

Agriculture et Agroalimentaire Canada

Row Spacing, Yields and the Bottom Line – How wide can we go?

Guy P. Lafond

Indian Head Research Farm

Collaborators

• Bill May Indian Head Research Farm

• Chris Holzapfel Indian Head Agricultural Research Foundation

Funding Support

- Agriculture and Agri-Food Canada
- Indian Head Agricultural Research Foundation
- SeedMaster
- Saskatchewan Oat Development
 Commission

Why the interest in wide row spacing?

No-till

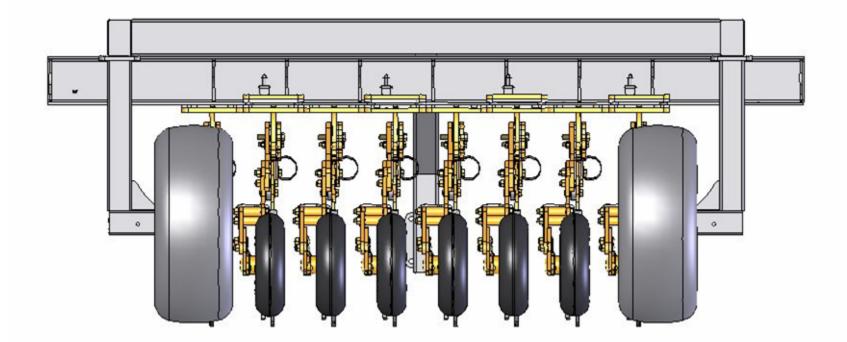
No-Till means working with standing stubble and surface residues Surface residues create unique challenges at seeding

•No-till and Narrow spacing = more openers, more draft, more energy, more costs, more maintenance, more residue clearance problems, narrower seeders, longer seeding periods

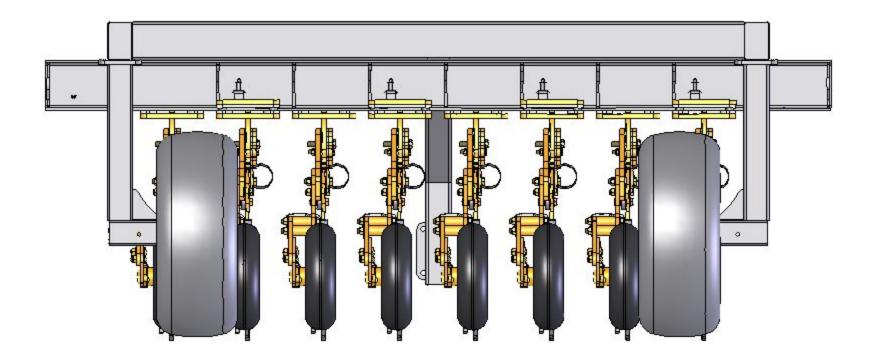
Much more is possible with wider row spacing...

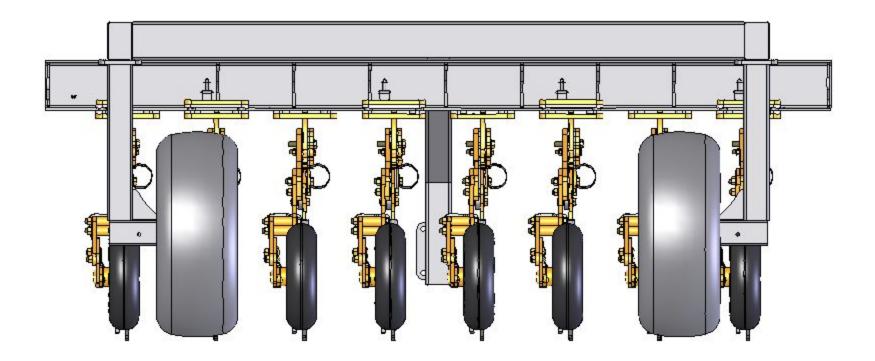
Questions of Interest

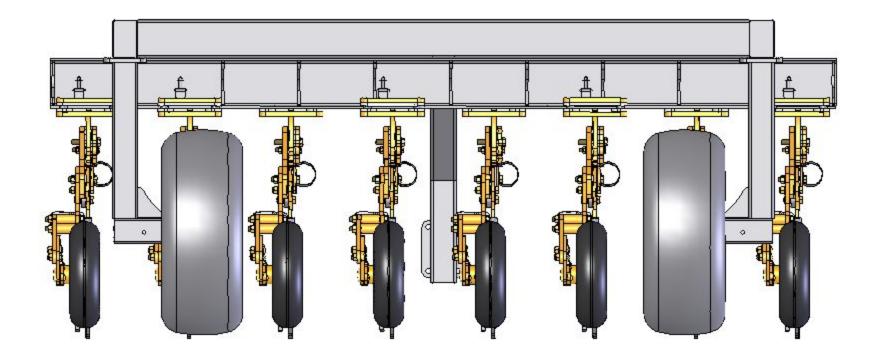
- Can we go beyond 12"?
- What are the implications for sidebanded nitrogen fertilizers?
- What are the implications for weed growth?


Recent Results 10", 12", 14" and 16" Row Spacing Studies

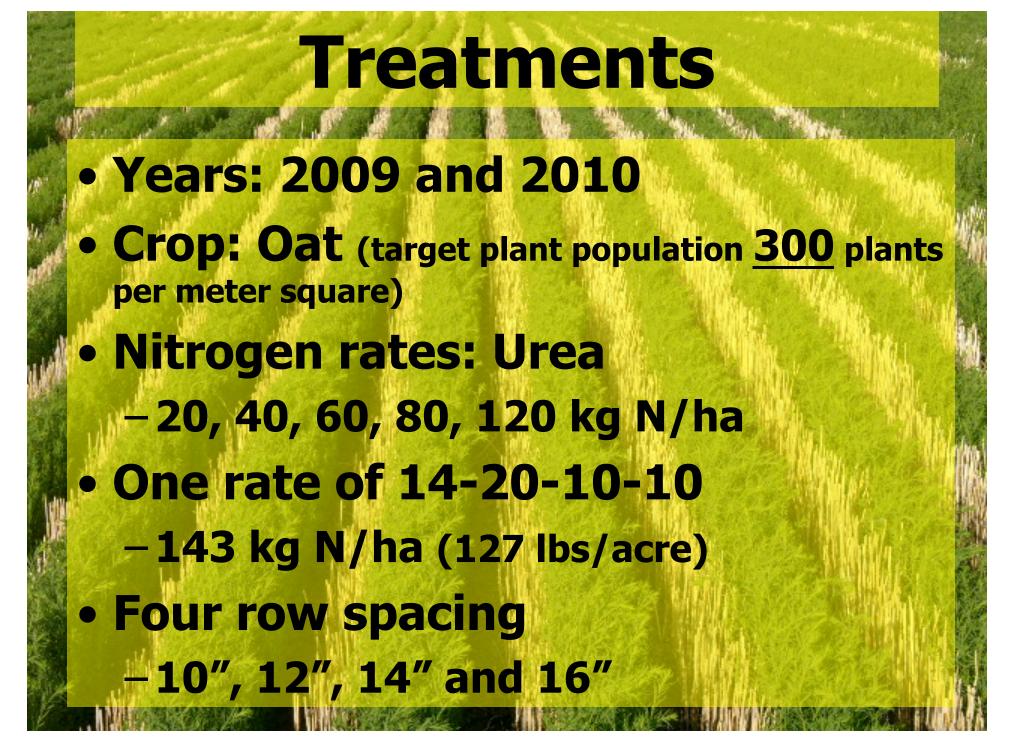
Methodology




10 " spacing

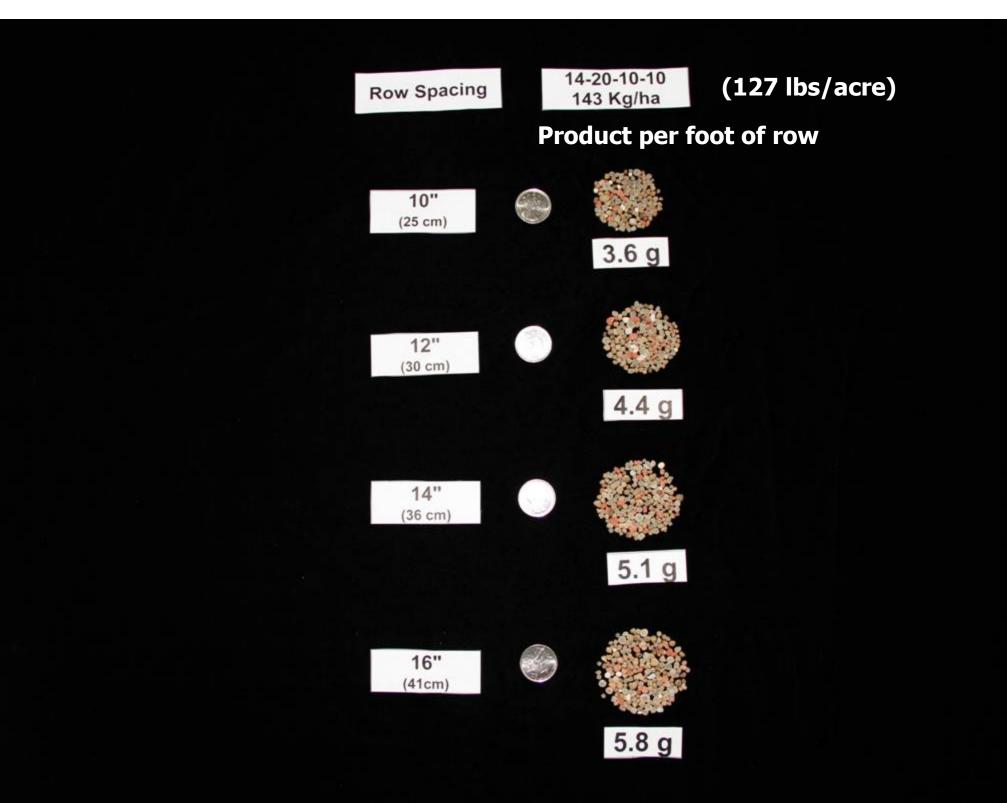

12" spacing

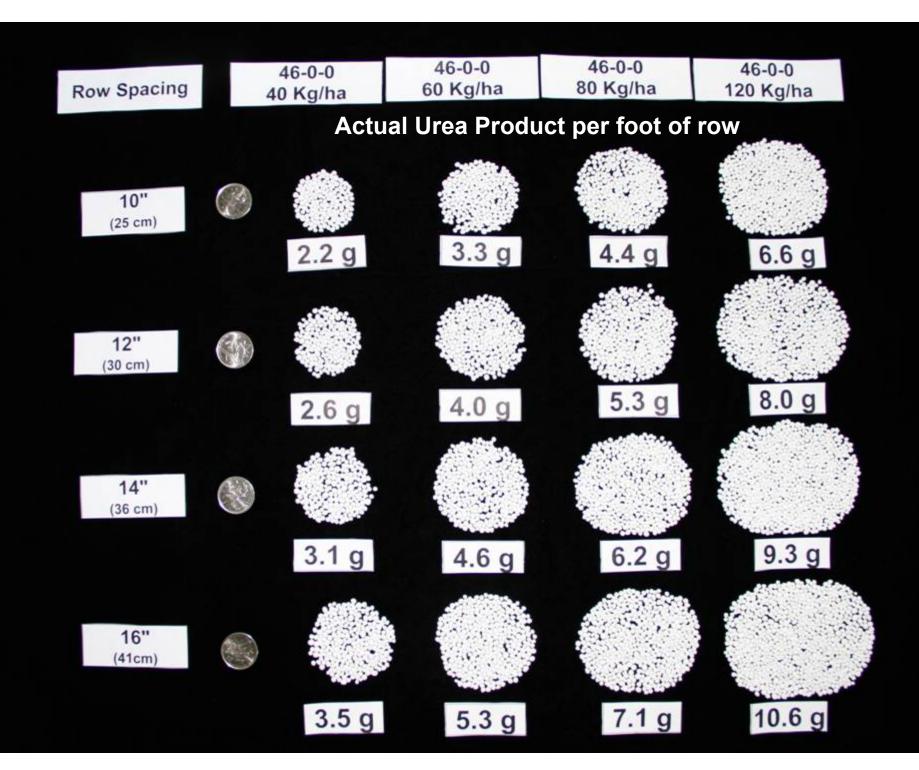
14" Spacing

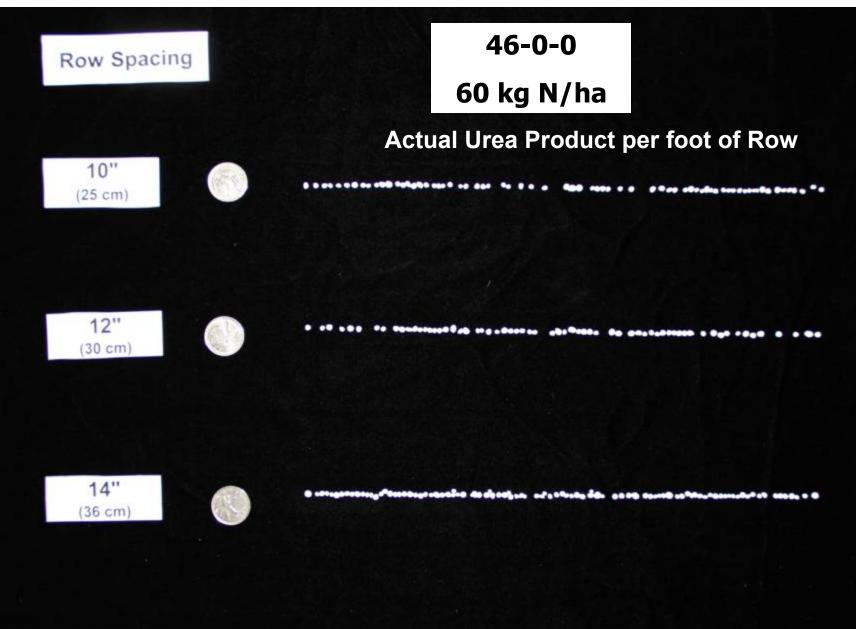


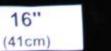
16" Spacing

Importance of this Plot Seeding Equipment

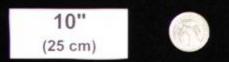

- Avoids important confounding effects
- As row spacing increases, fertilizer gets more concentrated
- As row spacing increases, soil disturbance decreases
- By-using an off-the shelf commercial opener, the results become directly transferable to the field.



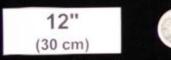

kg N/ha		Total
20	127	
40	127	
60	127	


N rate	er Product 14-20-10-10	Urea	Total
kg N/ha			Mary Mary
20	127	0	127
40	127	39	166
60	127	77	204
80	127	116	243
120	127	193	320

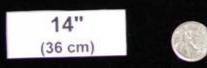
Visual Representation – Amount of various fertilizers per foot of row

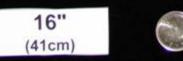


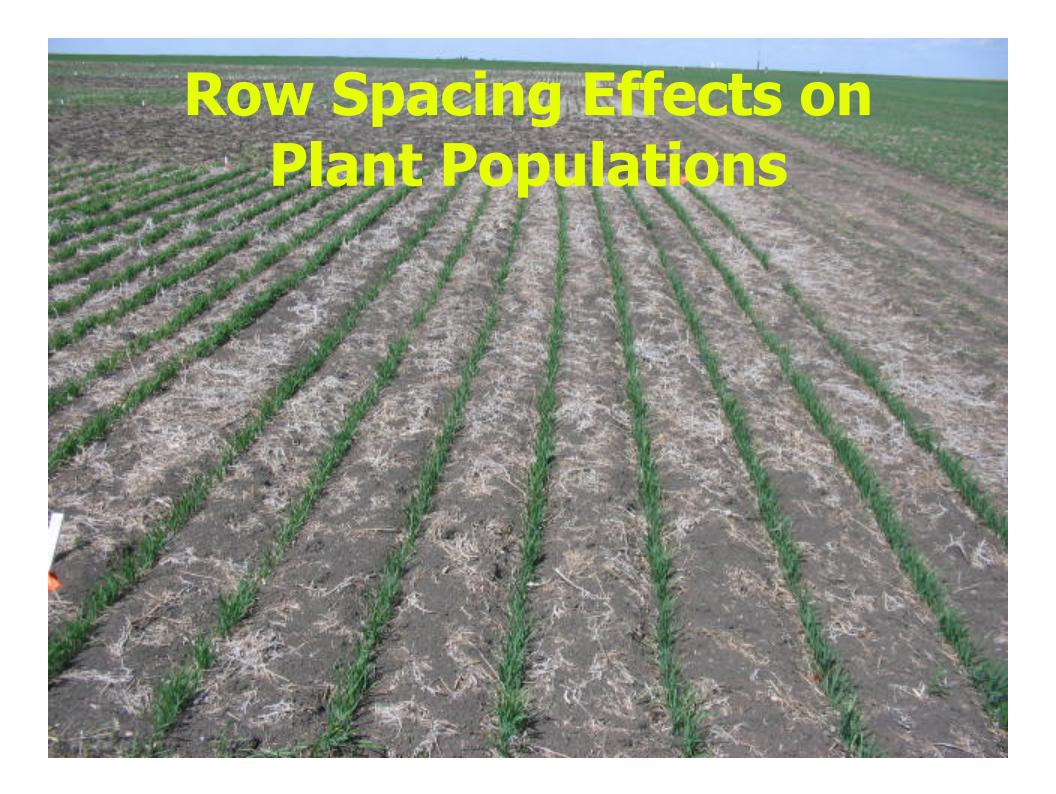
anter a second second


46-0-0

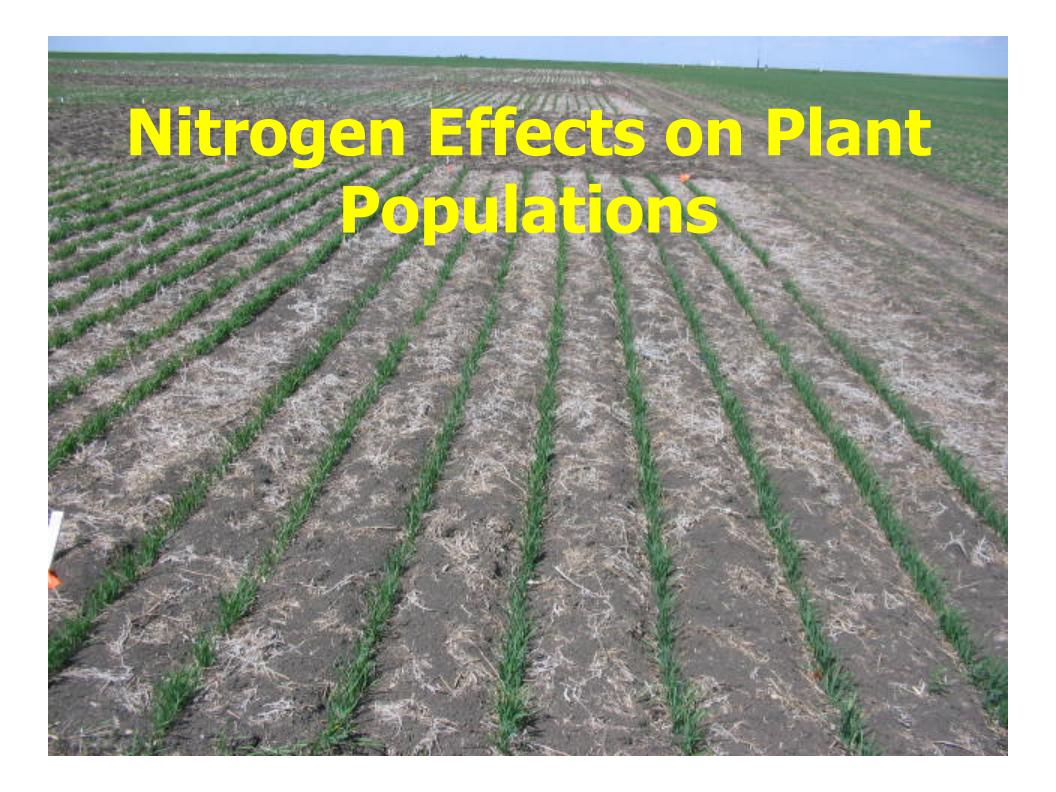
120 kg N/ha


Actual Urea Product per foot of row


Row Spacing



shirth and the strange with the second strange with a second second second second second second second second s



a start of a	CH JUNY	115	and and a
Row Spacing	2009	2010	
10″			100
12″			
14″			
16″			
p-value			

Plant per Meter Square

Row Spacing	2009	2010
10″	414 (100)	
12″	415 (100)	
14″	388 (94)	
16″	379 (92)	
p-value	0.05	

Row Spacing	2009	2010	
10"	414 (100)	390 (100)	
12″	415 (100)	355 (91)	
14″	388 (94)	316 (81)	
16″	379 (92)	320 (82)	5.0.5
p-value	0.05	0.0001	على . ماريخ
Row Spacing x N Rate	ns	ns	100

Plant	per Mete	r Square	
N Rate Kg/ha	2009	2010	Contraction of the
20			STATE OF
40			
60			
80			
120			1
p-value			- 11

per Mete	r Square
2009	2010
388	
413	
415	
389	
390	
ns	
	2009 388 413 415 389 390

N Rate Kg/ha	2009	2010
20	388	346
40	413	347
60	415	345
80	389	344
120	390	344
p-value	ns	ns

Grain Yield (bus/acre)			
Row Spacing	2009	2010	Mean
10″			
12″			
14″			
16″			
p-value			

Crai		Id /h	110/2/	CKU I
water was be also the	n Yie	a ten any ser and the		and the second s
and all the state of the second states and	Constitution and a second state of the second second			

Row Spacing	2009	2010	Mean
10″	154		
12″	154		
14″	163		
16″	155		
p-value	ns		

ALL AN IGAU

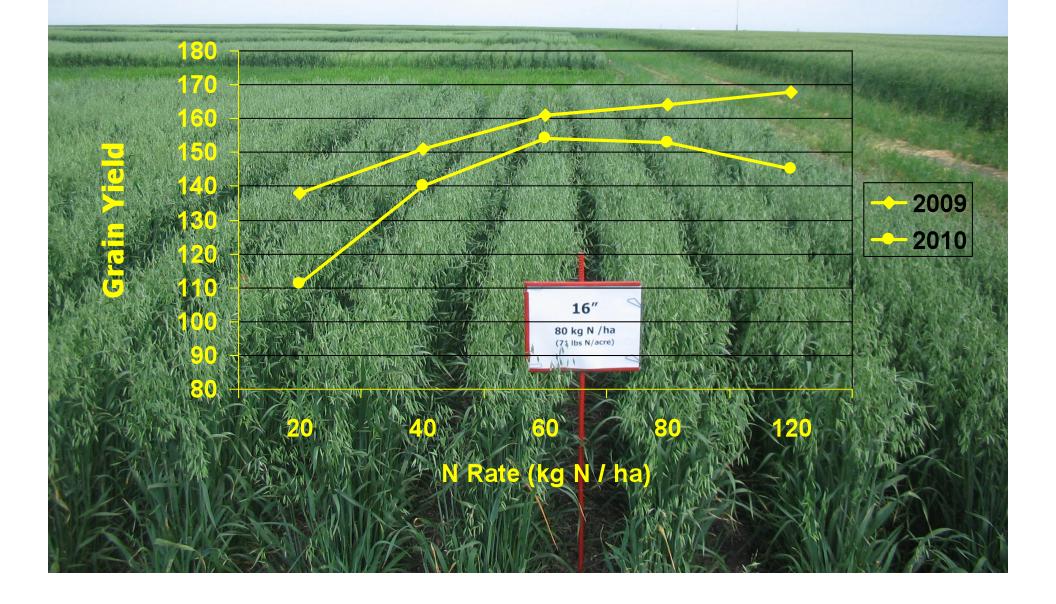
MATCHINE PROVIDENT ANNUAL

Grain Yield (bus/acre)

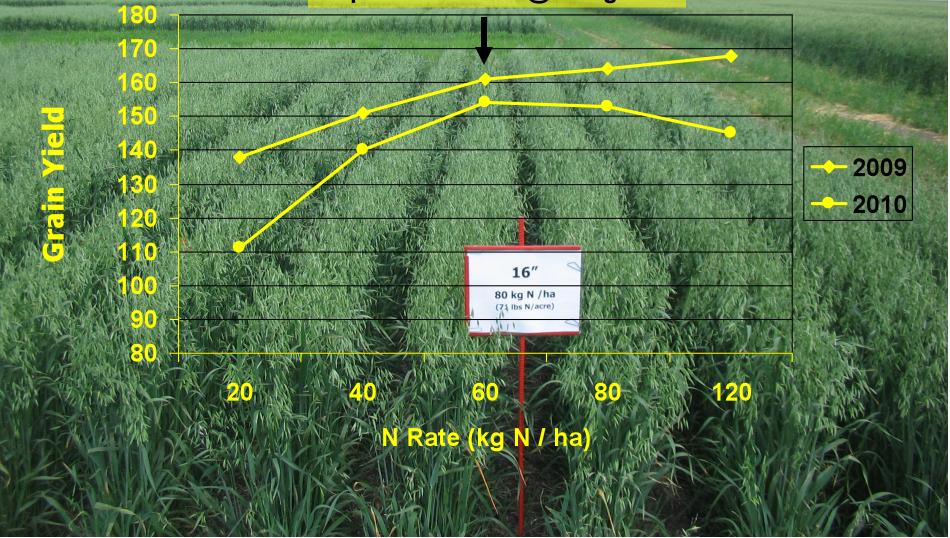
Row Spacing	2009	2010	Mean
10″	154	152 (100)	
12″	154	146 (96)	
14″	163	138 (91)	
16″	155	126 (83)	
p-value	ns	0.0001	

Grain Yield (bus/acre)

Row Spacing	2009	2010	Mean
10″	154	152	153 (100)
12″	154	146	150 (98)
14″	163	138	151 (99)
16″	155	126	141 (92)
p-value	ns	0.0001	


Why the difference between 2009 and 2010 for row spacing effects on grain yield?

N Response



Grain Yield (bus/acre)

Grain Yield (bus/acre)

~Optimum N Rate @ 60 kg N/ha

a chu an	(bus/acre	and the second	
Row Spacing	2009	2010	
10"			
12″			
14″			2
16"			
p-value			

and the state state of the costs	bus/acre	
Row Spacing	2009	2010
10″	158	
12″	161	
14″	170	
16″	155	
p-value	ns	

	bus/acre	
Row Spacing	2009	2010
10″	158	159
12″	161	160
14″	170	159
16″	155	138
p-value	ns "	0.0001

Some Conclusions Regarding Plant Density and Grain Yield

- Some decrease in plant populations going from 10" – 16"
- N rate had no effect on plant population indicating that fertilizer placed 1.5" to the side and 3/4" below the seed is a safe configuration
- Grain yield at optimum N rates were equal between 10", 12" and 14" but some decrease at 16" observed in 2010

Some additional observations...

Same setting in both years i.e ³/₄" Speed of travel ~4 MPH In 2009, we chose the plants at random in the plots In 2010, we made sure to choose plants from the same row and from the front rank

beeding Depth

Seedir	ng Depth	(mm)
Row Spacing	2009	2010
10″		
12" 14"		
16"		
p-value		
State And State		

Seedi	ng Depth	(mm)
Row Spacing	2009	2010
10"	39	
12″	36	
14″	29	
16″	30	
p-value	0.0001	

Seedi	ng Depth	(mm)
Row Spacing	2009	2010
10"	39	46
12″	36	37
14″	29	36
16″	30	35
p-value	0.0001	0.0001

Plant Development

- Conducted a Plant Development Score
- Quantified tiller production
- In 2009, we chose the plants at random in the plots
- In 2010, we made sure to choose plants from the same row and from the front rank

Plant Development in 2009 Frequency of Tillers (%)

Row Spacing	Т0	T1	T2	Т3	T11
10″	2	17	4	0	0
12″	2	19	5	0	0
14″	1	18	6	0	0
16″	1	12	15	0	0
p-value	ns	ns	0.05	-	-

Plant Development in 2010 Frequency of Tillers (%)

Row Spacing	ТО	T1	T2	Т3	T11
10″	0.5	6	0	0	0
12″	0.3	4	0.3	0	0
14″	0.3	7	1.3	0	0
16″	0.3	9	1.5	0	0
p-value	Ns	ns	ns	-	-

Panicles per meter Square

	200	9	2010	
Row Spacing	Estimated	Actual	Estimated	Actual
10″				
12″				
14″				
16″				
Mean				
p-value				

Panicles per meter Square

	2009	9	201	D
Row Spacing	Estimated	Actual	Estimated	Actual
10″	503	497		
12″	504	512		
14″	478	502		
16″	481	510		
Mean	492	505		
p-value	ns	ns		

Panicles per meter Square

	2009	Ð	2010		
Row Spacing	Estimated	Actual	Estimated	Actual	
10″	503	497	413	565	
12″	504	512	371	530	
14″	478	502	344	495	
16″	481	510	353	502	
Mean	492	505	370	523	
p-value	ns	ns	0.001	0.001	

Some Conclusions Regarding Actual Depth of Planting and Tillering

- Resulting depth always greater than setting on drill
- Tiller production was the same regardless of row spacing
- Estimated panicles at the 5-6 leaf stage were the same as actual panicles at maturity in 2009 but lower in 2010

Row Spacing Effects on Weed Populations

Row Spacing Effects on Weed Populations

- Barley: No effect of row spacing (8" vs 12") O'Donovan et al. 2001. Weed Science 49:746-754
- Winter wheat: No effects of row spacing (4" vs 8" vs 12") Roberts et al. 2001. Weed Tech. 15:19-25

Row Spacing Effects on Weed Populations

- Stubble and residues between the rows have an inhibiting effect on weeds
- Soil disturbance increases weed growth
 - More important to focus on increasing the density of crop plants

Row Spacing

- Effects on seed distribution within the row
- Effects on plant development

Plants per foot row at different plant population densities (# m⁻²)

Row Spacing	50	100	150	200	250
10"					
12″					- Sector
14″					
16″					

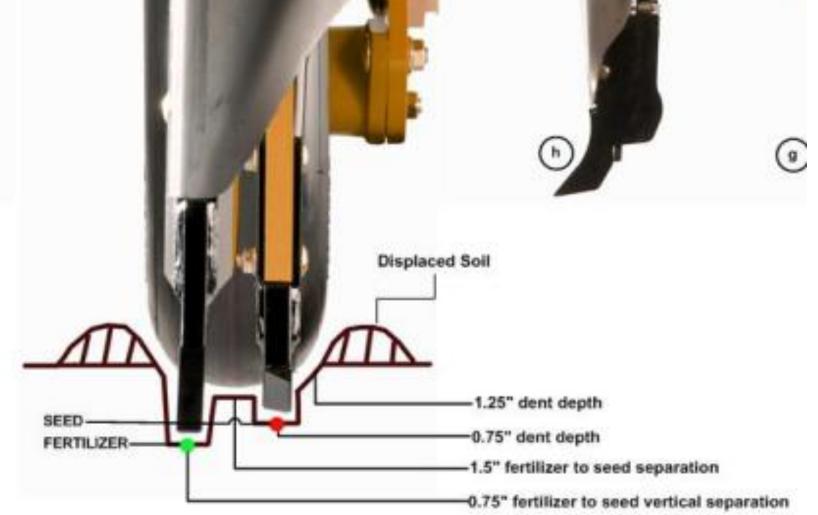
Plants per foot row at different plant population densities (# m⁻²)

Row Spacing	50	100	150	200	250
10″	4	8	12	15	19
12″	5	9	14	19	23
14″	5	11	16	22	27
16″	6	13	19	25	31

Plants per foot row at different plant population densities (# m⁻²)

Row Spacing	50	100	150	200	250
10″	4	8	12	15	19
12″	5	9	14	19	23
14″	5	11	16	22	27
16″	6	13	19	25	31

Impact of Seeding Rates on Weeds


 Seeding rate has a much greater effect on weed densities than row spacing

 Always better to have higher than lower plant populations

Other Important Considerations Regarding Weeds and Row Spacing in the context of the SeedMaster opener

2. Relative Seed-Fertilizer Placement

4. Experience from Owners using 14" spacing – Were weeds worst in 2010 because of the higher than normal rainfall?

Some Conclusions Regarding Wide Row Spacing and Weeds

 Until we collect actual data with 14" spacing, one can assume that it won't be any different than with 12" spacing based on actual producer experience with 14".

Opportunities

with Wide Row Spacing

- -Make use of the micro-climatic benefits of tall stubble
- -Improve snow trapping with tall stubble
- -Ability to cut stubble taller at harvest to accelerate grain harvest and reduce fuel use and hours on combine
- -Ability to pull a wider seeder with the same horsepower increasing timeliness of seeding operations.

What is possible with wider row spacing...

Study Description

15cm

Tall Stubble

30 cm

Cultivated Stubble

Stubble Effects: Spring wheat

Treatments	Water Use	Grain Yield	WUE	A AND
	mm	kg/ha	Kg/ha/mm	State of
Cultivated	309			A Carlot
Short	314			
Tall	309			A Part of a
Significance	ns			Carlo Carlo

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Spring wheat

Treatments	Water Use	Grain Yield	WUE	「「「「「「」」」
	mm	kg/ha	Kg/ha/mm	
Cultivated	309	2255b (100)		
Short	314	2418ab (107)		Sand and a state of the
Tall	309	2560a (114)		ALL SA
Significance	ns	*		ALC: NO

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Spring wheat

Treatments	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	309	2255b (100)	7.5b (100)
Short	314	2418ab (107)	7.9ab (105)
Tall	309	2560a (114)	8.4a (112)
Significance	ns	*	*

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Field Pea, Lentil,

Chickpea				
Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm	
Cultivated	246			
Short	242			
Tall	240			
Significance	ns			

Cutforth et al. 2002. Can. J. Plant Sci. 82:681-686

Stubble Effects: Field Pea, Lentil,

Chickpea

Treatment	Water Use	Grain Yield	WUE
	mm	kg/ha	Kg/ha/mm
Cultivated	246	1782 (100)	
Short	242	1858 (104)	
Tall	240	2008 (113)	
Significance	ns	*	

Cutforth and McConkey..

Stubble Effects: Field Pea, Lentil,

Chickpea

Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	246	1782 (100)	7.49 (100)
Short	242	1858 (104)	8.06 (108)
Tall	240	2008 (113)	8.70 (116)
Significance	ns	*	*

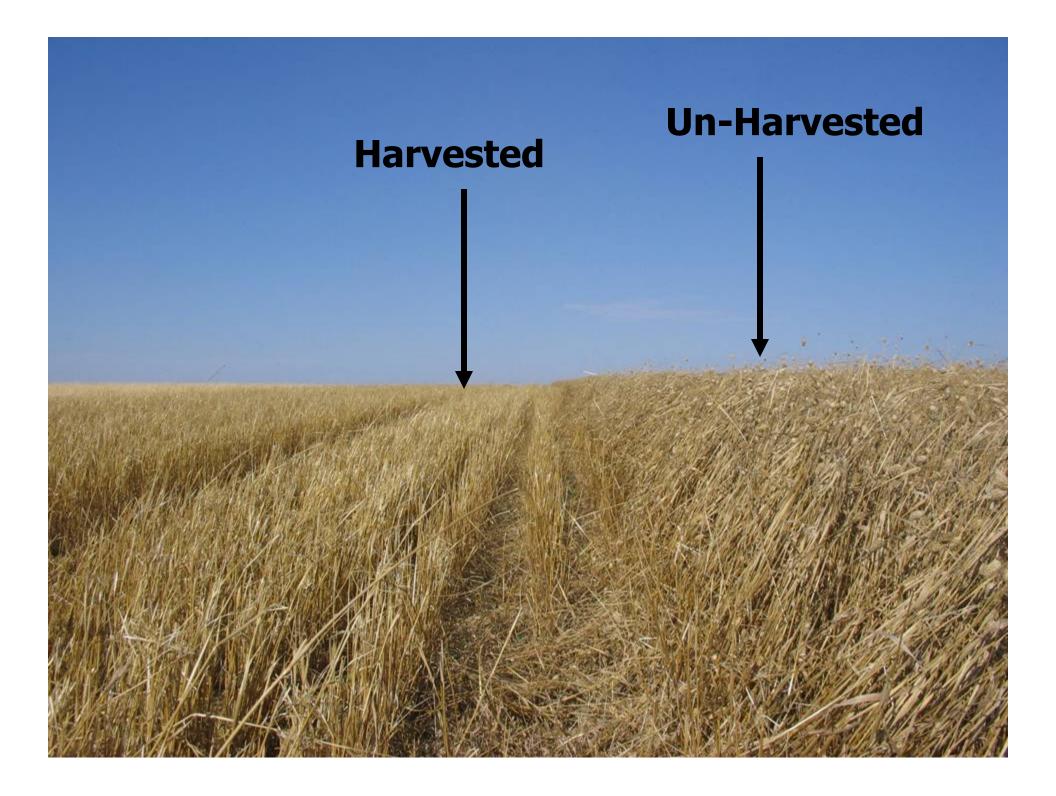
Cutforth and McConkey...

Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	275		
Short	271		
Tall	274		
Significance	ns		

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107

Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	275	1239 (100)	
Short	271	1354 (109)	
Tall	274	1445 (117)	
Significance	ns	*	

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107


Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	275	1239 (100)	4.51 (100)
Short	271	1354 (109)	4.85 (108)
Tall	274	1445 (117)	5.03 (112)
Significance	ns	*	*

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107

Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Tall	274	1445 (117)	5.0 (112)
Tall + extra fertilizer	286	1680 (135)	5.8 (129)

How easy is it going to be to seed in-between the stubble rows?

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Thank-you

