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ABSTRACT 

 
 
 Many mitochondrial and chloroplast proteins are encoded in the nucleus and subsequently 

imported into the organelles via active protein transport systems. While usually highly specific, 

some proteins are dual-targeted to both organelles. In tobacco (Nicotiana tabacum L.), the cDNA 

encoding the mitochondrial isoform of NADP+-dependent isocitrate dehydrogenase (NADP+-

ICDH) contains two translational ATG start sites, indicating the possibility of two tandem 

targeting signals.  In this work the putative mitochondrial and chloroplastic targeting signals from 

NADP+-ICDH were fused to a yellow fluorescent protein (YFP) to generate a series of constructs 

and introduced into tobacco leaves by Agrobacterium-mediated transient transfection.  The 

subsequent sub-cellular locations of the ICDH:YFP fusion proteins were then examined under the 

confocal microscope.  Constructs predicted to be targeted to the chlroplast all localized to the 

chloroplast.  However, this was not the case for constructs that were predicted to be 

mitochondrial targeted. While some constructs localized to mitochondria, others appeared to be 

chloroplast localized.  This was attributed to an additional 50 amino acid residues of the mature 

NADP+-ICDH protein which was present in those constructs.  In addition, during the process of 

generating these constructs our sequence analysis indicated a stop codon present at amino acid 

position 161 of the mature NADP+-ICDH protein from both Xanthi and Petit Havana cultivars of 

tobacco. This was confirmed by multiple sequencing reactions and created discrepancies with the 

reported sequence present in the database.  The results of this study raise interesting questions 

with regard to the targeting and processing of NADP+-ICDH.    
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1.0 INTRODUCTION 

 

 Plant cells contain multiple cellular organelles and in order for proteins to be imported 

into these organelles they must contain targeting signals (or targeting peptides). Targeting 

signals are peptides which range from 20-60 amino acid residues in length and are usually 

found at the N- or C-terminal ends of the protein.  While targeting signals for different 

organelles are usually quite distinct in primary sequence, secondary structure and location in 

the precursor protein, mitochondria and chloroplasts are two cellular organelles which use 

similar targeting signals. More than 90% of mitochondrial and chloroplastic proteins are 

encoded in the nucleus, synthesized on cytosolic ribosomes with a cleavable amino-terminal 

targeting peptide and then imported post-translationally into the organelle (Bhusham et al., 

2006). After import, targeting peptides are cleaved off by peptidases in the respective 

organelles.  Classical mitochondrial and chloroplastic targeting peptides are N-terminal, almost 

devoid of acidic amino acids, rich in arginine, leucine, alanine and hydroxylated residues and 

often show amphiphilic structures (Bhusham et al., 2006). 

 The majority of proteins imported into organelles have only one destination. However, 

a growing number of proteins have been shown to be dual-targeted, and although encoded by a 

single nuclear gene, are translated in the cytosol and targeted post-translationally to both 

mitochondria and chloroplasts (Peeters and Small, 2001). There are two proposed mechanisms 

by which dual targeting can be achieved: the first is through a dual targeting signal.  Dual 

targeting signals result in two or more proteins with distinct targeting peptides. This can occur 

as a result of alternative transcription or translation initiation, alternative splicing, or post-

translational modification.  The second mechanism employs an ambiguous targeting signal.  
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Ambiguous signals are single targeting polypeptides that can be recognized and transported by 

the import machinery of more than a one organelle (Danpure, 1995; Small et al., 1998). 

 NADP+-dependent isocitrate dehygrogenase (ICDH; EC 1.1.1.42) belongs to a multi-

enzyme family with isoforms existing in several subcelluar locations including the cytosol, 

mitochondria, chloroplast, and peroxisome.  This enzyme catalyzes the oxidative 

decarboxylation of isocitrate, producing 2-oxoglutarate (α-ketoglutarate) and CO2 while 

converting NADP+ to NADPH (Horton et al., 2002).  Previously, work examining the 

mitochondrial isoform in tobacco (Nicotiana tabacum L. cv Xanthi) showed that the cDNA 

contained two in-frame translational start sites (Gálvez et al., 1998).  Furthermore, this study 

concluded that the enzyme with its full-length targeting signal was localized predominantly to 

the mitochondrion and weakly targeted to the chloroplast (Gálvez et al., 1998).  While this was 

not a detailed study, it did provide preliminary evidence to suggest that the protein derived 

from this gene was a good candidate for dual-targeting to both mitochondria and chloroplasts. 

 

1.1 Thesis Objectives 

 In this work I will examine the localization of mitochondrial NADP+-ICDH and test the 

hypothesis that this isoform is dual-targeted to both the mitochondrion and chloroplast.  This 

will be accomplished by generating truncated constructs of NADP+-ICDH at the two putative 

targeting signals and fusing them with a yellow fluorescent protein (YFP). Tobacco (Nicotiana 

tabacum L. cv Petit Havana) leaves will then be transiently transfected with Agrobacterium 

tumefaciens containing the ICDH:YFP fusion proteins and their sub-cellular location examined 

under the confocal microscope. 
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2.0 LITERATURE REVIEW 

 

 Eukaryotic cells are subdivided into various membrane-bounded compartments called 

cellular organelles. The endoplasmic reticulum, the Golgi apparatus, lysosomes and 

peroxisomes possess one boundary membrane. In contrast to these organelles, mitochondria 

and chloroplasts are bordered by two membranes. Because of these two membranes a complex 

protein import system has evolved. Based on structural/functional similarities it was suggested 

that mitochondria and chloroplasts were derived from bacteria which were incorporated into 

eukaryotic cells by a process called endosymbiosis (Margulis et al., 1981). As a result of this 

process, a genetic transfer of nucleotide information has occurred where genetic information 

has been transferred from the incorporated organelle to the nucleus. During this evolution 

cellular organelles lost most of their genome. Today, the majority of organelle proteins are 

encoded by nuclear genes, synthesized on cytosolic ribosomes and have to be imported into 

cellular organelles through an import system from the cytosol (Lang et al., 1999). More than 

90 % of mitochondrial and chloroplast proteins are encoded in the nucleus (Pfanner and 

Geissler, 2001). 

The vast majority of proteins destined for mitochondria and chloroplasts are encoded by 

genes located in the nucleus and synthesized in the cytosol on ribosomes. Most of these 

proteins carry a cleavable N-terminal signal, or targeting peptide. This targeting signal carries 

the information required for targeting to the correct organelle. Chloroplast transit peptides are 

on average longer than mitochondrial pre-sequences.  However, both are remarkably similar 

with respect to the amino acid composition (Bhushan et al., 2006). They exhibit a high 

abundance of hydroxylated, hydrophobic and positively charged amino acids and very low 

abundance of acidic amino acid residues (Zhang and Glaser, 2002). It was found that plant 
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mitochondrial targeting sequences were rich in serine when compared to targeting sequences 

from non-plant sources. These sequences form amphipathic α-helices, which are important for 

import (Emanuelsson et al., 2000), whereas chloroplast transit peptides are generally 

unstructured. Most of the proteins destined for these organelles are imported from the cytosol 

in a specific manner. Protein import involves multiple steps, from the interaction of the 

transported protein with cytosolic factors to the activity of specific receptors at the membrane 

envelope (Cunillera et al., 1997). Some proteins have evolved to be dual-targeted, meaning 

they are transported to two or more cellular compartments. The majority of reports on single 

gene products targeted to more than one sub-cellular compartment are commonly related to 

mitochondria and chloroplasts. 

 

2.1 Import Targeting Signals 

 Targeting signals for different compartments are usually quite distinct in primary 

sequence, secondary structure and location in the precursor protein. The location of the 

targeting signal is frequently found at the N-terminal end of proteins destined for the 

mitochondrion or chloroplast (Mackenzie, 2005). The import machinery and targeting signals 

for these organelles appear to be similar. Classical mitochondrial and chloroplast targeting 

signals are N-terminal, almost devoid of acidic amino acids but rich in arginine, leucine, 

alanine and hydroxylated residues often showing amphiphilic structures (Small et al., 1998). 

These sequences are composed of approximately 20-60 amino acid residues (Millar et al., 

2006). A common component in targeting sequences is the abundant amount of positively 

charged, hydroxylated and hydrophobic amino acid residues and the absence of negatively 

charged residues. Mitochondrial targeting sequences have the potential to form an amphipathic 

α-helix with a positively-charged face on one side and a hydrophobic surface on the other. The 
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amphipathic structure of the pre-sequences is thought to be important for recognition by the 

mitochondrial import machinery of the many cellular organelles (Abe et al., 2000).  

It has been demonstrated that protein targeting is signal dependent. The small subunit of 

ribulose-1,5-bisphosphate carboxylase (Rubisco) is encoded in the nucleus, translated on 

cytosolic ribosomes and transported into the chloroplast (Ellis et al., 1981).  The transit peptide 

embedded in this subunit contains the information for chloroplastic import as was proven by its 

ability to direct passenger proteins into the chloroplast. Schreier et al. (1985) created a chimeric 

gene construct consisting of the promoter, first exon and intron, as well as part of the second 

exon of the small subunit Rubisco gene fused to the amino-terminal end of the neomycin 

phosphotransferase II gene. The fusion protein was found to be processed and located within 

the chloroplasts of the transformed plants (Schreier et al., 1985). In addition, when attached to 

non-mitochondrial proteins, mitochondrial targeting sequences can specifically direct the 

passenger protein through the import complexes into the matrix showing access to the 

organelle is targeting signal dependent (Hurt et al., 1984; Abe et al., 2000). 

 

2.1.1 Ambiguous Targeting Signals 

 Targeting signals for different organelles are usually quite distinct in some manner.  

However, the ambiguous targeting signal arises from a gene encoding a single precursor 

protein which carries a targeting signal that is recognized by the import apparatus of both 

organelles (Small et al., 1998). Peeters and Small (2001) defined these sequences (ambiguous 

targeting signals) as being recognized by both the mitochondrial and chloroplast import 

machinery without further modification. There are more then twenty proteins that are targeted 

to both these organelles by ambiguous signals. These signals are more hydrophobic and usually 
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contain more leucine and phenylalanine, but fewer alanine residues than specific mitochondrial 

and chloroplast targeting signals.  

 It has been shown that the dual-targeting capability of pea (Pisum sativum L.) 

glutathione reductase to both mitochondria and chloroplasts is dependent on a single targeting 

peptide. The precursor protein of pea glutathione reductase is dual-targeted to mitochondria 

and chloroplasts by means of an N-terminal targeting signal of 60 amino acid residues, which 

has been described as an ambiguous targeting signal (Creissen et al., 1995). This signal has a 

high serine content (17%), an abundance of aliphatic amino acid residues, an overall positive 

charge and an uncharged N-terminus which is characteristic of many ambiguous targeting 

signals. 

 

2.1.2 Mitochondrial Targeting Signals 

 Newly synthesized mitochondrial pre-proteins contain specific targeting signals, or 

mitochondrial targeting sequences, that are usually bound by factors which maintain the 

translocation conformationb of the pre-protein. These factors include chaperones of the heat-

shock protein 70 family (Hsp70), as well as specific factors like mitochondrial import 

stimulation factor that recognize mitochondrial targeting signals (Komiya et al., 1996; Mihara 

et al., 1996). The majority of mitochondrial pre-proteins are imported post-translationally 

(Neupert, 1997). The translocase of the outer mitochondrial membrane (TOM) mediates the 

entry of all nuclear encoded mitochondrial proteins into the mitochondria. This complex 

functions as a receptor for mitochondrial proteins and provides a protein conducting channel 

(Lister et al., 2005). Proteins are threaded in an unfolded conformation though the TOM 

complex (Lister et al., 2005). After crossing the outer membrane through the TOM complex, 

imported pre-proteins are directed to one of two translocases of the inner membrane (the TIM 
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complexes; Bauer et al., 2000). The action of the TIM/TOM apparatus requires the hydrolysis 

of ATP and GTP at different levels. 

The TOM complex, is a multi-subunit complex approximately 450 kDa in size, 

composed of seven subunits (the TOM holo complex); Tom70, Tom40, Tom22, Tom20, Tom7, 

Tom6 and Tom5 (Neupert, 1997; Pfanner and Geissler 2001; Fig. 2.1). The TOM complex 

mediates the translocation across and insertion into the outer membrane of all nuclear encoded 

mitochondrial pre-proteins. Pre-proteins are recognized on the outer surface of the 

mitochondria by the receptor subunits Tom20, and Tom70 (Hines and Schatz, 1993). They are 

then transferred into the general import pore (GIP) of the TOM complex and translocated 

through the outer membrane into the intermembrane space. The GIP is part of the TOM core 

complex, which is composed of Tom40, Tom22, Tom7, Tom6, and Tom5, but does not contain 

the receptor subunits (Neupert, 1997). The two receptor proteins Tom20 and Tom70 show 

different protein specificities. Deletion of both the Tom20 and Tom70 is considered a lethal 

mutation (Ramage et al., 1993). Both Tom70 and Tom20 contain an amino-terminal membrane 

anchor and a hydrophilic C-terminal cytosolic domain of 65 kDa and 17 kDa (Söllner et al., 

1989; Lister et al., 2005). Both the Tom20 and Tom70 are used for binding of targeting 

sequences and transfer of proteins into the GIP. 

All pre-sequence carrying pre-proteins are directed to the TIM23 complex which 

consists of the essential membrane proteins Tim17, Tim23 and Tim50 (Bauer et al., 2000). 

These three proteins associate with the membrane bound Tim44 and the mitochondrial matrix 

heat-shock protein mtHsp70 (Yamamoto et al., 2002). Pre-proteins can also be directed to the 

TIM22 complex, consisting of essential membrane proteins Tim22, Tim54 and Tim18 

(Koechler et al., 2000; Fig. 2.1). After import into the matrix, the targeting signals of the 

imported proteins are cleaved off by mitochondrial processing peptidase (MPP; Nunnari et al.,  
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Figure 2.1 The general import pathway into mitochondria. Pre-proteins first bind to specialized 
import receptors of the TOM complex at the outer membrane and then are transferred to the 
general insertion pore (GIP). For further translocation, the TOM complex cooperates with the 
TIM23 and TIM22 complexes in the inner membrane (modified from Bauer et al., 2000). 



 

                                                                         9 
                                                                           
 

1993; Neupert, 1997). The majority of the time complete removal of the pre-sequences is 

followed by folding of the protein into the correct conformation and is essential for obtaining 

the functionality of imported proteins.  There are several matrix proteins including rhodanese, 

3-oxo-acyl-CoA-thiolase and chaperonin 10 that are synthesized with a non-cleavable N-

terminal targeting signals which have characteristics similar to those of the cleavable signals 

(Hammen et al., 1996). One matrix protein, the DNA helicase Hmi1, has been found to contain 

a pre-sequence-like targeting signal at its carboxy terminus (Lee et al., 1999). 

  

2.1.3 Chloroplastic Targeting Signals 

 The vast majority of chloroplast proteins are synthesized on cytosolic ribosome’s and 

post translationally imported into the chloroplast. The majority of chloroplast precursor 

proteins have cleavable, N-terminal targeting signals (Soll and Schleiff, 2004; Jarvis 2008). 

Targeting signals direct precursor proteins to the chloroplast in an organelle-specific way. The 

majority of pre-proteins are translocated across the organelle  membrane using a 

multicomponent translocon at the outer and inner chloroplast envelope membranes, known as 

the TOC/TIC complex (Peeters and Small, 2001; Jarvis 2008). The pre-protein for chloroplasts 

contain a stromal import sequence or both a stromal and thylakoid targeting sequence. In the 

stroma, the import sequence is cleaved off and intra-chloroplast sorting and folding continues. 

Pre-proteins that contain a cleavable transit peptide are recognized in a GTP-regulated manner 

by receptors of the outer-envelope translocon, the TOC complex. The pre-proteins cross the 

outer envelope through an aqueous pore and are then transferred to the translocon in the inner 

envelope, the TIC complex (Becker et al., 2004). The TOC and TIC translocons function 

together during the translocation process. The action of the TOC/TIC apparatus requires the 

hydrolysis of ATP and GTP at different levels, indicating energetic requirements and 
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regulatory properties of the import process (Becker et al., 2004). The stromal processing 

peptidase then cleaves the transit sequence to produce the mature form of the protein, which 

can fold into its native form. The main subunits of the TOC and TIC complexes have been 

identified and characterized in vivo, in organello and in vitro (Jarvis and Soll, 2001).  

Once a precursor protein arrives at the surface of the chloroplast, a highly specific 

recognition process is initiated to ensure the protein is indeed destined for this organelle. After 

membrane recognition, pre-proteins are then threaded into the import complex in extended 

conformation from N-terminus to C-terminus (Becker et al., 2004; Smith 2006). During import, 

the TOC and TIC complexes come together at contact sites and the precursor protein passes 

through both membranes.  

The four pea TOC components that have been described are called Toc159, Toc34, 

Toc75 and Toc64, according to their molecular masses (Fig. 2.2). Toc159 (also called Toc160) 

appears to be a major point of contact for precursor proteins arriving at the complex (Becker et 

al., 2004). Toc34 belongs to the same unique class of GTP-binding proteins as Toc159, since it 

shares significant homology with Toc159 outside of the conserved GTP-binding site motifs 

(Jarvis and Soll, 2001).  Like Toc159, it is an integral membrane protein and is attached to the 

outer envelope membrane by a C-terminal membrane anchor. Toc75 plays a central role in the 

import mechanism as it stably associates with Toc159 and Toc34 (Jarvis and Soll, 2001).  



 

                                                                         11 
                                                                           
 

 

 

 

 

Figure 2.2 The chloroplast translocon complexes. Pre-proteins first bind to specialized import 
receptors of the TOC complex at the outer membrane. The Tic proteins comprising the TIC 
complex assist in further translocation (adapted from Soll and Schleiff, 2004). 
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 The Tic proteins that have been identified to date are Tic110, Tic55, Tic40, Tic22 and 

Tic20 (Fig. 2.2). Tic110 is proposed to have a role in recruiting chaperones to the stromal face 

of the Tic complex (Hörmann et al., 2007). Tic55 plays a regulatory role during import by 

responding to changes in redox status within the chloroplast as it contains a Rieske-type iron 

sulfur cluster and a mononuclear iron-binding site (Schnell, 2000). Many genes expressed in 

the chloroplast are subject to redox regulation. Since proteins can affect the redox state in the 

organelle it is not surprising to find that chloroplast protein import is effect by redox regulation 

(Schnell, 2000). Tic40 during shares similarities to hsp70-interacting protein at its C-terminal 

end.  It has been speculated that Tic40 regulates the chaperones responsible for driving 

chloroplast protein import (Jarvis and Soll, 2001). Tic22 is associated with the outer surface of 

the inner envelope membrane, suggesting that it might act as a receptor for pre-proteins as they 

emerge from the TOC complex, or mediate the association of TOC and TIC complexes 

(Kouranov et al., 1998). Tic20 is deeply embedded within the inner envelope membrane 

suggesting a role for protein conductance through the chloroplastic inner membrane (Kouranov 

et al., 1998). The structural organization of the protein suggests a channel-forming role, and has 

led to the idea that it is primarily involved in protein translocation (Soll and Schleiff, 2004). 

   

2.2 Dual-Targeting Mechanisms  

 Many genes have been found to contain multiple in-frame 5' 

transcriptional/translational start sequences (ATG/AUG). It has been shown in several cases 

that two protein products are able to arise from the same gene. If the sequence between the start 

sites contains a cellular targeting signal then the protein initiated from the upstream start site 

will contain targeting information that the protein initiated from the downstream start site will  
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lack. This will lead to the protein being targeted to multiple destinations. There are three ways 

this is thought to occur which are illustrated in Fig. 2.3 and described below. 

 

2.2.1 Alternative Transcription Starts 

 Many genes have multiple ATG sites meaning they also can potentially have multiple 

transcription starts sites. If one or more of these sites occurs downstream of the first ATG the 

encoded N-terminal sequence following the downstream ATG will not contain the information 

that the protein generated from the upstream ATG will possess (Small et al., 1998). This 

mechanism results in two transcripts being produced, the longer transcript possibly encoding a 

targeting sequence which is absent from the shorter transcript (Fig. 2.3A). This is the most 

common way in which multiple protein products are generated from a single gene in most 

organisms. Many house-keeping genes have multiple transcription starts as these enzymes are 

usually required in several cellular compartments. In plants, the monodehydroascorbate 

reductase (MDAR) is an enzymatic component of the ascorbate-glutathione cycle that is one of 

the major antioxidant systems of plant cells for the protection against the damage produced by 

reactive oxygen species (ROS). The MDAR activity has been described in several cellular 

compartments, such as chloroplasts, cytosol, mitochondria, glyoxysomes and leaf peroxisomes 

(Obara et al., 2002). The mitochondria and chloroplast monodehydroascorbate reductase is  

dual-targeted by the use of multiple transcription initiation sites. Obara et al. (2002) showed 

that two MDAR mRNAs are produced from a single gene and give rise to two different 

proteins in which the longer transcript is transported to mitochondria and the shorter transcript 

to chloroplasts (Obara et al., 2002). 
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Figure 2.3 Mechanisms by which two proteins can be generated from a single gene. A gene 
with three exons (white, blue and pink boxes) is used to illustrate the production of two 
polypeptides, one of which contains a targeting sequence (hatched box) and one which does 
not. Introns are indicated by V-shaped lines. A) Alternative transcription starts, B) Alternative 
exons, C) Alternative translation starts (modified from Small et al., 1998). 
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2.2.2 Alternative Exons  

 Genes can be expressed in such a way that an internal exon encoding targeting 

information is or is not included in the mRNA depending on how the transcript is spliced. This 

mechanism results in the production of two transcripts, one of which starts in an intron of the 

longer transcript. In this way, it is possible for the second transcript to encode a protein with 

either an alternative N-terminal extension or one devoid of targeting information (Fig. 2.3B).  

There are only a small number of examples of this splicing which makes use of alternative 5' 

exons to encode N-terminal targeting sequences (Small et al., 1998). Which exon is used 

depends on where transcription is initiated (Fig. 2.3B). A good example is the human dUTPase 

gene, which can encode nuclear or mitochondrial isoforms depending on whether the exon 

encoding the mitochondrial targeting sequence is included in the mRNA (Lander et al., 1998). 

   

2.2.3 Alternative Translation Starts 

 A third way in which dual-targeted protein products can be generated is by alternative 

translation. This occurs when a protein is encoded by a transcript that has two or more 

translation start site sequences in the same mRNA. This mechanism results in a single 

transcript being produced, but translation can occur from either the upstream AUG or the 

downstream AUG, resulting in two proteins with different (or absent) targeting signals (Fig. 

2.3C). This type of dual-targeting mechanism is similar to alternative transcription start sites 

and it is hard to distinguish between mechanisms. Alternative translation starts seem to occur 

less frequently than alternative transcription starts in animals and fungi. Surprisingly, a high 

proportion of dual-targeted plant enzymes appear to be produced in this manner, including 

aminoacyl-tRNA synthetases (ALATS; Danpure et al., 1995). 



 

                                                                         16 
                                                                           
 

 In plants, ALATS are encoded in the nucleus and present activity in three cellular 

compartments; the cytosol, mitochondria, and chloroplasts (Danpure et al., 1995).  

Transcriptional analyses studies showed the presence of two potential translation initiation 

codons in some ALATS mRNAs. Translation from the upstream AUG would generate an N-

terminal extension with features characteristic of mitochondrial targeting peptides while 

translation from the downstream AUG would not contain this targeting peptide. In vitro 

experiments confirmed that two polypeptides can be translated from a single ALATS transcript 

with most ribosomes initiating on the downstream AUG to give the shorter polypeptide, 

corresponding in size to the cytosolic enzyme (Mireau et al., 1996).  It was concluded that the 

ALATS gene encodes both the cytosolic and the mitochondrial forms of ALATS, depending on 

which of the two AUG codons are used to initiate translation (Mireau et al., 1996). Silva-Filho 

et al. (2003) found that Arabidopsis thaliana THI1, a protein playing a role in the biosynthesis 

of thiamine (vitamin B1), is encoded by a single nuclear gene and directed simultaneously to 

mitochondria and chloroplasts from a single transcript.  This gene contains two in-frame 

translational start codons which regulate the subcellular localization of THI1. When translation 

occurs from the first start site the product is localized to the chloroplast and conversely, when 

translation occurs from the second start site mitochondrial targeting is observed (Silva-Filho et 

al., 2003). Another protein utilizing a dual- targeting signal is protoporphyrinogen oxidase II, 

an enzyme necessary for the biosynthesis of chlorophyll in the chloroplasts and for heam in 

both chloroplasts and mitochondria. This protein also has two in-frame initiation codons. Two 

different proteins are made by the means of alternative translation in which the longer 

transcript is imported into chloroplasts and the shorter transcript into mitochondria (Watanabe 

et al., 2001). 
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2.2.4 Post-Translational Modifications 

 Post-translational modifications of proteins are common and often greatly affect tertiary 

structure and activity. It is possible to perceive that differential modification could lead to 

differential targeting. The post-translational modification of amino acids extends the range of 

functions of the protein by attaching other biochemical functional groups such as acetate, 

phosphate, various lipids and carbohydrates, or by making structural changes such as the 

formation of disulfide bridges. Protein structure can also effect the final destination of the 

protein as it is possible to envision the protein being folded in such a way as to bury the 

targeting signal (Karyniely and Pines, 2005). Modification of the protein in this manner may 

directly or indirectly affect the targeting properties through protein folding or binding.   

It has been shown that Aky2, an adenylate kinase in yeast, has a dual location with the 

bulk of the enzyme residing in the cytoplasm and a minor fraction in the mitochondrial 

intermembrane space (Strobel et al., 2001). Depending on how the protein is folded either it is 

translated to completion and folds into an enzymatically active import-incompetent 

conformation that remains in the cytosol, or, during translation, but prior to the formation of a 

significant tertiary structure, it reaches a mitochondrial surface receptor and is internalized 

(Karneity and Pines, 2005). 

 

2.3 Predicting Dual-Targeted Proteins 

 Different programs have been designed to predict the pre-sequence of mitochondrial or 

plastid targeting signals including Mitoprot (http://ihg2.helmholtz-

muenchen.de/ihg/mitoprot.html; Claros and Vincens, 1996), TargetP 

(http://www.cbs.dtu.dk/services/TargetP/; Emanuelsson et al., 2000) and Predotar 

(http://urgi.versailles.inra.fr/predotar/predotar.html; Small et al., 2004). Predotar, TargetP and 

http://ihg2.helmholtz-muenchen.de/ihg/mitoprot.html
http://ihg2.helmholtz-muenchen.de/ihg/mitoprot.html
http://www.cbs.dtu.dk/services/TargetP/
http://www.inra.fr/Internet/Produits/Predotar/
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MitoProt only predict N-terminal targeting sequences, and no method exists that will identify 

import signals present elsewhere in the protein, although such signals are known to exist 

(Emanuelsson et al., 2000). These programs predict protein location correctly approximately 

80% of the time (Emanuelsson et al., 2000). The Predotar program is designed to predict dual-

targeted proteins to the mitochondria and chloroplast but does not give a score for any other 

cellular organelles. Mitoprot does not give separate mitochondrial and plastid scores and 

cannot be used efficiently for predicting dual-targeted proteins. TargetP and Predotar give 

separate scores, and thus can be used for predicting dual-targeted proteins. However, it is not 

possible to assign unequivocally the sub-cellular localization of the mature proteins based on 

this kind of theoretical analysis.  In practice the predictions are not reliable and experimental 

data is still required. For the dual-targeted proteins protoporphyrinogen oxidase II and THI1 

(Watanabe et al., 2001; Silva-Filho et al., 2003), the longer protein is predicted to be targeted to 

the chloroplast as would be expected. However, the shorter version of these proteins is not 

predicted to be a mitochondrial targeted.  Subsequent experimental data indicated this was not 

the case and they were indeed mitochondrial localized. This emphasizes the need for 

experimental data to unequivocally demonstrate protein targeting.  

 

2.4 Isocitrate Dehydrogenase as a Model for Dual-Targeting 

 In plants, two different enzymes catalyzing the oxidative decarboxylation of isocitrate 

to 2-oxoglutarate can be distinguished by their cofactor specificity NAD+-dependent isocitrate 

dehydrogenase (IDH; E.C.1.1.1.41) is located exclusively in the mitochondria where it plays a 

role in the TCA cycle. It catalyzes the third step of the cycle, the oxidative decarboxylation of 

isocitrate, producing 2-oxoglutarate (α-ketoglutarate) and CO2 while converting NAD+ to 

NADH (Horton et al., 2002). This is a two-step process, which involves oxidation of isocitrate 
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(a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the 

carboxyl group to a ketone, forming α-ketoglutarate. The IDH step of the citric acid cycle, due 

to its large negative free energy change, is one of the irreversible reactions in the citric acid 

cycle and therefore must be carefully regulated to avoid unnecessary depletion of isocitrate and 

therefore an accumulation of α-ketoglutarate (Hodges et al., 2003). The reaction is stimulated 

by the simple mechanisms of substrate availability (isocitrate, NAD+, Mg2+/Ca2+), product 

inhibition by NADH and α-ketoglutarate and competitive feedback inhibition by ATP (Horton 

et al., 2002).  Other isoforms of the enzyme catalyze the same reaction, but use NADP+ as a 

cofactor instead of NAD+. NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42) 

belongs to a multi-isoenzymatic family, whose members have been located within the cytosol, 

plastids, mitochondria and peroxisomes (Gálvez et al., 1995). All are homodimeric enzymes, 

the subunit molecular mass being approximately 47 kDa.  It has been proposed that the 

cytosolic ICDH isoform is responsible for producing the 2-oxoglutarate necessary for ammonia 

assimilation.  The assimilation of ammonia is an example of a plant metabolic pathway that 

relies on enzymatic isoforms. Ammonia produced from nitrogen fixation, nitrate reduction, or 

photorespiration is incorporated into organic compounds by the glutamine synthetase/glutamate 

synthase (GS/GOGAT) cycle (Gálvez et al., 1995). This cycle requires a continuous supply of 

2-oxoglutarate, which is synthesized by the action of cytosolic ICDH.  

The cDNA encoding the mitochondrial isoform (GenBank accession number X96728.1) 

was isolated by Gálvez et al. (1998). The deduced amino acid sequence of this cDNA shared 

only 70-75% amino acid identity with that of the cytsolic gene. It was found that this cDNA 

contained two in-frame ATG start sites and it was hypothesized that this resulted in two 

targeting signals. Analysis of the deduced amino acid sequence appeared to demonstrate that 

the N-terminal targeting peptide was mitochondrial in nature. However, it is not possible to say 
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from the targeting signal sequence analysis to which sub-cellular compartment the protein is 

targeted. To address to this question, they transformed tobacco plants with two reporter 

constructs; one containing the entire coding sequence (from the first ATG) fused with a 

modified green fluorescent protein (GFP) and another construct containing only the coding 

sequence of the mature protein, also fused to a GFP. These experiments by Gálvez et al. (1998) 

found that the full-length construct with its targeting signal localized the protein to the 

mitochondria and surprisingly, weakly to the chloroplast, while the construct containing no 

targeting signal was retained in the cytoplasm.  

 The NADP+-dependent ICDH being examined in this study is the mitochondrial isoform 

encoded by the cDNA isolated by Gálvez et al. (1998).  One of the aims of this study was to 

clarify the results found in Gálvez et al. (1998) by recreating the two constructs that they 

utilized. In addition, another construct was created containing a theoretical second targeting 

signal beginning at the second start codon (predicted chloroplast targeting). Constructs were 

also created that possessed the same targeting signals described above but with and additional 

50 amino acids of coding sequence for the mature protein. By creating these variations and 

thereby altering the targeting signals of this protein I was able to uncover a more in-depth and 

clearly developed picture of the mechanisms involved in the dual-targeting signals of the 

mitochondrial NADP+-ICDH gene product. 
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3.0 MATERIALS AND METHODS 

 

3.1 Plant Material and Growth Conditions 

 Tissue culture generated tobacco plants (Nicotiana tabacum L. cv Xanthi) for molecular 

analyses were obtained from Dr. Jonathon Page at the National Research Council of Canada - 

Plant Biotechnology Institute (Saskatoon, Saskatchewan).  The propagation of these plants has 

been described previously (Horsch et al., 1985).  

 Tobacco plants (Nicotiana tabacum L. cv Petit Havana) utilized for transient expression 

experiments were germinated from seed in 100 mm diameter plastic pots containing a peat-soil 

mixture (Sun Gro, Sunshine mix; Vancouver, BC, Canada). A 20-20-20 complete fertilizer 

mix (Plant Prod; Brampton Canada) was added to the plants water source as required. Plants 

were grown at temperature regime of 23/18°C with a 16 /8 h light/dark cycle with a photon flux 

density of 170 µmol photons m-2s-1 provided by fluorescent tubes (Cool White, 215 W, 

F96T12/CW/VHO; Osram Sylvania Ltd., Mississauga, ON, Canada). 

 

3.2 DNA and RNA Extraction 

Genomic DNA was extracted from N. tabacum L. cv. Xanthi or Petit Havana leaves 

using the Qiagen DNasy easy plant mini kit (Qiagen; Mississauga, Ontario, Canada) following 

the manufactures recommendations. Samples were eluted in 50 µL of sterile water, DNA 

concentration was determined spectrophotometrically (Smart Spec Plus, Bio-Rad Laboraties) 

by measuring the absorbance of the DNA sample at 260 nm. The samples were stored in sterile 

microcenterfuge tubes at -20°C. 

 Total RNA was extracted from Nicotiana tabacum L. cv Xanthi or Petit Havana leaves 

using the Qiagen RNasy easy plant mini kit (Qiagen; Mississauga, Ontario, Canada) following 
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the manufacturer’s recommendations. Samples were eluted in 50 µL of sterile water and their 

RNA concentrations were determined spectrophotometrically  by measuring the absorbance of 

the RNA samples at 260 nm. The samples were stored in sterile microcentrifuge tubes at -20°C. 

 

3.3 cDNA Synthesis 

  cDNA was generated from total RNA using the RevertAid™ Fermentus First Single 

Strand cDNA Synthesis kit (Fermentas; Burlington, Ontario, Canada). This was performed as 

described by the manufacturer as follows.  Total RNA was diluted to 5 µg and placed in a 

sterile thin-walled PCR tube along with 1 µL of oligo (dT)18 primer (0.5 µg/µL) and 8 µL of 

DEPC-treated water. This mixture was incubated at 70°C for 5 min and then placed on ice. The 

following components where then added: 4 µL 5X reaction buffer, 1 µL RiboLockTM 

Ribonuclease Inhibitor (20 U/µL) and 2 µL 10 mM dNTP (an equal mixture of 10 mM dATP, 

dGTP, dCTP and dTTP) mix and incubated for 5 min at 37°C. After this period, 1 µL of 

RevertAidTM H Minus M-MuLV Reverse Transcriptase (200 U/µL) was added bringing the 

total reaction volume to 20 µL. The mixture was placed at 42°C for 60 min and the reaction 

was then stopped by heating to 70°C for 10 min. All incubations occurred using a thermocycler 

(iCycler, Bio-Rad Laboraties). The single strand cDNA was then used as template DNA in the 

PCR reactions described in section 3.5.  

 

3.4 Primer Design 

 The coding region of the tobacco mitochondrial NADP+-ICDH cDNA (GenBank 

accession X96728.1) contains two in-frame ATG translation start sites. Oligonucleotide 

primers were designed to amplify various regions of the NADP+-ICDH cDNA and these are 

indicated in Tables 3.1 and 3.2. This process also introduced EcoR1 and HindIII restriction cut  
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Table 3.1 Name and nucleotide sequence of primers utilized to amplify the entire coding region 
of the NADP+-ICDH mature protein with altered targeting signals. The red underlined section 
indicates the start codon, blue italicized sections indicate added EcoRI (GAATTC) and HindIII 
(AAGCTT) restriction sites. 
   
Primer Name                           Sequence (5'→3') 
DMc011f CGCGAATTCATGCTTACCACCCGACTCAGACTC 
DMc012f CGCGAATTCATGGCTAGTGTTGCTTCTTTTATCTC 
DMc013f CGCGAATTCATGAAAATCCGCGTTGAAAATCCT 
DMc014r CGCAAGCTTTACAACTGCGCAGGCACCGAGCTTCTC 
 
 
 
 
 
Table 3.2 Name and nucleotide sequence of primers utilized to amplify regions encoding 
truncated proteins of NADP+-ICDH with altered targeting signals. The red underlined section 
indicates the start codon, blue italicized sections indicate added EcoRI (GAATTC) and HindIII 
(AAGCTT) restriction sites. 
   
Primer Name                            Sequence (5'→3') 
DMc011f CGCGAATTCATGCTTACCACCCGACTCAGACTC 
DMc012f CGCGAATTCATGGCTAGTGTTGCTTCTTTTATCTC 
DMc013f CGCGAATTCATGAAAATCCGCGTTGAAAATCCT 
DMc030r CGCAAGCTTCCACATAGACTTCAGCCCAAATT 
DMc040r CGCAAGCTTATACTTCGTATCCAACTCTAG  
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sites at the 5' and 3' ends, respectively. All primers were synthesized commercially (Alpha 

DNA; Montreal, Quebec, Canada). 

The first primer set was designed to amplify the coding region of the entire mature 

protein from the first ATG start site (both the putative mitochondrial and plastid targeting 

signals). This was designated mito-482 and used primer set DMc011/DMc014 (Table 3.1).  The  

second amplified the coding region of the mature protein from the second ATG start site (only 

the putative plastid targeting signal).  This was designated chloro-482 and used primer set 

DMc012/DMc014 (Table 3.1). The third amplified the coding region of the mature protein (no 

putative targeting signals). This was designated cyto-482 and used primer set 

DMc013/DMc014 (Table 3.1). 

 The next six primer sets was designed to utilized the same forward primers described 

above and were identical in terms of their putative targeting signals (Tables 3.1 and 3.2). 

However, two different reverse primers were utilized; DMc030 and DMc040 (Table 3.2). 

When translated, the resulting PCR products generated truncations at amino acid 160 if the 

DMc030 primer was used or at amino acid 138 if the DMc040 primer was used in the PCR 

amplification. The former PCR products were designated mito-160, chloro-148 and cyto-90 

while the latter were designated mito-110, chloro-98 and cyto-40. These designations and those 

above were assigned based on the number of amino acids the translated PCR product contained.  

 

3.5 Polymerase Chain Reaction  

 cDNA sequences were amplified by PCR using a thermostable DNA polymerase (Pfu-

polymerase; Fermentas). The PCR mixture contained: 1-2 U Pfu-polymerase, 10 µL PCR 

buffer (1% [v/v] Triton X-100, 100 mM Tris-HCl [pH 8.8], 500 mM KCl, 15 mM MgCl2), 2 

µL 10 mM dNTPs (an equal mixture of 10 mM dATP, dGTP, dCTP and dTTP), 50 pM of each 
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forward and reverse primer, 1 µg cDNA or 1µg genomic DNA and RNase free water up to a 

total volume of 50 µL.  The following cycling conditions were used on an iCycler (Bio-Rad 

Laboraties): 1) 2 min at 95°C for nuclease inactivation and complete DNA denaturation; 2) 30 

cycles of 30 s at 94°C for DNA denaturation; 30 s at 55°C for annealing of oligonucleotide 

primers; 2 min at 72°C for new DNA synthesis (extension); and 3) 10 min at 72°C for 

completion of the last reaction.  

  

3.6 Agarose Gel Electrophoresis   

 The amplified DNA fragments were analyzed by agarose gel electrophoresis.  The 

fragments of DNA were separated by electrophoresis through a 1% (w/v) agarose gel in 1X 

TAE buffer. The working solution of 1X TAE buffer was made by diluting a 50X stock 

solution of TAE (242 g/L Tris, 57.1 mL/L acetic acid, 14.6 g/L disodium EDTA, pH 8.0) in 

deionized water. Ethidium bromide (0.5 µg/mL) was added to the gel which allowed 

visualization of the DNA under UV light. The DNA samples were mixed with 6X DNA 

loading buffer (Fermentas) prior to loading on the gel.  Electrophoresis was carried out at 50 to 

100V and stopped when the bromphenol blue migrated three quarters of the gel length. Gels 

were visualized on a short-wave UV-B trans-illuminator system (Gel Doc, Bio-Rad Laboraties) 

and the image stored electronically. The sizes of the DNA fragments were estimated by 

comparing them to standards of known size which were loaded in adjacent lanes.  

 

3.7 Restriction Digestion 

 PCR products were digested with specific restriction endonucleases (up to 5 U of 

enzyme for 1 µg of DNA). The primers were designed to introduce a 5' EcoR1 and a 3' HindIII 

restriction site on the PCR products. A double restriction digest was performed by adding 10 
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µg of PCR product, 5 µL 2X Tango buffer (33 mM Tris-acetate [pH 7.9], 10 mM magnesium 

acetate, 66 mM potassium acetate, 0.1 mg/mL BSA), 2 µL EcoR1 (Fermentas), 2 µL HindIII 

(Fermentas) and nuclease free water up to 30 µL. This mixture was incubated for 1 hour at 

37°C before inactivation at 65°C for 20 min. The digested fragments obtained were analyzed 

by agarose gel electrophoresis (section 3.6). 

  

3.8 Extraction of DNA Fragments 

 DNA was resolved in a 1% (w/v) agarose gel and viewed with UV-light. An ethanol 

sterilized razor blade was used to cut out the appropriate region of the gel containing the DNA 

of interest. The DNA was then purified using the QIAquick Gel Extraction Kit (Qiagen) 

according to the manufacturer’s instructions. Samples were eluted in 50 µL of sterile water, 

quantified spectrophotometrically (Smart Spec Plus, Bio-Rad Laboraties), and stored in sterile 

microcentrifuge tubes at -20°C. 

   

3.9 Vector Preparation 

 The plasmid pBluescript KS+ (Stratagene; Kirkland, Washington, USA; Fig. A-1) was 

supplied by Dr. Peta Bonham-Smith (Department of Biology, University of Saskatchewan) as a 

glycerol stock in Escherichia coli DH5-α cells (Invitrogen; Burlington ON, Canada). This 

stock was grown in Luria-Bertani (LB) media (tryptone [10 g/L], yeast extract [5 g/L] and 

NaCl [5 g/L]).  The media was sterilized by autoclaving (AMSCO eagle series 3021 gravity; 

Cheshire, CT, USA) for 20 min at 121°C. For antibiotic selection, an ampicillin stock (40 

µg/mL) was filter sterilized using a 0.22 µm syringe filter (Millipore; Kankakee, Illinois, USA) 

and added to the cool media.  
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 The E. coli stock was grown by inoculating 5 mL of LB media, containing 40 µg/mL 

ampicillin with 100 µL of bacterial culture and incubating at 37°C for 18 to 24 hours.  Plasmid 

DNA was extracted (see section 3.10) and digested using EcoR1 (Fermentas) and HindIII 

(Fermentas) restriction enzymes (section 3.7). The linearized vector was analyzed by agarose 

gel electrophoresis (section 3.6) followed by purification by gel extraction (section 3.8).    

 

3.10 Extraction of Plasmid DNA  

 Overnight E. coli cultures (5 mL) were centrifuged (Microfuge Lite, Beckman; 

Fullerton, California, USA) at 8,000 rpm for 2 min at room temperature to pellet the bacteria. 

Plasmid DNA was the extracted from the pelleted bacteria using the GeneJET Plasmid 

Miniprep Kit (Fermentas) according to the manufactures recommendations. Samples were 

eluted in 50 µL of sterile water, quantified spectrophotometrically (Smart Spec Plus, Bio-Rad 

Laboraties), and stored in sterile microcentrifuge tubes at -20°C. 

 

3.11 Ligation Reaction 

 The amplified PCR products were directionally ligated into pBluescript KS+ to produce 

constructs containing the various fragments described previously (section 3.4). T4-DNA ligase 

(Invitrogen) was used to ligate DNA fragments. This reaction contained a linearized DNA 

vector (50-200 ng) and 2-5 times the molar concentration in excess of the DNA fragment (PCR 

product). This occurred in a 20 µL reaction containing with 2 µL of 10X ligation buffer (50 

mM Tris-HCl, 10 mM MgCl2 5% [w/v] PEG-8000, 1 mM DTT, 1 mM ATP, pH 7.6), and 1 U 

T4-DNA ligase (Invitrogen) and water to volume. The reactions were performed at room 

temperature for 1 hour or at 4°C for 12 hours. The reactions were stopped by heat inactivating 
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the enzyme by incubation at 65°C for 10 min. The ligated DNA was used to transform E. coli 

competent cells. 

 

3.12 Transformation of Escherichia coli 

 Prior to transformation, frozen E. coli DH5-α competent cells (Invitrogen) were allowed 

to thaw on ice for 2 min. Once thawed, the ligation reaction mixture (5 µL) was added to 50 µL 

of cells. The cells and plasmid DNA were incubated on ice for 30 min, then heat shocked for 2 

min at 42°C and placed back on ice for a final 2 min to facilitate DNA uptake.  After adding 1 

mL of LB media, the cells were incubated at 37°C for 1 hour with shaking before being 

appropriately diluted (25-250 cfu/plate) and plated on LB plates containing ampicillin (40 

µg/mL).  After an overnight incubation period at 37°C, individual colonies on the plates were 

picked with a sterile toothpick, placed in 5 mL liquid LB-ampicillin media and grown 

overnight at 37°C. The bacterial culture was then subject to plasmid DNA extraction (see 

section 3.9), a double restriction digest (section 3.7) and gel electrophoresis (section 3.6) in 

order to confirm presence of an insert (PCR product). Glycerol stocks for long term storage 

were prepared by adding 0.9 mL of culture and 0.9 mL of 40% (v/v) glycerol to individual 

cryovials (Diamed; Missassuga, ON, Canada) and stored at -80°C. 

  

3.13 Sequence Analyses 

 Confirmation of constructs was also performed by sequence analyses. Glycerol stocks 

or plasmid DNA were sent for sequencing at National Research Council of Canada - Plant 

Biotechnology Institute (Saskatoon, Saskatchewan). Nucleotide and amino acid alignment was 

performed using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html; Larkin et al., 

2007). Deduced amino acid sequence was obtained using EMBOSS Transeq 

http://www.ebi.ac.uk/Tools/clustalw2/index.html
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(http://www.ebi.ac.uk/emboss/transeq/; Rice et al., 2000).  Predictions of targeting were 

performed using Predator (http://www.inra.fr/Internet/Produits/Predotar/; Small et al., 2004).  

 

3.14 Amplification of the YFP 

 The binary vector pVKHI8En6-ERD2-YFP (Batoko et al., 2000; Brandizzi et al. 2002a, 

2002 b) (Fig. A-2), containing a region encoding a yellow fluorescent protein (YFP), was 

supplied as a purified plasmid by Dr. Federica Brandizzi (DOE Plant Research Laboratory, 

Michigan State University, East Lansing, MI, USA). PCR was performed using the primer set 

YFPf/YFPr (Table 3.3) and pVKHI8En6-ERD2-YFP as a DNA template. Cycling conditions 

were as described in section 3.5.The YFPf/YFPr primers were designed to amplify the YFP as 

well as to introduce 5' HindIII and 3' Spe1 restriction sites. Following PCR, the reaction mixture 

was subjected to a restriction digest using enzymes HindIII and Spe1. This was performed in a 

reaction containing 5 µL 2X Tango buffer (33 mM Tris-acetate [pH 7.9], 10 mM magnesium 

acetate, 66 mM potassium acetate, 0.1 mg/mL BSA), 2 µL Spe1 (Fermentas), 2 µL HindIII 

(Fermentas), 10 µg of PCR product, and nuclease free water up to 30 µL. This mixture was 

incubated for 1 hour at 37°C before being heat inactivated at 65°C for 20 min. The digested 

fragments obtained were analyzed by agarose gel electrophoresis (section 3.6) and the PCR 

product corresponding to the YFP (720 bp) was extracted from the gel using a commercially 

available kit (Qiagen) as described in section 3.8. 

 

3.15 Creation of the pYellow Reporter Vector  

 A pRed (pRed-L23a-GST-GFP) binary vector (Fig. A-3; Degenhard and Bonham-

Smith, 2008) was supplied by Dr. Peta Bonham-Smith (Department of Biology, University of 

Saskatchewan) as a glycerol stock in E. coli DH5-α cells (Invitrogen) and was used to generate  

http://www.ebi.ac.uk/emboss/transeq/
http://www.inra.fr/Internet/Produits/Predotar/
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Table 3.3 Name and nucleotide sequence of primers utilized to amplify the YFP. The red 
underlined section indicates the start codon, blue italicized sections indicate added HindIII 
(AAGCTT) and Spe1 (ACTAGT) restriction sites.  
 
Primer Name                            Sequence (5'→3') 

YFPf CGCAAGCTTATGGTGAGCAAGGGCGAGGAGCTG 
YFPr CGCACTAGTTTACTTGTACAGCTCGTCCTAGCCGAG 
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the pYellow reporter vector (Fig. A-4). The bacterial culture was grown as described in section 

3.9 and plasmid DNA extracted as previously described in section 3.8.  

 The pRed vector contains a red fluorescent protein (RFP) flanked by a 5' HindIII and a 

3' Spe1 restriction site (Fig. A-3). The pRed vector (10 µg) was subjected to a HindIII/Spe1 

digestion as described above in section 3.14 to release the RFP. The digestion was analyzed by  

agarose gel electrophoresis (section 3.6) and the linearized plasmid was gel purified using a 

commercially available kit (Qiagen) as described in section 3.8. The gel purified and digested 

YFP from section 3.14 was then directionally ligated (section 3.11) into the pRed vector and 

transformed into E. coli DH5α competent cells (Invitrogen) by heat shock (section 3.12).  

Positive colonies were selected and confirmed by a HindIII/Spe1 digestion (section 3.14) to 

confirm the presence of the 720 bp YFP insert.  Glycerol stocks were created and stored at -

80°C. This generated the binary reporter vector pYellow (Fig. A-4) which was subsequently 

gel purified (section 3.8) using a commercially available kit (Qiagen). 

   

3.16 Creation of ICDH:YFP Fusion Constructs 

 The pYellow vector and the six PCR products (mito-160, chloro-148, cyto-90, mito-110, 

chloro-98 and cyto-40) described previously (section 3.4) were digested with EcoR1/HindIII 

(section 3.7), analyzed by agarose gel electrophoresis (section 3.6), and gel purified (section 

3.8). The PCR products were then directionally ligated (section 3.11) into the linearized 

pYellow and used to transform E. coli DH5α competent cells (Invitrogen) by heat shock 

(section 3.12).  Positive colonies were selected and subjected to an EcoRI/HindIII digestion 

(section 3.7) to confirm presence of inserts. Glycerol stocks were created and stored at -80°C. 

This gave rise to six ICDH:YFP fusion constructs which are presented in Table 3.4. 
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Table 3.4 ICDH:YFP fusion constructs utilized for confocal microscopy. 

 

 

 

 

 

 

Name Vector Number of Amino 
Acids Residues 

Predicted 
Localization 

mito-160:YFP  pYellow 160 mitochondrial 
chloro-148:YFP pYellow 148 chloroplastic 
cyto-90:YFP  pYellow 90 cytosolic 
mito-110:YFP pYellow 110 mitochondrial 
chloro-98:YFP pYellow 98 chloroplastic 
cyto-40:YFP  pYellow 40 cytosolic 
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3.17 Transformation of Agrobactium tumefaciens  

       The fusion constructs presented in Table 3.4 were used to co-transform Agrobacterium 

tumefaciens (ElectroMAX LBA4404; Invitrogen) along with the helper vector pSoup (Fig. A-5; 

supplied by Dr. Peta Bonham-Smith, University of Saskatchewan) by electroporation. All 

ICDH:YFP fusion constructs in pYellow were co-electroporated with pSoup, which must be 

coresident in A. tumefaciens to provide the replication functions for pYellow (Hellens et al., 

2000). The plasmids were added to 20 µL of competent cells and eletroporation occurred using  

a Gene Pulser II apparatus with Pulse Control Plus and Capacitance Extender Plus modules 

(Bio-Rad Laboraties) according to the manufactures recommendations.  The following 

conditions were used 2.0 kV, 200Ω, 25 µF with an electroporation cuvette (2 mm gap; VWR; 

Mississauga, ON, Canada). Immediately after electroporation, 1 mL of YM media (0.4 g/L 

yeast extract, 10.0 g/L mannitol, 0.1 g/L NaCl, 0.2 g/L MgSO4•7H2O, 0.5 g/L K2HPO4• 3H2O) 

was added to the cells followed by incubation at 28°C for 3 hours with shaking. The media was 

sterilized by autoclaving. For antibiotic selection, 100 µg/mL streptomycin and 50 µg/mL 

kanamycin were filter sterilized using a 0.22 µm syringe filter (Millipore) and added to the cool 

media. The cells were plated on the selective media and incubated for 2 days at 28°C. After the 

2 day incubation period individual colonies were picked with a sterile toothpick, placed in 5 

mL of liquid YM-kanamycin/streptomycin media and grown overnight at 28°C. Selective 

media and sequencing (data not shown) were used to confirm positive transformants. Glycerol 

stocks were created and stored at -80°C. 

 

3.18 Transient Plant Transformation 

 Agrobacterium tumefaciens cultures from above (section 3.17) were grown from stocks 

in YM-kanamycin/streptomycin liquid media.  The optical density was monitored at 600 nm 
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(OD600) using a spectrophotometer (Smart Spec Plus, Bio-Rad Laboraties) until an OD600 of 

0.20 was reached (Sparkes et al., 2006).  At this time 1.5 mL of culture was centrifuged at 

8,000 rpm for 5 min at room temperature to pellet the bacteria. The pelleted bacteria was 

suspended in 1 mL of infiltration buffer (2 mM Na3(PO4), 50 mM MES, 100 µM 

acetosyringone  and 50 mg/mL glucose). The suspensions were then injected into the epidermal 

region of mature tobacco leaves. Transient expression of the ICDH:YFP fusion proteins in 

tobacco epidermal cells required 2-3 days from infiltration to expression depending on the 

efficiency of the transformation. After the incubation period the leaves from the transfected 

tobacco were visualized using the confocal microscope (see section 3.19). Arabidopsis Sec12, a 

ER protein  N-terminally fused to YFP was provided as an A. tumefaciens stock by Dr. 

Federica Brandizzi (DOE Plant Research Laboratory, Michigan State University) and also used 

to perform transient plant transformation as described above (daSilva et al., 2004).  

  

3.19 Confocal Microscopy 

 Epidermal leaf cells of tobacco were transiently transfected with A. tumefaciens cultures 

harboring the pYellow reporter vector encoding either the mito-160:YFP, chloro-148:YFP, 

cyto-90:YFP, mito-110:YFP, chloro-98:YFP or cyto-40:YFP fusion proteins. After 48-72 hours 

the expression of the YFP was visualized using confocal microscopy (Department of Biology, 

University of Saskatchewan). Leaf tissues were examined by using an inverted Zeiss LSM 510 

META laser scanning microscope (Jena, Germany) with a 63X water immersion objective.  For 

imaging of the YFP constructs, the excitation line of an argon ion laser at 514 nm was used 

with a 530-600 nm band pass filter in the single-track facility of the microscope (Brandizzi et 

al., 2002b).  
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 Mitochondria were visualized by incubating leaf disks in the presence of 50 mM Hepes 

(pH 7.0), 330 mM sorbitol, and 1 mM dihydrorhodamine-123 (Invitrogen) at room temperature 

for 1 hour (as described Gálvez et al., 1998). Excess dye was eliminated by washing the disks 

several times in dye-free buffer. Fluorescence from dihydrorhodamine-123 was observed by 

using the excitation line of an argon ion laser at 488 nm with a 505-530 nm band pass filter. 

Chloroplasts were identified by using chlorophyll autofluorescence which was observed using 

the excitation line of an argon ion laser at 488 nm with a long pass filter at 650 nm. YFP 

(yellow channel) and chlorophyll autofluorescence (red channel) were imaged simultaneously. 

Line switching was done using the multi-track facility of the microscope and settings were 

optimized for individual constructs. Acquired images were processed with Zeiss LSM Image 

Browser software. Post acquisition image processing was perfomred using Microsoft 

PowerPoint (Microsoft; Missassuaga, ON, Canada).  Images reported in microscopy figures are 

representative of at least five independent experiments. 
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4.0 RESULTS 

 

 The following results reported in this chapter were obtained using the Xanthi cultivar of 

tobacco (Nicotiana tabacum L. cv. Xanthi).  All results were repeated using Nicotiana tabacum 

L. cv. Petit Havana with identical findings. These results can be found in Appendix B. 

 

4.1 Identification of Targeting Signals 

 The protein sequence of the mitochondrial isoform of ICDH demonstrated two N-

terminal targeting signals when examined by bioinformatic analysis (Predotar). When the full 

protein amino acid sequence was examined with Predotar, the prediction software showed a 

98% probability towards a mitochondrial targeting signal because it was enriched in basic 

residues at the N-terminal end. When the truncated amino acid sequence from the second start 

site was entered into Predotar software it was predicted to be targeted to the chloroplast (99%). 

However, it is not possible to assign unequivocally the sub-cellular localization of the mature 

protein based on this kind of theoretical analysis.  

 

4.2 Generation of Full-Length Constructs 

 A PCR-based approach was utilized to directionally clone specific regions of the 

mitochondrial NADP+-ICDH cDNA into pBluescript to examine the role of the putative 

targeting signals (Fig. 4.1A).  In total, three individual fragments were generated (Fig. 4.1B). 

These fragments encompass the entire coding region of the protein with altered targeting 

signals. The first fragment was 1446 bp in size and spanned the coding region of the mature 

protein from the first translational start site which  

 

http://urgi.versailles.inra.fr/predotar/predotar.html


 

                                                                         37 
                                                                           
 

 

 

 

 

 

 

 

Figure 4.1 PCR strategy to generate full-length versions of NADP+-ICDH with altered 
targeting signals. A) Graphical representation of NADP+-ICDH nucleotide sequence. Primers 
are indicated by green sections, blue and light blue sections indicate predicted targeting regions, 
red section indicates coding region of mature protein, white section indicates untranslated 
region. B) Representation of possible PCR products using the primer sets described in Table 
3.1.   
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included both the putative mitochondrial and chloroplast targeting signals. Upon translation 

this generated a protein of 482 amino acids in length that should be targeted to the 

mitochondrion. This product was designated mito-482 (Fig. 4.1B). The second fragment was 

1410 bp in size and spanned the coding region of the mature protein from the second 

translation start site which included only the putative chloroplast targeting signal.  This 

fragment was designated chloro-482 and should be presumably targeted to the chloroplast (Fig. 

4.1B). The third fragment was 1233 bp in size, spanning the coding region of the mature 

protein with no putative targeting signals.  An ATG translational start site was added during 

PCR primer design. This fragment was expected to be localized in the cytosol and was 

designated cyto-482 (Fig. 4.1B). 

 All three sets of primers amplified robustly resulting in distinct DNA products at 

approximately 1446, 1410 and 1233 bp when analyzed by agarose gel electrophoresis (Fig. 

4.2A). Following digestion and purification, these DNA fragments (mito-482, chloro-482 and 

cyto-482) were directionally ligated into the Bluescript plasmid.  Successful ligation and 

transformation was confirmed by restriction digestion with EcoRI/HindIII. This generated 

DNA products of the correct size as shown in Fig. 4.2B.   

 

4.3 Sequence Analyses 

 The three pBluescipt plasmids harboring the PCR fragments (created in section 4.2) 

were sent for sequencing at National Research Council of Canada - Plant Biotechnology 

Institute (Saskatoon, Saskatchewan). The nucleotide sequences of the plasmid inserts were then 

aligned with Nicotiana tabacum L. cv. Xanthi mitochondrial NADP+-ICDH to identify any 

nucleotide changes (Fig. 4.3). This sequence analysis demonstrated a 99.1% homology of the 
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Figure 4.2 Agarose gel analyses of full-length PCR products of NADP+-ICDH from N. 
tabacum L. cv Xanthi.  A) PCR amplification of i) mito-482 ii) chloro-482 and iii) cyto-482 
DNA fragments. B) Double restriction digested pBluescript containing the DNA fragments iv) 
mito-482, v) chloro-482 and vi) cyto-482 using EcoR1 and HindIII.  

vi iv v 
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mito-482        ------------------------------------------------------------ 
chloro-482      ------------------------------------------------------------ 
cyto-482        ------------------------------------------------------------ 
NCBI            GCACGGCGACAAAGACAATAGAGAGTTGCTCAGAGCAGCAAAAACTAGCAACTGATTAAA 60 
 
                                                                             
mito-482        ---------------ATGCTTACCACCCGACTCAGACTCCGGTGTTCCGCCATGGCTAGT 45 
chloro-482      ---------------------------------------------------ATGGCTAGT 9 
cyto-482        ------------------------------------------------------------ 
NCBI            GCCTACAAAAGTGTTATGCTTACCACCCGACTCAGACTCCGGTGTTCCGCCATGGCTAGT 120 
                                                                             
 
mito-482        GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 105 
chloro-482      GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 69 
cyto-482        ------------------------------------------------------------ 
NCBI            GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 180 
                                                                             
 
mito-482        CCCTTTTCAATCATCTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 165 
chloro-482      CCCTTTTCAATCATCTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 129 
cyto-482        ------------------------------------------------------------ 
NCBI            CCCTTTTCCATCATTTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 240 
                                                                             
 
mito-482        ATCCCCAATGCTTCAATTCGATGCTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTC 225 
chloro-482      ATCCCCAATGCTTCAATTCGATGCTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTC 189 
cyto-482        ------------------------------------------ATGTCTAAAATCCGCGTC 15 
NCBI            ATCCCCAATGCTTCAATTCGATCGTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTT 300 
                                                             **************  
 
mito-482        GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 285 
chloro-482      GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 249 
cyto-482        GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 75 
NCBI            GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 360 
                ************************************************************ 
 
mito-482        AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 345 
chloro-482      AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 309 
cyto-482        AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 135 
NCBI            AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 420 
                ************************************************************ 
 
mito-482        TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 405 
chloro-482      TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 369 
cyto-482        TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 195 
NCBI            TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 480 
                ************************************************************ 
 
mito-482        TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 465 
chloro-482      TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 429 
cyto-482        TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 255 
NCBI            TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 540 
                ************************************************************ 
 
mito-482        GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 525 
chloro-482      GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 489 
cyto-482        GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 315 
NCBI            GGGCTGAAGTCTATGTGGAGAAGTCCCAATGCCACAATCAGAAACATTTTAAATGGTACT 600 
                ***************** ************* **************************** 
 
mito-482        GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 585 
chloro-482      GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 549 
cyto-482        GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 375 
NCBI            GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGAAGAAA 660 
                ****************************************************** ***** 
 
mito-482        CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 645 
chloro-482      CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 609 
cyto-482        CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 435 
NCBI            CCCATTTGTATTGGTAGGCATGCCTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 720 
                *********************** ************************************ 
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mito-482        AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 705 
chloro-482      AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 669 
cyto-482        AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 495 
NCBI            AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 780 
                ************************************************************ 
 
mito-482        CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 765 
chloro-482      CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 729 
cyto-482        CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 555 
NCBI            CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 840 
                ************************************************************ 
 
mito-482        TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 825 
chloro-482      TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 789 
cyto-482        TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 615 
NCBI            TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGCATTTTCGAAGAAATGGCCTCTT 900 
                ************************************* ********************** 
 
mito-482        TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 885 
chloro-482      TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 849 
cyto-482        TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 675 
NCBI            TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 960 
                ************************************************************ 
 
mito-482        GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 945 
chloro-482      GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 909 
cyto-482        GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 735 
NCBI            GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 1020 
                ************************************************************ 
 
mito-482        CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 1005 
chloro-482      CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 969 
cyto-482        CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 795 
NCBI            CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 1080 
                ************************************************************ 
 
mito-482        GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1065 
chloro-482      GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1029 
cyto-482        GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 855 
NCBI            GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1140 
                ************************************************************ 
 
mito-482        CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1125 
chloro-482      CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1089 
cyto-482        CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 915 
NCBI            CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1200 
                ************************************************************ 
 
mito-482        GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1185 
chloro-482      GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1149 
cyto-482        GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 975 
NCBI            GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1260 
                ************************************************************ 
 
mito-482        AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1245 
chloro-482      AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1209 
cyto-482        AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1035 
NCBI            AATAGTGTTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1320 
                ******* **************************************************** 
 
mito-482        GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1305 
chloro-482      GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1269 
cyto-482        GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1095 
NCBI            GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGAAGCTGCTTGCGTTGGCACAATA 1380 
                ************************************* ********************** 
 
mito-482        GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1365 
chloro-482      GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1329 
cyto-482        GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1155 
NCBI            GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1440 
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                ************************************************************ 
 
mito-482        GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1425 
chloro-482      GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1389 
cyto-482        GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1215 
NCBI            GAACACTACTTGAATACTGAAGAATTTATTGATCCTGTAGCACAGAAACTTCAAGAGAAG 1500 
                ********************************* ************************** 
 
mito-482        CTCGGTGCCTGCGCAGTTGTA 1446 
chloro-482      CTCGGTGCCTGCGCAGTTGTA 1410 
cyto-482        CTCGGTGCCTGCGCAGTTGTA 1236 
NCBI            CTCGGTGCCTGCGCAGTTGTA 1521 
                ********************* 

 

Figure 4.3 ClustalW alignment of nucleotide sequence from full-length constructs of NADP+-
ICDH generated from N. tabacum L. cv Xanthi. Nucleotide sequence from N. tabacum L. cv 
Xanthi NADP+-ICDH (GenBank accession X96728.1) was aligned with mito-482, chloro-482 
and cyto-482. Differing nucleotide residues and the introduced ATG site in cyto-482 are 
highlighted in yellow, * indicates matching sequence.  
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three constructs to the expected nucleotide sequence. The alignment showed 13 changes at the 

nucleotide level which were present in all three constructs (Fig. 4.3).  

 In order to examine whether these 13 nucleotide changes had an effect on the protein, 

the sequences were translated and the deduced amino acid sequence aligned with the amino 

acid sequence present in the NCBI database (Fig. 4.4). It was found that eight of these 13 

nucleotide changes resulted in changes at the amino acid level which are summarized in Table 

4.1. This was consistent for all three constructs (Fig. 4.4) and resulted in a 99.1% identity and a 

98.3% similarity with the NADP+-ICDH protein. There was one amino acid change in the 

putative chloroplastic targeting signal (a serine to a cysteine). When examined using the 

Predotor software this change did not affect the putative mitochondrial or chloroplastic 

localization of the fragment.  However, the most significant of these changes was at amino acid 

161 where a tryptophan (nucleotide sequence TGG) had been replaced with a stop codon 

(nucleotide sequence TGA; Table 4.1). 

 

4.4 Generation of Truncated Constructs 

 Based on the discovery of a stop codon at amino acid 161, another PCR strategy was 

designed which took advantage of the original 5' forward primers, but a new 3' primer was 

created to amplify the coding region of NADP+-ICDH to just before the stop codon at amino 

acid 161 (Fig. 4.5A). This created a series of three fragments encoding truncated proteins with 

the same putative mitochondrial, chloroplastic and cytosolic targeting signals as above (Fig. 

4.5B). An additional 3' primer was also utilized (Fig. 4.5A) to generate another series of three 

truncated proteins with the same putative mitochondrial, chloroplastic and cytosolic targeting 

signals as above (Fig. 4.5B).  These proteins were truncated at amino acid 110 and were  
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mito-482     MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60      
chloro-482   ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-482     ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
                                                                             
 
mito-482     IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
chloro-482   IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 108 
cyto-482     ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 50 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           ************************************************* 
 
mito-482     TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 179 
chloro-482   TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 167 
cyto-482     TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 109 
NCBI            TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMWRSPNATIRNILNGTVFREP 180 
                **************************************** ****.************** 
 
mito-482     ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 239 
chloro-482   ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 227 
cyto-482     ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 169 
NCBI            ILCKNVPRIVPGWKKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 240 
                *************:********************************************** 
 
mito-482     FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 299 
chloro-482   FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 287 
cyto-482     FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 229 
NCBI            FKGPGVALAMYNVDQSIRAFAESSMSMAFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 300 
                ***************************.******************************** 
 
mito-482     EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 359 
chloro-482   EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 347 
cyto-482     EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 289 
NCBI            EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 360 
                ************************************************************ 
 
mito-482     SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 419 
chloro-482   SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 407 
cyto-482     SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 349 
NCBI            SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSVASIFAWARGLGHRAQLDGNQKL 420 
                *************************************.********************** 
 
mito-482     SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 479 
chloro-482   SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 467 
cyto-482     SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 409 
NCBI            SEFVHALEAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDPVAQKLQEKLGACA 480 
                ******* **************************************.************* 
 
mito-482     VV 481 
chloro-482   VV 469 
cyto-482     VV 411 
NCBI            VV 482 
                ** 
 
 

Figure 4.4 ClustalW alignment of deduced amino acid sequence from full-length constructs of 
NADP+-ICDH generated from N. tabacum L. cv Xanthi. Deduced amino acid sequence from N. 
tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) was aligned with mito-482, 
chloro-482 and cyto-482.  Differing amino acid residues are highlighted in yellow a stop codon 
is indicated with a number sign (#),* indicates matching sequence. 
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Table 4.1 Amino acid changes observed in NADP+-ICDH.  Findings of this study were 
compared to the NCBI database sequence NADP+-ICDH (accession CAA65503). The Xanthi 
cultivar of tobacco (N. tabacum L.) was used in both cases. * indicates conservative amino acid 
changes, ** indicates semi-conservative amino acid changes.  
 
Amino Acid (database)       Amino Acid (this study)  Amino Acid Position 
S (Serine) C (Cysteine)* 63 
W (Tryptophan) Stop codon (TGA) 161 
A (Alaine) G (Glycine) * 166 
K (Lysine) E (Glutamic Acid) ** 194 
A (Alanine) V (Valine)* 268 
V (Valine) A (Valine)* 398 
E (Glutamic Acid) G (Glycine)* 427 
P (Proline) A (Alaine)* 467 
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Figure 4.5 PCR strategy to generate truncated versions of NADP+-ICDH with altered targeting 
signals. A) Graphical representation of NADP+-ICDH nucleotide sequence. Primers are 
indicated by green sections, blue and light blue sections indicate predicted targeting regions, 
red section indicates coding region, white section indicates untranslated region. B) 
Representation of possible PCR products using the primer sets described in Table 3.2.   
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designed in this manner so as in part reproduce published results (Gálvez et al., 1998). 

 

4.4.1 Constructs Truncated at Amino Acid 160 

 Constructs tructated at amino acid 160 were designed in order to circumvent the stop 

codon reported in section 4.3.  The first fragment was 480 bp in size and spanned the coding 

region of the mature protein from the first translational start site which included both the 

putative mitochondrial and chloroplast targeting signals, but was truncated before the stop 

codon at amino acid 161. Upon translation this generated a protein predicted to be 160 amino 

acids in length that was hypothesized to be targeted to the mitochondrion. This fragment was 

designated mito-160 (Fig. 4.5B). The second fragment was 444 bp in size, spanning the coding 

region of the mature protein from the second ATG start site which included only the putative 

chloroplast targeting signal, but was truncated before a stop codon at amino acid 161.  This 

fragment was designated chloro-148 and is predicted to be targeted to the chloroplast (Fig. 

4.5B). The third fragment was 270 bp in size and spanned the coding region of the mature 

protein with no putative targeting signals, but was truncated before a stop codon at amino acid 

161.  An ATG translational start site was added during the PCR primer design. This fragment is 

expected to be localized in the cytosol and was designated cyto-90 (Fig. 4.5B). 

 All three sets of primers amplified robustly resulting in a distinct DNA products at 

approximately 483, 447, 270 bp when analyzed by agarose gel electrophoresis (Fig. 4.6A). 

Following digestion and purification, these fragments were used for further ligation into 

pBluescript resulting in the creation of mito-160, chloro-148 and cyto-90 constructs. Successful 

ligation and transformation was confirmed by restriction digestion with EcoR1/HindIII. This 

generated DNA products of the correct size as shown in Fig. 4.6B. This was also confirmed by  
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Figure 4.6  Agarose gel analyses of PCR products from N. tabacum L. cv Xanthi resulting in 
truncation at amino acid 160 of NADP+-ICDH. A) PCR amplification of i) mito-160, ii) chloro-
148 and iii) cyto-90 DNA fragments. B) Double restriction digested pBluescript containing the 
DNA fragments iv) mito-160, v) chloro-148 and vi) cyto-90 using EcoR1 and HindIII.  
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nucleotide sequence analysis (data not shown).  Translation and alignment of the deduced 

amino acid sequence (Fig. 4.7A) demonstrated identical results as to those presented in Fig. 4.4 

with the exception of truncation at amino acid 160 as expected. 

 

4.4.2 Constructs Truncated at Amino Acid 110 

 Constructs tructated at amino acid 110 were also designed in order to replicate and 

build on results reported by Gálvez et al. (1998).  The first fragment was 330 bp in size and 

spanned the coding region of the mature protein from the first ATG start site, which included 

both the putative mitochondrial and chloroplast targeting signals, but was truncated at amino 

acid 110. Upon translation, this generated a protein predicted to be 110 amino acids in length 

that should be targeted to the mitochondrion.  This fragment was designated mito-110 (Fig 

4.5B). The second fragment was 294 bp in size, spanning the coding region of the mature 

protein from the second ATG start site which included only the putative chloroplast targeting 

signal, but was truncated at amino acid 110.  This fragment was designated chloro-98 and 

should be presumably targeted to the chloroplast (Fig 4.5B). The third fragment was 120 bp in 

size and spanned only the coding region of the mature protein with no putative targeting signals, 

but was truncated at amino acid 110.  An ATG translational start site was added during PCR 

primer design. This fragment is expected to be localized in the cytosol and was designated 

cyto-40 (Fig 4.5B).  

 All three sets of primers amplified robustly resulting in a distinct DNA products at 

approximately 330, 294, 120 bp when analyzed by agarose gel electrophoresis (Fig. 4.8A). 

Following digestion and purification, these fragments were used for further ligation into 

pBluescript resulting in the creation of mito-110, chloro-98 and cyto-40 constructs. Successful  
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A 
 

mito-160        MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
chloro-148      ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-90         ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
 
                                                                             
 
mito-160        IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
chloro-148      IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 108 
cyto-90         ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 50 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           ************************************************* 
 
mito-160        TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 160 
chloro-148      TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 148 
cyto-90         TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 90 
NCBI            TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMWRSPNATIRNILNGTVFREP 180 
                ****************************************                     

 
 
 
 
 
B 
 
mito-110        MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
chloro-98       ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-40         ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60                                  
 
mito-110        IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 110 
chloro-98       IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 98 
cyto-40         ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 40 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           *************************************** 

 

Figure 4.7 ClustalW alignment of deduced amino acid sequence from truncated constructs of 
NADP+-ICDH generated from N. tabacum L. cv Xanthi. Deduced amino acid sequence from N. 
tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) was aligned A) mito-160, 
chloro-148 and cyto-90 and B) mito-110, chloro-98 and cyto-40. Differing amino acid residues 
are highlighted in yellow, * indicates matching sequence. The constructs in B) are designed, in 
part, based on Gálvez et al. (1998).  
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Figure 4.8 Agarose gel analyses of PCR products from N. tabacum L. cv Xanthi resulting in 
truncation at amino acid 138 of NADP+-ICDH. A) PCR amplification of i) mito-110, ii) chloro-
98 and iii) cyto-40 DNA fragments. B) Double restriction digested pBluescript containing the 
DNA fragments iv) mito-110, v) chloro-98 and vi) cyto-40 using EcoR1 and HindIII.  

380 bp 

380 bp 
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ligation and transformation was confirmed by restriction digestion with EcoRI/HindIII. This 

generated DNA products of the correct size as shown in Fig. 4.7B. This was also confirmed by  

nucleotide sequence analysis (data not shown).  Translation and alignment of the deduced 

amino acid sequence (Fig. 4.7B) demonstrated identical results as to those presented in Fig. 4.4 

with the exception of truncation at amino acid 110 as expected. 

 

4.5 Creation of the pYellow Reporter Vector 

 Confocal microscopy studies required the creation of a reporter vector containing a YFP. 

This was required for visualization of the constructs in the mitochondria, chloroplasts and 

cytosol so as not to interfere with the fluorescence of the cellular markers for these 

compartments to be used in the imaging process. 

  

4.5.1 PCR Amplification of the YFP 

 The binary vector pVKHI8En6-ERD2-YFP was used as a template along with the 

primer set YFPf/YFPr for PCR (Fig. A-2; Table 3.3).  The PCR reaction was analyzed by 

agarose gel electrophoresis and demonstrated that the primer set amplified a DNA fragment of 

approximately 720 bp, corresponding to the YFP (Fig. 4.9; lane i). This PCR product was then 

digested with HindIII/Spe1, gel purified and used for the creation of pYellow. 

 

4.5.2 pYellow Vector Construction 

 The pRed binary vector (pRed-L23a-GST-GFP; Degenhard and Bonham-Smith, 2008) 

(Fig. A-3) was used to generate pYellow. This vector (pRed) consists of the pGreen backbone 

which has been engineered with a RFP flanked by a 5' HindIII and a 3' Spe1 restriction site  



 

                                                                         53 
                                                                           
 

 

                           

Figure 4.9 Agarose gel analyses of components used to construct the pYellow reporter vector.  
i) PCR amplification of YFP using primer set YFPf/YFPr. ii) Double restriction digest of pRed 
using the enzymes HindIII and Spe1. iii) Double restriction digestion of pYellow using the 
enzymes HindIII and Spe1. 

i ii iii 

720 bp 
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(Fig. A-3).  The pRed vector was subjected to a HindIII/Spe1 digestion to release the 715 bp 

RFP (Fig. 4.9; lane ii).  The digestion was analyzed by agarose gel electrophoresis and the 

linearized plasmid gel purified.  

 The YFP PCR product previously generated was then directionally ligated into the 

digested pRed vector, thus generating pYellow (Fig. A-4). Following transformation, positive 

selection and plasmid DNA extraction, the presence of the YFP was confirmed by 

HindIII/Spe1 digestion and subsequent analysis by agarose gel electrophoresis (Fig. 4.9; lane 

iii). The digestion resulted in a band at 720 bp, the correct size for the YFP which was 

confirmed by sequencing (data not shown). This binary vector, pYellow, was then used for 

further ligations with the six PCR products generated in sections 4.4.1 and 4.4.2.  

 

4.6 Generation of ICDH:YFP Fusion Constructs 

 The six PCR products generated earlier: mito-110, chloro-98, cyto-40, mito-160, 

chloro-146 and cyto-90, as well as pYellow, were subjected to a double digestion using the 

restriction enzymes EcoR1/HindIII. Following gel purification of both the linearized plasmid 

and PCR products, the PCR products were directionally ligated into pYellow, transformed into 

E. coli DH5α competent cells and positive transformants were selected. Successful ligation and 

transformation was confirmed by restriction digestion with EcoR1/HindIII (Fig 4.10). This was 

also confirmed by sequence analysis (data not shown).  Following confirmation of the inserted 

fragment and the YFP fusion, the ICDH:YFP fusion constructs were named as described in 

Table 3.4 and used for Agrobacterium transformation and localization studies. 

 

4.7 Co-Transformation of Agrobacterium and Transient Plant Transformation  
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Figure 4.10 Agarose gel analyses of ICDH:YFP fusion constructs from N. tabacum L. cv 
Xanthi using EcoR1 and Hind III. i) mito-110, ii) chloro-98, iii) cyto-40, iv) mito-160, v) 
chloro-146 and vi) cyto-90. 

380 bp 
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 Plasmid DNA isolated from overnight cultures of the 6 ICDH:YFP fusion constructs 

indicated in Table 3.4 and the helper plasmid pSoup (Fig. A-5) were separately co-transformed 

into Agrobacterium by electroporation. These cells were plated on selection media and 

individual colonies selected for growth in liquid media. Positive transformants were selected 

using antibiotic resistance and confirmed by sequencing (data not shown). Translation and 

alignment of the deduced amino acid sequence (Appendix C) demonstrated 100% identity to 

the NADP+-ICDH sequence presented in Fig. 4.7 and that of the published EYFP sequence 

(GenBank accession AAF65454). In addition, the fusion between the two coding regions 

indicated that the various ICDH:YFP fusions were present in-frame within all the constructs. 

These line ups can be seen in Appendix C. 

 Once the Agrobacterium cultures reached a proper optical density they were used for 

transient plant transformation. All 6 ICDH:YFP fusion constructs were separately injected into 

different leaf lamina of tobacco plants, resulting in transient expression of the YFP fusion 

proteins. After 48-72 hours the transformed tobacco leaves were visualized using the confocal 

microscope. 

 

4.8 Sub-Cellular Localization 

 Using confocal fluorescence microscopy, epidermal cells of transiently transformed 

tobacco plants were observed to examine the presence of an active YFP. This was performed 

48-72 hours after transformation, depending on the efficiency of transformation, with all 6 

fusion constructs to assess targeting to the mitochondria, chloroplasts or cytosolic locations. 

 

4.8.1 Mitochondrial Localization 
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 Upon comparison to mitochondria stained with dihydrorhodamine 123 (Fig. 4.11, panel 

i), the construct mito-110 appears to localize in bodies similar to that of mitochondria based on 

fluorescence (Fig. 4.11, panel ii).  When chloroplast autoflourescence from the same sample 

(Fig. 4.11, panel v) is overlayed (Fig. 4.11, panel viii) it is clear that mito-110 is not localizing 

to the chloroplast.  In contrast, mito-160 exhibits a fluorescence which appears to be 

originating from the chloroplasts (Fig. 4.11, panel iii).  This is clearly the case when 

chloroplast autofluorescence (Fig. 4.11, panel vi) is overlayed (Fig. 4.11, panel ix). 

 

4.8.2 Chloroplastic Localization 

 The YFP fluorescence of the two putative chloroplastic constructs chloro-98 and 

chloro-148 appears to be originating from the chloroplasts (Fig. 4.12, panels i and ii 

respectively). When chloroplast autofluorescence (Fig. 4.12 panels iii and iv) where overlayed 

the with the YFP fluorescence (Fig. 4.12, panels v and vi) it was obvious that these constructs 

are localizing to the chloroplasts. 

 

4.8.3 Cytosolic Localization 

 Upon comparison with the ER protein marker Sec12 (Fig. 4.13, panel i) was used as a 

positive control to optimize the YFP settings on the confocal microscope.I It appears that the 

YFP fluorescence from the constructs cyto-40 and cyto-90 is observed in the cytosol (Fig. 4.13, 

panels ii and iii).  When chloroplast autofluorescence (Fig. 4.13, panels iv, v, vi) is overlayed 

with the YFP fluorescence (Fig. 4.13, panels vii, viii, ix) the cytosolic localization was 

confirmed by the exclusion of chloroplastic and ER localization. 
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Figure 4.11 Localization of putative mitochondrial ICDH:YFP fusion proteins. Confocal 
images of tobacco (N. tabacum L. cv Petit Havana) leaf epidermal 
cells after A. tumefaciens infiltration. Infiltration occurred when cultures had reached an OD600 
= 0.20. (i) mitochondria stained with dihydrorhodiamine 123 (ii) mito-110 (iii) mito-160. 
Panels (iv), (v) and (vi) represent chloroplast autofluorescence.  Panels (vii), (viii) and (ix) are 
merged images of (i) and (iv), (ii) and (v), and (iii) and (vi) respectively. 
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Figure 4.12 Localization of putative chloroplastic ICDH:YFP fusion proteins. Confocal images 
of tobacco (N. tabacum L. cv Petit Havana) leaf epidermal cells after A. tumefaciens infiltration. 
Infiltration occurred when cultures had reached an OD600 = 0.20. (i) chloro-98 (ii) chloro-148.  
Panels (iii) and (iv) represent chloroplast autofluorescence.  Panels (v) and (vi) are merged 
images of (i) and (iii) and (ii) and (iv) respectively. 
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Figure 4.13 Localization of putative cytosolic ICDH:YFP fusion proteins. Confocal images of 
tobacco (N. tabacum L. cv Petit Havana) leaf epidermal cells after A. tumefaciens infiltration. 
Infiltration occurred when cultures had reached an OD600 = 0.20. (i) Sec12 (ii) cyto-40 (iii) 
cyto-90.  Panels (iv), (v) and (vi) represent chloroplast autofluorescence.  Panels (vii), (viii) and 
(ix) are merged images of (i) and (iv), (ii) and (v), and (iii) and (vi) respectively. 
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5.0 DISCUSSION 

 

NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH; EC 1.1.1.42) exists in 

multiple isoforms in several cellular compartments including the cytosol, chloroplasts and 

mitochondria. This enzyme functions in the oxidative decarboxylation of isocitrate, producing 

alpha-ketoglutarate (α-ketoglutarate) and CO2 while converting NADP+ to NADPH (Horton et 

al., 2003).  

Gálvez et al. (1996) first isolated a cDNA encoding the cytosolic isoform of NADP+-

ICDH (ICDH1) from a tobacco cell suspension cDNA library using a soybean cDNA probe 

(Gálvez et al., 1996).  Subsequently, this cDNA library was screened with a homologous probe 

and a new cDNA (GenBank accession number X96728.1) was isolated (Gálvez et al., 1998).  

The deduced amino acid sequence of this cDNA shared only 70-75% amino acid identity with 

other known plant NADP+-ICDH sequences.  This cDNA was found to contain two in-frame 

ATG translational start sites and it was hypothesized that this may result in a mitochondrial 

signal  based on analyses of the deduced amino acid sequence.  To address to this question, 

they transformed tobacco plants with two constructs; one containing the entire coding sequence 

(from the first ATG) and another construct containing only the coding sequence of the mature 

protein. Both of these constructs were fused with a modified green fluorescent protein (GFP).  

These experiments by Gálvez et al. (1998) found that the full-length targeting signal localized 

the protein to the mitochondria and weakly to the chloroplast, while the construct containing no 

targeting signal was retained in the cytoplasm. They concluded that the cDNA that was isolated 

encoded the mitochondrial isoform of NADP+-ICDH.  This was subsequently confirmed by 

others working with purified protein from isolated mitochondria (Gray et al., 2004; Gray and 

McIntosh, unpublished). 
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  In this thesis, I examined the localization of the mitochondrial NADP+-ICDH enzyme 

and tested the hypothesis that this isoform is dual-targeted to both the mitochondrion and the 

chloroplast.  This was accomplished by generating full-length and truncated constructs of 

NADP+-ICDH with altered targeting signals.  A yellow fluorescent protein (YFP) reporter 

vector was created and these constructs were fused to the YFP and used for transient 

transformation of tobacco leaves.  The sub-cellular localization of the subsequent ICDH:YFP 

fusion proteins was then determined using confocal microscopy. Using this approach I was able 

to develop an in-depth and clear picture of the targeting process of the mitochondrial isoform 

of NADP+-ICDH. 

 

5.1 Amino Acid Changes 

To examine the targeting of NADP+-ICDH, primers were developed to amplify specific 

sections of the NADP+-ICDH cDNA that would putatively result in mitochondrial, 

chloroplastic and cytosoic localization. These PCR products were successfully cloned and 

sequenced. Sequencing revealed 13 nucleotide changes when compared to the sequence present 

in the NCBI data base. These changes were present in all three constructs irrespective of 

putative localization. The 13 nucleotide changes resulted in eight amino acid changes. When 

the eight amino acid changes were examined, it was found that the deduced protein shared a 

98.3% similarity and a 99.1% identity to the NCBI database sequence. Included were seven 

conservative amino acids changes (represented with a * in Table 4.1) and one semi-

conservative amino acid change (represented with ** in Table 4.1). 

The most significant of these amino acid changes was a stop codon introduced at amino 

acid 161 (counting from the first ATG site) as a result of a single nucleotide change. 

Interestingly, both tobacco cultivars used in this study (Xanthi and Petit Havana) displayed this 
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stop codon (for Petit Havana results see Appendix B).  The NCBI database sequence indicates 

that amino acid 161 should be a tryptophan (W), encoded by the nucleotide sequence TGG. My 

sequence analysis revealed the nucleotide sequence in this position to be TGA, resulting in a 

stop codon at the amino acid 161 position.  There is only a one nucleotide difference between 

these two codons. Our clones were sequenced multiple times in two cultivars (Xanthi and Petit 

Havana) all revealing the same result. Amplification and sequencing was performed using 

genomic DNA as a template revealing the same nucleotide and amino acid changes (data not 

shown). The NCBI database entry for the NADP+-ICDH cDNA (accession X96782.1) was 

deposited by Gálvez et al. (1998) some 10 years ago from Nicotiana tabacum L. cv. Xanthi.  It 

is possible that in these earlier days of sequencing, a mistake in sequencing was made. In this 

study, the analysis was based onmultiple sequencing reactions, always yielding the same results. 

Therefore it is assumed that the results are correct with respect to the presence of a stop codon 

in the two cultivars tested. 

It is clear that the NADP+-ICDH mature protein contains a stop codon at the amino acid 

161 position.  This has been found in all the constructs created in this work. The question then 

arises as to why this in-frame stop codon occurs?  The fact that this stop codon is present in-

frame in the coding region of the mature protein is an enigma. Upon several sequenecing 

reactions, in multiple constructs, it became clear that this was not an artifact, but rather a 

definite stop codon. The mass of the purified NADP+-ICDH protein from tobacco has been 

found to be 43 kDa (Gray et al., 2004) and reflects the predicted mass of the protein. This is 

intriguing as a recognized termination codon would not allow a mature protein of this mass to 

be observed.  

While it is clear there is a stop codon at the amino acid 161 position, it is possible that 

we are seeing ‘leaky’ termination of the protein, meaning only partial termination may occur. 
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Namy et al. (2001) reported that in Saccharmyces cerevisiae upstream and downstream 

sequences can influence the translation termination efficiency. Bonetti et al. (1995) identified 

the CAA STOP CAA read through motif in the STE6 gene as a leaky mutation. These workers 

showed that the nucleotide sequence CAA up and downstream of the stop codon act together to 

promote a high read-through level (Bonetti et al., 1995). The base pairing of the surrounding 

nucleotides resulted in destabilized secondary structures in the ribosome and these changes 

which would affect binding of release factors. The NADP+-ICDH that was the subject of this 

study contains the sequence ATG STOP AGA. Although my analysis did not indicate any of 

these read-through motifs, the fact that they exist provides precedence for this type of read-

through and may provide one explanation as to how NADP+-ICDH of the correct mass has 

been purified and exists in spite of a stop codon at the amino acid 161 position. It is possible 

that the CAA read through motif is one of many combinations making termination read-

through possible. 

 RNA editing is a post-transcriptional process by which the primary structure of an RNA 

molecule is altered by nucleotide insertions, deletions or alterations. The resulting RNA 

contains genetic information that was not present in the gene from which it was originally 

transcribed. There have been examples in the literature were a terminal stop codon was created 

in-frame by RNA editing (Wintz, 1991). Wintz (1991) cloned and sequenced the cDNA from 

the atp9-1 gene of Petunia hybrida and found that ten C residues at different positions in the 

gene, are changed into U in the mRNA. One of these changes resulted in a stop codon. The 

protein deduced from the cDNA sequence is three amino acids shorter than the one predicted 

from the gene. This was the first report of a stop codon introduced into a plant mitochondrial 

mRNA by RNA editing (Wintz, 1991). It is possible that this same mechanism is responsible 
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for the creation of the stop codon observed in this work although this is difficult to reconcile 

without genomic sequence data.  

 The constructs generated in this study only contained the mature protein with altered N-

terminal targeting signals; it is possible that the 5' and 3' untranslated regions (UTRs) are 

needed for proper translation. There are examples in the literature where the UTRs of genes are 

required to create proteins of the correct mass. The addition of selenocysteine is one such 

example. Selenocysteine is encoded by a UGA codon, which is normally a stop codon 

(Schomburg et al., 2004). It should be noted that this is the stop codon we observed in this 

study. The UGA codon is altered to encode selenocysteine by the presence of a SECIS element 

(SElenoCysteine Insertion Sequence) in the mRNA (Hesketh, 2004; Copeland et al., 2001). 

The SECIS element is defined by characteristic nucleotide sequences and secondary structure 

base-pairing patterns. In Archaea and in eukaryotes, the SECIS element is in the 3' UTR of the 

mRNA, and can direct multiple UGA codons to encode selenocysteine residues (Schomburg et 

al., 2004). It is possible that a similar process occurs with NADP+-ICDH. As we do not have 

the 5' or 3’ UTRs in our constructs, we may be missing the regulatory regions necessary to 

form a complex that would cause the stop codon to encode an amino acid.    

 

5.2 Sub-Cellular Localization 

In this study, I have taken advantage of a modified YFP (EYFP) and generated a 

reporter vector (pYellow) to assess the sub-cellular localization of the protein encoded by the 

cDNA of NADP+-ICDH (GenBank  accession X96728.1). Two sets of ICDH:YFP fusion 

constructs were developed; one of which was truncated at amino acid 160 and the other at 

amino acid 110. Each of these sets of constructs contained three separate constructs with 

different targeting signals (either mitochondrial, chloroplastic or no targeting signal at all). 

http://en.wikipedia.org/wiki/Archaea
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These constructs were created from both Xanthi and Petit Havana cultivars (for Petit Havana 

results see Appendix B).   

In the current study, the experiments of Gálvez et al. (1998) were repeated with a 

truncated construct of the mature protein containing the predicted mitochondrial targeting 

signal (mito-110).  It was found that this construct appeared to be targeted to the mitochondria 

when compared to mitochondria stained with dihydrorhondamine 123 (Fig 4.11, panels i and ii). 

This was expected and corresponds with the results of Gálvez et al. (1998).   

In contrast, when a slightly longer construct of the mature protein containing the 

predicted mitochondrial targeting signal (mito-160) was observed under the confocal 

microscope an interesting observation was noted.  The mito-160 construct appeared to be 

chloroplastic in its sub-cellular localization. This was determined by individually observing the 

YFP fluorescence (Fig 4.11, panel iii), the chloroplastic autofluorescence (Fig 4.11, panel vi) 

and by overlaying the two (Fig 4.11, panel ix). By doing this overlay, we see a perfect 

correspondence between the YFP signal and the chloroplastic autofluorescence. This targeting 

occurred in both tobacco cultivars, Xanthi and Petit Havana. This construct contains the exact 

same targeting signal as the mito-110 construct, but a very different localization of the two 

YFP fusion proteins occured. The only difference between the two proteins is an extra 50 

amino acids in the mito-160 construct. It is clear that the addition of these 50 amino acids 

results in altered targeting. It is interesting that when the same 50 amino acids where added to 

the truncated construct, chloro-148, we did not see any change in targeting when compared to 

the other cholorplastic construct (chloro-98). Since we observed two targeting destinations 

from one apparent targeting signal in the mitochondrial constructs, it is not possible to assign a 

sub-cellular destination for the full-length targeting signal. 
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 When the putative chloroplastic constructs were examined (chloro-148 and chloro-98) it 

was clear that localization was to the chloroplast in both cases. This was hypothesized, as the 

constructs created from the second ATG translational start site were predicted to be 

chloroplastic in nature by the Predator prediction software. This was determined by 

individually observing the YFP fluorescence (Fig 4.12 panel i and ii), the chloroplastic 

autofluorescence (Fig 4.12, panel iii and iv) and by overlaying the two images (Fig 4.12, panels 

v and vi). The overlay illustrates that there is a perfect alignment between the YFP signal and 

the chloroplastic autofluorescence. This was the case in both Xanthi and Petit Havana cultivars.   

Hodges and co-workers also report on this topic in a 2003 review article (Hodges et al., 2003).  

Using NADP+-ICDH fused to a GFP reporter in tobacco and Arabidopsis, it was suggested that 

constructs containing the putative chloroplastic targeting sequence (from the second 

translational start site) do not localize to the chloroplasts (Hodges et al., 2003).  However, this 

was reported using unpublished data and little information is provided with regard to the 

constructs utilized or their design. Our results would indicate the opposite, as we see clear 

chloroplastic targeting. This is the first study that demonstrates NADP+-ICDH contains a 

chloroplastic targeting signal, which leads to the assumption that the gene encoding the 

mitochondrial isoform of NADP+-ICDH also results in an isoform of NADP+-ICDH that is 

dual-targeted to the chloroplast. This work was only performed using the targeting signals and 

a truncated portion of the mature protein. It is assumed that the full-length protein is targeted in 

the same manner, but it can not be unequivocally stated that this is the case. 

Constructs containing no targeting signal (cyto-90 and cyto-40) appeared to localize in 

the cytosol of the tobacco cells. This was predicted as these constructs contain no sub-cellular 

targeting signal.  This is illustrated in Fig. 4.13 (panels ii and iii), where the YFP signals are 

clearly fluorescing in the cytosol. This localization is exactly what was predicted, as these 
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constructs contained no targeting signals. As a result, the proteins being translated in the 

cytosol were not targeted to any organelle and thus stayed in the cytosol.  This was the case in 

both cultivars, Xanthi and Petit Havana. 

Differential targeting could be explained if the additional 50 amino acids contained a 

chloroplastic targeting signal. However, when the 50 amino acids were entered into targeting 

signal prediction software alone or with the rest of the NADP+-ICDH truncated sequence, no 

targeting was predicted. This idea that the additional 50 amino acids could be a chloroplastic 

targeting signal was also refuted with the targeting of the cyto-90 construct.  If this were the 

case and the additional 50 amino acids contained a chloroplastic targeting signal we would 

have seen chloroplastic targeting in this construct, which was not the case as cytosolic 

localization was observed.  

It is also possible that these 50 amino acids cause a conformational change in the 

protein. The translocase complexes located in the outer and inner mitochondrial membranes 

(TOM and TIM) and chloroplast envelope membrane (TOC and TIC) sorting mechanisms are 

not completely understood. It is clear however, that organelle-specific receptors recognize 

protein signal peptides and guide the protein into the import pore of the cellular organelle. 

After import, the targeting peptide is cleaved off by the mitochondrial or the stromal processing 

peptidase (Bhushan et al., 2006; Jarvis, 2004). It is possible that by the addition of the 50 

amino acids, the translated protein is folded in such a way that the mitochondrial targeting 

signal is unable to be recognized by the translocase of the outer mitochondrial membrane 

(TOM). If the TOM does not recognize the targeting signal, the protein is not granted entry into 

the cellular organelle (Jarvis, 2004). This conformational change may also present the 

chloroplastic targeting peptide in a favorable manor, resulting in chloroplastic localization.  
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6.0 CONCLUSIONS AND FUTURE STUDIES 

 

6.1 Conclusions 

 The research conducted for this thesis focused on the localization of mitochondrial 

NADP+-ICDH from tobacco (Nicotiana tabacum L. cv. Petit Havana) leaves and tested the 

hypothesis that this isoform is dual-targeted to both the mitochondrion and chloroplast.  This 

involved creating constructs of the protein with altered putative targeting signals and fusing 

them with a yellow fluorescent protein (YFP) for sub-cellular localization studies using the 

confocal microscope. 

 During this process it was discovered that a stop codon existed at amino acid position 

161 of the mature protein which is not consistent with the deduced amino acid sequence 

derived from the cDNA enoding this isoform of NADP+-ICDH.  This was observed in several 

different constructs from 2 individual cultivars of tobacco and confirmed by multiple 

sequencing reactions. To circumvent this stop codon, truncated constructs of the mature 

NADP+-ICDH protein were created, also with altered targeting signals and fused to a YFP.  

The first set was truncated at amino acid 161, just before the identified stop codon.  The other 

set was truncated at amino acid 110 which corresponds to the constructs used by Gálvez et al. 

(1998) who confirmed that the protein was targeted to the mitochondria. 

When these ICDH:YFP fusion proteins were examined using the confocal microscope, 

some very interesting results were generated. The assumption that constructs cyto-90 and cyto-

40, were theoretically targeted to the cytosol was found to be accurate. The hypothesis that 

constructs chloro-148 and chloro-98 were targeted to the chloroplast was also found to be true. 

It was hypothesized that the constructs mito-160 and mito-110 would be targeted to the 

mitochondria. This was found to be true only for the mito-110 construct.  In contrast, the mito-
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160 construct was found to be targeted to the chloroplast. This however has been attributed to 

the addional 50 amino acids present on this construct. This research has provided evidence that 

NADP+-ICDH is targeted to both the mitochondria and the chloroplast, containing two possible 

targeting signals; the first signal being mitochondrial in nature and encoded from the first ATG 

translational start site and the second signal being chloroplastic and encoded from the second 

ATG translational start site. We also show indication that regions of the mature NADP+-ICDH 

protein are able to influence targeting as is demonstrated by the differential targeting witnessed 

by the addition of 50 amino acids.  

      

6.2 Future Studies 

 In light of the stop codon which was discovered in this thesis, it would be interesting to 

perform a set of experiments in order to examine the localization of the full-length protein. 

Such experiments would either require the mutagenization of the stop codon at amino acid 161 

or perhaps the addition of the 5' and 3' UTRs to the constructs.  The generation of a full-length 

protein, which occurs in vivo, would assist in determining if read-through was occurring and if 

so, the level of read through efficiency. 

 It would be interesting to attach the targeting signals examined in this study to other 

proteins and determine their sub-cellular location. These types of studies have been performed 

previously and would involve amplifying both the mitochondrial and the chloroplastic targeting 

signals and attaching them individually to a protein of choice. The protein would preferentially 

be a cytosolic protein with no targeting signal or a protein with the targeting signal removed. It 

would also be interesting to place the targeting signals examined in this study up-stream or 

down-stream of other targeting signals and determine the strength of the NADP+-ICDH 

targeting signal. Based on my results, I would hypothesize that both the putative mitochondrial 
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and chloroplastic targeting signals of the NADP+-ICDH would be able to localize passenger 

proteins to their respective organelles but this would have to be proven experimentally.  

 The purification and sequencing of NADP+-ICDH protine would be beneficial as it 

would enable us to determine whether the stop codon observed in this study actually encodes a 

selenocysteine, or results in a read-through event. It would be important to examine the 

possibility that the nucleotides surrounding the discovered stop codon are able to influence 

translational read-through. This examination would determine whether the up- and down-

stream nucleotides cause a read-through motif like the one reported by Bonetti et al. (1995).  

One could place the CAA stop CAA motif (Bonetti et al., 1995) around the stop codon found in 

this study and examine the read-through efficiency.  It would also be interesting to place the 

ATG stop AGA motif, found in this study, around the stop codons found in other genes to 

determine whether read-through occurs. The protein sequence may also give insight into the 

other amino acid changes witnessed and help to determine the apparent discrepancy of the 

sequencing results found here as compared to that reported in the NCBI database. 

 One key experiment that should be performed is a determination of the number of 

NADP+-ICDH genes in the genomic DNA. To do this a southern blot would be performed. 

This would determine how many copies of the NADP+-ICDH are present in the genome. If 

indeed multiple copies of the gene are found it may provide an explanation as to why we are 

seeing a stop codon present in the DNA. It could be possible that this gene is a pseudo of 

NADP+-ICDH and that the primers designed have an greater affinity towards binding this 

cryptic gene instead of the active NADP+-ICDH.    

 It would also be interesting to do the same set of localization experiments performed in 

this thesis but transfect a different tissue. Different tissues have a different abundance of 

cellular organells; the amount of organelle may influence the localization results. Therefore, it 
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is possible that the created constructs may undergo different targeting in a tissue other then the 

leaf.    
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Figure A-1 Graphical representation of pBluescript KS (+). 
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Figure A-2 Graphical representation of pVKH18-ERD2-YFP. Dashed lines indicate inserted 
casette into the multiple cloning site (MCS). 
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Figure A-3 Graphical representation of pRed-L23a-GST-GFP (Degenhard and Bonham-Smith, 
2008). Dashed lines indicate inserted casette into the MCS; solid circle indicates pGreen 
backbone.  
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Figure A-4 Graphical representation of the pYellow reporter vector. Dashed lines indicate 
inserted casette into the MCS. 
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Figure A-5 Graphical representation of pSoup. 
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Figure B-1 Agarose gel analyses of full-length PCR products of NADP+-ICDH from N. 
tabacum L. cv Petit Havana  A) PCR amplification of i) mito-482 ii) chloro-482 and iii) cyto-
482 DNA fragments. B) Double restriction digested pBluescript containing the DNA fragments 
iv) mito-482, v) chloro-482 and vi) cyto-482 using EcoR1 and HindIII.  
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mito-482        ------------------------------------------------------------ 
chloro-482      ------------------------------------------------------------ 
cyto-482        ------------------------------------------------------------ 
NCBI            GCACGGCGACAAAGACAATAGAGAGTTGCTCAGAGCAGCAAAAACTAGCAACTGATTAAA 60 
 
                                                                             
mito-482        ---------------ATGCTTACCACCCGACTCAGACTCCGGTGTTCCGCCATGGCTAGT 45 
chloro-482      ---------------------------------------------------ATGGCTAGT 9 
cyto-482        ------------------------------------------------------------ 
NCBI            GCCTACAAAAGTGTTATGCTTACCACCCGACTCAGACTCCGGTGTTCCGCCATGGCTAGT 120 
                                                                             
 
mito-482        GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 105 
chloro-482      GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 69 
cyto-482        ------------------------------------------------------------ 
NCBI            GTTGCTTCTTTTATCTCATCTTCATCGGCTTCAACATCATCCGCAGTTACCAAAAACCTT 180 
                                                                             
 
mito-482        CCCTTTTCAATCATCTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 165 
chloro-482      CCCTTTTCAATCATCTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 129 
cyto-482        ------------------------------------------------------------ 
NCBI            CCCTTTTCCATCATTTCCAATCGGCAACTGTTCAAGAACCGTGTTTATCTCCTCCACCGA 240 
                                                                             
 
mito-482        ATCCCCAATGCTTCAATTCGATGCTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTC 225 
chloro-482      ATCCCCAATGCTTCAATTCGATGCTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTC 189 
cyto-482        ------------------------------------------ATGTCTAAAATCCGCGTC 15 
NCBI            ATCCCCAATGCTTCAATTCGATCGTTCGCTTCCACTACAGCTTCGTCTAAAATCCGCGTT 300 
                                                             **************  
 
mito-482        GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 285 
chloro-482      GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 249 
cyto-482        GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 75 
NCBI            GAAAATCCTATTGTCGAAATGGACGGTGATGAAATGACGAGGGTTATATGGACAATGATC 360 
                ************************************************************ 
 
mito-482        AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 345 
chloro-482      AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 309 
cyto-482        AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 135 
NCBI            AAAGAGAAGCTAATATATCCTTATCTAGAGTTGGATACGAAGTATTACGATTTGGGGATA 420 
                ************************************************************ 
 
mito-482        TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 405 
chloro-482      TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 369 
cyto-482        TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 195 
NCBI            TTGAACCGTGATGCCACTGACGATCAAGTTACTGTTGAAAGTGCTGAGGCTACTCTTAAG 480 
                ************************************************************ 
 
mito-482        TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 465 
chloro-482      TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 429 
cyto-482        TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 255 
NCBI            TATAATGTTGCTGTGAAATGCGCTACTATAACACCTGATGAGACCAGAGTTAAGGAATTT 540 
                ************************************************************ 
 
mito-482        GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 525 
chloro-482      GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 489 
cyto-482        GGGCTGAAGTCTATGTGAAGAAGTCCCAATGGCACAATCAGAAACATTTTAAATGGTACT 315 
NCBI            GGGCTGAAGTCTATGTGGAGAAGTCCCAATGCCACAATCAGAAACATTTTAAATGGTACT 600 
                ***************** ************* **************************** 
 
mito-482        GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 585 
chloro-482      GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 549 
cyto-482        GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGGAGAAA 375 
NCBI            GTTTTCCGGGAGCCTATACTATGCAAGAACGTCCCCAGAATTGTTCCTGGTTGGAAGAAA 660 
                ****************************************************** ***** 
 
mito-482        CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 645 
chloro-482      CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 609 
cyto-482        CCCATTTGTATTGGTAGGCATGCTTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 435 
NCBI            CCCATTTGTATTGGTAGGCATGCCTTTGGTGACCAGTATCGTGCCACAGATGCAGTTATT 720 
                *********************** ************************************ 
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mito-482        AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 705 
chloro-482      AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 669 
cyto-482        AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 495 
NCBI            AATGGACCAGGAAAGCTCAAAATGGTTTTTGAGCCAGAAAATGGGGAAGCCCCTACGGAA 780 
                ************************************************************ 
 
mito-482        CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 765 
chloro-482      CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 729 
cyto-482        CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 555 
NCBI            CTGGATGTTTATGATTTTAAAGGTCCAGGTGTTGCACTTGCCATGTACAATGTTGACCAG 840 
                ************************************************************ 
 
mito-482        TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 825 
chloro-482      TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 789 
cyto-482        TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGTATTTTCGAAGAAATGGCCTCTT 615 
NCBI            TCAATTCGAGCGTTTGCTGAATCATCAATGTCAATGGCATTTTCGAAGAAATGGCCTCTT 900 
                ************************************* ********************** 
 
mito-482        TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 885 
chloro-482      TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 849 
cyto-482        TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 675 
NCBI            TATTTGAGTACAAAAAATACAATACTAAAGAAATACGATGGCAGGTTTAAGGACATTTTT 960 
                ************************************************************ 
 
mito-482        GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 945 
chloro-482      GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 909 
cyto-482        GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 735 
NCBI            GAAGAGGTATATGAAGAGAAGTGGAAGCAACAGTTTGAGGAACACTCGATATGGTATGAG 1020 
                ************************************************************ 
 
mito-482        CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 1005 
chloro-482      CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 969 
cyto-482        CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 795 
NCBI            CATAGATTGATAGATGACATGGTAGCTTATGCATTAAAAAGCGGGGGTGGATATGTTTGG 1080 
                ************************************************************ 
 
mito-482        GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1065 
chloro-482      GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1029 
cyto-482        GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 855 
NCBI            GCATGCAAGAACTATGATGGAGATGTCCAGAGTGATCTGCTCGCTCAAGGATTTGGTTCT 1140 
                ************************************************************ 
 
mito-482        CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1125 
chloro-482      CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1089 
cyto-482        CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 915 
NCBI            CTGGGCCTCATGACCTCTGTATTGTTATCTTCTGATGGCAAGACATTAGAAGCTGAAGCA 1200 
                ************************************************************ 
 
mito-482        GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1185 
chloro-482      GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1149 
cyto-482        GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 975 
NCBI            GCTCATGGCACAGTAACCAGACATTTTCGGCTGCATCAAAAGGGTCAAGAAACTAGTACA 1260 
                ************************************************************ 
 
mito-482        AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1245 
chloro-482      AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1209 
cyto-482        AATAGTGCTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1035 
NCBI            AATAGTGTTGCTTCTATTTTTGCATGGGCAAGGGGACTTGGACATAGGGCCCAGCTTGAT 1320 
                ******* **************************************************** 
 
mito-482        GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1305 
chloro-482      GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1269 
cyto-482        GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGGAGCTGCTTGCGTTGGCACAATA 1095 
NCBI            GGGAACCAAAAGTTATCTGAATTTGTTCACGCCCTGGAAGCTGCTTGCGTTGGCACAATA 1380 
                ************************************* ********************** 
 
mito-482        GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1365 
chloro-482      GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1329 
cyto-482        GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1155 
NCBI            GAGTCCGGGAAGATGACTAAGGATTTAGCTATATTGGTTCATGGACCCAAGGTATCAAGG 1440 
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                ************************************************************ 
 
mito-482        GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1425 
chloro-482      GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1389 
cyto-482        GAACACTACTTGAATACTGAAGAATTTATTGATGCTGTAGCACAGAAACTTCAAGAGAAG 1215 
NCBI            GAACACTACTTGAATACTGAAGAATTTATTGATCCTGTAGCACAGAAACTTCAAGAGAAG 1500 
                ********************************* ************************** 
 
mito-482        CTCGGTGCCTGCGCAGTTGTA 1446 
chloro-482      CTCGGTGCCTGCGCAGTTGTA 1410 
cyto-482        CTCGGTGCCTGCGCAGTTGTA 1236 
NCBI            CTCGGTGCCTGCGCAGTTGTA 1521 
                ********************* 

 

Figure B-2 ClustalW alignment of nucleotide sequence from full-length constructs of NADP+-
ICDH generated from N. tabacum L. cv Petit Havana. Nucleotide sequence from N. tabacum L. 
cv Xanthi NADP+-ICDH (GenBank accession X96728.1) was aligned with mito-482, chloro-
482 and cyto-482. Differing nucleotide residues and the introduced ATG site in cyto-482 are 
highlighted in yellow, * indicates matching sequence.  
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mito-482     MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60      
chloro-482   ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-482     ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
                                                                             
 
mito-482     IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
chloro-482   IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 108 
cyto-482     ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 50 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           ************************************************* 
 
mito-482     TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 179 
chloro-482   TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 167 
cyto-482     TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM#RSPNGTIRNILNGTVFREP 109 
NCBI            TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMWRSPNATIRNILNGTVFREP 180 
                **************************************** ****.************** 
 
mito-482     ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 239 
chloro-482   ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 227 
cyto-482     ILCKNVPRIVPGWEKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 169 
NCBI            ILCKNVPRIVPGWKKPICIGRHAFGDQYRATDAVINGPGKLKMVFEPENGEAPTELDVYD 240 
                *************:********************************************** 
 
mito-482     FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 299 
chloro-482   FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 287 
cyto-482     FKGPGVALAMYNVDQSIRAFAESSMSMVFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 229 
NCBI            FKGPGVALAMYNVDQSIRAFAESSMSMAFSKKWPLYLSTKNTILKKYDGRFKDIFEEVYE 300 
                ***************************.******************************** 
 
mito-482     EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 359 
chloro-482   EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 347 
cyto-482     EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 289 
NCBI            EKWKQQFEEHSIWYEHRLIDDMVAYALKSGGGYVWACKNYDGDVQSDLLAQGFGSLGLMT 360 
                ************************************************************ 
 
mito-482     SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 419 
chloro-482   SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 407 
cyto-482     SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSAASIFAWARGLGHRAQLDGNQKL 349 
NCBI            SVLLSSDGKTLEAEAAHGTVTRHFRLHQKGQETSTNSVASIFAWARGLGHRAQLDGNQKL 420 
                *************************************.********************** 
 
mito-482     SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 479 
chloro-482   SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 467 
cyto-482     SEFVHALGAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDAVAQKLQEKLGACA 409 
NCBI            SEFVHALEAACVGTIESGKMTKDLAILVHGPKVSREHYLNTEEFIDPVAQKLQEKLGACA 480 
                ******* **************************************.************* 
 
mito-482     VV 481 
chloro-482   VV 469 
cyto-482     VV 411 
NCBI            VV 482 
                ** 

 
Figure B-3 ClustalW alignment of deduced amino acid sequence from full-length constructs of 
NADP+-ICDH generated from N. tabacum L. cv Petit Havana. Deduced amino acid sequence 
from N. tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) was aligned with 
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mito-482, chloro-482 and cyto-482.  Differing amino acid residues are highlighted in yellow. A 
stop codon is indicated with a number sign (#), * indicates matching sequence. 



 

                                                                         91 
                                                                           
 

 
 

Figure B-4 Agarose gel analyses of PCR products from N. tabacum L. cv Petit Havana 
resulting in truncation at amino acid 160 of NADP+-ICDH. A) PCR amplification of i) mito-
160, ii) chloro-148 and iii) cyto-90 DNA fragments. B) Double restriction digested pBluescript 
containing the DNA fragments iv) mito-160, v) chloro-148 and vi) cyto-90 using EcoR1 and 
HindIII.  
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Figure B-5 Agarose gel analyses of PCR products from N. tabacum L. cv Petit Havana 
resulting in truncation at amino acid 138 of NADP+-ICDH. A) PCR amplification of i) mito-
110, ii) chloro-98 and iii) cyto-40 DNA fragments. B) Double restriction digested pBluescript 
containing the DNA fragments iv) mito-110, v) chloro-98 and vi) cyto-40 using EcoR1 and 
HindIII.  
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A 

mito-160        MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
chloro-148      ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-90         ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
 
                                                                             
 
mito-160        IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
chloro-148      IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 108 
cyto-90         ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 50 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           ************************************************* 
 
mito-160        TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 160 
chloro-148      TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 148 
cyto-90         TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM-------------------- 90 
NCBI            TDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMWRSPNATIRNILNGTVFREP 180 
                ****************************************                     

 
B 
 
mito-110        MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
chloro-98       ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-40         ------------------------------------------------------------ 
NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60                                  
 
mito-110        IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 110 
chloro-98       IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 98 
cyto-40         ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY---------- 40 
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRDA 120 
                           *************************************** 

 

Figure B-6 ClustalW alignment of deduced amino acid sequence from truncated constructs of 
NADP+-ICDH generated from N. tabacum L. cv Petit Havana. Deduced amino acid sequence 
from N. tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) was aligned A) 
mito-160, chloro-148 and cyto-90 and B) mito-110, chloro-98 and cyto-40. Differing amino 
acid residues are highlighted in yellow, * indicates matching sequence. The constructs in B) are 
designed, in part, based on Gálvez et al. (1998).  
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Figure B-7 Agarose gel analyses of ICDH:YFP fusion constructs from N. tabacum L. cv Petit 
Havana using EcoR1 and Hind III. i) mito-110, ii) chloro-98, iii) cyto-40, iv) mito-160, v) 
chloro-146 and vi) cyto-90. 
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Figure B-8 Localization of putative mitochondrial ICDH:YFP fusion proteins generated from 
(N. tabacum L. cv Petit Havana). Confocal images of tobacco (N. tabacum L. cv Petit 
Havana) leaf epidermal cells after A. tumefaciens infiltration. Infiltration occurred when 
cultures had reached an OD600 = 0.20. (i) mitochondria stained with dihydrorhodiamine 123 (ii) 
mito-110 (iii) mito-160. Panels (iv) and (v) represent chloroplast autofluorescence.  Panels (vii), 
(viii) and (ix) are merged images of (i) and (iv), (ii) and (v), and (iii) and (vi) respectively. 
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Figure B-9 Localization of putative chloroplastic ICDH:YFP fusion proteins generated from 
(N. tabacum L. cv Petit Havana). Confocal images of tobacco (N. tabacum L. cv Petit 
Havana) leaf epidermal cells after A. tumefaciens infiltration. Infiltration occurred when 
cultures had reached an OD600 = 0.20. (i) chloro-98 (ii) chloro-148.  Panels (iii) and (iv) 
represent chloroplast autofluorescence.  Panels (v) and (vi) are merged images of (i) and (iii) 
and (ii) and (iv) respectively. 
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Figure B-10 Localization of putative cytosolic ICDH:YFP fusion proteins generated from 
(N. tabacum L. cv Petit Havana). Confocal images of tobacco (N. tabacum L. cv Petit 
Havana) leaf epidermal cells after A. tumefaciens infiltration. Infiltration occurred when 
cultures had reached an OD600 = 0.20. (i) Sec12 (ii) cyto-40 (iii) cyto-90. Panels (iv), (v) and 
(vi) represent chloroplast autofluorescence.  Panels (vii), (viii) and (ix) are merged images of (i) 
and (iv), (ii) and (v), and (iii) and (vi) respectively
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NCBI            MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
mito-160        MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 60 
chloro-148      ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNAS 48 
cyto-90         ------------------------------------------------------------ 
EYFP            ------------------------------------------------------------ 
                                                                             
NCBI            IRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRD 120 
Mito-160        IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRD 120 
chloro-148      IRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRD 108 
cyto-90         ----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYYDLGILNRD 49 
EYFP            ----------------------------------------------------------- 
                                                                             
NCBI            ATDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSM                    160 
mito-160        ATDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMKLMVSKGEELFTGVVPILV 180 
chloro-148      ATDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMKLMVSKGEELFTGVVPILV 168 
cyto-90         ATDDQVTVESAEATLKYNVAVKCATITPDETRVKEFGLKSMKLMVSKGEELFTGVVPILV 109 
EYFP            -------------------------------------------MVSKGEELFTGVVPILV 19 
                                                           ***************** 
 
mito-160        ELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPD 240 
chloro-148      ELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPD 228 
cyto-90         ELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPD 169 
EYFP            ELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGYGLQCFARYPD 79 
                ************************************************************ 
 
mito-160        HMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELKGIDFKEDGNI 300 
chloro-148      HMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELKGIDFKEDGNI 288 
cyto-90         HMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELKGIDFKEDGNI 229 
EYFP            HMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELKGIDFKEDGNI 139 
                ************************************************************ 
 
mito-160        LGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNTPIGDGPVLLP 360 
chloro-148      LGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNTPIGDGPVLLP 348 
cyto-90         LGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNTPIGDGPVLLP 289 
EYFP            LGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNTPIGDGPVLLP 199 
                ************************************************************ 
 
mito-160        DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 402 
chloro-148      DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 390 
cyto-90         DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 331 
EYFP            DNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 241 
             ********************************* 
 
Figure C-1 ClustalW alignment showing ICDH:YFP fusion in constructs truncated at amino 
acid 160 generated from N. tabacum L. cv Petit Havana. Deduced amino acid sequence from N. 
tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) and EYFP (NCBI acession 
AAF65454) were aligned with mito-160, chloro-148 and cyto-90. Differing amino acid 
residues are highlighted in yellow, * indicates matching sequence.  
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NCBI             MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNA 60 
mito-110         MLTTRLRLRCSAMASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNA 60 
chloro-98       ------------MASVASFISSSSASTSSAVTKNLPFSIISNRQLFKNRVYLLHRIPNA 48 
cyto-40          ----------------------------------------------------------- 
EYFP             ----------------------------------------------------------- 
                                                                             
NCBI            SIRSFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKY          110 
mito-110        SIRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYKLMVSKGEE 120 
chloro-98       SIRCFASTTASSKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYKLMVSKGEE 108 
cyto-40         -----------MKIRVENPIVEMDGDEMTRVIWTMIKEKLIYPYLELDTKYKLMVSKGEE 49 
EYFP            -----------------------------------------------------MVSKGEE 9 
                                                                     ******* 
 
mito-110        LFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGY 180 
chloro-98       LFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGY 168 
cyto-40         LFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGY 109 
EYFP            LFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFGY 69 
                ************************************************************ 
 
mito-110        GLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELK 240 
chloro-98       GLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELK 228 
cyto-40         GLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELK 169 
EYFP            GLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDPLVNRIELK 129 
                ************************************************************ 
 
mito-110        GIDFKEDGNILGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNT 300 
chloro-98       GIDFKEDGNILGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNT 288 
cyto-40         GIDFKEDGNILGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNT 229 
EYFP            GIDFKEDGNILGHKLEYNYNSHNVYIMANKQKNGIKVNFKIRHNIEDGSVQLANHYQQNT 189 
                ************************************************************ 
 
mito-110        PIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 352 
chloro-98       PIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 340 
cyto-40         PIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 281 
EYFP            PIGDGPVLLPDNHYLSYQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 241 
                **************************************************** 

 
Figure C-2 ClustalW alignment showing ICDH:YFP fusion in constructs truncated at amino 
acid 138 generated from N. tabacum L. cv Petit Havana. Deduced amino acid sequence from N. 
tabacum L. cv Xanthi NADP+-ICDH (NCBI acession CAA65503) and EYFP (NCBI acession 
AAF65454) were aligned with mito-110, chloro-98 and cyto-40. Differing amino acid residues 
are highlighted in yellow, * indicates matching sequence. 
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