Software framework for geophysical data processing,
visualization and code development

by
Glenn Chubak

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial Fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE
in
Geophysics
in the Department of Geological Sciences
University of Saskatchewan

University of Saskatchewan
February 2009

© Copyright 2009
by
Glenn Chubak
All Rights Reserved

Permission to Use and Disclaimer Statement

I hereby grant to University of Saskatchewan andéosgents the non-exclusive license
to archive and make accessible, under the condigpecified below, my thesis,
dissertation, or project report in whole or in garall forms of media, now or for the
duration of my copyright ownership. | retain alhet ownership rights to the copyright of
the thesis, dissertation or project report. | aéserve the right to use in future works
(such as articles or books) all or part of thisthedissertation, or project report.

| hereby certify that, if appropriate, | have obtd and attached hereto a written
permission statement from the owner(s) of eacld tharty copyrighted matter that is
included in my thesis, dissertation, or projeciorgpallowing distribution as specified
below. | certify that the version | submitted ig ttame as that approved by my advisory
committee.

Reference in a thesis/dissertation to any specifiomercial product, process, or service
by trade name, trademark, manufacturer, or otherwiges not constitute or imply its
endorsement, recommendation, or favouring by theddsity of Saskatchewan. The
views and opinions of the author do not state fiecethose of the University of
Saskatchewan, and shall not be used for advertisipgoduct endorsement purposes.

TABLE OF CONTENTS

ACKNOWIEAGEMENTS ... s nrnrnene \Y
List of Acronyms and GIOSSArYuuiiiceceeriiiieeieee e Vil
Y 013 L = T PP PPPPPPPPP 1

P2 [01 (oo [FTod1 (o] o DO TSTPPPPPPPPPPPTRN 2
2.1 Review of EXiSting WOTK............oooiiiiiiiiiiiiiiiiiiiiiiiiviiiviiivienenaees 3
2.2 SCOPE Of IGEOS ...ttt et e e e e e e et e e e e et e e e e e e e e e e e e e e aaaaaaaaens 4
2.3 CONNDULIONS. ..ottt sttt e e e e e e et e e e e enseennees 4
2.4 Structure of thiS theSIS..........c.uiiiieeeeee e 4

3 Integrated software framework for processingedghysical data...................eueeeee 6
3.l INErOAUCTION e e 6
3.2 SlAseismic and geophysical data processingByS..........ccceeeeeeeeeeeeeeeeennn. 7
3.3 DEVEIOPMENT ... e 10
3.4 ParalleliZationeeueeeeeesmmmeeeeeeeeeeeeeeeeeseeaeeaeseeebeebee bbb neenneeeeees 11
3.5 Graphical User Interface ... 13
3.6 Discussion and CONCIUSIONSooiiiierrmeieeei e 16
3.7 ACKNOWIEAGMENTS.....coeiiiiiiiiiiiiiiiiiieteeeee ettt teeeee e eeeeeeeeeeeebeeenenenees 16

4 Interactive 3D/2D visualization for geophysicata processing and interpretation 17
N [01 o To (U Tod 1[0 o F O T PSPPI 17
4.2 ODbject IMage ProtOCOL..........uuuueiieiieieeieeiieiieiieiieteeeeebeeeeebeeeeeeaeeeeebeneeees 18
4.3 SIA 3D diSPIAY SEIVETuueiiiiitiititceeeaeeieeeeeteeieeteeeeeseseeeeneeeeeneneeenenenens 20
4.4 Custom displays and user interfaces........cccccceveveiiiiiieeeeeee 26
4.5 Discussion and further development..... oo, 27
4.6 CONCIUSION ittt eeeeee et e et eeeaeeeee et e teeaes bt s bentesbestbbmnenneeeeees 29

5 Automated maintenance of geophysical softwane ficstributed web repositories
30

6 Towards a comprehensive open-source system éphgsical data processing and

1] C=Tq o] £=] €= L1 0] o PP 34
6.1 INtrOTUCHIONeuiieiieiti ettt e ettt emnnmeeeeee e 34
6.2 (Not only) Seismic processing SYSIEMcuueuuieiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeen 36
6.3 ProCESSING CONCEPL.....uuvriiiiiiiiiiiiirmmrnnnie e e e e e ee e e eaeeae e e eeeaeaaeeaaeaaaeaeaaaaaenas 36

6.4 Graphical User Interfaceoooo oo 37

6.5 OpenGL/Qt 3D/2D display SEIVEr ...t 37
6.6 Integration with popular open-source software...........ccceeeveieiiieniiinenenn, 44
6.7 Data processing and modeling Web ServiCes . .cooveeieiiiiiiiiiiiiiiinnnenn.. 45

6.8 Development frameworkoooi oo 45
6.9 Automated documentation, code distribution, @slthboration tools 46
6.10 (0] o Tod 1013 o] o 1SS 47
7 Rebuilding a Regional Seismographic Network intS8ern Saskatchewan............ 48
4% R |1 70 T (3o 1o o P 48
7.2 Low-cost Internet seismograph..........oceeeeeeiiiiiiiieiieiiiiieieieeeeers 52
7.3 Towards a digital seismic network near Saskatoo..............ccccevvveeeennnn. 53
8 Low-cost continuous seismic acquisition utiliziogen-source software................ 55
LS % M [11 oo [UTox 1 o] o PP 55
8.2 SBIVEI . 56
8.3 RElAY e 57
S O 1= o | PSPPSR 57
8.5 STA/LTA EVENt DELECHIONvvvvviiiiiiiiiiiiiieeieeieeieeiieseriesseesssenenenenenenene 57.
8.6 Current INStallationoouviuue e e e eena— 58
S T A Oo] [od 11153 o o SR PPPR 58
9 Discussion and CONCIUSIONSoviiiiiiiiiiiiiiiiiiiiiieeieieeeeeeeeseeeeeeeereeeeerereee e 59
9.1 Suggestions for further research ... 60
10] (=] (=] L0 61
11 F Y o] 01T a0 [Tod =L PP UPRPRPPRR 63
11.1 Appendix A. Job example: 2D ray tracing maded GMT base map in
BD (FIQUIE 4.4)... e 63

11.2 Appendix B. Interactive multi-threaded seisprioccessing (Figure 4.6) 69
11.3 Appendix C. Hierarchy for IGeoS viewer clagsX) Dvelmod............. 73

Acknowledgements

I would like to thank my supervisor Igor Morozow fais commitment to teaching, his
enthusiasm as ideas spawned new projects, andpsariest of all his patience while |
finished this thesis. I'd also like to thank ShanrBlyth for all of her hard work and
assistance with the programming, Capt. P. Lasceélzundurn Canadian Forces
Ammunition Depot for his support of the SMS monigrstation and other projects,
Brain Reilkoff for putting up with the strain | ceed on the IT department and Don
Gendzwill for his numerous discussions and suggestiMy committee members have
given freely of their time, advice, and expertisthanks you all. My wife of course is in
need of endless gratitude for the support and ratdim (most of it good natured) she
provided and of course for caring for our childvemle | was so distracted on other
things. | never would have finished without h&io Kaylee and Samuel my incredible
children — you are both a wonderful blessing asdurce of continual joy.

Table of Figures

Figure 3.1 Structure of SIA processing flow, reprasd by clasBROJECT(modified

after Morozov and Smithson, 1997). Processing flowrssist of linked sequences of
tools sharing structured trace ensemble gathersn@lly corresponding to
multicomponent seismic records), database tabiebyarious custom data objects. Non-
blocking PVM messages are used for communicatidloafwith GUI, other flows, and
services. Note that it has no predefined mechafosipropagating data along the
sequence of tools, and hence no dependence otydaa.ccccoeeeeiiieiiieiiiii e 8.

Figure 3.2 Process submission module of GUI, shgwnachines available to user via
PVM, available task names, types of submission,(eig PVM or UNIX shell), and
formats of corresponding program calls. Tasks $psgmbolic names of actions
requested by processing flows (Figure 3.1), suchraaster ” (for master flow
processes),compute ” (embedded sub-flows) psview ” or “xview ” (display
PostScript or interactive X-windows graphics, respely), and others. By checking
appropriate lines in this list, flow can be exeduba different host configurations
without changing its parameters. Note that machiiséed in this view could represent
individual compute hOStS Or their QrOUPS. ... e ceereerrerrerrerreerriirrrerenrnenerenrnrennee e 12

Figure 3.3 Main SIA Graphical Interface window ding: a) selectable tool packages,
b) tool library, ¢) multiple-job flow editor; d) pameterization of selected tool; €) job
monitor, and f) status line giving brief informatiabout any item at which cursor is
pointing. Job in front of window (c) executes itetive 2-D gravity modeling, and job in
back performs 1-D synthetic seismic modeling usailgctivity method (Fuchs &

Miiller, 1971). For a compact display, tool paramgétions can be hidden leaving only
one-line summaries that may change to display jogness (window c). Job flow editor
windows (c) also include tool bars providing floelated functionality. 13

Figure 4.1 Simplified SIA process communicationeTraphical User Interface spawns
processing flows (boxes labelled “process”) and itoos their execution. If interactive
graphics is requested in a flow, it starts a nespldiy server or connects to an already
running one. PVM supports two-way communicationuaen the programs which may
run on different compute hosts. Grey arrows repriede job monitor PVM messages
(flows, data, signals) and black arrows — graphotgécts (see text for discussion)....... 19

Figure 4.2 Image tree for a hypothetical Graphi¢segr Interface designed by the user.
Each node corresponds to an object sent througR\five communication pipe (black

arrows in Figure 4.1). Two copies of such a treemaintained at both client (flow) and
display server Sides (FIQUIE 4.1). cceeeeeiieiieiieieeieeieeieeeeeeeeieeeeeeeeebeeeenneeeeeeeeeeees 20

Figure 4.3 Nested layouts for generation of comgi®ordinated displays. Here, the top-
level layout 1 is indicated by grey, lower-leveydaits 2 and 3 — by white colour and
dashed coNtours, rESPECHIVEIY.ciiiiiceeeeemeeeeeeeeeieetee et eee bbb rnreraeeeeeeeeeeees 21

Figure 4.4 Wide-angle crustal ray-tracing modefhfrihe ACCRETE wide-angle seismic
experiment (Morozov et al., 2001). Property edélbows switching between displays
shading using the P- and S-wave velocities, velaaitios, or wireframe views. Red dots

on the surface indicate the source-receiver midpofdoastline map is derived directly
from GMT databases. Note the editing controls aRnoperties menu. Rotation sliders
(upper left) can be used for precise rotation atictine vertical and horizontal axes. The
floating window (inset) summarizes the graphicahetnts (colours, lines, palettes) that
can also be edited in the Property editor. See AgigeA for job files used for this
(0157 o] F= /PP 22

Figure 4.5 Display of a reflection-refraction slsetsmic record. Variable-area wiggle
over variable-intensity amplitude display is sedelictNote the interactive editing options
in the Property editor (lower left). GMT “jet” calo palette (originally re-implemented
from Matlab) are used for trace background. No&t tiver 40 preset palettes are
available in this tool, as well as throughout thetem. ... 23

Figure 4.6 Emulation of the traditional continu@essmic record display. In this SIA job,
we load seismic data from files or network inteefasubdivide them into segments and
display in a scrolling trace sequence (top in tgbktrpanel). For the most recent segment,
a time-variant spectrogram (middle) and amplitysectrum (bottom) are also computed
and displayed simultaneously. In this example,dngtbottom) are used to control the

(o F= 1= 0] 01U | PP PP P PPPPPPRP 24

Figure 4.7 Interactive 2D gravity modeling exami3everal graphics objects (observed,
modelled, and residual gravity profiles, and thesity model) are posted by gravity
modeling grmod2) tool, and buttons added to illustrate the intevadunctionality.

Colour palette is used to represent the densitiegpdionally, the rock types. 28

Figure 5.1 Configuration of SIA software reposiési Note that only the root entry
points are shown as the web addresses. For exatimplactual code server for the
selected line isttp://chubak.ca/SIA/cs.php . The buttons below allow the
USET 10 €It the TIST. ... e 32

Figure 5.2 Choosing software components to updddee that the components whose
names begin with a period are system librariesafiguration directories, and the rest
are plug-in processing tools (Morozov and Smithd®97). For each component, its
current and updated version numbers, and the sofitbe update are displayed. The
user can select some or all components which willilmvnloaded, compiled, and
1153 7= 11 =T o PSSR 33

Figure 6.1 Known locations of IGeoS downloads @etk) from November 2006 to July
2007. Note that the map was produced using the @Mgrams (Smith and Wessel,
1995) integrated iN the PACKAGE. i eceeeeeiii e 35

Figure 6.2 An example of interactive 3D visualipatfor potential-field interpretation.
The model shows the Precambrian basement in SEa8askvan coloured by air-
magnetic anomaly (copper colouring). The surfapegoaphy is highlighted using the
“sea-land” colour palette from GMT. Over 40 presabur palettes are available, and
custom palettes (as well as colours, line styled,lghting) can also be defined' 38

Figure 6.3 Wide-angle crustal ray-tracing modehfrine ACCRETE wide-angle seismic
experiment (Morozov et al., 2001).ccooviiiiiiiiii 40

Vi

Figure 6.4 Display of a reflection-refraction slsetsmic record. Variable-area wiggle
over variable-intensity amplitude display is sedeictNote the interactive plotting options
in the Property editor (lower left). GMT “jet” calo palette (re-implemented from
Matlab) is used for trace background...........ceee.ueeeniiiiiiiiii s 41

Figure 6.5 Continuous seismic record display. Ia 81A job, we load seismic data from
files or network interface, subdivide them into megts and display in a scrolling trace
STCT0 U [T g o PP RRPPPIN 42

Figure 6.6 3D seismic trace display with a flogtobject property window. 43

Figure 6.7 Sample page (section “Synthetics,” lavgadow) in the current library of
processing examples (http://seisweb.usask.ca/tesapfeles). Such pages are generated
by tool ‘expert’ included in the processing flowseeuted on the server. The contents of
on of the sample flows are shown in the smalledan in Disco-like format............... 45

Figure 7.1 Map of the Canadian National Seismogfdgtwvork (from Natural resources
Canada web site, http://earthquakescanada.nrcea)gblote the gap in station coverage
ACrOSS SASKAICNEWAN. 49

Figure 7.2 Map of Canadian earthquakes (from NaReaources Canada web site,
http://earthquakescanada.Nrcan.gC.Ca). e« eerrrrmmenmnnnrnnnnnnnnnnnnnnnnnnnsnmsnnsesseses 90

Figure 7.3 Display of earthquake-related informatd the Department of Geological
Sciences, University of Saskatchewan. This livedvated TV display constantly shows
the recent global earthquakes, live seismogranms énar SKBG station (Figure 7.5), as
well as presentations about the Earth, tectonio$ s@ismology..............eeveveveveiennennnns 1.5

Figure 7.4 Left: the seismic station during testiRgght: the seismograph assembly, with
its lid open. Thermal insulation and electricaldsuére used for temperature control

during SaskatChewan WINEIS. ... 52
Figure 7.5 Existing and proposed digital seismétighs near Saskatoon....................... 54
Figure 8.1 Seismic data NetWOrk deSign ... e 56
Figure 8.2 Esterhazy, SK event on Dec 23, 2007rdecbat station SKBG in Figure 7.5
... 58

vii

List of Acronyms and Glossary

1D, 2D, 3D
A/D

ASCII
AVO
DISCO

Focus
FreeUSP
GIS
GMT
GPS
GUI
HTML
I/0
IGeoS

IRIS

MPI
OpenGL
(ON)
PARACH
PC
ProMAX

PVM
Qt

RAID
RAYINVR

RSF
SAC

One-, two, and three-dimensional, respely
Analogue-to-Digital signal converter
Standard for text encoding
Amplitude Variation with Offset

Commercial seismic processing system by Gagminow included in
Echos by Paradigm)

Former name of seismic processing systemsHoh®aradigm
Free Unix Seismic Processing system by Amoc
Geographical Information System
Generic Mapping Tools (software for mapping amnaphics)
Global Positioning System
Graphical User Interface
HyperText Mark-up Language
Input/Output
Integrated Geoscience Software (formerlyedaBlA; this name is used
in Chapters 1-6)
Incorporated Research Institutions for Seisggl(U.S. university
consortium)

Message Passing Interface (software paralkshadibrary)
Popular Open-source graphics library

Operating system

4-channel seismic recording hardware by SgtrimResearch
“Personal Computer”

Commercial seismic processing system by AdeaGeophysical (now
Halliburton Landmark)

Parallel Virtual Machine (software parallelizat library)

Popular cross-platform graphics software libdayyTrolltech (currently
owned by Nokia)

Redundant Array of Independent Disks

Popular 2-D wide-angle seismic ray-tracipgpgram by Colin Zelt
(Rice University)

Former name of Madagascar package

Sesicmic Analysis Code (earthquake data arsapgikage by
Livermore national Lab)

SEGY, SEG-Y Society of Exploration Geophysiciststeange data file standard

SEP

Stanford Exploration Project

viii

SEP3D
SEPIlib
SIA
SIOSEIS
SK
SKBG

SKWC
STA/LTA

SuU

TCP/IP
UofS
XML

New name of SEPIlib package

Stanford Exploration Project software paekag

Old name of IGeoS package (1995-2006)

Marine reflection package by Scripts Ocegeaquhic Institution
Saskatchewan

UofS seismic monitoring station on BergheimaB&eophysical test
site

UofS seismic monitoring station at White CagikBta First Nation

Short-time Average/ Long-time average -ssa@c arrival detection
algorithm

Seismic UNIX reflection processing software mtdado School of
Mines, also called Seismic Un*x

Transmission Control Protocol/Internet Pcoto
University of Saskatchewan
Extensible mark-up language

1 Abstract

IGeoS is an integrated open-source software framefoo geophysical data processing
under development at the UofS seismology grouplik&lether systems, this processing
monitor supports structured multicomponent seisihaka streams, multidimensional data
traces, and employs a unique backpropagation eredogic. This results in an unusual
flexibility of processing, allowing the system tarfdle nearly any geophysical data.

In this project, a modern and feature-rich GragHitser Interface (GUI) was developed
for the system, allowing editing and submissiopmfcessing flows and interaction with
running jobs. Multiple jobs can be executed indributed multi-processor networks and
controlled from the same GUI. Jobs, in their tuam also be parallelized to take
advantage of parallel processing environments agdbcal area networks and Beowulf
clusters.

A 3D/2D interactive display server was created iategrated with the IGeoS
geophysical data processing framework. With intadidun of this major component, the
IGeoS system becomes conceptually complete andtpdte bridges the gap between
the traditional processing and interpretation safev

Finally, in a specialized application, network aisgiion and relay components were
written allowing IGeoS to be used for real-time laggiions. The completion of this
functionality makes the processing and display bditias of IGeoS available to multiple
streams of seismic data from potentially remotessitSeismic data can be acquired,
transferred to the central server, processed,\@dhand events picked and placed in
database completely automatically.

2 Introduction

Open-source software has become a significantrgedrial part of many computing
environments. The Linux operating system is pestiap best known example and it is
used in nearly all markets by academics, indusidygovernment. Geophysical software
however, has not seen the same level of open-sdexedopment and is still dominated
by commercial products from a few developers. &formerly SIA) has been in
development for nearly 14 years as a batch-driesreial processing package. It was
originally written to replace the commercial packdgjsco when it was no longer being
supported. The project grew into a full featured sobust system for geophysical use
but it lacked an interface, integrated display $pphkrallel capability, and other modern
features that users expect. The goal was nottplgireplicate commercial projects but
rather to find unique solutions to problems fagedmgoing research.

My work on the project has focused mostly on thepldiy, user interaction, and software
updating components. First, a user interface veaggded and implemented allowing
users to build processing flows, manage projeatisaggess the electronic
documentation. Second, a generalized displaywtaslcreated to provide visualization
and interaction with the data. Finally, a numbieotber services were added to the
package, such as an automated update and code enzersigeature and facilities for
transmitting and processing real time seismic ttata remote sites.

As a result of the present effort, the whole cohesyl software implementation of
IGeoS were significantly enhanced, transforminigtd a versatile and convenient
framework for developing software for many geopbagkapplications. Examples of
current applications include 2D and 3D seismicaetl-log processing, gravity
processing and inversion, earthquake data anallysig;, and 3D seismic waveform
modeling, travel-time modeling and inversion, afsbaontinuous seismic monitoring
using remote Internet seismographs.

The complete 1GeoS code, including all my contiidng presented below, is available
for downloading, installation, and updates from tiain website listed below.

IGeoS home page www.seis.usask.ca/igeos

Processing web service www.seis.usask.ca/ps.php

Code maintenance web service www.seis.usask.ca/cs.php

Module documentation www.seis.usask.ca/index/irfaex.
Examples www.seisweb.usask.ca/temp/examples

General documentation is also provided throughweittebsite for both users and
developers.

2.1 Review of Existing Work

Numerous software projects both commercial and @oemce have been created to meet
the needs of geophysicists. Yet, there is stiémand within the geophysical

community for software that is both easy to uselagtly customizable. Commercial
software focuses on performing specific tasks withconsistent framework and
interface but is not easily adapted to non-stangeadtices. By contrast, most open-
source (geophysical) projects to date lack welletigyed interfaces and are not broad
enough in their scopes to serve as primary toolddta processing and research.

ProMax is a widely used commercial processing pgekehich specializes in reflection
processing. It uses a text based system to boddreanage processing flows. While
popular, the interface is proprietary and doessnpport common functions such as
dopy/paste, or drag and drop. Further, the progsageared heavily toward processing
and includes limited visualization or interpretatiools.

Seismic Unix (SU) is perhaps the best-known openmesgeophysical package. It was
developed and maintained by the Center for Wavaéhena (CWP) consortium at the
Colorado School of Mines. It contains a large nantdf tools in a well-documented and
maintained package. Each tool is an independenXiyrkbgram that must adhere to a
strict input/output structure as the data is passaay file pipes. The tools are arranged
by using standard UNIX shell scripts to organizeagaocessing flows. While the
package is useful and broadly used, it is stillsinig an integrated user interface as well
as a consistent method for displaying and intengo#iith data. File pipes, inherently
unidirectional, do not easily allow for highly imgetive processing flows as there is no
method for propagating changes to tools locatelieean the sequence. The file pipe
structure also makes it difficult to build a useterface that would be able to interact
with the tools concurrently.

Another well-known project is the Stanford ExplavatProject library (SEPIlib) currently
located ahttp://sepwww.stanford.edu/software/sepliltt/is similar to Seismic Unix in
basic design and it was actually the parent pra@&U. File pipes are used to pass data
between different programs, which each serve as@psing tool. Programs must read
and write the specified format to be compatiblenvather SEPIlib programs. Parallel
functions are available by using MPI to submit nlgt copies of the processing flow
across a cluster of computers. SEPIlib has beerifieshtb handle irregularly sampled
data commonly found in 3D seismic surveys and 18 called SEP3D. There are a few
graphical display programs and provision to prodalogs using a library known as
‘vplot.” Vplot, originally written by Dave Hale ll@ws the scaling and re-sampling of
vectors to improve the compatibility between diéfietr displays and printers.

Madagascar (formerly RSF) is a recent effort byg&gi~omel (Personal
Communication) to produce a geophysical procegsauggage designed for reproducible
computing rather than production processing. Rapte computing is a response to
difficulties that researchers have in reproducicigrgtific work when complex, multi-
stage software is involved. The problems are tWdofirst, the exact sequence of

processing steps is rarely recorded, and secomdsofware versions may produce
different results. Madagascar (like most packagesjiven by scripts which can be
saved to preserve the exact processing sequermcavold changes to results from
software revisions Madagascar uses a test drivesl@@ment model. This means that
when new code is written, a specification is fiteveloped, and all developments and
changes to the code must meet that specificatioa.dEsign of Madagascar was also
inspired by SEPIib.

2.2 Scope of IGeoS

Geophysical processing consists of a sequencesofatie steps organized to produce a
result from a set of input data. This sequencemmonly known as a processing flow.
Typically, the first tool in the sequence has thie ¢f loading data into the flow. Within
the flow the data may be in an internal formatiamdard format or just held as array
values (IGeoS’s method). While data begins withfttst tool loading the final tool in
the flow usually writes the data out or display®itthe user. Interpretation tools are
used to view and interact with the data after pssicey has occurred.

2.3 Contributions

During the time of my work on 1GeoS the packagewsafrom a processing system to a
framework for geophysical code development andpnétation in addition to facilities

for real time, remote data monitoring. The desigd implementation of the user
interface are entirely my effort. It was designedbe familiar to users of other
geophysical software and was influenced by packagels as Promax, as well as general
software such as kde which also uses the QT lgsaf)t was chosen because of the
relative success of the kde environment, the ssmidmercial grade support and the multi
platform nature of the libraries. Additionally, @it nicely with the (mostly) C++ code
which existed in IGeoS.

| also took responsibility for the design and ediimplementation of the visualization
components. This included the class hierarchy disasehe mechanism for pushing data
and monitoring the processing flow for changeds® avrote the first version of the
OpenGL interface which displayed objects within B\@indow.

2.4 Structure of this thesis

This thesis presents the author’s contributiore fairly large and versatile software
project (IGeoS) and represents a compilation ofaHhewing publications:

Chapter 3is based on Chubak and Morozov (2006a and bhisnGhapter, | present the
recent architecture of the IGeoS package, its gomadsrelation to other existing system.
In particular, | focus on the newly developed GiaphUser Interface (GUI),
visualization, and parallelization capabilities.

Chapter 4 is based on my contribution to Morozov et al (regs). In this Chapter, |
describe the unique interactive, parallel, 3D Jiigaéion program that was derived from

4

the GUI above.

In Chapter 5, based on Chubak and Morozov (2007), | describeudomated system
code maintenance by using distributed web repasgor

Chapter 6 (Chubak et al, 2007a and b) emphasizes the nesctagpthe package as a
framework for uniform geophysical code developnaamd gives several advanced
examples of its application.

Chapter 7, based on Morozov et al. (2007), | present themate for seismic monitoring
in Saskatchewan and describe a highly automatedcést hardware and software
solution. The technical details of its implemeiata are further developed {Dhapter 8
(Chubak and Morozov, 2008), where a complete sy$sterseismic earthquake
monitoring currently operating at the UofS is désed. This system is not directly
related to 1GeoS package; however, it is currentlyking in close integration with it.

In each Chapter, the text of the original publispegder is mostly preserved with the
corresponding changes made to section and figurdering. The reference lists of all
publications are collated at the end of this th&smsne images from the original papers
were modified.

Finally, Chapter 9 summarizes the general conclusions of this workcdfeds
recommendations for further development of thispigsical software project.

3 Integrated software framework for processing of
geophysical data

This Chapter is based on publications by Chubakhdmazov (2006a and b). These
papers describe the new architecture of the IGea&gne. Since this thesis project
started, this architecture has changed substantiath its initial design (Morozov and
Smithson, 1997). The SIA package was redesigneu 3++ as its core development
language, parallelized using the Parallel Virtuadiine, switched to using dynamic
linking, and adapted to using Qt and interactivapbics. My development of a modern,
Qt-based graphical interface make the project wnamong other academic, and even
commercial data processing systems. Furthermogegdbkage was extended to non-
seismic applications, such as gravity inversion modeling and real-time data
acquisition. To reflect these changes, the pachagerecently renamed to IGeoS (for
Integrated GeoScience software), under which nameeing continuously developed.
These changes led to switching the emphasis frenvilde-angle seismic processing
system” (Morozov and Smithson, 1997) to a much teeoframework for geophysical
data processing. This change of viewpoint becarssiple largely, due to the
contributions from the present thesis, summarinetié Chapter below.

3.1 Introduction

Analysis of geophysical data nearly always involapplication of sophisticated and
multi-stage processing and inversion. With volumiedata and resolution of the datasets
exploding in recent years in nearly every fiel& temand for computer packages
facilitating handling, processing, analysis, an@iipretation of large and complex
datasets is growing. This particularly appliesxpleration seismology, where
development of processing packages has grown ititoveng industry. A number of
integrated software systems, mostly specializeds&reémlined for reflection seismic
data, are available.

Although highly advanced, commercial processingkpges are still built for specialized
industry users. For a broader geophysical commurgtiance on such software may not
be satisfactory for several reasons. First, whelied highly efficient in their primary
fields of application (typically, 2- or 3-D commamid-point reflection data processing),
commercial packages could become awkward in hagdliner types of data. Examples
from seismology include wide-aperture reflectiofraetion or earthquake data, where
native support for flexible, multi-component prosieg, spherical-Earth geometry, and
travel-time analysis is critical. Second, commdrpackages often require installation of
other systems (e.g., databases or rendering systeamse support could be difficult or
expensive in a University environment. And finaligensing costs are often prohibitive,
particularly when utilizing large multi-processamgputer systems.

Open-source seismic processing provides a lowaltesinative to commercial software
and, with an appropriately directed developmenglaifity to adapt to the changing
research needs. The best-known examples of sudrakenStanford Exploration Project
(SEP) software, SIOSEIS (http://sioseis.ucsd.edmt), Seismic Un*x, a free reflection
processing system developed at the Colorado Sdfddines (Stockwell, 1999).

Seismic Un*x has been broadly used in researcheawhing seismology (e.g.,
Templeton & Gough, 1998) and also in smaller-ssalemic processing in industry.
However, all these packages are still stronglymiaied for reflection processing, and
their ability to handle more complex datasetsnsted. Examples of such complex
datasets commonly encountered in refraction aritieaetke seismology include
multicomponent, variable-length and sampling ind&rgeismic records combined travel
times and amplitudes. Crustal wide-angle seismoteguires an ability to account for
the Earth’s curvature during data processing arsbime cases uses thousands of files for
data input. In a broader perspective, a systencthat handle borehole logs, potential-
field data, velocity and gravity models, and offaproved PostScript rendering
capabilities would help to integrate the data asialgnd reduce the need for data
reformatting.

Here, we present our ongoing development of a sypteviding the flexibility, and
functionality that are found neither in Seismic Wmor commercial packages. The
system, called SIA (no spelling out available!) sviaitially developed at the University
of Wyoming and continued at the University of Saskawan
(http://seisweb.usask.ca/SIA). It represents adeof extensive efforts for integration
of academic-style seismic data analysis with tHessp@nd performance of a commercial
seismic processor.

The guiding principle of SIA design is decentratii@a of processing and its abstraction
from the content of the character of the particakismic and geophysical dataset. With
the recent modifications of the system, this ideas warried further, to an introduction of
dynamic linking, conversion to C++, parallelizati@md integration with a Graphical
User Interface (GUI). In the following, we descrilbe development of the package since
the previous publications (Morozov and Smithsor@7t Morozov, 1998). We start with

a brief recast of the key design concepts and esighéhe new parallel and GUI
functionalities.

3.2 SIA seismic and geophysical data processing system

Initially, SIA started as a replacement for CogiaseDISCO processing system to
provide a means to use many modules written bgtidents of the Program for Crustal
Studies at the University of Wyoming. Consequent$/key design requirements were
typical of massive reflection seismic processindifjh throughput achieved by
processing tools (modules) operating in a commainess space, with custom
executables built for each job, 2) seismic processequences (“jobs”) described using a
specialized scripting language and executed imfatly) unattended processes, and 3) a
multi-user development and processing environmaraddition, several extensions of
the reflection data processing model were madepartitularly, original
backpropagation execution logic was introduced @dow and Smithson, 1997). The
system supported (as it does now) processing saiptilar to those of DISCO.

The structure of an SIA data processing flow, impated as C++ class named
PROJECT s shown schematically in Figure 3.1.

PROJECT

Structured trace ensemble gathers

gather

(Job monitor,)
GUI,
interactive
PVM | graphics,
other
PROJECTs
\and services)

Optional gathers
Database - use% / Q @ Tool .
tables by the module 02 n] communi-

F Other objects el

(velocity models, travel-time curves,
processing flows, graphics, etc.)

Figure 3.1 Structure of SIA processing flow, represnted by clas?ROJECT (modified after Morozov
and Smithson, 1997). Processing flows consist aiked sequences of tools sharing structured
trace ensemble gathers (normally corresponding to miticomponent seismic records),
database tables, and various custom data objectsoN-blocking PVM messages are used for
communication of flow with GUI, other flows, and sevices. Note that it has no predefined
mechanism for propagating data along the sequencé ols, and hence no dependence on
data types.

Several tools are arranged in a sequence accaalthg processor’s requirements. Each
of the tools corresponds to a C++ class (refeweast“module” by Morozov and
Smithson, 1997) implementing the “Edit Phase” (pater input) and “Process Phase”
(trace processing) methods. These are the onlyrtetbods required for seismic
processing. Additional methods (such as providipigadnically changing tool names or
progress indicators) can be implemented by the hesdequiring closer integration with
the GUI. The modules can also post their objectsh(ss velocity models) for their use
by other modules in the flow. In addition, the madthave access to globally visible
C++ objects providing the SIA system monitor, datsdy and the Parallel Virtual
Machine (PVM) functionalities. All these classee atored in precompiled object
libraries and linked dynamically from shared libearwhen the flow is built and started
from the GUI or a batch script.

Unlike traditional seismic processing systems (&¢{SCO, ProMAX, SEPIib, SIOSEIS,
or Seismic Un*x) the system has no special inputiues and expects no trace data at its
input. Some tools (such as performing databaseatiperor plotting) do not perform any
operations with the traces, and the correspondiodutes do not need to implement the
Process Phase. This makes the system more flemiblang it a useful framewaork for

more than just seismic data.

From any module, seismic traces are accessed bgatmg the monitor via

SIA.input() andSIA.output() methods. These methods return pointers to the
structured input and output trace data gathersdhay the adjacent tools (Figure 3.1; cf.
Morozov and Smithson, 1997). The flow monitor takRegpart in moving the traces
through the tool sequence, and the modules aredne®dify the states of both of their
inputs and outputs. This could result in data pgagpian pattern within the flow that
could become elaborate (Morozov, 1998); howeveraftypical single-trace filtering
operation used in most seismic tools, the Prockasd>code is quite straightforward:

boolean FILTER::process() {
TRACE *t = SIA.input()->pass_trace(SIA.output());
if(t){

filter(t);

return OK;

}
return FAIL;

}

Here,pass_trace(...) method transfers the trace to the output of tbk teturn
OKstatement informs the monitor that the modulegraduced an output, amdturn
FAIL is used to request more input data (Morozov andhSonm, 1997). The seismic
trace is represented by an object of clBRACEthat provides access to all of its
formatting, data, and header information. Tracelkesmare free-format and are fully
customizable by the user (Morozov and Smithson719Bhe method

filter(TRACE¥) above should implement the desired filtering atét .

The operation of the monitor is independent ofdharacter of the data being processed
and can be briefly summarized as follows (Morozog 8mithson, 1997). When the job
is started, all data gathers are emptied and tltules are called recursively in reverse
order, starting from the last one to the moduleentty marked with the “end-of-file”
flag. Once a module returns OK (as in the exarapteve), the process is repeated again
from the end of the flow. If all modules retUfAIL , the end-of-file flag is moved to the
next (end-of-file) module, and the process is rgggeantil no modules produce any
outputs. This simple scheme resembling the baclggaipon inference engine of the
programming language PROLOG maintains the minimossible number of traces in
the data buffers and allows the modules to fullytoml the data flow and termination of
the process.

Because the sequence of tool invocations in Stkiisen by a logical inference
mechanism rather than by the input data, no réisin€ on the types of data or character
of processing are imposed. Data can be loaded,veior directed backward in the
processing sequence, or the flow could operateowitimput data at all. In the course of

its use in several areas of geophysics (mainly s@kerture, reflection, and teleseismic
seismology, and recently 3-D potential fields),adgfpes were considerably generalized
and several additional system features were impiézdg(Figure 3.1):

1) Variable data formats, sampling intervals, recergths and time starts.

2) “Traces” can now contain linear arrays (seismiords) or 2- and 3-D arrays
(multicomponent seismic records, or 2-D grids useabtential field processing).

3) “Tools” can be represented by binary codes or maoromands combining
groups of other tools with coherent parameteriratiptimized for a particular
task, Macro-commands can be defined by any user.

4) Graphics subsystem for rendering complex imag&ostScript and building
custom Graphical User Interfaces;

5) Extensive use of command line, trace headers, mamut@grated job text
preprocessor for flexible tool parameterization.

6) Maintenance utilities including automatically gested HTML documentation
and tools for generation of macro-commands andgssing examples (see
http://seisweb.usask.ca/SIA/examples/).

7) Web service allowing execution of complex custoowf on remote systems and
providing software updates. This service was degezafter the initial version of
this paper was submitted and is described in araeppaper (see
http://seisweb.usask.ca/SIA/ws.php; Morozov et241Q7).

3.3 Development

Addition of new tools into the generalized procagdramework (Figure 3.1) fills it with
the content for the particular area of applicat@ompared to the original version
(Morozov and Smithson, 1997), code developmenthfersystem was significantly
simplified, mainly due to the use of C++ encapsatatind inheritance, dynamic linking,
and improved maintenance and documentation supploetaddition of new tools does
not require any modification of the monitoring pragn and can be done by the users.
Graduate Geophysics students at the Universityaek&chewan now routinely
contribute new tools as parts of their class ptsje€ode templates are available for the
basic methods of data handling, such as one trae®ne trace out, a buffered single
gather, or a sliding trace window (see http://selswsask.ca/SIA/examples/templates/).

Although the old code based on the C language (kbwand Smithson, 1997) is still
fully supported, we use the C++ model for all neavelopment. In this model, an SIA
tool named, for exampleyytool is described by a “parameter definition file”
mytool.mpar . This file contains descriptions of all modulparameters,
documentation, C++, C, or Fortran codes or objbcaties used for its building. This file
is used by a system utility to generate the comegdimg UNIXmake file, resolve library
dependencies, and to create both HTML pages anohttiee documentation displayed
by the GUI.

10

Apart from mytool.mpar , a single C++ file containing the C functivaoid
*mytool_init() must also be provided. This function is calledeodaring flow
initialization and returns a pointer to the modsldata object. Normally, it simply
returnsnew MYTOOL where classMYTOOILs derived from a base claSsA_MODULE
and overloads (if needed) two of its methods:

1) int MYTOOL::edit() — the Edit Phase performing parameter input.titrres
an integer status specifying whether the modulelsiéz be called during the
Process or end-of-file Phases,

2) boolean MYTOOL::process() - the Process Phase called when data objects
are propagated through the flow, as described above

To implement the two methods, no knowledge abaaintbnitor operation or presence of
other tools is required. Along witlYTOOIclass, any number of other C/C++, or Fortran
codes can be included and placed into the sharedlmbbrary. Libraries of C and
Fortran subroutines and C++ classes (such as perfgi-ourier transforms, filtering,
Least Squares inversion, and implementing compighnaetic and Matlab-like matrix
manipulations) are provided to facilitate developtmén our experience, a student
familiar with C++ can usually develop a reasonataynplex tool in several days,

The configuration of the system allows maintainmngitiple versions of the binaries for
different computer architectures from a singleaetource codes. In such a way, the
system was supported at the University of Wyomimg) Rice University under Sun
Solaris, 32- and 64-bit SGI Irix, and recently un82- and 64-bit Red Hat Enterprise
Linux at the University of Saskatchewan.

Accumulation and exchange of processing expewiss important for working on
complex research projects as algorithm developnpamticularly in an educational
environment. To date, limited support for systemdticumentation is facilitated in SIA
by a special tool posting fragments of job scripta common database. Any user can
select a portion of a processing flow, specify meand a category for the example, and
post it where it can be viewed by others (httpigiseb.usask.ca/SIA/examples). Similar
tools create macro-commands and build a librastaridard default configurations for
the various tools. In addition, processing examp@sbe simply cut and pasted from, for
example, an Internet browser or email.

3.4 Parallelization

The complete processing flow objects can be copoedss the PVM interface (Figure
3.1) and executed separate processes on the saamaie hosts. This is the normal
mode of GUI operation on multiprocessor subsyst@ratow), in which all of the
computationally-intensive data processing is pengd on remote compute servers
without overloading the GUI host. Some tools (sasfiow , used to organize parallel
processing; see http://seisweb.usask.ca/SIA/mofflobegmod.html) spawn groups of
processing sub-flows of their own. All processesiownicate between each other and
with the GUI usingorintf(...) - like messages facilitated by the SIA PVM inteda
Along with these messages, the processes alsomyelata traces, database tables, and

11

other objects. Execution of the processes is asgnolus, with message queuing and
retrieval handled by PVM libraries.

Due to encapsulation of the entire processingsimgle PROJECTobject (Figure 3.1),
sub-flows can also be invoked as parts of speedlagorithms. For example, such sub-
flows were used to implement custom processingiwitie loop of generalized pre-stack
seismic migration (Morozov and Dueker, 2003).

In order to manage submissions of specialized rempacesses, an additional layer of
abstraction was created. The user is allowed toelgioups of compute hosts and
applications assigned to the execution of spetagks, such as running sub-flows,
performing interactive displays, or creating ldggi As a result, the tools do not have to
specify the exact host and program names but ese tiask names in order to invoke
these applications. For example, depending ongkesidefinition of psview” , a
request for gsview executeghostview , kghostview | display , or other
PostScript viewing programs on different hostsa lelassroom setting, this technique
could provide a near-synchronous cloning of displary multiple computer screens.
Also, parallel jobs can be easily reconfiguredusing fewer or more nodes without any
changes in their parameters, simply by changingtirenission configuration (Figure
3.2).

hd Execute <Greensfunction.job> 8%

Function | Node |Channe| |Command |
l_lfileout ~|lthis_host__ ~]|[pvm | sia_fo %s
Z_Ifilein ~||this_host__ ~]|[pvm | sia_fi %s
3_Ipsview ~||dvina ~|csh | kghostview %s
4 |Ixview j|DispIay_3D j|pvm1 j siaviewer
5 |print ~ | [EETEw—] [csh ~] echo %s
6_|qu ~|fthis_host__ *{fcsh | %s
7_Irayinvr ~lfthis_host__ *{fcsh | xrayinvr3 %s
8_Ivmodel ~>|fthis_host__ *{fcsh ~|vmodel %s
19 |plotmtv ~>|lthis_host__ ~][csh | plotmtv -nodate -landscape %s
10 [master ~||this_host__ ~]|[pvm | sia_exec %s

Help | Defaults | Ok | Cancel |

Figure 3.2 Process submission module of GUI, shavg machines available to user via PVM,
available task names, types of submission (e.g.aWVM or UNIX shell), and formats of
corresponding program calls. Tasks specify symbolicames of actions requested by
processing flows (Figure 3.1), such asnist er ” (for master flow processes), tonput e”
(embedded sub-flows), psvi ew’ or “ xvi ew’ (display PostScript or interactive X-windows
graphics, respectively), and others. By checking gpopriate lines in this list, flow can be
executed on different host configurations without banging its parameters. Note that
machines listed in this view could represent indidual compute hosts or their groups.

Finally, some tools can generate slave processésithnot execute processing flows of
the kind shown in Fig. 1.1 yet employ the same P&dvhmunication mechanism. For
example, this approach was used to implement 3sBovelastic finite-difference

12

modeling integrated into the processing systemuiinanoduleefd3d
(http://seisweb.usask.ca/SIA/modules/efd3d/mod atimithis case, model building is
performed by broadcasting the corresponding instms from the Process Phase of
efd3d , followed by time stepping, editing, and outpugtmctions used to control and
synchronize the wavefield simulation.

3.5 Graphical User Interface

As with other similar projects (SEP, Seismic UnSXQSEIS), the advantages of batch
(unattended) processing of large volumes of data hastorically come at the expense of
an intuitive and consistent graphical user intexf&rocessing jobs had to be described
using either UNIX shell or specialized scripts, @ehhalways resulted in a significant
learning curve and increased the likelihood of rrré specialized GUI would relieve

the processor of scripting, give the system a mottmk and feel, and simplify learning
by bringing all the documentation to the user'gértips. Recently, a modern graphical
user interface (GUI) was designed for the SIA systEigure 3.3).

AN e i e L e |13
File Edit Window Help
~
=
Clear Completed Il i :'14% | General (2D data processimng @) _'J
Gravity: Process on neva General IGenera! Geometry | Input/Output l Migration ! Multicomponent processing |mherapp1§camuns i Plotting | Sort | Stacking ITem prepocess « | b
ll Plot test: Process on neva
* Count * List trace headers =
= Graphical User Interface = Set flow attributes
* Prints tables
@ * Flow parameter math * |ist headers

* Rename trace headers or tables * Trace header math

* Stop processing * Delete trace headers
* Force variable length traces (obsolete)

LIST MODULE __ TRASH o
Name |Dq§cnpuun = + al ¥ Shew Defaults

= IMAGE @
Sinsertm Insert module

Sinsertlis$ Insert list
Sinsertpars Insert parameter ...

attrib sets line attributes
contour Seis parameters .,

contset Sets contour p
edit Interactive edit

- noclip No clipping.
noedit No editing.
options Adds a text stri
EETEI s s map proje
time Draw time stamp-... ||
title Sets the plot title...

[-axes
- comment
-graph. elements
~objects

[ranges
=-styles
=-transforms

:UNkTS£ Units of distance: FEET, METERS, KM. Row 1 Span 1 {.\ \
\ -
Figure 3.3 Main SIA Graphical Interface window including: a) selectable tool packages, b) tool
library, c) multiple-job flow editor; d) parameteri zation of selected tool; €) job monitor, and
f) status line giving brief information about any item at which cursor is pointing. Job in front
of window (c) executes interactive 2-D gravity moding, and job in back performs 1-D
synthetic seismic modeling usingeflectivity method (Fuchs & Miiller, 1971). For a compact
display, tool parameterizations can be hidden learg only one-line summaries that may

13

change to display job progress (window c). Job flowditor windows (c) also include tool bars
providing flow-related functionality.

The GUI is based on the cross-platform Qt librafies Trolltech (now Nokia), the
same libraries on which the popular KDE Linux iféee is based. Using Qt relieved us
of any X-windows event handling and allowed to ipayate many of the most up-to
date GUI design approaches, such as the multipterdent interface, window docking,
themes, and platform-independent configurationh@ligh currently we perform all our
development under Linux, other UNIX-type systemshsas Solaris, BSD, or Apple's
OSX should also work with minimal effort.

The main GUI frame is subdivided into four compadsehat are used most often: the
tool library, current module parameters, job edigrd job monitor (Figure 3.3). When
the job flow is edited and submitted for executitrg correspondinBROJECTobject is
spawned to the appropriate host(s) and executethdiis operationPROJECT
periodically sends information messages to the @otess, and some of these messages
are displayed in the job monitor window. In prideiprunning jobs may also be
programmed to alter some of their parameters wititbe immediately displayed by

the job editor. At the same timRROJECTis also constantly listening to PVM messages
from the GUI, and through these messages, thecasecontrol the remote execution of
the flow. Note that different running flows, evdrose submitted from the same job
editor, do not interfere with each other and adependently managed by the monitor.

Thetool library (Figure 3.3a,b) offers access to over 220 prongdsiols, about 30 of
which are to various degrees experimental. This@® arranged into packages (e.g.,
reflection, travel-time, earthquake, potentialdielata processing, graphics, or
development) which may be tailored by the admiateis to meet the needs of a variety
of users. Within each package, groups of toolsh(gscinput/output, plotting, etc.) are
displayed on tab panes (Figure 1.3). A mouse datlon on a tool displays its
documentation, similar to the one posted at httpigiveb.usask.ca/SIA/sia-index.html.
As with ProMAX, typing within the library window wokes a search utility that attempts
a keyword search for a tool. When a tool is founhdan be dragged and dropped into the
processing flow.

Because the system is intended for users workimlifferent research areas, tools
extracted from the different packages could haffergint pre-set default configurations.
For example, applications of the Automatic Gain @AGC) in high-resolution,
exploration, and earthquake seismology typically very different time gate lengths.
Therefore, we provide several initial configurasdor the same AGC tool included in
these three packages, and the user is allowedketct $ge most appropriate configuration.

The job editor (Figure 3.3c) is the central component of the ugerface. A multiple-
document interface allows several flows to be odesmmultaneously, in which the user
can edit and execute multiple jobs. Docking windand tool bars allow a user to
customize the layout of the program to make effectise of multi-display systems.
Tools and configurations may be copied between jgdgng the user time and reducing

14

entry errors. Clipboard functions, tool tips, amhiext-sensitive help are provided to
further simplify usage.

Jobs are assigned descriptive names that are pasgeiflows during run time (Figure
3.1) and are used to identify them in the job mamidob flow descriptions can be built
from the tool libraries and examples, and theyalan be imported into the interface by
dropping text into the flow window. Once placedhie job editor, both tools and
parameters can be rearranged by the drag and dropgs, making it easy to correct
mistakes or change settings.

The job editor displays parameters of all toolthe form of a table (Figure 3.3c).
Parameterization can be extended (for exampleraldvendred lines to describe seismic
velocity models). Several types of parameters anently defined (cf. Morozov and
Smithson, 1997): 1) integer, real, double, charastteng, and Boolean values, 2)
selectable and editable text lists, 3) colour, fiile style, font, and color palette names
used by the graphics subsystem, 4) file, modul@par names, and 5) compute host
names, including names of user-defined virtualtelss Parameters of different types are
rendered differently; for example, Boolean valuesrapresented by check boxes, and
selectable values — by drop-down lists. Colour lngging distinguishes between the
floating point, integer, and character values.

Proper and sufficient documentation is criticalarge-scale processing. At present,
processing flow documentation is implemented bygvethg the user to attach free-text
commentaries to the modules, parameter lists, arahgeter groups. The commentaries
can be edited and displayed in tool tips.

Once the job parameterization is complete, the flosubmitted for execution through a
remote process communication interface utilizirgg VM (Figure 3.1). Jobs may be
submitted either for parameter checks (Edit Pha$g or for full processing. If an error
is detected or a message issued from a runninghjeldisplay of the job (if currently
open) is automatically updated using context-dependolour highlighting. The
corresponding error messages are displayed in gaeanool tips and also saved in the
job log.

Current module parameterization occupies a perntaviadow in the GUI (Figure 3.3d)
because of its continuous use during editing asad laécause some of the SIA modules
can have quite extensive parameterizations. Fanpbea modulémage
(http://seisweb.usask.ca/SIA/modules/image/mod htomrently offers 57 optional
parameter lists to describe its various graphiemehts. In the module parameterization
window, these lists are displayed graphically ia fibrm of a tree from which the lists
can be dragged and dropped into the job editor.

The job monitor (Figure 3.3e) is implemented byinrdisplaying the information PVM
messages received from the running flows and mpyser’'s commands back to them.
Therefore, operation of job monitor is completetyrachronous and independent from

the job editing sessions.

In all GUI components, we make an extensive ughetirag and drop functions, tool
tips and status lines to identify options and feggwhile reducing screen clutter. The

15

fonts, colours and other options can be modifieniarove their appearance.

3.6 Discussion and conclusions

Although initially designed to extend a reflectiprocessing package (DISCO) to wide-
angle seismic data analysis (Morozov and Smith£887), its generalized processing
logic have allowed SIA to be extensible to a favdater range of applications. Neither its
processing flows nor core databases (Figure 3ilieuthe specifics of seismic data
analysis. The tools are not limited in their typé®peration, and a number of non-
seismic applications were included into SIA (sep:hseisweb.usask.ca/SIA/examples),
with the benefits of uniform parameterization, Gldteraction with other tools, web
service, and unified software maintenance and deotation.

The development of the system was driven by thesieéa fairly broad research
program extending from shallow to regional and glagismology
(http://seisweb.usask.ca/ibm/research.html). Asresequence of this broad scope, SIA
offers capabilities for nearly complete reflectemd wide-aperture seismic processing
combined with support for multicomponent, variafdemat data, extensive database
capabilities, and input/output in several formatg(SEG-2, SEGY, PASSCAL-SEGY,
SEG-P, GSE3.0, CSS3.0, and SAC). Several orignvarsion codes (such as 2-D
reflection and generalized 3-D receiver functiogmation, genetic algorithms, artificial
neural networks, and parallel 1-D and 3-D finitHedence modeling) were developed.
Tools for 2-D and 3-D processing and inversionateptial fields were recently
included. Interfaces to popular program packaged) as Datascope, Generic Mapping
Tools (Wessel and Smith, 19983yinvr (Zelt & Smith, 1992)reflectivity (Fuchs &
Mdiller, 1971), and Seismic Un*x, simplify interopéility with other approaches.

Although SIA is being continuously developed, realdy represents a fully functional
system exceeding its commercial analogs in itses@op many other aspects important
for academic researchers. With further developmeaobuld provide an excellent
research tool and software development and integr&&amework for many areas of
fundamental and applied geophysics.

3.7 Acknowledgments

The initial SIA development was inspired by onehef authors’ (1. M.) research on a
number of projects sponsored by NSF (EHR-910-8774@R99-03235), Gas Research
Institute (contract #5089-260-1894) and U.S. Airdeo(Grants F49620-94-1-0134,
F49620-94-A-0134, F49620-96-1-0326, DSWA01-98-0@IBRA01-01-C-0057, and
DTRAO01-01-C-0081). However, none of these projéets directly requested or
supported this development.

16

4 Interactive 3D/2D visualization for geophysical data
processing and interpretation

The development of a modern GUI interface (ChaByéaid the foundation for building
other graphical capabilities of the system. By gshre same general concepts, | wrote
the initial “xviewer” program that supported an st and custom image display
protocol. This program was further developed byrfaloa Blyth (UofS undergraduate
student), and my supervisor (. Morozov) designeshyrnprocessing examples and the
corresponding client 1GeoS tool functionalitiedimiing this protocol. This Chapter
describes this protocol and its applications, basethe paper by Morozov et al.
(currently in press in Computers and Geosciences).

4.1 Introduction

In several previous publications (Morozov and Ssoth 1997, 1998; Chubak and
Morozov, 2006; Morozov et al., 2006), we descridedgelopment of an open-source
software package for geophysical data handlindyaisaand modeling, which we called
SIA (http://seisweb.usask.ca/SlAStarted initially as a multicompnent seismic
processing package, the approach proved to be upig@e in its broad scope covering
the full spectrum of seismic, potential-field, asttier geophysical data analysis, but
particularly in its implementation including objemtiented design based on C++,
dynamic linking, an integrated full-featured GragaiiUser Interface, parallel
functionality, and web servicebt{p://seisweb.usask.ca/SIA/ps.phits abstract, logic-
based back-propagation data handling model (MoremavSmithson, 1997), the ease of
implementing new tools, high code integration, arténsive documentation and
development support allowed extending the systeémarcode development framework
suitable for most tasks encountered in applied lggsips (Chubak and Morozov, 2006).
The term back propagation was first applied by Mokoand Smithson (1997) to the
IGeoS processing method and the tem is used heestoibe the method where a tool in
a processing sequence attempts to produce andt@uiguf necessary reads from the
tool before it. In this was data is data is effexty drawn from the end rather than
pushed from the beginning. Recently, an automafisvare distribution and updating
service hittp://seisweb.usask.ca/SIA/cs.phyas added to the system (Chubak and
Morozov, in press), which facilitated concurrenvelepment and automatic maintenance
of the package from source code developed by pnogexs collaborating across the
web.

In this paper, we continue presentation of the B&#nework and focus on its new
component — general-purpose, customizable, inigea8D/2D visualization server
program. As with other components of the systendgisigning this server, we
emphasized universality, scalability, efficiencgdgarallelism. The resulting code is
nearly entirely content-agnostic and suitable forking with most types of geophysical
data, in both passive (as data “viewer”) and irtive (“editor”) roles.

Traditionally, geophysical software packages degwed) for example, in the reflection
seismic industry have been differentiated into g@ssing” and “interpretation” systems.
Processing systems emphasize flow-based designnwiherous operations applied to

17

the data in complex processing sequences, andionilgd interactive functionality
offered by the individual tools. Special emphasisade on reproducibility of the results
and batch (unattended) execution, often using mputtcessor (up to several thousand
nodes) computer networks. In the open-source contypseveral seismic processing
systems were developed, such as the Seismic UndxK®ell, 1999). However, these
systems still offer only basic user interfacesdasially, UNIX and Perl shells) and most
importantly, are restrictive in their data formétgically SEGY-like formatted UNIX
pipes or files), limited scopes and integrationhaf tools.

By contrast, interpretation systems are visualiratientred and based on data viewers
(for a 3D seismic open-source example see Openditget/www?2.opendtect.orp/In
such a system, data organization follows spatitiepss, and system operation is mostly
driven by data displays and user commands. Appicadf various “plug-in” tools is
typically determined interactively by the user, amdy a limited number of fast
operations can be performed in real time.

In our visualization approach, we endeavour toeeths above differentiation between
processing and interpretation workflows and perftiiem on a common software base
and user interface. As described below, complexyeaand user interfaces can be
defined by the user as parts of SIA data procedkimg. These images can then be
rendered either in publication-quality PostScriiged on the interfaced GMT programs;
Wessel and Smith, 1995) or using the new interad@ipenGL-based display server
described here. Because the content of the displaytirely determined by the
underlying processing, the display server can implat any functionality, such as
displaying seismic data and performing gravity miodeand seismic ray tracing in the
same session. Typically the viewer is used to \tfewoutput of a tool in the processing
sequence and modify processing parameters. Gdoacdions such as designing the
processing flow, selecting input data, and stoaatput are handled at the time of flow
construction. Through direct access to GMT databathe server is also able to include
3D coastline base maps in its displays. In addjtioll seismic and other data processing
capability is also available to the interpreteotigh the underlying batch flow capability.

Below, we outline the design of the new SIA dispdayver. In a short publication, it is
not practical to describe either the features efftogram or its code in detail, and
therefore, we only emphasize the fundamental, “&a&ork” aspect of the system by
focusing on its data abstraction and processiregfinetation model while leaving aside
its numerous applications. We begin with the undlegl parallel object data
communication protocol, followed by a summary &f Rey features of the software.
Further, we explain how complex images are formmetliateractivity programmed into
the processing flows and present several applicax@amples. In conclusion, we briefly
discuss the significance and potential extensidtisi® approach.

4.2 Object image protocol

Job execution in the SIA system currently incorpesdhe Graphical User Interface
(including processing flow editors, cluster configtion, etc.) and multiple data
processing/modeling tasks. These programs operatedependent UNIX processes

18

communicating via a Parallel Virtual Machine (PVM)erface (Chubak and Morozov,
2006; Figure 4.1). Because of some concerns aheuwtdntinuity of PVM support, its
calls are wrapped into a single C++ class thatccpotentially be replaced with another
inter-process communication library in the future.

Process Process Process . n

\\ [pPum

Display
server

Figure 4.1 Simplified SIA process communication. Ta Graphical User Interface spawns processing
flows (boxes labelled “process”) and monitors theiexecution. If interactive graphics is
requested in a flow, it starts a new display servesr connects to an already running one.
PVM supports two-way communication between the progms which may run on different
compute hosts. Grey arrows represent the job monitdPVM messages (flows, data, signals)
and black arrows — graphical objects (see text fodiscussion).

The display server is started by a tool called “gutluded in the processing flows, and
similarly to the GUI, it maintains two-way PVM conumication with them (Figure 4.1).
Processing flows can be configured to execute plaltlisplays across the network
(Chubak and Morozov, 2006); however, for a singlerand display host, the same
server handles requests from all flows (Figure.4Thgrefore, if needed, the resulting
images can contain objects mapped from differemtgssing flows distributed across the
computer network.

Inter-process communication is carried out usingelsronous tagged PVM messages
(Figure 4.1). Tags are used for recognition ofrtiessage contents, and message formats
are automatically converted between different caeparchitectures by the PVM
interface.

The use of PVM messages in the GUI (grey arrowsgare 4.1) is different from the
display server (black arrows). In the GUI, messageaused as instructions controlling
program operation by submitting processing flovasging signals and data, and
retrieving results. By contrast, the display senses PVM messages to maintain
hierarchical trees of data objects representingntiagies being displayed, without
interfering with the normal processing sequenadsntical image trees are stored on both
the client (flow) and server sides, and data exgbas carried out automatically
whenever either of these sides is updated. The eomwation is thus entirely bi-
directional and performed on the background, alh@agonstruction of data displays as
well as interactive editing tools.

19

Schematically, the structure of an image tredustilated in Figure 4.2. Each node of the
tree represents a C++ object that is able to mokesa the PVM interface (Figure 4.1).
When an update to such an object is received bglitpday server, it performs the
requested action. For example, the “canvas” olijettates a new display window or
updates it, “layout” subdivides the window intoday grid, and other objects place their
respective images into the grid. Object “image’riesrcoordinate mapping information,
and numerous components of the “graphics” datadeesaot displayed themselves but
provide image colours, line and fill styles, padsitlighting, and other parameters (Figure
4.2A group of objects (buttons, sliders, etc.) jlewser controls that can be placed on
the image for interactive functionality.

Canvas
Image Layout Graphics
Velocity Colour Image Layout Colours Line . Lights
model bar |—| |—| styles
Colour
Base Lines Object Buttons palettes
map tree

Figure 4.2 Image tree for a hypothetical GraphicalUser Interface designed by the user. Each node
corresponds to an object sent through the PVM commmication pipe (black arrows in Figure
4.1). Two copies of such a tree are maintained abth client (flow) and display server sides
(Figure 4.1).

Most importantly, the object image trees are inetlith neither the display server nor
processing flow codes. The images are built entioglthe user by placing the
appropriate SIA tools into the flows, as describetbw (examples are given in
Appendices A and B). In particular, tools “imagebyde most of the general-purpose
objects (2D and 3D lines, surfaces, grids), ant“graphic” introduces line and fill
styles, layouts, markers, colour palettes, buttetts,In addition, specialized tools
provide their own objects, such as 2D velocity grality models (tools “rayinvr,”
“tracer,” and “grmod2”), or trace sections (toofgot” and “plotrt”). In principle,
whenever useful, any tool can be equipped witheplgcal representation. At the same
time, the tools take no part in actually displayihg images, which maintain themselves
in the image automatically, as described belows Timakes the application code simple
and robust.

4.3 SIA 3D display server

The display server is implemented by using Qt Craplics libraries (on which, for
example, the popular KDE graphical environment uhdieux is based), with complex
3D/2D graphics using OpenGL. This ensures thasyiséem will work on a wide variety
of systems and takes advantage of the hardwaréegaioen on graphics cards and
processors. It also allows native 3D renderingteregscopic displays, such as Geowall

20

(http://geowall.geo.lsa.umich.edu/The use of C++ ensures the best possible
performance and high code integration and reuse lddk and feel of the program is
similar to that of typical modern graphical useenfaces (with drag and drop
functionality, status lines, tool tips, and elegamdow themes available), and code
design follows the general style of Qt and Open@igmmming.

The only items in the display server window predledi by its code design are the main
window menu along its top and the status bar irbthteom (Figure 4.3). The remaining
main part of the window is subdivided by using dogkwindows and nested Qt layouts.
Layouts are named, described in the processingjubplaced into the object trees
together with other objects, which allows constiarcof both simple and complex
displays (Figure 4.3). Note that this system otegsnamed image frames is similar to
the organization of frame sets in HTML. In additinayouts, docking windows are
used to hold service objects, such as the objeettdry tree displays, property editors,
and custom control panels designed by the useselthecking windows also appear only
when requested by the processing job, and thepeanoved to any position on the
screen and collapsed into toolbars during the actere session.

Main menu

Status bar

Figure 4.3 Nested layouts for generation of compleso-ordinated displays. Here, the top-level layout
1 is indicated by grey, lower-level layouts 2 and 3 by white colour and dashed contours,
respectively.

The display server program continuously watchesritgye object tree for updates and
rebuilds the display whenever a modification to ohis objects is detected. These

21

modifications can occur as a result of user actmrome from the associated processing
flow(s) through the PVM connection. The characteadisplays is also determined by the
objects themselves, and therefore new custom gralpbibjects can be introduced simply
by adding classes into the system library.

Along with objects representing the imaged geom@ysiontent, the object tree includes
auxiliary graphical elements corresponding to Qiwee classes. Currently, such objects
include the object tree viewer, property editorp@pand lower left parts in Figure 4.4-
4.6), axes and controls (colour bars, slidersdmsttand spacers). The object tree and
property editor allow the user to interact with tkadered objects and modify them, such
as show/hide, change colours, or edit other paensiet

', Forml

Eile

Object
= B image: acc-3Dimage
= Fl Image: pc-section
o [
B PLT: draw-vp 180
B PLT: draw-vs 181
= F Image: surface-maps
El Line (30)
Bl MAP: Unname: d
+ B Image: acc-3Dimage
‘ g

Property Value
Paint
Palette-Vp R

IS
Palette-Vs BrBu_10
Palette-Qp Breu_10
Palette-Qs BrBu 10
Layers

Columns

Reflectors
Refl-float

Cells-vert
Cells-diag
Cells-horiz
Eottom Vp
Bottom Vs

oottt f el fafaifoia

IS

Object
[WSS
H biue
B blue
B Fs: lakas
[Fs: lakes
I Fs:wet
Bl FS:wet
Bl green
Bl green
Bl LIGHT: lilumination :

s

Image: acc-3Dimage: (100.0,44.3,96.0) sc: (0.2,0.2,0.2)
15:55

. Ell @ shell - Konsole <2> Default Session: ui_X_gm Default Session: accrete
Docaes FNC - e s B

3 4 [Dgui- Kongquerer [El Shell - Konsale X Formi ~ 006.12.10

Figure 4.4 Wide-angle crustal ray-tracing model froan the ACCRETE wide-angle seismic experiment
(Morozov et al., 2001). Property editor allows swithing between displays shading using the
P- and S-wave velocities, velocity ratios, or wireime views. Red dots on the surface indicate
the source-receiver midpoints. Coastline map is dsed directly from GMT databases. Note
the editing controls in the Properties menu. Rotatin sliders (upper left) can be used for
precise rotation around the vertical and horizontalaxes. The floating window (inset)
summarizes the graphical elements (colours, linepalettes) that can also be edited in the
Property editor. See Appendix A for job files usedor this display.

22

S8 vicwer on localhostlocaldomsin

File Help
Ctjact CIs
= E ware-image
2 [1z
18
1.4
Froparty Value
Tirma start oo
T e s
i tan.: | S
1 weale (L3LE00 0]
Wingles Wiggleia
War. ntersity | Amplinads =
Eain 0.1 |
Elas 0.c
Clip 0.0

TiFning ling default T o
Wiggle live wiggle line
Frmibivs fill pos-fAll
Megative fill nag-fill
Fill palctte GMT Iof

LR B |

150 inn 200 ane ace ElEE] EO0 Ton AN qne ®m] *

Erace Image 1 50.55.0066]

Figure 4.5 Display of a reflection-refraction shoseismic record. Variable-area wiggle over variable-
intensity amplitude display is selected. Note thenieractive editing options in the Property
editor (lower left). GMT “jet” colour palette (orig inally re-implemented from Matlab) are
used for trace background. Note that over 40 presgdalettes are available in this tool, as well
as throughout the system.

23

¥ S1A viewer on volga e 4

Eile

Object

- Image: trace-image
Gl spcgram.0
spectra.0

“ [traces.0

=

Property Value

Time start 0.0
Time end 1000.0
- Time scale (0.0,0.0,0.0)

X 0.0
3 § 0.0
z 0.0

Wiggles None T
Var. intensity]Amplirude ']
Gain 1.0 5600.0 7600.0
Bias 0.0
Clip 5.0
Timing line default o
Wiggle line wiggle-line =
Positive fill]trace-pos-ﬁll Y]
Negative fill trace-neg-fill =

Fill palette]GMT_hot ']

Mext trace Restart input

| Image: traceimage: (-0.0,0.7) sc: (0.00,0.00,1.00) v

Figure 4.6 Emulation of the traditional continuousseismic record display. In this SIA job, we load
seismic data from files or network interface, subdiide them into segments and display in a
scrolling trace sequence (top in the right panel¥or the most recent segment, a time-variant
spectrogram (middle) and amplitude spectrum (bottom are also computed and displayed
simultaneously. In this example, buttons (bottom) i@ used to control the data input.

Viewing directions and zoom levels are controllgdiee mouse as it is done in other 3D
interpretation programs. Optionally, the imageeas$patio can be set to remain constant
during screen resizing by modifying the underly®genGL transformation matrices. For
large objects containing hundreds of thousand$eofients, efficiency may become a
serous issue. We addressed this issue by autorassimpling the images during
rendering, depending on the current viewable amelasareen resolution.

An important enhancement of the SIA viewer compaoetthe traditional 3D displays
(e.g., GoCad, OpendTect) is the availability oftouns user-configured “views,” such as
plan or map views, fence diagrams, frontal cross$i@es, projections of 2-D images into
3-D, or preset zooms. These views are created tsohdview3d” and are also
represented as named data objects on the imag@-tgeee 4.2). In the image property
editor, active views can be selected via drop-dovemus, allowing quick transitions

24

between them. Figure 4.4 shows an example and Ajppénillustrates the use of this
method for creating 3D displays.

Any object on the image tree is allowed to impletreen“auto-play” method which is
called periodically by a separate thread on theverdo perform various animations. In
particular, auto-play of the image object (Figurg)4nodifies the OpenGL
transformation matrix causing continuous rotatimoeyement, or zooming the entire
image in and out. Such animated displays are samasthelpful during data
interpretation or presentations of the resultswih other options, these playback
operations are configured by the user and inclug¢ob parameterization for tool
“image” (see Appendices A and B).

From a programming standpoint, processing objectds) and most graphical objects
are introduced into the SIA system by redefiningctionality of the bas&IA_MODULE
class. For example, Figure 4.4 shows a 2D visuaizaising our re-implementation of
the popular ray-tracing prograrayinvr (Zelt and Smith, 1992). The program is
interfaced in the SIA package using a tool catladnvr, with its base data class named,
by our conventionRAYINVR

class RAYINVR : public SIA_MODULE

{

CHARSTR module_name(); /lI< name for the GUI

int edit(); /l/< Edit phase (parameter input)

boolean process(); /ll< Process phase (data proce ssing)

UL_X *X(); /l/< Accessor for the graphical objec t
boolean call(...); /l/< custom operation performed by this tool

}

Here, metho@dit() defines the parameter input from the job (see eXasripelow and

in Appendix A) androcess() describes the tool functionality during data (ingtno
cases, seismic trace) processing. Note the metflodeturning a pointer to the object
performing graphical representation of the mode&yfe 4.4), also derived from the base
graphical base clagdl_X . When “rayinvr” is invoked in the job, this objepets

attached to the image tree (Figure 4.2) and prdpdda the server (Figure 4.1).

On the display server (where RAYINVRobjects are available), an identical graphical
object is created by a dynamically-linked subroaiteyinvr_X() , also placed on the
image tree, and provides all the necessary infoom&br the rendering system. The
object builds its images by combining several Opep(stting modes (such as
sequences of lines, triangles, quadrilaterals bétmolaps) which are further converted by
the display server to OpenGL call lists, optimizadd rendered on the available
hardware. In addition to serving the graphics,dbgct can communicate to its mirror
peer in the processing flow, and sometimes to perfitata analysis (such as seismic ray
tracing in this case).

Note the methodall(...) in the example above, which is available in maklyt8ols
and object-tree objects. These methods perfornogudata operations requested, for

25

example, by buttons pressed on the user displaybelcase of “rayinvr” tool, these calls
perform ray tracing, saving, or exporting the mad#d files (Figure 4.4). In the
following section, we show some examples of howhsateractive interfaces are
designed.

Finally, the display server supports stereoscojsiplays by rendering OpenGL images in
two frame buffers using slightly different viewiaggles. We have tested this approach
on our dual polarized-light projector GeoWdlttp://geowall.ory system.

4.4 Custom displays and user interfaces

Interactive 3D or 2D displays are generated by legdgslA processing flows written in a
scripting language resembling that of DISCO proicgssystem (Morozov and Smithson,
1997). Job flows can also be created, edited, ezdcand saved in XML format when
the graphical user environment is used (ChubakMordzov, 2006). Below, we describe
the general scheme of such displays and preseattade@xamples from different subject
areas, with samples of the corresponding job sciipDisco-like format shown in
Appendix A.

Generally, all SIA displays are created by comlgrtime following key tools in the jobs
(seehttp://seisweb.usask.ca/SIA/indeatid Appendix A):

1) “Graphic” — selects or creates layouts, colourss ind fill styles, colour palettes,
buttons, and other objects used in rendering.sé objects are given names
(identifiers) by which they can be accessed by raibas;

2) “Image " — creates a sequence of objects from #ta dontent, such as data grids
and lines, and attaches them to the image obpet tr

3) “Gui” — sends the specified image trees to theldisperver.
Several instances of “graphic” and “image” tools b& used to create complex displays.

As a first example, interactive ray-tracing and/életime modeling is perhaps the most
important inversion approach employed in wide-amgiestal seismic studies. This
procedure requires high-quality interactive graphwehich is limited even in the most
popular modeling programs, suchraginvr by Zelt and Smith (1992). Figure 4.4shows
an extension aofayinvr model in our system, using an example from ACCRE&Emic
experiment (Morozov et al., 2001). Along with sealesnhancements (accurate
correction for crooked-line geometry, detailed and-surface consistent near-surface
structure accounting for wide-angle shooting ijoad, and simultaneou®- andS-wave
ray tracing), the model now allows interactive viegv Note that the model is created in
a two-dimensional (2D) image, which is projectetboamfence diagram in 3D (Appendix
A). The model can also be combined with other dbjestich as base maps or seismic
sections (Figure 4.4). Colour shading can be sedeicteractively for viewing the- and
Swave velocities, velocity ratios, € (attenuation) parameters, or creating wireframe
displays of the model structure. Over 40 preset pker-defined colour palettes are
available, and buttons can be used to performreaynty and printing (Figure 4.4). In the
near future, the model will also allow interacteaiting of its parameters (layer depths
and velocities).

26

As a seismic example, Figure 4.5 shows a synthefliection shot gather. The display
modes including one-and two-sided variable-areavanidble-intensity plotting, trace
gain, bias, and clipping, can be adjusted interalstiin the Property editor (lower-left
part of Figure 4.5). Note that the three-composgnthetics were also computed within
the SIA package. In another, interactive, exampdeié 4.6 shows an implementation of
a simple continuous seismic trace display. In the@eulying processing flow, the data are
loaded from a network connection or continuouslgiatpd “ringbuffer” files, filtered and
displayed in the form of continuously moving wawefs. Optionally, spectral analysis or
event detection algorithms can be included anatheesponding results displayed in the
same image (Figure 4.6). In this example, the impatso blocked periodically allowing
the user to retrieve one trace at a time by prgssioutton on the display (Figure 4.6,
Appendix B).

A unique feature of the SIA display server is thaikbility of coastline data derived
from the database files distributed with the Genbtapping Tools (GMT) package
(Wessel and Smith, 1995). Coastline contours (tholyrivers, channels, state and
marine boundaries) and polygons are rendered Birec8D bypassing the need for map
projections. Only a specification of the target magion is required, and the resulting
image can be combined with any other objects aeedl interactively in 3D (Figure
4.4). The level of resolution is interactively seéble according to the specifications of
the available GMT databases, and line and fill edare editable from the object
Property menu (Figure 4.4and Figure 4.6). Note iailGMT databases are accessed by
the display server directly, and PVM link is freerh transferring large data volumes,
resulting in efficient and fast displays.

4.5 Discussion and further development

The most useful result of the development abovéddoel in the enhancement of the
geophysical data analysis by integration of its yne@mponents. For example, with the
new 3D viewing capability, ray-tracing models (Fig4.4) from multiple crossing lines
can be inverted concurrently in a common display @erformed together with gravity
modeling and analysis of other data. Because tstesyis not limited to seismic record-
based processing, interactive gravity modelinglmaneadily incorporated in the same
graphical framework (Figure 4.7).

27

hd STA viewer on volg
Eile

Object

=~ Image: gravity

Modelled gravity
- b7 Observed gravity
i [Residual gravity
=~ Image: section
il grmod2_model
‘B PLT: pal-density 183

Propeity] Value

Visible V
Editable r
Line |line-bodies =

Line palette]BrBu_lO ']
Grid:

Fill style]fill—bodies '] e
Fill palette m
Gridding 0
Body #0 Density

Body #1 .

Left Right Apart Closer Heavier Lighter Print
Image: gravity: (37.0,-258.2) sc: (0.05,0.40,1.00) _ﬁ

Figure 4.7 Interactive 2D gravity modeling exampleSeveral graphics objects (observed, modelled,
and residual gravity profiles, and the density modg are posted by gravity modeling
(grmaod2) tool, and buttons added to illustrate the interative functionality. Colour palette is
used to represent the densities or, optionally, theck types.

Apart from populating the displays with additiogahphics objects, an important line of
potential development could be to expand the ing¢ation-style functionality described
in the Introduction. Processing flows can alsodr shrough the PVM connection and
placed on the image tree (Figure 4.2), and thegdfuey can be associated with the
various items in the same display. In such a waydisplay could become a data
integration hub, with programmable processing flégexling various types of data into
it.

Finally, the development of a user-customizablealization server advances us to the
ultimate goals of the project, which can be sumpealj using analogies from the popular
geophysical software packages, as follows:

1) Open-source, modular seismic processing pipe sitailthe Seismic Un*x but
with a significantly broader data model and proceskgic;

28

2) Modern graphical user environment and high-perfereeacommon address
space processing similar to ProMax or Disco-Focus;

3) Parallel and distributed processing capabilityxoess of the above;
4) Interactive 3D visualization similar to GoCad orédpgTect;
5) 2D/3D potential-field data analysis and inversiapability;

6) Geophysical “toolbox” processing versatility andlet ultimately resembling that
of Matlab;

7) Built-in access to “academic” GIS data and PosfB@iotting, similar to GMT;

8) Remote (Internet) data acquisition, real-time digp] and database capability,
similar to Datascope or Antelope (http://brtt.com);

9) Web-service operation (we are aware of no analmgsate);

10)Automatic software distribution and updating froousce code and collaborative
development.

11)Addition of graphical capabilities to the tools sltbimprove the user experience
and benefit most of the areas above.

4.6 Conclusion

A new 3D/2D interactive display server was devetbfoe the SIA geophysical data
processing framework (Chubak and Morozov, 2006% Jérver utilizes Qt and OpenGL
graphics libraries, and takes advantage of thectbjented and nearly content-agnostic
design of the core SIA processing system. It opseray creating image object trees that
are automatically propagated to the server(s) irggion remote hosts producing complex
structured and interactive displays. We show appbas of this approach to several
areas of geophysics.

With introduction of this last major component, Bi& system becomes conceptually
complete and becomes capable for bridging the gapden the traditional processing
and interpretation software. Its unusually broaspgcincludes: 1) high-performance,
object-oriented data processing; 2) applicationaany types of seismic and non-seismic
geophysics; 3) parallel operation on multiprocessonputer networks, 4) processing
web services; 5) support for collaboration and enatiic software updating; and now 6)
parallel, interactive, and animated 3D visualizatio

29

5 Automated maintenance of geophysical software
from distributed web repositories

In this short Chapter, based on Chubak and Mor¢2007), | describe an automated
system for code maintenance by using distributedl nepositories, currently functional

in IGeoS system. Such tools are unique in acadsafieare and, to my knowledge, also
in the geophysical software industry. The conckat t proposed and implemented was
inspired by the examples from open-source Linuxvge projects. Development of
these tools have greatly simplified the maintenasfdbe package, which is now being
operated on several types of computers in ourdad), also downloaded and installed by
numerous researchers worldwide.

As in most computationally-intensive disciplinespghysical data analysis involves
numerous algorithms. Large volumes of code hava besated, including complex
multi-function processing systems, which are paléidy well developed in reflection
seismology (Stockwell 1999). In most cases, dataagement, processing, or modeling
operations can be subdivided into smaller tasksg, (gput/output, or some filtering),
whose code could be standardized and reused.ydgatid solutions to problems should
be implemented once in a generic fashion so tlerstcould benefit from them. Two
critical issues arise in the development of suglergeral processing system: a) a versatile
code integration protocol and a common processing@ment suitable for its use in
different applications are required, and b) witbvging body of software, code
maintenance tools are needed. Topic a) above wasthg discussed by Chubak and
Morozov (2006); in this note, we describe the depeient of topic b) in our geophysical
data processing system.

Within the academic community, the developmentashputer code is still generally
performed in amd hoc manner, without investing significant efforts wftsvare
distribution and maintenance. Typical codes akeldped by a single group, relatively
compact, and can be directly exchanged by the r&ser@®. However, in the more
general, complex, and extensively developed paskaged by numerous researchers
(such as SU and GMT - Stockwell 1999; Wessel andhS18999), the need for consistent
distribution support is already felt, leading torel®pment of installation web sites and
shell scripts.

Complex software packages quickly become diffibuitnaintain. For example, Seismic
Un*x (SU; Stockwell, 1999) consists of several higtdprograms that must be installed
to use the package. The SIA system (Morozov anithSam, 1997; Morozov, 1998)
includes over 100 modules in the dynamically shéibedry, over 200 tools written in a
variety of languages, and numerous documentaties. fiEach piece of software may
have its own prerequisites (PVM, graphics, thirdypaoftware, etc.), compiler options
and other configuration issues. Installation araint@nance of such packages represents
a significant investment of time and effort frone thser. The traditional approach of
using a configure script and the make utility teisisthe user in the installation could
become cumbersome as it is not designed for thexglty of code found in processing

30

packages, nor does it address the need to updigteastain code without affecting the
entire system. Complex software systems thus regeits of specialized utilities which
could automate maintenance and simplify instaligtideally by means of a web-based
update service keeping the codes up to date asatkdyeing developed at multiple sites.

Automated code updates are broadly used in modétmuage (such as Microsoft
Windows or Adobe Acrobat). The open-source (paldity Linux) community is
addressing the broader needs of updating and nraimggrograms by using multiple
software repositories. Programs suclajts, yum, urpmi , andemerge provide the
ability to easily update and install software owesal types of Linux systems. Using this
model, we have implemented an automatic updaterestallation tools for the SIA
system (Morozov and Smithson, 1997).

SIA represents a major effort for providing a coomframework for data management
and processing encountered in nearly any fieldeopgysics. The system is infinitely
scalable (the number of processors is limited tiylgxternal libraries, hardware, etc.),
high data pass-through, capable of extensive seisravel-time, and potential-field
processing. It includes a feature-rich GraphicaUsterface (GUI, Chubak and
Morozov, 2006), interfaces to popular academiciappbns (such as SU and GMT),
capabilities for parallel computations, can opeest@ web service (Morozov et al.,
2006), and the development of a 2-/3-D OpenGL gcadayer is underway. In order to
streamline code maintenance and to enable collabe@de development, a set of
utilities was added to allow users and develofeeffortlessly share their code with the
community. These codes are being currently usagriohronise the software versions in
our group and also for recent distributions.

The new SIA code maintenance package includeskieyiutilities:

1) Programsia-config provides code customization for the current system
allows specification of the compilers and theirtsies for the various phases of
building the codes. No specific knowledge is regdias most features are
handled automatically.

2) Progranmsia-update is the general code maintenance utility performing
packing and unpacking of the specified source cmeponents, their building
and installation. When installed on a web senrer,grogram also executes most
of the code maintenance server requests
(http://seisweb.usask.ca/SIA/cs.php). On a client, when called
with the appropriate switches, the code also testsesulting binary codes, adds
users, generates lists of code repositories aridrpes file cleanup.

3) Progransia-install is the command-line code installer. It obtains the
specified components of the package through a eelice and installs it by
usingsia-update . For example, commansia-install
http://seisweb.usask.ca —distribution CG .all installs the
“Computers and Geosciences” (CG) subset from ol seever.

4) Utility pdf registers new plug-in tools with the system (Mawand Smithson,

31

1997). This registration includes creating UNtake files, parameter
descriptors, GUI menus, and documentation web pages
(http://seisweb.usask.ca/SIA//index/

A characteristic feature of our model is that th& &de is configured identically on all
the code repository servers and processing cli@ude servers are therefore also
capable of performing full data processing, inahgdiemote processing as a web service
(http://seisweb.usask.ca/SIA/ps.php ; Morozov et al., 2006). Conversely,

if a standard web server is available on a systeed ,uor example, for specialized data
processing and development of the corresponding,tii@an automatically share these
tools with others. As a code is updated or addédlients which connect to this
repository will immediately (as soon as the versiomber is advanced) have access to
it. Such symmetrical design makes installation syaghtenance of multiple copies of the
package easy and reliable.

=)) SEonTgNTE REPOSIOTIEs J |—Bl= x|
Mame Location
Test Server http:/fchubak.ca
University of Saskatchewan http://seisweb.usask.ca
Add Delete Save Cancel

Figure 5.1 Configuration of SIA software repositores. Note that only the root entry points are shown
as the web addresses. For example, the actual caver for the selected line is
http:// chubak. ca/ SI A/ cs. php. The buttons below allow the user to edit the list

In the SIA GUI, users responsible for “administratitasks are able to add the URL of
any code repositories (Figure 5.1) they are inteces. Upon launch of the GUI, the
update client builds a list of locally installedASpackages including their version
information. It then obtains a similar list froradch of the servers in the repository list
(Figure 5.1). The versions are compared and teeissotified if new packages are
available or if updates to already installed paelsagave been made. As this system is
designed primarily to distribute new code no primns have been made for archiving
previous versions. If the user chooses to updaitestall a software component (Figure
5.2), the source code is downloaded from the ap@teprepository and compiled by the
sia-update utility on the local system. The downloaded code consist of multiple
files in various languages (C++, Fortran, or JavR)is utility takes care of all aspects of
the installation including generating thake files, documentation, and ensuring that
the resulting code is optimized for the local at@tture.

32

) X Update s

_.J‘ll I-d Iﬂ
Previous Version | MNew Version | Source

_MEDDE.B 2006.4 http:/j/chubak.ca
vl gui i2006.0 2006.2 http://seisweb.usask.ca
pickfb 2006.0 2006.1 http://seisweb.usask.ca
source 20060 2006.1 http:/f/chubak.ca
Aviewer 2006.0 2006.2 http://seisweb.usask.ca
¥ sSelact All Update Cancel

Figure 5.2 Choosing software components to updatBlote that the components whose names begin
with a period are system libraries or configurationdirectories, and the rest are plug-in
processing tools (Morozov and Smithson, 1997). Feach component, its current and
updated version numbers, and the source of the uptlaare displayed. The user can select
some or all components which will be downloaded, otpiled, and installed.

In conclusion, the ongoing development of the Sdllecframework shows that the entire
scope of critical issues facing geophysical dataagament and processing can be solved
in a consistent manner. The codes are highly iatedr streamlined for data- or
computationally-intensive seismic and non-seismoc@ssing and modeling, make broad
provisions for parallelization and remote (web &) operation, and incorporate some

of the key community software. With the newly deyedd web distribution service, the
codes can also be developed by multiple authorseanhlessly maintained up to date.

33

6 Towards a comprehensive open-source system for
geophysical data processing and interpretation

Used with permission from the CSEG

The discussion in this Chapter is based on therpdpeChubak et al (2007a and b), in
which we emphasized the new aspect of the IGeolsagacas a framewaork for
geophysical code development. With such key wdgitas the GUI, 3D/2D viewer, and
software maintenance system in place, it was shtbatpractically any type of
application (data processing, modeling, inversgraphics) could be described and
efficiently implemented in this framework. The papelow outlined this design
philosophy and presented several examples of gcagpion.

6.1 Introduction

Because of its critical importance for modern datquisition and analysis, geophysical
software development has grown into a major ingusfiany companies, from majors
such as CGG, Landmark, and Schlumberger to numesraa#ier vendors provide
software solutions and services for numerous agpbios. Traditionally, geophysical
software has been highly specialized for certaplieations (e.g., field QC, reflection
seismic processing, modeling, or interpretatiddpwever, with growing concentration
of computational power, the present and futuredsen geophysical software are clearly
for re-integration, allowing a researcher instartess to the entire data analysis flow.
Another important trend is the explosive growtlopén-source software developed and
supported by the community.

Our package, called SlAitp://seisweb.usask.ca/SlAas grown from a diversity of data
analysis tasks encountered in an academic envinot@ed by design, is not limited to
any of them. Since its inception in 1995, it wasdi® process reflection, GPR, and
crustal-scale wide-angle seismic data, to createndBrated Receiver Function images
of the Earth’s upper mantle, perform travel-timedelong and inversion, process seismic
records from nuclear explosions, and recently mamage a regional seismographic
network, to process gravity and air-magnetic imaged even to provide web data
services. Started initially as a multi-componemiface for CogniSeis DISCO reflection
processing package, the approach proved to be upiteie in its broad scope covering
the full spectrum of geophysical data analysis.

The open-source model is important for rapid exgeasf ideas, development, and
response to the needs of the community. The sucéeggen-source software in recent
years has demonstrated that it can meet and framy agpects exceed the quality of
commercial solutions. With fast development cyeled code contribution directly from
users, new features can be quickly implementedvatidd. This has been particularly
well demonstrated by the community developmentreentn the GNU/Linux operating
system. The demand for versatile open-source geigaiysystems is high — note that in
just nine months from November 2006, we receivest 890 requests for SIA downloads
(Figure 6.1)

34

180" -120° -60° o 60° 120" 180°
Figure 6.1 Known locations of IGeoS downloads (redots) from November 2006 to July 2007. Note
that the map was produced using the GMT programs (®ith and Wessel, 1995) integrated in

the package.

In reflection seismics, many consultants and acatteuse and write code for Stanford
Exploration Project (SEP) and particularly Seishdic'’x (SU) systems because of their
maturity and low cost. These systems are adeqoatadny single-channel applications;
however, in more complex tasks, they are strorigijtéd by linear, UNIX file-stream
based design and only basic user interfaces. Matldb its free equivalent, Octave) is
another popular solution because of its rich tox)lweadily available graphical tools and
the ease of developing new processing code. Howbladfab often shows prohibitively
poor performance in real data processing problemdsequires extensive programming
expertise for operation.

SIA system stands out among its counterparts iaraévespects. It is an open-source
solution that endeavours to ultimately provide mmpoehensive processing/interpretation
solution for the geophysical industry and acadeihiarovides efficient, dynamically-
linked common address space operation (similarisodand Promax, and unlike SEP or
SU), with significantly richer and customizable alatructures and tool interoperability.
Its code integration and C++ programming flexilgikire similar to those of Matlab. It
allows several types of code parallelization ardudes libraries and tools for managing
multi-processor processing environments. Furthdéras a parallel graphical environment
with a tightly integrated user interface and cusiaile 3D data visualization based on
cross-platform Qt and OpenGL libraries. Recerntyls for real-time data input and
seismographic network management were also addedttalso has a unique capability
of operating remotely, as a web service, and apnaatic software distribution and
updating servicehftp://seisweb.usask.ca/SIA/cs.phphese components were described
in previous publications (Morozov and Smithson, 2;99orozov, 1998; Chubak and
Morozov, 2006; Morozov et al., 2006; Morozov ef al.review; Morozov et al., 2007).

In this paper, we overview the key features thay beof most interest to geophysicists
and software industry.

35

6.2 (Not only) Seismic processing system

SIA currently is a nearly complete seismic progagsiystem, with many tools reaching
to the broader geophysical applications (ChubakMorbzov, 2006). The current system
scope includes reflection, wide-angle, and to aedagrees earthquake seismology, 2-
and 3D potential field processing and inversiorstBoript and interactive graphics.
Nearly 200 dynamically-linked plug-in tools are sty integrated with a content-
agnostic processing monitor and often between et forming sub-packages, such as
graphics, AVO, or Artificial Neural Networks. Almbany type of data can be handled
by the system making it possible to merge multga& types.

The system was originally a replacement of Disd¢lecgon seismic processing system,
and it still supports Disco-style job scripts, waveral extensions (see job examples at
http://seisweb.usask.ca/temp/examplé&sols written for Disco can also be incorporated
with virtually no modifications.

The key components of the system (the GUI, prongdtows, visualization and display
tools) operate asynchronously and communicate gfira@uParallel Virtual Machine
(PVM) interface (Figure 3.1). Because of the usB\dM, the many components of SIA
can be distributed, allowing, for example, to disite the processing load or for the
visualization program to operate on one or sewgdlcated computer systems.

6.3 Processing concept

The central concept of SIA is the abstract “proces#ow” representing a logical
sequence of data manipulation or modeling stegsmeed by “tools” connected by
structured “trace” data buffers (Figure 3.1). Thguence is recursively invoked in
reverse order, more resembling the mechanism afdbmference than data processing
(Morozov and Smithson, 1997). First, an outpuepuested from the last tool, if it
requires data from the previous tool that tool th#ampts to produce it. The processes
continues backwards through tools until there isomger any data available. Note that
the flow contains no mechanism for data propagdtiois is done entirely by the tools),
and thus no assumptions about the data types oaatkaof processing is made. As an
example, the system can take a random walk thralg@b seismic dataset (Morozov,
1998). Flows, as well as data traces and many ottjects can be transmitted across the
PVM connections (Figure 3.1) to potentially forro@nplex, parallel processing
environment.

On top of this abstract processing model, the Yahg features further enhance the
flexibility of the system:

“Trace records” (Figure 3.1) can be of variableadmrmats, sampling intervals, record
lengths, and time starts. They can contain linesaya (seismic records) or 2- and 3D
arrays representing multi-component seismic recayd2D grids used in potential-field
processing. However, traces are not required ierdat the system to operate.

36

Other types of data are broadly used and ofterodoted by new tools (Figure 3.1):
velocity models, travel-time curves, database &blArtificial Neural Networks,
inversion engines, and various graphical objects.

User-defined “trace headers” can contain variabfeany types (as in Disco or ProMAX,
and again unlike SU), but also arrays, referenc@mtabases, and functions allowing, for
example, “on the fly” computation of midpoints aadimuths based on the endpoint
coordinates.

“Tool” parameterization is unusually flexible andes trace headers, database fields,
symbolic text substitutions, and UNIX command-lipgrameters interchangeably with
constants. Many tools support structured parameterns allowing, for example, to
design custom graphical user interfaces (GUIs)uddizomposite PostScript plots. Tools
can be represented by binary codes or macro-conmsnemichbining other tools, with
coherent parameterization and optimized for a palgr task.

Some tools may not participate in the flow (Fig8rg) at all but instead provide services
to other tools. For example, the AVO tool can coteplioeppritz reflection coefficients
or Elastic Impedances for plotting, by using modgdserated by the tools producing
waveform synthetics.

In all geometry manipulations, the system is awafr¢he Earth’s shape, with several
ellipsoidal approximations or Cartesian coordinateshoose from.

All processing flows can operate from the user’'sl @kfrom parameterized batch scripts
allowing execution of complex, unattended, self«doented processing sequences.

6.4 Graphical User Interface

Constructing processing flows is greatly simplifiegla modern GUI which also provides
the utilities users expect from commercial softwareh as project management, process
monitoring and control, search, and extensive cargensitive help (Figure 3.3). The

GUI is based on the cross-platform C++ Qt libraffesn Trolltech, so that SIA can be
ported to a variety of operating systems, suchimasx, Solaris, or even OS X with only
minimal effort. In a grid or cluster environmertg configuration is also done from

within the GUI by specifying the nodes on whichaatgular flow and its components
(subflows, I/0O, display tools) is to be run. Thil®as multiple processing jobs to be run

in parallel on either a Beowulf cluster or distriéd over a peer network.

Tool names in the GUI may be context-dependenisantving summaries of their
parameters (Figure 3.3). Tools can also communtbatehanges in their parameters
during run time (e.g., from interactive editing iy user), which would be displayed and
saved on closing the job.

6.5 OpenGL/Qt 3D/2D display server

Visualization and interaction with the data is & k& many data analysis tasks.
Traditionally, geophysical software packages haenldifferentiated into “processing”
and “interpretation” systems by the role of intérae visualization in them. Processing
systems emphasize flow-based design (Figure 3ifl),special emphasis on
reproducibility of the results and batch (unattef)dexecution. By contrast, interpretation

37

systems are visualization-centred and based onvaaters (such as OpendTect,
http://www?2.opendtect.orp/In such a system, the data organization follepatial
patterns, and system operation is mostly driveddig displays and user commands.
Application of various “plug-in” tools is typicallgletermined interactively by the user,
and only a limited number of fast operations capdormed in real time.

In our visualization approach, we endeavour toeeths above differentiation between
processing and interpretation workflows and perftimem on a common software base
and user interface. Some examples are shown imd=8)2-6.6. By combining tools from
the graphics package, complex images and usefdaonésr can be defined by the user as
parts of SIA data processing flows. These imagediuen be rendered either in
publication-quality PostScript (using the interfdé@MT programs; Wessel and Smith,
1995) or by using an interactive OpenGL-based S$fpldy server. Because the content
of the display is entirely determined by the ungied processing, the display server can
implement any functionality, such as displayingsset data and performing potential-
field modeling and visualization (Figure 6.2), seis ray tracing (Figures 2.4 and 4.3),
and computing waveform synthetics (Figure 6.4hm $ame session. Through direct
access to GMT databases, the server is also alvleltmle 3D coastline base maps in its
displays (Figure 6.4). In addition, full seismiwdaother data processing capability is also
available to the interpreter through the underlyilog/-processing capability.

" . SIA viewer on localhost.localdomain

5400 5500 5600 5700 5800 5900 6000 6100 6200 X [ml *
grid-plot] (1165.76,5671.22,1113.38)|

Figure 6.2 An example of interactive 3D visualization for potetial-field interpretation. The model
shows the Precambrian basement in SE Saskatchewasl@ured by air-magnetic anomaly
(copper colouring). The surface topography is higldjhted using the “sea-land” colour

38

palette from GMT. Over 40 preset colour palettes ag available, and custom palettes (as well
as colours, line styles, and lighting) can also lefined”

39

N A viswer an localhaat, localds maln =0l x

File Help

Oy ?

Fraparty
Paint
Palette-Wp
Palette-Ws
Palgtte-Cp
Palgtte-Cs
Palztte-Fho
Layers layers -
Celurrs
Cerkaurs
Reflccters
Refl-fioat
Cells-vert
Cells-alag
Cells Fariz dulanlt -
Show rays all =
Rays forward | krays] =
Rays reverse dulaull =
Ray pal use M

Ray paletie
Sources
Dzlay Hmes | kiao
Tauwzlazity 5.7
Zero effset oep bealfael =
Bokiom ¥p E.0

Bokbom 4.6
Editara tracz &
Housz mhoo LT -
“.‘h_ Tracz rays Rcload Zquc Frint
Gravity 7 37.89, 57.64]

Figure 6.3 Wide-angle crustal ray-tracing model fran the ACCRETE wide-angle seismic experiment
(Morozov et al., 2001).

40

¥ . Bl viewer on kecalhoskbkeosldomsin

Fllz Help
ook 7
kfect T
= B trace-image
e -sucinl 12
1%
14
Valun

13

000
wiglaiva =
| amplibese -
o1 e
o
sl
Timing ire |gcluk * na
wWigde line |wiggie-line =
Fomsive All | pas-fi
Hugativa [l |reg-HIl -
Flll palethn ST et - A
n4
nz
k-]
e 1uu 200 E0 auy u10 0 o i gy Kfml ¢
laLs- g [-50.05, L8]

Figure 6.4 Display of areflectionrefraction shot seismic record. Variable-area wiglg over variable-
intensity amplitude display is selected. Note thenferactive plotting options in the Property
editor (lower left). GMT “jet” colour palette (re-i mplemented from Matlab) is used for trace
background.

41

" . IGeos on localhostlocaldomain: SKBG records

flla Halp
el D

SEarien SERAG
Drale; 20075015 Tirres 22297 4: Ampliiucle scales 39,35

= 5 10 15 20 25 an ELY 40 45 50 55 Sac ¥
Fraces, i [-1.72,62.34]

Figure 6.5 Continuous seismic record display. In tis SIA job, we load seismic data from files or
network interface, subdivide them into segments andisplay in a scrolling trace sequence.

42

] Value
ird

Editable - ;
Line default b || 52
Line palette BrBu_10 ¥
Grid:

Fill style default ki
Fill palette RWE o
Gridding 0
Gain 0.2(|*
Depth scalar 1.0
Time start 0.0
Time start

Crossline end 0

Crossline end 0
Inline end 0
Inline end o

Figure 6.6 3D seismic trace display with a floatig object property window.

The visualization system is entirely controlledtbg processing flows and is able to
render a variety of basic data types including:

Seismic traces with adjustable settings and arbitqaositioned in 3D (Figure 6.4-6.6).
Lines and surfaces with variable styles, colourakars, etc.
Bitmap-style graphics rendered on any plane oreeimeD.

Customizable line styles, colours, colour palette®s bars, labels, push-buttons, sliders,
etc. (Figure 6.5).

Complex objects (such as velocity and gravity mgdare composed of the objects
above by the corresponding tools. In addition, 1spercified coordinate transformations
are available, so that images can be rendered ltraay surfaces. This allows, for
example, drawing 3D seismic fence diagrams or wvaridisplays on the topographic
relief or on the surface of ellipsoidal Earth.

The display server operates in parallel on the sandifferent (optionally, multiple)

43

computer hosts. While interacting with the usee, sbrver also communicates with its
master processing flow, causing it to take the @yppate actions. For example, Figure
6.5 shows an implementation of real-time networadiaput control for a remote Internet
seismograph (Morozov et al., 2007). The button$tébo of Figure 6.5) are used to
control the data input by the master flow perforgnihe seismic network monitoring.

6.6 Integration with popular open-source software

Open-source and open data format design encounagieis| software integration.
Several popular academic applications proved tpdotcularly useful in our work, and
they were integrated with the SIA system using sieed tools:

The Seismic Un*x (SU)(http://www.cwp.mines.edu/cwpcodgss a free and complete
seismic reflection processing system broadly usélesacademia and by consultants in
the industry. It was incorporated virtually enyrey means of SIA tools allowing
running SU processing pipes in (remote) paralletpsses and exchanging the seismic
traces via PVM connections. In addition, severalc®des were “wrapped” into SIA I/10
interfaces making them fully compliant with the t®ym. In both cases, the SU tools
gained the advantage of the GUI, extended graphiogre powerful user interface,
parallel processing capability, and code mainteeacvices.

The classiceflectivity (propagator matrix) approach for modeling elastavefields in
1D, layered models was included in both K. J. Saidrs (Fuchs and Muller, 1971) and
Kennet's (1993) implementations. These tools agontant parts of the emerging AVO
package. Both tools have identical model descmgstiand output 3-component synthetic
seismic traces directly into the job flows (Figérd). The first of these programs was
also parallelized for operating on a Beowulf cluséad is also capable of plotting the
models and tracing travel times in them.

3D, parallel, visco-elastic finite-difference modéhg (Bohlen, 2002) was revised for
encapsulated PVM inter-process communication aregjiated with the GUI. Currently,
work is underway for providing an accurate topogragree-surface condition, 3D
model visualization, and interactive model building

The applicatiorplotmtv
(http://www.phy.ornl.gov/csep/CSEP/CORNELL/TUTORIARLOTMTV/OVERVIEW.
html) is a fast multi-purpose plotting program for \afimation of scientific data in an
X11-window environment, which also produces uslmstScript graphics. We created a
seamless interface for this application and usevtew database tables and seismic
traces. We also bundfotmtv into the standard SIA distribution.

The Generic Mapping Tools (GMT) is a collection of ~60 UNIX tools for high-quality
geoscience PostScript graphics, and particularfysisee example in Figure 6.1). It was
incorporated as one of the rendering “drivershia SIA graphics system. In addition, the
display server is also able to access GMT geoneterdatabases directly and rendering
them in full 3D using OpenGL (Figure 4.4).

Rayinwr (Zelt and Smith, 1992) is a popular travel-time oty and inversion program
for wide-angle seismic data. It was incorporatedi®ating model and travel-time

44

editors, introduction of corrections for crookeddiand ellipsoidal-Earth geometries.
Work on interactive ray-tracing in true 3D geomasryinderway (Figure 4.4).

6.7 Data processing and modeling web services

SIA is also apparently the first seismic processiygiem to operate as a web service
(Morozov et al., 2006). A standard distributiontaled on a system accessible via HTTP
(e.g.,http://seisweb.usask.ca/SIA/ps.Pplgan receive processing jobs, execute them and
return the results, currently in the form of welyg@sior files ready for download (Figure
6.7). The content of this processing is entirelgtoalled by the client. The client is even
able to upload web forms on the server and assoitiatm with processing jobs, thereby
creating custom web data or processing servicas.agproach was utilized to generate a
library of SIA processing examples, some of whidhaso executable on-line (Figure
6.7; also seébttp://seisweb.usask.ca/temp/examples

={0f x|
| &
T8« [k &
Proces: _
1 User: | Tob: | No parameters needed Run
2 Blank traces User: | Tob: [Mo parameters needed Run
\
S
3 Blank traces from database tables
Disnk fraces trorh daabaie tables
\ Parameters.
4 cep and a sinusoid’, e | Tob: | I Run
Sub-sections =i
| &
2 1-D, Global models Q- - [¥] B | Dmah oravaies €3] 30~ 1 2
Address [&] http://seisweb usask, cajtemplexamples/si0fel . job 1 B ce |Lnks »|&y -
3 3-D finite-difference I“j —I - =
*jok Blank traces | =
|2&] Provide a user name to identify the job on the 4
This generas tes 100 20-ms traces with zero samples 2
Such calls are often used in synthetic header manipulations
+call genrate 2 20
hrange ont integer 1 1 100
list the traces
*eall table
ent
< | >
& pone [[T @ mkemet -

Figure 6.7 Sample page (section “Synthetics,” largavindow) in the current library of processing
examples (http://seisweb.usask.ca/temp/examplesuch pages are generated by tool ‘expert’
included in the processing flows executed on therser. The contents of on of the sample
flows are shown in the smaller window in Disco-likéormat.

6.8 Development framework

From its inception, SIA was not intended as a cetepbroduct to serve a specific narrow
task, such as reflection seismic processing (Mar@a Smithson, 1997). Instead, the
design goal was to provide an extensible framewagable of supporting nearly any
type of geophysical data processing, modelingntarpretation. However, due to the
character of its previous applications, most of i8lkit development was so far related

45

to seismology.

The system allows its users to rapidly add newtionelity with a minimal effort. Two
principal features simplify the development witl8iA. Firstly, new modules can be
added to perform custom data processing while ggaadvantage of other tools and
extensive C++ class libraries, including Qt and @pk graphics. Secondly, tool
interactions, aided by the GUI, effectively transfidDisco-like job scripting into a
model- and process-description language. Custoenactive graphical applications can
thus be created by simply designing processingdlamd without any “serious”
computer programming.

New tools can be coded using a mixture of C, CORFRAN, and even Pascal or Java.
At the University of Saskatchewan, graduate stuglemitinely write new processing
modules for class exercises and also to further tegearch. In our experience, a
reasonably complex tool can be completed in orignadays. Templates have been
created to aid in the development process, andnplete set of compilation and linking
tools are provided. New modules are integratetl thieé system by the maintenance
utilities so that they become available from thepipical interface and provide fully
functional context-sensitive help to the user.

6.9 Automated documentation, code distribution, and
collaboration tools

Given its role as a development framework, theregttteme of SIA in recent years has
actually been code and documentation maintenanitha.alfout 600,000 lines of tightly
integrated code, special efforts are requireddoilifating development, maintaining user
documentation, and performing system integratiahtasting. Most of these services are
wrapped into a single utilitpia-update , which can be used to compile system
libraries, tools, the GUI or display packages, t®d them. The utility also creates user’s
and programmer’s documentatidnitp://seisweb.usask.ca/SIA/indexppsts examples,
and creates new user setup. First-time installagrampdate from a remote distribution
can be performed by a single callsia-install utility, which can be obtained from
the SIA installation page attp://seisweb.usask.ca/SIA/doc/install.html

To aid in decentralized collaborative developm&hé offers an automated code
distribution systemh(ttp://seisweb.usask.ca/SIA/cs.pmpodeled after open-source
projects such aapt-get andyum. Each installation may configure a list of
repositories which will be checked for updatesuaently installed or new tools. If
updates are available, the user is notified thrabghGUI and is provided with their
descriptions. When an update is selected for ilasiah, the source code is downloaded
from the server and compiled on the local systelne dntire process is automated and
controlled from within the GUI, or it can be penfioed from a command line. By
downloading source codes rather than binariessybtem is able to share tools across
many supported architectures. Further, the coderniled optimized for the hardware it
is running on (i.e. AMD, Intel, or PowerPC) ensgrithe best possible performance. The
ability to install and update code is restrictedadministrative” users, which may be
useful where there is a single installation fouanber of users.

46

Well-supported open-source code standardizatiotdallow multiple developers to
collaborate by sharing the codes in a consistehahle, and architecture-independent
manner. SIA accomplishes this by allowimy installation to be used for code
development and also to function as a code seifv@isandard web server, e.g., Apache,
is available). In such a way, source codes devdltpzlly become immediately
available for installation on all subscribing syste Finally, the author of a new tool can
arrange for automatic “bug reports” related to that to be received by the code web
service above.

6.10Conclusion

SIA appears to be the most full-featured seismacg@ssing system which could be of
interest to researchers in both academia and indutst strengths are in its unique
processing concept, broad scope, modern intenfabast core, very general
visualization system, and parallelization capabsit Since new ideas in seismic
processing constantly require new software, Slépismized to serve as a concurrent
development framework allowing new processing téolse rapidly developed while
leveraging the existing code and graphical utgitie dramatically reduce the time and
effort required. The display system seamlessly lesnoioth 2D and 3D data while
offering some unique features and allowing extemsiystomization by the user without
the need for programming. A code update and digioh system provides easy and
automated access to software updates and allovesogers to share their work without
the need for installation or maintenance utilities.

As a closing remark, note that unlike the FreeUSHAT, SEP, Seismic Un*X, SIOSEIS,
and of course their commercial analogs, practiealigrything of the above was
accomplished without any financial support. Theadepment was carried out in support
for different projects in several areas of geoptgsinited with a firm belief that the
software can and shall be well-designed, integratedsed, and shared.

47

7 Rebuilding a Regional Seismographic Network in
Southern Saskatchewan

In this and the following Chapters, | touch on aafic application of the software
development described above. Chapter 7 is basdteqraper by Morozov et al. (2007),
in which we present the need for seismic monitonm§askatchewan and the current
status of rebuilding the network by using new d@ilgihstruments. | built the first two
instruments myself, and proposed an Internet soéwalution described in Chapter 8
(based on Chubak and Morozov, 2008). This systemotislirectly related to 1GeoS
package; however, | designed an Internet data egehprotocol, and my supervisor (I.
Morozov) wrote several 1GeoS tools to use it.

Currently, two stations are functional near Saskatevith seismic data continuously
transmitted to the lab, processed in real-time®gdS flows, and saved on disk and
regularly backed up. Note that such level of auttonaappears to be unavailable with
commercial hardware and software solutions proviftadexample, by Nanometrics and
employed by the Canadian Seismograph Network. Hewewch automation is critical

in our environment, in which there are no persomegularly monitoring the seismic data
acquisition.

7.1 Introduction

Despite its large territory, Saskatchewan showsildrg) paucity of seismic monitoring
stations compared to practically any other arddarth America. Saskatchewan is the
only province in Canada not contributing seismitada the Canadian National
Seismograph Network (Figure 7.1). Although minimgl getroleum exploration
companies routinely conduct local micro-earthqualomitoring for hazard mitigation

and assessment studies, no regional seismic dsyatematically collected for research
purposes. In the 1960’s-70’s, the Department ofddat Defence operated a station near
Creighton for atomic blast monitoring. Since 197&jional stations were operated by the
University of Saskatchewan at four different smeshe surface and two underground
(Agrium and Colonsay mines). The Geological Surve€anada operated the Big
Muddy station from about 1982 to 1990. Only on¢hefse stations remains functional at
present.

48

EartheuakesCanada
EalsmesCanaca

Canadian National Seismograph Network

B Extremely Shart # Extremely Shart
Pericd Period Digital Dialup
< High Broadband "/ Regional Analogue

Figure 7.1 Map of the Canadian National SeismographNetwork (from Natural resources Canada
web site,http://earthquakescanada.nrcan.gc.bite the gap in station coverage across
Saskatchewan.

The paucity of seismic recording in Saskatchewaxgained by several reasons. First,
together with Manitoba, the province is among st seismically active in North
America (Figure 7.1). The largest known earthquakeaskatchewan was the M =5 1/2
event in 1909. Since the start of instrumental idiog in western Canada in the mid
1960’s there have been 13 known natural earthquaBexe 1978 there have been more
than 40 mining induced earthquakes, some causingrrdamage. Also, the strength of
the seismology groups at the University of Saslat@mn has traditionally been in active-
source, exploration, and engineering seismics. tdaiimg several continuously
monitoring seismic stations requires a well-devetbmfrastructure and constant
attention by skilled personnel. Both of these regments are contingent on funding
which had only been intermittent for earthquakextesd projects.

Earthquakes of magnitudes over about 2.5 are raimmon in Saskatchewan (Figure

49

7.2). In recent months, several such earthquakes rgeorded by the existing U of S
station and local networks operated by potash rginompanies. To accurately locate
seismic events, invert for their source parametard,interpret their nature, one needs
wider-aperture and lower-frequency seismic recardiman the one used for mitigation of
mining hazards. In addition, analysis of such daeads to utilize the observations from
other national and international networks. At preés&SC location accuracy in southern
Saskatchewan is £20 km, and the analysis of smalits is poor.

b T e e s

EARTHQUAKES IN CANADA

P {h;';_'} M M“_é‘ i

Cras.ae @se.es

TREMBLEMENTS DE TERRE AU CANADA .

THh v lume aroa g tusa. @049 .;u
i "‘ : 5 ™ 3 i

Figure 7.2 Map of Canadian earthquakes (from NaturbResources Canada web site,
http://earthquakescanada.nrcan.gc.ca

Apart from monitoring the local seismicity, a pemeat, modern, and robust seismic
network in Saskatchewan would help filling the gageismic data coverage across
Canada (Figure 7.1). The existing U of S stati@poads to earthquakes of magnitudes
~4-5 from the continental margins of Canada anohftiee Arctic (Figure 7.2), and events
of over n=5.5 — 6 are typically well-recorded worldwide. Et®eas small as m = 2.5 can
be recorded anywhere in Saskatchewan

Strong seismic events occurring at large dista(@@$50°) can be used not only to
analyse the deep interior of the Earth but algoréwide valuable information about the
structure of the crust and even the crystallinebent. Modern data analysis techniques
allow inversion for near-station structures thagmibe of interest for diamond
exploration and for petroleum industry. Thus, bingshe so-called Receiver Function
technique, one can combine recordings of diffecemiponents of ground motion to
measure the thickness of the crust and of basimsads. Crustal anisotropy measured
from teleseismic recordings provides informationw@itectonic stress. Also, as it has

50

been shown recently, cross-correlation of the seiSnoise” (Bensen et al 2008) from
several stations can be used to invert for crstalur case, basin) structures.

Another important aspect of expanding seismic noomig activities is education and
outreach. Real-time seismic recording can be niwwambined with live and interactive
displays showing seismic data, recent earthquakebalso providing various geology-,
science-, and resource-related information. Susplalys are becoming increasingly
popular and are getting recognized as invaluablieatenal tools. We have recently set
up such a display near the Museum of Natural Seeatthe U of S (Figure 7.3).

For all aspects of seismic monitoring mentionedvebérom real-time monitoring to
advanced analysis and computer displays, fullytaigecording and automated data
handling is required. The existing U of S stati@anBergheim (Figure 7.4) is analogue
and uses a helicorder (paper drum recorder) tadesmsmic waves. Although simple
and robust, this system does not allow reproducifdhe records in a form suitable for
further analysis or remote display. Recent upgmgadirthis station to a digital Taurus
seismograph by Nanometrics did not completely kestilis problem, as the system still
requires extensive and continuous effort for sa@ng displaying the records.

Here, we describe our approach to rebuilding thed B seismographic network,
converting it into modern digital technology, amdeigration with live public-interest and
educational displays. We decided to pursue thislgphauilding our own low-cost
instruments and by developing all the necessartyaoé for data acquisition, processing,
and display. In conclusion, we outline our plansife further expansion and
enhancement.

L TR P ——— iﬁ-'-‘.

Figure 7.3 Display of earthquake-related informatiom at the Department of Geological Sciences,
University of Saskatchewan. This live web-based TWisplay constantly shows the recent

51

global earthquakes, live seismograms from our SKBGtation (Figure 7.5), as well as
presentations about the Earth, tectonics, and seistogy.

7.2 Low-cost Internet seismograph

To achieve an affordable and low-maintenance soidbr seismic data acquisition, we
built our own system using components (PAR4CH 4oeaamplifier, 24-bit A/D
converter, and a GPS clock) manufactured by Synierieesearchhtp://symres.com
The use of this hardware allowed reducing the cbste system by ~8 times compared
to a Taurus while providing similar, industry-standl data quality. The seismograph
boards were connected to a mini-ITX PC computernideing parts (fans or hard disk
drives) were used in order to reduce vibration thigiht influence the recordings. The
equipment was mounted inside the upper half oéal $tarrel, with its bottom part
occupied by three 1-Hz geophones by Geospace @igd). For temperature control
during the cold season, two long-life incandestight bulbs are used (Figure 7.4).

)

Figure 7.4 Left: the seismic station during testingRight: the seismograph assembly, with its lid ope
Thermal insulation and electrical bulbs are used fotemperature control during
Saskatchewan winters.

Open-source Linux operating system was installethercomputer, with device drivers
provided by Symmetric Research. We also wrotehallntecessary software for data
acquisition and transmission to the data collectamility via a standard Internet (wired

or wireless) connection. The software consistswef main parts: 1) data collection server
installed on the acquisition computer (Figure 72)web server allowing remote control
of the acquisition software; 3) data relay progiastalled on a Linux computer in the
lab, 4) ring buffer for continuous disk data staagnd 5) data analysis and visualization
software.

The data acquisition server program constantly toasthe network for an available data

52

recipient (typically, the relay program) and setidsseismic records to it in near-real
time. In addition to the records of ground movem@&RS timing data (to sub-1 ms
accuracy) and state-of-health information (sucthegemperature inside the system
compartment) is transmitted. If the network is dotine server stores the records and
attempts resending them when the connection istablished. An Apache web server
installed on the same computer allows viewing attirgy parameters of the recorder
remotely, by using any web browser. Finally, whesrevhazardous system condition
develops (e.g., temperature dropping out of rarthe)system sends an email to alert the
administrator and if needed, performs data backuppaepares for shutdown.

The data relay program receives a continuous stodatata from the field unit and re-
broadcasts it to one or several clients intereisteldta analysis or display. The program
also saves the records continuously to disk irfdhm of a “ring buffer” allowing

random or circular access to the data by otherrprog. A single relay program can serve
any number of field data servers, and in the fytiingill also be able to send the data to
the national data centres and to other interestetiep. State-of-health information is also
saved in a database immediately as it is received.

The data analysis software is very flexible, broagcope, and takes advantage of the
power of SIA seismic processing systems that we loeveloped over a number of years
(e.g., Morozov and Smithson, 1997; Chubak and Mwmrp2006;
http://seisweb.usask.ca/SIAThe system currently includes about 200 toolsifda
filtering, inversion, and display, and it was use@ number of applications ranging from
exploration, crustal and earthquake seismologheaanalysis of gravity and air-magnetic
data (Li et al., 2005), 3D data visualization, aven web services (Morozov et al.,
2006). By adding a module for network data inpug,abtained a variety of ways for
displaying or saving the records. The specific cador data display is made by the user
by designing the appropriate combination of SIAltd&igure 3.3). In addition, the
software is being continuously expanded by the Ggsips graduate students as a part of
their class and research projects.

7.3 Towards a digital seismic network near Saskatoon

The existing and proposed sites for the new U digBal seismograph stations are
shown in Figure 7.5. SKBG is the station locatethmU of S Geophysics test site near
Bergheim. The station is equipped with a 3-compbohamometrics Taurus seismograph,
the same as used by the national POLARIS consoihuBanada
(http://www.polarisnet.ca/)Currently, the station is using three 1-Hz L-4 gj@anes,

which we intend to upgrade to a broad-band semstbrei future. The data from Taurus
are streamed to the U of S via a radio Intern&t in additional vertical-component
analogue channel still also operates at this statio

Station SKWC is being installed at the time of thigting (April 2007) at the White Cap
Dakota First Nation grounds south of Saskatoomdiition to recording regional and
global seismicity, the purpose of this statioroiptovide additional information for
monitoring ammunition blasting activities at then@dian Forces depot near Dundurn.

53

Power connection for this station was providedh®yForces, which are also committed
to partial maintaining of the power and 24-houreléss Internet service to it. Sites for
the third station are sought near Colonsay (Figusg this location would be optimal for
triangulation required for accurate location oss&c events.

Aberdee.n
A SKBG

5
®°Saskatoon

Colonsay
.

’Visoount
Pike @
Lake ASKWC ~, | Proposed
Dun.durn zelma
219
20 km
i

Figure 7.5 Existing and proposed digital seismic ations near Saskatoon.

For consistent operation of a seismic network synall University program, a high
degree of automation is required. Our goal is tuea® continuous and generally
automatic data acquisition, archiving, event dedectgeneration of event bulletins,
extraction of event windows, and displays. To aohithis, we have programmed an
STA/LTA (Short-Time-Average/Long-Time-Average) eveletection algorithm and also
methods for record extraction and display. Theltegucontinuous seismic records as
well as time windows of extracted events can bevshon the public seismic display
(Figure 6.5).

With small cost, high degree of automation, expaiiitya and flexibility, the approach
appears to be ideal for further expansion of tigéoreal seismic network in southern
Saskatchewan. Additional stations would improveahiity to detect and accurately
characterize seismic event, and contribute impbdata for student training and public
interest and education. With the design descrilbed@ only quiet locations with AC
power and Internet connections are needed, anldenait these requirements is difficult
to satisfy in Saskatchewan. Currently, we are logkor three types of land owners who
may, in our opinion, be interested in and beneditf installation of such seismic
stations: 1) mining (particularly potash) operasip®) high-speed Internet provider
networks; and 3) rural high schools. The last esthoptions is particularly attractive, as
it would provide the students with a unique oppoitiufor hands-on research related to
their land, to participate in an exciting, quarita natural science, and at the same time
to make tangible contribution to the global acyivitr monitoring earthquakes.

54

8 Low-cost continuous seismic acquisition utilizing
open-source software

In this Chapter, in | describe the design of themegraph that | built recently, with
particular emphasis of the real-time Internet datghange. The Chapter is based on the
paper by Chubak and Morozov (2008). The key pahtbie approach are its low-cost
(the complete system costs about 6 times lessab@parable Taurus seismograph by
Nanometrics), open-source software, high degresiteimation, and seamless data
streaming in a customizable data processing angsasnaAs a sample of such analysis, |
present my implementation of the so-called STA/L&ent detection algorithm.

8.1 Introduction

Continuous monitoring of regional seismicity is ionfant for locating earthquakes and
the mitigation of earthquake hazards. In Saskatahethis is currently only performed
by our group at the University of Saskatchewan.aivie at a robust, low-maintenance
and low-cost solution with full automation of datequisition, archiving, and processing.
This is achieved through building inexpensive nohiéinnel digital data loggers and
utilizing open-source software to transmit the ocwndus records over a TCP/IP network
connection.

The system consists of three components: acquigiida server (located near the
geophones), data relay program (located in theaatae) and client programs used for
displaying, processing, and saving the data. Varaients are available, from simple
display tools to a direct feed into the IGeoS pssaey package. This allows practically
unlimited flexibility of processing applied to thheal-time data stream, from immediate
archiving to creating ring buffers, identifying exe, or producing various data displays.
Web server is used to display system status aracgeisition parameters. Currently, the
system has two operational stations near SaskaBaskatchewan, with more stations
planned.

As a seismic monitoring system operated by a sbhallersity group with, our
hardware/software solution is designed to be abtdiand fully automated hardware and
software combination for collecting, transmittipgocessing and storing seismic data.
While use of the system has been focused on angeagi a regional (1Hz) seismograph,
the network design and concept of direct feed pmozessing should also work well in
reservoir monitoring. The modular approach (semeday and client) and documented
interface allow new clients to be written to int&tgr real time data in other applications
which could be useful even outside of the seismomunity.

Considerable effort was spent to ensure that teesyuses a minimum of network
bandwidth which makes it suitable for slower intgriinks found in remote locations. To
keep operating and maintenance costs at a minirtiengata is processed without the
need for an operator and events are automatia®lytified. Most significantly, the data
can be loaded directly into a full-featured geoptglsprocessing package (1GeoS). This
allows a great deal of flexibility in the procegsischeme. The software is open-source
(Linux-based), and the hardware is build from staddtomputer components and an

55

inexpensive commercially available 24-bit A/D systeith GPS timing.

~g===pp TCP/IP Connection
sover (Y

/ Client
Server P

Server a~

Figure 8.1 Seismic data network design

~ Client

Three distinct components comprise the softwaesves, relay, and client (Figure 8.1).
Communication is handled over a standard TCP/I®eor& connection. The server
component is located at site of the data acquisdind transmits the digitized data to the
relay. Multiple servers can connect to a singlayr&hich can pass the data unaltered to
the clients or first perform some timing synchratian. Clients can connect to the relay
and retrieve a list of available servers. Theythem able to specify which servers to
receive the data stream from.

8.2 Server

The data acquisition server program is automayicaéirted on boot, makes a network
socket connection to the relay program and begim®mmunicate the digitized values,
time marks and GPS coordinate and time stringhesdre retrieved from the hardware.
Timing data may arrive significantly before or aftee samples which they describe, and
thus it is necessary to synchronize the data béfseised. However, in order to keep
the server as simple and robust as possible, tiehsynization is done off site, by the
relay or client programs.

If the network connection is broken, the data caistored locally for later transmission
or retrieval via a web browser. When the netwarkdmes available again, the
connection with the relay is reestablished autorali, and the transmission continues.
Optionally, the server can back up all data tocalldisk in addition to transmitting it.

To monitor the state of health (currently tempengtof the system, we use the lwire
devices from Dallas Semiconductor. A model DS98&Tal to 1wire adapter is used and
a DS18S20 digital 1wire thermometer. The servénswoe polls the thermometer at a
configurable interval and transmits a “state oflti8gackage to the relay which includes
the time and temperature. If the temperature iside of the configured high or low
alarm points, an email is also generated and sdhetspecified addresses.

56

8.3 Relay

The data relay program runs continuously at tha danter computer and accepts
network connections from all data servers and febemts in the system (Figure 8.1). It
has two main functions: re-distributing data andcsyonizing the timing. It acts as a
distribution point for the data which reduces thad on the internet connections from the
servers. With this design, only a single streasdsdo be sent from the remote site
regardless of how many clients are receiving tha.d€ommunication is formatted using
a small set of XML tags.

Each server makes a connection to the relay, itkeshtiself as a data source and provides
site information. The available site names are th@nsmitted to any clients that

connect. Clients connect to the relay and spedifat type of data (e.g., raw or time-
synchronized) they expect. Synchronization i©agaished by creating a data queue

for both the time marks and the corresponding datkets in the relay.

8.4 Clients

Implementation of a client for this system is rislalty simple: the program must only be
able to make a socket connection over a netwotlkeaaelay and send and parse a few
XML tags. We have written a simple client whiclsglays the real-time data from
selected channels. Another client program sendeletime data into the 1GeoS
processing package (formerly SIA, Morozov and Ssaith) 1997; Chubak and Morozov,
2006), which allows to perform any standard seigmnicessing and leverage the more
than 200 tools currently in the package. Because#ta is fed directly into a processing
package, the result is limited only by the selecbbtools made by the user. For
example, we use processing flows which save thetdad RAID concurrently with
performing filtering and preprocessing and applyangSTA/LTA (Short Term Average /
Long Term Average) event detection. 1GeoS clientpssing flows can also use 3D
OpenGL visualization or PostScript to display tla¢agd and to produce various types of
file outputs, such as formatted in ASCIl, SAC, &&Y.

8.5 STA/LTA Event Detection

Seismic events are auto detected by a SIA toatmig an STA/LTA algorithm. First,
“short” and “long” window lengths are defined degerg on the wavelength of interest.
Testing has shown that using a short window of @gdprately % of the expected
wavelength and a long window of 100 times largexdprces useful results though a great
deal of precision is not required. Depending anrthise in the system it may be useful
to have the short window cover several completealengths. In this way short noise is
less likely to trigger an event. The signal is sthed to reduce false triggers from noise
and the average absolute value of the signal culzéd for both the short and long
windows to produce the short and long term avera@esing an event the Short Term
Average (STA) increases much faster than the LargiTAverage (LTA) so the ratio
STA/LTA can be used to indicate an event. Whervidiee of STA/LTA passes a
defined threshold an event is declared.

57

8.6 Current Installation

Mining and other human activities account for mahthe seismic events in
Saskatchewan. These are of interest to the pabidn many cases to the exploration
community as well. The first system we installedbicated on the Whitecap Reserve
south of Saskatoon, SK in response to concernsémshic activity from a nearby
military base might be affecting the structurakurity of the buildings (Figure 7.5;
Morozov et al., 2007). A second station is locatethe UofS Geophysics test site east
of Saskatoon. From this location we have recaettprded a large, g3.2, seismic
event near Esterhazy, SK (Figure 8.2). We are ntlyrooking for a site for the third
station of the network, which is necessary for aatmuevent location (Figure 7.5).

" . IGenS on kocalhost. localdomsin Esterhazy ewent Dec 23, 2007 (mb 3,21

Station SKBG: Also ez PRpieattquakesianada. wrcango caraert aqiaie Tiata 71323 1554 C6f index .pho
FOOALERA 1%:5530; amplibade scale: 2463

0 et
I1BOC3. 17

Figure 8.2 Esterhazy, SK event on Dec 23, 2007 reded at station SKBG in Figure 7.5

8.7 Conclusion

While network monitoring systems are not new, wiele that the use of open-source
software combined with commodity hardware provildescost and robust solution for
remote seismic acquisition. The unique (to ounkiedge) integration of the data stream
into a processing package provides features anribiliey not found in other systems.
Finally, as a complete solution for seismic moritgrit is necessary only to provide the
appropriate hardware and a location with poweriatetnet to begin collecting and
analyzing data.

58

9 Discussion and Conclusions

As a result of the contributions from this Thesisyelopment of IGeoS package is
sufficiently complete for it to be useful to geopgigysts working on a variety of tasks.
However, IGeoS’s contribution to the community nmay be limited to its current
functionality as it provides a framework to develognage and maintain geophysical
software. By developing code within a framewoHhe heed to duplicate existing work is
avoided and the installation and maintenance oé eedimplified.

The graphical interface significantly reduces thwant of time a new user needs to
spend to learn the scripting language. Since tuglgtionality and documentation are
provided through the interface, it is possible tddband modify flows without the need
for extensive training.

3D visualization is provided through an abstracdgenGL implementation which allows
IGeoS to serve not only as a processing systeragah interpretation and display
application. Semi-custom applications can be eckhy using the processing flow to
link widgets such as buttons or sliders to the iad other tools. This allows
researchers to rapidly produce an application whitlhperform tasks not found in other
packages without the need for any programming.

To effectively acquire and transfer seismic datanfremote locations, a collection of
network tools were written. Their modular natultevas the tools to function
independently or within the IGeoS framework. Wineed with 1GeoS, the data stream is
incorporated directly into the seismic processiowfso that standard processing steps
can be applied to the data. Multiple streams @artalyzed within a single processing
flow to locate events.

Finally, as most extensive development efforts goject paved the way for much more
potential further developments. Although 1GeoS appéo be conceptually complete
with all major components and functionally designggdnificant work is still required to
maintain and enhance many of the features witherctide. Additional tools for PVM,
multi-processor, and multi-core parallelization cié@ be developed. Many of the
existing tools could benefit from the new interaetand graphical functionalities, and
many new data analysis approaches may emergeecaslaaf the enhanced capabilities
of the package. As an example, the developmennefia3D refraction statics package
(Jhajhria, 2009) has been largely facilitated keydbility to analyse the first-arrival
travel-time surfaces interactively in 3D. In thalrféme data acquisition project and
exciting development would be to implement contimidata delivery to the Canadian
Seismograph Network, expanding the system, andngadatomated location and
parameter estimation of earthquakes.

59

9.1 Suggestions for further research

While IGeoS is complete in terms of providing féamk for the organization, processing,
visualization and interpretation of geophysicabdhere are numerous areas which |
would like to see enhanced. In a commercial envreamt reproducibility is of little
concern but to researchers who need to be abéptoduce results it becomes
paramount. To address the concern of these ugaeS would need to take one of two
approaches: First it could provide a strict varstontrol system on all code submissions
with a means of specifying a particular versiondse in processing. In this way it
would be possible to use the same version of catde fo reproduce an experiment. This
is the more rigorous approach but is rather cunolpeesin practice. If all code was stored
in CVS this would be readily possible but rathekasard to use. A test driven
development model is the Second approach and thesed the Madagascar software
package. All code is written with a test suite ang revisions of the code must still
produce the same output from the test suite. Whiteis a workable approach it still
does not guarantee that there are not errors whaghaffect results but not show up on
the test suite. Further it becomes difficult toreot errors or enhance a tool as the data
output may vary.

Packaging 1GeoS in some of the standard systenmsasuBPM (Redhat Package
Manager) or .deb (Debian Packkage Manager) wowdttyrimprove its availability to
end users. This requires some effort as the packagds to be continuously updated as
the linux distributions change. Another possipilg to work towards making IGeoS
available for the windows platform. The QT compuatseshould work fine but it would
currently be necessary to use an environment ssi€tygwin to provide Unix
functionality for certain functions.

60

10 References

Bohlen, T., 2002; Parallel 3-D viscoelastic finitiéference seismic modeling, Computers
& Geosciences, 28, 887-899.

Bensen, G.D., M.H. Ritzwoller, and N.M. ShapiropBd-band ambient noise surface
wave tomography across the United Stated, J. GaogalyResearch, 113

Chubak, G., and I. Morozov (2006a) Integrated Ofeunrce Geophysical Processing and
Visualization, 2006 CSEG Convention, Calgary, ABayW2006.

Chubak, G., and I. Morozov (2006b). Integratedwafe framework for processing of
geophysical data, Computers & Geosciences, 32,/767-

Chubak, G., and I. Morozov (2007). Automated maiatee of geophysical software
from distributed web repositories, Computers & Gsmrsces, 33, 835-37.

Chubak, G., and I. Morozov (2008) Low-Cost Contiasi®&eismic Acquisition Solution
Utilizing Open-Source Software, 2008 CSEG Convent(@algary, AB, May 2008.

Chubak, G., I. Morozov, and S. Blyth (2007a) Integd Open-Source Geophysical
Processing and Visualization, 2007 CSEG Conven@athgary, AB, May 2007.

Chubak, G., I. Morozov, and S. Blyth (2007b), Tosisa comprehensive open-source
system for geophysical data processing and intexjiwa, CSEG Recorder, 32, Sept
2007, 52-62.

Fuchs, K., & G. Miller (1971), Computation of syatic seismograms with the
reflectivity method and comparison with observasio@eophysical Journal of the Royal
Astronomical Society, 23, 417-433.

Kennett, B. L. N., 1993; Seismic Waves Propagaitiotratified Media, Cambridge
University press.

Morozov, |. B. (1998), 3D seismic processing moni@mputers & Geosciences, 24,
285-288.

Morozov, I. B., & S. B. Smithson, (1997), A new & for multicomponent seismic
processing, Computers & Geosciences, 23, 689-696.

Morozov, I. B., Smithson, S. B., Chen, J., and l8@#f, L. S. Generation of new
continental crust and terrane accretion in Souteeag\laska and Western British
Columbia from P- and S-wave wide-angle Seismic DAGCRETE), (2001).
Tectonophysics, 341/1-4, 49-67.

Morozov, |., G. Chubak, & S. Blyth, (in press)dractive 3D/2D visualization for
geophysical data processing and interpretation, fLibens and Geosciences,
http://dx.doi.org/10.1016/j.cage0.2008.10.085sessed Feb 15, 2009

Morozov, |., B. Reilkoff, and G, Chubak (2006). Argeralized web service model for
geophysical data processing and modeling, Compé&t&sosciences. 32, 1403-1410.

61

Morozov, I., G. Chubak, and L. Litwin, 2007. Relolilg a regional seismographic
network in southern Saskatchewan; in Summary afdhigations 2007, Volume 1,
Saskatchewan Geological Survey, Sask. Industryiress, Misc. Rep. 2007-4.1, CD-
ROM, Paper A-1, 8p.

Morozov, 1.B., & K. G. Dueker (2003), Depth-domairocessing of teleseismic receiver
functions and generalized three-dimensional imgdiudjetin of the Seismological
Society of America, 93, 1984-1993.

Stockwell, Jr. J. W. (1999), The CWP/SU: Seismi¢URackage, Computers &
Geosciences, 25, 415-419.

Templeton, M. E. & C.A. Gough (1999), Web Seismit*kl Making seismic reflection
processing more accessible, Computers & Geoscic6e285-288.

Wessel P., & W. H. F. Smith (1995), New versiornhe& Generic Mapping Tools
released, EOS Trans. American Geophysical Unid).329.

Zelt C.A. & R.B. Smith (1992), Seismic travel-tirmeversion for 2-D crustal velocity
structure, Geophysical Journal International, I@334.

62

11 Appendices

11.1Appendix A. Job example: 2D ray tracing model and GMT

base map in 3D (Figure 4.4)

As an example, we present fragments of the SIAugddl to produce the 3D display
shown in Figure 4.4 We use the traditional DISC@esjob format, in which parameters
are identified by the positions of the correspogdaib-delimited input fields. Tool
descriptions start at tokens “*call’. Note thatltparameterizations can be extensive and
are structured by providing multiple “parametetslisdentified by the corresponding
keywords. Some of these lists are indicated by cematies in the example. Lists
themselves may also span multiple lines and cort@mnplex parameterization of the

display.

T T R R
ACCREETE model in 3D

B T R R T R B R T R T R
#HH#### Job set-up. In particular, use kilometers fo

T R R R
*setup

noapp

units km km

#H#### load the profile track line and midpoints fr
BT R R R
*call readtab table x-profile

X real 1
lat float
lon float

file all pc-coords.txt
*call readtab table midpoints

lon float
lat float 1
z float
file all ../MAP/midpoints-rev.table
z 0. # draw midpoints at z=0.0

load the interpolated Moho depth grid

BT R R R
*call readtab map moho

lon float 1

63

HHHHHHH]
HHHHHH

r distance units
BB

om ASCII files
BB

H#H

lat float 2

z float
argrang lon -131.3 0.01 111
argrang lat 54.6 0.01 61

file all moho_depth.xyz

#HHHHE create graphic elements
B T R I R B T R R #H#

*call graphic
backgr black
foregr black

line and fill styles:

line solid 1 gray line-shore
line solid 1 white line-borders
line solid 1 blue line-rivers
line dash 1 melon line-grid
fill none blue fill-wet

fil none blue fill-lakes

palette for Moho depth:

backgr -same-

foregr -same- # foreground of the same color as to
the palette

#palette pal-moho gmtrainbow 25.0 31.0

#palette pal-moho gmtjet 25.0 31.0
palette pal-moho buor 25.0 31.0

buttons for interactive operation:

button button_trace Trace rays

pc-section exec trace

button button_save Save model

pc-section exec save

button button_summary Print summary

pc-section exec print.summary

button button_display Display data

pc-section print This option only prints in this de mo!

Define 3D projectors
T #it

64

p of

this will project 2D images onto profile cross-

*call view3d fence3D
fence x lon lat x-profile
geom sphere km

this will project 2D images onto the surface:
*call view3d surface3D
geom sphere km

#H### Create surface image

B T R T R B R T T T R
*call image surface-maps

range-x -131 -130 # longitudes

range-y 55 56 # latitudes

map of the Moho

line none
surface lon lat z moho
pal-moho z # fill colors based on z (depth)

scatter plot of midpoints:

line points 3 red line-midpoints
3dtabs lon lat z
midpoints

#i#HHH#H Create 2D Accrete Portland Canal section
HHHH AR
*incl pc-image.inc

#itHHHE Assemble the 3D image

BT R R R
*call image acc-3Dimage

rangec3 400 # 200-km viewing box

list selectable views, the first is the default:
view From above -131.5 55 0. -20 10.
view Globe 0 0

place 2-D cross-section in "fence" projection:
object pc-section fence3D

place 2-D sirface maps in "surface" projection:
object surface-maps surface3D

65

section:

1.0

draw in a GMT basemap at "high" resolution:
coast-134 -129 52 58 high

surf land fill-dry

surf sea fill-wet

surf lakes fill-lakes

bndry shore line-shore

bndry natnl line-borders

bndry state line-borders

bndry marine line-borders
rivers r line-rivers
grid line line-grid 1.0 1.0

Moho depth color bar:

cscale vert 0.1 0.8 0.05 0.2 Moho depth (km)
pal-moho

image lighting:

light 0 0 1000 0.9 llumination

diff white
amb white
spec cyan

buttons for interactive operation:

object button_trace
object button_save
object button_summary
object button_display

animation (autoplay):

a-rot0.1 60 30 1.0

#HHHE start the display server
B T R R T B R T R R

*call gui
acc-3Dimage

request docking windows:

66

dockers

otree canvas # object tree
otree graph # graphics DB tree
prop # property editor

Note that the job above uses an includeddgdemage.inc containing a description

of the 2D velocity cross-section along the Portl@aahal line. This 2D image is projected
onto a “fence diagram’ along the line of cross-eecand combined with the 2D
distribution of a source-receiver midpoints anaastline plot from GMT. Various
editable items, such as coordinates, palettesyrmland selections of displayed items do
not need to be described in the job and are availliomatically from the

corresponding image objects. Finally, animationation) about a tilted axis in 3D is also
illustrated.

Scriptpc-image.inc used in this example, and which can also be utilfipe a
purely 2D cross-section display, is shown below.

graphics elements

*call graphic

backgr black

foregr black

palette draw-vpl

-0.3 red 0 blue
0 white 0.3 red

palettes for velocities

palette draw-vp gmtseis 55 84

palhue draw-vs color cont 2 5. 4 0.05 .95

line solid 1 green layers

line solid 1 blue cells-vert

line solid 1 yellow cells-diag

line solid 1 red rays

fill solid green velocity

RAYINVR 2D ray-tracing tool, loading model from file accrete.v.inl

67

*call rayinvr edit ps Accrete
vin vp accrete.v.inl
summary

Form the 2D velocity/interface cross-section im

*call image pc-section #i##H plot the model and ra
range-x -150 200

range-y -50 100

#lip-y

axis-x 100 500 annot border-pen
X (km)

axis-y 10 100 annot border-pen
Depth (km)

velmod Accrete

layers layers
cells vert cells-vert

cells diag cells-diag

VS draw-vs

vp draw-vp

cscale vert 0.8 08 0.05 0.2 Vs # colour bar
draw-vs

cscale vert 0.6 0.8 005 0.2 Vp # colour bar
draw-vp

68

age

ys

11.2Appendix B. Interactive multi-threaded seismic processing

(Figure 4.6)

The following example illustrates seismic tracegassing including a simple user
interaction. When a button is pressed, one relabided and displayed in three
different forms: as a time series, spectrogram,anglitude spectrum (Figure 2.6 that
the three transformations are implemented usingoamations of various filtering SIA
tools, and thus they can be easily customized éy#er. Also note that the same tool

“plotrt” is used to generate all three displays.

T T R R R
Simple trace plot example used in real-time vie

Seismic traces are read in from a file, their h

synthetic noise added,

and the wiggles, spectrogram, and spectra displ

B T R B R T R T R

#iHHHHE begin with optional text definitions

*define

model majin20 # model name

noise 0

compn 1 # component number to plot

outfile refl-{model}-0.0001-1.01.sia

#H## the following is printed on the screen when

*info
Real-time plotting demo for {model}

#HHHHE graphics settings and custom elements

*call graphic

buttons talking to tool “dskrd” below

button buttonl Next trace
dskrd.1 exec nextl

button button2 Restart input
dskrd.1 reset

69

T
wer development.
eaders listed,

ayed in 2D
HHBHH R T

the job is started

custom colors, lines, fills

color0.2 04 0.6 trace-color # custom color
line solid 1 yellow wiggle-line

line solid 1 red spectrum-line

fill solid red trace-pos-fill

fill solid blue trace-neg-fill

palette ("hot," ported from GMT)

backgr -same-

foregr -same-

palette pal-ampl gmthot -1 1

#H#HHHE load the records, askthe input to "hold" (wa it for button
pressed)

*call dskrd outfile
hold

#HH#H## pre-process the records (cut at 1000 msec, ¢ ount, time-shift,
#HHHHHE extract one component, apply AGC etc.)

*call modify 1000
*call count chan
Note the evaluation of trace header expressions:

*call hdrmath
eval real shift=1000*(chan-1)

*call static shift apply

*call convert

extract 1

seqind comp integer 1 1

*callagc 300

*call noisegn gauss noise 8 20 80 120

70

Create a data entry point named 'traces_ready'
for spectral analysis and other steps

*call tee traces_ready

recut the traces into 100-ms segments to fit in
display

*call cuttrc 1000
*call table *
chan x shift timstrt _tsint_ _tnsam_ lasttr

form the trace display sequences

to multichannel

*call plotrt traces right

channel 5 1000 0.05 0.9 0.75 -0.08 peak 0.5
axis-t bl 100 500 9%1.0f 1

*end keep # remove traces, keep header formatting

T R R R
#H### Begin spectral analysis

T R R R
Start by reading from 'traces_ready' point

*calltap copy traces_ready

replace the traces with their log(Amplitude Spe

*call trcmath
spectr

g
measure the peak amplitude and shift the amplit

*call trcmath
ampl 90 100 mean ampl

*call trcmath
subtr ampl

71

HHHHHH

HHHHHH

ctra)

udes down by it

Form spectra display

*call plotrt spectra right
combine replace

channel 1 100.00.05 0.07 0.7
axis-t bl 10 20 %21.0f 1

*end keep # remove spectral traces

B T R T R B R T R T R
##HH## Begin spectrograms analysis

B T R T R B R T T T R
Read again from 'traces_ready' point

*calltap copy traces_ready

Form Rihaczek's instantaneous spectrum

*call spctrgr rih 50
frange 10 2 100

Form spectrogram display.
Note that the spectragram traces are multi-comp

*call plotrt spcgram right
channel 1 1000 0.05 0.3 0.75 0.2
#axis-t bl 100 500 9%:1.0f 1

*end # remove spectral traces

B T T R B R T R T R
Build the final display

BT R R R

*call image trace-image

rangen2 1

traces traces.O

display wg

wiggle line wiggle-line
wiggle fill-pos trace-pos-fill
wiggle fill-neg trace-neg-fill

72

0.15 peak 0.8

HHHHHHHHHHAH

HHHHHHHHHHAH

onent

peak 1.0

HHHHHHHH

BHHHHHHHR A

traces spectra.0

display wgva

wiggle line spectrum-line
wiggle fill-pos trace-pos-fill
#wiggle fill-neg trace-neg-fill
traces spcgram.0

#display wg

display Vi

wiggle line wiggle-line
wiggle fill-pos trace-pos-fill
wiggle fill-neg trace-neg-fill
wiggle fill-pal pal-ampl

object buttonl

object button2

Start the viewer (or connect to a running viewe r

*call gui gui-traces

trace-image

layout horiz

dockers # request docking windows
otree

prop

11.3 Appendix C. Hierarchy for IGeoS viewer class
Ul_X Dvelmod

Ul_X_SURFACE Struct Reference
[Core library]

#include < ui X surface. h>

73

Pywhd_LISTENER | Sla_OPERATION

t
|

UI_OBJECT

I

UI_X

T

UI_X_LINE

T

| Ul_¥_SURFACE |

t
l . l . |
RSGLI_MODEL Ul_X_2DMOD UI_X_COLORBAR UX_GRID |
t t
| l _ l |

Ul_¥_2DGRAVMOD Ui_X_2DVELMOD LOAD_SEIS | LOAD_SEIS3

I

TRACERZ_RUN

T

R&YINYR_MODEL

Figure 11.1 Inheritance diagram for Ul_X_SURFACE

List of all members.

Detailed Description
Surface.

It can also be rendered as a line (wireframe)

Public Member Functions

Ul X SURFACE (const char *name=NULL, int
type=UIX_SURFACE)

default constructor

74

virtual EVALTYPE

virtual int

virtual const float *

virtual const char *

virtual const char *

virtual const char *

virtual const char *

virtual boolean

Ul X SURFACE (RECORD SURFACE *r, USER MAP * ut,
int type=UIX_SURFACE)

client

Ul X SURFACE (RECORD VELMOD *r, int
type=UIX_2DVELMOD)

client

Ul_X_SURFACE (int tid, int tag)

server-side

Ul_X_SURFACE (int tid, int tag, int type)

server-side, without reading the object, for use in derived classes

eval (const char *object, const char *function, AEVALTYPE
¶ms)

Evaluates a custom function named 'function’ in 'object’, with
parameter ‘params'.

rendering type () const

type of the object used during rendering Not ethat all objects
derived from this class are rendered as UIX_SURFACE

matrix () const

Returns the OpenGL matrix to use for this object.
name () const

Name for the image directory, etc.

comment () const

tool tip

status () const

status line displayed on MouseOver

status (const Ul X CURSOR &p) const

Message appearing in the status bar when the cursor is pointing
at the object.

set_style (const char *item, const char *feature, const char

virtual boolean

*name)
set custom line style

begin drawing (int drawing)

Method called by the viewer when the drawing #drawing' is about
to start building.

75

virtual void

virtual boolean

virtual void

virtual boolean

end drawing (int drawing, const char *error_message=NULL)
After the object is painted in GL, the xviewer uses this method to
report success (if error_message=NULL) (or error otherwise) to
the caller.

call (int type, int instruction, const char *param=NULL)
Interactive actions corresponding to SIA_MODULE::call().
clear_all ()

delete all segments of data points

closed () const

virtual boolean

returns TRUE for a closed line (loop)

constant style () const

POINT3

returns TRUE if the style (color, lines) needs to be determined
only once for the current line segment

center (int) const

virtual boolean

virtual boolean

void

void

virtual POINT3

Center of the grid (in object units; only one segment).

segment (int segm, int typ)

sets the segment number for the line-drawing functions
point (int ind, POINT3 &vertex)

line or surface point ind of the current segment

point (int ind, double &_x, double &_y, double &_z)

triang (intind, POINT3 &c1, POINT3 &c2, POINT3 &c3, int &fill)

returns corners of the triangle ind and its fill style for plotting

normal (int n)

virtual const char *

SIA RGB _COLOR const &

float

virtual ARRAY< Ul X GRELEM * >

Following a call to triangle(.

string (int ind, POINT3 &pos, SIA TEXT STYLE &style)

returns text string #'ind' that needs to be plotted on the object.
fill color (int type=0) const

fill color for the current triangle (the one for which triangle(.
shininess () const

returns shininess of the triangle called last

graphic () const

returns pointers to all graphic elements (fonts, colors, palettes)
used by the object

76

virtual boolean

virtual boolean

pack ()
pack and unpack all data for PVYM

unpack ()

virtual boolean

pack create ()

virtual boolean

pack and unpack data during initialization

unpack create ()

virtual boolean

(with UIO_CREATE instruction)

pack params (int item, int number)

virtual boolean

pack object parameters (usually smaller blocks dependent on the
context)

unpack params ()

virtual void

virtual boolean

void

virtual void

virtual void

virtual void

virtual void

virtual void

virtual void

void

unpack object parameters (usually smaller blocks dependent on
the context)

properties ()

rebuild property arrays

properties (const Ul X CURSOR &cursor)
Build property list for cursor at the specified point.
send (int signal=UIO_SET)

submit the edited data to the mirror

print ()

debugging printout for xviewer

set line_style (int tag)

set line style for the object

set fill _style (int tag)

set fill style for the object

set palette (int tag)

set color palette for the object
set font (int tag)

set color palette for the object
set text style (inttag)

set color palette for the object

set fill ()

77

virtual boolean

Helper: set the internal fill style and color from the current value
of _fill.

mouse action (const MOUSE EVENT &cursor)

Public Attributes

passes to the image mouse pressed event.

USER MAP* ut
the surface table (MAP)
AHEADER x
AHEADER vy
AHEADER z
coordinates in the table to plot
AHEADER Ip
palette argument parameter for paletted lines
AHEADER fp
palette argument parameter for paletted fills
CHARSTR name
name of the object
REAL EDIT gain

Protected Member Functions

virtual boolean

void

void

virtual POINT3

additional gain applied to palette fills

build (const POINT3 &box_min, const POINT3 &box_max,
double res)

set sampling box and resolution and rebuild this object only
(without children)

offsets (const AHEADER &h, byte *&b, _LONG &o01, _LONG
&02)

Set record start and byte offsets for field h.

paletted fill (double level)

Sets custom fill color based on 'level'.

normal (int ix, int iy) const

78

Protected Attributes

void

void

virtual void

int

int

int

int

int

int

int

int

int

Returns unit normal vector at node (ix,iy).

interp (const POINT3 &p11, const POINT3 &p12, const
POINT3 &p22, const POINT3 &p21, double x, double y,
POINT3 &v)

interpolate the values at (x,y) from p11, p12, p22, p21, assuming
they ar taken at (0,_split) intervals

interp (double x, double y, SIA MATERIAL &m)
similar to interp() - interpolate material properties

precompute (int i1, int i2)
compute p11,p12,p21,p22 and the corresponding m's

N =

dimensions of the current grid

_skipl

_skip2

numbers of skipped grids points while rendering
_nis

_n2s

numbers of plotted points along _n1 and _n2
_i1

_i2

_it

current cell index

[N

0X

o
X
N

=

3

o
N
=

o
N
N

byte offsets for coordinates

79

_LONG _olpl
_LONG _olp2
_LONG _ofpl
_LONG _ofp2
POINT3 ex
POINT3 ey
POINT3 ez
directional vectors for mapping (x,y,z)
byte* _rx
byte* _ry
byte* _rz
records of the fields
byte * rfp
byte * rlp

palette parameter records
FILL STYLE EDIT _fill
fill style tag
PALETTE EDIT fill palette
optional palette tag used for fill styles
SIA FILL STYLE* _fs
current fill style

SIA COLOR PALETTE* palf

Pointer to the actually used fill palette.

INT EDIT split

If >= 0, this is the number of subdivisions of the smallest cell
during rendering.

int celll
int cell2

subindexes of the interpolation cell

POINT3 pill
POINT3 pil2

80

POINT3 p21

POINT3 p22

cell corners for interpolation of the current segment

SIA MATERIAL m11
SIA MATERIAL m12
SIA MATERIAL m21
SIA MATERIAL m22

material at cell corners for interpolation of the current segment

Ul X PROPERTY EDIT info [2]

non-editable properties

Friends

class RECORD SURFACE

class RECORD VELMOD

class RECORD GRID TABLE

class UIP X TRACES

class RECORD COLORBAR

Constructor & Destructor Documentation

Ul_X_SURFACE::Ul_X_SURFACE (const char * name = NULL,

int type = Ul X_SURFACE

default constructor

Ul_X_SURFACE::UI_X_SURFACE (RECORD SURFACE * r,

USER MAP * _ut,

int type = Ul X_SURFACE

client

81

UI_X_SURFACE::UI_X_SURFACE (RECORD VELMOD * r,

int type = Ul X_2DVELMOD

client

Ul_X_SURFACE::Ul_X_SURFACE (int 19

int tag

server-side

Ul_X_SURFACE::Ul_X_SURFACE (int tid,
int tag,

int type

server-side, without reading the object, for usddrived classes

Member Function Documentation

virtual EVALTYPE UI_X_SURFACE::eval (const char * object,

const char * function

AEVALTYPE & params

) [inline, virtual]
Evaluates a custom function named ‘function’ ifelcth) with parameter 'params'.
Reimplemented froryl X LINE .

Reimplemented iRSGLI MODEL .

virtual int UI_X_SURFACE::rendering_type () const [inline, virtual]

82

type of the object used during rendering Not etttlatbjects derived from this class are rendered
as UIX_SURFACE

Reimplemented froryl X LINE .

Reimplemented iVl _X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual const float* Ul_X_SURFACE::matrix () const [inline, virtual]
Returns the OpenGL matrix to use for this object.
Reimplemented froryl X LINE .

Reimplemented iVl X COLORBAR..

virtual const char* Ul_X_SURFACE::name () const [virtual]

Name for the image directory, etc.
Reimplemented froryl X LINE .
Reimplemented iul_ X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,

Ul X GRID,LOAD SEIS,LOAD SEIS3, RAYINVR MODEL ,RSGLI MODEL , and
TRACER2 RUN.

virtual const char* Ul_X_SURFACE::comment () const [virtual]

tool tip
Reimplemented frorll X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID, andRAYINVR MODEL .

virtual const char* Ul_X_SURFACE::status () const [virtual]

status line displayed on MouseOver
Reimplemented frorll X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID, andRAYINVR MODEL .

83

const [inline,

virtual const char* Ul_X_SURFACE::status (const Ul X CURSOR & p) virtual]

Message appearing in the status bar when the dgrpointing at the object.
Reimplemented frorll X LINE .

Reimplemented il X COLORBAR, Ul X 2DMOD, andUl X 2DVELMOD .

virtual boolean Ul_X_SURFACE::set_style (const char * item,

feature
const char *

const char * name

) [virtual]

set custom line style
Reimplemented frorll X LINE .

Reimplemented il X 2DMOD, Ul X 2DVELMOD , Ul X 2DGRAVMOD , and
RSGLI MODEL .

virtual boolean Ul_X_SURFACE::begin_drawing (int drawing) [inline, virtual]

Method called by the viewer when the drawing #'dngiis about to start building.
If this method returns FALSE, the image is not draw
virtual void Ul_X_SURFACE::end_drawing (int drawing,

const char * error_message = NULL

[inline,
) vi rtual]

After the object is painted in GL, the xviewer usigs method to report success (if
error_message=NULL) (or error otherwise) to théecal

Reimplemented frorll X LINE .

virtual boolean Ul_X_SURFACE::call (int type,

int instruction,

84

const char * param = NULL

) [virtual]

Interactive actions corresponding3®A MODULE::call() .

Reimplemented frordl X LINE .

Reimplemented iVl X 2DVELMOD , Ul X 2DGRAVMOD , RAYINVR MODEL , and
RSGLI MODEL .

virtual void UI_X_SURFACE::clear_all () [virtual]

delete all segments of data points

Reimplemented frorll X LINE .

virtual boolean Ul_X_SURFACE::closed () const [inline, virtual]

returns TRUE for a closed line (loop)
Reimplemented froryl_X LINE .

Reimplemented ivl_X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual boolean Ul_X_SURFACE::constant_style () const [virtual]

returns TRUE if the style (color, lines) needs ¢odetermined only once for the current line
segment

Reimplemented froryl X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD , and
RAYINVR MODEL .

POINT3 Ul_X SURFACE::center (int) const [inline, virtual]
Center of the grid (in object units; only one segthe
Reimplemented froryl X LINE .

Reimplemented iVl X 2DVELMOD , Ul X GRID, andRAYINVR MODEL .

85

virtual boolean Ul_X_SURFACE::segment (int segm

int typ

) [virtual]
sets the segment number for the line-drawing foneti
Reimplemented froryl X LINE .

Reimplemented il X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
LOAD SEIS3, RAYINVR MODEL ,RSGLI MODEL , andTRACER2 RUN.

virtual boolean Ul_X_SURFACE::point (int ind,

POINT3 & vertex

) [virtual]
line or surface point ind of the current segment
Reimplemented frorll X LINE .

Reimplemented ivl_ X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID, RAYINVR MODEL , RSGLI MODEL , andTRACER2 RUN.

void Ul_X_SURFACE::point (int ind
double & _x,
double & _y,
double & _z

)
Reimplemented iRAYINVR MODEL .
. g . ind

void Ul_X_SURFACE::triang (int
POINT3 & c1,
POINT3 & c2,
POINT3 & c3,
int & fill

86

)

returns corners of the triangle ind and its fijlistfor plotting

virtual POINT3 Ul_X_SURFACE::normal (int n) [virtual]

Following a call to triangle(.

..), orpolygon(), this method returns the directional cosines (weittors normal to the surface) at
its n-th vertex

Reimplemented froryl X LINE .
virtual const char* Ul_X_SURFACE::string (int ind,

POINT3 & pos,
SIA TEXT STYLE & style

[inline,
) vi rtual]

returns text string #ind' that needs to be plottedhe object.
Reimplemented froryl X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID,LOAD SEIS3, RAYINVR MODEL , andRSGLI MODEL .

SIA RGB COLOR const& Ul_X_SURFACE::fill_color (int type=0) const

fill color for the current triangle (the one for igh triangle(.

..) was called most recently). 'type' specifiedtipe of color: 0 - the "emitted" light; 1 - reszen
to ambient light; 2 - response to diffuse light;/&sponse to specular light;

float Ul_X_ SURFACE::shininess () const

returns shininess of the triangle called last

virtual ARRAY<UI X GRELEM*> Ul_X_SURFACE::graphic () const [virtual]

returns pointers to all graphic elements (font$yrsp palettes) used by the object

87

Reimplemented froryl_X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID, RAYINVR MODEL , andRSGLI MODEL .

virtual boolean Ul_X SURFACE::pack () [virtual]

pack and unpack all data feVM
Reimplemented frorll X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID,LOAD SEIS,LOAD SEIS3, RAYINVR MODEL , andRSGLI MODEL .

virtual boolean Ul_X SURFACE::unpack () [virtual]

Reimplemented frorll X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID,LOAD SEIS,LOAD SEIS3, RAYINVR MODEL , andRSGLI MODEL .

virtual boolean Ul_X_SURFACE::pack_create () [virtual]

pack and unpack data during initialization
Reimplemented frorll X LINE .

Reimplemented il X 2DVELMOD , Ul X 2DGRAVMOD, Ul X GRID,LOAD SEIS,
LOAD SEIS3, RAYINVR MODEL ,RSGLI MODEL , andTRACER2 RUN.

virtual boolean Ul_X SURFACE::unpack_create () [virtual]

(with UIO_CREATE instruction)
Reimplemented frorll X LINE .

Reimplemented il X 2DVELMOD , Ul X 2DGRAVMOD, Ul X GRID,LOAD SEIS,
LOAD SEIS3, RAYINVR MODEL ,RSGLI MODEL , andTRACER2 RUN.

virtual boolean Ul_X_SURFACE::pack_params (int item,
int number

) [inline, virtual]

88

pack object parameters (usually smaller blocks gt on the context)
Reimplemented froryl X LINE .

Reimplemented iVl X GRID, andRSGLI MODEL .

virtual boolean Ul_X SURFACE::unpack_params () [inline, virtual]

unpack object parameters (usually smaller blockedédent on the context)
Reimplemented froryl X LINE .

Reimplemented iVl X GRID, andRSGLI MODEL .

virtual void UI_X_SURFACE::properties () [virtual]
rebuild property arrays
Reimplemented froryl X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID,LOAD SEIS,LOAD_ SEIS3, RAYINVR MODEL , andRSGLI MODEL .

[inline,
virtual]

virtual boolean Ul_X_SURFACE::properties (const Ul X CURSOR & cursor)

Build property list for cursor at the specified i
Reimplemented froryl X LINE .

Reimplemented iVl _X 2DVELMOD , Ul X 2DGRAVMOD , andUl X GRID.

void Ul_X_SURFACE::send (int signal=U O SET) [inline, virtual]

submit the edited data to the mirror

Reimplemented froryl X LINE .

virtual void UI_X_SURFACE::print () [Virtual]

debugging printout for xviewer

Reimplemented froryl X LINE .

89

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD,
Ul X GRID,LOAD SEIS3, RAYINVR MODEL , andTRACER2 RUN.

virtual void Ul_X_SURFACE::set_line_style (int tag) [inline, virtual]
set line style for the object
Reimplemented frorll X LINE .

Reimplemented iVl _X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual void Ul_X_SURFACE::set_fill_style (int tag) [inline, virtual]
set fill style for the object
Reimplemented frorl _X.

Reimplemented iVl _X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual void Ul_X_SURFACE::set_palette (int tag) [inline, virtual]
set color palette for the object
Reimplemented froryl_X.

Reimplemented itvl_X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual void Ul_X_SURFACE::set_font (int tag) [inline, virtual]
set color palette for the object
Reimplemented froryl _X.

Reimplemented iVl _X 2DVELMOD , andUl_X 2DGRAVMOD .

virtual void Ul_X_SURFACE::set_text_style (int tag) [inline, virtual]

set color palette for the object

Reimplemented froryl X LINE .

void Ul_X_SURFACE::set_fill ()

90

Helper: set the internal fill style and color frahe current value of _fill.

[inline,

virtual boolean Ul_X_SURFACE::mouse_action (const MOUSE EVENT & cursor) virtual]

passes to the image mouse pressed event.

Returns TRUE if the image has handled the eveRAWSE if it should be interpreted by the
viewer. The default)l_X behavior is to pass the event to the sub-objects.

Reimplemented froryl_X LINE .

Reimplemented iVl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD , and
RAYINVR MODEL .

virtual boolean Ul_X_SURFACE::_build (const POINT3 & box_min,

const POINT3 & POX-max

double res

) [protected,
virtual]

set sampling box and resolution and rebuild thjseatonly (without children)
Reimplemented froryl X LINE .

Reimplemented ivl X COLORBAR, Ul X 2DVELMOD , Ul X 2DGRAVMOD , and
LOAD_ SEISS.

void Ul_X_SURFACE::offsets (const AHEADER & h,

byte *& b,
LONG & ol
LONG & 02

) [protected]

Setrecord start and byte offsets for field h.

void Ul_X_SURFACE::paletted_fill (double level) [protect ed]

Sets custom fill color based on 'level'.

91

virtual POINT3 Ul_X_SURFACE::normal (int '*

int iy

) const [protected, virtual]

Returns unit normal vector at node (ix,iy).
The vector is orthogonal to the surface after agailito GL space.

Reimplemented itll_X GRID.

void Ul_X_SURFACE::interp (const POINT3 & P11

const POINT3 & P12

const POINT3 & P22

const POINT3 & P21

double X,
double 2
POINTS & v
) [protected]

interpolate the values at (x,y) from pl1, p12, g2, assuming they ar taken at (0,_split)
intervals

void Ul_X_SURFACE::interp (double X

double y

SIA MATERIAL & m
) [protect ed]

similar tointerp() - interpolate material properties

il

virtual void Ul_X_SURFACE::precompute (int

92

int i2
) [protected, virtual]

compute pl11,p12,p21,p22 and the corresponding m's

Reimplemented iVl X GRID, andLOAD SEIS3.

Friends And Related Function Documentation

friend class RECORD SURFACE [friend]

Reimplemented froryl X LINE .

friend class RECORD VELMOD [friend]

friend class RECORD GRID TABLE [fri end]

friend class UIP_X TRACES [fri end]

friend class RECORD COLORBAR [friend]

Member Data Documentation

USER MAP* Ul X SURFACE::ut

the surface table (MAP)

AHEADER Ul X SURFACE::X

AHEADER Ul X SURFACE:y

AHEADER Ul X SURFACE::z

coordinates in the table to plot

AHEADER Ul X SURFACE::Ip

palette argument parameter for paletted lines

AHEADER Ul X SURFACE::fp

93

palette argument parameter for paletted fills

CHARSTR Ul X SURFACE:: name

name of the object

REAL EDIT Ul X SURFACE::gain

additional gain applied to palette fills

int UL X SURFACE:: nl [protected]

int UL X SURFACE:: n2 [protected]

dimensions of the current grid

int U X SURFACE:: skipl [protect ed]

int U X SURFACE:: skip2 [protect ed]

numbers of skipped grids points while rendering

int UL X SURFACE:: nls [protected]

int UL X SURFACE:: n2s [protected]

numbers of plotted points along _nl1 and n2

int Ul X SURFACE:: il [protected]

int U X SURFACE:: i2 [protected]

int UL X SURFACE:: it [protected]

current cell index

LONG Ul X SURFACE:: ox1 [protected]

LONG Ul X SURFACE:: ox2 [protected]

LONG Ul X SURFACE:: oyl [protected]

LONG Ul X SURFACE:: oy2 [protected]

94

LONG Ul X SURFACE:: 0zl [protected]

LONG Ul X SURFACE:: 0z2 [protected]

byte offsets for coordinates

LONG Ul X SURFACE:: olpl [protected]

LONG Ul X SURFACE:: olp2 [prot ect ed]

LONG Ul X SURFACE:: ofpl [protected]

LONG Ul X SURFACE:: ofp2 [protected]

POINT3 Ul X SURFACE::ex [prot ect ed]

POINT3 Ul X SURFACE::ey [prot ect ed]

POINT3 Ul X SURFACE::ez [prot ect ed]

directional vectors for mapping (x,y,z)

byte* Ul X SURFACE:: rx
[protect ed]

byte * Ul_X SURFACE:: ry [protect ed]

byte * Ul X SURFACE:: rz [prot ect ed]

records of the fields

byte * Ul X SURFACE:: rfp [protected]

byte * Ul X SURFACE:: rlp
[protected]

palette parameter records

FILL STYLE EDIT Ul X SURFACE:: fill [protected]

fill style tag

PALETTE EDIT Ul X SURFACE:: fill palette [protect ed]

95

optional palette tag used for fill styles

SIA FILL STYLE* Ul X SURFACE:: fs [protected]

current fill style

SIA COLOR PALETTE* Ul X SURFACE:: palf [protect ed]

Pointer to the actually used fill palette.

INT EDIT Ul X SURFACE:: split [protected]

If >= 0, this is the number of subdivisions of #rallest cell during rendering.

If <0, "pixel registration” is used, with paintedlls centered on the map points.

int UL X SURFACE::celll [protected]

int UL X SURFACE::cell2 [protected]

subindexes of the interpolation cell

POINT3 Ul X SURFACE::p11 [pr ot ect ed]

POINT3 Ul X SURFACE::p12 [protected]

POINT3 Ul X SURFACE::p21 [pr ot ect ed]

POINT3 Ul X SURFACE::p22 [prot ect ed]

cell corners for interpolation of the current segie

SIA MATERIAL Ul X SURFACE::m11 [protected]

SIA MATERIAL Ul X SURFACE::m12 [prot ect ed]

SIA MATERIAL Ul X SURFACE::m21 [protect ed]

SIA MATERIAL Ul X SURFACE::m22 [pr ot ect ed]

material at cell corners for interpolation of therent segment

Ul X _PROPERTY EDIT Ul X SURFACE::info[2] [pr ot ect ed]

96

non-editable properties

The documentation for this struct was generated from the following file:

e include/ui X surface.h

97

