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ABSTRACT 

This study determined the key characteristics of temporal patterns of root growth during 

the crop development period, as well as the vertical patterns of root distribution in the soil profile 

for important oilseed and pulse crops grown on the semiarid Canadian Prairie. Rooting 

characteristics greatly influence the nutrient acquisition and water-use patterns for any plants. 

However, crop root systems have not been studied intensively due to time, labor and costs 

constraints. In the literature, root studies mostly focus on cereal crops and very limited 

information is available for oilseeds and pulses even though these broadleaf crops are critical in 

the diversification of cropping systems. Thus the objectives of this study were to 1) examine the 

root morphological characteristics, root distribution patterns in the soil profile, and the fine root 

distributions of oilseeds and pulses in comparison with wheat; 2) to determine the rhizospheric 

properties of pulse crops. In 2006 and 2007, canola (Brassica napus L.), flax (Linum 

usitatissimum L.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), field pea (Pisum 

sativum L.), lentil (Lens culinaris), and spring wheat (Triticum aestivum L.) were grown under 

low- (natural rainfall) and high-water (rainfall+irrigation) conditions in southwest Saskatchewan. 

Roots were sampled at the seedling, early-flower, late-flower, late-pod, and physiological 

maturity growth stages, and root parameters determined using image analysis. The growth of 

roots progressed markedly from seedling to late-flowering and then declined to maturity. Root 

growth of pulse crops was not significantly affected by water conditions, but canola had 70% 

greater root length, 67% more root surface area, and 79% more root tips under high-water than 

under low-water conditions. At the late-flower stage, over 70% of the roots in oilseeds and pulses 

were distributed within the 0-60 cm soil profile and the largest proportion (around 50%) were 

found in the top 20-cm of the soil depth. About 85% of the roots in oilseeds and pulses were 
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classified as “extra fine” (diameter <0.4mm). The rhizosphere fungi were significantly different 

among tested pulses and also pulse rhizosphere fungi were significantly affected by soil depth 

but not by water conditions. Inoculation of Penicillium bilaiae (product -JumpStart®) to the 

pulse crops increased the amount of the fungi in their rhizospheres by as much as 42% compared 

to the pulses not inoculated. Results from this study are novel and provide the baseline for 

model-related studies on water use and nutrient uptake by root systems of oilseed and pulse 

crops in semiarid environments.  
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1.0 INTRODUCTION  

 
Fundamental changes are occurring globally in the utilization of agricultural commodities. 

The general public is searching for new and novel food products for their dietary needs, nutrition 

improvement and life style changes, meanwhile, crop producers are seeking new opportunities to 

increase production, reduce risk and improve their economic returns. This has led to 

diversification by Canadian prairie grain farmers into crop rotation containing cereals, grain 

legumes and oilseeds. Various factors have stimulated interest in crop diversification to stabilize 

returns, accelerating the adaptation of alternative crops to cereals in current agricultural systems 

in Canada. Alternative crops including pulses, oilseeds and fiber are often used in crop rotations 

with traditional cereal crops to break pest cycles, reduce weeds and diseases, and improve crop 

productivity at a system level. The inclusion of annual legumes in cropping systems in the North 

Great Plains improves nutrient and water use efficiency (Miller et al. 2003b), increases grain 

yield and quality of subsequent crops (Gan et al. 2003), and improves economic sustainability of 

production systems (Zentner et al. 2001). Long-term rotation of annual legumes with cereals 

increases the soil’s nutrient supply capacity (Campbell et al. 1992), improves soil physical and 

chemical properties (Campbell et al. 2000), and enhances the soil’s biological attributes 

(Biederbeck et al. 2005). However, farm diversification using alternative crops still requires 

considerable research and appropriate planning from assessing available resources to selecting 

potentially feasible crops and exploring the crop market (Sauer and Sullivan 2000).   

In the scientific literature, information regarding alternative crops is limited especially as 

related to their roots, even though these crops account for about 25% of the total seeded area 

annually in western Canada. Root information on alternative crops may help producers to 

develop crop rotation systems with improved resource use efficiency because the inclusion of 
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crops with different rooting patterns in a cropping system may improve water and nutrient use 

efficiency (Black et al. 1981). In the semiarid Canadian Prairie, water is the most limiting factor 

for crop production especially during crop growing season when the short and warm summer 

together with the frequent strong winds (Cutforth et al. 2007; Knights et al. 2007) may accelerate 

soil water loss. However, alternative crops have been widely adopted in such region; therefore 

their rooting patterns would be one of the determinants for the success in the final yield. 

Being highly associated with plant root system, soil is an essential part of the entire 

terrestrial ecosystems, necessary for maintaining most life processes due to its unique ecological 

composition. Also, soil is a critical natural source for agricultural production in which there are 

diverse organisms involve in nutrient cycling, regulating soil organic matter, soil structure 

modification, and enhancing plant health. As the most dynamic environment in the soil, the 

rhizosphere can influence plant growth and health via intensive biological and biochemical 

processes conducted by various microorganisms. Therefore a greater understanding of 

rhizosphere microbial diversity and optimizing the management of this natural resource would 

help develop the more sustainable agriculture system by minimizing the application of synthetic 

fertilizers and pesticides, which can lower production costs and be beneficial for the entire 

environment. Rhizosphere microorganisms contributing to the improvement of nutrients uptake 

for plants have been studied frequently for many crops, however, those on alternative crops 

grown in a semiarid condition are rare. Thus, the experiment was conducted to explore 

rhizosphere microbial community of pulses crops in this study.    

This thesis aimed at characterizing rooting patterns and characteristics of alternative 

crops in a semiarid Canadian Prairie and the objectives were to 1) examine the root growth 

characteristics, determine root distribution patterns in the soil profile and examine the fine root 
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distributions of oilseeds and pulses in comparison to wheat; 2) to determine the rhizospheric 

properties of pulse crops. Root morphological traits were determined for oilseeds (canola, flax 

and mustard) and pulses (chickpea, field pea and lentil) under low- (natural rainfall) and high-

(rainfall + irrigation) water conditions at different crop growth stages using image analysis. 

Comparisons on the root distribution patterns of these alternative crops were made under the 

same conditions. Furthermore, bacterial and fungal populations in the rhizosphere of chickpea, 

field pea and lentil were determined for soil sampled three times during the season at early-

flower, late-flower and crop maturity stages to examine how water availability, soil depths and 

the inoculation of JumpStart® (Penicillium bilaiae) affect them in a semiarid Canadian Prairie. 
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2.0 REVIEW OF LITERATURE 

2.1 Alternative crops in the Canadian Semiarid Prairie  

There are about 32 Mha of arable land in the Canadian prairies suited to the production of 

annual grain crops. The prairies account for 85% of Canada’s arable land, making it the most 

important agricultural region of the country, with over 40% of the cultivated land located in the 

semiarid Brown and Dark Brown soil zones (Gan et al. 2002). Historically, the Canadian 

semiarid prairie has been dominated by cereal grain production. In 1991, 89% of the seeded area 

was in spring wheat production, and 42% of the arable area in the Brown soil zone of 

Saskatchewan was in fallow (Saskatchewan Agriculture and Food 1991). Low market prices for 

cereal grains coupled with increasing production problems in wheat monoculture systems (Hume 

et al. 1991; Fernandez et al. 1998) stimulated producers to seek information on alternative 

oilseed and pulse crops. Cropping systems that are not flexible to change become unsustainable. 

Therefore crop producers have shifted to more optimal crop sequences that can take advantage of 

soil nutrients and soil water, while also capitalizing on weather, markets, government programs, 

and new technology (Tanaka et al. 2007). 

 Monoculture is the practice of continuous production of the same crop. Monoculture is 

always inferior to production systems or crop rotations where a variety of crops are grown 

(Johnston et al. 1999). In addition, crop diversification can be critical to breaking pest 

infestations that are common with monoculture (Bailey et al. 2000; Elliot and Lynch 1995; 

Holtzer et al. 1996; Krupinsky et al. 2002). Alternative crops to cereals are of great importance in 

contributing to the diversification and intensification of what was formerly a wheat-dominated 

monoculture cropping of western Canada (Zentner et al. 2002).  Many studies on crop rotations 

in the North Great Plains indicated the inclusion of oilseeds in rotation with cereal crops could 
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increase net returns and reduce risk through improved production stability (Lafond et al. 1993; 

Dhuyvetter et al. 1996; Zentner et al. 2002). The yield of wheat has also increased when 

following oilseeds in rotation, confirming that monoculture systems are the least effective as 

means of optimizing wheat production (Lafond et al. 1992; Brandt and Zentner 1995; Anderson 

et al. 1999). In contrast, higher and more intensive production often requires greater use of 

nitrogen fertilizer that is the largest consumer of fossil fuel energy in agriculture and a major 

source of greenhouse gas emissions. Conservation farming that uses crop rotations with pulse 

crops improve energy output per unit input ratios compared to conventional farming systems 

(Lindwall and McConkey 2001). Alternative pulse crops also have an associated N effect which 

impacts yield effects associated with crop sequence in semiarid regions (Miller et al. 2002).  

 

2.1.1 Oilseed crops in the Canadian Prairie 

The oilseed crops canola, mustard, and flax are well adapted to cool, short-season 

conditions found on the Canadian prairies and northern States of the USA. The oilseed genus 

Brassica, including canola and mustard, is part of the cruciferous family of crops. Cruciferous 

crops are widely adapted and cultivated around the world for human consumption and livestock 

feed (Downey et al. 1974). Historically, rapeseed was first grown in North America for use on 

marine oil during World War II, after which plant-breeding efforts in Canada contributed to the 

improvement in the fatty acid composition of the oil (reduction of erucic acid) and a marked 

reduction in the level of glucosinolates in the meal (Johnston et al. 2002). Therefore, after 

soybean (Glycine max L.) and palm (Elaeis guineensis Jacq.), rapeseed has become the world’s 

third most important vegetable oil due to these two significant improvements (Downey and 

Rimmer 1993). These modifications to the oil and meal of rapeseed led to the development of the 
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name canola as a means of distinguishing the edible oil quality rapeseed from industrial quality 

oil (Johnston et al. 2002).  

Low water availability is the most limiting factor to crop production in the Canadian 

semiarid prairie (Cutforth et al. 2006). Potential evaporative demand in the Brown soil zone is 

the highest among the regions on the Prairies (Cutforth et al. 1993). From the long-term weather 

data, average daily precipitation begins to decline 3–4 weeks before average daily maximum 

temperatures have reached their highest values in late July (Angadi et al. 2004).  Therefore, the 

water deficit stress on the Canadian prairies typically increases as the growing season progresses. 

However, Brassica spp. have taproot systems facilitating crop access to water and nutrients deep 

in the soil profile (Downey et al. 1974). Therefore when grown in semiarid regions, the rooting 

characteristics of canola require adequate subsoil moisture to sustain the crop growth during 

flowering and seed filling (Johnston et al. 2002). Root growth rates for canola were greater than 

many other spring crops in a multi-year study at Swift Current, SK, more quickly depleting 

reserved soil moisture, and thus sooner becoming dependent on rainfall to sustain growth 

(Angadi et al. 1999). Nielsen (1997) reported canola was able to extract water to a depth of 165 

cm and up to 95% of the growing season water use of the crop came from the upper 119 cm of 

the soil profile.  

Being a cool season crop, canola is sensitive to high temperature stress (Morrison 1993; 

Brandt and McGregor 1997; Angadi et al. 2000; Morrison and Stewart 2002). The early-maturing 

cultivars of B. napus, and most B. rapa cultivars are better suited to the short growing season 

regions of the semiarid prairie than other oilseed crops like sunflower and safflower (Miller et al. 

2001). As a result, in the driest regions of the semiarid region, canola should be grown on 

summer fallow rather than continuous crop due to the high water deficit during the growing 
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seasons (Johnston et al. 2002).  

 

2.1.2 Pulse crops in the Canadian Prairie 

Pulse crops have many on-farm benefits from the agronomic point of view; therefore 

have been increasingly incorporated into crop rotations on farms of the semiarid prairie. Pea is 

prominent in Canadian prairie cropping systems, while chickpea production is more recent and 

located exclusively in the drier areas of the prairies (Zentner et al. 2002). Seeded areas of pea 

increased from 600 000 ha in 1998 to 1.2 million ha in 2008, chickpea increased from 10 000 ha 

in 1998 to 44 000 ha in 2008 and that of lentil increased from 32 0000 in 1998 to 65 0000 in 

2008 (Saskatchewan Agriculture and Food 2008). When the higher market value of chickpea and 

lentil are considered, these crops have an equally strong fit in diversifying wheat production 

(Miller et al. 2001).  

The advantages of including pulse crops in cropping systems are their ability to fix 

atmospheric N (Beckie et al. 1997), improve soil physical and chemical properties (Biederbeck 

et al. 2005), and enhance the yield and quality of subsequent crops (Gan et al. 2003). Spring 

wheat following pulse crops has averaged higher yields and protein content of grains than spring 

wheat following spring wheat in rotations even when equal amounts of nitrogen were made 

available for each crop (Miller et al. 1998; McVicar et al. 2000). This is because pea and lentil do 

not extract soil water to as great a depth as spring wheat (McVicar et al. 2000, 2001; Zentner et 

al. 2001). Therefore spring wheat following pea and lentil in rotation is able to extract the water 

at depth not used by these pulse crops (Carlyle 2004). A deeper rooting crop grown after pea may 

receive more benefits from water conservation in the soil profile than when grown after chickpea 

under semiarid environmental conditions (Gan et al. 2007). In addition, pea conferred stronger 
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rotational benefits to wheat than mustard by conserving more soil water and contributing greater 

soil N, especially when growth was terminated at midseason as green manure crop (Miller et al. 

2006). 

 

2.2 Plant root system 
 

Root systems are fundamental components of terrestrial ecosystems which are important 

for absorbing water and nutrients as well as providing mechanical support for growing plants. In 

addition, roots are able to respire carbon from shoot photosynthesis and maintain a balance of 

plant biomass between below-ground and above-ground (Smucker 1993). In agro ecosystems, 

the main sources of organic inputs to soil are soil amendments and crop roots; however, this role 

of roots is often neglected (Spedding et al. 2004). In addition, crop roots affect the microbial 

growth negatively or positively by reducing soil available N or soil moisture, or by providing 

carbon substrates for microbial growth (Fogel 1985; Jackson et al. 1989). Seasonal crop growth 

can regulate the temporal and spatial distribution of organic inputs in the form of crop roots, 

rhizodeposition, and residues, which both influence the dynamics of soil microbial biomass 

(Franzluebbers et al. 1995). Roots are also known to synthesize hormones such as cytokinins, 

which are important regulatory agent in numerous shoot processes, cell division and in grain 

development (Evans et al. 1976). In addition, roots of legume plants also function as hosts to 

Rhizobium leguminosarum, which greatly contributes to N fixation in soil. 

Being an important organ for growing plants, roots are the only connection between 

plants and soil, thus their morphological traits and their distribution patterns in soil profiles are 

particularly important affecting water use and nutrient uptake patterns of plants. 
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2.2.1 Root morphology 

Root morphology and root branching patterns are important determinants of water and 

nutrient uptake by plants (Fitter 1985; Hutchings and De Kroon 1994; Jungk 1996; Fageria 2004). 

Crop establishment requires a well-developed root system at an early growth stage in order to 

exploit limited soil resources. The capacity of root systems to support crop growth largely 

depends on the morphology and uptake ability (RAO and ITO 1998). A well-developed root 

system may prevent plants from lodging especially under adverse environmental conditions. The 

initial root system development is particularly important for crop establishment especially in 

semiarid regions in which crops grown in soils with limited water and nutrient resources would 

frequently experience stresses during their life cycles. Under more humid environmental 

conditions limited root systems can adequately support plant growth (Lee et al. 1996, Fageria 

2004). Among morphological traits, the maximum root length, root diameter and root:shoot dry 

weight ratio were associated with drought resistance in dry-land conditions (O’Toole and 

Soemartono 1981; Yoshida and Hasegawa 1982). Root thickness conferred drought resistance, as 

roots are capable of increasing root length density and water uptake by producing more and 

larger root branches (Ingram et al. 1994).  

Soil may become harder as it dries (Bengough et al. 2006), which has an impact on root 

morphology and consequently water and nutrient uptake. In general, root elongation in soils is 

possible only when root pressure exceeds the mechanical impedance of the soil (Bennie 1991). 

Mechanical impedance affected root morphology (Taylor and Ratliff 1969), and root length 

decreased nonlinearly with increasing mechanical impedance (Bennie and Burger 1981). Greater 

soil compaction and greater soil strength mean greater mechanical impedance. Generally, soil 

compaction can cause unfavorable changes in soil bulk density, porosity and penetration 
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resistance (Soane et al. 1981), resulting in limited water and nutrient availability to plants that 

are major constraints to plant growth and yields in many soils. Ishaq et al. (2001a) reported that 

an increase in bulk density and penetration resistance due to subsoil compaction decreased the 

nutrient uptake by wheat and the reduction in nutrient concentration in wheat was 12–35% for N, 

17–27% for P and up to 24% for K. Consequently, water use efficiency and nutrient use 

efficiency by wheat was significantly decreased by increased soil strength (Ishaq et al. 2001b). 

Root diameter can also be an indicator of the effects of soil strength on root growth (Qin et al. 

2004).  Large diameter roots represent most of the root system biomass and form long-distance 

transport pathways that conduct water and nutrients. In addition they can contribute to resource 

storage, anchorage and supporting lateral roots, while smaller-diameter roots or fine roots make 

up most of the surface area of the root system for water and nutrient exchange (Eissenstat and 

Yanai 2002; Waisel and Eshel 2002). During growth, roots contribute to soil porosity (Goss 

1991), with root diameter controlling the size of pores. These pores, which have specific physical 

and chemical properties (Blanchart et al. 1999; Jegou et al. 2001; Read et al. 2003), are used as 

microhabitats by the non-burrowing fauna, as well as by specific microbial communities (Lavelle 

et al. 2004; Loranger et al. 1998).  

Enhancing nitrogen use efficiency in agriculture systems is urgent since excess nutrient 

applied to cultivated soils can result in nitrate leaching to the groundwater, and increasing 

concentrations of volatile NH3 produced in soils (Eichner 1990). However, nitrogen use 

efficiency is composed of nitrogen uptake efficiency and utilization efficiency, which is 

associated with the amount of roots. Being a source of nitrogen, nitrate is an easily mobile 

nutrient in soil, and the uptake of which is dependent on root morphological characteristics 

(Sullivan et al. 2000). Root length density is of great importance in nitrate uptake in soil 
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(Robinson et al. 1983). Differences in root morphology, root age, allocation of assimilate and 

distribution of nitrate reductase (Siebrecht et al. 1995) may lead to variations in the functionality 

of root morphological characteristics in affecting nitrate uptake. For wheat, root length density 

was of minor importance for nitrate uptake from soil (Robinson et al. 1994), whereas maize root 

length was closely related to the depletion of nitrate in the subsoil (Wiesler and Horst 1994). 

Moreover, root morphology has been shown to influence accumulation of mineral elements, and 

increased phosphorus supply was associated with longer root hairs or different root length/ shoot 

weight ratios of plants (Föhse et al. 1988). 

Root morphological characteristics can adapt to the changes in nutrient status in soil 

(Clements et al. 1993). Maize has greater root branching with increasing levels of applied 

fertilizer N (Maizlish et al. 1980), while N stress in maize reduced root branching (Eghball et al. 

1993). With increased N supply, there were increases in the root length, the number of primary 

roots, and the elongation rate of first order laterals in maize (Maizlish et al. 1980). Similarly in 

wheat, greater root length occurred with increased levels of applied fertilizer N (Tennant 1976).  

 

2.2.2 Root distribution in the soil profile 

A dynamic root system is related to soil moisture status and regulates the amount of water 

available to the plant depending on its distribution in the soil (Toorchi et al. 2002). The spatial 

distribution of roots and their density in the soil are the major determinants of the ability of crops 

to acquire the nutrients and water necessary for growth (Li et al. 2006).  The spatial distribution 

of roots can reflect the crop’s potential to take up nutrients and water (Qin et al. 2004). Usually, a 

shallower and less proliferated root system will affect the volume of soil available to plants for 

extracting water and nutrients; moreover, water uptake may be limited by clumping of roots 
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(Passioura, 1983). The optimum distribution of roots is dependent on the distribution of water 

and nutrients in the soil especially in dry seasons; plants may require long main root axes to 

access water stored deep in the soil profile (Bengough et al. 2006).  

Roots of individual plants may experience a wide range of soil conditions (Jackson and 

Caldwell 1993). However, root systems are able to adapt to soil depth and to changes in the 

availability of water and nutrients and the chemical properties in the soil (Feddes and Raats 

2004).  Root distribution varies widely according to plant species, soil properties and water 

regimes (Leahmann et al. 1998). Snake weed (Polygonum  bistorta) altered its root distribution 

patterns due to variations in seasonal precipitation (Wan et al. 2002). Spring wheat had shallower 

root system with decreased available water (Merrill and Rawlins 1979).  Crops can respond in 

various ways to soil water deficits by varying root distribution, which may be largely dependent 

upon timing, duration and severity of soil water (Hsiao 1990). Wheat crops declined in root 

growth in the upper 40 cm of the soil profile during a drought without a compensatory root 

growth in the sub-soil (Weir and Barraclough 1986). However, cotton (Gossypium spp.) crops 

attained substantial increases in root density between 70 and 180 cm in a drying profile 

compared to a well watered soil profile (Klepper et al. 1973). In general, the ability of plants to 

change root distribution to exploit water deeper in soil profiles can be an important mechanism 

to avoid drought stress. Under dry conditions peanut (Arachis hypogaea L.) and cowpea (Vigna 

unguiculata L.) were able to change root distribution to extract water deeper in the soil profile 

(Pandey et al. 1984). As available water decreased in soil, soybean (Glycine max L.) and 

sorghum (Sorghum bicolor L.) could develop deeper root systems (Hoogenboom et al. 1987; 

Merrill and Rawlins 1979).  

Tillage is another factor affecting crop root distribution patterns by inducing variations in 
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the soil nutrient status and the its impact on root distribution was evident in the layer affected by 

plowing (Gerik et al. 1987; Rasmussen 1991). However, tillage intensity can influence the 

patterns of root distribution (Ehlers et al. 1983; Cornish 1987). Zero tillage often resulted in the 

stratification of soil nutrients, especially the immobile elements such as phosphorus (Logan et al. 

1991; Holanda et al. 1998; Crozier et al. 1999), thus inducing a higher root length density in the 

topmost layer under zero tillage (Gregory, 1994; Cannell and Hawes 1994). Roots in the zero 

tillage system accumulated to a greater extent from 0 to 5 cm compared with the roots in the 

conventional tillage system (Chan and Mead 1992; Rasmussen 1991).  

 

2.3 Rhizosphere 

The rhizosphere is the narrow soil zone adjacent to plant roots which is an area with 

intense biological and chemical activities. This term was first introduced in 1904 by Lorenz 

Hiltner, a professor of Agronomy at the Technical College of Munich, Germany, who defined it 

as the specific region of soil affected by plant roots. The word, "rhizosphere" comes from “rhizo” 

or “rhiza” which is a Greek word for root, and sphere which means an environment or area of 

influence. At very first, Hiltner used “rhizosphere” to describe the interaction between 

microorganisms and legume plant roots, but now the term covers all plants and is a topic of 

fundamental importance in crop production. Plants influence the composition and dynamics of 

microbial communities present in the rhizosphere, and in turn microbial communities in the soil 

or rhizosphere contribute to plant growth by recycling nutrients and making them available 

(Lynch 1990), increasing root health through competition with root pathogens (Weller et al. 2002) 

or enhancing nutrient uptake (Smith and Read 1997).  

Root systems play important roles in releasing organic and inorganic compounds into the 
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rhizosphere, which may induce chemical changes in the root environment thus affecting the 

microbial population and availability of nutrients (Neumann and Romheld 2001). Root excretion 

of H+ in the rhizosphere is an effective mechanism for improving uptake of micronutrients 

(Fageria et al. 2002). Phosphrous is strongly retained by soil due to its strong reactions with iron 

and aluminium ions exposed at the surfaces of soil particles. Therefore in most cases, the 

mobility of P is extremely low in soils leading to their low availability for plants (Holford 1997; 

Barrow 1999). However, in some crop species, plant-induced changes in the rhizosphere can 

increase the availability of unavailable soil P, and the mechanisms include the manipulation of 

root morphology (hair length/density), the provision of extra carbon for mycorrhizal exploitation 

of non-rhizosphere soil, and the release of phosphatases and organic acids (Jones 1998). 

Enhanced secretion of acid phosphatases and phytases by plant roots and also by rhizosphere 

microorganisms under P deficient conditions may contribute to P acquisition by hydrolysis of 

organic P esters in the rhizosphere (Neumann and Romheld 2001).  

Soil physical properties strongly influence nutrients uptake, and in addition they largely 

determine rhizosphere extension due to their influence on root growth and transfer of ionic and 

molecular compounds (Nye 1981; Hinsinger 1998). Usually soil temperature affects physical, 

chemical, and biological processes in the rhizosphere and nutrient availability. Extreme 

temperatures are detrimental to the rhizosphere environment affecting root growth and microbial 

processes adversely. The size, arrangement and stability of soil aggregates have a great influence 

on soil physical and chemical processes (Fageria and Stone 2006), thus affecting the rhizosphere; 

while in turn the rhizosphere can affect soil structure. Grassland soils generally have a very 

stable soil structure (Reid and Gross 1980) due to the greater root biomass around which a higher 

rhizosphere microbial biomass is present (Lynch 1981). Soil pH is one of the most important 



 

 15 

chemical properties that can influence nutrient solubility and consequently the nutrients 

availability to plants. Acidification of the rhizosphere can solubilize several less soluble 

macronutrients (Riley and Barber 1971) and micronutrients (Sarkar and Wyn Jones 1982). 

 

2.3.1 Rhizosphere microbial community 

All organisms in the biosphere are dependent on microbial activity (Pace 1997). Soil 

microorganisms play important roles in nutrient cycling in ecosystems (van der Heijden et al. 

1998; Cairney 2000; Klironomos et al. 2000; Ovreas 2000). Soil microorganisms influence 

above-ground ecosystems by contributing to plant nutrition (George et al. 1995; Timonen et al. 

1996), plant health (Srivastava et al. 1996; Filion et al. 1999; Smith and Goodman 1999), and 

soil structure (Wright and Upadhyaya 1998; Dodd et al. 2000) and soil fertility (Yao et al. 2000; 

O’Donnell et al. 2001).  

The diverse microorganisms are the most important component of the rhizosphere. Plant 

growth-promoting rhizobacteria (PGPR) are beneficial microorganisms which colonize the 

rhizosphere resulting in the improvement of plant growth and development. Members of PGPR 

can be divided into two classes according to whether they can affect plant growth either directly 

or indirectly (Bashan and Holguin 1998). Direct influence is related to the increased 

solubilization, nutrients uptake and production of phytohormones, whereas indirect effect is 

associated with pathogen suppression, production of Fe-chelating siderophores, and antibiotics, 

and the induction of plant resistance mechanisms (Persello-Cartieaux et al. 2003). Mycorrhizal 

fungi are the other important group of beneficial soil microorganisms and they vary widely in 

structure and function. About 80% of all terrestrial plants can form an association with 

arbuscular mycorrhizal fungi (AMF) in which the fungi receive carbon from the host meanwhile 
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supplying minerals to the host (Harrier and Watson 2003). The AMF can improve nutrient 

availability by enhancing acquisition of low-mobile micronutrients such as Zn, Fe, and Cu 

(Marschner 1995). The AMF are especially effective for P acquisition due to their hyphae, which 

greatly increase the volume of bulk soil that the plant roots can explore. Quantitatively, P is the 

most important nutrient taken up by the extra-radical hyphae and influx of P in roots colonized 

by AMF can be three to five times higher than in non-mycorrhizal roots (Harrier and Watson 

2003). Generally, microbial communities in the rhizosphere can be affected by a wide range of 

factors. Any changes of microbial community may affect plant growth either negatively or 

positively. 

 

2.3.2 Factors affecting rhizosphere microbial community 

In most cases, a variety of abiotic and biotic factors greatly influence the composition and 

activities of the microbial community in the rhizosphere. 

 

2.3.2.1 Plant and soil  

Plants have a strong influence on the composition and dynamics of microbial 

communities present in the rhizosphere (Germida and Siciliano 2001). The structural and 

functional diversity of rhizosphere populations is affected by plant species due to differences in 

root exudation and rhizodeposition in different root zones (Jaeger et al. 1999; Sørensen 1997). In 

many cases the rhizosphere communities of different plant species growing in the same soil are 

distinct (Ibekwe and Kennedy 1998), whereas plants may have similar microbial community 

structures in different soils. Mutually the composition of the rhizosphere community can also 

significantly influence the development of phytopathogens (Nehl et al. 1997), nutrient 
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acquisition (Lynch 1990), heavy metal resistance (Bradley et al. 1981) and ecological fitness of 

plants (Bever et al. 1997; Parker 1995).  

Soil has a great effect on the microbial community in the rhizosphere and many of the 

soil properties including soil type (Buyer et al. 1998), soil texture (van Elsas et al. 1989) soil 

bulk density and soil temperature (Rattray et al. 1993). Soil water is important for both plants 

and soil microorganisms. Generally, roots can maintain relatively higher water content in the 

rhizosphere in the upper, drier soil horizons by pumping water from roots in contact with 

available water in the lower soil horizons (Dawson 1997). Mucilage on the root surface could 

protect rhizosphere microbial community from desiccation by stabilizing the soil structure and 

maintaining hydraulic conductivity (Read and Gregory 1997; Czarnes et al. 2000).  

 

2.3.2.2 Agricultural practices 

To make agriculture more sustainable, management practices have been shifting to 

reduction in tillage, input of organic materials, and nutrient strategies based on crop rotations 

(Pankhurst et al. 1996) which may affect soil microbial diversity. Reduced tillage enhances soil 

microbial diversity (Hassink et al. 1991; Wander et al. 1995) while the no-tilled phase of a crop 

rotation reduces microbial diversity (Zelles et al. 1992).  The impact of different crop species that 

are used in various combinations is likely to be an important factor in determining the structure 

of plant beneficial microbial communities that function in nutrient cycling, the production of 

plant growth hormones, and suppression of root diseases (Alvey et al. 2003). As a sequence of 

plant species are grown on a soil, the predominant bacteria associated with the previous crop 

species will exert at least some temporary influence on bacterial communities in the rhizosphere 

of the subsequent species, particularly during early growth of crops (Alvey et al. 2003). The 
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substrate utilization patterns of microbial communities can be changed by crop rotations 

(Lupwayi et al. 1998). However, effects on rhizosphere microbial community of crop rotations 

are different from that of intercropping. Root contact can change rhizosphere microbial 

community structure and all crops had similar microbial community structure when their roots 

intermingled in intercropping system (Wang et al. 2007). 

 

2.3.2.3. Introduced microorganisms 

The requirements of sustainable agriculture have stimulated the investigation of bio-

source alternatives to reduce inorganic fertilizer inputs and also the use of bio-control or plant 

growth promoting agents. Biofertilizer and bioinoculants containing living micororganisms can 

contribute to the improvement in the biochemical and physical composition of soil organic 

matter, increase bio-availability of soil nutrients and control of pathogen or pest populations 

(Abrol 1999; Ladha et al. 2000; Timsina and Connor 2001) due to the effects on the rhizosphere. 

The bio-inoculation by PGPR or AMF, in the form of seed coating or in the soil near the seed, 

may cause shifts in the community composition of either small or high magnitude (Nacamulli et 

al. 1997; Marschner et al. 2001; Bankhead et al. 2004). In addition, PGPR and AMF bio-

inoculation induced a significant modification in the bacterial community of wheat, and the type 

of PGPR consortium had more impact on the bacterial community structure than the presence of 

AMF (Roesti et al. 2006). 

 

2.3.3 Rhizosphere of pulse crops 

It is well known that pulse crops can add N to the soil, break disease cycles, improve the 

quality of the soil, and increase the yield of the following non-legume crops when grown in 
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rotation (Wouterlood et al. 2004). Pulse crops can also induce rhizosphere acidification (Tang et 

al. 1997), and root-induced rhizosphere pH is known to influence availability of soil inorganic P 

(Gahoonia and Nielsen 1992) and micronutrients to plants (Marschner and Romheld 1996).  

Chickpea roots can exude large amounts of low-molecular-weight organic carboxylates in the 

rhizosphere (Ae et al. 1990; Gerke et al. 1994; Hocking et al. 1997; Ohwakiand Hirata 1992). 

Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the 

rhizosphere (Veneklaas et al. 2003). The main carboxylate released from chickpea roots is 

malonate (Wouterlood et al. 2005) which can defend against pathogens and inhibit microbial 

activities in the rhizosphere (Li and Copeland 2000).  
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 3.0 ROOT SYSTEMS OF OILSEEDS AND PULSE CROPS: GROWTH PATTERNS 
AND ITS RELATION TO WATER AVAILABILITY 
 

3.1 Introduction 

Plant roots are the primary organ for water and nutrient uptake and thus play an essential 

role in the soil-plant continuum (Lynch et al. 2007). Also, plant roots are an important sink of 

photosynthates and the decomposition of roots contributes carbon to the soil, thus increasing soil 

organic matter (Pietola and Alakukku 2005). The morphological traits of roots greatly influence 

the capacity of nutrient uptake and water extraction in crop plants (Fageria 2004) which 

ultimately influences the aboveground growth and biomass yield (Jia et al. 2008). Root 

morphological traits usually include the root length, surface area, diameter, and the number of 

tips. In general, root morphology varies widely between plant species ranging from a dominant 

taproot system with few lateral roots to highly developed fibrous root systems (Clement et al. 

1993).  

The characteristics of morphological traits can directly influence the functionality of the 

roots. For example, roots with a larger surface area can absorb a greater amount of phosphorus 

and ammonium (Marschner 1998) and nitrate (Sullivan et al. 2000). However, large variations 

exist in terms of the association of root morphological traits and their functionality. For example, 

in spring wheat (Triticum aestivum L.), root length density was of minor importance for nitrate 

uptake from soil (Robinson et al. 1994), whereas root length in corn (Zea mays L.) was closely 

related to the depletion of nitrate in the subsoil (Wiesler and Horst 1994). Additionally, root 

morphology influences the accumulation of mineral elements in plant tissues (Föhse et al. 1988). 

Roots with either greater length or longer root hairs increased nutrient supply to the plant. In 

wheat, certain genotypes with longer and thinner roots tended to be more efficient in Zn uptake 

(Dong et al. 1995). 
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The morphology of root systems in field crops is important for the acquisition of soil 

available water especially under water-limited conditions. In areas where drought occurs 

frequently such as in the northern Great Plains of North America, improved root morphological 

traits such as increased root length, root diameter and root-to-shoot ratio help reduce drought 

stress in crops (O’Toole and Soemartono 1981; Yoshida and Hasegawa 1982). The size of root 

systems confers drought resistance, because roots are capable of increasing their length density 

and water uptake ability by producing more lateral roots and larger root volume (Ingram et al. 

1994). The development of a vigorous and deeper root system is particularly important for a crop 

to be better adapted to water stress environments (Fageria 2004).  

Oilseed and pulse crops have been increasingly adapted in cereal-based cropping systems 

in the semiarid areas of the northern Great Plains. In western Canada, for example, the area 

seeded to oilseed crops has increased from 3.46 million hectares in 1990 to 6.57 million hectares 

in 2006 (or 90% increase); the area seeded to pulse crops has increased 8 fold from 257,000 

hectares in 1990 to 2.33 million hectares in 2006 (Statistics Canada 2007). These crops are 

playing a significant role in the development of sustainable agricultural systems (Zentner et al. 

2001) where the use of these broadleaf crop species to replace conventional summer fallow for 

significant environmental benefits (Gan and Goddard 2008), and to mitigate greenhouse gas 

emissions from crop production (Lemke et al. 2007). Unfortunately, knowledge on the root 

systems of these crops is limited and most of the published studies have focused on cereals 

(Bolinder et al. 1997). There is a paucity of relevant root data for oilseed and pulse crops, so 

information on the roots of these alternative crops is urgently needed. For crop producers, root 

information may help develop the crop rotation systems with improved water and nutrient use 

efficiency by selecting the optimum crop sequences. The inclusion of crops with different rooting 
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patterns in a cropping system can improve water and nutrient use efficiency (Black et al. 1981). 

For scientific modelers, specific information on crop roots may help validate the models used to 

examine nutrients and water use patterns in soil by crops. The objectives of this study were to (i) 

determine root morphological characteristics of selected oilseed and pulse crops at different 

growth stages in comparison with spring wheat, and (ii) examine the influence of water 

availability on the root growth patterns under semiarid environmental conditions. 

 

3.2 Material and methods 

3.2.1 Experiment design   

A study was conducted at the Semiarid Prairie Agricultural Research Centre of 

Agriculture and Agri-Food Canada, Swift Current (50°15’N, 107°44’W), Saskatchewan, in 2006 

and 2007. The experiment was established on an Orthic Brown Chernozem (Aridic Haploboroll) 

soil with silt loam texture; the content of sand, silt, and clay was 28%, 49%, and 23%, 

respectively, organic matter of 3.0%, and pH (water paste) 7.3. The experiment field was on 

wheat stubble. Three oilseeds (canola, flax, mustard), three pulses (chickpea, field pea, lentil), 

and spring wheat were studied under low- (natural rainfall) and high-water (rainfall+irrigation) 

conditions in each year. A representative cultivar was chosen for each crop species based on their 

production popularity (Table 3.1). All crops were hand-planted in lysimeters of 15 cm in 

diameter and 100 cm in length that were installed in the field using a hydraulic system (Gan et al. 

2009b). The crops under low-water treatments received natural rainfall only (Table 3.2), whereas 

crops under high-water condition received natural rainfall plus irrigation at the amount of 150 

mm (which was about 2/3 of the long-term rainfall at the experimental site). Irrigation was 

applied using a hand-sprayer with 75 mm of the irrigation being applied between seedling and 
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flowering, split into 3 applications, and the remaining 75 mm applied from flowering to maturity 

in 2-3 applications. Seven crops with two water regimes were arranged in a factorial, randomized 

complete block design with two replicates. Each treatment contained 5 sampling times in each 

replicate. Thus, the experiment had a total of 140 lysimeters (7 crops × 2 water conditions × 5 

sampling times × 2 replicates) in each year. 



 

 

24 

Table 3.1. Crop cultivars and agronomy information for oilseed, pulse and cereal crops grown in the lysimeter experiment at Swift 
Current, Saskatchewan, 2006-2007. 
 

Crop Cultivar 
Fungicide Initial seeds 

lysimeter-1 
Final plants 
lysimeter-1 Trade name Active ingredient Rate 

(ml 100kg-1 seed) 
Oilseed crop 
Canola 45H21 Helix Thiamethoxam 1500 11 3 

Flax Vimy Vitaflo 280 Carbathiin + Thiram 525 12 4 

Mustard Cutlass Helix Thiamethoxam 1500 11 3 
 

Chickpea 

Pulse crop 

CDC Anna Crown Carbathiin + 
Thiabendazole 600 5 2 

Field pea Eclipse Apron FL Metalaxyl 16 5 2 

Lentil CDC 
Glamis Crown Carbathiin + 

Thiabendazole 600 7 3 

 

Wheat 

Cereal crop 

Lillian Vitaflo 280 Carbathiin + Thiram 330 7 3 
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Table 3.2. The amounts of water (mm) that crop received during the different growth stages under low- and high-water conditions at 
Swift Current, Saskatchewan, 2006-2007. 
 

 2006  2007 

Crop stage a Low b High b  Low b High b 

Seedling 131 156  98 136 

Early-flower 14 41  17 40 

Late-flower 22 45  5 22 

Late-pod 1 14  0 28 

Maturity 12 28  10 52 

Total 180 284  130 278 
 

a For oilseed and pulse crops, root samples were taken in 2006 on DOY (day of year) of 178 (Seedling), 187-199 (Early-
flower), 207 (Late-flower), 214 (Late-pod), and 223-233 (Physiological maturity); in 2007 the corresponding sampling days 
were 173-177, 184-193, 193-201, 204-207, and 214-219, respectively; for wheat the corresponding stages were: seedling, boot, 
anthesis, soft dough, maturity. 
b Low-water means crop received natural rainfall only, and high-water means crops received natural rainfall plus irrigation to 
amount of 150 mm. 
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3.2.2 Seedling, root sampling and data collection 

All crops were planted in the first week of May in both years. Oilseed crops and wheat 

received fertilizer (46-0-0) at the rate of 80 kg N ha-1 and superphosphate (0-45-0) at 27 kg P ha-1 

at seeding and all fertilizers were placed directly on crop seeds. After inoculated with Rhizobium, 

pulse crops received P only. Seeds were treated with an effective fungicide before planting to 

minimize seed- and soil-borne diseases (Table 3.1). The lysimeters were surrounded by a 2×6 m 

area of the crops that were same to the plants in the lysimeters. A fine-wired cage was installed 

around each lysimeter to prevent the potential damage from wild animals. The cages were 

removed at the time of lysimeters removal when sampling took place or when plants such as 

field pea started to attach tendrils to the cages. Two weeks after emergence, crop seedlings in the 

lysimeters were thinned to the desired plant population (Table 3.1).  

Lysimeters of oilseed and pulse crops were withdrawn from field positions at crop growth 

stages of seedling, early-flower, late-flower, late-pod, and physiological maturity. For spring 

wheat, the corresponding stages were seedling, boot, anthesis, soft-dough and maturity, 

respectively. Crop plants were cut off at the ground level and the number of plants in each 

lysimeter was counted just before the lysimeters were withdrawn from field positions. 

Lysimeters were then transported to the laboratory, and stored at 2°C until processing. For the 

analysis, intact soil cores within the lysimeters were sectioned into 10 cm increments for the first 

60 cm of the soil core and 20 cm intervals for the remaining core to a depth of 100 cm. Each soil-

root matrix was soaked overnight in containers using 15 ml of calgon water softener for every 4 

liter of water. Roots were washed out of soil manually using 4-mm hole size pan sieves, and then 

placed in containers full of water with a 0.8-mm screen mounted 3 cm below the water level. 

Debris and other extraneous materials from the root samples were removed using tweezers. 
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The entire cleaned root samples were sub-sampled; one part was used for dry weights 

(Gan et al. 2009a) and the other portion was used for the analysis of root morphology. Roots 

were stained with 0.08% Toliudine Blue O (Sigma, USA) for 5 min, and then rinsed thoroughly 

with distilled water. Rinsed root samples were placed on a tray and scanned with a “WinRHIZO” 

scanner (Regent Instruments Inc. Quebec, Canada) at a resolution of 400 dpi. Scanned root 

images were analyzed using the WinRHIZO program (Version 2003b) for root length, surface 

area, diameter, and the number of tips. For each lysimeter, the output of root length, root surface 

area and number of root tips were summed over all soil segments into the total root length (mm), 

total root surface area (mm2) and total number of root tips, while root diameters were averaged 

across these soil segments. Total root length density (mm cm-3), total root surface area density 

(mm2 cm-3) and the number of root tips were calculated by dividing the total root length (mm), 

total root surface area (mm2) and the total number of root tips by the volume (cm-3) of the entire 

soil core.  

 

3.2.3 Statistical analysis 

The data on root morphological traits at each crop growth stage were subjected to 

analysis of variance using the MIXED procedure of SAS (Littell et al. 1996). Crop, water 

condition, and year were considered as fixed effects and replicates as random effects (Table 3.3). 

A combined analysis of variance was first performed on all variables, and the mean effects across 

years were presented if year by treatment interaction was either not significant or there was a 

similar trend of treatment effects (Hoshmand 2006). For variables where there was a significant 

year by treatment interaction and the interaction was large relative to the average effect, the 

treatment effect was determined for each year. For most variables, the mean of three pulse crops 
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or three oilseeds were compared to wheat using a single degree-of-freedom contrast. The means 

of differences were considered significant if the probability level was at P ≤ 0.05, and Fisher’s 

protected LSD was used to determine treatment effects.  
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Table 3.3. Overall analysis of variance of root parameters for oilseed and pulse crops at 5 crop 
growth stages, Swift Current, Saskatchewan, 2006-2007. 
 

 Seedling a Early-flower Late-flower Late-pod Maturity 
 
Root length density  (mm cm-3) 
Year (Y) ** NS NS NS NS 
Water (W) NS NS *b * NS 
Crop (C) *** *** *** *** *** 
Y × W NS NS NS NS NS 
Y × C * NS NS ** ** 
W × C NS NS * NS NS 
Y × W × C NS NS NS NS NS 
 

Year (Y) 
Root surface area (mm2 cm-3) 

* NS ** NS * 
Water (W) NS NS * NS NS 
Crop (C) *** *** *** *** *** 
Y × W NS NS NS NS NS 
Y × C * NS NS ** NS 
W × C NS NS * NS NS 
Y × W × C NS NS * NS NS 
 

Year (Y) 
Root diameter (mm) 

** NS NS * NS 
Water (W) NS NS NS NS NS 
Crop (C) *** *** *** *** *** 
Y × W NS NS NS NS NS 
Y × C NS NS ** ** ** 
W × C NS NS NS NS NS 
Y × W × C NS NS NS NS NS 
 

Year (Y) 
Root Tips (103 cm-3) 

*** ** NS NS NS 
Water (W) NS NS * NS NS 
Crop (C) *** *** *** *** *** 
Y × W NS NS NS NS NS 
Y × C ** NS NS * NS 
W × C NS NS * NS NS 
Y × W × C NS NS NS NS NS 
 

a Corresponding stages for wheat are: seedling, boot, anthesis, soft-dough and maturity. 
b Levels of significance indicated: NS= not significant, * significant at the P ≤ 0.05; ** 
significant at the P ≤ 0.01,    *** significant at P ≤ 0.001. 
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3.3 Results and discussion 
 
3.3.1 Year, crop species effects and their interactions 

Year had a significant effect on all the measured root parameters of oilseeds and pulses at 

the seedling stage (Table 3.4). On average, the total root length density, total root surface area, 

the average root diameter, and the total number of root tips in 2007 were, respectively, 41, 25, 14, 

and 110% greater than the corresponding values of 2006. Crops in 2006 received 131 mm of 

water during the seedling stage or 34% more than that received by crops in 2007 (Table 3.2). The 

limited water availability during the seedling period in 2007 stimulated root growth which was 

greater than that in 2006. The results were in agreement with the findings of previous studies by 

Hoogenboom et al. (1987) and Merrill et al. (2002) where the roots of soybean (Glycine max L.) 

and dry bean (Phaseolus spp.) attained the greatest growth in driest years and the least growth in 

wettest years.  

Crops had a larger root surface area in 2006 than that in 2007 at the late-flower stage (for 

oilseeds and pulses; for wheat the corresponding stage was anthesis) and maturity stages (Table 

3.4). This was again largely due to rainfall during the period of late-flower and maturity when 

crops received more in 2006 compared to that in 2007. Other factors might also contribute to the 

large differences in root surface area between the two years such as soil environmental 

conditions under which the roots grew. Douglas et al. (2006) reported that root surface area was 

the most sensitive to environmental factors and varied greatly depending on crop season, rooting 

depth, and soil water content. 

All crops in 2007 produced significantly more root tips than those in 2006 at the early 

flower stage (for oilseeds and pulses; for wheat the corresponding stage was boot). The greater 

number of root tips produced by the crop in the drier year was probably due to the tendency of 
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the root system to sense more soil volume for water. Root tips consist of the meristem and root 

cap; the meristem is responsible for detecting water and nutrients from soil, and the root cap 

senses water,  

Table 3.4. Root morphological parameters influenced by crop year at five crop growth stages in 
regardless of water conditions, in Swift Current, Saskatchewan. The data shown are averaged 
across all tested crops. 
 

Year effect 
Growth stage 

Seedlinga Early-flower Late-flower Late-pod Maturity 

Root length density (mm cm-3 soil) 

2006 3.24 b 7.92 a b 11.55 a 10.79 a 9.77 a 

2007 4.58 a 8.90 a 10.46 a 10.65 a 9.64 a 

LSD 0.05 0.97 1.59 1.71 1.37 0.91 

Root surface area (mm2 cm-3 soil) 

2006 4.11 b 9.22 a 13.33 a 10.52 a 9.88a 

2007 5.12 a 9.02 a 10.75 b 10.23 a 8.86 b 

LSD 0.05 1.01 1.51 1.62 1.29 0.84 

Root diameter (mm) 

2006 0.23 b 0.32 a 0.36 a 0.31 b 0.32 a 

2007 0.26 a 0.34 a 0.36 a 0.33 a 0.32 a 

LSD 0.05 0.02 0.03 0.02 0.02 0.02 

Root tips (103 cm-3 soil) 

2006 651 b 1814 b 2985 a 2799 a 2704 a 

2007 1370 a 2646 a 3030 a 3046 a 2579 a 

LSD 0.05 274 453 531 410 304 
 

a Corresponding stages for wheat are: seedling, boot, anthesis, soft dough and maturity. 
b Followed by the same letter are not significantly different between the two years at P ≤ 0.05, 
according to LSD. 
 

gravity, touch, and other signals (Feldman 1984). The root cap can also control the direction of 

root growth towards positive stimuli such as nutrients and away from deleterious stimuli such as 
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toxins (Aiken and Smucker 1996). In addition, the growth activity of root tips is critical to 

dynamic root function since spatial and temporal changes in root distribution are defined by the 

growth path of root tips (Aiken and Smucker 1996).  

Similar to root tip response, crops in 2007 had roots with a larger diameter at the late pod 

stage (the corresponding stage for wheat was soft dough) (Table 3.4). Again, this was largely due 

to the drier weather in 2007. These results were in accordance with the findings from a previous 

study where corn root system had a larger root diameter under the conditions of high water stress 

(Duruoha et al. 2007). Decreasing soil water content often increases soil strength (Whiteley and 

Dexter 1982), which influences root penetration into soil pore spaces. Soils with high penetration 

resistance result in thicker, larger diameter roots (Barley 1962; Materechera et al. 1992) with a 

slower rate of elongation (Taylor and Ratliff 1969).  

Crop species differed significantly in their rooting traits, and these differences showed 

interactions with year as well as with water regime (Table 3.3). The crop by year interactions 

occurred mostly at the late pod stage for all root parameters; therefore, separate ANOVAs were 

performed to analyze the interactions between years and crop species at the late pod stage (Table 

3.5). Among the oilseed crops, canola had larger root length density and surface area with more 

root tips in 2007 than those in 2006. However, flax had less root tips in 2007 than that in 2006. 

There was no difference in any root parameter for mustard between the two years. In the drier 

2007, canola had greater values of root length density, surface area and root tips than mustard, 

suggesting that the root growth of canola responded to drier growing conditions better than 

mustard. Johnston et al. (2002) reported that despite belonging to the same family, canola has 

been adapted to semiarid regions better than mustard. In general, Brassica species have a taproot 

system facilitating roots to uptake water and nutrients deeper in the soil profile (Downey et al. 
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1974).  These taproot systems may explain why the root growth of canola and mustard in the 

drier 2007 performed better than flax which has fibrous root system.  
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Table 3.5. Root parameters of oilseeds, pulses, and wheat as affected by year at the late-pod stage (soft-dough for wheat), in Swift 
Current, Saskatchewan, Canada. 
 

 Root length density 
(mm cm-3 soil)  Root surface area 

(mm2 cm-3 soil)  Root diameter 
(mm)  Root tips 

(103 cm-3 soil) 
 2006 2007  2006 2007  2006 2007  2006 2007 
 
Oilseed crop 
Canola 13.21cd* 20.80a  11.33bc 16.19a  0.29cd 0.25d  3925bc 5646a 
Flax 8.87efgh 6.47gh  7.41de 5.01e  0.27cd 0.25d  2656defg 1244h 
Mustard 9.87defg 11.48de  8.60cd 8.54cd  0.27cd 0.23d  3045cde 3435cd 
 

Chickpea 
Pulse crop 

8.44efgh 7.00fgh  10.62bcd 11.77bc  0.39b 0.49a  2245efgh 2727def 
Field pea 7.99efgh 6.67fgh  8.69cd 8.63cd  0.31c 0.43b  1816fgh 2038efgh 
Lentil 10.23def 5.43h  13.52ab 7.76de  0.38b 0.42b  1960fgh 1611gh 
 

Wheat 
Cereal crop 

15.94bc 17.67ab  13.48ab 13.74ab  0.28cd 0.26d  4007bc 4622ab 
 
LSD 0.05 3.63  3.41  0.05  1085 

 

            * For a given variable, means followed by the same letter were not significantly different at P ≤ 0.05, according to LSD.
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For pulse crops, there were also significant year by crop interactions for most of the root 

parameters measured (Table 3.5). Root length density and surface area of lentil were larger in 

2006 than that in 2007; however, root diameter of chickpea and of field pea in 2006 were smaller 

than that in 2007, and there were no differences in root tips between the two years. In 2006, lentil 

had larger root diameters than field pea, but in 2007 there were no differences. In both years, 

chickpea had the largest root diameter among the three pulses. Differences in root tips only 

occurred between chickpea and lentil in 2007. In general, the changes in root growth patterns for 

pulse crops were inconsistent between years and these results indicate that the root growth 

patterns of pulse crops differ substantially depending on environmental conditions and that the 

root growth patterns of wheat and oilseeds respond to environmental conditions more 

consistently than pulse crops. 

 

3.3.2 Water effects 

Water availability as manipulated through irrigation had significant effects on root length 

density, root surface area and root tips at the late flower stage for oilseeds and pulses, while for 

wheat it occurred at anthesis. The intensity of the effect varied with crop species (Table 3.3). 

Among oilseed crops, canola had greater values in total root length density, total root surface 

area and total number of root tips under high-water (i.e., rainfall + irrigation) compared to low-

water (rainfall only) conditions (Table 3.6). However, irrigation did not affect any of these root 

parameters for flax or mustard. The canola cultivar used in the experiment was a hybrid which is 

sensitive to water and nutrient availability (Gan et al. 2008). In a study conducted in Australia, 

Kirkegaard et al. (1997) demonstrated that root length density and rooting depth for canola were 

highly related to soil water availability.  
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In pulse crops, irrigation had little impact on root length density, surface area or the 

number of tips (Table 3.6). In contrast, wheat plants had larger root length density, surface area 

and more tips under high-water than those under low-water conditions. Our results differed from 

those reported by Xue et al. (2003) who found that wheat under rainfed conditions had greater 

root length density than under irrigation at booting stage. The current experiment was conducted 

in semiarid environments with limited soil moisture while Xue’s study was under more humid 

conditions. Some other researchers found that the effect of water availability on root length 

density in wheat was not significant around flowering stage (Mishra et al. 1999). These 

inconsistent results among experiments indicate that root length density may not be an optimum 

indicator of root growth when examining irrigation effects for wheat although root length density 

was one of the most studied root parameters in various root publications. Moreover, this root 

parameter can be affected considerably by genetic makeup, plant development, soil physical and 

chemical properties, and foliar and root diseases (Sharratt and Gesch 2004). 
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Table 3.6. Root length density, surface area and tips for oilseeds, pulses, and wheat at the late-flower stage under low- and high-water 
conditions, in Swift Current, Saskatchewan, 2006-2007. 
 

 Root length density 
(mm cm-3 soil) 

 Root surface area  
(mm2 cm-3 soil) 

 Root tips  
(103 cm-3 soil) 

 Low a  High a   Low High  Low  High 
 
Oilseed crop 
Canola 13.52bc  23.05a   12.32bc  20.58a   3337bc  5965a  
Flax   7.43fg 6.45g     6.38d    5.50d   1677de  1231e  
Mustard 11.23cdef 12.04cde   11.21c  10.99c   3452bc  3542bc  
 

Chickpea 
Pulse crop 

6.55g  7.91efg   10.74c  13.20bc   2270cde  2856cd  
Field pea 9.93cdefg 10.11cdefg   12.86bc  13.29bc   2532cde  3021cd  
Lentil 8.63defg 6.95fg   13.26bc 10.82c   2775cd  1882de  
 

Wheat 
Cereal crop 

12.77cd  17.80ab   11.81c  16.08ab   2958cd  4692ab  
 
LSD 0.05 

 
4.53 

  
4.29 

  
1403 

 

a Low-water means crop received natural rainfall only, and high-water means crops received natural rainfall plus irrigation with 
a mount of 150 mm. 
b For a given variable, means followed by the same letter were not significantly different at P ≤ 0.05, according to LSD.
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3.3.3. Root growth patterns of oilseed crops 

The growth of roots in oilseed crops progressed considerably from seedling to the late-

flower stage, reached a maximum at late-flower or late-pod stages in the total root length density 

(Fig. 3.1A), total root surface area (Fig. 3.1B), the average root diameter (Fig. 3.1C) and the total 

number of root tips (Fig. 3.1D), and then declined to maturity.  Canola and mustard had similar 

root growth patterns; both progressed faster than flax and reached their maximum values earlier 

than flax. For the wheat control, root length density, surface area, and root tips sharply increased 

from seedling to boot stage (equivalent to early-flower in oilseeds), and then levelled off to 

maturity rather than declining. Growth progress of root diameter in wheat followed a similar 

pattern as oilseed crops and reached the maximum at the soft dough stage. Other studies have 

also shown that wheat root biomass and root length peaked before anthesis (Barraclough and 

Leigh 1984; Robertson et al. 1993). In the study, the patterns of progression of root growth 

during the growing season was similar between the two water treatment regimes (data not 

shown); thus the results were averaged across the two water treatments (Fig. 3.1). The results 

suggest that the measurement of the maximum root length density, surface area, and number of 

root tips can be best made at the late-flower to late-pod stages for oilseeds and during the boot to 

anthesis period for spring wheat. 

At any growth stage, canola always had the higher values for all root parameters, except 

root tips at seedling stage, than flax and mustard (Fig. 3.1). Compared with the two Brassica 

species, flax always had the lowest values in root length density, root surface area and root tips. 

Wheat had greater root length density and root surface area, and more root tips than flax at all 

growth stages. 

Root length density gradually increased from seedling stage for all three oilseeds, and the 
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increment was greatest for canola and smallest for flax (Fig. 3.1A). However, after reaching the 

maximum value at the late-flower stage, root length densities of canola and mustard declined but 

the decrease occurred somewhat later for flax at the late-pod stage (Fig. 3.1A). Root surface area 

of canola was greater than mustard and flax, with the fastest rate of growth occurring during the 

period from seedling to late flowering (Fig. 3.1B). Canola produces large numbers of root hairs 

(Johnston 2003) which represent about 70% of the total root surface area (Pez-Bucio et al. 2003). 

The increased root surface area through large numbers of root hairs is critical for the absorption 

of soil nutrients, especially P by plants (Johnston 2003). These results probably explain the 

reason that canola had greater nutrient uptake ability and nutrient use efficiency than mustard 

(Gan et al. 2008). In terms of root diameters, they had a narrow range of values and were similar 

among oilseed crops throughout the entire growth period (Fig. 3.1C). Roots with larger diameters 

tend to have greater root biomass, while smaller diameter roots result in greater surface area of 

the root system (Eissenstat and Yanai 2002; Waisel and Eshel 2002). The results demonstrated 

that canola had much finer roots with larger surface areas than mustard and flax, suggesting that 

canola may have higher efficiency in taking up nutrients and water than mustard and flax.  
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Figure 3.1 The progress of root growth during the growing season for oilseed crops in 
comparison with wheat control with (A) root length density, (B) root surface area, (C) root 
diameter and (D) root tips measured in Swift Current, Saskatchewan, Canada, 2006-2007. For 
wheat, the corresponding stages are: seedling, boot, anthesis, soft dough and maturity. The data 
shown were averaged over the two water conditions. Vertical bars represent the LSD (0.05) for 
mean comparison between crops at a given stage. 
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3.3.4. Root growth patterns of pulse crops 

All three pulse crops tested in the experiment had similar patterns of root growth during 

the growing season; they reached the maximum in root length density (Fig. 3.2A), root surface 

area (Fig. 3.2B), root diameter (Fig. 3.2C), and the number of root tips (Fig. 3.2D) at the late-

flower stage. In general, root length density and surface area increased rapidly from seedling to 

late-flower, and then declined to maturity. Among the three pulses, field pea had the greater root 

length density, larger surface area, and more root tips than chickpea and lentil at a given stage 

before late flowering. However, from late-flower to maturity, these advantages with field pea 

diminished because of a sharp decline thereafter. In a previous study, Benjamin and Nielsen 

(2006) demonstrated that root surface area in chickpea and field pea increased from late bloom to 

mid-pod stages under dryland conditions. 

Root diameter is another important variable in morphological trait assessment, since root 

diameter has a significant influence on the ability of roots to penetrate soil (Materechera et al. 

1992), especially a soil with increased strength as it dries (Bengough et al. 2006). Roots with 

large diameter can exert more force and penetrate deeper into compacted soil areas (Materechera 

et al. 1992). In the present study, chickpea had larger root diameter than field pea and lentil after 

flower, and this trend persisted to maturity (Fig. 3.2C). Field pea had consistently smaller root 

diameters than lentil during the period between late-flower and maturity stage, but the 

differences were rarely significant. The greater root diameter of chickpea suggests that chickpea 

plants may have a great ability to cope with water deficit by penetrating roots deeper in the soil 

profile. Bejamine and Nielsen (2006) also found that chickpea roots had better ability to 

penetrate deep in the soil profile under water deficit environment than field pea.    
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Figure 3.2 The progress of root growth during the growing season for pulse crops in comparison 
with wheat control with (A) root length density, (B) root surface area, (C) root diameter and (D) 
root tips measured in Swift Current, Saskatchewan, Canada, 2006-2007. For wheat, the 
corresponding stages are: seedling, boot, anthesis, soft dough and maturity. The data shown were 
averaged over the two water conditions. Vertical bars represent the LSD (0.05) for mean 
comparison between crops at a given stage. 
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field pea always had the greatest number of root tips and lentil the least (Fig. 3.2D), suggesting 
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similar level to chickpea. Compared to pulses, the wheat control always had greater root length 

density, higher surface areas, and more root tips than pulses, but the roots of wheat plants were 

always smaller in diameter than pulses. 

 

3.4. Conclusions 

Root growth progressed steadily from seedling to the late-flower or late-pod stages and 

then declined to maturity; this trend was consistent for all oilseeds and pulses tested. This 

suggests that scientific measurements of root growth traits and root biomass should be taken at 

these growth stages in order to achieve accurate assessments. Responses of root growth patterns 

to water availability varied among crop species. Canola root growth was the most sensitive to 

water availability and responded positively to irrigation. Increased water availability did not have 

an effect on the root growth of pulse crops, suggesting that pulses can be best adapted to 

semiarid environments, whereas canola appeared best adapted to high-water environments. 

Differences in root morphology were small among the three pulse crops, but field pea had a 

greater number of root tips from seedling to late-flower stage and presumably the greater 

capacity to exploit water than lentil and chickpea, demonstrating that field pea has greater 

potential of producing more biomass and yield than the two other pulses. The two Brassica 

species had similar root length and surface areas as spring wheat, both being greater than pulses 

and flax, suggesting that the two Brassica species are suitable to areas where spring wheat has 

been dominant. The root information generated from this study may serve as a scientific base for 

the development of the much steadier cropping systems with oilseed and pulse crops.     
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4.0 ROOT SYSTEMS OF OILSEED AND PULSE CROPS: DISTRIBUTIONS IN THE 
SOIL PROFILE 
 

4.1 Introduction 

Plant roots are of great importance in plant-soil systems (Lynch et al. 2007) because they 

carry out essential functions in providing mechanical anchorage to plants, taking up water and 

nutrients from soil, and regulating plant growth by producing diverse biological compounds 

(Groff and Kaplan 1988). Root distribution patterns in the soil profile are important determinants 

of the ability of a crop to acquire nutrients and the water necessary for the growth (Li et al. 2006). 

The configuration of a root system is a reflection of the ecologically optimized responses of the 

genetic property of plant roots to environmental factors (Yu et al. 2007). Plant root systems have 

the morphological and physiological plasticity that makes root distribution vary widely across 

soil depths in response to the availability of soil water (Smucker and Aiken 1992), distribution of 

nutrients (Drew et al. 1973), and the physical (Zhuang et al. 2001) and chemical properties of the 

soil (Feddes and Raats 2004). For instance, when soil is dry on the surface, roots may penetrate 

deeper in the lower soil layers where water may be available (Huang 2006). A shallow and less 

proliferated root system may interact with a limited volume of soil from where plants can extract 

water and nutrients, whereas a deep and more laterally clumped root system may improve water 

uptake (Passioura 1991). The ability of plants to change root distribution to exploit water deeper 

in the soil may be an important mechanism to reduce drought stress (Benjamine and Nielsen 

2006). 

Crop species differ in their root growth and distribution patterns in the soil profile, 

especially under stress conditions. The root growth of wheat plants, for example, tends to decline 

in the upper 40 cm of the soil during a drought without compensatory root growth in the sub-soil 

(Weir and Barraclough 1986). In contrast, cotton plants tend to attain substantial increases in root 



 

 45 

density between 70 and 180 cm soil depth in a drought situation (Klepper et al. 1973). Peanut 

(Arachis hypogaea L.) and cowpea (Vigna unguiculata L.) are able to alter root distribution to 

extract water in deeper soil layers under dry conditions (Pandey et al. 1984). As available water 

is low in soil, soybean (Glycine max L.) and sorghum (Sorghum bicolor L.) can extend their 

roots systems further to deeper soil layers (Merrill and Rawlins 1979; Hoogenboom et al. 1987), 

whereas spring wheat is able to develop more lateral roots in the top soil layers (Merrill and 

Rawlins 1979). In the scientific literature, there is a lack of information on root distributions of 

oilseed and pulse crops in response to growing conditions such as soil water availability.  In 

semiarid regions, precipitation varies from season to season and is often unpredictable even 

during a growing season (Padbury et al. 2002). Water is the main factor limiting crop production 

(Campbell et al. 2007). Field crops grown in these areas frequently experience water deficit 

during their life cycle. One of the approaches to minimize the negative impact of water deficit on 

crop growth is to rotate crops that have shallow rooting systems with crops that have deep 

rooting systems; such an approach may increase water use efficiency (Gan et al. 2003; Miller et 

al. 2003a) and decrease soil nutrient loss by leaching (Gathumbi et al. 2002). Therefore, the 

inclusion of diverse crop species with varying root distribution patterns can be considered an 

important crop management strategy to maximize water use efficiency over period of years.  

Most studies in rooting patterns have concentrated on cereals (Bland and Dugas 1988; 

Box et al. 1989; Box and Ramseur 1993), and there is little information available regarding 

rooting patterns of oilseeds and pulses. In the past two decades, the production of these broadleaf 

crops has been steadily increased in the semiarid northern Great Plains of North America, and 

these broadleaf crops play a critical role in cropping systems where they are rotated with cereals 

in a planned sequence in a rotation system. The objectives of this study were i) to characterize 
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root distribution patterns in the soil profile for selected oilseed and pulse crops; ii) to examine the 

effect of water stress on root growth and distribution patterns of these crops under semiarid 

environments. 

 

4.2 Material and methods 

4.2.1 Experiment design 

A field study was carried out at the Semiarid Prairie Agricultural Research Centre of 

Agriculture and Agri-Food Canada, Swift Current (50°15’N, 107°44’W), Saskatchewan, in 2006 

and 2007. The field soil was an Aridic Haploboroll soil that is a Swinton loam Orthic Brown 

Chernozem in Canadian soil classification (Ayers et al. 1985). With silt loam texture, the soil has 

the content of sand, silt, and clay of  28%, 49%, and 23%, respectively, organic matter of 3.0%, 

and pH (water paste) 7.3. The experiment field was on wheat stubble. Oilseed crops including 

canola, flax, and mustard along with three pulses that included chickpea, field pea and lentil, and 

one spring wheat were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length that 

were installed in the field using a hydraulic system (Gan et al. 2009b). A representative cultivar 

was chosen for each crop species based on their production popularity (Table 4.1). All crops 

were tested under low- (natural rainfall) and high-water (rainfall + irrigation) conditions in each 

year. The crops under low-water treatments received natural rainfall only (Table 4.2), whereas 

crops under high-water received natural rainfall plus irrigation at the amount of 150 mm (which 

was about 2/3 of the long-term growing season rainfall at the experimental site). The irrigation 

was applied twice during crop growing season, with 75 mm of the water applied between 

seedling and flowering (2-3 applications) and the other 75 mm applied from flowering to 

physiological maturity (2-3 applications). Seven crops with two water regimes were arranged in 
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a factorial, randomized complete block design with two replicates. Each treatment contained 5 

sampling times (seedling, early-flower, late-flower, late-pod and maturity) in each replicate. Thus, 

the experiment had a total of 140 lysimeters (7 crops × 2 water regimes × 5 sampling times × 2 

replicates) in each year.  

 

4.2.2 Seedling, root sampling and data collection 

All crops were planted in the first week of May in both years. Crop seeds were treated 

with an effective fungicide before planting to minimize seed- and soil-borne diseases (Table 4.1).  

At seeding, oilseed crops and wheat received fertilizer (46-0-0) at the rate of 80 kg N ha-1 and 

superphosphate (0-45-0) at 27 kg P ha-1, and all fertilizers were placed directly on crop seeds. 

Rhizobium was inoculated to pulse crops that received P only. All lysimeters were surrounded by 

a 2×6 m area of the crop plants that were planted in the lysimeters. A fine-wired cage was 

installed around each lysimeter to prevent the potential damage from wild animals. The cages 

were removed at the time of lysimeters removal when sampling took place or when plants such 

as field pea started to attach tendrils to the cages. Two weeks after emergence, crop seedlings in 

the lysimeters were thinned to the desired plant population (Table 4.1).  

Lysimeters of oilseed and pulse crops were withdrawn from field positions at crop growth 

stages of seedling, early-flower, late-flower, late-pod, and physiological maturity; for spring 

wheat, the corresponding stages were seedling, boot, anthesis, soft-dough and maturity, 

respectively. Crop plants were cut off at the ground level and the number of plants in each 

lysimeter was counted just before the lysimeters were withdrawn from field positions. 

Lysimeters were then transported to the laboratory, and stored at 2°C until processing. For the 

analysis, intact soil cores within the lysimeters were sectioned into 10 cm increments for the first 
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60 cm of the soil core and 20 cm intervals for the remaining core to a depth of 100 cm. Each soil-

root matrix was soaked overnight in containers using 15 ml of calgon water softner for every 

gallon of water. Roots were washed out of soil manually using 4-mm hole size pan sieves, and 

then placed in containers full of water with a 0.8-mm screen mounted 3 cm below the water level. 

Debris and other extraneous materials from the root samples were removed using tweezers.
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Table 4.1. Crop cultivars and agronomy information for oilseed, pulse and cereal crops grown in the lysimeter experiment at Swift 
Current, Saskatchewan, 2006-2007. 
 

Crop Cultivar 
Fungicide Initial seeds 

lysimeter-1 
Final plants 
lysimeter-1 Trade name Active ingredient Rate 

(ml 100kg-1 seed) 
Oilseed crop 
Canola 45H21 Helix Thiamethoxam 1500 11 3 

Flax Vimy Vitaflo 280 Carbathiin + Thiram 525 12 4 

Mustard Cutlass Helix Thiamethoxam 1500 11 3 
 

Chickpea 

Pulse crop 

CDC Anna Crown Carbathiin + 
Thiabendazole 600 5 2 

Field pea Eclipse Apron FL Metalaxyl 16 5 2 

lentil CDC 
Glamis Crown Carbathiin + 

Thiabendazole 600 7 3 

 

Wheat 

Cereal crop 

Lillian Vitaflo 280 Carbathiin + Thiram 330 7 3 
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Table 4.2. The amounts of water (mm) that crop received during the different growth stages under low- and high-water conditions at 
Swift Current, Saskatchewan, 2006-2007. 
 

 2006  2007 

Crop stage a Low b High b  Low b High b 

Seedling 131 156  98 136 

Early-flower 14 41  17 40 

Late-flower 22 45  5 22 

Late-pod 1 14  0 28 

Maturity 12 28  10 52 

Total 180 284  130 278 
 

a For oilseed and pulse crops, root samples were taken in 2006 on DOY (day of year) of 178 (Seedling), 187-199 (Early-flower), 207 
(Late-flower), 214 (Late-pod), and 223-233 (Physiological maturity); in 2007 the corresponding sampling days were 173-177, 184-
193, 193-201, 204-207, and 214-219, respectively; for wheat the corresponding stages were: seedling, boot, anthesis, soft dough, 
maturity. 
b Low-water means crop received natural rainfall only, and high-water means crops received natural rainfall plus irrigation with a 
mount of 150 mm.
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The entire cleaned root samples of each soil segment were sub-sampled; one part was 

used for dry weights (Gan et al. 2009a) and the other portion was used for root scanning. Roots 

were stained with 0.08% Toliudine Blue O (Sigma USA) for 5 min, and then rinsed thoroughly 

with distilled water. Rinsed root samples were placed on a tray and scanned with a “WinRHIZO” 

scanner (Regent Instruments Inc. Quebec, Canada) at a resolution of 400 dpi. Scanned root 

images from each depth increment sample were analyzed using the WinRHIZO program 

(Version 2003b) for root length, root surface area, root diameter, and number of root tips. Root 

length density (mm cm-3), root surface area density (mm2 cm-3) and root tips (103 cm-3) of each 

soil segment were calculated by dividing the total root length (mm), root surface area (mm2) and 

number of root tips in each soil segment by the volume (cm-3) of the corresponding soil core.  

 

4.2.3 Statistical analysis 

The data on distribution patterns of root length density, root surface area, root diameter 

and number of root tips in the soil profile were subjected to analysis of variance using the 

MIXED procedure of SAS (Littell et al. 1996). The means of difference were considered 

significantly different if the probability level was at P ≤ 0.05. 

 

4.3. Results 

4.3.1 Root distribution patterns of oilseeds and pulses in the soil profile 

The growth of roots progressed rapidly with the growth of the plants, but the distribution 

of root length, root surface area, and the number of root tips in the soil profile followed a similar 

pattern from one growth stage to the other (data not shown). By the late-flower stage, the values 

of root growth reached a maximum when large differences in the distribution pattern were shown 
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among crop species. Therefore, only the results of crop roots at the late-flower stage are 

presented and the data shown were the average of the two water conditions.    

Across the rooting depth from 0 to 100 cm, the root growth of all crop species decreased 

substantially with increased soil depth. Among the three oilseeds, canola always had the greatest 

root length density and flax the smallest across the soil profile (Fig. 4.1A). The highest root 

length density was observed in the top 10 cm soil for the two Brassica species but that for flax 

was in 10-20 cm soil layer. Root surface area of the three oilseeds followed the same distribution 

patterns as root length density (Fig. 4.1B). The three oilseeds had similar root diameter across the 

soil profile and this diameter was essentially the same in the soil depth from 40 cm to 80 cm (Fig. 

4.1C). The number of root tips of the Brassica species was greater than that of flax across the 

soil profile (Fig. 4.1D). It was also observed that within the soil profile, wheat had similar root 

surface area and number of root tips as those of Brassica species (Fig. 4.1B and Fig 4.1 D). 
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Figure 4.1 Distributions of (A) root length, (B) root surface area, (C) root diameter and (D) number of root tips for oilseed crops at 
late-flower stage, Swift Current, Saskatchewan, 2006-2007. Horizontal bars represented the LSD at level of 0.05. 
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For pulse crops, root length density was smaller than those of wheat throughout the entire 

soil profile (Fig 4.2A). However, field pea and lentil attained a similar root surface area as wheat 

plants throughout the soil profile (Fig. 4.2B). The average root diameters of pulses were 

significantly larger than the root diameters of wheat in the 0-60 cm soil depth (Fig. 4.2C), while 

they did not differ below the 60-cm depth. The number of root tips in wheat plants was 

significantly greater than those of the pulse plants in the top 10 cm soil, but field pea and 

chickpea had a similar number of root tips as wheat plants below 40-cm soil depth (Fig. 4.2D).  
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Figure 4.2 Distributions of (A) root length, (B) root surface area, (C) root diameter and (D) number of root tips for pulse crops at late-
flower stage, Swift Current, Saskatchewan, 2006-2007. Horizontal bars represented the LSD at level of 0.05. 
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4.3.2 Water effects on root distributions of oilseeds and pulses 

Root length, root surface area, and the number of root tips were significantly affected by 

water availability at the late-flower stage, but the magnitude of the effect varied with crop 

species (Fig. 4.3 and Fig 4.4). Canola had significantly greater root length (Fig. 4.3A), larger root 

surface area (Fig. 4.3B), and more root tips (Fig. 4.3C) from the top to the soil depth of 50 cm 

under high-water compared to those under low-water conditions. In contrast, water availability 

had a marginal effect on those root variables in flax and mustard. 

Chickpea plants had greater root length (Fig. 4.4A), root surface area (Fig. 4.4B), and the 

number of root tips (Fig. 4.4C) under the high-water conditions compared to low-water, but the 

differences were not statistically significant. In contrast, under low-water, field pea had 75% 

greater (P<0.01) root length (Fig. 4.4D) and 74% larger root surface area (Fig. 4.4E) than those 

under high-water conditions in the 0-10 cm soil. In the 10-20 cm soil, the opposite was observed: 

field pea had 96% more root length and 104% greater root surface area under high-water 

conditions. Below 20 cm soil depth, none of these root variables differed between the two water 

conditions. Lentil plants had longer roots (Fig. 4.4X) with greater root surface area (Fig. 4.4Y) 

under low-water conditions only in the 30-60 cm soil depth than the plants grown under high-

water conditions. A greater number of root tips (Fig. 4.4Z) in lentil plants were also observed 

when the crop was grown under high-water conditions. 
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Figure 4.3 Root distributions of oilseed crops under low- and high-water conditions at late flower, Swift Current, Saskatchewan, 
2006-2007. Horizontal bars represented the LSD at level of 0.05. A-C are root parameters of canola, D-F are root parameters of flax 
and X-Z are root parameters of mustard. 
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Figure 4.4 Root distributions of pulse crops under low- and high-water conditions at late flower, Swift Current, Saskatchewan, 2006-
2007. Horizontal bars represented the LSD at level of 0.05. A-C are root parameters of chickpea, D-F are root parameters of field pea 
and X-Z are root parameters of lentil. 
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Overall, root length density, surface area, and the number of root tips decreased with the 

increase of soil depth, and the trend was true for all crop species tested (Table 4.3). The largest 

proportion of roots was consistently concentrated in the 0-20 cm soil depth for all crop species, 

regardless of water conditions, and wheat plants always had roots with greater length density, 

larger surface area, and more tips than oilseeds and pulses in a given depth across the entire soil 

profile.  
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Table 4.3. Distribution of root length density (RLD), root surface area (RSA) and root tips (RT) of oilseeds, pulses and wheat in 
different soil depths under low-and high-water conditions. The data shown are averaged across all stages and years. For each crop, the 
values of RLD, RSA and RT, their proportion of the total (%) and ratios (%) between oilseeds and wheat and ratios (%) between 
pulses and wheat are indicated. The units of RLD, RSA and RT are mm cm-3, mm2 cm-3 and 103# cm-3 respectively. 
 

 Low-water  High-water 
Soil 

depth 
(cm) 

Oilseeds 
(O) 

Pulses  
(P) 

Wheat  
(W) 

O/W 
Ratio 

P/W 
Ratio 

 Oilseeds 
 (O) 

Pulses  
(P) 

Wheat  
(W) 

O/W 
Ratio 

P/W 
Ratio  

  
RLD 

 
% 

 
RLD 

 
% 

 
RLD 

 
% 

 
% 

 
%   

RLD 
 

% 
 

RLD 
 

% 
 

RLD 
 

% 
 

% 
 

% 
0-20 27.0 40 33.9 50 60.0 48 45 57  31.7 41 33.5 47 68.4 51 46 49 
20-40 21.8 33 19.2 28 32.8 26 66 59  23.9 31 20.9 29 34.6 26 69 60 
40-60 15.5 23 12.7 19 27.5 22 56 46  17.9 23 14.7 21 26.3 20 68 56 
60-80 2.1 3 1.5 2 3.1 3 68 48  2.3 3 1.8 2 3.7 3 62 49 
80-100 0.6 1 0.3 1 0.9 1 67 33  0.9 1 0.4 1 1.1 1 82 36 

  
RSA 

 
% 

 
RSA 

 
% 

 
RSA 

 
% 

 
% 

 
%   

RSA 
 

% 
 

RSA 
 

% 
 

RSA 
 

% 
 

% 
 

% 
0-20 28.7 42 43.4 53 50.9 48 56 85  31.8 42 41.8 50 55.7 50 57 75 
20-40 21.0 31 21.7 26 26.4 25 80 82  22.7 30 22.8 27 29.2 26 78 78 
40-60 16.1 23 14.9 18 23.6 22 68 63  18.5 24 16.2 20 22.7 20 81 71 
60-80 2.3 3 1.7 2 3.2 3 72 53  2.5 3 1.9 2 3.6 3 69 53 
80-100 0.7 1 0.3 1 1.0 1 70 30  1.0 1 0.4 1 1.2 1 83 33 

  
RT 

 
% 

 
RT 

 
% 

 
RT 

 
% 

 
% 

 
%   

RT 
 

% 
 

RT 
 

% 
 

RT 
 

% 
 

% 
 

% 
0-20 7753 42 8719 48 16163 51 48 54  8769 42 8989 46 19057 53 46 47 
20-40 5760 31 5240 29 7869 25 73 67  6471 31 5524 28 8788 24 74 63 
40-60 4232 23 3589 20 6671 21 63 54  4868 23 4262 22 6970 19 70 61 
60-80 585 3 459 2 755 2 77 61  554 3 542 3 1089 3 51 50 
80-100 168 1 84 1 304 1 55 28  229 1 122 1 293 1 78 42 
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4.3.3 Root distributions of oilseeds and pulses in different years 

Year had a large influence on the root morphology in the study, but the magnitude of the 

influence varied with crop species and the soil depth. Root length density of oilseeds in 2007 was 

higher than that measured in 2006 but a significant difference was shown only in the 20-40 cm 

soil depth (Fig. 4.5A). In 2006, pulse plants attained greater root length density (Fig. 4.5D) and 

larger root surface area (Fig. 4.5E) within the 0-50 cm soil than those in 2007. In contrast, wheat 

plants had significantly greater root length density (Fig. 4.5X), larger root surface area (Fig. 4.5Y) 

and more root tips (Fig. 4.5Z) in 2007 than those in 2006 but the significant difference was only 

found in the 0-20 cm soil depth. Overall, the distribution of root surface area for oilseeds, pulses 

and wheat in the two years followed the same patterns as root length density (data not shown). In 

both years, the number of root tips in wheat plants appeared to be greater than those of oilseeds 

and pulses across the entire soil profile especially in the top 10 cm soil depth. 
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Figure 4.5 Root distributions of oilseeds, pulses and wheat in 2006 and 2007. * indicates significance at P < 0.05 probability level; 
blank is not significant. A-C are root parameters of oilseeds, D-F are root parameters of pulses and X-Z are root parameters of wheat. 
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4.4 Discussion 

4.4.1 Root distribution patterns of oilseeds and pulses in the soil profile 

Root growth in the soil profile decreased with increased soil depth; this trend was 

consistent for all crop species tested in the study. Results were in accordance with the results 

presented by Yu et al. (2007) who indicated that in most soil profiles root density decreases 

exponentially with soil depth.  Crop species differed substantially in their root morphology under 

the same growing conditions. Among oilseeds, canola plants had the root system with greater 

root length, larger surface area and more root tips across the entire soil profile than mustard and 

flax. Large rooting systems may facilitate canola plants to take up more water and nutrients from 

the soil, inferring that canola crops should perform better than mustard and flax under conditions 

where water is the major limiting factor. In a recent study, Gan et al. (2008) demonstrated that 

canola plants take up more N than mustard resulting in greater productivity under semiarid 

growing conditions.  

In the present study, roots were assessed in 10cm or 20cm increment across the soil 

profile of 100 cm. Most of the root length, root surface area and root tips seen for the whole 

profile were distributed in the top 0-20 cm soil depth. This distribution pattern was consistent for 

all crop species in both years and the pattern was similar under both water treatments. These 

results suggest that the root distribution patterns of field crops in a soil profile will be relatively 

consistent even though the growth can be influenced to a great extent by environmental 

conditions. In addition, the results strongly illustrated that the substantial portion of the crop root 

system was concentrated in the shallower soil layer rather than deeper soil layers. In most cases, 

crops have root growth that begins in the layer closest to the soil surface, and roots grow and 

develop for a longer time than those deeper layers (Adiku et al 1996). Soil nutrients are often 
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concentrated in the upper layers of the soil and plant roots tend to proliferate preferentially in the 

region with high nutrient content (Birch and Hutchings 1994; Van Vuuren et al. 1996). 

Additionally, soil water is readily available in the top soil layers in early spring and after rains 

during the season; this water distribution may provide crop roots with more favorable growing 

environments (Ben-Asher and Silberbush 1992; Gallardo et al. 1994). Therefore, the upper soil 

layers are the preferential location for crop root growth. 

In this study root diameters of oilseed crops were of a similar size to wheat; however, 

pulse plants had thicker roots than oilseeds and wheat, indicating that pulse root penetration into 

the soil may help improve soil physical property by loosening micro pores of the soil in the 

vertical direction. Thomas and Hammer 1995 indicated that chickpea had much greater root 

diameter and roots were more resilient than those of cereal. Root diameter has often been 

considered one of the more important root properties to evaluate plant adaptability to varying 

growing environments (Xie et al. 2006) including soil aeration, temperature, nutrient status, 

physical impedance, and soil microorganisms (Fitter 1985; Macduff et al. 1986; Price et al. 1989).   

 

4.4.2 Water availability and root distributions of oilseeds and pulses 

Water availability had a large impact on root distribution patterns but the intensity of the 

influence varied, depending on crop species. Among all the crops studied, canola responded with 

significantly greater root length density, larger root surface area and more root tips present in the 

0-50 cm depth under high-water availability. In a study conducted in Australia, Kirkegaard et al. 

(1997) indicated that root length density and rooting depth for canola were highly related to soil 

water availability. In the present study, chickpea plants had longer roots with larger surface area 

and greater number of tips under high-water conditions than under low-water, but the difference 
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was only observed in the 0-40 cm depth. Benjamin and Nielsen (2006) also found that irrigation 

increased root surface area density for chickpea only in the topmost soil layer. In contrast with 

canola and chickpea, field pea root growth within the top 20 cm soil presented the opposite trend 

of greater root length, larger root surface area and more root tips under low-water. This suggested 

that field pea root growth in the top soil layer might be stimulated by somewhat lower water 

availability. The responses of flax and lentil to water conditions were similar, both having more 

roots under low-water conditions. Among the factors affecting plant growth, water is most 

crucial that greatly influences the below-ground root distribution patterns. A drying soil surface 

with high water stress often ‘forces’ roots to grow in the lower, wetter soil layers (Adiku et al. 

1996). However, frequent irrigation can help maintain the top soil wet for a longer period of time, 

thus most of the crop root systems are found in the upper part of the soil profile (Klepper 1991). 

Generally, a well-watered crop has more root length density in the surface soil and it decreases 

with soil depth (Klepper et al. 1973).  

 

4.4.3 Root distributions and year effect 

In semiarid environments, dry and hot weather depletes soil moisture rapidly and the 

plant growth largely depends on rainfall during the growing seasons. In 2007, the growing 

season rainfall was 130 mm, 28% less than that obtained in 2006. The drier weather in 2007 

appeared to stimulate root growth for oilseeds and wheat but it decreased root growth for pulse 

crops.  In 2007, root length density and root tips of oilseeds were significantly greater in the 20-

40 cm soil depth than those in 2006; and this was also true for wheat although only in the 0-20 

cm soil depth. In contrast, pulse roots presented an opposite tendency with larger root length and 

more root tips in the wetter year than those in dryer year, suggesting that root growth of pulse 
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crops is reduced in years of reduced water availability. In previous studies, Hoogenboom et al. 

(1987) and Merrill et al. (2002) found the greatest root growth of soybean (Glycine max L.) and 

dry bean (Phaseolus spp.) took place in driest years. 

 

4.5. Conclusions 

Root length density, surface area, and the number of root tips all decreased rapidly with 

the increase of soil depth from 0 to 100 cm; this trend was consistently similar for all crop 

species tested in the study. Substantial portions (>70%) of the roots recovered in oilseeds and 

pulses were distributed within the 0-60 cm soil profile and the largest proportion of roots was 

found in the top 20-cm soil depth. These results indicate that intensive water and nutrient uptake 

by those crops are mostly in the top soil layers under semiarid growing conditions. Among the 

seven crop species tested, canola root growth was most sensitive to soil water conditions; the 

higher the water availability in the soil, the greater the growth of the roots. Conversely, the root 

growth of pulse crops responded to soil water availability differently than canola; the lower the 

soil water availability, the greater the root growth. The root growth of wheat, flax, and mustard 

had marginal responses to soil water conditions. These results suggest that canola may be more 

suitable for high-water environments, and that pulses (pea, lentil and chickpea) exhibit greater 

ability to tolerate drought due to their strong tendency to grow roots under dry conditions. Also, 

pulse plants have the thickest root systems (i.e., roots with the largest diameters), among the 

species tested, which may facilitate root penetration into the soil profile under dry conditions. 

The knowledge of the root morphological characteristics of various crop species generated from 

this study can be used by breeders to develop cultivars with high drought tolerance, and for 

producers to optimize root growth and development to reduce risks associated with drought in 
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semiarid environments. 
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5.0 FINE ROOT DISTRIBUTIONS OF OILSEED AND PULSE CROPS 

 

5.1. Introduction 

The growth of a plant root system is hierarchical. Compared with higher order roots, 

lower order roots have smaller diameters, shorter lengths, less mass per length unit, and shorter 

life spans. Therefore, the substantial proportion of a plant’s root is found in the finer and smaller 

classes of size within root systems (Merrill et al. 2002). In general, roots of larger diameter 

represent most of the biomass for a root system and they can also form the long-distance 

transport pathways delivering water and nutrient. Furthermore, this class of roots performs the 

functions of storing resources, anchoring the plant and supporting the development of lateral 

roots. However, roots of smaller diameter make up most of the surface area for the entire root 

system, and they are the location responsible for the exchange of water and nutrients (Eissenstat 

and Yanai 2002; Waisel and Eshel 2002). 

 Fine roots are stated as roots of less than 2mm in diameter by classic description (Böhm 

1979); however, most plant fine roots are much smaller. In the literature, fine roots of hardwoods, 

crop species, forages, and weeds have been measured down to 0.06mm in diameter (Lyford 1975; 

Zobel 2005). Even of a diminutive size, fine roots are important physiological components for a 

plant, comprising the majority of the root system surface area and 90% or more of the total root 

length (Zobel et al. 2007). Fine roots are likely the prominent sink for carbon acquired in 

terrestrial net primary productivity (Nadelhoffer and Raich 1992; Vogt et al. 1986; Hendrick and 

Pregitzer 1994; Caldwell and Richards 1986), and are the primary component in carbon and 

nutrient cycling in an ecosystem (Matamala et al. 2003; Trumbore and Gaudinski 2003). In most 

cases, the primary production allocated below ground is greater than that above ground, and 

annual carbon and nutrient inputs to the soil from fine roots frequently equal or exceed those of 
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above-ground leaves (Nadelhoffer and Raich 1992; Vogt et al 1986; Hendrick and Pregitzer 1994; 

Caldwell and Richards 1986). Moreover, the turnover of fine roots is usually faster than other 

components of a plant so the total carbon returned to soil via fine roots exceeds the 

decomposition of litter fall (Vogt et al. 1996; Gill and Jackson 2000; Nadelhoffer 2000). For 

example, a study on short-grass steppe demonstrated that fine roots are the major contributors to 

soil organic matter and soil carbon pools due to their rapid turnover (Gill et al. 2002).  

Being crucial in nutrient cycling and resource capture, fine roots have been studied and 

documented well, especially for forest trees and in some cases,  vegetable (Pietola and Smucker 

2006) and herbaceous species (Gill et al. 2002; Zobel et al. 2006). However, the documentation 

of fine roots for annual planting crops is very limited, especially for oilseeds and pulses. 

Therefore an experiment was conducted to assess the contribution of fine roots to the root 

morphological traits including total root length, surface area, root volume and number of root 

tips for oilseeds and pulses in a semiarid growing condition. This research could provide unique 

information on the fine root constitution of alternative crops that can sever as the science basis 

for the further study on root nutrient uptake processes, functionality and dynamics. 

 

5.2. Material and methods 

5.2.1 Site description and experiment design 

A field study was conducted at the Semiarid Prairie Agricultural Research Centre of 

Agriculture and Agri-Food Canada, Swift Current (50°15’N, 107°44’W), Saskatchewan, 2006-

2007, on an Orthic Brown Chernozem (Aridic Haploboroll) soil with silt loam texture; the 

content of sand, silt, and clay was 28%, 49%, and 23%, respectively, organic matter of 3.0%, and 

pH (water paste) 7.3. The experiment field was on wheat stubble. Three oilseeds (canola, flax, 
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mustard), three pulses (chickpea, field pea, lentil), and spring wheat (the control) were hand-

planted in lysimeters of 150 mm in diameter and 1.0 m in length that were installed in the field 

using a hydraulic system (Gan et al. 2009b). Seven crops were arranged in a factorial, 

randomized complete block design with two replicates. Crops were planted in the first week of 

May of 2006 and 2007. Oilseed crops and wheat received fertilizer (46-0-0) at the rate of 80 kg 

N ha-1 and superphosphate (0-45-0) at 27 kg P ha-1 at seeding. Fertilizers were applied on crop 

seeds directly. Pulse crops were inoculated with Rhizobium and received P only. The lysimeters 

were surrounded by a 2×6 m area of the same crop plants as were planted in the lysimeters. 

 

5.2.2 Root sampling and data collection 

Roots were sampled at seedling, early-flower, late-flower, late-pod, and physiological 

maturity (for wheat, the corresponding stages were seedling, boot, anthesis, soft-dough and 

maturity, respectively). Soil cores within the lysimeters were sectioned into 10 cm increments for 

the first 60 cm and 20 cm intervals for the remaining depths to 100 cm. Each soil-root matrix 

was soaked overnight in water. Crop roots were washed out of soil manually using 4-mm hole 

size pan sieves, and then placed in containers full of water with a 0.8-mm screen mounted 3 cm 

below the water level. Debris and other extraneous materials from the root samples were 

removed using tweezers. The cleaned root samples were stained with 0.08% Toliudine Blue O 

(Sigma, USA), rinsed thoroughly with distilled water, and analysed with a “WinRHIZO” system 

(Regent Instruments Inc. Quebec, Canada). Mean root length, surface area, diameter, and number 

of tips of each segment of the root systems were determined, and then these variables were 

categorized into six diameter classes, i.e., the roots with the diameter 0-0.2 mm, 0.2-0.4 mm, 0.4-

0.6 mm, 0.6-0.8 mm, 0.8-2.0 mm, and > 2.0 mm.  
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5.2.3 Statistical analysis 

The proportion of roots in each of the six classes was calculated as percentage of the total 

roots present. The data were analyzed using the MIXED model of SAS (Littell et al. 1996). Two 

years of data were combined since there was no year by treatment interaction. Two water 

conditions did not have significant effects thus in data analysis, the two water conditions were 

treated as 2 replicates. Significant differences between treatments were declared at P ≤ 0.05. 

 

5.3. Results and discussion 
 

Among the seven crops investigated, wheat had the greatest mean root length density 

totaling 14.2 mm cm-3 for the full 100-cm soil profile, followed by canola (13.5 mm cm-3) and 

mustard (9.1 mm cm-3), with flax and lentil the lowest (5.3 mm cm-3). Root surface area for the 

entire soil profile followed the same order among the seven crops as root length density. 

However, the average root diameters were in the order of chickpea (0.43 mm), lentil (0.39 mm), 

field pea (0.37 mm), canola (0.26 mm), wheat (0.26 mm) and mustard (0.25 mm). Mean root 

volume in a cubic centimeter was in the order of chickpea with 1.14 mm3 for the 100-cm soil 

profile, followed by lentil (1.10 mm3 cm-3), field pea (1.05 mm3 cm-3 ), canola (0.83 mm3 cm-3), 

mustard (0.63 mm3 cm-3) and flax (0.63 mm3 cm-3). These results indicated that wheat and canola 

plants had stronger rooting systems that were capable of extracting water and nutrients from 

deeper soils due to their longer roots, whereas pulse crops had larger root diameters and had 

greater potential to affect soil physical properties by vertical penetration into soil. 

For the oilseed crops investigated, roots in the 0-0.2 mm diameter class comprised of 

about 60% of the total root length, and those in the 0.2-0.4 mm diameter class about 30% (Fig. 

5.1A). The roots with larger (>0.4 mm) diameters only contributed a small proportion of the total 

root length. Three oilseed crops exhibited similar root length distribution patterns as wheat. For 
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the root surface area (Fig. 5.1B), the greatest proportion was comprised of roots belonging to the 

0.2-0.4 mm diameter class, followed by the 0-0.2 mm diameter category; together contributed 

over 60% of total root surface area. The rest of the root surface areas were equally divided into 

roots within 0.4-0.6, 0.6-0.8, and 0.8-2.0 classes. Similarly, the roots in the 0.2-0.4 mm diameter 

contributed the highest proportion to the total root volume compared with the roots in other 

diameter classes (Fig. 5.1C). The thicker roots belonging to the 0.4-0.6 mm, 0.6-0.8 mm, and 

0.8-2.0 mm diameter classes each contributed an equivalent portion to the total root volume. 

However, it was noticeable that the roots with diameter > 2.0 mm contributed over 20% to the 

total root volume in the two Brassica species. Unlike the three variables described above, the 

majority of root tips of oilseeds and wheat were in the 0-0.2 mm diameter class (Fig. 5.1D), and 

the roots in the >0.2 mm diameter contributed only a small portion to the total number of root 

tips. The above results showed that wheat and oilseed crops differed substantially in terms of 

absolute values in root length, root surface area, root volume, and root tips, but their distribution 

patterns in the six diameter classes followed a similar trend. For both wheat and oilseed crops, 

60-80% of root length and surface area were in the <0.4 mm diameter classes and >80% of the 

root tips were in the 0-0.2 mm class. These results suggest that roots <0.4 mm in diameter were 

the predominant contributors to the rooting system for both wheat and oilseed crops. 
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Figure 5.1 Fine root distribution of oilseed crops, Swift Current, Saskatchewan, 2006-2007. 
Vertical bars represent the LSD at level of 0.05.  

 

In contrast, pulse crops had quite different root distribution patterns (Fig. 5.2) from 

oilseed crops (Fig. 5.1). The percentage of total root length (Fig. 5.2A) and root surface area (Fig. 

5.2B) for pulses in the 0-0.2 mm diameter class were significantly smaller compared to that of 

wheat. The opposite was also true in that the proportion of roots measured by root length and 

surface areas in the thicker roots (in the 0.4-0.6, 0.6-0.8, and 0.8-2.0 diameter classes) for pulses 

were significantly greater than those for wheat. There was a trend that the proportion of root 

surface area increased within the thicker diameter classes for chickpea and lentil, and roots in the 

diameter of 0.8-2.0 mm contributed the greatest surface areas (Fig. 5.2B) for chickpea. Thicker 
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roots with the diameter in 0.8-2.0 mm contributed the greatest proportion to the total root volume 

for all three pulses (Fig. 5.2C). 

 

Figure 5.2 Fine root distribution of pulse crops, Swift Current, Saskatchewan, 2006-2007. 
Vertical bars represent the LSD at level of 0.05. 
 

In the scientific literature, fine roots are defined as those with the diameter 2 mm or less 

and this definition is applicable to roots from trees, vegetables (Pietola and Smucker 2006) and 

forage crops (Zobel et al. 2006) because these species usually have large diameter roots in 

addition to fine roots. Our study indicated that this classification of “fine roots” needs to be 

further defined for oilseed and pulse crops. The majority of the roots (85% of total root length, 

and 63% of the total root surface area) in oilseed and pulse crops were distributed within the <0.4 
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mm diameter classes, and there was a small proportion of roots greater than 0.4 mm in diameter. 

Therefore the evaluation of roots for oilseeds and pulses could be made by using an “extra fine” 

roots category with roots <0.4 mm diameter along with “fine roots” (0.4-2.0mm) category. In the 

present study, for oilseeds and wheat, the greatest proportion (>85%) of total root length was 

comprised of the “extra fine” roots, while that comprised by “fine roots” (0.4-2.0mm) was only 

about 15%. For pulse crops, the contributions of extra fine roots to the total root length 

accounted for about 50%, with the remainder of the roots being equally distributed in the classes 

of 0.4-0.6, 0.6-0.8, and 0.8-2.0 mm diameters. 

The results also suggest that oilseed species and wheat may have greater abilities for 

water uptake and nutrient acquisition than pulse crops. Oilseeds had more, longer, and finer roots 

than wheat. The mechanism responsible for the species differences is unknown, but it was 

speculated that the availability of nitrogen, the foremost important nutrient for crop growth, may 

play a role. Pulse crops rely heavily on symbiotic N-fixation as the main nitrogen source, 

whereas wheat and oilseeds rely on nitrogen supplied through inorganic fertilizers that are 

usually applied in the top soil layers. The greater number of fine roots in oilseeds and wheat may 

help in uptake of nutrients from the top soil layers. For number of root tips, roots in the <0.2 mm 

diameter class comprised >80% of the total tips and there was no difference between crop 

species, suggesting that root tips may function similarly among crops for root proliferation, 

sensory function, and synthesizing of plant growth regulators (Torrey 1976; Van Staden et al. 

1988).   

 

5.4 Conclusions 

In summary, extra fine roots accounted for a substantial portion of the entire root system 
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in oilseed and pulse crops, as demonstrated by the observation that >80% of root length 

and >65% of root surface area were comprised of extra fine roots (<0.4 mm in diameter). For all 

the seven crop species investigated, the extra fine plus fine roots together formed the core 

exchange sites through which the plants exact water and nutrients from the soil. Roots with 

larger diameters (0.4-2.0 mm) may represent most of the biomass of the root system and they can 

form the long-distance transport pathways for water and nutrients, anchor plants, and support the 

development lateral roots (Eissenstat and Yanai 2002; Waisel and Eshel 2002). The proportion of 

extra fine and fine roots may change depending on bioclimatic zone, soil type and nutrients, and 

crop management practices, among others. Oilseed and pulse crops are widely used in cropping 

systems to break pest cycles, enhance subsequent crop yield, and improve soil water and 

nutrients use efficiency. Results generated from this study could be critical for understanding the 

functionality of root systems of various broadleaf crops for crop models. 
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6.0 MICROBIAL COMMUNITIES IN THE RHIZOSPHERE OF PULSE CROPS IN A 
SEMIARID ENVIRONMENT 
 
6.1. Introduction 

As a dynamic and complex system, soil contains diverse microorganisms that are 

involved in many biological activities (Young 1998; Newton et al. 2003). The rhizosphere is the 

zone adjacent to plant roots which is directly influenced by plant roots and their associated 

microorganisms (Hiltner 1904). Microbial communities in the rhizosphere are involved in 

various fundamental processes related to nutrient cycling, such as improving the ability of plants 

to acquire nutrients from soil by either increasing the extent of the root system (e.g. fungal 

hyphae) or solubilizing macronutrients such as phosphorus or sulfur (Smith and Read 1997; 

Lynch 1990). Further, the composition of rhizosphere microbial communities can influence plant 

health by influencing plant-pathogen interactions (Siciliano et al. 1998). However, microbial 

communities in the rhizosphere can be affected widely by plant and soil factors. 

Roots are capable of releasing into the rhizosphere about 1–25% of the net 

photosynthesis originating from the plant shoot as soluble and insoluble compounds (Merbach et 

al. 1999); this process is highly affected by a wide range of factors including plant genotype 

(Rengel et al. 1997; Grayston et al. 1998), plant age (Van Veen et al. 1991; Marschner et al. 

2001), nutritional status (Marschner and Crowley 1998; Fan et al.  2001), colonization of 

mycorrhizal fungi (Po and Cumming 1997; Marschner et al. 1997) and soil physical and 

chemical properties (Marschner et al. 2004). In most cases, the rhizosphere microbial 

communities are greatly affected by plant species because the amount and composition of root 

exudates of plants may result in differences in the ability of microbial communities to metabolize 

and compete for different carbon sources (Marschner et al. 2004).  

Due to their great importance in plant-soil systems, a rhizosphere microbial community 
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has received increased research attention in recent years. The improvement of agricultural 

sustainability requires the optimal use of soil fertility, which greatly relies on soil microbial 

communities. Understanding of rhizosphere microbial diversity can help optimize nutrient 

management, and the use of this natural resource could help develop sustainable agricultural 

systems by minimizing the application of synthetic fertilizers and pesticides. As important 

rotation crops, pulses play significant roles in enhancing crop yield, breaking pest cycles and 

improving soil quality. However, the information on the rhizosphere microbial communities of 

pulse crops is limited, especially in semiarid environments. Thus, the objectives of this study 

were to determine bacterial and fungal populations in the rhizosphere of chickpea, field pea and 

lentil at early-flower, late-flower and maturity stages, and to assess whether different water 

regimes, soil depths and the inoculation with Penicillium bilaiae affect microbial populations in 

the semiarid Canadian prairie. 

 

6.2. Material and methods 

6.2.1 Experiment design   

The study was conducted at the Semiarid Prairie Agricultural Research Centre (SPARC) 

of Agriculture and Agri-Food Canada, Swift Current (50°15’ N, 107°44’ W), Saskatchewan in 

2006. The experiment was established on an Orthic Brown Chernozem (Aridic Haploboroll) soil 

with silt loam texture; the content of sand, silt, and clay was 28%, 49%, and 23%, respectively, 

organic matter of 3.0%, and pH (water paste) 7.3. The experiment field was on wheat stubble. 

Three pulses [chickpea (Cicer arietinum L.), field pea (Pisum sativum L.), and lentil (Lens 

culinaris)] were hand-planted in lysimeters of 15 cm in diameter and 100 cm in length that were 

installed in the soil using a hydraulic system (Gan et al. 2009b). Crop seeds were treated with 
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effective fungicides before planting to minimize seed- and soil-borne diseases (Table 6.1). 

Before the installation of the lysimeters, Treflan QR5 (DowAgro Science Canada Inc.) was 

applied at a rate of 11 kg ha-1 to the entire experiment site for weed control. JumpStart is a 

phosphate inoculant containing the naturally occurring soil fungus Penicillium bilaiae that can 

colonize plant roots, releasing organic acids that improve the P availability to crops. In this study, 

JumpStart® solution was made by mixing 1g product with 1000ml distilled water and 1ml of 

such solution was then put into 419ml distilled water to make the final inoculant solution. Then 

each of the pulse seeds was treated with final solution of 1ml. 

The crops under low-water treatments received natural rainfall only (Table 6.2), whereas 

crops under high-water received natural rainfall plus irrigation at the amount of 150 mm (which 

was about 2/3 of the long-term rainfall at the experimental site). Irrigation was applied using a 

hand-sprayer with 75 mm of the irrigation being applied between seedling and flowering (3 

applications) and the remaining 75 mm applied from flowering to maturity (2-3 applications). 

Three pulses with two water regimes were arranged in a factorial, randomized complete block 

design with two replicates. Each treatment contained 3 sampling times in each replicate. Thus, 

the experiment had a total of 72 lysimeters (3 pulses × 2 water conditions × 3 sampling times× 2 

treatments × 2 replicates). 
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Table 6.1. Crop cultivars and agronomy information for pulses grown in the lysimeter experiment at Swift Current, Saskatchewan, 
2006. 
 

Pulses Cultivar 
Fungicide Initial seeds 

lysimeter-1 
Final plants 
lysimeter-1 Trade name Active ingredient Rate 

(ml 100kg-1 seed) 

Chickpea CDC Anna Crown Carbathiin + 
Thiabendazole 600 5 2 

Field pea Eclipse Apron FL Metalaxyl 16 5 2 

lentil CDC 
Glamis Crown Carbathiin + 

Thiabendazole 600 7 3 

 

 

Table 6.2. The amounts of water (mm) that crop received during the different growth stages under low- and high-water conditions at 
Swift Current, Saskatchewan, 2006. 

 

Crop stage Low a High a 

Early-flower 14 41 

Late-flower 22 45 

Maturity 12 28 
 

a Low-water means crop received natural rainfall only, and high-water means crops received natural rainfall plus irrigation with a 
mount of 150 mm. 
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6.2.2 Soil sampling 
 

Lysimeters of pulses were withdrawn from the field at early-flower, late-flower and 

physiological maturity. Crop plants were cut off at ground level and the number of plants in each 

lysimeter was counted just before the lysimeters were withdrawn from field positions. For the 

analysis, intact soil cores were taken out from lysimeters, and sectioned into 10 cm in length for 

the first 60 cm of the soil core and 20 cm interval for the remaining 40 cm to the depth of 100 cm. 

The bulk soil of each segment was broken into pieces and pulse roots with attached soil were 

taken as samples. Rhizosphere soil samples were collected by shaking the roots with attached 

soil gently by hand and the soil samples were then bulked into “upper” (0-20 cm) and “lower” 

(20-100 cm) soil depth groups. The fresh rhizosphere soil samples were transported to the 

laboratory immediately, and stored at -4°C until processed. 

 

6.2.3. Determination of bacterial and fungal population 

A culture-based method was used to determine rhizosphere bacterial and fungal 

populations. From the results of pre-culture, the final determined dilute series for bacteria were 

10-6, 10-5, 10-4, and 10-3 and those for fungi were 10-5, 10-4, 10-3 and 10-2. In brief, 3 g of soil 

sample was placed into 27 ml 0.1% Tween 80® to make a 10 fold serial dilution, and the dilution 

procedure was repeated to make a series of dilutions. Rose Bengal Potato Dextrose Agar (RBA) 

media were used for fungi, and Tryptic Soy Agar (TSA) was made for bacteria. After plating 

each dilution, the RBA plates were incubated at 22°C for 120 hrs in temperature-controlled room 

and TSA plates were incubated at 28°C for 72 hrs in the incubator, before colony counting was 

conducted. Fungi counting took place when the plates had 15 to 150 colonies/ plate, whereas 

bacterial counts were made when there were 25 and 250 colonies/ plate. Then the Standard Plate 



 

 82 

Count (SPC) was calculated by using the mean of duplicates of the dilution.  

 

6.2.4. Statistical analysis 

The data on pulse rhizosphere bacterial and fungal populations were subjected to analysis 

of variance using the MIXED procedure of SAS (Littell et al. 1996). The means of difference 

were considered significant if the probability level was at P ≤ 0.05. 

 

6.3. Results 

Significant differences were present in the rhizosphere fungal populations of the crops. 

Chickpea had significantly more fungi in its rhizosphere than field pea and lentil at early-flower 

and maturity stages (Fig. 6.1). Soil depths had a significant effect on the amount of rhizosphere 

fungi for pulses (Fig. 6.2). From early-flowering to maturity, significantly more rhizosphere 

fungi were present in the upper soil than the lower soil for pulses. In addition, the rhizosphere 

fungal population in the lower soil demonstrated a declining trend from early-flower to maturity 

stage. The same tendency of declining of fungal populations was seen in the upper soil from 

early-flowering to late-flowering. At maturity, there were significant interactions between crops 

and soil depths. Chickpea, field pea and lentil had more rhizosphere fungi in the upper soil than 

at the lower soil where chickpea always had the largest amount. However, there were no 

significant differences in rhizosphere fungal population in the lower soil among the three pulses 

(Fig. 6.3). The treatment of JumpStart (Penicillium bilaiae) significantly increased the 

rhizosphere fungi for pulse crops (Fig. 6.4). However, the total bacterial population in the 

rhizosphere of three pulses was not significantly affected by the given factors including crop 

species, crop growth stages, water regimes, soil depths and their interactions in the present study 
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(data were not shown). 
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Figure 6.1 Fungal populations in the rhizosphere of pulses, Swift Current, Saskatchewan, 2006. 
Different letters indicate significance at P < 0.05 probability level. 

 
Figure 6.2 Rhizosphere fungal populations of pulses at different soil depths (upper vs. lower) at 
different crop stages, Swift Current, Saskatchewan, 2006. Different letters indicate significance 
at P < 0.05 probability level. 
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Figure 6.3 Rhizosphere fungi of pulses in upper and lower soil at maturity stage, Swift Current, 
Saskatchewan, 2006. Different letters indicate significance at P < 0.05 probability level. 

 
Figure 6.4 Effects of Penicillium bilaiae on the mean rhizosphere fungal populations of three 
pulses Swift Current, Saskatchewan, 2006. Different letters indicate significance at P < 0.05 
probability level. 
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6.4. Discussion 
 

The rhizosphere fungal population was significantly different among crop species. 

Chickpea had the most fungi in its rhizosphere while field pea had the smallest amount 

regardless of growth stage. Generally, the composition and amount of microorganisms present in 

the rhizosphere varied among different plants due to their different requirements in the quantity 

and quality of the compounds exuded by plant roots (Bowen and Rovira 1991; Curl and Truelove 

1986). As a consequence, differences in rhizosphere microbial communities are associated with 

differences in plants (Miller et al. 1989; Kremer et al. 1990). The results in this thesis support 

these findings. Chickpea is known to exude large amounts of low-molecular-weight organic 

anions and carboxylate in the rhizosphere, which enhance the availability of phosphorous to the 

plant (Ae et al. 1990; Gerke et al. 1994; Hocking et al. 1997; Ohwaki and Hirata 1992). 

Assuming a sufficient phosphorus supply, the above-ground shoot of chickpea had better growth, 

resulting in better root growing conditions thus leading to a better rhizosphere environment with 

favorable rhizodeposition for supporting fungi.  

Fungal populations of all pulses differed for the two soil depths, with more in the upper 

soil than the lower soil. This was likely due to soil nutrient and plant root distribution. Generally, 

the gradient of soil resources such as organic matter, nutrients, and moisture, are important 

drivers of soil microbial community composition (Bååth et al. 1995; Bossio and Scow 1998).  On 

the other hand, differences in plant root distributions result in the variations of the distribution of 

the root-derived organic carbon inputs (Gill et al. 1999; Jackson et al. 1996). Typically crop roots 

are more concentrated in the upper soil layer than lower soil layer suggesting there would be less 

root-derived carbon in the deep soil. Therefore, with less carbon sources as food supply, 

microbial numbers would be lower than those in the shallow soil. The populations of rhizosphere 
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fungi in the lower soil were also found to decrease with crop growth stages (Fig. 6.2). El-Hissy et 

al. (1980) indicated that the composition of the rhizosphere fungi was significantly influenced by 

the plant type and age, and counts of total fungi reached maximum after 90 DAP and sharply 

declined by 150 DAP. A previous study on maize also demonstrated that more fungi were 

isolated from roots at seedling stages than from roots of plants at silking (Windham 1983).  

Crops by soil depths interactions were significant at crop maturity, and the rhizosphere fungi 

population in the upper soil of chickpea was significantly greater than that of field pea and lentil. 

However there was no significant difference in the rhizosphere fungi population found in the 

upper soil in field pea and lentil (Fig. 6.3).  This might be because the belowground biomass 

production of lentil was similar to that of field pea (Brandt 1996) suggesting similarities between 

the two pulse crops in the turnover of decomposing root matter (Dylon et al. 2006) which 

directly affects the rhizosphere microbial community.  

As a naturally occurring fungus, Penicillium bilaiae has been demonstrated to solubilize 

both precipitated and bound P into soil solution, which facilitates P uptake by plants (Kucey 

1983). Inoculation with this microorganism has been shown to increase P uptake, vegetative 

growth, or seed yield of wheat (Kucey 1987, 1988; Asea et al. 1988; Goos et al. 1994), canola 

(Kucey and Leggett 1989), bean (Kucey 1987), field pea and lentil (Gleddie 1993). In the present 

study, rhizosphere fungi were found to be significantly increased by the treatment of Penicillium 

bilaiae. Bio-inoculation has caused shifts in the microbial community composition of either 

small or high magnitude (Nacamulli et al. 1997; Marschner et al. 2001; Bankhead et al. 2004), 

which is supportive to the results. However, more research is needed to better understand the 

mechanisms of how introduced microorganisms affect the amount and functionality of 

indigenous microorganisms in the soil. 
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The types of micro-organisms in the rhizosphere are diverse and their numbers are greatly 

dependent on the plant species, soil conditions, root growth and development and uptake and 

release of solutes from the roots (Garbeva et al. 2004).  However, in the present study, many 

factors including crops species, soil depth, water conditions and treatment of Penicillium bilaiae 

as well as their interactions did not significantly affect rhizosphere bacterial community. 

Generally, rhizosphere microbial growth and activity can be affected by plant root exudates such 

as amino acids, sugars and growth factors (Rovira 1956a) and  the differences in the composition 

of root exudates can influence the type of bacteria present in the rhizosphere (Rovira 1956b). In 

the present study, the culture-based method that was used to determine rhizosphere microbial 

population can only detect up to 10% of soil microorganisms (Bakken 1985). Perhaps the species 

of the culturable rhizosphere bacteria in the current study were not sensitive to the changes of 

root exudates caused by the factors in the experiment. 

 

6.5. Conclusions 

Rhizosphere fungal populations of chickpea, field pea and lentil were more sensitive to 

the factors including crop species, crop growth stages and soil depth than bacteria. Compared 

with field pea and lentil, chickpea had the largest amount of fungi in the rhizosphere regardless 

of crop stage and soil sampling depths. Different water regimes did not significantly affect 

rhizosphere fungal populations of pulses. Soil depth significantly affected the amount of 

rhizosphere fungi. More were located in the upper soil than in the lower soil layer. JumpStart 

(Penicillium bilaiae) significantly increased the amount of the fungi in the rhizosphere of pulse 

crops. This study presented a picture of microbial communities in the rhizosphere of pulse crops 

providing some information of rhizospheric properties of dominant rotation crops in a semiarid 
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environment.   
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7.0 GENERAL DISCUSSION AND CONCLUSION 

Due to their benefits in cropping systems and market potential, oilseeds and pulses have 

been increasingly adopted in the agricultural production system on the Canadian Prairies during 

the last two decades (Campbell et al., 2002). These broadleaf crops play an important role in the 

development of sustainable agricultural systems (Zentner et al. 2001). A significant environment 

benefit can be gained by using these broadleaf crops to replace conventional summer fallow 

(Gan and Goddard, 2008). In addition, use of pulse crops could potentially reduce greenhouse 

gas emissions from agricultural systems due to the elimination of nitrogen fertilizer (Lemke et al., 

2007). Previous crop rotation studies looking at replacement of crop monoculture with pulses 

and oilseeds in rotation have focused on crop adaptation and physiology. Limited research has 

been reported on their root systems. Studies on crop root systems are essential because rooting 

patterns are the determinant of root functionality especially under water-limited conditions. On 

the semiarid Canadian Prairie, water is the most important factor limiting crop production since 

the temperatures are usually high during the mid-summer, while growing season rainfall is 

limited and unpredictable. Effective use of available water, from soil reserves and rainfall, is the 

key for crop production. Therefore, the present study focused on the morphological traits and 

distribution characteristics of root systems for important oilseed and pulse crops under a semiarid 

environment. Detailed growth patterns of roots, both temporally and spatially, have been 

investigated. 

Root parameters determined in this study were those highly related to the functionality of 

the root systems. Temporally, the root growth of oilseeds and pulses varied among crop growth 

stages, progressing steadily from seedling to the late-flower or late pod stages. The root growth 

of Brassica species and pulses reached the peak at the late-flower stage, while that of flax took 
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place at late-pod. This information suggests the optimal period of crop growth at which the 

accurate assessment of root morphological traits in oilseeds and pulses can be made; this may 

serve as a scientific guide for future studies on crop roots. Among the crops tested, canola root 

morphological traits (length, surface area, and number of tips) were most sensitive to water 

availability with the greater root growth under higher water conditions. In contrast, the root 

growth of pulses responded to different water conditions equally. These findings suggest that 

oilseed crops are more productive under high-water conditions. Pulse crops can be adapted to a 

wider range of environments because of their lower responsiveness to water availability.  

Spatially, the largest proportion (>85%) of roots for oilseeds and pulses was concentrated 

in the top (0-40) cm soil layer, suggesting that the top soil conditions and micro-environment 

play critical roles in crop root growth and development in semiarid environments. Such 

information may help crop producers conduct the proper top-soil management to optimize crop 

production. Maintaining the optimum conditions (i.e. nutrients and water) of the seedbed may be 

the key for root growth and development. 

The majority of the roots in oilseeds and pulses are fine roots, and fine roots are 

important contributor to the soil carbon pool. Understanding temporal or spatial production of 

fine roots is crucial to precisely evaluate the productivity of the entire terrestrial ecosystem. 

However, most previous studies on fine roots have concentrated on forest plantation and forage 

crops, while those on field crops are very limited especially for oilseed and pulse crops. 

Therefore, the findings on the fine root distributions of oilseeds and pulses from this study partly 

fill the research gap by providing the scientific information to modelers studying the 

functionality of root systems of various broadleaved crops.  

In addition to the rooting characteristics, this study also investigated the rhizosphere 
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characteristics of pulse crops. Chickpea had the most fungi in its rhizosphere among the tested 

pulses. The inoculation of Penicillium bilaiae significantly increased the rhizosphere fungi in 

pulses that could lead to an increased microbial activities involved in nutrients cycling, a process 

highly beneficial to crop growth.  

Being the most essential part in any root-related study, the methodology must be 

scientifically reliable and sound. In this study, the roots of oilseeds and pulses were sampled and 

studied under field conditions. All crops were grown in lysimeters of 15-cm in diameter and 100 

cm in depth that were installed in the field using a hydraulic-pushing system. The lysimeters 

were large enough to allow crops to grow without restricting the roots relative to vertical 

distribution and were deep enough to accommodate the full root length. Therefore crops were 

grown in columns with soil structure intact, root growth and the resulting root mass was likely 

more accurately represented than most other studies where crops are usually grown in artificial 

mixtures of media. Hence, it is suggested that the hydraulic-pushing system using large-diameter 

lysimeters with undisturbed soil columns employed in this study, despite intensive labor 

requirement, is a reliable way to generate scientific data for root-related studies.  

Crop roots are difficult to measure, in the scientific literature there is limited information 

available about root systems of oilseed and pulse crops. Therefore, the root information 

generated from this study can provide the scientific basis for further studies to explore the 

relationship between rooting patterns and functionality of the root system for oilseed and pulse 

crops. The information on the rooting depth and distribution characteristics in the soil profile of 

oilseeds and pulses from this study may serve as the basis of the development for more 

diversified cropping systems with cereals, oilseeds and pulses in semiarid environments. In 

addition, such root information can also be used by modelers to simulate and estimate water use 
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and nutrients uptake for these broadleaved crops. However, the methodology used in this study 

may be basic and further improvement may be required for more advanced root-related studies in 

the future such as root exudates, microbial biomass, and rhizodeposition, etc.   
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APPENDIX A 
INFORMATION ON THE INOCULATION OF STUDIED PULSE CROPS 
 
 Inoculant solution 

(Liquid inoculant + Distilled water) 
Rate 

(ml seed-1) 
Chickpea 1ml (4.0×106 Rhizobia ml-1) + 999ml 1.0 
Field pea 1ml (6.5×106 Rhizobia ml-1) + 999ml 1.0 
Lentil 1ml (6.5×106 Rhizobia ml-1) + 999ml 1.0 
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APPENDIX B 
AVERAGE TEMPREATURES OF EXPERIMENT SITE DURING CROP GROWING 
SEASON, 2006-2007 
 

 2006 (˚C) 2007 (˚C) 
May 12.5 11.6 
June 16.2 15.9 
July 21.2 22.9 

August 19.2 17.7 
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APPENDIX C 
SOIL CORING METHOD USED IN THE STUDY 

 

Soil coring method  
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APPENDIX D 
PROCEDURES OF ROOT SAMPLING AND ANALYSIS 

 

Root sampling and 
analysis 

1. Sampling 

2. Soaking 

3. Hand-washing 5. Scanning 4. Dyed root 
 

7. Output 
6. Analysis 
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