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ABSTRACT 
 

The Anaphase-Promoting Complex (APC) plays an important role in cell cycle 

progression. This evolutionarily conserved multi-subunit ubiquitin ligase is responsible 

for targeting proteins that hinder passage through mitosis and G1 progression for 

ubiquitination and proteasome-dependent degradation. Our laboratory has previously 

linked the APC with mitotic chromatin metabolism, as APC mutants were shown to 

exhibit impaired chromatin assembly. Chromatin assembly occurs when appropriately 

acetylated histones are deposited onto DNA. To date the only chromatin assembly factor 

linked to the cell cycle is the evolutionarily conserved CAF-I, a three-subunit complex of 

Cac1, Cac2 and Msi1. CAF-I associates with the histone chaperone Asf1, which first 

presents histones H3 and H4 to the histone acetyltransferases (HATs), Gcn5 and 

Rtt109, for acetylation. Following acetylation the histones are then passed on to CAF-I, 

which facilitates chromatin formation. Defective chromatin assembly has been linked to 

mitotic defects, leading to chromosomal rearrangements and aneuploidy. In addition to 

chromatin assembly, histone modifications have been linked to transcriptional activity 

and mitotic progression. The molecular mechanisms employed by the APC to govern 

chromatin biogenesis are unknown. In this thesis project, a modified genetic screen was 

performed to identify HAT and histone deacetylase (HDAC) mutants that interacted with 

APC mutants in the budding yeast Saccharomyces cerevisiae. This thesis focuses on 

the genetic and biochemical interactions observed between the APC and the HATs, Elp3 

and Gcn5. As the majority of the proteins involved in chromatin assembly and histone 

modification are evolutionarily conserved, the insights obtained from the studies 

presented here utilizing the budding yeast S. cerevisiae should be directly applicable to 

research in human cells. 
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Via Western assays, this thesis demonstrates that yeast cells harboring mutations to the 

APC exhibit altered histone acetylation levels as well as altered total histone levels. Our 

genetic screen found that the temperature sensitive apc5CA (chromatin assembly) mutant 

genetically interacted with a number of HATs and HDACs. Combining the apc5CA allele 

with deletion of the genes ELP3, GCN5, HDA1 or SAS3 worsened the growth of the 

apc5CA mutant, whereas deletion of HOS1, HOS2, HOS3 or SAS2 improved the growth 

of the apc5CA mutant. Consistent with the genetic interaction results, increased 

expression of genes encoding the HATs Elp3, Gcn5 and Rtt109 (binds to Asf1) rescued 

the apc5CA temperature sensitive phenotype. The temperature sensitive phenotype of 

the apc5CA mutant was also rescued by increased expression of the genes encoding the 

CAFs Asf1 and Msi1 (a CAF-I subunit), as well as those encoding histones H3 and H4. 

These results suggest that increased deposition of acetylated histones is beneficial to 

APC function. Further analysis demonstrated that the APC and the HATs Elp3 and Gcn5 

interact in the same pathway: cells lacking ELP3 or GCN5 accumulated in mitosis, 

whereas cells lacking both accumulated in G1 regardless of whether the APC was 

mutated or not. Additionally, increased APC5 expression partially rescued the severely 

slow growing elp3∆ gcn5∆ double mutant. Elp3 and Gcn5 do not activate the APC, as 

the APC target Clb2 remained unstable in elp3∆ gcn5∆ cells. Our analysis suggests that 

Elp3, Gcn5 and the APC work together to promote mitotic progression. However, as 

increased expression of ELP3 or GCN5 causes cells to arrest in G1 this may reflect a 

need to degrade Gcn5 and/or Elp3 to exit G1. This is consistent with previous findings 

that show Gcn5 is required to transcribe genes necessary for mitotic exit. Using protein 

degradation assays we determined that Gcn5 is unstable during G1 in an APC 

dependent manner. Furthermore, wild-type Elp3 modification patterns are dependent on 

various APC subunits, the E2 Ubc1 and the proteasomal ubiquitin receptor Rpn10.  
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This thesis presents a model where the activities of Elp3 and Gcn5, along with the APC, 

promote mitotic exit and G1 progression, but that Gcn5, and possibly Elp3, must be 

degraded to allow progression into S-phase. The APC is further linked to chromatin 

assembly in that the APC physically interacted with the CAFs Asf1 and Cac2 (a CAF-I 

subunit). This interaction with Cac2 still occurred in the absence of Asf1. The literature 

has genetically linked Cac2 with Gcn5 and here my findings demonstrate that Cac2 and 

Gcn5 physically associate. Taken together, the data presented in this thesis suggest that 

the APC may bring the proteins involved in chromatin assembly and histone modification 

into close proximity in order to facilitate and possibly optimize chromatin assembly and 

subsequently genomic stability. 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

 

1.1. Chromatin metabolism 

Chromatin metabolism begins with the proper post-translational acetylation of histones 

followed by the deposition of those acetylated histones onto DNA to form one unit of 

nucleosomal DNA, or the nucleosome. The nucleosome, which is the fundamental 

structural component of chromosomes, consists of 147 bp of DNA wrapped twice around 

a nucleosome core particle (2 copies each of histones H2A, H2B, H3 and H4; Luger et 

al., 1997; Richmond & Davey, 2003). Multiple nucleosomes strung together like ‟beads 

on a string‟ make up chromatin (Kornberg, 1974). Chromatin is progressively packaged 

and/or folded to eventually form a fully condensed chromosome. Chromosomes undergo 

severe gross morphological changes throughout each cell cycle and it is during mitosis 

that the segregation of properly folded chromosomes plays a key role in maintaining 

genomic stability. This process is necessary in order for a perfect copy of the genome to 

be passed from mother cell to daughter cell (reviewed in Felsenfeld, 1978; Belmont, 

2006; Thompson et al., 2010). Without the highest level of fidelity in chromatin 

metabolism, genetic inheritance would not be possible. The temporally ordered 

sequence of chromatin packaging, and virtually all events that involve DNA thereafter, 

are governed by histone modifications (reviewed in Kurdistani & Grunstein, 2003; Krebs, 

2007). In higher eukaryotes, defects in chromatin metabolism are associated with cancer 

and other disease states (reviewed in Misteli, 2010; Thompson et al., 2010). This thesis 

deals with the first steps in chromosome assembly, specifically how histone modification 

and deposition is regulated using a model organism, the budding yeast Saccharomyces 
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cerevisiae. As many of the proteins involved in chromatin assembly and histone 

modification are evolutionarily conserved, the findings from S. cerevisiae can be directly 

applied to research in higher organisms. Previous work in our laboratory has identified 

the critical cell cycle regulator, the Anaphase Promoting Complex (APC), as a regulator 

of both histone modification and mitotic chromatin assembly (Harkness et al., 2005; 

Turner et al., 2010). The role of the APC, an evolutionarily conserved ubiquitin-protein 

ligase, in regulating chromatin metabolism will be the major focus of this thesis. 

 

1.1.1 Early understanding of Chromatin Assembly 

As early as 1947, chromatin was known to be composed of DNA and proteins called 

histones (Mirsky & Ris, 1947). In 1965 Littau and Colleagues demonstrated that histones 

were responsible for holding chromatin threads together (Littau et al., 1965). Acid 

extraction of histones from calf thymus nuclei resulted in loosening of the chromatin, 

while the re-addition of the extracted histones was observed to restore its compact 

structure. At this time it was also understood that the core histones existed in chromatin 

in equimolar numbers. However the mechanisms of how, or even if, histones interacted 

with each other remained elusive. In 1974 Kornberg and Thomas determined that 

histones exist in solution as heterocomplexes (Kornberg & Thomas, 1974). Histone H2A 

was shown to form dimers with histone H2B while histones H3 and H4 came together as 

tetramers. These heterocomplexes were formed in the absence of DNA yet it was 

thought that these associations would also occur in chromatin as a solution of DNA, 

H2A/H2B dimers and H3/H4 tetramers formed complexes that had X-ray patterns 

identical to that of native chromatin (Kornberg & Thomas, 1974). Furthermore, work 

performed using electron microscopy demonstrated repeating units in chromatin (Olins & 

Olins, 1974; Oudet et al., 1975). In 1974 it was hypothesized that, like „beads on a 
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string‟, particles consisting of DNA wrapped tightly around histone complexes were 

evenly spaced along the DNA strand (Kornberg, 1974; Olins & Olins, 1974). 

 

The experiments that demonstrated that histones and DNA could come together to form 

chromatin were performed under non-physiological conditions, and suggested that 

chromatin was a static self-assembling structure (Kornberg & Thomas, 1974; Oudet et 

al., 1975). Prior to the first demonstration of chromatin assembly under physiological 

conditions in 1977, experiments were performed using salt gradient dialysis starting at 

non-physiological ionic strengths (≥1M NaCl) (reviewed in Laskey & Earnshaw, 1980). 

As the salt was dialyzed away, nucleosomes formed on the DNA strand (Peterson, 

2008). Using a cell-free system of SV40 DNA combined with purified histones and 

unfertilized Xenopus egg supernatant, chromatin assembly was accomplished under 

physiological ionic strength (Laskey et al., 1977). Micrococcal nuclease digestion of the 

assembly products produced DNA segments of multiples of 200 bp, which is identical to 

the digestion pattern of native eukaryotic chromatin. The requirement of an additional 

factor was demonstrated as histones, DNA and a nick-closing enzyme were unable to 

form chromatin under physiological conditions until a small amount of egg extract was 

added to the reaction. By fractionating the cell-free supernatant it was determined that 

an acidic protein binds histones before transferring them to the DNA (Laskey et al., 

1978). Subsequently, this protein was named „nucleoplasmin‟ as it is localized in the 

nucleoplasm (reviewed in Laskey & Earnshaw, 1980).  

 

It has been noted that chromatin assembly factors are required for structured chromatin 

assembly to occur. Early in vitro experiments exhibited highly disordered insoluble 

aggregates as they contained only DNA and excess histones. It was theorized that 

chromatin assembly factors are required to mediate the interaction between the DNA 
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and histones. In fact, the addition of simple acidic molecules such as RNA, poly(glutamic 

acid) or poly(aspartic acid) led to ordered nucleosome arrays and prevented insolubility. 

Under physiological conditions, in vitro reactions containing excess purified chicken 

erythrocyte histones and SV40 plasmid DNA were fully assembled in the presence of 

poly(glutamic acid) or poly(aspartic acid) (Stein et al., 1979). Assays using Drosophila 

embryo extracts found that addition of fractions containing large amounts of various 

types of RNA were capable of assembling chromatin (Nelson et al., 1981). Interestingly, 

the most efficient assembly of chromatin occurred when RNA, poly(glutamic acid) or 

poly(aspartic acid), were present at a weight equal to that of histones, suggesting that it 

is the competition for histones that results in the ordered assembly (Stein et al., 1979; 

Nelson et al., 1981). 

 

The early experiments using Xenopus egg and Drosophila embryo extracts 

demonstrated chromatin assembly in the absence of DNA replication and therefore 

outside of S-phase. In addition, further characterization showed that this chromatin 

contained basal variants of histones but not S-phase specific histone variants (Wu & 

Bonner, 1981; Dilworth et al., 1987). In 1985 it was reported that a nuclear extract was 

required for supercoiling of replicated DNA (Stillman & Gluzman, 1985). It was later 

discovered that a specific factor from these nuclear extracts was required for DNA 

synthesis coupled to chromatin assembly (Smith & Stillman, 1989). Chromatin Assembly 

Factor-I (CAF-I) was purified from the human 293 cell line and was shown to be required 

for chromatin assembly associated with DNA synthesis. An additional factor, termed 

RCAF (replication-coupling assembly factor), was later identified to also be required for 

replication-associated chromatin assembly (Tyler et al., 1999). RCAF was shown to be 

comprised of Asf1 (Anti-silencing function 1) and acetylated histones H3 and H4. Since 
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then Asf1 has been shown to participate in both replication-dependent and replication-

independent chromatin assembly (Green et al., 2005). 

 

1.1.2 Regulation of Chromatin Assembly  

 

1.1.2.1 Role of Histones in Chromatin 

Chromatin, repeating units of histone octamers each wrapped with 147 bp of DNA 

(Luger et al., 1997; Richmond & Davey, 2003), is organized into increasingly complex 

structures until the completely folded metaphase chromosome is created (Kornberg & 

Lorch, 1999; Woodcook & Ghosh, 2010). Histones are highly basic proteins with two 

domains, a globular core and a “highly dynamic N-terminal tail” and are some of the 

most conserved proteins across evolutionary boundaries (Mardian & Isenberg, 1978; 

Kornberg & Lorch, 1999). The globular core is responsible for histone/histone and 

histone/DNA binding while the protruding tails are heavily modified by a variety of post-

translational modifications: acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation and ADP-ribosylation (reviewed in Peterson & Laniel, 2004). These tail 

modifications have been associated with a variety of cellular processes such as DNA 

synthesis, transcriptional control, DNA repair, chromatin assembly and chromosome 

condensation. The occupancy of nucleosomes has been found to be lower at active 

promoters than at inactive promoters (Bernstein et al., 2004; Lee et al., 2004; Pokholok 

et al., 2005) with nucleosomes being removed from the DNA upon gene promoter 

activation (Reinke & Hörz, 2003; Boeger et al., 2004). This removal likely increases the 

accessibility of the transcription machinery by exposing naked DNA. Unregulated 

chromatin formation has been associated with aging and a variety of diseases, such as 

cancer. Therefore understanding the mechanisms that regulate chromatin formation is 
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crucial to understanding the onset and progression of disease and aging (reviewed in 

Enomoto & Berman, 1998; Kurdistani & Grunstein, 2003). 

 

Following DNA replication during S-phase, naked DNA is an available target for every 

DNA binding protein in the cell. Thus, replication-dependent chromatin assembly is a 

vital process within the cell that establishes a silent, closed chromatin conformation that 

helps to prevent aberrant gene expression (discussed in Loyola & Almouzni, 2004). 

Replication-independent chromatin assembly can also occur, which is tightly associated 

with DNA repair (reviewed in Linger & Tyler, 2007). Interestingly, replication-dependent 

and -independent chromatin assembly is believed to follow clearly different pathways 

(Tagami et al., 2004). CAF-I is active in the presence of DNA synthesis while the HIR 

(Histone regulation) family of chromatin assembly factors are active in its absence. S. 

cerevisiae encodes two HIR genes while there is only one gene, HIRA, present in higher 

eukaryotes such as Xenopus and human. This division of labor was first demonstrated in 

experiments where Xenopus extracts were depleted of either HIRA or the CAF-I subunit 

p150 and incubated with intact or UV-treated plasmid DNA. The newly repaired UV-

treated DNA represents replicated DNA while the intact plasmid represents DNA not 

undergoing replication. Extracts lacking CAF-I were defective in replication-dependent 

chromatin assembly but were still able to assemble chromatin in a replication-

independent manner. The opposite occurred in extracts lacking HIRA (Tagami et al., 

2004). Using HeLa cells the same study found that the replication-dependent assembly 

complex was comprised of all three CAF-I subunits (p150, p60 and p48) as well as 

histones H3.1 and H4. The replication-independent assembly complex contained HIRA 

and the histone variant H3.3, but did not contain p150, p60 or H3.1 (Tagami et al., 

2004). It should be noted that even though S. cerevisiae does contain some histone 

variants, the genome only contains one form of histone H3, which is similar to the 
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vertebrate histone H3.3 variant. Interestingly both complexes contained p48 and the 

histone acetyltransferase Hat1. The finding of both Hat1 and p48 coexisting in the same 

complexes highlights the importance of histone acetylation to histone deposition. In fact, 

it was shown that acetylation of the histone H4 tail is necessary, as mutations that 

prevent acetylation resulted in defective deposition and growth (Ma et al., 1998).  

 

The majority of chromatin assembly occurs immediately following DNA synthesis. This is 

the most important step in chromosome building as it establishes proper histone/DNA 

interactions that allow higher order chromatin packaging and segregation later in the cell 

cycle. Chromatin assembly occurs in a two-step manner with the H3/H4 tetramer being 

deposited onto the DNA first, followed by the addition of two H2A/H2B heterodimers 

(Smith & Stillman, 1991). Interestingly, solutions of DNA and H3/H4 have been found to 

form complexes that appear similar to chromatin; whereas solutions lacking either H3 or 

H4 are unable to form any chromatin-like structures (reviewed in Felsenfeld, 1978). 

Chromatin assembly assays using Drosophila extracts identified two fractions capable 

of, as well as required for, efficient assembly of chromatin (Bulger et al., 1995). One 

fraction contained CAF-I, the other contained the evolutionarily conserved nucleosome 

assembly protein 1 (Nap1; Bulger et al., 1995; Ito et al., 1996). NAP1 binds H2A/H2B 

dimers in the cytoplasm and acts as a histone chaperone (reviewed in Adams & 

Kamakaka, 1999; Tyler , 2002). H2A/H2B dimers are transported from the cytoplasm to 

the nucleus as cells progress through the G1/S transition (Ito et al., 1996). The assembly 

of the H2A/H2B dimers into the maturing nucleosome is likely facilitated by their binding 

affinity for DNA/H3/H4 complexes being higher than their affinity for Nap1 or naked DNA 

(Nakagawa et al., 2001). 
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1.1.2.2 Regulation of Histone Levels 

Cells need to actively monitor histone levels as excess levels of free histones are toxic 

(Gunjan & Verreault, 2003). Experiments that alter the stoichiometry of histone pairs 

result in chromosome loss (Meeks-Wagner & Hartwell, 1986). This is possibly because 

unregulated DNA/histone binding leads to aggregated complexes, aberrant chromosome 

segregation and inhibited cell growth (Meeks-Wagner & Hartwell, 1986; Gunjan & 

Verreault, 2003; Groth et al., 2005). The levels of free histones within the cell can be 

controlled in several different ways, such as regulation of histone gene transcription, 

histone storage proteins or degradation of excess histones. For the purposes of this 

thesis, only histone storage proteins will be briefly described. 

 

1.1.2.3 Histone Chaperones 

Excess free histones are believed to be toxic to the cell due to formation of insoluble 

DNA/histone aggregates, but constantly degrading and retranslating these proteins is 

thought to require a significant amount of energy. As a solution to this problem, the cell 

possesses proteins that sequester histones to prevent their premature or inappropriate 

interaction with the DNA. There are several proteins believed to act as histone 

chaperones, such as nucleoplasmin, N1/N2, Nap1 and Asf1. 

 

The H2A/H2B and H3/H4 binding proteins, nucleoplasmin and N1/N2, respectively, were 

theorized to allow progressive release of histones during rapid cell division in early 

development as both DNA replication and cell division occur too quickly to allow 

sufficient histone synthesis to occur (Dutta et al., 2001; Loyola & Almouzni, 2004). 

Nucleoplasmin is believed to act as a histone storage molecule, as it is capable of 

simultaneously binding up to five histone octamers by directly interacting with the 
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H2A/H2B dimers (Dutta et al., 2001). Nap1 preferentially binds H2A/H2B and is believed 

to shuttle histones from the cytoplasm into the nucleus (Ito et al., 1996; Mosammaparast 

et al., 2002). Asf1 has been shown to bind acetylated histone H4 in the cytoplasm prior 

to H3/H4 dimer transportation into the nucleus by importin-4 (Campos et al., 2010). Asf1 

may also play a role as a histone reservoir in mammalian cells as the presence of 

Asf1/H3/H4 complexes increases in cells when DNA synthesis is blocked (Groth et al., 

2005). These complexes also contained the p48 subunit of CAF-I and NASP, a member 

of the N1/N2 family (Groth et al., 2005; Campos et al., 2010). 

 

1.1.3 Replication-dependent Chromatin Assembly 

 

1.1.3.1 CAF-I 

Chromatin assembly factors (CAFs), have been found in almost every organism studied 

(reviewed in Loyola & Almouzni, 2004). Currently, the only CAF believed to be linked to 

the cell cycle is CAF-1, which has been shown to be necessary for nucleosome 

deposition following DNA replication (Smith & Stillman, 1989; Gaillard et al., 1996). CAF-

I is composed of three subunits that are conserved in almost all eukaryotic systems 

(Smith & Stillman, 1989). In S. cerevisiae these subunits are known as Cac1, Cac2 and 

Cac3/Msi1 (Multicopy suppressor of IRA1) (Kaufman et al., 1997), whereas in humans, 

the CAF-I orthologs are known as p150, p60 and p48 (Smith & Stillman, 1989). Human 

CAF-I has been shown to associate in vitro with histones H3 and H4 once lysines 5 and 

12 of H4 have been acetylated (Verreault et al., 1996; Smith & Stillman, 1989; Sobel et 

al., 1995). This acetylation is rapidly removed once the histones are incorporated into 

chromatin in order to provide a blank slate for the rest of the cellular machinery to act 

upon (Annunziato & Seale, 1983). All three S. cerevisiae CAF-I subunits have been 
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shown to bind histones; however, only the two largest subunits (Cac1 and Cac2) are 

required for efficient chromatin assembly in vitro (Kaufman et al., 1995; Tyler et al., 

2001). There are redundant activities among the CAFs since S. cerevisiae cells are still 

viable when all three CAF-I subunits are deleted (Kaufman et al.,1997; Harkness et al., 

2005). In fact, yeast cells are still able to grow at the permissive temperature of 30°C 

even when 6 of the various CAF genes are deleted in one cell (CAC1, CAC2, MSI1, 

ASF1, HIR1, and HIR2; Harkness, unpublished data). 

 

When CAF-I was first characterized as a replication-dependent chromatin factor it was 

shown to be required as soon as DNA replication begins. Chromatin was only partially 

assembled when CAF-I was added to reactions after DNA replication had already 

begun, suggesting that DNA synthesis and chromatin assembly occur in tandem (Smith 

& Stillman, 1989). In support of a coupling with replication, CAF-I localizes to DNA 

replication forks and has been shown to physically interact with the proliferating cell 

nuclear antigen (PCNA), a component of the replication machinery (Krude, 1995; 

Shibahara & Stillman, 1999; Moggs et al., 2000; Krawitz et al., 2002). This interaction 

was also shown to be localized to sites of DNA replication (Shibahara & Stillman, 1999). 

In cell-free systems, CAF-I activity was impaired during DNA repair after depletion of 

PCNA and CAF-I was no longer targeted to newly replicated DNA once its interaction 

with PCNA was disrupted (Moggs et al., 2000; Krawitz et al., 2002). Mutation of either 

CAF-I subunits or PCNA also caused defects in the silencing of the DNA located at the 

telomeres and these defects were exacerbated by deletion of either ASF1 or HIR1 

(Sharp et al. 2001; Krawitz et al., 2002). This supports the finding that Asf1 and the HIR 

family of proteins are involved in an alternative silencing pathway from CAF-I (Kaufman 

et al., 1998; Sharp et al., 2001). 
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1.1.3.1.1 Role of CAF-I in maintaining genomic stability 

Several studies suggest that CAF-I plays a role in genomic stability via DNA replication-

dependent chromatin assembly. As naked DNA is thought to be more prone to damage, 

it would stand to reason that a defect in histone deposition would lead to DNA damage 

and genomic instability resulting in mutations and chromosomal rearrangements (Loyola 

& Almouzni, 2004). In fact, yeast mutants lacking CAC1 exhibited increased gross 

chromosomal rearrangements such as telomere additions and translocations (Myung et 

al., 2003). Expression of a dominant negative variant of the Xenopus p150 CAF-I subunit 

inhibited in vitro chromatin assembly and resulted in defective cell cycle passage (Quivy 

et al., 2001), while in human cells, a dominant negative p150 inhibited chromatin 

assembly and progression through S-phase while inducing double strand breaks (Ye et 

al., 2003). Additionally, silencing of p60 resulted in death of proliferating cells, which was 

likely due to a decrease in nucleosome assembly and accumulation of double strand 

breaks (Nabatiyan & Krude, 2004). These effects on chromatin assembly and cell cycle 

progression resulted in deleterious organismal effects, as Xenopus embryos expressing 

dominant negative p150 did not survive past the mid-blastula stage (Quivy et al., 2001). 

Furthermore, silencing of the Arabidopsis orthologs of p150 and p60 (Fas1 and Fas2, 

respectively) resulted in cellular disorganization of the apical meristem (Kaya et al., 

2001). These findings point to a role for CAF-I during DNA synthesis, which when 

impaired can lead to genomic instability during mitosis.  

 

A review of the literature suggests that CAF-I subunits can function outside of the CAF-I 

complex as well as in functions other than acetylated histone deposition following DNA 

replication. While the majority of this research has focused on the smallest CAF-I subunit 

(Msi1 in yeast, p55 in Drosophila, p48 in many other eukaryotes) some evidence 

suggests that the other subunits may have roles outside of the complex as p150 and p60 
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associate with nucleotide excision repair sites in humans (Martini et al., 1998). Several 

studies have also shown Msi1/p55/p48 to individually associate with other proteins, 

including those responsible for histone acetylation and deacetylation. Studies of Msi1 

orthologs in human, Xenopus, Drosophila and Bos taurus all showed that this subunit 

associates with the histone deacetylase Rpd3 (Taunton et al., 1996; Tyler et al., 1996; 

Vermaak et al., 1999; Tie et al., 2001) while chicken p48 has been shown to interact with 

a variety of histone modifying proteins, such as HAT1 and the HDACs 1, 2 and 3 

(Ahmad et al., 1999; Ahmad et al., 2001). Studies in plant and human cells have also 

demonstrated p48 to interact with the retinoblastoma (Rb) protein (Qian et al., 1993; Ach 

et al., 1997). It is likely that yeast Msi1 also interacts with Rpd3 as Rb-dependent-gene 

repression was dependent on the presence of both Rpd3 and Msi1 in yeast cells 

containing recombinant human Rb protein (Kennedy et al., 2001). Since newly deposited 

histones are rapidly deacetylated to allow chromatin maturation, an interaction between 

Msi1/p48 and Rpd3, as observed in Xenopus, would provide a mechanism coupling 

chromatin assembly with deacetylation. CAF-I subunits have also been implicated in 

DNA methylation as p48, along with Rpd3, associated with the methyl-CpG binding 

protein Mbd3 in Xenopus extracts (Wade et al., 1999). Methyl-CpG binding proteins are 

responsible for recruiting HDACs to chromatin, suggesting that p48 plays a role in DNA 

methylation as well as histone acetylation (Wade et al., 1999). Furthermore, studies in 

the mouse have shown that the largest CAF-I subunit, p150, interacts with the methyl-

CpG binding protein, Mbd1 (Reese et al., 2003). 

 

The interaction of mouse p150 with heterochromatin is further supported by its 

interaction with the heterochromatin protein HP1 (Murzina et al., 1999). Whether the 

interactions with these DNA methylation proteins are due to CAF-I complex function or to 

the functions of the individual sub-units remains to be seen. Nevertheless, these results 
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suggest that CAF-I subunits are not only able to act independently of one another but 

also in a non S-phase dependent manner which greatly expands their role within the cell. 

In fact, our laboratory has shown the individual CAF-I subunits to be involved in mitotic 

chromatin assembly, in conjunction with the APC, as expression of the individual CAF-I 

subunits rescued the temperature sensitive phenotype of the chromatin assembly 

mutant apc5CA (Harkness et al., 2005). Further supporting roles for the individual CAF-I 

subunits is the finding that overexpression of Msi1 is able to inhibit the RAS/cAMP 

signaling pathway in yeast cells lacking either CAC1 or CAC2 by interacting with Npr1, a 

cytoplasmic kinase (Zhu et al., 2000; Johnston et al., 2001). 

 

1.1.3.1.2 Regulation of CAF-I 

The intricacies of CAF-I biology are still not fully understood; however, it appears that 

phosphorylation of CAF-I may play a role in human cells. Phosphorylation of p60 occurs 

after DNA damage, while hyperphosphorylation occurs upon entry into mitosis 

(Marheineke & Krude, 1998; Martini et al., 1998). Interphase cells exhibited both a 

phosphorylated form and a hypophosphorylated form. The phosphorylated form was 

demonstrated to be more active in promoting chromatin assembly than the 

hypophosphorylated form (Martini et al., 1998). Thus, it would appear that CAF-I activity 

may be controlled through the reversible phosphorylation of p60. The 

hyperphosphorylated p60 in mitotic cells was inactive for replication-dependent 

chromatin assembly (Marheineke & Krude, 1998) and resulted in a large proportion of 

p60 being exported to the cytosol while only a small proportion of p150 is exported 

(Marheineke & Krude, 1998; Martini et al., 1998). Therefore, not only may 

hyperphosphorylation cause the dissociation of CAF-I from chromatin but it may also 

result in dissolution of the complex. 
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One of the reasons CAF-I may not be essential in yeast is the existence of other 

redundant factors. CAC1 mutants have been shown to genetically interact with other 

CAF mutants, such as asf1∆ and hir∆ mutants. Asf1 was first identified in yeast due to its 

overexpression being able to inhibit the silencing of genes near the telomeres (Le et al., 

1997) and was shown to bind H3/H4 dimers (Tyler et al., 1999). Cells lacking both the 

genes ASF1 and CAC1 were shown to exhibit UV sensitivity as well as gene silencing 

and growth defects that were more severe than either of the mutations alone, suggesting 

overlapping but independent activities (Tyler et al., 1999; Sharp et al., 2001; Krawitz et 

al., 2002). It was theorized that these UV dependent defects were due to errors 

occurring during DNA replication as DNA checkpoints were activated in the absence of 

exogenous DNA damage (Myung et al., 2003). As naked DNA is thought to be more 

damage-prone, it would stand to reason that a defect in histone deposition may lead to 

DNA damage (Loyola & Almouzni, 2004). Mutating the HIR genes along with CAC1 

resulted in sensitivity at low growth temperature (16˚C), exacerbated silencing and 

slowed progression through G2/M (Kaufman et al., 1998; Sharp et al., 2001; Krawitz et 

al., 2002). Thus, studies in yeast clearly suggest an intricate network of CAFs that 

function together in a redundant manner to ensure that proper progression through the 

cell cycle occurs. 

 

CAF-I has also been shown to be involved in replication-independent chromatin 

assembly pathways. CAF-I preferentially assembles newly replicated DNA; however, 

excess levels will target bulk DNA for assembly (Kamakaka et al., 1996). As will be 

discussed in greater detail below, CAF-I has also been found to be involved with mitotic 

chromatin assembly in addition to DNA repair (Harkness et al., 2005; reviewed in Linger 

& Tyler, 2007). 
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1.1.3.2 ASF1 

Unlike in budding yeast, ASF1 is essential in many organisms suggesting that yeast 

either has redundant factors involved or is more tolerant of incomplete chromatin 

assembly in S-phase (Mousson et al., 2007). Redundant factors are a more plausible 

explanation as nucleosome density does not change drastically in ASF1 mutants (Adkins 

et al., 2004; Prado et al., 2004). Deletion of ASF1 in budding yeast does result in 

increased DNA damage and slowed growth. However, double mutants of ASF1 and 

CAC1 are still viable with levels of nucleosome density similar to that of wild-type, which 

suggests that there are redundant factors that allow H3/H4 replication-dependent 

chromatin formation (Le et al., 1997; Tyler et al., 1999; Adkins et al., 2004; Prado et al., 

2004). This is likely the case as additional CAFs that deposit H3/H4 dimers onto DNA 

have since been described in yeast, such as Vps75 and Rtt106 (Huang et al., 2005; 

Selth & Svejstrup, 2007). 

 

Asf1 has been shown to participate in both replication-dependent and replication-

independent chromatin assembly by interacting with CAF-I and the Hir proteins (Green 

et al., 2005). Both human and Drosophila Asf1 were able to stimulate CAF-I replication 

dependent chromatin assembly in vitro. Nevertheless, Asf1 can also contribute to 

histone deposition in the absence of CAF-I and DNA replication, suggesting that Asf1 

also plays a role in replication-independent chromatin assembly (Tyler et al., 1999; 

Munakata et al., 2000; Sharp et al., 2001; Green et al., 2005). Asf1 has also been shown 

to bind to the Hir1 and Hir2 chromatin assembly factors which are involved in replication-

independent chromatin assembly (Sharp et al., 2001; Ray-Gallet et al., 2002; Ahmad et 

al., 2004). In vitro experiments using mutant CAF-I unable to bind to PCNA showed that 

Asf1/H3/H4 complexes were able to assemble bulk DNA that had not been replicated 

(Krawitz et al., 2002). However, Asf1 is not known to deposit histones onto chromatin 
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itself during DNA replication (Tyler et al., 2001), thereby highlighting the importance of 

additional chromatin assembly factors. 

 

Human Asf1 has been found to be involved with the DNA damage response as it is 

phosphorylated by the tousled-like kinase (Tlk1) (Groth et al., 2003). This kinase does 

not appear to exist in yeast, which indicates that a different regulatory network is at play. 

The C-terminal domain of Asf1, where the phosphorylation is believed to occur, differs 

between yeast and higher eukaryotes (Silljé & Nigg., 2001). Along with the type of 

histone variant utilized, phosphorylation of Asf1 may help to dictate which pathway Asf1 

participates in. Yeast Asf1 is bound by the Rad53 checkpoint kinase, but this interaction 

appears to be dependent on Asf1 being phosphorylated by a protein other than Rad53 

(Emili et al., 2001; Schwartz et al., 2003). Cac2/p60 and Asf1 have been shown to 

physically interact and this interaction is evolutionarily conserved (Tyler et al., 2001; 

Krawitz et al., 2002; Mello et al., 2002). Asf1 phosphorylation did not affect its physical 

interaction with the CAF-I subunit p60, which is also phosphorylated (Mello et al., 2002). 

Like CAF-I, Asf1 has also been shown to localize to DNA replication forks (Krude, 1995; 

Schulz & Tyler, 2006). Additional activities have also been ascribed to yeast Asf1, such 

as chromatin disassembly during gene transcription (Adkins et al., 2004). In fact, cells 

lacking Asf1 show delayed gene activation (Adkins et al., 2004; Korber et al., 2006). This 

could link into the idea that Asf1 can also act as a histone storage protein (Groth et al., 

2005). Alternatively, Asf1‟s role in transcription could also be explained by its role in 

histone acetylation. Asf1 is responsible for presenting the H3/H4 histone dimer to Gcn5 

and Rtt109 for acetylation prior to deposition onto the DNA (Fillingham et al., 2008; 

Burgess et al., 2010). See Figure 1.1 for a simple schematic of chromatin assembly 

involving Asf1 and CAF-I. Gcn5 and Rtt109 are each capable of acetylating histone H3 

at  residue  K9 while  Rtt109  also  acetylates  H3K56.  Acetylation  of  these  residues is
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Figure 1.1. Role of Asf1 and CAF-I in chromatin assembly. Asf1 presents histone 
H3/H4 dimers to Hat1/Hat2 which acetylate K5 and K12 on histone H4. The 
Asf1/H3/H4 complex is then transported from the cytoplasm into the nucleus. The 
histone H3/H4 dimer is then presented to the HATs Rtt109 and Gcn5 to acetylate K9 
and K56 on histone H3. The acetylated histones are then passed on to CAF-I which 
assembles them onto replicated DNA. Adapted from Fillingham et al., 2008.  
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associated with newly deposited histones. Acetylation of the K9 residue has also been 

associated with transcription and acetylation of K56 is also associated with DNA repair 

(Kuo et al., 1996; Masumoto et al., 2005; Millar & Grunstein, 2006).  

 

1.1.4 Replication-independent Chromatin Assembly 

Studies in Xenopus show that the H3/H4 histone chaperone HIRA (histone information 

regulator) is involved in replication-independent chromatin assembly. HIRA-depleted 

extracts could not assemble chromatin on unreplicated DNA: in contrast, chromatin was 

assembled in the presence of DNA synthesis (Ray-Gallet et al., 2002). In yeast, the HIR 

genes HIR1 and HIR2 are part of the HIR complex and are both required for gene 

repression when there is an overabundance of the histones H2A/H2B (Recht et al., 

1996). Overexpression of the single human HIR gene, HIRA, resulted in a decrease of 

histone transcription (Nelson et al., 2002). The HIR family may also act as histone 

storage proteins as they have been shown to interact with the yeast form of FACT 

(facilitates chromatin transcription), an RNA polymerase II transcription elongation factor 

proposed to remove H2A/H2B dimers from the chromatin prior to transcription 

(Orphanides et al., 1999; Formosa et al., 2002). The yeast HIR complex is required in 

cells with a defective FACT complex, perhaps compensating for the loss of FACT 

histone chaperone function. This further highlights the role of the HIR family of proteins 

as histone chaperones outside of S-phase. 

 

CAF-I is also able to participate in replication-independent chromatin assembly in vitro. 

Human and Drosophila studies showed that increased amounts of p150 and p60 

subunits resulted in assembly of bulk DNA as well as newly replicated DNA (Kamakaka 

et al., 1996; Tyler et al., 2001; Krawitz et al., 2002). CAF-I‟s preference for newly 
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replicated DNA is concentration dependent as excessive amounts of human CAF-1 

completely assembled bulk DNA to the point of inhibiting DNA synthesis (Kamakaka et 

al., 1996). The specificity of CAF-I also depends on interaction with other proteins 

involved in DNA replication, as CAF-I complexes that were unable to bind to PCNA 

preferentially assembled bulk chromatin over newly synthesized DNA (Krawitz et al. , 

2002). CAF-I has also been found to be involved with mitotic chromatin assembly as 

progressive deletion of the CAF-I subunits produces progressively more severe 

phenotypes in the APC mutant apc5CA, which exhibits compromised progression through 

mitosis and impaired chromatin deposition (Harkness et al., 2002). Overexpression of 

any single CAF-I subunit is enough to rescue the temperature sensitivity of an apc5CA 

mutant lacking all three CAF-I subunits (Harkness et al., 2005). Thus, the individual 

CAF-I subunits appear to be functional outside of the CAF-I complex, and this activity 

may be specific to mitosis. 

 

1.1.5 Histone modification  

Proper acetylation and deacetylation of the nucleosome bound histone N-terminal tails 

results in timely and appropriate gene expression and repression (Grunstein, 1997; 

Kurdistani & Grunstein, 2003; Peterson & Laniel, 2004; Peserico & Simone, 2011). An 

example of this is the requirement of acetylation of the histone H3 and H4 N-terminal 

tails to allow transcription and in vitro chromatin assembly to occur. Histones are 

acetylated on lysine residues in a reversible manner. Histone acetyltransferases (HATs) 

are responsible for attaching acetyl groups onto histones while HDACs remove acetyl 

groups. As a general rule, acetylation of the histone tails promotes gene transcription 

while deacetylation inhibits it (Durrin et al., 1991; Vogelauer et al., 2000). An exception 

to this rule is the HDAC Hos2 as it was found that yeast cells lacking Hos2 had 
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decreased levels of GAL1 and INO1 mRNA (Wang et al., 2002). Hos2 may be unique 

among HDACs, as its deacetylation of histones aids transcription. This may be a result 

of Hos2 restoring the coding regions of recently transcribed genes back to an unaltered 

state that is permissive for transcription initiation to occur again (Wang et al., 2002). 

 

The majority of histone synthesis is coupled to DNA synthesis during S-phase to ensure 

an adequate supply of histones for chromatin assembly (Plumb et al., 1983). Histone 

synthesis does occur during the rest of the cell cycle but at a lower level. In addition, the 

majority of histones synthesized outside of S-phase are the histone variants, such as 

H3.3, H2A.X, H2A.Z, CENP-A (humans) and CEN3 (yeast) (Loyola & Almouzni, 2004). 

H3 itself is associated with newly replicated or repaired DNA while the histone variants 

are associated with different aspects of chromatin assembly. Notable examples are 

H3.3, which is predominantly found at actively transcribed genes, and CENP-A, which is 

found in centromeres (Palmer et al., 1991; Stoler et al., 1995; Ahmad & Henikoff, 2002). 

The variants may play a role in cellular functions by either marking specific regions or 

recruiting specific factors that increase or decrease transcription and/or chromatin 

condensation. 

 

The nucleosome is a major inhibitor of gene transcription initiation (Wasylyk & Chambon, 

1979; Lorch et al., 1987). Each of the core histones contains a domain that contributes 

to proper DNA folding resulting in the repression of basal transcription (Lenfant et al., 

1996). The interaction of nucleosomal histones with DNA can be altered by their post-

transcriptional modification. Acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation and ADP-ribosylation all affect gene expression and repression, silencing, 

DNA replication, DNA damage repair and apoptosis (reviewed in Peterson & Laniel, 

2004). The fact that each histone has multiple residues that can be modified in a 
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multitude of combinations has led to the hypothesis called the „histone code‟. The 

histone code proposes that each modification (or lack thereof) plays a role in controlling 

cellular functions such as gene expression, DNA repair and chromatin packaging (Strahl 

& Allis, 2000; Peterson & Laniel, 2004; Lee et al., 2010). In addition, there are many 

different histone modifying enzymes within the cell, each with their own preference of 

residue and chromosomal region.  

 

1.1.5.1 Histone acetylation 

The acetylation state of histone tails is important for chromatin structure and the 

regulation of transcription (Allfrey et al., 1964; Horn & Peterson, 2002). There are two 

main hypotheses to explain this; the charge-neutralization model and the histone code 

model. One hypothesis suggests that acetylation weakens the bond between DNA and 

histones allowing easier access of transcription factors to gene promoters (Verreault et 

al., 1996; Grunstein, 1997; Kurdistani & Grunstein, 2003). An alternative theory states 

that acetylation acts as a signal to recruit transcription factors and other proteins to that 

specific site (Kurdistani & Grunstein, 2003). 

 

The charge-neutralization model theorizes that negatively charged acetyl groups 

neutralize the positive charge on histone tails to decrease the attraction to negatively 

charged DNA (Hong et al., 1993). This loosening of the chromatin would allow 

transcription factors access to promoters in the DNA (Mutskov et al., 1998). The reverse 

would occur after deacetylation; the positively charged histone tails would cause the 

chromatin to tighten up, thereby preventing access to transcription factors (reviewed in 

Kurdistani & Grunstein, 2003). A slightly different hypothesis is that histone deacetylation 

causes chromatin to fold into a structure that prevents access to transcription factors 
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(Mutskov et al., 1998). Acetylation of the histones would prevent this folding (Tse et al., 

1998). Both variations of this hypothesis result in gene activity being regulated as 

acetylation provides access to specific binding sites within the chromatin while 

deacetylation prevents that access. Acetylated histones have been associated with 

transcriptional activation thereby supporting this hypothesis (Hebbes et al., 1988).  

 

A second hypothesis, the Histone Code, proposes that specific histone modifications 

induce functions such as gene expression, silencing and DNA repair by recruiting 

effector proteins that recognize these specific modifications in a sequence dependent 

manner (Strahl & Allis, 2000; Agalioti et al., 2002). The theory states that histone 

modifications act as signals for protein binding. In support of this, many proteins and 

protein complexes associated with chromatin contain domains that recognize and bind to 

acetylated lysines (Dhalluin et al., 1999; Jacobson et al., 2000). Bromodomains bind to 

acetylated lysines (Dhalluin et al., 1999).The proteins Bdf1 and Bdf2 (Bromodomain 

factor-1 and -2) each contain two bromodomain motifs and bind to the TFIID subunit 

TAF67 (Matangkasombut et al., 2000). The complexes SAGA (Spt-Ada-Gcn5 

acetyltransferase) and RSC (remodel the structure of chromatin) also each contain 

multiple bromodomains. The large multi-subunit transcriptional activator SAGA contains 

two bromodomain proteins, Gcn5 and Spt7 (Hassan et al., 2002), while the remodeler 

RSC has eight (Kasten et al., 2004). The bromodomain found in Gcn5, the histone 

acetylase (HAT) component of SAGA, has been shown to directly interact with the N-

terminal tails of H3 and H4 (Ornaghi et al., 1999) and is required for SWI/SNF mediated 

nucleosome remodeling (Syntichaki et al., 2000). Patterns of acetylation and 

deacetylation may provide specific binding sites for repressors and activators (Johnson 

et al., 1990; Carmen et al., 2002). For example, the silencing information regulator SIR3 

(Silent information regulator 3) will only bind to H4 when Lys16 (K16) is deacetylated. In 
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experiments where K16 was mutated to glutamine, which mimics the acetylated state, 

Sir3 binding and heterochromatin formation was abolished/inhibited (Johnson et al., 

1990; Carmen et al., 2002). The charge-neutralization and histone code hypotheses are 

not mutually exclusive and it is highly likely that transcription and chromatin structure are 

controlled in part by both. 

 

The site specific recruitment of HATs and histone deacetylases (HDACs) is often 

accomplished through the association of sequence specific DNA binding proteins. Some 

examples of this involve the HDACs Hst1 and Rpd3, as well as the HAT Esa1. Rpd3 

associates with the transcriptional repressor Ume6 at the INO1 gene, while Hst1 is 

recruited to sporulation genes by the transcription factor Sum1 (Kurdistani et al., 2002; 

Robert et al., 2004). The HAT Esa1 is targeted to the promoters of ribosomal genes by 

two different transcriptional factors, Rap1 and Abf1 (Reid et al., 2000). A similar mode of 

specificity occurs in other histone modifying proteins as the methyltransferase Dot1 is 

recruited to active genes, to methylate H3K79 (Shahbazian et al., 2005). In contrast to 

this specificity, some HAT and HDAC activity appears to be global. Rpd3 has been 

detected on a global level regardless of the presence of Ume6 (Kurdistani et al., 2002). 

Esa1 and Gcn5 have also been observed to act globally (Robert et al., 2004). The 

differences seen in specificity may be due to the fact that many histone modification 

proteins can be found in multiple complexes. Other proteins are targeted to specific 

domains in the chromatin. For example, Sir2 has been shown to deacetylate histones at 

the mating type loci and telomeric regions, both of which are large silenced areas 

(reviewed in Grunstein, 1998). 

 

There are a large number of HATs and HDACs, even within the relatively small yeast 

genome (reviewed in Sterner & Berger, 2003). Many appear to be redundant to one 
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another in the role of acetylation and deacetylation but likely play important roles due to 

their presence in many different protein complexes. Esa1 is present in two separate 

complexes, with the larger NuA4 being targeted to promoters while the smaller piccolo 

NuA4 acts on a more global basis (Boudreault et al., 2003). The HATs Gcn5 and Elp3 

are both capable of acetylating H3 lysine 14, however, that is the only activity they are 

known to share. Gcn5 acetylates histones H2B and H3 when part of the SAGA complex 

while Elp3 acetylates histones H3 and H4 as a part of the Elongator complex (Grant et 

al., 1997; Li et al., 2005).  

 

1.1.5.2 Histone acetyltransferases (HATs) relevant to this study 

There are many HATs within the yeast genome, each with their own preference for 

specific lysines as well as chromosomal region (see Table 1.1; reviewed in Millar & 

Grunstein, 2006). This study will focus primarily on Gcn5 and Elp3, both of which target 

histone H3K14 (Wittschieben et al., 2000). Histones are acetylated on lysine residues in 

a reversible manner. HATs are responsible for attaching acetyl groups onto histones 

while HDACs remove acetyl groups. As a general rule, acetylation of the histone tails 

promotes gene transcription while deacetylation inhibits it (Durrin et al., 1991; Vogelauer 

et al., 2000).  

 

All HATs use acetyl-coenzyme A as a donor for histone acetylation.  The acetyl group is 

first removed from coenzyme A by the catalytic domain of the HAT then transferred to 

the ε-amino group of the target lysine (Loidl, 1994; Lin et al., 1999). This formation of an 

amide bond can be removed by the action of an HDAC. Additionally, the manner in 

which the lysine is acetylated depends on the type of HAT involved. The GCN5/PCAF 

family of HATs must bind to both acetyl-coenzyme A and the histone substrate at the
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Table 1.1 Yeast HATs used in this study 

    

HATs Known Complexes 
Histones targeted        
in vivo Known Function 

    Elp3 Elongator H3/H4 Transcriptional 
elongation 

Gcn5 SAGA H2B/H3/H4 Coactivator/ nucleotide 
excision repair 

 ADA H3 nucleotide excision 
repair  SLIK H2B/H3/H4 

 HAT-A2 H3 

Hat1 HAT-B, HAT-A3 H4 Replication-dependent 
chromatin assembly 

Hpa2 May exist as a dimer 
or tetramer 

H3 unknown/possibly 
transcription 

Rtt109 Copurifies with 
Vps75 

H3 Replication-dependent 
chromatin assembly 

Sas2 SAS H4 Silencing 

Sas3 NuA3 H3 Silencing 

    

    Information obtained and modified from Angus-Hill, etal. 1999; Wittschieben, et al. 
1999; Sterner & Berger 2000; Marmorstein 2001b; Suka, et al. 2002; Lee & 
Workman 2007; Fillingham, et al. 2008. 
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same time to allow lysine acetylation to occur (Tanner et al., 2000). In contrast, the 

MYST family of HATs first transfers the acetyl group from acetyl-coenzyme A to a 

cysteine residue within the HAT itself. Co-enzyme A must then be released before the 

substrate is acetylated (Yan et al., 2002). This acetylation neutralizes the basic charge of 

the lysine and can therefore alter both its, and the histone‟s, interaction with the DNA 

(Tse et al., 1998). 

 

HATs can be broken up into two basic categories; A-type HATs acetylate nucleosomal 

histones within chromatin and B-type HATs act predominantly within the cytoplasm 

where they acetylate histones (reviewed in Sterner & Berger, 2000). It should be noted 

that since many HATs are part of several different complexes, these categories can 

become blurred (Ruiz-Garcia et al., 1998). In addition, there are several families of HAT 

each with their own histone lysine specificities: GCN5-N-acetyltransferase (GNAT)-

related, MYST, CBP/p300, TAFII250, SCR and ATF-2 families (reviewed in Sterner & 

Berger, 2000; Marmorstein, 2001a; Marmorstein, 2001b). The following three pertain to 

this thesis: 

 

1. GCN5-N-acetyltransferase (GNAT)-super family: grouped together based on 

similarity of 4 different acetylation-related motifs of 15-33 amino acids. This group 

includes HATS such as Gcn5, PCAF, Hat1, Hpa2 and Elp3 (Neuwald & 

Landsman, 1997). The A motif is required for acetyl-coenzyme A binding, is the 

most evolutionarily conserved (Dutnall et al., 1998; Wolf et al., 1998; Lin et al., 

1999). 

2. MYST family: named for its founding members; MOZ, Ybf2/Sas3, Sas2 and 

Tip60 (reviewed in Sterner & Berger, 2000). Members of this group are included 



27 
 

due to their sequence similarities and the presence of the A motif, which is also 

found in the GNAT superfamily (Neuwald & Landsman, 1997).  

3. CBP/p300 family: global coactivators, containing a bromodomain, like many other 

transcription factors (Eckner et al., 1994). In addition to the ability to acetylate 

histones CBP/p300 proteins are also capable of acetylating transcription factors 

to modulate their activity (reviewed in Marmorstein, 2001a). Although there have 

been no proteins with a sequence similar  to that of CBP/p300 found in the S. 

cerevisiae genome, crystal structure analyses have demonstrated that Rtt109 

(Regulator of Ty1 transposition) is structurally similar (Liu et al., 2008; Tang et 

al., 2008; Wang et al., 2008).  

 

1.1.5.2.1 Gcn5 

Gcn5 (General control nonderepressible 5) was first shown to have HAT activity in the 

ciliate Tetrahymena thermophila and to be homologous to a transcriptional adaptor in 

yeast (Brownell et al., 1996). Since then Gcn5 orthologs have been identified in 

numerous eukaryotes, suggesting that it is highly evolutionarily conserved (Candau et 

al., 1996; Smith et al., 1998; Xu et al., 1998; Hettmann & Soldati, 1999). The 

conservation of this protein is highlighted by human Gcn5 being found to have the same 

activity as yeast Gcn5 (Candau et al., 1996; Wang et al., 1997). In addition, the 

p300/CREB-binding protein-associated factor (PCAF; cAMP response element binding), 

a protein with high homology to mammalian Gcn5, has also been shown to target H3K14 

and H4K8 in vitro (Schiltz et al., 1999). 

 

Gcn5 is able to acetylate free histones, but not nucleosomal histones in vitro (Grant et 

al., 1997). Gcn5 specificity in vivo is a complex matter as the activity of Gcn5 is required 
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in several different complexes (Grant et al., 1997; Grant et al., 1999). For example, when 

part of the ADA (transcriptional adaptor) complex, Gcn5 acetylates H3 lysine residues 14 

and 18, but when incorporated into SAGA Gcn5 acetylates H3 lysine residues 9, 14, 18 

and 23 (Grant et al., 1999). Gcn5 has also been shown to acetylate histone H2B when 

incorporated into the SAGA complex (Wang et al., 1998). Gcn5‟s in vitro binding of 

H3K14 was shown to be increased by the phosphorylation of H3S10 (Cheung et al., 

2000; Lo et al., 2000). This has also been observed in vivo, as addition of epidermal 

growth factor to mammalian cells results in S10 phosphorylation, quickly followed by K14 

acetylation (Cheung et al., 2000). 

 

SAGA is a multi-subunit protein complex involved in transcriptional activation. In addition 

to acetylating histone H3, SAGA also allows Gcn5 to target histone H2B which it is 

unable to do by itself at physiological levels (Grant et al., 1997). When incorporated into 

SAGA Gcn5 is also able to acetylate H3 at residues K9, K14, K18 and K23 while alone it 

is only able to target K14 (Grant et al., 1999). This ability is likely due to both the 

presence of other proteins within the complex and to Gcn5‟s bromodomain. Deletion of 

this domain resulted in a decrease of the nucleosomal acetylation associated with SAGA 

as well as HIS3 transcription (Sterner et al., 1999). The complexes SAGA and ADA both 

contain Gcn5, Ada2 and Ada3, but that is where the similarity ends (Grant et al., 1997; 

Grant et al., 1999). ADA is a separate complex, not just a subcomplex of SAGA, as it 

contains Ahc1 (Ada histone acetyltransferase complex component), which is not found in 

SAGA (Eberharter et al., 1999). While a part of ADA, the activity of Gcn5 is more 

restricted than in SAGA, as only the residues K14 and K18 are targeted on H3 (Grant et 

al., 1999). ADA does not seem to play a role in transcription, as it does not interact with 

activation domains (Utley et al., 1998). 
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Gcn5 was first identified as a transcriptional co-activator required for Gcn4 mediated 

transcriptional activation (Georgakopoulos & Thireos, 1992). In fact, the HAT domain of 

Gcn5 is required for adaptor mediated transcriptional activation (Candau et al., 1997), 

cell growth, and histone H3/H2B acetylation (Wang et al., L1998). Mutants lacking Gcn5 

exhibit temperature sensitivity and slow growth on minimal media, accumulation in G2/M 

and altered nuclear migration (Zhang et al., 1998; Vernarecci et al., 2008; Turner et al., 

2010). Gcn5 is involved in the regulation of several genes. For example, the expression 

of HIS3 and PHO5 are decreased in strains harboring Gcn5 mutants incapable of 

acetylating histones (Gregory et al., 1998; Kuo et al., 1998). In addition, promoter DNA 

was shown to be remodeled due to Gcn5 HAT activity (Gregory et al., 1998). Taken 

together, these studies provide a persuasive argument for a link between histone 

acetylation and transcription. 

 

1.1.5.2.2 Elp3 

Elp3 (Elongator protein 3) is the HAT component of Elongator, a six subunit complex 

associated with the RNA polymerase II holoenzyme (Otero et al., 1999; Wittschieben et 

al., 1999). Once transcription is initiated RNA polymerase II is phosphorylated at its 

carboxy-terminal domain to allow elongation to occur (Payne et al., 1989). This 

phosphorylation is required for Elongator/RNA polymerase II interaction (Otero et al., 

1999). As nucleosomes inhibit transcriptional elongation (Wasylyk & Chambon, 1979) 

acetylation of these histones should allow greater access of the transcriptional 

machinery to the DNA (Tse et al., 1998). Recombinant Elp3 is able to acetylate all four 

core histones on their N-terminal tails in vitro when presented with them individually 

(Wittschieben et al., 1999). When part of Elongator, Elp3 preferentially targets H3K14 

and H4K8 (Winkler et al., 2002). Genetic studies of the deletion mutants elp1∆ or elp3∆ 
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showed salt and temperature sensitivity, slow growth adaptation and decreased 

activation of certain genes (Otero et al., 1999; Wittschieben et al., 1999). An elp1∆ elp3∆ 

double mutant exhibited phenotypes identical to the single mutants suggesting that 

these subunits do not act individually from each other. Human Elp3 is functionally similar 

to Yeast Elp3 and can rescue, at least partially, deletion mutants (Li et al., 2005). 

 

Elp3 has been shown to have an overlapping role with Gcn5 as they both have been 

implicated in the control of transcription, Gcn5 with initiation and Elp3 with elongation 

(Georgakopoulos & Thireos, 1992; Wittschieben et al., 1999). Additionally, they each 

preferentially target histone H3K14 for acetylation (Grant et al., 1999; Wittschieben et al., 

2000; Winkler et al., 2002). The fact that neither deletion is lethal may be attributed to 

redundancy of HAT activity. Deletion of both Elp3 and Gcn5 results in increased 

temperature sensitivity relative to the single deletions and the inability to grow on 

alternate carbon sources such as galactose, raffinose and sucrose (Wittschieben et al., 

2000; Turner et al., 2010). By deleting various subunits specific to Elongator, ADA or 

SAGA, it was determined that the phenotype of the elp3∆ gcn5∆ mutant was due to their 

activities within Elongator and SAGA. A double deletion mutant, gcn5∆ hat1∆, exhibited 

phenotypes similar to the gcn5∆ single mutant suggesting that the Elp3/Gcn5 interaction 

is specific for their roles in transcription and not due to other activities (Ruiz-Garcia et al., 

1998; Wittschieben et al., 2000). 

 

1.1.5.2.3 Other HATs 

 In addition to Gcn5 and Elp3 there are many other HATs within the yeast genome 

(reviewed in Millar & Grunstein, 2006). Each of these HATs has their own, specific lysine 

targets but as with Gcn5 and Elp3 there is sometimes overlap (Wittschieben et al., 



31 
 

2000). For example, this overlap of function can be highlighted by the finding that a 

double deletion of GCN5 and SAS3 is synthetically lethal due to the loss of HAT function 

(Howe et al., 2001). Both Sas3 (Something about silencing) and Gcn5 are recruited to 

similar active gene pools and both are capable of acetylating histone H3K14 (Kuo et al., 

1996; Rosaleny et al., 2007). Sas3 was originally found in a screen for silencing defects 

in a sir1 deletion background (Reifsnyder et al., 1996). Sas3 was also shown to target 

histones H3 and H4, and to a lesser extent H2A, for acetylation in vitro (Takechi & 

Nakayama, 1999). Also found in this screen was the related protein Sas2, which is the 

catalytic component of the yeast SAS complex involved in transcriptional silencing and 

has been shown to acetylate histones H3K14 and H4K16 in vitro (Sutton et al., 2003). 

SAS is thought to counteract heterochromatin spreading at the subtelomeric regions by 

the HAT activity of Sas2 (Suka et al., 2002; Oki et al., 2004). For a complete list of the 

various HATs used in this study and their preferred histone lysine targets within the 

budding yeast genome see Table 1.1. 

 

1.1.5.3 Histone deacetylases (HDACs) 

Like HATs, the many HDACs within the S. cerevisiae genome have preferential targets 

(see Table 1.2 for HDACs relevant to this study). HDACs play an antagonistic role to 

HATs as they are responsible for removing acetyl groups from histones and are 

generally considered to be transcriptional repressors. This is demonstrated by the 

finding that the mammalian histone deacetylase protein HD1 was related sequence-wise 

to the transcriptional regulator Rpd3 in yeast (Taunton et al., 1996). Relevant to this 

study are the five related HDACs Rpd3, Hda1, Hos1, Hos2 and Hos3. These HDACs all 

share sequence homology within an enzymatic domain (Taunton et al., 1996; 

Marmorstein,  2001c).  Hda1  (histone deacetylase-A 1)  is a  component of  the  HDA 
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Table 1.2 Yeast HDACs used in this study 

    

HDACs 
Histones 
targeted in vivo Known Complexes Genes targeted 

    Hda1 H2B/H3 HDA Global, preference for genes 
involved in carbohydrate 
utilization, stress response, 
detoxification, drug transport and 
cell wall function 

Hos1 H2B/H4 unknown rDNA locus 

Hos2 H4 SET3C ribosomal protein-encoding 
genes 

Hos3 H2B/H4 unknown complex/ 
self-dimerizes 

rDNA locus 

Rpd3 H2A/H2B/H3/H4 HDB/Sin3 Global, slight preference for 
genes involved in carbohydrate 
utilization, sporulation, 
germination and meiosis 

    

    Modified from Carmen, et al. 1999.; Pim Pijnappel, etal. 2001.; Robyr, et al. 2002. 
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complex and targets histones H2B and H3 for deacetylation in vivo (Rundlett et al., 

1996; Wu et al., 2001). Hos1, Hos2 and Hos3 (HDA one similar) are all involved in 

ribosomal biogenesis. Hos1 and Hos3 preferentially target the rDNA locus while Hos2 

targets ribosomal protein-encoding genes (Robyr et al., 2002). Interestingly the APC 

appears to antagonize these three HDACs as deletion of any one of these HDACs 

rescued the temperature sensitive growth of an APC mutant background (Turner et al., 

2010). HDACs, and their transcription repression activities have also been implicated in 

the progression of human disease, such as cancer (Mahlknecht & Hoelzer, 2000). As 

such, the inhibition of HDACs has recently become a target of clinical interest as a 

treatment for some cancers (reviewed in Drummond et al., 2005). As perturbations in 

acetylation levels can result in improper gene activation or repression it is imperative that 

this modification is tightly controlled. 

 

1.1.5.4 Histone methyltransferases 

Even though it has been known for a long time that histone methylation occurs, it was 

only recently that the activity of these proteins has been studied in any depth. In 2002 

the first family of histone methyltransferases was discovered (Rea et al., 2002). The 

proteins in this family each contain the conserved catalytic SET domain (named for three 

Drosophila gene regulators, SUVAR3-9, E(Z) and TRX). Unlike the majority of the 

acetyltransferases, many histone methyltransferases only have one known residue 

target. For example, Set8 targets H4K20, Dim5 targets H3K9, and Dot1 targets H3K79 

(Tamaru & Selker, 2001; Fang et al., 2002; van Leeuwen et al., 2002). Unlike 

acetylation, histone methylation does not change the charge of the histone. Histone 

methylation likely acts as a recruitment signal as methylation of different residues within 

the same histone can confer different results. For example, methylation of histone H3K4 
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is associated with sites of histone acetylation and transcriptional activation (Strahl et al., 

1999) while methylation of histone H3K9 induces DNA methylation and gene repression 

(Tamaru & Selker, 2001). 

 

1.2 Ubiquitin signaling pathway 

1.2.1 Ubiquitin  

Ubiquitin (Ub) is a 76 amino acid protein that is covalently attached to lysine residues 

within proteins (Ciechanover et al., 1980; Wilkinson et al., 1980). MonoUb and polyUb 

chains can be formed on proteins, each with a distinct cellular outcome. Proteins 

targeted with monoUb are generally involved in signal transduction events. A notable 

example of this is the monoUb of histone H2B that is required for methylation of H3K4 

within promoters of transcribed genes (Henry et al., 2003). PolyUb chains can be 

generated through one of 7 Ub lysines (K). Chains built through K48 typically trigger 

ubiquitin- and proteasome-dependent degradation of the targeted protein (Chau et al., 

1989; Finley et al., 1994). On the other hand, chains built through K63 are generally 

involved in stress response and can result in internalization of membrane proteins 

(Arnason & Ellison, 1994). The longer the polyUb chain, the more likely it is that it will be 

recognized by the proteasome for subsequent degradation. 

 

1.2.2 Ubiquitination pathway and components  

Ubiquitination of a protein involves an assembly line of several enzymes: a ubiquitin-

activating protein (E1), one of several ubiquitin-conjugating proteins (E2) and one of a 

series of functionally and structurally diverse ubiquitin-protein ligases (E3) that play a 
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role in substrate specificity (see Figure 1.2; reviewed in Hochstrasser, 1996). This is an 

evolutionarily conserved network of proteins from yeast to humans. 

 

S. cerevisiae encodes a single E1 enzyme, Ubc1 (Ubiquitin conjugating 1), while higher 

eukaryotes encode several. Ubiquitin is first activated by the adenylation of its C-terminal 

glycine by the E1 (Ciechanover et al., 1981; Hershko et al., 1983). The E1 then transfers 

the ubiquitin molecule to an internal sulfhydryl group to form a thiol ester bond. An E2 

then removes the ubiquitin molecule from the E1 by forming a new thiol ester linkage 

with the activated ubiquitin. At this point the E2 either attaches the ubiquitin molecule 

directly onto the substrate or passes it on to a specific E3. Both E2s and E3s can attach 

ubiquitin to the substrate with an amide isopeptide linkage. Substrates are ubiquitinated 

by E3s in one of two ways; either the E3 forms its own thiol ester bond with ubiquitin or it 

brings the E2 and the substrate into close proximity of each other (reviewed in Pickart & 

Eddins, 2004). The large number of E2 and E3 enzymes allows specificity in substrate 

ubiquitination; however, additional protein interactions are required. For example, the E2 

Cdc34 self-associates to allow Ub chain formation, the E2 Ubc13 requires Ubc variants 

to direct its activity to different pathways, and the E3 APC requires association of 

activators to determine substrate selectivity (Visintin et al., 1997; Cooper et al., 2000; 

Schwab et al., 2001; Varelas et al., 2003; Andersen et al., 2005). The requirement of 

additional proteins for targeting substrates highlights both the complexity and flexibility of 

the ubiquitin pathway. 

1.2.2.1 E3s  

E3s are an important part of this pathway as they confer substrate specificity. E3s are 

characterized into three groups based on their domains; HECT, RING-finger and U-box 

(reviewed in Pickart & Eddins,  2004).   The  HECT  (homologous to E6-AP carboxyl-
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Figure 1.2. Ubiquitination. Ubiquitin must first be activated by adenylation using ATP as 
a donor. The activated ubiquitin molecule is then covalently attached to the E1 through a 
thiolester bond. The ubiquitin molecule is then transferred from the E1 to an E2. The E3 
associates with the E2 to facilitate substrate ubiquitination. Polyubiquitination then 
results in the substrate being targeted to the proteasome and subsequently degraded. 
Information obtained and adapted from Hochstrasser, 1996; Hershko & Ciechanover, 
1998, Wäsch & Engelbert, 2005. 
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terminus) domain contains a conserved cysteine that directly binds the ubiquitin 

molecule through a thiol ester linkage before passage to the substrate. The RING (really 

interesting new gene) domain is comprised of a cysteine and histidine rich motif that 

coordinates two zinc ions. RING E3s do not physically bind the ubiquitin molecule but 

are responsible for bringing the E2 and substrate into close proximity to each other. U-

boxes (UFD2 homology) are similar to RING domains except that they do not contain the 

two zinc coordinating residues. The APC, on which this thesis focuses, is a member of 

the RING finger family. 

 

1.2.2.2 RING finger E3s  

Two multi-subunit RING finger E3 complexes important for cell cycle control are the APC 

and SCF (Skp1/Cdc53/F-box). Both the APC and SCF are large multi-subunit complexes 

(the APC is larger) that are structurally and functionally conserved across evolutionary 

boundaries (reviewed in Tyers & Jorgensen, 2000). They both contain a RING subunit 

and a cullin subunit. Cullin family members contain a specific domain that associates 

with the RING finger domain (Ohta et al., 1999). The APC is responsible predominately 

for mitotic progression and exit as well as G1 maintenance, while the SCF controls the 

G1/S and G2/M transitions (see Figure 1.3; Deshaies, 1999; Castro et al., 2005; Skaar & 

Pagano, 2009). Both the APC and SCF target a number of proteins for degradation with 

specificity being conferred by association of different proteins. Targets are recruited to 

the SCF by the binding of different F-box proteins to the two core subunits Skp1 (RING 

domain) and Cdc53 (Cullin) (reviewed in Patton et al., 1998a). Similarly, APC targets are 

specified by the binding of the co-activators Cdc20, Cdh1 and Ama1 to the core APC 

complex (Visintin et al., 1997; Cooper et al., 2000; Schwab et al., 2001; McLean et al., 

2011). 
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Figure 1.3. Schematic of cell cycle progression. Certain proteins required for specific 
cell cycle stages must be degraded to allow progression into the next stage of the cell 
cycle. For example, Clb2 is required for progression through G2 but must be degraded 
for passage through mitosis. E3s (SCF and APC) are responsible for targeting these 
proteins to the proteasome for degradation. 
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Cell cycle progression depends on the coordinated action of the APC and SCF. Both the 

APC and SCF are known to antagonize one another. In humans, APCCdh1 maintains G1  

by targeting the SCF F-box Skp2 for degradation (Bashir et al., 2004). Elevated levels of 

Skp2 have been associated with human cancer (Zhu et al., 2004), as Skp2 targets the 

Cdk inhibitors p21 and p27 for degradation (Carrano et al., 1999; Bornstein et al., 2003). 

The activity of p21 and p27 prevents cyclin-Cdk phosphorylation of Cdh1 and Rb, and 

premature S-phase entry. Premature entry into S-phase was also induced by RNA 

interference of Cdh1 (Bashir et al., 2004). On the other hand, examples exist where the 

APC and SCF work together, such as through the degradation of Emi1 by the SCF to 

allow APC mediated cell cycle progression (Margottin-Goguet et al., 2003). Emi1 

accumulates in late G1 and inactivates APC activity by binding to its activators Cdc20 

and Cdh1 to prevent substrate recognition (Reimann et al., 2001a; Reimann et al., 

2001b; Hsu, Reimann, Sørensen, Lukas, & Jackson, 2002). This binding can occur 

before or after they physically associate with the APC (Reimann et al., 2001b). Emi1 is 

phosphorylated in early mitosis by Plk1 which induces SCFβTrCP to target Emi1 for 

degradation (Margottin-Goguet et al., 2003), thus allowing APCCdc20 activation. Emi1 is a 

key mitotic regulator as overexpression in p53-deficient cells results in tetraploidy and 

chromosomal instability (Lehman et al., 2006). Understanding how the APC and the SCF 

function is extremely important, as impairing either activity, especially APC activity, 

ultimately leads to genomic instability and cancer. 

 

1.3 The APC promotes mitotic progression and genomic stability 

1.3.1 Anaphase-Promoting Complex (APC) 

As introduced above, the APC is an essential evolutionarily conserved E3 ubiquitin 

ligase protein complex required for mitotic passage (Castro et al., 2005; Peters, 2006; 
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Wäsch et al., 2010; Kim & Yu, 2011; McLean et al., 2011). Composed of 13 subunits, 

the yeast APC controls cell cycle progression by ubiquitinating regulatory proteins such 

as Pds1 (securin) and mitotic and S-phase cyclins for destruction (Castro, 2005; Peters, 

2006). Recognition of substrates by the APC is dependent on its activators Cdc20, Cdh1 

and Ama1 (Visintin et al., 1997; Cooper et al., 2000; Schwab et al., 2001). Ama1 will not 

be discussed as it appears to be specific to meiosis (Cooper et al., 2000). Both Cdc20 

and Cdh1 direct APC activity during mitosis but Cdh1 is also active throughout G1. See 

Figure 1.4 for an overview of APC activity throughout the cell cycle. There is a brief 

period in the cell when both APCCdc20 and APCCdh1 species exist. APCCdc20 has been 

shown necessary to allow the initiation of anaphase by targeting securin/Pds1 for 

degradation while APCCdh1 targets Clb2 for degradation, which triggers mitotic exit (King 

et al., 1995; Thornton & Toczyski, 2003). As soon as APCCdh1 is activated it begins to 

target Cdc20 for ubiquitination and subsequent degradation (Pfleger & Kirschner, 2000). 

Many of the subunits are essential as their deletion leads to cell cycle arrest at the 

metaphase/anaphase junction and cell death in a variety of organisms, from yeast to 

mice (Irniger et al., 1995; Wirth et al., 2004; Peters, 2006). 

 

The APC was first associated with cell cycle control in the mid 1990‟s. Fractionation of 

clam oocyte extracts produced a large protein complex capable of targeting cyclin for 

ubiquitination. This complex, inactive during interphase, was activated by Cdk1 during 

mitosis (Hershko et al., 1983; Sudakin et al., 1995). Simultaneously, a genetic screen 

looking for cyclin degradation mutants in S. cerevisiae showed the involvement of Cdc23 

and Cdc16 (Irniger et al., 1995). These genes, in addition to Cdc27, had been previously 

shown to be required for passage through metaphase (Hartwell et al., 1970). Another 

extract study, this time using Xenopus eggs, found a complex containing orthologs of the 

yeast Cdc16  and Cdc27  that was both sufficient and necessary for ubiquitination of 
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cyclin B (King et al., 1995). In preparations where this complex had been removed by 

Cdc27 immunoprecipitation, cyclin B was not ubiquitinated. In contrast, addition of the 

immunoprecipitated complexes to interphase extracts induced cyclin B ubiquitination. As 

this complex, and the homologous yeast Cdc16 and Cdc27, were all required for 

anaphase onset, it was termed the Anaphase-promoting complex (APC; King et al., 

1995). The role of the APC in ubiquitination was further solidified by a mass 

spectrometric analysis of the budding yeast APC that identified the presence of a RING-

finger protein and a cullin subunit, both of which are associated with E3 ubiquitin ligases 

(Zachariae et al., 1998b). The evolutionary conservation of the APC was shown by the 

simultaneous finding that the Apc2 sequence was similar in human, Xenopus and 

budding yeast (Yu et al., 1998). 

 

Since then many more targets of the APC have been discovered in various organisms. 

For example, in order for the polar migration of the sister chromatids to occur, Xenopus 

Xkid and budding yeast Kip1 and Cin8 kinesins must be degraded (Funabiki & Murray, 

2000; Gordon & Roof, 2001; Hildebrandt & Hoyt, 2001). Xkid maintains chromosomes at 

the metaphase plate ready for separation while Kip1 and Cin8 are involved in mitotic 

spindle assembly (Hoyt et al., 1992; Funabiki & Murray, 2000). The kinases Cdc5/Plk1 

and Aurora A are targeted by APCCdh1 to allow entry into G1 (Charles et al., 1998; Castro 

et al., 2002; Lindon & Pines, 2004). The re-accumulation of these proteins is prevented 

by the continued activity of APCCdh1 during G1 (Shirayama et al., 1998; Castro et al., 

2002). 

1.3.2 Control of the cell cycle 

Anaphase is defined by the separation of sister chromatids. Sister chromatids are held 

together by a multi-protein complex called cohesin that must be cleaved to allow 
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separation (Darwiche et al., 1999; Uhlmann et al., 1999). This cleavage is accomplished 

by an enzyme called separase (Uhlmann et al., 1999). Separase activity is inhibited by 

securin (Pds1 in S. cerevisiae) binding and cyclin B/Cdk activity (Zou et al., 1999). 

 

The cyclical nature of cyclins was first discovered by Tim Hunt in 1983 using sea urchin 

eggs. It was observed that cyclin levels decreased every cell cycle during division 

(Evans et al., 1983). The term cyclin refers to the cyclical rise and fall of these proteins 

throughout the cell cycle. Cyclins associate with the protein kinase Cdk1/Cdc28 (Cyclin 

dependent kinase 1/Cell division cycle 28) to target phosphorylation of specific 

substrates (Arellano & Moreno, 1997). Cdk1/Cdc28 phosphorylation is essential to 

activate proteins needed to move the cell through G2 and into mitosis. Additionally, it 

must be deactivated during anaphase and telophase to allow chromosomes to 

decondense, the nuclear envelope to reform, and cells to divide. The cell accomplishes 

this deactivation of Cdk by degrading its activating cyclins (Peters, 2006). 

 

The destruction of securin and the B-type cyclins have been shown to be required for 

mitotic passage (King et al., 1995; Thornton & Toczyski, 2003). A genetic screen in 

yeast identified APCCdc20 mediated destruction of securin and Clb5 as being essential for 

mitotic passage. Clb2 is also targeted for degradation by both APCCdc20 and APCCdh1 to 

allow exit from mitosis and maintenance of G1 (Shirayama et al., 1999; Yeong et al., 

2000). 

 

Given the number of proteins marked for proteolysis by the APC, it is understandable 

that APC activity would be vital to the cell (see Table 1.3). For example, overexpression 

of the human kinase Aurora A, an APC target, results in mitosis occurring without 

cytokinesis (Meraldi et al., 2002; Castro et al., 2005).  Both polyploidy and increased 
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Table 1.3 APC substrates in various organisms 
 

Target Stage degraded Activator required Organism 

    Cdc5/Plx1/Plk1 before mitotic exit Cdh1 Sc, Xl, Human 

Clb2/cyclin B metaphase Cdc20 and Cdh1 Sc, Xl, Human 

Cdc20/Fzy/p55CDC G1 Cdh1 Sc, Human 

Cdh1/Hct1/Fzr1 before G1 exit Cdh1 Human 

Pds1/Securin metaphase Cdc20 and Cdh1 Sc, Human 

Xkid metaphase Cdc20 and Cdh1 Xl, Human 

Kip1 metaphase Cdc20 Sc, Human 

Cin8 metaphase Cdh1 Sc, Human 

Geminin metaphase 
 

Human 

Aurora A before mitotic exit Cdh1 Xl, Human 

Cdc6 before G1 exit Cdh1 Human 

Ase1/Prc1 before mitotic exit Cdh1 Sc, Xl, Human 

Skp2 before mitotic exit Cdh1 Sc, Human 

    Sc = Saccharomyces cerevisiea 
  Xl = Xenopus leavis 

   

    

    Information obtained and modified from Castro, et al. 2005; Baker, et al. 2007; Wäsch, et 
al. 2010. 
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levels of Aurora A have been found in cancer cells indicating that appropriate 

ubiquitination by the APC may be crucial to a cell‟s health (Castro et al., 2005). Yeast 

and vertebrates share many APC targets in common, so it is reasonable to conclude that 

results from research on yeast can be directly applied to vertebrate systems (Castro et 

al., 2005).  

 

1.3.3 APC subunits 

There are 13 core subunits and three activators known to comprise the APC in S. 

cerevisiae (reviewed in McLean et al., 2011). The majority of these proteins have 

orthologs in other organisms including humans (see Table 1.4 for a list of subunits). The 

binding of the activators is cell cycle dependent while the core subunits appear to stay 

associated throughout the cell cycle, even when inactive (Peters et al., 1996; Fang et al., 

1998; Grossberger et al., 1999; Cooper et al., 2000). A representative schematicof the  

structure of the APC is illustrated in Figure 1.5. For more detailed structures see 

Buschhorn et al. 2011; da Fonseca et al. 2011; Schreiber, et al. 2011. 

 

1.3.3.1 Apc2, Apc11 

The catalytic function of the APC is provided by the Apc2 and Apc11 subunits. As a 

RING-H2 finger protein Apc11 is responsible for mediating the passage of ubiquitin from 

the E2 to the substrate (Thornton & Toczyski, 2006). The RING-H2 domain is thought to 

recognize and bind to the E2. Apc2 is a member of the Cullin family, members of which 

contain a specific 180-residue domain (Zachariae et al., 1998b) that associates with the 

RING-H2 finger domain (Ohta et al., 1999). Cullin and RING-H2 finger domains are also 
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Table 1.4 APC subunits in various organisms    

       

S. cerevisiae 
S. 
pombe 

Drosophila 
melanogaster Human Domain Function 

Essential 
in yeast? 

       

Apc1 Cut4 Shattered A/B Apc1 PC repeats Scaffold Yes 

Apc2 Apc2 Morula Apc2 Cullin-like E2 binding Yes 

Cdc27* Nuc2* Makos Apc3 TPR repeats 
Protein 
binding 

Yes 

Apc4 Lid1 Apc4 Apc4  Scaffold Yes 

Apc5 Apc5 Ida A/B Apc5 TPR repeats Scaffold Yes 

Cdc16* Cut9* Cdc16 Apc6 TPR repeats 
Subunit 
binding 

Yes 

- - Apc7 A/B Apc7 TPR repeats  - 

Cdc23* Cut23* Cdc23 Apc8 TPR repeats 
Subunit 
binding 

Yes 

Apc9 - - -  
Complex 
stabilization 

No 

Doc1/Apc10 Apc10 Apc10 Apc10 
Doc domain, 
IR motif 

Substrate 
recognition 

No 

Apc11 Apc11 Lemming Apc11 RING finger 
Catalytic 
subunit/E2 
binding 

Yes 

Cdc26* Hcn1 - Cdc26  
Induced by 
heat shock 

No 

Swm1 Apc13 - Apc13  

Complex 
stabilization/
Role in 
meiosis 

No 

- Apc14 - -   - 

Mnd2 Apc15 - -  
Role in 
meiosis 

No 

- - - Apc16   - 

       

PC = proteasome-cyclosome     

TPR = tetratricopeptide repeats     

S. pombe = Schizosaccharomyces pombe    

       
*, Two copies of each subunit are present in each complex 
-, Subunit has not been identified in that species. 

       

       
Information obtained and modified from Thornton & Toczyski, 2006.; McLean et al., 
2011.; Schreiber et al., 2011. 

 
 



47 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
Figure 1.5. Representative schematic of the APC. Green indicates catalytic proteins, 
Blue indicates structural, Orange indicates TPR subunits, Purple indicates proteins 
involved in meiosis, Grey indicates exact function unknown. The location of the adaptors 
Cdc20 and Cdh1, which associate with Cdc27 and Apc10, is shown in pink. Information 
obtained and modified from Thornton & Toczyski, 2006; Thornton, et al. 2006.; 
Schreiber, et al. 2011. For more detailed EM structures of S. cerevisiae and human 
APCs see Buschhorn et al. 2011; da Fonseca et al. 2011; Schreiber, et al. 2011. 
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found in subunits of the SCF complex. Apc2 is responsible for tethering Apc11 (and 

Apc10) to the rest of the APC complex (Thornton & Toczyski, 2006). Together Apc2 and 

Apc11 have been shown in vitro to be capable of ubiquitinating proteins but this activity 

is not substrate specific and requires the presence of an E2. For example, Apc2 (Cullin) 

and Apc11 (RING domain) together with the E2 Ubc4, can ubiquitinate targets in vitro 

(Tang et al., 2001b). The RING-H2 finger domain on Apc11 is responsible for 

associating with the cullin domain of Apc2, as well as the human E2 UbcH10 and UbcH5 

enzymes (Tang et al., 2001b). 

 

1.3.3.2 Cdc16, Cdc23 and Cdc27 

The essential Cdc16, Cdc23 and Cdc27 (Cell-division cycle) proteins all contain 

tetratricopeptide repeats (TPR motif; Sikorski et al., 1990; Lamb et al., 1994). These 

tandem repeats of 34-residue sequences are believed to facilitate protein-protein 

interactions (D'Andrea & Regan, 2003). TPR motifs are found in a wide range of proteins 

associated with a large variety of cellular processes, such as cell cycle regulation, 

organelle protein transport, transcriptional control and protein folding (D'Andrea & 

Regan, 2003). Cdc16, Cdc23 and Cdc27 are all phosphorylated during mitosis by 

Cdc28, which then activates the APC to enable mitotic progression (Lahav-Baratz et al., 

1995; Peters et al., 1996; Kotani et al., 1998; Rudner & Murray, 2000; Kraft et al., 2003). 

It has also been shown that Cdc27 binds the APC activators Cdh1 and Cdc20 by 

recognizing a C-terminal IR (Isoleucine-Arginine) dipeptide motif and a short internal C-

box (conserved in Cdc20 family proteins) motif (Schwab et al., 2001; Passmore et al., 

2003; Vodermaier et al., 2003). The phosphorylation of Cdc27 increases the binding 

affinity of Cdc20 (Kraft et al., 2003). In addition, the deletion of any one of Cdc16, Cdc23 

or Cdc27 greatly decreases the binding of Cdh1 (Thornton et al., 2006). 
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1.3.3.3 Apc1, Apc4 and Apc5 

The largest APC subunit, Apc1, was discovered in 1996 by two different studies. A 

screen of yeast mutants identified a role for Apc1 in Clb2 degradation as mutants had 

stabilized levels of Clb2 (Zachariae et al., 1996), while a Xenopus egg extract 

purification study determined that Apc1 was a conserved member of the APC (Peters et 

al., 1996). Apc1 is stable throughout the cell cycle but its activity seems to be controlled 

by phosphorylation during mitosis (Peters et al., 1996). Apc1 is believed to be 

responsible for binding proteins, suggesting a role in substrate binding or scaffolding for 

the complex itself (Lupas et al., 1997). Supporting a role in scaffolding, the deletion of 

APC1 results in the APC separating into two distinct complexes; one containing Apc2, 

Apc11 and Apc10, the other containing Cdc27, Cdc16, Cdc23 and Cdc26 (Thornton et 

al., 2006). 

 

Though essential, little is known regarding the roles Apc4 and Apc5 play within the APC 

complex. These proteins were shown to be tightly associated with Apc2/Apc11 as they, 

along with Apc1, remained bound to the Apc2/Apc11 subcomplex after washing with 

high salt while the TPR proteins did not (Vodermaier et al., 2003). As such, they were 

believed to connect the ubiquitin-ligase activity of the Apc2/Apc11 subunits with the 

protein binding capability of the TPR proteins. A recent study designed to allow deletion 

of essential APC subunits supports this hypothesis as the deletion of either Apc4 or 

Apc5 resulted in the loss of the three TPR-containing subunits Cdc16, Cdc23 and Cdc27 

from the rest of the APC (Thornton et al., 2006). Interestingly, deletion of any one of 

Apc1, Apc4, Apc5 or Cdc23 resulted in the loss of the other three, suggesting that a 

complex binding pattern is required for maintaining APC structure. 
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1.3.3.4 Apc10 

Apc10 is believed to interact with substrates in order to inhibit their dissociation from the 

APC, thereby allowing efficient ubiquitination (Carroll & Morgan, 2002; Passmore et al., 

2003). Apc10, also known as Doc1 (destruction of cyclin B), contains a „Doc‟ domain 

which is involved in protein-protein binding (Grossberger et al., 1999; Carroll & Morgan, 

2002; Passmore et al., 2003; Carroll et al., 2005). This motif has been found in other 

proteins of the ubiquitin-proteasome system containing cullin and HECT motifs, 

suggesting that this motif is tightly linked with ubiquitination (Grossberger et al., 1999). 

Apc10 mutants exhibit temperature sensitivity (Hwang & Murray, 1997; Irniger et al., 

2000, Harkness et al., 2002, Turner et al., 2010). APC complexes purified from strains 

lacking Apc10 contained all other subunits found in wild-type cells suggesting that Apc10 

likely plays a role in substrate recognition and not complex integrity (Passmore et al., 

2003). A deletion assay by Thornton and colleagues supports this as only the deletion of 

Apc2 resulted in a loss of Apc10, suggesting that Apc10 is located at the periphery of the 

complex (Thornton et al., 2006). In fact, two recent studies have further defined the 

structure of the APC to show Apc10 to be at the periphery of the catalytic arm 

(Buschhorn et al., 2011; Schreiber et al., 2011). 

 

Interestingly, Apc10 has been shown to physically associate with both Cdc27 and Apc11 

(Tang et al., 2001b; Wendt et al., 2001). Similar to Cdc20 and Cdh1, the Apc10 subunit 

also possesses a C-terminal IR motif that is required for the binding of Cdc27 (Wendt et 

al., 2001; Vodermaier et al., 2003). The Apc10 subunit has been shown to be necessary 

for substrate recognition and binding as complexes lacking it are unable to bind or 

ubiquitinate substrates in an effective manner (Carroll & Morgan, 2002; Passmore et al., 

2003). Apc10 has been proposed to act as a processivity factor to promote APC 

substrate ubiquitination as APC complexes lacking Apc10 are still able to ubiquitinate 
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substrates albeit at a much slower rate (Carroll & Morgan, 2002). This possibility is 

supported by in vitro studies showing that Cdh1 is unable to bind substrates in Apc10 

mutants (Passmore et al., 2003; Carroll et al., 2005).  

 

1.3.3.5 Cdc26 and Apc9 

Apc9 is the only subunit shown to be unique to yeast; no known ortholog has been 

discovered yet (Zachariae et al., 1998b; McLean et al., 2011). Additionally, Apc9 is not 

essential and mutants do not exhibit temperature sensitivity (Page et al., 2005). Cdc26 is 

an evolutionarily conserved heat shock inducible protein involved in the retention of 

Cdc16 and Cdc27 at high temperatures (Zachariae et al., 1996; Yamada et al., 1997; 

Zachariae et al., 1998b). Not much is known about these two proteins except that they 

play a role in APC structure. Immunoprecipitations of the APC in Apc9 mutants showed 

decreased levels of associated Cdc27 while mutation of Cdc26 decreased APC 

association of Cdc27, Cdc16 and Apc9 (Yamada et al., 1997). 

 

1.3.3.6 Swm1 and Mnd2 

Mnd2 (Meiotic nuclear divisions 2) has no known ortholog in vertebrates and is believed 

to play a role in meiosis (Hall et al., 2003). In fact, it is believed to prevent APC activation 

by the meiosis-specific activator Ama1 (Oelschlaegel et al., 2005). The evolutionarily 

conserved Swm1 (Spore wall maturation 1) is required for efficient growth at elevated 

temperatures (Schwickart et al., 2004). Swm1 helps to stabilize the association of Apc9, 

Cdc16, Cdc26 and Cdc27 to the APC, as deleting SWM1 resulted in the loss of these 

subunits (Schwickart et al., 2004). Swm1 has also been shown to bind Cdc23 and Apc5 

(Yoon et al., 2002; Hall et al., 2003). 
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1.3.4 Regulation of APC 

 

1.3.4.1 Regulation of APC by two activators, Cdc20 and Cdh1  

The specificity of APC substrate recognition is regulated by the transient binding of 

several activators (see Table 1.5). Both Cdc20 (cell-division cycle 20) and Cdh1 (Cdc20 

homolog 1) direct APC activity during mitosis but Cdh1 is also active throughout G1 (see 

Figure 1.4). Each activator targets several different proteins for degradation, though, 

only the destruction of securin and the B-type cyclins is absolutely required for mitotic 

passage (Thornton & Toczyski, 2003). APCCdc20 has been shown necessary to allow the 

initiation of anaphase by targeting securin/Pds1 for degradation while APCCdh1 targets 

Clb2 for degradation, triggering mitotic exit (Castro et al., 2005). One study using mouse 

cells has challenged this, as APCCdc20 was found to be responsible for targeting cyclin B 

while APCCdh1 targeted securin (Jeganathan et al., 2005). This work suggests that the 

targeting of substrates for ubiquitination is even more complicated than previously 

thought. 

 

Cdc20 and Cdh1 are members of the WD40 family of proteins. WD40 repeats are 

believed to be involved in protein binding. For example, the protein binding capability of 

the SCF protein Skp1 is mediated by its WD40 domain (Patton et al., 1998b). While 

Cdc20 and Cdh1 help to regulate APC activity, the activity levels of Cdc20 and Cdh1 are 

themselves heavily regulated. Phosphorylation, cellular localization and activator 

degradation all co-operate to ensure a tightly controlled process.  APC activity is 

controlled by phosphorylation of its subunits and activators by the kinases Cdc28, polo-

like kinase (Cdc5) and PKA (Protein kinase A) (see Figure 1.6 for a synopsis of APC 

activity regulation; Kotani et al., 1998; Rudner & Murray, 2000; Golan et al., 2002). 

Cdc20 binding and APC activation are both increased in response to Cdc28-dependent 
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Table 1.5 Co-activators of the APC 
 

     

S. cerevisiae S. pombe * 
Drosophila 
melanogaster Human Phase 

     Cdc20 Slp1 Fizzy Cdc20/Fzy/p55CDC M/Me 

Cdh1/Hct1 Ste9/Srw1 Fizzy-related Cdh1/Fzr1 M/Me/G1 

Ama1 - - - Me 

- Mfr1 - - Me 

- - Cortex - Me 

     M=mitosis; Me=meiosis; G1=G1 phase 
   * Schizosaccharomyces pombe 
   

     Information obtained and modified from Thornton & Toczyski, 2006; McLean, et al. 2011. 
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phosphorylation of Cdc16, Cdc23 and Cdc27 (Kotani et al., 1998; Kramer et al., 2000; 

Rudner et al., 2000; Rudner & Murray, 2000; Kraft et al., 2003). Phosphorylation of the 

APC by Cdc5 is also able to increase APC activity, but only in conjunction with Cdc28 

phosphorylation (Golan et al., 2002; Kraft et al., 2003). In contrast, Cdc28-dependent 

phosphorylation of Cdh1 prevents its association with the APC (Zachariae et al., 1998a; 

Rudner & Murray, 2000; Crasta et al., 2008). Dephosphorylation of Cdh1 is induced by 

inactivation of Cdc28. Dephosphorylated Cdh1 associates with the APC to regulate 

substrate degradation throughout mitosis and G1 (Zachariae et al., 1998a; Rudner & 

Murray, 2000). Once APCCdh1 is activated it immediately targets Cdc20 for ubiquitination 

and subsequent degradation (Pfleger & Kirschner, 2000). PKA inhibits APC activity 

through the phosphorylation of Cdc23 and Cdc27 (Kotani et al., 1998). This 

phosphorylation prevents both the ubiquitination of cyclin B as well as the ability of Cdc5 

to activate the APC (Kotani et al., 1998). 

 

Cdh1 activity is not just regulated by phosphorylation but also by its abundance and 

localization. Cdh1 levels are at their highest during mitosis with a gradual decline during 

G1 possibly due to it targeting itself for ubiquitination, at least in mouse fibroblasts 

(Kramer et al., 2000; Listovsky, 2004). Cdh1 also changes its cellular localization 

throughout the cell cycle. From S-phase until the end of mitosis Cdh1 is located in the 

cytoplasm then stays nuclear throughout G1 (Jaquenoud et al., 2002; Zhou et al., 2003). 

Cyclin-Cdk (Cdc28) phosphorylation promotes Cdh1 nuclear export, which likely aids in 

the prevention of APC and substrate binding by Cdh1, resulting in the accumulation of 

proteins required for entry into mitosis (Jaquenoud et al., 2002; Zhou et al., 2003). The 

maintenance of Cdh1 phosphorylation from G1/S-phase to early mitosis is likely due to 

cooperation between G1 cyclins and S-phase B-type cyclins (Zachariae et al., 1998a).  
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Cdc20 and Cdh1 are capable of directly binding substrates in the absence of the APC 

suggesting that they may mediate the interaction of the substrate with the ubiquitination 

machinery (Pfleger et al., 2001). In support of this is the finding that most substrates do 

not bind to the APC when it is not activated by Cdh1 or Cdc20 (Passmore & Barford, 

2005). One exception is human Nek2A NIMA-related kinase 2A, whose binding to the 

APC occurs before Cdc20 is able to drive APC activity (Hayes et al., 2006). Once 

APCCdc20 is released by Emi1, Nek2A is rapidly ubiquitinated, directing it to the 

proteasome for degradation. Binding of Cdc20 and Cdh1 are selective as they do not 

always bind the same substrates as is the case for Clb2. For example, Pds1 is targeted 

for degradation by APCCdc20 and Cdc20 has been shown to directly bind with Pds1, but 

Cdh1 does not (Hilioti et al., 2001). This specific recognition of substrates depends on 

the presence of degradation signals in their amino acid sequence. Several different 

sequences have been discovered to date; the two predominant ones being the D box 

and the KEN box (McLean et al., 2011). The D box is composed of the sequences 

RxxLxxxN or RxxLxxxxN/D/E (where x is any amino acid residue), while the KEN box is 

composed of KENxxxE/D/N (Glotzer et al., 1991; Pfleger & Kirschner, 2000, McLean et 

al, 2011). Cdh1 will bind to proteins containing either a KEN box or a D box, while Cdc20 

does not recognize KEN boxes (Glotzer et al., 1991; Pfleger & Kirschner, 2000). 

Mutations in the D box and KEN boxes of Clb2 results in stabilization, but, only mutation 

to the D box actually prevents mitotic exit (Wäsch & Cross, 2002). It was demonstrated 

that APCCdc20-mediated degradation was sufficient to allow mitotic exit, suggesting that 

APCCdh1‟s role is to maintain the low levels of Clb2 during M/G1. Low mitotic cyclin 

activity during G1 may delay S-phase to allow proper assembly of pre-replication 

complexes and fidelity of DNA synthesis (Wäsch & Cross, 2002).  
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1.3.4.2 Control of the APC by the Spindle Checkpoint 

The spindle checkpoint is responsible for ensuring that all sister chromatids are properly 

attached to the mitotic spindle (Zhou et al., 2002; Kops et al., 2005). Attachment of the 

mitotic spindle to the spindle poles and the kinetochore of a sister chromatid creates 

tension. It is the lack of tension on any one of the mitotic spindles resulting from 

improper attachment that activates the spindle checkpoint to arrest the cell until all sister 

chromatids are properly attached (Zhou et al., 2002).  

 

One of the ways the cell is prevented from continuing through the cell cycle is through 

the spindle checkpoint mediated inactivation of the APC. The Bub3/BubR1/Mad2 

complex binds to Cdc20 to inhibit APCCdc20 activity (Fang et al., 1998; Tang et al., 2001a) 

Phosphorylation of Cdc20 allows the direct binding of Mad2 and BubR1, the vertebrate 

ortholog of yeast Mad3, to APCCdc20 (Fang et al., 1998; Hardwick et al., 2000; Chang & 

Chen, 2003). Please see Figure 1.6 for an overview of APC regulation. The spindle 

checkpoint proteins bind to kinetochores and inhibit the cell cycle until tension is restored 

(Shah et al., 2004; Kops et al., 2005). Once all kinetochores are attached to the mitotic 

spindle the inhibitory complex releases APCCdc20, allowing degradation of its substrates 

to continue (Mao et al., 2003; Kim & Yu, 2011). Inhibition of APCCdh1 occurs in a manner 

similar to APCCdc20, albeit by different proteins. One line of research has demonstrated 

that the nucleocytoplasmic transport factors Nup98 (nuclear pore 98) and Rae1 (mRNA 

export factor 1) bind to APCCdh1 to prevent premature degradation of securin in early 

mitosis (Jeganathan et al., 2005). This inhibition occurs even though APCCdh1 is already 

bound to securin (Jeganathan et al., 2006). Mouse cells with decreased levels of Nup98 

and Rae1 exhibited premature sister chromatid separation and aneuploidy, likely due to 

securin being degraded during prometaphase instead of anaphase (Jeganathan et al., 

2005). The release of APCCdc20 and APCCdh1 by the inhibitory complexes both occur at 
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the metaphase/anaphase transition to allow entry into anaphase. The degradation of 

securin and cyclin B then allow separase to cleave cohesin resulting in sister chromatid 

separation (Uhlmann et al., 1999). 

 

1.4 APC and Chromatin 

1.4.1 Involvement of APC in genomic stability 

Checkpoint defective cells that cannot properly inhibit APC activity enter anaphase 

prematurely and often exhibit chromosomal instability. Premature sister chromatid 

separation can lead to lagging chromosomes and anaphase bridges resulting in 

daughters inheriting incorrect chromosomes (Baker et al., 2007). As genomic instability 

appears to be a leading cause of cancer and aging, it is highly likely that the APC plays 

an important role and that this role is evolutionarily conserved. Indeed decreased Cdh1 

expression has been linked to cancer (Wang et al., 2000; Engelbert et al., 2008). 

Downregulation of Cdh1 results in defective cell cycle control as well as inefficient 

chromosome separation. For example, mouse cells lacking Cdh1 showed activation of 

the DNA damage response and premature senescence (Engelbert et al., 2008; García-

Higuera et al., 2008; Li et al., 2008). Furthermore, embryos lacking Cdh1 died at 

embryonic day 9.5, while heterozygous mice exhibited an increase in spontaneous 

tumor growth (Wang et al., 2000; García-Higuera et al., 2008). Cdh1 has also been 

shown to be downregulated in prostate, ovary, liver and brain tumors (Bassermann et 

al., 2008). As such, there is a large pool of APC substrates that when not degraded can 

lead to defects in cytokinesis, such as aberrant spindle pole organization, premature 

cytokinesis, polyploidization and multi-polar mitosis in the following cell cycle 

(Hildebrandt & Hoyt, 2001; Meraldi et al., 2002; Anand et al., 2003; Stewart & Fang, 

2005). Additionally, the protein levels of APC targets such as Aurora A and B, Cdc20, 



59 
 

cyclin B, Nek2, Plk1 and Skp2 have been shown to be increased in a variety of cancers 

(Carter et al., 2006; Lehman et al., 2007). 

 

Genomic integrity depends on both error-free DNA replication and sister chromatid 

separation. When errors occur they can result in uncontrolled cell proliferation or cell 

death. The activity of the APC is required to prevent the accumulation of proteins that 

can affect this fidelity. Studies encompassing the entire evolutionary range of species 

(yeast, mouse and human) all show that accumulation of this type of protein leads to 

defective DNA replication and chromosome separation (Wäsch et al., 2010). The role 

the APC plays in genomic stability has been linked to the tumor suppressor protein Rb 

(Binné et al., 2007). Rb has been shown to bind to and inhibit members of the E2F 

transcription factor family (Wu et al., 1995). Many cancers exhibit mutated Rb pathways, 

resulting in increased gene transcription activity by E2F proteins. E2F transcription 

factors are responsible for activating the spindle checkpoint protein Mad2, which has 

been shown to be increased in several human tumor samples (Hernando et al., 2004). 

Mad2 inhibits APC activity and these cells progress through mitosis slowly with elevated 

levels of APC targets (Fang et al., 1998). Cells that spend a prolonged time with an 

inactive APC and increased levels of its targets will eventually proceed with 

chromosome segregation, often resulting in defects (Zou et al., 1999; Meraldi et al., 

2002; Hernando et al., 2004). This highlights the fact that activity of the APC needs to be 

tightly regulated in order to progress through mitosis properly and to maintain genomic 

stability. Interestingly, Rb has also been shown to physically bind to human APCCdh1 and 

to induce cell cycle arrest in an APCCdh1-dependent manner (Binné et al., 2007). 

Induction of Rb is unable to cause cell cycle arrest in cells where Cdh1 has been 

depleted. While Rb binds to active APCCdh1 it is not targeted by the APC for degradation. 

Instead, Rb binding increased the rate of ubiquitination and degradation of the APCCdh1 
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targets Plk1 and Skp2. While the exact mechanism of Plk1 recruitment is unknown, 

Skp2 recruitment is likely facilitated through Rb-Skp2 binding (Ji et al., 2004). The 

interaction of APCCdh1 with Rb is specific, as two familial proteins, p107 and p130, did not 

bind to the APC, nor was cell cycle arrest by p107 dependent on the presence of Cdh1 

(Binné et al., 2007). The ability of Rb to influence the activity of the APC, in multiple 

ways, such as recruitment of substrates and by preventing expression of APC inhibitors, 

highlights the complexity of cell cycle control. 

 

1.4.2 Involvement of APC with Transcription Factors 

Two transcription factors, CBP and p300, have been shown to physically interact with 

the APC and to increase its activity during mitosis (Turnell et al., 2005). The human APC 

components Apc5 and Apc7 (a TPR repeat protein not present in S. cerevisiae) share a 

conserved binding domain with E1A, a protein that associates with the transcription 

factors CBP and p300 (Arany et al., 1995; Turnell et al., 2005). Immunoprecipitation data 

showed that CBP and p300 physically interact with the subunits Apc2, Apc5, Apc6 

(Cdc16 in S. cerevisiae) and Apc7, indicating that the association likely occurs with the 

entire APC complex. Interaction with the APC has been shown to occur through the 

binding of Apc5 and Apc7, as these subunits are able to bind CBP and p300 in isolation 

from the complex. Increased expression of Apc5 or Apc7 resulted in elevated p300 

transcriptional activity, while expression of APC5/7 mutants did not. CBP/p300 binds 

p53, which then activates the p21 promoter in response to DNA damage (Dulić et al., 

1994; Lill et al., 1997). APC5 or APC7  knockdown using RNAi (RNA interference) 

resulted in decreased p21 mRNA levels but did not affect p53 levels (Turnell et al., 

2005). Protein levels of CBP and p300 were also elevated when cells were treated with 

APC5 or APC7 RNAi constructs, suggesting that they may actually be targets of the 
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APC. Interestingly, treatment with RNAi against CBP resulted in increased protein levels 

of the APC targets cyclinB1 and Plk1, and cells were stalled in mitosis. Further 

highlighting a possible role of the APC in transcriptional control is the finding that certain 

promoters exhibited decreased histone H4 acetylation levels  in cells treated with APC5 

or APC7 RNAi.  Conversely, APC overexpression increases H4 acetylation. In addition, 

Apc5 and Apc7 co-localized with CBP and acetylated H3, suggesting it has a role in 

transcription (Turnell et al., 2005). 

 

A recent study has identified another tumor suppressor protein that binds to the APC 

and results in increased activity, PTEN (phosphatase and tensin homolog, Song et al., 

2011). As a consequence of its role in repressing the P13K/AKT pathway and cell 

growth, PTEN is found to have a high mutation rate in cancer (Li et al., 1997; Maehama 

& Dixon, 1998; Sun et al., 1999). Using mass spectrometry and immunoprecipitations, 

nuclear PTEN was found to bind to the APC core complex. Similar to Rb, PTEN binds to 

active APC complexes, as demonstrated by the in vitro ubiquitination of Cyclin B (Song 

et al., 2011). PTEN was shown to promote APC-Cdh1 binding and activity. In fact, 

induction of PTEN resulted in rapid degradation of APC targets, while PTEN silencing 

led to their stabilization. Additionally, the growth-suppressive ability of PTEN was 

dependent on APCCdh1, as cdh1 null cells failed to arrest. The phosphatase activity of 

PTEN has been found to be dispensable for its ability to induce APC activity as the 

phosphatase inactive form is still capable of inducing degradation of APC targets. This 

finding of an additional role for the tumor suppressor protein PTEN highlights the 

complexities in cell growth regulation and genomic stability. 



62 
 

1.4.3 Role of the APC in Chromatin Assembly 

Previous research from our laboratory using S. cerevisiae suggests that the ubiquitin-

targeting pathway plays a role in chromatin assembly, and may do so in a cell cycle-

dependent manner. In vitro chromatin assembly assays identified mutations in the genes 

encoding the E2 proteins Ubc7 and Cdc34, as well as the E3 proteins APC, SCF and 

Rsp5 (Reverses Spt-phenotype; Harkness et al., 2002; Arnason et al., 2005). 

Interestingly, Rsp5 is responsible for plasma membrane transporter turnover (Rotin et 

al., 2000; Morvan et al., 2004). One of the mutations recovered was in the essential 

APC5 subunit of the APC. This mutation (apc5CA, chromatin assembly) also increased 

chromosome loss and reduced lifespan (Harkness et al., 2002; Harkness et al., 2004). 

The apc5CA allele grows normally at 30˚C but at the restrictive temperature of 37˚C it 

grows slowly and accumulates at the metaphase/anaphase junction. A 2 bp deletion in 

the 5‟ end of the gene results in a premature stop codon. An N-terminally truncated 

protein is likely produced due to an internal start site as we are able to detect a C-

terminally tagged protein in apc5CA cells (Harkness et al., 2002; unpublished data). 

Similar defects are seen with mutations in other APC subunits, indicating that this is an 

APC phenotype and not isolated to APC5 mutants (Harkness et al., 2002; Harkness et 

al., 2004). The demonstration that the APC plays a role in regulating chromatin 

assembly suggests that chromatin assembly plays an important role during mitosis. 

Segregation of chromosomes during mitosis is a complex process and improperly 

assembled chromatin may result in genomic instability. As aberrations in APC activity 

have been linked to genomic instability and cancer in higher eukaryotes (Wäsch et al., 

2010) the link between yeast APC and chromatin assembly is likely evolutionarily 

conserved. 
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Further evidence supporting a role for the APC in chromatin assembly is the genetic 

associations between the APC and several CAFs. The apc5CA allele has been shown to 

genetically interact with the CAFs ASF1, CAF-I, HIR1 and HIR2 (Harkness et al., 2005). 

Interestingly, the presence of the CAF-I complex is required for suppression of the 

apc5CA temperature sensitive phenotype by ASF1, HIR1 or HIR2 overexpression. To 

date Asf1 and CAF-I are the only chromatin assembly factors required for a specific 

stage of the cell cycle. As noted above, cell cycle specific phosphorylation patterns of 

the p60 subunit (the orthologous subunit in yeast, Cac2, has not yet been found to be 

phosphorylated) have been shown to regulate the replication-dependent assembly 

activity, with hyperphosphorylation occurring during mitosis, causing inhibition 

(Marheineke & Krude, 1998; Martini et al., 1998). Thus it appears that CAF-I activity may 

be controlled through the reversible phosphorylation of p60. Nonetheless, the CAF-I 

subunit Msi1 was shown to independently suppress apc5CA defects in the absence of the 

rest of the CAF-I complex (Harkness et al., 2005). This indicates that the CAF-I subunits 

can function independently from one another to facilitate mitotic chromatin assembly. In 

fact, progressive deletion of the CAF-I subunits resulted in an exacerbation of the 

temperature sensitive growth of the apc5CA strain. Additionally, in vitro studies show that 

each individual CAF-I subunit is capable of binding histones (Kaufman et al., 1995; 

Verreault et al., 1996; Shibahara et al., 2000). Taken together, these results suggest that 

the individual CAF-I subunits can function independently during mitosis to facilitate 

chromatin assembly.  

 

1.4.4 APC and Histone Modifications 

In addition to transcriptional control, the acetylation pattern of histones is important for 

deposition onto DNA. CAF-I has been shown to associate with histones H3 and H4 to 
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allow replication-dependent chromatin assembly to occur once H4 has been acetylated 

(Verreault et al., 1996). Conversely, histones involved in replication-independent 

chromatin assembly during mitosis and G1 are hypoacetylated on the H4 amino-terminal 

tail and hyperphosphorylated on H3 Serine 10 (Altheim & Schultz, 1999). The APC has 

been linked to the chromatin assembly factor CAF-I in yeast, as well as the transcription 

factors CBP and p300 in humans, suggesting a role in both histone deposition and 

modification (Harkness et al., 2005; Turnell et al., 2005). CBP and p300 have been 

shown to acetylate histone H3K56, a residue associated with histone deposition by CAF-

I (Das et al. , 2009). Physical interaction of CBP and p300 with the APC results in an 

increase in p300 transcriptional activity and H4 acetylation (Turnell et al., 2005). 

Furthermore, increased expression of histones H3 and H4 suppresses the temperature 

sensitivity of apc5CA cells irrespective of an intact CAF-I complex (Harkness et al., 2005). 

Thus, it is clear that a strong link between the APC and histone metabolism exists. 

 

1.5 Rationale and Hypothesis 

The findings presented above link CAF-I, APC and histone modifications together with 

mitotic chromatin assembly. CAF-I is required for passage through S-phase with 

properly assembled chromatin. Condensation of chromatin must occur to allow mitotic 

segregation that is controlled by the APC. It is possible that CAF-I activity during mitosis 

is required to maintain chromatin assembly to allow proper sister chromatid separation 

and prevent genomic instability. In addition to transcriptional control, the modification 

levels of histones play a role in chromatin assembly throughout the cell cycle and the 

APC can influence these modifications (Verreault et al., 1996; Grunstein, 1997; Altheim 

& Schultz, 1999; Ramaswamy et al., 2003; Turnell et al., 2005). Thus, it is likely that a 
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tightly controlled pattern of histone modification and chromatin assembly occurs to allow 

cell cycle progression, and that the APC plays a very important role in this activity. 

 

Work from our laboratory has demonstrated that the APC is involved with both histone 

deposition and modification (Harkness et al., 2005; Turner et al., 2010; Islam et al., 

2011). The hypothesis of this thesis is that the APC interacts with chromatin assembly 

factors and histone modification proteins to regulate cell cycle progression See Figure 

1.7 for a model of these interactions. This thesis deals with how histone modification and 

deposition are regulated using the budding yeast S. cerevisiae. We hypothesize that the 

APC directs mitotic chromatin assembly though Asf1 and CAF-I and that mitotic 

progression is promoted by the redundant activities of the APC with the HATs Gcn5 and 

Elp3. We propose that the APC facilitates interaction between the HATs and Asf1 in 

order to deliver properly acetylated histones to the CAF-I complex for deposition into 

chromatin. Finally, we propose that   Gcn5, and possibly Elp3, are targeted by the APC 

for degradation during G1. The rapidly growing and easily manipulated S. cerevisiae is 

an excellent model organism as many of the proteins involved in chromatin assembly 

and histone modification are evolutionarily conserved. In light of this, the findings from 

studies on S. cerevisiae should be able to be directly applied to higher organisms. 
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Figure 1.7. Model of APC/HAT/CAF interactions. (A) The APC directs mitotic 
chromatin assembly though Asf1 and CAF-I. (B) Our data indicate that Gcn5 and Elp3 
independently work redundantly with the APC to promote mitotic progression. The 
establishment of a transcriptional profile required for G1 progression by Gcn5/Elp3 is 
likely necessary for APC function. We propose that the APC facilitates the interaction 
between the HATs and Asf1 in order to deliver acetylated histones to the CAF-I complex 
for deposition into chromatin. (C) Finally, to exit G1 and enter S, we propose that the 
transcriptional profile established by Elp3/Gcn5 must be reset. This is likely 
accomplished by APC-dependent targeting of Gcn5, and possibly Elp3, for degradation 
during G1. Figure from Turner et al., 2010.  
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1.6 Specific aims 

 
The specific aims of this thesis are as follows: 
 

1. To assess the molecular network involved in histone modification and deposition 

pertaining to the possible involvement of the APC. 

 Genetic screens, Western assays and Fluorescence Activated Cell 

Sorting (FACS) will be used to determine the interaction of the APC 

with histone modification proteins and chromatin assembly factors.  

2. To determine the mode of regulation of HATs by the APC. 

 It is predicted that the APC will play a role in targeting at least some of 

these proteins for degradation. 

3. To determine the physical association of the APC with chromatin assembly 

factors and HATs. 

 Immunoprecipitations will be used to determine any physical 

interaction between the chromatin assembly factors CAF-I and Asf1, 

the HAT Gcn5 and the APC. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1 Yeast genetics 

2.1.1 Yeast strains and cell culture  

All yeast strains used in this study were haploid and are listed in Table 2.1. The 

nomenclature used in this thesis to identify each mutant strain refers to the specific 

protein/subunit affected within the strain. apc5CA and apc16-1 refer to specific mutations 

within the APC5 and APC16 genes respectively.  Deletion of an entire gene is indicated 

by ∆ following the gene name, for example, apc10∆ and gcn5∆ refer to deletions of the 

entire APC10 and GCN5 genes, respectively. Yeast cells were cultured at 30˚C in rich 

medium [YPD - 1% yeast extract (VWR, CA9000-726), 2% peptone (VWR, CA07224-

1000), 2% glucose (dextrose)] or in synthetic dextrose (SD) medium (0.67% yeast 

nitrogen base without amino acids (VWR, CA99501-686), 2% glucose, galactose or 

sucrose, plus supplementation of necessary amino acids at recommended 

concentrations). Omission of specific amino acids allowed selection pressure for the 

maintenance of transformed plasmids. Selection of the KanMX marker was obtained by 

supplementing YPD with 0.2 mg/ml G418 (Geneticin, Gibco, #11811). To make plates, 

2% agar was added to the liquid medium prior to autoclaving. The molten agar was 

cooled to approximately 55-60˚C before pouring into petri dishes (VWR, 25384-302). For 

long term storage cells were grown to log phase in YPD, suspended in 1.5% glycerol 

and stored at -80˚C. 
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Table 2.1 List of strains used in this study   

    

Strains Genotype  Source (reference) 

    

ResGen    

YTH1029 MATa   Research Genetics 

YTH3638 MATa rpn10::kanMX6  W. Xiao 

YTH3785 MATa cdh1::kanMX6  W. Xiao 

    

S288c derivatives   

YTH5 MATa ade2 his3 lys2 ura3  Harkness et al. 2002 

YTH457 Mata rmc1 ade2 leu2 ura3 his3  Harkness et al. 2002 

YTH1049 MAT? cdc16-1 leu2 his3  This study 

YTH1085 MATa ura3-52 lys2-801 ade2-101 trp1-D63 
his3-D200 leu2-D1::apc11-13::LEU2 

 T. Hunter (YAP201) 

YTH1149 MATα ade2 his3 leu2 ura3 asf1::HIS3  Harkness et al. 2005 

YTH1235 Mata ade2 his3 leu2 lys2 ura3  Harkness et al. 2004 

YTH1377 MAT? ade2 his3 leu2 lys2 ura3 apc5CA-
PA::His5 apc9::kanMX6 

 Harkness et al. 2004 

YTH1387 MAT? ade2 his3 leu2 lys2 ura3 apc5CA-
PA::His5 cdc26::kanMX6 

 Harkness et al. 2004 

YTH1410 MAT? ade2 his3 leu2 lys2 ura3 apc5CA-
PA::His5 apc10::kanMX6 

 Harkness et al. 2004 

YTH1636 MATa ade2 his3 leu2 lys2 ura3  Harkness et al. 2004 

YTH1637 MATα ade2 his3 leu2 lys2 ura3 apc5CA-
PA::His5 

 Harkness et al. 2004 

YTH1648 MAT? ade2 his3 leu2 lys2 ura3 apc9::kanMX6  Turner et al. 2010 

YTH1669 MAT? ade2 his3 leu2 lys2 ura3 cdc26::kanMX6  Turner et al. 2010 

YTH1693 MATα ade2 his3 leu2 lys2 ura3 
apc10::kanMX6 

 Turner et al. 2010 

YTH1992 MAT? apc5CA-PA::His5 hpa2::kanMX6  Turner et al. 2010 

YTH1994 MAT? hpa2::kanMX6  Turner et al. 2010 

YTH1997 MAT? sas2::kanMX6  Turner et al. 2010 

YTH1998 MAT? apc5CA-PA::His5 sas2::kanMX6  Turner et al. 2010 

YTH2001 MAT? apc5CA-PA::His5 rpd3::kanMX6  Turner et al. 2010 

YTH2003 MAT? rpd3::kanMX6  Turner et al. 2010 

YTH2061 MAT? apc5CA-PA::His5 gcn5::kanMX6 
hpa2::kanMX6 

 Turner et al. 2010 

YTH2072 MATa gcn5::kanMX6  Turner et al. 2010 

YTH2075 MAT? apc5CA-PA::His5 gcn5::kanMX6  Turner et al. 2010 

YTH2076 MAT? gcn5::kanMX6 hpa2::kanMX6  Turner et al. 2010 

YTH2216 MAT? apc5CA-PA::His5 elp3::kanMX6  Turner et al. 2010 

YTH2217 MAT? elp3::kanMX6  Turner et al. 2010 
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YTH2219 MAT? elp3::kanMX6  Turner et al. 2010 

YTH2260 MAT? hos1::kanMX6  Turner et al. 2010 

YTH2261 MAT? apc5CA-PA::His5 hos1::kanMX6  Turner et al. 2010 

YTH2305 MAT? hda1::kanMX6  Turner et al. 2010 

YTH2306 MAT? apc5CA-PA::His5 hda1::kanMX6  Turner et al. 2010 

YTH2389 MAT? hos2::kanMX6  Turner et al. 2010 

YTH2390 MAT? apc5CA-PA::His5 hos2::kanMX6  Turner et al. 2010 

YTH2504 MAT? hat1::kanMX6  Turner et al. 2010 

YTH2507 MAT? apc5CA-PA::His5 hat1::kanMX6  Turner et al. 2010 

YTH2525 MAT? sas3::kanMX6  Turner et al. 2010 

YTH2526 MAT? apc5CA-PA::His5 sas3::kanMX6  Turner et al. 2010 

YTH2804 MAT? hos3::kanMX6  Turner et al. 2010 

YTH2805 MAT? hos3::kanMX6  Turner et al. 2010 

YTH2806 MAT? apc5CA-PA::His5 hos3::kanMX6  Turner et al. 2010 

YTH2807 MAT? apc5CA-PA::His5 hos3::kanMX6  Turner et al. 2010 

YTH3037 MAT? gcn5::kanMX6  Turner et al. 2010 

YTH3038 MATα apc5CA-PA::His5 gcn5::kanMX6  Turner et al. 2010 

YTH3606 MAT? elp3::kanMX6 gcn5::kanMX6  Turner et al. 2010 

YTH3607 MAT? apc5CA-PA::His5 elp3::kanMX6 
gcn5::kanMX6 

 Turner et al. 2010 

YTH3644 MATa ade2 his3 leu2 lys2 ura3  This study 

YTH4001 MATa ade2 his3 leu2 lys2 ura3 bar1::kanMX6 
PCR integration 

 This study 

YTH4004 MATa rmc1 ade2 leu2 ura3 his3 apc5CA-
PA::His5 bar1::kanMX6 PCR integration 

 This study 

YTH4040 MAT? 1693 + Gcn5-TAP::HIS PCR integration  This study 

YTH4044 MATa ade2 his3 leu2 lys2 ura3 cdc16-1 
bar1::kanMX6 PCR integration  

 This study 

YTH4048 MATa 4001 + Gcn5-TAP::HIS PCR integration  This study 

YTH4051 MATa 4004 + Gcn5-TAP::HIS PCR integration  This study 

YTH4062 MATa 4044 + Gcn5-TAP::HIS PCR integration  This study 

YTH4179 MATa 4001 + Elp3-TAP::HIS PCR integration  This study 

YTH4180 MATa 4004 + Elp3-TAP::HIS PCR integration  This study 

YTH4181 MATα 1693 + Elp3-TAP::HIS PCR integration  This study 

YTH4182 MATa 4044 + Elp3-TAP::HIS PCR integration  This study 

YTH4202 MAT? apc10::kanMX6 Elp3-TAP::HIS 
ubc1::kanMX6 

 This study 

YTH4268 MATa ura3 ade2 leu2 lys2 his3  This study 

YTH4269 MATα ura3 ade2 leu2 lys2 his3   This study 

    

W303 derivatives   

YTH1 MATa ade2 his3 leu2 trp1 ura3  H. Steiner 

YTH370 MATa ade1 bar1 his3 leu2 trp1 ura3 cdc16-1  D. Stuart 

YTH371 MATa ade1 his2 trp1 ura3 cdc23-1  D. Stuart 

YTH448 MATa cdc34-2  D. Stuart 
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YTH602 MATa ade1 bar1 his2 leu2 trp1-1 ura3∆ns 
cdc4-3 

 This study 

YTH1007 MAT? ade1 bar1 his2 leu2 trp1-1 ura3∆ns  D. Stuart 

YTH1096 MATa cdc53-1 bar1 his2 leu2 trp1 ura3  D. Stuart 

YTH1273 MATa cac2::CAC2-13Myc-kanMX6 leu2 ura3 
his3 trp1 ade2 can1 

 B. Stillman 

YTH3775 MATa, ade2-1 his3-11 leu2-3,112 trp1-
1::(SIC1-trp1)10x ura3-1can1-100 clb5::HIS3 

 D. Toczyski 

YTH3776 MATa, ade2-1 his3-11 leu2-3,112 trp1-
1::(SIC1-trp1)10x ura3-1can1-100 clb5::HIS3 
apc11::kanMX6 

 D. Toczyski 

    

    

MAT? = mating type was not determined   
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2.1.2 Yeast transformation 

Cells to be transformed were inoculated into 5 ml of YPD and grown overnight at 30˚C. 

The next day, cells were diluted to an optical density of OD600 0.5 in 5 ml of YPD and 

allowed to double in density (approximately 2 hours). Cells were then pelleted and 

washed in sterile water. All centrifugation steps were performed at room temperature for 

30 seconds at 14,000 rpm. Cells were resuspended in 0.5 ml of 100 mM LiAc solution 

[0.1 M lithium acetate, 10 mM Tris-HCl pH 8.0, 1 mM ethylenediaminetetraacetic acid 

(EDTA)] and incubated at 30˚C for fifteen minutes. Cells were pelleted, the LiAc solution 

removed and 5 μl of denatured salmon sperm DNA was added. The solution was mixed 

by pipetting and then 3-5 μl of transforming DNA was added. Samples were then mixed 

by vortexing. Following the addition of 300 μl PEG (polyethylene glycol) solution (40% 

PEG (3500), 100 mM LiAc, 10 mM Tris-HCl pH 8.0, 1 mM EDTA) samples were mixed 

by pipetting. Transformations were incubated at 30˚C for twenty minutes followed by 

heat shock at 42˚C for fifteen minutes. Following the incubations, cells were pelleted and 

the transformation mixture was removed. Cells were washed in 100 μl of 1 M sorbitol 

and then resuspended in sorbitol again. The cell/sorbitol solution was then spread on 

selection plates, allowed to dry and incubated at room temperature or 30˚C until colonies 

were observed; typically two to five days. 

 

2.1.3 Yeast genomic DNA extraction (Smash and Grab) 

The desired strain was inoculated into 5 ml of YPD or SD liquid media and allowed to 

grow to logarithmic phase. Cells were then centrifuged for three minutes at 4000 rpm. 

The pellet was then resuspended in 200 μl SCE (1 M sorbitol, 100 mM sodium citrate, 60 

mM EDTA) plus 20μl of 12.5units/μl of lyticase (Sigma #L4025) and transferred to a 

microcentrifuge tube. Cells were then incubated at 37˚C for an hour. Following 
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incubation, tubes were placed on ice and 400 μl of freshly made SDS/NaOH lysis buffer 

(0.2 N NaOH, 1% SDS) was added. The tubes were mixed by inverting and then placed 

back on ice. After five minutes, 300 μl of 3 M NaAC (pH 4.8) was added; tubes were 

inverted to mix and kept on ice for five minutes. To precipitate DNA, 600 μl of 

isopropanol was added and the tube was placed at -80˚C for a minimum of ten minutes 

to overnight. Tubes were then centrifuged for ten minutes at 14,000 rpm and the 

supernatant discarded. The DNA pellet was washed with 500 μl 70% ethanol and 

allowed to dry for five to ten minutes to allow evaporation of remaining ethanol. Pellets 

were then resuspended in 50-100 μl of distilled water, depending on pellet size. If 

required, DNA extractions were purified using a phenol/chloroform extraction. 

 

2.1.4 New strain formation 

The majority of strains used in this study were obtained by performing genetic crosses. 

Mutants were repeatedly backcrossed with our S288c background strain until multiple 

isolates displayed identical phenotypes (typically 5 or 6 crosses were needed). Strains of 

opposite mating type were combined on a YPD plate and allowed to mate and form 

diploids for two days. Diploids were then transferred to a sporulation plate (1% 

potassium acetate, 0.1% yeast extract, 0.05% glucose/dextrose, 2% agarose, 5 ml 

adenine) and incubated at room temperature. After one to two weeks, the formation of 

tetrads was determined by visualization using a light microscope. Sporulated tetrads 

were suspended in 100 μl of distilled water with 10 μl of lyticase added. 25 μl of the 

tetrad/lyticase solution was applied to a YPD plate and allowed to dry for twenty to thirty 

minutes. Once dry the individual tetrads were separated using a micromanipulator 

(Singer MSM) and allowed to form colonies. After the colonies were grown, they were 

struck onto selection plates to determine desired genotype. Double mutants where both 
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mutations were marked by the same selection criteria were identified by a 2:2 

segregation of the tetrads. 

 

2.1.5 Spot dilutions  

Strains of interest were grown overnight to log phase in liquid media and checked for 

bacterial contamination using a light microscope. Solutions were then prepared for each 

strain so that they contained approximately 107 cells: 10-fold serial dilutions were then 

made from this starting solution. Volumes of 3 μl from each dilution were pipetted onto 

selection plates in a grid pattern and allowed to grow at the indicated temperatures. 

Plates were grown from two to ten days until differences in growth were easily 

discernable. Plates were scanned once cells began to grow and the computer files were 

saved. Methyl methanesulfonate (MMS) was used to induce DNA damage and was 

purchased from Sigma (#1299-25). 

 

2.1.6 Protein extraction 

 

2.1.6.1 TCA protein extraction 

Cells to be used for protein analysis (typically 3–5 ml) were transferred to a 

microcentrifuge tube. The tubes were centrifuged for three minutes at 4000 rpm and the 

supernatant was removed. The cells were then resuspended in 240 μl of freshly made, 

ice cold, solution C (1.85 M NaOH, 7.4% 2-Mercaptoethanol) and incubated on ice. Five 

minutes later 250 μl of 100% trichloroacetic acid (TCA; VWR, CATX1045) was added 

and the tubes were vortexed to mix and put back on ice for five minutes. A ten minute 

room temperature centrifugation was then performed at 14,000 rpm and the supernatant 

discarded. Pellets were carefully washed in 1 ml of sterile distilled water and 
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resuspended in equal amounts of solution A (13% SDS and 1 M Tris) and solution B 

(30% glycerol plus a small amount of Bromophenol Blue), according to pellet size. 

Samples were then stored at -80˚C or prepared for Western analysis. 

 

2.1.6.2 Bead beat lysis 

The samples that were used for immunoprecipitations were obtained by bead beat lysis. 

Cultures were centrifuged for three minutes at 4000 rpm, the supernatant removed and 

cell pellets washed in 5-10 ml of sterile distilled water. Pellets were then resuspended in 

300 μl of RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 4.8, 5 mM EDTA, 1 mM 

ethylene glycol tetraacetic acid (EGTA), 1% (v/v) NP-40, 0.5% deoxycholate) with 10 

μl/ml Protease Inhibitor Cocktail (Sigma, P8215) and 1 μl/ml DTT (dithiothreitol; VWR, 

CA99501-684) added and transferred to a microcentrifuge tube. Approximately 300 μl of 

0.5-1 mm glass beads were added to the cell mixture. Tubes were then subjected to 

three rounds of bead beating lasting one minute each, for which a bead beater (Scientific 

Industries, Disruptor Genie) was used. In between rounds of beating, tubes were kept on 

ice for intervals of one minute. After the third round, tubes were centrifuged at a speed of 

14,000 rpm for fifteen minutes at 4˚C. Following centrifugation, the top layer of solution 

was pipetted off, transferred to a new microcentrifuge tube and stored at -80˚C. 

 

2.1.7 Cell cycle dependent stability analysis  

All cell cycle stability analyses were performed in essentially the same manner. Arresting 

agent, media used and time of sampling is indicated in Figure Legends.  
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2.1.7.1 Cell cycle arrest 

Strains of interest were inoculated into 15 ml of liquid media and allowed to grow. Once 

cultures had reached logarithmic phase the density was determined and cells were 

inoculated into 50 ml of liquid media at a concentration optimal to obtain an OD600 of 1.0 

the following morning. The next day cultures were set back to an OD600 of 0.5 and the 

appropriate arresting agent was added. For arresting cells in: G1, alpha factor (Zymo 

Research, #Y1001) was used at a concentration of 0.1 μM. For arresting cells in S-

phase, hydroxyurea (Sigma, #H8627) was used at a concentration of 0.3 M. For 

arresting cells in mitosis, nocodazole (Sigma, #M1404) was used at a concentration of 

15 μg/ml. Following arrest, cells were pelleted and washed twice in 10 ml of fresh media. 

Cells were then resuspended in fresh media at a volume equal to that removed following 

arrest. As indicated in the Figure Legends, some experiments had cycloheximide 

(Calbiochem, #239763) added during resuspension to a concentration of 10 μg/ml to 

prevent further protein synthesis. Samples for protein analysis and Fluorescence 

Activated Cell Sorting (FACS) were collected at the indicated times. 

 

2.1.7.2 FACS (fluorescence activated cell sorting)  

FACS was used to determine cell cycle profiles of yeast cultures during logarithmic 

growth and stability assays. Samples taken for FACS were adjusted to have a density 

equivalent to 1 ml of OD600 0.4. Cells were pelleted, washed with 1 ml 50 mM Tris-HCl 

(pH 8.0) and resuspended in 1 ml 70% ethanol. All centrifugation steps were performed 

for 30 seconds at 14,000 rpm. Samples were incubated at room temperature until day of 

analysis. Prior to analysis cells were pelleted, resuspended in 500 μl of 50 mM Tris-HCl 

(pH 8.0) and 5 μl of RNase A (20 mg/ml) and incubated at 37˚C for a minimum of two 

hours, maximum overnight. Cells were then pelleted and the Tris/RNase A solution was 
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removed. Samples were then washed with 1 ml of 50 mM Tris and resuspended in 500 

μl of propidium iodide solution [1 mg/ml propidium iodide (Sigma, #P4170) in PBS 

(phosphate-buffered saline: 8% (w/v) NaCl, 0.2% (w/v) KCl, 1.44% (w/v) Na2HPO4, and 

0.24% (w/v) KH2PO4)]. Samples were transferred to FACS tubes (12 X 75 mm 

polystyrene round-bottom tubes) and incubated for one hour in the dark. FACS analyses 

were performed at the Saskatoon Cancer Center. 

 

2.2 Molecular biology techniques  

2.2.1 Bacterial culture and storage 

The Escherichia coli (E. coli) strain DH5α was used for propagation of plasmids used in 

this study. See Table 2.2 for a list of the plasmids. Transformed strains were grown in 

Luria Broth (LB) (1% tryptone (VWR, CA9000-282), 0.5% yeast extract (VWR, CA9000-

726), 0.5% NaCl) containing 50 μg/ml ampicillin (LBA). All plasmids contained the 

ampicillin resistance marker gene ampR to ensure retention. For long term storage, 

transformed strains were inoculated into 5 ml LBA and grown overnight. The following 

day 813 μl of bacterial culture was mixed with 187 μl of 80% glycerol in a 

microcentrifuge tube and stored at -80˚C. 

 

2.2.2 Preparation of competent cells 

To make E. coli cells competent for transformation cells were inoculated into LB liquid 

media and allowed to grow at 37˚C to an OD600 of 0.4-0.5. The culture flask was swirled 

in an ice water bath for ten minutes, then an equal volume of ice cold TSS solution [LB 

with 10% PEG8000, 5% DMSO, and 50 mM Mg2+ (MgSO4 or MgCl, pH 6.5)] was added. 

Aliquots of 500 μl were pipetted into microcentrifuge tubes and stored at -80˚C. 
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Table 2.2 List of plasmids used in this study   

    

Plasmid Vector Insert Source 

    

YCp50  CEN-URA3   M. Ellison 

YCplac111 CEN-LEU2  W.Neupert 

BG1805-APC5 2μ-URA3 GAL1prom-APC5-HA W. Xiao 

BG1805-APC10 2μ-URA3 GAL1prom-APC10-HA W. Xiao 

BG1805-ELP3 2μ-URA3 GAL1prom-ELP3-HA W. Xiao 

BG1805-GCN5 2μ-URA3 GAL1prom-GCN5-HA W. Xiao 

BG1805-GCN5-LEU2 2μ-LEU2 GAL1prom-GCN5-HA This study* 

BG1805-RTT109 2μ-URA3 GAL1prom-RTT109 W. Xiao 

pRM102 
CEN4-ARS1-
URA3 

GAL10prom-H3 
GAL1prom-H4 M. Grunstein 

pYEX-ASF1 2μ-URA3 CUPprom-GST-ASF1 Exclone library 

pYEX-MSI1 2μ-URA3 CUPprom-GST-MSI1 Exclone library 

    

* plasmid created by A. Islam.   
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2.2.3 Chemical bacterial transformation 

Transformation solution was prepared by adding 1-5 μl of plasmid DNA and 20 μl of 5 X 

KCM (0.5 M KCl, 0.15 M CaCl2 and 0.25 M MgCl2) to distilled water to make up a total 

volume of 100 μl. An equal volume of competent cells was added to the transformation 

mixture and incubated on ice for 20 minutes. The cells were heat shocked for five 

minutes at 37˚C. 1 ml of LB was added and cells were shaken at 37˚C for one hour. 

Cells were then plated onto LBA plates and incubated overnight at 37˚C. 

 

2.2.4 Plasmid DNA isolation 

 

2.2.4.1 LiCl plasmid Mini-prep 

LBA was inoculated with bacterial cells transformed with the plasmid of choice and 

incubated overnight at 37˚C. The following day the sample was centrifuged for five 

minutes at 4000 rpm and the supernatant discarded. The pellet was resuspended in 200 

μl of cold GTE (50 mM glucose, 25 mM Tris-HCl PH 8.0 and 10 mM EDTA) and 

incubated for five minutes at room temperature. 400 μl of fresh lysis buffer (0.2 N NaOH, 

1% SDS) was added, the tube inverted to mix contents and incubated on ice. Five 

minutes later, 300 μl of NaAc was added, tube inverted to mix, incubated on ice for 

another five minutes and then centrifuged at 14,000 rpm for five minutes. All following 

centrifugation steps were performed at room temperature for 30 seconds at 14,000 rpm. 

The supernatant was transferred to a new tube, 450 μl of isopropanol was added and 

the new tube put on ice. After five minutes, the tube was centrifuged, the supernatant 

discarded, and the pellet allowed to dry. The pellet was then resuspended in 100 μl of 

distilled water containing 5 μl of 20 mg/ml RNase A and the tube was incubated at room 

temperature for twenty minutes. To further isolate the plasmid DNA, 100 μl of 10 M LiCl 
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and 100 μl of chloroform were added and the tube was vortexed to mix. The tube was 

then incubated at room temperature for ten to twenty minutes and then centrifuged. The 

upper layer was transferred to a new tube and 600 μl of 95% ethanol was added. The 

tube was incubated at -80˚C for a minimum of fifteen minutes. The tube was centrifuged, 

the pellet washed in 500 μl of 70% ethanol, resuspended in 50 μl of distilled water and 

stored at -20˚C. 

 

2.2.4.2 Large scale DNA isolation (Maxi-prep)  

A 5 ml aliquot of LBA was inoculated with bacterial cells transformed with the plasmid of 

choice and incubated overnight at 37˚C. The following day the entire 5 ml culture was 

added to 500 ml of fresh LBA and again incubated overnight at 37˚C. Cells were 

transferred to two 250 ml screw-capped bottles and centrifuged at 4000 rpm in 4˚C. 

Supernatant was poured off and cells in each bottle were resuspended in 50 ml of ice 

cold STE (0.1 M NaCl, 10 mM Tris-HCl pH 8.0 and 1 mM EDTA pH 8.0) and centrifuged 

again. The supernatant was discarded and cells were resuspended in 9 ml of GTE (50 

mM Glucose, 25 mM Tris-HCl pH 8.0 and 10 mM EDTA pH 8.0). 40 ml of fresh lysis 

buffer (0.2 N NaOH, 1% SDS) was added. Bottles were mixed by gentle inversion and 

incubated at room temperature. After five minutes 20 ml of ice cold KAc solution (5 M 

potassium acetate, 11.5% glacial acetic acid) was added, bottles were mixed by shaking 

and then incubated on ice for ten minutes. The bottles were then centrifuged for fifteen 

minutes at 4000 rpm and the rotor was allowed to come to a complete stop without 

braking. The supernatant was filtered through cheesecloth into two new 250 ml plastic 

bottles. A 0.6 volume of isopropanol was added and bottles were incubated for ten 

minutes at room temperature. Bottles were centrifuged at 5000 rpm for fifteen minutes at 

room temperature and the supernatant removed. The nucleic acid pellets were washed 
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with 70% ethanol and allowed to dry. The pellets were then suspended in 3 ml of distilled 

water and transferred to microcentrifuge tubes for indefinite storage at -80˚C. 

 

2.2.5 Polymerase Chain Reaction 

Polymerase chain reaction (PCR) was used to amplify DNA used for transformation of 

yeast using genomic yeast DNA obtained by Smash and Grab (described in 2.1.3) as 

template. Primers of 18 – 22 bp were designed against sequences 500 bp upstream and 

500 bp downstream of the DNA sequence of interest. See Table 2.3 for a list of primers 

used in this study. Primers were then tested for specificity using the BLAST program on 

the Saccharomyces Genome Database website (www.yeastgenome.org/cgi-bin/blast-

sgd.pl). A typical 25 μl PCR reaction mixture contained 1 μl dNTPs (10 mM each 

deoxyribonucleotide triphosphate; Bio Basic Inc., #D0056), 1 ng of each primer , 1 μl of 

genomic DNA, 2.5 μl 10X PCR Buffer (Sigma, #P2317), 4 μl of 15 mM MgCl2 (Sigma, 

#M8787), 16.5 μl of distilled water and 0.5 μl Taq Polymerase (New England Biolabs, 

#M0267). Volumes of reagents were adjusted to optimize reactions as necessary. A 

programmable thermocycler (Eppendorf Mastercycler) was used to perform the 

amplifications. The standard PCR protocol was as follows: 95˚C for four minutes, 

followed by thirty repeats of one minute of denaturing at 95˚C, one minute of annealing 

at 55˚C, and two minutes of elongation at 72˚C. A final ten minute incubation of 72˚C 

was followed by long-term storage at 4˚C. 

 

2.2.6 Agarose gel electrophoresis and DNA fragment isolation 

Analysis of plasmid and genomic DNA was performed using a 0.8% agarose gel 

containing 0.5 μg/ml ethidium bromide for visualization under UV light. The gel was 

immersed in 1 X TAE (24% Tris-base, 5.7% glacial acetic acid, 10% EDTA pH 8.0) prior 
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Table 2.3 List of primer sequences used in this study. 

    Name Sequence 
      BAR1-500 CTGATTGAGTTAGACAGTAT 

BAR1+500 CCAACATTCCGACACAACAA 

GCN5-500TAP CGGATGATGGTTATCAAC 
 GCN5+500TAP TGGACGCAGGTAAGATTC 
 ELP3-500TAP GCCCTAGTGCCCCCATGGACA 

ELP3+500TAP TGGGGATTTTTCCCTGAGCTGG 
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to sample loading. A 5 μl aliquot of DNA ladder (Fermentas, #SM0313) was pipetted into 

the left most lane to allow size determination. To isolate DNA fragments of interest the 

area of gel containing the DNA fragment was removed from the rest of the gel and 

placed into a microcentrifuge tube and weighed. DNA fragments were then extracted 

from the agarose gel using a DNA gel extraction kit (Qiagen, #28704). According to the 

mass of the agarose gel, three volumes of Buffer QG were added and the tube was 

incubated at 50˚C until the agarose had completely dissolved. The solution was then 

pipetted into a QIAquick spin column and centrifuged for thirty seconds at 10,000 rpm to 

remove the liquid. All centrifugation steps were performed for one minute at 10,000 rpm. 

500 μl of Buffer QG was pipetted into the QIAquick spin column and centrifuged again to 

remove any remaining agarose solution. The QIAquick spin column and DNA were 

washed by the addition of 750 μl Buffer PE and centrifuged twice, discarding the filtered 

solution after each centrifugation. To release DNA from the QIAquick spin column 30-50 

μl of distilled water was pipetted directly onto the filter pad, followed by thirty seconds of 

centrifugation. DNA was then kept at -20˚C indefinitely. 

 

2.2.7 Phenol/chloroform extraction of DNA 

Phenol/chloroform extraction was performed to remove proteins from the nucleic acid 

samples. DNA samples obtained by DNA extraction (described in 2.1.3) were incubated 

at 37˚C for thirty minutes with 2 μl of 20 mg/ml of RNase A. Following incubation, 100 μl 

of phenol/ chloroform/isoamyl alcohol mixture (24:25:1; Sigma #77617) was added and 

the tube inverted several times to mix. The tube was then centrifuged at 14,000 rpm for 

five minutes and the upper layer was transferred to a new microcentrifuge tube. To 

precipitate the DNA 100 μl of distilled water, 20 μl of 3M NaAc (pH 4.8) and 500 μl of 

95% ethanol were added. The sample was mixed by inverting and incubated on ice for 
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ten minutes. Following incubation, the sample was centrifuged at 14,000 rpm for ten 

minutes and the supernatant removed. DNA was washed with 70% ethanol, allowed to 

dry and resuspended in 50-100 μl of distilled water. 

 

2.2.8 Co-immunoprecipitations (CoIPs) 

Protein concentrations of beat bead lysates were determined via the Bradford assay. 

Lysates were kept on ice at all times. Briefly, 200 μl of Bradford Reagent (BioRad, #500-

0006) was pipetted into a disposable cuvette (VWR, #97000-586) and 1 μl of the protein 

lysate was mixed into the Bradford reagent. For a control, 1 μl of sterile distilled water 

was used. Each cuvette had 800 μl of sterile distilled water added. Cuvettes were 

covered with parafilm (Parafilm M, #PM-996), inverted twice to mix contents and allowed 

to sit at room temperature. After two minutes, the protein concentration was determined 

using a spectrophotometer set at OD595 (BioRad SmartSpecTM 3000). A previously 

prepared calibration curve was used to quantify protein concentrations. 

 

Each immunoprecipitation (IP) required 1 mg of protein. Volumes of bead beat lysate 

needed were calculated using the protein concentration. RIPA buffer that contained 10 

μl/ml Protease Inhibitor Cocktail (Sigma, P8215) and 1 μl/ml DTT (dithiothreitol; VWR, 

CA99501-684) was added to make each sample up to a final volume of 300 μl. Samples 

were pre-cleared by the addition of 17 μl of washed salmon sperm DNA/Protein A 

agarose beads (Upstate, #16-157) and rotated at 4˚C for thirty minutes to one hour. The 

salmon sperm helps to block non-specific interactions with the beads when used in 

chromatin immunoprecipitations. Beads were washed by suspension in three volumes of 

fresh RIPA buffer. The suspension was centrifuged and the buffer removed. All 

centrifugation steps were performed at 4˚C for 30 seconds at 10,000 rpm. This process 
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was repeated three times. Following the third removal of RIPA buffer, an equal volume 

of fresh RIPA buffer containing protease inhibitors and DTT was added to the beads. 

Following the pre-clear incubation, tubes were centrifuged and the supernatant was 

transferred to a fresh microcentrifuge tube. Input samples were created by combining 20 

μl of this supernatant with 20 μl of 2X SDS loading buffer [100 mM Tris-HCl pH6.8, 2% 

β-mercaptoethanol (Sigma #M7154), 4% sodium dodecyl sulfate (VWR, CA99501-538), 

0.2% bromophenol blue (VWR, CA-EM2830), 20% glycerol (VWR, CAGX0185)]. To the 

remaining 280 μl, 1 μl of stock bait antibody was added. Samples were then rotated at 

4˚C for forty-five to ninety minutes. Samples were then centrifuged and the supernatant 

was discarded. The remaining beads were washed three times in the same manner 

described above, the exception being that all three RIPA washes contained protease 

inhibitors and DTT. After the washes, 30 μl of 2X SDS loading buffer was added to the 

beads to dissociate the proteins. Samples were then frozen or prepared for Western blot 

analysis. 

 

2.2.9 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blot 

Proteins were separated using sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Depending on the degree of protein separation needed, 

10-15% separating gels [4–2.4 ml distilled water, 3.3–5 ml 30% Acrylamide (BioRad 

#161-0156), 2.5 ml 1.5% Tris-HCl pH8.8, 100 μl 10% SDS (VWR #CA99501-538), 100 

μl ammonium per sulfate (APS; Sigma A-7460), 10 μl tetramethylethylenediamine 

(TEMED; VWR CA-EM8920)] were used, each topped with a 5% stacking gel (4.2 ml 

distilled water, 1 ml 30% Acrylamide, 76 μl 1.0% Tris-HCl pH 6.8, 60 μl SDS, 60 μl APS, 

6 μl TEMED). The separating gel solution was mixed and then immediately poured 
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between two glass plates immobilized in a casting apparatus. Gels were cast and run 

using the BioRad Mini-PROTEAN®-2 and -3 Electrophoresis systems (BioRad). The gel 

solution was topped with a thin layer of isopropanol to ensure a level surface. Once the 

separating gel solidified, the isopropanol was poured off and a 5% stacking gel solution 

was poured on top of the separating gel between the plates and a comb was inserted to 

create wells. Once the stacking gel had solidified, the gels were removed from the 

casting apparatus, locked into the electrophoresis apparatus and then placed in the 

buffer tank. Combs were removed once the gel and connecting wires were covered with 

1 X SDS-Page running buffer (25 mM Tris, 250 mM glycine, 0.1% (w/v) SDS). Samples 

were kept on ice prior to loading into wells. A 2 μl aliquot of pre-stained protein ladder 

(Fermentas, #SM0671) was pipetted into the left most lane. Unused wells were filled 

with 2X SDS loading buffer to a volume equaling that of the samples to prevent sample 

spreading. Gels were run at a constant 150 Volts until desired proteins were sufficiently 

separated, approximately one to two hours. Gels were then removed from the glass 

plates and proteins were visualized by agitating in Coomassie blue staining solution 

[(0.25% (w/v) Coomassie brilliant blue R250 dissolved in 40% (v/v) methanol, 10% (v/v) 

acetic acid in water)] for minimum of thirty minutes. Excess stain was removed by 

agitating in de-stain solution (40% methanol, 10% acetic acid) until protein bands were 

visible (one hour to overnight). Gels were then examined to determine volumes required 

for equal protein load. In order to detect proteins via Western blot, new gels were made 

as described above and equal protein loads were pipetted into wells. Once protein 

migration was complete gels were removed from the electrophoresis apparatus and 

glass plates, and then assembled into „sandwiches‟. Sandwiches were composed of 

Wattman paper, acrylamide gel, nitrocellulose membrane, and another layer of Wattman 

paper. The sandwiches were then placed into a semi-dry protein transfer apparatus and 

ran for one hour at 12 Volts. Sandwiches used in wet-transfer were themselves 
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sandwiched between two fiber pads and inserted into the BioRad Mini Trans-Blot 

Electrophoretic Transfer Cell Cassette. The cassette was placed into the buffer tank and 

covered with transblot buffer (1.8% glycine, 0.4% Tris and 40% ml methanol). Transfers 

were performed at 400 milliAmps for two hours, or equivalent current. Membranes were 

removed from the transfer apparatus and stained with Ponceau S staining solution (0.1% 

(w/v) Ponceau S in 5% (v/v) acetic acid) by agitating until proteins were visible, 

approximately five minutes, to confirm equal protein load. Ponceau S strained blots were 

scanned for a permanent record and the stain then removed by rinsing with distilled 

water. Membranes were then incubated in 5% PBST blocking milk (PBS, 0.01% Tween 

(v/v), 5% non-fat milk) for one hour at room temperature or overnight at 4˚C. Following 

blocking, membranes were incubated with primary antibody diluted in 1% PBST/non-fat 

milk powder for one hour at room temperature or overnight at 4˚C, depending on 

antibody. Primary antibodies were typically diluted at 1:1000 in 1% PBST blocking milk; 

the only exception being anti-H3 K14Ac, which was diluted in 5% bovine serum albumin 

in PBS (suppliers are listed in the next paragraph). After incubation, primary antibody 

was removed and membranes were washed three times for five to fifteen minutes with 

PBST. Membranes were then incubated with secondary antibodies conjugated with 

horseradish peroxidase for thirty to forty-five minutes at room temperature. Secondary 

antibodies were diluted at 1:10,000 in 1% PBST/non-fat milk powder. Membranes were 

then washed with PBST for five minutes, twice. Proteins were detected by rinsing the 

membranes with a 1:1 dilution of Chemiluminescence Substrate (PerkinElmer, Inc. 

#NE104001EA) that allows visualization of horseradish peroxidase-conjugated 

secondary antibodies by exposing the membranes to X-ray film (Kodak, BioMax, #165-

1496). 
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Primary antibodies used in this study were purchased from the indicated suppliers: rabbit 

anti-H3K9Ac (Upstate, 07-352), rabbit anti-H3K56Ac (Abcam, ab76307), rabbit anti-

H3K14Ac (Abcam ab52946), rabbit anti-H3K79me2 (Abcam ab3594), rabbit anti-H3total 

(Abcam ab1791), rabbit anti-H2Btotal (Upstate 07-371), rabbit anti-H4total (Abcam 

ab16483), rabbit anti-H3S10phos (Santa Cruz sc-8656-R), rabbit anti-Clb2 (Santa Cruz 

sc-9071), mouse anti-GAPDH (Sigma-Aldrich G8795), rat anti-HA (Roche 3F10), rabbit 

anti-tandem affinity purification (TAP) (Genscript Cat# A00683), rabbit anti-GST 

(generated by T.A.A. Harkness and M.C. Schultz), mouse anti-myc (Stressgen MSA-

110), and mouse anti-UB (Cell signaling P4D1). Secondary antibodies used in this study 

were goat anti-mouse (BioRad #170-6516), goat anti-rabbit (BioRad #170-6515) and 

rabbit anti-rat (Sigma #A5795). 
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CHAPTER THREE 

THE APC IS REQUIRED FOR HISTONE METABOLISM 1 

 

3.1 Introduction 

Chromatin assembly has been shown to play a role in chromosome segregation during 

mitosis (Sharp et al., 2002). Defects in chromatin assembly can result in DNA damage, 

gross chromosomal rearrangements and defects in cell cycle progression (Quivy et al., 

2001; Myung et al., 2003; Ye et al., 2003). One of the critical controllers of chromosome 

segregation, the APC, targets proteins that prevent progression through mitosis and G1 

for ubiquitination and proteasome-dependent destruction (Castro et al., 2005; Peters, 

2006). Our laboratory has shown that the APC is required for efficient chromatin 

assembly during mitosis in cooperation with the chromatin assembly factors Asf1, Hir1 

and Hir2, as well as the individual subunits of CAF-I - Cac1, Cac2 and Msi1 (Harkness et 

al., 2005). 

 

Recent studies have shown that the APC physically interacts with the transcription factor 

Rb and the HAT CBP (Turnell et al., 2005; Binné et al., 2007). In the case of CBP, 

interaction with the APC increased CBP‟s HAT activity and subsequently, its ability to 

drive gene transcriptional activity (Turnell et al., 2005). To date, only two HATs, Gcn5 

and Rtt109, have been linked to progression through mitosis. Yeast Gcn5 has been 

shown to be the HAT component of multiple transcriptional activators, such as SAGA, 

ADA and SLIK (Grant et al., 1997; Pray-Grant et al., 2002), and is linked to mitotic 

                                                           
1
 The majority of this chapter has been published in Turner et al., 2010, Eukaryotic Cell 9, 1418-1431, 

Figure 3.3A is published in Islam et al., 2011, Cell Div 6, (Epub ahead of print), and Figure 3.8B is published 
in Harkness et al., 2005, Eukaryotic Cell 4, 673-684. 
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progression as yeast cells lacking GCN5 show difficulty in segregating chromosomes 

and in passing through mitosis (Zhang et al., 1998; Krebs et al., 2000). These cells 

accumulate in G2 with unsegregated nuclei and exhibit increased loss of centromere 

based plasmids. Gcn5 has also been shown to localize to centromeres in addition to 

acetylating promoters of genes required for mitotic exit and passage though G1/S (Krebs 

et al., 2000; Vernarecci et al., 2008). In addition to transcriptional activation, efficient 

gene expression also requires elongation of the mRNA transcript. As such, the HAT 

component of Elongator, Elp3 has been shown to genetically interact with Gcn5. Elp3 

and Gcn5 both target H3K9 and H3K14 for acetylation; cells lacking both of these HATs 

are temperature sensitive and show severe histone hypoacetylation (Wittschieben et al., 

2000; Kristjuhan et al., 2002). 

 

Rtt109, which is structurally similar to CBP, has been shown to acetylate histones prior 

to their deposition onto DNA by the Asf1/CAF-I pathway (Fillingham et al., 2008; Tang et 

al., 2008). Rtt109 is capable of targeting H3K9 and H3K56 for acetylation, both of which 

are markers for newly deposited histones in yeast (Kuo et al., 1996; Han et al., 2007; 

Fillingham et al., 2008). Asf1 has been shown to genetically interact with the APC as the 

apc5CA phenotype was exacerbated by ASF1 deletion (Harkness et al., 2005). The 

genetic interaction of Asf1 with the APC in yeast and the physical association of CBP 

with the APC in humans suggest that the interaction between histone modifying 

enzymes and the APC may be evolutionarily conserved. Cells lacking Rtt109 are 

delayed in passing through mitosis and exhibit DNA damage susceptibility. Evidence 

linking Gcn5 with Rtt109 comes from double deletion mutants exhibiting severely 

hypoacetylated H3K9 and further increases in DNA damage susceptibility than in single 

mutants (Fillingham et al., 2008). It was proposed that Gcn5, in conjunction with Rtt109, 

acetylates Asf1-bound histones prior to their passage to CAF-I for deposition onto DNA. 
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As histones are acetylated in specific patterns prior to deposition and the APC appears 

to play a role in chromatin assembly, studies were initiated to determine what role the 

APC plays in this process. This chapter provides evidence that the APC is involved in 

maintaining total histone levels and in establishing post-translational modifications. Total 

and modified histone levels were reduced in various APC mutants and the APC 

genetically interacted with multiple genes encoding histone-modifying proteins. 

Furthermore, I show that the HATs Elp3 and Gcn5 play an important role in mitotic exit 

and cell cycle progression by functioning in a single pathway with the APC. 

 

3.2 Results  

3.2.1 The APC is required for histone metabolism 

To extend our laboratory‟s previous findings demonstrating that the APC is required for 

efficient chromatin assembly (Harkness et al., 2002; Harkness et al., 2005), studies were 

initiated to examine whether the APC is involved in the maintenance of total and 

modified histone levels (Figure 3.1A). The nomenclature used to identify each mutant 

strain refers to the specific subunit affected within the strain. For example, apc5CA and 

cdc16-1 refer to specific point mutations within the genes for the APC subunits APC5 

and CDC16, respectively. Deletion of an entire gene is indicated by ∆ following the gene 

name, for example, apc10∆ and gcn5∆ refer to deletions of the entire APC10 and GCN5 

genes, respectively. Cells harboring the indicated mutations were grown to mid log 

phase at 30˚C, or shifted to 37˚C for an additional 3 hours prior to protein isolation and 

Western analysis. The APC mutants used here have been shown to grow slowly and 

accumulate at the metaphase/anaphase junction at 37˚C (data not shown). Even at the 

permissive temperature of 30˚C many of the mutants had decreased levels of total 

histone H3 as compared to wild-type  (Figure 3.1A).  Exceptions were the apc5CA and 
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Figure 3.1. The APC is required for maintenance of total and modified histone H3 
levels. (A) Extracts prepared from the APC mutants shown at the top of the lanes, 
grown at 30°C or after a 3 hour shift to 37°C, were analyzed by Western analysis with 
the antibodies indicated on the right. Antibodies against GAPDH were used to control for 
protein load. (B) Northern analysis of the APC mutants indicated at the top of the lanes 
was performed on extracts from cells grown at room temperature overnight to early log 
phase. PCR fragments corresponding to ORFs of histone H3, APC5 and ACTIN were 

prepared, labeled using [α-
32

P]dCTP, and hybridized to purified and separated total 
RNA. (B) prepared by G. Davies (Turner, et al. 2010). (C and D) The mutants shown 
were grown overnight to early log phase in rich glucose media at 30°C. The next day, a 
10-fold dilution series was prepared and spotted onto plates containing increasing 
concentrations of methyl methanesulfonate (MMS) (C) or plated onto YPD plates and 
exposed to increasing ultraviolet radiation (UV) doses (D) to induce DNA damage. The 
plates exposed to UV were wrapped in aluminum foil and grown in the dark for 3 days. 
The approximate number of cells in each diluted spot is indicated below the plates. WT = 
wild-type. Images shown are representative of routinely observed results. Published in 
Turner et al., 2010. 
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apc11-13 single mutants and the apc5CA apc9∆ double mutant. Interestingly total histone 

H3 levels appear elevated in apc11-13 and apc5CA apc9∆ mutants. At the restrictive 

temperature of 37˚C total histone H3 levels were similar to that at 30˚C except for cdc23-

1, where total histone H3 was undetectable. It should be noted that the mutants in the 

right most panel in Figure 3.1A are a different background (W303) than the rest of the 

mutants (S288c). This may account for the differences exhibited by the two wild-types. 

At 30˚C, the majority of total H2B levels were similar to that of wild-type, exceptions 

being the apc10∆, apc11-13, cdc16-1 and cdc23-1 single mutants. Reductions in total 

H2B levels were also seen at 37˚C in the cdc16-1 and cdc23-1 mutants. Total levels of 

histone H4 were essentially unchanged at both 30°C and 37°C, the only exceptions 

being cdc23-1 and the apc5CA apc10∆ double mutant. The decreased levels of histone 

H3 are not due to impaired transcription as the levels of histone H3 mRNA were 

increased in APC mutants exhibiting decreased histone H3 protein levels (Figure 3.1B).  

 

Next it was determined whether APC mutants affect the modification levels of histone H3 

(Figure 3.1A). Acetylation of H3 lysine 56 (H3K56Ac) was chosen as it is associated with 

histone deposition by Asf1 and CAF-1 while H3K9Ac was chosen as it is associated with 

both active genes and histone deposition (Kuo et al., 1996; Pokholok et al., 2005; Li et 

al., 2008). Dimethylation of H3K79 (H3K79me2) was chosen due to its association with 

genes required for progression through mitosis and G1 (Schulze et al., 2009). Antibodies 

specifically raised against these modifications were purchased and used for this 

analysis. H3K56Ac mirrored the pattern of total histone H3 levels both at 30˚C and 37˚C, 

suggesting that H3K56Ac is not affected by the APC mutations. H3K9Ac and H3K79me2 

modifications were both reduced beyond that observed for total H3 in most mutants, 

indicating that these modifications may be specifically regulated by the APC. 
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3.2.2 APC mutants are sensitive to DNA damaging conditions 

Our laboratory has reported that Apc5 and Apc10 play redundant roles in lifespan and 

cell growth (Harkness et al., 2002; Harkness et al., 2004). The experiments presented 

above indicate that apc5CA apc10∆ double mutants have decreased levels of total 

histone H3 and H4. As naked DNA is believed to be more damage prone than correctly 

assembled DNA an assay was performed to determine if the decrease in histone levels 

would result in sensitivity to DNA damage (Loyola & Almouzni, 2004). Serial dilutions of 

wild-type, apc5CA, apc10∆ and apc5CA apc10∆ strains were exposed to either methyl 

methanesulfonate (MMS; Figure 3.1C) or UV radiation (Figure 3.1D). The double mutant 

was more sensitive to DNA damage than either of the single mutants. This suggests that 

Apc5 and Apc10 may play complementary roles in stress response. 

 

3.2.3 Interaction of HAT and HDAC mutants with the apc5CA allele 

To further determine the relationship between the APC and histone metabolism a 

modified genetic screen was performed where non-essential HAT and HDAC genes 

were deleted in combination with the apc5CA mutation to discern their effects on a simple 

measurable phenotype, temperature sensitivity. The hypothesis is that if the APC is 

required for histone acetylation, and if histone acetylation is tightly linked to gene 

activation, then mutation of genes involved in gene activation, such as HATs, would 

worsen the apc5CA phenotype. Conversely, deletion of genes involved in gene silencing 

may rescue the apc5CA phenotype. The apc5CA allele was used as it has allowed the 

effective screening of genetic interactions (Harkness et al., 2004; Arnason et al. 2005; 

Harkness et al., 2005). At 30˚C the apc5CA allele grows in a similar manner as wild-type 

but at the restrictive temperature of 37˚C it grows slowly and accumulates at the 

metaphase/anaphase junction. This may be due to a 2 bp deletion in the 5‟ end of the 
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gene resulting in an internal start site that produces an N-terminally truncated protein 

(Harkness et al., 2002; unpublished data). Even though related by sequence, the yeast 

HDACs Rpd3, Hda1, Hos1, Hos2 and Hos3 have all been shown to target specific 

regions and gene subsets within the genome (see Table 1.2; Robyr et al., 2002). The 

data presented in this thesis agree with this division of labor as a variety of phenotypes 

were observed when deletions were combined with the apc5CA background. Deleting any 

of the HOS genes completely suppressed the temperature sensitive phenotype of the 

apc5CA allele (Figure 3.2A). As Hos1 and Hos3 preferentially target the rDNA locus and 

Hos2 targets ribosomal protein-encoding genes it would make sense that all three would 

affect the APC in the similar manner (Zhang et al., 1998). A recent synthetic genetic 

array (SGA) screen observed that suppression of the apc5CA temperature sensitive 

phenotype occurred when genes involved in mRNA decay and quality control were 

deleted (Costanzo et al., 2010). Taken together, these data suggest that high levels of 

mRNA, and the subsequent increased translation, may contribute to the suppression of 

the apc5CA temperature sensitive phenotype. This is also consistent with the observation 

that the human APC5 protein physically interacts with the ribosome and inhibits the 

translation of certain mRNAs, mostly encoding viral and growth promoting proteins 

(Hellen & Sarnow, 2001; Koloteva-Levine et al., 2004). Evolutionary conservation of this 

interaction may occur as the SGA screen also identified genetic interactions between the 

apc5CA allele and ribosomal subunits (Costanzo et al., 2010). Mutation to the APC5 

allele may prevent the inhibition of translation of certain mRNAs in yeast, resulting in 

inappropriate cell growth.  

 

Further supporting the division of labor of HDACs, deleting HDA1 in an apc5CA 

background resulted in increased temperature sensitivity while deletion of Rpd3 did not 

affect the apc5CA phenotype (Figure 3.2A). Rpd3 and Hda1 have been shown to exhibit  
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Figure 3.2. Genetic interactions of HDAC and HAT mutants with the apc5CA allele. 
(A) apc5CA cells were repeatedly crossed with the HDAC mutants shown to generate 
double mutants. Tenfold serial dilutions of the different mutants were spot diluted onto 
rich media, and growth levels were compared at the temperatures shown. (B) apc5CA 
cells were repeatedly crossed with the HAT mutants shown to generate double mutants. 
The mutants were prepared and analyzed as described above. The effect of the 
interaction is indicated on the right. ++, strong suppressive interaction in double mutant 
that grows like wild type; +, double mutant grows better than single mutants but not at 
wild-type level; -, double mutant grows more poorly than the single mutants. NI, no 
interaction. WT = wild-type. Representative images of routinely observed results are 
shown. Published in Turner et al., 2010. 
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the greatest effect on promoter deacetylation; however, each enzyme  targets  distinct  

regions  within  the  genome  (Zhang et al., 1998). These results demonstrate that it is 

not simply the level of acetylation that regulates processes within the cell but that it is the 

specific region and histone residue acetylated that plays an important part. 

 

Next, it was asked whether deletions of the genes encoding the HATs Sas2, Sas3, Elp3, 

Hat1, Hpa2 and Gcn5 would also alter the apc5CA temperature sensitive phenotype 

(Figure 3.2B). Similar to the deletion of HDACs, various phenotypes were observed. 

Deletion of ELP3, GCN5 or SAS3 each slightly impaired growth of apc5CA cells at 37˚C, 

while deletion of SAS2 suppressed temperature sensitivity to almost wild-type levels. It is 

logical that deletion of the various HATs in the apc5CA background affects the 

temperature sensitive growth in different ways as HATs also play specific roles within the 

cell. For example, deletion of GCN5 results in changes in the expression of only ~5% of 

genes throughout the genome (Holstege et al., 1998), while deletion of SAS2 results in 

the silencing of sub-telomeric regions (Kimura et al., 2002; Suka et al., 2002). As such, 

deletion of GCN5 or SAS2 resulted in opposite effects in the apc5CA strain. This could be 

due to the different targets of these two HATs. Gcn5 has been implicated in the 

transcription of mitotic specific genes while Sas2 maintains expression of sub-telomeric 

genes (Krebs et al., 2000; Kimura et al., 2002; Suka et al., 2002; Krebs , 2007). 

Reduced mitotic specific gene expression in an apc5CA mutant due to GCN5 deletion 

would further inhibit cell cycle progression while the deletion of Sas2 may result in the 

silencing of genes that contribute to the apc5CA temperature sensitive phenotype. 

Deletion of ELP3 or SAS3 resulted in a slight exacerbation of the apc5CA temperature 

sensitive phenotype. As the histone acetylation and genetic interaction patterns of Elp3 

and Sas3 overlap with that of Gcn5 (Rosaleny et al., 2007; Wittschieben et al., 2000) it is 

not surprising that they would exhibit similar phenotypes. Both Hat1 and Hpa2 appear to 
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have no effect on the apc5CA temperature sensitive phenotype as the double mutants 

were similar to the single apc5CA mutant. The predominantly cytoplasmic Hat1 targets 

H4 for acetylation prior to chromatin deposition (Ruiz-Garcia et al., 1998) while Hpa2 

preferentially targets K14 on histone H3 (Angus-Hill et al., 1999). Hpa2 may not play an 

major role in the cell as H3K14 is targeted by several other HATs and gene expression 

was only mildly affected in hpa2∆ mutants (Durant & Pugh, 2006). The lack of interaction 

between the APC and Hat1 suggests that APC does not play a role in histone 

acetylation prior to nuclear import while the lack of interaction with Hpa2 might be due to 

the redundancy among HATs and the ability to acetylate H3K14. 

 

3.2.4 GCN5 and HDA1 interact antagonistically when combined with the apc5CA 

allele  

To further study the interactions of histone modifiers with the APC, triple mutants were 

created with the apc5CA allele (Figure 3.3A). In the apc5CA background, deletion of either 

GCN5 or HDA1 exacerbated the temperature sensitive phenotype while deletion of both 

partially suppressed this exacerbation back to the level of the apc5CA single mutant. Both 

Gcn5 and Hda1 target a variety of promoters and have opposing affects on acetylation 

levels (Zhang et al., 1998; Durant & Pugh, 2006). These results suggest that the 

exacerbation of the apc5CA temperature sensitive phenotype is in part due to an 

imbalance of Gcn5/Hda1 activity as deletion of both cancels out the increased 

sensitivity. Importantly, deletion of GCN5 or HDA1 in wild-type cells had no effect on 

growth, indicating that apc5CA cells have difficulty coping with this imbalance. 

Interestingly, in two separate SGA genome-wide screens a growth phenotype 

associated with gcn5∆ was suppressed by deletion of HDA1 (Lin, et al., 2008; Costanzo 

et al., 2010). The SGA screen utilizes plates lacking many amino acids and containing  
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Figure 3.3. Genetic interactions between histone modifiers and the APC. (A) A 
genetic interaction between hda1∆ and gcn5∆ mutants is revealed in apc5CA cells. 
The mutants shown were constructed by genetic crosses and tested for temperature 
sensitivity using spot dilutions. Please see the legend of Figure 3.2 for explanation of 
interaction symbols. Serial dilutions were prepared as in Figure 3.2, samples were then 
spotted onto YPD and grown at 30°C and 37°C. (A) prepared by A. Islam (Islam, et al. 
2011). (B) A genetic interaction between hpa2∆ and gcn5∆ mutants is revealed in 
apc5CA cells. Cells were treated in a similar manner as in (A). WT = wild-type. 
Representative images of routinely observed results are shown. Published in Turner et 
al., 2010.  
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specific antibiotics for selection purposes (Lin et al., 2008). Therefore, under certain 

conditions Gcn5 is required, and its loss can be compensated for by deletion of HDA1. 

Under normal growth conditions, such as on YPD, this phenomenon is only observed 

when the APC is compromised. This work was continued in Islam et al., 2011. 

 

3.2.5 GCN5 and HPA2 interact antagonistically alone but synergistically with the 

apc5CA allele 

To further study the interactions of HATs with the APC, triple mutants with the apc5CA 

allele and the HAT mutations gcn5∆ and hpa2∆ were created (Figure 3.3B). Although 

deletion of HPA2 did not affect the temperature sensitivity of the apc5CA mutant it did 

negatively influence the gcn5∆ apc5CA double mutant, as indicated by reduced growth of 

the triple mutant at 30˚C and 35˚C, compared to the double mutant. Interestingly, when 

HPA2 was deleted in gcn5∆ cells, gcn5∆ temperature sensitive growth was suppressed, 

indicating an antagonistic relationship. Gcn5 and Hpa2 are both capable of acetylating 

H3K14; however, they may target different gene promoters (Kuo et al., 1996; Angus-Hill 

et al., 1999). This result indicates that Gcn5 and Hpa2 counteract each other‟s activities 

in wild-type cells but possibly cooperate in an apc5CA background. 

 

3.2.6 Genetic interactions between apc5CA and the HAT mutants, elp3∆ and gcn5∆ 

The genetic screen described in 3.2.3 identified two HAT mutants, gcn5∆ and elp3∆, that 

together exhibit a genetic interaction. Deletion of ELP3 and GCN5 together has been 

shown to result in slow growth rates and reduced acetylation of H3 lysine residues 

(Wittschieben et al., 2000). I have also observed these phenomena, as elp3∆ gcn5∆ 

double mutants grow slowly at 30°C and display very little H3K9 or H3K14 acetylation 

(Figures 3.4A, 3.5A). The observed redundancy is due to the fact that Gcn5 and Elp3,  
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Figure 3.4 The APC genetically interacts with Elp3 and Gcn5. (A) The elp3∆ gcn5∆ 
defect is more severe than that of strains containing apc5CA, as determined by spot 
dilutions. (B) The APC is involved in the same pathway as Elp3 and Gcn5. The mutants 
shown were created through multiple rounds of backcrossing and characterized using 
spot dilutions. The strains were spot diluted onto YPD plates and grown at the indicated 
temperatures. 34°C was used as the double HAT mutants are extremely slow growing at 
37°C. WT = wild-type. Images shown are representative of routinely observed results. 
Published in Turner et al., 2010. 
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Figure 3.5. Histone posttranslational modifications and cell cycle profiles in 

apc5
CA

, elp3, and gcn5 single, double, and triple mutants. (A) apc5
CA

, elp3, and 
gcn5 mutants were used to characterize histone profiles. Extracts were prepared after 
growth at 30°C or following a shift to 37°C for 3 h. Proteins were separated by SDS-
PAGE, and Western analysis was performed using the antibodies indicated. Ponceau S 
staining was used as a loading control (LC) (B) Flow cytometry was conducted on the 
asynchronous cultures described for panel A. c, unreplicated DNA, 2c, replicated DNA. 
Images shown are representative of results observed from multiple experiments. 
Published in Turner et al., 2010. 
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the HAT components of SAGA and Elongator, respectively, acetylate H3K14 in order to 

initiate (SAGA) transcription, and then to ensure the progression of the elongating 

transcript (Elongator) (Wittschieben et al., 2000). The apc5CA allele was combined with 

the elp3∆ and gcn5∆ deletions through genetic crosses. Interestingly, the addition of the 

apc5CA allele to the elp3∆ gcn5∆ double deletion mutant did not affect the growth 

phenotype observed in the elp3∆ gcn5∆ mutant as it did with the single HAT deletions 

(compare Figure 3.4B with Figure 3.2B). This suggests that while apc5CA interacts 

synergistically with the single elp3∆ and gcn5∆ mutants, an epistatic relationship exists 

when apc5CA is combined with the double deletion, suggesting that these three proteins 

may act in the same pathway. 

 

3.2.7 Deletion of ELP3 and GCN5 in apc5CA cells does not affect histone 

modification profiles 

Reduced histone levels are associated with impaired cell growth in APC mutants and the 

deletion of ELP3 or GCN5 exacerbates the apc5CA temperature sensitive phenotype. As 

such histone levels were examined in elp3∆, gcn5∆ and apc5CA double and triple 

mutants (Figure 3.5A). Protein lysates were prepared from cells grown at 30˚C, or 

following a shift to 37˚C for 3 hours, and Westerns were performed using the antibodies 

shown. At 30˚C all three double mutants containing elp3∆ exhibited decreased total 

histone H3. Total histone H2B was unaffected in the single HAT mutants regardless of 

the presence of Apc5 as only the two double HAT mutants exhibited decreased levels. 

Histone H4 was essentially unchanged at either 30˚C or 37˚C. It was next asked if 

modifications to histone H3 were also affected in these mutants. The levels of H3K9Ac, 

H3K14Ac and H3S10phos were assessed and were found to essentially follow the pattern 
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of total histone H3. This suggested the synergistic interaction between apc5CA and the 

HAT single mutants does not involve histone modifications per se. This may be a result 

of the redundancy among HAT acetylation activity as multiple HATs have been shown to 

target the histone H3 residues K9 and K14 (Grant et al., 1997; Winkler et al., 2002; 

Rosaleny et al., 2007; Fillingham et al. 2008). It is interesting to note that total histone 

H3 and H4 protein levels are not the same in the mutants. It has been shown that altered 

histone stoichiometry in yeast cells leads to cell cycle defects (Meeks-Wagner & 

Hartwell, 1986). Thus, the growth defects observed in these studies may in fact be due 

to altered histone stoichiometry. 

 

As the Western analysis of the various mutants showed similar histone modification 

levels when both GCN5 and ELP3 were deleted regardless of whether APC5 was 

mutated, cell cycle progression was characterized (Figure 3.5B). Using Fluorescence 

Assisted Cell Sorting (FACS) it was observed that many of the mutants spend a 

prolonged time in G2/M as compared to wild-type, indicating a defect in mitotic passage. 

The main exceptions were the double HAT mutants, as elp3∆ gcn5∆ cells were 

predominantly in S-phase while elp3∆ gcn5∆ apc5CA cells had a larger proportion of cells 

in G1. This suggests that cells lacking GCN5 or ELP3 have difficulty progressing through 

mitosis, while cells lacking both are impaired at transiting through G1/S. 

 

3.2.8 Clb2 levels do not accumulate in elp3∆ gcn5∆ mutants 

The above observations suggest that cells lacking ELP3 or GCN5 have mitotic passage 

defects while cells lacking both ELP3 and GCN5 are defective in G1/S-phase 

progression. The epistatic interaction observed between apc5CA and elp3∆ gcn5∆ could 

be interpreted to imply that Gcn5 and Elp3 work together upstream of the APC, which 
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raises the question of whether an APC target, Clb2, is stable in the elp3∆ gcn5∆ double 

mutant. Clb2 has been shown to be ubiquitinated by the APC to target it for degradation, 

thereby allowing progression through mitosis (Wäsch & Cross, 2002). If Clb2 is stable in 

these mutant cells, this would suggest that APC activity is impaired when both GCN5 

and ELP3 are deleted. Thus, endogenous Clb2 protein levels were examined by 

Western blotting in various elp3∆ and gcn5∆ mutants grown asynchronously to early log 

phase (Figure 3.6). The cells were grown at 30°C and then shifted to 37°C for 3 hours. 

Protein extracts were prepared following the 30°C and 37°C treatments. As expected, 

the apc5CA mutant strain exhibited an increased level of Clb2 as compared to wild-type, 

especially at the restrictive temperature of 37˚C. At 30°C gcn5∆ and apc5CA elp3∆ cells 

exhibited lower levels of Clb2 than observed in wild-type while elp3∆ and apc5CA gcn5∆ 

cells had similar levels as wild-type. At 37°C gcn5∆ and apc5CA elp3∆ cells had levels of 

Clb2 similar to wild-type cells while Clb2 levels were higher in elp3∆ and apc5CA gcn5∆. 

Interestingly, at both 30°C and 37°C, The finding that Clb2 is still degraded in the 

majority of these mutants could be an indirect effect of them spending a prolonged time 

in G2, a time in the cell cycle when Clb2 is targeted for degradation.  Strains lacking both 

Gcn5 and Elp3 exhibited similar levels of Clb2 regardless of whether Apc5 was mutated 

or not, again highlighting an epistatic relationship. These mutants both exhibited very low 

levels of Clb2 when compared to wild-type and this may be attributed to the fact that 

these strains can pass through mitosis to G1, but spend a prolonged amount of time in 

G1/S, perhaps allowing for increased time to degrade Clb2. These results indicate that 

Elp3 and Gcn5 are not upstream activators of the APC. 

 



106 
 

 

Figure 3.6. Clb2 stability in apc5
CA

, elp3, and gcn5 single, double, and triple 
mutants. Clb2 stability was assessed in apc5CA, elp3, and gcn5 mutants. Extracts were 
prepared after growth at 30°C or following a shift to 37°C for 3 h. Proteins were 
separated by SDS-PAGE, and Western analysis was performed using the antibodies 
indicated. Western analyses were performed using antibodies against endogenous Clb2 
and as a load control (LC), GAPDH. Densitometry of Clb2 bands was normalized to 
GAPDH bands and is graphed relative to wild-type (WT). Images shown are 
representative of results observed from multiple experiments. Western blots are 
published in Turner et al., 2010. 
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3.2.9 Increased expression of ELP3 and GCN5 rescues the apc5CA temperature 

sensitive growth phenotype while overexpression impairs growth of all cells 

To further characterize the relationship between the APC and the Elp3/Gcn5 HATs, the 

effect of increased levels of Elp3 and Gcn5 on the growth of wild-type and apc5CA 

mutant strains was examined by using plasmids producing galactose driven HA-tagged 

Elp3 or Gcn5 (Figure 3.7A). As the galactose promoter produces basal levels of protein 

when in glucose media, the effects of both low and high levels of protein on the cell is 

able to be determined (Figure3.7B).  On 2% glucose-supplemented plates the low level 

 increase of both Elp3 and Gcn5 protein allowed apc5CA cells to grow at wild-type levels 

(Figure 3.7A). On 2% galactose-supplemented plates, overexpression of Elp3 was only 

able to partially rescue the apc5CA mutant while overexpression of Gcn5 was toxic to all 

cells tested. Such an extreme difference in the growth assay led us to further analyze 

the effect of increased Gcn5 and Elp3 expression. When cells were grown in glucose-

supplemented media, the levels of both Elp3-HA and Gcn5-HA were moderately 

increased and the cells accumulated in G1 (Figures 3.7B, 3.7C). When grown in 

galactose-supplemented media, the protein levels of both Elp3 and Gcn5 rapidly 

accumulated. We were unable to determine how overexpression of Elp3 or Gcn5 

influenced the cell cycle as even cells containing an empty vector rapidly accumulated in 

G1 when in galactose (data not shown). Taken together, this data indicates that Elp3 

and Gcn5 levels must be reduced to exit G1, a hypothesis that will be tested below.  

 

Elp3 and Gcn5 may link the APC with histone metabolism. Since increased expression 

of Elp3 rescued the temperature sensitive apc5CA growth defect, the effect of increased 

Elp3 protein on histone H3 levels was examined. Both low (glucose) and high-level 

(galactose) expression of Elp3 resulted in an increase of total histone H3 levels in APC  
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Figure 3.7. Low-level expression of the HAT genes ELP3 or GCN5 suppresses the 
apc5CA temperature sensitive defect. (A) Wild-type (WT) and apc5CA cells were 
transformed with plasmids expressing GCN5 or ELP3 under the control of the GAL1 
promoter. Transformants were spot diluted onto glucose- and galactose-supplemented 
media and grown at either 30°C or 37°C. The plates were then scanned. Image shown is 
representative of routinely observed results. (B) Western analyses were performed on 
extracts obtained from wild-type cells expressing either empty vector, GALprom-GCN5-
HA, or GALprom-ELP3-HA. The cells were grown overnight to early log phase at 30°C. 
The next morning, the cultures were divided, with 2% galactose added to one and the 
other left in 2% glucose. Samples were taken at the times indicated and probed using 
antibodies against hemagglutinin (HA). (C) Low-level expression of GCN5 or ELP3 
results in cells exiting the cell cycle early in G1. Cells were grown overnight to early log 
phase and then diluted back in glucose-supplemented media. Samples were taken at 
the times indicated and prepared for flow cytometry. Published in Turner et al., 2010.  
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mutants (Figure 3.8A). Increased total H3 was even observed in wild-type cells grown in 

galactose. This increased histone content may be responsible for the Elp3-based 

suppression of the temperature sensitive phenotype of apc5CA (Figure 3.7A), as we 

previously observed that increased expression of histones alone could suppress the 

apc5CA defect (Figure 3.8B; Figure produced by E. Turner; Harkness et al., 2005). 

 

3.2.10 Increased expression of Apc5 partially suppresses the elp3∆ gcn5∆ 

temperature sensitive growth defect while overexpression impairs growth 

Observations thus far suggest that Elp3 and Gcn5 are not upstream activators of the 

APC, since the APC target Clb2 is still degraded in cells lacking ELP3 and GCN5 (Figure 

3.6). The moderate over-expression of Elp3 or Gcn5 being able to rescue the 

temperature sensitivity of the apc5CA mutant suggests that Elp3 and Gcn5 may in fact be 

downstream of the APC. To test this further, it was assessed whether increased 

expression of APC5 would rescue the double elp3∆ gcn5∆ temperature sensitive 

phenotype. APC5 was expressed in Wild-type and elp3∆ gcn5∆ cells using a plasmid 

containing galactose driven APC5 (Figure 3.9). The excessive increase of APC5 from 

being grown on 2% galactose-supplemented plates prevented the growth of elp3∆ 

gcn5∆ cells at both 30˚C and 37˚C and even wild-type cells at 37˚C (data not shown). 

When grown on 2% glucose-supplemented plates, the low-level increase in Apc5 protein 

was sufficient to partially rescue the growth of elp3∆ gcn5∆ cells at both 30˚C and 37˚C, 

providing support for the hypothesis that the APC works in a positive, and perhaps 

redundant, manner with both Elp3 and Gcn5. 
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Figure 3.8. (A) Overexpression of the HAT gene ELP3 results in increased histone 
H3. Western analyses were performed on extracts obtained from wild-type (WT), apc10 
and cdc16-1 cells expressing either an empty vector or GALprom-ELP3-HA. Samples 
were grown overnight at 30°C. The next morning the cultures were divided and grown for 
4 hours in media containing either 2% galactose or 2% glucose. Antibodies against HA 
and total H3 were used. (B) Increased levels of histones H3 and H4 suppresses the 
apc5CA temperature sensitive phenotype. Wild-type, apc5CA, cac1∆, apc5CA cac1∆, 
and apc5CA caf1∆ cells were transformed with empty vector (-) or pRM102 (+), which 
overexpresses histones H3 and H4 under control of the GAL1 promoter and grown on 
either glucose- or galactose-supplemented plates. (B) prepared by E. Turner, (Harkness, 
et al. 2005). 
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Figure 3.9. Increased expression of APC5 partially rescues the elp3∆ gcn5∆ 
temperature sensitive growth. Wild-type (WT) and elp3∆ gcn5∆ cells were 
transformed with either an APC5-expressing construct under the control of the GAL1 
promoter or the empty vector control. The transformants were spot diluted onto 2% 
glucose- or 2% galactose-supplemented plates and grown at the indicated temperatures. 
Representative image of results observed. Published in Turner et al., 2010.  
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3.2.11 Apc5 overexpression toxicity is partially suppressed by overexpression of 

Gcn5 

Since Gcn5 overexpression caused cells to accumulate in G1 (Figures 3.7B, 3.7C), and 

APCCdh1 is active during G1, it was determined whether there is a functional interaction 

between the APC and Gcn5. It is possible that since increased Gcn5 causes cells to 

accumulate in G1, the APC may be involved in Gcn5 turnover. To begin the analysis of 

this concept, a LEU2-based GALprom-GCN5-HA plasmid was co-expressed in wild-type 

cells with galactose  driven plasmids  that expressed  APC5  or  APC10  (Figure 3.10). 

Unlike the URA-based GCN5 plasmid the LEU2-based GCN5 plasmid was not toxic 

when over-expressed with 2% galactose-supplemented media. Overexpression of 

LEU2-based GCN5 partially rescued the toxicity of APC5 overexpression. This suggests 

that APC5 overexpression toxicity may be due to increased targeting of Gcn5 for 

degradation, causing insufficient amounts of Gcn5 within the cell. Thus, by increasing 

the Gcn5 content within cells overexpressing APC5, the toxic effects are partially 

reduced. It is possible that Apc5 overexpression toxicity may be further overcome by 

overexpression of both ELP3 and GCN5.  

 

3.2.12 RTT109 overexpression rescues the apc5CA temperature sensitive growth 

phenotype 

While levels of histone H3 were decreased in many of the APC mutants tested, Lys9 

acetylation was further compromised in several mutant strains. Gcn5 and Rtt109 are the 

only two HATs known to acetylate this residue (Fillingham et al., 2008). As low-level 

expression of GCN5 was able to rescue the apc5CA temperature sensitive phenotype, it 

was determined whether or not Rtt109 would also be able to do so. Similar to the GCN5 

expression data,  low-level expression of the  URA-base d galactose driven  RTT109  
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Figure 3.10. Overexpression of GCN5 partially suppresses the APC5 
overexpression toxicity. Wild-type (WT) cells were co-transformed with the plasmids 
shown and grown at 30°C on 2% glucose- or galactose supplemented plates. Published 
in Turner et al., 2010.  
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plasmid did indeed rescue the apc5CA phenotype to wild-type levels (Figure 3.11). This 

suggests that Rtt109 may function with the APC by contributing to H3K9 acetylation 

together with Gcn5. Rtt109 is also known to acetylate H3K56, but acetylation of this 

residue was not affected in APC mutant cells, thus uncoupling the action of Rtt109 on 

H3K9 with that of H3K56. 

 

3.3 Discussion 

The APC is an important regulator of cell cycle control as it is required for targeting the 

proteins that inhibit mitotic progression for degradation (Castro et al., 2005; Peters, 

2006). Our laboratory has also shown it to be likely involved with mitotic chromatin 

assembly (Harkness et al., 2002; Harkness et al., 2005). Since chromatin assembly 

involves the deposition of specifically acetylated histones onto DNA, the role the APC 

may play in histone acetylation was investigated. Contrary to our expectations, a 

modification associated with newly deposited histones, H3K56Ac did not appear to be 

affected by mutation of the APC. Alterations in H3K9Ac and H3K79me2 were observed, 

both of which are associated with gene activation, indicating the APC may play a role in 

mitotic gene activation (Pokholok et al., 2005; Schulze et al., 2009). A role for the APC in 

gene transcriptional activation is supported by the observation that the APC genetically 

interacts with a variety of histone modification proteins involved in gene transcriptional 

control. Interestingly, the apc5CA temperature sensitive phenotype was exacerbated by 

deletion of genes involved in transcriptional activation (ELP3, GCN5, SAS3) but 

suppressed by deletion of genes involved in silencing (HOS1, HOS2, HOS3 and SAS2). 

Both Elp3 and Sas3 target promoters that are also targeted by Gcn5, and Gcn5 has also 

been shown to predominantly target genes transcribed during late mitosis (Krebs et al., 

2000; Rosaleny et al.,2007). Interactions, both physical and functional, have been 

reported for the APC and transcriptional regulators, such as CBP/p300 and Rb (Turnell  
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Figure 3.11. Low-level expression of the HAT gene RTT109 suppresses the apc5CA 
temperature sensitive defect. RTT109 under the control of the GAL1 promoter was 
expressed in wild-type (WT) and apc5CA cells. The transformants were spot diluted onto 
glucose-supplemented plates and grown at 30°C or 37°C. Published in Turner et al., 
2010.  
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et al., 2005; Binné et al., 2007), indicating that the molecular networks identified in this 

thesis are evolutionarily conserved. 

 

The HDACs Hos1, Hos2 and Hos3 are each targeted to ribosomal genes and deletion of 

these may result in an increase in overall mRNA transcription. A recent genetic screen 

identified a number of genes involved in mRNA regulation as interacting with the apc5CA 

allele (Costanzo et al., 2010). See Table 3.1 for genes involved in histone, mRNA and 

ribosome metabolism that genetically interact with the apc5CA allele. For example, 

deletion of genes involved in mRNA decay or degradation (NAM7, UPF3, EBS1, NMD2, 

AIR2 and LSM1) all suppressed the apc5CA temperature sensitive defect. Taken 

together, this indicates that an increase in mRNA abundance is of benefit to cells with a 

compromised APC. The literature supports this as human Apc5 was found to bind to the 

ribosome and inhibit the translation of specific proteins involved in apoptosis and 

uncontrolled cell growth (Koloteva-Levine et al., 2004). These proteins include growth 

factors, oncogenes and apoptotic activators (Hellen & Sarnow, 2001). It is possible that 

an increase in overall mRNA translation within the cell may result in a more balanced 

transcriptome profile and that the increased expression of proteins that counteract this 

uncontrolled growth can rescue the apc5CA temperature sensitive phenotype. The 

involvement of Apc5 with the ribosome and translational inhibition of proteins involved in 

uncontrolled cell growth may slow cell growth enough to allow the DNA damage and 

mitotic-spindle checkpoints time to ensure that the chromatin is ready to go through with 

sister chromatid separation. The APC is usually prevented from targeting proteins for 

degradation until the cell is ready to go through mitosis. Nevertheless, if enough time 

passes, the cell may still proceed with sister chromatid separation (Zou et al., 1999; 

Meraldi et al.,  2002;  Hernando et al.,  2004).  Premature  progression  of  separation 
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Table 3.1 SGA analysis of the  apc5
CA

 allele

histones score P-value histones score P-value mRNA decay score P-value

SAGA transcription factors LSM1 0.2 1.00E-03

AHC2 -0.2 1.30E-03 SWI5 -0.49 5.20E-15 NAM7 0.2 2.60E-54

CHD1 -0.17 1.20E-03 SAC3 -0.42 3.30E-42 AIR2 0.2 5.40E-03

SPT3 0.2 2.00E-09 RPN4 -0.33 1.20E-10 UPF3 0.2 8.50E-19

ISW1 RTT103 -0.29 5.40E-25 EBS1 0.2 7.80E-04

ISW1 -0.22 6.20E-99 UME6 -0.28 4.50E-13 NMD2 0.2 3.20E-03

IOC2 -0.19 4.00E-32 HAP4 -0.11 1.20E-02

IOC4 -0.18 2.10E-04 TEC1 -0.1 4.00E-02

ISW2 IMP2 0.1 2.50E-04 ribosomes score P-value

ITC1 0.2 2.40E-36 BAS1 0.1 3.90E-12

RPD3L chromatin assembly 40S

SIN3 -0.18 4.90E-04 CAC2 0.1 1.10E-03 RPS7B -0.19 5.70E-04

SAP30 -0.12 5.30E-03 HIR3 0.1 6.10E-03 RPS24A -0.18 1.50E-04

RPD3S HPC2 0.1 5.70E-04 RPS27A -0.12 1.70E-02

RCO1 -0.13 1.80E-16 CAC1 0.1 1.60E-07 RPS21B -0.11 5.20E-10

Elongator ASC1 0.1 2.10E-02

IKI3 0.1 4.20E-02 RPS18B 0.1 2.50E-06

ELP2 0.1 2.10E-02 60S

NuA3 RPL40B -0.15 2.10E-13

NTO1 -0.12 4.60E-05 RPL22A -0.1 4.80E-02

NuA4 RPL38 -0.09 2.00E-02

EAF3 -0.22 4.20E-04 RPL43A 0.1 4.40E-02

SWR1 RPL11B 0.1 1.40E-02

VPS72 -0.17 4.50E-05 RPL14A 0.1 1.90E-03

SWC3 -0.15 4.40E-03 stalk

SWC7 -0.11 6.60E-03 RPP1B -0.14 1.20E-05

SWR1 -0.08 3.40E-02 ribo biogenesis

SWI/SNF TMA64 -0.6 1.00E-51

SNF5 0.1 6.80E-03 PML39 -0.16 1.20E-09

COMPASS NOP6 -0.11 4.40E-04

SDC1 0.1 2.40E-03 MRN1 -0.1 1.30E-03

CCR4-NOT ESL2 0.1 6.30E-11

CAF130 -0.23 1.80E-04 ARX1 0.1 4.60E-05

Histones rDNA interactions

HHT2 0.1 3.40E-03 YBR246w -0.13 8.00E-06

HTA1 0.1 2.50E-02 YCL060c -0.12 1.30E-05

histone methylation FOB1 0.1 1.30E-03

SET2 -0.18 1.90E-35 PAT1 0.2 2.10E-04

Red scores indicate synergistic or complimentary roles

Green scores indicate suppressive or antagonistic roles  
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frequently results in mitotic catastrophe so regulating this process is extremely important 

to cell health. 

 

A striking example of how the end readout of histone acetylation is important, rather than 

the enzyme itself, was provided by the deletion of the HDAC, HDA1, and the HAT, 

GCN5, which each individually exacerbated the apc5CA temperature sensitive defect. 

According to  the  hypothesis presented above  that  increased  mRNA  abundance  

improves APC phenotypes, Hda1 must be involved in activation of some set of genes 

involved in APC function. Investigation of this point by our laboratory showed that it may 

be the repression of genes encoding APC inhibitors, such as PDS1 and BCY1, which is 

important (Islam et al., 2011). A most interesting interaction was observed when both 

HDA1 and GCN5 were deleted in apc5CA cells. Rather than being further impaired, 

perhaps even lethal, this combination of mutations grew much better than either double 

mutant. Of note, the two single mutants, gcn5∆ and hda1∆, and the double mutant 

gcn5∆ hda1∆ showed no temperature sensitive phenotype. It was recently reported by 

two groups that deletion of GCN5 could suppress phenotypes associated with hda1∆ 

mutations (Lin et al., 2008; Costanzo et al., 2010). These observations were made while 

performing genome-wide Synthetic Genetic Array (SGA) screens, which utilize plates 

lacking multiple amino acids and supplemented with antibiotics for selection purposes. 

Interestingly, these interactions could not be replicated when the various mutations were 

grown on rich YPD media, as done in the experiments presented in this thesis. Thus, 

under suboptimal growth conditions, such as those when selecting for interactions in the 

SGA screen, gcn5∆ phenotypes can be suppressed by HDA1 deletions. This suggests 

that Gcn5 and Hda1 antagonize one other and that wild-type cells under normal growth 

conditions are able to cope with this unbalanced activity, whereas apc5CA cells cannot. 
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Gcn5 also genetically interacted with Hpa2, another HAT capable of acetylating H3K14. 

The exact role of Hpa2 within the cell is not yet known, but it has been shown to target a 

small proportion of genes for transcriptional activation (Rosaleny et al., 2007). Gcn5 and 

Hpa2 interact antagonistically in a wild-type background as deletion of HPA2 partially 

rescued the temperature sensitive gcn5∆ phenotype (Figure 3.3B). Interestingly, deletion 

of both HATs in the apc5CA background grew worse than the individual single and double 

mutants. This suggests that Gcn5 and Hpa2 may have redundant functions that are 

necessary in apc5CA but dispensable in wild-type cells. The same mechanism envisioned 

for Gcn5/Hda1 interactions may also be working for Gcn5/Hpa2; it is possible that genes 

required for APC function are disproportionately influenced in gcn5∆ and/or hpa2∆ cells, 

and this becomes a liability when APC activity is compromised. 

 

Elp3 was also identified as a protein that functionally interacts with the APC and Gcn5. 

Combining the apc5CA allele with elp3∆ or gcn5∆ resulted in further temperature 

sensitivity. Elp3 and Gcn5 have been shown to have overlapping functions in gene 

activation as the HAT components of Elongator and SAGA, respectively. Gcn5 is 

required for SAGA-mediated transcriptional activation, while Elongator is required for 

transcriptional elongation following activation. ELP3 and GCN5 have previously been 

shown to interact as the double mutant results in a more severe phenotype than either 

single mutation alone (Wittschieben et al., 2000). Both HATs target H3K14 and deletion 

results in accumulation of cells with unsegregated DNA at elevated temperatures. The 

data presented in this thesis agree with the literature. Not only was the elp3∆ gcn5∆ 

double mutant more temperature sensitive than either single mutant, but it was also 

more impaired than either single mutant combined with the apc5CA allele (compare 

Figure 3.4A with 3.2B). To further characterize these genetic interactions triple mutants 

were constructed. Interestingly, the temperature sensitivity was similar regardless of 
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whether APC was mutated or not. This finding was initially interpreted as defining an 

epistatic relationship, where Elp3 and Gcn5 together act upstream of the APC to allow 

progression through G1/S. Consistent with this hypothesis, moderate overexpression of 

APC5 rescued the elp3∆ gcn5∆ temperature sensitive phenotype (Figure 3.9). 

Surprisingly, the elp3∆ gcn5∆ double mutants accumulate in G1 while the single HAT 

mutants each accumulate in G2, which indicates that Elp3 and Gcn5 have individual 

functions in G2/M but act redundantly to pass through G1 (Figure 3.5B). The finding that 

Clb2 levels were drastically reduced from wild-type levels in elp3∆ gcn5∆ double 

mutants may be attributed to these cells progressing through G1 at a slow rate, thereby 

allowing for increased time to degrade Clb2 (Figure 3.6). Nonetheless, these results 

indicate that Gcn5 and Elp3 are not upstream activators of the APC. The finding that the 

toxic overexpression of APC5 can be mediated by overexpression of GCN5 supports a 

model where the APC is upstream. Since the APC is predominately involved in targeting 

proteins for degradation, the toxic effects of APC5 overexpression may in part be due to 

insufficient amounts of Gcn5 within the cell; as cells overexpressing Gcn5 accumulate in 

G1 (Figure 3.10), the APC may be required to reduce Gcn5 levels and allow cell cycle 

progression. 

 

The APC promotes genomic stability and progression through mitosis and G1. The 

effects on genomic stability are likely linked to a requirement for a specific transcriptional 

profile to progress through the cell cycle. This is highlighted by the finding that levels of 

H3K9Ac and H3K79me2, modifications associated with mitotic gene activation, are altered 

in APC mutants (Figure 3.1A). Results presented here suggest that the APC interacts 

with histone modification proteins and may play a role in transcriptional control. The APC 

is also genetically involved with Rtt109, Asf1 and CAF-I, suggesting a role in histone 

deposition (Figure 3.11; Harkness et al., 2005). Taken together, these data indicate that 
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the APC links histone modification, and possibly mitotic gene transcription, with genomic 

stability. Specifically, this chapter demonstrates that the APC and the HATs, Elp3 and 

Gcn5, work together to allow cells to progress effectively through mitosis. 
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CHAPTER FOUR 

THE APC IS REQUIRED FOR GCN5 PROTEIN INSTABILITY 2 

 

4.1. Introduction 

The APC is required for the turnover of proteins that perform cell cycle specific functions 

during mitosis and G1. By targeting such proteins for degradation, cell cycle progression 

is ensured because the blocks imposed by these proteins are now removed. Our 

laboratory has previously demonstrated that the APC plays a role in mitotic chromatin 

assembly while the work presented in this thesis suggests that it also plays a role in 

histone metabolism in actively growing cells (Figure 3.1A; Harkness et al., 2002). As 

described in the previous chapter, elp3∆ and gcn5∆ genetically interact with the APC 

and work in the same pathway to control mitotic events. In an attempt to determine 

whether an ordered pathway involving APC/Elp3/Gcn5 exists, reciprocal experiments 

were performed where ELP3 or GCN5 were overexpressed in apc5CA cells, or APC5 

was overexpressed in elp3∆ gcn5∆ cells (Figures 3.7A and 3.9). Overexpression of a 

downstream factor may be able to rescue the temperature sensitive phenotypes 

expressed by upstream components. Surprisingly, overexpression in both experiments 

rescued the temperature sensitivity phenotypes. Further experiments using the APC 

target Clb2 demonstrated that Clb2 remained unstable in elp3∆ gcn5∆ cells, suggesting 

that Elp3 and Gcn5 do not necessarily control APC activity (Figure 3.6). Thus, a straight 

forward interpretation of the overexpression suppression data is not possible. 

Nonetheless, the observation that elp3∆ and gcn5∆ accumulate with G2/M cells 

                                                           
2
 A portion of this chapter has been published in Turner et al., 2010, Eukaryotic Cell 9, 1418-1431. 
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indicates that Elp3/Gcn5 and the APC may at least work redundantly to ensure mitotic 

progression (3.5B).  

 

Gcn5 has been shown to acetylate the promoters of genes required for mitotic 

progression and entrance into G1 (Krebs et al., 2000). Cells lacking both Elp3 and Gcn5 

are temperature sensitive and exhibit slow growth (Figure 3.4B; Wittschieben et al., 

2000). The data presented in Chapter Three demonstrates that cells lacking ELP3 or 

GCN5 have difficulty in progressing through mitosis into G1 (Figure 3.5B). The activities 

of Elp3 and Gcn5 that are required for mitotic progression appear to be inhibitory to the 

passage through G1 into S-phase. Given that overexpression of either HAT results in 

cells accumulating in G1 (Figure 3.7A), it may be that the transcriptional profile needed 

to pass through mitosis is not able to be reset to allow the G1/S transition. For example, 

in human cells, the phosphorylation of Cdc6 and its subsequent nuclear export and 

degradation is dependent on the HAT activity of Gcn5 as increased expression of GCN5 

resulted in elevated Cdc6 phosphorylation and relocalization to the cytoplasm (Paolinelli 

et al., 2009). This accelerated export of Cdc6 likely results in DNA pre-replication 

complexes not being formed properly, if at all, resulting in a lack of DNA replication. 

Additionally, the toxic effects of APC5 overexpression are mitigated by GCN5 

overexpression, suggesting that the growth defect may be due to inadequate amounts of 

Gcn5 within the cell (Figure 3.10). Thus, the hypothesis is that Gcn5 (and possibly Elp3) 

must be degraded once the mitotic and G1 specific transcript profile is established in 

order for progression from G1 into S-phase to occur. 
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4.2. Results 

 

4.2.1 Elp3 and Gcn5 may be targeted for degradation in a proteasome- and 

ubiquitin-dependent manner  

The APC plays a major role in genomic stability as it regulates progression through 

mitosis and G1. This is accomplished by targeting the proteins that prevent sister 

chromatid separation and exit from mitosis for destruction. Several yeast proteins 

involved in controlling APC activity are themselves targeted for destruction by the APC, 

such as Cdc5 (Plk1 in humans), Clb2 and Cdc20 (Castro, et al. 2005; Wäsch et al., 

2010). Since Elp3 and Gcn5 appear required for mitotic progression, it may be that their 

function must be stopped to allow progression further through the cell cycle. This is 

consistent with the finding that increased expression of ELP3 or GCN5 causes cells to 

accumulate in G1 (Figure 3.7C). To determine whether Elp3 and Gcn5 may be APC 

targets, the stability of Elp3 and Gcn5 was examined. This analysis began by using a 

proteasome mutant, rpn10∆. Ubiquitinated proteins degraded by the proteasome are first 

unfolded and then threaded through the centre of the structure to systematically remove 

groups of amino acids (Sorokin et al., 2009). The proteasome subunit Rpn10 (regulatory 

particle non-ATPase) is a multi-ubiquitin chain receptor and mutation to this gene results 

in the stabilization of some, but not all, proteasomal targets (Sorokin et al., 2009). 

Consistent with the idea that Elp3 and Gcn5 must be reduced to allow cell cycle 

progression, it was observed that rpn10∆ cells exhibit increased levels of both larger and 

smaller species of Elp3 and Gcn5 than does the wild-type (Figure 4.1A). As the 

proteasome is involved in degrading ubiquitinated proteins, the larger species are likely 

ubiquitinated while the smaller species may be partially processed species. As controls, 
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Figure 4.1. Elp3 and Gcn5 may be targeted for degradation in a proteasome- and 
ubiquitin-dependent manner. (A) Wild-type (WT) and rpn10∆ cells expressing 
GALpromELP3-HA or GALpromGCN5-HA were grown to early log phase, then split. One 
half was harvested immediately, while the other half was resuspended in 2% galactose-
supplemented media. This sample was split again and incubated at 30° and 37°C for 4 
hours. Proteins were analyzed with antibodies against HA and GAPDH. Figure provided 
by J. Menzel. (B) Wild-type and rpn10∆ cells were harvested at early log phase. Proteins 
were analyzed with the indicated antibodies. Figure provided by M. Malo. (C) 
Asynchronous steady-state levels of endogenous GCN5-TAP were followed in the cells 
shown. Antibodies against TAP were used with a Ponceau S stained membrane used as 
a load control. Images shown are representative of routinely observed results. Published 
in Islam et al., 2011. (D) Locations of putative D-boxes in the amino acid sequence of 
Gcn5 are indicated by the white boxes. 



126 
 

the levels of ubiquitin and the APC target Clb2 were analyzed (Figure 4.1B). These were 

also increased in the rpn10∆ mutant, as was Apc10. Increased Apc10 may be the cell‟s 

response to the accumulation of proteasomal targets. Apc5 levels were similar in wild-

type and rpn10∆ cells. The levels of Apc5 in the rpn10∆ mutant may already be at a high 

enough level to allow formation of additional APC complexes without further expression. 

Gcn5-TAP levels were also increased in APC mutants relative to wild-type (Figure 4.1C). 

Analysis of the amino acid sequence of the S. cerevisiae Gcn5 revealed two putative D-

boxes, located at amino acid residues 23-29 and 288-296 suggesting that Gcn5 may be 

a target of the APC (Figure 4.1D). Thus, data presented in this thesis supports the idea 

that Gcn5 and/or Elp3 are targeted for degradation, perhaps to allow cell cycle 

progression through G1/S. 

 

4.2.2 SCF mutants do not exhibit changes in steady state levels of Gcn5-TAP 

The APC has been documented to be active during mitosis and G1 but not S-phase and 

the APC is required for degradation of proteins that block S-phase initiation. The other 

major ubiquitin-ligase active throughout the cell cycle is the SCF (Willems et al., 2004). 

For example, Sic1, a Cdk inhibitor, must be degraded by the SCF to allow the G1/S 

transition (Schwob et al., 1994). To determine whether the SCF is involved in Gcn5 

turnover, levels of Gcn5-TAP (tandem affinity purification) in asynchronously growing 

SCF mutants were compared to wild-type and apc5CA cells. No differences in Gcn5-TAP 

levels were observed in SCF mutants (Figure 4.2), suggesting that Gcn5-TAP instability 

may be linked to a particular cell cycle phase and to the activity of the APC. 
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Figure 4.2. SCF mutants do not exhibit changes in steady state levels of  Gcn5-
TAP. Log phase GCN5-TAP expressing cells were grown overnight to log phase, then 
set back into fresh glucose containing media for 4 hours at 30˚C.  Samples were taken 
immediately following the 4 hour incubations. Protein extracts were analyzed using 
antibodies against TAP and GAPDH. Images shown are representative of routinely 
observed results. WT = wild-type.  
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4.2.3 Gcn5-HA and Gcn5-TAP are unstable during G1 and S, but are stabilized in 

apc5CA, apc10∆ and apc11∆ cells 

Gcn5 may be directed towards ubiquitin- and proteasome-dependent degradation. 

Targeted degradation of Gcn5 by the APC may allow passage through the G1/S-phase 

transition. To test this hypothesis Gcn5 stability was examined in wild-type, apc5CA and 

apc10∆ strains containing endogenously TAP-tagged Gcn5. Cells were grown overnight 

to log phase, set back to OD600 0.5, alpha factor was added to arrest cells in G1, and 

followed with incubation at 30˚C for 3 hours when full arrest was achieved. Cells were 

then washed and resuspended in fresh media containing cycloheximide to prevent 

further protein synthesis. Samples were taken at the indicated time points and protein 

extracts were prepared. Gcn5-TAP was rapidly degraded in wild-type cells but was 

stable in both apc5CA and apc10∆ cells (Figure 4.3A). This strongly suggests that the 

APC is required for the degradation of Gcn5. Similar results occurred when wild-type, 

apc5CA, cdc16-1 and apc11∆ cells containing galactose-induced Gcn5-HA were arrested 

in S-phase and released into glucose to allow cell cycle progression (Figures 4.3B and 

4.3C). After 3 hours of galactose induction in the absence of cell cycle arrest, these cells 

were still cycling asynchronously. In these asynchronous cells Gcn5-HA levels were 

stable regardless of APC being mutated or not, suggesting that the Gcn5 instability 

observed in wild-type cells arrested with alpha factor or hydroxyurea is cell cycle specific 

to passage through G1/S (Figure 4.4). 

 

4.2.4 Modified levels of Gcn5-TAP decrease during S-phase in apc10∆ and during 

G1 and S-phase in cdc16-1 cells  

The data suggests that Gcn5 is targeted for degradation in a cell cycle specific manner. 

To follow this hypothesis further, wild-type, apc5CA, apc10∆ and cdc16-1 were arrested 
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Figure 4.3. Gcn5 is unstable during G1 and S phase but stabilized in APC mutants. 
(A) Wild-type (WT), apc5CA, and apc10∆ cells expressing endogenous GCN5-TAP were 
arrested in G1 using alpha-factor. Following arrest, cells were washed and added to 
fresh media containing cycloheximide to block all further protein synthesis. Samples 
were taken as indicated to assess Gcn5-TAP protein stability. GAPDH Western analyses 
were conducted to control for protein load. Cell cycle progression was followed using 
Flow cytometry. Figure from Turner et al. 2010. (B) Early log phase WT and cdc16-1 
cells transformed with GAL

prom
-GCN5-HA were arrested in S-phase using 0.3 M 

hydroxyurea. 2% galactose-supplemented media was added to induce protein induction. 
Following arrest, cells were washed and added to fresh media containing glucose and 
allowed to grow.  Samples were taken at the indicated times to assess Gcn5-HA protein 
stability. (C) WT and apc11∆ cells were transformed with GAL

prom
-GCN5-HA and treated 

as in (A). 
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Figure 4.4. Gcn5 is stable in asynchronous cells. Strains transformed with GALprom-
GCN5-HA were grown to log phase, then set back to OD 0.5. Proteins were induced for 
4 hours in 2% galactose-supplemented media. Following induction, cells were washed 
and added to fresh media containing glucose and allowed to grow.  Samples were taken 
at the indicated times to assess Gcn5-HA protein stability. Representative image of 
routinely observed results is shown. WT = wild-type. 
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in several different cell cycle phases at the permissive temperature of 30˚C (Figure 4.5). 

Compared to cells arrested in M phase, decreased levels of Gcn5-TAP were observed in 

both the apc10∆ and cdc16-1 strains when cells were arrested in G1 or S-phase. An 

accumulation of higher molecular weight species was observed in apc10∆ and cdc16-1, 

suggestive of higher levels of modified Gcn5-TAP, regardless of cell cycle stage. This 

may be explained by the fact that Apc10 has been shown to be involved in protein 

substrate recognition (Grossberger et al., 1999; Buschhorn et al., 2011; da Fonseca et 

al., 2011), while Apc5 has been shown to interact with other factors such as the mitotic 

checkpoint complex, the ribosome and the transcription factors CBP and p300 

(Koloteva-Levine et al., 2004; Turnell et al., 2005; Herzog et al., 2009). 

 

4.3 Elp3-TAP modification levels are altered by mutation to the ubiquitin 

machinery 

4.3.1 Elp3-TAP is unstable in G1 

As Elp3 appears to interact with the APC in a manner similar to Gcn5, Elp3 may also be 

targeted for APC and proteasomal-dependent degradation. Targeted degradation of 

Gcn5 by the APC may allow passage through the G1/S-phase transition. To test this 

hypothesis the stability of Elp3-TAP was examined in wild-type cells. Cells were grown 

overnight to log phase and set back to an OD600 of 0.5. Alpha factor was then added for 

3 hours to arrest cells in G1. Cells were then washed and resuspended in fresh media 

containing cycloheximide to prevent further protein synthesis. Samples were taken at the 

indicated time points and protein extracts prepared. Elp3-TAP was observed to be 

degraded in wild-type (Figure 4.6A). As Elp3 genetically interacts with the APC in a 

similar manner as does Gcn5 it may also be targeted for ubiquitination in an APC-

dependent manner. 
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Figure 4.5. Modified Gcn5-TAP levels are increased in APC mutants. Log phase 
GCN5-TAP expressing cells were diluted and arrested in M using nocodazole, S using 
hydroxyurea or G1 using alpha factor. Controls included 4 hours in the presence and 
absence (asynch) of cycloheximide (CHX). Samples were taken immediately following 
the 4 hour incubations. Protein extracts were analyzed using antibodies against TAP and 
GAPDH. A lighter exposure of the membranes to X-ray film is also shown (Light exp). In 
this experiment, the TAP antibody recognized a nonspecific band that was also 
observed in untagged wild-type (WT), apc5CA, elp3∆, and gcn5∆ cells (data not shown). 
Images shown are representative of routinely observed results. 
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Figure 4.6. Elp3 instability depends on the APC and Ubc1. (A) Elp3 is unstable 
during G1. The cells shown expressed endogenous ELP3-TAP and were of the a 
Mating type. The cells were grown to early log phase, then arrested in G1 with alpha 
factor. Cycloheximide (CHX) was added to stop all protein synthesis and samples were 
taken every 20 minutes for 3 hours for protein analysis with antibodies against TAP and 
GAPDH as a load control. (B) Elp3 instability may be cell cycle independent, but 
depends on the APC. Log phase ELP3-TAP expressing cells were diluted and arrested 
in M using nocodazole, S using hydroxyurea or G1 using alpha factor. Controls included 
4 hours in the presence (CHX) and absence (asynch) of CHX. Samples were taken 
immediately following the 4 hour incubations. Protein extracts were analyzed using 
antibodies against TAP and GAPDH. In this experiment, the TAP antibody recognized a 

nonspecific band that was also observed in untagged wild-type (WT), apc5
CA

, elp3∆, and 
gcn5∆ cells (data not shown). * denotes potentially modified Elp3-TAP protein. (C) Elp3 
instability may depend on Ubc1. WT and ubc1∆ ELP3-TAP cells were incubated for 3 
hours in the presence and absence of CHX at 30°C. Samples were taken immediately 
following the treatment. The nonspecific band recognized by the TAP antibody is shown. 
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4.3.2 Elp3-TAP is modified in apc5CA and apc10∆ cells but not in cdc16-1 cells 

Elp3-TAP containing strains were arrested in the various cell cycle phases in order to 

detect any cell cycle specific molecular weight changes by SDS PAGE (Figure 4.6B). 

Surprisingly, Elp3-TAP stability and molecular weight changes were not cell cycle-

dependent, but APC subunit-dependent. In wild-type cells, Elp3-TAP was not observed 

at all following the cycloheximide (CHX) treatment of asynchronous cells. Furthermore, 

wild-type cells exhibited several higher molecular weight bands, suggesting that Elp3-

TAP exists in both non-modified and modified forms, while in cdc16-1 cells, only the non-

modified form was observed. Interestingly, only the modified forms of Elp3-TAP were 

observed in apc5CA and apc10∆ cells. This perhaps suggests diverse functions for the 

different APC subunits. Additional study will be required to fully understand the specific 

functional activities of the different APC subunits. 

 

4.3.3 ubc1∆ cells exhibit modified Elp3-TAP while wild-type cells do not 

The results obtained from the above mentioned cell cycle arrest experiments using Elp3-

TAP strains suggest that different APC subunits may perform alternative tasks when 

modifying substrates. The APC has been shown to interact with the ubiquitin-conjugating 

enzymes (E2s) Ubc1 and Ubc4 in a step-wise fashion to fully ubiquitinate substrate 

proteins (Rodrigo-Brenni & Morgan, 2007). First, the substrate is mono-ubiquitinated by 

Ubc4, and then becomes a target for Ubc1 dependent poly-ubiquitination. Wild-type and 

ubc1∆ cells containing Elp3-TAP were arrested with cycloheximide for 3 hours to prevent 

further protein synthesis in order to follow protein turnover (Figure 4.6C). It was found 

that the ubc1∆ cells harbored only higher molecular weight Elp3-TAP species, while 

wild-type only exhibited endogenous Elp3-TAP. The inconsistency in detection of 

modified Elp3-TAP in wild-type cells may be due to the inherent instability of 
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ubiquitinated proteins or as a result of extra time in cycloheximide (compare Figures 

4.6B with 4.6C). Considering Ubc1 is responsible for poly-ubiquitinating APC substrates 

the ubc1∆ deletion strain is likely accumulating only mono-ubiquitinated substrates. 

 

4.4 Discussion 

The work presented thus far has demonstrated that the APC genetically interacts 

redundantly with Elp3 and Gcn5 to promote mitotic passage, and possibly upstream 

during G1 to target at least Gcn5 for ubiquitin- and proteasome-dependent degradation. 

An excellent example of coordinated cell cycle control is that several upstream 

regulators of the APC are themselves targeted by the APC for destruction (Castro et al., 

2005; Wäsch et al., 2010). Some examples are Cdc5, Clb2 and Cdc20, and we propose 

that Gcn5, and perhaps Elp3, may also fall into this category. We do not believe that 

Elp3 and Gcn5 directly activate the APC, but rather propose that a mitotic transcriptional 

profile established by Elp3- and Gcn5-dependent promoter acetylation creates 

transcripts and proteins necessary to enable APC mitotic activity. Alternatively, and not 

necessarily mutually exclusive, Gcn5 and/or Elp3 may acetylate histones prior to 

deposition into chromatin during mitosis. This in itself may be what is important for APC 

function considering its role in mitotic chromatin assembly. Increased levels of Elp3 or 

Gcn5 result in cells having increased difficulty passing through G1/S. Whether this is due 

to increased transcription of proteins blocking cell cycle progression, or some other 

phenomenon, remains to be determined. Indeed, increased histone acetylation activities 

of Elp3 and Gcn5 may prevent progression through the cell cycle as hyperacetylation in 

human cells has been shown to prevent sister chromatid separation and result in 

segregation defects (Cimini et al., 2003). On the other hand, the cell cycle exit/arrest 

may be due to additional activities. For example, in human cells it has recently been 
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shown that Gcn5 acetylates Cdc6, a component of the pre-replicative complex (Paolinelli 

et al., 2009). Acetylation of Cdc6 leads to its release from chromatin and subsequent 

degradation. Excess levels of Gcn5 may result in the inactivation of Cdc6 before the pre-

replicative complexes are properly formed, thus preventing the cell from proceeding with 

DNA replication. Additionally Gcn5 has been implicated with increasing CAF-I‟s 

association with the histone H3/H4 tetramer by acetylating the N-terminal tail of H3 

(Burgess et al., 2010). Excess CAF-I has been demonstrated to assemble bulk DNA to 

the point of inhibiting DNA synthesis (Kamakaka et al., 1996), so increased histone 

affinity catalyzed by excess Gcn5 may contribute to this process. Gcn5 levels may need 

to be kept at appropriate levels to allow DNA replication and cell cycle progression to 

occur in a timely manner. 

 

The finding that both Elp3 and Gcn5 are required for efficient progression through 

mitosis while only one is required for G1/S-phase progression raises the question of 

what exact role they play. Presumably, they have redundant roles pertaining to 

progression through G1/S-phase as both genes must be mutated for accumulation to 

occur (Figure 3.5B). Their redundant functions may in fact be associated with the APC 

as there was no difference in temperature sensitivity between wild-type or apc5CA cells 

once both HATs were deleted (Figure 3.4B). Single HAT deletions did exacerbate the 

apc5CA suggesting that the presence of Elp3 was unable to compensate for the loss of 

Gcn5, and vice versa (Figure 3.2B). Exactly how the APC associates with Elp3 and 

Gcn5 still remains to be determined. The data presented here indicate that the APC 

targets Gcn5 (and possibly Elp3) for degradation to allow progression into S-phase. The 

finding that deletion of RPN10, a component of the proteasome, results in alteration of 

the modification patterns of Elp3 and Gcn5 further supports this hypothesis (Figure 

4.1A), as does the effect of deleting components of the APC or Ubc1, on Elp3 
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modification patterns (Figure 4.6). Gcn5 does contain two putative D boxes, suggesting 

that it may be a target of the APC. The APC is involved in mitotic chromatin assembly 

and histone metabolism (Figure 3.1; Harkness et al., 2002; Ramaswamy et al, 2003). 

Since HATs play a role in both processes, it stands to reason that they would also 

interact with the APC. While the hypothesis is that the APC targets for degradation some 

of the proteins involved in these processes, it may also act to bring them all together to 

promote chromatin assembly. The results presented in Chapter Five further link the APC 

with CAFs and histone metabolism.  Chapter Five introduces the idea that the APC may 

affect mitotic chromatin assembly by acting as a scaffold or facilitator to bring together 

the proteins required for histone deposition during mitosis. 

 



138 
 

CHAPTER FIVE 

THE APC INTERACTS WITH PROTEINS INVOLVED IN CHROMATIN 

MODIFICATION 3 

 

5.1. Introduction 

As discussed in Chapter One, the APC is required for mitotic progression and genomic 

stability (Castro et al., 2005; Wäsch et al., 2010; Kim & Yu, 2011; McLean et al., 2011). 

The APC has also been shown to play a role in chromatin assembly during mitosis 

(Harkness et al., 2002; Arnason et al., 2005). To date, the only chromatin assembly 

factor shown to be associated with a specific stage of the cell cycle is CAF-I; it is 

required for replication-dependent chromatin assembly (Smith & Stillman, 1989). CAF-I 

has also been shown to be involved in DNA repair throughout the cell cycle (Gaillard et 

al., 1996). Previous work from our laboratory has genetically linked the APC with the 

individual subunits of CAF-I (Harkness et al., 2005). This was demonstrated by the 

sequential deletion of CAF-I subunits resulting in progressively increased temperature 

sensitivity in the apc5CA mutant. Additionally, the overexpression of individual CAF-I 

subunits was able to rescue the apc5CA temperature sensitive growth even in cells 

lacking intact CAF-I. Apc5 was also shown to interact with Asf1 as apc5CA asf1∆ cells 

grew slower than either single mutant at both permissive and restrictive temperatures, 

30˚C and 37˚C, respectively. In addition, overexpression of Asf1 was able to rescue 

apc5CA temperature sensitive growth. Together, this suggests that the chromatin 

assembly defect associated with apc5CA may impinge on Asf1/CAF-I-dependent histone 

deposition. 

                                                           
 3

 A portion of this chapter has been published in Turner et al., 2010, Eukaryotic Cell 9, 1418-1431. 
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Prior to deposition onto DNA, histones must be properly acetylated. Asf1 aids in this by 

binding histones H3/H4 and presenting them to Gcn5 and Rtt109 for acetylation 

(Fillingham et al., 2008; Burgess et al., 2010). Asf1 then passes the acetylated histones 

to CAF-I for deposition (Tyler et al., 2001). A defect in the processes of histone 

modification and deposition in apc5CA cells may result in the mitotic chromatin assembly 

defect. APC mutants exhibited altered total and modified histones as well as genetically 

interact with a number of histone modification proteins (Figures 3.1A, 3.2 and 3.11; 

Turner et al., 2010). Increased expression of the HAT genes ELP3, GCN5 and RTT109, 

as well as a variety of CAFs, were each able to rescue the temperature sensitivity in 

apc5CA cells. The overexpression of histones also rescued the temperature sensitive 

phenotype suggesting that the increased ability to deposit histones onto the DNA is of 

benefit to apc5CA cells (Figure 3.8B). A model that explains these varied genetic 

interactions involves the physical association of the APC with the CAFs and HATs 

shown to genetically interact together. The rationale for such physical associations 

would involve optimizing the acetylation of histones by Asf1/Rtt109/Gcn5 and passage of 

the acetylated histones to CAF-I for chromatin assembly (Figure 1.7). It is possible that 

all these proteins use the APC as a scaffold in order to bring all the players together for 

efficient transfer of acetylated histones to CAFs. Alternatively, individual proteins, such 

as Asf1, may recruit other factors to the APC (Figure 5.1). The role of the APC in this 

model may be to regulate, via targeted degradation, which factors are associated with 

HATs, histones and CAFs. In this chapter experiments to test this model are presented. 
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Figure 5.1. Interaction models for the APC with the CAFs and HATs. (A) The APC 
may act as a scaffold to bring together the proteins involved in histone modification and 
deposition in order to facilitate the modification and transfer of histones. The unique 
requirement for the APC in this complex may reflect the cell cycle-dependent nature of 
the interactions, whereby the APC can target players for degradation when their role is 
complete. (B) Alternatively, the APC may interact with only one protein, for example 
Asf1, which then recruits other HATs and CAFs to the APC. It is known that Asf1 
physically interacts with Rtt109 and CAF-I.  
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5.2 Results 

5.2.1 Influence of ASF1-GST or MSI1-GST overexpression on histone 

modifications and apc5CA growth 

Previous work conducted in our laboratory demonstrated that the APC genetically 

interacted with the chromatin assembly factors CAF-1 and Asf1 (Harkness et al., 2005). 

Work presented in this thesis (published in Turner et al., 2010) demonstrated that the 

APC interacts with Rtt109 (Figure 3.11). Rtt109 is a HAT responsible for acetylating 

Asf1-bound histones prior to their passage to CAF-I and subsequent deposition into 

chromatin (Chen & Tyler, 2008; Fillingham et al., 2008). Thus, it was investigated 

whether the reduced histone levels in APC mutant cells were linked to the chromatin 

assembly defects (Harkness et al., 2005). To test this, plasmid borne GST-ASF1 and 

GST-MSI1 (the smallest subunit of CAF-1) under the control of the copper induced 

promoter of CUP1 were overexpressed in both wild-type and apc5CA cells at 30˚C and 

37˚C (Figure 5.2A). Similar results occurred at both temperatures. Increased ASF1 

expression resulted in increased levels of acetylation at K9 and K56 on histone H3 but 

decreased levels of K79 dimethylation. Overexpression of MSI1 had no effect on these 

modifications. Others have provided data that supports our model that Asf1 presents 

histones H3 and H4 to the HAT Rtt109 (and possibly Gcn5) for acetylation prior to 

passing them on to CAF-I, of which Msi1 is a subunit, for chromatin deposition 

(Fillingham et al., 2008; Burgess et al., 2010). In addition, despite the differences in 

histone modification, overexpression of either ASF1 or MSI1 was able to rescue the 

apc5CA temperature sensitive growth phenotype to that of wild-type (Figure 5.2B). This 

rescue occurred regardless of temperature or expression levels (moderate or 

excessive). It is likely that increasing the ability to deposit acetylated histones onto DNA 

is able to rescue APC mutants. This is supported by the finding that overexpression of  
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Figure 5.2. Influence of increased ASF1 or MSI1 expression on histone 
modifications. (A) Histone modifications were assessed in wild-type (WT) and apc5CA 
cells overexpressing GST-ASF1 or GST-MSI1 from the CUP1 promoter. Protein extracts 
were prepared from cells following growth at 30°C or after a shift to 37°C for 3 h. 
Proteins were induced by the addition of 100 M CuSO4 for 3 h. Extracts were then 
analyzed using the antibodies indicated. (B) The cells described for panel A were spot 
diluted onto control plates, or plates containing 100 M CuSO4, and grown for 3 days at 
30°C and 37°C to confirm that apc5CA temperature sensitive defects were suppressed. 
This figure was published in Turner etal., 2010. 
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histones is able to rescue the temperature sensitive phenotype of apc5CA (Figure 3.8B). 

This further supports a role for the APC in histone modification and deposition. 

 

5.2.2 Physical interaction  of  chromatin  assembly  factors  with  the  APC  and 

Gcn5-HA 

Recent research in humans has demonstrated that Apc5 and Apc7 both physically 

associate with the HATs CBP and p300 (Turnell et al., 2005). The yeast Rtt109 has 

been shown to be structurally similar to CBP (Liu et al., 2008; Tang et al., 2008; Wang et 

al., 2008). Rtt109 interacts with the chromatin assembly factor Asf1 and acetylates 

histone H3 residues K9 and K56 (Chen & Tyler, 2008; Fillingham et al., 2008; Das et al., 

2009). Our laboratory has previously shown Apc5 to genetically interact with CAF-1 and 

Asf1 and that these proteins play a role in mitotic chromatin assembly (Harkness et al., 

2005). Progressive deletion of CAF-I subunits in the apc5CA background resulted in 

further exacerbation of the temperature sensitive phenotype, indicating that the 

individual CAF-I subunits have function, previously believed to not be the case, while 

overexpression of any one CAF-I subunit was capable of rescuing the apc5CA 

phenotype. The APC is also shown to genetically interact with Rtt109, as increased 

expression of RTT109 restored the growth of apc5CA cells to wild-type levels (Figure 

3.11). 

 

To study the interaction of the APC with chromatin formation further, 

immunoprecipitations (IPs) were performed using a variety of tagged proteins, some 

endogenous, some plasmid borne. Western blot assays were used to detect physical  
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Figure 5.3. Cac2-myc physically associates with GST-Msi1 and GST-Asf1. (A) Wild-

type and an endogenously C-terminal MYC-tagged CAC2 strain were transformed with 

CUP
prom

GST-MSI1. The cells were grown overnight to early log phase, induced with 

CuSO
4
 for 4 hours, then subjected to bead-beating to prepare whole cell lysates. 1 mg of 

protein was incubated with antibody against MYC overnight, then mixed with pre-cleared 

protein A agarose beads. The beads were pelleted and the bound proteins were washed 

three times. 67% of the bound sample, along with 10 μg of input was separated by SDS-

PAGE, transferred to membrane and detected with antibodies against the GST epitope. 

(B) Immunoprecipitations were performed as in (A) with the exception that the 

CUP
prom

GST-ASF1 plasmid was used.  
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association. Using an endogenous CAC2-MYC allele, Asf1 and Msi1 expressed from 

CUP1-induced plasmids were co-immunoprecipitated   (Figure 5.3).  This was to be 

expected, as Cac2 and Msi1 are both subunits of the chromatin assembly factor CAF-I, 

while Asf1 has been shown to physically bind to Cac2 to facilitate replication-dependent 

chromatin assembly (Kaufman et al., 1995; Tyler et al., 2001; Krawitz et al., 2002; Mello 

et al., 2002).  

 

CAF-I genetically interacts with the APC and together they promote mitotic chromatin 

assembly (Harkness et al., 2005). We predict that they may also physically associate. 

Immunoprecipitations were performed using endogenously TAP-tagged APC5. GST-

Asf1 was observed to physically associate with Apc5 (Figure 5.4A). Cac2-Myc was 

observed to physically associate with Apc5-TAP (Figure 5.4B). GST-Msi1 was not 

detected in association with APC5-TAP (Figure 5.4A); since Cac2 and Msi1 are both 

subunits of CAF-I this may indicate that Cac2 binds the APC independently of the 

complex. This may provide additional evidence to support the hypothesis that the CAF-I 

subunits interact in an independent manner with the APC to facilitate mitotic chromatin 

assembly. In humans, Apc5 has been shown to have functions outside of the APC, as it 

associates with the ribosome independently from the rest of the complex (Koloteva-

Levine et al., 2004). To determine if the physical interactions observed were to be 

attributed to Apc5 alone or as part of the APC Apc10-HA was used as bait. Cac2-Myc 

also physically associated with Apc10-HA, suggesting that the interactions detected by 

Apc5 are likely due to CAF-I subunits associating with the APC complex and not 

necessarily the Apc5 subunit itself (Figure 5.4B). 
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Figure 5.4. Chromatin assembly factors physically associate with the APC. (A) 
Apc5-TAP physically interacts with GST-Asf1. Strains harboring an endogenous C-
terminal TAP-tagged APC5 were transformed with CUPpromGST-ASF1 or CUPpromGST-
MSI1 plasmids. The cells were grown overnight to early log phase, induced with CuSO4 
for 4 hours, then subjected to bead-beating to prepare whole cell lysates. 1 mg of protein 
was incubated with antibody against TAP overnight, then mixed with pre-cleared protein 
A agarose beads. The beads were pelleted and the bound proteins washed three times. 
67% of the bound sample, along with 10 μg of input was separated by SDS-PAGE, 
transferred to membrane and detected with antibodies against the GST epitope. The 
GST antibody recognizes TAP because of the Protein A motif incorporated into the TAP-
tag. (B) Cac2-MYC physically associates with Apc5-HA and Apc10-HA.  The Cac2-
MYC strain was transformed with GALprom-APC5-HA and GALprom-APC10-HA and 
treated as in (A), exceptions being induction in 2% galactose-supplemented media and 
IPs were performed using antibodies against HA. A wild-type strain transformed with the 
GALprom-GCN5-HA plasmid is used as a control (B) provided by M. Dash. Images 
shown are representative of routinely observed results. 
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One of the roles that the APC may be playing in chromatin assembly is as a scaffold or 

facilitator to bring together the proteins required for chromatin assembly (Figure 5.1). A 

recent study provides support for our model, as Gcn5 may be involved in regulating the  

interaction of CAF-I with histone H3 (Burgess et al., 2010). Further support is provided 

by a report suggesting Asf1 presents histones to Gcn5 (and Rtt109) for acetylation prior 

to passing them to CAF-I for deposition onto DNA (Fillingham et al., 2008). In support of 

this role, Cac2-Myc is demonstrated to physically associate with Gcn5-HA (Figure 5.5). 

This provides additional support for our model, but does not distinguish between a 

scaffold or facilitator role of the APC. 

 

The finding that the APC physically associates with Cac2-Myc and GST-Asf1 does not 

necessarily signify that it actually binds to each of these proteins; for example, APC‟s 

association with Cac2-Myc may be through direct binding with Asf1 or some other 

protein. In an attempt to further resolve the details of the binding patterns of the APC 

with Asf1 and CAF-I, CoIPs were performed in an asf1∆ mutant strain. If Asf1 is 

responsible for linking Cac2 with the APC then deletion of Asf1 should abolish the 

Cac2/Apc5 interaction; however, it did not. Cac2-Myc was still able to co-

immunoprecipitate Apc5-HA, which indicates that this interaction is not mediated by Asf1 

(Figure 5.6). More CoIPs in cells containing deletions of these interacting proteins will 

need to be performed to truly elucidate the intricacies of APC interaction with these 

histone binding proteins. 

 

5.3 Discussion 

The APC is most commonly associated with regulating cell cycle progression by 

targeting proteins that block passage though mitosis for ubiquitin- and proteasome-  
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Figure 5.5. Cac2-MYC physically associates with Gcn5-HA. The Cac2-MYC strain 
was transformed with GAL

prom
-GCN5-HA plasmid. Once cells reached log phase, 

proteins were induced in 2% galactose-supplemented media for 4 hours. Whole cell 
lysates were prepared by bead beating. 1 mg of protein was incubated with antibody 
against MYC overnight, then mixed with pre-cleared protein A agarose beads. The 
beads were pelleted and the bound proteins washed three times. 67% of the bound 
sample, along with 10 μg of input was separated by SDS-PAGE and transferred to 
membrane. Proteins were then detected with HA antibody. Figure provided by M. Dash
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Figure 5.6. Apc5-HA physically associates with Cac2-MYC in the absence of Asf1. 
Wild-type and asf1∆ strains containing Cac2-MYC were transformed with empty vector 
or GALprom-APC5-HA. The cells were grown overnight to early log phase and then 
resuspendend in 2% galactose-supplemented media. After 4 hours, whole cell lysates 
were prepared by bead-beating.1 mg of protein was incubated overnight with antibody 
against MYC, then mixed with pre-cleared protein A agarose beads. The beads were 
pelleted and the bound proteins washed three times. 67% of the bound sample, along 
with 10 μg of input was separated by SDS-PAGE. Proteins were then transferred to a 
membrane and detected with antibodies against the HA epitope. 
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dependent destruction (Castro et al., 2005; McLean et al., 2011). APC activity is 

prevented if the cell is not ready to proceed with sister-chromatid segregation as 

premature separation can lead to mitotic  catastrophe.  Mitotic  stability is vital to the 

survival of the cell and chromatin assembly is known to play an important role in 

maintaining this stability. For example, mutations to CAF-I results in chromosomal 

rearrangements and altered cell cycle progression (Quivy et al., 2001; Myung et al., 

2003; Nabatiyan & Krude, 2004). Research from our laboratory has shown the APC to 

play a role in mitotic chromatin assembly through its genetic interaction with the 

individual subunits of CAF-I (Harkness et al., 2005). Through in vitro 

immunoprecipitation studies, each CAF-I subunit has been shown capable of binding 

histones independently of the CAF-I complex (Verreault et al., 1996; Shibahara et al., 

2000). Furthermore, Asf1 may be responsible for presenting histones to Gcn5 and 

Rtt109 prior to their deposition by CAF-I (Fillingham et al., 2008; Burgess et al., 2010). 

Moreover, Gcn5 has recently been implicated in acetylating histone H3 to facilitate its 

binding by CAF-I (Burgess et al., 2010). Consistent with a role for all these proteins in 

chromatin assembly, they have each been shown to genetically interact with the APC 

(Figures 3.2B, 3.11, 5.2A; Harkness et al., 2005). Overexpression of any one of the 

CAFs CAC1, CAC2, MSI1, ASF1, HIR1 and HIR2, and the HATs GCN5, ELP3 and 

RTT109 were each capable of rescuing the apc5CA temperature sensitive growth 

phenotype (Figures 3.7A, 3.11, 5.2A; Harkness et al., 2005). In fact, a recent study 

reported that Elp3 genetically interacted with Asf1, Cac1 and Rtt109 in response to the 

DNA damaging agents HU and MMS (Li et al., 2009). Elp3 was also found to genetically 

interact with PCNA, as double mutants were more sensitive to DNA damage than were 

single mutants (Li et al., 2009). PCNA physically associates with Asf1 and CAF-I to 

ensure effective coupling of DNA synthesis with histone deposition (Shibahara & 
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Stillman, 1999; Sharp et al., 2001; Krawitz et al., 2002). Thus, these observations tightly 

link Elp3 with the replication-dependent chromatin assembly that utilizes Asf1 and CAF-I. 

 

The temperature sensitivity of the apc5CA may be a result of altered histone metabolism 

and defective chromatin assembly. The overexpression of components that facilitate 

assembly rescues the apc5CA temperature sensitive phenotype. Further linking the 

apc5CA phenotype with aberrant histone modifications is the finding that overexpression 

of Asf1 increases the acetylation levels of H3K9 and H3K56 (Figure 5.2A); these 

modifications are associated with newly deposited histones in yeast. The increase in 

Asf1 likely enhances the association of histone H3 with the HATs that make these 

modifications, Gcn5 and Rtt109 (Chen & Tyler, 2008; Fillingham et al., 2008; Burgess et 

al., 2010). CAF-I preferentially deposits appropriately acetylated H3/H4 tetramers onto 

DNA, so it seems that increased histone acetylation may lead to improved histone 

deposition. Elevated histone deposition is a likely cause of suppression of the 

temperature sensitive phenotype in apc5CA cells, as increased levels of CAF-I subunits 

and histones both suppress the temperature sensitive phenotype (Figure 3.8B; Harkness 

et al., 2005). Excess free histones are detrimental to cells as they form uncontrolled 

aggregates with the DNA; thus, cells have developed methods of controlling histone 

levels (Gunjan & Verreault, 2003). In Chapter Three it was demonstrated that many APC 

mutants exhibit decreased levels of histones H2B and H3 (Figure 3.1). This decrease 

may in fact hinder chromatin assembly. The overexpression of histones in an apc5CA 

background may be able to counteract this deficiency and allow sufficient chromatin 

assembly to occur to suppress the apc5CA temperature sensitive defect. 

 

In the past few years the APC has been shown to be involved in additional cellular 

functions. For example, binding of the human APC to the transcription factor p300 
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increases transcriptional activity while association with the ribosome results in specific 

mRNA translational repression (Koloteva-Levine et al., 2004; Turnell et al., 2005). 

Several other proteins have been shown to physically associate with the APC to regulate 

its activity, including CBP, PTEN and Rb (Turnell et al., 2005; Binné et al., 2007; Song et 

al., 2011). Interestingly, the activity of these proteins also requires the presence of the 

APC. Obviously, many proteins come and go, but are necessary for timely APC function. 

Our laboratory has previously shown that the APC genetically interacts with the CAF-I 

subunits and the results presented in this thesis demonstrate that APC physically 

associates with at least one of these subunits, Cac2. APC physically interacts with Asf1 

but whether the APC directly binds to Asf1 remains to be determined. Asf1 has been 

shown to bind to Cac2 and this may then lead to APC association. The interaction of 

Cac2 with the APC is not mediated by Asf1 as Cac2 still associated with Apc5 in cells 

lacking Asf1 (Figure 5.6). The hypothesis is that the APC acts as a scaffold to bring 

together the proteins necessary for chromatin assembly, namely chromatin assembly 

factors and the HATs required for acetylating histones prior to deposition (Figure 5.1). 

Two recent studies suggest Gcn5 may acetylate histones bound to Asf1 to facilitate their 

association with CAF-I and subsequent histone deposition (Fillingham et al., 2008; 

Burgess et al., 2010). This interaction may be mediated by Asf1, which will be tested in 

future studies by assessing Cac2-Myc/Gcn5-HA interactions in asf1∆ cells. The finding 

that Cac2 and Asf1 both associate with the APC is novel and may explain why chromatin 

assembly is defective in the apc5CA mutant. As many of the subunits, activators and 

targets of the APC are evolutionarily conserved, so too may the protein interaction ability 

of Apc5. 
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CHAPTER SIX 

DISCUSSION 

 

The results of this study provide many avenues for further research into the role of the 

APC in the cell. I will discuss the involvement of the APC with various HATs and HDACs, 

the effect of cellular mRNA content on APC mutants and the possible role APC may play 

in scaffolding to bring together the proteins needed for effective chromatin assembly. 

 

6.1 The APC genetically and physically interacts with histone modifying enzymes 

Increased levels of CAF-I subunits are capable of rescuing the apc5CA temperature 

sensitivity (Harkness et al., 2005). This could be due to sequestration or increased 

chromatin assembly of free histones. If the CAF-I subunits were responsible for 

sequestering histones then overexpression of histones in cells lacking CAF-I should be 

toxic (Figure 3.8B). This does not appear to be the case, however, as CAF-I mutants 

grow similarly to wild type when expressing increased levels of histones (Figure 3.8B). 

Increased chromatin assembly is more likely, as the overexpression of histones is 

capable of rescuing the temperature sensitivity of apc5CA and apc5CA caf1∆ cells (Figure 

3.8B). Histone levels are decreased in APC mutants (Figure 3.1A), as is chromatin 

assembly (Harkness et al., 2002). The absence of elevated total histone levels in apc5CA 

cells (Figure 3.1A) suggests that they are as capable of degrading any excess free 

histones that exist within the cell as is wild-type. As expression of histones in cells 

harboring the apc5CA allele rescued the temperature sensitive phenotype, it may be that 

the increase in histone expression results in enhanced chromatin formation. Decreased 

histone levels have been linked to loss of silencing so an increase in histone levels may 
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result in a return of the genomic stability that is normally promoted by the APC (Feser et 

al., 2010). Histone deposition may be slow in APC mutant cells, leading to the 

speculation that excess free histones are degraded before they can be deposited onto 

chromatin. The increase in histone levels may allow for appropriate levels of deposition 

to occur; despite excess degradation; as would increasing the levels of the CAFs or 

HATs involved. 

 

Our laboratory has shown a link between the APC and chromatin dynamics. The APC 

genetically interacts with the genes that encode the CAFs CAF-I, Asf1, Hir1 and Hir2 

(Harkness et al., 2005). Data suggests Asf1 may couple histone acetylation with 

chromatin assembly, and the results provided in this thesis may demonstrate that the 

APC genetically interacts with numerous HATs (ELP3, GCN5, RTT109, SAS2 and 

SAS3) and HDACs (HDA1, HOS1, HOS2 and HOS3). Asf1 and Rtt109 physically 

interact with each other, while CAF-I and Gcn5 genetically interact (Fillingham et 

al.,2008; Burgess et al., 2010). Identifying each of these factors as interacting with the 

apc5CA allele is compelling evidence for a role in modifying and/or depositing histones 

onto DNA, at least for Apc5. The finding presented in Chapter Three that increased 

expression of Rtt109 rescues the apc5CA phenotype points to an evolutionarily 

conserved interaction, as human Apc5 physically and functionally interacts with the 

Rtt109 ortholog CBP (Turnell et al., 2005). 

 

While one modification associated with newly deposited histones, H3K56Ac, appears not 

to be affected by APC mutation, another modification, H3K9Ac, is affected. H3K9Ac has 

also been shown to increase during mitosis and is associated with mitotic specific genes. 

H3K9Ac is affected by APC mutation, as is H3K79me2, a modification associated with 

genes expressed during mitosis. Both of these modifications were reduced in many of 
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the APC mutants tested. The major H3K9 targeting HATs are Gcn5 and Rtt109, but Elp3 

has also been shown to target this residue for acetylation (Kristjuhan et al., 2002; 

Fillingham et al., 2008). Thus, this thesis demonstrates compelling evidence to suggest 

that the gap between histone modification and histone deposition is bridged by the APC. 

 

6.2 Interaction of the APC with HATs and HDACs 

As a result of the APC genetic interaction with genes encoding chromatin assembly 

proteins, it was determined whether the APC also interacted with genes encoding 

histone modification proteins. By performing a genetic screen using the apc5CA 

temperature sensitive allele it was determined that a wide variety of genes encoding 

HATs and HDACs genetically interacted with the APC. Based on the prevailing premise 

that HATs drive transcription, and HDACs silence it, the initial hypothesis was that 

deleting any HAT would exacerbate the apc5CA temperature sensitive phenotype, while 

deleting any HDAC would improve cell growth. Surprisingly, approximately half of the 

genes tested did not support this hypothesis (Figure 3.2). This suggests that it is not the 

overall level of acetylation that impacts the apc5CA temperature sensitive phenotype but 

the specific function of the enzyme involved that matters. While the majority of the HATs 

and HDACs tested in this study have specific preferences for which histone and 

chromosomal region they target (see Tables 1.1 and 1.2), exactly how their activity is 

controlled remains largely unknown.  

 

The data presented in this thesis support the theory that the APC plays a role in the 

initiation of the transcription of genes required for cell cycle passage. Deletion of genes 

that facilitate transcription (ELP3, GCN5 and SAS3) impairs the apc5CA temperature 

sensitive phenotype, while deletion of genes involved in silencing (HOS1, HOS2, HOS3, 
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and SAS2) suppressed the apc5CA phenotype (Figure 3.2). We hypothesize that Elp3 

and Gcn5 are independently required for progression through mitosis but share an 

overlapping function that allows passage through G1. It is predicted that Elp3 and Gcn5 

contribute to a transcriptional profile that enables cells to proceed through mitosis and 

G1. Overexpression of either ELP3 or GCN5 results in rapid accumulation in G1 (Figure 

3.7C), suggesting that this profile must be reset to allow cells to exit G1. The APC may 

assist in the resetting of this profile as Elp3 and Gcn5 are unstable during G1 and, at 

least in the case of Gcn5, in an APC-dependent manner. The involvement of the CAFs 

CAF-I and Asf1, along with the associated HAT Rtt109 requires further investigation. 

More recently, studies have linked Gcn5 with CAF-I, and Elp3 with PCNA, indicating 

Elp3 may also associate with CAF-I (Li et al., 2009; Burgess et al., 2010). The 

acetylation levels of H3K9 and the methylation status of H3K79 were reduced in APC 

mutants beyond that observed for total H3, suggesting a role for the APC in facilitating 

these specific modifications (Figure 3.1A). As apc5CA cells demonstrate a defect in 

chromatin assembly (Harkness et al., 2002), it is possible that the APC plays a role in 

deposition of the properly acetylated histones. 

 

The interactions between the APC and the HATs Gcn5 and Hpa2 warrant further 

investigation. Deletion of HPA2 in apc5CA cells did not affect the temperature sensitive 

phenotype, while the deletion of GCN5 did. Gcn5 has been shown to target histones 

within actively transcribed genes (Krebs et al., 2000). Hpa2 is also known to target 

H3K14 for acetylation in vitro; however, its exact role within the cell is still unknown, as 

HPA2 deletions do not alter gene expression dramatically (Angus-Hill et al., 1999; 

Rosaleny et al., 2007). Interestingly, deletion of HPA2 impaired the growth of gcn5∆ 

apc5CA cells but increased the growth of gcn5∆ cells (Figure 3.3B). It has previously 

been shown that gcn5∆ hpa2∆ cells are viable (Howe et al., 2001). This suggests the 
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individual activities of Gcn5 and Hpa2 counteract each other in wild-type cells and they 

each target different gene pools. Why, and how, this antagonistic behavior is cancelled 

out by mutation to APC5 remains to be determined. It is possible that the accumulation 

of an APC target is detrimental to cells lacking both Gcn5 and Hpa2. Further research 

may show Hpa2 to also interact with Elp3, as Elp3 and Gcn5 have been shown to have 

overlapping roles within the cell in relation to H3K14 (Wittschieben et al., 2000). 

 

An excellent example highlighting the importance of specific roles for each HAT is the 

finding that deletion of SAS2 or SAS3 affects the apc5CA temperature sensitive 

phenotype differently. Deletion of SAS2 improved apc5CA cell growth while deletion of 

SAS3 exacerbated it (Figure 3.2B). Even though they both acetylate histones the 

different outcomes can be explained due to their specific roles within the cell. Sas2 

maintains expression of sub-telomeric genes by preventing the spreading of 

heterochromatin through acetylation of H4K16 (Kimura et al., 2002; Suka et al., 2002). 

Sas3 is targeted to actively transcribed genes throughout the genome and acetylates 

histone H3 on residues K14 and K23 (Howe et al., 2001). Sas3 has been shown to 

functionally overlap with Gcn5, as gcn5∆ sas3∆ double mutants are lethal (Howe et al., 

2001; Rosaleny et al., 2007). Given the similarities, it is possible that Sas3 levels may 

also be cell cycle regulated in an APC-dependent manner. Sas2 was the only HAT found 

to improve apc5CA growth when deleted. As heterochromatin spreads out from telomeric 

and mating-type loci when SAS2 is deleted it may be that genes that contribute to the 

apc5CA temperature sensitive phenotype become silenced. In fact, Sas2 was shown to 

bind to non-intensely transcribed genes including those involved in double-strand break 

repair and ubiquitin specific protease activity (Rosaleny et al., 2007). Targeted deletion 

of genes found in these sub-telomeric regions may result in alteration of the apc5CA 

phenotype. 
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The APC is an evolutionarily conserved complex and has been shown to interact with 

the ribosome in both yeast and humans (Koloteva-Levine et al., 2004; Costanzo et al., 

2010). The finding that genes that encode the HDACs Hos1, Hos2 and Hos3 each 

genetically interact with the APC in the same manner further highlights this conservation 

(Figure 3.2A). Hos2 preferentially targets ribosomal protein-encoding genes while Hos1 

and Hos3 each target the rDNA locus (Robyr et al., 2002). The APC has been shown to 

physically associate with the poly(A) binding protein (PABP), which inhibits the 

translation of specific mRNAs in humans (Koloteva-Levine et al., 2004). A recent 

synthetic genetic array screen in yeast also showed the apc5CA allele to genetically 

interact with ribosomal subunits, as well as proteins involved in the decay, nuclear export 

and quality control of mRNA (Table 3.1; Costanzo et al., 2010). It will be of interest to 

determine if the interaction of the APC and the HOS genes is limited to the expression of 

ribosomal components or due to additional functions. The study by Koloteva-Levine and 

colleagues (2004) demonstrated that the entire APC inhibited mRNA translation by 

binding to PABP but it was the Apc5 subunit that physically bound to the ribosome in a 

complex independent manner. As all of the genetic screens presented in this thesis 

involved the apc5CA allele it will be of interest to determine if the altered growth effects 

are due to impaired activity of the entire complex or just the individual Apc5 subunit. 

 

ELP3 or GCN5 single mutants have decreased H3K9 and H3K14 acetylation with the 

double HAT mutant showing even further decreased levels of H3K9 acetylation. 

Acetylation of H3K9 and H3K14 was previously shown to be decreased in elp3∆ gcn5∆ 

cells, but a decrease of total H3 was not demonstrated (Kristjuhan et al., 2002). Even 

though global levels were decreased, Co-IPs of 20 randomly selected genes 

demonstrated that H3K14 was not as severely hypoacetylated in the double mutant as 

was H3K9. This suggests that Elp3 and Gcn5 may not act in a global manner to control 
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gene transcription, but may target specific genes. In our hands, the double HAT mutant 

also showed decreased levels of total H3 (Figure 3.5A). This difference may be due to a 

difference in background or technique, as the S288c yeast genetic background was 

used in this study and equalized total protein load was compared, while Kristjuhan and 

colleagues (2002) used the W303 background and compared equalized levels of total 

histone. More work will need to be done to clarify this issue. Nevertheless, the finding 

that total histone levels are decreased in the double mutant may signify that the loss of 

acetylation may, at least partially, be due to loss of total histone. 

 

The finding of an epistatic relationship between the APC and the two HATs, Elp3 and 

Gcn5, leads to the question of whether these proteins are upstream or downstream of 

the APC. The hypothesis is that Elp3 and Gcn5 are downstream and therefore their 

absence should have no effect on APC activity. If either Elp3 or Gcn5 were upstream of 

the APC, one would expect to see an effect on Clb2 levels when these HATs are 

deleted. Unexpectedly, Clb2 levels in elp3∆, gcn5∆, elp3∆ apc5CA and gcn5∆ apc5CA 

cells were less than in apc5CA mutants. The two exceptions were elp3∆ and apc5CA 

gcn5∆ cells. This finding suggests that cells lacking ELP3 and GCN5 degrade Clb2 but 

still progress through the cell cycle very slowly. It may be that the slow progression 

through the cell cycle gives a compromised APC the time needed to properly target Clb2 

for degradation. Interestingly, cells lacking both ELP3 and GCN5 exhibited even further 

decreases in Clb2. This may be attributed to these mutants spending a prolonged time in 

G1, a phase of the cell cycle where levels of Clb2 are low but still targeted by the APC 

(Yeong et al., 2000). Alternatively, Elp3 and Gcn5 may act as upstream inhibitors of the 

APC, as Clb2 instability is increased in elp3∆ gcn5∆ mutants. Nevertheless, the 

observation that Clb2 is still unstable in the HAT mutants suggests that Elp3 and Gcn5 

are not upstream activators of the APC.  
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The inability of galactose driven overexpression of ELP3 or GCN5 to rescue the 

temperature sensitivity of the apc5CA allele could be due to increased histone levels. 

Increased expression of ELP3 resulted in an increase in histone H3 levels in APC 

mutants as well as in wild-type cells grown in galactose-supplemented media (Figures 

3.7A and 3.8A). Excess histones are toxic so free unincorporated histones are targeted 

for degradation (Meeks-Wagner & Hartwell, 1986; Gunjan & Verreault, 2003). As GCN5 

overexpression is toxic to both wild-type and apc5CA cells histone H3 levels may be even 

further elevated. However, expression of the histones H3 and H4 from the GAL1 

promoter did rescue the apc5CA temperature sensitive growth phenotype, presumably by 

increasing the rate of histone deposition. Thus, it is more likely that the toxic effect of 

ELP3 (and GCN5) overexpression is due to a block in cell cycle progression in G1 rather 

than an overabundance of histones.  

 

6.3 Gcn5 is targeted for degradation by the APC to allow progression through S-

phase 

Elp3 and Gcn5 are required for G1 progression but must be removed to exit G1 (Figures 

3.5B and 3.7C). The results presented in this thesis show that with increased expression 

of the HATs ELP3, GCN5 or RTT109, the temperature sensitivity of the apc5CA allele can 

be rescued (Figures 3.7A and 3.11). One explanation for this is that these HATs act 

upstream of the APC by promoting the transcription of genes required for APC activity. 

Given that the APC target Clb2 was still degraded in elp3∆ gcn5∆ mutants (Figure 3.6) it 

is unlikely that Elp3 and Gcn5 are upstream activators of APC activity. An alternate 

possibility is that these HATs act in a pathway redundant to the APC to promote 

progression through mitosis and G1. Increased expression, but not overexpression, of 

ELP3 or GCN5 rescued the apc5CA temperature sensitive phenotype possibly due to the 
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cells spending a prolonged period in G1. The delayed progression through G1 may allow 

a compromised APC the extra time necessary to complete G1-dependent functions, 

such as maintaining low levels of Clb2. Interestingly, the apc5CA temperature sensitive 

phenotype was not rescued when either ELP3 or GCN5 was overexpressed using 

galactose. This indicates that there is a threshold after which the cell can no longer 

tolerate excess protein levels. Even wild-type cell growth was hindered by 

overexpression of GCN5. Increased expression of GCN5 was able to counteract the 

toxic effects of Apc5 overexpression, suggesting Gcn5 abundance is low due to 

overactive APC. In fact, analysis of the amino acid sequence of Gcn5 disclosed the 

presence of two putative D boxes. These data support the hypothesis that Elp3 and 

Gcn5 may be targeted by the APC for degradation. Indeed, both Elp3 and Gcn5 were 

observed to be unstable during G1 in wild-type cells (Figures 4.3A and 4.6A). This 

instability is associated with APC activity as Gcn5 was stabilized in APC mutants while 

modification patterns of Elp3 were dependent on components of the ubiquitin pathway 

(apc5CA, apc10∆, ubc1∆) (Figures 4.3A, 4.6B and 4.6C). Further research is warranted 

to determine if other E2s, Ubc4 for example, also affect the modification pattern of Elp3 

and if Gcn5 is affected in a similar manner. Taken together, these data suggest that Elp3 

and Gcn5 have independent functions during mitosis but act redundantly to pass through 

G1. 

 

Gcn5 has recently been linked to cell cycle passage in budding yeast as gcn5∆ mutants 

exhibit defective interactions between centromeres and kinetochores, resulting in 

delayed G2 progression, spindle elongation, defective nuclear division and chromosomal 

loss (Vernarecci et al., 2008). Gcn5 has also been shown to cycle in human cells as 

Gcn5 levels peak at early S-phase and decrease by mid-S-phase (Paolinelli et al., 

2009). In early S-phase human Gcn5 acetylates the nuclear Cdc6, which is required for 
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the formation of pre-replication complexes during G1. Once acetylated, Cdc6 is 

phosphorylated and exported to the cytosol (Paolinelli, Mendoza-Maldonado, Cereseto, 

& Giacca, 2009). Overexpression of Gcn5 resulted in the majority of Cdc6 localizing to 

the cytosol while treatment with GCN5 RNAi resulted in Cdc6 remaining nuclear, 

suggesting that a tight level of control is needed for the cell cycle to progress efficiently. 

Thus, APC-dependent turnover of Gcn5 observed in this study may be an evolutionarily 

conserved function. 

 

6.4 The APC’s role in chromatin maintenance and stability 

Our proposal that the APC is required for histone metabolism in actively growing cells 

fits well with current literature on chromatin structure being linked to genomic instability 

and cancer (Myung et al., 2003; Ye et al., 2003; Nabatiyan & Krude, 2004; Prado et al., 

2004; Kops et al., 2005). Histone metabolism plays an important role in chromatin 

structure; furthermore, many cancers have been shown to exhibit altered chromatin 

structure (Zhu et al., 2004; Kops et al., 2005). New targets of the APC continue to be 

identified. Many APC substrates required for cell cycle progression exist for only a brief 

period in the cell as they are transcribed in mitosis and then rapidly degraded (Seki & 

Fang, 2007; Zhao et al., 2008). One recently identified target of the APC in humans is 

Rcs1 (Zhao et al., 2008). Rcs1 interacts with the NuRD chromatin remodeling complex 

and physically associates with HDAC1 and HDAC2. This provides evidence that the 

APC is involved in regulating chromatin-modifying activities, at least in humans. Given 

that the APC is evolutionarily conserved it is likely that its involvement in chromatin 

modification is also evolutionarily conserved. 
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6.5 Chromatin Assembly 

Throughout this thesis the overexpression of genes encoding proteins involved in 

chromatin assembly (Asf1, Gcn5, histones H3 and H4, Rtt109, and possibly Elp3) has 

been shown to rescue the apc5CA temperature sensitive phenotype (Figures 3.7A, 3.8B, 

3.11, 5.2B). This overexpression may allow increased chromatin assembly to occur. The 

apc5CA chromatin assembly defects can be rescued by the overexpression of MSI1 or 

CAC1, while wild-type assembly is increased by the addition of excess histones H3 and 

H4 to cellular extracts (Harkness et al., 2005). It would be of interest to determine if 

increased amounts of the other components of the assembly pathway are also capable 

of rescuing the chromatin assembly defect of apc5CA and other APC mutants. 

 

Cancer is tightly associated with chromatin metabolism as defects can lead to genomic 

instability, a hallmark occurrence in many cancers (Myung et al., 2003; Prado et al., 

2004; Zhu et al., 2004; Kops et al., 2005). The observation that histone levels are 

decreased in many APC mutants may be related to the increased temperature sensitivity 

of those mutants. Decreased histone levels may result in compromised transcription, 

increased DNA damage and genomic instability. In fact, a recent paper has linked 

decreased histone levels with loss of silencing and the loosening of chromatin (Feser et 

al., 2010). The decrease in histone levels in APC mutants may not be due to decreased 

histone transcription as histone H3 mRNA levels were increased in APC mutants 

exhibiting decreased histone H3 protein levels (Figure 3.1B); it may be due to decreased 

translation or increased degradation. We favor the latter as global decreases in general 

protein levels were not observed in the APC mutants used in this study as determined by 

Ponceau S staining (data not shown). Our laboratory has demonstrated that the APC 

genetically interacts with genes that encode the histone chaperones Asf1, CAF-I, Hir1 

and Hir2 and physically associates with Asf1 and CAF-I (Figure 5.4; Harkness et al., 
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2005). It is possible that the defect in chromatin assembly in APC mutant cells may lead 

to a decrease in histones, as the cell targets excess histones for degradation (Harkness 

et al., 2002; Gunjan & Verreault, 2003). 

 

6.6 Scaffolding 

One of the ways the APC may help to facilitate chromatin assembly is to act as a 

scaffold in which the HATs and chromatin assembly factors needed are brought into 

close contact with each other. Reports demonstrating Apc5 to bind proteins other than 

APC subunits support this possibility (Koloteva-Levine et al., 2004; Turnell et al., 2005; 

Herzog et al., 2009). Mutation to the APC may hinder the binding of one or more 

components of this pathway. This may explain why apc5CA cells are still viable at low 

temperatures, while deletion of APC5 is lethal (Zachariae et al., 1998b). The majority of 

the proteins involved are still able to interact, albeit at a reduced rate. A similar scenario 

has been demonstrated with the mating-pheromone-response pathway scaffold protein 

Ste5 (Park et al., 2003).  

 

The main role of Ste5 appears to be to bring members of the mating pheromone kinase 

response, Ste11-Ste7-Fus3, into proximity with each other to facilitate their interaction. 

Park and colleagues (2003) performed an elegant experiment using a mutated Ste5 

unable to effectively bind to the involved kinases. Ste5 and Ste11 were artificially bound 

to each other using prosthetic binding domains and cells were exposed to mating 

pheromones. Exposure did result in activation of Fus3, but at a dramatically reduced rate 

compared to cells containing wild-type Ste5. 
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A role of a scaffold may also be as an insulator, or to focus a protein‟s activities to a 

specific pathway by preventing its association with another scaffold or pathway. This 

was exemplified by tethering two different pathway scaffolds together, the mating 

pheromone pathway scaffold, Ste5, and the osmosensing pathway scaffold, Pbs2, 

(which involves Ste11-Pbs2-Hog1). Ste11 is the MAPKKK for both pathways. The 

osmosensing pathway allows survival in high salt conditions. Exposure of cells 

containing these tethered scaffolds to mating pheromone resulted in phosphorylation of 

Hog1 and activation of the osmosensing pathway (Park et al., 2003). It may be that the 

APC allows the activities of the HATs involved to be focused on mitotic chromatin 

assembly rather than transcriptional activation. 

 

6.7 Future Directions 

The findings of this thesis raise several questions pertaining to the role of the APC in 

chromatin assembly and histone modification. First, does the APC actually act as a 

scaffold to bring together the proteins involved in chromatin assembly? While the data in 

this thesis suggest that the APC does physically associate with at least some of the 

proteins involved, it does not explain exactly how these interactions take place. For 

example, does the APC bind to each protein or just one that happens to bind others? An 

example of this problem is Cac2. Cac2 has been shown in the literature to bind to Asf1 

(Tyler et al., 2001; Krawitz et al., 2002; Mello et al., 2002). APC physically interacted 

with both Cac2 and Asf1; however, Cac2 still interacted with the APC in the absence of 

Asf1. This raises the question of whether Asf1‟s interaction with the APC is direct or if it 

is mediated through Cac2. Additionally, we do not know which APC subunit(s) these 

proteins associate with; the Co-IPs in this thesis were performed in cells containing an 

intact and complete APC. Further studies should be done to determine which subunits 
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are responsible for these various interactions. Apc5 would be a likely candidate as it has 

been shown to physically bind to the ribosome as well as to the transcription factor CBP 

but it is possible that other subunits are also involved (Koloteva-Levine et al., 2004; 

Turnell et al., 2005). 

 

This thesis demonstrated Elp3 and Gcn5 to be unstable in G1; however Gcn5 was also 

observed to be unstable in cells arrested in S-phase. There are two major E3 ligases in 

the cell active during G1, the APC and SCF, but only the SCF is active during S-phase. 

Therefore, it would be prudent to confirm that Gcn5, and possibly Elp3, are in fact 

targeted by the APC and not the SCF. The finding that Gcn5 levels in asynchronous 

cells are not altered in SCF mutants does suggest that the SCF does not target Gcn5, 

but additional work must be done on G1 and S-phase arrested cells. For example, the 

instability of Gcn5 and the effect of APC mutation were only apparent after arrest in G1 

or S-phase. Therefore, the degradation assays used in the study should also be 

performed in SCF mutants. 

 

An extension of confirming the APC as being responsible for targeting Gcn5, and 

possibly Elp3, for destruction would be to actually confirm the presence of poly-ubiquitin 

ladders associated with Elp3 and Gcn5. Unfortunately, due to the transient nature of 

ubiquitin attachments this modification has been difficult to detect. While two putative D 

boxes have been detected in the amino acid sequence of Gcn5, so APC degradation 

targets were detected in Elp3 (Figure 4.1D and data not shown). New degradation sites 

have been detected since the discovery of the original D and KEN boxes so it is possible 

that Elp3 contains a novel site. Using the ubc1∆ mutant, an E2 associated with the APC, 

as well as various APC mutants, alteration of the Elp3 modification patterns was 

demonstrated, suggesting that the APC-ubiquitin pathway does indeed play a role. A 



167 
 

laddering effect on Elp3-HA and Gcn5-HA in rpn10∆ mutants was also observed. Rpn10 

is one component of the proteasome that is responsible for recognizing poly-ubiquitin 

chains so this suggests that Elp3 and Gcn5 are indeed targeted to the proteasome. 

Further mutation to the ubiquitin-proteasome system may further support this possibility, 

as would mutation of the lysines within Elp3 and Gcn5 believed to be candidates for 

ubiquitination. By systematically mutating each lysine, both singly and multiply, Elp3 and 

Gcn5 may be effectively rendered stable by preventing targeting to the proteasome. This 

would confirm that Elp3 and Gcn5 are ubiquitinated and targeted to the proteasome for 

destruction. 

 

6.8 Conclusions 

The APC promotes genomic stability and its activity is compromised in many cancers. 

This effect on genomic stability may be linked to the APC interacting with multiple HATs 

and HDACs. It is likely that the APC requires a specific transcriptional profile in order to 

promote mitotic exit and G1 progression. Decreased histone acetylation may impair 

reestablishment of this transcriptional profile as cells progress through mitosis and G1. 

The APC is also involved in mitotic chromatin assembly, which when impaired can lead 

to genomic instability. Hyperacetylation of histones during mitosis has been shown to 

induce genomic instability (Cimini et al., 2003). One of the ways the APC may maintain 

genomic stability is to bring together the proteins required for histone acetylation and 

chromatin assembly. It is possible that, once bound together, the APC will target excess 

HATs for degradation to prevent detrimental hyperacetylation, or may regulate the cell 

cycle specificities of these enzymes. Given that each of the proteins involved are present 

in a wide range of organisms, from yeast to humans, the results found in yeast should be 

directly applicable to research in humans. 
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