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ABSTRACT 

 

This thesis summarizes an investigation of antimicrobial resistance (AMR) and 

antimicrobial use (AMU) in cow-calf herds. The specific objectives of this project were 

to describe common reasons for treatment and the types of antimicrobials used in cow-

calf herds, to describe the frequency of AMR in generic fecal Escherichia coli isolated 

from various age groups commonly found on cow-calf farms, to determine risk factors 

associated with the occurrence of AMR, and finally to investigate the underlying 

molecular mechanisms of AMR in cow-calf herds. At least 86% of the herds treated one 

or more calves or cows during the study period; however, the overall proportion of both 

calves and cows reported as treated was less than 14% for calves and 3% for cows.  The 

majority of antimicrobials reported as used in cow-calf operations were for individual 

therapeutic use rather than prophylaxis, metaphylaxis, or growth promotion. Injectable 

formulations were the most commonly reported method of antimicrobial administration 

on cow-calf farms. Cow-calf herds in Wetern Canada are not a significant reservoir for 

resistance to antimicrobials classified as very important to human medicine such as 

ciprofloxacin and ceftiofur. The three most common resistances detected were to 

tetracycline, sulphamethoxazole, and streptomycin regardless of age group. Young 

calves sampled in the spring of the year were more likely to be shedding AMR E. coli 

than older calves sampled in the fall of the year or than cows sampled in the spring of 

the year. The cow-calf pair relationship was not an important factor in transfer of AMR 

from the individual cow to her calf, but the presence of AMR in the general cow herd 

was associated with AMR in the calf population.  The potential importance of co-

selection for AMR at the molecular level was demonstrated by both the risk factor 
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analysis and the molecular work. Phenotypic resistance to streptomycin, tetracycline, 

and sulphamethoxazole were each associated with the presence of resistance genes from 

all six families of antimicrobials examined in this study. Several statistically significant 

associations were also detected between the resistance genes considered. No significant 

associations were detected between any of the AMR phenotypes or genotypes and the 

STEC virulence factors stx1, stx2 and eae. 

 

 

 

 

 

 



v 

ACKNOWLEDGEMENTS 
 

This body of work could not have been completed without the help and support of 

many people, most importantly my supervisor Dr. Cheryl Waldner. Cheryl has been an 

inspiration, a mentor and a friend throughout this process. Other individuals who 

provided key support included the members of my committee, Dr. John Campbell, Dr. 

Lydden Polley, Dr. Trish Dowling and Dr. Terry Carruthers.  Their guidance and 

suggestions helped make this thesis a stronger piece of research.  I am also indebted to 

the support of the Public Health Agency of Canada most notably to Dr. Dave Leger, Dr. 

Richard Reid-Smith, Dr. Andrijana Rajic, Brent Avery, Dr. Anne Deckert, Dr. Rebecca 

Irwin, Dr. Patrick Boerlin and Louis Bellai that without their own personal sacrifices I 

would not have been able to finish this thesis. A special thanks to Diane Sanjenko from 

the Public Health Agency who provided the necessary administrative and emotional 

support to help me complete this thesis through her diligent work in keeping the 

CIPARS western node going.  I would also like to thank Dr. Colleen Pollock, Dr. 

Wendy Mosure, Dr. Krista McAllister, Dr. Richard Kennedy and Dr. Diana Durling 

who worked on the Western Canada Beef Productivity study without their efforts in 

collecting samples and data this project would not have been possible.   Marg McFall 

from Alberta Agriculture and the team of individuals from Prairie Diagnostic Services 

also need to be recognized for their contribution of the laboratory work.   Fellow 

graduate students Dr. Sylvia Checkley and Dr. Leigh Rosengren for being there as a 

sounding board and for providing the encouragement to continue on.  Finally, to my 

husband and family, thank you for your support and encouragement throughout this 

time.  Particularly, Steve, who gave up his dream job to come back to Saskatoon so that 



vi 

I could pursue a degree in epidemiology.  It has been a long, arduous journey and I am 

grateful to you all for making it with me. 



vii 

DEDICATION 

I would like to dedicate this work to my husband and family who supported me 
throughout this process and to my colleagues, co-workers and friends at the Public 
Health Agency of Canada, especially the CIPARS on farm working group who ensured 
that I had the time and the energy to complete this thesis. 

 

 

 

 

 

 

 



viii 

 
ORIGINAL CONTRIBUTION 

 

The field work for this thesis was completed as an extension to a larger project 

entitled: “Western Canada Study of Animal Health Effects Associated with Exposures 

to Emissions from Oil and Natural Gas Field Facilities”, commonly referred to as the 

Western Canada Beef Productivity Study (WCBPS). The design and implementation of 

the WCBPS were established prior to the initiation of this Ph.D. program. I was one of 

six project veterinarians employed by the WCBPS to visit study herds and collect 

samples and data. Project veterinarians were also responsible for all data entry.  

 

My contribution to the intellectual property for the AMR and AMU projects 

described in this thesis was in collaborating on the design, coordinating the field 

management, and completing the data analysis. I coordinated fecal sample collection, 

submitted all samples to the laboratory, entered data pertaining to samples, entered 

animal and AMU data pertaining to the ten herds for which I was directly responsible,  

and analyzed all data pertaining to this thesis.  

 

I also contributed to preparing and submitting the grant proposals to obtain the 

funding for fecal sample collection, processing, and laboratory analysis. Additional 

laboratory support and funding was provided by the Agri-Food Laboratories Branch, 

Food Safety Division, Alberta Agriculture and Food, Edmonton, Alberta, Canada and 

the Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, 

Ontario, Canada. Fecal samples were cultured by Prairie Diagnostic Services (PDS), 



ix 

Western College of Veterinary Medicine Saskatoon, Saskatchewan. Susceptibility 

testing was completed by Alberta Agriculture and Food. Antimicrobial resistance gene 

molecular work was performed in Département de Pathologie et Microbiologie, Faculté 

de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada. 

Virulence testing was also performed by PDS, Saskatoon, Saskatchewan. 

 

 

 

 

 

 



x 

 
TABLE OF CONTENTS 

ABSTRACT .......................................................................................................................iii 

ACKNOWLEDGEMENTS ................................................................................................v 

ORIGINAL CONTRIBUTION........................................................................................viii 

LIST OF TABLES ............................................................................................................xv 

LIST OF FIGURES...........................................................................................................xx 

LIST OF ABBREVIATIONS .........................................................................................xxii 

INTRODUCTION...............................................................................................................1 

1.1 Background........................................................................................................1 
1.2 Investigative approach.......................................................................................2 
1.3 References .........................................................................................................7 

LITERATURE REVIEW....................................................................................................8 

2.1. Introduction ..............................................................................................................8 
2.2. Antimicrobial resistance (AMR) ..............................................................................9 

2.2.1. Definitions ....................................................................................................10 
2.3. Susceptibility testing ..............................................................................................11 

2.3.1. Phenotype susceptibility testing methods.....................................................14 
2.4. Molecular aspects of antimicrobial resistance........................................................16 

2.4.1. How bacteria acquire resistance ...................................................................17 
2.4.1.1. Mutation .............................................................................................17 
2.4.1.2. Horizontal transfer of resistance.........................................................18 

2.5. How antimicrobials exert their effect .....................................................................22 
2.6. How bacteria fight back against antimicrobials .....................................................25 

2.6.1. Primary mechanisms of antimicrobial resistance development of six 
antimicrobials important in cow-calf herds ............................................................27 

2.6.1.1. Beta-lactams .......................................................................................27 
2.6.1.2. Tetracyclines.......................................................................................28 
2.6.1.3. Quinolones and Fluorquinolones........................................................29 
2.6.1.4. Aminoglycosides and Aminocyclitols................................................30 
2.6.1.5. Chloramphenicol and Florfenicol.......................................................31 
2.6.1.6. Sulphonamides and Trimethoprim .....................................................32 

2.6.2. Co-resistance and cross resistance................................................................33 
2.7. Escherichia coli (E. coli) as an indicator organism................................................34 
2.8. Shiga toxin producing E. coli and AMR ................................................................35 
2.9. Antimicrobial use: General considerations ............................................................38 

2.9.1. Reason for antimicrobial use in livestock.....................................................39 
2.9.2. Antimicrobial use and antimicrobial resistance............................................40 
2.9.3. Challenges of antimicrobial use data collection ...........................................43 



xi 

2.10. Antimicrobial use and antimicrobial resistance in cow-calf herds.......................45 
2.10.1. Antimicrobial use........................................................................................46 
2.10.2. Reason for treatment in cow-calf herds ......................................................51 
2.10.3. Antimicrobial resistance .............................................................................52 
2.10.4. Distribution of AMR in cattle populations .................................................57 
2.10.5. Risk factors for AMR in calves ..................................................................57 
2.10.6. How this thesis will fill in the gaps demonstrated in this review ...............59 

2.11. Concluding statements..........................................................................................60 
2.12. References ............................................................................................................62 

Antimicrobial use in 203 western Canadian cow-calf herds .............................................80 

3.1. Introduction ............................................................................................................80 
3.2. Materials and methods............................................................................................82 

3.2.1. Background and herd selection.....................................................................82 
3.2.2. Antimicrobial use data collection .................................................................84 
3.2.3. Statistical analysis.........................................................................................86 

3.2.3.1. Mixed models for discrete data ..........................................................86 
3.3. Results ....................................................................................................................89 

3.3.1. Farm and animal information .......................................................................89 
3.3.1.1. Calf population ...................................................................................89 
3.3.1.2. Cow and heifer population .................................................................89 

3.3.2. Individual animal records of treatment and diagnosis..................................90 
3.3.2.1. Individual calf treatment records........................................................90 
3.3.2.2. Individual calf records of diagnoses...................................................91 
3.3.2.3. Individual cow treatment records .......................................................92 
3.3.2.4. Individual cow records of diagnoses ..................................................93 

3.3.3. Antimicrobial use..........................................................................................94 
3.3.4. Effect of herd, veterinary clinic, ecoregion, and other risk factors on 
reported treatment practices for calves and cows ...................................................95 
3.3.5. Assessment of the quality of treatment records............................................96 

3.4. Discussion...............................................................................................................96 
3.5. Acknowledgements ..............................................................................................106 
3.6. References ............................................................................................................107 

Prevalence of antimicrobial resistance in fecal generic E. coli isolated in western 
Canadian cow-calf herds. Part I: Beef calves..................................................................123 

4.1. Introduction ..........................................................................................................123 
4.2. Materials and methods..........................................................................................124 

4.2.1. Study overview ...........................................................................................125 
4.2.2. Background and herd selection...................................................................125 
4.2.3. Sample collection........................................................................................126 
4.2.4. Laboratory methods ....................................................................................126 

4.2.4.1. Escherichia coli culture....................................................................126 
4.2.4.2. Susceptibility testing methodology ..................................................127 

4.2.5. Statistical analysis.......................................................................................128 
4.3. Results ..................................................................................................................130 

4.3.1. Study conducted in the spring of 2002 .......................................................130 



xii 

4.3.2. Observed AMR in the calves sampled in the spring of 2002 .....................131 
4.3.3. Study conducted in the fall of 2002............................................................132 
4.3.4. Observed AMR in the calves sampled in the fall of 2002..........................133 
4.3.5. Association between the prevalence of resistance in calf samples collected 
in the spring and the occurrence of resistance in calves in the fall.......................134 

4.4. Discussion.............................................................................................................134 
4.5. Acknowledgements ..............................................................................................141 
4.6. References ............................................................................................................142 

Prevalence of antimicrobial resistance in fecal generic E. coli isolated in western 
Canadian beef herds. Part II: Cows and cow-calf pairs...................................................152 

5.1. Introduction ..........................................................................................................152 
5.2. Materials and methods..........................................................................................153 

5.2.1. Statistical analysis.......................................................................................154 
5.3. Results ..................................................................................................................156 

5.3.1. Study conducted in the spring of 2002 .......................................................156 
5.3.2. Observed AMR in cows sampled in 2002 ..................................................156 
5.3.3. Study of cow-calf pairs conducted in 2003 ................................................157 
5.3.4. Observed AMR in the cows from the cow-calf pairs sampled in 2003......158 
5.3.5. Observed AMR in the calves from the cow-calf pairs sampled in 2003 ....158 
5.3.6. Observed AMR in the cow-calf pairs .........................................................159 
5.3.7. Comparison of AMR prevalence between cows and calves.......................160 
5.3.8. Association between the frequency of resistance in cow and calf samples160 

5.4. Discussion.............................................................................................................161 
5.5. Acknowledgements ..............................................................................................166 
5.6. References ............................................................................................................168 

Factors associated with antimicrobial resistance in calves born in 89 western Canadian 
BeeF Herds ......................................................................................................................177 

6.1. Introduction ..........................................................................................................177 
6.2. Materials and methods..........................................................................................179 

6.2.1. Background and herd selection...................................................................179 
6.2.2 Antimicrobial use data collection ................................................................180 
6.2.3. Sample collection........................................................................................181 
6.2.4. Laboratory methods ....................................................................................181 

6.2.4.1 Escherichia coli culture.....................................................................181 
6.2.4.2. Susceptibility testing methodology ..................................................182 

6.2.5. Statistical analysis.......................................................................................182 
6.2.6. Post hoc power calculations........................................................................184 

6.3. Results ..................................................................................................................185 
6.3.1. Study population.........................................................................................185 
6.3.2. Summary of AMR and AMU in study herds..............................................186 
6.3.3. Observed risk factors associated with AMR ..............................................187 
6.3.4. Post hoc power calculations........................................................................190 

6.4. Discussion.............................................................................................................191 
6.5. Acknowledgements ..............................................................................................197 
6.6. References ............................................................................................................199 



xiii 

Molecular characterization of AMR in fecal generic Escherichia coli isolates in western 
Canadian cow-calf herds: Part I Associations between phenotype and genotype...........214 

7.1. Introduction ..........................................................................................................214 
7.2. Materials and methods..........................................................................................216 

7.2.1. General aspects of the study and sample collection ...................................216 
7.2.2. Laboratory methods ....................................................................................217 

7.2.2.1 Escherichia coli culture.....................................................................217 
7.2.2.2. Susceptibility testing methodology ..................................................217 
7.2.2.3. Methodology for detecting resistance genes ....................................218 

7.2.3. Statistical analysis.......................................................................................220 
7.3. Results ..................................................................................................................222 

7.3.1. Description of the samples examined in the phenotype and genotype 
comparison study ..................................................................................................222 
7.3.2. Phenotypic antimicrobial susceptibility in the selected isolates.................223 
7.3.3. Resistance genes detected in the selected isolates......................................224 
7.3.4. Phenotypic antimicrobial susceptibility and associated resistance genes...225 
7.3.5. Unconditional association between phenotypic antimicrobial susceptibility 
and identification of resistance genes ...................................................................227 

7.4. Discussion.............................................................................................................229 
7.5. Acknowledgements ..............................................................................................235 
7.6. References ............................................................................................................236 
Molecular characterization of AMR in fecal generic Escherichia coli isolates from 

western Canadian cow-calf herds: Part II Associations between resistance genes .........255 

8.1. Introduction ..........................................................................................................255 
8.2. Materials and methods..........................................................................................257 

8.2.1. Statistical analysis.......................................................................................258 
8.3. Results ..................................................................................................................259 

8.3.1. Description of sample population for genotyping study.............................260 
8.3.2. Resistance genes detected in the selected isolates......................................260 
8.3.3. Unconditional association between resistance genes .................................261 

8.4. Discussion.............................................................................................................262 
8.5. Acknowledgements ..............................................................................................266 
8.6. References ............................................................................................................267 

Antimicrobial resistance and virulence factors in generic Escherichia coli isolates from 
western Canadian cow-calf herds....................................................................................282 

9.1. Introduction ..........................................................................................................282 
9.2. Materials and methods..........................................................................................284 

9.2.1. General aspects of the study and sample collection ...................................285 
9.2.2. Laboratory methods ....................................................................................285 

9.2.2.1 Escherichia coli culture.....................................................................285 
9.2.2.2 Selection of isolates for further testing..............................................286 
9.2.2.3. Susceptibility testing methodology ..................................................286 
9.2.2.4. Molecular testing methodology........................................................287 

9.2.5. Statistical analysis.......................................................................................290 



xiv 

9.3. Results ..................................................................................................................291 
9.3.1. Description of sample population examined in AMR and virulence study291 
9.3.2. Phenotypic antimicrobial susceptibility in the selected isolates.................291 
9.3.3. Resistance Genes ........................................................................................292 
9.3.4. Shiga-toxin producing E. coli (STEC) virulence genes..............................292 
9.3.5. Association between AMR and virulence factors ......................................293 
9.3.6. Post hoc assessment of study power...........................................................293 

9.4. Discussion.............................................................................................................294 
9.5. Acknowledgements ..............................................................................................298 
9.6. References ............................................................................................................299 

SUMMARY AND CONCLUSIONS..............................................................................318 

10.1 Introduction .........................................................................................................318 
10.2 Summary of highlights from each chapter....................................................319 

10.2.1. Antimicrobial use study.....................................................................319 
10.2.2. Prevalence study................................................................................321 
10.2.3. Risk factor study................................................................................323 
10.2.4. Molecular studies...............................................................................324 
10.2.5. Virulence and AMR ..........................................................................325 

10.3. Study limitations.................................................................................................326 
10.4. Conclusions ........................................................................................................330 
10.5. References ..........................................................................................................333 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

LIST OF TABLES 

Table 3.1. Summary of animal and herd-level risk factors for calf treatment and 
mortality during the 2002 calving season (n=28,573; N=203). Data pertains to 
calves born alive January 1 to May 31, 2002 and their dams..............................111 

Table 3.2. Summary of animal and herd-level risk factors for cow or heifer treatment 
and mortality during the 2002 calving season (n=36,634; N=203)a....................112 

Table 3.3. Type of treatment for calves (n=28,573) and cows/heifers (n=36,634) at the 
animal and herd level (N=203) between January 1 and June 30, 2002a..............113 

Table 3.4. Diagnoses recorded from January 1 to June 31, 2002 summarized at the 
individual calf and herd level (n=28,573, N=203)a .............................................114 

Table 3.5. Diagnoses made from January 1 to June 30, 2002 summarized at the 
individual cow/heifer and herd level. (n=36,634, N=203) a ................................115 

Table 3.6. Number (%) of herds recording various antimicrobial treatments used in 
cows/heifers from January 1 to June 30, 2002 (N=203) .....................................116 

Table 3.7. Number (%) of herds recording various antimicrobial treatments used in 
calves from January 1 to June 30, 2002. (N=203)...............................................117 

Table 3.8. Number (%) of herds that used antimicrobials used at least once on the farm 
in the period from January 1 to June 30, 2002 (N=203) .....................................118 

Table 3.9. The herd-adjusted unconditional associations between non-therapeutic risk 
factors and the odds of calf treatment in 2002 (n=28,573, N=203) ....................119 

Table 3.10. The herd-adjusted final multivariable analysis of risk factors for whether a 
calf was ever treated between January and June, 2002 (n=28,573, N=203) .......120 

Table 3.11. The herd-adjusted unconditional associations between non-therapeutic risk 
factors and the odds of cow/bred heifer treatment in 2002 (n=31,248, N=203) .121 

Table 3.12. The herd-adjusted final multivariable analysis of risk factors for whether 
cows and bred heifers were ever treated between January and June, 2002 
(n=31,248, N=203) ..............................................................................................122 

Table 4.1. Prevalence (%) of AMR for E. coli isolates cultured from calves in the spring 
(n=1677) and in the fall (n=1186) of 2002 adjusted for clustering by herd ........149 

Table 4.2. Prevalence (%) of AMR in calves sampled in the spring (n=480) and in the 
fall (n=395) of 2002 accounting for clustering of AMR within herd..................150 

Table 4.3. Prevalence (%) of AMR at the herd level as determined by calves sampled in 
the spring (n=91) and in the fall (n=45) of 2002.................................................151 



xvi 

Table 5.1. Prevalence (%) of AMR in E coli isolates recovered from cows (n=1555) in 
the spring of 2002 and for cows (n=312) and calves (n=318) in the spring of 
2003 .....................................................................................................................174 

Table 5.2. Prevalence (%) of AMR in cows (n=533) sampled in the spring of 2002 and 
for cows (n=105) and calves (n=105) of the cow-calf pairs sampled in the spring 
of 2003.................................................................................................................175 

Table 5.3. Herd prevalence (%) of AMR for cows (N=69 herds) sampled in the spring 
of 2002 and for cows (N=10 herds) and calves (N=10 herds) of the cow-calf 
pairs sampled in the spring of 2003.....................................................................176 

Table 6.1. Antimicrobial resistance to any of the 7 antimicrobials to which resistance 
was most commonly detected, to any antimicrobial, or to ≥2 antimicrobials,were 
summarized as crude prevalence of AMR for calves (n=466) tested in all herds 
and as the median proportion of calves tested in each herd (IQR) (N=89).........202 

Table 6.2. The number (%) of herds using penicillins, sulphonamides, and 
tetracyclines/oxytetracycline (N=89) ..................................................................203 

Table 6.3. The number (%) of herds using tilmicosin, florfenicol, sulbactam:ampicillin, 
ceftiofur, enrofloxacin, gentamycin, amprolium and cephalexin (N=89) ...........204 

Table 6.4. The statistically significant herd-adjusted unconditional association between 
AMU in the herd and the occurrence of resistance to tetracycline in E.coli 
isolates from beef calves (n=466, N=89) ............................................................205 

Table 6.5. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
streptomcyin (n=466, N=89) ...............................................................................206 

Table 6.6. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
sulphamethoxazole (n=466, N=89) .....................................................................207 

Table 6.7. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
trimethoprim/sulphamethoxazole (n=466, N=89) ...............................................208 

Table 6.8. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to kanamycin 
(n=466, N=89) .....................................................................................................209 

Table 6.9. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
chloramphenicol (n=466, N=89) .........................................................................210 



xvii 

Table 6.10. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to ampicillin 
(n=466, N=89) .....................................................................................................211 

Table 6.11. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to any 
antimicrobial (n=466, N=89)...............................................................................212 

Table 6.12. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to two or 
more antimicrobials (n=466, N=89) ....................................................................213 

Table 7.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession 
number and DNA source for resistance genes tested ..........................................243 

Table 7.2. Investigation into the association between resistance phenotype and genotype 
included the following individual and groups of antimicrobials.........................244 

Table 7.3. Antimicrobial resistance phenotype and genotype prevalence (n=207) ........245 

Table 7.4.  Patterns of resistance genes present in isolates with susceptible phenotypes 
(n=8) and resistant phenotypes with no genotype (n=8) .....................................246 

Table 7.5. Table 12: Resistance genes detected for each of the ACSSuT, AKSSuT, and 
ACKSSuT phenotype patterns where the phenotype and genotype did not match247 

Table 7.6. Unconditional associations between being positive for individual or multiple 
AMR phenotypes and the antimicrobial gene ant(3")-Ia (aadA1) or aph(3')-Ia  
(n=207) ................................................................................................................248 

Table 7.7. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes tetA or tetB (n=207)................249 

Table 7.8. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes catI or floR (n=207) ................250 

Table 7.9. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes sulI or sulII (n=207) ................251 

Table 7.10. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR gene dhfrI or dhfrXII (n=207)...........252 

Table 7.11.Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR gene any blaTEM (n=207) ...................253 

Table 7.12. Summary of associations between various antimicrobials and each family of 
resistance genes ...................................................................................................254 



xviii 

Table 8.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession 
number and DNA source for resistance genes tested ..........................................272 

Table 8.2. Investigation into the association between genotypes included the following 
individual and groups of antimicrobials. Each gene in the response variable 
column was individually tested for associations with each gene in the risk 
factors column .....................................................................................................273 

Table 8.3. List of antimicrobial agents and the associated resistance genes investigated 
along with the resistance gene prevalence for 207 isolates from beef cattle.......274 

Table 8.4. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial gene ant(3")Ia (aadA1) and aph(3')-Ia  
(n=207) ................................................................................................................275 

Table 8.5. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes tetA, tetB or tetC (n=207)276 

Table 8.6. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes catI or floR (n=207) ......277 

Table 8.7. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes sulI and sulII (n=207)....278 

Table 8.8. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance gene dhfrI and dhfrXII(n=207)279 

Table 8.9.  Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance gene blaTEM (n=207) ................280 

Table 8.10.  Associations between individual resistance genes summarized at the 
antimicrobial family level....................................................................................281 

Table 9.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession 
number and DNA source for resistance genes tested. .........................................308 

Table 9.2.  Primer name, primer sequence, length, positive controls used and the 
reference for each virulence factor tested............................................................309 

Table 9.3. Investigation into the association between AMR phenotypes and virulence 
factors and between AMR resistance genes and virulence factors......................310 

Table 9.4.  Prevalence of AMR phenotypes in the study samples (n=106) ....................311 

Table 9.5. Prevalence of AMR genotypes in the study sample (n=106).........................312 

Table 9.6. Crude prevalence of virulence factors in the study samples and prevalence 
adjusted for clustering at the herd level  with the 95% CI (n=106) ....................313 



xix 

Table 9.7. The number of isolates resistant to each antimicrobial investigated and the 
number (percent) of isolates resistant and positive for each virulence factor 
(n=106) ................................................................................................................314 

Table 9.8.  Unconditional associations between AMR phenotypes and virulence factors 
eae, stx1 and stx2 together, and stx2 (n=106)......................................................315 

Table 9.9.  The number of isolates positive for each resistance gene and the number 
(percent) of isolates positive for the resistance gene and the virulence factor 
(n=106) ................................................................................................................316 

Table 9.10. Unconditional associations between AMR genotypes and virulence factors 
eae, stx1 and stx2 together, and stx2 (n=106)......................................................317 

 

 

 

 

 

 



xx 

 
LIST OF FIGURES 

Figure 4.1. Sampling structure for study of AMR in western Canadian cow-calf herds 146 

Figure 4.2. Minimum inhibitory concentrations for fecal E. coli isolates collected from 
calves in the spring of 2002 arranged by the Veterinary Drug Directorate, Health 
Canada, classification of drugs and presented as a percentage of the total number 
of isolates (N=1677) ............................................................................................147 

Figure 4.2. Minimum inhibitory concentrations for fecal E. coli isolates collected from 
calves in the fall of 2002 arranged by the Veterinary Drug Directorate, Health 
Canada, classification of drugs and presented as a percentage of the total number 
of isolates (N=1186) ............................................................................................148 

Figure 5.1.  Minimum inhibitory concentrations for fecal generic E. coli isolates 
recovered from cows in the spring of 2002 arranged by Health Canada’s 
classification of drugs (n=1555)..........................................................................171 

Figure 5.2. Minimum inhibitory concentrations for generic fecal E. coli isolates 
recovered from the cows of the cow-calf pair samples in the spring of 2003, 
arranged by Health Canada’s classification of drugs (n=312) ............................172 

Figure 5.3. Minimum inhibitory concentrations for generic fecal E. coli isolates 
collected from the calves of the cow-calf pair samples in the spring of 2003, 
Health Canada’s classification of drugs (n=318) ................................................173 

Figure 6.1.  Minimum inhibitory concentration distribution for 1677 isolates from 466 
calves tested for antimicrobial sensitivity using Sensititre 2002 NARMS 
CMV7CNCD plate configuration. Numbers are presented as a percentage of the 
total isolates (n=1677). ........................................................................................201 

Figure 7.1. Schematic of number of samples, number of isolates and number of farms 
for each age group of animals investigated .........................................................240 

Figure 7.2.  Minimum inhibitory concentration distribution for 207 isolates tested for 
antimicrobial susceptibility using Sensititre 2002 NARMS CMV7CNCD plate 
configuration. Numbers are presented as a percentage of the total isolates 
(n=207) ................................................................................................................241 

Figure 7.3.  The complex nature of AMR phenotypes and families of resistance genes 242 

Figure 8.1. Resistance gene relationships between antimicrobial families. Each line 
represents one of the relationships detailed in Tables 4 to 9...............................271 

Figure 9.1.  Schematic of number of samples, number of isolates and number of farms 
for each age group of animals investigated .........................................................306 



xxi 

Figure 9.2.  Minimum inhibitory concentration distribution for 106 isolates tested for 
antimicrobial sensitivity using Sensititre 2002 NARMS CMV7CNCD plate 
configuration. Numbers are presented as a percentage of the total isolates 
(n=106). ...............................................................................................................307 

 

 

 

 

 

 

 

 



xxii 

 
LIST OF ABBREVIATIONS 

 
Aac Acetyltransferases- Aminoglycoside resistance gene 
 
aad(ant) Adenlytransferases- Aminoglycoside resistance gene 
 
ADD Animal daily dose 
 
A3C Ampicillin, cefoxitin, ceftiofur, cephalothin 
 
ACSSuT Ampicillin, chloramphenicol, streptomycin, sulphamethoxazole, 

tetracycline 
 
ACKSSuT Ampicillin, chloramphenicol, kanamycin, streptomycin, 

sulphamethoxazole, tetracycline 
 
AKSSuT Ampicillin, kanamycin, streptomycin, sulphamethoxazole, 

tetracycline 
 
AMR Antimicrobial resistance 
 
AMU Antimicrobial use 
 
Aph Adenylphosphotransferases- Aminoglycoside resistance gene 
 
blaTEM Beta-lactam resistance gene 
 
blaSHV Beta-lactam resistance gene 
 
blacmy-2 Beta-lactam resistance gene 
 
BVDV Bovine virial diarrhea virus 
 
cat Chloramphenicol resistance gene 
 
CIPARS Canadian Integrated Program for Antimicrobial Resistance 

Surveillance 
 
CI Confidence interval 
 
clm Chloramphenicol resistance gene 
 
 
DDD  Defined daily doses  
 



xxiii 

Dhfr Trimethoprim resistant dihydrofolate reductase gene 
 
DNA Deoxyribonucleic acid 
 
eae Enterocyte attaching and effacing E. coli virulence factor 
 
E. coli Escherichia coli 
 
floR Florphenicol resistance gene 
 
GEE Generalized estimating equations 
 
HC Hemorrhagic colitis 
 
HUS Hemolytic uremic syndrome 
 
IBR Infectious bovine rhinotracheitis 
 
IKC Infectious bovine keratoconjunctivitis  
 
IQR Inter-quartile range 
 
LB Luria-Bertani broth 
 
LEE  Locus for enterocyte effacement  
 
MIC Minimum inhibitory concentration 
 
Multi-AMR Multiple antimicrobial resistance 
 
NAHMS National Animal Health Monitoring System 
 
NARMS National Antimicrobial Resistance Monitoring System 
 
N Number of herds 
 
n Number of animals  
 
NCCLS National Committee on Clinical Laboratory Standards 
 
OR Odds ratio 
 
PCR Polymerase chain reaction 
 
PQL Penalized quasi-likelihood 
 



xxiv 

S. ohio  Salmonella ohio 
 
STEC Shiga-toxigenic E. coli 
 
S. typhimurium  Salmonella typhimurium 
 
stx Shiga toxin 
 
sul Sulphonamide resistance gene 
 
tet Tetracycline resistance gene 
 
TSI Triple sugar iron 
 
µg/mL Microgram/milliliter 
 
USDA United States Department of Agriculture 
 
VDD Veterinary Drug Directorate 
 
vt1 Verotoxins 
 
+ Positive 
 

 

 



1 

CHAPTER 1 
INTRODUCTION 

 

1.1 Background 

 

Antimicrobial resistance (AMR) is a growing public health concern. The spread of 

AMR and the appearance of multiple antimicrobial resistant pathogenic bacteria have 

been recognized by the World Health Organization (WHO) as serious problems that can 

complicate medical treatment of bacterial infections (WHO, 2001). The increase in the 

number of antimicrobial resistant pathogens in human medicine has raised both public 

and scientific interest, and some of this concern has focussed on antimicrobial use 

(AMU) in livestock production.  

 

Most AMR in human pathogens is attributable to the selection pressure from AMU 

in people (Thompson, 2000). However, the volume of antimicrobials used in food 

animal production has led to concerns in the public, regulatory and scientific arenas that 

AMU in food animals could contribute to the AMR problem by creating a reservoir of 

resistant bacteria (Bailar and Travers, 2002, O’Connor et al., 2002; Schroeder et al., 

2002). For human health, the transfer of such resistance to zoonotic enteropathogens is 

of primary interest, but the transfer of resistance to animal pathogens and the associated 

subsequent loss of therapeutic options for veterinary medicine is also an important 

concern.  



2 

 

At this time, AMR is not a major clinical problem in veterinary medicine in Canada; 

however, the impact of AMR in human medicine and the occurrence of AMR as a 

veterinary problem in other parts of the world indicate that this is a real possibility 

(McEwen, 2002). The use of antimicrobial drugs in animal agriculture is essential for 

maintaining and improving animal health and welfare through disease treatment, 

increasing carcass quality, and enhancing the economic efficiency of growth and 

production. If the livestock industry loses efficacious antimicrobials because of 

resistance development or limited access because of tighter regulations, the 

consequences and costs to the industry would be substantial.  

 

1.2 Investigative approach 

 

Although there is a growing amount of literature on AMR, no information is 

currently available regarding AMR or AMU in cow-calf herds in western Canada. The 

cow-calf industry is a vital and important part of the agricultural economy in all parts of 

Canada, but particularly in Saskatchewan and Alberta. These two provinces are home to 

more than 65% of the beef cow, breeding heifer and calf populations in Canada 

(Statistics Canada, Accessed July 25, 2006; 

http://www.40.statcan.ca/101/cst01/prim50a.htm). A better understanding of AMR and 

AMU patterns in this population is essential to develop a baseline of data to determine 

the need for future monitoring in the Canadian cow-calf industry. 
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This investigation was undertaken to provide initial data on AMR and AMU in cow-

calf herds in order to describe common reasons for treatment and the types of 

antimicrobials used on cow-calf farms, to describe the amount of AMR in various age 

groups commonly found on cow-calf farms, to determine risk factors associated with 

AMR development, and finally to investigate the underlying molecular mechanisms of 

AMR in cow-calf herds. 

 

This project represented a collaborative research initiative undertaken to address the 

presence of and risk factors for AMR in western Canadian cow-calf herds. The Western 

College of Veterinary Medicine, the Public Health Agency of Canada, and Alberta 

Agriculture worked together to address this important question. The primary hypothesis 

of this dissertation was that AMR in fecal generic Escherichia coli isolates collected 

from cow-calf herds would be relatively less prevalent than from other food-animal 

species because these animals are extensively managed as compared with most other 

livestock commodities. A secondary hypothesis was that although use and resistance 

would likely be associated with each other, routine AMU would be relatively 

uncommon in most cow-calf operations. The final hypothesis examined in this study 

was that the statistical associations between AMR genes present in the E.coli isolates 

would likely support evidence of co-selection of unrelated resistance genes and 

virulence factors of interest. 

 

The specific objectives of this investigation were; 
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1. To describe the frequency of treatment with antimicrobials, common reasons for 

AMU, and the types of antimicrobials used in western Canadian cow-calf herds. 

2. To describe AMR in calves from western Canadian cow-calf herds in the spring 

and fall of 2002 using commensal E. coli as an indicator organism. 

3. To describe AMR in cows and cow-calf pairs from western Canadian beef herds 

in the spring using commensal E. coli as an indicator organism. 

4. To investigate farm level management practices associated with AMR in 

commensal E. coli isolates collected from calves during the 2002 calving season 

on beef herds in western Canada. 

5. To measure the associations between antimicrobial resistant phenotypes and 

resistance genes in commensal E. coli isolates obtained from cattle in cow-calf 

herds to understand the potential for co-selection and genetic linkages.  

6. To describe the associations between genetic determinants of antimicrobial 

resistance in commensal E. coli isolates obtained from cattle in cow-calf herds 

to understand the potential for coselection and genetic linkages.  

7. To investigate whether either AMR phenotype or genotype are associated with 

the presence of the virulence genes stx1, stx2 and eae in commensal E. coli 

isolates from cattle in cow-calf herds.  

 

The participating cow-calf producers from across Alberta and Saskatchewan were 

also involved in a multifaceted survey of risk factors affecting cattle productivity and 

health. Private veterinary clinics were approached and asked to participate. Within each 

practice herds were identified and enrolled based on selection criteria which considered 
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factors such as herd size, animal identification, existing calving records, animal 

handling facilities sufficient for pregnancy testing and bull evaluation, and a 

relationship with a local veterinary clinic. Only herds using a winter/spring calving 

season were enrolled in the study. Participating herds were visited regularly by one of 

six study veterinarians to collect samples and data, and to monitor the quality and 

consistency of on-farm records. Data on AMU were collected using both individual 

animal treatment records and a standardized questionnaire. 

 

In a first step of this study (Chapter 2), the literature on AMR and AMU were 

reviewed and gaps in the existing literature were identified as they relate to the 

objectives of this thesis. Reported reasons for antimicrobial treatment and potential risk 

factors for treatment in both cows and calves were examined in Chapter 3. The 

prevalence of AMR and the importance of individual animal determinants of AMR 

status was then described in Chapters 4 and 5 by investigating the extent of AMR in 

young calves, calves at weaning, and cows. The role of the cow-calf pair relationship in 

the transfer of resistance was also explored in Chapter 5. In Chapter 6, the importance 

of herd-level risk factors associated with AMR in calves born and sampled in the spring 

of 2002 was investigated. The molecular aspects of AMR were then considered in a 

sub-set of isolates. The association between AMR phenotype and genotype was initially 

assessed (Chapter 7) and then the relationship between AMR genes was examined 

(Chapter 8). The genetic aspect of this project provided an opportunity to explore the 

potential for co-selection of AMR determinants in these isolates. As a final part of the 

molecular investigation, Chapter 9 examined the virulence factors stx1, stx2 and eae and 
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their relationship to either the AMR phenotype or genotype because of the potential 

public health impact. Finally, Chapter 10 summarizes the new information generated by 

and the limitations of this field study, it also provides suggestions for further research.  
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CHAPTER 2 
LITERATURE REVIEW 

 

2.1. Introduction 

 

Antimicrobial resistance (AMR) is an important issue facing both human and 

veterinary medicine. The primary concern in veterinary medicine is not treatment 

failure as a result of AMR, but that the use of antimicrobials in food animal production 

could promote the development of resistance in people. The debate about the role of 

agriculture in the distribution and magnitude of AMR in people has been on going since 

before the release of the Swann report in 1969 (Prescott, 2000).  

 

There is a tremendous amount of literature on AMR and antimicrobial use (AMU) in 

both human and veterinary medicine. This is not intended to be an exhaustive review of 

these subjects, but rather to provide readers that are not intimately involved in this area 

of research with sufficient background to understand the following thesis and to 

recognize that AMR is a complex issue which still requires more research. The issues 

summarized included: detection methods for AMR, how AMR is transferred, how some 

key antimicrobials exert their effect and how bacteria combat these antimicrobials, 

AMR and virulence factors, the challenges of collecting and reporting AMU 

information, and AMU/AMR in livestock with a particular focus on the beef cattle 
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industry. The review will focus on AMR in fecal Escherichia coli (E.coli) in cattle 

unless otherwise stated.  

 

Standard search engines such as Agricola, CAB abstracts, and Ovid MEDLINE as 

well as non-scientific search engines including ‘google’ were used for literature 

searches. Search terms included, but were not limited to, combinations of: 

antimicrobial, antibiotic, use, exposure, treatment, susceptibility, resistance, Escherichia 

coli, bovine, cattle, cow-calf, herd, and farm. Cited references were examined for 

additional resources. An English language restriction was used.  

 

2.2. Antimicrobial resistance (AMR)  

 

Antimicrobial resistance is a form of natural selection and is an expected 

phenomenon (McDermott et al., 2002). Resistant micro-organisms were present long 

before the introduction of antimicrobials, and resistance was probably a defense 

mechanism used by antibiotic-producing organisms to protect themselves (Smith, 1967, 

Dancer et al., 1997). Therefore in the presence of an antimicrobial, the bacteria that 

possess an effective resistance trait will survive and those that do not will be eliminated. 

In an environment with long-term antimicrobial exposure, the proportion of resistant 

bacteria will increase over time (McDermott et al., 2002).  

 

Levy (1998) described five basic principles of AMR. First, given sufficient time and 

use of an antimicrobial, resistance will develop in a susceptible organism. Resistant 

organisms have been identified for all types of antimicrobials. Second, AMR is 
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progressive and can be monitored by studying changes in minimum inhibitory 

concentrations. Third, bacteria resistant to one antimicrobial are more apt to become 

resistant to others. Fourth, once resistance appears, it is likely to decline slowly, if at all. 

Fifth, the use of antimicrobials in one individual affects others in the surrounding 

environment.  

 

2.2.1. Definitions 

 

To ensure clarity, definitions of the key terminology used throughout this project 

have been provided. An antibiotic is a substance that is produced by a microorganism 

and at low concentrations inhibits or kills other microorganisms (Prescott, 2000, 

Guardabassi and Courvalin, 2006). An antimicrobial includes any substance of natural, 

semisynthethic, or synthethetic origin that kills or inhibits the growth of a 

microorganism, but causes little or no damage to the host (Prescott, 2000, Guardabassi 

and Courvalin, 2006). Although the two terms differ in their precise definition, 

antimicrobial is often used synonymously with antibiotic (Prescott, 2000). 

Antimicrobial was the term used throughout this thesis.  

 

Resistance can be a result of an intrinsic mechanism that prevents the bacteria from 

being destroyed by an antimicrobial, or it can be acquired through chromosomal 

mutation or the exchange of genetic material. Bacteria that are intrinsically resistant 

lack the structural or functional cellular mechanisms that are required for the 

antimicrobial to act (Prescott, 2000, Guardabassi and Courvalin, 2006). Intrinsic 

resistance is a genus or species specific property of bacteria (Schwarz et al., 2006). 
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Acquired resistance can develop and be transferred in susceptible organisms as a result 

of mutation, horizontal acquisition of foreign genetic material, or a combination of these 

processes (Catry et al., 2003, Guardabassi and Courvalin, 2006). The focus of this 

review and thesis is on acquired resistance. Additional information on the mechanisms 

of acquired resistance development and spread are provided later on in this review. 

 

2.3. Susceptibility testing 

 

Susceptibility testing is used to guide therapy and to generate surveillance data (Potz 

et al., 2004). Susceptibility is determined by growth inhibition and not the killing of 

bacterium (Walker, 2000). The results can be reported quantitatively or qualitatively. 

Qualitative results are reported as susceptible, intermediate, or resistant, while 

quantitative results provide a minimum inhibitory concentration (MIC) in µg/ml or 

mg/ml. The MIC is defined as the lowest concentration of drug required to inhibit 

growth of an organism using a standardized test (Jorgensen, 2004) and can be 

monitored to determine if a population is shifting towards increasing resistance 

(Walker, 2000).  

 

Practitioners often require a clinically relevant category derived from applying 

interpretative breakpoints to the MIC information (Craig, 1993, MacGowan and Wise, 

2001). Interpretive breakpoints allow for susceptible, intermediate, and resistant 

categorization of isolates. The break point for susceptibility is the recommended dosage 

of an antimicrobial that inhibits the bacterium’s growth (Walker, 2000). Breakpoints for 

resistance represent concentrations that cannot be achieved by normal dosing, and 
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intermediate breakpoints are those which fall between susceptible and resistant (Walker, 

2000).  

 

Laboratory assessment of susceptibility and resistance is not necessarily equivalent 

to clinical susceptibility and resistance. Clinically (or in vivo) a strain is considered 

resistant if it survives therapy (Guardabassi and Courvalin, 2006). Clinical resistance 

can vary depending on the dosage, mode of drug administration, distribution of the 

drug, and the immune status of the patient (Guardabassi and Courvalin, 2006). Clinical 

breakpoints indicate the MIC that will reflect the probability of treatment success given 

a specified dosing schedule (Mouton, 2002). Clinical breakpoints are set not only based 

on the MICs, but also in vivo parameters such as pharmacokinetics and 

pharmacodynamics of the drug as well as with correlation of the MICs with the clinical 

outcome (Guardabassi and Courvalin, 2006). Factors such as bacterial distribution in 

the host, sub-MIC effects, postantibiotic effects, protein binding, and variations in drug 

concentration in the blood can all affect in vivo susceptibility (Jorgensen, 2004) and 

determination of the clinical breakpoint. An excellent overview of approaches that can 

be used to calculate clinical breakpoints is provided by Mouton (2002).  

 

Breakpoints can also be considered from a microbiological (in vitro) rather than a 

clinical point of view. Microbiological breakpoints are based on MICs for a bacterial 

species with resistance at the higher MICs when compared to the distribution of the 

normal susceptible population (Guardabassi and Courvalin, 2006). Microbiological 

resistance is determined by comparison of two or more strains under identical 
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conditions (Guardabassi and Courvalin, 2006). These breakpoints are useful for 

surveillance and for identifying emerging resistance (Guardabassi and Courvalin, 2006).  

 

Microbiological breakpoints are used to detect organisms that do no belong to the 

natural bacterial population. These organisms have acquired resistance and may 

represent an emerging resistant strain (Mouton, 2002). The microbiological breakpoint 

criteria do not consider drug pharmacokinetic properties in individual patients (Dudley 

and Ambrose, 2000, Mouton, 2002).  

 

Breakpoints are generally derived from human isolates (Walker, 2000). The 

pharmacokinetic data collected from human populations may differ significantly from 

that derived from animals; therefore, what may be an appropriate breakpoint for human 

isolates may not be the same for animal isolates. Since human breakpoints do not 

reliably predict clinical outcomes when applied to veterinary pathogens, the National 

Committee for Clinical Laboratory Standards (NCCLS) have developed a veterinary 

specific antimicrobial susceptibility criteria (NCCLS, 2000).  

 

There are other challenges associated with the reporting of breakpoints and AMR. 

Resistance can only be assessed by comparing the strains of the same species or genus 

(Guardabassi and Courvalin, 2006). For example, ampicillin has an MIC breakpoint of 

128 µg/ml for E. coli sp. but for Streptococcus agalacttiae the MIC is 0.12 µg/ml 

(Prince and Neu, 1983). Breakpoints may also vary between countries (MacGowan and 

Wise, 2001, Mouton, 2002, Jorgensen, 2004) depending on the agency setting the 
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breakpoints and the methodologies used. Therefore, when comparing susceptibility 

results between different organism and countries one must keep in mind what the 

susceptible, intermediate, and resistant breakpoints are for each respective organism or 

country. Despite these limitations, susceptibility breakpoints can provide a reference for 

clinical efficacy (Jorgensen, 2004) and for surveillance purposes. 

 

2.3.1. Phenotype susceptibility testing methods   

 

The primary methods used for susceptibility testing are agar disc diffusion, broth 

microdilution, agar dilution, broth macrodilution, and E-test. Since agar diffusion and 

broth microdilution are the two principal methodologies used in veterinary medicine 

(Brooks et al., 2003), this discussion will focus on these tests and some of their 

advantages and disadvantages.  

 

Agar disc diffusion is based on diffusion of an antimicrobial agent from a 

commercially prepared disc placed on an agar surface inoculated with a standardized 

growth medium that has been seeded with approximately 1.0 x 108 colony forming units 

of pure culture (Prescott, 2000). At the same time that the inoculum is growing, the 

antimicrobial agent is diffusing from the disc. If the organism is susceptible to the 

antimicrobial, a zone of growth inhibition is created around the disc. The larger the zone 

of inhibition, the more susceptible the organism is to the antimicrobial.  

 

Agar disc diffusion techniques provide qualitative data, are flexible and low cost. 

However, the results of disc diffusion will vary unless the inoculum density, the agar 
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thickness and the incubation are carefully controlled (Potz et al., 2004). Veterinary 

specific antimicrobial disks are available for antimicrobials such as ceftiofur, 

enrofloxacin, and tilmicosin (Watts and Lindeman, 2006). Agar disc diffusion 

breakpoints are derived from the relationship between the zones of inhibition to the 

MIC (Craig, 2000).  

 

Agar dilution is the gold standard, but it and broth macrodilution are often too 

cumbersome for routine use and so are often replaced with broth microdilution (Walker, 

2000). Broth microdilution involves using a microplate that contains antimicrobial 

agents of known concentration in progressive two fold dilutions that encompass similar 

concentrations to those obtained in serum and tissue at recommended doses (Walker, 

2000). To perform broth microdilution, a bacterial suspension is made from an 

overnight culture of a single randomly selected isolate, diluted to turbidity comparable 

to a 0.5 McFarland standard (Walker, 2000). This is further diluted so that the final 

concentration of bacteria per well is 5 x 104 colony forming units (Walker, 2000). The 

plates are then incubated for 16-20 hours (Walker, 2000). The minimum inhibitory 

concentration is recorded as the lowest concentration of antimicrobial that completely 

inhibits growth.  

 

Broth microdilution and agar dilution both provide MICs by exposing the organism 

to a series of twofold log dilutions of the antimicrobial of interest (Jorgensen, 2004). 

These are the preferred methods of surveillance systems (Watts and Lindeman, 2006) 
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because they can demonstrate trends in MICs over time. Broth microdilution can be 

highly automated and, therefore, is capable of handling large volumes of samples.  

 

The disadvantage is that broth microdilution utilizes MIC panels that are often 

inflexible as to the dilution and the antimicrobials available on a specified panel. 

Custom plates can be designed, but they are often cost prohibitive for many 

laboratories. Another limitation is that because only a few (1-10) isolates/sample are 

selected for testing and MICs may fail to identify minority strains present in a complex 

polyclonal population unless a large number of isolates are investigated (Hedges et al., 

1977, Humphrey et al., 2002). Also, under selective pressure of antimicrobial treatment, 

such minority species, if expressing a suitable phenotype, may be capable of dominating 

the microflora and potentially giving rise to sub-clinical or even clinical disease (Linton 

et al., 1978). As such random isolate selection may fail to fully describe the clinical 

importance AMR of any given bacterial population. 

 

2.4. Molecular aspects of antimicrobial resistance  

 

The phenotype provides an indication of the susceptibility of the organism and its 

potential impact clinically, but it does not indicate the genes present or the underlying 

mechanism for resistance. The genotype on the other hand does not imply whether a 

strain is sensitive or not to a specific antimicrobial, but it demonstrates the diversity and 

distribution of resistance genes (Aarts et al., 2006). Because each methodology provides 

different information, considering both the phenotype and genotype will provide a more 

complete understanding AMR.  
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Bacteria are very proficient at sharing the genetic information necessary to survive in 

the presence of antimicrobials (McDermot et al., 2002). The ability to readily exchange 

genes increases the possibility for the spread of AMR determinants from commensal 

organisms to pathogens (Salyers and Cuevas, 1997). Even transient passage of an 

ingested resistant organism through the intestinal tract can result in the transfer of 

resistant genes to resident microflora, which can then serve as a reservoir for pathogenic 

bacteria (McDermott et al., 2002).  

 

2.4.1. How bacteria acquire resistance 

 

There are two major ways that susceptible bacteria acquire AMR, mutation or 

horizontal gene transfer. 

 

2.4.1.1. Mutation 

 

Mutation is the spontaneous change in the genome from susceptible to resistant, 

usually during replication (Catry et al., 2003). Chromosomal mutations often result in 

structural changes to the bacterial cell wall and subsequent resistance development 

(Prescott, 2000, Guardabassi and Courvalin, 2006). They may lead to dramatic 

resistance development or to slower more gradual resistance development depending on 

the antimicrobial agent affected (Prescott, 2000, Guardabassi and Courvalin, 2006). 
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Mutants may be disadvantaged compared to the parent and, therefore, be less able to 

survive in the population in the absence of the selective pressure of an antimicrobial 

(Prescott, 2000). Alternatively, mutants maybe as viable as the parent and may persist in 

the population with or without selective pressure from AMU (Prescott, 2000). 

Mutational events happen at high frequencies for drugs such as streptomycin, nalidixic 

acid, and rifampin; whereas, the mutation frequency to erythromycin are lower and 

almost non-existent for vancomycin and polymixin B (Prescott, 2000).  

 

2.4.1.2. Horizontal transfer of resistance 

 

The horizontal transfer of resistance genes from donor to recipient bacteria is a 

second method through which bacteria can acquire resistance. The three primary 

methods for horizontal resistance gene transfer are transformation, transduction, and 

conjugation (Schwarz and Chaslus Dancla, 2001).  

 

Transformation is the uptake of naked bacterial DNA from the environment by an 

acceptor bacteria (Prescott, 2000, Schwarz and Chaslus-Dancla, 2001). It is a critically 

important method of gene transfer (Prescott, 2000) in vitro but less important in vivo 

(Schwarz et al., 2006). Transformation generally occurs between closely related genera 

and may result in gene recombination producing new forms of resistance genes 

(Prescott, 2000). This method of resistance transfer is particularly important in bacteria 

species such as Streptococcus spp. and Neisseria spp. that have a high frequency of 

natural transformation (Prescott, 2000).  
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Transduction is the transfer of resistant genes via a bacterial virus or phage (Prescott, 

2000, Schwarz and Chaslus-Dancla, 2001). It is thought to be a relatively unimportant 

method of resistance transfer because of the specificity of bacteriophages (Prescott, 

2000) and the limited amount of space for DNA to be packaged into the phage 

(Schwarz et al., 2006). Occasionally, resistance plasmids can be accidentally packed up 

into phage heads during phage assembly and subsequently be able to infect new cells by 

injecting plasmid DNA into a recipient cell (Schwarz et al., 2006). Neither 

transformation nor transduction requires a viable donor cell or a link between donor and 

recipient (Guardabassi and Courvalin, 2006).  

 

Conjugation is the transfer of resistance genes from a resistant organism to a 

sensitive organism through a protein channel (Bennett, 1995, Prescott, 2000, Schwarz 

and Chaslus-Dancla, 2001). Gene transfer in conjugation allows the spread of mobile 

genetic elements such as plasmids, transposons, or integron/gene cassettes (Hall and 

Collins, 1995, Bennett, 1999, Schwarz and Chaslus-Dancla, 2001). These elements can 

possess multiple AMR genes and may be responsible for the rapid dissemination of 

genes among different bacteria (Kruse and Sorun, 1994, Salyers and Cuevas, 1997, 

Sandvang et al., 1997). Linked clusters of AMR on a single mobile element can also 

aggregate in such a way that antimicrobials of a different class or even non-

antimicrobial substances like heavy metals or disinfectants can select for AMR bacteria 

(Recchia and Hall, 1997, Salyers et al., 2004). Exchange of resistance genes between 

pathogens and non-pathogens or between gram-positive and negative bacteria has also 

been documented (Prescott, 2000, Salyers et al., 2004).  



20 

2.4.1.2.1 Mobile genetic elements 

 

As stated above the acquisition of genetic elements such as plasmids, transposons, or 

integrons/gene cassettes are a critical part of horizontal transfer of AMR. These 

elements vary considerably from each other in regard to their carriage of resistance, 

their replication and transmission. 

 

Plasmids are extra-chromosomal circular DNA which can replicate independently, 

but synchronously with chromosomal DNA (Prescott, 2000, Schwarz et al., 2006). 

When resistance is transferred as a result of plasmids, a copy of the plasmid is always 

retained by the parent (Prescott, 2000). Most plasmids carry the gene required for 

conjugation, but not all do, in these cases plasmids can be mobilized by using the 

conjugal apparatus of other self-transmissible plasmids within the cell (Prescott, 2000).  

 

Plasmids can code for resistance to between one and ten different antimicrobials 

(multiple AMR) (Prescott, 2000). Multi-resistant plasmids are often the result of 

interplasmidic recombination, integration of transposons, or insertion of gene cassettes 

(Schwarz et al., 2006). All resistance genes on a multi-resistant plasmid are transferred 

when the plasmid is transferred, whether there is selective pressure for all of the 

resistance genes on the plasmid or for just one of the resistance genes (Schwarz et al., 

2006). Plasmids can act as vectors for transposons and integrons/gene cassettes 

(Bennett, 1995). 
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Transposons (jumping genes) are short sequences of DNA that can move from 

plasmid to plasmid, or from plasmid to chromosome and vice versa (Prescott, 2000). 

Transposons do not possess replication systems and must be incorporated into 

chromosomal DNA or plasmids (Schwarz et al., 2006). Unlike plasmids, no copy of the 

transposon remains within the original cell as the transposon moves between the donor 

and recipient (Prescott, 2000). All transposons can move and integrate into foreign 

DNA by nonhomologous recombination, which permits the same transposon to be 

found in the genome or plasmids of highly unrelated organisms (Prescott, 2000).  

 

Integrons are a mobile element often found on plasmids and are distinct from 

transposons (Prescott, 2000). They are a site specific recombination system that 

contains an integrase enzyme, a gene-capture site, and a captured gene or genes 

(Prescott, 2000). The genes are present as mobile gene cassettes that represent small 

mobile elements that contain only a single resistance gene and a specific recombination 

site (Recchia and Hall, 1995, Nandi et al., 2004). The recombination site allows 

mobility when they are recognized by site-specific integrases, which catalyze 

integration of the cassettes at specific sites within the integron thereby permitting 

integrons containing multiple resistance gene cassettes (Prescott, 2000).  

 

Gene expression of an integron is dependent on various factors including promoter 

strength, gene copy number, the relative distance of the gene cassette from the 

promoter, and the presence of additional internal promotors (Matinez-Freijo et al., 1998, 

Martinez-Freijo et al., 1999). Expression is usually mediated via a common promoter 
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situated upstream (5’-end) of the gene cassettes, rather than through individual promoter 

copies (Matinez-Freijo et al., 1998). Higher levels of gene expression can be achieved if 

a second promoter is included adjacent to the first, or if the gene in question is included 

as multiple copies (Matinez-Freijo et al., 1998). The relative distance between a gene 

cassette and the promoter plays a significant role regarding expression; proximal genes 

tend to be expressed more effectively than distal genes (Matinez-Freijo et al., 1998). As 

a result, distal genes may have very little effect on the susceptibility of the host 

bacterium to relevant antimicrobials (Matinez-Freijo et al., 1998, Matinez-Freijo et al., 

1999). Integron carriage of resistance gene cassettes by the host bacterium was also 

found to be dependent on the environment that the host organism found itself in, with 

the loss of integron borne resistance genes in the absence of antimicrobial selective 

pressure (Rosser and Young, 1999). 

 

2.5. How antimicrobials exert their effect 

 

Antimicrobials by definition are substances that inhibit the growth of or kill micro-

organisms with little or no damage to the host. The three main mechanisms of action for 

antimicrobials to achieve this goal are: inhibition of cell wall synthesis, inhibition of 

protein synthesis, and inhibition of DNA synthesis. In addition to these three targets 

antimicrobials may also have an indirect method of action by blocking folic acid 

synthesis and subsequently inhibiting nucleic acid development. 

 

The cell wall acts as a mechanical means of protection, as a surface for proteins and 

appendages for cell adhesion, for motility, host infection, and horizontal gene transfer 
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(Guardabassi and Courvalin, 2006). In gram positive bacteria, the cell wall is thick and 

composed of multiple layers of cross linked glycan and peptide strands crossed by 

molecules of teichoic and teichuronic acids. In gram negative bacteria the peptidoglycan 

wall is thinner and is surrounded by a lipopolysaccharide (Guardabassi and Courvalin, 

2006). The lipopolysaccharide layer, in gram negative bacteria, decreases permeability 

and therefore affects the uptake of certain antimicrobials such as glycopeptides 

(Guardabassi and Courvalin, 2006). 

 

The main phases of cell wall synthesis are: the cytoplasmic phase, where the 

peptioglycan layers are formed; the membrane phase, where the muramyl pentapeptide 

is bound and then transferred to the cell membrane; and the extracytoplasmic phase, 

where there is crosslinkage (van Heijenoort, 2001). Antimicrobials may exert their 

effect at any one of these points of cell wall synthesis ultimately leading to the 

destruction of the cell. The antimicrobials that act primarily on the cell wall include the 

beta-lactams and the glycopeptides. 

 

Protein synthesis is essential for bacterial survival. It starts with transcription of 

DNA into mRNA and ends with mRNA translation and translocation (Guardabassi and 

Courvalin, 2006). Antimicrobials most frequently target translation when the bacterial 

ribosome reads the mRNA and translates it into amino acid sequences (Guardabassi and 

Courvalin, 2006). Drugs that act on this step generally bind to specific sites on the 

ribosome and destroy its functionality (Guardabassi and Courvalin, 2006). Ribosomes 

are comprised of two subunits, a small 30S subunit and a large 50S subunit 
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(Guardabassi and Courvalin, 2006). Drugs which target the 30S subunit include 

aminoglycosides, sepctinomycin, and tetracyclines, while chloramphenicol, 

pleuromutilins, and oxazolidones target the 50S subunit (Guardabassi and Courvalin, 

2006). 

 

Bacterial DNA synthesis permits the replication of the bacterial chromosome during 

cell division, and RNA synthesis allows gene expression and protein synthesis by 

transcription of DNA into RNA (Guardabassi and Courvalin, 2006). Quinolones target 

two enzymes involved in the early stages of this process including topoisomerase II or 

DNA gyrase and topoisomerase IV, and exert their effect through interaction with the 

enzyme bound DNA complex (Guardabassi and Courvalin, 2006). Novobiocin also acts 

on the above two enzymes, but its mechanism of action is through competitive 

inhibition of ATP by attaching to ATP binding sites; whereas, rifamycins inhibit protein 

transcription of DNA into mRNA (Guardabassi and Courvalin, 2006). 

 

An additional way that antimicrobials can exert their effect is through the inhibition 

of nucleic acid synthesis. Sulphonamides and diaminopyramidines (e.g. trimethoprim) 

have an indirect inhibitory affect on nucleic acid synthesis by blocking various stages of 

folic acid synthesis (Guardabassi and Courvalin, 2006). Sulfonamides competitively 

inhibit p-aminobenzoate (PABA) modification into dihydrofolate. 

Diamionopyramidines competitively inhibit dihydrofolate reductase actively preventing 

dihydrofolic acid reduction into treahydrofolic acid (Guardabassi and Courvalin, 2006)  
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2.6. How bacteria fight back against antimicrobials  

 

Resistance to the same antimicrobial can be mediated by several different 

mechanisms. Additionally, the same resistance gene or mechanism of resistance maybe 

found in a wide variety of bacteria or limited to certain bacterial species or genera 

(Schwarz et al., 2006).  

 

The mechanisms that organisms may develop to protect themselves from 

antimicrobials, and thus become resistant, are often classified into five main categories. 

These categories include enzymatic inactivation or modification of antimicrobials, 

impermeability of the bacterial cell wall or membrane, active expulsion of the drug by 

cell efflux pump, alteration of target receptors, and drug trapping or titration. 

 

1. Enzymatic inactivation or modification of antimicrobials. This is the main 

mechanism of resistance to beta-lactams, aminoglycosides, and phenicols 

(Guardabassi and Courvalin, 2006). Drug inactivating enzymes are generally 

associated with mobile genetic elements. Some of the most clinically important 

enzymes are the beta-lactamases. These enzymes hydrolyze the beta-lactam ring 

of penicillins, cephalosporins, and carbapenems preventing them from binding 

to the active serine site of the penicillin binding proteins (cell wall 

transpeptidases) and impede cell wall synthesis (Guardabassi and Courvalin, 

2006). The other clinically important enzymes are the aminoglycoside 

modifiying enzymes that catalyze the transfer of an acetyl group (N-

acetyltransferases), a phosphoryl group (O-phosphotransferases), or a nucleotide 
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(O-nucleotidyltransferases) to the amino or hydroxyl group of the 

aminoglycoside molecule. The end result is a chemically modified drug that has 

poor binding to the ribosomes and is subsequently not taken up by the cell 

(Wright, 1999). 

2. Impermeability of the bacterial cell wall or membrane. Hydrophyllic drugs enter 

gram negative bacterial cell wall through porins, while hydrophobic drugs enter 

through the phospholipid layer (Guardabassi and Courvalin, 2006). Any change 

in porins can confer resistance (Guardabassi and Courvalin, 2006). Lack of 

aminoglycoside activity in anaerobes is a result of reduced drug uptake.  

3. Active expulsion of the drug by cell efflux pump. Efflux pumps are proteins that 

reduce the concentration of the drug in the cytoplasm thereby limiting access of 

the drug to its target (Guardabassi and Courvalin, 2006). There are two major 

types of antimicrobial efflux pumps (Guardabassi and Courvalin, 2006). The 

first type of efflux pump acts on specific drugs. Drug pumps are an important 

mechanism for tetracycline resistance especially in gram negative bacteria, but 

can also confer resistance to phenicols (Guardabassi and Courvalin, 2006). 

Specific drug pumps are associated with mobile genetic elements (Butaye et al., 

2003). The second type of efflux pump creates multiple drug resistance. This 

pump is frequently encoded by the chromosome and is divided into ATP binding 

cassette transporters or secondary drug transporters depending on their source of 

energy (Putman et al., 2000). The secondary drug transporters are the pumps 

that account for most of the resistance to multiple antimicrobial agents. 
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4. Alteration of target receptors. Resistance by alteration or protection of drug 

receptors has been reported for tetracycline and or quinolones (Guardabassi and 

Courvalin, 2006).  

5. Drug trapping or titration can be accomplished by several venues and the 

consequence is reduced free drug at the target site (titration). For example, the 

chromosomal mutations responsible for the overproduction of PABA, the target 

of sulphonamides and diamionpyrimidines (dihydrofolate reductase), have been 

reported in several bacteria (Guardabassi and Courvalin, 2006).  

 

2.6.1. Primary mechanisms of antimicrobial resistance development of six 
antimicrobials important in cow-calf herds 

 

Schwarz et al. (2006) provide a good over view of the mechanisms and spread of 

bacterial resistance to nine classes of antimicrobial agents that play a major role in 

veterinary medicine, as well as for glycopeptides and streptogramins which are 

important in human medicine. Brief descriptions of the primary mechanisms for AMR 

development of six antimicrobial classes commonly used in cow-calf operations are 

provided here. 

 

2.6.1.1. Beta-lactams 

 

Resistance to beta-lactam antimicrobials is mainly due to inactivation by beta 

lactamases (Livermore, 1995) and decreased ability to bind to penicillin-binding 

proteins (Georgeopapadakou, 1993). However, beta-lactam resistance may also be a 
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result of decreased uptake of the drug due to permeability barriers or increased efflux 

via multidrug transporters (Paulson et al., 1996, Quintiliani et al., 1999). The 

inactivation of beta-lactams is primarily due to the cleavage of the amino bond in the 

beta-lactam ring by a beta lactamase enzyme (Bush et al., 1995, Livermore, 1995, Bush, 

2001, Wiegand, 2003). Genes encoding beta-lactamases are located on either plasmids 

or the bacterial chromosome (Aarts et al., 2006). Examples of specific gene variants for 

the beta-lactamase family in gram negative bacteria include ampC, tem, shv, oxa and 

ctx-M (Aarts et al., 2006). Extended spectrum beta-lactamases that play an important 

role in human medicine have also been described (Bradford, 2001), as have the AMR 

genes for methicillin resistant Staphylococcus aures (Aarts et al., 2006).  

 

2.6.1.2. Tetracyclines 

 

Tetracycline resistance is almost always a result of the uptake of new genes (Chopra 

and Roberts, 2001). There are 23 efflux genes (which code for energy dependent efflux 

of tetracyclines), 11 ribosomal protection genes (which code for protein that protects 

bacterial ribosomes), 3 genes that code for enzymes that modify and inactivate 

tetracycline, and 1 gene that has an unknown mechanism (Schwarz et al., 2006). 

Currently only the first two mechanisms are important in bacteria of veterinary 

importance.  

 

The efflux resistance genes tetA, tetB, tetC, tetD and tetH are most wide spread in 

gram negative bacteria and are located on transposons (Allmeier et al., 1992, Chalmers 

et al., 2000, Lawley et al., 2000) and plasmids (Schwarz et al., 2006). The tetB gene 
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confers resistance to both tetracycline and minocylcine, but not to the new glycyclines, 

while the other efflux proteins confer resistance only to tetracycline (Chalmers et al., 

2000, Chopra and Roberts, 2001). Resistance to minocycline and glycyclines are 

relevant as they are newer drugs that play a role in human medicine. The methodologies 

utilized to identify these different tet resistance genes have been described elsewhere 

(Frech and Schwarz, 2000, Kehrenberg et al., 2001, Aminov et al., 2001, Ng et al., 

2001, Guerra et al., 2004, van Hoek et al., 2005). 

 

Ribosomal protection genes are a second important way for tetracycline resistance 

development. They are of gram positive origin but can also be found in gram negative 

genera (Schwarz et al., 2006). An example of a ribosomal protection gene is the tetM 

gene which has a wide range of hosts and is located on a conjugative transposon 

(Flannagan et al., 1994, Chopra and Roberts, 2001, , Salyers et al., 1995).  

 

Other less well described mechanisms of tetracycline resistance include enzymatic 

inactivation, 16S rRNA mutation, other mutations, and multidrug transporters (Schwarz 

et al, 2006). 

 

2.6.1.3. Quinolones and Fluorquinolones 

 

Quinolones and fluoroquinolones are potent inhibitors of bacterial DNA replication 

(Schwarz et al., 2006). The two major mechanisms of resistance development to 

fluorquinolone antimicrobials are point mutations and decreased intracellular 

accumulation (Schwarz et al., 2006). Several recent reviews deal with the molecular 
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basis and epidemiology of quinolone resistance in E. coli and Salmonella spp. of animal 

origin (Drlica and Zhao, 1997, Everett and Piddock, 1998, Hooper, 1999, Bager and 

Helmuth, 2001, Cloeckaert and Chaslus-Dancla, 2001, Webber and Piddock, 2001, 

Ruiz, 2003).  

 

Briefly, point mutations in the target genes gyrA and gyrB coding for DNA gyrase 

and or for parC and parE coding for DNA topoismerase IV are frequent in quinolone 

and fluoroquinolone resistance (Schwarz et al., 2006). Detection of these point 

mutations in the region of the gyrA, gyrB, or parC and parE genes can be accomplished 

through PCR (Aarts et al., 2006) while microarrays have been used to assess mutlidrug 

efflux systems. Resistance genes associated with multidrug efflux pumps vary 

depending on the organism involved (Schwarz et al., 2006) and they may lead to high 

levels of resistance to quinolones and other antimicrobials where multidrug efflux 

pumps and decreased membrane permeability are involved (Lee et al., 2000). Quinolone 

and fluorquinolone resistance can also result from interaction between different 

resistance mechanisms, decreased drug uptake and DNA gyrase protection (Schwarz et 

al., 2006) 

 

2.6.1.4. Aminoglycosides and Aminocyclitols 

 

The main mechanism for aminoglycoside resistance is enzymatic inactivation (Shaw 

et al., 1993, Mingeot-Leclercq et al., 1999), but reduced uptake and chromosomal 

mutations conferring high levels of resistance to streptomycin have also been described 

(Quintiliani et al., 1999). Aminoglycoside resistance is mediated by more that 50 
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aminoglycoside modifying enzymes that are classified as either aminoglycoside 

acetyltransferases (aac), aminoglycoside andenyltransferases (aad or ant), and 

aminoglycoside phosphotransferases (aph) (Shaw et al., 1993, Mingeot-Leclercq et al., 

1999, Aarts et al., 2006). Most aac, ant and aph genes are located on mobile genetic 

elements such as plasmids, transposons, or gene cassettes (Shaw et al., 1993, Recchia 

and Hall, 1995, Davies and Wright, 1997, Mingeot-Leclercq et al., 1999, Wright, 1999, 

Sandvang and Aarestrup, 2000,). The modifications of aminoglycosides and 

aminocyclitols by inactivating enzymes have been described in detail in various reviews 

(Shaw et al., 1993, Davies and Wright, 1997). 

 

2.6.1.5. Chloramphenicol and Florfenicol 

 

Both enzymatic and non-enzymatic chloramphenicol and florfenicol resistance genes 

have been described (Aarts et al., 2006), but enzymatic inactivation is the predominant 

method (Shaw, 1983, Murray and Shaw, 1997, Schwarz et al., 2004) of resistance 

development. Enzymatic resistance genes are primarily encoding acetyltranfereases and 

are the cat genes (Aarts et al., 2006). Non-enzymatic gene coding of chloramphenicol 

and florfenicol include the cml genes on transposon TN1696 and the floR gene (Aarts et 

al., 2006). Efflux systems conferring resistance to chloramphenicol alone or in 

combination with florfenicol (Schwarz et al., 2004), permeability barriers, and 

multidrug transporters (Paulsen et al., 1996, Schwarz et al., 2004) as well as other minor 

mechanisms of resistance have also been identified for this class of antimicrobials 

(Schwarz et al., 2006). Details on different genes and mechanisms for phenicol 

resistance are available (Schwarz et al., 2004) 
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2.6.1.6. Sulphonamides and Trimethoprim  

 

Sulphonamides and trimethoprim are competitive inhibitors of different enzymatic 

steps in folate metabolism (Schwarz et al., 2006). Sulphonamide resistance can result 

from chromosomal mutations in the dihydropteroate synthase (folP) gene or by 

acquisition of resistant dihydropteroate synthase genes (sul genes) (Aarts et al., 2006, 

Schwarz et al., 2006). Three sul genes have been described in gram negative bacteria 

(Swedberg and Skold, 1980, Radstrom and Swedberg, 1988, Aarts et al., 2006). The 

sulI gene is associated with class 1 integrons and, therefore, is often linked to other 

genes. It is spread in gram negative species as part of transposons or as conjugative 

plasmids (Sundstrom et al., 1988). The sulII gene often occurs with streptomycin 

resistance genes strA and strB on conjugative or nonconjugative plasmids (Radstrom 

and Swedberg, 1988, Kehrenberg and Schwarz, 2004), while the sulIII gene can be 

found on conjugative plasmids (Perreten and Boerlin, 2003) 

 

Trimethoprim resistance is primarily mediated by acquisition of dfr gene encoding 

resistant dihydrofolate reductase (Aarts et al., 2006, Schwarz et al., 2006). Transferable 

trimethoprim resistance has been identified in a variety of gram negative bacteria and 

several of these genes are part of plasmids, transposons, or gene cassettes (Recchia and 

Hall, 1995, Skold, 2001, Ito et al., 2004). Other potential mechanisms of trimethoprim 

resistance for some bacteria include permeability barriers and efflux pumps (Kohler et 

al., 1996, Huovinen, 2001) and dhfr and folate auxotrophy (Quintiliani et al., 1999). 

Mutations in chromosomal genes have also been observed (Huovinen, 2001). 
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2.6.2. Co-resistance and cross resistance 

 

The development of AMR is a complex process and the speed with which it develops 

depends on the bacteria involved, the selective pressure, and the availability and 

transferability of resistance genes (Schwarz et al., 2006). Recent studies have shown 

that the majority of multiple resistant phenotypes are obtained by the acquisition of 

external genes that may provide resistance to an entire class of antimicrobials (White 

and McDermott, 2002). When there is the selection of multiple AMR genes when one 

gene is selected this is called co-selection. 

 

Co-resistance is the coexistence of several different mechanisms including genes or 

mutations which allow bacteria of the same strain to be resistant to a variety of related 

or non-related substances simultaneously (Weldhagen, 2004, Guardabassi and 

Courvalin, 2006). Beta-lactamase genes that are situated on the class 1 integron can be 

used to provide four examples of co-resistance. Co-resistance can occur when beta-

lactamase genes on class 1 integrons are found with genes to quaternary ammonium 

compounds and sulphonamides (sulI) that classically occur at the distal 3’-end (Poirel et 

al., 2000, Poirel et al. 2001, Dubois et al., 2002). A second example is the common co-

existence of aminoglycoside encoded gene cassettes with beta-lacatamase gene 

cassettes on integron structures (Weldhagen, 2004). A third example is cat-type and 

clm-type gene cassettes co-existing on class 1 integrons with class A and class B beta-

lacatamase genes (Weldhagen, 2004). Finally, a fourth example is the occurrence of sul-
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gene types and the dhfrI/dhfr-gene types occurring together on class 1 integrons in 

conjunction with class A beta-lactamase bla gene cassettes (Weldhagen, 2004).  

 

Cross resistance is a single biochemical mechanism in which resistance to one drug 

is associated with resistance to another drug of the same or different class (Guardabassi 

and Courvalin, 2006). For example, despite differences in their chemical structure cross 

resistance to macrolides, lincosamides, and beta-streptogramins can result from the 

methylation of a single adenine residue in 50S rRNA (Guardabassi and Courvalin, 

2006). When the biochemical mechanism is drug efflux then cross-resistance to several 

drugs may be observed (Courvalin and Tri-Cuot, 2001). Cross-resistance is common 

among macrolides and fluoroquinolones (Prescott, 2000).  

 

2.7. Escherichia coli (E. coli) as an indicator organism 

 

Many AMR studies have focused on organisms that are pathogenic to humans 

including: Salmonella spp. (Wray et al., 1991), Campylobacter spp. (Gaunt and 

Piddock, 1996), or Escherichia coli O157 (Meng et al., 1998). However, transmissible 

genetic elements encoding AMR can also be maintained in commensal bacteria (Shaw 

and Cabelli, 1980, Falagas and Siakavelllas, 2000). Resistance gene transmission from 

normally nonpathogenic species to more virulent organisms within the animal or human 

intestinal tract may be an important mechanism for acquiring clinically significant 

antimicrobial resistant organisms (Winokur et al., 2001). E. coli have developed a 

number of elaborate methods for acquiring and disseminating genetic determinants and, 
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therefore, may serve as an important reservoir for transmissible resistance (Neidhardt, 

1996).  

 

Commensal E. coli have been included in various surveillance programs and 

research projects as indicators of both selection pressure and the reservoir of resistance 

genes. The rationale for using E. coli includes: it is commonly found in avian and 

mammalian species and, therefore, a good benchmark for comparison between species 

and ecological niches; it is easy to grow; and there is the opportunity for the spread of 

transferable resistance. There is evidence that resistance transfer occurs in vivo between 

E. coli and other E. coli, other Enterobacteriacea, and other types of bacteria (Winokur 

et al., 2000, Winkokur et al., 2001). E. coli from fecal specimens also make good 

indicator organisms since they carry more resistance markers than any other 

Enterobacteriaceae species in the gut (Osterblad et al., 2000). Investigating AMR in 

generic E. coli from domestic species is, therefore, a practical way to improve the 

understanding of AMR ecology and the potential role of commensal microbiota of 

mammals as a reservoir for AMR.  

 

2.8. Shiga toxin producing E. coli and AMR 

 

Shiga toxin or verotoxin producing E. coli (STEC/VTEC) are the most important 

recently emerged group of foodborne pathogens (Remis et al., 1984, Karmali, 1989, 

Beutin et al., 1998, Paton and Paton, 1998, Beutin et al., 2002, Blanco et al., 2004, 

Mora et al., 2004,). Major STEC associated outbreaks have been experienced in 

Canada, Japan, the United Kingdom, and the United States (Karmali, M., 1989, Beutin 
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et al., 1998, Paton and Paton, 1998, Willshaw, et al., 2001, Beutin et al., 2002). In 

humans, these infections are associated with gastroenteritis that may be complicated by 

hemorrhagic colitis (HC) or hemolytic-uremic syndrome (HUS), which is a major cause 

of renal failure in children (Mora et al., 2004).  

 

STEC’s produce either one or two cytotoxins called Shiga toxins (stx1 and stx2) or 

verotoxins (vt1 and vt2) (Paton and Paton, 1998). Intimin is another virulence factor 

responsible for intimate attachment of STEC. It is encoded by chromosomal gene eae 

which is part of a large cluster of virulence genes on a pathogenicity island termed the 

locus for enterocyte effacement (LEE) (Kaper et al., 1998). STEC’s carrying the eae 

gene have been closely associated with HC and HUS (Karmali, 1989).  

 

Generally antimicrobials are not recommended for therapy of STEC infections 

because antimicrobials can lyse cell walls therefore releasing the toxins (Waterspiel et 

al., 1992, Wong et al., 2000). Additionally, antimicrobials are usually avoided because 

they can also cause increased expression of the toxins in vivo (Zhang et al., 2000). 

Despite the general practice of not using antimicrobials to treat STEC infections, there 

have been recent reports suggesting that AMR of STEC is on the rise (Gonzalez et al., 

1989, Farina et al., 1996, Meng et al., 1998, Galland et al., 2001, Willshaw et al., 2001, 

Schroeder et al., 2002,). 

 

Virulence genes are either located in chromosomal gene clusters (pathogenicity 

islands) or harbored in mobile accessory genetic elements such as plasmids and phages 
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(Groismann, 1996, Finlay and Falkow, 1997, Hacker et al., 1997). Resistance genes are 

also often associated with mobile DNA such as plasmids, transposons, and integrons 

(Jacoby, 1994, Tenover and Rasheed, 1998). Since AMR and virulence genes are 

carried in a similar fashion, it is possible that AMR and virulence genes could be linked 

and then co-selected (Martinez and Baquero, 2002). Therefore, reported increases in 

antimicrobial resistant STECs are of concern because AMU could potentially enhance 

the selection for bacteria carrying virulence genes. Antimicrobial use could ultimately 

accelerate the spread of virulence genes within bacterial populations and enhance the 

emergence of new pathogens or of pathogens with increased virulence potential 

(Boerlin et al., 2005). Finally, resistance genes may also be stabilized and fixed in 

pathogen populations by their linkage to virulence genes (Boerlin et al., 2005).  

 

Domestic ruminants especially cattle, sheep, and goats have been implicated as the 

primary reservoirs for STEC (Blanco et al., 1997, 2001, 2003, 2004). AMR from 

livestock and farms pose a potential risk to public health through direct contact with 

livestock or production environments, but also through AMR food-borne pathogens 

(van den Bogaard and Stobberingh, 2000, White et al., 2001). Non-pathogenic E. coli 

are also considered a problem because they can provide a pool of transferable resistance 

genes (Schmieger and Schicklmaier, 1999, Winokur et al., 2001).  

 

The current literature contains several articles describing AMR in STEC’s from a 

variety of populations (Blanco, 1989, Galland et al., 2001, Zhao et al., 2001, Gonzalez 

and Maidhof et al., 2002, Schroeder et al., 2002, Betteleheim et al., 2003, Mora et al., 
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2005). However, the current literature describing AMR in STEC does not always 

contain directly comparable information on the nature and extent of resistance in non-

STEC populations. The presence of AMR within a STEC positive isolate in the absence 

of additional information does not indicate whether or not STEC are more or less likely 

to be resistant to antimicrobials than non-STEC organisms, or conversely whether 

organisms that are antimicrobial resistant are more or less likely to contain virulence 

genes than organisms that are sensitive. This particular area needs more research to 

fully understand what is happening in STEC and non-STEC populations. 

 

2.9. Antimicrobial use: General considerations 

 

Different AMU regimen select for various resistance genes (Blake et al., 2003), and, 

therefore, use patterns of antimicrobial agents are expected to have some impact on the 

distribution of antimicrobial resistant phenotypes (McGowan and Gerding, 1996, 

Gaynes and Monnet, 1997, Aarestrup, 1999). Among the ramifications associated with 

such resistance gene selection are the degree of resistance conferred and the carriage of 

linked resistance determinants (Blake et al., 2003). Minimal antimicrobial exposure is 

necessary to select for continued persistence of resistance genes within enteric 

microflora (Blake et al., 2003). Persistence of AMR in bacteria is related to the 

persistence of antimicrobials. Therefore, short-term therapeutic treatment with 

antimicrobials generally do not produce bacteria that persist in the intestine, whereas 

prolonged AMU is more likely to be associated with persistence of resistant organisms 

after the drug is no longer administered (Prescott, 2000). As a result of the effect of 
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AMU on AMR, it is important to consider how AMR may be affected in a variety of 

production systems and livestock species with different AMU patterns and intensities. 

 

2.9.1. Reason for antimicrobial use in livestock 

 

Antimicrobial use in livestock production is necessary for the health and welfare of 

the animals. Method of administration and the volume of antimicrobial used will vary 

depending on the species of livestock, stage of production, and risk of disease. There 

are three primary reasons for AMU in food-producing animals: treatment of diseased 

animals, prevention and control of disease, and growth promotion.  

 

Prevention and control can be further divided into metaphylactic or prophylactic 

applications. Metaphylaxis is a disease control measure involving the mass medication 

of a group of animals to prevent the spread of disease when only a few individuals have 

been identified as infected. Prophylaxis is a preventative treatment of an animal or 

group of animals at a time when it may be more susceptible to infection. An example of 

prophylactic use of antimicrobials includes the treatment of dairy cows at the end of 

lactation. Antimicrobials are given at critical points in production to help prevent the 

development of disease. Prophylactic treatment may involve the entire group of animals 

or may be targeted towards specific high risk individuals depending on the animal 

species, the production system, and the disease condition.  

 

While there may be concern about the impact of metaphylactic and prophylactic 

treatment of groups of animals on the development of AMR, the bigger concern is the 
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use of antimicrobials for growth promotion. Growth promotion generally involves the 

use of antimicrobials licensed for this purpose. Generally antimicrobials used for 

growth promotion are provided at a sub-therapeutic dose (dose lower than those 

approved for therapeutic purposes) and are fed for a longer duration than antimicrobials 

used for prevention and control. It is the lower dose and the long duration of feeding of 

these antimicrobials which often causes concern about the development of AMR.  

 

Intensive livestock operations, such as feedlots, swine, or poultry operations, are 

often required to use the tools of prophylactic, metaphylactic, and growth promotant 

AMU in order to prevent disease and death, to ensure animal welfare, and for economic 

benefit. Cow-calf herds are generally managed more extensively and, therefore, these 

operations would be less likely to use antimicrobials in this way. In cow-calf herds the 

use of antimicrobials to prevent or control disease may be necessary in disease outbreak 

situations or in facilities with less than optimal management practices.  

 

2.9.2. Antimicrobial use and antimicrobial resistance 

 

The Canadian Veterinary Medical Association (CVMA) has taken a pro-active 

stance on AMR (CVMA, 2005) and makes several general recommendations. The first 

is that veterinarians, animal owners, and animal caretakers all share a responsibility for 

minimizing the use of antimicrobial drugs to conserve drug efficacy (CVMA, 2005). 

Veterinarians have a responsibility to educate staff, clients, and other animal handlers 

on the prudent use of antimicrobials and for ensuring such training occurs (CVMA, 

2005). The role of the veterinarian is to ensure that all users are aware of the appropriate 
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administration, handling, storage, disposal, and record keeping for antimicrobials 

(CVMA, 2005).  

 

The CVMA (2005) also recommends that veterinarians should continually update 

their knowledge of disease prevention, therapeutics, and of issues such as drug 

resistance trends to ensure the prudent use of antimicrobials. Implementation of 

preventative measures such as vaccination, biosecurity measures, good hygiene 

practices, and improved management may help prevent disease and, therefore, reduce 

the use of antimicrobials. Additionally, if the veterinarian understands resistance 

patterns that are emerging on a farm, they will be better able to make recommendations 

regarding antimicrobial treatment.  

 

Finally, the CVMA (2005) recommends that all antimicrobials even those not 

purchased directly through or on prescription from a veterinarian, should be used within 

the confines of a valid veterinarian-client-patient relationship. This should help ensure 

appropriate AMU because of the veterinarian’s understanding of farm management and 

disease status. With this knowledge, antimicrobial treatments can be designed to 

maximize therapeutic efficacy and minimize bacterial resistance.  

 

Both the structures and biochemical pathways within bacteria that determine 

antimicrobial availability within the microbe and the pharmacodynamic and 

pharmacokinetic properties of antimicrobials are complex (Aliabadi and Lees, 2000). 

Rational dosing of antimicrobials depends upon knowledge of physiology, anatomy, 
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pathology, and disease condition (Lees and Aliabadi, 2002). Resistance can result from 

both the selection of an inappropriate antimicrobial and from failure to optimize the 

dose level. For example, the dose interval is important for concentration-dependent 

antimicrobials and the duration of treatment is critical for time-dependent antimicrobials 

(Aliabadi and Lees, 2000). Pharmacokinetic variation may result from the animals’ 

disease status, age, and weight, or from non-biological factors such as route of 

administration, formulation, and drug interactions (Aliabadi and Lees, 2000). Through 

the optimization of the dosage schedule, the beneficial effects of treatment are 

maximized while the potential adverse effects are minimized (Aliabadi and Lees, 2000). 

While implementing the appropriate use of antimicrobials may limit AMR 

development, is it also important to recognize that even appropriate use can put 

selection pressure on the bacterial population and contribute to AMR.  

  

Producer access to over the counter (OTC) antimicrobials often results in AMU with 

little or no veterinary consultation (McEwen and Fedorka-Cray, 2002). These OTC 

drugs are made available to producers for purely practical reasons such as lack of access 

to a veterinarian (McEwen and Fedorka-Cray, 2002). This practice can result in 

inappropriate antimicrobial choices, dosing and treatment frequency and, therefore, may 

be a factor in AMR development. 

 

The continued availability of antimicrobials in veterinary medicine depends upon the 

profession’s ability to use these products wisely and find the balance between 

maximizing animal welfare and conserving antimicrobial efficacy (CVMA, 2005). By 
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increasing awareness about AMR and implementing prudent use recommendations 

veterinarians can promote long term efficacy and continued availability of 

antimicrobials.  

 

Probably one of the most important methods of avoiding resistance is ensuring that 

antimicrobials are selected and used appropriately. They should not be used as a 

substitute for poor hygiene or poor disease control. Ensuring that all individuals using 

antimicrobial are well informed about when, where, and how antimicrobials should be 

used is an important step in avoiding further resistance development. Emphasizing the 

importance of preventative health programs along with good management and hygiene 

practices on the farm will reduce the potential for disease and the need for AMU. 

Additionally, monitoring programs can also help illustrate changing resistance patterns 

over time to alert us to new or emerging resistance patterns. 

 

2.9.3. Challenges of antimicrobial use data collection 

 

Antimicrobial use data are difficult to collect and report for several reasons. 

National, regional, or even farm level data are scarce. On a national level, Denmark, 

Sweden, and Finland are currently the only countries where pharmaceutical companies 

have a legal obligation to supply data on antimicrobial sales (Schwarz and Chaslus-

Dancla, 2001). At the national level, AMU is reported as kilograms or tonnes of active 

ingredient sold. While these data provide the volume of antimicrobial used it does not 

allow for drug potentcy, assessment of how the antimicrobial was used and whether this 

use may affect AMR. Data on the species it was delivered to, the number of animals 
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exposed, the dose received, and the method of delivery are generally unavailable. End-

user data are, therefore, required in order to gain a better appreciation of how and why 

antimicrobials are being used in livestock production, but even end-user AMU data has 

serious limitations. 

 

Complete and accurate farm-level AMU records are difficult to obtain. Capture of 

use information can be expensive for the researcher and burdensome for the producer to 

accommodate especially during times of additional demands with limited resources. 

Under reporting is potentially a problem since producers are busy with day-to-day 

operations on the farm and, therefore, record keeping may be relatively low on the 

priority list. Subsequently treatment records may be forgotten or incomplete. Dunlop et 

al. (1998) reported a 35% under-reporting rate for AMU recorded by swine producers as 

compared to inventory and disappearance data collected by the researcher. A 

preliminary report of AMU in the Ontario beef industry, by Bair and McEwen, (2001) 

estimated average under reporting of AMU on farm was 40%. This estimate was based 

on treatment diaries and accounting of drug disappearance in both feedlots and cow-calf 

herds (Bair and McEwen, 2001). For cow-calf herds specifically, under reporting 

ranged from 1-86% with a mean of 24% (Bair and McEwen, 2001). Several reasons for 

under-reporting include: misunderstandings between researchers and producers, and 

lack of time during periods of increased work load such as in disease outbreak situations 

(Singer et al. 2006).  
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In addition to the challenges of collecting AMU data, there is no widely accepted 

method for quantifying AMU (Singer et al., 2006). Use can be reported in many ways 

including, but not limited to, total volume of drug in kilograms, defined daily doses 

(DDD) (Jensen et al. 2004), animal daily doses (ADD) (Jensen et al., 2004), or as 

animal-units per treatment days (Dunlop et al, 1998). While each of the above methods 

try to capture the true exposure of an animal to a antimicrobial, they all are limited. 

Debate still surrounds the best approach to reporting AMU information. Jensen et al. 

(2004) provide a good overview and highlight the major potential methods for reporting 

AMU and the associated limitations.  

 

Although there are several issues associated with AMU data capture and reporting 

there is international interest in developing surveillance systems for AMR and AMU 

that potentially includes farm-level or aggregate-level AMU data (Rosdahl and 

Pederson, 1998, Nicholls et al., 2001 and WHO 2001). In order to achieve a meaningful 

way to collect and report AMU data, international collaborative efforts are being made 

to overcome the issues surrounding AMU collection. For end-user compiled AMU data 

to be useful in surveillance systems, the following pieces of information need to be 

collected: total amount of antimicrobial used, indication for treatment, route of 

administration, dose and duration (Singer et al., 2006). 

 

2.10. Antimicrobial use and antimicrobial resistance in cow-calf herds 

 

Little information is available on AMU and AMR in cow-calf herds. In papers 

describing AMU (Bair and McEwen, 2001, Powell and Powell, 2001, Busani et al., 
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2004, Sayah et al., 2005) or AMR in healthy cattle it is often not differentiated as to 

what was the age and type of cattle sampled (Mercer et al., 1971, Schroeder et al., 2002, 

Kijima-Tanaka et al., 2003, Sayah et al., 2005, Lim et al., 2007). If the literature 

pertains to beef cattle specifically the samples collected are often at the abattoir rather 

than on farm (Van Donkersgoed et al., 2003, CIPARS, 2006, Aslam and Service, 2006, 

Rigobelo et al., 2006). While abattoir samples provide some insight into on farm 

prevalence they may not completely reflect AMR patterns on farm. Also, the ability to 

link on farm AMU with AMR is critical in order to be able to identify risk factors and 

the potential impact of certain farm management practices. 

 

The following review illustrates the limited amount of data that are available on cow-

calf AMU and AMR and the gaps that need to be filled. Additionally it highlights the 

effects of management practices, AMU, animal age, and potentially other host specific 

factors as they relate to AMR. 

 

2.10.1. Antimicrobial use  

 

Antimicrobial use is generally accepted to be an important factor for the selection of 

AMR bacteria (Aarestrup, 1999, van den Bogaard and Stobberingh, 2000, McEwen and 

Fedorka-Cray, 2002). Selective pressure for AMR can be affected by treatment 

formulation, dose, interval and duration (Catry et al., 2003). Since there can be diverse 

AMU practices within the livestock industry, describing AMR in one livestock class, 

species, or management system can not be considered to be representative of another.  
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Many studies have been initiated to investigate a potential link between AMU and 

subsequent AMR in animals and the development of resistance in people (Hummel et 

al., 1986, Endtz et al, 1991, Johnson et al., 1995, Bager et al., 1997, Aarestrup, 1999, 

Winokur et al., 2001, Swartz, 2002). Additionally, studies of commensal and 

pathogenic resistant bacteria have been conducted in a variety of livestock species in 

order to more fully understand the type and level of resistance that is present in 

livestock (Dargatz et al., 2003, Fiztgerald et al., 2003, Lanz et al., 2003, Bywater et al., 

2004, Khachatryan et al., 2004, Rajic et al., 2004, Hershberger et al., 2005). Many of 

these studies have focused on intensively reared livestock populations, such as feedlots, 

swine, and poultry operations, that may incorporate antimicrobials in feed for 

prophylactic, metaphylactic, or therapeutic reasons (McEwen and Fedorka-Cray, 2002).  

 

In addition to in feed AMU, the dairy or feedlot industry may also use antimicrobials 

prophylactically in a substantial proportion of individual animals. Between 75-90% of 

all dairy cattle receive prophylactic antimicrobials to prevent mastitis (Sishco et al., 

1993, USDA, 2003). Depending upon the size of the feedlot, the type of cattle placed 

and the bovine respiratory disease risk designation, anywhere between 16-19% of 

feedlot cattle in the United States (USDA, 1999) and 20-50% of feedlot animals in 

Canada receive prophylactic injectable antimicrobials on arrival for the control of 

bovine respiratory disease (Radostits OM, 2001, personal communication with Dr. 

Calvin Booker, FHMS, February 22, 2007). 
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In contrast to these more intensive livestock management systems, cattle in cow-calf 

herds in western Canada are primarily raised extensively and are, therefore, subjected to 

different management practices and antimicrobial exposures than livestock species that 

are raised more intensively. The typical production cycle for cows calving in the winter-

spring months of the year involves a period of confinement to pens or small pastures 

that enable producers to readily observe the cattle prior to and during the calving 

season. The duration and intensity of this confinement varies between farms and 

management systems. In many herds, cows that are due to calve are kept separate from 

cows that have already calved. Upon completion of the calving season and depending 

on grass accessibility, cow-calf pairs are then turned out of these more confined areas 

onto larger pastures. Cattle may be kept on these larger pastures into the fall and earlier 

winter depending on availability of feed and weather conditions. Calves are usually 

weaned in the fall, and at that time they may be sold or kept as replacement animals 

(Mathison, 1993).  

 

Because of management and environmental conditions, in-feed use of antimicrobials 

and routine injectable AMU in cow-calf herds is assumed to be less frequent than in 

other species. However, there are very limited data available to understand the selective 

pressures experienced in cow-calf herds. Four papers, two published and two un-

published, containing data on AMU in cattle were identified. In some cases it is not 

always clear whether the data provided pertains specifically to cow-calf herds, to beef 

cattle, or to cattle in general. This makes it very difficult to draw any conclusions about 

AMU practices within cow-calf herds.  
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A Michigan study of AMU in cattle collected information for 60 days prior to the 

administration of the questionnaire (Sayah et al., 2005). This study indicated that, 

during this time, no beef cattle were treated with any of the following drugs: 

streptomycin, trimethoprim-sulphamethoxazole, tetracycline, ampicillin, cloxacillin, or 

bacitracin (Sayah et al., 2005). The following drugs were used on 89 beef cattle 

reported as treated: enrofloxacin (2.5%), sulphamethazine (55.7%),  chlortetracycline 

(55.7%), oxytetracycline (16.5%), penicillin (2.5%),  ceftiofur (1.3%), and tilmicosin 

(27.9%)(Sayah et al., 2005). Dairy cattle on the other hand were treated differently 

(n=131) (Sayah et al., 2005) than the beef cattle. Streptomycin was used on 32.8%, 

sulphamethazine in 20.6%, trimethoprim-sulphamethoxazole in 1%, tetracycline, 

chlortetracycline and oxytetracycline in 12.7%, 21.4%, and 16.8% of the dairy cattle 

respectively (Sayah et al., 2005). Penicillin, ampicillin, cloxacillin, and ceftiofur were 

also used in 60.8%, 3.1%, 2.3%, and 19.9% of dairy cattle (Sayah et al., 2005).  

 

Bair and McEwen (2001) looked at AMU in the Ontario beef industry. This study 

included 16 feedlots and 13 cow-calf farms. The preliminary report indicated that 

oxytetracycline and tilmicosin were used prophylactically on 6/16 feedlots, whereas 

oxtetracycline or penicillin were used prophylactically on 3/13 cow-calf farms (Bair and 

McEwen, 2001). All feedlots used ionophore medication in the feed (Bair and McEwen, 

2001). Nine of 13 cow-calf herds used ionophores in feed (Bair and McEwen, 2001). 

No cow-calf herds used any other in-feed antimicrobials (Bair and McEwen, 2001). One 

feedlot and 1 cow-calf herd used water medication (Bair and McEwen, 2001). A sulpha 
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based drug was used in the feedlot and chlortetracycline was used in the cow-calf herd 

(Bair and McEwen, 2001). The most commonly used injectable drugs were: penicillin 

(45% of herds), florfenicol (35%), ceftiofur (17%), oxytetracycline (22%), tilmicosin 

(80%), and sulbactam-ampicillin (11%).  

 

A survey of Ontario beef producers’ attitudes about AMU was issued in 1999 

(Powell and Powell, 2001). A 4% response rate was achieved (Powell and Powell, 

2001). This represented 8% of the market steers, 7.5% of the market heifers, and 4.0% 

of the beef cows in Ontario (Powell and Powell, 2001). Of the 587 valid responses, 341 

came from cow-calf herds and 106 were from feedlots (Powell and Powell, 2001). The 

average cow-calf herd size was 40 animals, where half of the farmers reported 20 cows 

or less (Powell and Powell, 2001). The most commonly reported illness was diarrhea 

followed by respiratory disease (Powell and Powell, 2001). Approximately 1/3 of the 

farms reported treating less than 5% of their animals (Powell and Powell, 2001). 

Antimicrobial cost was determined to be an important factor in determining whether an 

antimicrobial was used or not. Most (94.4%) of respondents agreed that it is important 

to reduce AMU (Powell and Powell, 2001). The majority (78.0%) had concerns about 

negative media coverage and felt that his would cause them to re-evaluate their use 

practices (Powell and Powell, 2001). The injectable products used included: 

oxtetracycline (50.0%), penicillin (48.5%) tilmicosin (27.2%), trimethoprim-

sulphadoxine (23.0%), and florfenicol (14.6%) (Powell and Powell, 2001). Off label use 

of enrofloxacin was also reported on some farms (<1.0% of respondents) (Powell and 

Powell, 2001). Over half of the producers in this survey also did not know the 
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difference between an antimicrobial and other injectable products (Powell and Powell, 

2001). Prophylactic use was reported by 65 respondents, and 19 respondents reported 

treating the entire herd when only some animals were sick (Powell and Powell, 2001). 

A strong relationship was seen between treating less than 10% of the animals and 

having a regular veterinarian (Powell and Powell, 2001). 

 

Busani et al., (2004) did a similar survey to Powell and Powell (2001), but targeted 

beef and dairy cattle veterinarians rather than producers. This telephone survey included 

106 veterinarians; 62% treated only diary cattle, 10% treated only beef and 28% treated 

both (Busani et al., 2004). When treating mastitis, enteritis in calves, and when treating 

respiratory disease, laboratory analysis was requested always or frequently by 67.0%, 

37.0% and 17.0% of the veterinarians respectively. Prophylactic AMU for calf enteritis 

was used by 20% of veterinarians often or sometimes. For respiratory disease, 28% of 

veterinarians used prophylactic antimicrobials often or sometimes, and for mastitis, 

62% of the veterinarians reported using antimicrobials prophylactically always or often. 

Veterinarians reported using fluoroquionolones, phenicols, or third generation 

cephalosporins as the drugs of first choice for scours (54%), respiratory disease (12%), 

and mastitis (6%). Most veterinarians were aware of the problem of AMR (94%).  

 

2.10.2. Reason for treatment in cow-calf herds 

 

To date there is also very little information on reason for treatment and AMR in the 

beef industry particularly in cow-calf herds, and there is no information available on 

western Canadian cow-calf herds. The National Animal Health Monitoring System 
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(USDA) is the only available source that provides some insight into the reason for 

treatment in cow-calf herds. USDA (1997) reported a relatively low occurrence of 

disease and treatment in breeding females of cow calf herds. Pinkeye and interdigital 

necrobacillosis were listed as the two primary disease conditions reported among 

breeding females; whereas, diarrhea, followed by pneumonia, were the two most 

commonly reported illness in beef calves (USDA, 1997).  

 

2.10.3. Antimicrobial resistance 

 

The most common resistances detected in fecal E. coli isolates in a variety of species 

has been to tetracycline, sulphamethoxazole, and streptomycin (Kijima-Tanaka et al., 

2003, Khachatryan et al., 2004, Bywater et al., 2004). A similar trend would be 

expected in beef cattle from western Canada. However, the proportion of resistant 

organisms could potentially vary between livestock species and management systems; 

several examples of this are provided.  

 

A study of AMR in E. coli isolated from healthy poultry, pigs, and beef cattle 

demonstrated a diverse range of the proportion of isolates resistant for each species 

investigated and for each antimicrobial (Kijima-Tanaka et al., 2003). In general terms 

broilers had more resistance than pigs which had more resistance than cattle. For 

example, resistance to oxytetracycline ranged from 25 and 69% for cattle and broilers 

respectively (Kijima-Tanaka et al., 2003). This study also reported that fluoroquinolone 

resistance was 10% in broilers, while in cattle and pigs fluoroquinolone resistance was 

detected in <1% of the isolates (Kijima-Tanaka et al., 2003).  
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Schroeder et al., (2002) demonstrated similar trends in their study of E. coli 0157 

isolated from diagnostic samples collected from humans, cattle, swine, and food. Swine 

were found to be the most resistant species investigated in this study. 

Sulphamethoxazole resistance was detected in 74% of the swine isolates, tetracycline 

resistance was detected in 71% of the swine isolates, and cephalothin resistance was 

detected in 54% of the swine isolates (Schroeder et al., 2002). The type or age of the 

cattle was not specified, but 14% of the cattle isolates were positive for 

sulphamethoxazole resistance, 20% were positive for tetracycline resistance, and 3% 

were positive for ampicillin resistance (Schroeder et al., 2002). 

 

Sayah et al. (2005) also reported AMR patterns obtained from domestic and wild 

animal fecal samples, human septage, and surface water. The animal samples were 

collected from beef (7 farms), dairy (7 farms), swine (5 farms), horses (2 farms), sheep 

(6 farms), goats, chickens (2 farms), cats, dogs, deer (2 farms), ducks, and geese. The 

actual number of antimicrobials present in multiple resistant isolates was highest in 

swine, followed by dairy, poultry, and then beef cattle (Sayah et al., 2005). The highest 

levels of AMR varied depending on the antimicrobial of interest and the livestock 

species. Companion animals had the most resistance detected to cephalothin (38%), 

followed by small ruminants (22%), and then cattle (21%). Swine (63%) had the most 

isolates resistant to tetracycline, followed by poultry (35%), and small ruminants (24%) 

(Sayah et al., 2005).  
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A study examining the point prevalence of AMR E. coli O157 in Saskatchewan 

feedlot cattle reported that of 131 isolates, 65% were resistant to at least one 

antimicrobial tested (Vidovic and Korber, 2006). No resistance was observed to 

amikacin, ampicillin, amoxicillin-clavulanic acid, ceftriaxone, ciprofloxacin, cefoxitin, 

gentamicin, kanamycin, nalidixic acid, trimethoprim-sulphamethoxazole, and ceftiofur 

(Vidovic and Korber, 2006). Sulphasoxizole and tetracycline resistance were detected in 

61% and 12% of the isolates respectively (Vidovic and Korber, 2006). Chloramphenicol 

and streptomycin resistance was detected in 2.3% of the isolates (Vidovic and Korber, 

2006).  

 

In a longitudinal feedlot study performed in Alberta, cattle were sampled on arrival, 

at day 70 and again prior to slaughter. Animals were examined for vancomycin-resistant 

Enterococcus faecium (VRE) and Enterococcus faecalis, for Salmonella; quinolone or 

macrolide resistant thermophilic Campylobacter; and quinolone, aminoglycoside, or 

beta-lactam resistant E. coli (Read et al., 2004). No VRE and no Salmonella were 

detected. Low levels of ciprofloxacin, enrofloxacin, azithromycin, gentamicin, and 

meropenem resitance were observed in the Campylobacter isolates (Read et al., 2004). 

No ciprofloxacin resistant E. coli were detected, and only low levels of getamicin 

resistance was detected in E. coli (Read et al., 2004).  Ampicillin resistance was 

detected in 15% of the animals on entry, 60% at the interim sampling, and 63% prior to 

slaughter (Read et al., 2004). Ampicillin resistance was associated with florfenicol use 

and with tetracycline in feed (Read et al., 2004). A subset of the ampicillin resistant 

isolates were also blaCMY-2 positive (Read et al., 2004). The presence of the blaCMY-2 
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gene was associated with therapeutic use of florfenicol, oxytetracycline and tilimicosin 

at entry into the feedlot (Read et al., 2004).  

 

Two dairy cattle prevalence papers were also identified to demonstrate the range of 

AMR in this livestock sector. In one study, of 213 lactating dairy cows on 23 herds in 

Pennsylvania, E. coli isolates were found to be resistant to ampicillin (48%), ceftiofur 

(11%), florfenicol (78%), chloramphenicol (20%), spectinomycin (18%) and 

tetracycline (93%) (Sawant et al., 2007). Multi-drug resistance (≥3 antimicrobials) was 

detected in 40% of the E. coli isolates (Sawant et al., 2007). The most common multiple 

drug resistance pattern contained ampicillin, florfenicol and tetracycline; 36% of the 

multi-resistant isolates contained this pattern (Sawant et al., 2007). The second dairy 

study examined 96, 1 to 9 week old dairy calves from a single herd in Pennsylvania. 

AMR E. coli was found in 100% of the isolates (n=122) (Donaldson et al., 2006). All 

isolates contained both ampicillin and ceftiofur resistance. High levels of resistance 

were also detected for chloramphenicol (94%), florfenicol (93%), gentamicin (89%), 

spectinomycin (72%), tetracycline (98%) and ticarcillin (99%) (Donaldson et al., 2006). 

Cluster analysis indicated that 63% of the isolates belonged to one group (Donaldson et 

al., 2006). The blaCMY2 gene was found in 96% of the ceftiofur resistant isolates 

(Donaldson et al., 2006).  

 

Both beef and dairy calves were included in a study from Scotland. This project 

examined 72 beef suckler calves and 29 dairy calves on 15 cattle farms with cases of 

active enteritis and 9 farms without active cases of enteritis (Gunn et al., 2003). 
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Between 1 and 9 animals were sampled on each farm. Ampicillin resistance was 

founding 84% of the isolates, apramycin resistance in 13% of the isoalates, and 

nalidixic acid resistance in 6% of the isolates (Gunn et al., 2003). AMR was more 

frequently detected in the calves with enteritis than in the controls (Gunn et al., 2003). 

In calves with diarrhea, 95% of the isolates were resistant to ampicillin, 22% to 

apramycin, and 11% to nalidixic acid (Gunn et al., 2003). In control calves, 70% of the 

isolates were resistant to ampicillin, 2% to apramycin, and 0% to nalidixic acid (Gunn 

et al., 2003).  

 

Hoyle et al. (2006) investigated AMR on an organic beef farm in Scotland over a 28 

month period. Multiple resistance was found in >44% of the isolates with ampicillin, 

neomycin, sulphamethoxazole, and tetracycline resistance being the most common 

(Hoyle et al, 2006). In all calf cohorts examined, the peak monthly prevalence for 

ampicillin resistance ranged from 47 to 100% (Hoyle et al, 2006). Apramycin and 

nalidixic acid resistant E. coli were not detected in any fecal samples Hoyle et al, 

(2006).  

 

These papers illustrate a wide range of resistance prevalence depending on the 

species of livestock investigated and the antimicrobial of interest. Even within cattle 

there are numerous AMR patterns and frequencies. Since cattle data are often presented 

together (dairy, feedlot, cow, calf), or as dairy or feedlot specifically, no information 

was found for cow-calf herds.  
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2.10.4. Distribution of AMR in cattle populations 

 

Earlier research has indicated that prevalence of resistance is not equally distributed 

by age (Brophy et al., 1977, Hinton et al., 1984, Hinton, 1985, Matthew et al., 1999, 

Khachatryn et al., 2004). Typically AMR is highest in young animals (Khachatryn et 

al., 2004) and declines linearly with age (Hoyle et al., 2004). This phenomenon is not 

fully understood, but various theories have been investigated.  

 

Hoyle et al. (2004) demonstrated that calves preferentially lost resistant relative to 

susceptible bacteria as they aged. Additionally, other research has indicated that even in 

the absence of antimicrobials, a high prevalence of AMR could be maintained because 

the resistant strains had a fitness advantage in young calves but not in older animals 

(Khachatryan et al., 2004). The presence of these resistant E. coli in the absence of 

treatment/selective pressure could be due to fitness traits that make them better able to 

compete in the calf gut compared to susceptible organisms. These traits may include 

non-scavenging mechanisms (siderophores), increased adhesion and mechanisms that 

enhance colonization, reproduction, and spread (Simmons et al., 1988, Visca et al., 

1991, Allen et al., 1993, Mandal et al., 2001). 

 

2.10.5. Risk factors for AMR in calves 

 

A recent study of commensal E. coli isolated from pre-weaned dairy calves on 

dedicated calf rearing facilities (calf ranches) and on dairy farms described many factors 

associated with AMR (Berge et al, 2003, Berge et al, 2005a). Farm type, animal source, 
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calf age, and individual treatments were important predictors of the odds of E. coli 

belonging to resistant clusters (Berge et al., 2005a). Calves 2 weeks of age and older 

were more likely to carry multiple antimicrobial resistant organisms than day old 

calves. Calves on a dedicated calf rearing facility were also more likely to be carrying 

multiple resistant E. coli than calves reared on traditional dairy farms. E. coli isolated 

from calves treated with antimicrobials within 5 days of sampling were also more likely 

to be multiply resistant than E. coli isolated from calves not exposed to antimicrobial 

therapy. The authors concluded that the higher levels of resistance in calves raised on 

calf ranches was a result of selective pressure due to antimicrobials in the milk replacers 

throughout the pre-weaning period. Similarly, it was concluded that systemic 

antimicrobial treatment within 5 days of sampling also applied selective pressure on the 

enteric commensal flora.  

 

Additional work by Berge et al. (2006) investigating prophylactic and therapeutic 

antimicrobial administration on AMR of fecal E. coli in dairy calves indicated that in-

feed antimicrobials were associated with higher levels of multiple AMR; that in calves 

not receiving in-feed antimicrobials, older calves had higher levels of multiple AMR 

than day-old calves; and that individual treatment with antimicrobials transiently 

increased resistance. Based on this and the previously mentioned studies, they 

concluded that the occurrence of AMR in commensal E. coli is dominated by selective 

influence.  
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Further work indicated that in feedlot cattle, treated animals shed a larger proportion 

of resistant organisms in their feces initially after therapy, but that this level declined 

gradually over 4 weeks (Berge et al., 2005b). Despite transient increased shedding of 

resistant organisms in the treated individuals, there was no effect on the shedding of 

resistant organisms in the untreated pen mates (Berge et al., 2005b). The authors 

concluded that this demonstrated that there is limited transfer of AMR bacteria from 

treated to untreated animals (Berge et al., 2005b). 

 

The above feedlot study also demonstrated an interesting dynamic of AMR. The 

calves for the study came from two sources. While individual animal treatment records 

were not available, calves at neither source farm had exposure to antimicrobials in the 

feed prior to arrival at the feedlot, but E. coli isolated from calves from one source 

appeared more susceptible on arrival than E. coli isolated from calves originating from 

the other farm (Berge et al., 2005b). The calves from the source farm that were 

shedding E. coli with lower levels of AMR at arrival eventually did shift to higher 

levels of resistance over time ultimately leading to a more uniform distribution of AMR 

regardless of farm of origin. From this the authors hypothesized that the original source 

of calves may impact fecal E. coli patterns initially, but over time the feedlot 

environment dictates what patterns eventually become established.  

 

2.10.6. How this thesis will fill in the gaps demonstrated in this review 

 

There are very few data on AMU and AMR in beef cattle and no information on 

western Canadian cow-calf herds. For the few studies available, the age and type of 
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animal being sampled are not always defined. In order to appreciate the potential 

diversity of AMR in cow-calf herds, a methodical sampling approach is necessary to 

investigate AMR patterns in the primary age groups found in cow-calf herds. Risk 

factors for AMR development in cow-calf herds also need to be identified including 

information about the reasons for treatment and the types of antimicrobials used. To 

date this information is not available.  

 

2.11. Concluding statements 

 

AMR is a complex issue. While in the last several years great strides have been made 

in gaining a better understanding of the underlying genetic mechanisms for AMR, there 

is still much to be learned. The issue of AMU in livestock and its subsequent impact on 

human health will probably continue to be debated despite the growing knowledge base 

that is being accumulated. While this question may be a long way from being resolved 

any additional work investigating the development of AMR in animals and in people 

will help add an additional piece to the puzzle. Despite a growing body of information 

on AMR scientists are still struggling with grasping all the intricacies of this subject.  

 

When it comes to AMU in livestock the knowledge gap grows exponentially. In 

order to be able to appreciate the true impact of livestock AMU on AMR, a much better 

system of collecting and reporting AMU needs to be developed. For most countries, and 

in the majority of species, unfortunately the reality of collecting good AMU data at this 

time is truly limited.  
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Since AMR is generally a sporadically encountered problem in therapeutic failure in 

veterinary medicine, it may be perceived by some as a non-issue. Unfortunately, it is 

not just therapeutic failure that veterinary medicine and the livestock industry need to 

be concerned with, but it is also the public perception of our role in the spread of AMR 

through “over” use of antimicrobials in the rearing of animals. Public perception and 

intensive scrutiny of AMU in food animal production may ultimately lead to the 

banning of certain antimicrobials and future limitations on the approval of specific 

antimicrobials for use in animals. Our current AMU practices may also lead to potential 

trade barriers from countries that have already banned in feed antimicrobials. 

Unfortunately, in Canada, despite research and surveillance efforts, there are still large 

gaps in our understanding of AMU and AMR. By expanding our current knowledge and 

by conducting research at all levels of the food chain, science can be used to help ensure 

that antimicrobials will remain viable and available for the health and welfare of both 

humans and animals. 
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CHAPTER 3 
ANTIMICROBIAL USE IN 203 WESTERN CANADIAN COW-CALF HERDS 

 

3.1. Introduction 

 

The treatment of infectious disease in food producing animals is an essential 

component of veterinary medicine. Antimicrobial therapy is an important tool available 

to producers and veterinarians and is necessary to ensure that animal health and welfare 

are maintained. In addition to therapeutic use, antimicrobials are also used non-

therapeutically to prevent disease, for growth promotion, and to increase production 

efficiency.  

 

Antimicrobial use (AMU) in food animal production is under increasing scrutiny 

because of reports in both the scientific literature and lay media concerning 

antimicrobial resistance (AMR) and the emergence of multi-resistant pathogens. Most 

authorities believe the association between AMU and AMR to be virtually certain 

(Shales et al., 1997). There is literature supporting the link between the use of 

antimicrobials in both people and animals and the selection for resistant bacterial 

populations (Sandvang et al., 1997, Tollefson et al., 1997, Barton, 1998, Levy, 1998). If 

a link between AMU and AMR is accepted, then the question becomes whether the 

populations of resistant bacteria identified in people and animals are independent or 

whether they comprise a common pool and pose a potential threat to both human and 
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animal health (Salyers and Cuevas, 1997, Barton, 1998). If human and animal bacterial 

populations comprise a common pool, then AMU in animals could impact the AMR in 

both animal and human populations. 

 

Resistance mechanisms have been described and identified for all antimicrobials that 

are currently available for clinical use (McDermott et al., 2002). Research demonstrates 

that both veterinary and human pathogens such as Escherichia coli (Sidjabat et al., 

2006), Salmonella spp. (Lopes et al., 2006), Enterococcus spp. (Manero et al., 2006), 

Staphylococcus spp. (Guardabassi et al., 2004, Sabour et al., 2004), and Campylobacter 

spp. (Randall et al., 2003) have acquired multiple resistant phenotypes. Options for 

antimicrobial therapy against disease caused by these organisms could become limited 

or non-existent in the near future (Levy, 1994, ASM, 1995, Gold and Moellering, 1996, 

Salyers and Cuevas, 1997, Levy, 1998). This concern has resulted in increased 

awareness about AMU and the subsequent development of AMR.  

 

While many countries are developing surveillance systems for AMU and AMR, 

there is little information on which antimicrobials are used, how they are used, and in 

what quantities. While a few studies have provided some insight to more intensive 

livestock production units such as hog farms (Dunlop, 1998, Rajic, 2006), there is no 

information about AMU in western Canadian cow-calf herds.  

 

Based on farm cash receipts the beef industry is the largest livestock commodity in 

Canada (Statistics Canada, Accessed May 18, 2007, 
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http://www.statcan.ca/Daily/English/07022007/d070227a.htm). The provinces of 

Alberta and Saskatchewan contain more than 65% of the beef cow, breeding heifer, and 

calf populations in Canada (Statistics Canada, Accessed July 25, 2006, 

http://www.40.statcan.ca/101/cst01/prim50a.htm). A better understanding of AMU 

patterns in this population is essential to develop a baseline and determine the need for 

future monitoring in the Canadian cow-calf industry.  

 

The objective of this study was to describe the frequency of treatment with 

antimicrobials, common reasons for AMU, and the types of antimicrobials used in 

western Canadian cow-calf herds. It was beyond the scope of this project to attempt to 

quantify the amount of antimicrobials used in these operations.  

 

3.2. Materials and methods 

 

3.2.1. Background and herd selection 

 

The herds examined in this study were part of a multifaceted survey of risk factors 

affecting the productivity and health of cow-calf herds in western Canada 

(https://www.wissa.info). Sixty-one private veterinary clinics across Alberta, 

Saskatchewan, and north-eastern British Columbia were approached and asked to 

participate. Within each practice, herds were identified and enrolled based on the 

selection criteria which considered herd size (>50 cows), animal identification, existing 

calving records, animal handling facilities, routine testing for pregnancy and for bull 

breeding soundness, and relationship with a local veterinary clinic. Only herds using a 
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winter/spring calving season were enrolled in the study. Participating herds were visited 

regularly by one of six veterinarians contracted by the University of Saskatchewan to 

collect samples and data and to monitor the quality and consistency of on-farm records. 

 

The individual animal treatment records from January 1 to June 30, 2002 were 

summarized for 203 study herds. Calf and cow/heifer treatment data were investigated 

separately. In the first step of the analysis only calf treatment data were considered. The 

analysis was restricted to information collected for calves born alive between January 1 

and May 31, 2002. Risk factor data were summarized for calves and their dams meeting 

the inclusion criteria (Table 3.1). The second step of the analysis included treatment 

data reported for all cows, bred heifers and yearling heifers in the herd on January 1, 

2002. Cows and bred heifers with stillborn calves, non-pregnant cows and heifers were 

also incorporated into the total number of animals available for investigation (Table 

3.2). Any cows or heifers purchased after January 1, 2002 were not included.  

 

Available calving records for each cow/heifer included cow/heifer identification, calf 

identification, date of calving, single or twin birth, sex of the calf, the type of assistance 

provided to the cow/heifer, any post calving problems, and calving outcome (born alive, 

stillbirth, died later). If the calf died, the date of death was also reported. Other data 

recorded for each herd included: the ecological region in which the herd was located, 

the veterinary clinic servicing the herd, vaccination status for infectious bovine 

rhinotrachietis (IBR), bovine viral diarrhea virus (BVDV), and also for neonatal 

diarrhea (coronavirus, rotavirus, and E. coli). Cow/heifer body condition (BCS) was 
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scored (9-point scale) at the time of pregnancy diagnosis and again before or during the 

early part of the calving season.  

 

3.2.2. Antimicrobial use data collection 

 

Data on AMU were collected using individual treatment records as well as a herd 

level questionnaire. Producers were provided with a standardized treatment book for 

recording the date of treatment, animal identification, class of animal, reason for 

treatment, type of treatment, outcome, and other notes. A coded list was provided to 

help standardize the responses for class of animal, reason for treatment, type of 

treatment, and outcome. Animal class included: calf, cow, heifer, and bull. Scours 

(diarrhea), navel ill (omphalitis), pneumonia, bloat (ruminal typmpany), arthritis, 

pinkeye (infectious keratoconjunctivitis), coccidiosis, and other were included as 

possible diagnoses. Treatment type was coded as injectable antimicrobial, oral 

antimicrobial, oral and injectable antimicrobial, fluids, and other. Outcome options 

included: survived, died later, slaughtered, and unknown. A notes section allowed 

producers to write in any comments. Where possible the notes section was used to help 

further classify diagnoses or treatments recorded.  

 

Producers could report more than one reason for or type of treatment for each 

treatment episode. The producer was asked to record each treatment occurrence 

however, animals reported as treated more than once for the same diagnosis within a 

seven day period were classified as having one treatment event for the purpose of 

analysis. 
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Treatment data were then summarized in two ways. To attempt to provide an 

estimate of treatment intensity per herd for the period of January 1 to June 30, 2002, a 

count of total treatment events per herd was determined. This was calculated separately 

for both cows/heifers and calves and was reported as the number of treatment events per 

every 100 animals at risk. Animals at risk included the total number of calves or 

cows/heifers in the study for this time period. Treatment occurrence was also 

summarized separately for calves and cows/heifers as risk or cumulative incidence. This 

was calculated as the number of calves (or cows/heifers) that were reported as ever 

having been treated as a percentage of the number of calves (or cows/heifers) in the 

herd at risk of treatment during the study period. 

 

The individual animal records did not consistently include information on the type of 

AMU for treatment, therefore, a questionnaire was developed to identify the types of 

antimicrobial products most commonly used on each cow-calf farm. Herd owners were 

asked about the frequency of use for sulphonamides, tetracylcines/oxytetracyclines, 

trimethoprim/sulphadiazine, and penicillins. Antimicrobials that did not fall into these 

broad categories were classified as “other”. Lists of common trade names were 

provided under each group to simplify the selection of the appropriate drug by the 

producer. Producers were asked to report separately the number of treatments for both 

cows and calves for each drug category listed above. The number of treatments for each 

category was coded as follows: l to 3 animals treated, 4 to 10 animals treated, and 

greater than 10 animals treated.  
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The quality of the treatment records were assessed at the end of the study. The 

veterinarians responsible for data collection and entry were asked for a crude subjective 

and comparative assessment of the quality of the data. They classified the data for each 

herd into one of the following categories: excellent, good or satisfactory, and less than 

satisfactory. Herd owner compliance in completing treatment records was also 

evaluated by considering the relative frequency of calf mortality in the herds that did 

not report any treatments. Complete calf mortality records were available for 

comparison from the baseline productivity study. The plausibility of no reported 

treatments was assessed when compared to the percent calf death loss in each herd.  

 

3.2.3. Statistical analysis 

 

All data were entered into a computerized database (Microsoft® Office Access 2000, 

Microsoft Corporation). Descriptive analyses were completed and variables were 

recoded as necessary for statistical modeling using commercially available software 

programs (SPSS 11.0 for Windows, SPSS Inc., Chicago, Illinois).  

 

3.2.3.1. Mixed models for discrete data 

 

Factors affecting the occurrence of treatment, a class variable with two levels 

(treated or not treated), were examined in both cows/heifers and calves using mixed 

models with a binomial distribution and logit link function. The calculations were 

performed using penalized quasi-likelihood estimates (2nd order PQL) (MLwiN version 
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2.0, Centre for Multilevel Modelling, Institute of Education, London, UK). The strength 

of the association between outcome and exposure was reported as an odds ratio (OR) 

with 95% confidence intervals.  

 

A null model (intercept only) was created for each outcome variable. Random 

intercepts were examined to assess degree of clustering for treatments reported within 

herd, veterinary clinic, and ecological region (ecoregion). Ecoregion is a geographical 

delineation characterized by regional ecological factors such as vegetation, soil, climate, 

water and fauna (Wiken, 1986). Within-herd clustering was accounted for as a random 

intercept in all models. The importance of veterinary clinic and ecoregion as random 

effects were considered for inclusion in the final model if the variance estimate for the 

random effect was larger than its standard error. Models were checked for the presence 

of extra-binomial variation, but extra-binomial parameters in the range of 0.9 to 1.0 

were reset at 1.0 (binomial variation). 

 

Data from the null models were used to estimate the intra-class (i.e., intra-herd) 

correlation coefficient (ρ=σ2
h/(σ2

h+π2/3)) to measure clustering of each outcome within 

herd. The null models were also used to generate population-average estimates of the 

risk of calf and cow/heifer treatment using the formulas βPA≈βSS/√(1+0.346 σ2
h) (Dohoo 

et al., 2003).  

 

The unconditional associations between each of the potential risk factors (Table 3.1 

for calves and Table 3.2 for cows/heifers) and the odds of treatment were examined. All 
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potentially important risk factors (P≤0.25) were identified and a final model was then 

developed using backwards stepwise elimination.  

 

Any potential risk factors where P<0.05 or that were acting as important confounders 

(removal of the potential risk factor from the model changes the effect estimate for the 

exposure by≥20%) were retained in the final model. After establishing the main effects 

model, biologically reasonable first order interaction terms were tested if two or more 

variables (P<0.05) were retained in the final model. The adequacy of all models was 

evaluated using plots of residuals to check that all assumptions had been met as 

appropriate. 

 

Associations between calf treatment and mortality were investigated using 

generalized estimating equations (SAS v.8.2 for Windows (PROC GENMOD); SAS 

Institute, Cary, North Carolina, USA). The number of calves with any treatment 

(numerator) as a proportion of the total number of calves in the herd (denominator) was 

the outcome of interest. The predictor variable, percent calf mortality, was categorized 

into quartiles (<2%, 2-5.9%, 6-14.9% and >15% mortality) with mortality >15% as the 

reference. The model specifications included a binomial distribution, logit link function, 

repeated statement with subject equal to herd, and an exchangeable correlation 

structure.  
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3.3. Results 

 

3.3.1. Farm and animal information 

 

Records from 203 herds across Alberta (146), Saskatchewan (53), and northern 

British Columbia (4) were included. On January 1, 2002, herd size ranged from to 53 to 

481 mature/breeding females, with a median herd size of 154. Of the 203 included in 

the study, 169 herds (83.3%) had between 100 and 400 mature/breeding females.  

 

3.3.1.1. Calf population 

 

Between January 1 and May 31, 2002, 28,573 calves were born alive; the majority of 

calves were born in March and April (64%; 18,285/28,573). Most calves born alive 

were unassisted; 4.4% of live births were twins (Table 3.1). About half of the dams 

were vaccinated for IBR/BVDV prior to breeding in 2001, while about one third of the 

dams received some type of vaccination to prevent neonatal calf bacterial or viral 

diarrhea (Table 3.1). Most cows had a BCS of 5 or higher on a 9-point scale at 

pregnancy testing and again at calving (Table 3.1).  

 

3.3.1.2. Cow and heifer population 

 

There were 36,634 cows and heifers reported in study herds on January 1, 2002. This 

number included all cows/heifers that had calves born alive from January 1 to May 31, 

2002, cows/heifers that had abortions or stillborn calves during this period, and any 
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non-pregnant cows/heifers and replacement heifers. The majority of cows were between 

4 and 10 years of age (Table 3.2). Dystocias were reported in <10% of cows/heifers, 

and <1% of cows/heifers had post partum complications such as retained placentas, 

prolapses, or metritis (Table 3.2).  

 

3.3.2. Individual animal records of treatment and diagnosis 

 

3.3.2.1. Individual calf treatment records 

 

Herd owners reported treating 13.5% (95% CI; 10.7 to 17.0%) of the calves at least 

once between January 1 and June 30, 2002. The median age of calves at the time of 

their first treatment was 11 (range, 0-141) days of age and 58.6% (2171/3702) of the 

treated calves were between birth and 14 days of age. The median percent of calves ever 

treated per farm was 6.5% (range, 0-100%). After accounting for the records where an 

individual calf was treated more than once, the median number of treatment events per 

farm was 6.8 (range 0-104) for every 100 calves at risk.  

 

The most commonly recorded calf treatment was antimicrobial injection (Table 3.3). 

Injectable antimicrobials were used in 56 (27.6%) herds on <1% of the calves, in 70 

(34.5%) herds on 1-5% of the calves, in 56 (27.6%) herds on 5-15% of the calves, and 

in 23 (11.3%) herds on >15% of the calves. Four herd owners treated 50-80% of the 

calves and 3 herd owners treated all of their calves at least once. The maximum number 

of times a calf was treated with injectable antimicrobials was 14 (median, 1; range, 0-

14). 
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The second most commonly reported protocol for calves included treatment with 

both oral and injectable antimicrobials at the same time (Table 3.3). Oral and injectable 

antimicrobials were used on <1% of the calves in 130 (64.0%) herds, on 1-5% of the 

calves in 40 (19.7%) herds, on 5-15% of the calves in 23 (11.3%) herds, and on >15% 

of the calves in 10 (4.9%) herds (maximum, 42.3%).  

 

Oral antimicrobials alone were used in <2% of calves (Table 3.3). One hundred and 

forty-four (70.9%) herd owners treated <1% of their calves with oral antimicrobials, 40 

(19.7%) treated 1-5% of the calves, 13 (6.4%) treated 5-15% of the calves, and 6 (2.9%) 

treated between 15-51% of their calves with oral antimicrobials.  

 

3.3.2.2. Individual calf records of diagnoses 

 

Diarrhea was the most commonly reported reason for treatment in calves and was 

diagnosed in over 5% of the calves and on 60% of the farms (Table 3.4). The percent of 

calves treated per farm ranged from 0 to 89.0% (median, 4.3%). Of the 203 

herds/producers, 145 (71.4%) producers treated 0-5% of their calves for diarrhea, 20 

(9.9%) producers treated 5-10%, 25 (12.3%) producers treated 10-20%, and 13 (6.4%) 

producers treated >20% of their calves for diarrhea.  

 

The next most common reason for treatment was pneumonia (Table 3.4). Just over 

2% of the calves were diagnosed with pneumonia, and calf pneumonia was reported as 

a reason for treatment on 50% of the farms (Table 3.4). Pneumonia treatment rates per 
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farm ranged from 0-52.3% (median, 2.0). One hundred and twenty-six (62.1%) 

producers treated ≤1% of their calves, 51 (25.1%) producers treated 1-5% of their 

calves, 20 (9.9%) producers treated 5-15% of their calves, and 6 (2.9%) producers 

treated >15% of their calves for pneumonia. 

 

Treatment and prevention of omphalitis (navel infection) made up the third most 

common recorded reason for treatment (Table 3.4). Four producers treated between 65 

and 100% of their calves prophylactically for omphalitis.  

 

3.3.2.3. Individual cow treatment records 

 

Between January 1 and June 30, 2002, 2.7% (95% CI; 2.2 to 3.4%) of the cows and 

heifers were treated at least once. The median percent of cows/heifers ever treated per 

farm was 0.9% (range 0-14.7%). Since the majority of cows/heifers were only treated 

once during this time period the number of treatment events per 100 cows/heifers at risk 

was also 0.9 (range 0-14.7). 

 

The most commonly reported treatments in cows and replacement heifers were with 

injectable antimicrobials (Table 3.5). Very few cows or heifers were reported to receive 

either oral antimicrobials or oral and injectable antimicrobials together (Table 3.3). Oral 

treatments were only given in 2 (1.0%) herds and to <3% of the cows in these herds; 

whereas, oral and injectable treatments were given in 5 (2.5%) herds to <1% of cows. 

One hundred and eleven (54.7%) producers treated <1% of their cows with injectable 
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antimicrobials, 69 (34.0%) producers treated 1-5% of their cows, and 23 (11.3%) 

producers treated >5% of their cows with injectable antimicrobials.  

 

Treatments other than antimicrobials were a more commonly reported for cows and 

heifers than for calves (Table 3.3). Treatments categorized as “other” were given on 46 

(22.7%) herds to 0.2-5% of the cows. Other treatments included non-antimicrobial 

treatments such as mineral oil or other products for gastrointestinal disorders. The only 

antimicrobial treatment included in the other category was intra-mammary treatments 

for mastitis. Intramammary products were used on 3.0% of the farms (Table3.6).  

 

3.3.2.4. Individual cow records of diagnoses 

 

Metritis, interdigital necrobacillosis (footrot), and retained placenta were the most 

commonly reported reasons for treatment of cows and heifers (Table 3.5). Metritis was 

diagnosed and treated in <1% of the animals in 182 (89.7%) herds, in 1-2% of the 

animals in 9 (4.4%) herds, and in >2% of the animals in 12 (5.9%) herds. One hundred 

seventy-four (85.7%) herd owners treated <1% of their cows, and 29 (14.3%) of herd 

owners treated 1-5% of their cows for interdigital necrobacillosis. Retained placentas 

were diagnosed and treated in <1% of the animals in 173 (85.2%) herds, in 1-2% of the 

animals in 20 (9.8%) herds, and in 2% of the animals in 10 (4.9%) herds.  
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3.3.3. Antimicrobial use 

 

The most commonly reported antimicrobials used in calves included (Table 3.6): oral 

sulphonamides, florfenicol injectable, and long acting injectable oxytetracycline. Long 

acting oxytetracycline injectable, benzathine/procaine penicillin G, and procaine 

penicillin G injectable were the antimicrobials most commonly reported to have been 

used in the cows and replacement heifers (Table 3.7). When all AMU was summarized 

for each herd, the most commonly reported antimicrobials were oxytetracycline, 

penicillin, and florfenicol (Table 3.8).  

 

Ionophores were used in the feed of cows or heifers in 28.6% (58/203) of the herds. 

Of the herds using ionophores 86.2% (50/58) were including ionophores in both the 

cow and heifer rations, 10.3% (6/58) were including ionophores in heifer ration only 

and 3.4% (2/58) were including ionophores in the cow ration only. Reason for use was 

not clearly specified. 

 

Specific treatment information was investigated for two antimicrobials of interest, 

enrofloxacin and florfenicol. Enrofloxacin was reported as used on 287 calves in 8 

herds. One herd reported treating 172 of 191 (90.1%) calves with a combination of 

enrofloxacin and sulbactum-ampicillin. For all calves treated with enrofloxacin, the 

recorded reason for treatment was scours. Florfenicol was listed specifically in the notes 

section for the treatment records of 92 calves on 17 farms. Of these 92 calves, 41 

(44.6%) were treated for diarrhea, 31 (33.7%) for omphalitis, 5 (5.5%) for pneumonia, 1 

(1.1%) for arthritis, and 14 (15.2%) for other reasons. 
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3.3.4. Effect of herd, veterinary clinic, ecoregion, and other risk factors on 
reported treatment practices for calves and cows  

 

Neither location of the herd by ecoregion or accounting for differences between 

referring veterinary clinics explained a substantial part of the variation in reported 

treatment practices for either calves or cows. However, treatment practices were 

clustered within herd (calf treatment ρ=0.21, cow treatment ρ=0.20).  

 

Calf gender, the need for assistance at parturition, and the percent of cows/heifers 

treated in the herd were unconditionally associated with the odds of a calf having been 

reported as being treated by the herd owner (Table 3.9). After accounting for other 

variables in the model, male calves were at higher risk than female calves to have been 

treated, and calves that had a history of intervention during calving were more likely to 

have been treated than calves that were born unassisted (Table 3.10). Also, for every 

1.0% increase in cow/heifer treatment the odds of calf being treated increased by 1.2 

times (Table 3.10). 

 

Initial analysis of the heifer and cow data demonstrated that yearling heifers were 0.2 

times (95% CI 0.2-0.3, P=0.0001) as likely to be treated than all other breeding females. 

Other risk factors such as breed, precipitation, and body condition score, did not 

significantly contribute to the odds of a cow or heifer being treated.  

 



96 

Assessment of pregnant cow or heifer vaccination status and calving related factors 

was completed only for mature females with calving records in 2002 (Table 3.11). After 

accounting for other risk factors, cows or first-calf heifers that had a problem post 

calving such as a prolapse, retained fetal membranes, or metritis were more likely to be 

treated than cows or heifers that did not have a problem post calving (Table 3.12). Also, 

cows or heifers that needed assistance at calving were more likely to be treated than 

cows or heifers that did not.  

 

3.3.5. Assessment of the quality of treatment records 

 

The veterinarians responsible for data collection and entry subjectively rated 39% of 

the herd treatment records as excellent, 41% as good or satisfactory, and 20% as less 

than satisfactory. Herd owner compliance in recording these data was also investigated 

by comparing herd calf mortality and treatment rates in the 28 (13.7%) herds that had 

no reported treatments. Of these herds, 4 had no calf mortality, 10 had <2% calf 

mortality, 8 had 2-5% calf mortality, 4 had 5-10% calf mortality and 2 had >10% calf 

mortality.   The risk of calf mortality was not associated with the proportion of calves 

treated in the study herds (P=0.6). 

 

3.4. Discussion 

 

This study is the first documentation of AMU and rationale for treatment in 

extensively managed cow-calf herds in western Canada. At least 86% of herd owners 

treated one or more calves or cows and heifers during the study period; however, less 
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than 15% of both calves and cows/heifers were reported as treated. The relatively small 

proportion of treated animals is consistent with the finding that the primary reasons for 

antimicrobial use in cow-calf operations were for individual therapeutic uses rather than 

prophylaxis, metaphylaxis, or growth promotion. In contrast, between 75-90% of all 

dairy cattle receive prophylactic antimicrobials to prevent mastitis (Sishco et al., 1993, 

USDA, 2003). Depending upon the size of the feedlot, the type of cattle placed and 

bovine respiratory disease risk designation, anywhere between 16-19% of feedlot cattle 

in the United States (USDA, 1999) and 20-50% of feedlot animals in Canada receive 

prophylactic injectable antimicrobials on arrival for the control of bovine respiratory 

disease (Radostits OM, 2001; personal communication with Calvin Booker, FHMS, 

February 22, 2007). 

 

Although some oral antimicrobials were used, injectable formulations were the most 

commonly reported method of antimicrobial administration on cow-calf farms. Only a 

small number of herds used feed ionophores. This varies from feedlot or swine 

operations where in feed use plays a larger role in antimicrobial delivery (McEwen and 

Fedorka-Cray, 2002, Rajic, 2006). The most commonly used products in cows were 

long acting injectable oxytetracyclines and penicillins. Injectable and oral 

sulphonamides, injectable florfenicol, and injectable oxytetracyclines were the primary 

drugs selected for treatment of calves.  

 

A Michigan study of AMU in cattle reported slightly different results. The AMU 

information in this study was collected by questionnaire and pertained to treatment 
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practices within the previous 60 days (Sayah et al., 2005). No beef cattle (n=89 beef 

cattle on 7 farms) in this study were treated with trimethoprim/sulphamethoxazole, 

tetracycline, or streptomycin (Sayah et al., 2005). The most common treatment was with 

sulphamethazine (55.7%) and chlortetracycline (55.7%), followed by tilmicosin 

(27.9%), oxytetracycline (16.5%), penicillin (2.5%), enrofloxacin (2.5%), and ceftiofur 

(1.3%). There are two major distinctions between the Michigan study and the current 

study. First, the Michigan study reported AMU for all beef cattle without differentiating 

between feedlot and cow-calf herds. Some of the differences in the types of drugs 

reported as used could be a result of this reporting structure. Second, the Michigan 

study only looked at AMU in the 60 days prior to the questionnaire administration in a 

limited number of animals while the current study looked at AMU over a 6 month 

period in a much larger number of animals. 

 

Two unpublished studies from Ontario also provide further insight into AMU in beef 

cattle. The first study looked at 16 feedlots and 13 cow-calf farms (Bair and McEwen, 

2001). Penicillin was used on 45% of the farms, florfenicol on 35%, ceftiofur on 17%, 

oxytetracycline in 22%, tilmicosin on 80%, and sulbactam-ampicillin on 11%. No in 

feed AMU was reported for the cow-calf herds other than the inclusion of an ionophore 

(9/13 farms). In the second Ontario study, 587 (341 cow-calf and 106 feedlot) producers 

were surveyed on their attitudes about AMU (Powell and Powell, 2001). The producers 

surveyed reported using the following injectable antimicrobials: oxytetracycline (50.0% 

of herds), penicillin (48.5%), tilmicosin (78.0%), trimethoprim-sulphadoxine (23.0%) 

and florfenicol (14.5%) (Powell and Powell, 2001). As with the above mentioned 
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Michigan study, the reporting structure of the two Ontario studies does not permit 

differentiation between what was used in cow-calf herds and what was used in feedlots.  

 

Extra-label drug use was reported in some cow-calf herds in the current study. In 

Canada, florfenicol is labeled for bovine respiratory disease and for the treatment of 

interdigital phlegmon (Compendium of Veterinary Products, 2003), but the individual 

animal treatment notes indicate that it was also used in an extra-label manner in calves 

for diarrhea and omphalitis. Extra-label use of fluoroquinolones and cephalosporins was 

also reported. Powell and Powell (2001) also reported off label use of enrofloxacin in 

their survey of Ontario beef producers. At the time of these studies, enrofloxacin was 

not readily obtainable by cattle producers because in 2002 there was only a small 

animal formulation available in Canada. Recently, a cattle formulation has been 

approved for use in Canada for the treatment of bovine respiratory disease 

(Compendium of Veterinary Products, 2003). Follow up studies to see how AMU 

patterns might have changed with a change in product availability are needed. 

 

In addition to describing use patterns, this study identified factors associated with the 

reported frequency of calf treatment. Calves that were assisted during birth were more 

likely to be reported as treated. Sanderson and Dargatz (2000) also reported that 

increasing incidence of dystocia in a herd was associated with increased morbidity. 

Dystocia can lead to decreased vigor, hypoxia and acid-base disturbances (Bellows et 

al., 1987). Another potentially related finding was that male calves were more likely to 

be treated than female calves. This could be because male calves are often larger than 
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females (Bellows et al., 1987). Larger calves are more likely to experience delayed 

parturition and increased fetal stress. This could result in reduced vigor; potentially 

negatively affecting passive transfer and calf health. Calves were also more likely to be 

treated in herds where more cows/heifers were treated. This finding might reflect an 

increased likelihood of exposure to disease on these farms because of management or 

other factors, or it may reflect an increased tendency of these producers to administer 

and report treatment.  

 

Yearling heifers were less likely to be treated than cows. This is probably because 

yearling heifers have not yet entered the breeding herd and, therefore, were not subject 

to the primary risk factors for treatment identified within the breeding herd. Risk factors 

for cow/bred heifer treatment included assistance at calving and post calving problems 

such as a prolapse, retained fetal membranes, and metritis. The odds that a cow or bred 

heifer would be treated if she had any one of the above post calving conditions were 

substantially increased over that of one with no problem at calving. Assistance at 

calving was also a risk factor for treatment. Cows or bred heifers that required any 

manipulation or traction on the fetus at the time of calving or caesarian sections were at 

much higher risk for being treated than those that calved unassisted. 

 

Because cows and bred heifers were more likely to be treated if there was assistance 

at calving, further investigation is needed into whether producers are providing 

treatment prophylactically because of the intervention or it they are treating for an 
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actual condition, either related to parturition or for some other reason. This distinction is 

not entirely clear from the data available.  

 

To minimize the need for treatment, producers should work to decrease the need for 

calving assistance and post partum complications through bull selection, management 

and selection of replacement heifers, and appropriate dystocia intervention (Chenowith 

and Sanderson, 2001). These practices may also help minimize post partum uterine 

prolapses through reduction of dystocias. Increasing the awareness of producers about 

when and why to treat is also essential. Basic manipulations or pulling of calves should 

not generally require antimicrobial treatment of either the dam or the calf. Also, 

providing adequate nutrition will help avoid post partum problems such as retained fetal 

membranes (USDA, 1996) as well as contributing to over all cow/heifer and calf health.  

 

Calves were more likely to be reported as treated than cows/heifers in this study and 

the primary reason reported for calf treatment was diarrhea. Diarrhea was also the most 

commonly reported illness in beef calves in the United States (USDA, 1997) and in a 

survey of beef producers in Ontario (Powell and Powell, 2001). In the current study the 

primary reported reason for treatment of cows/heifers was metritis followed closely by 

interdigital necrobacillosis; whereas in the United States pinkeye and interdigital 

necrobacillosis were listed as the two primary disease conditions reported among 

breeding females (USDA, 1997). The current study only looked at treatment from 

January to June whereas the NAHMS study questions spanned the entire year. 

Infectious bovine keratoconjunctivitis (IKC) is more common in the summer months. 
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Although, there is a difference in the primary reason for cow/heifer treatment between 

western Canada and the United States both studies did report a relatively low 

occurrence of disease and treatment in breeding females.  

 

A higher proportion of animals were reported as treated by owners participating in 

the USDA’s National Animal Health Monitoring System (1997) than in the current 

study. This may in part be due to management, animal genetic and climatic differences 

between western Canada and the United States, but it may also relate to number of 

herds enrolled, and data collection methodology differences in each study. The National 

Animal Health Monitoring System’s (NAHMS) beef ’97 study data were collected from 

2,713 producers via a questionnaire administered on farm from December 30 through 

February 3, 1997 (USDA, 1997). Another factor that could contribute to treatment 

differences is that all of the herds in the current study had more than 100 total cows and 

calves; whereas, less than 60% of the NAHMS herds had a herd size greater than 100. 

Herd size and related management factors could also account for some of the 

differences in treatment rates between the current study and the NAHMS study.  

 

The NAHMS data were limited to the herd as no data were collected at the individual 

animal level. In contrast to the NAHMS study both individual animal records and 

questionnaires were used in the current cow-calf study. Tracking individual animal 

diagnoses and treatments may be less subject to recall bias than using a questionnaire, 

but relying on the completeness of individual animal treatment records may lead to 

underreporting.  
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From the Agriculture census in 2001, Statistics Canada reported that the average beef  

herd size for Canada was 53 cows.  In Saskatchewan and Alberta the average herd sizes 

were 58 and 74 beef cows per herd with 15 and 20 replacement heifers respectively.   

The average study herd size of 180 is larger than that reported by Statistics Canada.  

Because herds were enrolled in the larger productivity study based on their ability to 

provide the required data, these herds probably represent some of the more progressive, 

commercially viable, and intensively managed herds in western Canada. The herds 

providing data for this study therefore represent AMU in this sector of the industry. 

AMU may be different in the few very large cow-calf herds that receive little or no 

treatment interventions or the very small herds present on some mixed or hobby farms. 

 

Future studies need to focus on determining the amount of each antimicrobial used to 

more accurately assess animal AMU exposure. However, AMU data are difficult to 

collect and report for several reasons. Complete and accurate farm based AMU records 

are difficult to obtain. Capture of use information can be demanding for producers 

especially during busy times and with limited resources. Under reporting is potentially a 

problem since producers are busy with day to day operations on the farm and, therefore, 

record keeping is often a relatively low priority and subsequently treatment records may 

be forgotten. Dunlop et al. (1998) reported a 35% under-reporting rate for AMU 

recorded by swine producers when compared to inventory and disappearance data 

collected by the researchers. A preliminary report of AMU in the Ontario beef industry 

estimated average under reporting of AMU on farm was 40% (Bair and McEwen, 
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2001). This estimate was based on treatment diaries and accounting of drug 

disappearance in both feedlots and cow-calf herds. Under reporting for cow-calf herds 

ranged from 1-86% with a mean of 24% (Bair and McEwen, 2001). 

 

It is difficult to fully evaluate the degree of under reporting in this cow-calf project. 

From the crude subjective and comparative assessment of the quality of the data, at least 

20% of the herds had less than satisfactory treatment records. When combined with 

information on the calf mortality and the proportion of herds reporting no treatments 

there is further evidence that there was under reporting by some herds. It would be 

unlikely to have herds with greater than 5% calf death losses with no treatments. A true 

estimate can not be made about the degree of under reporting in these herds. However, 

with 20% of the herds having less than satisfactory treatment records it is likely that 

these herds were under reporting treatment events. Additionally, for the herds with no 

treatments and greater than 5% death losses there are also potentially missing treatment 

records.  

 

The second problem with AMU data collection and reporting is that there is no 

widely accepted method for quantifying AMU (Singer et al., 2006). Use can be reported 

in many ways including, but not limited to, total volume of drug in kilograms, defined 

daily doses (DDD) (Jensen et al. 2006), animal daily doses (ADD) (Jensen et al., 2006), 

or as animal units per treatment days (Dunlop et al, 1998). While each of the above 

methods attempt to capture the true exposure of an animal to a drug limitations still 

exist (Jensen et al., 2006). Although there are problems with data capture and reporting, 
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there is international interest in developing surveillance systems for AMU and AMR 

potentially including farm level or aggregate level of AMU (Rosdahl and Pederson, 

1998, Nicholls et al., 2001 and WHO 2001).  

 

For farm-based AMU data to be valuable in surveillance studies, the following 

pieces of information need to be collected: total amount of antimicrobial used, 

indication for treatment, route of administration, and dose and duration (Singer et al., 

2006). While several of these criteria were met by the individual animal records 

collected as part of the current study, detailed information on which antimicrobials were 

used to treat specific conditions and the dose used were not consistently reported. While 

an attempt was made to collect more information on specific drug use, these data were 

potentially subject to recall bias since the questionnaire was administered at the end of 

the calving season and relied on producer accounts of the number of animals treated 

with each class of antimicrobial.  

  

Despite the limitations, this study does provide the first available documentation of 

the proportion of calves and cows/heifers reported as treated during the calving season 

and the types of conditions most often treated in western Canadian herds. The study 

also provides some initial information about AMU practices in these herds which can be 

used to help address issues such as extra-label drug use, prophylactic treatment of entire 

calf crops, and the importance of minimizing dystocia in reducing the need for 

treatment of either cows/heifers or calves. 
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Table 3.1. Summary of animal and herd-level risk factors for calf treatment and 
mortality during the 2002 calving season (n=28,573; N=203). Data pertains to calves 
born alive January 1 to May 31, 2002 and their dams

Risk factor Proportion of cows 
with attribute 

Proportion of herds with 
at least one cow with 

attribute 
Ecoregion   

1. Aspen Parkland 26.3%(7516) 26.1%(53) 
2. Boreal Transition 10.7%(3047) 10.8%(22) 
3. Fescue Grassland 13.2%(3773) 12.3%(25) 
4. Mixed Grassland 14.7%(4202) 14.3%(29) 
5. Moist Mixed Grassland 12.5%(3566) 12.8%(26) 
6. Northern Continental Divide 4.2%(1193) 3.9%(8) 
7. Peace Lowland 9.5%(2710) 12.3%(25) 
8. Western Alberta Upland 4.7%(1338) 3.9%(8) 
9. Western Boreal 4.3%(1228) 3.5%(7) 
Vaccinated for BVDV/IBR prebreeding 2001   

1. Live vaccine 41.6%(11896) 41.9%(85) 
2. Inactivated vaccine 15.7%(4491) 17.2%(35) 
3. No vaccine 4.1%(1177) 3.5%(7) 
4. Not reported 38.5%(11009) 37.4%(76) 

Heifers vaccinated for diarrhea (E. coli) precalving 2002 38.5%(1828/4748) 35.3%(65/184) 
Cows vaccinated for diarrhea (E. coli) precalving 2002 32.5%(7737/23825) 32.0%(65/203) 
Heifers vaccinated for diarrhea (viral) precalving 2002 37.6%(1785/4748) 34.2%(63/184) 
Cows vaccinated for diarrhea (viral) precalving 2002 31.6%(7518/23825) 31.0%(63/203) 
BCS pre-calving <5 (9-point scale) 5.7%(1636) 70.0%(142) 
BCS at pregnancy testing <5 (9-point scale) 8.3%(2357) 82.8%(168) 
Cow born on farm and not purchased  66.5%(18997) 92.1%(187) 
Twin births 4.4%(1256) 87.7%(178) 
Calf gender   

1. Male 50.8%(14526) 100.0%(203) 
2. Female 47.0%(13416) 100.0%(203) 
3. Not recorded 2.2%(631) 55.7%(113) 

No cow problem other than dystocia 98.8%(28242) 100.0%(203) 
Prolapse 0.2%(50) 21.2%(43) 
Retained fetal membrane (RFM) 1.0%(275) 40.4%(82) 
Metritis 0.02%(6) 2.5%(5) 
Calving assistance reported   

1. No assistance 92.0%(26291) 100.0%(203) 
2. Easy pull 4.9%(1395) 87.2%(177) 
3. Hard pull 1.7%(474) 68.0%(138) 
4. Malpresentation 1.0%(285) 54.7%(111) 
5. Caesarean section surgery 0.5%(128) 34.0%(69) 

Calving Month   
1. January 2002 8.0%(2271) 48.3%(98) 
2. February 2002 21.4%(6115) 74.9%(152) 
3. March 2002 38.9%(11109) 97.0%(197) 
4. April 2002 25.1%(7176) 96.1%(195) 
5. May 2002 6.7%(1902) 81.3%(165) 

Predominant breed type   
1. British 43.2%(12353) 82.8%(168) 
2. Continental 47.9%(13692) 78.8%(160) 
3. Cross 7.9%(2270) 31.5%(64) 
4. No record 0.9%(258) 16.8%(34) 

Age category   
1. Yearling heifer (born 2001) 0.1%(32) 10.3%(21) 
2. 2 year old heifer (born 2000) 16.6%(4748) 90.6%(184) 
3. 3 year old cow (born 1999) 15.7%(4497) 96.6%(196) 
4. Mature cow (born 1993 to 1998) 53.2%(15206) 100.0%(203) 
5. Old cow (born 1991 or earlier) 11.6%(3300) 94.1%(191) 
6. No record of age  2.8%(790) 20.7%(42) 
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Table 3.2. Summary of animal and herd-level risk factors for cow or heifer treatment 
and mortality during the 2002 calving season (n=36,634; N=203)a 

aData pertains to all adult females in the herd as of January 1, 2002, except for attributes that are specific 
to bred cows and heifers. Denominators are provided in instances where data are only applicable to a sub-
set of animals. Calving information includes stillbirths, abortions and live calves. Not all animals had 
BCS available.  
 

Risk factor Proportion of cows 
with attribute 

Proportion of herds 
with at least one cow 

with attribute 
Ecoregion   

1. Aspen Parkland 24.8%(9086) 26.1%(53) 
2. Boreal Transition 10.5%(3838) 10.8%(22) 
3. Fescue Grassland 13.3%(4884) 12.3%(25) 
4. Mixed Grassland 14.4%(5283) 14.3%(29) 
5. Moist Mixed Grassland 13.2%(4822) 12.8%(26) 
6. Northern Continental Divide 4.5%(1648) 3.9%(8) 
7. Peace Lowlad 10.1%(3720) 12.3%(25) 
8. Western Alberta Upland 4.6%(1668) 3.9%(8) 
9. Western Boreal 4.6%(1685) 3.5%(7) 

Vaccinated for BVDV/IBR prebreeding 2001   
1. Live vaccine 15.8%(5772) 17.2%(35) 
2. Inactivated vaccine 41.8%(15317) 41.9%(85) 
3. No vaccine 38.3%(14033) 37.4%(76) 
4. Not reported 4.1%(1512) 3.5%(7) 

Heifers vaccinated for diarrhea (E.coli) precalving 2002 33.6%(1749/5207) 35.1%(65/185) 
Cows vaccinated for diarrhea (E. coli) precalving 2002 34.9%(9092/26040) 34.5%(70/203) 
Heifers vaccinated for diarrhea (viral) precalving 2002 37.8%(1969/5207) 35.1%(65/185) 
Cows vaccinated for diarrhea (viral) precalving 2002 28.9%(7518/26040) 31.0%(63/203) 
BCS pre-calving <5 (9-point scale) 6.0%(1740/29173) 71.9%(146) 
BCS at pregnancy testing <5 (9-point scale) 8.4%(3063/36464) 77.3%(157) 
Cow born on farm and not purchased  51.8%(18997) 92.1%(187) 
No cow problem post partum 99.0%(30901/31247) 100.0%(203) 
Prolapse 0.2%(57/31247) 21.2%(43) 
Retained fetal membrane 0.9%(281/31247) 40.4%(82) 
Metritis 0.03%(8/31247) 2.5%(5) 
Calving assistance reported   

1. No assistance 93.9%(29337/31247) 100.0%(203) 
2. Easy pull 4.4%(1392/31247) 87.2%(177) 
3. Hard pull 1.7%(538/31247) 68.0%(138) 
4. Malpresentation 1.2%(367/31247) 54.7%(111) 
5. Caesarean section surgery 0.5%(151/31247) 34.0%(69) 

Predominant breed type   
1. British 43.0%(15755) 83.7%(170) 
2. Continental 46.6%(17075) 80.3%(163) 
3. Cross 9.4%(3424) 36.0%(73) 
4. No record 1.0%(380) 16.8%(34) 

Age category   
1. Yearling heifer (born 2001) 14.7%(5387) 84.2%(171) 
2. 2 year old  heifer (born 2000) 14.2%(5207) 91.1%(185) 
3. 3 year old cow (born 1999) 13.2%(4837) 96.1%(195) 
4. Mature cow (born 1993 to 1998) 44.7%(16364) 99.5%(202) 
5. Old cow (born 1991 or earlier) 10.0%(3648) 95.6%(194) 
6. No record of age  3.3%(1191) 22.2%(45) 
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Table 3.3. Type of treatment for calves (n=28,573) and cows/heifers (n=36,634) at the 
animal and herd level (N=203) between January 1 and June 30, 2002a 

 
Treatment Number 

(%) of 
calves 

# (%) herds 
reporting calf 

treatment 

Number(%) 
of  

cows/heifers 

# (%) herds 
reporting cow 

treatment 
Fluids 123 (0.4) 54 (26.6) 1 (0.003) 1 (0.5) 
Injectable 
antimicrobials 

2400 (8.4) 162 (79.8) 658 ( 1.8) 123 (60.6) 

Oral antimicrobials 512  (1.8) 80 (39.4) 3 (0.008) 2 (1.0) 
Oral and injectable 
antimicrobials 

852 (3.0) 93 (45.8) 6 (0.02) 5 (2.5) 

Other treatmentb  173 (0.6) 61 (30.0) 91 (0.3) 46 (22.7) 
aAny individual animal may have been treated with more than one type of treatment 
bOther treatment includes; treatment with mineral oil, intramammary infusions, vitamin injections, etc. 
 



114 

Table 3.4. Diagnoses recorded from January 1 to June 30, 2002 summarized at the 
individual calf and herd level (n=28,573, N=203).a 

aIndividual calves may have had more than one diagnoses. 

Diagnosis 
Number of 

calves affected 
% of all 
calves 

Number of 
herds % of herds

Diarrhea 1648 5.77 129 63.6 
Pneumonia 625 2.19 103 50.7 
Prophylactic tx for navel infections 529 1.85 4 2.0 
Not recorded 355 1.24 67 33.0 
Omphalitis 300 1.05 87 42.9 
Fever, depression, not doing well 139 0.49 44 21.7 
Coccidiosis 114 0.4 35 17.2 
Prophylactic tx at castration 45 0.16 3 1.5 
White muscle dz suspected 32 0.11 6 3.0 
Ruminal tympany 28 0.1 23 11.3 
Weak 25 0.09 14 6.9 
Interdigital necrobacillosis 27 0.09 20 9.9 
Infectious arthritis 20 0.07 13 6.4 
Lameness 20 0.07 14 6.9 
GI/ torsion/ulcers 21 0.07 15 7.4 
Diptheria 13 0.05 10 4.9 
Ear/eye infections 13 0.05 11 5.4 
Hypothermia 14 0.05 12 5.9 
Abscess 12 0.04 8 3.9 
Dehydrated 8 0.03 8 3.9 
Infectious keratoconjunctivitis 8 0.03 5 2.5 
Surgery 9 0.03 8 3.9 
Meningitis 5 0.02 5 2.5 
Broken bones 7 0.02 7 3.5 
Cuts/wounds 2 0.01 2 1.0 
Prolapsed rectum 2 0.01 2 1.0 
Blind 2 0.01 2 1.0 
Predator Attack 2 0.01 1 0.5 
Dystocia (hard pull) 3 0.01 3 1.5 
Septecemia 3 0.01 3 1.5 
Malnutrion 4 0.01 3 1.5 
Arthritis 1 0.003 1 0.5 
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Table 3.5. Diagnoses made from January 1 to June 30, 2002 summarized at the 
individual cow/heifer and herd level. (n=36,634, N=203) a 

 

Diagnoses 

Number of 
cows/heifers 
affected 

% of  total 
cows and 
heifers 

Number of 
herds % of herds 

Metritis 145 0.4 52 25.62 
Interdigital 
necrobacillosis 

140 
0.38 

51 
25.1 

Retained Placenta 93 0.25 37 18.2 
Not recorded 81 0.22 45 22.2 
Mastitis 41 0.11 28 13.8 
Extraction/C-section 30 0.08 19 9.4 
Gastro-intestinalb 30 0.08 21 10.3 
Fever/depression/not 
doing well 25 0.07 17 8.4 
Prolapse 26 0.07 20 9.9 
Pneumonia 27 0.07 18 8.9 
Abcess/cuts/cellulitis 20 0.05 15 7.4 
Cancer eye 13 0.04 9 4.4 
Lamenss 15 0.04 8 3.9 
Non-antimicrobial 
treatmentsc 10 0.03 4 2.0 
Lump-jaw/woody 
tongue 11 0.03 9 4.4 
Eye or ear infection 9 0.02 8 3.9 
Neurological 9 0.02 8 3.9 
Infectious 
Keratoconjunctivitis 

9 
0.02 

8 
3.9 

Kidney/bladder 
infection 2 0.01 2 1.0 
Diarrhea 2 0.01 2 1.0 
Coccidiosis 3 0.01 2 1.0 
Vaginal tear 4 0.01 4 2.0 
Prophylactic 5 0.01 4 2.0 
Fetotomy 1 0.003 1 0.5 
Dehorned 1 0.003 1 0.5 
Ruminal tympany 1 0 1 0.5 
a Individual animals may have had more than one diagnoses.  
bGastro-intestinal includes hardware and perotinits 
cNo antimicrobial treatments include treatments for lice, milk let down and milk fever 
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Table 3.6. Number (%) of herds recording various antimicrobial treatments used in 
cows/heifers from January 1 to June 30, 2002 (N=203) 
 
Treatment Never used 

Number 
(%) 

Used 1-3 
times 

Number (%) 

Used 4-10 
time 

Number (%) 

Used >10 
times 

Number (%) 

Herds ever 
used 

Cow LA Penicillina 160 (78.8) 26 (12.8) 11 (5.4) 6 (3.0) 43 (21.2) 
Cow SA Penicillinb 180 (88.7) 14 (6.9) 6 (3.0) 3 (1.5) 23 (11.4) 
      
Cow oral sulphonamides 197 (97.0) 5 (2.5) 1 (0.5) 0 (0) 6 (3.0) 
Cow 
trimethoprim/sulphsdiazine 

192 (94.6) 10 (4.9) 0 (0) 1 (0.5) 11 (5.4) 

      
Cow Oxytetrcycline LA 98 (48.3) 46 (22.7) 38 (18.7) 21 (10.3) 105 (51.7) 
Cow Oxytetetrcycline SA 197 (97.0) 4 (2.0) 2 (1.0) 0 (0.0) 6 (3.0) 
Cow tetracycline bolus 199 (98.0) 2 (1.0) 2 (1.0) 0 (0.0) 4 (2.0) 
      
Cow tilmicosin 187 (92.1) 15 (7.4) 1 (0.5) 0 (0.0) 16 (7.9) 
      
Cow florfenicol 194 (95.6) 8 (3.9) 1 (0.5) 0 (0.0) 9 (4.4) 
      
Cow sulbactam-ampicillin 
injectable 

197 (97.0) 1 (0.5) 0 (0.0) 5 (2.5) 6 (3.0) 

      
Cow ceftiofur 200 (98.5) 3 (1.5) 0 (0.0) 0 (0.0) 3 (1.5) 
      
Cow enrofloxacin tablets 
oral 

203 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

      
Cow novobiocin/ 
penicillin G ntramammary 
 

199 (98.0) 2 (1.0) 1 (0.5) 1 (0.5) 4 (2.0) 

Cow cephapirin   
sodium intramammary 
 

200 (98.5) 2 (1.0) 0 (0.0) 1 (0.5) 3 (1.5) 

Cow spectinomycin 
hydrochloride 
 

202 (99.5) 1 (0.5) 0 (0.0) 0 (0.0) 1 (0.5) 

Cow dihydrostreptomycin 
 

202 (99.5) 1 (0.5) 0 (0.0) 0 (0.0) 1 (0.5) 

Cow gentamicin injectable 
 

202 (99.5) 0 (0.0) 1 (0.5) 0 (0.0) 1 (0.5) 

Cow amprolium 
hydrochloride oral 
 

202 (99.5) 1 (0.5) 0 (0.0) 0 (0.0) 1 (0.5) 

Cow other 
 

199 (98.0) 4 (2.0) 0 (0.0) 0 (0.0) 4 (2.0) 

Cow unknown other 203 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
aLA=Long acting 
b SA=Short acting
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Table 3.7. Number (%) of herds recording various antimicrobial treatments used in 
calves from January 1 to June 30, 2002. (N=203) 
 
Treatment Never used 

Number 
(%) 

Used 1-3 
times 

Number (%) 

Used 4-10 
times 

Number (%) 

Used >10 
times 

Number (%) 

Herds ever 
used 

Calf LA Penicillina 189 (93.1) 7 (3.4) 1 (0.5) 6 (3.0) 14 (6.9) 
Calf SA Penicillinb 177 (87.2) 9 (4.4) 11 (5.4) 6 (3.0) 26 (12.8) 
      
Calf oral sulphonamides 100 (49.3) 24 (11.8) 35 (17.2) 44 (21.7) 103 (50.7) 
Calf injectable 
sulphonamides 

146 (71.9) 18 (8.9) 17 (8.4) 22 (10.8) 57 (28.1) 

      
Calf Oxytetracycline LA 127 (62.6) 22 (10.8) 27 (13.3) 27 (13.3) 76 (37.4) 
Calf Oxytetracyline SA 201 (99.0) 1 (0.5) 1 (0.5) 0 (0.0) 2 (1.0) 
Calf tetracycline bolus 202 (99.5) 1 (0.5) 0 (0.0) 0 (0.0) 1 (0.5) 
      
Calf tilmicosin 161 (79.3) 21 (10.3) 10 (4.9) 11 (5.4) 42 (20.6) 
      
Calf florfenicol 119 (58.6) 20 (9.9) 33 (16.3) 31 (15.3) 84 (41.5) 
      
Calf sulbactam-
ampicillin injectable 

187 (92.1) 8 (3.9) 1 (0.5) 7 (3.4) 16 (7.9) 

      
Calf ceftiofur 187 (92.1) 4 (2.0) 6 (3.0) 6 (3.0) 16 (7.9) 
      
Calf enrofloxacin tablets 
oral 

202 (99.5) 1 (0.5) 0 (0.0) 0 (0.0) 1 (0.5) 

      
Calf gentamicin 
injectable 

201 (99.0) 2 (1.0) 0 (0.0) 0 (0.0) 2 (1.0) 

Calf amprolium 
hydrochloride oral 

199 (98.0) 1 (0.5) 2 (1.0) 1 (0.5) 4 (2.0) 

Calf ampicillin trihydrate 
injectable 

201 (99.0) 2 (1.0) 0 (0.0) 0 (0.0) 2 (1.0) 

Calf erythromycin  
 

202 (99.5) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Calf cephalexin oral 
 

202 (99.5) 0 (0.0) 1 (0.5) 0 (0.0) 1 (0.5) 

Calf other 
 

193 (95.1) 10 (4.9) 0 (0.0) 0 (0.0) 10 (4.9) 

Calf unknown other 198 (97.5) 2 (1.0) 1 (0.5) 2 (1.0) 5 (2.5) 
aLA=Long acting  
b SA=Short acting
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Table 3.8. Number (%) of herds that used antimicrobials used at least once on the farm 
in the period from January 1 to June 30, 2002 (N=203) 
 
Treatment No use 

Number (%) 
Used at least once 

Number (%) 
Penicillin 126 (62.1) 77 (37.9) 
Sulphonamide 83 (40.9) 120 (59.1) 
Oxytetracycline/tetracycline 80 (39.4) 123 (60.6) 
Tilmicosin 149 (73.4) 54 (26.6) 
Florfenicol 115 (56.7) 88 (43.3) 
Sulbactam-ampicillin injectable 183 (90.1) 20 (9.9) 
Ceftiofur 185 (91.1) 18 (8.9) 
Enrofloxacin 202 (99.5) 1 (0.5) 
Intramammary products 197 (97.0) 6 (3.0) 
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Table 3.9. The herd-adjusted unconditional associations between non-therapeutic risk 
factors and the odds of calf treatment in 2002 (n=28,573, N=203) 

aP-value based on degrees of freedom determined by the number of levels of the categorical variable 

95% CI Variable Odds 
ratio Lower Upper 

P-value 

Vaccinated for BVDV/IBR prebreeding 2001a     
1. Live vaccine 2.6 0.5 13.1 0.71 
2. Inactivated vaccine 1.6 0.3 8.1 0.95 
3. No vaccine Reference category 
4. No record 2.3 0.4 12.3 0.81 

Heifers vaccinated for diarrhea (scours) precalving 
2002  0.7 0.4 1.3 0.26 

Cows vaccinated for diarrhea (scours) precalving 
2002 0.7 0.4 1.3 0.32 

BCS at pregnancy testing (9-point scale) a     
1. BCS <5 compared to BCS ≥5  0.9 0.8 1.1 0.77 
2. Missing BCS compared to BCS ≥5 1.4 1.2 1.7 0.0001 

Cow purchased  1.2 1.0 1.3 0.03 
Predominant breed typea     

1. British Reference category 
2. Continental 1.0 0.9 1.2 0.99 
3. Cross 0.8 0.6 1.1 0.73 
4. No record 1.1 0.7 1.8 0.96 

Age category a     
1. Yearling heifer  0.8 0.2 2.9 0.99 
2. 2 year old heifer (born 1999) 1.2 1.1 1.4 0.08 
3. 3 year old cow (born 1998) 1.1 1.0 1.3 0.51 
4. Mature cow (born 1992 to 1997) Reference category 
5. Cow age >10 (born in 1991 or earlier)  0.9 0.8 1.1 0.91 
6. No record of age  1.2 0.9 1.8 0.93 

Age re-categorizationa     
Yearling heifer 0.7 0.2 2.7 0.62 
All other breeding females  Reference category  

Problem reported with cow at calvinga     
1. Nothing Reference category 
2. Prolapse 1.5 0.6 3.6 0.84 
3. Retained fetal membranes 1.4 1.0 1.9 0.43 
4. Metritis 2.0 0.2 20.6 0.95 

Calving assistance reporteda     
1. No assistance Reference category 
2. Malpresentation and/or Pull 1.6 1.4 1.8 0.0001 
3. Caesarian section surgery 2.2 1.3 3.7 0.012 

Calf sexa     
1. Male  Reference category  
2. Female 0.8 0.7 0.8 0.0001 
3. Unknown 0.4 0.2 0.6 0.0001 

Precipitation growing season 2001a     
1. 75 to 200 mm 2.2 1.1 4.3 0.09 
2. 200 to 250 mm 2.1 1.1 4.4   0.11 
3. >250 mm  Reference category  

% Cows ever treated in the herd 1.2 1.2 1.3 0.003 
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Table 3.10. The herd-adjusted final multivariable analysis of risk factors for whether a 
calf was ever treated between January and June, 2002 (n=28,573, N=203) 
 

95% CI  
Variable 

 
Odds ratio Lower Upper P-value 

Calf gender     
1. Male Reference category 
2. Female  0.8 0.7 0.9 0.0001
3. Not recorded 0.4 0.3 0.6 0.0006

Calving assistance reported     
1. No assistance  Reference category 
2. Malpresentation and/or pull 1.5 1.3 1.7 0.0001
3. Caesarian section surgery 2.0 1.2 3.3 0.15 

% of cows treated in the herda 1.2 1.1 1.3 0.002 
aThe percentage of cows treated in a herd was calculated from the number of treatments 
administered to any adult female in the herd between January 1 and June 30, 2002 and 
the total number of adult females in that herd as of January 1, 2002. 
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Table 3.11. The herd-adjusted unconditional associations between non-therapeutic risk 
factors and the odds of cow/bred heifer treatment in 2002 (n=31,248, N=203) 
 

95% CI  
Variable 

 
Odds ratio Lower Upper 

 
P-value 

Predominant breed typea     
1. British Reference category 
2. Continental 0.9 0.7 1.3 0.98 
3. Cross 0.4 0.3 0.8 0.03 
4. No record 0.3 0.1 1.2 0.42 

Age categorya     
1. 2 year old heifer (born 2000) 1.3 1.0 1.6 0.25 
2. 3 year old cow (born 1999) 1.0 0.8 1.3 0.99 
3. Mature cow (born 1993 to 1998) Reference category 
4. Cow age >10 (born in 1992 or earlier) 1.2 1.0 1.6 0.57 
5. No record of age  0.6 0.2 1.6 0.96 

Vaccinated for BVD/IBR prebreedinga     
1. Not Vaccinated 1.8 1.1 2.3 0.07 
2. Vaccination status not reported 0.3 0.1 1.6 0.41 
3. Vaccinated  Reference category 

Vaccinated for diarrhea (scours) precalvinga     
      1. No breeding females vaccinated 2.0 1.2 3.2 0.006 
      2. Breeding females vaccinated Reference category 
Calving assistance reporteda     
       1. No assistance Reference category 
       2. Presentation correction or pull  2.8 2.2 3.4 0.00001 
       3. C-section  13.2 8.3 21.0 0.00001 
Problem reported with cow at calvinga     
       1. No problem Reference category 
       2. Prolapse 68.5 35.9 130.9 0.00001 
       3. Retained fetal membranes 114.9 82.3 160.3 0.00001 
       4. Metritis 304.6 47.4 1956.7 0.00001 
aP-value based on degrees of freedom determined by the number of levels of the categorical variable 



122 

Table 3.12. The herd-adjusted final multivariable analysis of risk factors for whether 
cows and bred heifers were ever treated between January and June, 2002 (n=31,248, 
N=203) 
 

95% CI  
Variable 

 
Odds ratio Lower Upper P-value 

Calving assistance reported     
1. No assistance Reference category 
2. Malpresentation and/or Pull 2.1 1.7 2.7 0.0001 
4. Caesarian section surgery 14.5 8.8 23.8 0.0001 

Problem reported with cow at calving      
1. Nothing Reference category 
2. Prolapse 56.5 29.0 110.0 0.0001 
3. Retained fetal membranes 109.2 77.9 153.0 0.0001 
4. Metritis 311.7 50.1 1940.5 0.0001 
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CHAPTER 4 
PREVALENCE OF ANTIMICROBIAL RESISTANCE IN FECAL GENERIC E. 

COLI ISOLATED IN WESTERN CANADIAN COW-CALF HERDS. PART I: BEEF 
CALVES 

 

4.1. Introduction 

 

The emergence of antimicrobial resistance (AMR) is a serious concern in both 

human and veterinary medicine. Antimicrobial resistant bacteria were first observed 

shortly after the discovery of penicillin (North and Christie, 1946, Barber, 1947), and 

resistance has continued to surface with the introduction of each new antimicrobial 

compound (Levy, 1997). It is generally accepted that antimicrobial use (AMU) is an 

important factor for the selection of AMR bacteria (Aarestrup, 1999, van den Bogaard 

and Stobberingh, 2000, McEwen and Fedorka-Cray, 2002). Selective pressure for AMR 

can be affected by treatment formulation, dose, interval, and duration (Catry et al., 

2003). Because AMU varies widely within the livestock industry, describing AMR in 

one livestock class, species, or management system will not be representative of other 

systems. 

 

Most AMU and AMR research in the food animal sector has been conducted in 

swine, poultry or feedlot operations (Dargatz et al., 2003, Fitzgerald et al., 2003,  Lanz 

et al., 2003, Bywater et al., 2004, Khachatryan  et al., 2004, Rajic et al., 2004, 

Hershberger et al., 2005). Animals in intensively managed facilities can be exposed to 
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antimicrobials in feed, in water, or via metaphylaxis protocols involving injectable 

formulations (McEwen and Fedorka-Cray, 2002). Feed antimicrobials are uncommon in 

cow-calf herds, and injectable AMU is infrequent especially in adult animals (Gow and 

Waldner, 2007). The selective pressures experienced in cow-calf herds may differ and, 

therefore, lead to fewer AMR bacteria compared to other food animal populations that 

are exposed to more intensive selective pressure associated with routine AMU practices.  

 

Although there is a growing amount of literature on AMR, to the best of our 

knowledge, there is no information currently available regarding AMR in cow-calf 

herds in western Canada. The cow-calf industry is a vital and important part of the 

agricultural economy in all parts of Canada, but particularly in Saskatchewan and 

Alberta. These two provinces are home to more than 65% of the beef cow, breeding 

heifer, and calf populations in Canada (Statistics Canada, Accessed July 25, 2006; 

http://www.40.statcan.ca/101/cst01/prim50a.htm). A better understanding of AMR in 

this industry is essential to develop baseline data and determine the need for future 

monitoring. The objective of this study was to describe AMR patterns in calves from 

western Canadian cow-calf herds in the spring and fall of 2002 using E. coli as an 

indicator organism. 

 

4.2. Materials and methods 
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4.2.1. Study overview 

 

This project was one step in a larger initiative to examine the prevalence of and risk 

factors associated with AMR in cow-calf herds (Figure 4.1). Targeted sampling was 

initiated in 2002 to investigate the prevalence of AMR at different stages of production. 

Fecal samples were collected in the spring from cows and calves. These samples were 

not from cow-calf pairs, and not all of the same herds had both cow and calf samples 

collected. Calves were also sampled in the fall near the time of weaning. Due to 

logistical constraints, not all of the same herds and none of the same calves were 

sampled in both time periods. This analysis focuses on the calves sampled in the spring 

and fall of 2002. In part II of this study, the prevalence of AMR is described for the 

cows sampled in the spring of 2002 and for cow-calf pairs sampled in the spring of 

2003 (Gow et al., 2007). 

 

4.2.2. Background and herd selection 

 

Fecal samples were collected from a convenience subset of herds participating in a 

survey of risk factors affecting cattle productivity and health (https://www.wissa.info). 

Private veterinary clinics across Alberta, Saskatchewan, and north-eastern British 

Columbia were approached and asked to participate. Within each practice, herds were 

identified and enrolled based on the selection criteria which considered factors such as 

herd size (>50 cows), animal identification, existing calving records, animal handling 

facilities sufficient for pregnancy testing and bull evaluation, and a relationship with a 

local veterinary clinic. Participating herds were visited at least quarterly by one of six 
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veterinarians hired to collect data and samples. Fecal samples for this AMR study were 

collected between January and May 2002 for the calves sampled in the spring, and 

between September and December 2002 for the calves sampled in the fall. 

 

4.2.3. Sample collection 

 

Fecal samples were collected in the spring from 480 individually identified calves 

that were accessible in the calving and nursery area on 91 privately owned cow-calf 

farms in Alberta and Saskatchewan. Fecal samples were also collected from 394 calves 

on 45 farms while calves were being handled for fall processing procedures such as 

vaccination, castration, and sorting for sale. All fecal samples were obtained either 

directly from the rectum or from the ground immediately after defecation. A separate 

disposable glove and container were used for each animal sampled. 

 

4.2.4. Laboratory methods 

 

4.2.4.1. Escherichia coli culture 

 

Fecal samples were sent on ice to a diagnostic laboratory (Prairie Diagnostic 

Services, Saskatoon, Saskatchewan) for culture. The samples were cultured onto 

MacConkey agar plates at 37◦C for 18 hours for isolation of E. coli. At least three 

individual lactose fermenting colonies identified as E. coli using standard biochemical 

tests, including indole, triple sugar iron (TSI) slant, citrate, and urea, were saved from 

each sample. If both dry and mucoid colonies were detected within a sample, then three 
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isolates from each colony type were tested. Individual E. coli isolates were stored in 

50% glycerol and Luria-Bertani (LB) broth at -80ºC.  

 

4.2.4.2. Susceptibility testing methodology 

 

E. coli isolates were tested for susceptibility (Alberta Agriculture and Food) using 

microbroth dilution (Sensititre®, TREK Diagnostic Systems Inc., Cleveland, Ohio) and 

the standard 2002 National Antimicrobial Resistance Monitoring System (NARMS) 

CMV7CNCD gram negative public health panel (CIPARS, 2006). 

 

Minimum inhibitory concentrations (MICs) were assessed for sixteen antimicrobial 

agents (Table 4.1). Breakpoints for susceptibility were used as defined by the National 

Committee of Clinical Laboratory Standards (NCCLS) (NCCLS, 2000). All isolates in 

the intermediate susceptibility range were classified as susceptible. Amikacin results > 

4µg/mL were labeled not interpretable because the breakpoint is 4 dilutions beyond the 

range of the panel. The breakpoint used for streptomycin was 64µg/ml (CIPARS, 2006). 

 

For the antimicrobials tested the minimum inhibitory concentration were presented 

classified according to the Veterinary Drug Directorate (VDD), Health Canada 

Guidelines (Figure 2) (CIPARS, 2006). Category I antimicrobials are considered to 

have very high importance in human medicine and from the gram negative NARMS 

2002 public health panel include ceftiofur, ceftriaxone, and ciprofloxacin. Category II 

includes drugs considered highly important in human medicine such as: amikacin, 

amoxicillin/clavulanic acid, gentamicin, kanamycin, nalidixic acid, streptomycin, and 
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trimethoprim/sulphamethoxazole. Category III antimicrobials are of medium 

importance and include: ampicillin, cefoxitin, cephalothin, chloramphenicol, 

sulphamethoxazole, and tetracycline. To facilitate consistent comparisons with the 

Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 

(http://www.phac-aspc.gc.ca/cipars-picra), the same nomenclature for patterns of 

resistance were used (CIPARS, 2006). Multiple resistance was defined as resistance to 

≥2 antimicrobials. 

 

4.2.5. Statistical analysis 

 

Descriptive analyses were completed using a commercially available software 

program (SPSS 11.0 for Windows, SPSS Inc., Chicago, Illinois). If any one isolate from 

a calf was resistant to a particular antimicrobial, then that calf was identified as being 

positive for resistance to that antimicrobial. Additionally, if any calf from a herd was 

classified as positive, then the herd was also reported as positive for resistance to that 

antimicrobial. 

 

Population-average prevalence estimates and 95% confidence intervals (CI) for 

AMR were determined using the intercept from null models. Models were developed 

using generalized estimating equations (GEE) to account for clustering within herd 

(SAS v.8.2 for Windows (PROC GENMOD); SAS Institute, Cary, North Carolina, 

USA). Model specifications included a binomial distribution, logit link function, 

repeated statement with subject equal to herd, and an exchangeable correlation 
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structure. Where the proportion of isolates with resistance was equal to zero, Fleiss 

quadratic 95% CI formulas for a single proportion were calculated (Fleiss et al., 2003). 

 

Using the same model specifications described above, unconditional associations 

between resistance to any antimicrobial and calf age (categorized by quartiles), calf 

gender, calf breed, whether the calf was ever treated prior to sampling, and the number 

of days since the last treatment were investigated separately for the spring and fall 

samples (treated calves only). In addition to the above predictors, dam age (2 years, 3 

years, 4 to 10 years, and >10 years) was also considered when modeling calf AMR 

status in the spring.  

 

For the twenty herds sampled in both the spring and the fall of 2002, we investigated 

whether the proportion of isolates or calves with resistance in the spring was a predictor 

of the proportion (count of AMR positive isolates (or calves) / number of isolates (or 

calves) collected) with resistance in the fall using GEE and the above model 

specifications.  

 

The frequency of AMR was also compared between the spring and fall where both 

sets of samples were available for the same herd using GEE with the model 

specifications outlined above. The total number of calves with any type of AMR 

(numerator) as a proportion of the total number of calves sampled (denominator) was 

compared between when the herds were tested in the spring and fall.  
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The extent of clustering of isolate resistance within individual calves and herds was 

described for the samples collected in the spring. The variance components for a three-

level model were estimated using penalized quasi-likelihood estimates (2nd order PQL) 

(MLwiN version 2.0, Centre for Multilevel Modeling, Institute of Education, London, 

UK), a binomial distribution, and logit link function. Data from this null model were 

used to estimate the variation at the isolate level (n=1677) (ρi=π2/3/ (σ2
h+ σ2

c +π2/3)), 

calf level (ρc= σ2
c/(σ2

h+ σ2
c +π2/3)), and herd level  (ρh= σ2

h/(σ2
h+ σ2

c +π2/3)) (Dohoo et 

al., 2003). The low prevalence of AMR in the samples collected in the fall and the lack 

of variation only allowed for variation estimates to be calculated for a two-level model; 

if a third level for calf was included the model would not converge. The proportion of 

variation was reported for isolates (n=1187) within herds (ρ=π2/3(σ2
h +π2/3)) and 

between herds (ρ=σ2
h/(σ2

h +π2/3)) (Dohoo et al., 2003). 

  

4.3. Results 

 

4.3.1. Study conducted in the spring of 2002  

 

From the 480 calves sampled (212 female and 268 male), 1677 isolates were 

recovered for further testing. Healthy calves made up 92.5% (444/480) of the sample 

population. Calf age ranged from 0 to 151 days (median, 6; inter-quartile range (IQR), 4 

to 10). Median herd size (N=91) was 177 (range, 89 to 411) breeding females. The 

median number of samples collected per herd was 5 (range, 1 to11; IQR, 4 to 6). Before 

sample collection, 8.3% (40/480) of calves had been reported as treated with either oral 
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or injectable antimicrobials or both. Calf age at last treatment prior to sample collection 

ranged from 0 to 56 days of age (median, 2; IQR, 0 to 7). For treated calves, the number 

of days between last treatment and sample collection ranged from 0 to117 days 

(median, 5; IQR, 1 to 10).  

 

4.3.2. Observed AMR in the calves sampled in the spring of 2002 

 

Resistance to at least one antimicrobial was identified in 48.8% of isolates, 62.2% of 

calves, and in 91% of herds (Tables 4.1 to 4.3). The two antimicrobials to which 

resistance was most commonly identified were tetracycline and sulphamethoxazole. No 

resistance was identified to ceftriaxone and ciprofloxacin, and low levels of resistance 

were identified for ceftiofur and gentamicin. 

 

The maximum number of antimicrobials to which an isolate demonstrated resistance 

was 10. Resistance to at least 6 antimicrobials was observed in 9.4% (157/1677) of the 

isolates; these highly resistant isolates were identified in 10.2% (49/480) of calves and 

14% (13/91) of herds. The most common pattern found in the multiresistant isolates was 

ampicillin, kanamycin, streptomycin, sulphamethoxazole, tetracycline, and 

trimethoprim/sulphamethoxazole. Of the isolates with resistance to at least six 

antimicrobials, 75.8% (119/157) had a pattern including streptomycin, 

sulphamethoxazole, tetracycline, and trimethoprim/sulphamethoxazole resistance. 

 

No resistance was detected to the Category I antimicrobials except for one isolate 

that had resistance to ceftiofur (Figure 4.2). The median MIC ranges for Category I, II, 
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and III antimicrobials were several dilutions away from the break point, except for 

streptomycin and tetracycline respectively.  

 

Calf AMR status was not significantly associated with calf gender (P=0.54), breed 

(P=0.40), dam age (P=0.72), or if the calf was ever treated (P=0.65) prior to sample 

collection. Calves 0 to 3 days of age were 0.55 (95% CI, 0.30 to 1.0; P=0.04) times as 

likely to be positive for any AMR as calves >10 days of age. The AMR status of calves 

4 to 5 and 6 to 9 days of age were not significantly different from calves ≥10 days of 

age (P>0.49). For the calves that had been treated, the number of days from last 

treatment was not associated with the presence of AMR (P=0.92).  

 

In the null model the proportion of variance in AMR accounted for at the isolate, 

calf, and herd levels was 65.1%, 14.6%, and 20.3%.  

 

4.3.3. Study conducted in the fall of 2002 

 

Samples were collected from 394 healthy calves (242 female, 152 male) on 45 farms. 

Calf age ranged from 118 to 323 days (median, 219); 79% of the samples were 

collected from calves less than 250 days of age. The median number of samples 

collected per herd was 10 (range, 1 to10; IQR, 10 to 10), and the median herd size was 

125 (range, 52 to 265) breeding females. Before sample collection, 10.6% (39/367) of 

the calves had been treated with either an oral or injectable antimicrobial or an oral and 

injectable antimicrobial together. Calf age at last treatment ranged from 0 to 46 days of 

age (median, 14 days; IQR, 10 to 20). For treated calves the median number of days 
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between sample collection and the calf’s last treatment was 186 days (range, 140 to 

284; IQR, 178 to 208). 

 

4.3.4. Observed AMR in the calves sampled in the fall of 2002 

 

AMR was relatively less common in the 1186 isolates recovered from the fall 

samples; 7.0% were resistant to at least one antimicrobial (Table 4.1). At least one 

resistant isolate was identified in 12.7% of calves and 56% of herds (Table 4.2 to 4.3). 

The majority of the resistance detected was to tetracycline and sulphamethoxazole. No 

resistance was identified for several antimicrobials including: ceftiofur, ceftriaxone, 

cefoxitin, ciprofloxacin, and gentamicin. 

 

The maximum number of antimicrobials to which an isolate demonstrated resistance 

was 5; 0.4% of isolates and 0.8% of calves demonstrated resistance to 5 antimicrobials. 

The most common pattern found in multiresistant isolates was streptomycin, 

sulphamethoxazole, and tetracycline. 

 

No resistance was detected to the Category I antimicrobials, and the median MIC 

ranges for these antimicrobials were several dilutions away from the break point (Figure 

4.3).All of the median MICs for the Category II and III antimicrobials were also several 

dilutions below the breakpoint. The exceptions were streptomycin, which was 

immediately below the breakpoint (Figure 4.3), and tetracycline and cephalothin, which 

were only two dilutions below the breakpoint (Figure 4.3).  

 



 

134 

Calf AMR status in the fall was not associated with calf age (P=0.75), gender 

(P=0.85), breed (P=0.38), and whether the calf had ever been treated (P=0.13) prior to 

sample collection. For the calves that had been previously treated, the number of days 

since last treatment (P=0.74) was not associated with any AMR. Based on a two-level 

model of these data, 84.9% of the total variation in AMR was accounted for between 

isolates within herds and 15.1% was accounted for by variation between herds.  

 

4.3.5. Association between the prevalence of resistance in calf samples collected in 
the spring and the occurrence of resistance in calves in the fall 

  

In the 20 herds sampled at both time points, the proportion of isolates and calves that 

were positive for resistance in the spring were not statistically significant predictors of 

the proportion of isolates (P=0.82) or calves positive (P=0.37) for resistance in the fall. 

Beef calves sampled in the spring were 9.6 (95% CI, 4.5 to 20.7) times more likely to 

have at least one resistant isolate than those sampled in the fall from the same herds. 

 

4.4. Discussion 

 

Information is needed to determine the extent and severity of AMR in the cow-calf 

industry given that these are the most common livestock operations in western Canada 

and that veterinary supervised herd health programs in these herds are still relatively 

uncommon compared to other commodities. This study, which provides some of the 

first available on-farm data describing AMR in cow-calf herds, found that resistance to 

antimicrobials identified as very important in human medicine was rare. E. coli isolates 
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from both the spring and fall samples were most commonly resistant to tetracycline, 

sulphamethoxazole, and streptomycin. This finding is consistent with other reports of 

AMR in E. coli isolates collected from a variety of different animal species (Kijima-

Tanaka et al., 2003, Bywater et al., 2004, Khachatryan et al., 2004). The other key 

finding of this study was that young calves sampled in the spring had a higher 

prevalence of AMR than older calves sampled in the fall. 

 

While it is difficult to directly compare AMR across food animal studies due to 

methodological differences, general trends have been noted. Even though the most 

common resistances detected are relatively similar between livestock species and 

management systems, the proportion of resistant organisms vary. For example, broilers 

tended to have more resistant E. coli isolates than healthy swine or beef cattle (Kijima-

Tanaka et al., 2003). Tetracycline resistance was detected in 69% of the broiler isolates 

and in 25 % of the cattle isolates (Kijima-Tanaka et al., 2003). Schroeder et al. (2002) 

demonstrated that swine carried the highest number of resistant isolates when compared 

to human, cattle, and food diagnostic samples. Resistance to sulphamethoxazole and 

tetracycline was detected in 74% and 71% of the swine isolates but in only 14% and 

20% of cattle isolates (Schroeder et al., 2002). Because the prevalence of AMR varies 

across species, studying resistance in one livestock species is not necessarily 

representative. In order to appreciate the range of AMR and the effect of AMU 

practices in agriculture, industry specific investigations, as reported here, are required.  
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Resistance to antimicrobials that were classified as very important in human 

medicine was detected in less than 1% of the isolates in this study. Additionally, for the 

majority of antimicrobials of interest to human medicine, the median MICs were well 

below the breakpoint for resistance. Median MICs several dilutions below the 

breakpoint indicate that the E. coli populations in these calves were highly sensitive to 

those antimicrobials. Based on these findings, it appears that on-farm exposure to beef 

calves presents a low risk to human health. Hoyle et al. (2004) reported much higher 

levels of ampicillin (64%) and nalidixic acid (24%) resistance in calves on a Scottish 

beef farm. The discrepancy in prevalence may be the result of a variation in selection 

pressure due to different management systems.  

 

Chloramphenicol resistance was detected despite the ban of chloramphenicol use in 

Canadian food producing animals since 1985 (Gilmore, 1986). This may indicate that 

co-selection was maintaining chloramphenicol resistance genes in the population. The 

persistence of chloramphenicol resistance despite the elimination of chloramphenicol 

use has also been reported by national surveillance programs in Japan and in Canada 

(Kijima-Tanaka et al., 2003, CIPARS, 2006). Molecular studies are needed to further 

examine this question in cow-calf herds.   

 

Individual calf attributes such as dam age, calf gender, breed, and whether the calf 

had ever been treated prior to sampling were not associated with the occurrence of 

resistance in the beef calves in this study. However, resistance was less common in 

calves less than 3 days of age than in calves that were at least 10 days of age. This 
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finding may be due to a greater opportunity for colonization with resistant organisms, 

gained either from the environment or other animals in the herd, with increasing calf 

age. A similar result was previously reported by Berge et al. (2005a) who described a 

higher level of AMR in 2 week old dairy calves as compared to day old calves.  

 

In the current study, there was no association between the number of days from last 

treatment and the presence of AMR in treated calves. Berge et al. (2005a) indicated that 

the effect of individual animal treatment was transitory and was associated with AMR if 

the sample was collected less than 7 days post treatment. This discrepancy could be the 

result of differences in selection pressures between the two groups or the result of host 

specific differences between beef and dairy calves. It may also be due to different 

approaches in methodology and in statistical analyses between the two projects. Berge 

et al. (2005a) examined dairy calves longitudinally, they allocated isolates to AMR 

clusters based on mean zone size diameters, and Monte Carlo simulation of the non-

parametric Jonckeheere-Terpstra test was used to examine days from last treatment and 

cluster membership. The current project used a single sample collection for each 

animal, AMR was considered present or absent, and GEE logistic regression was used 

to examine the relationship between time from treatment and AMR. 

 

In this study, herds with a high prevalence of AMR in the spring were not more 

likely to have a high prevalence in the fall. These findings suggest that AMR profiles 

are not static and may be affected by a number of factors potentially including calf 

physiology and environment. The transitory nature of AMR has also been demonstrated 
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in the feedlot. In the feedlot AMR levels shifted towards a uniform population dictated 

by the feedlot environment regardless of AMR prevalence at arrival (Berge et al., 

2005b).  

 

Beef calves sampled in the spring were almost ten times more likely to shed resistant 

organisms than those sampled in the fall. The reason for this difference is unknown. 

There was no association in these data between individual calf treatment history and the 

occurrence of resistance. Other factors that might explain  this finding include an 

increased intensity of herd AMU in the spring calving season compared to the summer 

pasture season, an increased degree of crowding and opportunity for AMR transmission 

in the spring calving season compared to the summer pasture season, and the status of 

the dam at calving were not addressed directly in this part of the study.  

 

The age-related differences in calf physiology between the first few weeks of life and 

weaning might also explain the difference in AMR prevalence. Young calves are pre-

ruminants, are on a milk based diet, and are primarily housed in close confinement. 

Older calves in the fall are ruminants, on a forage based diet, and are usually managed 

extensively on pasture before weaning. This study was not specifically designed to 

examine the associations between calf age and the difference in AMR between the 

spring and fall samples. To assess this association, individual calves could be followed 

longitudinally from birth through to weaning. Any changes in AMR prevalence with 

age could then be detected and potentially differentiated from the influence of herd 

level AMU and other management practices. 
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Previous research has demonstrated that calves rapidly acquire AMR bacteria within 

days of birth (Hoyle et al., 2004). The presence of AMR in these animals is not 

necessarily related to AMU (Khachatryn et al., 2004, Berge et al.; 2005a), but rather 

animal age (Hinton et al., 1984, Hinton, 1985, Brophy et al., 1977, Mathew et al., 1999, 

Khachatryn et al., 2004). Typically AMR is highest in young animals (Khachatryn et 

al., 2004) and declines linearly with age (Hoyle et al., 2004). This phenomenon has not 

previously been described in beef calves and is not fully understood in other species and 

production environments 

 

One possibility is that the decline in AMR could be an artifact reflecting no change 

in the proportion of resistant organisms, but rather the overall decline in total E. coli 

with the absolute number of resistant bacteria falling below the detection limits of the 

test in older animals (Hoyle et al., 2004). Although a natural gradual reduction of E. coli 

with increasing age has been previously been reported (Smith and Crabb, 1961), the 

decline in E. coli as an animal matures does not appear to explain the decrease in the 

AMR organisms detected.  

 

Hoyle et al. (2004) demonstrated that beef calves preferentially lost resistant relative 

to susceptible bacteria as they aged. Additionally, other research has indicated that, in 

the absence of antimicrobials, AMR could be maintained because SSuT strains had a 

fitness advantage in young calves but not in older animals (Khachatryan et al., 2004). 

The presence of these resistant E. coli in the absence of treatment and selective pressure 
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could be due to fitness traits that make them better able to compete in the calf gut 

compared to susceptible organisms. These traits may include non-scavenging 

mechanisms (siderophores), increased adhesion, and mechanisms that enhance 

colonization, reproduction, and spread (Visca et al., 1991, Allen et al., 1993, Simmons 

et al., 1988, Mandal et al., 2001). 

 

Because there are still many unknowns regarding the determinants of resistance in 

these herds, a multi-level analysis was used to attempt to determine where most of the 

unexplained variation exists in the occurrence of AMR and potentially where 

interventions could be most successfully targeted. The majority of variation detected 

was at the isolate level. Since interventions cannot be applied to the isolate, potential 

AMR risk factors and AMR reducing interventions should be investigated at the calf 

and then herd level. However, in this study no specific individual animal risk factors 

were identified suggesting the need to look further at the calf’s environment within the 

herd. 

 

This is the first available information describing the prevalence of AMR in calves 

from western Canadian beef herds during the calving season and at weaning. Baseline 

information is necessary to measure variation resulting from changing production 

practices and to develop strategies to control AMR emergence. Knowledge of stage of 

production and timing of sample collection is critical to interpreting surveillance data 

from these herds. Additional research is needed to understand why AMR varies 

between the groups targeted in this study. Future studies should consider animal age, 
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season, AMU, and herd management. Continued monitoring of AMR patterns in cow-

calf herds will illustrate any emerging issues potentially important to public health. 
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Figure 4.1. Sampling structure for study of AMR in western Canadian cow-calf herds 
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Figure 4.2. Minimum inhibitory concentrations for fecal E. coli isolates collected from calves in the spring of 2002 arranged by the 
Veterinary Drug Directorate, Health Canada, classification of drugs and presented as a percentage of the total number of isolates 
(N=1677) 

MIC Percentiles
Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512

Ceftiofur 1677 0.25 0.25 3.2 72.5 20.1 1.8 0.1 0.8 0.9 0.6
Ceftriaxone 1677 <=0.25 0.25 95.8 1.8 0.2 0.2 0.8 0.8 0.5 0.1

Ciprofloxacin 1677 <=0.015 <=0.015 99.4 0.4 0.1 0.2
Amikacin 1677 2 2 0.5 29.6 65.1 4.4 0.4

Amoxicillin-Clavulanic Acid 1677 4 8 2.7 22.0 47.6 16.9 6.1 2.1 2.6
Gentamicin 1677 1 1 10.0 24.9 63.7 0.6 0.3 0.4 0.2
Kanamycin 1677 <=8 <=8 77.1 0.1 22.8

Nalidixic Acid 1677 4 4 0.8 30.6 65.9 2.5 0.1 0.2
Streptomycin 1677 <=32 64 62.6 20.9 16.5

Trimethoprim-Sulphamethoxazole 1677 <=0.12 0.5 52.6 14.7 12.0 0.9 19.8
Ampicillin 1677 4 >=64 2.8 34.9 33.3 2.8 0.9 0.2 25.1
Cefoxitin 1677 4 4 0.2 20.6 56.0 17.4 1.6 4.2

Cephalothin 1677 8 16 1.0 13.4 57.5 21.0 1.6 5.5
Chloramphenicol 1677 8 8 2.1 39.6 39.1 1.4 0.2 17.5

Sulphamethoxazole 1677 <=16 >512 52.9 0.1 0.1 0.4 46.6
Tetracycline 1677 8 >=64 49.1 1.1 0.2 1.6 48.0

IV

Distribution (%) of MICs

I

II

III

Antimicrobial n*

 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Figure 4.3. Minimum inhibitory concentrations for fecal E. coli isolates collected from calves in the fall of 2002 arranged by the 
Veterinary Drug Directorate, Health Canada, classification of drugs and presented as a percentage of the total number of isolates 
(N=1186) 

MIC Percentiles
Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512

Ceftiofur 1186 0.25 0.25 5.2 76.1 18.6
Ceftriaxone 1186 <=0.25 0.25 99.9 0.1

Ciprofloxacin 1186 <=0.015 <=0.015 99.7 0.3
Amikacin 1186 2 2 3.4 42.3 52.9 1.3 0.2

Amoxicillin-Clavulanic Acid 1186 4 4 1.4 24.5 63.5 10.2 0.4
Gentamicin 1186 1 1 21.1 26.5 52.3 0.2
Kanamycin 1186 <=8 <=8 98.9 1.1

Nalidixic Acid 1186 4 4 0.1 1.3 43.7 53.7 1.3
Streptomycin 1186 <=32 <=32 97.2 2.1 0.7

Trimethoprim-Sulphamethoxazole 1186 <=0.12 <=0.12 94.2 4.9 0.7 0.3
Ampicillin 1186 4 4 5.0 39.0 50.8 3.3 0.3 0.3 1.3
Cefoxitin 1186 4 4 0.1 0.1 25.3 62.3 11.7 0.5

Cephalothin 1186 8 8 0.9 15.7 66.4 16.4 0.5 0.1
Chloramphenicol 1186 4 8 7.9 59.0 31.6 0.8 0.6

Sulphamethoxazole 1186 <=16 <=16 96.0 4.0
Tetracycline 1186 <=4 <=4 92.6 2.4 0.4 0.1 4.6

Distribution of Isolates (%) Across Minimum Inhibitory Concentrations (MIC) Ranges

I

II

III

Antimicrobial n*

 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Table 4.1. Prevalence (%) of AMR for E. coli isolates cultured from calves in the spring 
(n=1677) and in the fall (n=1186) of 2002 adjusted for clustering by herd 

aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline 
 

  
Isolate prevalence for calves  

in the spring  
Isolate prevalence for calves 

in the fall 

Antimicrobial 
 

Prevalence (%) 
 
Lower CI Upper CI Prevalence (%) Lower CI Upper CI 

Amikacin 0.0 0.0 0.3 0.0 0.0 0.4 
Amoxicillin-Clavulanic 
Acid 4.5 2.6 7.8 0.0 0.0 0.4 

Ampicillin 22.7 18.0 28.2 1.6 0.7 3.3 

Cefoxtin 4.1 2.3 7.2 0.0 0.0 0.4 

Ceftiofur 1.7 0.7 3.8 0.0 0.0 0.4 

Ceftriaxone 0.0 0.0 0.3 0.0 0.0 0.4 

Cephalothin 6.7 4.3 10.1 0.6 0.3 1.4 

Chloramphenicol 14.8 10.8 19.9 0.6 0.2 1.8 

Ciprofloxacin 0.0 0.0 0.3 0.0 0.0 0.4 

Gentamicin 0.5 0.2 1.3 0.0 0.0 0.4 

Kanamycin 20.7 16.1 26.2 1.1 0.4 2.8 

Nalidixic Acid 0.2 0.02 1.2 0.0 0.0 0.4 

Streptomycin 34.8 29.4 40.7 2.8 1.6 4.9 

Sulphamethoxazole 42.8 36.9 48.9 4.0 2.7 6.1 

Tetracycline  46.4 40.2 52.7 5.0 3.4 7.5 
Trimethoprim-
Sulphamethoxazole 16.3 12.2 21.4 0.3 0.1 1.0 

AMR (≥1 antimicrobial)  48.8 42.6 55.1 7.0 4.8 9.9 
Multi AMR (≥2 
antimicrobials)  46.2 40.1 52.5 5.5 3.7 8.2 

A3Ca 1.6 0.7 3.8 0.0 0.0 0.4 

ACSSuTb 2.6 1.3 5.0 0.0 0.0 0.4 

AKSSuTc 6.2 4.0 9.5 0.4 0.1 2.0 

ACKSSuTd 5.0 2.9 8.5 0.0 0.0 0.4 
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Table 4.2. Prevalence (%) of AMR in calves sampled in the spring (n=480) and in the 
fall (n=395) of 2002 accounting for clustering of AMR within herd 
 

aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline. 

 
 Individual animal prevalence for calves in 

the spring 
Individual animal prevalence for calves 

 in the fall 

Antimicrobial 
Prevalence 

(%) 
Lower CI Upper CI Prevalence 

(%) 
Lower CI Upper CI 

Amikacin 0.0 0.0 1.0 0.0 0.0 1.2 
Amoxicillin-
Clavulanic Acid 7.1 4.4 11.2 0.0 0.0 0.0 

Ampicillin 31.1 25.2 37.7 3.0 1.4 6.4 

Cefoxtin 6.4 4.1 10.0 0.0 0.0 1.2 

Ceftiofur 2.9 1.2 6.6 0.0 0.0 1.2 

Ceftriaxone 0.0 0.0 1.0 0.0 0.0 1.2 

Cephalothin 11.5 7.8 16.6 1.5 0.7 3.2 

Chloramphenicol 22.3 16.6 29.2 0.8 0.3 2.3 

Ciprofloxacin 0.0 0.0 1.0 0.0 0.0 1.2 

Gentamicin 1.0 0.4 2.4 0.0 0.0 1.2 

Kanamycin 28.9 22.9 35.8 2.2 0.9 5.4 

Nalidixic Acid 0.2 0.03 1.5 0.0 0.0 1.2 

Streptomycin 49.1 42.3 56.0 5.3 3.0 9.1 

Sulphamethoxazole 56.3 49.6 62.7 7.3 4.8 11.0 

Tetracylcine  60.0 53.3 66.4 9.9 6.2 15.5 
Trimethoprim-
Sulphamethoxazole 24.3 18.7 31.0 0.5 0.1 1.9 

AMR (≥1 
antimicrobial)  62.2 55.4 68.5 12.7 8.5 18.4 

Multi AMR (≥2 
antimicrobials)  59.3 52.6 65.6 9.9 6.4 15.2 

A3Ca 2.7 1.1 6.6 0.0 0.0 1.2 

ACSSuTb 4.9 2.6 9.1 0.0 0.0 1.2 

AKSSuTc 8.7 5.2 14.1 0.8 0.2 3.1 

ACKSSuTd 10.0 6.7 14.6 0.0 0.0 1.2 
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Table 4.3. Prevalence (%) of AMR at the herd level as determined by calves sampled in 
the spring (n=91) and in the fall (n=45) of 2002 
 

  
Herd Prevalence for calves in 

 the spring   
Herd prevalence for calves 

 in the fall 

Antimicrobial  
Prevalence  

(%) 
Lower 

CI 
Upper 

CI 
Prevalence  

(%) 
Lower 

CI 
Upper 

CI 

Amikacin 0.0 0.0 5.0 0.0 0.0 9.8 
Amoxicillin-Clavulanic 
Acid 22.0 14.6 31.6 0.0 0.0 9.8 

Ampicillin 62.6 52.3 71.9 17.8 9.2 31.7 

Cefoxtin 1.1 0.2 7.4 0.0 0.0 9.8 

Ceftiofur 8.8 4.5 16.6 0.0 0.0 9.8 

Ceftriaxone 0.0 0.0 5.0 0.0 0.0 9.8 

Cephalothin 31.9 23.1 42.1 13.3 6.1 26.7 

Chloramphenicol 41.8 32.1 52.1 6.7 2.2 18.7 

Ciprofloxacin 0.0 0.0 5.0 0.0 0.0 9.8 

Gentamicin 5.5 2.3 12.5 0.0 0.0 9.8 

Kanamycin 57.1 46.8 66.9 11.1 4.7 24.1 

Nalidixic Acid 1.1 0.2 7.4 0.0 0.0 9.8 

Streptomycin 80.2 70.8 87.2 26.7 15.8 41.3 

Sulphamethoxazole 87.9 79.5 93.2 40.0 26.9 54.8 

Tetracylcine  90.1 82.1 94.8 44.5 30.8 59.0 
Trimethoprim-
Sulphamethoxazole 48.4 38.3 58.6 4.4 1.1 16.1 

AMR (≥1 antimicrobial)  91.2 83.4 95.5 55.6 41.0 69.2 
Multi AMR (≥2 
antimicrobials)  90.1 82.1 94.8 46.7 32.8 61.1 

A3Ca 7.7 3.7 15.3 0.0 0.0 9.8 

ACSSuTb 13.2 7.6 21.8 0.0 0.0 9.8 

AKSSuTc 26.4 18.4 36.4 4.4 1.1 16.1 

ACKSSuTd 20.9 13.7 30.4 0.0 0.0 9.8 
aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline
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CHAPTER 5 
PREVALENCE OF ANTIMICROBIAL RESISTANCE IN FECAL GENERIC E. 

COLI ISOLATED IN WESTERN CANADIAN BEEF HERDS. PART II: COWS AND 
COW-CALF PAIRS 

5.1. Introduction 

 
Antimicrobial resistance (AMR) in veterinary medicine is a complex issue. As in 

human medicine, there is concern about the loss of efficacious treatment options as a 

result of AMR. However, the bigger issue facing veterinarians and the livestock 

industry is the public health aspect of the issue because of evidence that agricultural use 

of antimicrobials contributes to increasing AMR in the human population. Several 

studies have investigated the potential link between antimicrobial use (AMU) and AMR 

in animals and the development of resistance in humans (Hummel et al., 1986, Endtz et 

al; 1991, Johnson et al., 1995, Bager et al., 1997, Aarestrup, 1999, Winokur et al., 2001, 

Swartz, 2002). Other studies of commensal and pathogenic resistant bacteria have been 

conducted in swine, poultry, feedlot, and dairy operations in order to more fully 

understand the type and level of resistance that is present in livestock (Dargatz et al., 

2003, Fiztgerald et al., 2003, Lanz et al., 2003, Bywater et al., 2004, Rajic et al., 2004, 

Khachatryan et al., 2004, Hershberger et al., 2005).  

 

Cow-calf herds in western Canada are subjected to less intensive management 

practices and different antimicrobial exposures than livestock species that are raised 

more intensively such as poultry, swine, or cattle in dairies or feedlots (Gow and 
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Waldner, 2007). The potential difference in selective pressure within cow-calf herds 

could, therefore, result in a different profile of AMR organisms when compared to other 

types of livestock. To the best of our knowledge there is currently no information on 

AMR in the cow-calf industry in western Canada. The objective of this study was to 

describe AMR patterns in cows and cow-calf pairs from western Canadian beef herds 

using E. coli as an indicator organism. 

 

5.2. Materials and methods 

 

As a part of a strategic research initiative to study AMR and AMU in cow-calf herds 

(Gow and Waldner, 2007, Gow et al., 2007a, Gow et al., 2007b), this project was 

undertaken to compliment an investigation of AMR in beef calves (Gow et al., 2007b). 

This paper describes AMR in generic fecal E. coli isolated from cows and cow-calf 

pairs. In the spring of 2002, feces were collected from a convenience sample of 533 

individually identified cows that were accessible in the calving and nursery areas on 69 

privately owned cow-calf farms in Alberta and Saskatchewan. In 2003, fecal samples 

were also collected from 105 cow-calf pairs on 10 farms. This analysis focuses on the 

above described population, but comparisons are made to other available data (Gow et 

al., 2007b) where calves had been sampled in the same herds.  

 

The materials and methods utilized in this study have been described in detail 

elsewhere (Gow et al., 2007b). Briefly, fecal samples were obtained either directly from 

the rectum or from the ground immediately after defecation. A separate disposable 

glove and container were used for each animal. Fecal samples were cultured for generic 
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E. coli (Prairie Diagnostic Services, Saskatoon, Saskatchewan). A minimum of three 

isolates per sample identified as E. coli were selected and stored at -80°C. Isolates were 

tested for susceptibility using microbroth dilution (Sensititre®, TREK Diagnostic 

Systems Inc., Cleveland, Ohio) and the standard 2002 National Antimicrobial 

Resistance Monitoring System (NARMS) public health panel (CIPARS, 2006) (Agri-

Food Laboratories Branch, Alberta Agriculture and Food, Edmonton, Alberta, Canada). 

All testing was done in accordance with NCCLS guidelines (NCCLS, 2000). 

 

5.2.1. Statistical analysis 

 

The approach utilized for data manipulation, and population averaged prevalence 

estimates have been described in detail elsewhere (Gow et al., 2007b). Models were 

developed using generalized estimating equations (GEE) to account for clustering 

within herd (SAS v.8.2 for Windows (PROC GENMOD); SAS Institute, Cary, North 

Carolina, USA). Model specifications included a binomial distribution, logit link 

function, repeated statement with subject equal to herd, and an exchangeable correlation 

structure. For the examination of unconditional associations between AMR and animal 

level risk factors of interest, the predictors included: cow breed, cow age (2 year old 

heifers, 3 year old cows, 4 to 10 year old cows, and cows >10 years of age), and 

whether the cow was ever treated in 2002 prior to sample collection. The AMR 

outcomes (yes/no) examined included resistance to sulphamethoxazole, to tetracycline, 

to any antimicrobial, or to multiple antimicrobials. The association between dam 

resistance status (yes/no) and calf resistance status (yes/no) was also examined using the 

model specifications outlined above.  
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The frequency of AMR was compared between calves and cows in the same herd. 

Generalized estimating equations using the above model specifications were used to 

compare the total number of samples with any type of AMR (numerator) as a proportion 

of the total number of animals sampled (denominator), first between cows and calves in 

the spring of 2002 and again in 2003, and then between cows in the spring of 2002 and 

calves in the fall of 2002. Only herds where both cows and calves were sampled were 

included in these analyses. There were 37 herds where both calf (Gow et al., 2007b) and 

cow samples were collected in the spring of 2002, and 10 herds from the present study 

where both calves and cows were sampled in the spring of 2003. There were nine herds 

where samples were collected from cows in the spring of 2002 and also from the calves 

in the fall of 2002 (Gow et al., 2007b).  

 

In addition to examining the role of the cow-calf pair relationship in determining calf 

resistance status, we also investigated whether the most common resistance types found 

in the cow herd were a potential determinant of the types and frequency of resistance 

found in the calves. For the herds with both cow and calf samples in spring, we 

examined whether the proportion of cows with resistance to either sulphamethoxazole 

or tetracycline in the herd was a predictor of the proportion of calves in the herd (count 

of AMR positive calves / number of calves collected) with resistance to each of these 

antimicrobials respectively (Gow et al., 2007b), using GEE and the above model 

specifications.  
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5.3. Results 

 

5.3.1. Study conducted in the spring of 2002  

 

Cow age ranged from 2 to 14 years (median, 5 years; interquartile range (IQR), 3 to 

8). Median herd size was 154 (range, 71 to 437) breeding females. The median number 

of samples collected per herd was 8 (range, 2 to10; IQR, 6 to 10). Before sample 

collection, producers reported that 4.1% (22/533) of cows had been treated with 

antimicrobials. The number of days between last treatment and sample collection 

ranged from 6 to 147 (median, 37).  

 

5.3.2. Observed AMR in cows sampled in 2002 

 

Resistance to at least one antimicrobial was identified in 9.8% of the 1555 isolates 

examined in 2002. At least one resistant isolate was identified in 15.1% of cows and 

61% of herds (Tables 5.1 to 5.3). The antimicrobials to which resistance was most 

commonly identified were tetracycline and sulphamethoxazole (Tables 5.1 to 5.3). For 

all other drugs tested, the frequency of resistance was less than 2% (Tables 5.1 and 5.2). 

No resistance was identified to ceftriaxone, ciprofloxacin, and nalidixic acid. 

 

The maximum number of antimicrobials to which an isolate demonstrated resistance 

was 11; 0.5% (7/1555) of isolates were resistant to at least five antimicrobials. The most 

common multi-resistance pattern found in this group of isolates included: ampicillin, 
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chloramphenicol, streptomycin, sulphamethoxazole, and tetracycline. Three of the 

seven isolates with resistance to five or more antimicrobials exhibited this pattern.  

 

No resistance was detected to the Category I antimicrobials except for one isolate 

that had resistance to ceftiofur (Figure 5.1). The median MIC ranges for Category I 

antimicrobials were several dilutions away from the break point. With the exception of 

streptomycin, the median MICs for all Category II and III antimicrobials were also 

several dilutions below the breakpoint.  

 

The detection of any AMR or multiple AMR was not associated with cow breed 

(P=0.16; P=0.11), cow age (P=0.14, P=0.42), or previous cow treatment (P=0.56, 

P=0.32). Tetracycline and sulphamethoxazole resistance were also not associated with 

cow breed (P=0.09, P=0.45), cow age (P=0.20, P=0.22), or previous cow treatment (P= 

0.44, P=0.28).  

 

5.3.3. Study of cow-calf pairs conducted in 2003 

 

The median number of samples collected per herd was 10 (range, 9 to 16; IQR, 10 to 

10), and median herd size was 130 (range, 86 to 382) breeding females. Cow age ranged 

from 2 to 19 years of age (median, 5 years; IQR, 3 to 8). Ninety-two percent of the 

cows were classified as healthy at the time of sample collection. Fifty-eight percent 

(61/105) of the calves sampled were male, and 91.4% (96/105) of the calves were 

classified as healthy at sample collection. Median calf age was 47 days (range, 1 to 129; 

IQR; 28 to 60).  



 

158 

 

5.3.4. Observed AMR in the cows from the cow-calf pairs sampled in 2003 

 

Of the 312 isolates recovered from the cow samples in 2003, 6.1 % were resistant to 

at least one antimicrobial (Table 5.1); 8.6% of cows had at least one resistant isolate as 

did 60% of the herds (Table 5.2 to 5.3). Most of the resistance detected was to 

tetracycline and sulphamethoxazole. 

 

The maximum number of antimicrobials that an isolate was resistant to was 7; 1.9% 

(6/312) of isolates demonstrated resistance to at least 5 antimicrobials. The most 

common pattern found in this group of isolates included: ampicillin, kanamycin, 

streptomycin, sulphamethoxazole, and tetracycline.  

 

No resistance was identified to the Category I antimicrobials, and the median MIC 

ranges for these antimicrobials were several dilutions below the breakpoint (Figure 5.2). 

All of the median MICs for the Category II and Category III antimicrobials were several 

dilutions below the breakpoint (Figure 5.2), except for streptomycin which had a 

median MIC in the dilution immediately below the breakpoint.  

 

5.3.5. Observed AMR in the calves from the cow-calf pairs sampled in 2003 

 

Of the 318 calf isolates, 25.8 % were resistant to at least one antimicrobial (Table 

5.1). The proportion of calves and herds with at least one resistant isolate were 37.9% 

and 100% respectively (Table 5.2 to 5.3). The majority of the resistance detected was to 
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tetracycline and sulphamethoxazole and no resistance was identified to ceftriaxone, 

nalidixic acid, and ciprofloxacin. 

 

The maximum number of antimicrobials that an isolate was resistant to was 12; 9.1% 

(29/318) of isolates and 12.3% (13/105) of calves demonstrated resistance to at least 

five antimicrobials. The most common patterns found in this group of isolates included 

resistance to: ampicillin, choramphenicol, kanamycin, streptomycin, 

sulphamethoxazole, and tetracycline.  

 

Ceftiofur was the only Category I antimicrobial to which isolates demonstrated 

resistance (Figure 5.3). The median MIC ranges for these Category I, Category II 

(except for streptomycin), and Category III antimicrobials were several dilutions below 

the breakpoint (Figure 5.3). 

 

5.3.6. Observed AMR in the cow-calf pairs 

 

Resistant E. coli were identified in both the cow and the calf for only 4.8% (5/105) 

of the pairs examined and 3 of 10 farms. Three of five resistant pairs had isolates 

resistant to two or more antimicrobials. Tetracycline was the most common drug 

resistance detected and was identified in four of five pairs. Calf resistance was not 

predicted by dam resistance (P=0.36).  
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5.3.7. Comparison of AMR prevalence between cows and calves  

 

The prevalence of AMR was lower in generic fecal E. coli isolates collected from 

beef cows in the spring than in young calves from the same herds. In the 10 herds 

described above with cow-calf pair data for the spring of 2003, the calves were 7.1 

(95% CI, 2.8 to 18.3; P<0.0001) times more likely to shed resistant isolates than the 

cows. A similar trend was detected for 37 herds that had samples collected in the spring 

of 2002 from both calves (Gow et al., 2007b) and cows. Calves were 10.0 (95% CI, 5.8 

to 17.0; P<0.0001) times more likely to be positive for AMR than cows from the same 

herds. The median number of samples collected from the 37 herds (212 calves and 299 

cows) was 13 (IQR, 12 to 17; range, 7 to 20). 

 

There was no difference in the prevalence of AMR when comparing cows sampled 

in the spring of 2002 to calves sampled in the fall of 2002 (Gow et al., 2007b) from the 

same herds sampled (OR, 1.1; 95%CI, 0.3 to 3.7; P=0.91). The median number of 

samples from these 9 herds (81 calves and 74 cows) was 19 (IQR, 15 to 20; range, 9 to 

20).  

 

5.3.8. Association between the frequency of resistance in cow and calf samples  

 

For the 37 herds that had both cow and calf samples collected in the spring of 2002, 

the odds that calves would be resistant to sulphamethoxazole increased with the 

proportion of cows that were resistant to sulphamethoxazole (OR, 7.5; 95% CI, 1.3  to 

41.7; P=0.02). A similar increase in the odds of tetracycline resistance was seen with an 
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increasing proportion of cows positive for tetracycline resistance (OR, 6.1; 95% CI, 1.5 

to 25.3; P=0.01).  

 

5.4. Discussion 

 

This study increases the knowledge of AMR in beef cattle by providing 

complementary data to a study of calves from cow-calf herds (Gow et al., 2007b). The 

prevalence of AMR is relatively low in cow populations particularly to drugs classified 

as important to human medicine by Health Canada. Beef cows in this study were much 

less likely to shed resistant organisms than very young calves; however, cows and 

calves have similar AMR prevalence by weaning. Other key findings of this study were 

that the individual cow is not the primary determinant of the AMR status of her calf, but 

that the frequency of common types of resistance in the calves is associated with 

exposure from the cow herd. 

 

E. coli isolates collected from both the cows and calves were most commonly 

resistant to tetracycline and sulphamethoxazole. This pattern was explored by 

considering whether the proportion of cows in the herd with either tetracycline or 

sulphamethoxazole resistance was predictive of these same resistances in calves in the 

spring of 2002. The association between resistance in the cow herd and the occurrence 

of the same types of resistance in the calves indicates that young calves might be 

acquiring resistance by contact with the cow herd or fecal contamination of the 

environment by the cow herd. The data from the cow-calf pair study suggests that the 
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status of the calf’s dam is less important than the herd environment in determining the 

calf’s status. 

 

The most common resistances detected in this study are consistent with what others 

have reported for E. coli isolates from a variety of different animal species (Kijima-

Tanaka et al., 2003, Khachatryan et al., 2004, Bywater et al., 2004, Gow et al., 2007b). 

The difference in AMR prevalence between species (Schroeder et al., 2002, Kijima-

Tanaka et al., 2003, Sayah et al., 2005) may be the result of variation in AMU selection 

pressure between industries. The perception is that in-feed antimicrobials are 

infrequently used in cow-calf herds and that there is often minimal routine injectable 

AMU. Currently there are limited data to supports this assumption; further work is 

necessary to understand the impact of selective pressures experienced in cow-calf herds. 

 

The frequency of resistance was low in generic fecal E. coli isolates harvested from 

beef cows, especially to antimicrobials classified as important to human health. No 

ciprofloxacin or ceftriaxone resistance was present, and only one ceftiofur resistant 

isolate was identified from the cow samples. For the majority of the antimicrobials 

tested, the median MICs were also well below the breakpoint for resistance, indicating 

that most of the E. coli population in these animals was highly sensitive to those 

particular drugs. These findings indicate that on-farm exposure to beef cows probably 

poses a relatively low risk as a source of AMR for human health. However, additional 

molecular studies would provide more insight into what AMR genes are being carried 
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in these populations. Follow up monitoring is needed to detect emerging resistance 

issues in this population that could be of greater concern to public health. 

 

To appreciate the impact on animal health research is needed to assess animal health 

pathogens in cow-calf herds and their AMR patterns. In an Alberta feedlot project some 

initial work has been performed on AMR in bovine respiratory pathogens (Read et al., 

2004), but nothing is currently available from cow-calf herds. Access to clinical 

laboratory databases could provide some insight into AMR in animal pathogens, but 

often this information is incomplete and difficult to obtain. To assess the impact of 

AMR on animal health pathogens a prospective study to collect and test samples of 

interest from diseased animals prior to and after treatment, along with detailed treatment 

and outcome data would be needed. 

  

There were slight differences in the AMR prevalence estimates between the 2002 

and 2003 cow samples, but the antimicrobials to which resistance was detected were 

very similar. The confidence intervals for the two prevalence estimates overlap 

suggesting the difference was not significant. In the cow-calf pair study, only 105 

animals on 10 herds were enrolled, while there were over 500 animals on 69 herds for 

the cow study. There were also differences in the prevalence estimates between the 

calves from the cow-calf pair study in 2003 (25.8%) and a larger sample of beef calves 

from a related study in the spring of 2002 (48.8%) (Gow et al., 2007b). But again, the 

antimicrobials to which resistance was detected was very similar in the two populations. 

The 2002 studies involved larger populations of cows and calves and were probably 
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more representative of western Canadian cow-calf herds. Additionally, the area covered 

by the 2002 studies was more geographically diverse and included more farms with 

varying management practices. The calves sampled in 2003 (median, 47 days) were also 

older on average than the calves sampled in 2002 (median, 6 days). 

 

While the prevalence of AMR in the cows was significantly lower than that observed 

in young calves in the spring of the year, the prevalence estimates from cows were 

similar to those of older calves sampled in the fall. While these studies were not 

specifically designed to study the effect of age on the prevalence of AMR organisms in 

beef cattle, it does appear that there may be an age-related difference between the pre-

ruminant calves and older animals in each study. The observation of relatively high 

levels of AMR in young animals has also been described by other researchers (Brophy 

et al., 1977, Hinton et al., 1984, Hinton, 1985, Mathew et al., 1999, Khachatryn et al., 

2004, Gow et al., 2007b). Further work is necessary to describe the determinants of 

AMR in young calves. With the exception of a lower risk of AMR in calves less than 3 

days of age, there were no individual animal risk factors identified for AMR in either 

calves or cows in either this or the previous study (Gow et al., 2007b). The results of the 

present study suggest that the calf’s dam is the not the primary determinant of whether 

or not it sheds resistant organisms, but the association of AMR in the cow herd and in 

the calves may indicate that calves are acquiring AMR from either the cow herd itself or 

from contamination of the environment by the cow herd.  
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Seasonal variation of AMR in cow-calf herds could be examined by following cattle 

over time. The intention of the current study was to assess cattle in cow-calf herds at a 

time when animals are potentially under the highest stress. The calving season is also 

often the period when antimicrobial treatment may be most common because animals 

are most susceptible to disease as a result of crowding, confinement, stress associated 

with calving, and potentially adverse weather conditions. 

 

The main limitation of this and the related calf study (Gow et al., 2007b) was the use 

of convenience samples rather than having a formal random sampling strategy for 

selecting herds and animals within herds. Access to the herds and the necessary calving 

and treatment records were provided through a larger study looking at factors affecting 

productivity in beef herds (https:/www.wissa.info). Substantial additional funding 

would have been required to run this as an independent study. Secondly, recruiting cow-

calf herds for research during calving season is very difficult. Calving is an extremely 

busy time in commercial cow-calf operations and herd owners are reluctant to allow 

visitors for any purpose because of biosecurity concerns. Given the limitations of the 

available budget for laboratory analysis, we collected samples from as many herds as 

agreed to participate during this stressful period.  

 

Random sampling of animals within the herd was also not practical. Herd owners 

could not be asked to provide access to all cows or calves to permit formal random 

sampling because of liability concerns associated with disease transmission due to 

crowding and handling and the potential for trauma related injuries in pregnant cows or 
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very young calves. Samples were collected from accessible animals on the day of a 

routine herd visit while trying to minimize any incursion on the herd owner’s time. Any 

other approach to sample collection would have been met with immediate rejection by 

the majority of herd owners. However, this said, the potential for selection bias was 

low. Herd management as well as the risk of treatment and death loss in these herds was 

representative of what would be expected in moderate to large, commercial beef herds 

in western Canada (https:/www.wissa.info). Neither the herds nor animals sampled 

were chosen with any knowledge of the owners’ AMU practices or AMR status. 

 

These are the first available on-farm data describing the prevalence of AMR in beef 

cows in western Canada. The prevalence of resistance to drugs classified of high 

importance to human medicine by Health Canada was very low. These results suggest 

that AMR is relatively uncommon in beef cows at calving, but that cows shed a lower 

proportion of resistant bacteria as compared to their calves in the spring of the year. 

While it is unclear why the prevalence of AMR changes as the animal ages and after the 

summer pasture season, documenting this finding in cow-calf herds is important as 

baseline information is required as a first step in the development of any long-term 

monitoring and control programs. 
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Figure 5.1.  Minimum inhibitory concentrations for fecal generic E. coli isolates recovered from cows in the spring of 2002 arranged 
by Health Canada’s classification of drugs (n=1555) 

MIC Percentiles
Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512

Ceftiofur 1555 0.25 0.25 5.9 73.7 20.1 0.2 0.1 0.1
Ceftriaxone 1555 <=0.25 0.25 99.9 0.1

Ciprofloxacin 1554 <=0.015 <=0.015 99.7 0.3
Amikacin 1555 1 2 2.0 49.8 45.9 1.9 0.4

Amoxicillin-Clavulanic Acid 1555 4 4 3.3 23.1 69.2 4.0 0.2 0.1 0.1
Gentamicin 1554 0.5 1 19.3 44.5 35.5 0.6 0.1
Kanamycin 1555 <=8 <=8 99.3 0.1 0.6

Nalidixic Acid 1555 2 4 0.1 3.2 51.4 44.5 0.7
Streptomycin 1555 <=32 <=32 96.5 2.3 1.2

Trimethoprim-Sulphamethoxazole 1555 <=0.12 <=0.12 92.7 4.9 1.9 0.5
Ampicillin 1555 4 4 5.0 38.5 51.7 4.1 0.1 0.1 0.6
Cefoxitin 1555 4 4 0.7 28.5 59.5 10.5 0.6 0.2

Cephalothin 1555 8 8 0.7 18.3 60.7 20.1 0.1 0.2
Chloramphenicol 1555 4 8 5.5 59.5 33.6 0.7 0.7

Sulphamethoxazole 1555 <=16 <=16 92.8 0.1 0.1 0.1 6.9
Tetracycline 1555 <=4 <=4 90.7 0.8 0.6 0.3 7.6

IV

Distribution (%) of MICs

I

II

III

Antimicrobial n*

 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Figure 5.2. Minimum inhibitory concentrations for generic fecal E. coli isolates recovered from the cows of the cow-calf pair samples 
in the spring of 2003, arranged by Health Canada’s classification of drugs (n=312) 

 MIC Percentiles

Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512
Ceftiofur 312 0.25 0.25 2.6 79.2 18.3

Ceftriaxone 312 <=0.25 0.25 100.0
Ciprofloxacin 312 <=0.015 <=0.015 99.4 0.6

Amikacin 312 1 2 1.3 50.3 46.8 1.6
Amoxicillin-Clavulanic Acid 312 4 4 3.5 25.6 65.4 3.8 1.6

Gentamicin 312 1 1 16.7 27.2 55.4 0.6
Kanamycin 312 <=8 <=8 97.1 2.9

Nalidixic Acid 312 2 4 2.2 64.7 32.1 1.0
Streptomycin 312 <=32 <=32 96.5 1.6 1.9

Trimethoprim-Sulphamethoxazole 312 <=0.12 <=0.12 92.3 5.4 0.3 0.3 1.6
Ampicillin 312 4 4 4.5 35.6 50.6 7.4 1.9
Cefoxitin 312 4 4 0.3 35.9 48.7 15.1

Cephalothin 312 8 8 1.6 13.5 67.0 17.3 0.6
Chloramphenicol 312 4 8 3.8 61.2 32.7 2.2

Sulphamethoxazole 312 <=16 <=16 95.5 4.5
Tetracycline 312 <=4 <=4 90.4 4.5 5.1

IV

Distribution of Isolates (%) Across Minimum Inhibitory Concentrations (MIC) Ranges

I

II

III

Antimicrobial n*

 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Figure 5.3. Minimum inhibitory concentrations for generic fecal E. coli isolates collected from the calves of the cow-calf pair samples 
in the spring of 2003, Health Canada’s classification of drugs (n=318) 

 
 MIC Percentiles

Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512
Ceftiofur 318 0.25 0.25 2.2 73.3 19.5 0.9 0.6 3.5

Ceftriaxone 318 <=0.25 0.25 95.0 0.6 0.3 1.3 1.9 0.9
Ciprofloxacin 318 <=0.015 <=0.015 100.0

Amikacin 318 1 2 4.7 48.1 44.0 2.2 0.9
Amoxicillin-Clavulanic Acid 318 4 4 0.3 11.9 72.6 9.1 0.9 1.6 3.5

Gentamicin 318 1 1 23.0 6.0 70.4 0.3 0.3
Kanamycin 318 <=8 <=8 92.5 0.3 7.2

Nalidixic Acid 318 2 4 0.3 50.0 48.1 1.6
Streptomycin 318 <=32 <=32 85.5 6.3 8.2

Trimethoprim-Sulphamethoxazole 318 <=0.12 <=0.12 75.2 11.0 4.4 0.6 8.8
Ampicillin 318 4 4 0.9 37.1 49.7 2.5 9.7
Cefoxitin 318 4 4 0.3 24.2 58.2 11.9 0.9 4.4

Cephalothin 318 8 16 0.6 6.0 56.3 30.2 1.9 5.0
Chloramphenicol 318 4 8 3.8 57.2 29.9 9.1

Sulphamethoxazole 318 <=16 >512 73.6 26.4
Tetracycline 318 <=4 <=4 76.1 1.3 0.3 22.3

IV

Distribution of Isolates (%) Across Minimum Inhibitory Concentrations (MIC) Ranges

I

II

III

Antimicrobial n*

 
 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Table 5.1. Prevalence (%) of AMR in E coli isolates recovered from cows (n=1555) in 
the spring of 2002 and for cows (n=312) and calves (n=318) in the spring of 2003 
adjusted for clustering at the herd level. 
 
 Cows 2002 Pair Cows 2003 Pair Calves 2003 

Antimicrobial   
95% Confidence  

Interval  
95% Confidence  

Interval  
95%  Confidence 

 Interval 

 
Prevalence 

(%) 
Lower  Upper Prevalence 

(%) 
Lower Upper Prevalence 

(%) 
Lower Upper 

Amikacin 0.0 0.0 0.3 0.0 0.0 1.5 0.0 0.0 1.5 
Amoxicillin-
Clavulanic Acid 0.3 0.1 0.8 0.0 0.0 1.5 3.9 1.1 13.0 

Ampicillin 0.7 0.2 2.3 2.0 0.3 12.0 8.7 4.1 17.7 

Cefoxtin 0.2 0.0 0.8 0.0 0.0 1.5 3.2 0.7 13.1 

Ceftiofur 0.1 0.0 0.4 0.0 0.0 1.5 2.9 0.6 13.8 

Ceftriaxone 0.0 0.0 0.3 0.0 0.0 1.5 0.0 0.0 1.5 

Cephalothin 0.3 0.1 0.8 0.7 0.1 4.1 6.0 2.7 12.7 

Chloramphenicol 0.8 0.2 3.0 0.0 0.0 1.5 7.9 3.4 17.1 

Ciprofloxacin 0.0 0.0 0.3 0.0 0.0 1.5 0.0 0.0 1.5 

Gentamicin 0.2 0.1 0.6 0.0 0.0 1.5 0.3 0.0 2.0 

Kanamycin 0.7 0.2 2.9 2.7 0.6 10.4 5.9 1.8 17.3 

Nalidixic Acid 0.0 0.0 0.3 0.0 0.0 1.5 0.0 0.0 1.5 

Streptomycin 3.4 1.2 9.3 3.4 1.1 9.7 13.0 7.2 22.3 

Sulphamethoxazole 7.1 3.4 14.2 4.4 1.8 10.2 24.3 15.2 36.5 

Tetracylcine  8.7 4.4 16.5 5.1 2.2 11.2 20.6 12.5 32.1 
Trimethoprim-
Sulphamethoxazole 0.5 0.2 1.7 1.7 0.3 10.1 7.3 2.7 18.2 
AMR (≥1 
antimicrobial)  9.8 5.1 18.2 6.1 3.1 11.7 25.8 16.6 37.8 
Multi AMR (≥2 
antimicrobials)  7.1 3.2 15.0 3.4 1.1 9.7 23.2 14.3 35.3 

A3Ca 0.1 0.0 0.4 0.0 0.0 1.5 2.9 0.6 13.8 

ACSSuTb 0.1 0.0 0.4 0.0 0.0 1.5 0.9 0.3 3.5 

AKSSuTc 0.1 0.0 0.4 2.0 0.3 12.0 1.2 0.3 5.0 

ACKSSuTd 0.2 0.0 1.3 0.0 0.0 1.5 2.9 0.6 13.8 
aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline 
 



 

175 

Table 5.2. Prevalence (%) of AMR in cows (n=533) sampled in the spring of 2002 and 
for cows (n=105) and calves (n=105) of the cow-calf pairs sampled in the spring of 
2003 adjusted for clustering at the herd level. 
 
 Cows 2002 Pair Cows 2003 Pair Calves 2003 

Antimicrobial  

95%  
Confidence  

Interval  
95%  

Confidence Interval  

95%  
Confidence 

Interval 

 
Prevalence 

(%) 
Lower Upper Prevalence 

(%) 
Lower Upper Prevalence 

(%) 
Lower Upper 

Amikacin 0.0 0.0 0.9 0.0 0.0 4.4 0.0 0.0 4.4 
Amoxicillin-
Clavulanic Acid 0.8 0.3 1.9 0.0 0.0 0.0 4.9 1.6 14.2 

Ampicillin 1.5 0.8 2.9 2.0 0.3 11.8 11.7 5.7 22.3 

Cefoxtin 0.6 0.2 1.7 0.0 0.0 4.4 4.9 1.6 14.2 

Ceftiofur 0.2 0.0 1.3 0.0 0.0 4.4 3.8 0.9 14.3 

Ceftriaxone 0.0 0.0 0.9 0.0 0.0 4.4 0.0 0.0 4.4 

Cephalothin 0.8 0.3 1.9 0.9 0.1 6.0 10.5 5.9 17.9 

Chloramphenicol 1.7 0.8 3.6 0.0 0.0 4.4 10.2 4.3 22.1 

Ciprofloxacin 0.0 0.0 0.9 0.0 0.0 4.4 0.0 0.0 4.4 

Gentamicin 0.4 0.1 1.5 0.0 0.0 4.4 0.9 0.1 6.0 

Kanamycin 1.3 0.7 2.6 2.8 0.7 10.1 7.7 2.5 21.4 

Nalidixic Acid 0.0 0.0 0.9 0.0 0.0 4.4 0.0 0.0 4.4 

Streptomycin 6.7 4.5 9.9 4.8 2.1 10.5 20.7 12.4 32.6 

Sulphamethoxazole 11.1 8.0 15.1 5.7 2.9 10.8 33.8 21.3 49.0 

Tetracylcine  13.4 10.2 17.5 7.7 3.5 16.2 31.6 20.6 45.2 
Trimethoprim-
Sulphamethoxazole 1.7 0.7 4.3 2.0 0.3 11.8 9.2 3.6 21.2 
AMR (≥1 
antimicrobial)  15.1 11.7 19.3 8.6 4.3 16.3 37.9 25.3 52.4 
Multi AMR (≥2 
antimicrobials)  11.6 8.6 15.6 4.8 2.1 10.5 32.7 21.5 46.2 

A3Ca 0.2 0.0 1.3 0.0 0.0 4.4 3.8 0.9 14.3 

ACSSuTb 0.2 0.0 1.3 0.0 0.0 4.4 1.9 0.5 6.5 

AKSSuTc 0.2 0.0 1.3 2.0 0.3 11.8 2.1 0.7 6.3 

ACKSSuTd 0.4 0.1 1.4 0.0 0.0 4.4 3.8 0.9 14.3 
aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline 
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Table 5.3. Herd prevalence (%) of AMR for cows (N=69 herds) sampled in the spring 
of 2002 and for cows (N=10 herds) and calves (N=10 herds) of the cow-calf pairs 
sampled in the spring of 2003 adjusted for clustering at the herd level. 
 
 Cows 2002 Pair Cows 2003 Pair Calves  2003 

Antimicrobial  

95% 
 Confidence 

Interval  

95%  
Confidence 

Interval  

95% 
 Confidence 

Interval 

 
Prevalence 

(%) 
Lower  Upper Prevalence 

(%) 
Lower Upper Prevalence 

(%) 
Lower Upper 

Amikacin 0.0 0.0 6.5 0.0 0.0 34.5 0.0 0.0 34.5 
Amoxicillin-
Clavulanic Acid 5.8 2.2 14.5 0.0 0.0 34.5 30.0 10.0 62.4 

Ampicillin 11.6 5.9 21.5 10.0 1.4 46.7 50.0 22.5 77.5 

Cefoxtin 4.4 1.4 12.6 0.0 0.0 
34.5 

30.0 10.0 62.4 

Ceftiofur 1.5 0.2 9.6 0.0 0.0 
34.5 

20.0 5.0 54.1 

Ceftriaxone 0.0 0.0 6.5 0.0 0.0 
34.5 

0.0 0.0 34.5 

Cephalothin 5.8 2.2 14.5 10.0 1.4 46.7 70.0 37.6 90.0 

Chloramphenicol 10.2 4.9 19.8 0.0 0.0 
34.5 

50.0 22.5 77.5 

Ciprofloxacin 0.0 0.0 6.5 0.0 0.0 
34.5 

0.0 0.0 34.5 

Gentamicin 2.9 0.7 10.9 0.0 0.0 34.5 10.0 1.4 46.7 

Kanamycin 10.2 4.9 19.8 20.0 5.0 54.1 40.0 15.8 70.3 

Nalidixic Acid 0.0 0.0 6.5 0.0 0.0 34.5 0.0 0.0 34.5 

Streptomycin 34.8 24.5 46.7 40.0 15.8 70.3 80.0 45.9 95.0 

Sulphamethoxazole 49.3 37.7 60.9 50.0 22.5 77.5 100.0 50.0 50.0 

Tetracylcine  53.6 41.9 65.0 50.0 22.5 77.5 100.0 50.0 50.0 
Trimethoprim-
Sulphamethoxazole 8.7 4.0 18.0 10.0 1.4 46.7 40.0 15.8 70.3 
AMR (≥1 
antimicrobial)  60.9 49.0 71.6 60.0 29.7 84.2 100.0 N/A N/A 
Multi AMR (≥2 
antimicrobials)  53.0 41.9 65.0 40.0 15.8 70.3 100.0 N/A N/A 

A3Ca 1.5 0.2 9.6 0.0 0.0 
34.5 

20.0 5.0 54.1 

ACSSuTb 1.5 0.2 9.6 0.0 0.0 
34.5 

20.0 5.0 54.1 

AKSSuTc 1.5 0.2 9.6 10.0 1.4 46.7 20.0 5.0 54.1 

ACKSSuTd 2.9 0.7 10.9 0.0 0.0 34.5 20.0 5.0 54.1 
aA3C-ampicillin, cefoxitin, ceftiofur, cephalothin  
bACSSuT-ampicillin, chloramphenicol, streptomycin, sulphamethoxazole and tetracycline 
cAKSSuT-ampicillin, kanamycin, streptomycin, sulphamethoxazole and tetracycline  
dACKSSuT-ampicillin, chloramphenicol, kanamycin, streptomycin, sulphamethoxazole and tetracycline 
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CHAPTER 6 
FACTORS ASSOCIATED WITH ANTIMICROBIAL RESISTANCE IN CALVES 

BORN IN 89 WESTERN CANADIAN BEEF HERDS 

 

6.1. Introduction 

 

Antimicrobial use (AMU) in agriculture is a concern because of the potential for the 

spread of antimicrobial resistance (AMR) between animals and humans (Prescott and 

Dowling, 2000; McEwen and Fedorka-Cray, 2002, Anderson et al., 2003). Because 

AMU can lead to selection of resistant organisms, investigating the relationship 

between AMR and AMU is critical to understanding the risk factors associated with the 

development of resistance. The most commonly used antimicrobials in food animals are 

usually from one of five major classes: beta-lactams, tetracyclines, aminoglycosides, 

macrolides, and sulphonamides (White and McDermott, 2001). While all of these 

antimicrobials may not be “critical” antimicrobials in human medicine, the capacity of 

bacteria to carry multiple linked resistance genes may result in the transfer of unrelated 

resistance genes. 

 

Since bacteria can carry multiple resistance genes on plasmids, transposons, and 

integrons it is necessary to investigate not only specific AMU/AMR combinations, but 

also to consider the effect of unrelated antimicrobials on the persistence of resistance in 

a population. For example, Read et al. (2002) demonstrated that the use of tetracycline, 
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florfenicol, and tilimicosin in feedlot cattle was associated with of the presence of the 

beta-lactamase enzyme blacmy2 gene. This finding suggests that AMU can select not 

only for resistance to that specific antimicrobial, but that it may also result in co-

selection of other resistance genes.  

 

In examining the risk factors for resistance development in a population, it is 

necessary to consider AMU in all members of the population and not just the animals 

from which samples have been collected. Antimicrobial use in some individuals can 

increase the risk of colonization or infection with resistant organisms in others who 

have not been treated. Members of a population can experience indirect effects of AMU 

including an increased risk for acquiring a resistant organism because of AMU in others 

in the population (Lipsitch and Samore; 2002). In environments with long-term AMU 

there will be a change in the ecology and resistant organisms will gain dominance 

within the population (White and McDermott, 2001).  

 

The study objective was to investigate herd-level treatment and vaccination practices 

potentially associated with AMR in fecal generic E. coli collected from calves in beef 

herds from western Canada. Risk factors of potential interest included AMU in the herd, 

proportion of calves ever being treated, herd vaccination status for infectious bovine 

rhinotracheitis (IBR) and bovine virial diarrhea virus (BVDV), and vaccination status 

for calf-associated diarrhea cause by E. coli, rotavirus or coronavirus.  
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6.2. Materials and methods 

 

6.2.1. Background and herd selection 

 

In the spring of 2002, fecal samples were collected from calves born on western 

Canadian cow-calf herds. Participating herds were a subset of herds recruited for a 

multifaceted survey of risk factors affecting cattle productivity and health 

(https://www.wissa.info). Private veterinary clinics across northern British Columbia, 

Alberta, and Saskatchewan were approached and asked to participate in the larger study. 

Within each practice, herds were identified and enrolled based on the selection criteria 

which considered herd size (>50 cows), animal identification, existing calving records, 

animal handling facilities sufficient for  pregnancy testing and bull evaluation, and 

relationship with a local veterinary clinic. Participating herds were visited at least 

quarterly by one of six study veterinarians to collect samples and data, and to monitor 

the quality and consistency of on-farm records.  In a subset of herds, fecal samples and 

farm records for the current risk factor study were collected between January and June, 

2002.  

 

Calving records for each cow included cow identification, calf identification, date of 

calving, single or twin birth, sex of the calf, the degree of assistance provided to the 

cow, any post calving problems, and calving outcome (born alive, stillbirth, died later). 

If the calf died, the date of death was also included. Other data recorded for each herd 

included the herd vaccination status for infectious bovine rhinotrachietis (IBR), bovine 
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viral diarrhea virus (BVDV), and neonatal diarrhea (coronavirus or rotavirus, and E. 

coli). Herd inventory was monitored and tracked closely by study participants. 

 

6.2.2 Antimicrobial use data collection 

 

Antimicrobial use data were collected using individual treatment records as well as a 

questionnaire examining herd AMU (Gow and Waldner, 2007). Because the individual 

animal records did not consistently include information on the type of antimicrobial 

used for treatment, a questionnaire was developed to identify the types of antimicrobial 

products most commonly used on each cow-calf farm for the period of January 1 to 

June 30, 2002. Herd owners were asked about the frequency of use for sulphonamides, 

tetracylcines / oxytetracyclines, trimethoprim / sulphadioxine, and penicillins. 

Antimicrobials that did not fall into these broad categories were classified as “other”. 

Lists of common trade names were provided under each group to simplify the selection 

of the appropriate antimicrobial by the producer. Producers were asked to report 

separately the number of treatments for both cows and calves for each antimicrobial 

category listed above. The numbers of treatments for each category were coded as 

follows: l to 3 animals treated, 4 to 10 animals treated, and >10 animals treated. Only 

herd data were considered in investigating associations between AMU and AMR. 

 

For each herd individual animal treatment data were summarized in order to assess 

the impact of the proportion of calves ever treated (yes/no) with antimicrobials and/or 

fluids on AMR. Treatment occurrence was reported for calves as cumulative incidence. 

The number of calves reported as ever having been treated as a percentage of the 



 

181 

number of calves in the herd at risk of treatment during the study period was used for 

this calculation. 

 

6.2.3. Sample collection 

 

Fecal samples were collected from 466 individually identified animals on 89 

privately owned farms in Alberta and Saskatchewan. The calf samples were collected 

from accessible animals in the calving and nursery areas. Fecal samples were obtained 

either directly from the rectum or from the ground immediately after defecation. A 

separate disposable glove and container were used for each animal.  

 

6.2.4. Laboratory methods 

 

6.2.4.1 Escherichia coli culture 

 

Fecal samples were sent on ice to a private diagnostic laboratory (Prairie Diagnostic 

Services, Saskatoon, Saskatchewan) for culture. The samples were cultured onto 

MacConkey agar plates at 37◦C for 18 hours for isolation of E. coli. At least three 

individual lactose fermenting colonies identified as E. coli using standard biochemical 

tests, including indol, triple sugar iron (TSI) slant, citrate, and urea, were saved from 

each sample. If both dry and mucoid colonies were detected within a sample, then three 

isolates from each colony type were tested. Individual E. coli isolates were stored in 

50% glycerol and Luria-Bertani (LB) broth at -80ºC until susceptibility testing was 

performed.  
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6.2.4.2. Susceptibility testing methodology 

 

Susceptibility testing was performed by Alberta Agriculture, Food and Rural 

Development. All E. coli isolates were tested for susceptibility using a microbroth 

dilution technique (Sensititre®, TREK Diagnostic Systems Inc., Cleveland, Ohio) and 

the standard 2002 National Antimicrobial Resistance Monitoring System (NARMS) 

CMV7CNCD gram negative public health panel.  

 

Minimum inhibitory concentrations (MICs) for a total of 16 antimicrobial agents 

were assessed (Figure 1). Breakpoints for susceptibility were used, as defined by the 

NCCLS (NCCLS, 2000) (Figure 2). All isolates that fell into the intermediate 

susceptibility range were classified as susceptible. Amikacin results > 4µg/mL were 

labeled not interpretable because the breakpoint is 4 dilutions beyond the range of the 

panel. The breakpoint used for streptomycin was 64µg/ml (CIPARS, 2006). 

 

6.2.5. Statistical analysis 

 

All data were entered into a computerized database (Microsoft® Office Access 2000, 

Microsoft Corporation). Descriptive analyses were completed and variables were 

recoded as necessary for statistical modeling using commercially available software 

programs (SPSS 11.0 for Windows, SPSS Inc., Chicago, Illinois).  
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Herd risk factors for AMR were investigated using generalized estimating equations 

(GEE) to account for clustering within herd (SAS v.8.2 for Windows (PROC 

GENMOD); SAS Institute, Cary, North Carolina, USA). Model specifications included 

a binomial distribution, logit link function, and an exchangeable correlation structure. 

Statistically significant associations were reported as an odds ratio with the lower and 

upper 95% confidence interval.  

 

Separate models were run for each outcome of interest including the proportion of 

calves with resistance to: tetracycline, ampicillin, streptomycin, sulphamethoxazole, 

trimethoprim/sulphamethoxazole, kanamycin, chloramphenicol, ≥1 antimicrobial, and 

resistance to ≥2 antimicrobials. The numerator for each outcome was the number of 

positive calves for the herd and the denominator was the number of calves sampled 

from that herd.  

 

In the first step of the analyses, the unconditional association between each of the 

outcomes of interest and the individual antimicrobials listed in tables 2 and 3 were 

investigated.  Antimicrobial use was first modeled as a yes/no variable indicating 

whether the antimicrobial was used in the herd or not.  If a statistically significant 

association was detected at a P≤0.05 level for the outcome and the use of that 

antimicrobial, then AMU was considered separately for cows and calves.  

 

If a statistically significant association at ever used in the cows or calves on the farm 

was detected, then the analysis was repeated to consider the number of times the 
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antimicrobial was used in either cows or calves. The relationship between resistance 

and the increasing use of a particular antimicrobial was explored to determine if the 

odds of resistance increased with the number of times an antimicrobial was reported as 

used on the farm i.e. used 1-3 times, 4-10 times or >10 times. If a reasonable dose-

response relationship was evident, then this categorization of the AMU was considered 

for use in building a multivariable herd-adjusted model. If the multivariable herd-

adjusted model would not converge with the AMU categorized by use 1-3 times, 4-10 

time or >10 times, then a second model was developed to evaluate a yes/no variable 

indicating any use of that antimicrobial for either cows and/or calves in the herd as 

appropriate. Again if this new model did not converge, then a summary yes/no variable 

indicating any use of the antimicrobial in the herd was evaluated in the model. 

 

The final multivariable model was developed using backwards stepwise elimination. 

Any potential risk factors where P≤0.05 or that were acting as important confounders 

(removal of the potential risk factor from the model changes the effect estimate for the 

exposure by ≥20%) were retained in the final model. After establishing the main effects 

model, biologically reasonable first order interaction terms were tested if two or more 

variables (P≤0.05) were retained in the final model.  

 

6.2.6. Post hoc power calculations 

 

Post hoc power calculations were performed to evaluate whether limited study power 

was a factor in not detecting associations between specific AMU and AMR to that 

antimicrobial or class of antimicrobials. The most commonly reported antimicrobial 
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used and resistance detected was for tetracycline, therefore sample size estimates were 

based on this antimicrobial. The calculations were based on being able to detect a 

minimum expected increase of 1.5 times in the proportion of tetracycline resistance in 

calves from herds that used tetracycline compared with calves from herds that did not 

use tetracycline. Computations were performed using sample size calculations for 

comparing two proportions (Dohoo et al., 2003) to develop crude estimates of the 

required sample size per group.  Data from a null model were used to estimate variance 

for AMR in calves across herds using penalized quasi-likelihood estimates (2nd order 

PQL) (MLwiN version 2.0, Centre for Multilevel Modeling, Institute of Education, 

London, UK), a binomial distribution, and logit link function. These results were 

utilized in adjusting the sample size estimates for clustering at the herd level (Dohoo et 

al., 2003). 

 

6.3. Results 

 

6.3.1. Study population 

 

Between 1 and 12 calf fecal samples (median, 5; interquartile range (IQR), 4 to 6) 

were collected from each of 89 herds. Enrolled herds ranged in size from 74 to 393 

breeding females (median, 137). Of the 466 calves sampled, 56% (259/466) were male 

and ranged in age from new born to 151 days (median, 6). Dam age ranged from 2 to 17 

years with a median of 6 years of age. The percentage of calves treated on each farm 

varied from 0 to 100% (median, 8.1%, IQR, 4.1 to 20.9%); 94% (440/466) of calves 

were classified as healthy at the time of sample collection.  
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Modified-live BVDV and IBR vaccines were used in 45% (40/89) of herds, 37% 

(33/89) of herd owners used an inactivated vaccination, 3% (3/89) vaccinated but the 

type was not reported, and 15% (33/89) did not vaccinate. Vaccination of the 

cow/heifers for prevention of neonatal calf diarrhea was reported in 32% (28/89) of 

herds.  

 

6.3.2. Summary of AMR and AMU in study herds 

 

The MICs for 16 antimicrobials were summarized for each of the 1677 isolates 

recovered in this study (Figure 6.1). For the 7 antimicrobials that resistance was most 

commonly detected, the crude calf prevalence ranged from 22.5 to 60.5% (Table 6.1).   

For the same 7 antimicrobials the median proportion of calves with AMR per herd was 

21.0% to 59% (Table 6.1). 

 

Ninety-one percent of herds had at least one calf positive for resistance to ≥1 

antimicrobial. Similarly, resistance to ≥2 antimicrobials was detected in 89% of the 

herds. The most common resistances identified on farms were to tetracycline (90% of 

herds), sulphamethoxazole (88%), and streptomycin (80%).   

 

More than 70% of the farms used tetracyclines/oxytetracylcines; the majority of this 

use was in the cow herd (Table 6.2). Slightly fewer than 70% of the herds used 

sulphonamides, but the majority of this use was in the calf herd (Table 6.2). Penicillin, 

tilmicosin and florfenicol were used on about half of the farms (Table 6.2 and 6.3). 
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Gentamicin, ceftiofur, and sulbactam:ampicillin were used by less than 12% of the 

herds. One percent of the herds reported off label use of either cephalexin or 

enrofloxacin (Table 6.3). Ionophores were incorporated into the rations of cows and 

heifers in 25.8% (23/89) herds. 

 

6.3.3. Observed risk factors associated with AMR 

 

Vaccination status for BVDV was not associated with resistance to streptomycin 

(P=0.58), sulphamethoxazole (P=0.37), trimethoprim/sulphamethoxazole (P=0.20), 

kanamycin (P=0.96), chloramphenicol (P=0.82), ampicillin (P=0.29), ≥1 antimicrobial 

(P=0.53), or ≥2 antimicrobials (P=0.55). Vaccination status of either heifers or cows, 

respectively, for calf associated diarrhea was also not associated with resistance to 

streptomycin (P=0.61, P=0.61), sulphamethoxazole (P=0.32, P=0.32), 

trimethoprim/sulphamethoxazole (P=0.16, P=0.14), kanamycin (P=0.57, P=0.61), 

chloramphenicol (P=0.09, P=0.09), ampicillin (P=0.84, P= 0.79), ≥1 antimicrobial 

(P=0.17, P=0.16), or ≥2 antimicrobials (P=0.31, P=0.30) .  Ionophore use in the herd 

was not associated with resistance to streptomycin (P=0.77), sulphamethoxazole 

(P=0.40), tetracycline (P=0.56),trimethoprim/sulphamethoxazole (P=0.84), kanamycin 

(P=0.66), chloramphenicol (P=0.48), ampicillin (P=0.65), ≥1 antimicrobial (P=0.42), or 

≥2 antimicrobials (P=0.61). 

 

 There were, however, several statistically significant unconditional associations 

between AMU and resistance to tetracycline (Table 6.4), streptomycin (Table 6.5), 

sulphamethoxazole (Table 6.6), trimethoprim/sulphamethoxazole (Table 6.7), 
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kanamycin (Table 6.8), chloramphenicol (Table 6.9), ampicillin (Table 6.10), ≥1  

antimicrobial (Table 6.11), or ≥2 antimicrobials (Table 6.12). 

 

In the final multivariable model for tetracycline resistance, any sulbactam:ampicillin 

use in the herd increased the odds of resistance 2.8 (95% CI, 1.0 to 7.4; P=0.04) times 

and the use of gentamicin in calves increased the odds of resistance 3.5 times (95% CI, 

2.4 to 4.8; P<0.0001). 

 

Sulbactam:ampicillin (OR, 3.2; 95% CI, 1.3 to 7.8; P=0.01) and gentamicin (OR, 

5.5; 95% CI, 4.0 to 7.7; P<0.0001) use in calves were associated with an increased odds  

of streptomycin resistance in the final multivariable model. 

 

The use of sulbactam:ampicillin in cows (OR, 6.1; 95% CI, 1.1 to 35; P=0.04) and 

gentamicin use in calves (OR, 3.4; 95% CI, 1.6 to 2.2; P<0.0001) was associated with 

the occurrence of sulphamethoxazole resistance in the final multivariable model . 

 

The odds of trimethoprim/sulphamethoxazole resistance were 2.3 (95% CI, 1.1 to 

5.0; P=0.03) times higher in herds that used any sulbactam:ampicillin than herds that 

did not.  For every incremental increase in the proportion of calves treated in a herd, 

trimethoprim/sulphamethoxazole resistance also increased by 6.1 (95% CI, 1.5 to 25; 

P=0.01) times. 
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The final model of kanamycin resistance contained several risk factors. Kanamycin 

resistance was 3.9 (95% CI, 1.6 to 9.3; P=0.002) times more frequent in herds that used 

sulbactam:ampicillin in calves and 28.2 (95% CI, 4.8 to 166; P=0.0002) times more 

common in herds that used sulbactum:ampicillin in cows than herds that did not use 

sulbactum: ampicillin in calves or cows respectively. Kanamycin resistance was 6.2 

(95% CI, 4.1 to 9.3; P<0.0001) times more likely in herds that used genatmicin in 

calves than in herds that did not use gentamicin in calves. 

 

Only one risk factor was associated with chloramphenicol resistance.  Resistance to 

chloramphenicol was 2.7 (95% CI, 1.2 to 6.0; P=0.02) times more frequent on farms 

that used florfenicol in calves. 

 

Ampicillin resistance was 3.0 (95% CI, 1.5 to 6.1; P=0.002) times more likely in 

herds that used sulbactam:ampicillin in their calves and 5.3 (95% CI, 2.1 to13; 

P=0.0003) times more frequent in herds that used ceftiofur in calves than in herds that 

did not use either of these antimicrobials. The occurrence of ampicillin resistance was 

also 3.2 (95% CI, 2.3 to 4.5; P<0.0001) times more likely in herds that used 

enrofloxacin in calves than herds that did not use enrofloxacin in calves.  

 

Resistance to ≥1 antimicrobial was associated with sulbactam:ampicillin use and 

gentamicin use in calves.  Resistance to ≥1 antimicrobial was 3.1 (95% CI, 1.1 to 8.8; 

P=0.03) times more likely in herds that used any subactam:ampicillin and 3.2 (95% CI, 

2.2 to 4.5; P<0.0001) times more likely in herds that used any gentamicin in calves.   
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Resistance to ≥2 antimicrobials in herds with any sulbactam:ampicillin use was 3.2 

(95% CI, 1.2 to 8.6; P=0.02) times greater than herds that did not use 

sulbactam:ampicillin and 3.6 (95% CI, 2.5 to 5.0; P<0.0001) times greater in herds that 

used gentamicin in calves then herds that did not use gentamicin in calves. 

 

6.3.4. Post hoc power calculations 

 

The use of a specific antimicrobial was not commonly associated with resistance to 

that same antimicrobial or class of antimicrobials for some of the most prevalent 

resistances detected. For example, tetracycline resistance was not related to 

tetracycline/oxytetracycline use, sulphonamide use was not a risk factor for 

sulphamethoxazole or trimethoprim/ sulphamethoxazole resistance, and ampicillin 

resistance was not associated with penicillin use. The reason for this apparent 

discrepancy may be due to limited power in the analysis associated with restricted 

variation between herds in the frequency of both resistance and AMU for most of the 

above antimicrobials.   

 

Tetracyline was used for the sample size calculations. In this population there were 

57.5% (73/127) animals that were positive for tetracycline resistant isolates on farms 

with no tetracycline use. For farms with tetracycline use there were 61.7% (209/339) 

animals with tetracycline resistance. The difference in the percentage of animals with 

tetracycline resistance on farms with or without tetracycline use was only 1.1 
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(61.7/57.5) times.    To adjust the sample size for clustering rho (0.87) was calculated 

for calves across herds. 

 

Post hoc adjusted sample size calculations based on tetracycline and collecting 5 

samples per herd, indicated that at least 190 animals would be needed per group to 

detect an odds ratio of 1.5. The current study had only 127 animals in herds that did not 

use any tetracycline, therefore the study lacked sufficient power to detect a minumum 

risk of 1.5 times between the study groups. 

 

6.4. Discussion 

 

This is one of the first studies to investigate factors associated with the frequency of 

AMR in fecal generic E. coli isolated from beef calves in cow-calf herds. The use of 

two antimicrobials, sulbactam:ampicillin and gentamicin, were identified as risk factors 

for the occurrence of  resistance to several unrelated antimicrobials. These findings can 

potentially be explained by considering known mechanisms of AMR and the potential 

for co-selection of resistance genes. 

 

Bacteria have a variety of methods to facilitate the promotion and transfer of 

resistance genes. Resistance genes can encode resistance not just to a particular 

antimicrobial, but to an entire class of antimicrobials (McDermott et al., 2003; Catry et 

al., 2003). They can also encode resistance to compounds that are structurally diverse 

through cross-resistance (Catry et al., 2003), therefore resulting in resistance to a variety 

of antimicrobials. Additionally, mobile genetic elements can also often carry several 
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resistance genes which can confer resistance to multiple antimicrobials through the 

acquisition of a single mobile element (McDermott et al., 2003). As a result, the 

treatment with any one antimicrobial, where resistance to that antimicrobial is encoded 

on a bacteria carrying multiple resistance genes, could promote the selection of 

resistance to the other antimicrobials through gene linkage (Enne et al.; 2001, Catry et 

al.; 2003).  

 

Plasmids are one mechanism used by bacteria to carry and spread multiple resistance 

genes. The associations between the use of certain classes of antimicrobials and 

resistance to a different class could be explained by isolates carrying multi-resistant 

plasmids. These plasmids could then be selected for by any number of different 

antimicrobials and perpetuate resistance to a variety of unrelated antimicrobials.    

 

From the data available it is impossible to tell what type of plasmid or other genetic 

mechanism is being selected in this population of beef calves, but one possibility that 

could explain the associations between sulbactam:ampicillin use and resistance to 

unrelated antimicrobials is the presence of a blacmy2 plasmid. Winokur et al. (2001) 

demonstrated that Salmonella carrying blacmy2 plasmids also carry resistance genes for 

tetracycline, aminoglycosides, and sulphonamides. Winokur et al. (2001) went on to 

illustrate that the blacmy2 plasmid can transfer between Salmonella and E. coli, and that 

these E. coli also had high rates of co-resistance to the following antimicrobials: 

gentamicin, tobramycin, streptomycin, tetracycline, trimethoprim/sulphamethoxazole, 

and chloramphenicol.  
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Allen and Poppe (2002) also demonstrated that a non-conjugative blacmy2 plasmid 

with resistance for ampicillin, cefoxitin, ceftiofur, cephalothin, streptomycin, 

sulfisoxizole and tetracycline originally detected in Salmonella could be transferred to 

E. coli. In this same study chloramphenicol, florfenicol, kanamycin, and neomycin 

resistance were also transferred to E. coli from S. Ohio and S. typhimurium (Allen and 

Poppe; 2002).  

 

Considering these earlier findings, in the current study the presence of a AmpC-like 

Beta-lactamase blacmy2 plasmid carrying resistance to multiple antimicrobials could 

explain why the use of sulbactam:ampicillin is associated with resistance to tetracycline, 

sulphamethoxazole, streptomycin, trimethoprim/ sulphamethoxazole, ampicillin, and 

resistance to ≥2 antimicrobials in this population of beef calves.  

 

In addition to the use of sulbactam:ampicillin, resistance to kanamycin, 

streptomycin,  tetracycline, sulphamethoxazole, and to ≥2 antimicrobials was also 

associated with gentamicin use in calves. As described above, the blacmy2 plasmid can 

carry kanamycin and neomycin resistance which may confer cross resistance to 

gentamicin.  

 

The association between kanamycin and streptomycin resistance and gentamicin use 

are also likely the result of cross resistance between aminoglycosides. Selection of 

sulphamethoxazole and tetracycline resistance with gentamicin use could be the result 
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of a multiple resistant plasmid containing aminoglycoside resistance genes and 

resistance genes for each of these antimicrobials respectively.  

 

While the presence of a blacmy2 plasmid appears to correspond with the combination 

of antimicrobial uses found to be significant risk factors for a variety of resistances, it is 

not the only possible explanation for these findings.  Any multiple resistant plasmid or 

other multiple resistant genetic element could be carrying non blacmy2 beta-lactam 

resistance genes or aminoglycoside resistance genes along with other AMR genes. This 

means that the use of sulbactam:ampicillin or gentamicin could select for resistance to 

any number of different antimicrobials. Molecular analysis would be necessary to 

determine what mechanisms of resistance are involved for these particular isolates. 

Since the extended spectrum cephalosporins are important in the treatment of human 

disease if the presence of a blacmy2 plasmid was detected in this population it could have 

an impact on the spread of blacmy2 associated resistances in both people and animals.  

Continued monitoring would be needed to detect any potential rise in the AMR 

phenotypes associated with blacmy2.   

 

In addition to the associations mentioned above, the study also detected an 

association between florfenicol use and chloramphenicol resistance. The relationship 

between florfenicol use and chloramphenicol resistance has also been described in 

feedlot cattle. Berge et al. (2005) demonstrated that immediately after treatment with 

florfenicol, all treated cattle shed isolates positive not only for chloramphenicol 

resistance, but for other antimicrobials as well. 
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In another feedlot study, Read et al. (2002) reported an association between 

ampicillin resistance and florfenicol use. This association was not detected in the calves 

of the current study. The current study did note an association between ampicillin 

resistance and both ceftiofur and sulabactum:ampicillin use, but these associations were 

not detected in the Read et al. (2002) study. The discrepancies between these two 

projects may be explained by a variety of factors including: methodological differences 

between these studies (fecal pat vs. swab fecal), animal age (young beef calves vs. 

feedlot beef calves post weaning), sampling differences (point in time vs. repeated 

sampling), methodological differences in sensitivity testing (microbroth dilution vs. 

agar dilution), and the level at which the analysis was performed (herd vs. individual). 

Finally and potentially most importantly, differences in AMU between cow-calf herds 

and feedlots may also have affected the outcomes.  

 

While this investigation provides some of the first available data examining risk 

factors for beef calves, a recent study of commensal E. coli isolated from pre-weaned 

dairy calves on calf ranches and dairies described many factors associated with AMR 

(Berge et al, 2003; Berge et al, 2005). Farm type, animal source, calf age and individual 

treatments were important predictors of the odds of E. coli belonging to resistant 

clusters (Berge et al., 2006). Individual treatment with an injectable (yes/no) and/or oral 

(yes/no) AMU and calf age were investigated as risk factors, but were not associated 

with the occurrence of AMR in this group of beef calves (Gow et al., 2007).  
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One limitation of the current study was that detailed data on the type and dose of 

specific antimicrobials used were not gathered for individual animals, and therefore the 

relationship between specific antimicrobials and resistances could not be investigated at 

the individual animal level. A second limitation was that information on the frequency 

of herd AMU by producers was gathered retrospectively at the end of the calving 

season. Recall bias associated with retrospective data collection could result in potential 

over or under estimation of the number of times a particular antimicrobial was used in 

the herd or if it was used at all. Finally, because proportion of calves treated and AMU 

data were summarized for the entire period and not relative to the time of sample 

collection on that farm there is also misclassification bias.  The herd might have been 

considered exposed to a certain antimicrobial or antimicrobials, but that exposure may 

have been subsequent to the sample collection. This same problem with time sequence 

would apply when considering the proportion of calves ever treated since many of the 

treatments could have taken place after sample collection, thereby having no relevance 

to the AMR patterns detected.  Future studies could require individual treatment records 

that included the type of antimicrobial used, the date of use, and dose administered to 

more accurately determine individual animal exposure. However, historically detailed 

individual calf treatment records have been very difficult to obtain from most 

commercial cow-calf herds (Waldner, 2001)  

 

Study power to investigate AMU/AMR associations was also limited. In these 

instances the lack of variability between farms made it impossible to investigate the 

association between resistance and AMU. Most of the herds enrolled in the study 
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routinely used tetracyclines, sulphonamides and penicillins. Many of these herds also 

had calves with AMR to the same antimicrobial. The lack of variability between farms 

in AMU and AMR detection meant that in order to study these associations that the 

numbers of animals in herds without tetracycline use would need to be increased to see 

a significant association if one was present.    

 

This study does provide insight into whether treatment and vaccination practices 

influence AMR found in young calves in beef operations. This initial investigation 

suggests that because of the potential for linkage of unrelated resistance genes, we not 

only need to be aware of the risk of selecting for resistance to the antimicrobial being 

used, but we also need to consider that other resistance genes might be inadvertently 

selected and the potential impact that gene selection may have on both human and 

animals health.  
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Figure 6.1.  Minimum inhibitory concentration distribution for 1677 isolates from 466 calves tested for antimicrobial sensitivity using 
Sensititre 2002 NARMS CMV7CNCD plate configuration. Numbers are presented as a percentage of the total isolates (n=1677). 

MIC Percentiles
Median 75th <=0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512

Ceftiofur 1677 0.25 0.25 3.2 72.5 20.1 1.8 0.1 0.8 0.9 0.6
Ceftriaxone 1677 <=0.25 0.25 95.8 1.8 0.2 0.2 0.8 0.8 0.5 0.1

Ciprofloxacin 1677 <=0.015 <=0.015 99.4 0.4 0.1 0.2
Amikacin 1677 2 2 0.5 29.6 65.1 4.4 0.4

Amoxicillin-Clavulanic Acid 1677 4 8 2.7 22.0 47.6 16.9 6.1 2.1 2.6
Gentamicin 1677 1 1 10.0 24.9 63.7 0.6 0.3 0.4 0.2
Kanamycin 1677 <=8 <=8 77.1 0.1 22.8

Nalidixic Acid 1677 4 4 0.8 30.6 65.9 2.5 0.1 0.2
Streptomycin 1677 <=32 64 62.6 20.9 16.5

Trimethoprim-Sulphamethoxazole 1677 <=0.12 0.5 52.6 14.7 12.0 0.9 19.8
Ampicillin 1677 4 >=64 2.8 34.9 33.3 2.8 0.9 0.2 25.1
Cefoxitin 1677 4 4 0.2 20.6 56.0 17.4 1.6 4.2

Cephalothin 1677 8 16 1.0 13.4 57.5 21.0 1.6 5.5
Chloramphenicol 1677 8 8 2.1 39.6 39.1 1.4 0.2 17.5

Sulphamethoxazole 1677 <=16 >512 52.9 0.1 0.1 0.4 46.6
Tetracycline 1677 8 >=64 49.1 1.1 0.2 1.6 48.0

IV

Distribution (%) of MICs

I

II

III

Antimicrobial n*

 
Note: Roman numerals I-III indicate the ranking of human importance, established by the Veterinary Drug Directorate, Health Canada. The unshaded fields 
indicate the range tested for each antimicrobial in the plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median.  
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Table 6.1. Antimicrobial resistance to any of the 7 antimicrobials to which resistance 
was most commonly detected, to any antimicrobial, or to ≥2 antimicrobials,were 
summarized as crude prevalence of AMR for calves (n=466) tested in all herds and as 
the median proportion of calves tested in each herd (IQR) (N=89) 
 
   
 Crude calf 

prevalence 
Herd prevalence 

Antimicrobial  Median % (IQR) 
Ampicillin 30.5% (142/466) 20.0% (0.0-50.0%) 
Chloramphenicol 22.5% (105/466) 0.0% (0.0-38.0%) 
Kanamycin 28.3% (132/466) 20.0% (0.0-50.0%) 
Sulphamethoxazole 57.9% (270/466) 57.0% (33.0-80.0%) 
Streptomycin 49.4% (230/466) 50.0% (20.0-80.0%) 
Tetracycline 60.5% (282/466) 60.0% (33.0-80.0%) 
Trimethoprim/sulphamethoxazole 24.5% (144/466) 0.0% (0.0-50.0%) 
Any AMR 62.7% (292/466) 67.0% (40.0-90.0%) 
AMR≥2 antimicrobial 60.1% (280/466) 60.0% (40.0-83.0%) 



 

203 

Table 6.2. The number (%) of herds using penicillins, sulphonamides, and 
tetracyclines/oxytetracycline (N=89) 
 
Antimicrobial and cow or 
calf usage 

# (%) of 
herds 

# (%) of 
herds 

 
Number of times used on the farm 

 with no use 
with use 
(Y/N) 1-3 times 4-10 times >10 times 

Cow penicillin long acting 65 (73.0) 24 (27.0) 14 (15.7) 6 (6.7) 4 (4.5) 
Cow penicillin short acting 79 (88.8) 10 (11.2) 4 (4.5) 3 (3.4) 3 (3.4) 
Cow penicillin any 59 (66.3) 30 (33.7) — — — 
       
Calf penicillin long acting 82 (92.1) 7 (7.9) 4 (4.5) — 3 (3.4) 
Calf penicillin short acting 78 (87.6) 11 (12.4) 4 (4.5) 5 (5.6) 2 (2.2) 
Calf penicillin any 74 (83.1) 15 (16.9) — — — 
      
Herd penicillin any 50 (56.2) 39 (43.8) — — — 
      
Cow oral sulphonamide 86 (96.6) 3 (3.4) 2 (2.2) 1 (1.1) — 
Cow injectable 
sulphonamide 81 (91.0) 8 (9.0) 7 (7.9) — 1     (1.1) 
Cow any sulphonamide 78 (87.6) 11 (12.4) — — — 
      
Calf oral sulphonamide 37 (41.6) 52 (58.4) 8 (9.0) 16 (18.0) 28 (31.5) 
Calf injectable 
sulphonamide 59 (66.3) 11 (12.4) 6 (6.7) 13 (14.6) 30 (33.7) 
Calf any sulphonamide 31 (34.8) 58 (65.2) — — — 
      
Herd any sulphonamide 29 (32.6) 60 (67.4) — — — 
      
Cow oxytetracycline LA 35 (39.3) 54 (60.7) 21 (23.6) 21 (23.6) 12 (13.5) 
Cow oxytetracycline LP 86 (96.6) 3 (3.4) 2 (2.2) 1 (1.1) — 
Cow tetracycline bolus 87 (97.8) 2 (2.2)  1 (1.1) 1 (1.1) — 
Cow any 
oxytetracycline/tetracycline 33 (37.1) 56 (62.9) — — — 
      
Calf oxytetracycline LA 54 (60.7) 35 (39.3) 9 (10.1) 15 (16.9) 11 (12.4) 
Calf oxytetracycline LP 88 (98.9) 1 (1.1) — 1 (1.1) — 
Calf tetracycline bolus 88 (98.9) — — 1 (1.1) 1 (1.1) 
Calf any 
oxytetracycline/tetracycline 53 (59.6) 36 (40.4) — — — 
      
Herd any 
oxytetracycline/tetracycline 26 (29.2) 63 (70.8) — — — 
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Table 6.3. The number (%) of herds using tilmicosin, florfenicol, sulbactam:ampicillin, 
ceftiofur, enrofloxacin, gentamycin, amprolium and cephalexin (N=89) 
 

Antimicrobial and cow or calf usage No Use Used (Y/N)

 
Number of times used on the 

farm 

   
1-3 

times 
4-10 
times 

>10 
times 

Cow tilmicosin 79 (88.8) 10 (11.2) 9 (10.1) 1 (1.1) — 
Cow  any tilmicosin 79 (88.8) 10 (11.2) — — — 
      

Calf tilmicosin 65 (73.0) 24 (27.0) 
12 

(13.5) 5 (5.6) 7 (7.9) 
Calf any tilmicosin 65 (73.00 24 (27.0) — — — 
      
Herd any tilmicosin 57 (64.0) 32 (36.0) — — — 
      
Cow florfenicol 83 (93.3) 6 (6.7) — — — 
Calf florfenicol 47 (52.8) 42 (47.2) — — — 
Herd any florfenicol 45 (50.6) 44 (49.4) — — — 
      
Cow any sulbactam:ampicillin 87 (97.8) 2 (2.2) — — — 
Calf sulbactam:ampicillin 81 (91.0) 8 (9.0) 4 (4.5) — 4 (4.5) 
Calf any sulbactam:ampicillin 81 (91.0) 8 (9.0) — — — 
Herd any sulbactam:ampicillin 79 (88.8) 10 (11.2) — — — 
      
Cow any ceftiofur 88 (98.9) 1 (1.1) — — — 
Calf ceftiofur 82 (92.1) 7 (7.9) 1 (1.1) 2 (2.2) 4 (4.5) 
Calf any ceftiofur 82 (92.1) 7 (7.9) — — — 
Herd any ceftiofur 82 (92.1) 7 (7.9) — — — 
       
Calf enrofloxacin calf 88 (98.9) 1 (1.1) — — 1 (1.1) 
Herd enrofloxacin 88 (98.9) 1 (1.1) — — — 
       
Cow any mastitis 87 (97.8) 2 (2.2) — — — 
      
Cow any gentamicin 88 (98.9) 1 (1.1) — — — 
Calf any gentamicin 87 (97.8) 2 (2.2) — — — 
Herd any gentamicin 86 (96.6) 3 (3.4) — — — 
      
Calf amprolium 87 (97.8) 2 (2.2)  1 (1.1) 1 (1.1) — 
Calf any amprolium 87 (97.8) 2 (2.2) — — — 
      
Calf any cephalexin 88 (98.9) 1 (1.1) — — — 
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Table 6.4. The statistically significant herd-adjusted unconditional association between 
AMU in the herd and the occurrence of resistance to tetracycline in E.coli isolates from 
beef calves (n=466, N=89) 
 
Risk factor Odds Ratio 95% Confidence Interval P-value 
   Lower Upper   
Sulbactam:ampicillin     
Sulbactam:ampicillin used 2.7 1.0 7.2 0.04 
No sulbactam:ampicillin used Reference category 
     
Ceftiofur     
Any ceftiofur used in calves 3.0 2.1 4.2 <0.0001 
No ceftiofur used in calves Reference category 
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Table 6.5. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to streptomcyin 
(n=466, N=89) 
 
Risk factor Odds Ratio 95% Confidence 

Interval 
P-value 

  Lower Upper  
Sulbactam:ampicillin     
Sulbactam:ampicillin used 3.0 1.3 7.0 0.01 
No sulbactam:ampicillin used Reference Category 

 
Sulbactam:ampicillin used in calves 3.0 1.3 7.4 0.01 
No sulbactam:ampicillin in calves Reference category 
     
     
Gentamicin     
Any gentomcyin used in calves 4.8 3.4 6.6 <.0001 
No gentamicin used in calves Reference category 
     
Cephalexin     
Any cephalexin used in calves 4.2 3.1 5.6 <.0001 
No cephalexin used in calves  Reference category 
  
Other  
Other antimicrobials used in calves 4.1 2.4 6.8 <.0001 
No other antimicrobials used in calves Reference category 
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Table 6.6. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
sulphamethoxazole (n=466, N=89) 
 

Risk factors Odds Ratio 
95% Confidence 

Interval P-value
  Lower Upper  
Sulbactam:ampicillin     
Sulbactam:ampicillin used 2.6 1.0 6.6 0.05 
No Sulbactam:ampicillin used Reference category 
     
Sulbactam:ampicillin used in cows 6.0 1.0 34.5 0.05 
No sulbactam:ampicillin in cows Reference category 
     
Gentamicin     
Any gentamicin used in calves 3.3 2.4 4.7 <.0001 
No gentamicin used in calves Reference category 
     
Other     
Any other antimicrobials used in calves 2.1 1.1 4.0 0.03 
No other antimicrobials used on calves Reference category 
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Table 6.7. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to 
trimethoprim/sulphamethoxazole (n=466, N=89) 
 
Risk Factors Odds Ratio 95% Confidence Interval P-value 
  Lower Upper   
Sulbactam:ampicillin     
Any sulbactam:ampicillin used 2.6 1.1 6.3 0.04
No sulbactam:ampicillin used Reference category 
         
Ceftiofur         
Any ceftiofur used on farm 3.5 1.1 11.6 0.04
No ceftiofur used on farm Reference category 
         
Any ceftiofur used in calves 3.5 1.1 11.6 0.04
No ceftiofur used in calves Reference category 
         
Proportion of calves treated         
Total proportion of calves treated 7.2 1.4 36.2 0.02
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Table 6.8. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to kanamycin 
(n=466, N=89) 
 
Risk Factor Odds 

Ratio 
95% Confidence 

Interval 
P-value 

  Lower Upper  
Sulbactam:ampicillin     
Any sulbactam:ampicillin used on the farm 4.4 1.9 10.0 <.001 
No sulbactam:ampicillin used on the farm Reference category 
     
Any sulbactam:ampicillin used in the cows 21.5 3.7 125.6 <.001 
No sulbactam:ampicillin used in the cows Reference category 
     
Any sulbactam:ampicillin used in the calves 3.4 1.4 8.0 0.01 
No sulbactam:ampicillin used in the calves Reference category 
     
Gentamicin     
Any gentamicin used on the farm 3.0 1.3 6.9 <.0001 
No gentamicin used on the farm Reference category 
     
Any gentamicin used in the calves 4.6 3.1 6.9 <.0001 
No gentamicin used in the calves Reference category 
     
Other     
Any other antimicrobials used in the calves 3.0 1.2 7.1 0.01 
No other antimicrobials used in the calves Reference category 
     
Proportion of calves treated     
Proportion of calves treated 7.1 1.6 32.5 0.01 
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Table 6.9. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to chloramphenicol 
(n=466, N=89) 
 
Risk factor Odds Ratio 95% Confidence Interval P-value 
  Lower Upper  
Florfenicol      
Any florphenical used on farm 2.7 1.2 6.2 0.02 
No florphenical used on farm Reference category 
       
Any florfenicol used in calves 2.7 1.2 6.0 0.02 
No florphenical used in calves Reference category 
      
Ceftiofur      
Any ceftiofur used on the farm 4.0 1.0 16.4 0.05 
No ceftiofur used on the farm Reference category 
      
Any ceftiofur used in calves 4.0 1.2 16.4 0.05 
No ceftiofur used in calves Reference category 
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Table 6.10. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to ampicillin (n=466, 
N=89) 
 
Risk Factor Odds Ratio 95% Confidence 

Interval 
P-value 

  Lower Upper  
Penicillin     
Any penicillin used on farm 2.0 1.1 3.7 0.04 
No penicillin used on farm Reference category 
     
Florfenicol     
Any florfenicol used on farm 1.9 1.0 3.6 0.04 
No florfenicol used on farm Reference category 
     
Any florfenicol used in calves 1.9 1.0 3.5 0.05 
No florfenicol used in calves Reference category 
     
Sulbactam:ampicillin     
Any sulbactam:ampicillin used on farm 2.5 1.1 6.0 0.04 
No sulbactam:ampicillin used on farm Reference category 
     
Any sulbactam:ampicillin used in calves 3.2 1.3 7.7 0.009 
No sulbactam:ampicillin used in calves Reference category 
     
     
Ceftiofur     
Any ceftiofur used on farm 5.6 1.9 16.5 0.002 
No ceftiofur used on farm Reference category 
     
Any ceftiofur used in cows 7.0 5.0 9.7 <.0001 
No ceftiofur used in cows Reference category 
     
Any ceftiofur used  in calves 5.6 1.9 16.5 0.002 
No ceftiofur used in calves Reference category 
     
Enrofloxacin      
Any enrofloxacin used in calves 2.3 1.7 3.2 <.0001 
No enrofloxacin used in calves Reference category 
     
Cephalexin     
Any cephalexin used in calves 1.5 1.1 2.1 0.01 
No cephalexin used in calves Reference category 
     
Gentamicin     
Any gentamicin used in calves 2.3 1.7 3.2 <.0001 
No gentamicin used in calves Reference category 



 

212 

Table 6.11. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to any antimicrobial 
(n=466, N=89) 
 
Risk factor Odds 

Ratio 
95% Confidence 

Interval 
P-value 

  Lower Upper  
Sulbactam:ampicillin      
Any sulbactam:ampicillin used on farm 3.0 1.1 8.5 0.04 
No sulbactam:ampicillin used on farm Reference category 
       
Gentamicin      
Any gentamicin used in calves 2.7 1.9 3.9 <0.0001 
No gentamicin used in calves Reference category 
      
Cephalexin      
Any cephalexin used in calves 2.4 1.8 3.3 <0.0001 
No cephalexin used in calves Reference category 
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Table 6.12. The statistically significant herd-adjusted unconditional association between 
AMU risk factors in the herd and the occurrence of calf resistance to two or more 
antimicrobials (n=466, N=89) 
 
Risk factor Odds 

Ratio 
95% Confidence 

Interval 
P-value 

  Lower Upper  
Sulbactam:ampicillin    
Any sulbactam:ampicillin used in cows 3.1 1.1 8.3 0.03 
No sulbactam:ampicillin used in cows Reference category 
     
Gentamicin     
Any gentamicin used in calves 3.1 2.2 4.3 <.0001 
No gentamicin used in calves Reference category 
     
Other     
Any other antimicrobials use in calves 2.6 1.5 4.3 0.0004 
No other antimicrobials antimicrobials 
in calves 

Reference category 

     
Cephalexin     
Any cephalexin used in calves 2.7 2.0 3.6 <.0001 
No cephalexin used in calves Reference category 
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CHAPTER 7 
MOLECULAR CHARACTERIZATION OF AMR IN FECAL GENERIC 

ESCHERICHIA COLI ISOLATES IN WESTERN CANADIAN COW-CALF HERDS: 
PART I ASSOCIATIONS BETWEEN PHENOTYPE AND GENOTYPE 

 

7.1. Introduction 

 

 There are many different genetic determinants of antimicrobial resistance (AMR) 

and each determinant may present a different distribution among bacterial populations 

(Lanz et al., 2003). Typically, AMR is reported based only on the expressed phenotype 

derived from susceptibility testing of the organism. However, resistance phenotypes 

alone do not always represent all of the underlying resistance genes. Alternatively, the 

presence or absence of a resistance gene does not imply that the particular strain is 

resistant or susceptible to an antimicrobial (Aarts et al., 2006). Evaluating both 

phenotype and genotype together provides a more complete understanding of the 

epidemiology of AMR. 

 

Bacteria are proficient at sharing genetic information necessary to survive in the 

presence of antimicrobials (McDermott et al. 2002). The ability to readily exchange 

genes increases the potential of the spread of AMR determinants from commensal 

organisms present in animals and people to veterinary or human pathogens (Salyers and 

Cuevas, 1997). Rapid transfer of resistance can happen within and between genera of 

bacteria (McDermott et al., 2002). Even the passage of an ingested resistant organism 
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through the intestinal tract can result in the transfer of resistant genes to resident 

microflora, which may subsequently be transmitted to pathogenic bacteria (McDermott 

et al. 2002).  

 

The speed of resistance development is affected by the bacteria involved, the 

selective pressure from AMU, and the availability and transferability of resistance genes 

(Schwartz et al., 2006). Loss of acquired resistance is influenced mainly by selective 

pressure, but also by the co-location of the resistance genes in multi-resistance gene 

clusters or integron structures (Schwartz et al., 2006). When resistance genes are 

organized in gene clusters or integrons, the loss of acquired resistance genes may not 

occur even in the absence of direct selective pressure (Schwartz et al., 2006).  

 

Molecular methods have helped determine the genetic basis for AMR and provide 

the means for understanding how resistance genes are acquired and transmitted among 

bacteria. These methods could also lead to novel approaches to limit AMR 

dissemination. The localization of AMR genes on plasmids or chromosomes suggest 

that genes conferring multiresistance can exist as complex configurations of physically 

linked elements (Carattoli, 2001). Many aspects of the development of AMR remain 

uncertain. It is known, however, that AMR is the result of numerous and complex 

interactions among antimicrobials, micro-organisms, and the surrounding environment 

(White and McDermott, 2001). These factors may vary between livestock species; 

therefore the investigation of resistance patterns within different livestock production 
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systems is necessary to continue developing a clearer understanding of AMR 

epidemiology.  

 

While there is some information about AMR in swine (Dunlop et al., 1998, Rajic et 

al., 2006), dairy (Mackie et al., 1988) and feedlot cattle (Read et al., 2005) there are 

very little data for cow-calf herds. As a part of a larger study designed to look at calf 

health and productivity, AMR was examined for various age groups within cow-calf 

herds in western Canada. A subset of the E. coli isolates collected for susceptibility 

testing were selected for more intensive investigation including resistance gene testing. 

The objective of this study was to measure the associations between AMR phenotypes 

and resistance genes in 207 generic Escherichia coli isolates obtained from a study of 

77 cow-calf herds. 

 

7.2. Materials and methods 

 

7.2.1. General aspects of the study and sample collection 

 

Fecal samples were collected from 1407 individually identified animals on 148 

privately owned beef farms in Alberta and Saskatchewan (Figure 7.1) (Gow et al., 

2007a, Gow et al., 2007b). The farms were part of a larger survey for risk factors 

affecting calf health. Samples were collected from three study groups: (1) 480 calves 

and (2) 533 cows in the spring of 2002 and (3) 394 calves sampled in the fall of 2002. 

Where possible samples collected in the fall came from the same farms as samples 

collected in the spring. The spring samples were collected from accessible cows or 
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calves in the calving and nursery area. The fall samples were collected from calves prior 

to weaning and during fall processing. Fecal samples were obtained either directly from 

the rectum or from the ground immediately after defecation. A separate disposable 

glove and container were used for each animal sampled. Spring samples were collected 

from March to July and fall samples were collected between August and December. 

 

7.2.2. Laboratory methods 

 

7.2.2.1 Escherichia coli culture 

 

Fecal samples were sent on ice to a diagnostic laboratory (Prairie Diagnostic 

Services, Saskatoon, Saskatchewan) for culture. The samples were cultured onto 

MacConkey agar plates at 37◦C for 18 hours for isolation of E. coli. At least three 

individual lactose fermenting colonies from each sample were identified as E. coli using 

standard biochemical tests including indole, Triple Sugar Iron (TSI) slant, citrate and 

urea. If both dry and mucoid colonies were detected within a sample, then three isolates 

from each colony type were tested. Individual E. coli isolates were stored in 50% 

glycerol and Luria-Bertani (LB) broth at -80ºC until sensitivity testing was completed.  

 

7.2.2.2. Susceptibility testing methodology 

 

E. coli isolates were tested for susceptibility (Alberta Agriculture and Rural 

Development) using a microbroth dilution technique (Sensititre®, TREK Diagnostic 
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Systems Inc., Cleveland, Ohio) and the standard 2002 National Antimicrobial 

Resistance Monitoring System (NARMS) panel (CIPARS, 2006). 

 

Minimum inhibitory concentrations (MICs) were assessed for 16 antimicrobial 

agents (Figure 7.1). Breakpoints for susceptibility were used, as defined by the National 

Committee on Clinical Laboratory Standards (NCCLS) (NCCLS, 2000) (Figure 7.2). 

All isolates that fell into the intermediate susceptibility range were classified as 

susceptible. Amikacin results > 4µg/ml were labeled not interpretable because the 

breakpoint is 4 dilutions beyond the range of the panel. The breakpoint used for 

streptomycin was 64µg/ml (CIPARS, 2006). 

 

7.2.2.3. Methodology for detecting resistance genes 

 

7.2.2.3.1. Selection of samples for genotype testing 

 

Genetic testing was completed on 12.2% (134/1099) of all resistant isolates collected 

and 2.2% (73/3319) of all susceptible isolates (Figure 7.1). The isolates were divided 

into susceptible or resistant.  Since genetic determinants of AMR were of interest the 

majority of isolates (65%, 134/207) selected for this project were classified as resistant 

phenotypically.  From either the susceptible or resistant list, isolates were randomly 

selected ensuring that not ≥1isolate from the same animal was included; therefore, this 

subset of isolates represents 207 animals from 77 farms.  
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DNA hybridization and PCR were used to test for 24 resistance genes from 6 

antimicrobial families (Département de Pathologie et Microbiologie, Faculté de 

Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec). The 

antimicrobial family, the genetic marker along with the PCR primer sequence, and 

source of DNA are summarized in Table 7.1. 

 

7.2.2.3.2. Bacterial strains and growth conditions 

 

 The 28 strains used as positive controls and templates for DNA amplification were 

obtained from different laboratories (Maynard et al., 2003, Maynard et al., 2004). These 

strains were stored at -80°C in tryptic soy broth medium containing 10% glycerol 

(vol/vol) and were propagated on Luria-Bertani broth or agar containing one of the 

following antimicrobial agents at the appropriate concentrations: ampicillin (50 µg/ml), 

gentamicin (30 µg/ml), kanamycin (50 µg/ml), tetracycline (10 µg/ml), chloramphenicol 

(10 µg/ml), trimethoprim (10 µg/ml), and sulfamethazine (200 µg/ml).  

 

7.2.2.3.3. Detection of antimicrobial resistance genes 

 

Oligonucleotide primers for PCR amplification of AMR gene sequences are 

described in Maynard et al. (2003, 2004). Template DNA was prepared from bacterial 

cultures by the boiling method of Daigle et al. (1994). PCR reactions (total volume, 50 

µl) contained 1x PCR buffer (10 mM Tris-HCl pH 9.0, 50 mM KCl, 1.5 mM MgCl2 

(Amersham Pharmacia Biotech Inc., Piscataway, N.J.), 200 µM each of the four 
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deoxynucleoside triphosphates, 1 U of Taq DNA polymerase (Amersham Pharmacia 

Biotech Inc.), 25 pmol of each primer and 5 µL of template. DNA amplification was 

carried out in a GeneAmp PCR system 9700 (Perkin-Elmer, Foster City, Calif.) with the 

following conditions: 5 min at 94°C, followed by 30 cycles of 94°C for 30 s, 50°C for 

30 s, and 72°C for 1.5 min. An aliquot (3 µL) of each PCR reaction was resolved in a 

1.2% agarose gel to confirm product size and purity. PCR products were labeled with [

-32P] dCTP by using Ready-To-Go DNA Labeling Beads (Amersham Pharmacia 

Biotech Inc.). Colony hybridizations were performed as described previously (Harel et 

al., 1991).  

 

7.2.3. Statistical analysis 

 

Descriptive analyses were completed using commercially available software (SPSS 

11.0 for Windows, SPSS Inc., Chicago, Illinois). Initially all isolates were coded as to 

the presence or absence of each phenotype and resistance gene considered in the 

analysis (Table 7.2). Multiple AMR was defined as phenotypic resistance to ≥2 

antimicrobials. Isolates were further categorized for the presence or absence of at least 

one gene for each of the six families of antimicrobials considered. For example, if an 

isolate contained any individual tet resistance gene or any combination of tet resistance 

genes it would have been classified as being positive for the individual genes 

respectively, but it also would have been classified as being tetracycline gene positive.  

 

Antimicrobial resistance patterns consistent with the Canadian Integrated Program 

for Antimicrobial Resistance Surveillance (CIPARS, 2006) program were investigated 
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for associations with resistance genes. The specific patterns included; A3C (ampicillin, 

cefoxitin, ceftiofur and cephalothin), ACSSuT (ampicillin, chloramphenicol, 

streptomycin, sulphonamides, tetracycline), AKSSuT (ampicillin, kanmycin, 

streptomycin, sulphonamides, tetracycline), and ACKSSuT (ampicillin, 

chloramphenicol, kanamycin, streptomycin, sulphonamides, tetracycline). These 

patterns are often used in reference to Salmonella spp. (Ihnot et al., 1998; Bolton et al., 

1999; Casin et al., 1999; Schmieger and Schicklmaier, 1999) and though the mechanism 

of resistance carriage for these patterns may not be the same in E. coli, they do permit 

the reporting of common resistance patterns detected in E. coli using a standard 

nomenclature.  

 

All four of the above patterns as well as individual antimicrobial phenotypes that 

contribute to the A3C, ACSSuT, AKSSuT, or ACKSSuT patterns were explored for any 

association with the resistance genes investigated (Table 7.2). If the proportion of 

isolates carrying a particular resistance gene was less than 1.5%, the gene was excluded 

from the analysis. Unconditional associations were analyzed using generalized 

estimating equations (GEE) to account for clustering within herd (SAS v.8.2 for 

Windows (PROC GENMOD); SAS Institute, Cary, North Carolina, USA). Model 

specifications included a binomial distribution, logit link function, repeated statement 

with subject equal to herd, and an exchangeable correlation structure.  

 

Statistically significant associations were reported as odds ratios (OR) with 95% 

confidence limits. Odds ratios >1 indicate an increasing occurrence of the genotype 



 

222 

being studied with the phenotype being measured (a positive association) while those 

<1 indicate a decreasing occurrence of the genotype being studied with increases in the 

measured phenotype (a negative association). Multiple comparisons were accounted for 

using a Bonferroni correction to provide a conservative estimate for the level of 

statistical significance (Dohoo et al., 2003) An association was significant if P<0.004 

after correction for 14 comparisons (P < 0.05/k, k = number of comparisons) (Dohoo et 

al., 2003).  

 

The relationship between the number of antimicrobials to which an isolate was 

resistant and the number of resistance genes detected was analyzed using GEE to 

account for clustering within herd. Model specifications included a Poisson distribution, 

log link function, repeated statement with subject equal to herd, and an exchangeable 

correlation structure. Variables in the unconditional analysis were considered 

statistically significant at P<0.05.  

 

7.3. Results 

 

7.3.1. Description of the samples examined in the phenotype and genotype 
comparison study 

 

The subset of 207 fecal generic E. coli isolates represented 6.4% (107/1677) of all 

isolates recovered from the calves tested in the spring of 2002, 3.2% (50/1555) of 

isolates from the cows tested in the spring of 2002, and 4.2% (50/1186) of isolates from 

the calves tested in the fall of 2002.  
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The median age of the calves (n=107 from 58 herds) at the time of collection in the 

spring of 2002 was 6 days (range, 1 to 120 days). The age of the dams for these calves 

ranged from 2 to13 years (median, 5 years). Fifty-seven percent of the calves were 

male, and healthy calves accounted for 91.2% (98/107) of the population sampled.  

 

Samples were also examined in the spring of 2002 from healthy cows (n=50) in 18 

herds that ranged in age from 2 to 10 years (median, 5 years).  

 

The remaining isolates were from calves (n=50 from 23 herds) sampled in the fall of 

2002 for which the median age was 204 days (range, 118 to 301 days). Median dam age 

for these calves was 6 years (range, 2 to 14 years). Fifty-six percent of these calves were 

male and all calves were classified as healthy.  

 

7.3.2. Phenotypic antimicrobial susceptibility in the selected isolates 

 

Resistance to at least one antimicrobial was detected in 64.7% of the 207 selected 

isolates (Figure 7.2). The most common antimicrobials to which resistance was detected 

were tetracycline, sulphamethoxazole, and streptomycin (Table 7.3). No isolates were 

resistant to amikacin, ceftriaxone, ciprofloxacin, or nalidixic acid.  

 

Twenty-nine different multiple resistance patterns were detected including the A3C, 

ACSSuT, AKSSuT, and ACKSSuT resistance patterns (Table 7.3). The most common 

pattern (17.9%, 37/207) contained a grouping of streptomycin, sulphamethoxazole, and 
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tetracycline. The next most common AMR pattern was sulphamethoxazole and 

tetracycline (10.6%, 22/207). The median number of antimicrobials observed per 

pattern was 3 and the maximum was 11.  

 

7.3.3. Resistance genes detected in the selected isolates 

 

Resistance genes were detected in 64.3% of all isolates tested, in 93.3 % (125/134) 

of resistant isolates, and in11.0 % (8/73) of susceptible isolates. Those most commonly 

detected included a gene for sulphonamide resistance, sulII, a gene for tetracycline 

resistance, tetB, and a gene for streptomycin resistance, ant(3”)-Ia (aadA1) (Table 7.3). 

The resistance genes blaSHV , ant(2”)-Ia, aac(3)-IIa, aph(3”)-IIa, and dhfrXV were not 

detected in any isolates.  

 

Sixteen different multiple resistance gene patterns (≥2 resistance genes) were 

identified. The median number of resistance genes in the observed patterns was 2 with a 

maximum of 7. The most common pattern detected was sulII and tetB together (n=40, 

19.3%). The next most common pattern (6 isolates) contained a grouping of blaTEM, 

aph(3’)-Ia, tetB, and sulII (2.9%).  

 

Several different combinations of resistance genes comprising the ACSSuT, 

AKSSuT, or ACKSSuT patterns were identified. For example, 3 different resistance 

gene patterns in 6 isolates were identified for ACSSuT. AKSSuT isolates had 2 distinct 

patterns in 6 isolates. ACKSSuT isolates had 4 patterns in 7 isolates. Three of 5 isolates 

with the ACSSuT gene pattern had blaTEM, catI, ant(3")-Ia (aadA1), tetA, dhfrI, and 
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sulI. Five of 6 isolates with the AKSSuT pattern had the blaTEM, aph(3')-Ia, ant(3")-Ia 

(aadA1), sulI, tetB, and dhfrI. The resistance genes detected in 4 of 7 isolates with the 

ACKSSuT pattern were blaTEM, catI,  aph(3')-Ia, ant(3")-Ia (aadA1), tetB, dhfrI, and 

sulI. 

 

7.3.4. Phenotypic antimicrobial susceptibility and associated resistance genes 

 

Genotypes did not always correspond with the phenotypic expression within 

individual isolates. Eight isolates carried resistance genes, but had no evidence of 

phenotypic resistance (Table 7.4). Alternatively there were also 8 isolates that were 

classified as resistant based on MICs with no resistance genes identified (Table 7.4). 

Genotypes did not correspond for 25.0% (2/8) of the ACSSuT, for 58.3% (7/12) of the 

AKSSuT, and for 33.3% (3/9) of the ACKSSuT phenotypes (Table7.5).  

 

There were 122 isolates classified as resistant to tetracycline based on the MICs, of 

these isolates 15 (12%) were tetA, 83 (68%) were tetB, 4 (3.3%) were tetC, 3 (2.5%) 

were tetA and tetB together, 7 (5.7%) were tetA and tetC together, and 1 (0.8%) isolate 

was tetA, B, and C positive. There were also 9 (7.4%) isolates that were classified as 

resistant to tetracycline that did not have a corresponding tetracycline resistance gene.  

 

Of the 114 sulphamethoxazole resistant isolates, 9 (7.9%) were sulI, 76 (67%) were 

sulII, 20 (18%) were sulI and sulII together, and 9 (7.9%) were positive for 

sulphamethoxazole phenotypically but not genotypically. For trimethoprim-

sulphamethoxazole resistant isolates (n=33), 27 (81.8%) were dhfrI, 1 (3.0%) was 
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dhfrVII, 2 (6.1%) were dhfrXII, 1 (3.0%) was dhfrXII and dhfrXIII together, and 2 

(6.1%) were dhfrIb and dfhrV together. Sixty-seven (58.8%) of the 114 

sulphamethoxazole resistant isolates were positive for at least 1 sulphonamide gene, 5 

(4.4%) were positive for at least 1 sulphonamide gene and 1 trimethoprim gene, and 33 

(28.9%) were positive for at least 1 sulphonamide gene, 1 trimethoprim gene, and were 

also phenotypically positive for trimethoprim-sulphamethoxazole.  

 

The majority of the chloramphenicol resistant isolates (n=30) were catI (n=21, 

70.0%) positive, 5 (16.7%) were floR positive, and 4 (13.3%) had no corresponding 

chloramphenicol resistance gene. 

 

The gentamicin resistant isolates (n=2) had resistance genes aac(3)-IV and ant(3’)-

Ia(aada1) together (n=1) and ant(3’)-Ia(aadA1) and aph(3’)-Ia together (n=1). The 31 

kanamycin resistant isolates had 14 (45.2%) with the aph(3’)-Ia resistance gene, 1 

(3.2%) with ant(3’)-Ia(aadA1), 15 (48.3%) with ant(3’)-Ia(aadA1) and aph(3’)-Ia 

together, and 1 (3.2%) with no associated resistance gene. Almost half of the 

streptomycin resistant isolates (n=41, 47.7%) did not have an associated streptomycin 

resistance gene, 14 (16.3%) had aph(3’)-Ia resistance gene, 9 (10.5%) had had ant(3’)-

Ia(aadA1), 20 (23.3%) had ant(3’)-Ia(aadA1) and aph(3’)-Ia together, 1 (1.1%) isolate 

had ant(3’)-Ia(aadA1) and ant(3’)-Ia(aadA6), and 1 (1.1%) had aac(3)-IV and ant(3’)-

Ia(aadA1) together. 
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7.3.5. Unconditional association between phenotypic antimicrobial susceptibility 
and identification of resistance genes 

 

Phenotypic resistance to a number of antimicrobials was associated with the presence 

of the aminoglycoside genes ant(3”)-Ia (aadA1) and aph(3’)-Ia (Table 7.6). Positive 

associations were detected between phenotypes streptomycin and kanamycin and their 

respective resistance genes, ant(3”)-Ia (aadA1)  and aph(3’)-Ia . Isolates with 

phenotypic ACKSSuT resistance were more likely to contain both the aadA1 and 

aph(3’)-Ia genes than isolates without this pattern (Table 7.6). 

 

Fewer unconditional associations were identified for the tetracycline genes than for 

the aminoglycoside genes (Table 7.7). Tetracycline resistance was not associated with 

the presence of the tetA gene, but was strongly associated with tetB. 

 

Chloramphenicol resistant isolates were 63 and 18 times more likely to be either catI 

gene or floR gene positive, respectively, than chloramphenicol susceptible isolates 

(Table 7.8). Several of the extended spectrum cephalosporins were associated with floR, 

but not with catI. Significant associations between other phenotypic resistance patterns 

of interest and these genes were also detected.  

 

Sulphamethoxazole resistance was associated with both sulI and sulII, but the 

association was much stronger for sulII (Table 7.9). Tetracycline resistance was 

strongly associated with both sulphonamide resistance genes. ACSSuT phenotype 

pattern was associated with sulI but not sulII. 
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Trimethoprim-sulphamethoxazole resistant isolates were associated with dhfrI, but 

not with dhfrXII (Table 7.10). Chloramphenicol resistant isolates were also associated 

with dhfrI, but not with dhfrXII. Associations with phenotypic patterns including 

ACSSuT, ACKSSuT, and A3C were also detected 

 

Ampicillin resistant isolates were 86 times more likely to be positive for blaTEM than 

ampicillin susceptible isolates (Table 7.11). ACSSuT and ACKSSuT resistant isolates 

were also more likely to be positive for blaTEM than isolates susceptible to the ACSSuT 

and ACKSSuT patterns of antimicrobials. 

 

Table 7.12 and Figure 7.3 summarize the associations between resistant phenotypes 

and the 6 antimicrobial families representing the 24 resistance genes investigated. The 

aminogylcoside gene ant(3”)-Ia (aadA1) and the trimethoprim gene dhfrI were 

associated with every antimicrobial investigated.  Resistance to ampicillin, kanamycin, 

streptomycin, sulphamethoxazole, and the ACSSuT pattern were associated with all 6 

families of resistance genes investigated. Tetracycline and trimethoprim resistance were 

associated with 5 of the families while chloramphenicol and the ACKSSuT pattern were 

associated with 4 of the 6 families. 

 

Isolates resistant to ≥1 antimicrobial were 74.3 (95% CI, 15.8-349, P<0.0001) times 

more likely to be positive for ≥1 of the resistance genes investigated than were 

susceptible isolates. Additionally, isolates resistant to ≥2 antimicrobials were 140 (95% 
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CI, 48.5-407, P<0.0001) times more likely to be positive for ≥2 resistance genes than 

isolates that were not resistant ≥2 antimicrobials. There was a increase of 1.2 (95% CI, 

1.2-1.3, P<0.0001) resistance genes identified for every additional antimicrobial to 

which an isolate was resistant. 

 

7.4. Discussion 

 

The objective of this study was to measure the associations between AMR 

phenotypes and resistance genes in fecal generic E. coli isolates obtained from a study 

of cow-calf herds. To the best of our knowledge this study provides some of the first 

available information describing AMR both phenotypically and genotypically in cow-

calf isolates.  Additionally, it took a novel approach to investigating statistical 

associations between AMR phenotype and genotype. These data demonstrate extensive 

associations between various phenotypes and unrelated resistance genes. They illustrate 

the complex nature of AMR and would be useful in targeting future research projects. 

 

Phenotypic resistance, as measured by microbroth dilution, was associated with the 

presence of at least one of the associated resistance genes for that antimicrobial. The 

relationship between isolates resistant to specific antimicrobials and related resistance 

genes was not unexpected, since a strong correlation between the phenotypic resistance 

pattern of a strain and the presence of resistance genes has previously been observed 

(van de Klundert et al., 1984, Shaw et al., 1991). In situations where a very strong 

association was detected between certain phenotypes and genotypes, the phenotypic 

expression of resistance to a particular antimicrobial may be a good indicator of the 
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underlying resistance gene for that antimicrobial especially in cases where the majority 

of resistance to those antimicrobials is caused by a single gene. Examples of such 

isolates from this population would include kanamycin and aph(3’)-Ia, chloramphenicol 

and catI, sulphamethoxazole and sulII,  trimethoprim-sulphamethoxazole and dhfrI, and  

ampicillin and blaTEM. 

 

On the other hand, there was a lack of association between tetracycline resistance 

and the tetA resistance gene. This lack of association is probably because tetA is less 

likely to be found in isolates positive for tetB and most of the tetracycline resistant 

isolates were tetB positive. Jones et al. (1992) suggested an incompatibility of plasmids 

carrying the tetracycline resistance determinants could explain the existence of the 

negative associations between tetA and tetB. There was also no association between 

trimethoprim-sulphamethoxazole and the dhfrXII resistance gene. Trimethoprim 

dihydrofolate reductase (dhfr) belongs to the dhfr protein family that includes the 

chromosomally encoded trimethoprim sensitive and resistant dhfr genes of bacteria 

(Hall and Collis, 1998). It has been found that dhfrXII and dhfrXIII are closely related 

to each other but not to other members of the subgroup (Hall and Collis, 1998). Since 

the majority of the trimethoprim-sulphamethoxazole isolates were positive to dhfrI, the 

lack of relatedness between dhfrI and dhfrXII may explain why dhfrXII was not 

associated with trimethoprim-sulphamethoxazole resistance. 

 

The associations between cefoxitin, ceftiofur, cephalothin and A3C, and the floR 

resistance gene may indicate some degree of gene linkage. If linkage is present and 
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there is selection for florfenicol resistance, there may also be selection for resistance to 

these other antimicrobials or at least for the presence of these resistance genes. Because 

extended spectrum cephalosporins are important in human medicine, anything 

perpetuating the presence of these resistance genes is undesirable. Florfenicol resistance 

is typically located on a large transferable plasmid (Meuner et al., 2003), but it can also 

reside on chromosomes or non-conjugative plasmids (Singer et al., 2000). If floR is 

being carried on a conjugative plasmid in these cow-calf isolates, the selection of the 

floR gene may ultimately result in co-selection of other resistance genes in the presence 

of florfenicol since plasmids often carry multiple resistance genes (Cloeckaert et al., 

2000). Thus, if resistance genes for extended-spectrum cephalosporins (ESCs) are 

linked to floR on such plasmids, ESC-resistance may be selected for by florfenicol use 

in cattle, even in the absence of ceftiofur use. This observation may therefore have 

important public health implications. Such plasmids have been found in porcine E. coli 

in Ontario (Travis et al., 2006). The MIC panel used in this study did not include 

florfenicol. Because florfenicol is approved for use in cattle in Canada and the presence 

of the floR gene was detected, the frequency of florfenicol resistance requires further 

investigation. 

 

For every additional antimicrobial to which phenotypic resistance was observed, 

another 1.2 resistance genes were detected. Phenotypic and genotypic characterization 

of the isolates demonstrated comparable patterns. Additionally, the most common drugs 

to which isolates demonstrated resistance were consistent with the most common 

resistance genes detected. Tetracycline, sulphamethoxazole, and streptomycin were the 



 

232 

top three drugs identified as being the most common for resistance measured either 

phenotypically or genotypically. The most commonly detected combinations of 

resistance phenotypes and resistance genes were also for sulphamethoxazole and 

tetracycline.   

 

In many instances the phenotype or the genotype alone would not accurately predict 

the other.  Molecular mechanisms underlying AMR are numerous and complex and the 

presence or absence of a specific gene corresponding to a particular phenotype does not 

necessarily imply that the particular strain is resistant or susceptible (Arrts, et al., 2006). 

DNA testing does not indicate whether an isolate is susceptible or resistant, but 

indicates if the gene is present or absent (Arrts et al 2006). Resistant phenotypes can 

emerge from many different genetic determinants and each determinant may present 

unique epidemiological features (Lanz et al., 2003). The divergence between genotype 

and phenotype could simply be explained by not testing for all possible resistance genes 

or by genes not being turned on within certain isolates. Examples of genes that were not 

tested for and that could account for the discrepancy between genotype and phenotype 

include strA/strB, sulIII, clmA, and blacmy2. One other explanation for the difference in 

phenotypic resistance and the presence of resistance genes could be that the breakpoint 

may be misplaced resulting in misclassification of isolates as susceptible and resistance. 

Finally, some resistance phenotypes may be caused by point mutations rather than gene 

acquisition; therefore, no associated resistance gene would be expected. The genotypic 

and phenotypic polymorphism in this study was also described by Blake et al. (2003).  
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This study did not investigate the presence of class I integrons. Although an integron 

probe was not included, the ant(3”)-1 (aadA1) probe was used. The ant(3”)-Ia (aadA1) 

gene along with several different dhfr genes and the sulI gene have been located as gene 

cassettes within integrons (Lévesque et al., 1995, Fluit and Shmitz, 1999, Carattoli, 

2001, Gestal et al., 2005). Despite not testing for integrons specifically, the strong 

associations along with the various patterns containing two or more of these genes may 

indicate the presence of integrons in this sample population. 

 

A description of the extended spectrum beta-lactamases would also have been useful 

in this population. Read et al. (2005) found that antimicrobials commonly used in 

feedlot practices in western Canada could contribute to the presence of the blaCMY-2 

gene in generic E. coli isolated from these animals. The presences of these genes are 

particularly important as this class of antimicrobials is important in human medicine.  

 

The A3C, ACSSuT, AKSSuT, and ACKSSuT resistance patterns were investigated 

for consistency with the reporting structure of the Canadian Integrated Program for 

Antimicrobial Resistance Surveillance or CIPARS (CIPARS, 2006). The spread of 

multi-drug resistant Salmonella Typhimurium DT104 (definitive type 104) by 

chromosomal integration of the genes encoding for resistance to ampicillin, 

chloramphenicol, streptomycin, sulphonamides, and tetracyclines (ACSSuT type) has 

been reported (Ihnot et al., 1998, Bolton et al., 1999, Casin et al., 1999, Schmieger and 

Schicklmaier, 1999). This is important because there is the ability for phylogenetically 

diverse gram negative clinical isolates to demonstrate similar patterns of resistance 
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(Rowe-Magnus, 2002). Also, since there is the ability for horizontal transfer of genetic 

material within and between microbial genera (Weldhagen, 2004) identifying analogous 

patterns to those of S. Typhimurium in commensal E. coli maybe relevant. Poppe et al. 

(2005) demonstrated the ability of resistance transfer between E. coli and Salmonella; 

therefore, the transfer of resistance from generic E. coli to zoonotic enteropathogens or 

vice versa is a concern. The relationship between the phenotype patterns and the 

resistance genes that make up these patterns indicate that there probably is an 

underlying molecular mechanism, such as plasmids or integrons that would explain the 

numerous associations between a phenotype and non-related resistance genes. To 

determine whether it is the same mechanism as found in Salmonella would require 

further molecular work.  

 

For the phenotypes and resistance genes investigated the study did demonstrate that a 

phenotype does not necessarily reflect the underlying genotype and that a resistance 

gene does not always have an expressed phenotype. The associations between 

phenotype and underlying resistance genes were numerous and complex illustrating the 

likelihood of molecular linkage of resistance genes in this population. This is important 

since often only phenotype is reported.  This information alone does not always provide 

a complete picture of what is happening at the molecular level.  By assessing phenotype 

and genotype together researchers may examine if MIC breakpoints are appropriate, if 

there are emerging novel resistance genes responsible for a phenotype, if unrelated and 

un-expressed genes may impact future AMR emergence and if the current theories on 

prudent use are appropriate with the apparent extensive co-selection.  
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Both methods of characterization help to improve our understanding of the 

epidemiology of AMR. Assessment of AMR at the genetic level is an important tool in 

the understanding and the control of AMR (Lanz et al., 2003). It is apparent that the 

relationship between phenotypic resistance and the presence of resistance genes is 

extremely complicated. The extensive number of relationships between individual 

resistances or phenotypic resistance patterns and individual resistance genes or families 

of resistance genes suggests that there could be extensive linkage, and that there is 

probably co-selection when one type of resistance is being perpetuated. The type of 

linkages may be secondary to the recognition that AMR selection is not an independent 

process due to the complex nature of the associations between individual antimicrobials 

and resistance genes. 
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Figure 7.1. Schematic of number of samples, number of isolates and number of farms for each age group of animals investigated 

 



 

 

Figure 7.2.  Minimum inhibitory concentration distribution for 207 isolates tested for antimicrobial susceptibility using Sensititre 2002 
NARMS CMV7CNCD plate configuration. Numbers are presented as a percentage of the total isolates (n=207) 

 
Roman numerals I-IV indicate the ranking of human importance, Veterinary drug directorate, Health Canada. The un-shaded fields indicate the range tested for 
each antimicrobial in the 2002 plate configuration. Vertical double bars indicate the breakpoints used for categorization into susceptible and resistant. Numbers in 
bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater than that range of dilutions. 
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Figure 7.3.  The complex nature of AMR phenotypes and families of resistance genes 
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Table 7.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession number and DNA source for resistance genes 
tested 

 
 

PCR primer sequence (5'-3') 
                        

Antimicrobial 
family 

Genetic marker 

Forward Reverse 

Amplicon 
size (bp) 

GenBank 
accession no. 

Source of 
DNA  

 
Beta-lactams blaTEM GAGTATTCAACATTTTCGT ACCAATGCTTAATCAGTGA 857 AF309824 R. C. Levesque 

 blaSHV TCGCCTGTGTATTATCTCCC CGCAGATAAATCACCACAATG 768 AF148850 R. C. Levesque 
Aminoglycosides aac(3)-IIa (aacC2) CGGAAGGCAATAACGGAG TCGAACAGGTAGCACTGAG 740 X54723 D. Sandvang 

 aac(3)-IV GTGTGCTGCTGGTCCACAGC AGTTGACCCAGGGCTGTCGC 627 X01385 J. Harel 
 aph(3')-Ia (aphA1) ATGGGCTCGCGATAATGTC CTCACCGAGGCAGTTCCAT 600 M18329 J. Harel 
 aph(3')-IIa (aphA2) GAACAAGATGGATTGCACGC GCTCTTCAGCAATATCACGG 680 V00618 J. Harel 
 ant(3”)-Ia(aadAI) CATCATGAGGGAAGCGGTG GACTACCTTGGTGATCTCG 786 DQ166553.1 J.Harel 
 ant(3”)-If (aadA6) GAGTAACGCAGTACCCGC CACTGGCATGGCACTAAGC 795 AY444814.1 J. Harel 

Tetracycline tet(A) GTGAAACCCAACATACCCC GAAGGCAAGCAGGATGTAG 888 X00006 J. Harel 
 tet(B) CCTTATCATGCCAGTCTTGC ACTGCCGTTTTTTCGCC 774 J01830 J. Harel 
 tet(C) ACTTGGAGCCACTATCGAC CTACAATCCATGCCAACCC 881 J01749 J. Harel 

Phenicols catI AGTTGCTCAATGTACCTATAA
CC 

TTGTAATTCATTAAGCATTCTG
CC 

547 M62822 J. Harel 

 floR CGCCGTCATTCCTCACCTTC GATCACGGGCCACGCTGTGTC 215 AF252855 D. G. White 
Trimethoprim dhfrI AAGAATGGAGTTATCGGGAA

TG 
GGGTAAAAACTGGCCTAAAAT

TG 
391 X00926 J. Harel 

 dhfr1b AGTATCATTGATAGCTGCG GTAGTGCGCGAAGCGAAC 517 DQ388123.1 J. Harel 
 dhfrV CTGCAAAAGCGAAAAACGG AGCAATAGTTAATGTTTGAGC

TAAAG 
432 X12868 O. Sköld 

 dhfrVII GGTAATGGCCCTGATATCCC TGTAGATTTGACCGCCACC 265 X58425 O. Sköld 
 dhfrIX TCTAAACATGATTGTCGCTGT

C 
TTGTTTTCAGTAATGGTCGGG 462 X57730 C. Wallen 

 dhfrXII GAACTCGGAATCAGTACGC ACGCGCATAAACGGAGTG 483 DQ157751.1 J. Harel 
 dhfrXIII CAGGTGAGCAGAAGATTTTT CCTCAAAGGTTTGATGTACC 294 Z50802 P. V. Adrian 
 dhfrXV GGGAACAATTACTCTTC GTCTTCAGATGATTTAGC 186 Z83311D P. V. Adrian 

Sulfonamides sulI TTCGGCATTCTGAATCTCAC ATGATCTAACCCTCGGTCTC 822 X12869 R. C. Levesque 
 sulII CGGCATCGTCAACATAACC GTGTGCGGATGAAGTCAG 722 M36657 J. Harel 
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Table 7.2. Investigation into the association between resistance phenotype and genotype 
included the following individual and groups of antimicrobials 
 
 
Response variables  

 
Risk factors for phenotype 
 

blaTEM  Ampicillin  
 
aph(3’)-Ia  
 

 
Cefoxitin  

tetA 
 

Ceftiofur  

tetB  
 
tetC 

Cephalothin 
 
Chloramphenicol 
 

catI  
 
floR 

Kanamycin 
 
Streptomycin  
 

dhfrI  
 
dhfrXII 

Tetracycline 
 
Sulphamethoxazole   
 

sulI  
 
sulII 

Trimethoprim/ 
Sulpha   
 
A3C 

   
 ACSSUT 
  

AKSSUT 
  

ACKSSUT 
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Table 7.3. Antimicrobial resistance phenotype and genotype prevalence (n=207) 
 
Antimicrobial Proportion %  

(# positive) 
Antimicrobial  
 
 

Resistance gene 
 
 

Proportion %  
(# positive) 
 

Amikacin 0.0 Ampicillin blaTEM 17.9 (37) 
Amox/Clav. 4.8 (10)  blaSHV 0.0 
Ampicillin 18.4 (38) Gentamicin aac(3)-IV 0.5 (1) 
Cefoxitin 4.8 (10)  ant(2")-Ia 0.0 
Ceftiofur 1.5 (3)  aac(3)-Iia 0.0 
Ceftriaxone 0.0 Neo/Kana aph(3')-Ia 17.9 (37) 
Cephalothin 4.8(10)  aph(3")-IIa 0.0 
Gentamicin 1.0 (2) Strep/spectinob ant(3”)-Ia(aadA1) 19.3 (40) 
Kanamycin 15.0 (31)  ant(3")_If (aadA6) 1.5 (3) 
Streptomycin 41.6 (86) Tetracycline tetA 13.0 (27) 
Chloramphenicol 14.5 (30)  tetB 45.4 (94) 
Ciprofloxacin 0.0  tetC 8.7 (18) 
Naladixic acid 0.0 Chloramphenicol  catI 13.0 (27) 
Sulphamethoxazole 55.1 (114)  floR 3.4 (7) 
Tetracycline 58.9 (122) Trimethoprim  dhfrI 16.9 (35) 
Trimethoprim/Sulpha 15.9 (33)  dhfrIb 1.0 (2) 
A3C 1.5 (3)  dhfrV 1.0 (2) 
ACSSUT 4.4 (9)  dhfrVII 0.5(1) 
AKSSUT 5.8 (12)  dhfrIX 0.5 (1) 
ACKSSUT 3.9 (8)  dhfrXII 1.9 (4) 
AMR +  64.7 (134)  dhfrXIII 0.5 (1) 
   dhfrXV 0.0 
  Sulphonamides  sulI 14.5 (30) 
   sulII 48.3 (100) 
  + for any gene  64.3 (133) 
aNeo/Kan=neomycin/kanamycin 
bStrep/Spectino=streptomycin/spectinomycin 
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Table 7.4.  Patterns of resistance genes present in isolates with susceptible phenotypes 
(n=8) and resistant phenotypes with no genotype (n=8) 

 
 

Resistance Genes Present 
 
 

# of isolates 
with this gene 
pattern and no 
phenotype 

Phenotype

aph(3’)-Ia / tetB / sulII 1 None 
blaTEM 1 None 
blaTEM / aph(3’)-Ia / ant(3”)Ia (aadA1)/ dhfrI / dhfrXII / sulII 1 None 
blaTEM / tetB 1 None 
dhfrIX 1 None 
tetA / tetC 1 None 
tetC 2 None 

Total number of isolates with no corresponding phenotype 8  
   

Phenotype Present # of isolates 
with this 
phenotype 
and no 
corresponding 
resistance 
genes 

Genotype 

Sulphamethoxazole 6 None 
Amoxicillin/clavulanic acid, ampicillin, cefoxitin 1 None 
Streptomycin, tetracycline, sulphamethoxazole 1 None 
Total number of isolates with no corresponding genotype 8 
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Table 7.5. Table 12: Resistance genes detected for each of the ACSSuT, AKSSuT, and 
ACKSSuT phenotype patterns where the phenotype and genotype did not match 

 
 

Phenotype 
Pattern 

#  of 
Isolates 

Mismatched resistance genes  
for each phenotype pattern 

ACSSuT 1 blaTEM ,aph(3')-Ia, ant(3")-Ia (aadA1), tetB,  dhfrI, sulII 
(n=3) 1 tetA,  tetC,  floR, sulI 
 1 blaTEM, aph(3')-Ia, ant(3")-Ia (aadA1), tetA,  floR,  dhfrI, 

dhfrXII, sulI, sulII 
   
AKSSuT 5 blaTEM ,aph(3')-Ia, tetB, sulI 
(n=7) 2 blaTEM,, aph(3')-Ia, tetA, dhfrIb, dhfrV  sulI, sulII 
   
   
ACKSSUT 1 floR, dhfrI,sulII 
(n=2) 1 aph(3')-Ia, ant(3")-Ia (aadA1), tetA, tetB,  dhfrXI, sulI 
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Table 7.6. Unconditional associations between being positive for individual or multiple 
AMR phenotypes and the antimicrobial gene ant(3")-Ia (aadA1) or aph(3')-Ia  (n=207) 
 

 
   Confidence Interval  

Response Variable Risk Factor OR Lower Upper P-value 
ant(3”)-Ia (aadA1)  Ampicillin 9.4 4.2 21.2 0.0001 
 Chloramphenicol 24.3a 9.9 59.3 0.0001 
 Kanamycin 6.5 3.1 13.7 0.0001 
 Streptomycin 6.6 2.8 15.2 0.0001 
 Tetracycline 12.2 8.9 50.8 0.0006 
 Sulphamethoxazole 23.5 18.8 113 0.0001 
 Trimethoprim/sulpha 24.7 11.3 60.3 0.0001 
 ACSSuT 8.2 2.3 30.0 0.0015 
 ACKSSuT 30.6 3.2 291.4 0.0029 
      
aph(3')-Ia   Ampicillin 12.2 4.1 36.2 0.0001 
 Chloramphenicol 7.0 2.8 17.9 0.0001 
 Kanamycin 306 64.9 1440 0.0001 
 Streptomycin 26.4 8.1 86.1 0.0001 
 Tetracycline 11.1 2.9 42.5 0.0004 
 Sulphamethoxazole 12.7 3.8 42.7 0.0001 
 Trimethoprim/sulpha 14.4 6.2 33.5 0.0001 
 ACKSSuT 36.5 4.5 295.4 0.0007 

Only statistically significant (P<0.004) associations are reported. 
aExample interpretation: isolates that are positive for chloramphenicol resistance are 24.3 (95% 
CI, 9.9-59.3, P=0.0001) times more likely to be positive to aadA1 than isolates that are 
chloramphenicol susceptible. 
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Table 7.7. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes tetA or tetB (n=207) 
 

   Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value
tetA Ampicillin 6.1 1.9 19.4 0.0023 
 Cefoxitin 4.9 1.7 13.8 0.0026 
 ACSSuT 27.7 3.9 198.0 0.0009 
      
tetB Kanamycin 5.1 1.8 13.8 0.0017 
 Streptomycin 7.3 3.5 15.3 0.0001 
 Tetracycline 29.2 11.1 76.6 0.0001 
 Sulphamethoxazole 18.1 8.0 40.8 0.0001 
Only statistically significant (P<0.004) associations are reported. 
No statistically significant associations for the tetC resistance gene 
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Table 7.8. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes catI or floR (n=207) 
 

   Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value
catI Ampicillin 5.5 2.1 14.3 0.0005 
 Chloramphenicol 63.1 18.2 218.2 0.0001 
 Kanamycin 8.1 3.1 21.5 0.0001 
 Streptomycin 9.7 3.4 27.8 0.0001 
 Sulphamethoxazole 26.2 3.0 224.7 0.0029 
 Trimethoprim/sulpha 46.5 13.7 158.4 0.0001 
 ACKSSuT 24.6 3.7 166.4 0.001 
      
floR Cefoxitin 20.0 4.3 93.0 0.0001 
 Ceftiofur 78.2 6.0 1021.6 0.0009 
 Cephalothin 20.0 4.3 92.2 0.0001 
 Chloramphenicol 17.5 3.5 87.4 0.0005 
 A3C 78.2 6.0 1021.6 0.0009 
 ACSSuT 24.0 5.3 108.1 0.0001 
Only statistically significant (P<0.004) associations are reported. 
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Table 7.9. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR genes sulI or sulII (n=207) 
 

   Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value
sulI Ampicillin 5.4 1.7 16.8 0.004 
 Chloramphenicol 21.9 8.3 58.0 0.0001 
 Kanamycin 6.3 2.0 20.1 0.0017 
 Streptomycin 6.1 2.1 17.6 0.0009 
 Tetracycline 26.2 2.9 235.6 0.0036 
 Sulphamethoxazole 33.8 3.2 356.4 0.0034 
 Trimethoprim/sulpha 20.3 6.6 62.6 0.0001 
 ACSSuT 8.3 2.0 34.0 0.0034 
      
sulII Kanamycin 13.6 2.8 66.0 0.0012 
 Streptomycin 18.7 7.1 49.4 0.0001 
 Tetracycline 38.9 12.5 121.0 0.0001 
 Sulphamethoxazole 125.4 41.5 378.4 0.0001 
Only statistically significant (P<0.004) associations are reported. 
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Table 7.10. Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR gene dhfrI or dhfrXII (n=207) 
 

   Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value
dhfrI Ampicillin 9.0 4.0 19.9 0.0001 
 Chloramphenicol 57.4 16.0 206.0 0.0001 
 Kanamycin 11.9 5.1 27.8 0.0001 
 Streptomycin 16.8 5.2 53.6 0.0001 
 Tetracycline 8.7 2.1 35.9 0.0028 
 Sulphamethoxazole 18.3 3.9 85.2 0.0002 
 Trimethoprim/sulpha 121.3 30.6 480.7 0.0001 
 ACSSuT 9.4 2.5 35.5 0.0009 
 ACKSSuT 35.3 5.1 242.6 0.0003 
      
dhfrXII Ceftiofur 24.9 3.6 171.5 0.0011 
 A3C 24.9 3.6 171.5 0.0011 
 ACSSuT 24.3 4.1 144.7 0.0005 
Only statistically significant (P<0.004) associations are reported. 
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Table 7.11.Unconditional associations between being positive for various individual or 
multiple AMR phenotypes and the AMR gene any blaTEM (n=207) 
 

   Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value 
blaTEM  Ampicillin 85.8 26.8 275.2 0.0001 
 Kanamycin 17.5 5.9 51.9 0.0001 
 Streptomycin 11.0 3.6 33.6 0.0001 
 Tetracycline 7.6 2.4 24.4 0.0006 
 Sulphamethoxazole 4.2 1.7 10.5 0.0019 
 Trimethoprim/sulpha 9.9 3.8 25.9 0.0001 
 ACSSuT 10.1 2.9 35.5 0.0003 
 ACKSSuT 14.7 3.3 66.1 0.0005 
Only statistically significant (P<0.004) associations are reported. 
 
 



 

 

254

Table 7.12. Summary of associations between various antimicrobials and each family of resistance genes 
 
Antimicrobial 
 

Aminoglycoside gene + Tetracycline gene 
+ 

Phenicol gene + Sulphonamide  
gene + 

Trimethoprim gene + Ampicillin gene + 

        

 
 
ant(3”)-Ia (aadA1) aph(3’)-Ia tetA tetB catI floR sulI sulII dhfrI dhfrXII blaTEM 

Ampicillin + + + N + N + N + N + 

Chloramphenicol + + N N + + + N + N N 

Kanamycin + + N + + N + + + N + 

Streptomycin + + N + + N + + + N + 

Tetracycline + + N + N N + + + N + 

Sulphamethoxazole + + N + + N + + + N + 

Trimethoprim 
Sulphamethoxazole 

+ + N N + N + N + N + 

ACKSSuT + + N N + N N N + N + 

ACSSuT + N + N N + + N + + + 

+ association between the resistance gene and the phenotype 
N= no association between the resistance gene and the phenotype 
For more details about the above associations please refer to Tables 5 through 11 
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CHAPTER 8 
MOLECULAR CHARACTERIZATION OF AMR IN FECAL GENERIC 

ESCHERICHIA COLI ISOLATES FROM WESTERN CANADIAN COW-CALF 
HERDS: PART II ASSOCIATIONS BETWEEN RESISTANCE GENES 

 

8.1. Introduction 

 

Antimicrobial resistance (AMR) is an important issue in both human and veterinary 

medicine. Many studies have focused on organisms that are pathogenic for people 

including; Salmonella spp. (Wray et al., 1991), Campylobacter spp. (Gaunt and 

Piddock, 1996), or Escherichia coli O157 (Meng et al., 1998). Transmissible genetic 

elements encoding AMR can also be maintained in commensal bacteria (Shaw and 

Cabelli, 1980, Salyers and Shoemaker, 1996, Falagas and Siakavelllas, 2000). 

Resistance gene transmission from nonpathogenic to pathogenic organisms within the 

intestinal tract may be important for the development of AMR (Winokur et al., 2001). 

Escherichia coli have developed a number of elaborate methods for acquiring and 

disseminating genetic determinants and may serve as a reservoir for transmissible 

resistance (Neidhardt, 1996). Studying the molecular determinants of AMR in generic 

E. coli will increase our understanding of the significance of these bacteria in the 

development and transfer of AMR.  

 

Antimicrobial use (AMU) has an impact on the distribution of AMR phenotypes 

(McGowan and Gerding, 1996, Gaynes and Monnet, 1997, Aarestrup. 1999) and 
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resistance gene possession (Blake et al., 2003). As a result of varying AMU practices in 

different livestock species, describing AMR in one livestock class may not be 

representative of another. To date there is little information available on AMR in cow-

calf herds and no data for western Canada, although the western provinces of Alberta 

and Saskatchewan contain more than 65% of the beef cow, breeding heifer and calf 

populations in Canada (Statistics Canada, Accessed July 25, 2006; 

http://www.40.statcan.ca/101/cst01/prim50a.htm). Describing AMR throughout all 

phases of livestock production is vital to understanding the epidemiology of AMR.  

 

The spread of mobile genetic elements such as plasmids, transposons, or 

integron/gene cassettes (Hall and Collins, 1995, Bennett, 1999, Schwarz and Chaslus-

Dancla, 2001) may be responsible for the rapid dissemination multiple AMR genes 

(Kruse and Sorun, 1994, Salyers and Cuevas, 1997, Sandvang et al., 1997). Linked 

clusters of AMR on a single mobile element can also aggregate in such a way that 

antimicrobials of a different class or even non-antimicrobial substances like heavy 

metals or disinfectants can select for AMR bacteria (Recchia and Hall, 1997, Salyers et 

al., 2004). Exchange of resistance genes between pathogens and non-pathogens or 

between gram positive and negative bacteria has also been documented (Prescott, 2000, 

Salyers et al., 2004).  

 

Co-selection of resistance genes has a substantial impact on the implementation of 

prudent antimicrobial use guidelines.  Since resistance genes can be linked on mobile 

genetic elements use of a particular antimicrobial can select for resistance not only to 



 

257 

that antimicrobial but potentially to a variety of others.  This means that even if there is 

restricted use of certain antimicrobials, the resistance genes associated with these 

restricted antimicrobials could still be perpetuated through co-selection.  By 

understanding the associations between resistance genes the impact of certain prudent 

use guidelines can be considered. The objective of this study was to explore 

associations between genetic determinants of AMR in fecal generic E. coli isolates 

obtained from cow-calf herds in western Canada. 

 

8.2. Materials and methods 

 

As a part of a strategic research initiative to study AMR and AMU in cow-calf herds 

(Gow and Waldner, 2007, Gow et al., 2007a,b,c), this project was undertaken to 

compliment a project examining associations between AMR phenotype and resistance 

genes (Gow et al., 2007c). The focus of this paper is on associations between resistance 

genes to explore the potential for co-selection of AMR genetic determinants in 

commensal E. coli. 

 

Materials and methods have been described in detail elsewhere (Gow et al., 2007c).  

Briefly, the 207 isolates utilized for this study were a selected sub-set from a larger 

study investigating AMR in cow-calf herds. The isolates were divided into susceptible 

or resistant.  Since genetic determinants of AMR were of interest the majority of 

isolates (65%, 134/207) selected for this project were classified as resistant 

phenotypically.  From either the susceptible or resistant list, isolates were randomly 

selected ensuring that not ≥1isolate from the same animal was included. Fecal samples 
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were cultured for generic E. coli.  A minimum of three isolates per sample identified as 

E. coli were selected and stored at -80°C until susceptibility testing could be performed. 

Isolates were tested for susceptibility using a microbroth dilution technique (Sensititre®, 

TREK Diagnostic Systems Inc., Cleveland, Ohio) and the standard 2002 National 

Antimicrobial Resistance Monitoring System (NARMS) public health panel (CIPARS, 

2006). All testing was done in accordance with National Committee on Clinical 

Laboratory Standards (NCCLS) guidelines (NCCLS, 2000). DNA hybridization and 

PCR were used to test for 24 resistance genes from 6 antimicrobial families was done 

on the 207 isolates (Table 8.1).  Details on isolate phenotype have been described 

elsewhere (Gow et al., 2007c). 

 

8.2.1. Statistical analysis 

 

Descriptive analyses were completed and variables were recoded as necessary for 

statistical modeling using commercially available software programs (SPSS 11.0 for 

Windows, SPSS Inc., Chicago, Illinois). Initially all isolates were coded as to the 

presence or absence of each gene considered in the analysis. Isolates were further 

categorized for the presence or absence of at least one gene for each of the six families 

of antimicrobials considered in this study. For example; if an isolate contained any 

individual tet resistance gene or any combination of tet resistance genes it would have 

been classified as being positive for the appropriate individual genes, but it also would 

have been classified as being tetracycline gene positive as well.  Mulitple resistance was 

defined as an isolate with the presence of ≥2 resistance genes. 
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Outcome and response variables of interest included the individual resistance genes 

with a prevalence of greater than 1.5% that could contribute to specific AMR patterns 

as well as the resistance genes dhfrI and dhfrXII (Table 8.2).  Generalized estimating 

equations (GEE) were used to account for clustering of isolates sampled within herd 

(SAS v.8.2 for Windows (PROC GENMOD); SAS Institute, Cary, North Carolina, 

USA). Model specifications included a binomial distribution, logit link function, 

repeated statement with subject equal to herd, and an exchangeable correlation 

structure.  

 

Statistically significant associations were reported as odds ratios (OR) with 95% 

confidence limits. Odds ratios >1 indicate an increasing occurrence of the genotype 

being studied with the other genotype being measured (a positive association) while 

those <1 indicate a decreasing occurrence of the genotype being studied with increases 

in the other measured genotype (a negative association). Multiple comparisons were 

accounted for using a Bonferroni correction to provide a conservative estimate for the 

level of statistical significance (Dohoo et al., 2003) An association was significant if 

P<0.004 after correction for 12 comparisons (P < 0.05/k, k = number of comparisons) 

(Dohoo et al., 2003).  

 

8.3. Results 
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8.3.1. Description of sample population for genotyping study 

 

In the spring of 2002, samples (n=107) were collected from calves with a median age 

of 6 days and ranging in age from of 1 to 120 days. Dam age for these calves ranged 

from 2 to13 years with a median cow age of 5 years. Fifty-seven percent of the calves 

were male, and calves not currently showing clinical signs of disease accounted for 

91.2% (98/107) of the population sampled.  

 

Samples (n=50) were also collected from healthy cows that ranged in age from 2 to 

10 years with a median age of 5 years.  

 

The median age for calves sampled in the fall (n=50) was 204 days with a range of 

118 to 301. Median dam age for these calves was 6 years (range, 2 to 14 years). Fifty-

six percent of these calves were male and all calves were classified as healthy.  

 

8.3.2. Resistance genes detected in the selected isolates 

 

Resistance genes were detected in 64.3% of the isolates. The most common 

resistance genes detected included a gene for sulphonamide resistance, sulII, a gene for 

tetracycline resistance, tetB, and a gene for streptomycin resistance, ant(3”)-Ia (aadA1) 

(Table 8.3). No isolates carried the resistance genes blaSHV, ant(2”)-Ia, aac(3)-IIa, 

aph(3”)-IIa, and dhfrXV . Low levels of aac(3)-IV, ant(3”)-If (aadA6) and several 

resistance genes for trimethoprim were detected.  
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Sixteen different multiple resistance gene patterns were identified in 106 of the 

isolates. For the multi-resistance gene isolates, the median number of resistance genes 

was 2 with a maximum of 7. The most common pattern detected included sulII and tetB 

together (n=40, 19.8%). The next most common pattern (6 isolates) contained a 

grouping of blaTEM, aph(3’)-Ia, tetB and sulII (2.9%).  

 

8.3.3. Unconditional association between resistance genes 

 

Numerous associations were detected between the various resistance genes examined 

and the aminoglycoside genes (Table 8.4). At least one resistance gene in each family of 

antimicrobials considered was associated with the aminoglycoside gene ant(3”)-Ia 

(aadA1 (Table 4).  Both ant(3”)-Ia (aadA1 and aph(3’)-Ia were also strongly associated 

with each other. 

 

Fewer associations were identified among the various resistance genes examined and 

the tetracycline genes (Table 8.5) than for the aminoglycoside genes. TetA and tetC 

were significantly associated and were often found in the same isolate. However, tetA 

positive isolates were less likely to be tetB positive than isolates that were tetA negative 

(Table 8.5). There was no significant association between tetB and tetC.  

 

Phenicol genes catI and floR were not associated with each other. Two different 

resistance genes from the trimethoprim family had the strongest associations with either 

the cat1 or the floR genes (Table 8.6).  
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Of the resistance genes tested, chloramphenicol, tetracycline and streptomycin genes 

were the most strongly associated with sulphonamide genes (Table 8.7). Resistance 

genes sulI and sulIII were not associated with each other.  

 

Very strong associations were also detected between the phenicol resistance genes 

and the trimethoprim resistance genes (Table 8.8). Neither trimethoprim gene was 

associated with the other.  

 

Numerous associations between individual genes and blaTEM resistance genes were 

detected with the strongest association between (aph3’)-Ia and blaTEM (Table 8.9).  

 

Table 8.10 and Figure 8.1 summarize the associations between individual resistance 

genes at the antimicrobial family level. At least one resistance gene from every other 

family of antimicrobials was significantly associated with at least one resistance gene 

belonging to the aminoglycoside family.  

 

8.4. Discussion 

 

To gain a better understanding of the epidemiology and the implications of AMR in 

cow-calf herds, fecal generic E. coli isolates obtained from cow-calf herds were 

examined to describe the associations between resistance genes. The complex nature of 

AMR was demonstrated by the large number of associations of moderate to substantial 

magnitude that were detected between resistance genes.  
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Resistance genes are often associated with integrons or mobile DNA such as 

plasmids and transposons that facilitate resistance gene distribution (Jacoby, 1994, 

Tenover and Rasheed, 1998). The presence of resistance genes on plasmids or on 

bacterial chromosomes suggests that genes conferring multi-drug resistance can exist as 

complex configurations of physically linked elements (Carattoli, 2001). The large 

number of strong associations between genes is consistent with the hypothesis that there 

is linkage between many of these resistance genes. The exact mechanism of linkage 

cannot be determined by the current study, but further molecular investigation would 

demonstrate potential gene linkages and the location of gene clusters on mobile genetic 

elements.  

 

In addition to resistance acquisition, some of resistance genes and associations 

between resistance genes might be accounted for by common AMU on cow-calf farms. 

Direct use of antimicrobials can drive the co-selection of resistance genes. An example 

of this phenomenon was described by O’Conner et al., (2002) who determined that the 

use of injectable oxytetracycline in cattle receiving chlortetracycline in their feed was 

associated with an increase in the incidence of resistance to chloramphenicol and 

sulphasoxazole. Similar mechanisms might underlie the patterns demonstrated in these 

cow and calf isolates since different patterns of co-selection can be dependent on AMU 

patterns (Lanz et al, 2003).  

 

Antimicrobials commonly used in western Canadian cow-calf herds are 

tetracyclines, sulphonamides and trimethoprim/sulphonamides (Gow and Waldner, 
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2007). These antimicrobials are consistent with some of the most prevalent resistance 

genes demonstrated in this study. However, despite the ban of chloramphenicol use in 

food producing animals since 1985 (Gilmore, 1986), chloramphenicol resistance was 

expressed by these isolates. This may indicate that co-selection is contributing to the 

persistence of chloramphenicol resistance genes in the population (Travis et al., 2006). 

In this study, the chloramphenicol gene catI was associated with the presence of both a 

trimethoprim gene (dhfrI) and a sulphonamide gene (sulI). In beef cattle there may be 

co-selection for the chloramphenicol resistance gene resulting from selecting for 

trimethoprim or sulphamethoxazole resistance. Further investigation into the molecular 

relationship and the potential link to AMU is needed. 

 

There was a negative association between tetA and tetB resistance genes.  An 

incompatibility of plasmids carrying the tetracycline resistance determinants could 

explain the existence of the negative association between tetA and tetB (Jones et al., 

1992). No association was detected between sul1 and sulII. Potentially the plasmid 

incompatability and the strong association of tetA with sulI and tetB with sulII could 

account for this lack of association. The absence of an association between dhfrI and 

dhfrXII  was not unexpected because dhfrXII and dhfrXIII are closely related to each 

other but not to other members of the subgroup (Hall and Collis, 1998). 

 

This study did not investigate the presence of class I integrons or extended-spectrum 

beta-lactamases. Although an integron probe was not included, the ant(3”)-1 (aadA1) 

probe was used. The ant(3”)-Ia (aadA1)  gene, along with several different dhfr genes 



 

265 

and the sulI gene, have been located as gene cassettes within integrons (Lévesque et al., 

1995, Fluit and Shmitz, 1999, Carattoli, 2001, Gestal et al., 2005). When examining 

associations between these three genes they were all strongly associated with each other 

as well as with resistance genes blaTEM, cat1, aph(3’)-Ia. Despite not testing specifically 

for integrons, the various patterns containing two or more of these genes suggested the 

presence of integrons in this sample population.  

 

To understand the implication of the multiple associations detected between 

individual resistance genes, higher-level associations were examined between indicators 

of genetic resistance to families of antimicrobials. While the authors do recognize, 

particularly for the aminoglycoside family of antimicrobials, that resistance to one 

antimicrobial within this family does not confer resistance to the entire family (Salyers 

and Whitt, 2005), the goal of this investigation was simply to create an initial picture of 

complex nature of resistance between the families of antimicrobials used in cow-calf 

herds.  This exploration provided further insight into the complexity of the 

epidemiology of AMR. This network of associations also brings into question the 

definition of “prudent use” and the impact of these associations on developing policy 

and clinical practice guidelines to minimize AMR. The implication is that current 

attempts to limit the emergence or spread of AMR based on careful restriction of the 

choice of antimicrobials will not prevent selection for a number of unrelated AMR 

genes. Therefore, the assessment of AMR at the genetic level is a critical tool in the 

understanding and the potential control of AMR (Lanz et al., 2003). This research 
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provides a baseline of important resistance gene relationships that need to be considered 

when planning potential AMR control in cow-calf herds.   
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Figure 8.1. Resistance gene relationships between antimicrobial families. Each line 
represents one of the relationships detailed in Tables 4 to 9 
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Table 8.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession number and DNA source for resistance genes 
tested 

PCR primer sequence (5'-3') 
                        

Antimicrobial family Genetic 
marker 

Forward Reverse 

Amplicon 
size (bp) 

GenBank 
accession no. 

 
Source of DNA 

Beta-lactams blaTEM GAGTATTCAACATTTTCGT ACCAATGCTTAATCAGTGA 857 AF309824 R. C. Levesque 
 blaSHV TCGCCTGTGTATTATCTCCC CGCAGATAAATCACCACAATG 768 AF148850 R. C. Levesque 

Aminoglycosides aac(3)-IIa 
(aacC2) 

CGGAAGGCAATAACGGAG TCGAACAGGTAGCACTGAG 740 X54723 D. Sandvang 

 aac(3)-IV GTGTGCTGCTGGTCCACAGC AGTTGACCCAGGGCTGTCGC 627 X01385 J. Harel 
 aph(3')-Ia 

(aphA1) 
ATGGGCTCGCGATAATGTC CTCACCGAGGCAGTTCCAT 600 M18329 J. Harel 

 aph(3')-IIa 
(aphA2) 

GAACAAGATGGATTGCACGC GCTCTTCAGCAATATCACGG 680 V00618 J. Harel 

 ant(3”)-
Ia(aadAI) 

CATCATGAGGGAAGCGGTG GACTACCTTGGTGATCTCG 786 DQ166553.1 J.Harel 

 ant(3”)-If 
(aadA6) 

GAGTAACGCAGTACCCGC CACTGGCATGGCACTAAGC 795 AY444814.1 J. Harel 

Tetracycline tet(A) GTGAAACCCAACATACCCC GAAGGCAAGCAGGATGTAG 888 X00006 J. Harel 
 tet(B) CCTTATCATGCCAGTCTTGC ACTGCCGTTTTTTCGCC 774 J01830 J. Harel 
 tet(C) ACTTGGAGCCACTATCGAC CTACAATCCATGCCAACCC 881 J01749 J. Harel 

Phenicols catI AGTTGCTCAATGTACCTATAACC TTGTAATTCATTAAGCATTCTGCC 547 M62822 J. Harel 
 floR CGCCGTCATTCCTCACCTTC GATCACGGGCCACGCTGTGTC 215 AF252855 D. G. White 

Trimethoprim dhfrI AAGAATGGAGTTATCGGGAATG GGGTAAAAACTGGCCTAAAATTG 391 X00926 J. Harel 
 dhfr1b AGTATCATTGATAGCTGCG GTAGTGCGCGAAGCGAAC 517 DQ388123.1 J. Harel 
 dhfrV CTGCAAAAGCGAAAAACGG AGCAATAGTTAATGTTTGAGCTAAAG 432 X12868 O. Sköld 
 dhfrVII GGTAATGGCCCTGATATCCC TGTAGATTTGACCGCCACC 265 X58425 O. Sköld 
 dhfrIX TCTAAACATGATTGTCGCTGTC TTGTTTTCAGTAATGGTCGGG 462 X57730 C. Wallen 
 dhfrXII GAACTCGGAATCAGTACGC ACGCGCATAAACGGAGTG 483 DQ157751.1 J. Harel 
 dhfrXIII CAGGTGAGCAGAAGATTTTT CCTCAAAGGTTTGATGTACC 294 Z50802 P. V. Adrian 
 dhfrXV GGGAACAATTACTCTTC GTCTTCAGATGATTTAGC 186 Z83311D P. V. Adrian 

Sulfonamides sulI TTCGGCATTCTGAATCTCAC ATGATCTAACCCTCGGTCTC 822 X12869 R. C. Levesque 
 sulII CGGCATCGTCAACATAACC GTGTGCGGATGAAGTCAG 722 M36657 J. Harel 
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Table 8.2. Investigation into the association between genotypes included the following 
individual and groups of antimicrobials. Each gene in the response variable column was 
individually tested for associations with each gene in the risk factors column 
 
 
Response variables  

 
Risk factors for genotype 

blaTEM blaTEM 
aph(3’)-Ia aph(3’)-Ia 
ant(3”)-Ia Ant(3”)-Ia 
tetA  tetA  
tetB tetB 
tetC tetC 
catI catI 
floR floR 
dhfrI  
dhfrXII 
sulI 

dhfrI  
dhfrXII 
sulI 

sulII sulII 
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Table 8.3. List of antimicrobial agents and the associated resistance genes investigated 
along with the resistance gene prevalence for 207 isolates from beef cattle

Antimicrobial  Resistance gene Prevalence  
%  (# Positive) 

Ampicillin blaTEM 17.9 (37) 
 blaSHV 0.0 
Gentamicin aac(3)-IV 0.5 (1) 
 ant(2")-Ia 0.0 
 aac(3)-Iia 0.0 
Neomycin/ 
Kanamycin aph(3')-Ia 17.9 (37) 
 aph(3")-IIa 0.0 
Streptomycin/ 
Spectinomycin ant(3”)-Ia (aadA1) 19.3 (40) 
 ant(3")_If (aadA6) 1.5 (3) 
Tetracycline  tetA 13.0 (27) 
 tetB 45.4 (94) 
 tetC 8.7 (18) 
Chloramphenicol  cat1 13.0 (27) 
 floR 3.4 (7) 
Trimethoprim  dhfrI 16.9 (35) 
 dhfrIb 1.0 (2) 
 dhfrV 1.0 (2) 
 dhfrVII 0.5(1) 
 dhfrIX 0.5 (1) 
 dhfrXII 1.9 (4) 
 dhfrXIII 0.5 (1) 
 dhfrXV 0.0 
Sulphonamides  sulI 14.5 (30) 
 sulII 48.3 (100) 
Gene for AMR  
Yes/No  64.3 (133) 



 

275 

Table 8.4. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial gene ant(3")Ia (aadA1) and aph(3')-Ia  (n=207) 
 

   
95% Confidence 

Interval  
Response 
Variable Risk Factor OR Lower Upper P-value 

ant(3”)-Ia 
(aadA1) 

blaTEM   
11.5 4.9 27.2 0.0001 

 cat1 53.9 13.2 221 0.0001 
 aph(3’)-Ia  10.0 4.5 22.4 0.0001 
 tetA 6.2 2.3 16.6 0.0003 
 su1I 52.3 11.7 233 0.0001 
 dhrfI 96.2a 30.2 306 0.0001 
     
aph(3’)-Ia  blaTEM   22.7 6.6 78.1 0.0001 
 cat1 9.0 3.5 22.7 0.0001 
 ant(3”)-Ia (aadA1) 10.7 4.7 24.5 0.0001 
 tetB 16.8 5.0 56.8 0.0001 
 su1I 5.9 2.3 15.1 0.0002 
 sulII 17.4 4.2 71.6 0.0001 
 dhfrI 18.2 7.1 47.2 0.0001 
Only statistically significant (P<0.004) associations are reported 
aExample interpretation: isolates that are positive for the resistance gene dhfrI are 96.2 (95% CI, 30.2-
306.3, P=0.0001) times more likely to be positive to aadA1 than isolates that are dhfrI negative isolates. 
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Table 8.5. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes tetA, tetB or tetC (n=207) 
 

   
95% Confidence 

Interval  
Response Variable Risk Factor OR Lower Upper P-value 
tetA ant(3”)-Ia (aadA1) 6.7 2.5 17.9 0.0001 
 tetB 0.2 0.1 0.5 0.0012 
 tetC 8.7 2.4 30.7 0.0008 
 sulI 15.0 5.6 40.0 0.0001 
      
tetB aph(3’)-Ia  9.5 3.3 27.1 0.0001 
 tetA 0.2 0.1 0.5 0.0008 
 sulII 25.7 12.0 54.8 0.0001 
      
tetC floR 17.8 3.9 80.8 0.0002 
 tetA 6.4 2.0 20.9 0.002 
Only statistically significant (P<0.004) associations are reported 
 
 



 

277 

Table 8.6. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes catI or floR (n=207) 
 

   
95% Confidence 

Interval  
Response 
Variable Risk Factor OR Lower Upper P-value 
cat1 blaTEM   7.0 2.8 17.8 0.0001 
 aph(3’)-Ia  8.9 3.6 22.0 0.0001 
 ant(3”)-Ia (aadA1) 56.8 12.2 266 0.0001 
 sulI 83.0 21.3 323 0.0001 
 dhfrI 214 46.3 989 0.0001 
      
floR tetC 17.4 3.3 92.4 0.0008 
 dhfrXII 39.4 7.8 200 0.0001 
Only statistically significant (P<0.004) associations are reported 
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Table 8.7. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance genes sulI and sulII (n=207) 
 

   
95% Confidence 

Interval  
Response Variable Risk Factor OR Lower Upper P-value 
sulI blaTEM 5.0 1.9 13.4 0.0012 
 cat1 96.9 23.4 401 0.0001 
 aph(3’)-Ia 6.2 2.4 16.4 0.0002 
 ant(3”)-Ia (aadA1) 79.3 14.3 441 0.0001 
 tetA 16.1 5.4 47.9 0.0001 
 dhfrI 27.4 9.9 75.4 0.0001 
      
sulII aph(3’)-Ia 16.5 3.1 87.2 0.0009 
 tetB 33.9 15.5 74.3 0.0001 
Only statistically significant (P<0.004) associations are reported 
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Table 8.8. Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance gene dhfrI and dhfrXII(n=207) 
 

   95% Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value 
dhfrI blaTEM 13.2 4.5 39.1 0.0001 
 cat1 193 44.6 836 0.0001 
 aph(3’)-Ia 16.5 6.6 40.9 0.0001 
 ant(3”)-Ia (aadA1) 86.4 26.3 283 0.0001 
 sul1 23.2 8.4 63.7 0.0001 
      
dhfrXII   floR 32.4 6.5 162 0.0001 
Only statistically significant (P<0.004) associations are reported 
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Table 8.9.  Unconditional associations detected between being positive for individual 
resistant genes and the antimicrobial resistance gene blaTEM (n=207) 
 

   95% Confidence Interval  
Response Variable Risk Factor OR Lower Upper P-value
blaTEM cat1 7.2 2.7 18.9 0.0001 
 aph(3’)-Ia 22.9 6.7 77.7 0.0001 
 ant(3”)-Ia (aadA1) 12.3 5.1 29.7 0.0001 
 sulI 4.8 1.8 12.4 0.0013 
 dhfrI 14.6 4.7 44.9 0.0001 
Only statistically significant (P<0.004) associations are reported 
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Table 8.10.  Associations between individual resistance genes summarized at the 
antimicrobial family level 
 

 
Aminoglycoside 

gene + 
Tetracycline 

gene + 
Phenicol 
gene + 

Sulphonamide 
gene + 

Trimethoprim 
gene + 

Ampicillin 
gene + 

Aminoglycoside  
Gene+ 

+ + + + + + 

Tetracylcine 
Gene + 

+ + + + N N 

Phenicol gene + + + N + + + 

Sulphonamide 
gene + 

+ + + N + + 

Trimethoprim  
gene + 

+ N + + N + 

Ampicillin  
 gene + 

+ N + + + N 

+ indicates association detected 
N= indicates no association detected
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CHAPTER 9 
ANTIMICROBIAL RESISTANCE AND VIRULENCE FACTORS IN GENERIC 
ESCHERICHIA COLI ISOLATES FROM WESTERN CANADIAN COW-CALF 

HERDS 

 

9.1. Introduction 

 

Shiga toxin or verotoxin producing Escherichia coli (STEC/VTEC) are the most 

important recently emerged groups of foodborne pathogens (Remis et al., 1984, 

Karmali, 1989, Beutin et al., 1998, Paton and Paton, 1998, Beutin et al., 2002, Blanco et 

al., 2004, Mora et al., 2004). Major STEC associated outbreaks have been experienced 

in Canada, Japan, the United Kingdom, and the USA (Karmali, M., 1989, Beutin et al., 

1998, Paton and Paton, 1998, Willshaw, et al., 2001, Beutin et al., 2002). In people, 

these infections are associated with gastroenteritis that may be complicated by 

hemorrhagic colitis (HC) or hemolytic-uremic syndrome (HUS). Hemolytic uremic 

syndrome is a major cause of renal failure in children (Mora et al., 2004).  

 

Shiga-toxigenic E. coli produce either one or two cytotoxins called Shiga toxins (stx1 

and stx2) or verotoxins (vt1 and vt2) (Paton and Paton, 1998). Intimin is another 

virulence factor responsible for intimate attachment of STEC. It is encoded by 

chromosomal gene eae which is part of a large cluster of virulence genes on a 

pathogenicity island termed the locus for enterocyte effacement (LEE) (Kaper et al., 
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1998). Shiga-toxigenic E. coli carrying the eae gene have been closely associated with 

HC and HUS (Karmali, 1989).  

 

Antimicrobials are not commonly recommended for therapy of STEC infections 

because they can lyse cell walls leading to the release of the toxins (Waterspiel et al., 

1992, Wong et al., 2000). Additionally, antimicrobials are avoided because they can 

cause increased expression of the toxins in vivo (Zhang et al., 2000). Despite the limited 

use of antimicrobials to treat STEC infections, there have been recent reports suggesting 

that antimicrobial resistance (AMR) of STEC is increasing (Gonzalez et al., 1989, 

Farina et al., 1996, Meng et al., 1998, Galland et al., 2001, Willshaw et al., 2001, 

Schroeder et al., 2002). 

 

Virulence genes are either located in chromosomal gene clusters (pathogenicity 

islands) or harbored in mobile accessory genetic elements such as plasmids and phages 

(Groismann, 1996, Finlay and Falkow, 1997, Hacker et al., 1997). Resistance genes are 

also often associated with mobile DNA such as plasmids, transposons, and integrons 

(Jacoby, 1994, Tenover and Rasheed, 1998). Since AMR and virulence genes are 

carried in a similar fashion it is possible that they could be linked and then co-selected 

(Martinez and Baquero, 2002). Reported increases in AMR STEC isolates are of 

concern because antimicrobial use (AMU) could potentially enhance the selection of 

bacteria carrying virulence genes; ultimately accelerating the spread of virulence genes 

within bacterial populations (Boerlin et al., 2005).  
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Cattle, sheep, and goats have been implicated as the primary reservoirs for STEC 

(Blanco et al., 2001, 2003, 2004). AMR bacteria from livestock and farms pose a risk to 

public health through direct contact with livestock or production environments, and also 

through AMR food borne pathogens (van den Bogaard and Stobberingh, 2000, White et 

al., 2001). Non-pathogenic E. coli are also a potential problem because they can provide 

a pool of transferable resistance genes (Schmieger and Schicklmaier, 1999, Winokur et 

al., 2001).  

 

The current literature contains several articles describing AMR in STEC’s from a 

variety of animal populations (Gonzalez and Blanco, 1989, Galland et al., 2001, Zhao et 

al., 2001, Maidhof et al., 2002, Schroeder et al., 2002, Betteleheim et al., 2003, Mora et 

al., 2005). However, the current literature describing AMR in STEC does not always 

contain directly comparable information on the nature and extent of resistance in non-

STEC populations. The presence of AMR within a STEC positive isolate alone does not 

indicate whether or not STEC are more or less likely to be resistant to antimicrobials 

than non-STEC organisms, or conversely whether organisms that are resistant to 

antimicrobials are more or less likely to contain virulence genes than organisms that are 

susceptible. The primary objective of this study was to investigate if presence of AMR 

or the presence of AMR genes is associated with the presence of the virulence genes 

stx1, stx2, and eae in E. coli isolates from cow-calf herds.  

 

9.2. Materials and methods 
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9.2.1. General aspects of the study and sample collection 

 

Fecal samples were collected from 480 individually identified beef calves on 91 

privately owned cow-calf farms in Alberta and Saskatchewan that were accessible in the 

calving and nursery area (Figure 9.1). The farms were part of a larger survey for risk 

factors affecting calf health. Fecal samples were obtained either directly from the 

rectum or from the ground immediately after defecation. A separate disposable glove 

and container were used between samples. The majority of samples were collected from 

March until the end of May with a few herds having samples collected in June and early 

July.  

 

9.2.2. Laboratory methods 

 

9.2.2.1 Escherichia coli culture 

 

Fecal samples were sent on ice to a diagnostic laboratory (Prairie Diagnostic 

Services, Saskatoon, Saskatchewan) for culture. The samples were cultured onto 

MacConkey agar plates at 37◦C for 18 hours for isolation of E. coli. Each sample had at 

least three individual lactose fermenting colonies identified as E. coli using standard 

biochemical tests: indole, Triple Sugar Iron (TSI) slant, citrate and urea. If both dry and 

mucoid colonies were detected within a sample, then three isolates from each colony 

type were tested. In the case of one colony type, three isolates from that type were 

tested.  Individual E. coli isolates were stored in 50% glycerol and Luria-Bertani (LB) 

broth at -80ºC until sensitivity testing was performed.  
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9.2.2.2 Selection of isolates for further testing 

 

A total of 1677 isolates were identified and saved for further testing. Isolates were 

divided into sensitive and resistant based on the criteria listed under “Antimicrobial 

susceptibility testing”; 94 isolates resistant to at least one antimicrobial and 12 

susceptible isolates were randomly selected using a random number generator. This 

subset of 106 isolates was tested for the presence of resistance genes and virulence 

factors. No isolate replicates from the same fecal sample were included; therefore, this 

sub-set of isolates represents 106 animals from 57 farms. 

 

9.2.2.3. Susceptibility testing methodology 

 

E. coli isolates were tested for susceptibility (Alberta Agriculture, Food and Rural 

Development) using a microbroth dilution technique (Sensititre®, TREK Diagnostic 

Systems Inc., Cleveland, Ohio) and the standard 2002 National Antimicrobial 

Resistance Monitoring System (NARMS) CMV7CNCD gram negative public health 

panel  

 

Minimum inhibitory concentrations (MICs) for 16 antimicrobials were assessed for 

106 isolates (Figure 9.2). Breakpoints for susceptibility were used, as defined by the 

National Committee on Clinical Laboratory Standards (NCCLS 2000) (Figure 9.2). All 

isolates identified with intermediate susceptibility were classified as susceptible for the 

statistical analysis. Amikacin results > 4µg/mL were labeled not interpretable because 
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the breakpoint is 4 dilutions beyond the range of the panel. The breakpoint used for 

streptomycin was 64µg/ml (CIPARS, 2006). 

 

9.2.2.4. Molecular testing methodology 

 

9.2.2.4.1. Bacterial strains and growth conditions 

 

DNA hybridization and PCR were used to test for 24 resistance genes from 6 

antimicrobial families (Département de Pathologie et Microbiologie, Faculté de 

Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec). The 

antimicrobial family, the genetic marker along with the PCR primer sequence, and 

source of DNA are summarized in Table 9.1. 

 

The 28 strains used as positive controls and templates for DNA amplification were 

obtained from different laboratories (Maynard et al., 2003, Maynard et al., 2004). These 

strains were stored at -80°C in tryptic soy broth medium containing 10% glycerol 

(vol/vol) and were propagated on Luria-Bertani broth or agar containing one of the 

following antimicrobial agents at the appropriate concentrations: ampicillin (50 µg/ml), 

gentamicin (30 µg/ml), kanamycin (50 µg/ml), tetracycline (10 µg/ml), chloramphenicol 

(10 µg/ml), trimethoprim (10 µg/ml), and sulfamethazine (200 µg/ml).  
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9.2.2.4.2. Detection of antimicrobial resistance genes 

 

Oligonucleotide primers for PCR amplification of antimicrobial resistance gene 

sequences are described in Maynard et al. (2003, 2004). Template DNA was prepared 

from bacterial cultures by the boiling method of Daigle et al. (1994). PCR reactions 

(total volume, 50 µl) contained 1x PCR buffer (10 mM Tris-HCl pH 9.0, 50 mM KCl, 

1.5 mM MgCl2) (Amersham Pharmacia Biotech Inc., Piscataway, N.J.), 200 µM each of 

the four deoxynucleoside triphosphates, 1 U of Taq DNA polymerase (Amersham 

Pharmacia Biotech Inc.), 25 pmol of each primer and 5 µL of template. DNA 

amplification was carried out in a GeneAmp PCR system 9700 (Perkin-Elmer, Foster 

City, Calif.) with the following conditions: 5 min at 94°C, followed by 30 cycles of 

94°C for 30 s, 50°C for 30 s, and 72°C for 1.5 min. An aliquot (3 µL) of each PCR 

reaction was resolved in a 1.2% agarose gel to confirm product size and purity. PCR 

products were labeled with [ -32P] dCTP by using Ready-To-Go DNA Labeling Beads 

(Amersham Pharmacia Biotech Inc.). Colony hybridizations were performed as 

described previously (Harel et al., 1991).  

 

9.2.2.4.3. Detection of virulence factor genes 

 

Isolates were provided to a commercial diagnostic lab for virulence factor detection 

(Prairie Diagnostic Services, Saskatoon, Saskatchewan). Two to four colonies of each 

E. coli isolate were randomly selected from blood agar plates and resuspended in 400 µl 

of D-Solution (4 M guanidine isothiocyanate, 25mM Na citrate at pH 8.0, 0.5% 
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sarcosyl, 0.1 M β-mercaptoehanol) (Sigma Aldrich Corporate Office St. Louis, 

Missouri, USA). TE-saturated phenol (100 µl) (Sigma Aldrich Corporate Office St. 

Louis, Missouri, USA) and 100 µl of chloroform were added to each tube, followed by 

mixing, incubation at -20°C for 10 minutes, centrifugation for 5 minutes at 4°C and 

15,000 x g and removal of the aqueous layer to a fresh tube. Phenol:chlorofom 

extractions were repeated until the interface was clear. Nucleic acids were precipitated 

by the addition of 500 µl of 95% salted ethanol (VWR International Inc. West Chester, 

Pennsylvania, USA) followed by incubation at -20°C and pelleted by centrifugation at 

15,000 x g for 15 min at 4°C. DNA pellets were dried for 5-10 minutes between 30 and 

35°C and dissolved in 80 to 100 µl of sterile water.  

 

Oligonucleotide primers used for the PCR detection of virulence associated genes are 

shown in Table 9.2. PCR reactions (50 µl total volume) contained 1x PCR buffer 

(Fermentas International Inc., Burlington, Ontario, Canada), 2mM MgCl2, 250 mM of 

each of the four dNTPs, 2.5 U Taq DNA polymerase (Fermentas International Inc., 

Burlington, Ontario, Canada), four primers (2 µl / primer, 20 pmol/µl) and 2 µl of 

template DNA. The thermocycler protocol consisted of 2 min at 94°C followed by 35 

cycles of 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 30 seconds and a final 

extension at 72°C for 10 min. PCR products were visualized following electrophoresis 

on a 1.25% agarose gel.  
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9.2.5. Statistical analysis 

 

Descriptive analyses were completed using commercially available software (SPSS 

11.0 for Windows, SPSS Inc., Chicago, Illinois). All isolates were coded for the 

presence or absence of each resistance phenotype, resistance gene, or virulence gene 

considered in the analysis (Table 9.3). Summary categories for being positive for any 

virulence factor, for resistance to any antimicrobial, for any resistance gene, for 

resistance to multiple antimicrobials, or for multiple resistance genes were established. 

 

 Minimum inhibitory concentration results were classified according to the 

Veterinary Drug Directorate (VDD), Health Canada Guidelines (CIPARS, 2006). To 

facilitate consistent comparisons with the Canadian Integrated Program for 

Antimicrobial Resistance Surveillance (CIPARS) the same nomenclature for patterns of 

resistance were used (CIPARS, 2006). Multiple resistance was defined as resistance to 

≥2 antimicrobials. 

 

Unconditional associations for being positive for either phenotypic or genotypic 

AMR and the presence of the three virulence factors of interested were investigated 

using generalized estimating equations (GEE) to account for clustering within herd 

(SAS v.8.2 for Windows (PROC GENMOD); SAS Institute, Cary, North Carolina, 

USA). Model specifications included a binomial distribution, logit link function, 

repeated statement with subject equal to herd, and an exchangeable correlation 

structure. All variables investigated are listed in Table 9.3.  
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Multiple comparisons were accounted for using a Bonferroni correction to provide a 

conservative estimate for the level of statistical significance (Dohoo et al., 2003) An 

association was significant if P<0.003 after correction for 14 comparisons (P < 0.05/k, k 

= number of comparisons) (Dohoo et al., 2003).  

 

Because no statistically significant associations were identified, post hoc power was 

estimated to determine whether the sample size was adequate to detect an important 

association between tetracycline resistance and the presence of the stx2 and eae in these 

106 isolates (EPI Info 6 ver 6.04d, CDC, USA, Fleiss et al., 2003). 

 

9.3. Results 

 

9.3.1. Description of sample population examined in AMR and virulence study 

 

The median age of calves sampled for this study was 6 days with a range of 1 to 120 

days and the dams for these calves ranged from 2 to 13 years with a median of 5 years. 

Of the 106 calves sampled, 58% (61/106) were male and 92% (98/106) were healthy. 

 

9.3.2. Phenotypic antimicrobial susceptibility in the selected isolates 

 

Ranges of observed minimum inhibitory concentrations (MICs) for the 106 isolates 

selected for study are summarized for each antimicrobial in Figure 9.2. The individual 

antimicrobials to which resistance was most commonly observed were tetracycline, 

sulphamethoxazole, and streptomycin (Table 9.4). Twenty-seven different resistance 
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patterns were represented in this sample. One isolate was resistant to 10 different 

antimicrobials. The most common AMR patterns detected included a grouping of 

streptomycin, sulphamethoxazole, and tetracycline (n=28, 27%) while the second most 

common grouping was sulphamethoxazole and tetracycline (n=14, 13%).  

 

9.3.3. Resistance Genes 

 

The most common resistance patterns detected phenotypically were also detected 

genotypically. Tetracycline resistance gene tetB, sulphonamide resistance gene sulII 

and streptomycin/spectinomycin gene aada1 were the most common resistance genes 

detected (Table 9.5). A total of 35 different multiple resistance gene combinations were 

identified.  For multi-resistance gene isolates, the median number of resistance genes in 

the observed patterns was 3 with a maximum of 11. The most common resistance gene 

combinations detected included both sulphonamides (sulII) and tetracycline (tetB) 

(n=30). The next most common pattern (7 isolates) contained a grouping of aph(3’)-Ia, 

ant (3”)Ia (aadA1), tetB, catI, dfri, sulI and sulII.  

 

9.3.4. Shiga-toxin producing E. coli (STEC) virulence genes 

 

Of the 106 isolates examined, about half contained at least one virulence gene of 

interest (Table 9.6).  The most common virulence gene detected was stx2. About a 

quarter of isolates (26.3%) contained all three virulence factors. 
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9.3.5. Association between AMR and virulence factors 

 

Approximately half of the isolates were resistant to at least one antimicrobial and 

were also carrying at least one of the virulence genes examined (Table 9.7). Phenotypic 

resistance was not significantly associated with the presence of stx1, stx2, or eae 

(P>0.003) (Table 9.8).  

 

 About half of the isolates were positive for both virulence and resistance genes 

(Table 9.9), but the proportion of isolates containing specific virulence and resistance 

genes varied between 0 and 100%.The most common virulence gene detected in isolates 

with at least one resistance gene or with multiple (≥2) resistance genes was stx2.  No 

significant associations (P>0.003) were detected between any of the resistance genes 

and stx1, stx2, or eae (Table 9.10).  

 

9.3.6. Post hoc assessment of study power 

 

With the current data, a 2.5 fold difference between isolates with or with out 

tetracycline resistance that were stx2 positive, could have been detected with 95% 

confidence and >80% power. For eae, the minimum difference that could have been 

detected in the occurrence of eae positive isolates that were or were not resistant to 

tetracycline was 3.0 fold with 95% confidence and >80% power.  The actual difference 

was only 1.6 and 1.5 times respectively (Table 9.7), therefore study power was not 

sufficient to detect a significant difference if one was present at this low level but it was 

sufficient to detect a moderate difference. 
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9.4. Discussion 

 

The primary objective of this study was to assess the association between AMR and 

the occurrence of stx1, stx2 and eae in E. coli isolates collected from cow-calf herds. No 

significant associations were detected between any of the AMR phenotypes or 

genotypes and virulence factors in this population of healthy beef calves. Resistant 

isolates were no more likely to have STEC virulence factors than susceptible isolates. 

 

 Even though virulence genes and AMR can be transmitted in a similar fashion, and 

associations between certain virulence genes and AMR have been detected in isolates 

from swine samples (Boerlin et al., 2005), there was no significant association detected 

between AMR and the virulence genes examined in this study.  The lack of association 

might be due to how these virulence and resistance genes are transmitted.  Most stx 

genes are thought to be encoded on bacteriophage genomes integrated into the bacterial 

chromosome (O’Brien et al., 1984, Acheson et al., 1998, Neely and Freidman, 1998, 

Muneisa et al., 2000).  During transduction, DNA from a bacteriophage is interjected 

into a host cell where it can lead to the production of new phage particles (Schwartz et 

al., 2006). Subsequent replication of phage DNA and repackaging into new phage 

particles ultimately leads to the ability of these particles to be released (Schwartz et al., 

2006). The primary limitations of transduction are the amount of DNA that can be 

incorporated into a phage head and the requirement for a specific receptor for phage 

attachment (Schwartz et al., 2006). Specificity of bacteriophages results in this 

mechanism of AMR transfer being relatively unimportant (Prescott, 2000). Therefore, 
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the lack of association between AMR and the stx virulence genes is not unexpected. No 

significant association between the virulence gene eae and AMR is probably the result 

of eae being carried chromosomally (Kaper et al., 1998), while many of the resistance 

genes investigated are often located on plasmids (Schwartz et al., 2006). 

 

In contrast to our findings, where resistance was detected in equal proportions of 

STEC positive and STEC negative isolates, Bettleheim et al. (2003) reported higher 

levels of resistance in non-STEC than in STEC isolates, regardless of source. The main 

difference between these two studies was the sampling frame. The Bettleheim (2003) 

study included bovine, porcine, ovine, and human samples from both healthy and 

diseased animals and people, with the majority of AMR in non-STECs identified in 

porcine, symptomatic human and healthy baby samples. The bovine samples in the 

Betteleheim (2003) study that were both STEC positive and resistant were collected 

from diagnostic samples. Sick cattle have been reported to have higher levels of 

resistant STEC than healthy cattle (Gonzalez and Blanco, 1989, Bettleheim et al., 

2003). One possible reason for this is that sick animals are more likely to have been 

treated with antimicrobials, potentially creating an environment more favorable for 

resistant populations as a result of selection pressure. Additionally, some selective 

advantage might be provided to bacteria that are also carrying virulence genes. Further 

research is needed to assess if the association between virulence factors stx1, stx2 and 

eae and AMR are different in healthy and sick cattle.  
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Previous reports that primarily focus on the prevalence of AMR in STEC positive 

isolates (Galland et al., 2001, Zhao et al., 2001, Maidhof et al., 2002, Schroeder et al., 

2002, Mora et al., 2005) cannot be directly compared to the current study because 

isolates were selected for this study based on AMR status. The proportion of resistant 

isolates does not represent the background frequency in the source population. 

However, the primary objective of this study was not to describe the prevalence of 

AMR genotypes and phenotypes, but to address the relationship between AMR and 

stx1, stx2, and eae. Post hoc power calculations suggested there was sufficient power to 

detect important associations between the most common resistances and STEC 

virulence factors in this sample. 

 

The proportion of STEC gene positive isolates can be considered in relation to 

previous research since AMR and virulence are not related and, therefore, the 

proportion of virulence genes detected should not have been biased as a result of isolate 

selection. The proportion of STEC gene positive isolates is similar to what has been 

previously reported by researchers investigating STECs in healthy adult beef cattle in 

Brazil (53% STEC) (Cerqueira et al., 1999), in healthy dairy calves in Japan (46% 

STEC) (Koybayashi et al., 2001), and from both sick and healthy animals and people in 

Australia (48% STEC) (Bettleheim et al., 2003). Our results differ from studies on 

healthy calves in Spain (23% STEC) (Blanco et al, 1996), healthy cattle at slaughter in 

France (70%) (Rogerie, et al., 2001), and healthy bulls, dairy and beef cows in France 

(18% STEC) (Pradel et al, 2000). 
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The most prevalent of all of the virulence genes detected in the current study was 

stx2. Other studies have reported that stx2 and eae are more often associated with severe 

human disease than stx1 (Boerlin, et al., 1999).  Further investigation into the serotypes 

of these isolates would be important to determine their potential impact on human 

health. 

 

The STEC prevalence in cattle can be influenced by many factors including 

sampling and detection methods adopted (Caprioli et al., 2005), potentially accounting 

for the wide range of reported prevalences.  Additionally, the proportion of animals 

shedding stx genes also appears to vary with other factors including, animal age, and 

season (Cray and Moon, 1995, Chapman et al., 1997, Hancock et al., 1997, Hancock et 

al., 1998, Shinagawa et al., 2000, Paiba, et al., 2003). 

 

While the literature does contain information on the proportion of resistant STEC 

isolates from a variety of populations including samples from healthy and diseased 

cattle, sheep, pigs, people, and food  (Gonzalez and Blanco, 1989, Galland et al., 2001, 

Zhao et al., 2001, Maidhof et al., 2002, Schroeder et al., 2002, Betteleheim et al., 2003, 

Mora et al., 2005), we are unaware of other work that has investigated whether there is 

an association between AMR, measured both phenotypically and genotypically, and the 

virulence genes stx1, stx2, and eae.  This work demonstrates that AMR is not any more 

likely in STEC positive isolates than in STEC negative isolates in this population of 

health beef calves. 
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Figure 9.1.  Schematic of number of samples, number of isolates and number of farms 
for each age group of animals investigated  
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Figure 9.2.  Minimum inhibitory concentration distribution for 106 isolates tested for antimicrobial sensitivity using Sensititre 2002 
NARMS CMV7CNCD plate configuration. Numbers are presented as a percentage of the total isolates (n=106). 

 

Roman numerals I-IV indicate the ranking of human importance, VDD. The un-shaded fields indicate the range tested for each 
antimicrobial in the 2002 plate configuration. Vertical double bars indicate the breakpoints and highlighted cells locate the median. 
Numbers in bold font are the number of isolates with growth in all wells within the tested range, indicating the actual MIC is greater 
than that range of dilutions. 
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Table 9.1. Antimicrobial family, genetic marker, primer sequence, GenBank accession number and DNA source for resistance genes 
tested. 

 

PCR primer sequence (5'-3') 
 

Source of DNA Antimicrobial 
family 

Genetic marker 

Forward Reverse 

Amplicon 
size (bp) 

Positive 
control 

 

Beta-lactams blaTEM GAGTATTCAACATTTTCGT ACCAATGCTTAATCAGTGA 857  R. C. Levesque 

 blaSHV TCGCCTGTGTATTATCTCCC CGCAGATAAATCACCACAATG 768  R. C. Levesque 
Aminoglycosides aac(3)-Iia 

(aacC2) 
CGGAAGGCAATAACGGAG TCGAACAGGTAGCACTGAG 740  D. Sandvang 

 aac(3)-IV GTGTGCTGCTGGTCCACAGC AGTTGACCCAGGGCTGTCGC 627  J. Harel 
 aph(3')-Ia 

(aphA1) 
ATGGGCTCGCGATAATGTC CTCACCGAGGCAGTTCCAT 600  J. Harel 

 aph(3')-Iia 
(aphA2) 

GAACAAGATGGATTGCACGC GCTCTTCAGCAATATCACGG 680  J. Harel 

 Ant(3”)-
Ia(aadaI) 

     

 Ant(3”)-If 
(aada6) 

     

Tetracycline Tet(A) GTGAAACCCAACATACCCC GAAGGCAAGCAGGATGTAG 888  J. Harel 
 Tet(B) CCTTATCATGCCAGTCTTGC ACTGCCGTTTTTTCGCC 774  J. Harel 
 Tet(C) ACTTGGAGCCACTATCGAC CTACAATCCATGCCAACCC 881  J. Harel 

Phenicols catI AGTTGCTCAATGTACCTATAACC TTGTAATTCATTAAGCATTCTGCC 547  J. Harel 
 floR CGCCGTCATTCCTCACCTTC GATCACGGGCCACGCTGTGTC 215  D. G. White 

Trimethoprim dhfrI AAGAATGGAGTTATCGGGAATG GGGTAAAAACTGGCCTAAAATTG 391  J. Harel 
 Dhfr1b      
 dhfrV CTGCAAAAGCGAAAAACGG AGCAATAGTTAATGTTTGAGCTAAAG 432  O. Sköld 
 dhfrVII GGTAATGGCCCTGATATCCC TGTAGATTTGACCGCCACC 265  O. Sköld 
 dhfrIX TCTAAACATGATTGTCGCTGTC TTGTTTTCAGTAATGGTCGGG 462  C. Wallen 
 dhfrXII      
 dhfrXIII CAGGTGAGCAGAAGATTTTT CCTCAAAGGTTTGATGTACC 294  P. V. Adrian 
 dhfrXV      

Sulphonamides sulI TTCGGCATTCTGAATCTCAC ATGATCTAACCCTCGGTCTC 822  R. C. Levesque 
 sulII CGGCATCGTCAACATAACC GTGTGCGGATGAAGTCAG 722  J. Harel 
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Table 9.2.  Primer name, primer sequence, length, positive controls used and the reference for each virulence factor tested 
 
 PCR primer sequence (5'-3')    
Virulence 

factor 
 

Forward Reverse 
Amplicon  
Size (bpa) 

E. coli 
+ control Reference 

eae ATCTTCTGCGTACTGCGTTCA CATTATGGAACGGCAGAGGT 790 STJ348/O157:H7 Beudry (1996) 
stx1 TTAGACTTCTCGACTGCAAAG TGTTGTACGAAATCCCCTCTG 530 STJ348/O157:H7 Woodward (1992) 
stx2 CTATATCTGCGCCGGGTCTG AGACGAAGATGGTCAAAACG 327 STJ348/O157:H7 Woodward (1992) 

abp =base pairs 
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Table 9.3. Investigation into the association between AMR phenotypes and virulence factors and between AMR resistance 
genes and virulence factors  

 
 
Response variables  

 
Risk factors for phenotype 
 

 
Risk factors for genotype 

Eae Ampicillin blaTEM  
stx1 and stx2 Amoxicilln/Clavulanic Acid aph(3’)-Ia  
stx2 Cefoxitin  ant(3”)Ia (aada1)  
+ for any virulence factor Cephalothin  tetA, tetB, tetC 
 Chloramphenicol  catI, floR  
 Kanamycin   dhfrI, dhfrXII 
 Streptomycin  sul1, sul2  
 Tetracycline  AMR gene + 
 Sulphamethoxazole  Multiple AMR gene + (≥2 genes) 
 Trimethoprim/Sulpha    
 AMR +   
 Multiple AMR + (≥2 antimicrobials)  
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Table 9.4.  Prevalence of AMR phenotypes in the study samples (n=106) 
 
Antimicrobial 
 

% Positive 
(# positive / total isolates) 

Amikacin 0 
Amox/Clav. 6.6 (7/106) 
Ampicillin 32.1 (34/106) 
Cefoxitin 6.6 (7/106) 
Ceftiofur 1.9 (2/106) 
Ceftriaxone 0 
Cephalothin 7.5 (8/106) 
Gentamicin 1.9 (2/106) 
Kanamycin 28.3 (30/106) 
Streptomycin 67.0 (71/106) 
Chloramphenicol 25.5 (27/106) 
Ciprofloxacin 0 
Naladixic acid 0 
Sulphamethoxazole 82.1 (87/106) 
Tetracycline 86.7 (92/106) 
Trimethoprim/Sulpha 29.2 (31/106) 
AMR +  88.7 (94/106) 
Multiple AMR + 
(≥2 antimicrobials) 85.8 (91/106) 
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Table 9.5. Prevalence of AMR genotypes in the study sample (n=106) 
 
Antimicrobial  
 

Resistance genes 
 

 % Positive   
(# positive/total isolates)  

Ampicillin blaTEM 32.1 (34/106) 
 blaSHV 0  
Gentamicin aac(3)-IV 0.9 (1/106) 
 ant(2")-Ia 0 
 aac(3)-Iia 0 
Neomycin/Kanamycin aph(3')-Ia 34.0 (36/106) 
 aph(3")-Iia 0 
Streptomycin/spectinomycin ant(3")Ia (aadA1) 34.9 (37/106)
 ant(3")If (aadA6) 0 
Tetracycline (tet) tetA 17.9 (19/106) 
 tetB 72.6 (77/106) 
 tetC 2.8 (3/106) 
Chloramphenicol  catI 24.5 (26/106) 
 floR 4.7 (5/106) 
Trimethoprim (TMP) dhfrI 31.1 (33/106) 
 dhfrIb 1.9 (2/106) 
 dhfrV 1.9 (2/106) 
 dhfrVII 0.9 (1/106) 
 dhfrIX 0 
 dhfrXII 3.8 (4/106) 
 dhfrXIII 0.9 (1/106) 
 dhfrXV 0 
Sulphonamides (sulpha) sulII 25.5 (27/106) 
 sulII 75.5 (80/106) 
Gene + AMR   89.6 (95/106) 
Multi-gene + (≥2 genes)  84.9 (90/106) 
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Table 9.6. Crude prevalence of virulence factors in the study samples and prevalence adjusted for clustering at the herd level  
with the 95% CI (n=106) 
 
   95 % CI    

Virulence Factor Prevalence (%) 
(# positive/total)

Predicted 
prevalence  
adjusted 

for clustering 

 
Lower 

 

 
Upper 

 

eae 
 (%) 

stx2  
(%) 

stx1and stx2 
(%) 

eae 17.9 (19/106) 18.0 11.3 27.3 19 (100.0) 10 (52.6) 5 (26.3) 
stx2 41.5 (44/106) 38.9 28.9 50.0 10 (22.7) 44 (100.0) 19 (43.2) 
stx1/stx2 17.9 (19/106) 17.2 10.7 26.5 5 (26.3) 19 (100.0) 19 (100.0) 
Virulence factor + 50.0 (53/106) 48.1 37.7 58.7 19 (35.8) 44 (83.0) 19 (35.8) 
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Table 9.7. The number of isolates resistant to each antimicrobial investigated and the number (percent) of isolates resistant and 
positive for each virulence factor (n=106) 
 

` 
 # of isolates resistant 

to each  
antimicrobial 

eae  
(%) stx2 (%) Stx1 and stx2 (%) Virulence  

factor + 

Amikacin 0 0(0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Amox/Clav. 7 2 (28.6) 5 (71.4) 3 (42.9) 5 (71.4) 
Ampicillin 34 6(17.6) 15 (44.1) 9 (26.5) 15 (44.1) 
Cefoxitin 7 2 (28.6) 4 (57.1) 3 (42.9) 4 (57.1) 
Ceftiofur 2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Ceftriaxone 0 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Cephalothin 8 2 (25.0) 4 (50.0) 3 (37.5) 4 (50) 
Gentamicin 2 1 (50.0) 2 (100.0) 0 (0.0) 2 (100.0) 
Kanamycin 30 5 (16.7) 12 (40.0) 6 (20.0) 13 (43.3) 
Streptomycin 71 15 (21.1) 32 (45.1) 14 (19.7) 38 (53.5) 
Chloramphenicol 27 5 (18.5) 14 (51.9) 6 (22.2) 15 (55.6) 
Ciprofloxacin 0 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Naldixic Acid 0 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
Sulphamethoxazole 87 16 (18.4) 40 (46.0) 16 (18.4) 46 (52.9) 
Tetracycline 92 17 (18.5) 40 (43.5) 17 (18.5) 47 (51.1) 
Trimethoprim/Sulphamethoxazole 31 4 (12.9) 14 (45.2) 6 (19.4) 15 (48.4) 
AMR + 94 17 (18.1) 41 (43.6) 17 (18.1) 48 (51.1) 
Multi AMR + (≥2 antimicrobials) 91 91 (17.6) 40 (44.0) 16 (17.6) 46 (50.5) 
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Table 9.8.  Unconditional associations between AMR phenotypes and virulence factors eae, stx1 and stx2 together, and stx2 (n=106) 
 

 
eae 

 
stx1 and stx2 

 
stx2 

 
  95% CI   95% CI   95% CI  
Antimicrobial OR Lower Upper P-value OR Lower Upper P-value OR Lower Upper P-value 

Ampicillin 0.98 0.36 2.71 0.97 1.91 0.67 5.45 0.23 1.04 0.41 2.61 0.94 

Cefoxitin 1.97 0.43 8.93 0.38 4.52 1.08 18.91 0.04 2.37 0.62 9.05 0.21 

Ceftiofur - - - - - - - - - - - - 

Ceftriaxone - - - - - - - - - - - - 

Cephalothin 1.70 0.41 7.00 0.46 2.86 0.55 14.84 0.21 1.33 0.28 6.32 0.72 

Gentamicin - - - - - - - - - - - - 

Kanamycin 0.91 0.32 2.57 0.86 1.11 0.33 3.76 0.87 0.84 0.36 1.95 0.69 

Streptomycin 2.36 0.89 6.28 0.09 1.28 0.37 4.47 0.70 1.39 0.62 3.11 0.43 

Chloramphenicol 1.01 0.32 3.15 0.99 1.25 0.38 4.06 0.72 1.43 0.58 3.52 0.43 

Sulphamethoxazole 1.41 0.42 4.69 0.57 1.14 0.32 4.12 0.84 3.10 1.11 8.70 0.03 

Tetracycline 1.50 0.38 5.92 0.56 1.01 0.22 4.73 0.99 1.62 0.52 5.07 0.41 

Trimethoprim/Sulpha 0.60 0.18 1.98 0.40 1.03 0.34 3.10 0.96 1.05 0.44 2.53 0.92 

AMR + 1.22 0.31 4.83 0.77 0.79 0.17 3.70 0.77 1.92 0.55 6.68 0.31 
Multiple AMR + 
(≥2 antimicrobials) 0.95 0.31 2.92 0.92 0.68 0.19 2.44 0.56 1.82 0.62 5.29 0.27 

- would not converge 
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Table 9.9.  The number of isolates positive for each resistance gene and the number 
(percent) of isolates positive for the resistance gene and the virulence factor (n=106) 
 

Antimicrobial Family Resistance 
Genes 

Isolates 
positive 
for each 

gene  

Eae  
(%) 

stx2 
(%) 

stx1 and 
stx2 
(%) 

positive  
for any 

virulence 
factor 
(%) 

β-lactams blaTEM 34 5 (14.7) 15 (44.1) 7(20.6) 15 (44.1) 

Gentamicin aac(3)-IV 
 

1 
 

1 (100.0) 1 (100.0) 0  (0.0) 1 (100.0) 

Neomycin aph(3')-Ia 36 6  (16.7) 15 (41.7) 7 (19.4) 16 (44.4) 

Streptomycin aadA1 
 37 5  (13.5) 19 (51.4) 9 (24.3) 20 (54.1) 

Tetracycline tetA 19 3  (15.8) 12  (63.2) 6 (31.6) 12 (63.2) 
 tetB 77 15 (19.5) 31 (40.3) 13 (16.9) 37 (48.1) 
 tetC 3 0 (0.0) 2 (66.7) 0 (0.0) 2 (66.7) 
Chloramphenicol catI 26 2 (7.7) 12 (46.2) 4 (15.4) 13 (50.0) 
 floR 5 1 (20.0) 3 (60.0) 0 (0.0) 3  (60.0) 
Trimethoprim dhfrI 33 4 (12.1) 15 (45.5) 6 (18.2) 16 (48.5) 
 dhfrIb 2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
 dhfrV 2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
 dhfrVII 1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
 dhfrXII 4 2 (50.0) 2 (50.0) 1 (25.0) 2 (50.0) 
 dhfrXIII 1 1 (100.0) 1 (100.0) 0 (0.0) 1 (100.0) 
Sulphonamides sulI 27 2 (7.4) 13 (48.1) 4 (14.8) 14 (51.9) 
 sulII 80 16 (20.0) 33 (41.3) 12 (15.0) 39 (48.8) 
Gene + for AMR  95 17 (17.9) 40 (42.1) 17 (17.9) 47 (49.5) 
Multi-gene + for AMR 
(≥2 genes)  90 16 (17.8) 38 (42.2) 15 (16.7) 44 (48.9) 
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Table 9.10. Unconditional associations between AMR genotypes and virulence factors eae, stx1 and stx2 together, and stx2 (n=106) 
 

 

 eae stx1 and stx2 stx2 

  
 

95% CI   95% CI   95% CI  
AMR gene OR Lower Upper P-value OR Lower Upper P-value OR Lower Upper P-value 
Blatem 0.39 0.25 2.09 0.55 1.14 0.40 3.24 0.81 1.06 0.47 2.39 0.89 
cat1      0.28 0.06 1.25 0.10 0.66 0.14 3.04 0.59 1.01 0.36 2.84 0.99 
floR      1.05 0.09 11.9 0.97 - - - - 2.33 0.29 19.0 0.43 
aph(3’)-Ia      0.90 0.34 2.38 0.83 1.20 0.41 3.46 0.74 0.99 0.50 1.97 0.99 
Aada1   0.59 0.19 1.83 0.36 1.88 0.67 5.25 0.22 1.77 0.77 4.04 0.18 
tetA 0.84 0.21 3.41 0.81 2.53 0.80 8.01 0.11 3.02 0.97 9.42 0.06 
tetB       1.67 0.44 6.33 0.45 0.76 0.23 2.52 0.66 0.76 0.31 1.88 0.55 
tetC - - - - - - - - 3.98 0.26 60.1 0.32 
sulI 0.27 0.06 1.28 0.10 0.64 0.13 3.04 0.57 1.16 0.44 3.06 0.77 
sulII      2.09 0.64 6.86 0.23 0.51 0.17 1.60 0.25 1.07 0.46 2.50 0.88 
dhfr1 0.54 0.17 1.70 0.29 0.94 0.31 2.91 0.92 1.10 0.47 2.59 0.83 
dhfrxII      5.02 1.05 23.9 0.04 1.49 0.25 8.74 0.66 1.61 0.32 7.99 0.56 
AMR gene + 1.02 0.28 3.78 0.97 0.80 0.14 4.46 0.80 0.98 0.31 3.04 0.97 
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CHAPTER 10 
SUMMARY AND CONCLUSIONS 

 
10.1 Introduction 

 

Despite the continued focus on the importance of antimicrobial resistance (AMR) 

and antimicrobial use (AMU) by the scientific community and the general public, there 

is still a need for more information. Although there have been strides in developing a 

greater understanding of this complex subject, especially with the introduction of 

molecular techniques, there are still many unanswered questions. In an attempt to fill in 

some of the gaps surrounding the issue of AMR in agriculture, a study of AMR and 

AMU in western Canadian cow-calf herds was launched. This investigation had three 

primary hypotheses. First, that AMR would be infrequently detected in fecal generic 

Escherichia coli isolates from cow-calf herds because these animals are extensively 

managed relative to most other livestock commodities. Second, routine AMU is 

uncommon in most cow-calf operations and that AMR would be associated with AMU. 

Third, associations between AMR genes would support evidence of co-selection of 

unrelated resistance genes and virulence factors. Specific objectives were then designed 

to address these questions. 

 

The study was successful in fulfilling its objectives; specifically it describes 

prevalence and patterns of AMR in the different age groups commonly found on cow-
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calf farms, it identifies some of the risk factors associated with AMR development in 

calves, it describes common reasons for treatment and the types of antimicrobials used 

on cow-calf farms, it provides an initial description of  the relationships between AMR 

phenotype and AMR genes, between AMR genes, and between AMR and specific 

virulence factors.  

 

10.2 Summary of highlights from each chapter 

 

10.2.1. Antimicrobial use study 

 

This AMU study provides some of the first documentation of AMU and reason for 

treatment in extensively managed cow-calf herds during calving season. At least 86% of 

the herds treated one or more calves or cows during the study period; however, the 

overall proportion of both calves and cows reported as treated was less than 14% for 

calves and 3% for cows.  This relatively small proportion of treated animals is 

consistent with the finding that the majority of antimicrobials reported as used in cow-

calf operations were for individual therapeutic use rather than prophylaxis, 

metaphylaxis, or growth promotion.  

 

Although some oral antimicrobials were used; injectable formulations were the most 

commonly reported method of antimicrobial administration on cow-calf farms. In feed 

AMU was uncommon, ionophores were incorporated into the feed of cows and/or 

heifers on 25% (58/203) of the farms but no other in-feed AMU was reported in these 
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herds. This varies from poultry, feedlot or swine operations where in feed use plays a 

larger role in antimicrobial delivery (McEwen and Fedorka-Cray, 2002, Rajic, 2006).  

 

The most commonly used products in cows were long acting injectable 

oxytetracyclines and penicillins. Injectable and oral sulphonamides, injectable 

florfenicol, and injectable oxytetracyclines were the primary drugs selected for 

treatment of calves. Of these products, oxytetracyclines, penicillins, and sulphonamides 

are readily available over the counter from farm supply outlets, and local feed 

companies as well as from the veterinarian. Ease of access and the relatively low cost of 

these products may be the reasons why these are the most commonly used 

antimicrobials in cow-calf herds.  Alternatively, some producers reported the use of 

antimicrobials not specifically formulated or registered for use in cattle and/or the 

administration of drugs registered for use in cattle for purposes other than that for which 

they were registered.  

 

Calves were more likely to be reported as treated than cows and heifers (13.5% vs 

2.7%), and the primary reason reported for calf treatment was diarrhea. When 

considering risk factors associated with whether a calf was ever treated, male calves 

were more likely to be treated than female calves, and calves for which manipulation or 

traction was applied during calving were more likely to be reported as treated than 

calves that did not require assistance. The odds of calf treatment also increased with 

increased reports of cow treatment in the same herd. 
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In the cows and bred heifers the primary reported reason for treatment from January 

to June was metritis followed closely by interdigital necrobacillosis. Cows and bred 

heifers were more likely to be treated if they were assisted at the time of calving, or if 

they experienced post calving problems such as uterine prolapse, retained fetal 

membranes, or metritis. Cows and bred heifers for which manipulation, traction, or 

caesarian section were reported at calving were more likely to be treated than cows and 

bred heifers that did not require assistance at calving.  

 

10.2.2. Prevalence study 

 

In order to study the prevalence of AMR in cattle from western Canadian cow-calf 

herds, fecal samples were collected from calves in the spring and fall of 2002, from 

cows in the spring of 2002, and from cow-calf pairs in the spring of 2003. E. coli was 

used as an indicator organism. Resistance to drugs classified as very important to 

human medicine by the Veterinary Drug Directorate were infrequent in all age classes 

at all sampling points. From this sampling frame it was apparent that, while younger 

animals were much more likely to be positive for AMR, isolates from all age classes 

demonstrated the most resistance to the same group of antimicrobials. The data also 

indicated that the cow-calf pair relationship was not an important factor in transfer of 

AMR. 

 

Resistance to most of the newer generation antimicrobials was infrequent. 

Resistances to drugs that are classified as very important in human medicine, by the 

Veterinary Drug Directorate, Health Canada, were detected in less than 1% of the 
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isolates. Additionally for the majority of drugs tested, the median MICs were well 

below the breakpoint for resistance for all age groups of animals investigated. Median 

MICs that are several dilutions below the breakpoint indicate that at the time of testing, 

most of the E. coli population in these animals were highly sensitive to those particular 

drugs.  

 

Increased prevalence of AMR in young calves has also been described by other 

researchers (Brophy et al., 1977, Hinton et al., 1984, Hinton, 1985, Mathew et al., 1999, 

Khachatryan et al., 2004). The prevalence of AMR differed significantly among the age 

groups sampled. When comparing the prevalence of resistance to any antimicrobial, 

young calves sampled in the spring of 2002 were almost 10 times more likely to have 

AMR isolates than older calves sampled in the fall of the year. A comparable trend was 

detected for the cow and young calf data. Young calves were 7 to 10 times more likely 

to be resistant to any antimicrobial than were cows. However, there was no difference 

detected in AMR prevalence between cows sampled in the spring 2002 and calves 

sampled in the fall of 2002. 

 

Despite differences in the magnitude of AMR in the different age groups, the three 

most common resistances detected were to tetracycline, sulphamethoxazole, and 

streptomycin. This is similar to what others have reported for E. coli isolates collected 

from dairy cattle as well as for a variety of other animal species (Kijima-Tanaka et al., 

2003, Bywater et al., 2004, Khachatryan et al., 2004). For all other drugs tested, isolates 

had varying degrees of resistance depending on the age group from which they were 
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collected. Despite the ban of chloramphenicol use in livestock in Canada, 

chloramphenicol resistance was still consistently detected in all of the age groups 

examined.  

 

The cow-calf pair relationship was not a significant determinant of transmission of 

resistance to the calf (P=0.36). AMR was detected in both the cow and the calf in only 5 

(4.8%) pairs, of the 105 examined. While the pair relationship did not seem to be an 

important determinant of AMR in the calf population the presence of AMR in the cow 

herd was associated with AMR in the calves.  For the herds that had both cow and calf 

samples collected in the spring of 2002, the odds that that calves would be resistant to 

sulphamethoxazole or tetracycline increased with the proportion of cows that were 

resistant to sulphamethoxazole (OR, 7.5, P=0.02) or to tetracycline (OR, 6.1; P=0.01) 

respectively. These findings indicate that the individual cow is not the primary 

determinant of the AMR status of her calf, but that the frequency of common types of 

resistance in the calves is associated with exposure from the cow herd or from 

contamination of the environment by the cow herd. 

 

10.2.3. Risk factor study 

 

Vaccination practices and the use of most antimicrobials in these herds was not 

significantly associated with the frequency of AMR in commensal E. coli isolated from 

calves. Herd use of sulbactum:ampicillin and gentamicin were, however, identified as 

risk factors for the incidence of antimicrobial resistance for several unrelated 
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antimicrobials. These findings suggested the need to explore the potential importance of 

co-selection at the molecular level in these isolates. 

 

10.2.4. Molecular studies 

 

Assessment AMR at the genetic level is an important tool in the understanding and 

the control of AMR (Lanz et al., 2003). This study demonstrated the importance of 

characterizing resistance in generic E. coli using both phenotypic and genotypic 

methods. It is apparent that the relationships between phenotypes and resistance genes 

are extremely complicated. The extensive number of relationships between individual 

AMR phenotypes or specific resistance patterns and individual resistance genes or gene 

families suggests that there must be extensive linkage, and that there is a high 

probability of co-selection when one type of resistance is perpetuated. The type of 

linkages may be secondary to bringing attention to the message that AMR selection is 

not an independent process, but that there are numerous associations between resistance 

to individual antimicrobials and resistance genes and among resistance genes. 

 

In addition to the expected associations between phenotypic resistance to specific 

antimicrobials and their respective resistance genes, numerous other associations were 

detected. Some of the strongest associations were observed between ceftiofur and floR 

chloramphenicol and dhfrI, trimethoprim sulfamethoxazole and catI, and tetracycline 

and sulII. Each type of phenotypic resistance examined was associated with genetic 

resistance to an average of five families of antimicrobials. Phenotypic resistance to 

streptomycin, tetracycline, and sulphamethoxazole were each associated with the 
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presence of resistance genes from all six of the families of antimicrobials examined in 

this study. The strong association between phenotypic resistance and resistance genes 

from different families of antimicrobials may indicate gene linkage. 

 

The complex nature of AMR was also demonstrated by the large number of 

associations of moderate to substantial magnitude that were detected between resistance 

genes. Some of the strongest associations were between tetB and sulII, sulI and catI, 

sulI and aadA1, aadA1 and dhfrI, and catI and dhfrI. The streptomycin gene, aadA1, 

was significantly associated with at least one gene from all six families of 

antimicrobials investigated. SulII and tetB were strongly associated with each other, 

while sulI was strongly associated with both cat1 and aadA1. These associations may 

help indicate why certain phenotypic resistance patterns are seen within commensal E. 

coli and may warrant further molecular studies. 

 

10.2.5. Virulence and AMR 

 

The primary objective of this study was to assess the association between AMR 

measured by the presence both phenotype and genotype and the occurrence of stx1, stx2 

and eae in E. coli isolates collected from cow-calf herds in Western Canada. No 

significant associations were detected between any of the antimicrobial resistant 

phenotypes or genotypes and the virulence factors of interest. Resistant isolates were no 

more likely to have STEC virulence factors than sensitive isolates. 

 



 

326 

10.3. Study limitations 

 

A review of the limitations of this project suggested some areas where changes might 

be considered for future studies in cow-calf herds. The first limitation was that herd and 

individual animal selection was not random. Enrolled herds were a volunteer, 

convenience sub-set of herds already participating in a larger health and productivity 

study. Individual animal samples collected were also convenience samples. The lack of 

random selection for both herds and individual animals could result in selection bias 

and potentially affect the generalizability of the study. However, participant cooperation 

was necessary for the collection of quality data. The logistics of sampling specific 

animals, given the need for additional animal handling and significant time 

contributions from the producers, would not have been tolerated by the herd owners 

during calving season. For these reasons it would be difficult to implement a true 

random selection of either the herds or individual animals without considerable 

additional resources for personnel and incentives to the participants.  

 

From the Agriculture census in 2001, Statistics Canada reported that the average beef 

size for Canada was 53.  In Saskatchewan and Alberta the average herd sizes were 58 

and 74 beef cows per herd with 15 and 20 replacement heifers respectively.   The 

average study herd size of 180 is larger than that reported by Statistics Canada.  

Because herds were enrolled in the productivity study based on their ability to provide 

the required data, these herds probably represent some of the more progressive, 

commercially viable, and intensively managed herds in western Canada. The herds 

providing data for this thesis therefore represent the prevalence of AMR and AMU in 
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this sector of the industry. The prevalence of AMR and AMU may be different in the 

few very large cow-calf herds that receive little or no treatment interventions or the very 

small herds present on some mixed or hobby farms. 

 

The initial AMU data collected from the cow-calf herds in this study were limited. 

First, only treatment records from January until June were included in the analysis. The 

reason for limiting the records to this time frame was that this period covers the months 

that the herds would have been relatively confined and under observation for calving. 

The AMU records during this period were, therefore, more likely to be accurate and 

complete than records outside of this time frame. The time around calving also 

represents the period when the majority of AMU occurs in cow-calf herds and 

potentially the highest risk period for the development of AMR. The information 

reported can not be directly extrapolated outside the study period because risks and 

treatment practices differ at other times in the production cycle. For example, animals 

are much less likely to be treated for infectious bovine keratoconjunctivitis (pinkeye) 

during the winter months than during the summer and are very unlikely to be treated for 

metritis or other calving complications while on summer pasture.  

 

Although individual animal records were available for this period, details on the 

specific antimicrobials used and the dose given were not reported by most herd owners. 

The data collection forms were designed for a separate study and were not intended to 

be used for this purpose. The lack of specific AMU data precluded investigation into the 

relationship between specific antimicrobials and resistances in individual animals. This 
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limitation could be over come in future cow-calf studies with the careful design of 

treatment data capture instruments.  

 

Under-reporting is another potential issue in AMU data collection. In this project 

under-reporting of individual animal treatments was unknown, but data collection 

personnel estimated at least 20% of participating herd owners did not consistently 

complete individual treatment records. Under reporting could have resulted in 

misclassification of some treated animals as not treated. This would likely have biased 

the association between individual animal treatment and AMR towards the null. To 

supplement the individual treatment record information, an attempt was made to collect 

additional data on the type of antimicrobials used by administering a questionnaire at 

the end of calving season where producers reported the frequency of use of specific 

products for each herd. However, retrospective data collection as done here has the 

potential for recall bias.  

 

The risk factor paper was also limited by the manner in which the AMU data were 

collected. Because the proportion of calves treated and AMU data were summarized for 

the entire period and not relative to the time of sample collection on that farm, there is 

also the potential for misclassification bias of exposure relative to the time the outcome 

of interest was measured. The herd might have been considered exposed to a certain 

antimicrobial or antimicrobials, but that exposure may have been subsequent to the 

sample collection. To assess the effect of these limitations on the study, animal 
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exposure could be measured through individual treatment records that included the type 

of antimicrobial used, the date of use, and potentially the volume.  

 

The molecular aspects of this work were intended as an initial exploration of the 

utility of these methods to examining the question of co-selection in cow-calf herds.  

This part of the project was not intended to be exhaustive or to provide definitive 

answers on this problem. Isolate selection was based on resistance status to maximize 

study power to address association between phenotypic and genotypic resistance. The 

proportion of resistant isolates therefore does not represent the background frequency in 

the source population.  

 

The second limitation of the genetic study was that the diagnostic lab did not test for 

integrons or extended spectrum beta-lactamases. The latter would have been 

informative in light of findings by Read et al. (2005) in a recent feedlot study. Read et 

al. (2005) reported the presence of extended spectrum beta-lactamases carrying the 

blacmy2 beta-lactamase gene. This gene was associated with therapeutic use of 

florfenicol, oxytetracycline or tilmicosin at entry into the feedlot.  

 

From the genetic work and the risk factor analysis in the spring calves, co-selection 

of AMR appears to be a contributor to AMR patterns in cow-calf herds. Investigation 

into the presence of certain plasmids would therefore be useful.  
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Testing for hemolysin in addition to the other virulence factors would be interesting 

because the hemolysin virulence gene may be carried on plasmids with AMR genes. 

These additional molecular components should be included in any future studies of 

cow-calf herds. 

 

10.4. Conclusions 

 

Cow-calf herds are not a significant reservoir for AMR to antimicrobials classified as 

very important to human medicine such as ceftiofur. This is worth mentioning as cow-

calf farms are the most common type of livestock operation in western Canada. Finding 

limited resistance to antimicrobials of very high importance in human medicine 

indicates that at this time cow-calf herds do not pose a significant risk to human health. 

However, since there can also be the co-selection of underlying AMR genes, there is the 

possibility of AMR genes being perpetuated despite no phenotypic evidence of 

resistance.  Continued monitoring of both the phenotype and the underlying AMR genes 

would be needed to see if this pattern changes over time and with the availability of new 

antimicrobials. 

 

These data indicate that young calves have the highest prevalence resistant generic 

fecal E. coli in cow-calf herds. Since young calves shed the highest percentage of 

resistant organisms control should consider them as a source of AMR organisms. 

However, it is also important to recognize that while cows may shed a lower proportion 

of resistant isolates they also contribute more manure to the environment than do 

calves; therefore, they can not be ignored in developing on farm AMR control 



 

331 

programs. Additionally, given the similarity in the patterns of AMR observed across age 

groups, and the relationship between AMR in the cow herd and AMR in the calf 

population the cow herd is likely a reservoir of exposure for calves to resistant 

organisms. In order to develop a plan for AMR control, continued research is needed to 

understand why AMR is higher in very young calves and how the E. coli population 

changes after the spring and during the summer pasture season prior to weaning.  

 

Despite the limitations, this study does provide the first available documentation of 

the proportion of calves, heifers, and cows reported as treated during the calving season 

and the types of conditions most often treated for in a large number of western 

Canadian cow-calf herds. The study also provides some initial information about AMU 

practices in these herds which can be used to help address issues such as extra-label 

drug use, prophylactic treatment of entire calf crops, and the importance of minimizing 

dystocia in reducing the need for treatment of either cows or calves. 

 

Aside from the molecular interest in understanding AMR at the gene level, we can 

also consider the broader implications of the extensive number of associations detected 

between families of antimicrobials. The relationships between resistance genes allow us 

to begin to comprehend the magnitude and the complexity of the epidemiology of 

AMR.  The demonstration of this network of associations also brings into question the 

definition of “prudent use” and the impact of these associations on developing policy 

and clinical practice guidelines to minimize AMR. The implication is that current 

attempts to limit the emergence or spread of AMR based on careful restriction of the 
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choice of antimicrobials will not prevent selection for a number of unrelated AMR 

genes. Therefore, the assessment of AMR at the genetic level is a critical tool in the 

understanding and the potential control of AMR (Lanz et al., 2003). 

 

In addition to the antimicrobial selection pressure itself there are hundreds of 

bacterial genera and species interacting and adapting to many variables within an 

animal production system and, therefore, understanding the complete effects of AMR 

and AMU in these production systems is extremely complex (White and McDermott, 

2001). This study does provide insight into the farm-level treatment factors that can 

influence AMR found in cattle in cow-calf operations.  

   

This project demonstrated the level and type of resistance encountered on cow-calf 

farms as well as common risk factors for the presence of AMR. It also examined 

reasons for AMU in these herds. These data can be used by veterinarians and producers 

to incorporate specific interventions designed to minimize the need for AMU and to 

understand how certain practices may lead to increased AMR.  
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