
 

 

 

FORAGING BEHAVIOURS AND POPULATION DYNAMICS  

OF ARCTIC FOXES 

 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

in Partial Fulfilment of the Requirements 

for the Degree of Doctorate of Philosophy 

in the Department of Biology, 

University of Saskatchewan, 

Saskatchewan 

 

 

By 

Gustaf Samelius 

2006 

 

 Copyright Gustaf Samelius, May 2006. All rights reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/226147392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 i

PERMISSION TO USE 

 

In presenting this thesis in partial fulfilment of the requirements for a 

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of 

this University may make it freely available for inspection. I further agree that 

permission for copying of this thesis may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the 

Dean of the College in which my thesis work was done. It is understood that any 

copying or publication or use of this thesis or parts thereof for financial gain shall not 

be allowed without my written permission. It is also understood that due recognition 

shall be given to me and to the University of Saskatchewan in any scholarly use which 

may be made of any material in my thesis. 

 

Requests for permission to copy or to make other use of material in this thesis in 

whole or in part should be addressed to: 

 

Head of the Department of Biology 

University of Saskatchewan 

112 Science Place 

Saskatoon, Saskatchewan 

S7N 5E2 



 ii

ABSTRACT 

 Northern environments are often characterised by large seasonal and annual 

fluctuations in food abundance. In this thesis, I examined how arctic foxes (Alopex 

lagopus) used seasonally superabundant foods (geese and their eggs) and how access to 

these foods influenced population dynamics of arctic foxes. I addressed this against a 

backdrop of variation in lemming and vole abundance (small mammals hereafter) – the 

main foods of arctic foxes throughout most of their range. Field work was done at the 

large goose colony at Karrak Lake and surrounding areas in the Queen Maud Gulf Bird 

Sanctuary in Nunavut, Canada, in the spring and summers of 2000 to 2004.  

Behavioural observations of individually-marked arctic foxes showed that they 

took and cached 2,000-3,000 eggs per fox each year and that the rate at which they took 

eggs was largely unrelated to individual attributes of foxes (e.g. sex, size, and breeding 

status) and nesting distribution of geese. Further, the rate at which foxes took eggs 

varied considerably within individuals in that foxes were efficient at taking eggs at 

times and inefficient at other times. This may have resulted from foxes switching 

between foraging actively and taking eggs opportunistically while performing other 

demands such as territorial behaviours.  

Comparison of stable isotope ratios (δ13C and δ15N) of fox tissues and those of 

their foods showed that the contribution of cached eggs to arctic fox diets was inversely 

related to collared lemming (Dicrostonyx torquatus) abundance. In fact, the 

contribution of cached eggs to overall fox diets increased from <28% in years when 

collared lemmings were abundant to 30-74% in years when collared lemmings were 

scarce. Furthermore, arctic foxes used cached eggs well into the following spring 

(almost 1 year after eggs were acquired) – a pattern which differs from that of 

carnivores generally storing foods for only a few days before consumption.  

A field-study of experimental caches showed that survival rate of these caches 

was related to age of cache sites in the first year of the study (e.g. 0.80 and 0.56 per 18-

day period for caches from new and 1 month old cache sites, respectively) and 

departure by geese after hatch in the second year of the study (e.g. 0.98 and 0.74 per 18-

day period during and after goose nesting, respectively). Food abundance and 

deterioration of cache sites (e.g. loss of soil cover and partial exposure of caches) were, 
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thus, important factors affecting cache loss at Karrak Lake. Further, annual variation in 

the importance of these factors suggests that strategies to prevent cache loss are not 

fixed in time but vary with existing conditions. Evolution of caching behaviours by 

arctic foxes may, thus, have been shaped by multiple selective pressures.  

Comparisons of reproductive output and abundance of arctic foxes inside and 

outside the goose colony at Karrak Lake showed that (i) breeding density and fox 

abundance were 2-3 times higher inside the colony than they were outside the colony 

and (ii) litter size, breeding density, and annual variation in fox abundance followed 

that of small mammal abundance. Small mammal abundance was, thus, the main 

governor of population dynamics of arctic foxes whereas geese and their eggs elevated 

fox abundance and breeding density above that which small mammals could support. 

These results highlight both the influence of seasonal and annual variation on 

population dynamics of consumers and the linkage between arctic environments and 

wintering areas by geese thousands of kilometres to the south.  
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1. INTRODUCTION 

1.1 Foraging Behaviour 

1.1.1 Foraging Theory 
All animals confront the problem of finding enough food for growth, 

maintenance, and reproduction while faced with needs to perform other demands and 

confronted with dangers from other animals (Perry and Pianka 1997). This conflict 

forms a central aspect in foraging theory and predicts that optimal foraging behaviours 

result from feeding strategies that maximise lifetime reproductive output (Stephens and 

Krebs 1986, Perry and Pianka 1997). However, other factors such as anatomical and 

physiological limitations can also affect foraging behaviours (Stephens and Krebs 1986, 

Grier and Burk 1992). Foraging behaviours, thus, reflect both intrinsic and extrinsic 

constraints on what and where to feed (Perry and Pianka 1997).  

 

1.1.2 Prey Selection 
Predation is often skewed towards weak and sick prey (Taylor 1984). However, 

selection of debilitated prey is generally more common among predators that focus on 

prey that are difficult to capture or that offer great resistance (Temple 1987). Animals in 

poor condition may also take higher risks than animals in good condition (McNamara 

and Houston 1987, Sinclair and Arcese 1995). Further, learned behaviours such as 

negative experiences and familiarity with prey may also influence prey selection (Lima 

and Dill 1990, Grier and Burk 1992). Prey selection is, thus, generally a complex 

process affected by several factors.  

 

1.1.3 Food Caching 
Caching of foods is common among many birds and mammals and may be an 

adaptive strategy to avoid food shortage in environments where food abundance 

fluctuates greatly and where cached foods keep well (Vander Wall 1990). Use of stored 

foods allows animals to remain in familiar areas without having to put on large amounts 

of body fat and is an alternative strategy to migration, torpor, hibernation, and fat 
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storage (Smith and Reichman 1984, Vander Wall 1990). Food hoarding may also be 

adaptive to supplement diets of growing young or to reduce time spent foraging when 

other behaviours are more important (Smith and Reichman 1984, Vander Wall 1990). A 

critical aspect for the evolution of food caching is that caching individuals have a 

greater chance of recovering caches than do other individuals (Andersson and Krebs 

1978). However, the importance of cached foods to overall diets is poorly understood in 

most animals (Vander Wall 1990).  

Animals generally cache foods in either many small caches scattered in space 

(scatter-hoarding) or in a few closely spaced caches with many foods in each cache 

(larder-hoarding, Vander Wall 1990). The strategy of how foods are cached appears to 

be influenced by the ability to defend caches against competitors; scatter-hoarded foods 

are typically not defended whereas larder-hoarded foods are more likely to be defended 

(Smith and Reichman 1984, Vander Wall 1990). Further, scatter-hoarding animals 

generally rely on secretive behaviours and inconspicuous caches whereas larder-

hoarding animals often devote considerable time and energy in defending larders 

(Vander Wall 1990). For example, animals often delay or avoid caching foods when 

competitors are nearby (Heinrich and Pepper 1998, Bugnyar and Kotrschal 2002). Other 

strategies to reduce cache loss includes selection of cache sites, optimal spacing of 

caches, and storage of more foods than needed (Smith and Reichman 1984, Vander 

Wall 1990). However, the relative importance of factors affecting cache loss is 

unknown in most animals (Vander Wall 1990).  

 

1.2 Population Dynamics 

1.2.1 Population Dynamics and Demographic Processes 
Population dynamics is the study of abundance and distribution of organisms and 

factors that regulate populations in space and time (Begon et al. 1996, Williams et al. 

2002). Fluctuations in population size are caused by changes in birth, death, 

immigration, and emigration rates (Begon et al. 1996). These vital rates, in turn, vary 

with biotic factors such as predation and competition and with abiotic factors such as 

extreme weather conditions (Williams et al. 2002). Further, biotic factors are generally 
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density-dependent whereas abiotic factors are typically density-independent (Begon et 

al. 1996). The study of population dynamics is often complex even in relatively simple 

food webs (see Krebs et al. 1995, Post et al. 2000) and ecological patterns typically vary 

among ecosystems (Lawton 1999). Yet, understanding how abundance and distribution 

of animals vary in space and time is fundamental for both theoretical and applied 

biology (Begon et al. 1996, Thompson et al. 1998). In fact, Begon et al. (1996) argue 

that identifying and understanding the distribution and abundance of organisms is the 

main aim of ecology.  

 

1.2.2 Generalist and Specialist Predators 
Predators are often categorised as generalist or specialist predators depending on 

their degree of specialisation on their prey; generalist predators switch among prey 

opportunistically whereas specialist predators are closely linked to specific prey and 

rarely switch among prey (Andersson and Erlinge 1977). Generalist predators tend to 

have a stabilising effect on prey numbers by feeding on the most abundant prey and 

thereby dampening prey fluctuations (Andersson and Erlinge 1977, Hanski et al. 1991). 

However, generalist predators can also suppress rare or secondary prey as such 

predators can be maintained at high levels by their primary prey (Holt 1977). Specialist 

predators tend to have a destabilising effect on their prey because the delay in the 

numerical response is often very pronounced among specialist predators (Hanski et al. 

1991). Generalist predators can function as specialist predators in patchy environments 

or in ecosystems with few prey species simply because they encounter only one or a 

few prey species (O’Donoghue et al. 1997, Warburton et al. 1998).  

 

1.2.3 Population Dynamics and Fluctuating Foods  
Large seasonal and annual fluctuations in food abundance are common in 

northern environments. These fluctuations, in turn, influence both the abundance and 

distribution of animals that feed on them (Krebs et al. 1995, Krebs et al. 2001). For 

example, reproductive events such as litter size and pregnancy rates are often closely 

related to female condition and food abundance (Bronson 1989, Stearns 1992). 
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Similarly, changes in immigration and emigration rates often reflect changes in food 

abundance (Begon et al. 1996). However, animals seldom respond instantaneously to 

changes in food abundance so there is often a delay in the numerical response of most 

animals (Begon et al. 1996).  

I was interested in understanding what role large temporal and spatial fluctuations 

in prey abundance had on predator populations. As well, I wished to increase the 

understanding about food storage as an alternative strategy to fat storage, migration, 

hibernation, and torpor for surviving extreme nutritional constraints. I was interested in 

a relatively simple food web so that a clear focus could be maintained on the interaction 

between predator and prey. Reduced species richness in polar regions tend to result in 

food webs that are simpler than those found in temperate or equatorial ecosystems. As 

well, arctic terrestrial habitats show large seasonal increases in migratory animals 

(especially birds) that function as potential superabundant prey for resident predators. 

Consequently, my choice of model predator and ecosystem, described below, was 

governed by these considerations.  

 

1.3 Study Animal 

1.3.1 Diet and Foraging Behaviours 
Arctic foxes (Alopex lagopus) are generalist predators and scavengers that rely 

heavily on small mammals throughout most of their range (Audet et al. 2002). 

However, other foods such as birds and their eggs can be important in arctic fox diets in 

some years and parts of the arctic (Hersteinsson and MacDonald 1996, Bantle and 

Alisauskas 1998). Arctic foxes commonly cache foods when foods are abundant 

(Stickney 1991, Samelius and Alisauskas 2000). Caching of foods appears to be 

especially common among arctic foxes at large bird colonies where foxes cache >1,000 

eggs each during the nesting season by birds (Stickney 1991, Samelius and Alisauskas 

2000). Small mammals often fluctuate dramatically over 3-5 year periods whereas large 

influxes of birds and their eggs provide arctic foxes with predictable and seasonally 

superabundant food. Large bird colonies therefore provide ideal settings to study food 
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caching by arctic foxes and how use of these foods vary in relation to fluctuations in 

other foods.  

 

1.3.2 Abundance and Demography 
Arctic fox numbers often fluctuate considerably among years (Audet et al. 2002). 

These fluctuations are especially pronounced among arctic foxes that rely heavily on 

small mammals (Macpherson 1969, Angerbjörn et al. 1995). Fluctuations in arctic fox 

numbers appear to be closely related to variation in recruitment of young which, in turn, 

is highly correlated with food abundance (Macpherson 1969, Angerbjörn et al. 1991, 

Angerbjörn et al. 1995). In fact, arctic foxes have the largest litter size in the order 

Carnivora and may have up to 18 pups when foods are abundant (Tannerfeldt and 

Angerbjörn 1998). Mortality factors for arctic foxes include starvation, trapping, 

diseases, and predation by avian and mammalian predators – although starvation is 

likely the main cause of death (Audet et al. 2002).  

 

1.4 Thesis Outline and Objectives 
The objectives of this thesis were to examine how arctic foxes used seasonally 

superabundant foods (geese and their eggs) and how use of these foods influenced 

population dynamics of arctic foxes. I addressed this against a backdrop of annual 

variation in small mammal abundance. Specifically, I evaluated the role of intrinsic and 

extrinsic variables on foraging behaviours of individually-marked foxes (Chapter 3), 

examined when and to what extent arctic foxes used cached eggs by comparing stable 

isotope ratios (δ13C and δ15N) of fox tissues to that of their foods (Chapter 4), evaluated 

how nesting distribution by geese and age of cache sites influenced survival rates of 

experimental food caches (Chapter 5), and compared reproduction and abundance of 

arctic foxes inside and outside a large goose colony and in relation to annual variation 

in small mammal abundance (Chapter 6). Field work was conducted at the large goose 

colony at Karrak Lake and surrounding areas in the Queen Maud Gulf Bird Sanctuary 

in Nunavut, Canada, in the spring and summers of 2000 to 2004 (although Chapter 3 

was conducted in 2001-2003 and Chapter 5 in 2001 and 2003).  
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2. STUDY AREA 

This study was done at Karrak Lake (67o14'N, 100o15'W) and surrounding 

areas in the Queen Maud Gulf Bird Sanctuary, Nunavut, Canada, in May to July, 2000 

to 2004 (Figure 2.1). Karrak Lake is the largest goose colony in the sanctuary (Kerbes 

1994) and consisted of about 700,000 to 1,000,000 nesting Ross’s (Chen rossi) and 

lesser snow geese (Chen caerulescens) in 2000 to 2004 (R. Alisauskas, Canadian 

Wildlife Service, personal communication). Geese arrived at Karrak Lake in late May 

and departed the colony after hatch in early July. Average nesting density ranged 22-34 

nests/ha from 2000 to 2004 (R. Alisauskas, Canadian Wildlife Service, personal 

communication). Ross’s and lesser snow geese nesting at Karrak Lake winter in the 

southern parts of North America and spend 1-2 months at staging areas in the central 

parts of the continent in spring and fall (Alisauskas 2002). Karrak Lake and surrounding 

areas consist of gently rolling tundra that is dominated by rock outcrops, sedge 

meadows, and marshy areas interrupted by shallow tundra ponds (Ryder 1972). Arctic 

fox diets at Karrak Lake are dominated by small mammals, geese, and eggs (Bantle and 

Alisauskas 1998).  

In addition to foxes and geese, other animals common in the area included king 

eiders (Somateria spectabilis), longtailed ducks (Clangula hyemalis), gulls (Larus spp.), 

parasitic jaegers (Stercorarius parasiticus), ptarmigan (Lagopus spp.), shore-birds 

(Charadriiformes), passerine birds (Passeriformes), caribou (Rangifer tarandus), 

collared lemmings (Dicrostonyx torquatus), and red-backed voles (Clethrionomys 

rutilus). Wolves (Canis lupus), wolverines (Gulo gulo), grizzly bears (Ursus arctos), 

muskoxen (Ovibos moschatus), arctic hares (Lepus arcticus), and brown lemmings 

(Lemmus sibiricus) were rare during this study. Caribou, wolves, and the majority of 

birds are migratory and present in the area only during spring and summer (although 

some caribou and wolves remain in the area throughout winter). Small mammal 

abundance varied considerably among years and was high in 2000, low in 2002 and 

2004, and intermediate in 2001 and 2003 (Chapter 6).  
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Figure 2.1. Karrak Lake is the largest goose colony in Queen Maud Gulf Bird 

Sanctuary, Nunavut, Canada, and consisted of 700,000 to 1,000,000 nesting Ross’s and 

lesser snow geese in 2000 to 2004.  
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3. THE ROLE OF INTRINSIC AND EXTRINSIC FACTORS ON FORAGING 
BEHAVIOURS OF ARCTIC FOXES 
 

Abstract: Foraging behaviours generally reflect numerous internal and external factors 

on what and where to feed. However, few studies have examined how foraging 

behaviours are influenced by more than one or a few parameters. In this study, I 

examined how foraging behaviours of arctic foxes at a large goose colony were 

influenced by a suite of intrinsic (sex, size, and breeding status) and extrinsic factors 

(nesting density by geese, proportion of two sympatric goose species, and stage of 

incubation). Behavioural observations of individually-marked arctic foxes showed that 

they took and cached 2,000-3,000 eggs per fox each year and that the rate at which they 

took eggs was largely unrelated to intrinsic and extrinsic factors. In fact, repeated 

observations showed that the rate at which arctic foxes took eggs varied considerably 

within individuals in that foxes were efficient at taking eggs at times but inefficient at 

other times. This may have resulted from foxes switching between foraging actively and 

taking eggs opportunistically while performing other demands such as territorial 

behaviours.  

 

3.1  Introduction 
The conflict of finding enough food for growth, maintenance, and reproduction 

while faced with the need to perform other demands such as territorial maintenance, 

finding mates, and predator avoidance forms a central aspect of foraging theory 

(Stephens and Krebs 1986, Perry and Pianka 1997). Foraging behaviours by most 

animals are also influenced by intrinsic and extrinsic factors such as age, sex, breeding 

status, individual variation, and spatial and temporal variation in foods (Perry and 

Pianka 1997, Bolnick et al. 2003). Foraging behaviours by most animals are, thus, 

constrained by intrinsic and extrinsic factors on what and where to feed. However, the 

relative importance of these constraints is poorly understood in most animals because 

few studies have examined more than one or a few factors concurrently. This is 
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especially true for foraging behaviours of predators as they are rarely seen in the wild 

(but see Gese et. al 1996).  

Arctic foxes are generalist predators and scavengers that rely heavily on 

lemmings and voles (small mammals hereafter) throughout most of their range (Audet 

et al. 2002). However, other foods such as birds and their eggs can be important in 

arctic fox diets in some years and parts of the arctic (Hersteinsson and MacDonald 

1996, Bantle and Alisauskas 1998). Arctic foxes commonly cache foods when foods are 

abundant (Audet et al. 2002). Caching of foods appears to be especially common among 

arctic foxes at large bird colonies where foxes cache >1,000 eggs per fox during the 

nesting-season by birds (Stickney 1991, Samelius and Alisauskas 2000). Small 

mammals often fluctuate dramatically over 3-5 year periods whereas bird colonies 

provide arctic foxes with seasonally superabundant foods. The objective of this study 

was to examine how intrinsic and extrinsic factors influence foraging behaviours by 

arctic foxes at a large goose colony. Specifically, I examined how sex of foxes, size of 

foxes, breeding status of foxes, nesting density by geese, proportion of two sympatric 

goose species, and stage of incubation influenced food acquisition by arctic foxes.  

 

3.2 Methods 

3.2.1 Trapping and marking of foxes 
Adult arctic foxes (≥1 year old) were captured and ear-tagged in May and early 

June each year (see Samelius et al. 2003 for capture procedures). For each fox, the 

weight, sex, and the size of the right hind-foot was recorded. Breeding status of foxes 

was determined from repeated visits to den sites (Chapter 6). A subset of foxes were 

fitted with radio-collars (Telonics MOD-105, weight = 70 g) to help locate foxes for 

behavioural observations.  

 

3.2.2 Behavioural observations 
Foraging behaviours of individually marked foxes was observed with spotting 

scopes (15-45×) from hills and ridges associated with the colony following Samelius 
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and Alisauskas (2000). Observations were made during the peak incubation period by 

geese which was mid June to early July (although nesting chronology varied by about 1 

week among years during this study). Observations were made opportunistically 

between 20:00 and 10:00 which corresponded to peak fox activity (Anthony 1997, 

Bantle 1998). Twenty-four hour daylight and limited vegetation provided ideal 

conditions for observing interactions between foxes and geese although heavy rain, 

snow, fog, and strong winds prevented observations occasionally. There were 3 

observers per year in this study so the first observations in each year were made as a 

group to improve consistency among observers (82% of the observations were made by 

2 observers that were involved in all years).  

Once a fox was detected, it was observed for 60 minutes or until it went out of 

view, was too far away for accurate observation, or left the colony. For each 

observation, (1) duration of observation, (2) food objects taken by foxes, (3) proportion 

of Ross’s versus lesser snow geese along the foraging path of the fox (see below), (4) 

and fate of food objects (see below) were recorded. Time periods and food objects 

acquired when foxes were temporarily out of sight were excluded. Food objects were 

categorised as eggs, adult geese (geese hereafter), nest contents from passerine nests 

(we could not determine how many eggs or nestlings foxes took from these nests), small 

mammals, and unknown foods. Eggs were separated into new eggs (eggs from nest 

bowls) and eggs from existing caches (eggs dug up from the ground). Food objects were 

defined as (1) cached if buried by the fox, (2) eaten if consumed by the fox, (3) lost if 

dropped and not recovered by the fox, (4) brought to den if carried to a den site by the 

fox, and (5) unknown if carried by the fox when disappearing from view.  

The proportion of Ross’s and lesser snow geese along foraging paths of foxes 

(species composition hereafter) was determined at the start of each observation and 

every 5 minutes thereafter by deciding to what species the closest 3 breeding pairs 

within about 100 m belonged. Nesting density by geese was determined at sample plots 

that were distributed systematically throughout the colony in a 1×1 km grid 

(Alisauskas, unpublished data). Average nesting density of the 3 sample plots closest to 

the area in which foxes foraged was used as an index of nesting density for each 

observation. I acknowledge that these large scale estimates of nesting density were not 
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direct estimates of nesting density along foraging routes by foxes but suggest that they 

were representative for nesting density in the general area in which foxes foraged.  

 

3.2.3 Statistical analysis 
I examined how acquisition of new eggs and eggs from existing caches varied 

with size of foxes, sex of foxes, breeding status of foxes, nesting density, species 

composition, and stage of incubation by a multi-way ANCOVA (Proc GLM, SAS 

Institute Inc., 1990). I performed analyses separately for new eggs and eggs from 

existing caches. Other foods were taken too infrequently to allow for detailed analyses. 

Acquisition of eggs varied with length of observation so I used the residual number of 

eggs taken when controlling for length of observation. I regressed data through the 

origin (noint option, SAS Institute Inc. 1990) and used year-specific residuals to control 

for annual variation in the rate at which eggs were acquired. Similarly, I limited 

analyses on new eggs to observations ≥10 minutes (n = 66 observations from 16 foxes) 

and analyses on eggs from existing caches to observations ≥20 minutes (n = 33 

observations from 14 foxes) to ensure that foxes were observed long enough for these 

behaviours to occur (see Results for rate at which these foods were acquired). Sex and 

size of foxes were closely correlated (r2 = 0.42) so I used size corrected for sex (i.e. the 

residual within each sex) in the analyses. I derived 48 a priori candidate models for 

each of these analyses where models ranged from none to all combinations of up to 3 of 

the independent variables above. I used variation around the grand mean as a null model 

(i.e. no effect of either of the variables examined). I used Akaike’s information criterion 

(AIC = n[ln(SSE/n)] + 2K, where K = number of model parameters, including the 

intercept and σ2) with small-sample adjustment (AICc = AIC + [(2K(K + 1))/(n - K - 

1)]) to select the most parsimonious models that best explained variation in acquisition 

of new eggs and eggs taken from existing caches (Burnham and Anderson 1998). I 

selected the model with the lowest AICC value as the most parsimonious model and 

considered models within 2 AICC units to be of similar quality (Burnham and Anderson 

1998).  
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I estimated the rate at which foxes took new eggs and eggs from existing caches 

as the slope between number of eggs acquired and duration of observation. I regressed 

data through the origin (noint option, SAS Institute Inc. 1990). I estimated the average 

number of new eggs taken per fox during the nesting period by geese by multiplying the 

rate at which foxes took new eggs by daily foraging effort and the length of the nesting 

period. I assumed that foxes spent 8 hours foraging per day during 30 days of nesting 

following Samelius and Alisauskas (2000). This estimate should be used with caution as 

the variation in daily foraging effort is poorly understood (but see Bantle 1998 who 

found that arctic foxes at Karrak Lake showed >60% activity between 16:00-08:00).  

 

I provide mean ± 95% confidence limits unless otherwise stated.  

 

3.3 Results 
One thousand six hundred eighty five minutes of foraging behaviours by arctic 

foxes were observed during which they took 257 new goose eggs, 48 goose eggs from 

existing caches, 1 goose egg from another fox (an egg that was dropped by a fox as it 

was chased by the focal fox), 17 small mammals, 3 geese (of which 1 was scavenged 

and 2 were killed), nest contents from 3 passerine nests, and 13 unknown foods (of 

which 1 was dug up from the ground). Foxes took 47% of new eggs after pushing geese 

off nests and the remaining 53% from nests unattended by geese (of which 6% may 

have been eggs outside of nest bowls). The rate at which foxes took new eggs was 

similar among years with foxes taking 13 ± 4, 8 ± 2, and 12 ± 4 new eggs per hour in 

2001-2003, respectively. This corresponds to an average of 1,900-3,100 new eggs per 

fox each year. The rate at which foxes recovered eggs from existing caches, in contrast, 

varied among years with foxes taking 1.2 ± 0.6, 2.4 ± 0.5, and 0.7 ± 0.5 eggs per hour 

from existing caches in 2001 to 2003, respectively.  

Foxes cached 96% of new eggs and 90% of eggs from existing caches for which 

fate could be determined (i.e. eggs from existing caches were largely recached) whereas 

they cached only 8% of fleshy foods (i.e. small mammals and geese) for which fate 

could be determined (Table 3.1). In contrast, 92% of fleshy foods for which fate could 
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Table 3.1. Fate of foods taken by arctic foxes at Karrak Lake in 2001-2003. 

 
 Eggs  Other foods 
 
Fate 

new eggs, % 
n = 257 

from caches, %
n = 48 

 geese, %
n = 3 

small mammals, % 
n = 17 

passerine nests, %
n = 3 

cached 
eaten 
brought to den 
lost 
unknown1 

87 
2 

<1 
<1 
10 

77 
8 
0 
0 

15 

 0 
0 

67 
0 

33 

6 
12 
41 
0 

41 

67 
33 
0 
0 
0 

 
1 foods carried by foxes when disappearing from view 
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be determined were either consumed immediately or brought to den sites for 

consumption by young whereas only 3% of new eggs and 10% of eggs from existing 

caches for which fate could be determined were consumed immediately or brought to 

den sites. Most foods were cached within 100 m from where they were taken and foxes 

generally spent about 2-5 minutes in the process. However, foxes occasionally moved 

foods >1 km before caching them and spent >10 minutes in the process. Foxes often 

appeared undecided of where to cache foods and often started to dig at several locations 

before caching foods. All foods were cached individually (except for a few foods 

cached temporarily at den sites).  

Model {nesting density} was the only model that described variation in the rate 

at which foxes took new eggs better than the null model of no effect of either of the 

variables examined (Table 3.2). Foxes took an additional 0.021 ± 0.024 new eggs as 

nesting density increased with 1 nest/ha. However, the influence of nesting density was 

very weak and explained only 4% of the overall variation in the rate at which foxes took 

new eggs (r2 = 0.04). Similarly, repeated observations showed that variation in the rate 

at which foxes acquired new eggs was similar within (s2 = 6.9) and among foxes (s2 = 

7.9). In fact, individual variation explained only 13% of the overall variation in the rate 

at which foxes acquired new eggs (r2 = 0.13). Variation in the rate at which foxes took 

new eggs was greater among male foxes than among female foxes although they took 

similar number of new eggs overall (s2 = 11 and 4.9 for male and female foxes, 

respectively, Figure 3.1).  
Models {stage of incubation}, {stage of incubation + nesting density + species 

composition}, {stage of incubation + species composition}, {stage of incubation + 

breeding status of foxes}, and {stage of incubation + nesting density} described 

variation in the rate at which foxes recovered eggs from existing caches better than 

other models (Table 3.2). However, models that included nesting density, species 

composition, and breeding status of foxes did not improve the model fit compared to the 

model where these parameters were not included. These parameters, thus, had limited, if 

any, impact on the rate at which foxes took eggs from existing caches. Foxes took an 

additional 0.060 ± 0.051 eggs from existing caches as the incubation period progressed 
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Figure 3.1. Variation in the rate at which arctic foxes took eggs at Karrak Lake in 

2001-2003.  
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Table 3.2. Model selection for the rate at which arctic foxes took new eggs and eggs 

from existing caches at Karrak Lake in 2001-2003. Included in the table are differences 

in AICc values between each model and the best fitting model (∆i), number of model 

parameters (K), model weights (wi), and coefficient of determination (r2). I used 

variation around the grand mean as the null model. AICc values for the best models 

were 139.85 and -4.79 for models new eggs and eggs from existing caches, 

respectively. 

Model K ∆i wi r2 
new eggs 
nesting density 
null model 
nesting density + stage of incubation 
nesting density + sex of foxes 
stage of incubation 
nesting density + breeding status of foxes  
sex of foxes 
nesting density + species composition 
 
eggs from existing caches 
stage of incubation 
stage of incubation + nesting density + species composition 
stage of incubation + species composition 
stage of incubation + breeding status of foxes 
stage of incubation + nesting density 

 
3 
2 
4 
4 
3 
4 
3 
4 
 
 

3 
5 
4 
4 
4 

 
0 

0.79 
0.99 
1.70 
1.70 
1.72 
1.92 
2.27 

 
 

0 
0.39 
1.27 
1.76 
2.01 

 
0.11 
0.07 
0.07 
0.05 
0.05 
0.05 
0.04 
0.04 

 
 

0.16 
0.13 
0.08 
0.07 
0.06 

 
0.04 
na 

0.06 
0.05 
0.02 
0.05 
0.02 
0.04 

 
 

0.15 
0.27 
0.19 
0.18 
0.17 
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by 1 day. However, the influence of stage of incubation was weak and explained only 

15% of the overall variation in the rate at which foxes took new eggs (r2 = 0.15). 

Similarly, repeated observations showed that variation in the rate at which foxes took 

eggs from existing caches was similar within (s2 = 0.77) and among foxes (s2 = 0.98). In 

fact, individual variation explained only 22% of the overall variation in the rate at 

which foxes took eggs from existing caches (r2 = 0.22). Variation in the rate at which 

foxes took eggs from existing caches was similar among male (s2 = 0.8) and female 

foxes (s2 = 1.0).  

A sub-sample of observations from known-aged foxes showed that 1-year old 

foxes and foxes ≥2 years old took new eggs at similar rates (AICC value of the model 

with age included was 0.7 units above the model where age was not included, r2 = 

0.09). There were too few observations ≥20 minutes to permit analyses on age-specific 

rates at which foxes took eggs from existing caches.  

Foxes interacted with other foxes on 12 occasions. Four of these interactions 

appeared aggressive (non-breeding males chasing foxes of unknown sex) whereas the 

remaining 8 interactions appeared non-aggressive (2 interactions between breeding 

foxes and their mates, 4 interactions between non-breeding foxes of different sex, 1 

encounter where a non-breeding female appeared unaffected by a non-breeding fox of 

unknown sex, and 1 encounter where a non-breeding fox appeared to avoid a non-

breeding male).  

 

3.4 Discussion 
This study showed that arctic foxes at Karrak Lake took and cached about 

2,000-3,000 eggs per fox each year and that the rates at which arctic foxes took eggs 

were largely unrelated to intrinsic and extrinsic variables such as life history 

characteristics and nesting distribution by geese. Limited influence of these variables 

may largely have reflected a superabundance of foods and the ease with which eggs 

were obtained. For example, arctic foxes took about half of the eggs from unattended 

nests that offered no resistance to foxes (see Samelius and Alisauskas 2001). Intrinsic 

and extrinsic variables may instead be more important in affecting foraging behaviours 
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when preying on foods that are more difficult to capture (Temple 1987). Furthermore, 

the rate at which foxes took eggs varied considerably within individuals in that foxes 

were efficient at taking eggs at times but inefficient at other times. This may have 

resulted from foxes switching between foraging actively and taking eggs 

opportunistically while performing other demands such as territorial behaviours. In fact, 

animals seldom focus on foraging to the exclusion of other demands (Perry and Pianka 

1997) and I suggest that switching among active and passive foraging is common 

among opportunistic predators such as the arctic fox. Variation in the rate at which 

foxes took eggs was especially pronounced among male foxes which may have resulted 

from male foxes spending more time performing territorial behaviours than female 

foxes. For example, male foxes often appeared to ignore geese and either spent 

considerable time sniffing and marking prominent features such as nests and boulders or 

travelled at a faster pace and in more directed routes than during most observation 

(although male foxes took eggs occasionally during these observations).  

Arctic foxes at Karrak Lake took and cached new eggs at similar rates among 

years despite annual variation in both small mammal abundance and breeding effort by 

foxes. This was similar to that by arctic foxes at other large goose colonies and 

waterfowl nesting areas (e.g. Stickney 1991, Samelius and Alisauskas 2000) and 

suggests that arctic foxes acquire and cache foods independently of availability of 

alternative foods and current energetic demands. Arctic foxes may, instead, acquire and 

cache as much food as possible when foods are available to compensate for 

unpredictable changes in small mammal abundance. This may be an adaptive strategy in 

northern environments where cached foods keep well and food abundance fluctuates 

considerably among years and seasons (Vander Wall 1990). Arctic foxes at Karrak 

Lake took new eggs 2-4 times as frequently as arctic foxes at other large goose colonies 

or waterfowl nesting areas (Stickney 1991, Samelius and Alisauskas 2000). 

Furthermore, variation in the rate at which arctic foxes took new eggs at these locations 

was more pronounced among than within areas which suggest that foraging efficiency 

by foxes was driven by local conditions such as nesting density and species 

composition. For example, nesting densities at Karrak Lake were greater than that at a 

large waterfowl nesting area in western Alaska (Stickney 1991). Similarly, arctic foxes 
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at Karrak Lake had access to both Ross’s and lesser snow geese whereas arctic foxes at 

a large goose colony on Banks Island had access only to lesser snow geese (Samelius 

and Alisauskas 2000).  

Arctic foxes acquiring new eggs at similar rates among years at large goose 

colonies despite annual variation in small mammal abundance (see above) contrasts 

sharply with that of arctic foxes at small goose colonies switching between small 

mammals and eggs in accordance to small mammal abundance (Bêty et al. 2002). These 

differences may largely reflect the relative abundance of small mammals and eggs at 

these locations. Specifically, high nesting densities and a superabundance of eggs at 

large colonies may result in eggs being much more abundant than small mammals 

whereas eggs at small goose colonies may be outnumbered by small mammals in some 

years. Furthermore, arctic foxes taking eggs at similar rates among years at large goose 

colonies suggest that the impact of arctic fox predation on nesting performance of geese 

at large colonies reflect the number of foxes frequenting the colony rather than variation 

in foraging efficiency of foxes (i.e. reflecting the numerical rather than the functional 

response of foxes as suggested by Samelius and Alisauskas 2000). Annual variation in 

the rate at which arctic foxes take eggs at small colonies, in contrast, suggests that the 

impact of arctic fox predation at small colonies reflect both the numerical and the 

functional response of foxes (see Bêty et al. 2002). Furthermore, the impact of arctic 

fox predation on nesting performance of geese generally decreases as colony size and 

nesting density increase because of predator swamping (Raveling 1989).  

Arctic foxes at Karrak Lake took eggs from existing caches more frequently in 

the summer of 2002 than in the summers of 2001 and 2003. The summer of 2002 was 

characterised by intermediate fox densities and low small mammal abundance (Chapter 

6). This was similar to arctic foxes at a large goose colony on Banks Island, Canada, 

that recovered cached eggs more frequently in years when arctic foxes were abundant 

and small mammals were scarce (Samelius and Alisauskas 2000). High rates of cache 

recovery in years when foxes were abundant and small mammals were scarce may have 

resulted from increased pilfering or from higher prevalence of rearranging cached eggs 

to deter pilfering (Vander Wall 1990). For example, animals often rearrange cached 

foods when competitors are abundant and pilfering rates are high (Hansson 1986, 
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Preston and Jacobs 2001). However, animals may also rearrange cached foods more 

frequently in years when alternative foods are scarce and cached foods may become 

more important than in years when alternative foods are abundant and easy to obtain 

(see Jokinen and Suhonen 1995). Annual variation in the rate at which arctic foxes 

recovered cached eggs may, alternatively, have reflected differences in the abundance 

of cached eggs although this appeared unlikely because foxes cached similar number of 

eggs among years at both Karrak Lake and Banks Island (see above).  

Eggs were almost exclusively cached whereas most fleshy foods were consumed 

immediately or brought to den sites for consumption by young. This was similar to 

findings by Samelius and Alisauskas (2000) and may largely have reflected differences 

in perishability of these foods (Gendron and Reichman 1995, Hadj-Chikh et al. 1996). 

Specifically, eggs keep >1 year if properly cached because the shell, several protective 

membranes, and physio-chemical properties of albumen prevent microbial activity 

(Freeman and Vince 1974, Stickney 1991). Fleshy foods, in contrast, start to decompose 

in a few days (Samelius, personal observation). The rate at which arctic foxes cached 

foods may also have reflected nutritional value of foods in that foxes consumed 

nutritionally more valuable foods and cached less valuable foods (Vander Wall 1995).  
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4. ARCTIC FOX DIETS REVEALED THROUGH STABLE ISOTOPE 
ANALYSES: THE IMPORTANCE OF CACHED FOODS  
 

Abstract: Food storage (termed food hoarding or food caching) is common among 

many animals. However, the extent to which animals use cached foods and how such 

use may change in response to abundance of alternative foods is unknown for most 

species. Arctic foxes cache thousands of eggs annually at large goose colonies and I 

estimated the contribution of cached eggs to spring and fall diets of arctic foxes by 

comparing stable isotope ratios (δ13C and δ15N) of fox tissues to those of their foods 

using a multi-source mixing model (IsoSource). Geese were not present in the study 

area in spring or fall so egg signatures in fox tissues therefore represented cached eggs. 

The contribution of cached eggs to arctic fox diets was inversely related to collared 

lemming abundance; the contribution of cached eggs to overall fox diets increased from 

<28% in years when collared lemmings were abundant to 30-74% in years when 

collared lemmings were scarce. Further, arctic foxes used cached eggs well into the 

following spring (almost 1 year after eggs were acquired) – a pattern which differs from 

that of carnivores generally storing foods for only a few days before consumption.  

 

4.1 Introduction 
Food storage (termed food hoarding or food caching) is common among many 

birds and mammals and may be adaptive to avoid food shortage in environments where 

food abundance fluctuates dramatically; use of stored foods allows animals to remain in 

familiar areas and is an alternative strategy to migration, torpor, hibernation, and fat 

storage (Smith and Reichman 1984, Vander Wall 1990). Food hoarding may also be 

adaptive to supplement diets of growing young or to reduce time spent foraging when 

other behaviours are more important (Smith and Reichman 1984, Vander Wall 1990). 

However, the extent to which animals use stored foods is unknown for most species 

(Vander Wall 1990). This is especially true for members of the order Carnivora among 

which many species cache foods but for which the actual use of these foods is unknown 

(Vander Wall 1990).  
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Arctic foxes are generalist predators and scavengers that rely heavily on 

lemmings and voles (small mammals hereafter) throughout most of their range (Audet 

et al. 2002). However, other foods such as birds and their eggs can be important in 

arctic fox diets in some years and regions of the Arctic (Hersteinsson and MacDonald 

1996, Bantle and Alisauskas 1998). Additionally, arctic foxes commonly cache foods 

when they are abundant (Stickney 1991, Samelius and Alisauskas 2000). Caching of 

foods appears to be especially frequent among arctic foxes at large bird colonies where 

foxes cache >1,000 eggs per fox each nesting season (Fay and Stephenson 1989, 

Samelius and Alisauskas 2000). Small mammals often fluctuate dramatically over 3-5 

year periods whereas large influxes of migratory birds and their eggs provide arctic 

foxes with predictable and seasonally superabundant food. Large bird colonies therefore 

provide ideal settings to study food caching by arctic foxes and how use of these foods 

vary in relation to fluctuations in other foods.  

The objectives of this study were to examine (1) when and to what extent arctic 

foxes at a large goose colony used cached eggs and (2) how use of cached eggs varied 

with small mammal abundance. Specifically, I examined arctic fox diets in spring 

(May) and fall (Sept-Nov) by comparing isotope signatures (δ13C and δ15N) of fox 

tissues with those of their foods. Geese were not present in the study area in spring or 

fall so egg signatures therefore represented cached eggs. Stable isotope analyses have 

been used widely in ecological studies and are based on the fact that stable isotope 

signatures in animal tissues reflect those of their foods (Hobson 1999, Kelly 2000).  

 

4.2 Methods 

4.2.1 Foods Available to Foxes in Spring and Fall 
Foods available to arctic foxes in spring and fall included collared lemmings, 

red-backed voles, arctic hares, caribou, muskoxen, ptarmigan, and cached eggs. 

Goslings and geese are rarely cached by arctic foxes (Samelius and Alisauskas 2000) 

and are therefore rarely available to arctic foxes outside of the nesting season by geese. 

Goslings and geese are also acquired at much lower rates than are eggs (Samelius and 

Alisauskas 2000) so I did not include goslings and geese in the analyses. Similarly, 
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arctic hares were rare during this study and are rarely consumed by arctic foxes at 

Karrak Lake (Bantle and Alisauskas 1998) so I did not include arctic hares in the 

analyses. Most caribou in the Karrak Lake area are migratory and present only in spring 

and summer although some caribou remain in the area throughout the year (Gunn et al. 

2000). Brown lemmings were not encountered during this study and therefore I did not 

include them in the analyses.  

 

4.2.2 Collection of Fox Tissues 
Blood was collected from the cephalic vein and winter-fur was clipped from the 

main trunk of the body of adult foxes (≥1 year old) captured in May and early June (see 

Samelius et al. 2003 for capture procedures). Traps were baited with sardines for 5-10 

days prior to capture to improve capture success (see inclusion of sardines in diet 

analyses below). Foxes were marked with plastic ear-tags which were used to 

distinguish local foxes from potential immigrants (see below). The metabolic turn-over 

rate of blood is about 1 month whereas fur is metabolically inactive (Hobson 1999); 

stable isotope signatures in blood therefore represented spring diets whereas those from 

winter-fur represented diets from the previous fall when the fur was grown (Roth 2002).  

Arctic foxes can make considerable long-distance movements (Audet et al. 

2002) although they tend to stay in an area once they have settled (Tannerfeldt and 

Angerbjörn 1996, Anthony 1997, Landa et al. 1998). Similarly, arctic foxes marked at 

Karrak Lake appeared to use similar areas throughout the year (Samelius, unpublished 

data, see Anthony 1997 for similar observation in a waterfowl-nesting area in Alaska). 

So, to avoid inclusion of foxes that may have immigrated from areas where they may 

have eaten foods with different isotopic signatures, I included only (i) foxes that were 

ear-tagged in previous years in analyses of fall diets and (ii) breeding foxes and foxes 

that were ear-tagged in previous years in analyses of spring diets (foxes started to breed 

1-2 months prior to capture and therefore must have been resident in the study area for 

at least that period).  
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4.2.3 Collection of Prey Tissues 
Goose eggs and muscle samples from small mammals, caribou, muskoxen, and 

ptarmigan were collected opportunistically in spring and summer. I have no muscle 

samples from fall, but since diets of small mammals, caribou, muskoxen, and ptarmigan 

are similar in spring and fall (Rodgers and Lewis 1986, Holder and Montgomerie 1993, 

Gunn and Adamczewski 2003, Miller 2003), I assumed that isotope signatures in 

muscle of these herbivores were similar within species in spring and fall (see Barnett 

1994 and Drucker et al. 2001 for similarity of isotope signatures of caribou muscle in 

spring and fall and Roth 2002 for similar assumption on small mammals). Fur from 3 

ringed seals (Phoca hispida) from the Queen Maud Gulf was collected to examine 

whether foxes used marine foods. Also, 10 sardine samples were prepared to examine 

whether consumption of sardines during pre-bating of traps (see above) influenced 

stable isotope signatures of foxes.  

 

4.2.4 Small Mammal Abundance 
Small mammal abundance was monitored at 3 permanent trap-lines established 

in 1994 following Shank (1993). Trap-lines consisted of 25 trap-sites with 1 snap-trap 

placed within 1 m of each trap-site. One trap-line was monitored during the second half 

of June and the other two were monitored during the second half of July. Small 

mammal abundance was monitored for 10 consecutive nights and I used number of 

captures per 100 trap-nights as an index of small mammal abundance for each year. I 

subtracted 0.5 trap-nights for each trap that was snapped without capture to correct for 

variation in sampling effort (Beauvais and Buskirk 1999). Trap-lines included habitats 

ranging from wet lowland areas to dry upland hills.  

 

4.2.5 Stable Isotope Analyses 
I freeze-dried muscle, blood, and egg (homogenised eggs without the shell) 

samples to remove water and I used a 2:1 chloroform-methanol solution to remove 

lipids from muscle and egg samples. Similarly, I removed surface oil from fur samples 

by using this solution. Muscle, blood, and egg samples were powdered with a mortar 
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whereas fur samples were clipped into fine pieces of fur. Samples of about 1 mg were 

weighed into tin cups and combusted in an Europa 20:20 continuous flow ratio mass 

spectrometer (CFIRMS) at the Department of Soil Sciences at University of 

Saskatchewan. I used 2 laboratory standards (egg albumen and whale baleen) for every 

5 tissue samples analysed. Stable isotope ratios were expressed in δ-notation as parts 

per thousand (‰) deviations from Pee Dee Belemnite (δ13C) and atmospheric air (δ15N) 

standards according to δX = [(Rsample-Rstandard)/Rstandard] × 1000, where X is 13C or 15N 

and R is 13C/12C or 15N/14N. Laboratory measurement error was ±0.1‰ for δ13C and 

±0.3‰ for δ15N.  

 

4.2.6 Data Analyses and Comparisons 
I used Program IsoSource (Phillips and Gregg 2003) to estimate spring and fall 

diets of arctic foxes. This program uses mass balance mixing models too provide ranges 

of possible source contributions when the number of sources is to large to permit unique 

solutions from general mass balance mixing models (Phillips and Gregg 2003). I used 

source increments of 1% and mass balance tolerance of ±0.1‰. I performed analyses on 

spring and fall diets separately for each year (n = 4-9 foxes per year for analyses on 

spring diets and 4-7 foxes per year for analyses on fall diets)1. Prey items of arctic foxes 

were isotopically distinct and did not vary among years except for signatures of caribou 

muscle that differed among years and overlapped with muscle signatures of red-backed 

voles in 2003 and muskoxen in 2000, 2002, and 2004 (MANOVA, F18 = 80.12, P < 

0.001, Tukey’s pair-wise test to identify difference among groups, Figure 4.1, Table 

4.1). I suspect that annual variation in isotopic signatures of caribou muscle was related 

to caribou wintering in different areas (see Gunn et al. 2000 for this herd of caribou 

wintering in areas >300 km apart) but suggest that caribou signatures were similar 

among years in fall before caribou moved south. I therefore used year-specific caribou 

signatures in analyses of spring diets whereas I pooled means of caribou signatures 

from all years in analyses of fall diets. Further, I pooled means for (i) caribou and red-

backed 
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Figure 4.1. Isotopic signatures of food items included in analyses of arctic fox diets at 

Karrak Lake in 2000 to 2004. Top graph shows distribution of samples and bottom 

graph shows mean ± 1 SD. Outlined in the lower graph is the source polygon used in 

analyses of arctic fox diets. I used year-specific signatures of caribou muscle for 

analyses of spring diets whereas I pooled the means of caribou muscle from all years in 

analyses of fall diets. The source polygon therefore differed somewhat among years for 

analyses on spring diets (indicated by dashed lines). Open circles indicate year-specific 

signatures of caribou muscle. 

                                                                                          
1 sample size was 1 fox for analyses of spring diets in 2000 as there were no previously marked foxes at 
the onset of this study  
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Table 4.1. Isotope signatures of foods included in analyses of arctic fox diets at Karrak 

Lake in 2000 to 2004 (mean ± SD). Also provided in the table are the proportions of C 

and N of different foods (mean ± SD). 

 
Food δ13C, ‰ δ15N, ‰ %C %N Sample size 
goose eggs  
collared lemming muscle  
red-backed vole muscle  
caribou muscle 2000 a,b 
caribou muscle 2001 a 
caribou muscle 2002 a,b 
caribou muscle 2003 a,b 
caribou muscle 2004 a,b 
muskox muscle  
ptarmigan muscle 

-24.6 ± 0.5 
-26.6 ± 0.5 
-21.7 ± 0.6 
-21.4 ± 0.2 
-21.7 ± 0.2 
-21.4 ± 0.1 
-21.4 ± 0.2 
-21.4 ±  0.4 
-21.5 ± 1.0 
-23.9 ± 0.5 

7.0 ± 0.6 
4.3 ± 0.8 
6.3 ± 0.5 
4.3 ± 0.3 
3.0 ± 0.7 
4.4 ± 1.1 
6.4 ± 0.5 
4.1 ± 1.3 
5.2 ± 0.5 
2.2 ± 0.5 

47 ± 2 
47 ± 3 
48 ± 2 
49 ± 2 
47 ± 2 
50 ± 1 
49 ± 1 
48 ± 1 
48 ± 3 
48 ± 1 

13 ± 1 
14 ± 1 
14 ± 1 
15 ± 1 
14 ± 1 
15 ± 1 
15 ± 1 
14 ± 1 

16 ± 0.3 
14 ± 1 

97 
8 
7 
6 
7 
9 
2 
5 
2 
5 

 
a I used year specific signatures of caribou muscle in analyses of spring diets whereas I pooled means of 

caribou muscle from all years in analyses of fall diets 
b caribou signatures overlapped with red-backed vole signatures in 2003 and with muskox signatures in 

2000, 2002, and 2004 – I therefore pooled means for these tissues in analyses of spring diets in those 

years 
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voles in analyses of spring diets in 2003 and (ii) caribou and muskoxen in analyses of 

spring diets in 2000, 2002, and 2004. I did not include seals or sardines in final analyses 

because their contributions to fox diets were heavily skewed towards 0% in preliminary 

analyses (see Phillips and Gregg 2003). 

I corrected fox samples for isotopic discrimination (i.e. change in isotope 

signature from diet to consumer) by using values calculated for captive red foxes (Roth 

& Hobson 2000); I subtracted 2.6‰ and 3.3‰ from δ15N ratios of blood and fur, 

respectively, and 0.6‰ and 2.6‰ from δ13C ratios of blood and fur, respectively. Fox 

tissues were, thus, normalised to their equivalent dietary values. Similarly, I corrected 

fur samples from seals for isotopic discrimination (i.e. difference in isotope signatures 

between fur and muscle) by using values calculated for 3 different species of seals – one 

of which was ringed seals (Hobson et al. 1996); I subtracted 0.6‰ from δ15N ratios of 

fur and 1.5‰ from δ13C ratios of fur.  

 

I provide 1st to 99th percentiles of possible source contributions unless otherwise 

stated (Phillips and Gregg 2003).  

 

4.3 Results 
Small mammal abundance varied considerably among years (Figure 4.2). 

Annual variation in small mammal abundance was greater among collared lemmings 

than among red-backed voles. Collared lemming abundance peaked in 2000 and was 

followed by declining and low abundance during the rest of the study.  

Arctic fox diets were heavily skewed towards collared lemmings and cached eggs 

(Table 4.2, Figure 4.3). Arctic fox diets also included large proportions of ptarmigan in 

the spring of 2000 and 2001. The contribution of cached eggs to arctic fox diets was 

inversely related to collared lemming abundance (Figure 4.4). Specifically, the 

contribution of cached eggs to overall spring diets increased from 0-28% in years when 

collared lemmings were abundant to 30-74% in years when collared lemmings were 

scarce. Similarly, the contribution of cached eggs to overall fall diets increased from 1-

19% in years when collared lemmings were abundant to 44-65% in years when collared 
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Figure 4.2. Small mammal abundance at Karrak Lake in 1999 to 2004. Brown 

lemmings were not captured or otherwise encountered at Karrak Lake during these 

years. 
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Table 4.2. Ranges of possible source contributions to spring and fall diets of arctic 

foxes at Karrak Lake in 2000 to 2004 (1st to 99th percentiles). Ranges of source 

contributions were calculated by using Program IsoSource (Phillips and Gregg 2003). 

 
 Foods   
 
 
Year 

Cached 
eggs, 

% 

Collared 
lemmings, 

% 

Red-backed
voles, 

% 

 
Caribou,

% 

 
Muskoxen,

% 

 
Ptarmigan,

% 

 
No. of 
foxes 

Collared 
lemming 

abundance
Spring a 
2000 
2001 
2002 
2003 
2004 
 
Fall b, c 
2000 
2001 
2002 
2003 

 
0–28 
0–8 

30–66 
47–74 
8–56 

 
 

1-19 
44-59 
56-65 
51-62 

 
24-58 
24-41 
0-27 
0-21 
9-53 

 
 

69-85 
33-46 
32-40 
34-43 

 
0-21 
0-6 

0-41 
  0-30 a 
0-37 

 
 

0-12 
0-9 
0-4 
0-6 

 
- a 

0-16 
- a 
- a 
- a 
 
 

0-9 
0-6 
0-3 
0-4 

 
  0-28 a 

0-8 
  0-29 a 
0-24 

  0-26 a 
 
 

0-10 
0-7 
0-3 
0-5 

 
12-47 
43-67 
0-20 
0-15 
0-32 

 
 

0-11 
0-8 
0-4 
0-5 

 
1 
9 
4 
5 
4 
 
 

7 
5 
4 
4 

 
high 

decreasing 
low 
low 

low-medium
 
 

high 
decreasing 

low 
low 

 
a I used year specific signatures of caribou muscle in analyses of spring diets – these overlapped with red-

backed vole signatures in 2003 and with muskox signatures in 2000, 2002, and 2004 so red-backed 

voles and caribou were pooled in 2003 and muskoxen and caribou were pooled in 2000, 2002, and 

2004 
b I pooled means of caribou muscle from all years in analyses of fall diets 
c I have no data on fall diets in 2004 as winter fur of foxes captured in spring 2004 represented fall diets 

in 2003  
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Figure 4.3. Isotopic signatures of arctic fox tissues at Karrak Lake in spring and fall in 

2000 to 2004 where location in the source polygon is indicative of diet. Fox signatures 

were corrected for isotopic discrimination by using values calculated for red foxes 

(Roth and Hobson 2000). The source polygon differed somewhat among years in the 

spring (indicated by dashed lines) because spring signatures of caribou muscle differed 

isotopically among years. 
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Figure 4.4. Contribution of cached eggs and collared lemmings to arctic fox diets at 
Karrak Lake in relation to collared lemming abundance. Brackets indicate 1st to 99th 
percentiles of source contributions for each year. Fall diets are indicated by solid 
brackets and spring diets by dashed brackets. 
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lemmings were scarce. The contribution of collared lemmings to arctic fox diets, in 

contrast, was positively related to collared lemming abundance (Figure 4.4). Body mass 

of arctic foxes in spring was unrelated to the contribution of cached eggs to their diets 

(Figure 4.5). I did not detect differences in isotope signatures between male and female 

foxes or between breeding and non-breeding foxes within years.  

 

4.4 Discussion 
The extent to which animals use cached foods is unknown for most species 

(Vander Wall 1990). However, this study showed that arctic foxes relied heavily on 

cached eggs in years when collared lemmings were scarce. Further, arctic foxes used 

cached eggs well into the following spring (almost 1 year after foods were acquired) 

which differs greatly from that of carnivores generally storing foods for only a few days 

(Vander Wall 1990). Carnivores in northern climates may, however, store foods for 

several months (e.g. Maccarone and Montevecchi 1981, Stickney 1991, Bantle and 

Alisauskas 1998) because decomposition rates are much lower than in more temperate 

or tropical environments (Vander Wall 1990). Further, the duration of storage may also 

vary among different foods depending on how well they keep. For example, eggs keep 

better than other foods because the shell, several protective membranes, and physio-

chemical properties of albumen proteins prevent microbal activity (Freeman and Vince 

1974). In fact, eggs keep for >1 year if properly cached (Stickney 1991, Bantle and 

Alisauskas 1998). My estimates of cached eggs contributing up to about 60% of arctic 

fox diets may, therefore, be on the extreme end of how much carnivores rely on cached 

foods as there may be few other situations where carnivores have access to foods that 

are equally suited for long-term storage.  

The contribution of cached eggs to arctic fox diets was inversely related to 

collared lemming abundance whereas the contribution of collared lemmings followed 

that of their abundance. Further, arctic foxes cached similar number of eggs among 

years (Chapter 3) so there was no indication that foxes used cached eggs in proportion 

to the abundance of cached eggs. Arctic foxes, thus, switched from collared lemmings 

to cached eggs in years when collared lemmings were scarce which, in turn, suggests 
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Figure 4.5. Body mass of arctic foxes in spring in relation to the contribution of cached 

eggs to their diets. Some breeding females did not appear to have given birth when 

weighed and were therefore heavier than expected. 
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 that cached eggs functioned as a buffer when collared lemmings were scarce. Foxes 

may prefer collared lemmings over cached eggs because lemmings may be nutritionally 

more valuable to foxes or because large consumption of albumen can result in biotin 

deficiency (Klevay 1976). I did not, however, detect any signs of biotin deficiency (e.g. 

hair loss or impaired muscle coordination) even when cached eggs contributed 50-60% 

of their diets which suggests that arctic foxes were able to consume large amounts of 

albumen without suffering from biotin deficiency. Moreover, spring body mass of foxes 

was unrelated to the contribution of cached eggs to their diets which further suggests 

that large consumption of albumen did not appear to impede body condition of foxes. 

Arctic foxes at Karrak Lake switching to cached eggs when collared lemmings were 

scarce was similar to arctic foxes in costal areas switching to marine foods in years 

when lemmings were scarce (Roth 2002, 2003). However, switching to cached foods 

allowed foxes to remain in familiar areas with predictable food supplies and may be 

adaptive compared to dispersing to search for other foods (Samelius and Alisauskas 

2000). 

Arctic foxes at Karrak Lake switching to cached eggs in years when collared 

lemmings were scarce may explain why animals often store more foods than needed. 

Specifically, arctic foxes may cache eggs independent of small mammal abundance to 

compensate for unpredictable changes in future lemming abundance. In fact, arctic 

foxes cached similar number of eggs among years (Chapter 3) although they rarely fed 

on these eggs in years when collared lemmings were abundant. Animals may also store 

more foods than needed to compensate for losses to competitors and failure to locate 

caches (Vander Wall 1990).  
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5. SURVIVAL RATE OF EXPERIMENTAL FOOD CACHES: IMPLICATIONS 
FOR ARCTIC FOXES 
 

Abstract: Avoiding cache loss is crucial to food hoarding animals. Arctic foxes scatter-

hoard thousands of eggs annually at large goose colonies and I examined how survival 

rate of experimental caches were influenced by (1) nesting density by geese, (2) relative 

proportion of two sympatric goose species, (3) departure by ca 1 million geese and their 

young after hatch, and (4) age of cache sites. Known-fate models in Program MARK 

revealed that survival rate of experimental caches was related to age of cache sites in 

the first year of the study (e.g. 0.80 and 0.56 per 18-day period for caches from new and 

1 month old cache sites, respectively) and departure by geese after hatch in the second 

year of the study (e.g. 0.98 and 0.74 per 18-day period during and after goose nesting, 

respectively). These results suggest that food abundance and deterioration of cache sites 

(e.g. loss of soil cover and partial exposure of caches) were important factors affecting 

cache loss at the study site. Further, annual variation in the importance of these factors 

suggests that strategies to prevent cache loss are not fixed in time but vary with existing 

conditions. Evolution of caching behaviours by arctic foxes may, thus, have been 

shaped by multiple selective pressures.  

 

5.1 Introduction 
Food storage (termed food hoarding or food caching) is common among birds 

and mammals and may be adaptive to avoid food shortage in environments where food 

availability fluctuates greatly (Smith and Reichman 1984, Vander Wall 1990). Food 

hoarding may also be adaptive to supplement diets of growing young or to reduce time 

spent foraging when other behaviours are more important (Smith and Reichman 1984, 

Vander Wall 1990). Animals generally cache foods either in many small caches 

scattered in space (scatter-hoarding) or in a few closely-spaced caches with many foods 

in each cache (larder-hoarding, Vander Wall 1990). The strategy of how foods are 

cached appears to be influenced by the ability to defend caches against competitors; 

scatter-hoarded foods are typically not defended whereas larder-hoarded foods are more 
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likely to be defended (Stapanian and Smith 1978, Vander Wall 1990). Further, scatter-

hoarding animals generally rely on secretive behaviours and inconspicuous caches 

whereas larder-hoarding animals often devote considerable time and energy in 

defending larders (Vander Wall 1990).  

Cache loss, either from theft or decomposition, can be detrimental to food-

hoarding animals; strategies to reduce cache loss are, thus, critical to animals that hoard 

foods (Andersson and Krebs 1978, Vander Wall 1990). Strategies to reduce cache loss 

include selection of cache sites, secretive behaviours when caching foods, spatial 

arrangement of caches, aggressive defence of caches, and storing more food than 

needed (Smith and Reichman 1984, Vander Wall 1990). However, the relative 

importance of factors affecting cache loss is unknown in most animals (Vander Wall 

1990). Further, most studies have examined cache loss of foods that are acquired from a 

central source whereas cache loss of foods that are acquired from multiple sources 

dispersed in space is poorly understood.  

Cache loss is often difficult to study because the identity of animals retrieving 

caches is generally unknown (Vander Wall 1990). However, experimental caches 

provide a useful means of separating cache loss from retrieval as removal of 

experimental caches must be attributed to pilfers (Vander Wall and Jenkins 2003). In 

fact, experimental caches have provided indirect evidence of cache loss (e.g. Stapanian 

and Smith 1978, 1984, Clarkson et al. 1986, Tamura et al. 1999) and are useful for 

examining various aspects of cache loss (Vander Wall and Jenkins 2003).  

Arctic foxes commonly cache foods when foods are abundant (Audet et al. 

2002). Caching and use of stored foods appears to be especially common among arctic 

foxes at large bird colonies where food is often superabundant during the nesting-

season (Stickney 1991, Samelius and Alisauskas 2000). Caching of foods at these 

colonies may be adaptive in comparison to dispersing to search for other foods because 

food caching allows foxes to remain in familiar areas with predictable food supplies 

(Samelius and Alisauskas 2000). However, the extent and implication of food caching 

by arctic foxes and other carnivores is poorly understood (Vander Wall 1990).  

Arctic foxes scatter-hoard >1,000 eggs per fox during the nesting season at large 

goose colonies (Samelius and Alisauskas 2000, Chapter 3). Caching of eggs at these 
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colonies therefore provides an ideal system to study food hoarding by carnivores. The 

objective of this study was to examine spatial and temporal variation in survival rate of 

experimentally deployed caches. Specifically, I evaluated survival rate of experimental 

caches in relation to (1) nesting density by geese, (2) relative proportion of two 

sympatric goose species, (3) departure by geese away from the colony after hatch (i.e. 

goose presence vs. goose absence), and (4) age of cache sites (i.e. new vs. 1 month old 

cache sites).  

 

5.2 Methods 

5.2.1 Experimental Caches 
Survival rate of experimental caches distributed systematically in a 500×500 m 

grid in the south-central part of the colony was monitored during two summers. 

Locations of cache sites were selected from the Universal Transverse Mercator (UTM) 

grid system on a 1:50,000 map. Sample sites were marked with a ca 0.5 m tall marker 

and an experimental cache was placed 15 m away from each marker at the first site that 

resembled those used by arctic foxes (e.g. avoiding elevated knolls and rocky material). 

Locations of cache sites relative to markers were altered randomly in the 4 cardinal 

directions to avoid potential association between cache marker and cache; caches were 

not placed in the same cardinal direction between the first and second part of the 

experiment (see below). Experimental caches were not placed on islands or in areas that 

were either flooded or snow covered.  

Experimental caches consisted of 1 goose egg that was buried in the ground and 

was covered with 1-2 cm of soil in an attempt to simulate caches by arctic foxes (see 

Quinlan and Lehnhausen 1982, Samelius and Alisauskas 2000). Eggs for the 

experiment were salvaged by collecting eggs that were found outside nest bowls during 

the egg-laying period (i.e. none of the eggs were incubated). Latex gloves were used 

when handling eggs during all aspects of the experiment and eggs were stored cool until 

they were deployed (eggs were stored in a container that was placed in a snow bank - 

but see minor modification among years below).  
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The study was repeated twice within each year by deploying one set of caches (n 

= 50 in 2001 and 43 in 2003) during goose nesting and another set of caches (n = 50 in 

2001 and 42 in 2003) after geese left the colony following hatch. The first part of the 

study was conducted 14 June - 3 July in 2001 and 17 June - 5 July in 2003, and the 

second part of the study was conducted 12 - 31 July in 2001 and 13 - 31 July in 2003. 

Caches that survived from the first part of the study to the start of the second part of the 

study (n = 40 in 2001 and 42 in 2003) were monitored also during the second part of the 

study (these cache sites were 1 month older than cache sites from the second part of the 

study whereas eggs of these caches were of the same age). There were, thus, three 

treatments; (1) new caches monitored during the nesting season, (2) new caches 

monitored after the nesting season, and (3) old caches monitored after the nesting 

season (but see correction for the transition from new to old caches occurring at the 

same time as the transition from presence to absence of geese below). Old caches 

during the nesting season could not be created as the ground was snow covered and 

frozen prior to goose nesting. Eggs from new caches from the second part of the study 

were 1 month older than eggs from new caches from the first part of the study. 

However, eggs keep >1 year if properly cached (Stickney 1991) so the main difference 

between new caches from the first and second part of the study was presence vs. 

absence of geese.  

Experimental caches were revisited 3 times at 6-day intervals during each part 

of the study (the last visit of each part of the study in 2001 was made after 7 days but I 

corrected for this by setting the last interval in my analyses to 1.17). At each visit, it 

was determined whether caches were present or lost (i.e. missing or consumed at the 

site). Caches were considered to have been lost to foxes if the soil was pushed off in a 

neat pile on one side of the cache and lost to avian predators if the soil was scattered 

irregularly around the cache (based on independent field observations). Nesting density 

was determined by recording the number of nests within 20-m radius of each cache 

marker and species composition was determined by measuring length and width of all 

eggs and then separating species by using egg measurements following Alisauskas et al. 

(1998). Micro-habitat within 1 m of caches was determined based on soil and 

vegetation characteristics following McLandress (1983).  
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The experimental design was identical among years except for that eggs for the 

second part of the study were stored in the ground, covered with 1-2 cm of soil, in 2003 

compared to in a container in a snow bank in 2001. However, I suggest that this had 

limited, if any, effect on the outcome of the experiment because eggs keep >1 year if 

properly cached (Stickney 1991) and eggs were kept cool and out of direct sunlight both 

when stored in the ground and the snow bank.  

 

5.2.2 Data Analyses 
I modelled survival rate per 18-day period for experimental caches as a function 

of (1) nesting density, (2) species composition (i.e. proportion of Ross’s vs. lesser snow 

geese), (3) departure by geese after hatch (i.e. presence vs. absence of geese), and (4) 

age of cache sites (i.e. new vs. 1 month old cache sites) by using known-fate models in 

Program MARK (White and Burnham 1999). However, I could not separate the effect 

of age of cache sites from that of departure by geese for the set of caches that were 

monitored during both the first and second part of the study because the transition from 

new to old caches occurred concurrently with the transition from presence to absence by 

geese. I therefore performed analyses in two steps. Specifically, I examined (1) the 

effect of departure by geese by comparing new caches monitored during nesting with 

new caches monitored after nesting and (2) the effect of  age of cache sites by 

comparing new caches monitored after nesting with old caches monitored after nesting. 

I derived 11 a priori candidate models for the first part of the analyses and 8 a priori 

candidate models for the second part of the analyses (see Tables 1 and 2 for suite of 

candidate models). Candidate models ranged from constant survival to all combinations 

of the variables above, plus interaction terms between (1) nesting density and departure 

by geese and (2) species composition and departure by geese as the influence of nesting 

density and species composition may vary between periods with and without geese. I 

selected the model with the lowest AICC value as the best approximating model and 

considered models within 2 AICC units to be of similar quality (Burnham and Anderson 

1998).  
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Fate of caches was independent of that of neighbouring caches in both years 

(χ2
(1) = 1.11 and 0.88, and P = 0.29 and 0.35 in 2001 and 2003, respectively) suggesting 

that cache loss was not clumped on the study area in either year. Further, cache loss was 

similar among habitats in both years (Fisher exact test, P = 0.414 and 0.653 in 2001 and 

2003, respectively) so I pooled habitats within each year before performing final 

analyses. The proportion of Ross’s geese increased with increasing nesting density in 

2003 (r2 = 0.19, P = 0.0031) whereas there was no correlation between these variables 

in 2001 (r2 < 0.01, P = 0.61). I therefore used proportion of Ross’s geese as an 

independent covariate in 2001 whereas I used the residual value of proportion of Ross’s 

geese when controlling for nesting density in 2003.  

 

5.3 Results 
Thirty-eight of 100 experimental caches were lost in 2001 and 24 of 85 

experimental caches were lost in 2003. Fifty-one caches were removed by arctic foxes, 

4 by avian predators, and 7 by unknown pilferers. Nesting density ranged from 8 to 279 

nests per ha ( x  = 79 and 69, and SD = 38 and 47 nests per ha in 2001 and 2003, 

respectively) and species composition ranged from 0 to 100% Ross’s geese ( x  = 0.51 

and 0.39, and SD = 0.36 and 0.35 in 2001 and 2003, respectively). Condition of cache 

sites deteriorated as the experiment progressed (e.g. soil cover was lost and eggs 

became partly visible); partial exposure of caches was greater in 2001 than in 2003 

(χ2
(1) = 5.85 and P = 0.016) with 18% and 6% of cached eggs partly visible in each 

year, respectively. There was, however, no correlation between partly visible eggs and 

cache loss in either year (Fisher exact test, P = 0.7784 and 0.3456 in 2001 and 2003, 

respectively).  

Models {age of cache sites + species composition}, {age of cache sites}, and {age 

of cache sites + nesting density + species composition} fit the data considerably better 

than other models on age of cache sites and nesting distribution by geese in 2001 and 

accounted for 79% of the cumulative model weight (Table 5.1). Models on departure 
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Table 5.1. Model selection for spatial and temporal variation in survival rate of 

experimental caches at Karrak Lake in 2001. Included in the table are differences in 

AICc values between each model and the best fitting model (∆i), number of model 

parameters (K), and model weights (wi). Global models are underlined. I used constant 

survival as the null model of no effect of either of the variables examined. AICc values 

of the best models were 134.99 and 184.83 for the upper and lower comparison below. 

 

Model 1 K ∆i wi 
Effects of departure by geese and nesting distribution by geese
departure by geese 
constant survival 
departure by geese × species composition 
species composition 
departure by geese × species composition 
departure by geese + species composition 
nesting density 
departure by geese + nesting density + species composition 
 nesting density + species composition 
departure by geese × nesting density 
departure by geese × (nesting density + species composition) 
 
Effects of age of cache sites and nesting distribution by geese 
age of cache sites + species composition 
age of cache sites  
age of cache sites + nesting density + species composition 
age of cache sites + nesting density  
species composition 
constant survival 
nesting density + species composition 
nesting density 

 
2 
1 
3 
2 
4 
3 
2 
4 
3 
4 
6 
 
 

3 
2 
4 
3 
2 
1 
3 
2 

 
0 

0.16 
0.28 
0.52 
0.68 
1.27 
1.39 
1.60 
1.80 
3.04 
3.79 

 
 

0 
0.96 
1.50 
2.66 
4.17 
5.38 
5.48 
6.90 

 
0.15 
0.14 
0.13 
0.12 
0.11 
0.08 
0.08 
0.07 
0.06 
0.03 
0.02 

 
 

0.38 
0.23 
0.18 
0.10 
0.05 
0.03 
0.02 
0.01 

 
1 × indicates that both major effects and interactions between these major effects are included in the 

model 
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by geese, nesting density, and species composition, in contrast, did not fit data better 

than the null model of constant survival in 2001 (Table 5.1). Age of cache sites was 

common to all models that explained survival rate of caches in relation to age of cache 

sites, nesting density, and species composition whereas nesting density and species 

composition were present in only 1 and 2 models, respectively. More importantly, 

models that included nesting density and species composition improved the model fit 

only marginally (or not at all for nesting density) compared to the model where these 

parameters were not included (i.e. model {age of cache sites}), suggesting that these 

parameters had limited impact on survival rate of caches compared to age of cache sites. 

Age of cache sites was, thus, the main factor affecting survival rate of experimental 

caches in 2001.  

Models {departure by geese}, {departure by geese × species composition}, and 

{departure by geese + species composition} fit the data considerably better than other 

models on departure by geese, nesting density, and species composition in 2003 and 

accounted for 73% of the cumulative model weight (Table 5.2). Models on age of cache 

sites, nesting density, and species composition, in contrast, fit data only marginally 

better than the null model of constant survival in 2003 (Table 5.2). Departure by geese 

was common to all models that explained survival rate of caches in relation to departure 

by geese, nesting density, and species composition whereas species composition was 

present in only 2 of these models. More importantly, models that included species 

composition did not improve the model fit compared to the model where species 

composition was not included (i.e. model {departure by geese}), suggesting that species 

composition had limited impact on survival rate of caches compared to departure by 

geese. Departure by geese was, thus, the main factor affecting survival rate of 

experimental caches in 2003.  

Model averaged survival rate of experimental caches in 2001 was 0.87 (95% 

C.I. = 0.74-0.94), 0.80 (95% C.I. = 0.67-0.89), and 0.56 (95% C.I. = 0.39-0.70) per 18-

day period for new caches during nesting, new caches after nesting, and old caches after 

nesting, respectively (Figure 5.1). Model averaged survival rate of experimental caches 
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Table 5.2. Model selection for spatial and temporal variation in survival rate of 

experimental caches at Karrak Lake in 2003. Included in the table are differences in 

AICc values between each model and the best fitting model (∆i), number of model 

parameters (K), and model weights (wi). Global models are underlined. I used constant 

survival as the null model of no effect of either of the variables examined. AICc values 

of the best models were 88.28 and 151.52 for the upper and lower comparison below. 

 

Model 1 K ∆i wi 
Effects of departure by geese and nesting distribution by geese
departure by geese 
departure by geese × species composition 
departure by geese + species composition 
departure by geese + nesting density 
departure by geese + nesting density + species composition 
departure by geese × nesting density 
departure by geese × (nesting density + species composition) 
constant survival 
species composition 
nesting density 
nesting density + species composition 
 
Effects of age of cache sites and nesting distribution by geese 
species composition 
nesting density + species composition 
nesting density 
constant survival 
age of cache sites + species composition 
age of cache sites + nesting density + species composition 
age of cache sites + nesting density 
age of cache sites 

 
2 
4 
3 
3 
4 
4 
6 
1 
2 
2 
3 
 
 

2 
3 
2 
1 
3 
4 
3 
2 

 
0 

1.00 
1.43 
2.05 
3.49 
3.96 
5.04 
9.23 
10.9 
11.3 
12.9 

 
 

0 
0.20 
1.43 
1.49 
2.05 
2.27 
3.47 
3.52 

 
0.35 
0.21 
0.17 
0.13 
0.06 
0.05 
0.03 

<0.01 
<0.01 
<0.01 
<0.01 

 
 

0.26 
0.23 
0.13 
0.12 
0.09 
0.08 
0.05 
0.04 

 
1 × indicates that both major effects and interactions between these major effects are included in the 

model 
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Figure 5.1. Survival rate of new and old experimental caches during and after the 

nesting season by geese at Karrak Lake in 2001 and 2003. 
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in 2003 was 0.98 (95% C.I. = 0.93-1.0), 0.74 (95% C.I. = 0.58-0.85), and 0.75 (95% 

C.I. = 0.63-0.84) per 18-day period for new caches during nesting, new caches after 

nesting, and old caches after nesting, respectively (Figure 5.1).  

 

5.4 Discussion 
Avoiding cache loss is critical to food hoarding animals (Andersson and Krebs 

1978, Vander Wall 1990); this study showed that age of cache sites and departure by 

geese from the colony were important factors affecting cache loss at Karrak Lake and 

that the effects of these factors varied among years. These results suggest that food 

abundance and deterioration of cache sites (e.g. loss of soil cover and partial exposure 

of caches) were important factors affecting cache loss at Karrak Lake. Further, annual 

variation in the importance of these factors suggest that strategies to prevent cache loss 

may not be fixed in time but vary with existing conditions (see Vander Wall and 

Jenkins 2003 for similar suggestion).  

Ageing of cache sites was the main factor affecting cache loss in the first year of 

the study which suggest that deterioration of cache sites was more important in 

affecting cache loss at Karrak Lake in that year than was nesting distribution by geese 

(i.e. nesting density and species composition) and departure by geese from the colony. 

Arctic foxes may reduce cache loss related to deterioration of cache sites by 

maintaining proper cache conditions; such strategies may involve relocation of foods 

from cache sites in poor condition and selection of cache sites that prevent deterioration 

of cache sites (see Vander Wall 1990). Arctic foxes may also reduce the need to 

maintain proper cache conditions by storing more foods than needed or by aggressively 

defending caches (see Smith and Reichman 1984, Vander Wall 1990). Arctic foxes 

often relocate eggs from existing caches (Samelius and Alisauskas 2000) which may, in 

part, be motivated by deterioration of cache sites. In fact, relocating eggs from cache 

sites in poor condition may be adaptive both to prevent detection of caches and to 

prevent decomposition of contents. However, foxes may also relocate eggs from 

existing caches to refresh cache memory or simply as a results from cache pilfering (see 

Vander Wall 1990, Vander Wall and Jenkins 2003). Benefits of redistributing caches 
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may become greater in years with high fox abundance when the risk of pilfering appears 

to be greatest (Samelius and Alisauskas 2000).  

Arctic foxes often appear undecided when caching foods (Quinlan and 

Lehnhausen 1982, Samelius and Alisauskas 2000) which may, in part, be related to 

searching for sites that prevent deterioration of cache sites. Wariness when caching 

foods may also be related to presence of competitors (Lathi and Rytkönen 1996) which, 

however, appears less influential among arctic foxes as they generally seem wary 

regardless of fox abundance (Samelius and Alisauskas 2000). I suggest that selection of 

cache site may have been important in reducing cache loss among arctic foxes at Karrak 

Lake despite the fact that survival rate of caches was similar among habitats because 

selection of cache sites may have operated on a different scale or on other criteria than 

what I examined. For example, soil structure and moisture can be important in affecting 

cache loss of foods that are stored in the ground (Vander Wall 1998, 2000, Briggs and 

Vander Wall 2004). Selection of cache sites may, similarly to above, become more 

important in years with high fox abundance when the risk of pilfering appears to be 

greatest (Samelius and Alisauskas 2000).  

Arctic foxes at Karrak Lake may reduce the need to adjust cache sites in poor 

condition by storing more foods than needed (see Vander Wall 1990). For example, 

arctic foxes cache 1,000-3,000 eggs per fox during the nesting season at large goose 

colonies (Samelius and Alisauskas 2000, Chapter 3) which corresponds to 750,000-

2,200,000 kjoules2 (Robbins 1983, Slattery and Alisauskas 1995). This is 0.6-1.8 times 

annual ad libitum food intake for arctic foxes (Fuglei and Øritsland 1999) and, thus, 

suggests that arctic foxes cache more eggs than needed energetically by a single fox. 

Arctic foxes appear to cache similar number of eggs regardless of breeding status 

(Samelius and Alisauskas 2000, Chapter 3) which suggest that caching of more foods 

than needed is especially common among non-breeding foxes. Further, foxes may not 

be able to subsist solely on eggs as large consumption of albumen can cause biotin 

                               
2 energetic value of cached eggs were calculated as the average energetic content of [Ross’s goose 
eggfresh, lesser snow goose eggfresh, Ross’s goose goslinghatch, lesser snow goose goslinghatch] where lipid 
and protein content of eggs and goslings were from Slattery and Alisauskas (1995) and energetic value of 
lipid and protein were from Robbins (1983). The energetic value of eggs decrease with 30-35% during 
nesting because of metabolism of growing embryos. 
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deficiency (Klevay 1976), thus, further suggesting that foxes often cache more foods 

than they need or can consume.  

Arctic foxes may also reduce the need to adjust cache sites in poor condition by 

aggressively defending caches (see Vander Wall 1990, Vander Wall and Jenkins 2003). 

Arctic foxes are territorial even though there may be considerable overlap in space use 

(Audet et al. 2002, Eide et al. 2004). There is, thus, potential for considerable 

intraspecific pilfering of caches. However, cache loss to conspecifics is less detrimental 

than cache loss to animals that do not cache foods because losses to conspecifics can be 

compensated by reciprocal pilfering (Vander Wall and Jenkins 2003). In fact, foxes may 

have benefited from allowing other foxes to cache foods in their territory during goose 

nesting and then switched to aggressively defending caches after hatch when food 

availability decreased dramatically (see Eide et al. 2004 for similar discussion on 

adjusting aggressiveness in relation to food abundance). However, aggressive defence 

of caches is generally associated with larder-hoarded foods and may not be important 

among arctic foxes because it is generally difficult to defend caches that are scattered 

over large areas (Vander Wall 1990).  

Condition of cache sites deteriorated as the experiment progressed (e.g. loss of 

soil cover and partial exposure of eggs) and I suggest that this resulted largely from the 

caching process disturbing the soil structure and cached eggs preventing moisture from 

rising. Moreover, I suggest that the influence of ageing of cache sites in the first year of 

the study was related to such deterioration although cache loss was unrelated to visual 

exposure of caches because mammals generally use olfaction rather than vision when 

locating and pilfering caches (Thayer & Vander Wall 2005). Deterioration of cache 

sites may therefore have resulted in foxes detecting foods from older cache sites easier 

than they detected foods from new cache sites. The influence of deterioration of cache 

sites may vary among years in relation to soil moisture and weather conditions which, 

in turn, may affect the rate at which foxes detect cached eggs (see Vander Wall 2000 for 

influence of soil condition on cache loss).  

Departure by geese after hatch was the main factor affecting cache loss in the 

second year of the study which suggest that the drastic drop in food abundance when ca 

1 million geese and their young left the colony was more important in affecting cache 
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loss in that year than was nesting distribution by geese and age of cache sites. Similarly, 

increased cache loss after departure by geese in that year also suggest that strategies to 

prevent cache loss were more important after geese left the colony than they were 

during nesting by geese; foxes may therefore have maximised the number of foods they 

cached in that year by making temporary caches during goose nesting followed by 

rearrangement of caches after geese departed the colony. In fact, arctic foxes often 

move eggs from existing caches (Samelius and Alisauskas 2000) although the 

proportion of such movements that result from rearranging own caches versus pilfering 

those from others is unknown. Temporary caching and rearrangement of caches once 

foods are depleted is a common strategy among animals that cache foods from a single 

source (Jenkins et al. 1995, Jokinen and Suhonen 1995) and may also be important 

among animals that cache foods that are dispersed in space in some years (e.g. arctic 

foxes). However, this strategy may be adaptive only in years with low fox abundance as 

the cost associated with loss of temporary caches during goose nesting may be too great 

in years of high fox abundance. Other strategies to prevent cache loss after goose 

departure during the second year of this study may, similarly to above, have included 

storing of more foods than needed and exclusion of competitors (see Vander Wall 1990, 

Wander Wall and Jenkins 2003).  

Cache loss in this study was largely unaffected by nesting distribution by geese 

which contrasts that of spatial arrangement of caches relative to their source often 

having large impact on cache loss in other studies (e.g. Stapanian and Smith 1978, 

Clarkson et al. 1986, Tamura et al. 1999). Foods in other studies were, however, 

acquired form a single source whereas foods in my study were dispersed over a large 

area. Factors affecting optimal arrangement of caches may therefore depend on whether 

foods are acquired from a single or multiple sources. My study is, to my knowledge, the 

first to examine factors affecting cache loss of foods that are dispersed in space and 

there is, thus, a need for further studies on optimal arrangement of caches from foods 

that are dispersed in space. My study, nevertheless, demonstrated that factors affecting 

cache loss of foods that are dispersed in space are not static but appear to vary with 

existing conditions and that evolution of caching behaviours may be shaped by multiple 

selective pressures (see Vander Wall and Jenkins 2003 for similar suggestion). There 
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may therefore be considerable flexibility in ultimate strategies to reduce cache loss of 

foods that are dispersed in space.  
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6. POPULATION DYNAMICS OF ARCTIC FOXES IN RELATION TO 
SEASONALLY ABUNDANT GEESE AND ANNUAL VARIATION IN SMALL 
MAMMAL ABUNDANCE 
 

Abstract: Seasonal influxes of migratory animals provide predators with external 

subsidies that may elevate predator abundance above that which local foods can 

support. However, the influence of these influxes on population dynamics of predators 

is poorly understood. This is especially true for migratory animals whose movements 

are not tracked by their predators. I examined how large influxes of migratory geese 

influenced population dynamics of arctic foxes and how this varied with annual 

variation in small mammal abundance (the main prey of arctic foxes throughout most of 

their range). Specifically, I compared how arctic fox abundance, breeding density, and 

litter size varied inside and outside a large goose colony and in relation to annual 

variation in small mammal abundance. Information-theoretic model selection showed 

that (i) breeding density and fox abundance were 2-3 times higher inside the colony 

than they were outside the colony and (ii) litter size, breeding density, and annual 

variation in fox abundance followed that of small mammal abundance. Small mammal 

abundance was, thus, the main governor of population dynamics of arctic foxes whereas 

geese and their eggs elevated fox abundance and breeding density above that which 

small mammals could support. This study highlights the influence of seasonal and 

annual variation on population dynamics of consumers and the linkage between arctic 

environments and wintering areas by geese thousands of kilometres to the south.  

 

6.1 Introduction 
External subsidies and transfer of resources between ecosystems can have large 

impacts on abundance and distribution of organisms (Polis and Strong 1996, Polis et al. 

1997). For example, marine subsidies often elevate animal abundance in coastal areas 

(Polis and Hurd 1996, Rose and Polis 1998). Similarly, transfer of resources such as 

windborne nutrients from Sahara can influence productivity of Amazonian rainforests 

(Swap et al. 1992). In fact, few ecosystems occur in isolation and transfer of resources 
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between ecosystems may be the norm rather than the exception (Polis and Strong 1996, 

Polis et al. 1997).  

Large seasonal migrations are common among many vertebrates. Migratory 

animals, in turn, provide predators with seasonal pulses of external subsidies that may 

elevate predator abundance above that which local foods can support (Polis and Strong 

1996, Polis et al. 1997). However, the influence of seasonal influxes of migratory 

animals on population dynamics of predators is poorly understood (but see Madsen and 

Shine 1996 and references therein for influence on predators that track migratory 

movements of their prey). This is especially true for migratory animals whose 

movements are not tracked by their predators (e.g. long-distance migrants such as birds 

and fishes). Further, the periodic nature of migratory movements may result in 

migratory prey being more important among generalist predators that switch between 

foods or predators that cache foods (see Vander Wall 1990, Ostfeld and Keesing 2000).  

Arctic foxes are generalist predators and scavengers that rely heavily on 

lemmings and voles (small mammals hereafter) throughout most of their range (Audet 

et al. 2002). However, other foods such as birds and their eggs can be important in 

arctic fox diets in some years and parts of the arctic (Hersteinsson and MacDonald 

1996, Bantle and Alisauskas 1998). Furthermore, the importance of birds and their eggs 

in arctic fox diets may be amplified by food caching which appears to be especially 

common among arctic foxes at large bird colonies where foxes cache >1,000 eggs each 

during the nesting season by birds (Stickney 1991, Samelius and Alisauskas 2000). 

Small mammal abundance often fluctuate dramatically over 3-5 year periods whereas 

migratory birds and their eggs provide arctic foxes with seasonal pulses of alternative 

and often superabundant foods. Areas with both migratory birds (e.g. geese) and small 

mammals therefore provide ideal settings to examine how population dynamics of arctic 

foxes are influenced by migratory birds and how this vary with fluctuations in other 

foods.  

Reproductive output and abundance of arctic foxes often vary considerably 

among years (Audet et al. 2002). Variation in these parameters, in turn, appears to be 

closely related to food abundance and is especially pronounced among arctic foxes that 

feed predominantly on small mammals (Macpherson 1969, Angerbjörn et al. 1995). For 
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example, both litter size and breeding propensity by arctic foxes fluctuate widely in 

relation to food abundance (Angerbjörn et al. 1991, Tannerfeldt and Angerbjörn 1998, 

Strand et al. 1999). In fact, arctic foxes have the largest litter size in the order Carnivora 

and may have up to 18 pups when food is abundant (Tannerfeldt and Angerbjörn 1998). 

Similarly, abundance of arctic foxes is also closely related to abundance of their foods 

with peak fox abundance often occurring one year after that of their main foods 

(Angerbjörn et al. 1999, Samelius et al. in press) even though some studies (e.g. 

Angerbjörn et al. 1995, Kaikusalo and Angerbjörn 1995) did not find a delay in the 

numerical response by foxes. The latter studies, however, used breeding density as an 

estimate of fox abundance and therefore did not sample the non-breeding population 

which can be considerably larger than the breeding population in years when foods are 

scarce (Angerbjörn et al. 1991, Angerbjörn et al. 1995) – but see Angerbjörn et al. 1999 

who found a delay of one year despite including only the breeding population.  

The objective of this study was to examine how seasonal influxes of migratory 

geese and their eggs influenced population dynamics of arctic foxes and how this varied 

with annual variation in small mammal abundance. Specifically, I compared how arctic 

fox abundance, breeding density, and litter size varied inside and outside a large goose 

colony and in relation to annual variation in small mammal abundance.  

 

6.2 Methods 
Abundance and reproduction of arctic foxes was monitored in two 5×5 km areas 

at the colony at Karrak Lake and in two 5×5 km areas outside the colony (Figure 6.1). 

Study areas were distributed systematically around the southern and original part of the 

colony with study areas outside the colony located beyond the influence of nesting 

geese (>5 km from the edge of the colony) while assuring that they could be reached by 

foot. Locations of study areas were selected from the Universal Transverse Mercator 

(UTM) grid system on 1:50,000 maps; study areas in the colony were located 4 km 

apart and study areas outside the colony were located 8 km west and east of the 

southern study area in the colony. I suggest that foxes in study areas outside the colony 

did not have access to nesting geese based on home range sizes of arctic foxes in small 
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Figure 6.1. The goose colony at Karrak Lake and location of study areas inside and 

outside the colony in 2000 to 2004. The goose colony is outlined in grey and study 

areas by stippled rectangles. 
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mammal and goose nesting areas (see Audet et al. 2002). The main extent of the colony 

was similar among years even though there tended to be a northwest ward expansion of 

the colony during the study (Alisauskas, unpublished data). Average nesting density by 

geese in the two study areas in the colony ranged 35-49 nests/ha during this study 

(Alisauskas, unpublished data).  

Study areas were similar in topography, geology, and plant communities except 

that heavy grazing by geese removed most graminoid plants (i.e. grasses and sedges) in 

lowland areas in the colony (Appendix A). Removal of graminoid plants was associated 

with a reduction in small mammal abundance of about one order of magnitude in 

lowland areas in the colony compared to those outside the colony (Appendix A). 

Abundance of both graminoid plants and small mammals in upland areas, in contrast, 

was similar inside and outside the colony (Appendix A).  

 

6.2.1 Arctic Fox Abundance 
Arctic fox abundance was monitored by recording number of adult foxes seen 

while walking transects that were distributed systematically throughout study areas (n = 

6 transects per study area). Transects were 5 km long (but see adjustments for water 

bodies below), spaced 1 km apart, and followed the Universal Transverse Mercator 

(UTM) grid system on 1:50,000 maps. Detours around smaller bodies of water (<1 km 

wide) were included as part of transects whereas detours around larger bodies of water 

(>1 km wide) were not included; I therefore corrected for distance travelled and used 

number of foxes seen per 30 km as an index of fox abundance for each study area. I 

estimated distance travelled by using Geographic Information System (GIS) (Intera 

Tydac 1991). Multiple observations of the same fox on the same transect were treated 

as one observation (foxes were identified by ear-tags or pelt-pattern).  

Arctic fox abundance was monitored between 23:00 and 09:30 which 

corresponds to periods of continuous fox activity (Anthony 1997, Bantle 1998). Fox 

abundance was monitored only during days with clear sky or high thin clouds to 

minimise potential bias in detection rate of foxes caused by weather (see Nichols 1992). 

Similarly, fox abundance was monitored after geese departed the colony following 
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hatch to avoid potential bias in detection rate of foxes caused by nesting geese (foxes 

can be difficult to detect among nesting geese). Foxes were detected at similar distances 

inside and outside the colony (see Results) illustrating that detection rate of foxes was 

similar in both areas. Fox abundance could not be monitored in one study area outside 

the colony in 2004 because of grizzly bear activity.  

 

6.2.2 Litter Size and Breeding Density 
Litter size and breeding density was monitored by systematic den surveys where 

sites with fox-sized entrances >1 m deep were considered as potential den sites (see 

below for verification of whether dens were used for pup rearing). Dens were visited 

once in May and at least once in late June or early July when pups were ca 6-8 weeks 

old. Dens were located by systematic surveys in May and July 2000 during which dens 

were located from transects that were spaced 1 km apart. Study areas were travelled 

extensively throughout this study and arctic fox dens are generally easy to detect 

because repeated den use tend to result in lush vegetation (Audet et al. 2002); I 

therefore suggest that few, if any, potential den sites were missed.  

Dens that showed evidence of reproduction in June or early July (i.e. fresh 

tracks in entrances, fresh diggings, pup-sized scats, or presence of foxes) were observed 

with spotting scopes to confirm pup rearing and to estimate litter size. Dens were 

monitored from distances of 300-800 m for 5 hours or more. Pup rearing was verified 

by visual confirmation of pups (14 litters), presence of pup-sized tracks and scats (1 

litter outside the colony), and presence of a female with enlarged teats (1 litter inside 

the colony). Litter size estimated from unmarked litters is a minimum estimate as all 

pups may not be outside the den simultaneously (Angerbjörn et al. 1995); I therefore 

compared number of pups seen at the den survey to number of pups captured and 

marked in mid to late July (where pups were captured until no unmarked pups were 

seen). I used the highest number of pups encountered during either of these visits as an 

estimate of litter size at weaning for each den. However, pups could not be captured 

from all litters because pups died or were relocated before they could be capture (4 

litters in the colony and 2 litters outside the colony). Similarly, litter size could not be 
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estimated by either method for 2 litters inside the colony and 1 litter outside the colony 

because pups died or were relocated before they could be either counted or captured.  

I used number of breeding dens per study area as an estimate of breeding 

density. However, surface area of water bodies varied among study areas so I adjusted 

data to number of breeding dens per 25 km2 terrestrial habitat for each study area before 

final analyses. I calculated the area of terrestrial habitat by using GIS (Intera Tydac 

1991).  

 

6.2.3 Small Mammal Abundance 
Small mammal abundance was monitored at 3 permanent trap-lines established 

in 1994 following Shank (1993). Trap-lines consisted of 25 trap-stations with 1 snap-

trap placed within 1 m of each trap-station. One trap-line was monitored during the 

second half of June and the other two were monitored during the second half of July. 

Small mammal abundance was monitored for 10 consecutive nights and I used number 

of captures per 100 trap-nights as sample unit for each year. I subtracted 0.5 trap-nights 

for each trap that was snapped without capture to correct for variation in sampling effort 

(Beauvais and Buskirk 1999). Trap-lines included habitats ranging from wet lowlands 

to dry upland hills.  

 

6.2.4 Statistical Analyses 
I examined how fox abundance, breeding density, and litter size varied inside 

and outside the colony and in relation to small mammal abundance by ANCOVA (Proc. 

GLM, SAS Institute Inc., 1990). I performed analyses separately for fox abundance, 

breeding density, and litter size (n = 19 indices of fox abundance, 20 estimates of 

breeding density, and 13 litters). I used small mammal abundance in the previous year 

for analyses on fox abundance and small mammal abundance in the current year for 

analyses on breeding density and litter size. I derived 5 a priori candidate models for 

each of these analyses that ranged from no variation inside and outside the colony or in 

relation to small mammal abundance, to models that included variation inside and 

outside the colony, small mammal abundance, and an interaction between these two 
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variables (see Table 6.1 for candidate models). I used variation around the grand mean 

as a null model (i.e. no effect of either of the variables examined). I used Akaike’s 

information criterion (AIC = n[ln(SSE/n)] + 2K, where K = number of model 

parameters, including the intercept and σ2) with small-sample adjustment (AICc = AIC 

+ [(2K(K + 1))/(n - K - 1)]) to select the most parsimonious models that best explained 

variation in fox abundance, breeding density, and litter size (Burnham and Anderson 

1998). I selected the model with the lowest AICC value as the best model and 

considered models within 2 AICC units to be of similar quality (Burnham and Anderson 

1998).  

 

6.3 Results 
Twenty-eight foxes were encountered during 571 km travelled and 16 litters 

were encountered at 6 different dens from 2000 to 2004. Another 3 dens that showed 

signs of previous pup-rearing (i.e. numerous entrances and vegetation markedly 

different from the surrounding) but were not used for pup-rearing during this study were 

also encountered (located in 3 different study areas). Foxes moved pups to temporary 

dens among rocks on 4 occasions and to unknown sites on at least 1, but possibly 4, 

occasions (foxes may, alternatively, have failed their breeding attempts on 3 occasions). 

Temporary dens among rocks were never open in May and were, thus, not used for 

parturition. Foxes were detected at similar distances inside and outside the colony ( x  = 

360 and 290 m in each area, respectively, range = 100-1,200 and 100-500 m in each 

area, respectively, although the range inside the colony was 100-500 m except for 1 fox 

that was detected at 1,200 m). My index of fox abundance inside the colony correlated 

with an independent estimate of fox abundance determined by the number of fox-fox 

interactions observed per hour and year during behavioural observations (r2 = 0.48 and 

n = 10 estimates of fox abundance from 5 years). Small mammal abundance varied 

considerably among years with peak small mammal abundance in 2000 (Figure 6.2).  
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Figure 6.2. Small mammal abundance at the Karrak Lake area in 1999 to 2004. 
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6.3.1 Arctic Fox Abundance 
Models {Goose Nesting × Small Mammals Previous Year}, {Goose Nesting}, 

and {No Effect} described variation in arctic fox abundance better than other models 

and accounted for 80% of the cumulative model weight (Table 6.1). Arctic fox 

abundance was, thus, related to both small mammal abundance in the previous year and 

seasonal influxes of geese and their eggs. However, factors other than goose nesting and 

small mammal abundance in the previous year may also have affected fox abundance as 

the null model (i.e. no relation between fox abundance and either nesting distribution by 

geese or small mammal abundance) accounted for 21% of the cumulative model weight. 

Nevertheless, arctic fox abundance was about 2 times higher in the colony than it was 

outside the colony with a mean of 2.1 (range = 0-5.4) and 0.9 (range = 0-3.9) foxes seen 

per 30 km in each area, respectively (Figure 6.3). Further, arctic fox abundance inside 

the colony followed that of small mammal abundance in the previous year (r2 = 0.45) 

whereas fox abundance outside the colony was unrelated to small mammal abundance 

in the previous year (r2 = 0.07). Fox abundance was unrelated to small mammal 

abundance in the current year both inside and outside the colony (r2 <0.01 for both 

areas). Fox abundance in the colony was correlated to nesting density by geese in the 

current year (r2 = 0.40) whereas there was no correlation between fox abundance in the 

colony and nesting densities in the previous year (r2 = 0.01). However, the correlation 

between fox abundance and nesting density by geese in the current year was driven by 

one data point so the relationship between these parameters was therefore unclear (r2 

<0.01 when outlier was removed). Small mammal abundance in the previous year was, 

thus, the main factor affecting annual variation in fox abundance in the colony whereas 

seasonal influxes of geese and their eggs elevated fox abundance above that which 

small mammal could support.   
 

6.3.2 Breeding Density 
Models {Goose Nesting + Small Mammal} and {Goose Nesting × Small 

Mammal} described variation in breeding density by foxes better than other models and 

accounted for 93% of the cumulative model weight (Table 6.1). Breeding density by 
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Table 6.1. Model selection for variation in arctic fox abundance, breeding density, and 

litter size inside and outside the goose colony at Karrak Lake and in relation to small 

mammal abundance in 2000-2004. Included in the table are differences in AICc values 

between each model and the best fitting model (∆i), number of model parameters (K), 

model weights (wi), and coefficient of determination (r2). I used variation around the 

grand mean as the null model (called ‘no effect’ in the table). AICc values for the best 

models were 18.13, 2.33, and - 19.07 for models on fox abundance, breeding density, 

and litter size, respectively. 

 

Model 1 K ∆i wi r2 
Fox Abundance 
Goose Nesting × Small Mammal Previous Year 
Goose Nesting 
No Effect 
Goose Nesting + Small Mammal Previous Year 
Small Mammal Previous Year 
 
Breeding density 
Goose Nesting + Small Mammal 
Goose Nesting × Small Mammal 
Goose Nesting 
Small Mammal 
No Effect 
 
Litter Size 
Small Mammal 
No Effect 
Goose Nesting + Small Mammal 
Goose Nesting 
Goose Nesting × Small Mammal 

 
5 
3 
2 
4 
3 
 
 

4 
5 
3 
3 
2 
 
 

3 
2 
4 
3 
5 

 
0 

0.03 
0.66 
1.97 
2.44 

 
 

0 
1.81 
5.20 
6.61 
9.35 

 
 

0 
1.13 
4.06 
4.11 
9.78 

 
0.30 
0.29 
0.21 
0.11 
0.09 

 
 

0.66 
0.27 
0.05 
0.02 

<0.01 
 
 

0.55 
0.31 
0.07 
0.07 

<0.01 

 
0.43 
0.17 
na 

0.22 
0.05 

 
 

0.54 
0.58 
0.29 
0.24 
na 
 
 

0.30 
na 

0.31 
0.04 
0.30 

 
1 × indicates that both major effects and the interaction between major effects were included in the model 
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Figure 6.3. Arctic fox abundance inside and outside the goose colony at Karrak Lake 

and in relation to small mammal abundance in the previous year in 2000 to 2004.  
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foxes was, thus, related to both small mammal abundance and seasonal influxes of 

geese and their eggs. Breeding density by foxes was about 3 times higher in the colony 

than it was outside the colony with a mean of 1.9 (range = 0-3.9) and 0.6 (range = 0-

2.3) breeding dens per 25 km2 in each area, respectively (Figure 6.4)3. Further, breeding 

density by foxes was highly correlated with small mammal abundance both inside and 

outside the colony. In fact, foxes did not breed in any study area or in the colony as a 

whole in 2002 when small mammal abundance was at its lowest. The influence of small 

mammal abundance on breeding density of foxes was especially pronounced in the 

colony in years when small mammals were abundant – thus, the interaction between 

small mammal abundance and nesting distribution by geese. Breeding density of foxes 

in the colony was unrelated to nesting density by geese in both the current (r2 <0.01) 

and the previous year (r2 <0.01). Small mammal abundance was, thus, the main factor 

affecting whether foxes bred whereas seasonal influxes of geese and their eggs elevated 

breeding density of foxes above that which small mammals could support.  

 

6.3.3 Litter Size 
Models {Small Mammal} and {No Effect} described variation in litter size 

better than other models and accounted for 85% of the cumulative model weight (Table 

6.1). Litter size was, thus, related mainly to small mammal abundance whereas seasonal 

influxes of geese and their eggs had limited, if any, impact on litter size. However, 

factors other than small mammal abundance may also have affected litter size by foxes 

as the null model accounted for 31% of the cumulative model weight. Litter size, 

nevertheless, increased with increasing small mammal abundance (Figure 6.5). Mean 

litter size at weaning was 7.4 pups (range = 4-11 pups) from 2000 to 2004.  

 

6.4 Discussion 
The influence of migratory animals on population dynamics of predators is 

poorly understood. However, this study showed that population dynamics of arctic 

                               
3 mean breeding density before water bodies were excluded was 1.1 and 0.5 breeding dens per 25 km2 
inside and outside the colony, respectively (range = 0-2 dens per 25 km2 for both areas).  
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Figure 6.4. Breeding density by arctic foxes inside and outside the goose colony at 

Karrak Lake and in relation to small mammal abundance in 2000 to 2004. 
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Figure 6.5. Litter size of arctic foxes at weaning inside and outside the goose colony at 

Karrak Lake and in relation to small mammal abundance in 2000 to 2004. 
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foxes was influenced by both seasonal influxes of migratory geese and annual variation 

in small mammal abundance. Specifically, small mammal abundance was the main 

factor affecting reproductive output and annual variation in fox abundance whereas 

geese and their eggs provided foxes with external subsidies that elevated breeding 

density and fox abundance above that outside the colony. Small mammal abundance 

was, thus, the main factor governing population dynamics of arctic foxes whereas geese 

and their eggs elevated breeding density and fox abundance above that which small 

mammals could support. Furthermore, the influence of geese and their eggs extended 

well into the following spring as breeding density by foxes at Karrak Lake was elevated 

above that outside the colony even though geese left the colony 8-9 months before 

foxes started to breed. This was consistent with arctic foxes using similar areas 

throughout the year at a large waterfowl-nesting area in Alaska (Anthony 1997).  

Geese and their eggs elevating fox abundance at Karrak Lake above that which 

small mammal could support was similar to that of predators often congregating in 

areas with migratory prey (Madsen and Shine 1996, Willson et al. 1998). However, 

predators seldom remain in these areas after migratory animals leave (Madsen and 

Shine 1996, Willson et al. 1998) whereas fox abundance at Karrak Lake remained 

elevated well into the following spring (i.e. at least 10 months after geese left the 

colony). Differences in the way predators respond to migratory prey may largely be 

related to behavioural differences in how they exploit temporarily abundant foods and 

how these behaviours link predators in space. Specifically, caching and use of stored 

foods allows predators to remain in familiar areas with predictable foods (Vander Wall 

1990, Samelius and Alisauskas 2000) whereas strategies such as fat storage, tracking 

movements of migratory prey, and switching among foods do not link predators in 

space. Limited influence of geese and their eggs on annual variation in fox abundance at 

Karrak Lake was similar to arctic foxes at Cape Churchill in Manitoba, Canada, not 

responding numerically when lesser snow geese at the nearby colony at La Pérouse Bay 

increased from 4,000 to 40,000 nesting geese (Roth 2002). In fact, a lack of a numerical 

response of predators (other than seasonal congregations) allows migratory animals to 

escape predator regulation and appears to be the ultimate reason why migratory animals 

are often numerous (Fryxell et al. 1988).  
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Annual variation in fox abundance at Karrak Lake was driven largely by small 

mammal abundance in the previous year which follows that of a close link between 

arctic foxes and small mammals in other areas where they coexist (Tannerfeldt and 

Angerbjörn 1998, Angerbjörn et al. 1999, Strand et al. 1999). Further, this also shows 

that small mammals are key determinants of population dynamics of arctic foxes even 

in areas where they have access to seasonally superabundant foods (see Samelius et al. 

in press for similar results). The link between fox abundance and small mammal 

abundance in the previous year appeared to reflect reproductive output in previous year 

and follows that of recruitment of young appearing to be a key determinant of arctic fox 

abundance throughout their range (Macphearson 1969, Angerbjörn et al. 1991, 

Angerbjörn et al. 1999). Fluctuations in fox abundance may also reflect variation in 

survival and dispersal rates (see O’Donoghue et al. 1997). I suggest that differences in 

the influence of small mammals and geese in this study were largely related to 

differences in the length of time that these foods were present at the colony and the 

extent of time that they overlapped with the breeding season by foxes. Specifically, 

small mammal abundance remained high for several months in years when they were 

abundant (Samelius, personal observation) and therefore overlapped the entire breading 

season by foxes (i.e. March to August). Geese and their eggs, in contrast, were abundant 

for only 1 month of the year and therefore overlapped only part of the breeding season 

by foxes. Limited influence of geese and their eggs on reproductive output by foxes in 

this study, thus, suggest that foxes were not caching sufficient number of eggs to meet 

nutritional demands of reproduction the following spring. Eggs may, alternatively, be 

poor in meeting nutritional demands of reproduction because large consumption of 

albumen can cause biotin deficiency (Klevay 1976) and thereby limit the number of 

eggs foxes can consume.  

I was surprised that arctic fox abundance outside the colony was unrelated to 

small mammal abundance. In fact, I predicted that the influence of small mammals 

would be stronger outside the colony than it was inside the colony because foxes 

outside the colony did not have access to seasonally abundant geese and their eggs. 

However, I suspect that the lack of a linkage between small mammals and fox numbers 



 68

outside the colony was an artefact of low fox densities making it difficult to detect this 

relationship.  

Arctic foxes never used more than two thirds of the dens available for pup-

rearing which suggest that reproductive output by foxes was not limited by availability 

of den sites. However, the proportion of dens used for pup-rearing may not be a reliable 

index of whether reproductive output by foxes was limited by den sites because 

territorial behaviour may reduce the number of dens available for pup-rearing (Gordon 

1997). For example, foxes were often seen visiting dens other than those in which they 

reared their young (Samelius, unpublished data) which suggest that foxes may have 

claimed or attempted to claim more than one den site. So, although territorial 

behaviours tend to be relaxed when foods are abundant (Tsukada 1997, Eide et al. 

2004), there was only a limited number of suitable dens sites available to foxes. 

Availability of den sites may, thus, limit reproductive output by foxes in years when 

small mammals are abundant and would otherwise allow more foxes to breed (see Smits 

et al. 1988 for suggestion that availability of den sites may limit reproductive output by 

arctic foxes in areas where suitable dens sites are scarce).  

In summary, arctic foxes are closely linked to small mammals throughout most 

of their range (Audet et al. 2002) and this study showed that small mammal abundance 

was the main factor governing population dynamics of arctic foxes even in areas where 

they have access to seasonally superabundant foods. However, seasonal influxes of 

geese and their eggs provided foxes with external subsidies that elevated breeding 

density and fox abundance above that which small mammals could support. This study 

highlights the influence of seasonal and annual variation on population dynamics of 

consumers and the linkage between arctic environments and wintering areas by geese 

thousands of kilometres to the south (see Alisauskas 2002). This study also suggests 

that the influence of migratory animals on population dynamics of predators may 

largely be related to the extent of time that influxes of migratory animals overlap with 

the breeding season by predators.  
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7. SYNTHESIS 

7.1 Food Caching and Superabundant Foods 
Food caching may be adaptive to avoid food shortage in stochastic environments; 

use of stored foods allows animals to remain in familiar areas and is an alternative 

strategy to migration, torpor, hibernation, and fat storage (Smith and Reichman 1984, 

Vander Wall 1990). However, the extent to which animals cache and use stored foods is 

unknown for most species (Vander Wall 1990). This is especially true for members of 

the order Carnivora for which few studies have examined caching behaviours in detail 

(but see Tinbergen 1965, Macdonald 1976, Harrington 1981, Henry 1986, Samelius and 

Alisauskas 2000). This study showed that arctic foxes cached 2,000-3,000 eggs per fox 

each year and that the rate at which eggs were cached was independent of sex, size, 

breeding status, and age of foxes (Chapter 3). Food caching was, thus, not limited to a 

certain portion of the population. Further, this study showed that arctic foxes used 

cached eggs almost 1 year after foods were cached (Chapter 4). This differs greatly 

from that of carnivores generally storing foods for only a few days before consumption 

(Vander Wall 1990). Long-term storage of eggs may largely be related to cold 

temperatures and physio-chemical properties of eggs impairing microbial activity 

(Stickney 1991, Bantle and Alisauskas 1998).  

Arctic foxes at Karrak Lake cached similar numbers of eggs among years 

(Chapter 3) although they rarely used cached eggs in years when collared lemmings 

were abundant (Chapter 4). Instead, foxes appeared to cache as many eggs as possible 

during the nesting season by geese which may be an adaptive strategy to ensure a buffer 

against unpredictable changes in lemming abundance. Similarly, arctic foxes caching 

eggs independently of availability of alternative foods and current energetic demands 

(Chapter 3) may help to explain why predators occasionally kill more prey than they 

can consume (termed surplus killing by Kruuk 1972). Specifically, surplus killing may 

provide predators with a buffer against unpredictable changes in prey abundance or 

failure to capture prey. The adaptiveness of such buffers may, however, depend on the 

rate at which prey decompose.  
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7.2 Migratory Prey and Linkages of Ecosystems 
Migratory animals provide predators with seasonal pulses of external subsidies 

that may elevate predator abundance above that which local foods can support (Polis 

and Strong 1996, Polis et al. 1997). However, the influence of seasonal influxes of 

migratory animals on population dynamics of predators is poorly understood (but see 

Madsen and Shine 1996 and references therein for effects on predators that track 

migratory movements of their prey). This is especially true for migratory animals whose 

movements are not tracked by their predators (e.g. long-distance migrants such as birds 

and fishes). This study showed that seasonal influxes of geese and their eggs elevated 

both fox abundance and breeding density above that which small mammals could 

support but that overall population dynamics of arctic foxes were driven largely by 

small mammals (Chapter 6). However, geese and their eggs provided arctic foxes with 

seasonally superabundant foods on which foxes relied heavily in years when small 

mammals were scarce (Chapter 4). The periodic nature of migration may result in the 

influence of migratory prey being more important among generalist predators that 

switch between foods or predators that cache foods (see Vander Wall 1990, Ostfeld and 

Keesing 2000).  

Geese and their eggs elevating fox abundance and breeding density above that 

which small mammals could support (Chapter 6) highlights the linkage between arctic 

environments and wintering and staging areas of geese thousands of kilometres to the 

south (see Alisauskas 2002). Further, anthropogenic subsidies in goose diets outside of 

the arctic (see Abraham et al. 2005) may, thus, have had indirect effects on local 

population dynamics of arctic foxes (but see Roth 2002 for lack of large-scale effects of 

geese on arctic fox population dynamics). In fact, few systems occur in isolation and 

most ecosystems are linked to other system in some way or another (Polis and Strong 

1996, Polis et al. 1997).  
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APPENDIX A: HABITAT ALTERATION BY GEESE AT A LARGE ARCTIC 
GOOSE COLONY –  CONSEQUENCES FOR LEMMINGS AND VOLES  
 

A.1 Introduction 
Heavy grazing by herbivores can have dramatic impact on distribution and 

abundance of plants (Crawley 1983). For example, recent increases in populations of 

arctic-nesting geese have resulted in considerable habitat alterations in some parts of the 

arctic (Ganter 1996, Jefferies et al. 2004, Abraham et al. 2005, Alisauskas et al. in 

press). However, the influence of these habitat alterations on other animals is poorly 

understood (but see Rockwell et al. 2003 for negative effects on savannah sparrows). 

Ross’s and lesser snow geese nest at large arctic colonies where they feed 

predominantly on graminoid plants such as grasses and sedges (Ryder and Alisauskas 

1995, Mowbray et al. 2000). There is often considerable niche overlap between geese 

and small mammals such as lemmings and voles (Gauthier et al 1996). There is, thus, 

potential for resource competition among these herbivores (see Bêty et al. 2002 for 

apparent competition among geese and small mammals). In this study I examined how 

grazing by Ross’s and lesser snow geese at a large goose colony affected abundance 

and distribution of small mammals and plants.  

 

A.2 Methods 
Small mammal abundance and aboveground biomass of plants was monitored in 

two 1×1 km study areas in the goose colony at Karrak Lake and in two 1×1 km study 

areas outside the colony. Study areas were distributed systematically around the 

southern and original part of the colony with outside areas located outside the influence 

of nesting geese (>5 km from the edge of the colony) while assuring that these areas 

could be reached by foot. Location of study areas were selected from the Universal 

Transverse Mercator (UTM) grid system on a 1:50,000 map; the northern study area in 

the colony was located 9 km north of the southern study area in the colony and the two 

study areas outside the colony were located 13 km west and east of the southern study 

area in the colony. The main extent of the colony was similar among years even though 
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there tended to be a north and westward expansion of the colony during the study 

(Alisauskas, unpublished data). Study areas inside and outside the colony were similar 

in topography and geography.  

 

A.2.1 Monitoring of Small Mammal Abundance 
Small mammal abundance was monitored at three trap-lines of snap-traps in 

each study area in early to mid July. Trap-lines were established in habitats preferred by 

small mammals following Banfield (1974); two trap-lines in each study were 

established on high dry ground (called upland hereafter) and one trap-line in each study 

area was established in wet lowland tundra (called lowland hereafter). Trap-lines in 

uplands were established on the two hills closest to the center of each study area 

(selected from 1:50,000 maps) whereas trap-lines in lowlands were established at the 

wet lowland closest to the center of each study area (wet lowland areas were not 

indicated on 1:50,000 maps so these were identified in the field).  

Trap-lines consisted of 25 trap-stations, spaced 10 m apart, and with one snap-

trap within 1 m of each trap-station following Shank (1993). Trap-lines ran for two 

consecutive nights and I converted data to number of captures per 100 trap-nights for 

each trap-line. I subtracted 0.5 trap-nights for each trap that was snapped without 

capture to account for variation in sampling effort following Beauvais and Buskirk 

(1999). Microhabitat for each trap-station was determined following McLandress 

(1983). Small mammal abundance could not be monitored in one study area outside the 

colony in 2004 because of grizzly bear activity.  

 

A.2.2 Sampling of Aboveground Biomass of Plants 
Aboveground biomass of plants (called plant biomass hereafter) was sampled by 

taking core samples (75 mm in diameter) following Jefferies and Abraham (1994). 

Three core samples were taken at each trap-line in lowland areas and 2 core samples at 

each trap-line in upland areas; sample-sites were standardised as mossy tussocks in 

lowland areas and mixed habitat in upland areas following habitat classifications by 

McLandress (1983). Sample sites were spaced evenly along trap-lines and core samples 
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were taken at the center of the first tussock north of selected trap-stations in lowland 

areas and 0.4 m north of selected trap-stations in upland areas (core samples were taken 

south of sample sites if there was bedrock in the northerly direction). Lowland areas 

were sampled in 2001 and upland areas were sampled in 2002 to allow for processing of 

samples within 24 hours (processing of samples was very time consuming under 

primitive field-conditions). I was interested in differences in aboveground biomass 

inside and outside the colony, not between lowland and upland areas, so sampling in 

different years did not affect analyses.  

Vegetation samples were processed within 24 hours of collection following 

Jefferies and Abraham (1994). Vegetation was cut at soil level for upland samples and 

at moss level for lowland samples. Plants were sorted into live and dead material of 

graminoid plants, lichen, moss (phylum Bryophyta), and species level for shrubs and 

herbaceous plants. Vegetation samples were dried in the field and then re-dried to 

constant mass (±0.001 g) at 70oC in the laboratory.  

 

A.2.3 Community Similarity 
I calculated proportional similarity (PS) of plant communities based on 

aboveground biomass by [PS = 1-(Σ|pi - qi|)/2] where pi = the proportion of 

aboveground biomass of species i in the first sample and qi = the proportion of 

aboveground biomass of species i in the second sample (Brower et al. 1997:189). I 

calculated proportional similarity both among and within study areas inside and outside 

the colony. I also calculated proportional similarity with and without graminoid plants 

to examine how grazing by geese affected community similarity.  

 

A.2.4 Statistical Analyses 
I examined how small mammal abundance varied inside and outside the colony 

and among years by two-way ANOVA where data were arranged by capture data per 

trap-line, type of area (i.e. inside versus outside the colony), and year (Proc. GLM, SAS 

Institute Inc., 1990). I performed analyses separately for upland and lowland areas (n = 

38 trap-lines from upland and 19 trap-lines from lowland areas). There was 
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considerable heterogeneity in the variance for captures of small mammals so I log-

transformed data as this provided the best approximation of equal variance (Zar 1999). I 

derived 4 candidate models for small mammal abundance where we, a priori, included 

models that ranged from no variation among areas and years to including both these 

variables. I used variation around the grand mean as the null model (i.e. no effect of the 

variables examined). I used Akaike’s information criterion (AIC) with small-sample 

adjustment (AICC) to select the model that best explain variation in small mammal 

abundance (Burnham and Anderson 1998). Further, I selected the model with the lowest 

AICC value as the best model and considered models within 2 AICC units to be of 

similar quality (Burnham and Anderson 1998).  

I examined how plant biomass varied inside and outside the colony by ANOVA 

where data were arranged by biomass and type of area (i.e. inside versus outside the 

colony) (Proc GLM, SAS Institute Inc. 1990). I performed analyses separately for 

upland (n = 16) and lowland areas (n = 12). Further, I performed these analyses with 

and without graminoid plants to examine how grazing by geese affected plant biomass. 

I derived 2 candidate models for plant biomass where we, a priori, included one model 

with variation among areas and one model without variation among areas. I used 

variation around the grand mean as the null model (i.e. no effect of nesting geese). I 

used Akaike’s information criterion with small-sample adjustment (AICC) to select the 

model that best explain variation in small mammal abundance as above.  

 

A.3 Results 
Twenty-three red-backed voles, 15 collared lemmings, and 3 brown lemmings 

were captured in 2744.5 trap-nights during this study ( x  = 1.5 captures per 100 trap-

nights, range = 0-11 captures per 100 trap-nights). Capture rates were 1.1 red-backed 

voles, 0.5 collared lemmings, and 0 brown lemmings per 100 trap-nights in upland areas 

and 0.2 red-backed voles, 0.7 collared lemmings, and 0.3 brown lemmings per 100 trap-

nights in lowland areas. Further, brown lemmings were captured only outside the 

colony. In fact, only 1 brown lemming has been capture in the colony in 7,091 trap-

nights from 1994 to 2004 (Alisauskas, unpublished data).  
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Model {Inside vs. Outside Colony} described variation in small mammal 

abundance in lowland areas better than other models and accounted for 81% of the 

cumulative model weight (Table A.1). Specifically, small mammal abundance was 

higher in lowland areas outside the colony than in lowland areas inside the colony; 

mean small mammal abundance was 2.6 and 0.2 captures per 100 trap-nights in each 

area, respectively (range = 0-11 and 0-2.0 captures per 100 trap-nights in each area, 

respectively). Model no effect, in contrast, described variation in small mammal 

abundance in upland areas better than other models and accounted for 67% of the 

cumulative model weight (Table A.1). Specifically, small mammal abundance was 

similar in upland areas inside and outside the colony; mean small mammal abundance 

was 1.6 and 2.4 captures per 100 trap-nights in each area, respectively (range = 0-10 

and 0-10 captures per 100 trap-nights in each area, respectively).  

Model {Inside vs. Outside Colony} described variation in plant biomass in 

lowland areas better than the no effect model and accounted for 95% of the cumulative 

model weight (Table A.2). Specifically, plant biomass was higher in lowland areas 

outside the colony than in lowland areas inside the colony (Table A.3); mean biomass 

of plants was 380 and 83 g/m2 in each area, respectively (range = 190-640 and 10-210 

g/m2 in each area, respectively). This was driven by virtually complete removal of 

graminoid plants inside the colony. Biomass of plants other than graminoids, in 

contrast, was similar in lowland areas inside and outside the colony and was illustrated 

by the no effect model described variation in plant biomass better than model {Inside 

vs. Outside Colony} when graminoid plants were not included (model weight = 0.79, 

Table A.2). Model {Inside vs. Outside Colony} described variation in plant biomass in 

upland areas better than the no effect model and accounted for 85% of the cumulative 

model weight (Table A.2). Specifically, plant biomass was greater in upland areas 

outside the colony than in upland areas inside the colony (Table A.3); mean biomass of 

plants was 300 and 130 g/m2 in each area, respectively (range = 30-510 and 10-350 

g/m2 in each area, respectively). This was largely the result of greater abundance of 

lichens and mountain avens outside the colony. Graminoid plants were rare in upland 

areas both inside and 
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Table A.1. Model selection for variation in small mammal abundance in lowland and 

upland areas inside and outside the goose colony at Karrak Lake in 2000 to 2004. 

Included in the table are differences in AICc values between each model and the best 

fitting model (∆i), number of model parameters (K), model weights (wi), and coefficient 

of determination (r2). I used variation around the grand mean as the null model (i.e. no 

effects of the variables examined). AICc values for the top model was 40.31 and 84.92 

in lowland and upland areas, respectively.  

 
 K ∆i wi r2 
Lowland areas: 
goose effect1 
no effect 
year effect 
year & goose effect 
 
Upland areas: 
no effect 
goose effect1 
year effect 
year & goose effect 

 
3 
2 
6 
8 
 
 

2 
3 
6 
8 

 
0 

2.99 
11.54 
15.70 

 
 

0 
1.66 
6.01 

11.71 

 
0.81 
0.18 

<0.01 
<0.01 

 
 

0.67 
0.29 
0.03 

<0.01 

 
0.26 
na 

0.26 
0.49 

 
 

na 
0.02 
0.11 
0.12 

 
1 goose effect refers to inside versus outside the colony 
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Table A.2. Model selection for variation in aboveground biomass of plants in lowland 

and upland areas inside and outside the goose colony at Karrak Lake in 2000 to 2004. 

Included in the table are differences in AICc values between each model and the best 

fitting model (∆i), number of model parameters (K), model weights (wi), and coefficient 

of determination (r2). I used variation around the grand mean as the null model (i.e. no 

effects of the variables examined). AICc values for the top model was -3.63, -27.14, -

12.67, and -12.79 for analyses with and without graminoid plants in lowland and upland 

areas, respectively. 

 

Model K ∆i wi r2 
Lowland areas: 
All plants: 

goose effect1 
no effect 

 
No graminoid plants: 

no effect 
goose effect1 

 
Upland areas: 
All plants: 

goose effect1 
no effect 

 
No graminoid plants: 

goose effect1 
no effect 

 
 

3 
2 
 
 

2 
3 
 
 
 

3 
2 
 
 

3 
2 

 
 

0 
5.94 

 
 

0 
2.64 

 
 
 

0 
3.52 

 
 

0 
3.47 

 
 

0.95 
0.05 

 
 

0.79 
0.21 

 
 
 

0.85 
0.15 

 
 

0.85 
0.15 

 
 

0.55 
na 
 
 

na 
0.08 

 
 
 

0.34 
na 
 
 

0.34 
na 

 
1 goose effect refers to inside versus outside the colony 
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Table A.3. Aboveground biomass of plants inside and outside the large goose colony at Karrak Lake in the summers of 2001 and 

2002. I standardised sample sites as mossy tussocks in lowland areas and mixed habitat in upland areas where habitat classification 

followed those by McLandress (1983). Plants were sampled 8-15 July in 2001 and 12-21 July in 2002.  

 
 Type of plant (dry weight in g/m2 ± 95% C.I.) 

                                                                               Woody plants                                                                                    Annual herbs                              Non-vasc. plants         

Habitat & Location graminoid 

plants 

cran- 

berry 

crow- 

berry 

arctic  

heather 

Labrador 

tea 

bill- 

berry 

willow mountain 

aven 

bog  

Rose-Mary 

ragwort unknown

herb 

lichen moss total 

biomass 

Lowland Area 

outside 

colony 

Upland Area 

outside 

colony 

 

3301 ± 230 

 02 ± 02 

 

1.41 ± 2.7 

0 ± 0 

 

17 ± 34 

34 ± 29 

 

8.5 ± 9.0 

45 ± 36 

 

1.1 ± 2.9 

0 ± 0 

 

0 ± 0 

0 ± 0 

 

0 ± 0 

1.5 ± 1.5 

 

16 ± 10 

1.1 ± 1.1 

 

4.5 ± 12 

33 ± 61 

 

41 ± 58 

23 ± 29 

 

11 ± 29 

0 ± 0 

 

0 ± 0 

0 ± 0 

 

3.0 ± 6.7 

0 ± 0 

 

0 ± 0 

0 ± 0 

 

0 ± 0 

0 ± 0 

 

53 ± 85 

0 ± 0 

 

0 ± 0 

1.5 ± 3.9 

 

0 ± 0 

0 ± 0 

 

0 ± 0 

0 ± 0 

 

0 ± 0 

1.1 ± 2.7 

 

0 ± 0 

0.8 ± 1.9 

 

1.7 ± 4.0 

0 ± 0 

 

13 ± 25 

13 ± 12 

 

140 ± 110 

50 ± 51 

  

na  

 na 

 

32 ± 70 

8.8 ± 14 

 

380 ± 200 

83 ± 74 

 

300 ± 120 

130 ± 90 

 
1 68 and 80% of the graminoid plants were brown/dead graminoid plants in lowland and upland areas outside the colony, respectively 
2 trace amounts to small to register on the scale 
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outside the colony and omission of graminoid plants from the analyses did not alter the 

results for plant biomass in upland areas (Tables 2 and 3).  

 Proportional community similarity inside and outside the colony was 0.09 and 

0.63 for lowland and upland areas, respectively (Table A.4). However, proportional 

community similarity of lowland areas inside and outside the colony increased to 0.58 

when graminoid plants were not included (i.e. 58% similarity among other plants in 

lowland areas inside and outside the colony). Proportional community similarity was 

generally greater between than within study areas inside and outside the colony when 

graminoid plants were not included (Table A.4); plant communities were, thus, similar 

among study areas inside and outside the colony for plants other than graminoids.  

 

A.4 Discussion 
Heavy grazing by geese has resulted in substantial habitat alteration in some 

parts of the arctic (Ganter 1996, Jefferies et al. 2004, Abraham et al. 2005). However, 

the influence of these habitat alterations on other animals is poorly understood. This 

study showed that heavy grazing by geese had a negative impact on distribution and 

abundance of small mammals in the colony at Karrak Lake. In fact, geese removed 

virtually all graminoid plants in lowland areas in the colony (see Alisauskas et al. in 

press for similar results) which, in turn, coincided with a dramatic reduction in small 

mammal abundance in lowland areas in the colony. A similar reduction in small 

mammal abundance could, alternatively, have resulted from apparent competition 

where geese elevated predator abundance above that outside the colony (see Chapter 6 

for such effect on arctic foxes) and thereby increased their predation pressure on small 

mammals (see Bêty et al. 2002 for apparent competition among geese and small 

mammals). However, I suggest that the reduction in small mammal abundance was 

driven primarily by habitat alteration rather than apparent competition as small mammal 

abundance in the colony was reduced only in lowland areas and not in upland areas.  

Small mammals can have a large indirect impact on nesting performance of 

birds in that predators often switch from small mammals to bird prey in years when 

small mammals are scarce (Summers 1986, Bêty et al. 2001). This study, in contrast, 
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Table A.4. Proportional community similarity in aboveground biomass of plants with 

and without graminoid plants inside and outside the goose colony at Karrak Lake in 

2001 and 2002. 

 

 Proportional Community Similarity  
Community comparisons incl. graminoids excl. graminoids Sample size 
Among goose and non-goose nesting areas:
lowland areas inside and outside the colony 
upland areas inside and outside the colony 
 
within goose and non-goose nesting areas:
lowland areas outside the colony 
lowland areas inside the colony 
upland areas outside the colony 
upland areas inside the colony 

 
0.09 
0.63 

 
 

0.71 
0.40 
0.44 
0.46 

 
0.58 
0.63 

 
 

0.84 
0.40 
0.45 
0.46 

 
12 
16 

 
 

6 
6 
8 
8 
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showed that grazing by geese can have strong impact on small mammal abundance 

through resource consumption and habitat alteration. There is, thus, evidence for 

complex interactions among these herbivores even in a relatively simple ecosystem 

dominated by geese, small mammals, and arctic foxes. Part of this complexity may be 

related to colony size and the relative abundance of these herbivores. Specifically, small 

mammal abundance and predator switching appears to influence nesting performance 

only at small colonies (Raveling 1989) whereas heavy grazing by geese and reduction 

in small mammal abundance appears to occur only at large colonies (e.g. this study). 

The dominating process may, thus, switch from top-down to bottom-up effects as 

colony size increases.  
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