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Abstract

In epidemiological studies, it is one common issue that the collected data may not be

perfect due to technical and/or financial difficulties in reality. It is well known that ignoring

such imperfections may lead to misleading inference results (e.g., fail to detect the actual

association between two variables). Davidov et al.(2003) have studied asymptotic biases

caused by misclassification in a binary exposure in a logistic regression context. The aim of

this thesis is to extend the work of Davidov et al. to a multi-categorical scenario. I examine

asymptotic biases on regression coefficients of a logistic regression model when the multi-

categorical exposure is subject to misclassification. The asymptotic results may provide

insight guide for large scale studies when considering whether bias corrections would be

necessary. To better understand the asymptotic results, I also conduct some numerical

examples and simulation studies.
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Chapter 1

Introduction

In epidemiological studies, one common issue is that errors may contaminate the as-

sessment of the exposure, where an exposure refers to the variable of interest that alters

individual’s risk of developing a certain disease[1]. The scenario of an exposure mismeasured

is referred to as involving mismeasurement [2]. More specifically, the term measurement error

often refers to mismeasurement in a continuous variable, and the term misclassification often

refers to mismeasurement in a categorical or discrete variable[3, 4, 5, 6, 7]. Researchers have

shown that naively ignoring mismeasurement may induce biased estimates with falsely small

standard errors[7]. Under the regression context, the predictivity of the covariate(s) on the

response variable may also be reduced by mismeasurement in the covariate(s)[8]. Drews et

al.[9] further state misclassification in exposure is a more serious issue than measurement

error because misclassification could result in a high number of biases when even a small

number of errors occurs.

The aim of this thesis is to extend the work of Davidov et al.[10] from a binary case to

a multi-categorical (i.e. more than two categories) scenario. Asymptotic bias formulas will

be derived to assess biases caused by misclassification in a multi-categorical exposure in a

logistic regression context. The asymptotic results of this study provide a way to quantify

the biases for studies with large sample sizes. Based on these quantities, researchers may

decide whether correction methods should be applied. In other words, researchers can use the

asymptotic results to obtain some idea whether misclassification errors are harmful enough

and thus need to be taken care of.

The outline of this thesis is as follows. Chapter 1 describes some possible sources of mis-
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measurement and introduces the mismeasurement issue along with associated terminology.

A literature review about misclassification is given in Chapter 2. In Chapter 3, I derive

the asymptotic bias formulas when only one misclassified multi-categorical exposure is in

the model and when one error-free binary covariate is also included in the model. Chapter

4 illustrates the proposed methodology through numerical instances. Moreover, simulation

studies for finite sample cases are also conducted to compare with the results from numeri-

cal examples. All results calculated by R-software are shown in Appendix A and Appendix

B. Finally, Chapter 5 gives a summary, points out the significance of my work, and states

opportunities for future researches.

1.1 Sources of Mismeasurement

Various errors could occur when we collect the information either from people or about

people. Generally speaking, errors can be separated into two categories: random error and

systematic error [4, 11, 12].

1.1.1 Random Error

A random error stands for the error that occurs simply by chance. If we denote E as the

true value of the exposure and X as the observed value of E (i.e. surrogate), then random

errors result in E(X) = E(E) and V(X) > V(E); that is, X has the same expectation as E

but has a larger variance. Random errors in a continuous variable may not cause a pressing

concern to investigators due to the null expected value it has[11, 13]. However, it does mat-

ter when random errors take place in a categorical (i.e. nominal or ordinal) exposure since

there is no “buffer zone” in a sense that the information is distributed in either a correct

category or an absolutely wrong category[11]. On the other hand, if researchers decide to

convert a continuous variable into a discrete one, then random errors may become influen-

tial as a result of the measurement error problem probably turning into a misclassification

scenario[9, 11]. For instance, assume a group of individuals is randomly selected based on

their weight. Also assume only random errors are introduced in this sample and measurement

error does not result in a biased point estimate of weight. Suppose all subjects are classified

2



into two categories according to their weight, then, for instance, normal-weight individuals

may be wrongly labeled as overweight and vice versa (i.e. misclassification). Consequently,

an inevitable bias is presumable to be present in the analysis[9, 11].

In order to reduce random errors, researchers mainly apply two methods in the design

stage. The first one is to utilize the precise instrument that gives little variation among ob-

servations when repeating using it for the same experiment under the same circumstance[11].

In contrast, the accurate device refers to the one reducing systematic errors[11]. The inaccu-

rate instrument yields the proxy value either smaller or greater than the true value (more in

section 1.1.2)[11]. The second way to reduce random errors is to employ a repeated measures

design[11, 14]. The precise tool and the repeated measures design will be discussed in more

detail in the following two paragraphs.

The precision of a measurement reflects how well a device performs over time[1, 11].

Therefore, implementing a precise means is ideal to reduce the variance of the random er-

ror. Nonetheless, we have to admit that the random error always exists because there is

no absolutely precise instrument. On the other hand, although we are aware it is crucial to

use the precise tool, technical and financial difficulties sometimes force researchers to carry

out the indirect measure, which gives erroneous data with a large variance, to gather the

information. For instance, the Radiation Effects Research Foundation (RERF) in Hiroshima

conducted a study to assess the relationship between atomic-bomb survivors’ radiation doses

and radiation-related disease. The study was conducted five years after the bombs fell. The

technical limitation made it unrealistic to gauge the radiation that survivors had encountered

using the direct instrument, so the indirect factors such as location and shielding were em-

ployed to estimate radiation doses[15]. In such a context, the observed data will differ from

the actual radiation doses and have a larger variance because the imprecise indirect instru-

ment is used. Here is another real-world instance that applies the indirect measure. A Nurses’

Health Study was conducted to investigate how nutritional intakes relate to breast cancer.

It was financially impractical and technically infeasible to directly measure the nutritional

intakes; therefore, a self-report food-frequency questionnaire (FFQ) was employed to collect

3



the frequencies of subjects’ recent specific consumed foods. Mathematical formulas were also

employed to convert gathered frequencies of foods into the nutrient level acquired[16]. It

turns out the transformed data are different from the actual nutritional intakes with a larger

variance.

The repeated measures design is another crucial approach adopted in practice to reduce

the random error and to improve the precision of measurement. The repetition can be com-

pleted through three primary ways: different diagnostics is used for every patient; the same

test is used several times on each subject; and the same instrument is carried out by different

conductors for the same individual[14]. The Nurses’ Health Study mentioned above is an

instance of repeated measurements. FFQ was used four times for every participant and each

time one-week long diet intakes were recorded. The average value of the observed diet intakes

were then employed in the calculation to improve the study’s precision[16]. Carroll et al.[7]

suggest employing a repeated measures design when the surrogate mean is believed to be

closer to the true value than a single observation. Moreover, they state it is appropriate to

use the classical error model (see section 1.2.2) when repeated measurements are employed.

Walter and Irwig[14] claim the estimation of odds ratio(see section 1.3.1) in a case-control

study will be substantially improved even if repeated measurements are applied to only a

portion of subjects who are subject to misclassification. A case-control study refers to a study

in which the disease status of each participant is recorded at the baseline of the study. So

that the exposure value is recalled to escape the follow-up period after individual is exposed

to the variable of interest[11, 17].

1.1.2 Systematic Error

The error that develops in a systematic way is named as systematic error or systematic

bias[11, 12]. It is a more serious problem compared to random error in mismeasurement

studies, since the poor accuracy induced by systematic biases results in E(X) ≠ E(E), where

the accuracy describes the closeness of the measurement to the true value[11, 4, 1]. The math-

ematical equation E(X) ≠ E(E) indicates the expectation of the surrogate variable does not
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equal the expectation of the true variable. Systematic errors can be reduced by using the

ideal instrument to increase the accuracy, yet it is possible no accurate instrument is avail-

able. Limited resources (eg. funding and time) could also make it unlikely to implement the

accurate measure on every individual in the sample. The following paragraph shows a way of

how investigators coping with such a situation in practice by employing a real world example.

A study in Saarland, Germany investigated the relationship between stomach cancer and

Helicobacter pylori (H.pylori) infection. H.pylori is one kind of bacterium that can inhabit

the stomach[18]. A case-control study was conducted in order to avoid the possible high ex-

penses resulting from the long waiting of having stomach cancer after the infection. Besides,

in spite of sacrificing the accuracy, an easiest and cheapest way (i.e. a laboratory test) was

employed to check the presence of H.pylori infection. On the other hand, investigators ap-

plied the accurate measurement (i.e. gold standard, see section 1.3.3) to a selected subgroup

of sample (i.e. an internal validation group, see section 1.3.3). In such a way, researchers

have not only proxy data but also true data for the validation group, which can be used to

correct misclassification of H.pylori infection in the remaining sample where researchers have

only the contaminated data (i.e. main sample, see section 1.3.3)[18].

Systematic errors can be introduced by various ways. Here I describe two of them: recall

bias and interviewer bias.

Recall Bias

Recall bias is a type of bias that takes place in a retrospective process. Retrospective studies

are those looking backwards in time; that is, the outcome is observed before the covariate[19].

Case-control study is one common type of retrospective studies, where cases represent those

individuals with a particular disease and controls represent those without[12, 19]. In a case-

control study, recall bias can be explained as a result of cases intentionally underestimating

or overestimating their exposure while controls not[12, 19]. For instance, a case-control study

is designed to examine the relationship between certain respiratory disease and passive smok-
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ing. A recall bias may arise during the recall procedure as cases intentionally exaggerate the

smoking amount they have been exposed if they think the amount of passive smoking is the

reason for them to have the disease. Controls do not intentionally do so. As a result, the

exposure risk will be overestimated for cases[11].

One issue worth pointing out is the differences between recall biases and recall errors.

Recall errors are those unescapable errors for both cases and controls due to the memory

failure of individuals[11]. All case-control studies (e.g., nutrition intake and H.pylori in-

stances described above) experience some degree of recall errors and the number of errors

is expected to be same for cases and controls. Recall errors are very likely related to the

non-differential mismeasurement (refer to section 1.2.3)[11]. In contrast, recall biases do not

generally present in all case-control studies. Furthermore, recall biases tend to result in dif-

ferential mismeasurement (see section 1.2.3) as a consequence of unequal number of errors in

cases and controls[11].

Interviewer Bias

Interviewer bias is one type of biases resulting in systematic error[11]. For instance, in a

Massachusetts Women’s Health Study, 2,569 women were selected to conduct a 5-year long

cohort study. A prospective cohort study is a study following the natural way so that the

exposure is measured before the response variable. Six interviewers were assigned to phone

each participant to finish an approximately 30-minute long questionnaire and each subject

received six calls total through the five-year period. Johannes et al.[20] found there was in-

terviewer variation for questions in need of further probing or questions relating to subjective

or personal topics. The authors further claimed, despite the interviewers receiving the same

training, the descriptions the interviewers entered were different due to different recording

ways of them even though they heard the same answer from the same interviewee. The varia-

tion of different interviewers finally results in an interviewer bias in recording the information.
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1.2 Measurement Error and Misclassification Models

This section describes terminology for modeling mismeasurement. For a more systematic

discussion of measurement error and misclassification, please refer to Fuller[21] and Carroll

et al.[7].

1.2.1 Functional Models versus Structural Models

The property of the unobserved true exposure E can be treated as a standard to broadly

classify mismeasurement models[2, 7, 3, 22]. That is, if E is fixed, we say the mismeasure-

ment model is functional and apply a functional modeling approach to account for possible

mismeasurement of E [7, 22]. Carroll et al.[7] have suggested a more fruitful definition for

the functional model. That is, one model is also functional if E is a random variable but

minimal assumptions have made about it. In other words, this definition includes the non-

parametric situation. By contrast, if E is random and parametric assumptions are made on

the distribution of E, then the model is named as structural model[7, 4, 3, 22].

So far, it is unclear in the literature whether functional or structural modeling is more

preferable in general[7]. Carroll et al.[7] have suggested using the functional model when

the estimator obtained by using the functional modeling is distributional-robust (i.e. the

estimator is consistent). The functional modeling also takes advantage of making less as-

sumption on the unobserved E compared to the structural modeling. On the other hand,

structural methods are more attractive because they are usually more efficient compared to

functional methods, where the efficiency is gained through making parametric assumptions

on the distribution of E [7].

1.2.2 Models for Measurement Error and Misclassification

We can also separate mismeasurement models into classical error models and Berkson error

models based on the relationship between the true but unobserved E and its surrogate X

[7, 3, 23]. Classical error models represent those making assumptions on the distribution of X
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given E and the error-free covariate(s) Z. While Berkson error models are models concerning

the distribution of E conditional on (X,Z )[7, 3, 23]. In the following, I describe classical error

models and Berkson error models in a mathematical way.

Classical Error Models

The classical error model can be written as follows:

X = E +U,

where U is independent of E and has mean zero. The model indicates X is unbiased for E,

i.e. E(X ∣E,Z) = E or E(U ∣E,Z) = 0. X and U are two random variables with either fixed

or random variances[7, 3].

In reality, we have to admit the proxy X could be biased from the true E when the systematic

bias occurs. Therefore, we need to calibrate the biased measurement resulting in an unbiased

measurement, which gives the error model as below:

X = α0 + α1E + α2Z +U,

where U is independent of E and Z and E(U ∣E,Z)=0. This model says (X−α0−α2Z
α1

) is an

unbiased measure of E. Again variances of random variables U and X can be either fixed or

random[7, 3].

Berkson Error Models

Different from a classical error model, in a Berkson error model, the true E is influenced

by X and Z. For instance, a herbicide study conducted by Rudemo et al.[24] employed the

Berkson error model. The exposure of interest is the actual amount of herbicide absorbed by

the plant, which is unmeasurable. The amount of herbicide required to spray to a plant is

fixed and measurable, but not equivalent to the absorbed concentration. In such a context,

the true value of the herbicide concentration depends on the surrogate amount. Therefore,

a Berkson relationship is appropriate. The Berkson error model can be written as:

E = ρ0 + ρ1X + ρ2Z +U∗,
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where U∗ is independent of X and Z and E(U∗∣X,Z)=0. The model indicates (E−ρ0−ρ2Zρ1
) is

an unbiased estimator of X. The variance of U∗ can be either fixed or random.

1.2.3 Non-differential versus Differential Mismeasurement

Mismeasurement can be separated into two types, namely non-differential and differential

mismeasurement. Non-differential mismeasurement presents if the observed exposure has

no additional information about the response variable when the true value of that expo-

sure is given[7, 2]. If the response variable is binary (e.g., disease or non-disease) and the

exposure is categorical, then the non-differential circumstance simply means possible misclas-

sification probabilities do not vary between cases and controls. Mathematically, we explain

non-differential misclassification as P (Y ∣E,X,Z) = P (Y ∣E,Z), where P (A∣B) indicates the

conditional probability of A given B and Z represents all other error-free covariates[7, 4, 23].

Non-differential misclassification could be caused by random errors such as fallible mem-

ory and misunderstanding questions, or systematic errors such as test failures as long as

errors are equally likely to occur in all levels of Y [11]. From the design perspective, cohort

studies by nature are more likely to relate to non-differential mismeasurement than differ-

ential mismeasurement, because subjects are not aware of their future disease statuses and

they are unable to alter their exposure values based on the unknown disease statuses. It is

highly probable for patients to make the same number of errors in exposure[5]. One numeri-

cal instance reflects effects of ignoring non-differential misclassification shown in section 1.3.1.

In contrast, differential mismeasurement indicates the erroneous exposure has additional

information about the outcome conditional on the information contained in the true ex-

posure. Therefore, differential misclassification implies different response groups receive

different number of errors. A more technical definition of differential misclassification is

P (Y ∣E,X,Z) ≠ P (Y ∣E,Z)[7, 4, 23]. Differential mismeasurement is mainly caused by sys-

tematic errors[11]. However, it could still be resulted by random errors although rare[11].

For instance, if we adopt different instruments with different precisions in cases and controls,

then random error but differential mismeasurement probably arise. By contrast with cohort

studies, case-control studies are prone to encounter differential mismeasurement. As I men-

9



tioned in the recall bias section, cases have a higher probability than controls to overestimate

or to underestimate their exposure(s). Flegal et al.[5] state a non-differential case may turn

into a differential scenario when continuous data that are subject to measurement error are

turned into categorical data. They further point out this situation is very likely to occur even

in a cohort study. One numerical instance shows influences of differential misclassification

on parameters given in section 1.3.1.

1.3 Terminology Used in Epidemiological Literature

This section discusses the terminology that is often used in the epidemiological literature.

They are measures of association (section 1.3.1), misclassification rates (section 1.3.2), and

gold standard and validation (section 1.3.3).

1.3.1 Odds Ratio and Relative Risk

Odds Ratio

Odds ratio (OR) is one measure used in epidemiological studies to investigate the association

between the exposure and the corresponding disease[19]. OR is the ratio of the odds of

disease among exposed people to the odds of disease among unexposed. Odds represent

the ratio of the probability of an event to its complement. Therefore, the odds of disease

among exposed is the ratio of the probability of having disease given exposed (i.e. P(disease

∣ exposed)) dividing its complement (i.e. 1-P(disease ∣ exposed)=P(disease-free ∣ exposed)).

Consequently, OR is:

OR = P (disease ∣ exposed)/P (disease-free ∣ exposed)
P (disease ∣ unexposed)/P (disease-free ∣ unexposed)

= P (disease ∣ exposed)P (disease-free ∣ unexposed)
P (disease ∣ unexposed)P (disease-free ∣ exposed) .

An artificial instance is used in the following to calculate OR numerically. Suppose that a

case-control study is conducted to examine the relationship between smoking habit and lung

cancer. Let S denote smokers, NS denote nonsmokers, D denote having lung cancer, and D

denote not having lung cancer. Assume 600 cases and 550 controls are pre-determined by
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Table 1.1: The frequencies of a hypothetical case-control study

Lung Cancer No Lung Cancer Total

Smokers 400 300 700

Nonsmokers 200 250 450

Total 600 550 1150

researchers in advance. The frequencies of four combinations of smoking status and disease

status are illustrated in Table 1.1 (a 2× 2 table).

OR can be calculated as follows:

OR = P (D⋂S) ∗ P (D⋂NS)
P (D⋂NS) ∗ P (D⋂S)

= 400 ∗ 250

300 ∗ 200

= 1.67.

The numerical result of OR indicates the odds of lung cancer are 1.67 times higher among

smokers compared to nonsmokers.

Note that OR can also be expressed as the ratio of the odds of exposed among cases

compared to the odds of exposed among controls. Thus, OR in the above instance can be

re-interpreted as the odds of smokers 1.67 times greater among those with lung cancer com-

pared to those without. An intuitive implication of this interpretation is the equivalency of

odds ratios in case-control and cohort studies. That is:

OR = P (disease ∣ exposed)/P (disease-free ∣ exposed)
P (disease ∣ unexposed)/P (disease-free ∣ unexposed)

= P (disease⋂ exposed)/P (disease-free⋂ exposed)
P (disease⋂unexposed)/P (disease-free⋂unexposed)

= P (exposed ∣ disease)/P (unexposed ∣ disease)
P (exposed ∣ disease-free)/P (unexposed ∣ disease-free) .

The first line of the above derivation indicates the expression of OR for a cohort study and
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the third line implies the expression for a case-control study.

In the numerical instance, the exposure (i.e. smoking status) is treated as a risk factor

since OR is larger than 1, which indicates a positive association between the exposure and

the disease (i.e. the risk effect)[19]. If we have OR smaller than 1, then the exposure is

said to have a protective effect on the disease and that exposure is treated as a protective

factor[19]. Obviously, OR equivalent to 1 indicates no association. In general, the more OR

departs from 1, the stronger the association between the exposure and the outcome has.

Another thing worth mentioning is the coefficients in a logistic regression can be related

to odds ratios by the exponential function. More details will be discussed in Chapter 3.

Relative Risk

Besides OR, relative risk (RR) is another association measure based on ratios. Note that

it is not appropriate to use RR for a case-control design as a result of the nature that the

number of cases and controls are pre-determined in a case-control study. In other words,

RR is useless if we do not have the knowledge of the total number of cases and controls in a

population or proportions of cases and controls in that population[19]. But RR is still useful

as an association measure for cohort studies.

RR compares the probability of disease among exposed individuals dividing the proba-

bility of disease among those unexposed. We then have:

RR = P (disease ∣ exposed)
P (disease ∣ unexposed) .

If we assume the data in Table 1.1 are from a cohort study, we then have RR as below:

RR = P (D ∣ S)
P (D ∣ NS)

= 400/700

200/450

= 1.29.
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The result indicates smokers are 1.29 times more likely to develop lung cancer than non-

smokers. In other words, the risk of developing lung cancer is 0.29 higher for a smoker than

a nonsmoker.

Particularly, when the disease is rare, RR approximately equals OR as the total number

of exposed is about the number of exposed but without disease (i.e. P(disease-free ∣exposed)

≈ 1) and the total number of unexposed is about those unexposed controls (i.e. P(disease-free

∣unexposed) ≈ 1)[19]. That is:

OR = P (disease ∣ exposed)P (disease-free ∣ unexposed)
P (disease ∣ unexposed)P (disease-free ∣ exposed)

≈ P (disease ∣ exposed) ∗ 1

P (disease ∣ unexposed) ∗ 1

= RR

1.3.2 Misclassification Rates

When there is a categorical exposure subject to misclassification, probabilities of its observed

status given its true status are misclassification rates. The accuracy of a measurement tool

can be reflected by misclassification rates. In other words, they are measures of the magnitude

of misclassification. Misclassification rates can further help investigators correct misclassi-

fication. They can be written into a matrix form with diagonal ones representing correctly

distributed probabilities (i.e. classification probabilities) and off-diagonal ones indicating

misclassification probabilities. In section 3.1.1, I demonstrate the general matrix form of

misclassification rates and give a detailed description.

For a simple case with only one binary exposure and one binary outcome as variables (i.e.

a 2×2 case), misclassification rates include four cells, which are sensitivity, 1-sensitivity, speci-

ficity, and 1-specificity. The sensitivity of a test represents the percentage of people grouped

into the exposed category given they are truly exposed. The specificity of a test indicates

the proportion of those truly unexposed individuals. Sensitivity and specificity belong to

classification probabilities. 1-sensitivity is the complement of sensitivity called as false neg-
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Table 1.2: The effects of non-differential misclassification when 5% of smokers are
misclassified as nonsmokers and 8% of nonsmokers are misclassified as smokers

Lung Cancer No Lung Cancer Total

Smokers 400-20+16=396 300-15+20=305 701

Nonsmokers 200-16+20=204 250-20+15=245 449

Total 600 550 1150

ative rate and 1-specificity is the complement of specificity named as false positive rate[19].

Both of them are misclassification probabilities. For non-differential misclassification, we

have one pair of sensitivity and specificity as a result of the same amount of misclassification

cases and controls have. In contrast, we have two pairs of sensitivity and specificity for cases

and controls separately in a differential misclassification scenario. In addition to sensitivity

and specificity, researchers sometimes need probabilities to have an “inverse” form of them.

In other words, the probabilities of the true status given the diagnosed one are needed[25].

Specifically, the proportion of individuals who are diagnosed as exposed truly exposed refers

to positive predictive value (PPV) and the probability of unexposed individuals given they

are identified as unexposed refers to negative predictive value (NPV)[25].

Misclassification in Relation to an Odds Ratio Example

This part studies potential influences of a misclassified binary exposure on OR. Assume the

true data given in Table 1.1 are subject to misclassification: 5 percents of smokers are mis-

classified into the unexposed group, and 8% of nonsmoking individuals are miscategorized

into the smoking category (Table 1.2). Note that this kind of misclassification belongs to

the non-differential scenario because the same amount of misclassification is experienced by

cases and controls. With the presence of misclassification, OR reduces to 396∗245
305∗204 = 1.56 in

contrast to 1.67 (without misclassification). This suggests OR is underestimated and this

underestimation is referred to attenuation or reducing to the null[7].
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Table 1.3: The effects of differential misclassification when 20% of smoking cases, but
not controls, are misclassified as nonsmokers

Lung Cancer No Lung Cancer Total

Smokers 400-80=320 300 620

Nonsmokers 200+80=280 250 530

Total 600 550 1150

Table 1.4: The effects of differential misclassification when 20% of nonsmoking cases,
but not controls, are misclassified as smokers

Lung Cancer No Lung Cancer Total

Smokers 400+40=440 300 740

Nonsmokers 200-40=160 250 410

Total 600 550 1150

Now suppose differential misclassification occurs in this case-control study. Assume that

(1) 20% of the smokers who develop lung cancer are wrongly put into the nonsmoking group;

(2) no nonsmoking cases are misclassified into the smoker category; and (3) no misclassifi-

cation happens in the control group (Table 1.3). OR becomes 0.95 (320∗250300∗280), which is toward

to the null. In this instance, cases and controls as two groups receive different amounts of

misclassification. More specifically, controls even do not have any misclassification. This

situation may be due to the potential influence of the recall process (i.e. recall bias).

If the misclassification assumptions are altered so that 20 percents of the nonsmoking

cases are misclassified into the exposed group and, again, no misclassification is within the

controls (Table 1.4). Then OR turns to be 2.29, which indicates the parameter is overesti-

mated or away from the null.

I have pointed out some methods in section 1.1 that can be used to reduce differential
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(and non-differential) mismeasurement in the design stage. Generally speaking, the best

way to avoid differential mismeasurement is to apply the same methodology and the same

technology for every individual in the study[11].

1.3.3 Gold Standard and Validation

Gold standard is regarded as the best test available in the field that measures the true value of

the exposure[26]. However, gold standard does not always exist due to the technical infeasi-

bility. For instance, no gold standard is available to diagnose mental disorders in psychiatric

studies[27]. In some circumstances, even the gold standard available, it is financially im-

practical to implement the best diagnostic test to every participant in the sample. Instead,

researchers often first employ the cheap and simple but error-prone approach to the whole

selected sample (N). And then apply the gold standard to a recruited small group (i.e. a

validation sample). This validation sample can be selected either from the original sample

with size n1 (i.e. an internal validation) or from an external population with size n2 (i.e. an

external validation)[7]. In such a manner, we then have both true and proxy data for the val-

idation group, which help correct misclassification in the main study group. The main study

group is defined as the remaining individuals of the selected sample (N-n1) in an internal

validation study or the whole selected sample (N) from the original population in the context

of an external validation[6]. External validation approach is primarily employed to gener-

alize the results into other population. However, the main interest of observational studies

is to make inferences about the original population where the main sample is chosen[19].

Therefore, the external validation is less useful than the internal validation for case-control

and cohort studies. Note that, although this thesis does not deal with the gold standard

and validation data, they are used a lot for real studies. Besides, the misclassification rates

adopted in this thesis could be estimated from a validation group in practice.

The Nurses’ Health Study described in section 1.1 employed the internal validation ap-

proach. Approximately 89,000 subjects were chosen as the main study group and exposures

relating to nutritional intakes were measured through FFQ (i.e. an imprecise yet easy and

cheap questionnaire). Later, an internal validation group (173) was selected and an gold
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standard named as weighed diet records was implemented on every patient in the validation

group. The weighed diet record measures nutritional intakes of various foods in a real-time

basis regardless of the high cost it has. With the help of the validation data, researchers

corrected misclassification in the main sample[16]. The H.pylori infection instance described

in section 1.1.2 is another one employing the internal validation design.
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Chapter 2

Background

The statistical literature with a focus of mismeasured independent variables has been

extensively discussed over the last fifty years. Fuller[21] and Carroll et al.[7] provide system-

atic discussions on dealing with the mismeasurement problem. More specifically, Fuller[21]

focuses on mismeasurement of explanatory variables in a linear regression model, and Carroll

et al.[7] mainly study mismeasurement in a nonlinear regression context.

This chapter contains the following sections. Section 2.1 introduces the literature with a

focus of consequences of ignoring misclassification. The remainder of the chapter concentrates

on how to account for effects of binary misclassification (section 2.2) and multi-categorical

misclassification (section 2.3), respectively.

2.1 Consequences of Ignoring Misclassification

Since Bross[28] published the first paper about the effects of non-differential misclassification

in a binary variable (a correction by Newell[29]), many studies investigating the consequences

of ignoring the misclassification have been done over the last fifty years. Some of the main

findings resulted by naively ignoring misclassification are: (1) point estimates and standard

errors can be biased[7]; (2) the actual association between two variables can be failed to

detect[7]; and (3) the predictivity of the independent variable(s) on the response variable can

be reduced[8].

In the following, I will explore the literature with more details. It has been proved by

various studies that misclassification of a binary or multi-categorical exposure can bias the
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estimate either toward or away from the null (one binary example given in section 1.3.2).

It is also worth mentioning that, in earlier days, some researchers have wrongly stated that

non-differential misclassification in a binary variable can only result in the attenuation of

the estimate. However, the violations can be easily shown by the results of Davidov et

al.[10] and this thesis as a special case. For instance, when the true odds ratio is smaller

than one, misclassification results in an over-estimation under the non-differential assump-

tion. On the other hand, although some of early studies provide a wrong conclusion, they

can still be used to examine the consequences of ignoring binary misclassification to some

extent. Copeland et al.[30] used instances to illustrate the changing trend of the estimated

odds ratio or relative risk when they altered sensitivity and specificity, outcome prevalence

and/or exposure occurrence for both non-differential and differential scenarios. Both under-

estimated and overestimated situations were shown by their results. Greenland[31] analyzed

the situation including two binary covariates and a perfectly measured binary response. The

potential influences (i.e. under-estimation and over-estimation) due to misclassification of

either one or two covariates were investigated by employed hypothetical numerical examples.

Dosemecl et al.[32] used two hypothetical numerical instances to demonstrate, in the context

of a misclassified multi-categorical exposure, the slope estimates could be underestimated or

overestimated regardless of the misclassification scenario either non-differential or differential.

Their conclusion for the non-differential situation was further proved by Birkett[33] using al-

gebraic formulas. In addition, Weinberg et al.[34] explored conditions to keep the direction of

the bias unchanged when non-differential misclassification took place in a multi-categorical

exposure.

2.2 Correction Methods for Binary Misclassification

As a consequence of the fact that naively ignoring misclassification reduces the quality of

inferences, a large amount of literature have been published for correcting misclassification.

Two approaches are generally used, namely frequentist method and Bayesian method. Section

2.2.1 and 2.2.2 describe the statistical literature applying the frequentist approach to account

for misclassification when a gold standard is either available or not. While Section 2.2.3
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focuses on the literature employing the Bayesian methodology.

2.2.1 With Gold Standard

This subsection reviews some published works under the assumption of gold standard avail-

able. It is subdivided into two parts according to the criterion whether maximum likelihood

(ML) method or other methods is used to estimate parameters.

Maximum Likelihood Method

Maximum likelihood method is widely used in the misclassification literature and in the real

practice to obtain estimated parameters as this method is asymptotically unbiased and ef-

ficient under certain regularity conditions[35, 25, 6]. Besides, Prescott and Garthwaite[26]

point out ML method gives higher power than other frequentist methods if the internal val-

idation information is accessible.

Espeland and Hui[36] worked on maximum likelihood estimators(MLEs) and their vari-

ances when the gold standard was available and a log-linear model was built to relate a binary

variable A to a binary variable B when either A or B or both was misclassified. Their method

allowed the complex structure (e.g., the higher order interaction). Nevertheless, they admit-

ted that “little rationale” for their instances used the log-linear model except simply following

the previous published works[36]. Instead, some researchers pointed out the logistic regres-

sion model was employed much more often for the binary regression, which was a regression

with a binary outcome[37, 6, 26]. Holcroft and Spiegelman[38] concentrated on choosing the

optimal validation design in a sense to select the one with the minimum variance for MLE

of the corrected odds ratio. Note that the log of odds ratio is equivalent to the coefficient of

the exposure in a logistic regression (more in section 3.1). Under the assumption of the total

size of the validation sample fixed, Holcroft and Spiegelman concluded it was preferable to

adopt a balance design, which equally distributed validation individuals into four combina-

tions of the outcome and the exposure, because of the “simplicity and good performance”

the balance design achieved[38]. Spiegelman et al.[6] constructed a logistic regression model

including covariates subject to measurement error, covariates prone to misclassification and
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a list of error-free covariates. Their method requested to use the information from either

internal or external validation data to estimate parameters by ML method. Spiegelman et

al. also used the Nurses’ Health Study and a simulation study to investigate both asymptotic

and finite sample properties of their MLEs.

Other Frequentist Methods

Although MLEs gain asymptotic unbiasedness and efficiency under certain regularity con-

ditions, it may be suggested not appropriate under some situations such as when regular-

ity conditions violated, MLEs not exist, or sample size small enough so efficiency can not

be achieved[35]. As a result, some other frequentist methods are also under investigation.

Barron[39] employed the matrix method to estimate the true relative risk between two inde-

pendent binary variables that are subject to non-differential misclassification. He assumed

misclassification rates were known and fixed. Morrissey and Spiegelman[25] examined the

differences of four methods on correcting misclassification for binary differential and non-

differential scenarios when the gold standard was available to a validation sample. Four

methods were Barron’s[39] matrix method, inverse matrix method derived by Marshall[40],

improved matrix method[40], and ML approach. The corresponding variances were worked

out by Greenland[41] and Morrissey and Spiegelman[25]. The results showed the ML method

was the most efficient one to correct misclassification. Lyles[42] later pointed out, in the con-

text of differential binary misclassification, the inverse matrix method was equivalent to the

ML method. Therefore, the inverse matrix method shared the same efficiency as the ML

approach, but had a simpler computational process.

2.2.2 Without Gold Standard

Real world difficulties such as technical infeasibility and financial limitation could make a

gold standard not available. The literature with a focus in such a situation is reviewed in

this subsection. Walter and Irwig[14] did a review about the misclassification problem when

a gold standard was not obtainable. They constructed various latent designs to ensure the
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reliability of observed data. The latent class analysis refers to the analysis with the true value

of the variable unknown. And that variable is named as latent variable[14]. Walter and Irwig

stated, in order to make estimation free of constraints, at least three replicate observations

per subject were needed.

Both Drews et al.[9] and Kosinski and Flanders[43] studied the case when there were two

imperfect measures available for a binary exposure. Both of their studies calculated the cor-

rected odds ratio through the expectation-maximization (EM) algorithm that helped obtain

MLEs. Nonetheless, there were some key differences between two studies. First, Drews et

al.’s research only dealt with the non-differential situation in a case-control study. While

Kosinski and Flanders’s work was able to dispose of both non-differential and differential

misclassification in either a case-control study or a cohort study. Second, Kosinski and Flan-

ders assumed the error between two imperfect tests was independent given the true status of

the exposure. However, Drews et al. pointed out, if the independency was not actually true,

the odds ratio could be underestimated. Therefore, Drews et al.’s work allowed the depen-

dency of misclassification between the two imperfect tests when the degree of dependency

was known. Third, Drews et al. did not include other error-free covariate(s), but Kosinski

and Flanders did.

Lyes and Lin[44] calculated the range for estimated odds ratios or log of ORs by varying

the value of sensitivity and specificity as a solution to a gold standard not available. Their

method allowed both non-differential and differential misclassification. The corrected esti-

mates in their paper were obtained by three methods: (1) matrix method by using sensitivity

and specificity; (2) maximum likelihood approach; and (3) “inverse” matrix method by em-

ploying positive and negative predictive values (see section 1.3.2).

2.2.3 Bayesian Methods for Binary Misclassification

Bayesian approach is another primary method used to adjust the potential influences of mis-

classification on parameters. Different from frequentist method, Bayesian approach assumes
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all parameters in the model are random. It requires the priori information about these

parameters. It also asks for a likelihood of parameters, which can be expressed as the condi-

tional distribution of data given parameters. The aim of Bayesian analysis is to obtain the

posterior distribution with the help of the priori and the likelihood. The posterior distribu-

tion is the basis of all Bayesian inferences[45].

This subsection introduces the literature employing Bayesian methods to account for

binary misclassification. The first part of this subsection studies the situation when misclas-

sification is uncertain for researchers. And the second part focuses on the use of Bayesian

methods for various study designs such as matched or unmatched case-control studies and

cohort studies.

Misclassification Probabilities Unfixed

Under the frequentist context, the misclassification matrix is assumed fixed and known. How-

ever, in reality, we sometimes are uncertain about misclassification rates. Gustafson et al.[46]

pointed out, if sensitivity and specificity had even small differences from actual probabilities,

a large number of undetectable asymptotic biases relating to odds ratio could be induced in

a case-control study. Therefore, Gustafson et al. suggested employing Bayesian method to

incorporate the uncertainty of misclassification into the priori consideration. In their paper,

Gustafson et al. constructed four independent priors for the prevalence of cases and controls,

sensitivity, and specificity. Chu et al.[47] extended Gustafson et al.’s case by considering the

correlation of sensitivity and specificity. They demonstrated how the posterior distribution

altered along with the change of the priori under both non-differential and differential cir-

cumstances. Chu et al.[8] worked on the adjustment of one binary misclassified exposure

in an unmatched case-control study when validation data are accessible. They compared

the performance of their Bayesian estimators with those obtained through ML and SIMEX

methods. They concluded Bayesian method had more merits in general than frequentist

methods especially when the exposure was a rare event, the validation size was small, and

misclassification of exposure whether differential or non-differential was not clear.
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Bayesian Analysis for Various Study Design

Bayesian methods have been adopted to account for misclassification in exposure under

various study designs such as cohort study, matched case-control study and unmatched case-

control study. Prescott and Garthwaite investigated non-differential and differential mis-

classification of a binary covariate in unmatched case-control[48], prospective cohort[49], or

matched case-control studies[26]. All their methods dealt with the case when validation data

were available. For unmatched case-control studies, one Bayesian method with two stages

was formulated to dispose of the situation where only one covariate is subject to misclassifi-

cation. The first stage of their method analyzed the validation data; and the second focused

on the main group data. Note that the priori of the second stage is the posterior of the

first so that the information is transferred between these two stages. Prescott and Garth-

waite also studied the misclassification issue in a prospective cohort study. The misclassified

binary exposure and error-free continuous and categorical covariates were included in three

logistic regression models, which were named as the disease model, the exposure model and

the misclassification model. Weakly-informative priors that had large variances were chosen

for all parameters in three models. The final results of their study allowed investigators to

explore not only the relationship between the disease and the true exposure but also the

association between the true and error-prone exposure and between the true exposure and

all other covariates. Prescott and Garthwaite also published a paper highlighting the correc-

tion of misclassification in a matched case-control study. They examined the corrected OR

by applying three models with different assumptions. The situation without validation data

available in a matched case-control study was studied by Liu et al.[50] with the assumption

of non-differential binary misclassification.

2.3 Correction Methods for Multiple-categorical Mis-

classification

This section introduces the literature that concentrates on the correction of misclassification

in a multi-categorical exposure. Note that the asymptotic analysis for biases caused by mis-
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classification in a multi-categorical variable has not been reported by the existing literature

(at least to my best knowledge). Therefore, this thesis aims to fill this gap in the literature.

2.3.1 Frequentist Methods

Küchenhoff et al.[51] proposed a misclassification simulation and extrapolation (MC-SIMEX)

method to dispose of non-differential misclassification of a binary or multi-categorical expo-

sure in a regression model. SIMEX method was originally designed for the measurement

error problem, yet authors extended it to solve the misclassification problem when misclas-

sification rates were fully knowledgeable or their estimates could be obtained from valida-

tion data. Küchenhoff et al. also compared their method with the matrix method intro-

duced by Morrissey and Spiegelman[25] when a binary misclassified exposure was in the

model. Reade-Christopher and Kupper[52] investiaged the potential biases resulted by ig-

noring non-differential misclassification in a multi-categorical exposure in a follow-up study.

Their method allowed other error-free covariates under consideration.

2.3.2 Bayesian Methods

There are relatively limited literature using Bayesian methods to handle multi-categorical

misclassification. Kuroda and Zhi[53] concentrated on the situation where there were two

multi-categorical variables A and B and B was subject to misclassification. The data aug-

mentation (DA) algorithm was applied to find the posterior distribution and further to obtain

the estimated Pr(A,B) (i.e. the joint probability of A and B), which was the aim of their

study. Viana[54] studied misclassified multinomial data from a small sample and a two-stage

Bayesian model was built. The first stage only analyzed the internal validation data; and the

second one was for the data from the main study. Ruiz et al.[55] also proposed a Bayesian

method to account for misclassification in a multinomial variable. They introduced latent

vectors in the analysis in order to overcome the computational difficulty resulted by the

likelihood and the posterior distribution.
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Chapter 3

Asymptotic Bias

This chapter studies asymptotic biases caused by a misclassified multi-categorical exposure

in a logistic regression context. It is organized as follows. Section 3.1 gives the details of

deriving the bias formulas when only one misclassified multi-categorical exposure is in the

model. Section 3.2 figures out the bias formulas when there is one more perfectly measured

binary covariate in the model.

3.1 A Single Misclassified Exposure in the Model

3.1.1 Notations and Models

Assume E is a multi-categorical exposure with m categories. Its distribution is specified as

P (E = j) = pj, j = 0,1, ...,m − 1; with the constraint ∑m−1
j=0 pj = 1. Define a list of indicator

variables for E ; that is,

Et =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if E = t, t = 1,2, ...,m − 1;

0, otherwise.

Suppose that a logistic regression model is built to relate the error-free binary outcome Y to

the predictors (i.e. Et) as follows:

logitP (Y = 1∣E) = β0 + β1E1 + β2E2 + ⋅ ⋅ ⋅ + βm−1Em−1. (3.1)

Note that the regression coefficients β0, β1, ...,βm−1 have some potential meanings relating to

the risk of developing a certain disease. The details are presented in section 3.1.2.
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As I pointed out in Chapter 1, it is common that, in practice, various reasons could lead the

exposure surrogate to misclassification. If this is the case, we then have the proxy value of

E, denoted by X. Similarly, X can be expressed in terms of a set of indicator variables:

Xt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if X = t, t = 1,2, ...,m − 1;

0, otherwise.

Hence the logistic model for (X,Y ) is:

logitP (Y = 1∣X) = γ0 + γ1X1 + γ2X2 + ⋅ ⋅ ⋅ + γm−1Xm−1. (3.2)

Let θd,ij represent the probability that an individual from category i (i = 0,1, ...m−1) classified

into category j given the outcome d (d = 0,1). That is,

θd,ij = P (X = i∣E = j, Y = d).

As described in Chapter 1, θ represent misclassification rates and they can be re-written into

a matrix form:

θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

θd,00 θd,01 ⋯ θd,0(m−1)

θd,10 θd,11 ⋯ θd,1(m−1)

⋮ ⋮ ⋱ ⋮
θd,(m−1)0 θd,(m−1)1 ⋯ θd,(m−1)(m−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Each diagonal value of θ represents how likely we have the exposure recorded correctly; and

each off-diagonal value indicates the misclassification probability. Therefore, the higher the

diagonal values are, the less severe misclassification problem we encounter with. Note that

the sum of values in each column of the misclassification matrix is one by the definition

of θd,ij. For the binary case that Davidov et al.[10] have studied, the above misclassifi-

cation matrix can be reduced to a 2 × 2 matrix with two parameters, namely sensitivity

P (X = 1∣E = 1, Y = d) and specificity P (X = 0∣E = 0, Y = d).

Here are some notations that will be used in the bias evaluation in section 3.1.2 and 3.1.3.
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Define:

πdj = P (Y = d,E = j),

pdi = P (Y = d,X = i),

πd∣j = P (Y = d∣E = j),

pd∣i = P (Y = d∣X = i),

ξd,ab =
πda
πdb

= P (E = a∣Y = d)
P (E = b∣Y = d) ,

where a, b=0,1,..,m-1.

By applying the definition of conditional probability, we have:

pdi =
m−1
∑
j=0

P (X = i,E = j, Y = d)

= ∑
j

P (X = i∣E = j, Y = d)P (Y = d,E = j)

= ∑
j

θd,ijπdj. (3.3)

This relationship can be re-arranged into a matrix form:

pd = θdπd,

where pd = (pd0, pd1, . . . , pd(m−1))′,θd = (θd,ij),πd = (πd0, πd1, . . . , πd(m−1))′.
In such a way, equation (3.3) builds a connection between πd and pd via θd.

In addition, by the definition of conditional probability, we have:

π1∣j
π0∣j

= π1j
π0j

and
p1∣j
p0∣j

= p1j
p0j

.

3.1.2 Asymptotic Bias under Differential Misclassification

In this subsection, I derive formulas for asymptotic biases due to differential misclassification

in a multi-categorical exposure. First, I present the regression coefficients in the following:

β0 = logitP (Y = 1∣E = 0),

β0 + βt = logitP (Y = 1∣E = t),
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eβ0 = odds(P (Y = 1∣E = 0))

= P (Y = 1∣E = 0)
P (Y = 0∣E = 0) ,

eβt =
odds(P (Y = 1∣E = t))
odds(P (Y = 1∣E = 0))

= P (Y = 1∣E = t)
P (Y = 0∣E = t)

P (Y = 0∣E = 0)
P (Y = 1∣E = 0)

= P (E = t∣Y = 1)
P (E = 0∣Y = 1)

P (E = 0∣Y = 0)
P (E = t∣Y = 0)

= π1t
π10

π00
π0t

= ξ1,t0
ξ0,t0

.

Analogously, we have the expression for the γi’s in model (3.2):

γ0 = logitP (Y = 1∣X = 0),

γ0 + γt = logitP (Y = 1∣X = t).

Let ∆i denote the asymptotic bias, which equals to βi − γi. We then have:

∆0 = β0 − γ0

= logit(π1∣0) − logit(p1∣0)

= log(
π1∣0
π0∣0
) − log(

p1∣0
p0∣0
)

= log(π10
π00
) − log(p10

p00
)

= log(π10
π00

∑m−1
j=0 θ0,0jπ0j

∑m−1
j=0 θ1,0jπ1j

)

= log(∑
m−1
j=0 θ0,0jξ0,j0

∑m−1
j=0 θ1,0jξ1,j0

) . (3.4)
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Similarly, ∆t can be expressed as a function of misclassification rates:

∆t = βt − γt

= logit(π1∣t) − logit(p1∣t) − (β0 − γ0)

= log(π1tp0t
π0tp1t

) −∆0

= log(π1t
π0t

∑j θ0,tjπ0j

∑j θ1,tjπ1j
) −∆0

= log(∑
m−1
j=0 θ0,tjξ0,jt

∑m−1
j=0 θ1,tjξ1,jt

) −∆0. (3.5)

In the same spirit of Davidov et al.[10], I simplify the formulas (3.4) and (3.5) by doing the

first order Taylor expansion to them at θd = Im, where θd = Im stands for no misclassification.

Thus, the approximated formulas are:

∆0 ≈
m−1
∑
j=0
(θ0,0jξ0,j0 − θ1,0jξ1,j0), (3.6)

∆t ≈
m−1
∑
j=0
(θ0,tjξ0,jt − θ1,tjξ1,jt) −

m−1
∑
j=0
(θ0,0jξ0,j0 − θ1,0jξ1,j0). (3.7)

3.1.3 Asymptotic Bias under Non-differential Misclassification

This subsection focuses on the scenario where misclassification in exposure does not provide

additional information about Y, which refers to non-differential misclassification as stated in

section 1.2.3. Since non-differential misclassification indicates the misclassification in expo-

sure does not depend on the disease status, we then have θ0,ij = θ1,ij = θij. Thus, the bias

derivation can be simplified as:

∆0 = log(∑
m−1
j=0 θ0jξ0,j0

∑m−1
j=0 θ0jξ1,j0

)

= log
⎛
⎜
⎝

∑m−1
j=0 θ0jξ0,j0

∑m−1
j=0 θ0j

ξ1,j0
ξ0,j0

ξ0,j0

⎞
⎟
⎠

= log(
θ00 +∑m−1

j=1 θ0jξ0,j0
θ00 +∑m−1

j=1 θ0j exp(βj)ξ0,j0
) . (3.8)

Note that there is no asymptotic bias for the intercept (i.e. ∆0 = 0) if βj = 0 (j ≠ 0). To put it

in another way, no bias is obtained if the odds ratio of Y = 1 between category j and category

30



0 is one. Furthermore, this also implies the exposure E and the response Y are independent

each other. Consequently, E should not be added into the model.

In practice, researchers may be interested in the direction of the bias. That is, whether

misclassification results in over-estimation or under-estimation. According to equation (3.8),

we have ∆0 > 0 when βj < 0, and ∆0 < 0 when βj > 0. This is to say, the estimated regression

coefficient γ̂0 is (asymptotically) attenuated when βj are negative or when odds ratios at

Y = 1 between category j and category 0 are smaller than one. On the other hand, γ̂0 is

(asymptotically) inflated when βj are positives or when the odds of Y=1 for category j are

greater than the odds for category 0. It is worth to note that the conditions described above

on βj are sufficient but not necessary. That is, for example, it is not necessary to have all

negative βj to ensure a positive ∆0[56].

Similarly,

∆t = log(∑
m−1
j=0 θtjξ0,jt

∑m−1
j=0 θtjξ1,jt

) − log(∑
m−1
j=0 θ0jξ0,j0

∑m−1
j=0 θ0jξ1,j0

)

= log
⎛
⎜
⎝

θtt +∑j≠t θtjξ0,jt

θtt +∑j≠t θtj
ξ1,jt
ξ0,jt

ξ0,jt

⎞
⎟
⎠
−∆0

= log(
θtt +∑j≠t θtjξ0,jt

θtt +∑j≠t θtj exp(β∗j − βt)ξ0,jt
) −

log(
θ00 +∑m−1

j=1 θ0jξ0,j0
θ00 +∑m−1

j=1 θ0j exp(βj)ξ0,j0
) , (3.9)

where β∗j = βj if j > 0 and is zero otherwise.

Note that ∆t = 0 when all βj (j ≠ 0) equal to zero, which is the same sufficient condition to

ensure ∆0 = 0.

Let β−t = {β1, β2, . . . , βt−1, βt+1, . . . , βm−1}, i.e. the collection of all regression coefficients

except β0 and βt. If 0 < β−t < βt then the first term of ∆t is positive and ∆0 is negative.

Therefore, it is a sufficient condition to ensure a positive ∆t. On the other hand, if βt < β−t < 0

then the first term of ∆t is negative and ∆0 is positive, which together result in a negative
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∆t. In other words, if all odds of Y=1 for category j are larger than the odds for category

0 and the odds for category t has the largest odds, then we have attenuated γ̂t. While we

have inflated γ̂t when the odds of Y=1 for category 0 is the biggest odds and the odds for

category t is the smallest odds[56].

Similar to Davidov et al.’s[10] work toward the simplification of the bias expressions, I apply

Taylor approximation to formulas (3.8) and (3.9) around θd = Im and have:

∆0 ≈
m−1
∑
j=0
(θ0jξ0,j0 − θ0jξ1,j0), (3.10)

∆t ≈
m−1
∑
j=0
(θtjξ0,jt − θtjξ1,jt) −

m−1
∑
j=0
(θ0jξ0,j0 − θ0jξ1,j0). (3.11)

3.2 Perfectly Measured Covariate Included in the Model

3.2.1 Notations and Models

In this part, I study a different situation where both a multi-categorical variable, E, and

an error-free binary covariate, Z, are included in the model. A logistic regression is built

between the outcome Y and the covariatess Z and Et as follows:

logitP (Y = 1∣E,Z) = β0 + β1E1 + β2E2 + ⋅ ⋅ ⋅ + βm−1Em−1 + βmZ. (3.12)

Note no interaction is assumed between Z and Et.

Analogously, a logistic regression model is built for (X,Z,Y ):

logitP (Y = 1∣X,Z) = γ0 + γ1X1 + γ2X2 + ⋅ ⋅ ⋅ + γm−1Xm−1 + γmZ. (3.13)

Similar to the notations introduced in section 3.1.1, I define the following.
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For k=0,1;

πdj∣k = P (Y = d,E = j∣Z = k),

pdi∣k = P (Y = d,X = i∣Z = k),

πd∣jk = P (Y = d∣E = j,Z = k),

pd∣ik = P (Y = d∣X = i,Z = k),

ξd,ab∣k =
πda∣k
πdb∣k

= P (E = a, Y = d∣Z = k)
P (E = b, Y = d∣Z = k) =

P (E = a∣Y = d,Z = k)
P (E = b∣Y = d,Z = k) .

Assume X and Z are independent conditional on E and Y, i.e., P (X = i∣E = j, Y = d,Z =
k) = P (X = i∣E = j, Y = d) = θd,ij. This assumption indicates misclassification is free of Z.

Therefore, misclassification rates have the same form and the same explanation as section

3.1.1 described.

By the definition of conditional probability, we also have:

pdi∣k =
m−1
∑
j=0

P (X = i,E = j, Y = d∣Z = k)

= ∑
j

P (X = i∣E = j, Y = d,Z = k)P (Y = d,E = j∣Z = k)

= ∑
j

P (X = i∣E = j, Y = d)πdj∣k

= ∑
j

θd,ijπdj∣k. (3.14)

This relationship can be re-arranged into a matrix form:

pd∣k = θdπd∣k,

where pd∣k = (pd0∣k, pd1∣k, . . . , pd(m−1)∣k)′, θd = (θd,ij),πd∣k = (πd0∣k, πd1∣k, . . . , πd(m−1)∣k)′.

Moreover, by the definition of conditional probability, we have:

π1∣jk
π0∣jk

=
π1j∣k
π0j∣k

and
p1∣jk
p0∣jk

=
p1j∣k
p0j∣k

.
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3.2.2 Asymptotic Bias under Differential Misclassification

This subsection gives the expressions for asymptotic biases (i.e. ∆c = βc − γc, c = 0,1, ...,m)

when an error-free covariate, denoted by Z, is involved in the study.

The regression coefficients in model (3.12) can be re-written as:

β0 = logitP (Y = 1∣E = 0, Z = 0),

β0 + βt = logitP (Y = 1∣E = t,Z = 0),

β0 + βm = logitP (Y = 1∣E = 0, Z = 1).

Thus, the exponential of β0, βt, and βm can be expressed as below:

eβ0 = odds(P (Y = 1∣E = 0, Z = 0))

= P (Y = 1∣E = 0, Z = 0)
P (Y = 0∣E = 0, Z = 0) ;

eβt =
odds(P (Y = 1∣E = t,Z = 0))
odds(P (Y = 1∣E = 0, Z = 0))

= P (Y = 1∣E = t,Z = 0)
P (Y = 0∣E = t,Z = 0)

P (Y = 0∣E = 0, Z = 0)
P (Y = 1∣E = 0, Z = 0)

= P (E = t∣Y = 1, Z = 0)
P (E = 0∣Y = 1, Z = 0)

P (E = 0∣Y = 0, Z = 0)
P (E = t∣Y = 0, Z = 0)

=
ξ1,t0∣0
ξ0,t0∣0

,

eβm =
odds(P (Y = 1∣E = 0, Z = 1))
odds(P (Y = 1∣E = 0, Z = 0))

= P (Y = 1∣E = 0, Z = 1)
P (Y = 0∣E = 0, Z = 1)

P (Y = 0∣E = 0, Z = 0)
P (Y = 1∣E = 0, Z = 0)

= P (Y = 1,E = 0∣Z = 1)
P (Y = 0,E = 0∣Z = 1)

P (Y = 0,E = 0∣Z = 0)
P (Y = 1,E = 0∣Z = 0) .

In the same manner, the regression coefficients γc in model (3.13) can be written as:

γ0 = logitP (Y = 1∣X = 0, Z = 0),

γ0 + γt = logitP (Y = 1∣X = t,Z = 0),

γ0 + γm = logitP (Y = 1∣X = 0, Z = 1).

34



With the above information, I derive the formula for the bias in intercept as follows:

∆0 = β0 − γ0

= logit(π1∣00) − logit(p1∣00)

= log(
π1∣00
π0∣00
) − log(

p1∣00
p0∣00
)

= log(
π10∣0
π00∣0
) − log(

p10∣0
p00∣0
)

= log(
π10∣0
π00∣0

∑j θ0,0jπ0j∣0
∑j θ1,0jπ1j∣0

)

= log(∑
m−1
j=0 θ0,0jξ0,j0∣0

∑m−1
j=0 θ1,0jξ1,j0∣0

) . (3.15)

Similarly, I obtain the biases for the regression coefficients of Et:

∆t = βt − γt

= logit(π1∣t0) − logit(p1∣t0) − (β0 − γ0)

= log(
π1t∣0p0t∣0
π0t∣0p1t∣0

) −∆0

= log(
π1t∣0
π0t∣0

∑j θ0,tjπ0j∣0
∑j θ1,tjπ1j∣0

) −∆0

= log(∑
m−1
j=0 θ0,tjξ0,jt∣0

∑m−1
j=0 θ1,tjξ1,jt∣0

) −∆0. (3.16)

The asymptotic bias for the regression coefficient of the error-free Z is:

∆m = βm − γm

= logit(π1∣01) − logit(p1∣01) − (β0 − γ0)

= log(
π10∣1p00∣1
π00∣1p10∣1

) −∆0

= log(
π10∣1
π00∣1

∑j θ0,0jπ0j∣1
∑j θ1,0jπ1j∣1

) −∆0

= log(∑
m−1
j=0 θ0,0jξ0,j0∣1

∑m−1
j=0 θ1,0jξ1,j0∣1

) −∆0. (3.17)

The expressions (3.15)-(3.17) can be further simplified by taking the first order Taylor ex-
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pansion about θd = Im. Thus, the approximate bias formulas are obtained as below:

∆0 ≈
m−1
∑
j=0
(θ0,0jξ0,j0∣0 − θ1,0jξ1,j0∣0), (3.18)

∆t ≈
m−1
∑
j=0
(θ0,tjξ0,jt∣0 − θ1,tjξ1,jt∣0) −

m−1
∑
j=0
(θ0,0jξ0,j0∣0 − θ1,0jξ1,j0∣0), (3.19)

∆m ≈
m−1
∑
j=0
(θ0,0jξ0,j0∣1 − θ1,0jξ1,j0∣1) −

m−1
∑
j=0
(θ0,0jξ0,j0∣0 − θ1,0jξ1,j0∣0). (3.20)

3.2.3 Asymptotic Bias under Non-differential Misclassification

This subsection evaluates the asymptotic biases when a multi-categorical exposure variable,

E, in model (3.12) is subject to non-differential misclassification. The non-differential scenario

indicates θ0,ij = θ1,ij = θij. Therefore, the bias in intercept is simplified as below:

∆0 = log(∑
m−1
j=0 θ0jξ0,j0∣0

∑m−1
j=0 θ0jξ1,j0∣0

)

= log
⎛
⎜
⎝

∑m−1
j=0 θ0jξ0,j0∣0

∑m−1
j=0 θ0j

ξ1,j0∣0
ξ0,j0∣0

ξ0,j0∣0

⎞
⎟
⎠

= log(
θ00 +∑m−1

j=1 θ0jξ0,j0∣0
θ00 +∑m−1

j=1 θ0j exp(βj)ξ0,j0∣0
) . (3.21)

Equation (3.21) implies there is no bias for the intercept if βj = 0 (j ≠ 0). It also implies that

∆0 is zero when E is not related to Y.

I also investigate the directions of the biases. Based on equation (3.21), we have ∆0 < 0 when

βj > 0 and ∆0 > 0 when βj < 0. Equivalently, for all j ≠ 0, if the odds of Y =1 and Z =0 for

category j is bigger than the odds for category 0, then γ̂0 is (asymptotically) inflated. On the

other hand, if the odds of Y =1 and Z =0 for category j is smaller than the odds for category

0, then γ̂0 is (asymptotically) attenuated. Note that the conditions that determine the signs

of ∆0 are not necessary but sufficient.
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Under non-differential misclassification, ∆t can be written as follows:

∆t = log(∑
m−1
j=0 θtjξ0,jt∣0

∑m−1
j=0 θtjξ1,jt∣0

) −∆0

= log
⎛
⎜
⎝

θtt +∑j≠t θtjξ0,jt∣0

θtt +∑j≠t θtj
ξ1,jt∣0
ξ0,jt∣0

ξ0,jt∣0

⎞
⎟
⎠
−∆0

= log(
θtt +∑j≠t θtjξ0,jt∣0

θtt +∑j≠t θtj exp(β∗j − βt)ξ0,jt∣0
) −

log(
θ00 +∑m−1

j=1 θ0jξ0,j0∣0
θ00 +∑m−1

j=1 θ0j exp(βj)ξ0,j0∣0
) , (3.22)

where β∗j = βj if j ∈ (1,2, ...,m − 1) and is zero otherwise.

Same as the ∆0 case, we have the unbiasedness when βj = 0 (j ≠ 0) or equivalently, when the

corresponding odds ratios equal to one.

Let us define β−t = {β1, β2, . . . , βt−1, βt+1, . . . , βm−1}, i.e. the collection of all regression coeffi-

cients except β0, βt and βm. According to expression (3.22), the first term of ∆t is positive

if all β−t are smaller than βt and β−t > 0. The first term of ∆t is negative if all β−t are larger

than βt and β−t < 0. Note that these conditions are sufficient to keep the signs of ∆t as well.

That is, 0 < β−t < βt is sufficient to have a positive ∆t and βt < β−t < 0 is sufficient to have a

negative ∆t. Alternatively, we can say, if the odds of Y =1 and Z =0 for category t has the

largest odds and the odds of Y =1 and Z =0 for category 0 has the smallest odds, we have

attenuated γ̂t. And, if the odds of Y =1 and Z =0 for category 0 is the biggest odds and the

odds for category t is the smallest odds, we have inflated γ̂t.

The asymptotic bias in the coefficient of Z is:

∆m = log(∑
m−1
j=0 θ0jξ0,j0∣1

∑m−1
j=0 θ0jξ1,j0∣1

) − log(∑
m−1
j=0 θ0jξ0,j0∣0

∑m−1
j=0 θ0jξ1,j0∣0

) . (3.23)

The first term of ∆m equals zero if ξ0,j0∣1 = ξ1,j0∣1. In addition, ξ0,j0∣1 = ξ0,j0∣0 and ξ1,j0∣1 = ξ1,j0∣0
are sufficient conditions to have ∆m = 0. Therefore, the assumption Z is independent of

E and Y ensures that misclassification of E has no effects on the coefficient of Z. Yet this

condition also suggests Z should not be included in the model defined in equation (3.12).
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Moreover, for all j ∈ (1, ...,m− 1), ξ0,j0∣1 > ξ1,j0∣1 indicates the first term of ∆m is positive and

ξ0,j0∣1 < ξ1,j0∣1 implies the first term of ∆m is negative.

Under the non-differential misclassification assumption, the first order approximations are:

∆0 ≈
m−1
∑
j=0
(θ0jξ0,j0∣0 − θ0jξ1,j0∣0), (3.24)

∆t ≈
m−1
∑
j=0
(θtjξ0,jt∣0 − θtjξ1,jt∣0) −

m−1
∑
j=0
(θ0jξ0,j0∣0 − θ0jξ1,j0∣0), (3.25)

∆m ≈
m−1
∑
j=0
(θ0jξ0,j0∣1 − θ0jξ1,j0∣1) −

m−1
∑
j=0
(θ0jξ0,j0∣0 − θ0jξ1,j0∣0). (3.26)
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Chapter 4

Examples and Simulation Studies

To better understand the asymptotic results obtained in Chapter 3, I employ illustrative

examples and also conduct simulation studies in this chapter. The examples help understand

how the asymptotic biases for regression coefficients alter along with the change of misclassi-

fication parameters. While the simulation studies help verify the validity of the asymptotic

results by comparing the estimated biases from simulated datasets and the asymptotic values

from the derived formulas.

4.1 Illustrative Examples

This section provides examples to illustrate how asymptotic biases can be influenced by

misclassification rates. A three-categorical exposure variable is used for the demonstration.

4.1.1 Only One Misclassified Exposure in the Model

The focus of this subsection is to observe the asymptotic biases. At the beginning, I build a

logistic regression model to relate the true exposure E to the response Y :

logitP (Y = 1∣E) = β0 + β1E1 + β2E2. (4.1)

Similarly, a model is built to relate the proxy X to Y :

logitP (Y = 1∣X) = γ0 + γ1X1 + γ2X2. (4.2)

Assume the marginal distribution of E is P (E = 0) = 0.4, P (E = 1) = 0.2, and P (E = 2) = 0.4.
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Define a list of hypothetical misclassification matrices. Suppose that misclassification only

occurs in the adjacent category or adjacent categories with equal probability for each category.

That is, for each d ∈ (0,1), if P (X = 0∣E = 0, Y = d) = a, then P (X = 1∣E = 0, Y = d) = 1 − a;

if P (X = 1∣E = 1, Y = d) = b, then P (X = 0∣E = 1, Y = d) = P (X = 2∣E = 1, Y = d) = (1 − b)/2;

and if P (X = 2∣E = 2, Y = d) = c, then P (X = 1∣E = 2, Y = d) = 1 − c. Therefore, if we have

θd,ii = (a, b, c), then the corresponding misclassification matrix θ for Y = d is:

⎛
⎜⎜⎜⎜
⎝

a (1 − b)/2 0

1 − a b 1 − c
0 (1 − b)/2 c

⎞
⎟⎟⎟⎟
⎠

.

Based on the above definition of θd,ii and the misclassification matrix θ, three pairs of mis-

classification matrices (i.e. Type 1, Type 2, Type 3) are employed for the differential scenario

in this chapter. As I introduced in section 1.3.2, the diagonal values of a misclassification

matrix (i.e. θd,ii) represent the correctly distributed probabilities (i.e. classification probabil-

ities) and the off-diagonal ones indicate the misclassification probabilities. Therefore, from

Type 1 to Type 3, we can see the number of errors are assigned in an ascending order:

Type 1: θ0,ii = (0.9,0.9,0.9) and θ1,ii = (0.8,0.8,0.8);
Type 2: θ0,ii = (0.9,0.65,0.9) and θ1,ii = (0.7,0.7,0.8);
Type 3: θ0,ii = (0.9,0.65,0.65) and θ1,ii = (0.7,0.7,0.7).

Six types of misclassification are considered for the non-differential situation. Three of them

are organized similarly to the differential case while the number of errors are arranged in an

ascending order:

Type 4: θii = (0.9,0.9,0.9),
Type 5: θii = (0.9,0.65,0.9),
Type 6: θii = (0.9,0.65,0.65).
The other three are designed to see how sensitive the bias is to relate to the misclassification

of each category:

Type 7: θii = (0.6,0.9,0.9),
Type 8: θii = (0.9,0.6,0.9),
Type 9: θii = (0.9,0.9,0.6).
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To explain, Type 7 stands for the scenario that category 0 is misclassified most frequently;

Type 8 stands for the scenario that category 1 is misclassified most frequently; Type 9 stands

for the scenario that category 2 is misclassified most frequently.

In order to calculate exact and approximate biases, we first need to derive ξd,ab (section 3.1.1),

which is equivalent to:

ξd,ab = P (E = a∣Y = d)
P (E = b∣Y = d)

= P (E = a, Y = d)
P (E = b, Y = d)

= P (Y = d∣E = a)P (E = a)
P (Y = d∣E = b)P (E = b) ,

where

P (Y = 1∣E) = exp(β0 + β1E1 + β2E2)
1 + exp(β0 + β1E1 + β2E2)

.

Then the exact and first order Taylor approximate asymptotic biases can be easily calculated

by plugging ξ and θ into equation (3.4)-(3.11).

The outcomes are demonstrated in Table A.1-A.3 and Table A.6-A.8 based on various set-

tings of β. There are several findings according to the results:

First, the length of biases (i.e. (∆2
0 + ∆2

1 + ∆2
2)1/2) does not necessarily show

an increasing trend as the misclassification probabilities increase. For instance,

although the Type 3 case suffers a more severe misclassification problem than the Type 2

case, according to Table A.1, the length of the Type 3 misclassification case is 0.3279, which

is smaller than the length of the Type 2 one (i.e. 0.5396).

Second, both Table A.3 and A.8 demonstrate the bias is most sensitive to

misclassification in category 2 when β equals (0.1, 0.2, 0.8) and (0.1, -0.2, 0.8),

respectively. That is, the length has the biggest value when the most misclassification

occurs in category 2 compared to the other two cases. The results also imply it is most
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important to have the category 2 classified in the correct category in order to reduce the

biases.

Third, by examine the relative biases, we see the differences between the exact

results and the approximate results could be profound, even not severe misclas-

sification we have. For instance, the relative biases are about 0.8 for differential misclassi-

fication and about 0.6 for non-differential misclassification when least severe misclassification

Type 1 and Type 4 are assigned to each case, respectively (see Table A.6 and A.7). Due the

the possible remarkable differences between the exact and approximate results,

the exact formulas are generally suggested compared to the approximate ones in

order to calculate the asymptotic biases.

Fourth, in general, the differences between the exact and approximate results

increase as the number of errors increases. When the misclassification problem is

serious, there are fundamental differences between these two results. For instance,

in Table A.6, when θ0,ii = (0.9,0.65,0.65) and θ1,ii = (0.7,0.7,0.7) (i.e. Type 3), the length

calculated from the approximate results (1.1878) is almost twice the length calculated from

the exact ones (0.6705). This conclusion makes sense because the Taylor approximation is

derived around the classification matrix Im, which represents no misclassification of E. It is

supposed to have large differences between the exact and approximate outcomes for those

scenarios where we have serious misclassification. By looking at it another way, a serious

misclassification issue is probably encountered in exposure if we obtain significant differences

between the exact and approximate answers.

4.1.2 One Misclassified Exposure and One Perfectly Measured Co-

variate in the Model

This subsection studies the model including one three-categorical exposure E and one error-

free binary covariate Z. I build a model to relate (E,Z ) to Y :

logitP (Y = 1∣E,Z) = β0 + β1E1 + β2E2 + β3Z. (4.3)
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Likewise, a surrogate model is built to relate (X,Z ) to Y :

logitP (Y = 1∣X,Z) = γ0 + γ1X1 + γ2X2 + γ3Z. (4.4)

It is common that in reality exposures are correlated. Therefore, let us assume the joint

distribution of E and Z is:

E=0 E=1 E=2

Z=0 0.15 0.05 0.1

Z=1 0.25 0.15 0.3

So that we have the marginal distribution: P (E = 0) = 0.4 P (E = 1) = 0.2, P (E = 2) = 0.4,

P (Z = 0) = 0.3, and P (Z = 1) = 0.7.

In order to check if misclassification in E has an effect on the perfectly measured covariate Z,

exact and approximate biases are calculated. The first step is to calculate ξ (section 3.2.1),

which can be expressed as:

ξd,ab∣k = P (Y = d,E = a∣Z = k)
P (Y = d,E = b∣Z = k)

= P (Y = d,E = a,Z = k)
P (Y = d,E = b,Z = k)

= P (Y = d∣E = a,Z = k)P (E = a,Z = k)
P (Y = d∣E = b,Z = k)P (E = b,Z = k) ,

where

P (Y = 1∣E,Z) = exp(β0 + β1E1 + β2E2 + β3Z)
1 + exp(β0 + β1E1 + β2E2 + β3Z)

.

The second step is to calculate the exact and approximate biases by pluging ξ and θ into

the expressions (3.15)-(3.26).

The outcomes are illustrated in Table B.1-B.3 and Table B.6-B.8 according to various set-

tings of β. The results generally agree with those conclusions gained from Table A.1-A.3 and

Table A.6-A.8. Besides, there is one additional finding specifically for adding the error-free

Z into the model. That is, misclassification of E has an influence on the coefficient

of Z based on the fact that all ∆3 are unequal to zero. This statement is also in
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agreement with the theoretical results expressed in equation (3.17), (3.20), (3.23) and (3.26).

Particularly, I also calculate the asymptotic biases when E and Z are independent. The

results are shown in Table B.11-B.16. The correlation between Y and Z is arranged in an

ascending order by increasing β3 for the differential cases (from B.11 to B.13) and for the

non-differential scenarios (from B.14 to B.16). Note that, under the assumption of E and Z

independent, P (E,Z) = P (E) ∗ P (Z). Therefore, ξd,ab∣k becomes:

ξd,ab∣k = P (Y = d∣E = a,Z = k)P (E = a,Z = k)
P (Y = d∣E = b,Z = k)P (E = b,Z = k)

= P (Y = d∣E = a,Z = k)P (E = a)P (Z = k)
P (Y = d∣E = b,Z = k)P (E = b)P (Z = k)

= P (Y = d∣E = a,Z = k)P (E = a)
P (Y = d∣E = b,Z = k)P (E = b) .

The results show the independency between E and Z does not yield the unbiased-

ness of γ3. In addition, under the assumption of Z independent of E, the absolute

bias for the coefficient of the error-free Z goes up as the correlation between Z

and Y increases (i.e. β3 increases).

4.2 Simulation Studies

Simulation studies are designed to show how the estimated biases from simulated finite-

sample-size datasets approach the asymptotic results from the formulas derived in Chapter 3

as sample size increases. I will compare the asymptotic biases ∆ obtained from the example

section (section 4.1) with the estimated biases ∆̂ obtained from the simulation studies of

different sample sizes, where ∆ = (∆0,∆1,∆2)′ and ∆̂ = (∆̂0, ∆̂1, ∆̂2)′ for without Z case, and

∆ = (∆0,∆1,∆2,∆3)′ and ∆̂ = (∆̂0, ∆̂1, ∆̂2, ∆̂3)′ for with Z situation.

4.2.1 Only One Misclassified Exposure in the Model

I give the step-wise guideline for simulation studies when only one misclassified exposure

involved (4.1) (Table 4.1). The sample size n of 50, 500 and 5000 and the repetition I of 2000

times (i.e. 2000 iteration) are chosen for the above procedure. Note the choice of the number
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Table 4.1: Guideline for simulation studies when E is in the model

Step 1: Generate the true exposure E with sample size n from the multinomial distribution.

That is, E ∼Multinomial(n,0.4,0.2,0.4);
Step 2: Generate the outcome Y with size n from the Bernoulli distribution,

i.e. Y ∼ Bernoulli(P (Y = 1∣E)) where P (Y = 1∣E) = exp(β0+β1E1+β2E2)
1+exp(β0+β1E1+β2E2) ;

Step 3: Calculate β̂ by fitting the generated Y and Ej into the logistic regression model (4.1),

where Ej are dummy variables of E and E = 0 is the reference category;

Step 4: Generate the surrogate X with size n from the multinomial distribution. That is,

X ∼Multinomial(n, θd,0j, θd,1j, θd,2j) for given Y = d and E = j;
Step 5: Calculate γ̂ by fitting the data (X,Y ) into the logistic regression model (4.2);

Step 6: Calculate β̂ - γ̂.

Step 7: Repeat Step 1-6 I times and compute the average of (β̂ - γ̂)

of iterations and the sample size depend on the need of the researcher. Ideally, no standard

error is along with the average of (β̂ - γ̂) if I represents an infinite number. An increasing

sequence of sample sizes (50, 500, 5000) is employed to verify the validity of the asymptotic

bias formulas. Also note the above guideline is described for differential misclassification.

For non-differential situation, one can set θ0,ij = θ1,ij and then follow the same steps as above.

The numerical results of the above simulation studies are presented in Table A.4, A.5, A.9,

and A.10. Here is the summary of findings. First, we see that the estimated biases ap-

proach the asymptotic biases as the sample size increases. Second, a remarked

difference could arise between ∆i and ∆̂i. Note that, a relative bias, which equals

to ∣asymptotic bias-approximate bias
asymptotic bias

∣, can be calculated as a measure of the difference be-

tween exact and estimated results. For instance, the relative bias for ∆1 is about 3.24 (i.e.

∣0.0187−(−0.0418)0.0187 ∣) when we have Type 5 misclassification, β=(0.1,0.2,0.4), and sample size 50 for

the simulation study (Table A.5). This result implies a significant difference between ∆1 and

∆̂1 since the difference between ∆1 and ∆̂1 is about three times of the ∆1 itself. Third, the

differences between the asymptotic and estimated results become bigger when
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misclassification becomes more severe for varied sample size. This conclusion may

suggest a larger sample would be needed for a more severe misclassification sce-

nario as to verify the asymptotic results.

4.2.2 One Misclassified Exposure and One Perfectly Measured Co-

variate in the Model

The guideline for simulation studies when model (4.3) is under consideration is shown in

Table 4.2. The sample size n of 50, 500 and 5000 and the repetition I of 2000 times (i.e. 2000

iteration) are chosen for the above procedure. Note the choice of the number of iterations and

the sample size depend on the need of the researcher. Ideally, no standard error is along with

the average of (β̂ - γ̂) if I represents an infinite number. An increasing sequence of sample

sizes (50, 500, 5000) is employed to verify the validity of the asymptotic bias formulas. Also

note the above guideline is described for differential misclassification. For non-differential

situation, one can set θ0,ij = θ1,ij and then follow the same steps as above.

The results of the above simulation studies are illustrated in Table B.4, B.5, B.9, and B.10.

The findings are similar to those described in the previous subsection when Z is not in the

model. Besides, we can see although the estimated bias results show a trend of

approaching the asymptotic biases, it is not as obvious as the results when Z

is not involved in the study. This is due to the fact that discrete data contain less

information than continuous data. In addition, adding one more discrete variable Z in the

model makes the situation more complex as more information is needed and more parameters

are required to be estimated. Therefore, a larger sample size would be necessary in order to

verify the asymptotic results.
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Table 4.2: Guideline for simulation studies when E and Z are in the model

Step 1: Generate size n of E when E ∼Multinomial(n,0.4,0.2,0.4).
And generate size n of Z when Z ∼ Bernoulli(P (Z = 1∣E = j)),
where P (Z = k∣E = j) = P (E = j,Z = k)/P (E = j);
Step 2: Generate n Y ’s following the logistic regression model with:

P (Y = 1∣E,Z) = exp(β0+β1E1+β2E2+β3Z)
1+exp(β0+β1E1+β2E2+β3Z) ;

Step 3: Calculate β̂ by fitting the generated Y, the indicator variables Ej,

and Z into the logistic regression model (4.3);

Step 4: Generate size n of surrogate X when X ∼Multinomial(n, θd,0j, θd,1j, θd,2j)
for given Y = d and E = j. Note that this step does not depend on Z ;

Step 5: Calculate γ̂ by fitting the generated Y, the indicator variables Xi,

and Z into the logistic model (4.4);

Step 6: Finally, the estimated biases are (β̂ - γ̂).

Step 7: Repeat Step 1-6 I times and compute the average of (β̂ - γ̂)
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Chapter 5

Discussion

5.1 Summary

In this thesis, I extend Davidov et al.’s[10] work from a binary case to a multi-categorical

scenario with the aim of examining the potential influences of a misclassified exposure on

the coefficients of a logistic regression model. I have studied two circumstances: one treats

only E as the independent variable and another one includes both E and Z as independent

variables, where E is a multi-categorical exposure that is subject to misclassification and Z is

an error-free binary covariate. I derive the exact and approximate asymptotic bias formulas

for either differential or non-differential misclassification. In practice, differential misclassi-

fication would be appropriate for case-control studies while non-differential misclassification

would be appropriate for cohort studies. Specifically, the sufficient but not necessary con-

ditions to determine the directions of the biases are explored for the non-differential situation.

An example and simulation study is also provided to evaluate the asymptotic and esti-

mated biases caused by a misclassified three-categorical exposure under various scenarios.

Hypothetical examples have been used to examine the magnitude and the directions of the

asymptotic biases by comparing the length of the bias vector. I have found that, first, the

length of the biases may show a decreasing trend when the magnitude of misclassification

increases. Second, my examples show the category 2 is the most sensitive category of E.

Because the biggest overall bias (i.e. length) is obtained when I assign most misclassification

in category 2. Third, there is an increment in the differences between the exact and approx-

imate biases as misclassification becomes severe. Fourth, when Z is considered in the model,

misclassification of E causes a bias in the coefficient of Z regardless of whether E and Z
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independent. Simulation studies are also conducted for the finite sample cases. The results

show the estimated biases approach the asymptotic biases as sample size increases.

5.2 Significance of My Work

The theoretical findings can provide insightful guide in practice. To explain, the formulas

derived in this thesis help researchers assess the magnitude and the directions of the asymp-

totic biases for large scale studies. If researchers have empirical knowledge from historical

studies or similar studies about misclassification rates θ, β, and marginal distribution of E

for model (3.1) or the joint distribution of E and Z for model (3.12), then the asymptotic

formulas derived in Chapter 3 can help determine the magnitude of the biases in regression

coefficients. For instance, researchers have an internal validation dataset where the surrogate

and true information about the exposure E is recoded. Then the marginal distribution of

E can be found by using the true data, and the misclassification rates θ can be figured out

by employing both surrogate and true data. In addition, because exp(βi) can be interpreted

in terms of odds or odds ratios as shown in section 3.1.2 and 3.2.2, researchers can obtain

exp(βi) and βi based on the validation data. Therefore, ξd,ab can be computed by using

formulas ξd,ab = P (Y =d∣E=a)P (E=a)
P (Y =d∣E=b)P (E=b) and P (Y = 1∣E) = exp(β0+β1E1+...+βm−1Em−1)

1+exp(β0+β1E1+...+βm−1Em−1) . Finally, the

asymptotic biases can be calculated by plugging ξd,ab and θ into the derived bias formulas in

Chapter 3. If the magnitude of the bias is substantially large, then correction methods that

take misclassification into account should be considered.

In addition, the bias derived in regression coefficients can be translated into the bias in

the odds ratios. That is, the exponential of ∆t, t ≠ 0; is the ratio of ORtrue to ORerror−prone.

Mathematically, this relationship can be expressed as:

exp(∆t) = ORtrue

ORerror−prone

= ( odds(P (Y = 1∣E = t))
odds(P (Y = 1∣E = 0)))/(

odds(P (Y = 1∣X = t))
odds(P (Y = 1∣X = 0))).
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5.3 Future Work

There are several issues remaining to be tackled in the future. First, all bias expressions

derived in this thesis are based on the asymptotic theory; however, in reality, a small sample

is often of interest. By comparing asymptotic bias results from my derived formulas with

estimated bias results from simulation studies, we can see how increasing the sample size

influences on the estimated biases and how the estimated biases approach the asymptotic

biases as the sample size goes up. However, a more general conclusion about the relationship

between limited sample results and asymptotic outcomes needs further investigation. Sec-

ond, different from Davidov et al.’s[10] work, no interaction term is assumed in my models.

Nevertheless, if investigators are interested in misclassification effects on interaction terms,

further work needs to be done. Third, the direction of the bias is sometimes the motivation

of the study. I have given the sufficient but not necessary conditions to determine the sign of

the bias for the non-differential case. However, a general conclusion for the differential case

may become a future interest. Last but not least, Davidov et al.[10] also explore the bias

formulas when the binary outcome Y has misclassification and when misclassification of E

depends on another covariate Z. The more general bias derivation for these situations when

E is a multi-categorical variable is still in need of further study.
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Appendix A

Simulation Results When There is One

Exposure in The Model

Define that θd,ii = (a, b, c), i=0,1,2; d=0,1; are diagonal values of the misclassification matrix
given Y = d as stated in section 4.1.1.
Define three types of misclassification for differential misclassification.
Type 1: θ0,ii = (0.90,0.90,0.90) and θ1,ii = (0.80,0.80,0.80);
Type 2: θ0,ii = (0.90,0.65,0.90) and θ1,ii = (0.70,0.70,0.80);
Type 3: θ0,ii = (0.90,0.65,0.65) and θ1,ii = (0.70,0.70,0.70).

Define six types of misclassification for non-differential misclassification. Note that θd,ii can
be simplified as θii under the assumption of non-differential misclassification.
Type 4: θii = (0.90,0.90,0.90);
Type 5: θii = (0.90,0.65,0.90);
Type 6: θii = (0.90,0.65,0.65);
Type 7: θii = (0.60,0.90,0.90);
Type 8: θii = (0.90,0.60,0.90);
Type 9: θii = (0.90,0.90,0.60).

Define that ∆i = βi − γi are asymptotic biases.
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Table A.1: Exact and approximate asymptotic biases for differential misclassification
parameters and the corresponding length of bias (∆0,∆1,∆2) when β = (0.1,0.2,0.4)
and the misclassification probabilities are arranged in an ascending order. Note that

Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Relative Bias
Type 1 0.0762 0.0677 -0.2827 -0.3660 0.0163 0.0144 0.0860 0.1387 0.6134
Type 2 0.2240 0.1963 -0.6944 -0.8274 -0.0852 -0.0669 0.5396 0.7276 0.3485
Type 3 0.2240 0.1963 -0.4634 -0.6005 -0.2511 -0.2169 0.3279 0.4462 0.3608

Table A.2: Exact and approximate asymptotic biases for non-differential misclassifica-
tion parameters and the corresponding length of bias (∆0,∆1,∆2) when β = (0.1,0.2,0.4)
and the misclassification probabilities are arranged in an ascending order. Note that

Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∣∣∆∣∣
θii Exact Approx Exact Approx Exact Approx Exact Approx Relative Bias
Type 4 -0.0054 -0.0050 0.0063 0.0061 0.0109 0.0101 0.0002 0.0002 0.1223
Type 5 -0.0176 -0.0174 0.0187 0.0185 0.0356 0.0352 0.0019 0.0019 0.0227
Type 6 -0.0176 -0.0174 -0.0453 -0.0797 0.0418 0.0352 0.0041 0.0079 0.9210

Table A.3: Exact and approximate asymptotic biases for non-differential misclas-
sification parameters and the corresponding length of bias (∆0,∆1,∆2) when β =
(0.1,0.2,0.8). Note Type 7 stands for the scenario that category 0 is misclassified
most frequently; Type 8 stands for the scenario that category 1 is misclassified most
frequently; Type 9 stands for the scenario that category 2 is misclassified most fre-
quently

∆0 ∆1 ∆2 ∣∣∆∣∣
θii Exact Approx Exact Approx Exact Approx Exact Approx
Type 7 -0.0079 -0.0050 0.0343 0.0551 0.0258 0.0216 0.0019 0.0035
Type 8 -0.0198 -0.0198 -0.0518 -0.0514 0.0854 0.0863 0.0104 0.0105
Type 9 -0.0054 -0.0050 -0.2128 -0.4013 0.0318 0.0216 0.0463 0.1615
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Table A.4: Estimated biases for differential misclassification parameters compared
with the exact asymptotic biases obtained in Table A.1 when β = (0.1,0.2,0.4), the
misclassification probabilities are arranged in an ascending order, and sample sizes 50,
500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θd,ii ∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 1 0.0762 -0.2827 0.0163 0.0816 -0.2618 0.0077
Type 2 0.2240 -0.6944 -0.0852 0.2495 -0.8569 -0.1090
Type 3 0.2240 -0.4634 -0.2511 0.2495 -0.4502 -0.3314

n = 500 n = 5000
∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 1 0.0769 -0.2844 0.0156 0.0754 -0.2815 0.0173
Type 2 0.2260 -0.7008 -0.0867 0.2232 -0.6930 -0.0841
Type 3 0.2260 -0.4678 -0.2543 0.2232 -0.4621 -0.2504

Table A.5: Estimated biases for non-differential misclassification parameters com-
pared with the exact asymptotic biases obtained in Table A.2 when β = (0.1,0.2,0.4),
the misclassification probabilities are arranged in an ascending order, and sample sizes
50, 500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θii ∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 4 -0.0054 0.0063 0.0109 -0.0067 0.0673 0.0033
Type 5 -0.0176 0.0187 0.0356 -0.0207 -0.0418 0.0344
Type 6 -0.0176 -0.0453 0.0418 -0.0207 0.0124 -0.0063

n = 500 n = 5000
∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 4 -0.0063 0.0093 0.0111 -0.0061 0.0075 0.0118
Type 5 -0.0177 0.0197 0.0358 -0.0184 0.0207 0.0369
Type 6 -0.0177 -0.0464 0.0411 -0.0184 -0.0438 0.0424
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Table A.6: Exact and approximate asymptotic biases for differential misclassification
parameters and the corresponding length of bias (∆0,∆1,∆2) when β = (0.1,−0.2,0.4)
and the misclassification probabilities are arranged in an ascending order. Note that

Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Relative Bias
Type 1 0.0930 0.0824 -0.4591 -0.6238 0.0161 0.0142 0.2197 0.3961 0.8034
Type 2 0.2608 0.2288 -0.9215 -1.1413 -0.0854 -0.0644 0.9245 1.3591 0.4701
Type 3 0.2608 0.2288 -0.7375 -1.0438 -0.2420 -0.2144 0.6705 1.1878 0.7715

Table A.7: Exact and approximate asymptotic biases for non-differential misclas-
sification parameters and the corresponding length of bias (∆0,∆1,∆2) when β =
(0.1,−0.2,0.4) and the misclassification probabilities are arranged in an ascending order.

Note that Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∣∣∆∣∣
θii Exact Approx Exact Approx Exact Approx Exact Approx Relative Bias
Type 4 0.0054 0.0050 -0.1270 -0.1633 0.0115 0.0107 0.0163 0.0268 0.6466
Type 5 0.0177 0.0175 -0.1682 -0.1758 0.0375 0.0374 0.0300 0.0326 0.0866
Type 6 0.0177 0.0175 -0.3105 -0.4715 0.0561 0.0374 0.0999 0.2240 1.2421

Table A.8: Exact and approximate asymptotic biases for non-differential misclas-
sification parameters and the corresponding length of bias (∆0,∆1,∆2) when β =
(0.1,−0.2,0.8). Note Type 7 stands for the scenario that category 0 is misclassified
most frequently; Type 8 stands for the scenario that category 1 is misclassified most
frequently; Type 9 stands for the scenario that category 2 is misclassified most fre-
quently

∆0 ∆1 ∆2 ∣∣∆∣∣
θii Exact Approx Exact Approx Exact Approx Exact Approx
Type 7 0.0080 0.0050 -0.1916 -0.3545 0.0228 0.0237 0.0373 0.1262
Type 8 0.0200 0.0200 -0.2490 -0.2493 0.0922 0.0948 0.0709 0.0715
Type 9 0.0054 0.0050 -0.4266 -0.8019 0.0401 0.0237 0.1836 0.6437
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Table A.9: Estimated biases for differential misclassification parameters compared
with the exact asymptotic biases obtained in Table A.6 when β = (0.1,−0.2,0.4), the
misclassification probabilities are arranged in an ascending order, and sample sizes 50,
500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θd,ii ∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 1 0.0930 -0.4591 0.0161 0.0981 -0.5014 0.0093
Type 2 02608 -0.9215 -0.0854 0.2881 -1.0910 -0.1135
Type 3 0.2608 -0.7375 -0.2420 0.2886 -0.7869 -0.3143

n = 500 n = 5000
∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 1 0.0937 -0.4597 0.0140 0.0927 -0.4604 0.0170
Type 2 0.2614 -0.9244 -0.0850 0.2610 -0.9242 -0.0843
Type 3 0.2614 -0.7389 -0.2432 0.2610 -0.7404 -0.2411

Table A.10: Estimated biases for non-differential misclassification parameters com-
pared with the exact asymptotic biases obtained in Table A.7 when β = (0.1,−0.2,0.4),
the misclassification probabilities are arranged in an ascending order, and sample sizes
50, 500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θii ∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 4 0.0054 -0.1270 0.0115 0.0031 -0.1196 0.0074
Type 5 0.0177 -0.1682 0.0375 0.0170 -0.2230 0.0297
Type 6 0.0177 -0.3105 0.0561 0.0170 -0.3142 0.0118

n = 500 n = 5000
∆0 ∆1 ∆2 ∆0 ∆1 ∆2

Type 4 0.0051 -0.1242 0.0099 0.0052 -0.1277 0.0121
Type 5 0.0161 -0.1638 0.0394 0.0178 -0.1703 0.0386
Type 6 0.0161 -0.3087 0.0573 0.0178 -0.3130 0.0568
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Appendix B

Simulation Results When There are One

Exposure and One Covariate in The Model

Define that θd,ii = (a, b, c), i=0,1,2; d=0,1; are diagonal values of the misclassification matrix
given Y = d as stated in section 4.1.1.
Define three types of misclassification for differential misclassification.
Type 1: θ0,ii = (0.90,0.90,0.90) and θ1,ii = (0.80,0.80,0.80);
Type 2: θ0,ii = (0.90,0.65,0.90) and θ1,ii = (0.70,0.70,0.80);
Type 3: θ0,ii = (0.90,0.65,0.65) and θ1,ii = (0.70,0.70,0.70).

Define six types of misclassification for non-differential misclassification. Note that θd,ii can
be simplified as θii under the assumption of non-differential misclassification.
Type 4: θii = (0.90,0.90,0.90);
Type 5: θii = (0.90,0.65,0.90);
Type 6: θii = (0.90,0.65,0.65);
Type 7: θii = (0.60,0.90,0.90);
Type 8: θii = (0.90,0.60,0.90);
Type 9: θii = (0.90,0.90,0.60).

Define that ∆c = βc − γc, c=0,1,2,3; are asymptotic biases.
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Table B.1: Exact and approximate asymptotic biases for differential misclassification
parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,0.5) and the
misclassification probabilities are arranged in an ascending order. Note that Relative

Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣ Relative
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx Bias

Type 1 0.0897 0.0785 -0.3220 -0.4479 0.0029 0.0036 -0.0202 -0.0163 0.1122 0.2071 0.8461

Type 2 0.2325 0.1975 -0.7530 -0.9912 -0.0937 -0.0681 -0.0127 -0.0019 0.6300 1.0261 0.6289

Type 3 0.2325 0.1975 -0.5348 -0.7643 -0.2596 -0.2181 -0.0127 -0.0019 0.4076 0.6708 0.6457

Table B.2: Exact and approximate asymptotic biases for non-differential misclassifi-
cation parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,0.5)
and the misclassification probabilities are arranged in an ascending order. Note that

Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣ Relative
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx Bias
Type 4 -0.0036 -0.0033 0.0189 0.0247 0.0091 0.0084 -0.0026 -0.0025 0.0005 0.0007 0.5200
Type 5 -0.0121 -0.0116 0.0307 0.0330 0.0301 0.0294 -0.0082 -0.0088 0.0021 0.0022 0.0500
Type 6 -0.0121 -0.0116 -0.0346 -0.0652 0.0362 0.0294 -0.0082 -0.0088 0.0027 0.0053 0.9553

Table B.3: Exact and approximate asymptotic biases for non-differential misclassifi-
cation parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.8,0.5).
Note Type 7 stands for the scenario that category 0 is misclassified most frequently;
Type 8 stands for the scenario that category 1 is misclassified most frequently; Type 9
stands for the scenario that category 2 is misclassified most frequently

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
Type 7 -0.0054 -0.0033 0.0621 0.1344 0.0232 0.0199 -0.0039 -0.0025 0.0044 0.0185
Type 8 -0.0137 -0.0132 -0.0328 -0.0378 0.0792 0.0796 -0.0092 -0.0100 0.0076 0.0080
Type 9 -0.0036 -0.0033 -0.1928 -0.3827 0.0300 0.0199 -0.0026 -0.0025 0.0381 0.1469
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Table B.4: Estimated biases for differential misclassification parameters compared
with the exact asymptotic biases obtained in Table B.1 when β = (0.1,0.2,0.4,0.5), the
misclassification probabilities are arranged in an ascending order, and sample sizes 50,
500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θd,ii ∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 1 0.0897 -0.3220 0.0029 -0.0202 0.0843 -0.0088 0.0087 0.0003
Type 2 0.2325 -0.7530 -0.0937 -0.0127 0.2532 -0.6445 -0.0717 0.0061
Type 3 0.2325 -0.5348 -0.2596 -0.0127 0.2466 -0.1876 -0.3833 0.0169

n = 500 n = 5000
∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 1 0.0770 -0.2858 0.0152 0.0018 0.0764 -0.2841 0.0142 0.0017
Type 2 0.2206 -0.7087 -0.0875 0.0121 0.2170 -0.6989 -0.0867 0.0121
Type 3 0.2146 -0.4770 -0.2578 0.0218 0.2111 -0.4721 -0.2528 0.0215

Table B.5: Estimated biases for non-differential misclassification parameters compared
with the exact asymptotic biases obtained in Table B.2 when β = (0.1,0.2,0.4,0.5), the
misclassification probabilities are arranged in an ascending order, and sample sizes 50,
500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θii ∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 4 -0.0036 0.0189 0.0091 -0.0026 0.0016 0.2980 0.0051 -0.0044
Type 5 -0.0121 0.0307 0.0301 -0.0082 -0.0004 0.1646 0.0675 -0.0090
Type 6 -0.0121 -0.0346 0.0362 -0.0082 0.0027 0.2748 -0.0564 -0.0135

n = 500 n = 5000
∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 4 -0.0038 0.0136 0.0145 -0.0062 -0.0016 0.0081 0.0109 -0.0057
Type 5 -0.0134 0.0233 0.0388 -0.0085 -0.0118 0.0205 0.0358 -0.0082
Type 6 -0.0126 -0.0402 0.0442 -0.0099 -0.0111 -0.0437 0.0424 -0.0095
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Table B.6: Exact and approximate asymptotic biases for differential misclassification
parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,−0.2,0.4,0.5) and the
misclassification probabilities are arranged in an ascending order. Note that Relative

Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣ Relative
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx Bias

Type 1 0.1010 0.0883 -0.5137 -0.7602 0.0081 0.0083 -0.0134 -0.0099 0.2744 0.5859 1.1354

Type 2 0.2579 0.2192 -0.9916 -1.3728 -0.0824 -0.0548 0.0049 0.0162 1.0566 1.9358 0.8321

Type 3 0.2579 0.2192 -0.8124 -1.2753 -0.2390 -0.2048 0.0049 0.0162 0.7836 1.7165 1.1904

Table B.7: Exact and approximate asymptotic biases for non-differential misclassifi-
cation parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,−0.2,0.4,0.5)
and the misclassification probabilities are arranged in an ascending order. Note that

Relative Bias=∣Exact-Approx
Exact ∣

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣ Relative
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx Bias
Type 4 0.0036 0.0033 -0.1308 -0.1817 0.0133 0.0123 0.0030 0.0028 0.0173 0.0332 0.9172
Type 5 0.0122 0.0117 -0.1670 -0.1900 0.0430 0.0432 0.0092 0.0099 0.0300 0.0382 0.2751
Type 6 0.0122 0.0117 -0.2994 -0.4856 0.0616 0.0432 0.0092 0.0099 0.0936 0.2380 1.5412

Table B.8: Exact and approximate asymptotic biases for non-differential misclassifi-
cation parameters and the length of bias (∆0,∆1,∆2,∆3) when β = (0.1,−0.2,0.8,0.5).
Note Type 7 stands for the scenario that category 0 is misclassified most frequently;
Type 8 stands for the scenario that category 1 is misclassified most frequently; Type 9
stands for the scenario that category 2 is misclassified most frequently

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
Type 7 0.0054 0.0033 -0.1919 -0.4330 0.0254 0.0254 0.0043 0.0028 0.0375 0.1881
Type 8 0.0138 0.0134 -0.2401 -0.2627 0.0984 0.1015 0.0103 0.0113 0.0676 0.0796
Type 9 0.0036 0.0033 -0.4136 -0.8203 0.0418 0.0254 0.0030 0.0028 0.1729 0.6736
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Table B.9: Estimated biases for differential misclassification parameters compared
with the exact asymptotic biases obtained in Table B.6 when β = (0.1,−0.2,0.4,0.5),
the misclassification probabilities are arranged in an ascending order, and sample sizes
50, 500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θd,ii ∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 1 0.1010 -0.5137 0.0081 -0.0134 0.0809 -0.4234 0.0103 0.0126
Type 2 0.2579 -0.9916 -0.0824 0.0049 0.2725 -1.0668 -0.0783 0.0289
Type 3 0.2579 -0.8124 -0.2390 0.0049 0.2751 -0.7170 -0.3404 0.0293

n = 500 n = 5000
∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 1 0.0835 -0.4550 0.0137 0.0173 0.0827 -0.4522 0.0134 0.0173
Type 2 0.2431 -0.9269 -0.0868 0.0337 0.2400 -0.9190 -0.0853 0.0337
Type 3 0.2386 -0.7461 -0.2462 0.0409 0.2357 -0.7427 -0.2404 0.0405

Table B.10: Estimated biases for non-differential misclassification parameters
compared with the exact asymptotic biases obtained in Table B.7 when β =
(0.1,−0.2,0.4,0.5), the misclassification probabilities are arranged in an ascending or-
der, and sample sizes 50, 500 and 5000 are chosen for finite sample estimation

asymptotic bias n = 50
θii ∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 4 0.0036 -0.1308 0.0133 0.0030 -0.0036 -0.0774 0.0099 0.0015
Type 5 0.0122 -0.1670 0.0430 0.0092 0.0229 -0.2260 0.0625 0.0052
Type 6 0.0122 -0.2994 0.0616 0.0092 0.0333 -0.2459 -0.0101 -0.0066

n = 500 n = 5000
∆0 ∆1 ∆2 ∆3 ∆0 ∆1 ∆2 ∆3

Type 4 0.0011 -0.1206 0.0142 0.0043 0.0027 -0.1248 0.0113 0.0051
Type 5 0.0115 -0.1621 0.0418 0.0074 0.0133 -0.1666 0.0394 0.0079
Type 6 0.0128 -0.3022 0.0604 0.0054 0.0146 -0.3067 0.0596 0.0058

66



Table B.11: With the assumption of Z independent of E, exact and approximate
asymptotic biases for differential misclassification parameters and the length of bias
(∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,0.5) and the misclassification probabilities are
arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx

Type 1 0.0762 0.0677 -0.2827 -0.3660 0.0163 0.0144 0.0009 0.0008 0.0860 0.1387

Type 2 0.2240 0.1963 -0.6944 -0.8274 -0.0852 -0.0669 0.0006 0.0001 0.5396 0.7276

Type 3 0.2240 0.1963 -0.4634 -0.6005 -0.2511 -0.2169 0.0006 0.0001 0.3279 0.4462

Table B.12: With the assumption of Z independent of E, exact and approximate
asymptotic biases for differential misclassification parameters and the length of bias
(∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,1) and the misclassification probabilities are
arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx

Type 1 0.0762 0.0677 -0.2827 -0.3660 0.0163 0.0144 0.0017 0.0014 0.0860 0.1387

Type 2 0.2240 0.1963 -0.6944 -0.8274 -0.0852 -0.0669 0.0011 0.0002 0.5396 0.7276

Type 3 0.2240 0.1963 -0.4634 -0.6005 -0.2511 -0.2169 0.0011 0.0002 0.3279 0.4462
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Table B.13: With the assumption of Z independent of E, exact and approximate
asymptotic biases for differential misclassification parameters and the length of bias
(∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,3) and the misclassification probabilities are
arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx

Type 1 0.0762 0.0677 -0.2827 -0.3660 0.0163 0.0144 0.0031 0.0025 0.0860 0.1387

Type 2 0.2240 0.1963 -0.6944 -0.8274 -0.0852 -0.0669 0.0020 0.0003 0.5396 0.7276

Type 3 0.2240 0.1963 -0.4634 -0.6005 -0.2511 -0.2169 0.0020 0.0003 0.3279 0.4462

68



Table B.14: With the assumption of Z independent of E, exact and approximate
asymptotic biases for non-differential misclassification parameters and the length of
bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,0.5) and the misclassification probabilities
are arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
Type 4 -0.0054 -0.0050 0.0063 0.0061 0.0109 0.0101 0.0001 0.0001 0.0002 0.0002
Type 5 -0.0176 -0.0174 0.0187 0.0185 0.0356 0.0352 0.0004 0.0004 0.0019 0.0019
Type 6 -0.0176 -0.0174 -0.0453 -0.0797 0.0418 0.0352 0.0004 0.0004 0.0041 0.0079

Table B.15: With the assumption of Z independent of E, exact and approximate
asymptotic biases for non-differential misclassification parameters and the length of
bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,1) and the misclassification probabilities
are arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
Type 4 -0.0054 -0.0050 0.0063 0.0061 0.0109 0.0101 0.0002 0.0002 0.0002 0.0002
Type 5 -0.0176 -0.0174 0.0187 0.0185 0.0356 0.0352 0.0007 0.0007 0.0019 0.0019
Type 6 -0.0176 -0.0174 -0.0453 -0.0797 0.0418 0.0352 0.0007 0.0007 0.0041 0.0079

Table B.16: With the assumption of Z independent of E, exact and approximate
asymptotic biases for non-differential misclassification parameters and the length of
bias (∆0,∆1,∆2,∆3) when β = (0.1,0.2,0.4,3) and the misclassification probabilities
are arranged in an ascending order

∆0 ∆1 ∆2 ∆3 ∣∣∆∣∣
θd,ii Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx
Type 4 -0.0054 -0.0050 0.0063 0.0061 0.0109 0.0101 0.0004 0.0004 0.0002 0.0002
Type 5 -0.0176 -0.0174 0.0187 0.0185 0.0356 0.0352 0.0013 0.0014 0.0019 0.0019
Type 6 -0.0176 -0.0174 -0.0453 -0.0797 0.0418 0.0352 0.0013 0.0014 0.0041 0.0079
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