerase chain reaction (PCR) sensitivity analysis 

 A subsample of study genomic DNA (104 isolates) was examined using 

multiplex PCR as a means of assessing the accuracy of culture and hippurate techniques. 

Isolates were randomly selected (using random numbers in Microsoft Office Excel 

2007, Microsoft Corporation) from all hippurate positive isolates after stratification by 

feedlot and season. Confirmation of the isolates as C. jejuni was required for future 

molecular genotyping (Chapter 5). Published PCR primers for Campylobacter spp. (23S 

rRNA), C. jejuni (hipO), and C. coli (glyA) were used, with initial denaturation at 95°C 

for 30 seconds, annealing at 59°C for 30 seconds, with two extension steps at 30 

seconds and seven minutes at 72°C (Wang et al. 2002). Positive C. jejuni and C. coli 

controls were included in each PCR. 

 
3.2.6  Data analysis 

 Of the 2,800 fecal samples collected, 22 of the culture plates were overgrown 

with mold/bacteria and could not be read, and data were missing for two samples. The 

missing/unreadable data were distributed across 14 pens, and were excluded from 

analyses. All prevalence 95% confidence intervals (CI) were calculated using the 

binomial exact specification (Intercooled STATA 9.2, StataCorp LP, College Station, 

TX, USA).  
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 Factors affecting whether or not a fecal sample was positive for Campylobacter 

spp. using culture methodology were examined using hierarchical models with a 

binomial distribution and logit link function. The model was specified using restricted 

iterative generalized least square estimation and using second order penalized quasi-

likelihood estimates (MLwiN version 2.0, Centre for Multilevel Modeling, Institute of 

Education, London, UK) (Dohoo et al. 2003). The strength of the association between 

outcome and exposure was reported as an odds ratio with 95% confidence intervals.  

 In the first stage of the analysis, prevalence differences among feedlots were 

investigated in a model with feedlot identifier as the only fixed effect. The potential lack 

of independence or clustering of samples within pens was accounted for by using a 

random effect for pen.  

 In the second stage of the analysis, the importance of a series of feedlot- and 

pen-level risk factors for the occurrence of Campylobacter spp. was assessed after 

accounting for potential clustering of observations using random effects for both pen 

and feedlot (Dohoo et al. 2003). Continuous variables, including number of days-on-

feed (≤ 149, 150-299, or ≥ 300) for each pen, number of head per pen (≤99, 100-199, 

200-299, ≥ 300), pen density (< 0.1 or ≥ 0.1 animals/m2), average pen weight (≤ 499, 

500-599, ≥ 600 kg or missing), and feedlot size (10,000-19,999, 20,000-39,999,  

≥ 40,000 head), were categorized to assess the linearity of association between each 

factor and the log odds of the occurrence of Campylobacter spp. Categorical variables 

explored in analysis included pen feed treatment for seven or more days during the 

feedlot stay (no treatment, monensin/ tylosin, monensin/chlortetracycline/tylosin, or 
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monensin/ oxytetracycline), geographical location (regional health authority), pen 

gender (heifer, steer, or mixed), and season of sampling (winter or summer).  

 Risk factors were each sequentially examined in the null model containing only 

the random effects for pen and feedlot, and considered for inclusion in the final model if 

they were associated with the outcome in unconditional analysis at p ≤ 0.25. Manual 

backwards stepwise analysis was used to achieve a final model containing statistically 

significant risk factors (p ≤ 0.05) or variables that acted as important confounders 

(accounting for the variable resulted in >20% change in the measure of association). 

After establishing the final summary main-effect model, biologically reasonable first-

order interaction terms were added, assessed for their association with the outcome, and 

reported if p ≤ 0.05.   

 Model fit was evaluated by examining residuals and the impact of outliers. 

Variance components for both the final and null (constant only) models were 

approximated using latent variable calculation which fix error variance at π2/3 (Dohoo et 

al. 2003). The herd level variance components were calculated as herd variance divided 

by total variance, and the pen level variance components were calculated using pen 

variance divided by total variance. 

 
3.3  Results 

3.3.1  Prevalence of Campylobacter spp. and C. jejuni in feces and feedlot pens 

 The fecal prevalence of Campylobacter spp. in feedlot cattle from large 

commercial feedlots ranged from 76-95% by culture (Table 3.1) with an overall study 

prevalence of 87% (95% CI 86-88, 2,420 of 2,776 samples positive). In addition, 1,020 

of 1,486 (69%, 95% CI 66-71) Campylobacter positive isolates were identified as  
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C. jejuni using hippurate hydrolysis testing, Table 3.1. All of the 280 pens sampled were 

positive for Campylobacter spp. based on culture and 279 of 280 pens were positive for 

C. jejuni based on hippurate hydrolysis testing. In a model accounting for clustering of 

observations within pen, the prevalence of Campylobacter spp. positive samples was 

significantly different among feedlots (Wald χ2 77.97, df 6, p < 0.001).  

 
 
Table 3.1  Feedlot cattle fecal samples positive for Campylobacter spp. by culture 
and for C .jejuni (from Campylobacter spp. positive isolates) using hippurate 
hydrolysis testing 
 

Campylobacter species Campylobacter jejuni 
Feedlot Pos (n) % Pos 95% CId Pos (n) % Pos 95% CId 

A 365 (396) 92 89-95 163 (223) 73 67-79 
B 362 (400) 91 87-93 148 (222) 67 60-73 
C 381 (400) 95 93-97 144 (224) 64 58-71 
D 350 (400) 88 84-91 156 (216) 72 66-78 
E 366 (400) 92 88-94 159 (226) 70 64-76 
F 297 (393) 76 71-80 137 (183) 74 67-80 
G 299 (387) 77 73-81 114 (192) 59 52-66 

Total 2420 (2776) ab 87 86-88 1020 (1486)c 69 66-71 
a sample not readable due to mold overgrowth (n=22); b missing data (n=2);  
c missing data (n=4); d binomial exact confidence interval. 
Pos: positive. 
 
 

3.3.2  Feces and pen prevalences in summer and winter 

 Of the 1,400 winter samples collected, 1,210 were culture positive for 

Campylobacter spp. (86%, 95% CI 85-88), and 1,210 of 1,376 summer samples were 

positive (88%, 95% CI 86-90). Among feedlots, Campylobacter spp. prevalences ranged 

from 73-99% and 74-93% for winter and summer respectively, Table 3.2. In addition, 

177 of 277 (64%, 95% CI 57-70) winter and 843 of 1,209 (70%, 95% CI 67-72) summer 
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Campylobacter spp. positive isolates were identified as C. jejuni based on culture and 

hippurate hydrolysis testing. In summer, the prevalence of C. jejuni was estimated to be 

61% (843of 1,376 fecal samples). Table 3.3 reports the number of Campylobacter 

isolates identified as C. jejuni in each of the seven feedlots. In a model adjusting only 

for clustering within pen and feedlot, season was not associated with whether or not a 

sample was culture positive for Campylobacter spp. (p = 0.40). Transport temperatures 

ranged from -5.8°C to 17.5°C in the seven winter shipments and 5.4°C to 22.8°C in the 

seven summer shipments.  

 
 
Table 3.2  Feedlot cattle fecal samples positive for Campylobacter spp. based on 
culture (Winter/Summer) 
 

 Winter Summer 

Feedlot Pos(n) % 
Pos 95% CIc Pos(n) % Pos 95% CIc 

A 182 (200) 91 86-95 183 (196) 93 89-96 
B 180 (200) 90 85-94 182 (200) 91 86-95 
C 197 (200) 99 96-100 184 (200) 92 87-95 
D 172 (200) 86 81-90 178 (200) 89 84-93 
E 180 (200) 90 85-94 186 (200) 93 89-96 
F 154 (200) 77 71-83 143 (193) 74 67-80 
G 145 (200) 73 66-79 154 (187) 82 76-88 

Total 1,210 (1,400) 86 85-88 1,210 (1,376)ab 88 86-90 
a sample not readable due to mold overgrowth (n=22); b missing data (n=2); c binomial 
exact confidence interval. Pos: positive 
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Table 3.3  Campylobacter spp. positive feedlot cattle feces isolates identified as 
Campylobacter jejuni using hippurate hydrolysis testing (Winter/Summer) 
 

   Winter   Summer  
Feedlot  Pos (n) % Pos 95% CIc Pos (n) % Pos 95% CIc 

A  24 (40) 60 43-75 139 (183) 76 43-75 
B  24 (40) 60 43-75 124 (182) 68 69-82 
C  28 (40) 70 53-83 116 (184) 63 56-70 
D  25 (38) 66 49-80 131 (178) 74 66-80 
E  24 (40) 60 43-75 135 (186) 73 66-79 
F  28 (40) 70 53-83 109 (143) 76 68-82 
G  24 (39) 62 45-77 90 (153) 59 51-67 

Total  177 (277) a 64 58-70 843 (1,209) b 70 67-72 
a missing data (n=3); b missing data (n=1); c binomial exact confidence interval. 
Pos: positive 

 
 
3.3.3  PCR of a subsample of C. jejuni isolates 

 In preparation for molecular characterization, 104 isolates determined to be  

C. jejuni based on culture and hippurate hydrolysis testing were evaluated using PCR. 

Isolates were selected randomly (Excel 2007, Microsoft Corporation) from all hippurate 

positive isolates (n=1,486) after stratification by feedlot and by season. One hundred of 

104 samples (96%) were identified as Campylobacter spp. Of those 100, 68 samples 

contained C. jejuni DNA only, six contained C. coli DNA only, 17 contained both  

C. jejuni and C. coli DNA, and nine contained Campylobacter spp. DNA not identified 

as either C. jejuni or C. coli. 

 
3.3.4  Factors associated with Campylobacter spp. culture status of fecal samples 

 In a series of initial models accounting only for clustering within pen and 

feedlot, days-on-feed, feed treatment, feedlot size and regional health authority were 
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unconditionally associated (p ≤ 0.25) with the odds of a positive Campylobacter spp. 

culture, Table 3.4.  

 
Table 3.4  Unconditional analyses of risk factors for whether a sample was positive 
for Campylobacter spp. by culture (adjusting for clustering within pen and feedlot), 
n=2,776.   
 

Variable Level # of 
samples 

% of samples 
Campylobacter 

positive 

Univariable 
p value 

 

Density 
(animal/m2) < 0.1a 2,456 86.9 0.899  

 ≥ 0.1 320 89.1   
Days-on-feed  ≤ 149a 1,830 89.5 0.004  

 150-299 856 82.8   
 ≥ 300 90 82.2   

Feed  No treatmenta 35 71.4 < 0.001  
treatment c Monensin/tyl 1,176 91.6   

 Monensin/chlortet/ tyl 765 77.1   
 Monensin/oxytet 800 91.0   

Feedlot size     
(head capacity) 10,000-19,999a 1,600 91.2 < 0.001  

 20,000-39,999 780 76.4   
 ≥ 40,000 396 92.2   

# Head per pen ≤ 99a 612 85.8 0.890  
 100-199 896 86.7   
 200-299 879 86.9   
 ≥ 300 389 91.0   

RHA  5a 393 75.6 0.006  
where 3 387 77.3   
feedlot 2 396 91.2   
located 1 1,600 92.2   

Season of 
sampling Wintera 1,400 86.4 0.401  

 Summer 1,376 87.9   
Gender Steera 1,828 88.7 0.342  

 Heifer 859 85.2   
 Mixed 89 74.2   

Weight (kg) ≤ 499a 150 79.3 0.619  
 500-599 941 86.9   
 ≥ 600 1,285 86.8   
 Missingb 400 92.0   

a reference category; b data missing from two feedlots for the summer sampling (40 
pens); c feed treatments for seven days or more during the feeding period.  
d: days; chlortet: chlortetracycline; oxytet: oxytetracycline; RHA: regional health 
authority; tyl: tylosin. 
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Table 3.5  Final multivariable model (accounting for clustering within pen and 
feedlot) showing the association between risk factors and whether a fecal sample 
was positive for Campylobacter spp. by culture (2,420 of 2,776 positive, 280 pens, 
seven feedlots) 
 
Pen-level risk factors  ORb 95% CI Specific  

p values 
Overall 
 p value 

Days on feed    0.005 
 ≤ 149 days on feeda    
 150-299 days on feed 0.63 0.46-0.86 0.003  
 ≥ 300 days on feed 0.47 0.22-1.02 0.054  
     
Feedlot size    < 0.001 
(head capacity) 10,000-19,999a    
 20,000  to 39,999 0.29 0.15-0.53 < 0.001  
 ≥ 40,000 0.93 0.39-2.21 0.862  

a reference category; b for ease of interpretation odds ratios have been inverted  
(e.g. 1/0.65=1.54) in results and discussion text; CI: confidence interval; OR: odds ratio;  
 
 
 In the final multivariable model accounting for clustering within pen and feedlot, 

both days-on-feed, and feedlot size were associated (p ≤ 0.05) with the odds of positive 

culture, Table 3.5. No evidence of interaction or confounding was identified. The pen-

level variance in the null mixed model was estimated to be 0.22 (22%) and the feedlot-

level variance was 0.12 (12%). In the final mixed model, the pen-level variance reduced 

to 0.13 (13%), and the feedlot-level variance reduced to 0.03 (3%). 

 After adjusting for feedlot size, the odds of a sample (within the same pen and 

feedlot) testing positive for Campylobacter spp. was 1.59 times greater among animals 

that had been in the feedlot for less than 150 days than it was for animals in the feedlot 

for 150-299 days (p = 0.003) and 2.13 times greater in animals on feed for less than 150 

days than it was for those animals in the feedlot for more than 300 days (p = 0.054). 

After accounting for days on feed, the odds of yielding a positive test for Campylobacter 
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spp. was 3.45 times greater (p < 0.001) in pens from smaller feedlots (10,000-19,999 

head) compared to pens from medium sized feedlots (20,000 to 39,999 head), and not 

statistically different (OR 1.08 p = 0.862) when pens from smaller feedlots (10,000-

19,999 head) were compared to pens from large feedlots (≥ 40,000 head), Table 3.5.  

 
3.4  Discussion 

 The current study was designed to sample cattle near slaughter weight from large 

commercial Alberta feedlots. In previous Campylobacter research in Canadian feedlot 

cattle, animals may have been maintained in experimental feedlots (Inglis et al. 2003, 

Inglis et al. 2004, Inglis et al. 2005b, Lefebvre et al. 2006), which may not be 

representative of animal populations in commercial feedlots. Commercial Alberta 

feedlot cattle fecal Campylobacter studies have been published; however, these usually 

involved a smaller number of feedlots (one to four) and differing study designs (Besser 

et al. 2005, Inglis et al. 2006). This study targeted cattle near the end of the feedlot stay, 

and was timed to establish Campylobacter isolation rates in cattle feces just prior to 

animals entering the food chain. Our results suggest that in these large commercial 

feedlots a large proportion of individual animals and pens of cattle are shedding 

Campylobacter spp. by the time they are shipped for slaughter. 

 The fecal prevalences of Campylobacter spp. in slaughter-age animals from this 

study may be relevant to both food safety and public health in Canada. The overall 

culture prevalence of Campylobacter spp. in cattle feces reported here (87%, 95% CI 

86-88) is similar to smaller PCR surveys in Alberta (Inglis et al. 2003, Inglis et al. 

2004). However, our study is the highest published estimate of viable (culturable) 

Campylobacter spp. based on cattle feces from large commercial feedlots in Alberta. 
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High fecal Campylobacter prevalences may have direct health implications for beef and 

slaughter industry workers. Further, cattle feces may be an important source of 

Campylobacter contamination within slaughter plants; potentially relevant to consumer 

exposure to this pathogen in retail beef.  

 The C. jejuni cattle feces prevalence in summer (61%), was higher than recently 

published estimates from Alberta (Besser et al. 2005, Inglis et al. 2003, Inglis et al. 

2004, Inglis et al. 2005a, Inglis et al. 2005b, Inglis et al. 2006), Ireland (Minihan et al. 

2004) and Australia (Bailey et al. 2003) and lower than a recent North American 

estimate (Lee et al. 2004). Because C. jejuni is implicated in most cases of human 

campylobacteriosis, the high shedding of this bacterium in Alberta feedlot cattle feces is 

worthy of continued epidemiological research. Species of thermophilic campylobacters 

other than C. jejuni (including C. coli, C. hyointestinalis and C. lanienae) have been 

identified in cattle and may have implications for public health (Humphrey et al. 2007, 

Inglis et al. 2003, Inglis et al. 2004, Logan et al. 2000). These other bacterial species 

were not specifically identified in our study but would be included in our general 

Campylobacter spp. prevalence estimates. 

 The risk to people from Campylobacter spp. or C. jejuni from cattle is not fully 

known. Campylobacters are usually considered relatively fragile organisms, susceptible 

to dessication, pH, temperature, osmotic, and oxidative stressors (Murphy et al. 2006). 

However, the ability of these microbes to persist in a viable but non culturable state, in 

biofilm, in untreated water, and during chilling or freezing (Buswell et al. 1998, Clark et 

al. 2003, Moorhead and Dykes 2002, Murphy et al. 2006) contributes to their 

importance as foodborne and environmental pathogens.  
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 Fecal samples in this study were collected using swabs instead of grams of feces. 

Collecting more fecal matter may have improved Campylobacter recovery with culture, 

resulting in higher prevalence levels. However, the swab transport media used in our 

study worked well in protecting campylobacters during transit. Only two shipments 

dipped below the 0°C mark with minimum temperatures of -5.8°C and-0.2°C. The lower 

of these was the shipment delayed in transport, and the culture findings for that 

shipment (Feedlot A winter) were similar to others obtained in the study. Our high 

recovery of culturable Campylobacter spp. isolates supports the use of fresh pen-floor 

swabs as an efficient, economically feasible and non-invasive sampling technique for 

feedlot cattle feces. 

 In general, campylobacters are not thought to survive for extended periods in 

fecal pats on the ground due to exposure to air, drying and temperature extremes. Hoar 

et al found a 90% difference in the prevalence of Campylobacter spp. when comparing 

rectal samples to ground fecal pats (5.0 and 0.5% positive respectively) (Hoar et al. 

1999), and this was the reason why only “steaming” pats were sampled in this study. 

Research has shown that the distribution of Escherichia coli may not be uniform within 

a fecal pat (Pearce et al. 2004), therefore each swab was inserted into each pen-floor pat 

in five different locations.  

 Culture and hippurate hydrolysis techniques were used for identification of 

Campylobacter spp. and C. jejuni. Only one colony was selected per culture plate for 

Campylobacter spp. identification. This may have resulted in reduced prevalences based 

on the selection of the colony. For the initial winter collection, approximately two 

samples per pen were tested for hippurate hydrolysis. For the summer collection it was 
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decided to expand testing to include all of the summer Campylobacter spp. positive 

isolates, which increased the accuracy (narrowed the confidence intervals) for the 

summer prevalence estimates.  

 As an assessment of the accuracy of culture and biochemical identification, a 

within-study sensitivity analysis was conducted using PCR (n=104) to confirm isolates 

as C. jejuni for future molecular assays. At the genus level, the Campylobacter spp. 

culture results and PCR were very similar with only a 4% difference between the two. 

The PCR did indicate that hippurate hydrolysis testing may have overestimated the 

prevalence of C. jejuni in cattle feces. False positives and false negative results have 

been reported in the literature using this hippurate hydrolysis testing, and some C. jejuni 

strains have been found to be hippuricase negative (Nakari et al. 2008), illustrating the 

challenges of this phenotypic assessment. One of the goals of this study was to 

accumulate C. jejuni isolates for future molecular characterization. As a result, weak 

hippurate hydrolysis reactions were considered positive, which may have contributed to 

the discrepancy between the two techniques. While PCR can be very sensitive and 

specific with appropriate genetic sequence design (Nakari et al. 2008), it is unable to 

indicate organism viability, generally of interest in food safety, and unable to provide 

viable cultures which may be stored for future research.  

 Campylobacter spp. prevalence differed significantly among feedlots. 

Differences between feedlots may be due to factors such as geography, environment 

(temperature, precipitation), management (treatment protocols, cattle purchasing 

preferences), reservoir prevalence (flies, birds) or other unidentified factors. Feedlot size 

was a statistically significant predictor (overall p value ≤ 0.05) of Campylobacter 
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isolation rates; however the inclusion of only one feedlot with a capacity of ≥ 40,000 

head may have contributed to the non significant p value for this category. The effect of 

feedlot size on Campylobacter isolation rates most likely reflects management 

differences between feedlots that were not evaluated in this study.  

 Feedlots entered this study based on willingness to participate (eight approached, 

one declined). It is possible that the non-random selection of feedlots and the use of 

feedlots that were willing to participate could have affected the results. Feedlots willing 

to participate might be different from other feedlots in the province based on size, 

management practices or use of veterinary services. Research into reasons for 

differences among feedlots should be pursued, and future risk factor studies should 

include a larger number of feedlots (randomly selected) to minimize potential bias and 

increase power in the study.  

 Seasonal effects were assessed in this study using winter and summer point 

estimates, and as such generalization of these estimates to seasonal trends should be 

cautious. Specifically designed longitudinal studies are required to appropriately identify 

trends. However based on our seasonal estimates, the proportion of samples that were 

culture positive for Campylobacter spp. was not significantly different between the 

winter and summer sampling periods. Previously published studies have shown that 

feedlot cattle shed Campylobacter spp. chronically (Besser et al. 2005, Inglis et al. 2004, 

Minihan et al. 2004), suggesting that within the feedlot it may be difficult for animals to 

clear these bacteria from the intestinal tract. This may be due to constant exposure to 

fresh feces (on pen boards, feed troughs, water troughs (Minihan et al. 2004), high 

stocking densities in feedlot pens, presence of biofilm within pens, or stabilized 
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Campylobacter populations related to finishing diets. Cattle have a relatively long 

lifespan compared to poultry and, as campylobacters seem able to adapt successfully to 

the ruminant digestive system, it may not be surprising that our summer and winter 

prevalence estimates were similar. Further, the persistence of Campylobacter spp. 

within reservoirs such as water sources, wild birds and flies may continue the animal-

host-environment cycle.  

 This was a preliminary investigation of pen and feedlot level risk factors for 

shedding of Campylobacter spp. and C. jejuni in Alberta feedlot cattle, and is a platform 

(study design and results) from which more comprehensive and specific investigations 

may follow. Campylobacter spp. isolation rates were lower in pens of animals that had 

been in the feedlot for longer periods of time. This finding may reflect animal or 

bacterial physiological factors, the effects of antimicrobials in feed, or the use of growth 

promotants (e.g. ionophores). Although some longitudinal studies report chronic and 

rising carriage of Campylobacter spp. over time (Besser et al. 2005, Inglis et al. 2004, 

Inglis et al. 2006, Minihan et al. 2004), Lefebvre et al. found a decreasing prevalence of 

Campylobacter spp. in a longitudinal study on the use of growth promotants in 

Canadian feedlot cattle (Lefebvre et al. 2006).  

 As this research was designed at the pen-level, individual animal information on 

injectable antimicrobial use was not collected, and it is possible that treatments at the 

individual animal level affected shedding of campylobacters and C. jejuni. In addition, 

dosages of antimicrobials in feed were not accounted for in analyses, and it is possible 

that the broad classifications used to compare feed treatments in this study may have 



83 
 

masked true medicated feed differences. Future study designs should incorporate 

individual animal data and specific feed dosages into feedlot cattle risk factor analyses. 

 The estimates of pen level and feedlot level proportions of variation in 

Campylobacter spp. sample status reported here may be used in future research for 

sample size calculations in multistage designs. The results suggest that the amount of 

clustering within feedlot is small, and explained to a large extent by the variables in the 

risk factor model. Most of the clustering was found at the pen-level, and while some of 

this was explained by variables in the final model, inclusion of a greater number of pen-

level risk factors is warranted in the future. 

 
3.5  Conclusions 

 Beef cattle in Alberta are an integral part of the landscape and economy, and 

exist in close proximity to people in many rural areas. The high prevalence levels found 

in this study suggest that a large proportion of feedlot cattle near slaughter weight may 

be shedding campylobacters, and that seasonal effects may be small. These findings may 

have important implications for food safety, public health, and environmental 

transmission of campylobacters in the province, and further investigations will be 

required to fully understand the role of cattle in the epidemiology of campylobacters in 

Alberta. 
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CHAPTER 4  
PREVALENCE AND RISK FACTOR INVESTIGATION OF CAMPYLOBACTER 

SPECIES AND CAMPYLOBACTER JEJUNI IN RETAIL GROUND BEEF 
 
4.1  Introduction 

 In Alberta, campylobacteriosis is the most common bacterial enteric illness, with 

36.1 cases per 100,000 people reported in 2005 (PHAC 2007, Statistics Canada 2007). 

Campylobacter jejuni (C. jejuni) is the most frequently isolated species in human 

disease, responsible for approximately 85% of all human Campylobacter infections 

(Moore et al. 2005). While consumption of contaminated poultry meat is generally 

considered the primary source of infection for people (Humphrey et al. 2007), molecular 

typing has found strain similarities between human and other domestic animal isolates 

including cattle and swine (Clark et al. 2003, Johnsen et al. 2006, Manning et al. 2003, 

Nielsen et al. 2005).  

 The beef cattle industry is very important to the economies of both Alberta and 

Canada. In 2005, the Canadian beef industry was the largest source of farm cash receipts 

from a single agricultural commodity (Statistics Canada 2006). In that same year, 2.5 

million cattle were slaughtered in federal or provincially regulated slaughter plants in 

Alberta, 63% of the national total, and Canadian per capita consumption of beef was  

51 lbs (CanFax 2007b). Recently, the prevalence of culturable Campylobacter spp. and  

C. jejuni in Alberta feedlot cattle feces near the end of the feeding period was found to 

be extremely high (87% and 61% respectively) (Besser et al. 2005, Inglis et al. 2004), 
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see Chapter 2. However, research into the prevalence of Campylobacter spp. in retail 

ground beef in Alberta has been limited. In 2006, a Canadian survey of retail ground 

beef reported no positive samples from the 100 packages tested (Bohaychuk et al. 2006). 

The prevalence of Campylobacter spp. in retail ground beef has ranged from 0-20% 

worldwide (Bohaychuk et al. 2006, Bolton et al. 1985b, Bosilevac et al. 2007, Cloak et 

al. 2001, Fukushima et al. 1987, Ghafir et al. 2007, Little and de Louvois 1998, Turnbull 

and Rose 1982, Wong et al. 2007). Because of the high prevalence of Campylobacter 

spp. in feedlot cattle and the clinical importance of this pathogen in people, this survey 

was developed as an initial assessment of the potential public health importance of retail 

ground beef as a source of Campylobacter in Alberta. 

 The goals of this project were to assess the prevalence Campylobacter spp. and 

C. jejuni, and to investigate risk factors potentially associated with the presence of 

Campylobacter spp. in retail ground beef. This chapter reports results of a survey of 

1,200 packages of ground beef from 60 retail grocers of four major chains in three cities 

in southern Alberta. 

 
4.2  Materials and methods 

4.2.1  Sample size calculation  

 For a survey using simple random sampling, 179 packages of ground beef would 

have been necessary to measure a 3% expected prevalence of C. jejuni (Whyte et al. 

2004) with 2.5% precision and 95% confidence (Epi-Info, version 3.01, CDC, USA, 

2003). After applying an inflation factor formula (Dohoo et al. 2003) to account for 

clustering of the expected frequency of Campylobacter within retail stores, the survey 

required 1,200 packages from 60 stores (assuming an intraclass correlation coefficient 
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(ICC) of 0.3, an unadjusted sample size of 179, and collection of 20 packages per store). 

An ICC describing clustering of C. jejuni within source was not available from previous 

publications; the choice of 0.3 was slightly more conservative than previously published 

ICCs for non-enteric cattle conditions (McDermott and Schukken 1994). Ethics 

approval for this project was received from both the University of Saskatchewan 

Biomedical Research and the University of Calgary Conjoint Health Research Ethics 

Boards. 

 
4.2.2  Sampling protocol.  

 The goal of sampling was to identify grocery chains likely to supply the largest 

sales volume of ground beef to consumers. Four chains with the highest number of retail 

stores from three cities in southern Alberta were identified, and a sampling frame of 

individual stores was compiled from telephone book white and yellow pages (chain 

name and pharmacy headings) and internet searches (chain name). Stratified random 

sampling (by city and by chain within city) ensured that meat samples were taken from 

all chains in all cities. Fifteen stores were sampled from chain 1, 22 from chain 2, 16 

from chain 3 and seven from chain 4. Forty-six stores were sampled in city 1, six stores 

in city 2 and eight stores in city 3. Five packages per store per collection were randomly 

sampled from the 60 stores using a hand-held randomization program (Handy Randy, 

Stevens Creek Software, Cupertino, CA, USA), for a total of 1,200 retail packages of 

regular or lean ground beef. Three hundred packages were purchased during each of 

four collection periods: two winter (Nov 21-23, 2004, and Jan 9-11, 2005) and two 

summer (May 30, 31, June 1, 2005 and July 18-20, 2005). After purchase, each package 

of ground beef was placed into a pre-labeled Ziploc bag (SC Johnson, Racine, WI, 
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USA) and then packed into a cooler (The Coleman Company Inc., 5286B, Wichita, KS, 

USA) with six ice packs (Ice-Pak/Hot-Pak, Montreal, QC, Canada). A Hobo H08 Pro 

temperature monitor (Onset Computer Corporation, Pocasset, MA, USA) was included 

in one cooler from each of the 12 meat shipments. Each cooler was sealed and shipped 

to the Vaccine and Infectious Disease Organization (VIDO, Saskatoon, SK, Canada) by 

bus (Greyhound Transport Canada Corporation) overnight. Ground beef packages were 

processed within approximately 24 hours of collection. Transport temperature ranges 

were evaluated from two hours after closure to two hours before cooler was opened. 

 Employees knowledgeable about in-store meat practices were identified by 

phone inquiry or observed directly working with meat, and were asked questions 

regarding their meat department practices. Information on the cutting and packaging of 

raw poultry, the type of meat used to produce the ground beef (coarse tubes, market trim 

or both) and whether the ground beef contained meat that has previously been frozen 

were collected. 

 
4.2.3  Experimental inoculation of retail ground beef as sensitivity analysis.  

 Prior to the study collections, packages of ground beef were purchased and 

inoculated with fresh laboratory strain of C. jejuni (NCTC 11168) and then cultured 

using the same technique as the study (see below). Retail ground beef was mixed with 

C. jejuni at concentrations of 1x104, 1x103, 1x102, and 1x101 cfu/g. Five packages of 

retail ground beef were tested at each concentration, and the experiment was repeated on 

two separate occasions. Each incubation of test plates included both a negative control 

plate and a laboratory strain C. jejuni plate as positive control. These experiments were 
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conducted to document our ability to consistently recover C. jejuni from ground beef 

using our culture protocol. 

 
4.2.4  Detection of campylobacters using enrichment culture.  

 For each package of retail ground beef, the plastic wrap over the middle was 

sliced with a sterile scalpel blade. A deep core sample of 25 g (24-26 g) of raw ground 

beef was removed with a sterile spoon. Each sample was placed into a 7 by 12 in. 55oz 

Whirl Pak bag (82007-726, VWR International, Mississauga, ON, Canada) containing 

100 ml of a Bolton broth (# CM0983 Oxoid Ltd., Basingstoke, UK) and 5% horse blood 

mixture and stomached for 30 seconds (Stomacher Lab Blender 400). The homogenate 

was then incubated (85% N2, 10% CO2, 5% O2) for 44 hours at 42°C and then streaked 

onto Karmali selective agar (Oxoid, CM935 with supplement SR0167E, Nepean, ON, 

Canada) and microaerobically (85% N2, 10% CO2, 5% O2) incubated at 42°C for 48-72 

hours. Each culture plate was then examined visually for colonies characteristic of 

Campylobacter spp. (based on growth, color and morphology of the colony, and color of 

the cell mass). Each incubation included a laboratory strain C. jejuni plate as positive 

control. 

 
4.2.5  Detection of campylobacters by polymerase chain reaction (PCR).  

 At the same time as samples were taken for culture, ground beef from 

approximately 10% of the 1,200 packages was collected for PCR (52 of 60 stores 

represented). A labeled plastic vial (# 9556002 Canadawide Scientific, Ottawa, ON, 

Canada) was filled with approximately 1 g of retail ground beef from each of 142 

packages and frozen at -70°C. These samples were sent on ice to the Agriculture and 
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Agri-Food Canada laboratory in Lethbridge, AB, Canada for PCR testing. Briefly, a 

subsample of ground beef (1 g) was thawed and placed in a BagPage 100 filtered 

blending bag  (EW-36840-58; Canadawide Scientific Ltd, Ottawa, ON, Canada) 

containing 9 ml of Columbia broth (Becton, Dickinson and Company, Sparks, NV, 

USA), and the sample was homogenized for 120 seconds at high setting using a 

Stomacher 80 blender (Seward Ltd., West Sussex, UK). The homogenate was then 

removed, centrifuged at 1,750 x g for 10 minutes and the supernatant containing 

Campylobacter cells was collected. To concentrate Campylobacter cells, the supernatant 

was centrifuged at 24,050 x g for 10 minutes, and the supernatant removed and 

discarded. The pellet was re-suspended in 1 ml of Columbia broth, 200 µl aliquots were 

placed in 2 ml tubes, and samples stored at -20oC until processed. Just before extraction, 

an internal amplification control (IAC; 10 µl containing 700 copies/µl) was added to 

each tube (Inglis and Kalischuk 2003b), and DNA was extracted using the DNAeasy 

Tissue Kit (Qiagen, Missassauga, Canada) according to the manufacturer’s protocol. 

Direct PCR was applied for Campylobacter genus, IAC, C. jejuni, C. coli, C. fetus,  

C. hyointestinalis, and C. lanienae (Inglis and Kalischuk 2003a). In addition, nested 

PCR to detect C. concisus and C. upsaliensis was applied (Inglis et al. unpublished).  

 
4.2.6  Data analysis 

 Descriptive analyses were done in SPSS (version 15.0; SPSS, Chicago, US). A 

second commercial software package (MLwiN version 2.02; Centre for Multilevel 

Modeling, Institute of Education, London, UK) was used for the hierarchical model 

analysis. The hierarchical models were specified with a logit link, binomial distribution, 

restricted iterative generalized least square and second order penalized quasi-likelihood 
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nonlinear estimation (Dohoo et al. 2003). The outcome was whether or not a ground 

beef sample was positive for Campylobacter spp. DNA. Variables included “poultry 

cutting” (whether or not poultry was cut or packaged in the meat department), “trim 

type” (what source of ground beef was used in the grinding; coarse grind tubes, market 

trim or a combination), “city” (1, 2 or 3), “collection” (collection period 1, 2, 3,4), 

“package type” (lean or regular ground beef), and “weight” (kg, the only continuous 

variable). The scale of the “weight” variable was explored and categorize into 

“weight_c” (package less than 0.5 kg, package 0.5 to 0.999 kg, or package 1.0 kg or 

greater) to evaluate model linearity assumptions. Random effects (e.g. chain or store 

levels) were kept in the model if more than one variable at that level was entered as a 

fixed effect, if the amount of variability explained at that level was greater than 10%, or 

if the level was believed to be important to the data structure a priori.  

 
4.3  Results 

4.3.1  Experimental inoculation. 

 Of the 40 ground beef samples inoculated, only one sample at 1x102 cfu/g did 

not yield C. jejuni. All other samples and the positive control plates were positive for  

C. jejuni, indicating that C. jejuni could be consistently isolated from ground beef using 

the study protocol, while none of the negative control plates grew Campylobacter spp. 

 
4.3.2  Prevalence survey using culture. 

 All 60 stores reported that they did a final grind of beef in-store, that the beef 

was of Canadian origin, and that the source beef for grinding came from local (Alberta) 

slaughter plants or processors. Twenty-seven stores used coarse ground tubes, 17 stores 
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used market trim, and 16 stores used a combination of both for their second in-store 

grind. Forty stores did not package or cut raw poultry in the department, 19 stores 

reported cutting or packaging some poultry products (e.g. wings) and for one store data 

were unavailable. Fifty-six stores used fresh meat only, while in four stores the retail 

ground beef may have included previously frozen portions. Of the 1,200 packages of 

retail ground beef, 726 were lean and 474 were regular ground beef. Twenty-eight 

packages were labeled as a “discount”. By weight, 121 packages were less than 0.5 kg, 

1,030 packages were between 0.5 kg and 0.999 kg, and 49 packages were greater than or 

equal to 1.0 kg. Transport temperatures ranged from 3.31°C to 9.03°C in the six summer 

shipments and -2.44°C to 9.42°C in the six winter shipments. 

 Campylobacter species were not isolated from any of the 1,200 packages of 

retail ground beef. 

 
4.3.3  PCR detection of campylobacters. 

 Of the 142 samples tested using PCR, 65 (46%) were positive for DNA of 

Campylobacter spp. origin while 77 were negative, Table 4.1. 

 

Table 4.1  Campylobacter spp. in retail ground beef (n=142) based on PCR 
 
Identification Positive (%)
Genus: 
     Campylobacter spp. 

 
65 (45.8) 

Species a,b:  
     C. jejuni only 20 (14.1) 
     C. coli only 35 (24.6) 
     C. jejuni and C. coli 1 (0.7) 
     C. coli and C. hyointestinalis 2 (1.4) 
a seven isolates could not be identified to the species level; b zero samples tested positive 
for DNA of C. fetus, C. lanienae, C. concisus or C. upsaliensis. 
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 Two of the 142 samples tested using PCR could not be linked to store or chain. 

The remaining 140 ground beef samples represented 52 different stores. Twelve stores 

had greater than one meat sample tested from the same collection period. Of these 12 

stores, only four stores had greater than one meat sample positive for DNA of 

Campylobacter spp. origin. Ten of these 12 stores had either four or five samples from 

the same collection period tested with PCR, and the most any store had positive for 

DNA of Campylobacter spp. origin was two samples. 

 
4.3.4  Factors associated with PCR detection of Campylobacter spp. 

 Of the 142 ground beef samples submitted for PCR testing, two samples could 

not be linked to store or chain and were omitted from all analyses. For one sample, data 

were missing for whether or not the source store cut poultry. This sample was included 

in risk factor analysis, and designated ‘missing’ in the “poultry” analysis. 

 Chain did not explain an important part of the variance in the null model (chain 

level variance 0.000, standard error 0.000) and was not included as a random effect in 

the final analysis. After accounting for clustering within the store of origin, only the 

package type and the collection period variables were selected for consideration in the 

development of a final model (p ≤ 0.25), Table 4.2. None of the other risk factors 

considered (chain, city, inclusion of frozen portions, on-site poultry cutting practices, 

kinds of trim in the ground beef or package weight) were associated with the odds of 

detecting campylobacters by PCR, Table 4.2.  
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Table 4.2  Unconditional analyses of risk factors for whether a sample was positive 
for Campylobacter spp. by direct PCR (n=140) 
 

Variable Level # of 
packages 

% packages C.spp. 
 positive at each level 

p value 

Chain 1a 28 42.9 0.936 
 2 45 46.7  
 3 47 51.1  
 4 20 35.0  

City 1 a 109 45.0 0.891 
 2 9 55.6  
 3 22 45.5  

Collection 1 a 30 30.0 < 0.001
period 2 30 66.7  

 3 31 80.6  
 4 49 20.4  

Frozen  No a 124 47.6 0.459 
portions Yes 16 31.3  
Package Lean a 86 40.7 0.157 

type Regular 54 53.7  
Poultry No a 94 48.9 0.937 
cuttingb Yes 40 45.0  

Trim Coarse grind tube a 56 41.1 0.876 
type Market trim 50 50.0  

 Both 34 47.1  
Weight_c ≥1.0 kg 10 30.0 0.343 

 0.5-0.999 kg 113 48.7  
 ≤0.499 kg a 17 35.3  

a Reference category;  b Data unavailable for one store (six packages). 
C. spp.: Campylobacter species. 
  

 When package type (regular or lean) and collection period (1: Nov 21-23, 2004, 

2: Jan 9-11, 2005, 3: May 30, 31, June 1, 2005, and 4: July 18-20, 2005) were examined 

together, only the collection period was significantly associated (p ≤ 0.05) with the odds 

of detecting Campylobacter spp. by PCR. The odds of a retail ground beef package 

testing positive for Campylobacter spp. DNA was 5.6 times greater if the package was 
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from collection 2 compared to collection 1 (OR 5.6, 95% CI 1.8-17.5). Further, a 

package had 12 times greater odds of testing positive for Campylobacter spp. DNA if it 

was from collection 3 compared to collection 1 (OR 12.0, 95% CI 3.5-42.0). Ground 

beef from collection 4 was not statistically different from collection 1 (OR 0.6, 95% CI 

0.2-2.0). 

 
4.4  Discussion 

 The samples from this large retail ground beef survey represented four different 

chains and three cities in southern Alberta. Random selection of packages in stores, 

multiple collection periods, and limiting the number of packages purchased per store 

were used to try and avoid oversampling the same meat batches. In 2005, source beef 

for ground beef likely came from the six federally inspected slaughter plants in Alberta 

(AAFC 2005), or from provincially inspected facilities. Because retail chains likely 

purchased meat from the same plants or processors, it was expected that variation within 

chain would be small. As a result, only five packages of ground beef were purchased 

from each store at each collection time.  

 We initially hypothesized that cross-contamination of surfaces and equipment 

from raw poultry cutting and packaging might lead to ground beef contamination. 

However, 67% of stores received raw poultry products already packaged for retail sale, 

and the model did not find a statistically significant relationship between poultry cutting 

and the presence of Campylobacter spp.; shifting focus to slaughterhouse environments 

for possible contamination sources. 
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 It is possible that nonrandom selection of ground beef for PCR testing might 

have influenced PCR prevalence findings, even though 52 of 60 stores were represented 

in this sample. Further, hierarchical models were likely hampered by the small sample 

size (n=142) tested with PCR. However, individual collection periods were associated 

with the presence of Campylobacter spp. Collections 1 and 2 were during the winter 

while collections 3 and 4 were in the summer. The results did not indicate a seasonal 

difference as one winter and one summer collection period were significantly different 

from the others. However, these findings do indicate that differences may exist in 

Campylobacter spp. contamination at slaughter plant or retail store levels. Descriptive 

analyses found that from the five packages collected at the same store on the same day, 

one package might be positive and the others negative. This may reflect differing 

package contamination levels, within package Campylobacter distribution (as only 1 g 

of ground beef was collected from the centre of each package), or possible dilution 

effects from the PCR process. Further, variables within the control of the meat 

department or slaughter plants and processors (e.g. carcass cleanliness, hygiene 

practices, cross-contamination through fomite transmission) may contribute to 

variability between collections. 

 It can be difficult to compare laboratory protocols with other published research 

because consensus and standardization of culturing methodology for campylobacters has 

not been achieved, because many incubation and temperature protocols, culture media, 

and antimicrobial supplements are available, and because viable but non culturable 

Campylobacter strains may exist (Corry et al. 1995, Habib et al. 2008, Wonglumsom et 
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al. 2001). Based on the spiked meat experiment, under laboratory conditions the culture 

technique used in this study was able to isolate C. jejuni at 1 x 101 cfu/g in samples; a 

level below the estimated dose required for human infection (Black et al. 1988, 

Humphrey et al. 2007). Further, under the culture conditions examined here none of the 

1,200 packages of ground beef were positive for viable Campylobacter spp., an 

encouraging finding for public health in Alberta. 

 Hazard and critical control points (HACCP) have been identified and programs 

implemented in all federally registered beef slaughter plants in Canada (CFIA 2007b). 

Protocols at slaughter, including hide-on-carcass, lactic acid, hot water, and carcass 

washes, chilling, and the ability to remove potentially contaminating components  

(e.g. hides and intestinal tracts) quickly and intact may all contribute to bacterial 

numbers below detectable levels in the meat. However specifically designed slaughter 

house sampling would be required to quantify pathogen levels within those 

environments and in meat products on-site. 

 The very low prevalence of culturable Campylobacter levels in retail ground 

beef observed in this study is similar to other North American ground beef surveys. 

Campylobacters were identified in only 1 of 2073 packages of ground beef using culture 

in the USA from 2002-2005 (Gov of USA 2006), and a smaller Alberta survey found 

zero of 100 packages positive (Bohaychuk et al. 2006). However it is possible that the 

laboratory sensitivity of the culture method used here may not have been high enough to 

pick up very low numbers of organisms. Further, if campylobacters were sufficiently 

stressed, it is possible the method was not able to resuscitate these pathogens sufficiently 



 

101 
 

for growth with culture. Three of the meat shipments dipped below the 0°C mark during 

shipping, however campylobacters have been isolated from ground beef frozen at -18°C 

for 90 days (Grigoriadis et al. 1997), and culture recovery in our study did not vary 

between summer and winter samplings.  

 Some researchers propose a preincubation step at 37°C to try and improve 

recovery and growth of campylobacters at culture (Humphrey 1994), which was not 

used here. However other published research has used similar temperature regimens to 

ours and had success in recovering viable campylobacters from abattoir and retail beef 

(Bolton et al. 1982b, Bolton et al. 1985, Fricker and Park 1989, Fukushima et al. 1987, 

Garcia et al. 1985, Korsak et al. 1998, Kwiatek et al. 1990, Lammerding et al. 1988, Lee 

et al. 2004, Mayrhofer et al. 2005, Osano and Arimi 1999a, Pezzotti et al. 2003, Whyte 

et al. 2004, Zhao et al. 2001). Further, viable campylobacters were also not recovered in 

a recent Alberta ground beef survey which used lower preincubation temperatures 

(Bohaychuk et al. 2006). 

 From the direct PCR results, Campylobacter DNA (C. jejuni, C. coli, and  

C. hyointestinalis) were identified in the meat. However, the DNA may have been from 

dead or damaged organisms, or from campylobacters sufficiently stressed to enter into a 

viable but non culturable state. Feedlot cattle may carry a variety of Campylobacter spp. 

including C. jejuni and C. coli in their intestinal tracts, and C. jejuni is the most 

frequently isolated species (Inglis et al. 2006), while C. coli is the most common 

Campylobacter species found in swine (Moore et al. 2005). The finding of 27% 

(38/142) of samples PCR positive for C. coli and only 15% (21/142) of samples PCR 
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positive for C. jejuni was interesting. Stores were asked about the cutting and packaging 

of raw poultry, but not raw pork, and this may be a consideration for future research.  

 
4.6  Conclusions 

 The prevalence of Campylobacter spp. by PCR in this study was moderate to 

high (46%). PCR results do not necessarily indicate the presence of viable organisms, 

making it difficult to estimate from these molecular results the true public health risk 

from retail ground beef. However, continued research into potential interventions in the 

slaughter-processing-retail continuum may be of use to further lower DNA levels in the 

meat. The use of HACCP protocols within the beef slaughter industry and minimizing 

poultry cutting and packaging within store meat departments likely contributed to the 

low prevalence (0%) of viable Campylobacter in retail ground beef, supporting food 

safety practices in the province of Alberta. 
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CHAPTER 5 
GENOMICS-BASED MOLECULAR EPIDEMIOLOGY OF CAMPYLOBACTER 
JEJUNI ISOLATES FROM FEEDLOT CATTLE AND PEOPLE IN ALBERTA, 

CANADA 
5.1  Introduction 

 The Alberta beef industry is economically important to the province as the 

largest source of farm cash receipts from a single agricultural commodity (2005 data) 

(Statistics Canada 2006), and Alberta had 2,370,800 cattle on feed; 67% of the national 

total (CanFax 2007b) in 2005. In that same year, campylobacteriosis was the most 

common (notifiable) bacterial enteric disease with a provincial rate of 36.1 cases for 

every 100,000 people (PHAC 2007, Statistics Canada 2007). Because of the relatively 

high number of human cases and the large numbers of cattle on feed in Alberta, research 

into the role of feedlot cattle as Campylobacter reservoirs has been ongoing (Inglis et al. 

2003, Inglis et al. 2004, Inglis et al. 2006). Campylobacter jejuni (C. jejuni) is of public 

health significance as the most common Campylobacter spp. isolated from human cases 

(approximately 85%) (Moore et al. 2005). Recent studies have documented the shedding 

of C. jejuni from Alberta feedlot cattle to be high (32-62 % of animals positive) (Besser 

et al. 2005, Inglis et al. 2003, Inglis et al. 2004, Inglis et al. 2005, Inglis et al. 2006), 

reinforcing the need for continued research into the potential importance of cattle as 

reservoirs for these human pathogens. 

 Many thermophilic campylobacters are commensals in a wide range of warm 

blooded hosts and insects, and can persist and maintain viability in water sources, 
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biofilm and during environmental stress (Adhikari et al. 2004, Murphy et al. 2006). 

While poultry and poultry products are usually considered the main source for human 

Campylobacter infections (Humphrey et al. 2007), molecular typing studies suggest that 

cattle play a role in the epidemiology of campylobacteriosis (Colles et al. 2003, 

Manning et al. 2003, Nielsen et al. 2005), it is possible that other transmission routes 

exist. Poultry sources have not accounted for 100% of human infections and typing 

surveys have found human Campylobacter strains that do not exhibit similarity (do not 

cluster) with poultry strains (Dingle et al. 2001a, Manning et al. 2003, Michaud et al. 

2005, Nielsen et al. 1997, Nielsen et al. 2005). Cattle and human isolates have been 

found to be similar using a variety of typing methods (Colles et al. 2003, Johnsen et al. 

2006, Nielsen et al. 2005). In a study by Nielsen et al., human and cattle C. jejuni 

isolates were identical based on six molecular typing methods (Nielsen et al. 2000). 

Further, cattle strains have been able to infect poultry (Ziprin et al. 2003), suggesting 

that cattle may be a potential reservoir for poultry as well as people.  

 In 2000, the genetic sequencing of Campylobacter jejuni (C. jejuni NCTC 

11168) by Parkhill et al. (Parkhill et al. 2000) led to the development of whole-genome 

DNA microarrays that could be used to study the comparative genomics of C. jejuni 

(Dorrell et al. 2001). DNA microarrays have been used in comparative genomic 

hybridization (CGH) surveys to analyze C. jejuni genomic variability (Champion et al. 

2005, On et al. 2006, Parker et al. 2006, Taboada et al. 2004) and to explore the 

possibility of using CGH as a tool for epidemiological investigation (Leonard II et al. 

2003). 
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 The purpose of this study was to perform comparative high-resolution 

genotyping (e.g. CGH analysis) on feedlot cattle and human clinical C. jejuni isolates 

obtained from the same geographical regions and during the same time frame in order to 

identify isolates with high levels of genomic similarity. This was a cross sectional study 

and it is not known if the persons represented by the human samples had any contact 

with cattle. Our goal was to use CGH to generate indirect evidence (preliminary 

assessment) as to the potential for cattle to be a source of C. jejuni infection for people 

based. Human and feedlot cattle isolates for this study were purposefully collected from 

regional health authorities in southern Alberta in both the winter and summer of 2005, 

and chosen for DNA microarray testing using stratified random selection. 

 
5.2  Materials and methods 

5.2.1  Analytical design 

 Figure 5.1 describes the pathway of inclusion and exclusion of field isolates, 

arrays, replicate arrays and genes throughout the analysis process. 
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Figure 5.1  Flow diagrams of field strains, genes and technical replicates through 
selection and data analysis 
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Field strains 87 Laboratory strains 2
Field strain replicates 20    Laboratory strain replicates 10
Genes 1399

87 field strains
(41 H 46 C)

Removal of 3 strains 
based on replicates (see 
right)

 
C: cattle, H: human, QC: quality control, RHA: regional health authority. 
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5.2.2 C. jejuni isolation from feedlot cattle 

 Cattle isolates were collected as part of a prevalence survey of seven large 

commercial feedlots from four regional health authorities (RHA 1, 2, 3, and 5) in 

Alberta, Chapter 3. Preliminary identification of C. jejuni was made in 1,020 samples 

based on positive culture (direct) and positive hippurate hydrolysis testing (Morris et al. 

1985). Fifty-eight isolates were randomly selected (using Microsoft Office Excel 2007, 

Microsoft Corporation) after stratification by feedlot and season. Only one isolate was 

allowed per pen. These were confirmed as C. jejuni (based on the hypO gene) using 

multiplex PCR as previously described (Wang et al. 2002), and then subjected to high-

resolution genotyping using DNA microarrays.  

 
5.2.3 Human isolates 

 Eighty-two viable human isolates, identified as C. jejuni by diagnostic 

laboratories in Alberta regional health authorities (RHA 1, 2, and 3), were sent to the 

Alberta Provincial Laboratory of Public Health (APLPH). Isolates were screened to 

ensure that patients had not travelled outside Alberta within 30 days of sample 

submission, and that only one isolate per patient and per household was sent for 

microarray testing. In Alberta, the campylobacteriosis case definition is based on 

laboratory confirmation from an appropriate clinical specimen, with or without 

symptoms in the patient (Gov of AB 2005). Isolates were couriered to the Vaccine and 

Infectious Disease Organization (VIDO) on ice along with non-identifying information 

(date of birth, gender of patient, date of specimen submission and regional health 

authority). Upon receipt, isolates were plated onto Mueller–Hinton (MH) agar for 48 



 

112 
 

hours at 43°C to ensure pure culture, and then streaked onto three MH plates and 

incubated for 16-18 hours at 37°C (10%CO2, 5% O2, 85% N2). Growth from three plates 

per strain was then suspended in a 50% brain-heart infusion-25% glycerol mixture and 

frozen to -70°C for genotyping at a later date. Human isolates were stratified by RHA 

and by season, and then randomly sampled. Data from 49 human C. jejuni arrays were 

initially entered into analysis. 

 
5.2.4  Open reading frame C. jejuni NCTC 11168 DNA microarray 

 A C. jejuni oligonucleotide microarray from the Campylobacter jejuni Genome 

Oligo Set Version 1.0 was purchased from Operon Biotechnologies, Inc. (Huntsville, 

AL35805). This product contained 1,601 probes 70 base pairs in length and represented 

1,546 open reading frames (ORFs) from C. jejuni subsp. jejuni NCTC 11168 (GenBank 

sequence AL111168); 51 ORFs from C. jejuni 81-176 virulence plasmid pVir (GenBank 

sequence AF226280); and four ORFs from C. jejuni plasmid pCJ01 (GenBank sequence 

AF301164). All 1,601 probes were designed within predicted ORFs by Operon using 

their proprietary software. The probes were normalized to a melting temperature of 

71ºC (±5ºC). Triplicate spots were included for each ORF on the chip. The microarray 

slides were produced from this set of oligonucleotides by The Biomedical Genomics 

Center, University of Minnesota (Minneapolis, MN, USA). Conditions required for 

optimal hybridization of these arrays using Cyanine dye detection systems are outlined 

below. For this study, only genes from C. jejuni NCTC 11168 (n=1,546) were analyzed; 

plasmid data available on the arrays were not included in this analysis. 
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5.2.5  Genomic DNA extraction and labeling 

 Genomic DNA isolation was performed using a modification of the 

hexadecyltrimethyl ammonium bromide (CTAB) procedure (Wilson et al. 1987). 

Briefly, cells were suspended in 567 µL of TE (10mM Tris HCl and 1 mM EDTA pH 

8.0). Proteinase K and sodium dodecyl sulfate were added to a final concentration of 

100 µg/mL and 0.5% respectively. After incubation for one hour at 37˚C 100 µL of 5 M 

NaCl was added and the suspension was mixed thoroughly. 80 µL of 10% CTAB in 0.7 

M NaCl were added and the mixture was incubated at 65˚C for 10 minutes. An equal 

volume of chloroform/isoamyl alcohol (24:1) was added and after thorough mixing the 

CTAB-protein/polysaccharide complex was removed by centrifugation. The aqueous 

supernatant was transferred to a fresh tube and the remaining protein was extracted with 

phenol/chloroform/isoamyl alcohol (25:24:1). The supernatant was precipitated with 0.6 

volumes of isopropanol and the precipitate was dissolved in 250 µL of water.   

 Three microlitres of random primers (Invitrogen Corporation, Carlsbad, CA, 

USA, 3µg/µl) were added to approximately 6 µg of genomic C. jejuni DNA (Cy3 for 

reference NCTC 11168, Cy5 for test strain) in 1.5 ml amber tubes (Diamed Lab 

Supplies Inc., Mississauga, ON, Canada). Distilled water was then added so that each 

tube contained a total of 40.5 µl. Contents were then denatured at 95-97˚C for six 

minutes, kept on ice for two minutes and then left at room temperature for five minutes. 

Five microlitres of 10 x Klenow reaction buffer (USB Corporation, Cleveland, OH, 

USA), 1.5 µl Cy labeled dCTP (Amersham Biosciences Inc., Sunnyvale, CA, USA), 1 

µl dNTP (Amersham Biosciences Inc., Sunnyvale, CA, USA), and 20 units 

exonuclease-free Klenow (USB Corporation, Cleveland, OH, USA) were added and 



 

114 
 

tubes incubated at 37˚C for two hours. Then, 2.5µl of 0.5M EDTA was added to each 

tube and left for one minute at room temperature. Tubes were then heated at 95-97˚C for 

two minutes, kept on ice for five minutes and left to sit at room temperature for five 

minutes. Cleanup of probes were carried out using the Qiagen MinElute Reaction 

Cleanup Kit as per manufacturer’s specifications (Cat #28206, Qiagen Inc., Mississauga, 

ON, Canada) with a final elution volume of 13 µl distilled H2O. Labeled DNA was 

quantified using a spectrophotometer (Ultrospec® 3000, Pharmacia Biotech) to 

calculate the number of pmol/µl in each tube. In a fresh 1.5 ml amber tube, 40 pmol of 

both the reference strain (Cy3) and test strain (Cy5) were combined, and distilled H2O 

was added to bring the total volume to 20 µl. 

 
5.2.6  Microarray hybridization 

 Each array was submerged in warm prehybridization solution (Genicon Sciences 

Corporation, now part of Invitrogen, Carlsbad, CA, USA) and incubated for 30 minutes 

at 42˚C. Each array was then washed in fresh distilled H2O 10 times and in 100% 

isopropanol 10 times. Arrays were then dried with filtered air. Lifter slips (#25x601-2-

4789,Erie Scientific Co., Portsmouth, NH, USA) were washed in distilled H2O followed 

by 100% ethanol and left to dry. Damp paper towels were placed onto a metal leveling 

block in a large plastic container. Arrays were then labeled and placed, with the probes 

facing upward, on the paper towel and lifter slips added. SlideHyb Buffer #2 (55µl, 

Ambion, Austin, TX, USA) was then added to the 20 µl tube from the quantification 

step, mixed gently and the tube placed in the heat block for five minutes (65-67˚C). In a 

darkened room the entire contents of the tube was then pipetted along one edge of the 

lifter slip to wick up the slide. The lid was then placed on the container and it was 
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incubated at 42˚C in the humidified chamber for 18-24 hours. After incubation, the lifter 

slips were removed and the arrays immersed in fresh wash 1 solution (1x sodium 

chloride-sodium citrate (SSC)/0.1% sodium dodecyl sulfate, 42˚C for five minutes). 

This step was then repeated twice. Arrays were then immersed in wash solution 2 

(1xSSC) at 42˚C for five minutes (repeated twice), and then in wash solution 3 

(0.1xSSC) at 42˚C for five minutes (repeated twice). Slides were then rinsed in warm 

distilled H2O (42˚C), dried with filtered air, placed into clean slide mailers and protected 

from direct light until scanned.   

 
5.2.7  Scanning, data acquisition, and preliminary data analysis 

 Arrays were scanned using GenePix Pro version 4.1 (GenePix 4000B scanner, 

MDS Analytical Technologies, Mississauga, ON, Canada) or Jaguar, 2.0 (ArrayScanner 

428, Affymetrix Inc, Santa Clara, CA,USA). Cy3 and Cy5 were scanned at wavelengths 

of approximately 532 nm and 635 nm respectively, both with 100% power. Primary 

image analysis (ArrayVision, version 8.0, rev. 3.0; Imaging Research Inc.) and global 

loess normalization (ArrayPipe) (Hokamp et al. 2004) were performed. The background 

was then subtracted from the raw spot intensity for both reference and test strain, giving 

a net intensity for each spot. Prior to all subsequent analyses, anomalous spots resulting 

from printing errors were removed from the dataset. The average net intensity data in 

reference and test channels for each ORF on the array were then obtained by averaging 

the net intensity of remaining replicate spots. 
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5.2.8  Quality control and gene absence/divergence analysis 

 Taboada et al previously showed that low intensity CGH data may behave less 

reliably than high intensity data upon subsequent analysis of gene divergence/absence 

(Taboada et al. 2005). Preliminary analysis of our data set revealed that low intensity 

data reduced the concordance of data from replicate arrays (see description in 

“validation of clustering results” section below). A custom script was written in Visual 

Basics for Applications (Microsoft Office Excel, Microsoft Corporation, 2007) to test 

pixel intensity cut-offs from 200 to 1,200 pixel units (in 20 unit increments) while 

monitoring concordance of replicate data. This analysis allowed us to determine 

intensity and log ratio cut-offs which would maximize the amount of reliable data 

retained for subsequent analysis and minimize the adverse effects of low signal data on 

replicate concordance. ORFs and arrays in which greater than 5% of the data yielded 

less than 500 pixel units in the reference channel were excluded from subsequent 

analysis. A “log ratio” or log2 (net test signal/net reference signal) threshold of -1.1 was 

chosen to differentiate divergent/absent from present genes. Spots for which the log 

ratio was < -1.1 were categorized as "divergent/absent", or categorized as "conserved" if 

the log ratio was ≥ -1.1). A log ratio was calculated for each ORF in each array that 

passed QC (1,399 ORFs; 119 arrays). Raw and processed log ratio data for this dataset 

are available at NCBI’s Gene Expression Omnibus website 

(www.ncbi.nlm.nih.gov/projects/geo/) under accession number GSE13228. Log ratio 

data were visualized and analyzed in TIGRs MultiExperiment Viewer (TMEV, version 

3.1) (Saeed et al. 2003). 
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5.2.9  Global cluster analysis and validation of clustering results 

Average linkage hierarchical clustering (Eisen et al. 1998) was used to cluster 

samples based on similarity of binarized gene conservation profiles, and was performed 

in TMEV (Saeed et al. 2003) using Euclidean distance as a distance metric. Support tree 

bootstrapping within TMEV (500 bootstrap re-samplings) (Saeed et al. 2003) was then 

used to test the reliability of the clustering patterns. Tree data were coded into Newick 

format prior to visualization using Treeview version 1.6.6 (Page 1996).  

Arrays from 90 study C. jejuni isolates and replicate arrays from 23 randomly 

selected isolates stratified by source (human or bovine) were included in the preliminary 

cluster analysis. Six self-self arrays (laboratory strain NCTC 11168) and six arrays 

comparing the reference NCTC 11168 to the laboratory test strain RM 1221 (hereafter 

referred to as RM 1221) were also included in the dataset. These technical replicate 

arrays were used to validate our data based on the expectation that replicates should 

group together on the dendrogram. Three isolates for which replicate arrays showed low 

concordance were identified and were removed from subsequent analyses. The 

remaining 87 isolates were included in the analysis of gene association. 

 
5.2.10  Statistical analyses of gene association 

A multi-step process was used to investigate genes which might be differentially 

distributed between human and cattle sources. Genome-wide gene association analyses 

were conducted using an in-house Microsoft Excel script developed to compare 

differential conservation rates for each array gene (n=1,399), comparing groups of 

strains using the two tailed Fisher’s exact test (Taboada et al. 2007b). The 87 isolate 

dataset was separated by source, and the number of absent and conserved genes between 
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the cattle and human isolates compared on a gene-by-gene basis. Because of obvious 

clonality present in the data, it was then decided to analyze CGH clusters that might 

have the potential for niche adaptation. Comparative genomic hybridization clusters 

were combined based on their apparent affinity for either human or cattle hosts. The first 

group was comprised of CGH clusters composed mainly of cattle isolates (CGH1, 

CGH8, CGH10; 24 cattle, 3 human) and designated as “cattle enriched” (CGH CE). The 

second group was comprised of CGH clusters composed mainly of human isolates 

(CGH3, CGH5, CGH11, CGH13; 4 cattle, 20 human) and designated “human enriched” 

(CGH HE). A third group, not used for analytical purposes, was comprised of CGH 

clusters composed of similar number of cattle and human isolates (CGH2, CGH4, 

CGH6, CGH7, CGH10; 14 cattle, 13 human) and designated at “intermediate” (CGH I), 

Figure 5.2. On a gene-by-gene basis (n=1,399), we tested the null hypothesis that each 

gene present in isolates from the CGH HE group would be present in the CGH CE 

group, and the alternate hypothesis that the gene would have an unequal distribution 

between the two groups using the Fisher’s exact test (p ≤ 0.05).  

The Fisher’s exact test p values from both of the above analyses (cattle vs human 

and CGH CE vs CGH HE) were adjusted for multiple comparisons using the Westfall 

and Young correction (WY, p ≤ 0.05) (Westfall and Young 1993) based on 20,000 

bootstrap resamplings (SAS version 9.2 SAS Institute Inc., Cary, NC, USA). 
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Figure 5.2  Distribution of human and cattle C. jejuni isolates within all 
comparative genomic hybridization clusters and designation into human enriched, 
or cattle enriched groups for gene association testing 

0 2 4 6 8 10 12 14 16

1
2
3
4
5
6
7
8
9

10
11
12
13

CGH Cluster #

1 2 3 4 5 6 7 8 9 10 11 12 13

# Cattle Isolates 9 4 0 2 3 3 0 8 4 7 1 1 0
# Human Isolates  1 3 2 2 12 3 1 2 4 0 4 1 2
Designation CE     I     HE    I     HE     I       I CE      I    CE   HE     I     HE  

 
CE: cattle enriched, CGH: comparative genomic hybridization, HE: human enriched,  
I: intermediate. n=79 isolates (isolates that did not cluster not shown) 
 
 
5.3  Results 

5.3.1  Assessment of clustering results using technical replicates 

 Technical replicates were included in the study, Figure 5.1. The inclusion of 

these arrays was a means of validating our data as replicate arrays should group 

together. Initially, 25 replicate sets were included in analysis, representing 11 human 

and 12 cattle field isolates and two laboratory strains (NCTC 11168 and RM 1221). The 

field isolates each had two replicates and the two laboratory strains (NCTC 11168 and 

RM 1221) each had six replicates.  
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5.3.2  Cluster analysis of human and cattle isolates 

 As expected, most replicate sets grouped within the same CGH cluster (22/25 

sets). Three replicate pairs from three field isolates, however, did not group within the 

same CGH cluster and these isolates were removed from all subsequent analyses. A 

dendrogram representing 119 arrays (87 field isolates: 67 with single arrays, 20 with 

duplicate arrays; two laboratory strains each with six replicate arrays) is shown in Figure 

5.3. 

 Forty-one arrays from human C. jejuni isolates (24 male, 17 female; ages 1-81 

years old) and 46 arrays from cattle C. jejuni isolates arrays were included in the final 

study dataset, Table 5.1. Of the 87 field isolates, eight isolates did not cluster with others 

(designated NC in tables and figures), and isolate #4121 (CGH 7) clustered only with 

the RM 1221 laboratory strain. Of the 13 CGH clusters identified, nine contained human 

and cattle isolates, three contained only human isolates, and one contained only cattle 

isolates, Figures 5.2 and 5.4.  

 
5.3.3  Molecular epidemiological analysis of temporal distribution 

 Nine of 13 CGH clusters contained isolates from both summer and winter 

seasons, and of these three clusters contained both cattle and human isolates from both 

winter and summer, Figure 5.5. Further, five clusters (CGH 2, 5, 6, 9, and 11) contained 

both human and cattle C. jejuni isolates submitted/collected within two week time 

frames, Table 5.1. 
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Figure 5.3  Dendrogram of validated C. jejuni technical replicates, laboratory 
strains and field isolates 
 

RM1221

NCTC11168

RM1221

NCTC11168

 

Heavy black branch lines indicate greater than 75% bootstrap support. Grey brackets 
join the 20 sets of field isolate replicates on the dendrogram. Boxes denote the two sets 
of laboratory strain replicates. n=119 arrays. 
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Figure 5.4  Global clustering dendrogram of cattle and human C. jejuni isolates 
 
 
a B: bovine, H: human; b S: summer, W: winter; c NC: not clustered;  
d CE: cattle-enriched, HE: human-enriched, I: intermediate, NC: not clustered; e: CGH7 
contains a single study isolate and laboratory strain RM 1221. Heavy black branch lines 
indicate greater than 75% bootstrap support; dashed lines represent isolates that did not 
cluster with other study isolates. Figure includes 87 field isolate arrays and two 
laboratory strain arrays. 
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CGH1

CGH2

CGH3

CGH4

CGH5

CGH6

CGH7e

CGH8

CGH9

CGH11

CGH10

CGH12
CGH13

Study # Sourcea Seasonb Feedlot RHA
CGH 

clusterc
Cluster 
typed

773 B W D 1 1 CE
2106 B S B 1 1 CE
2808 B S G 3 1 CE
4151 H S 3 1 CE
2719 B S F 5 1 CE
2046 B S B 1 1 CE
1006 B W F 5 1 CE
1046 B W F 5 1 CE
1133 B W F 5 1 CE
213 B W B 1 1 CE
356 B W B 1 2 I
4189 H S 1 2 I
1302 B W G 3 2 I
1393 B W G 3 2 I
442 B W C 1 2 I
4197 H W 1 2 I
4194 H W 1 2 I
4122 H W 3 NC NC
4125 H W 3 3 HE
4137 H W 3 3 HE
4145 H S 3 4 I
4332 B S G 3 4 I
84 B W A 2 4 I

4196 H W 1 4 I
4147 H S 3 5 HE
4153 H S 3 5 HE
4142 H S 2 5 HE
4186 H S 1 5 HE
4134 H W 3 5 HE
4138 H S 2 5 HE
2202 B S E 1 5 HE
4199 H W 1 5 HE
4176 H S 1 5 HE
4132 H W 3 5 HE
4450 B S G 3 5 HE
4123 H W 3 5 HE

NCTC11168 0 5 HE
4143 H S 2 5 HE
697 B W D 1 5 HE
4158 H S 3 5 HE
4129 H W 3 NC NC
4195 H W 1 NC NC
1645 B S D 1 6 I
4163 H S 3 6 I
4173 H S 1 6 I
2603 B S F 5 6 I
4140 H S 2 6 I
2650 B S F 5 6 I
4121 H W 3 A NC

RM1221 0 A NC
2360 B S E 1 8 CE
2409 B S A 2 8 CE
1676 B S D 1 8 CE
4200 H W 1 8 CE
1716 B S D 1 8 CE
4413 B S G 3 8 CE
4190 H S 1 8 CE
2497 B S A 2 8 CE
4330 B S G 3 8 CE
2548 B S A 2 8 CE
2515 B S A 2 NC NC
1826 B S C 1 9 I
2371 B S E 1 9 I
381 B W B 1 9 I
2326 B S E 1 9 I
4127 H W 3 9 I
4128 H W 3 9 I
4193 H W 1 9 I
4141 H S 2 9 I
1243 B W G 3 NC NC
179 B W A 2 10 CE
2699 B S F 5 10 CE
1016 B W F 5 10 CE
321 B W B 1 10 CE
875 B W E 1 10 CE
100 B W A 2 10 CE
791 B W D 1 10 CE
4167 H S 3 11 HE
4177 H S 1 11 HE
1888 B S C 1 11 HE
4188 H S 1 11 HE
4149 H S 3 11 HE
4198 H W 1 NC NC
1111 B W F 5 12 I
4170 H S 3 12 I
4136 H W 3 13 HE
4144 H S 2 13 HE
122 B W A 2 NC NC
4427 B S G 3 NC NC

CGH1

CGH2

CGH3

CGH4

CGH5

CGH6

CGH7e

CGH8

CGH9

CGH11

CGH10

CGH12
CGH13

Study # Sourcea Seasonb Feedlot RHA
CGH 

clusterc
Cluster 
typed

773 B W D 1 1 CE
2106 B S B 1 1 CE
2808 B S G 3 1 CE
4151 H S 3 1 CE
2719 B S F 5 1 CE
2046 B S B 1 1 CE
1006 B W F 5 1 CE
1046 B W F 5 1 CE
1133 B W F 5 1 CE
213 B W B 1 1 CE
356 B W B 1 2 I
4189 H S 1 2 I
1302 B W G 3 2 I
1393 B W G 3 2 I
442 B W C 1 2 I
4197 H W 1 2 I
4194 H W 1 2 I
4122 H W 3 NC NC
4125 H W 3 3 HE
4137 H W 3 3 HE
4145 H S 3 4 I
4332 B S G 3 4 I
84 B W A 2 4 I

4196 H W 1 4 I
4147 H S 3 5 HE
4153 H S 3 5 HE
4142 H S 2 5 HE
4186 H S 1 5 HE
4134 H W 3 5 HE
4138 H S 2 5 HE
2202 B S E 1 5 HE
4199 H W 1 5 HE
4176 H S 1 5 HE
4132 H W 3 5 HE
4450 B S G 3 5 HE
4123 H W 3 5 HE

NCTC11168 0 5 HE
4143 H S 2 5 HE
697 B W D 1 5 HE
4158 H S 3 5 HE
4129 H W 3 NC NC
4195 H W 1 NC NC
1645 B S D 1 6 I
4163 H S 3 6 I
4173 H S 1 6 I
2603 B S F 5 6 I
4140 H S 2 6 I
2650 B S F 5 6 I
4121 H W 3 A NC

RM1221 0 A NC
2360 B S E 1 8 CE
2409 B S A 2 8 CE
1676 B S D 1 8 CE
4200 H W 1 8 CE
1716 B S D 1 8 CE
4413 B S G 3 8 CE
4190 H S 1 8 CE
2497 B S A 2 8 CE
4330 B S G 3 8 CE
2548 B S A 2 8 CE
2515 B S A 2 NC NC
1826 B S C 1 9 I
2371 B S E 1 9 I
381 B W B 1 9 I
2326 B S E 1 9 I
4127 H W 3 9 I
4128 H W 3 9 I
4193 H W 1 9 I
4141 H S 2 9 I
1243 B W G 3 NC NC
179 B W A 2 10 CE
2699 B S F 5 10 CE
1016 B W F 5 10 CE
321 B W B 1 10 CE
875 B W E 1 10 CE
100 B W A 2 10 CE
791 B W D 1 10 CE
4167 H S 3 11 HE
4177 H S 1 11 HE
1888 B S C 1 11 HE
4188 H S 1 11 HE
4149 H S 3 11 HE
4198 H W 1 NC NC
1111 B W F 5 12 I
4170 H S 3 12 I
4136 H W 3 13 HE
4144 H S 2 13 HE
122 B W A 2 NC NC
4427 B S G 3 NC NC  
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Figure 5.5  Distribution of summer and winter feedlot cattle and human clinical  
C. jejuni isolates within all comparative genomic hybridization clusters 
 

 

CGH: comparative genomic hybridization; NC: isolates that did not cluster with any 
other field or laboratory strains. Cattle n=46, human n=41, summer n=47, winter n=40.  
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Table 5.1  Human and feedlot cattle C. jejuni isolate information (order same as 
dendrogram Figure 5.4) 
 
CGH # Study # # Reps Pop'n Sson Feedlot RHA Datea Gender Age 

1 773 1 B W D 1 24-Jan-05 - - 
 2106 1 B S B 1 25-Aug-05 - - 
 2808 1 B S G 3 13-Sep-05 - - 
 4151 0 H S - 3 5-Aug-05 M 34 
 2719 0 B S F 5 12-Sep-05 - - 
 2046 0 B S B 1 25-Aug-05 - - 
 1006 0 B W F 5 31-Jan-05 - - 
 1046 0 B W F 5 31-Jan-05 - - 
 1133 0 B W F 5 31-Jan-05 - - 
 213 0 B W B 1 18-Jan-05 - - 

2 356 0 B W B 1 18-Jan-05 - - 
 4189 0 H S - 1 3-Jul-05 Fe 43 
 1302 1 B W G 3 1-Feb-05 - - 
 1393 0 B W G 3 1-Feb-05 - - 
 442 0 B W C 1 19-Jan-05 - - 
 4197 1 H W - 1 7-Jan-05 Fe 41 
 4194 0 H W - 1 17-Dec-04 Fe 30 

NC 4122 1 H W - 3 8-Nov-04 M 57 
3 4125 0 H W - 3 15-Nov-04 Fe 74 
 4137 0 H W - 3 11-Jan-05 Fe 1 

4 4145 0 H S - 3 1-Aug-05 M 64 
 4332 0 B S G 3 13-Sep-05 - - 
 84 1 B W A 2 17-Jan-05 - - 
 4196 0 H W - 1 20-Dec-04 M 23 

5 4147 0 H S - 3 2-Aug-05 Fe 63 
 4153 1 H S - 3 7-Aug-05 M 2 
 4142 1 H S - 2 28-Jun-05 M 50 
 4186 1 H S - 1 29-Jun-05 M 28 
 4134 0 H W - 3 13-Dec-04 M 81 
 4138 0 H S - 2 5-Jul-05 Fe 28 
 2202 1 B S E 1 6-Sep-05 - - 
 4199 0 H W - 1 12-Jan-05 Fe 1 
 4176 0 H S - 1 8-Jun-05 M 19 
 4132 0 H W - 3 6-Dec-04 M 7 
 4450 0 B S G 3 13-Sep-05 - - 
 4123 0 H W - 3 14-Nov-04 Fe 3 
 NCTC 11168 5   Laboratory strain   
 4143 0 H S - 2 1-Jun-05 M 23 
 697 0 B W D 1 24-Jan-05 - - 
 4158 0 H S - 3 11-Aug-05 M 40 

NC 4129 0 H W - 3 3-Dec-04 M 23 
NC 4195 0 H W - 1 19-Dec-04 M 49 
6 1645 0 B S D 1 22-Aug-05 - - 
 4163 1 H S - 3 15-Aug-05 Fe 77 
 4173 0 H S - 1 7-Jun-05 Fe 34 
 2603 0 B S F 5 12-Sep-05 - - 
 4140 0 H S - 2 13-Sep-05 M 43 
 2650 0 B S F 5 12-Sep-05 - - 

7 4121 0 H W - 3 9-Dec-04 Fe 64 
 RM 1221 5    Laboratory strain   
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CGH # Study # # Reps Pop'n Sson Feedlot RHA Datea Gender Age 
8 2360 0 B S E 1 6-Sep-05 - - 
 2409 1 B S A 2 8-Sep-05 - - 
 1676 1 B S D 1 22-Aug-05 - - 
 4200 1 H W - 1 27-Jan-05 M 3 
 1716 0 B S D 1 22-Aug-05 - - 
 4413 0 B S G 3 13-Sep-05 - - 
 4190 0 H S - 1 5-Jul-05 M 32 
 2497 0 B S A 2 8-Sep-05 - - 
 4330 0 B S G 3 13-Sep-05 - - 
 2548 0 B S A 2 8-Sep-05 - - 

NC 2515 0 B S A 2 8-Sep-05 - - 
9 1826 0 B S C 1 23-Aug-05 - - 
 2371 0 B S E 1 6-Sep-05 - - 
 381 0 B W B 1 18-Jan-05 - - 
 2326 0 B S E 1 6-Sep-05 - - 
 4127 0 H W - 3 21-Nov-04 M 47 
 4128 0 H W - 3 22-Nov-04 M 19 
 4193 0 H W - 1 17-Dec-04 M 57 
 4141 0 H S - 2 11-Sep-05 Fe 28 

NC 1243 0 B W G 3 1-Feb-05 - - 
10 179 1 B W A 2 17-Jan-05 - - 

 2699 1 B S F 5 12-Sep-05 - - 
 1016 0 B W F 5 31-Jan-05 - - 
 321 0 B W B 1 18-Jan-05 - - 
 875 0 B W E 1 25-Jan-05 - - 
 100 1 B W A 2 17-Jan-05 - - 
 791 0 B W D 1 24-Jan-05 - - 

11 4167 0 H S - 3 16-Aug-05 Fe 25 
 4177 0 H S - 1 9-Jun-05 M 18 
 1888 0 B S C 1 23-Aug-05 - - 
 4188 1 H S - 1 30-Jun-05 M 45 
 4149 0 H S - 3 3-Aug-05 Fe 40 

NC 4198 0 H W - 1 9-Jan-05 Fe 24 
12 1111 0 B W F 5 31-Jan-05 - - 

 4170 1 H S - 3 26-Aug-05 Fe 48 
13 4136 0 H W - 3 3-Jan-05 M 33 

 4144 0 H S - 2 8-Aug-05 M 47 
NC 122 0 B W A 2 17-Jan-05 - - 
NC 4427 0 B S G 3 13-Sep-05 - - 

a: Submission or sampling date.  
A-F: feedlot designations, CGH: comparative genomic hybridization, Dash (-): not 
applicable, Fe: female, M: male, NC: isolates that did not cluster with any other field or 
laboratory strains, Pop’n: population, RHA: regional health authority, Reps: replicates, 
Sson: season, S: summer, W: winter. n=89 C. jejuni isolates, 87 field, 2 laboratory 
strains.  
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5.3.4  Molecular epidemiological analysis of geographical distribution 

 Two or more feedlots were represented in eight of the 13 CGH clusters, and 

three of the 13 CGH clusters contained cattle isolates from four or more feedlots, Figure 

5.6. Only one CGH cluster was composed of isolates from a single RHA (CGH3, n=2). 

Another cluster, CGH7, contained a single field isolate and the laboratory strain  

RM 1221 (one field and one laboratory strain). The other 11 CGH clusters contained 

isolates from two or more RHAs, and one cluster (CGH6) contained isolates from all 

four RHAs, Figure 5.7. 

 
Figure 5.6  Distribution of feedlots within all C. jejuni comparative genomic 
hybridization clusters 
 

 
Legend at the right gives the feedlot designation, figure includes feedlot cattle C. jejuni 
isolates only n=46. CGH: comparative genomic hybridization, NC: isolates that did not 
cluster with any other field or laboratory strains.  
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Figure 5.7  Distribution of Alberta regional health authorities within all C. jejuni 
comparative genomic hybridization clusters 
 

 
CGH: comparative genomic hybridization. NC: isolates that did not cluster with any 
other field or laboratory strains. Cattle n=46, human n=41.  
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5.3.5  Gene association testing to compare cattle and human isolates 

 The comparison of all human (n=41) and cattle (n=46) C. jejuni isolates 

originally identified 25 of 1,399 genes in our dataset as having an unequal distribution 

between the two groups (gene absent more in one group than the other, p ≤ 0.05). The 

WY correction was used to account for testing of multiple comparisons, and adjusted the 

Fisher’s exact p values to minimize the possibility of false positive results. In gene-by-

gene comparison of the cattle and human clinical C. jejuni isolates (with WY 

correction), only three genes were identified with statistically significant differences in 

presence/absence between the two groups: Cj 0617, a hypothetical protein; Cj0628, a 

putative lipoprotein; Cj1668, a putative periplasmic protein. It was also observed that 

seven CGH clusters were dominated by either cattle or human isolates, Figure 5.2. We 

hypothesized that there could be potentially meaningful genetic differences between the 

human-dominated or cattle-dominated clusters and decided to investigate these source-

biased groupings further. CGH clusters predominantly composed of human isolates 

(CGH HE) and those predominantly composed of cattle isolates (CGH CE) were 

compared using gene association testing. This focused cluster comparison identified 37 

of 1,399 genes unequally distributed between these two groups using both the Fisher’s 

exact test and the WY correction (p ≤ 0.05), Table 5.2. 
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Table 5.2  Results of C. jejuni gene association testing for comparison of CGH 
“cattle enriched” and “human enriched” groups 
 
All genes are statistically significant (p ≤ 0.05) based on the unadjusted Fisher’s exact 
test p value and the Westfall and Young (WY) corrected p value, 1,399 genes tested.  
CE: cattle enriched, CGH: comparative genomic hybridization, HE: human enriched,  
P: protein, put.: putative. Gene product information is from the following reference: 
(Gundogdu et al. 2007). 
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CGH CE  vs  CGH HE Gene Absent     
CGH CE   
(n=27) 

Absent 
CGH HE 
(n=24) 

Unadjusted    
p value 

WY  
p value 

Gene Product 

Cj0202 27 14 0.00015 0.00210 hypothetical P 
Cj0300 19 24 0.00464 0.05000 put. molybdenum transport ATP-

binding P 
Cj0302 16 24 0.00033 0.00400 put. molybdenum-pterin binding P 
Cj0303 11 24 <0.00001 <0.00001 put. molybdate-binding lipoprotein 
Cj0304 15 24 0.00013 0.00135 put. biotin synthesis P 
Cj0399 17 24 0.00081 0.01145 colicin V production P homolog 
Cj0485 13 21 0.00352 0.03890 put. oxidoreductase 
Cj0617 27 6 <0.00001 <0.00001 hypothetical P 
Cj0628 0 8 0.00116 0.01525 put. lipoprotein 
Cj1051 2 12 0.00118 0.01555 restriction modification enzyme 
Cj1136 3 16 0.00005 0.00055 put. glycosyltransferase 
Cj1137 4 17 0.00006 0.00085 put. glycosyltransferase 
Cj1138 5 17 0.00023 0.00325 put. glycosyltransferase 
Cj1139 10 22 0.00010 0.00115 beta-1,3 galactosyltransferase 
Cj1140 9 19 0.00172 0.01970 alpha-2,3 sialyltransferase 
Cj1141 3 17 0.00001 0.00005 sialic acid synthase (N-acetyl 

neuraminic acid synthetase) 
Cj1142 6 18 0.00023 0.00360 put. UDP-N-acetylglucosamine 2-

epimerase 
Cj1143 2 16 0.00002 0.00010 two-domain bifunctional P (beta-1,4-

N-acetylgalactosaminyltransferase 
/CMP-Neu5Ac synthase) 

Cj1144 6 16 0.00194 0.02315 hypothetical P 
Cj1145 5 16 0.00066 0.00885 coding sequence merged with Cj1144 
Cj1146 12 22 0.00038 0.00455 put. glucosyltransferase 
Cj1150 19 24 0.00464 0.05000 D-beta-D-heptose 7-phosphate  

kinase/D-beta-D-heptose 1-phosphate 
adenylyltransferase 

Cj1297 10 19 0.00424 0.04385 hypothetical P 
Cj1389 1 16 <0.00001 <0.00001 pseudogene (put. C4-dicarboxylate 

anaerobic carrier 
Cj1421 6 18 0.00023 0.00360 put. sugar transferase 
Cj1422 7 20 0.00006 0.00080 put. sugar transferase 
Cj1428 10 20 0.00145 0.01710 GDP-L-fucose synthetase 
Cj1429 6 19 0.00007 0.00090 hypothetical P 
Cj1430 8 18 0.00191 0.02225 put. dTDP-4-dehydrorhamnose 3,5-

epimerase 
Cj1432 3 16 0.00005 0.00055 put. sugar transferase 
Cj1433 2 17 <0.00001 <0.00001 hypothetical P 
Cj1434 5 19 0.00002 0.00025 put. sugar transferase 
Cj1435 8 19 0.00105 0.01410 put. phosphatase 
Cj1439 0 15 <0.00001 <0.00001 UDP-galactopyranose mutase 
Cj1440 6 16 0.00194 0.02315 put. sugar transferase 
Cj1520 9 20 0.00054 0.00665 removed from coding sequences 
Cj1729 1 13 0.00007 0.00150 flagellar hook subunit P 
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5.4  Discussion 

 This study describes the use of DNA microarray as a high-resolution genotyping 

tool for the molecular epidemiological investigation of C. jejuni. This dataset represents 

the largest published comparisons of human and feedlot cattle C. jejuni isolates using 

DNA microarrays, and focused on feedlot cattle because of their potential as 

Campylobacter reservoirs. The isolates tested by DNA microarray in this study were 

purposefully collected within a defined geographical and temporal framework in order 

to generate data on the presence and persistence of strains in feedlot cattle and people in 

Alberta. 

 Although the microarray-based CGH approach described is not used in routine 

molecular epidemiology due to high cost and low throughput compared to conventional 

genotyping methods, it has the potential to provide an unprecedented level of 

discriminatory power (Dorrell et al. 2005b, Leonard II et al. 2004, Taboada et al. 

2007a). Further, analysis by DNA microarray-based CGH has recently been shown to 

correlate with clonal complexes identified by multi-locus sequence typing (MLST), the 

“gold standard” in molecular typing, in Streptococcus pneumoniae (Dagerhamn et al. 

2008) and in C. jejuni (Taboada et al. 2008). The data obtained from genomic DNA 

microarray studies can not only create high-resolution genetic profiles for global 

clustering but can also be directly applied in gene association studies to study potential 

genotype-phenotype links. These advantages are reflected in a recent investigation of  

C. jejuni strains implicated in Guillain-Barré and Miller Fisher syndromes (Taboada et 

al. 2007b). In the past, finding associations using conventional molecular typing 

methods between neuropathogenic C. jejuni typing markers and clinical phenotype has 
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been difficult (Dingle et al. 2001b). With the use of data obtained from microarray-

based CGH, it has been possible to extend applications beyond lineage diversity to 

successfully identify factors commonly shared by neuropathogenic strains using a gene 

association approach.  

 In this study, global clustering of C. jejuni isolates based on whole-genome 

profiles showed that there was a high degree of similarity between cattle and human 

isolates. The distribution of isolates from both sources within most of the 13 CGH 

clusters suggests that both people and cattle may have access to the same transmission 

routes. Nine out of 13 CGH clusters contained both bovine and human isolates, and 

within five clusters genetic clones (isolates with high genomic similarity and belonging 

to the same CGH cluster) were identified from both cattle and people within very 

confined temporal periods (two weeks). Often the isolates within a cluster represented 

multiple geographical regions and feedlots from both seasons and from both cattle and 

human sources. It is not known if human campylobacteriosis patients in our study had 

contact with feedlot cattle or were from urban or rural backgrounds. Specifically 

designed epidemiological studies would be required to link cattle contact to human 

cases. However, our findings, although indirect, suggest that transmission of C. jejuni 

strains may be occurring between people and feedlot cattle, and that the distribution of 

C. jejuni strains able to cause human disease is widespread in southern Alberta.  

 Clonality was a prominent feature observed in our dataset. One known 

campylobacteriosis outbreak occurred in RHA 3 during the course of our study. 

However, isolates from this outbreak were not included in order to maximize genetic 

variability in our dataset. CGH cluster 5, in which 12 of 15 field isolates were of human 
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origin, was an important strain in the dataset as isolates with this genetic profile were 

persisting, widespread, and clearly pathogenic. Patients infected with this C. jejuni strain 

sought clinical care over a 44 week period (seven different months) in three different 

RHAs. Identifying CGH clusters dominated by either human or cattle sources is 

consistent with MLST studies which have suggested that niche adaptation may play a 

role in the over-representation of sources within clonal groups (Dingle et al. 2001a, 

Dingle and Maiden 2005). It is possible that sampling issues could have played a role in 

our findings. The culture process used could have selected for colonies with particular 

genetic make-up, therefore not representative of the full spectrum of C. jejuni genetic 

variability. In addition, only one colony per plate was selected for molecular testing, 

which may have resulted selection bias. However, it is also possible that the genotypic 

clusters identified in our study may represent phenotypic separations within the dataset. 

It is plausible that C. jejuni, considered a commensal in cattle but usually pathogenic in 

people, could have differential infection and colonization rates between hosts species 

based on differences in strain attributes or exposure patterns. 

 The ability to mine microarray data using gene association testing, in addition to 

global clustering, is one of the main advantages of the DNA microarray platform. 

Global clustering gives an overview of similarity between isolates but does not specify 

which parts of the genomes are similar or different. Our comparison of human and 

bovine isolates using gene association testing identified only three of 1,399 genes with 

statistically significant differences in conservation rates between sources. Because it is 

possible that the small number of genes identified resulted from confounding factors or 

lack of power, in addition to similarity between human and cattle isolates, it was decided 
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to explore source-biased clusters more thoroughly. Our comparison of “cattle enriched” 

and “human enriched” clonal groupings identified 37 of 1,399 genes absent in one group 

but not in the other. This represents a very small number of differences and supports the 

overall similarity between human and cattle isolates. The concept of feedlot niche 

adaptation may be plausible based on our findings of clonal groupings dominated by 

particular host sources and is interesting, from an epidemiological perspective, as the 

genetic composition of different clonal strains may have potential clinical relevance.  

 The feedlot environment seems a dynamic and important niche in the 

epidemiology of campylobacters. Our results supported our expectation that C. jejuni 

strains collected within a feedlot would be similar and would group within the same 

CGH cluster. Seven CGH clusters were found to contain two or more isolates from the 

same feedlot. However, it was surprising that individual feedlots contained so many 

genetically diverse strains. Three or more strains (CGH clusters) were identified within 

each of the seven feedlots. Multiple strains within each feedlot niche are mostly likely 

the result of a combination of influences including human, wild bird, insects, other 

reservoir hosts, fomite and water exposures. Further, clones from both winter and 

summer collections within individual feedlots (B and F) were identified. Our findings 

suggest that some genotypic clones may persist over the course of the year in the feedlot 

environment, and that C. jejuni genomic profiles may be relatively stable and not 

undergoing major recombination events. They also suggest that cattle may be exposed to 

multiple strains of C. jejuni over time. 

 Human samples were acquired from diagnostic laboratories across southern 

Alberta. As protocols for C. jejuni isolation are not standardized across the province, it 
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is possible that a variety of isolation methods were used for the human isolations and 

that these were different from protocols for isolation of bovine strains. This may have 

resulted in selection pressure for certain strains based on the isolation conditions used, 

resulting in an underrepresentation of isolate genetic variability.  

 Both cattle and human isolates were collected in winter and summer 2005 from 

three geographical areas (RHA 1, 2, 3) in southern Alberta. In order to include more 

bovine isolates, cattle in a fourth area (RHA 5) were sampled over the same time frame. 

Clustering of C. jejuni strains did not seem to be influenced by season, as nine of 13 

CGH clusters contained isolates from both summer and winter. RHA was also not a 

segregating factor as 11 of 13 CGH clusters contained C. jejuni isolates from two or 

more RHAs. These findings suggest that movement of strains between the different 

geographical regions is occurring and may be common in southern Alberta.  

 Alberta patients are provided with medical treatment, including laboratory 

services, under Canada’s universal, publicly insured health care plan. Community and 

hospital physician services are accessed within regional health authorities and while 

patients have the option to access these services outside of RHAs, the majority of 

primary care and laboratory services are accessed within the RHA of residence. While it 

was assumed that the RHA submitting the human isolate was the same region in which 

the patient lived, it is possible that regional misclassification may have occurred if the 

patient saw a physician outside of their area of residence or if the samples were sent to 

diagnostic laboratories in a different RHA.   
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5.5  Conclusions 

 This study used DNA microarray as a platform to investigate C. jejuni isolates 

from feedlot cattle and people in Alberta. Using this study design, the time, labour and 

cost of conducting whole-genome CGH studies with DNA microarrays does not make 

the platform conducive for time sensitive outbreak investigation or detection surveys. 

However, the advantages of DNA microarray technology in generating high-resolution 

data useful for both global clustering and gene association studies represents significant 

value-added compared to other molecular typing techniques (Taboada et al. 2007b, 

Taboada et al. 2008). As a result, DNA microarray may be advantageous for use in 

molecular epidemiological contexts that require comprehensive genetic data but not 

immediate reporting. This molecular study has enabled us to describe the genetic 

variability of human and cattle isolates, both globally and gene-by-gene. Study isolates 

clustered regardless of seasonal or geographical frameworks, suggesting that C. jejuni 

strains may be stable and endemic in Alberta. Further, the common distribution of 

human clinical and bovine C. jejuni isolates within the same genetically-based clusters 

suggests that dynamic and important transmission routes between cattle and human 

populations may exist.  
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CHAPTER 6 
CONCLUSIONS 

 
6.1 Summary 

 Campylobacter species, in particular Campylobacter jejuni (C. jejuni), are 

important human pathogens in both the developed and developing world (Friedman et 

al. 2000, Oberhelman and Taylor 2000). In people, campylobacters commonly cause 

enteric disease which may include costly and serious sequelae such as Guillain-Barré 

syndrome, Miller Fisher syndrome and reactive arthritis (Nachamkin 2002).  

 As carriers of campylobacters, feedlot cattle are potential reservoirs for human 

infection, for transmission to other reservoir hosts including wild birds and insects, and 

for contamination of soil and water sources. The effects of the Walkerton waterborne 

outbreak emphasized the importance of cattle as human enteric bacteria reservoirs and 

the need for continued research into transmission routes for these bacteria to people 

(O'Connor 2002). Campylobacter research in Alberta has included a targeted prevalence 

study in international travelers, knowledge assessment of prevention techniques for 

traveler’s diarrhea, and human risk factor identification (Johnson et al. 2006, Johnson et 

al. 2008, Russell et al. 1993); pathogen detection in water (Walters et al. 2007); 

antimicrobial resistance studies in people including feedlot workers, and in cattle (Inglis 

et al. 2005, Inglis et al. 2006, Johnson et al. 2008, Lefebvre et al. 2006, Read et al 2004); 

and molecular typing of campylobacters from cattle (Besser et al. 2005). 
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 The purpose of this thesis was to investigate the hypothesis that feedlot cattle in 

Alberta could be plausible and potential sources of Campylobacter spp. and C. jejuni to 

Albertans. A prevalence study of Campylobacter spp. and C. jejuni in feedlot cattle 

feces, and a preliminary risk factor study of associations between Campylobacter spp. 

isolation rates and pen and feedlot variables were conducted. During the same time 

frame, the potential public health importance of retail ground beef as a source of 

Campylobacter spp. was investigated. Through enrichment culture and polymerase 

chain reaction (PCR) techniques, retail ground beef was tested for Campylobacter spp. 

and an initial risk factor study of associations related to the presence of Campylobacter 

spp. DNA in the meat was conducted. DNA microarray technology was then used to 

describe and compare C. jejuni genomic profiles in feedlot cattle and human clinical  

C. jejuni isolates from southern Alberta.  

 
6.1.1  Feedlot cattle fecal prevalence, seasonality and risk factor analysis 

 Overall and seasonal (summer and winter) prevalence estimates for 

Campylobacter spp. and C. jejuni isolation rates in feedlot cattle near slaughter weight 

from large commercial feedlots in Alberta were identified. While this study sampled 

only seven feedlots, this was one of the largest samplings of feedlot cattle feces for 

Campylobacter spp. in Alberta, and utilized an efficient and cost effective swab 

sampling methodology to obtain the Campylobacter isolates. From the collection of 

2,800 feedlot cattle fresh fecal samples within a geographical and temporal framework, 

1,486 C. jejuni isolates were obtained for use in this and future studies. 
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 Fecal prevalences of Campylobacter spp. (87%) and C. jejuni (61% summer 

estimate) were found to be very high in commercial feedlot cattle in Alberta. It was 

expected that winter and summer Campylobacter spp. estimates would be different, in 

keeping with human and poultry trends (Kovats et al. 2005, Meldrum et al. 2004). 

However this was not supported by study data as the summer (88%) and winter (86%) 

fecal prevalence estimates were not statistically significantly different in univariable 

analysis accounting for pen and feedlot clustering.  

 In multivariable analysis accounting for pen and feedlot clustering, the longer 

cattle remained in the feedlot, the lower the odds of shedding campylobacters. While 

this finding was similar to that from a previous Alberta study looking at growth implants 

in feedlot cattle (Lefebvre et al. 2006), it was contradictory to longitudinal studies which 

have found an increasing prevalence with time in the feedlot ((Besser et al. 2005, Inglis 

et al. 2004, Inglis et al. 2006). Further, feedlot size was associated with Campylobacter 

spp. isolation rates in this study. In particular, reduced rates were seen in mid-sized 

feedlots compared to small, likely reflecting differences in management between 

feedlots.  

 After accounting for pen level clustering, feedlot was associated with the 

Campylobacter spp. isolation rates, illustrating that differences exist between feedlots. 

Feedlot Campylobacter spp. prevalences varied from 76 to 95% and C. jejuni 

identification among Campylobacter positive isolates varied from 59 to 74% across the 

seven feedlots.  
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6.1.2 Retail ground beef prevalence and risk factor analysis 

 Twelve hundred regular and lean ground beef packages were collected from 60 

stores in three regional health authorities (RHAs 1, 2 and 3) in southern Alberta. The 

ground beef samples were intended to represent chains and stores with the largest sales 

volume of ground beef to consumers in those RHAs. The assumption was not that the 

feedlot cattle sampled in the fecal survey would be sources of this meat, as most ground 

beef would come from central processors and be distributed over large areas of the 

province. Specific study designs including farm-to-fork tracking would be required to 

make such an assumption. The meat was sampled, however, under the assumption that 

people would most likely purchase meat within their area of residence, and therefore 

that ground beef and human isolates from the same temporal and geographical 

samplings would be similar. No ground beef Campylobacter spp. isolates were obtained 

using culture in this ground beef survey. 

 Poultry cutting was initially thought to be a potential source of contamination for 

retail ground beef. However 2/3 of stores did not cut poultry on-site and brought in pre-

packaged poultry cuts for consumers. No association was found between poultry cutting 

and the presence of Campylobacter DNA in retail ground beef in the risk factor study. 

 An interesting finding in this study was the high level of Campylobacter coli 

DNA found in ground beef samples. C. coli can be carried by feedlot cattle, although 

usually in much lower prevalences than C. jejuni (Inglis et al. 2003, Inglis et al. 2006), 

and is more commonly associated with swine and pork. As a result, it was surprising to 

find more C. coli (26.8%) than C. jejuni (14.8%) in the ground beef samples tested with 

PCR. 
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 While Campylobacter DNA was present in the ground beef sampled in this 

study, the levels of culturable or viable campylobacters for retail consumption were 

extremely low. The prevalence of Campylobacter DNA using PCR detection, however, 

was moderate to high (46%), thus continued research into potential interventions in the 

slaughter to retail continuum could be of use. While culture results indicate viable 

organisms, the PCR results could indicate the presence of viable, viable but non 

culturable, or dead organisms, so it is difficult to evaluate public health risk based on the 

PCR findings. In addition, the high levels of Campylobacter DNA in the beef suggest 

that breaks in food safety protocols within slaughter plants, processors or grocery stores 

could have potentially important public health repercussions. 

 
6.1.3  Molecular epidemiology using DNA microarray  

 Feedlot cattle and human C. jejuni isolates from the same geographical and 

temporal framework were compared using DNA microarray, with the inclusion of 

technical replicates and control strains as validation of the technique. The results 

indicated that human and feedlot cattle C. jejuni isolates in southern Alberta are very 

similar. Human and feedlot cattle C. jejuni isolates were both identified in nine of the 13 

CGH clusters (three CGH clusters contained only human isolates and one CGH cluster 

contained only feedlot isolates). Because clusters were often found to contain both 

human and cattle C. jejuni isolates, to contain isolates from both winter and summer, 

and to contain isolates and from two or more RHAs, this suggests that some strains of  

C. jejuni may be endemic and stable over time, and that geographical movement is 

taking place. These may be important contributions to our knowledge of C. jejuni 

epidemiology in Alberta. 
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 In addition, gene association testing comparing human clinical and feedlot cattle 

C. jejuni isolates or comparing targeted host-based genetic groupings found only a small 

number of the 1,399 genes to be absent more in one group than the other. Based on these 

findings, it seems that human and cattle C. jejuni isolates from Alberta are genetically 

very similar, and that transmission between the two populations may be occurring. 

 While feedlot cattle may be a source of human infection, it is always possible 

that the opposite is true; that people may be a source of campylobacters to cattle. It is 

possible that fomite transmission and human sewage issues could lead to contamination 

of feedlot cattle water supplies. In a recent study of river waters in southern Alberta, 

ruminant bacterial indicators were linked to Escherichia. coli O157:H7 and Salmonella 

water contamination while campylobacters were linked to human bacterial markers 

(Walters et al. 2007). However, due to the large quantities of cattle manure produced 

each year in Alberta to be treated and used in agricultural endeavours, the human-to-

cattle hypothesis seems less likely. More plausible may be that people and cattle may be 

exposed to campylobacters through similar sources and transmission routes such as 

water. In addition, it is possible that cattle may have an important but indirect role in the 

‘web of transmission’ of campylobacters to people. For example, bird or insect access to 

cattle manure within feedlots prior to manure treatment or composting may be a means 

of transmitting bovine Campylobacter strains to other reservoir species such as poultry, 

followed by transmission to people. 

 
6.2  Strengths of the research 

 The fecal samples collected as part of this research represented 2,800 individual 

cattle and is one of the largest Campylobacter studies published based on feedlot cattle 
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feces sampling in Alberta. The purposeful sampling strategy (20 pens per feedlot per 

sampling, 10 samples per pen, collected in winter and summer from seven large 

commercial Alberta feedlots) resulted in the collection of Campylobacter spp. and  

C. jejuni isolates which may be used for future research. 

 One of the strengths of this study was the sampling of feedlot cattle near 

slaughter weight. This timing was targeted so that estimates would have as much 

relevance as possible to public health risk, short of slaughterhouse/processing sampling. 

In addition, swabbing fresh, pen-floor fecal pats was an efficient, economically feasible 

and non-invasive Campylobacter sampling technique for feedlot cattle. In Alberta in 

2005, 58% of cattle production came from 35 operators feeding 10,000 head or more 

(CanFax 2006). Even though feedlots were not randomly selected, this study focused on 

seven of these 35 sites in an attempt to estimate Campylobacter prevalences on sites 

responsible for larger proportions of the provincial industry production compared to 

smaller head capacity feedlots.  

 The preliminary risk factor study evaluated variables which were potential 

predictors of Campylobacter spp. isolation rates in feedlot cattle. It was interesting that 

feedlot size and the number of days on feed predicted Campylobacter isolation rates in 

this study. The feedlot and pen-level variance components identified from this model 

could be used in future studies for clustered sample size calculations. 

 This study is one of the largest surveys of Campylobacter spp. in retail ground 

beef in Canada to date. The sampling frame contained stores from four major chains in 

the province, and after stratification by city and by chain, stores were randomly selected 

for inclusion in the study. In addition, ground beef packages were randomly selected 
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from retail meat counters and the number of packages selected per store per sampling 

time was limited to five to avoid oversampling the same ground beef batches. These 

measures were incorporated to attempt to minimize selection bias in results. 

 DNA microarray was chosen for this research because it allowed both global 

clustering of isolates and also a gene-by-gene comparison between human clinical and 

feedlot cattle C. jejuni isolates. The ability to accomplish both goals with the same 

dataset was an efficient use time and resources. This research is the largest comparison 

of feedlot cattle and human clinical C. jejuni isolates using DNA microarray technology, 

and used randomly sampled cattle and human clinical C. jejuni isolates collected from 

similar geographical regions during the same time frame. DNA microarray is an 

extremely high resolution technique which allows researchers’ flexibility in data 

analysis as investigations can be as broad or as focused as required.  

 
6.3  Limitations to this research 

 Enrolling only seven feedlots in this study reduced the ability to generalize 

results to a greater extent, and likely limited our ability to find statistically significant 

differences for feedlot level variables in risk factor analyses. In addition, the seven 

feedlots were enrolled based on willingness to participate, which may have resulted in 

volunteer bias. These feedlots may have been different from other Alberta feedlots 

based on size, management protocols, use of veterinarians or other factors.  

 Fecal samples were collected using swabs instead of grams of feces. Collecting 

more fecal matter may have improved Campylobacter recovery with culture, resulting in 

higher prevalence levels. However, the swab transport media used in this study seemed 
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to work well in protecting campylobacters from temperature and atmospheric damage, 

and very high prevalence estimates were identified using our methodology.  

 Seasonal effects were assessed in this study using winter and summer point 

estimates, and as such generalization of these estimates to seasonal trends should be 

cautious. Specifically designed longitudinal studies would be required for this end.  

 It is possible that the plating media used for fecal sample culture could have 

potentially selected for faster growing campylobacters, or for strains with genetic 

compositions that favoured growth in our protocol conditions (temperature, 

atmosphere). In addition, only one colony was selected from each culture plate as a 

means of identifying Campylobacter spp./C. jejuni in samples. This may have resulted 

in reduced prevalences from selection bias, or in less genetic variability of C. jejuni 

isolates, particularly pertinent to the microarray study that looked at similarities and 

differences between isolates.   

 Campylobacter spp. were not isolated in the ground beef survey. It is possible 

that some component of the culture protocol, whether in enrichment, plating media, 

length of incubation, temperature or atmospheric conditions, limited the sensitivity of 

the technique. As the prevalence of campylobacters in ground beef was known to be low 

(0.5-3%) based on previous research (Zhao et al. 2001, Whyte et al. 2004) very few 

positive packages were expected. It is also possible that a lengthier incubation period, 

perhaps with time at 37°C, may have improved recovery. However it is difficult to 

speculate on this when the potential number of naturally contaminated samples is so 

small. In addition, our spiked meat trials were able to isolate very low levels (1x101 

cfu/g) of C. jejuni in ground beef using the study protocol. Only a small portion of 
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ground beef from the centre of the meat package was tested. It is possible that 

campylobacters may not have been distributed uniformly throughout the ground beef 

and that sampling larger amounts of meat from several areas of the package may have 

resulted in positive cultures. 

 The selection of the 142 ground beef samples for testing with PCR was not 

random. Initially every 10th ground beef sample was selected and frozen for later testing, 

but this systematic approach did not continue for the entire study. However, 52 of the 60 

stores were represented, 60 samples from winter and 82 from summer, and samples 

were tested from all chains and most stores in all three cities. In addition, power was 

likely limited in the risk factor investigation because only 142 samples were tested. 

 Because DNA microarray is relatively new technology, protocols for DNA 

labeling, scanning and analysis are not standardized, including cut points for identifying 

genes as present or absent. In this study, laboratory strain arrays and technical replicates 

were used to validate clustering results. In addition, DNA is quite expensive and time-

consuming, and technical expertise is required for labeling, scanning and data analysis.  

As a result, the technique used here would be less appropriate for time sensitive analyses 

such as outbreak investigation or organism detection surveys. 

 
6.4  Future research 

 The purpose of this research was to identify the prevalence of campylobacters, in 

particular C. jejuni, in commercial feedlot cattle feces and retail ground beef. The 

isolates identified were to be used for further molecular characterization using DNA 

microarray and to create a collection of Campylobacter isolates for use in future 

research.  
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 The number of feedlots enrolled in the study was small, particularly related to 

risk factor analyses. In the future a larger number of feedlots should be enrolled to 

increase the power and external validity of study findings. From our results, reasons for 

differences between feedlots should be a topic of future research as it may be possible to 

reduce Campylobacter shedding through interventions and feedlot management. The 

identification and inclusion of a larger number of management variables, both at feedlot 

and pen levels, should be incorporated in analyses.  

 Little research has been published on seasonality in feedlot cattle Campylobacter 

shedding. The point estimates identified here were interesting as differences between 

seasons were not found. Using this research as a start point, seasonal Campylobacter 

shedding trends in commercial feedlot cattle should be evaluated using longitudinal 

surveys which sample animals at regular intervals over the course of the year. The study 

should span several years so that periodicity in shedding can be documented. This type 

of research should include antimicrobial use data (both feed and individual treatment) to 

aid in interpretations of results. 

 From the ground beef survey, the prevalence of culturable thermophilic 

campylobacters seems extremely low. However, Campylobacter DNA was detected in 

48% of 142 ground beef samples using PCR, suggesting that improvements in ground 

beef handling at the slaughterhouse and grocery store levels may be possible. These 

findings also reinforce awareness that breaches in current ground beef handling may 

have the potential to result in human infection. In the future, it may also be worthwhile 

to include meat department pork cutting practices in risk factor studies as our PCR 

results identified C. coli in 26.8% of the 142 packages tested. 



 

154 
 

 This research assessed the prevalence of campylobacters in feedlot cattle near 

slaughter weight and in ground beef as a preliminary assessment of the importance of 

campylobacters in the Alberta beef industry. To more directly assess the role of these 

enteric bacteria, cattle/beef should be sampled at feedlot, slaughter plant, processor and 

retail levels over several years. Feedlot cattle are the source of approximately 70% of 

the contents of ground beef (Young et al. 1997). Often beef from leaner cattle (cull 

cows, bulls and dairy) may be added to ground beef from fed cattle to meet consumer 

preferences for reduced fat levels in the product. As a result, farm to fork assessment of 

Campylobacter levels should also incorporate data from these non-feedlot cattle. This 

type of complex farm to fork study would need to be large and to have the support of a 

number of stakeholders, including feedlots, non-feedlot cattle suppliers, slaughter plants, 

processors and retail chains to obtain required data. 

 
6.5  Overall conclusions    

 DNA microarray was evaluated as an epidemiologic tool. Due to the time, 

labour, cost and expertise required, this technology does not, at present, seem 

appropriate for time sensitive analyses such as outbreak investigation although 

automation and the use of robotics are dealing with these issues. However, the high 

resolution data acquired and the value-added ability to accomplish both genomic 

profiling and gene association investigations with the same dataset makes this 

technology of worth as a molecular epidemiologic tool.  

 Based on the high levels of Campylobacter isolation rates in feedlot cattle near 

slaughter weight and the high degree of similarity found between human and feedlot 

cattle C. jejuni isolates within the same time frame and geographical regions, it seems 
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plausible that feedlot cattle could be important reservoirs of campylobacters related to 

human health and that further exploration of the transmission routes between cattle and 

people may be warranted 
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APPENDIX A   
LITERATURE REVIEW KEYWORDS 

 
Appendix Table A.1  Literature review keywords  
 
Main search July 3-16, 2007 a 

Keywords 

((feedlot OR cattle OR bovine OR bovid* OR steer* OR heifer* OR cow* OR bull* OR 
calf OR calv*) AND (feces OR fecal OR pat*) AND (campylobact* OR jejuni) AND 
(prevalence OR survey)) b 

 
((beef OR "ground beef" OR "red meat") AND (retail OR grocer*) AND (campylobact* 
OR jejuni)) 
 
((beef OR "ground beef" OR "red meat") AND (campylobact* OR jejuni)) b 

 
(("DNA microarray" OR microarray  OR array OR chip OR "comparative genom* 
hybridization" OR CGH OR "whole genome") AND (campylobact* OR jejuni)) b 

 
((feedlot OR cattle OR bovine OR bovid* OR steer* OR heifer* OR cow* OR bull* OR 
calf or calv*) AND (season*) AND (campylobact* OR jejuni)) 
 
((campylobact* OR jejuni) AND (outbreak OR case) AND (human OR people) AND 
(Canad*)) 
MeSH Terms: 

Campylobacter AND cattle AND feces b 

Cattle AND Meat AND Campylobacter b 

Oligonucleotide array sequence analysis AND Campylobacter b 

Microarray Analysis AND Campylobacter b 

Seasons AND Cattle AND Campylobacter 

Campylobacter AND human AND outbreak AND Canada 

Campylobacter AND Canada b 

a Some modifications to keyword formatting were required based on the specific 
requirements of some databases. 
b  Terms set up in PubMed (National Center for Biotechnology Information 
http://www.ncbi.nlm.nih.gov) as weekly notifications for newly published articles. 
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APPENDIX B   
ETHICS ANALYSIS 

 
 The following ethics analysis was written prior to initiation of this project as a 

means of assessing the principles of respect for persons, respect for animals, justice, 

non-maleficence and beneficence related to the research. 

 
Respect for persons 

 The principle of respect for persons will be met as the investigators in this study 

will not have access to any identifying information from human samples. Study 

procedures are also compliant with the requirements of the Alberta Health Information 

Act. Alberta diagnostic laboratories will supply Campylobacter jejuni (C. jejuni) 

positive human isolates to the Alberta Provincial Laboratory of Public Health (APLPH, 

in accordance with Section 24 of the Alberta Public Health Act). The APLPH acts as a 

“custodian” as per section 1(1) (f)(iii) of the Alberta Health Information Act. The 

APLPH will then submit to the investigator the first positive isolate per person, the 

health region of residence of the person, the age and gender of the patient. In addition, 

samples will be excluded for any person who has traveled outside of Canada or Alberta 

within 30 days. The human samples will then be genotyped using DNA microarray 

techniques. The human subjects that submitted the fecal samples will not be contacted at 

any time during this study. The research team for this project has expertise in all areas 

necessary, including public health, molecular and diagnostic laboratory techniques, 
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veterinary, epidemiological, and cattle industry experience. Diagnostic work will be 

completed at the APLPH and the Vaccine and Infectious Disease Organization, both 

which have appropriate and regulated facilities fit for this study. 

 
Respect for Animals 

 Respect for animals is also a requirement of this study. Humane animal handling 

and sample collection techniques will be used throughout this study, in accordance with 

Section 446 of the Canadian Criminal Code, the Recommended Code of Practice for the 

Care and Handling of Farm Animals—Beef Cattle (Agriculture Canada 1870/E), the 

Canadian Council on Animal Care, and the University of Saskatchewan Animal Care 

Committee. 

 
Justice 

 The laboratory samples were taken prior to the onset of this work, and were 

directly for the health benefit of the people, not for the benefit of this research. Fees may 

be paid to the APLPH to help reimburse staff and transport costs for sample collection 

and shipping. 

 
Non-maleficence  

 The human subjects supplying the fecal samples have minimal risk of harm as 

their samples have been collected previously for purposes not associated with this study, 

and the subjects will not be contacted. Further, the subjects cannot incur the harm of 

breach of privacy as the researchers will not be able to identify them. The APLPH will 

not include any identifying information with the samples, so as to protect the privacy of 

the individuals. 
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 In the short term, if meat samples are found to be Campylobacter positive, the 

published results could negatively influence consumer confidence, and possibly reduce 

meat purchases in Alberta. This could be detrimental to the Alberta Beef Industry and to 

the Alberta retail supermarkets. However in the long term, if campylobacters are found 

in the meat, it is in the best interest of the beef industry, the retail meat industry and the 

public health sectors to have this information so that timely and effective preventive 

measures may be introduced, and risk to the public reduced (i.e., there is social benefit 

to this study). In this study, Alberta supermarkets will not be informed that their meat 

will be sampled, as it is important to eliminate possible bias that could be introduced if 

the supermarket managers have knowledge of the project. As a means of protecting 

stores, steps will be taken to avoid identification of supermarket store or chain in 

publication and communication of results. 

 The prevalence of C. jejuni in ground beef in the USA and Italy have been 

estimated to be very low, 0.5% and 1.3% respectively (Pezzotti et al. 2003, Zhao et al. 

2001). We believe the type of risk to Alberta consumers from ground beef is similar to 

the risk presently incurred by purchasing other raw supermarket meats, or to the risk 

from ground beef due to other organisms like E. coli and Salmonella. At present in 

Canada, public education programs have been implemented to educate consumers on the 

handling of raw meats (including specific recommendations for preventing disease from 

E. coli  http://www.hc-sc.gc.ca/english/iyh/food/hamburger.html and C. jejuni 

http://www.inspection.gc.ca/english/corpaffr/foodfacts/ campye.shtml). Thus even if 

campylobacters were found in this survey, public health programs to address handling 

and cooking of meat in the home are already in place. It is expected that the time 
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between the collection and the culture of samples will be sufficiently long that recall of 

meat found positive for Campylobacter spp. would not be necessary, and based on a 

personal communication with Dr J Kamanzi (Director, Food Microbiology and 

Chemical Evaluation, Food Safety, Canadian Food Inspection Agency), there is no legal 

obligation to report findings of C. jejuni in ground beef to the Canadian Food Inspection 

Agency. 

 This research is important to the continued improvement of food safety in 

Alberta and Canada. All attempts will be made to interpret the results appropriately, and 

to publish the results in a way that minimizes impact on consumer confidence, 

supermarkets, and the Alberta beef industry. However, in order to best address Alberta 

food safety, it is imperative that findings be published. Whether the result is protection 

of consumer confidence with low prevalence, or the need to commit research and funds 

toward identifying prevention and control interventions, public safety is best served by 

the continuation of this research. 

 
Beneficence 

 The diagnostic techniques used in this study, enrichment culture and hippurate 

hydrolysis testing, have both been used previously to detect campylobacters in both 

meat and fecal samples. DNA microarray has been used previously for characterizing  

C. jejuni and is an exciting new molecular tool. As a result, the use of these tools will 

further the body of knowledge in diagnosis and description of Campylobacter spp., 

significant contributions to science. This study will try to link Campylobacter genotypes 

from human, feedlot cattle, and beef sources. These results have important public health 

ramifications as they will allow further understanding of beef as a potential source of 
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infection for people. In addition, knowledge of Campylobacter prevalence in cattle on 

their sites may be of benefit to feedlot operators in terms of understanding the zoonotic 

potential to themselves and their staff, and increasing awareness related to food safety. 

 
Conclusions 

 It is expected that the results of this study will have positive social benefit to the 

people of Alberta and Canada by improving the current state of knowledge. At present, 

C. jejuni is a significant cause of enteric disease in people. However, little is known 

about the prevalence of campylobacters in red meat, in particular ground beef in 

Canada. It is critical to identify if beef is a potential or significant source of 

Campylobacter spp. If campylobacters are not found in any of the meat, this will support 

consumer confidence in the food supply. If Campylobacter spp. are found in the meat, 

education programs on the importance of proper handling and cooking procedures in the 

home are already in place. In addition, the Medical Officers of Health in the three 

Regional Health Authorities supplying human isolates will be provided with copies of 

the published results of this study. If positive culture results are found, this preliminary 

study will encourage further scientific research into appropriate interventions to reduce 

the prevalence of Campylobacter in feedlot cattle and ground beef. 
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APPENDIX C  
GENE ASSOCIATION TESTING RESULTS 

 
 In Chapter 5 detailed methodology for Campylobacter jejuni gene association 

testing for was described. The following tables give full results for that testing. Two 

analyses are presented: 1) cattle isolates compared to human isolates, and 2) “cattle 

enriched” comparative genomic hybridization (CGH) clusters compared to “human 

enriched” CGH clusters. See Figure 5.2 for a description of groupings.  

 In brief, gene conservation rates were compared between groups using the 

Fisher’s exact test (unadjusted p value). In addition, two adjustments for multiple 

comparisons were made. The Westfall and Young correction (Westfall and Young 1993) 

is a moderately conservative adjustment, while the Holm step-down method (Westfall 

and Young 1993) is an extremely conservative adjustment. Both are presented in the 

tables below. Genes that were unequally distributed between the groups with statistical 

significance p ≤ 0.05 in both the unadjusted Fisher’s exact p value and the Westfall and 

Young p value are marked (a). In addition, the gene products from Gundogdu et al. 2007 

are also given. 
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Appendix Table C.1  Results of C. jejuni gene association testing for comparison of 
cattle and human isolate groups 
 

Cattle vs Human Gene Absent   
Cattle    
(n=46) 

Absent   
Human   
(n=41) 

Unadjusted   
p-value  

WY       
p-value 

HSD      
p value 

Gene Product 

Cj0208 37 40 0.01662 0.19040 1.00000 put. DNA modification methylase 
(adenine-specific 
methyltransferase) 

Cj0261 46 37 0.04550 0.41720 1.00000 put. SAM-dependent 
methyltransferase 

Cj0303 32 38 0.00733 0.09755 1.00000 put. molybdate-binding 
lipoprotein 

Cj0422 39 41 0.01301 0.16195 1.00000 put. H-T-H containing P 
Cj0617 37 20 0.00306 0.04945a 1.00000 hypothetical P 
Cj0628 2 12 0.00248 0.04255a 1.00000 put. lipoprotein 
Cj0938 40 41 0.02745 0.28505 1.00000 put. 2-acylglycerophospho-

ethanolamine acyltransferase/ 
acyl-acyl carrier P synthetase 

Cj1141 12 20 0.04438 0.39515 1.00000 sialic acid synthase (N-acetyl-
neuraminic acid synthetase) 

Cj1143 11 19 0.04155 0.37910 1.00000 two-domain bifunctional protein 
(beta-1,4-N-acetylgalactosaminyl-
transferase/CMP-Neu5Ac 
synthase) 

Cj1146 28 36 0.00675 0.09140 1.00000 put. glucosyltransferase 
Cj1293 40 41 0.02745 0.28505 1.00000 UDP-GlcNAc-specific C4,6 

dehydratase/C5 epimerase 
Cj1323 27 33 0.03718 0.35705 1.00000 hypothetical P 
Cj1421 14 24 0.01009 0.13215 1.00000 put. sugar transferase 
Cj1422 16 25 0.01856 0.21270 1.00000 put. sugar transferase 
Cj1428 18 27 0.01802 0.20515 1.00000 GDP-L-fucose synthetase 
Cj1429 13 21 0.04688 0.42180 1.00000 hypothetical P 
Cj1433 8 16 0.03135 0.31575 1.00000 hypothetical P 
Cj1434 12 21 0.02621 0.27320 1.00000 put. sugar transferase 
Cj1435 13 21 0.04688 0.42180 1.00000 put. phosphatase 
Cj1438 13 21 0.04688 0.42180 1.00000 put. sugar transferase 
Cj1439 4 14 0.00685 0.09380 1.00000 UDP-galactopyranose mutase 
Cj1520 19 30 0.00461 0.06805 1.00000 removed from CS 
Cj1562 46 36 0.02028 0.23885 1.00000 hypothetical P 
Cj1668 44 29 0.00248 0.04255a 1.00000 put. periplasmic P 
Cj1729 4 14 0.00685 0.09380 1.00000 flagellar hook subunit P 

a p ≤ 0.05 for both the Fisher’s exact unadjusted p value and the Westfall and Young 
adjusted p value. CS: coding sequences; HSD: Holm step-down; P: protein; Put: putative; 
WY: Westfall and Young. 
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Appendix Table C.2  Results of C. jejuni gene association testing for comparison of 
CGH “cattle enriched” and “human enriched” groups 
 

CS: coding sequences, P: protein, put.: putative, mod.: modification.  
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CGH CE  vs  CGH HE Gene Absent     

CGH CE   
(n=27) 

Absent 
CGH HE 
(n=24) 

Unadjusted   
p value  

WY        
p value 

HSD       
p value 

Gene Product 

Cj0030 24 13 0.01054 0.09840 1.00000 hypothetical P 
Cj0057 27 19 0.01809 0.15630 1.00000 put. periplasmic P 
Cj0138 25 16 0.03258 0.24630 1.00000 conserved hypothetical P 
Cj0201 26 16 0.00850 0.08520 1.00000 put. integral membrane P 
Cj0202 27 14 0.00015 0.00210a 0.21228 hypothetical P 
Cj0300 19 24 0.00464 0.05000a 1.00000 put. molybdenum transport 

ATP-binding P 
Cj0302 16 24 0.00033 0.00400a 0.44978 put. molybdenum-pterin binding 

P 
Cj0303 11 24 <0.00001 <0.00001a 0.00268b put. molybdate-binding 

lipoprotein 
Cj0304 15 24 0.00013 0.00135a 0.17513 put. biotin synthesis P 
Cj0305 20 24 0.01066 0.10355 1.00000 conserved hypothetical P 
Cj0380 27 19 0.01809 0.15630 1.00000 hypothetical P 
Cj0399 17 24 0.00081 0.01145a 1.00000 colicin V production P homolog 
Cj0417 18 22 0.04249 0.28860 1.00000 hypothetical P 
Cj0422 21 24 0.02391 0.20490 1.00000 put. H-T-H containing P 
Cj0481 10 17 0.02456 0.20910 1.00000 put. dihydrodipicolinate 

synthase 
Cj0482 11 17 0.04849 0.33655 1.00000 put. altronate hydrolase N-

terminus 
Cj0483 13 19 0.04104 0.26400 1.00000 put. altronate hydrolase C-

terminus 
Cj0484 13 20 0.01764 0.14095 1.00000 put. MFS (Major Facilitator 

Superfamily) transport P 
Cj0485 13 21 0.00352 0.0389a 1.00000 put. oxidoreductase 
Cj0486 14 20 0.02091 0.17240 1.00000 put. sugar transporter 
Cj0488 12 19 0.02058 0.16775 1.00000 conserved hypothetical P 
Cj0489 10 17 0.02456 0.20910 1.00000 put. aldehyde dehydrogenase N-

terminus 
Cj0490 11 17 0.04849 0.33655 1.00000 put. aldehyde dehydrogenase C-

terminus 
Cj0522 15 21 0.01570 0.13895 1.00000 put. Na+/Pi  

cotransporter P 
Cj0617 27 6 <0.00001 <0.00001 0.00001b hypothetical P 
Cj0619 27 19 0.01809 0.15630 1.00000 put. MATE family transport P 
Cj0628 0 8 0.00116 0.01525a 1.00000 put. lipoprotein 
Cj0691 22 11 0.01000 0.09225 1.00000 put. membrane P 
Cj0755 18 6 0.00473 0.05325 1.00000 ferric enterobactin uptake 

receptor 
Cj0968 17 22 0.02153 0.17895 1.00000 CS merged with Cj0969 

pseudogene (put. periplasmic P) 
Cj0970 11 19 0.00967 0.08700 1.00000 hypothetical P 
Cj0973 18 22 0.04249 0.28860 1.00000 hypothetical P 
Cj1051 2 12 0.00118 0.01555a 1.00000 restriction mod. enzyme 
Cj1135 11 18 0.02292 0.18655 1.00000 put. two-domain 

glucosyltransferase 
Cj1136 3 16 0.00005 0.00055a 0.06864 put. glycosyltransferase 



 

167 
 

CGH CE  vs  CGH HE Gene Absent     
CGH CE 
(n=27) 

Absent 
CGH HE 
(n=24) 

Unadjusted   
p value 

WY          
p value 

HSD           
p value 

Gene Product 

Cj1136 3 16 0.00005 0.00055a 0.06864 put. glycosyltransferase 
Cj1137 4 17 0.00006 0.00085a 0.08631 put. glycosyltransferase 
Cj1138 5 17 0.00023 0.00325a 0.31148 put. glycosyltransferase 
Cj1139 10 22 0.00010 0.00115a 0.13489 beta-1,3 galactosyl-transferase 
Cj1140 9 19 0.00172 0.01970a 1.00000 alpha-2,3 sialyltransferase 
Cj1141 3 17 0.00001 0.00005a 0.02005b sialic acid synthase (N-acetyl 

neuraminic acid synthetase) 
Cj1142 6 18 0.00023 0.0036a 0.32195 put. UDP-N-acetyl-glucosamine 

2-epimerase            
Cj1143 2 16 0.00002 0.0001a 0.02370b two-domain bifunctional P 

(beta-1,4-N-acetylgalactos-
aminyltransferase/CMP-Neu5Ac 
synthase) 

Cj1144 6 16 0.00194 0.02315a 1.00000 hypothetical P 
Cj1145 5 16 0.00066 0.00885a 0.91341 CS merged with Cj1144 
Cj1146 12 22 0.00038 0.00455a 0.52228 put. glucosyltransferase 
Cj1150 19 24 0.00464 0.05a 1.00000 D-beta-D-heptose 7-phosphate  

kinase/D-beta-D-heptose 1-
phosphate adenylyltransferase 

Cj1297 10 19 0.00424 0.04385a 1.00000 hypothetical P 
Cj1331 19 23 0.02601 0.22700 1.00000 acylneuraminate cytidylyl-

transferase (flagellin mod.)  
Cj1389 1 16 <0.00001 <0.00001a 0.00271b pseudogene (put. C4-dicarb-

oxylate anaerobic carrier 
Cj1394 20 24 0.01066 0.10355 1.00000 put. fumarate lyase 
Cj1415 27 20 0.04252 0.30860 1.00000 put. adenylylsulfate kinase 
Cj1421 6 18 0.00023 0.0036a 0.32195 possible sugar transferase 
Cj1422 7 20 0.00006 0.0008a 0.08277 possible sugar transferase 
Cj1428 10 20 0.00145 0.0171a 1.00000 GDP-L-fucose synthetase 
Cj1429 6 19 0.00007 0.0009a 0.09391 hypothetical P 
Cj1430 8 18 0.00191 0.02225a 1.00000 put. dTDP-4-dehydro rhamnose 

3,5-epimerase 
Cj1432 3 16 0.00005 0.00055a 0.06864 put. sugar transferase 
Cj1433 2 17 <0.00001 <0.00001a 0.00690b hypothetical P 
Cj1434 5 19 0.00002 0.00025a 0.02574b put. sugar transferase 
Cj1435 8 19 0.00105 0.0141a 1.00000 put. phosphatase 
Cj1438 7 16 0.00504 0.06095 1.00000 put. sugar transferase 
Cj1439 0 15 <0.00001 <0.00001a 0.00057b UDP-galactopyranose mutase 
Cj1440 6 16 0.00194 0.02315a 1.00000 put. sugar transferase 
Cj1441 9 16 0.02545 0.21815 1.00000 UDP-glucose 6-dehydrogenase 
Cj1520 9 20 0.00054 0.00665a 0.74973 removed from CS 
Cj1668 27 19 0.01809 0.15630 1.00000 put. periplasmic P 
Cj1714 27 20 0.04252 0.30860 1.00000 small hydrophobic P 
Cj1729 1 13 0.00007 0.0015a 0.09587 flagellar hook subunit P 
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